Appendix B Supplemental Site Surveys and Comparative Scoping Analysis

Mission Canyon Stream Habitat Restoration Project Initial Study/Mitigated Negative Declaration

Mission Canyon Stream Restoration Project

Supplemental Site Surveys and Comparative Scoping Analysis

October 2022

Prepared for:

California Department of Fish and Wildlife 123 Main Street, Suite 45 City, CA 92075

Prepared by:

Southern California Edison 2244 Walnut Grove Avenue Rosemead, CA 91770 This page intentionally left blank

TABLE OF CONTENTS

<u>Section</u>		Pag	<u>;e</u>
REPORT PURPO	DSE, ORG	ANIZATION AND SUMMARY	1
PART 1. SUPPLE	EMENTA	L SITE SURVEYS	2
Α.	SURVEY	LOCATION	2
В.	SURVEY	METHODS	2
	1.	Supplemental Sidecast Survey Method	3
	2.	Project Scoping Survey Method	3
С.	SURVEY	RESULTS SUMMARY	5
	1.	Supplemental Sidecast Survey Results	5
	2.	Project Scoping Survey Results	5
PART 2. COMP	ARATIVE	SCOPING ANALYSIS	6
Α.	PROPO	SED PROJECT	6
	1.	Sidecast Removal Methods	7
	2.	Constraints to Sidecast Removal	9
	3.	Potential Impacts by Resource Area1	0
В.	FULL SI	DECAST REMOVAL PROJECT	8
	1.	Sidecast Removal Method(s)	8
	2.	Constraints to Sidecast Removal	8
	3.	Potential Impacts by Resource Area	8
С.	SIDECA	ST REMOVAL METHODS NOT SELECTED1	.0
D.	CONCLU	JSION1	.8

TABLE OF CONTENTS (cont.)

LIST OF APPENDICES

- A Map Book of Mission Creek Sidecast Areas and Analysis
- B Comparative Scoping Analysis Team: Experience and Qualifications

LIST OF EXHIBITS

<u>No.</u>	Title	Follows Page
1	Regional Location	2
2	USGS Topography	2
За-е	Project Site with Sidecast Areas and Approximate Depths of Sidecast	5
4а-е	Proposed Project: Method of Sidecast Removal by Sidecast Area	10

LIST OF TABLES

<u>No</u> .	Title	Page
1	Proposed Project Sidecast Removal by Sidecast Deposit Location	7
2	Project Scoping Survey, Proposed Project- Potential Impacts by Resource	0
3	Project Scoping Survey, Project Alternatives Considered-Potential Impacts by Resource	12

REPORT PURPOSE, ORGANIZATION AND SUMMARY

The purpose of this Supplemental Site Survey and Comparative Scoping Analysis report (Report) is to present the results of Southern California Edison's (SCE) scoping exercise and analysis of alternatives considered to identify the revised proposed project scope for the Mission Canyon Stream Habitat Restoration Project (Notification No. 1600-2020-0149-R5) (Project). Through this Project scoping exercise, SCE updated its evaluation of existing site conditions and compared various methods for removing the sidecast material¹ that resulted from SCE's road grading activities in the Mission Canyon area of Santa Barbara County, California, in December 2019, and identified impacts anticipated to result from each method. As a result, SCE identified the Project scope that would result in the maximum benefit to the environment—defined herein as the Project scope that would safely remove the largest volume of sidecast material without causing additional harm to environmental resources—which was selected by SCE to be the Proposed Project.

SCE conducted its Project scoping exercise in two parts. In Part 1, Supplemental Site Surveys, a team of resource experts conducted additional surveys to further characterize the current site conditions within the sidecast areas that were previously identified during prior surveys and assessments². A larger team of technical resource experts then evaluated, in the field, various methods for removing sidecast to determine the pros and cons of each method. In Part 2, Comparative Scoping Analysis, SCE identified extraction methods for its Proposed Project and evaluated the potential environmental impacts of the four removal methods included in the Proposed Project scope (Part 2.A of this Report). Part 2 also compared the Proposed Project scope to a project (the Full Sidecast Removal Project) that removes all sidecast material (Part 2.B of this Report), as well as to other sidecast removal methods considered by SCE but not selected for use by the Project (Part 2.C of this Report).

As described in this Report, SCE determined that the Proposed Project would optimize the removal of sidecast material while protecting the environment with the incorporation of the following scope adjustments:

- Use of helicopter support to air lift materials from remote sections of the Project;
- Use of manual removal methods to extract all materials deposited off Tunnel Trail road where vehicle access is also limited; and,
- Reconstruction of roadside berms, where needed, following sidecast removal on adjacent slopes.

SCE's Proposed Project³ involves the removal of nearly 100 percent of all sidecast material, except where potential constraints would preclude the removal of some material in discrete areas to avoid undesirable conditions. The identified constraints implicate safety considerations associated with access road width and slope stability. On the other hand, the Full Sidecast Removal Project would extract all of the sidecast material despite these safety-related constraints and would disregard the resulting undesirable conditions.

¹ For purposes of this assessment, "sidecast materials" excludes materials repurposed as building materials (e.g., for berms).

² A full accounting of site surveys and assessments conducted prior to the supplemental site assessment is included in the Mission Creek Habitat Restoration Plan (Creek HRP).

³ The Proposed Project scope is not fully described in this document but, rather, is described in detail in the Creek HRP.

The Proposed Project aligns with the goal to minimize further environmental harm and maximize sidecast removal using methods determined to be effective, safe, and result in low levels of impacts to the sensitive resources within Mission Canyon.

PART 1. SUPPLEMENTAL SITE SURVEYS

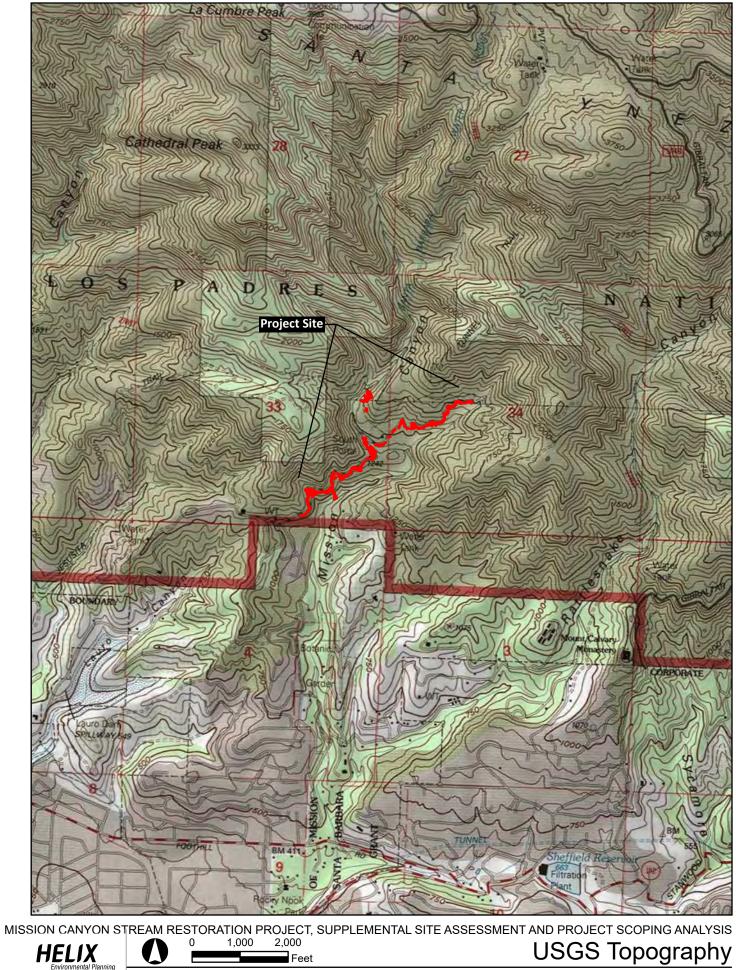
A. SURVEY LOCATION

The Project is located within the Mission Canyon area of unincorporated Santa Barbara County (County), California (*Exhibit 1: Regional Vicinity*). The Project occurs on two parcels, one of which is owned by the City of Santa Barbara (Assessor's Parcel Number [APN] 153-270-009), and one that is owned by a private party (APN 153-270-028). The Project is within Township 5 North, Range 27 West, Sections 33 and 32 of the U.S. Geological Survey (USGS) Santa Barbara 7.5-minute quadrangle map (*Exhibit 2: Project Site on USGS Map*). Mission Creek flows for 16 miles from its headwaters directly to the Pacific Ocean and is an intermittent stream that is mapped as Freshwater Forested/Shrub Wetland and Riverine in the U.S. Fish and Wildlife Service National Wetland Inventory.

The Project is located along approximately 1.12 miles of Spyglass Ridge Road in road sections referred to as Road Areas Gate 1 through 9 and approximately 0.70 mile of the Mission Canyon Catway along road sections referred to as Trail Road Areas 1 and 2. In addition, the Project is located within the streambed and associated banks at Mission Creek in areas referred to as Creek Sites 1 through 4, Creek Site 7, and Sidecast 3 Rock Outliers, and unnamed Mission Creek tributaries within Mission Canyon in areas referred to as Road Area 1, Road Area 2, and Road Areas 5-9, respectively. The total Project area encompasses 3.87 acres of Mission Creek and adjacent upland sidecast areas; refer to *Exhibits 3a-e: Project Site with Sidecast Areas and Approximate Depths of Sidecast*. Regional access to the Project site is provided via State Route 192 (SR 192, also known as Foothill Road). Local access to the Project site is provided via Spyglass Ridge Road/Tunnel Road.

The Mission Creek Site is located on the main stem of Mission Creek, which is an intermittent stream that meanders through the foothills of the Santa Ynez Mountains, through the County and City of Santa Barbara, and eventually drains to the Pacific Ocean. The Project area is in the Mission Creek – Frontal Santa Barbara Channel hydrologic unit (HUC12: 180600130203). Located within Road Areas 1, 2, and 5-9 are portions of unnamed tributaries west and east of Mission Creek. The unnamed tributaries are ephemeral drainages that provide flow to Mission Creek.

The Project area is surrounded on all sides by the open space areas of the Santa Ynez Mountains and Los Padres National Forest. Spyglass Ridge Road provides recreational hiking opportunities and connects to other hiking paths throughout Mission Canyon.


B. SURVEY METHODS

SCE conducted the Supplemental Site Surveys in two steps. The first step was to conduct a Supplemental Sidecast Survey to further characterize the sidecast areas by collecting detailed information on the composition and distribution of sidecast material within individual mapped areas. For accuracy of visual evaluations, some sidecast areas were divided into subareas, within line of sight, to gather information. The results of the Supplemental Sidecast Survey were then used to inform technical experts during the second step, the Project Scoping Survey. With updated information on the sidecast distribution, composition, and the presence of nearby sensitive resources, the technical resource experts evaluated

HELIX Environmental Planning

Source: Base Map Layers (ESRI, 2013)

appropriate sidecast removal strategies by sidecast area. This section describes the methods for each survey.

1. Supplemental Sidecast Survey Method

The Supplemental Sidecast Survey was performed by an International Society of Arboriculture (ISA) certified arborist/botanist, a restoration ecologist, and field personnel trained in high-incline rigging to rappel downslope to collect detailed sidecast depth data.

The surveyors first evaluated sidecast areas for limits to line-of-sight for visual assessments and established subareas within a mapped sidecast area where necessary for survey accuracy. The subareas were marked on a field map and labeled (e.g., sidecast area 2, subarea 2.1). The surveyors then assessed the composition of sidecast deposited over the sidecast area or subarea and classified the composition of sidecast deposited over the sidecast area or subarea and classified the composition of sidecast material into size categories (e.g., large rock >24" diameter, medium rock 12" to 24", small rock and 4" to 12", and fines materials <4" diameter). Surveyors estimated the percentage of the total area consumed by each size category into six cover classifications (0-1%, >1-5%, >5-25%, >25-50%, >50-75%, and >75%). Surveyors also classified the distribution of the sidecast materials observed within a sidecast area or subarea into categories (e.g., scattered boulders, evenly distributed, accumulated in sections, or not present).

Native vegetation cover was also assessed, and the percentage of the total area within a sidecast area or subarea was classified into one of the six cover classifications described above. The presence of sensitive plant species and impacted native trees occurring within the sidecast area was also noted.

The survey also recorded depth measurements for each of the sidecast areas or subareas. These measurements were collected at a selected sample point that best represented the sidecast area or subarea. At each sample point, the depth of the sidecast deposit was measured using a hand trowel and ruler to dig a small pit through the loose sidecast deposits to what appeared to be the original soil surface. The original soil surface could be differentiated from sidecast materials by the differences in color (sidecast was lighter), composition (sidecast was more granular), and compaction (sidecast deposits were less compacted). The overall slope angle to the nearest road was also measured using a handheld slope clinometer.

2. Project Scoping Survey Method

The Project Scoping Survey was a field-based evaluation of alternative construction methodologies performed by a team of technical experts across disciplines to determine the Project scope with maximum benefit to the environment.

The Project Scoping Survey was conducted on August 16 and 17, 2022, by the following technical experts representing various disciplines with detailed qualifications and experience (additional detail in Appendix B, *Comparative Scoping Analysis Team: Experience and Qualifications*):

- Hydrology: Jim Burton P.E. QSD/P; Todd Bear, D. Env., EcoKai Environmental, Inc.
- Native vegetation and sensitive plant habitats: Peter Tomsovic; Justin Fischbeck, CERP; HELIX Environmental Planning, Inc.
- Fisheries and Fish Habitat: Greg Davis; Tom Keegan, HELIX Environmental Planning, Inc.

- Waters and Waterways: Richard Beck, CEP, PWS, CERP, CPESC, Michael Baker International
- Storm Water and Water Quality: Andrew Price, PE, QSD/P, Michael Baker International; Lucy Cortez, CPESC, CESSWI, QSD/P, SCE
- Engineering and Geology: Matthew Harrell PG, CEG, QSP/QSD, Ninyo & Moore; Sean Richards PG, CEG; Javier Izaguirre DEWM, SCE
- Safety: Dan Wallace, PMP, American Integrated Services
- Construction Contractor: Josh Whittaker, American Integrated Services
- Air Operations: Jack Matiasevich, Operations Senior Advisor, SCE Aircraft Operations
- CEQA checklist: Phuong Trinh, SCE Environmental

The Project Scoping Survey consisted of a field examination at each sidecast area in which various sidecast removal methods were discussed among the group of technical resource experts. The team reviewed the general conditions of each sidecast area, and the sidecast composition/distribution information noted in the Supplemental Sidecast Survey. The construction contractor then described a sidecast removal method, explaining in detail the logistics, timelines, equipment, labor force, and other factors needed during the implementation of the specific method. The construction contractor estimated the efficacy of removal for each method (i.e., the overall percentage of sidecast deposits that could be removed). Technical resource experts then evaluated how the methodology may affect resources by advising the team on the benefits and potential impacts warranting consideration for their respective resources associated with the sidecast removal method described.

Following group discussion, a survey form for each construction method was circulated to each technical resource expert who rated the expected severity of impacts (high, moderate, low, or no impacts likely) to their discipline of expertise. Resource experts noted concerns, necessary measures to offset impacts, and a brief explanation for their rating. Sidecast methods having a moderate or high rating of impact for any technical resource area, or if constraints to full removal were identified (e.g., safety concern), then an alternative removal method was introduced by the construction contractor, and the process was repeated. Conversely, if the removal method discussed yielded only low or no impacts likely and would result in the full removal of the sidecast materials, no further methods were considered for that sidecast area. This process was repeated for each sidecast area until a preferred methodology was identified for each area.

SCE also conducted a supplemental engineering assessment to review existing road conditions and distinct areas where the outer edge of the berms were built upon sidecast material that was placed at the edge of the roadway in 2019. The assessment was conducted to evaluate potential impacts that could result from the full removal of sidecast materials. The assessment was based on the information shown in Exhibits 3a-e and focused on Road Areas 5-9. A vehicle tracking analysis was performed using a model to determine the constraints (critical/pinch points) of the existing access road on the turning radius of SCE utility maintenance vehicles. For this analysis, an SCE Transmission Bucket Truck was used in the vehicle tracking model. The sidecast removal areas identified on Exhibits 3a-e were overlayed onto the vehicle tracking model results to identify any constraints. Access road elevational cross-sections were sampled at larger sidecast removal areas and key critical points. The critical points were identified in areas where SCE

maintenance vehicles require multiple point turns to maneuver safely and areas where the full removal of the sidecast material has the potential to narrow the road beyond the minimum width necessary to provide safe access for maintenance vehicles. SCE conducted a site visit to field-verify measurements based on the vehicle tracking model results and cross-sections using sidecast removal depths (Exhibits 3a-e).

C. SURVEY RESULTS SUMMARY

This section summarizes the results of the Supplemental Sidecast Survey and the Project Scoping Survey. Detailed survey results are presented in the figures and tables referenced in the respective sections below.

1. Supplemental Sidecast Survey Results

The Supplemental Sidecast Survey was performed on August 9 and 10, 2022. During this survey, detailed data was collected on the distribution of sidecast within a mapped area, as well as the composition of the materials themselves was collected. Depth measurements were collected from 39 sample points. Representative sidecast sample points were collected only in areas where sidecast was observed and best represented the sidecast deposits in that location. Across all 39 sidecast deposit sample points, the average sidecast depth was 2.1 inches, with a maximum depth of 5 inches and a minimum depth of zero inches (Exhibits 3a-e). Due to the steepness of the slopes along the road and safety considerations, sidecast depth and overall slope angle were not measured at sidecast areas Creek Site 1 and Creek Site 4; Road Area 2 was not sampled due to the composition type of the sidecast materials (medium and small rock), and sidecast depth was not collected at Sidecast 03 Rock Outliers where only a few scattered rocks exist and most of the area has no sidecast present.

Some sidecast areas were divided into smaller areas or "subareas" for purposes of the site assessment. A total of 43 sidecast subareas were surveyed. Sidecast was found to be accumulated unevenly (accumulated in portions) in 24 subareas, whereas sidecast was evenly distributed in 19 subareas. No sidecast was observed in one subarea (Creek Site subarea 7.1). While the percentage of sidecast size class varied across all subareas, large rock (>24" in diameter) was observed in 29 sidecast subareas; medium rock (>12" and <24" in diameter) was observed in 23 sidecast subareas; small rock (>4" and <12" in diameter) was observed in 16 sidecast subareas; and fines (<4" in diameter) was observed in 37 sidecast subareas. Impacted trees were observed in 15 sidecast subareas, while sensitive plant species were observed in 8 sidecast subareas. The results of this Supplemental Sidecast Survey will be used to revise sidecast volume estimates, currently underway.

Representative photos and sidecast composition data for each sidecast area are provided in Appendix A, *Map Book of Mission Creek Sidecast Areas and Analysis*.

2. Project Scoping Survey Results

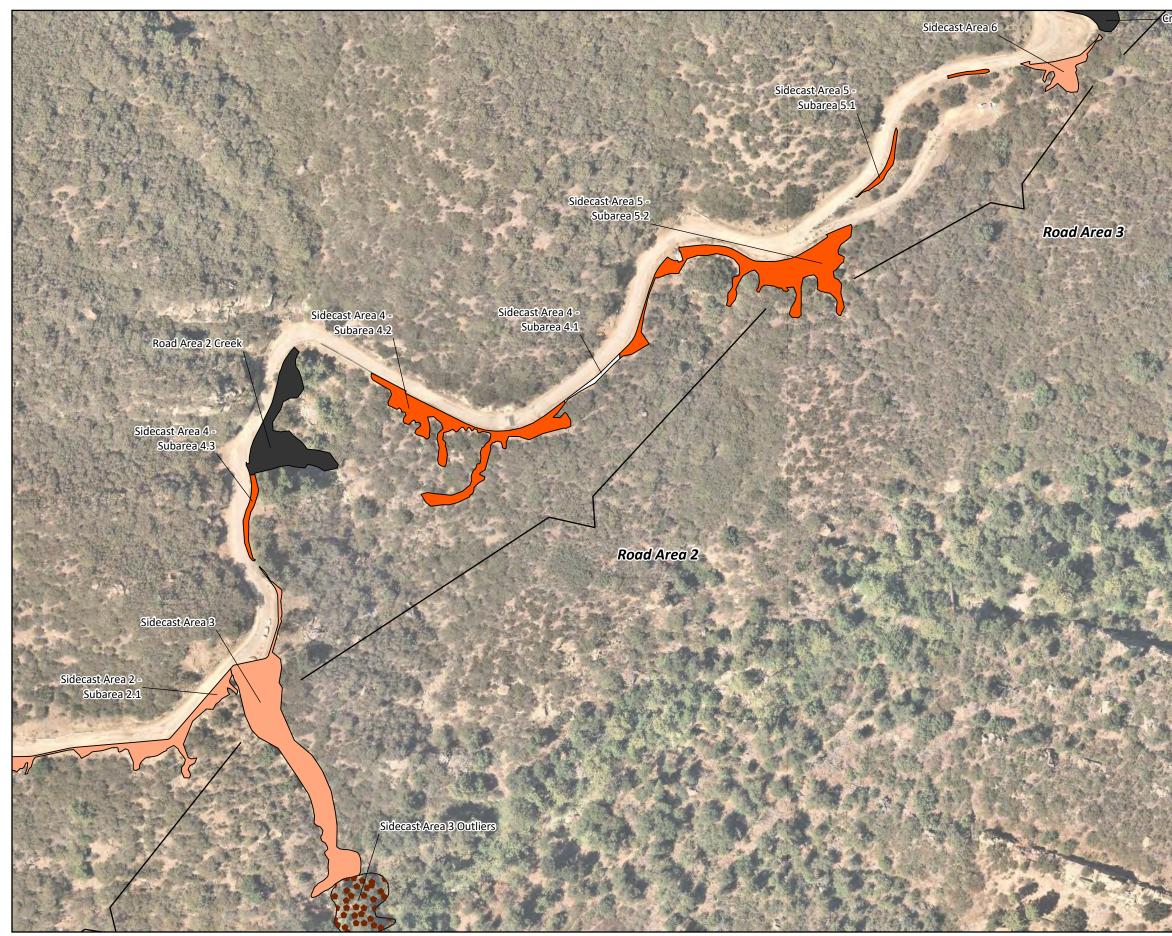
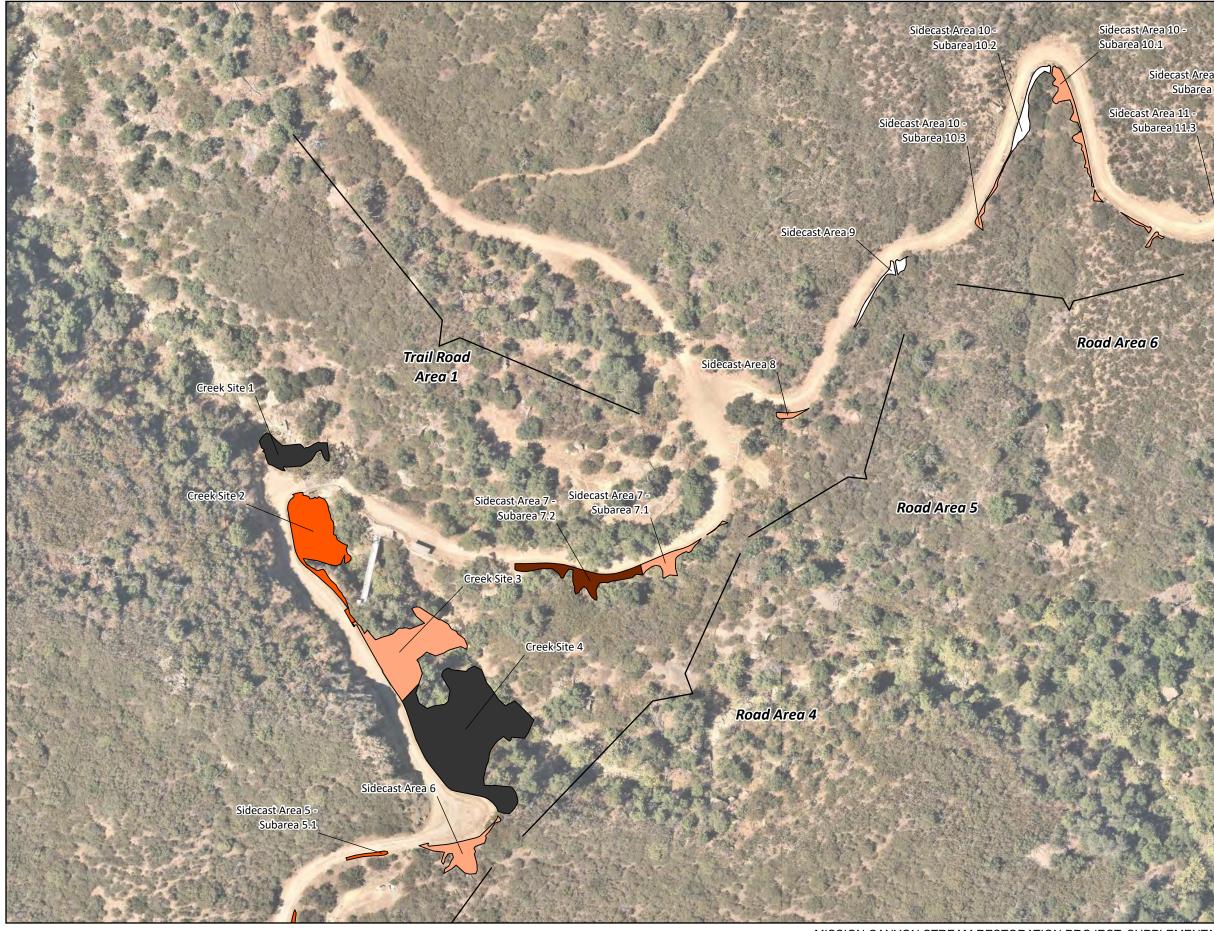

The Project Scoping Survey assembled a team of cross-resource technical experts (listed above in Part 1, Section B.2) to collectively investigate a range of techniques for the extraction of sidecast materials. The survey generated substantive, fluid discussions evaluating possible alternative methods to achieve the goals of the Project. As a result, SCE is incorporating three Project scope adjustments to optimize the removal of sidecast material while protecting the environment.

Exhibit 3a

Project Site with Sidecast Areas and Approximate Depths of Sidecast

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Exhibit 3b


Project Site with Sidecast Areas and Approximate Depths of Sidecast

No Data Collected

Sidecast Depth 0"

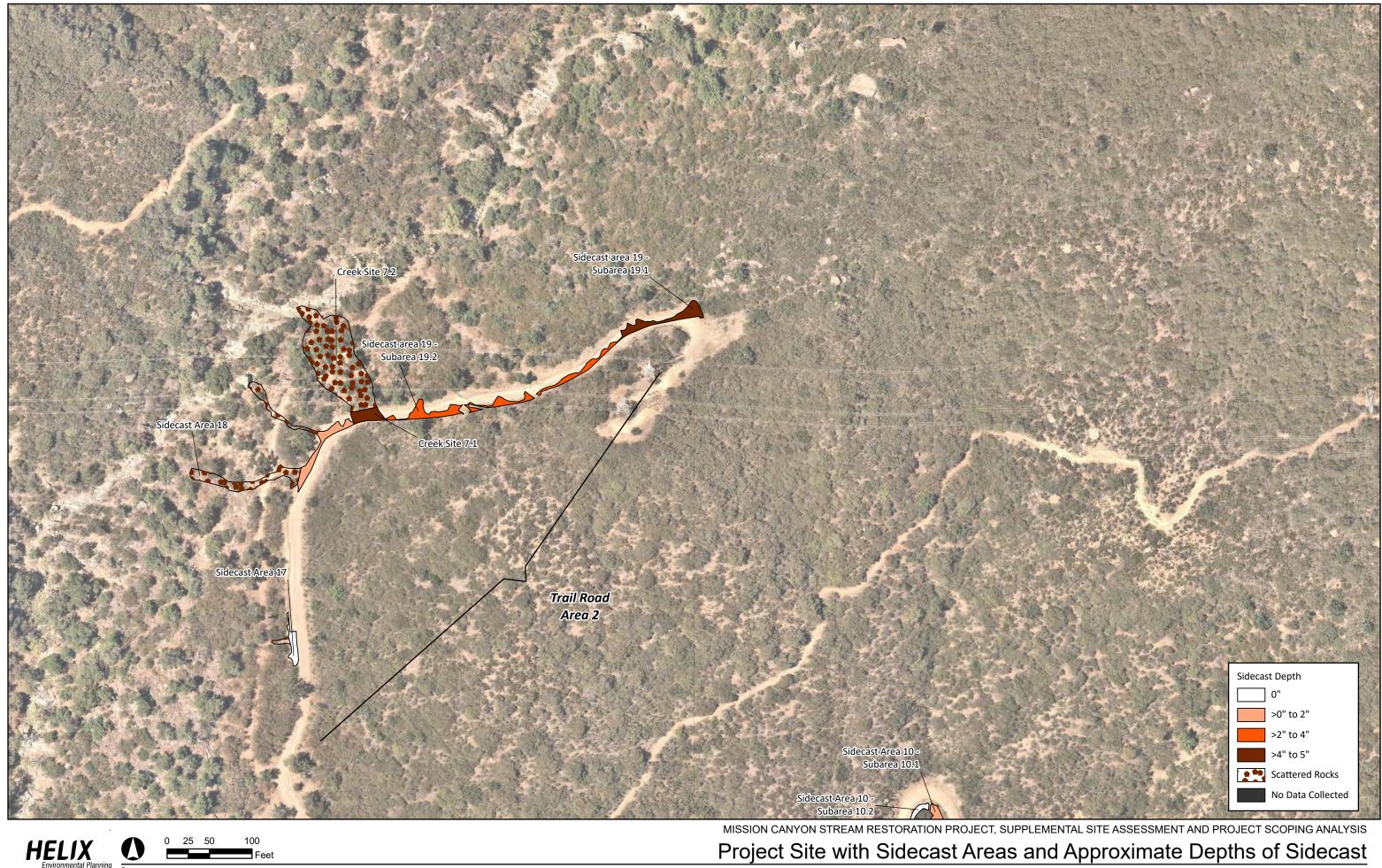
>0" to 2"

>2" to 4" >4" to 5" Scattered Rocks

Project Site with Sidecast Areas and Approximate Depths of Sidecast

Sidecast Depth] 0"

>0" to 2"


>2" to 4" >4" to 5" Scattered Rocks

No Data Collected

Exhibit 3c

Sidecast Area 11 -Subarea 11.2 Sidecast Area 11 -Subarea 11.1

Sidecast Area 12 -Subarea 12.2

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Exhibit 3d

Project Site with Sidecast Areas and Approximate Depths of Sidecast

Exhibit 3e

Project Site with Sidecast Areas and Approximate Depths of Sidecast

For most sidecast areas, road accessibility yielded concurrence from experts that manual removal combined with a suction method and light use of machinery would result in the low impacts and high efficacy desired. In contrast, the remote, steep, and inaccessible deposits at the Sidecast 03 (SC 03) and Sidecast 03 Outliers (SC 03 Outliers) locations (to which the experts hiked out to investigate closely) instigated substantially more discussion and evaluation of multiple methods. In fact, prior to conducting the Project Scoping Survey, deposits at these locations had been considered too difficult to remove. One of the most significant findings of the survey was identifying the safe and low-impact method using helicopter support to air lift materials from these areas and deposit them at a nearby material staging area. Therefore, the first scope adjustment involves the use of helicopter support to air lift materials from remote sections of the Project.

Another significant finding was the feasibility of the manual removal of all materials deposited at Creek Site 7 and Sidecast areas 17-19. Informed by the Supplemental Sidecast Survey results and observations while on-site, the resource technical experts were able to evaluate the sidecast material deposits closely, and the contractor was able to present a safe and low-impact method for removal. Therefore, the second scope adjustment involves the use of manual removal methods to extract all materials deposited off Tunnel Trail road where vehicle access is also limited.

A third finding was the recognition that sidecast removal could necessitate the reconstruction of berms in areas where the outer edge of the berms were built upon sidecast material that was deposited at the edge of the roadway in 2019. This finding led to the supplemental engineering evaluation described in Part 1, Section B.2 performed by SCE to review the existing road conditions and potential impacts that could result from the full removal of sidecast at the identified locations. Therefore, the third scope adjustment involves reconstruction of roadside berms where needed following sidecast removal on adjacent slopes.

Supplemental Site Surveys results are presented in this Report as follows: sidecast removal methods selected as the Proposed Project are presented in Part 2, Section A below, and detailed in Table 2, *Project Scoping Survey, Proposed Project-Potential Impacts by Resource*; sidecast removal methods evaluated but not selected are presented in Part 2, Section C and detailed in Table 3, *Project Scoping Survey, Project Alternatives Considered-Potential Impacts by Resource*.

PART 2. COMPARATIVE SCOPING ANALYSIS

A. PROPOSED PROJECT

SCE's Proposed Project⁴ involves the removal of nearly 100 percent of all sidecast material, except where potential constraints would preclude removal of some material in discrete areas to avoid undesirable conditions.

The Proposed Project employs four methods to extract sidecast materials deposited during the 2019 road widening activities. These methods were carefully evaluated through the process described in Part 1 of this report and selected to achieve maximum extraction of sidecast material without causing harm to sensitive environmental resources, while maintaining a safe working environment and protecting public safety long term. Once removed, sidecast material will be transferred to an approved location where soil will be stockpiled and loaded into small-scale "bobtail" dump trucks and transported along a designated

⁴ The Proposed Project scope is not fully described in this document but, rather, is described in detail in the Creek HRP.

route to be disposed of at a local landfill. Some material may be processed and repurposed on-site for berm reconstruction, where needed.

The following description of the Proposed Project is intended as a summary for the purposes of this Comparative Scoping Analysis and is focused on extraction methods. The Proposed Project description is presented in the Creek HRP in full detail (including but not limited to a full description of sidecast removal, site restoration, and monitoring activities) for evaluation under the California Environmental Quality Act and other permitting actions.

1. Sidecast Removal Methods

The primary method identified for sidecast removal is the combination of manual or hand removal, and removal using vacuum or guzzler trucks (Hand and Guzzler Removal technique). The benefits of this method include the low-level impact of using technicians to access steep slopes and environmentally sensitive areas and the high efficacy for extracting the sidecast using this methodology. The Hand and Guzzler Removal technique will be used in conjunction with machinery staged on the road to facilitate the removal of the larger rock. In addition to the Hand and Guzzler Removal technique, the Project Scoping Survey identified two additional low-impact removal techniques expected to result in the full removal of sidecast in locations away from the road. These removal techniques are Hand Removal and Helicopter Removal. A summary and map of the sidecast removal methods, and locations where those methods are employed, are listed in Table 1, *Proposed Project Sidecast Removal by Sidecast Deposit Location*, Exhibits 4a-e, *Proposed Project: Method of Sidecast Removal by Sidecast Area*, and are also described below. Through the implementation of these combined removal methods, SCE believes that sidecast deposit removal will be maximized; therefore, SCE anticipates the removal of nearly 100 percent of all the material sidecasted during the 2019 road widening activities, potentially excepting only minor areas where constraints to full removal may exist, as identified by SCE (see Part 2, Section A.2 below).

Sidecast Location	Method of Sidecast Removal
Sidecast Areas 1-2, 4-16	Excavator with Hand and Guzzler
Creek Sites 1-4, Road Areas 1-2	Forklift with Hand and Guzzler
Sidecast 3, Sidecast 3 Outliers	Helicopter Removal
Creek Site 7, Sidecast 17-19	Hand Rock Removal

Table 1: Proposed Project Sidecast Removal by Sidecast Deposit Location

Excavator with Hand and Guzzler Removal

Sidecast deposits, occurring along Road Areas 1 through 4, consist of thin layers of finer soil material intermixed with rocks and scattered boulders accumulated along the base of vegetation. These materials will be removed manually by technicians in combination with vacuum or guzzler trucks and a small excavator. This method will be performed in sidecast areas (SC) 1 through 6 (see Exhibits 4a-e) and is expected to result in the full removal of the sidecast material at these locations.

This combination method includes the removal of small rocks and soil particles by technicians using small hand tools (shovels, rakes, and picks) to break up and sort material. Technicians will feed sidecast materials less than 3" in diameter into a vacuum hose connected to a guzzler truck, which will be staged on the roadways above the work area. Materials that can be collected through the hose will be pulled into the guzzler and transported to an approved staging location. Technicians will lift manageable rock portions upslope by hand or use a small, tracked excavator fitted with a thumb bucket, positioned on the roadway,

to extract boulders from slopes. The excavator may also be used to lift rocks bolted to a chain with shackles and position them onto the road for staging.

Forklift with Hand and Guzzler

The majority of sidecast deposits occurring within Mission Creek and in tributaries located at Road Areas 1 and 2 consist of a mixture of small and moderately sized rocks with finer soil material and scattered boulders. These materials will be removed using the Hand and Guzzler Removal method described above in combination with a long-reach forklift to extract material. This method will be performed in Mission Creek sites 1 through 4, as well as Road Area 1 and 2 removal sites (see Exhibits 4a-e) and is expected to result in the full removal of the sidecast material at these locations; however, potential constraints to the slopes within Creek Sites 2, 3 and 4 were noted by SCE, as described in Part 2, Section A.2 below.

This combination method includes the removal of small rocks, and soil particles using the Hand and Guzzler technique described above. For large materials, technicians will manually break rocks and boulders into manageable pieces using sledgehammers or, where necessary, drill and inject an expandable grout to allow them to break into smaller pieces overnight. These rocks will then be manually loaded into baskets and lifted by a long-reach forklift positioned in the roadway. The material will then be transported to an approved staging location, where it will be transferred to trucks and hauled off-site for disposal.

Helicopter Removal

In one area of sidecast deposit, SC 03 and SC 03 Outliers, located within Road Area 1 (see Exhibits 4a-e), large boulders and smaller rock and soil material are positioned approximately 300 feet from the roadside with no footpath or road access. Due to these limitations, SCE proposes to remove the material using the Helicopter Removal method to relocate the material to an approved staging area. Various methods were evaluated to extract the material from this location. The Helicopter Removal method was selected as the least impactful to resources and is expected to remove all the sidecast material at this location.

This method includes the use of a helicopter such as a light utility Bell 429 with a lift capacity of 1,500 to 2,000 pounds fit with enclosed steel baskets. The steel baskets can be covered with a safety net and lined to secure the rocks. Alternatively, the rocks can be placed into load bags and then loaded into the steel baskets. Rock will be manually broken using sledgehammers or, where necessary, may be drilled and injected with expandable grout to allow the rock to break into manageable pieces overnight. Rock will be transferred into rock sacks by ground crews and staged for the aerial operation to minimize flight time. The helicopter will hover approximately 100 to 150 feet in the air while ground crews fill the basket with rock sacks. Once full, the pilot will relocate the material to an approved staging location within the Project area where groundcrews will unload the steel basket. A landing zone and refueling location, such as the Santa Barbara Airport, must be located within 10 to 15 minutes of flight time from the Project Area.

Excavator with Hand and Guzzler Removal

Sidecast deposits occurring along the roadside slopes of Road Areas 5 through 9 consist of boulders and rocks intermixed with the roadside berms and deposits immediately downslope of the roadside. The sidecast in SC 7 through SC 16 in Road Areas 5 through 9 (see Exhibits 4a-e) will be removed using a tracked excavator in addition to the Hand and Guzzler Removal techniques described above. This method is expected to remove nearly 100 percent of the sidecast material at these locations, except as noted below.

This combination method includes the removal of small rocks, and soil particles using the Hand and Guzzler Removal technique described above. For larger materials, this method uses a small, tracked excavator staged in the road to pull sidecast from the berm and road shoulder into the roadbed. The material will then be transported to an approved staging location where it will be sorted. Berms will be reconstructed following the removal of sidecast in areas where the outer edge of the berms were built upon sidecast material that was deposited at the edge of the roadway in 2019. Suitable sidecast material may be processed and used to reconstruct the roadside berms. A tracked excavator fitted with a thumb bucket may also be used to extract boulders from slopes.

Potential constraints to the removal of sidecast material in Road Areas 6 through 9 were identified by SCE and are described in Part 2, Section A.2 below. In those areas, roadside berms will only be tamped.

Hand Rock Removal

Sidecast deposits at Creek Site 7, and SC 17-19 are located on Trail Road Area 2 (see Exhibits 4a-e) and consist of scattered rocks intermixed with existing vegetation. The sidecast rocks are dispersed within the mapped area and distinguishable from other naturally present rocks. These areas are only accessible by foot; however, the low volume and manageable size of the rocks allow for manual removal using the Jesusita Trail to access the sidecast areas. The Hand Rock Removal method was selected as the least impactful to resources and is expected to remove all sidecast material at this location.

This method employs technicians using high incline rigging for fall protection, who will manually remove the sidecast rock and transfer it up the slope by hand. Large rocks will be broken into smaller manageable pieces using hand tools before removal. Smaller rock or rock fragments may be transferred into rock sacks for easier removal and carried out utilizing frame packs and manual means. Rock will be staged on the side of the roadway, where it will be collected using a small loader or comparable equipment and transported to an approved staging area where the material can be hauled away for disposal.

2. Constraints to Sidecast Removal

The Project Scoping Survey and supplemental engineering surveys revealed potential constraints to full removal of sidecast material in discrete locations; however, it is anticipated that even with these constraints, there still would be nearly 100 percent removal. The identified constraints implicate safety considerations associated with access road width and slope stability. As discussed below, any constraint to full removal is not a result of the methods but rather the need to avoid undesirable conditions potentially resulting from the removal of the sidecast itself.

The areas of potential constraints related to access road width are along slopes adjacent to five road bends within Road Areas 6 through 9 within sidecast areas SC 10, SC 11, SC 12, SC 14, and SC 15 (see Constraint Areas shown on Exhibits 4a-e). If SCE conducts full removal of sidecast material in these areas, it could have the potential to narrow the road width to below the tolerance levels necessary to provide safe access for utility or emergency vehicles.

Roadway berms for vehicle safety were erected during the 2019 road widening/maintenance activities. The majority of berms were built directly upon the preexisting road surface while, in a minority of areas, berms were built upon sidecast material that was placed at the edge of the roadway in 2019. In order to remove the sidecast material supporting the outer edge of the berms in these locations, the berms and sidecast would need to be removed, and the berms would need to be reconstructed within the preexisting road prism, thereby narrowing the current width of the roadway in these locations. Therefore, in these

five potential areas of constraint, the focus will be on the maximum removal of all sidecast material from the 2019 incident while not compromising safe access to SCE facilities. Decisions to fully remove or leave discrete areas of sidecast material in place to maintain safe road width will be determined in the field by qualified professionals as subsurface conditions are revealed during sidecast excavation. Post-construction documentation of any sidecast material left in place will be recorded and provided to regulatory authorities, as warranted. While these constraint circumstances pertain to a small scope of the overall removal work, SCE will implement the construction process to monitor road width and maximize removal, where safe and feasible⁵.

SCE has also identified four areas with potential constraints related to slope stability within Creek Sites 2, 3, and 4 (see Constraint Areas shown on Exhibits 4a-e). These four areas occur along the upper slopes of the sidecast areas and outside of the streambanks of the creek. The steep slopes in these locations enhance the possibility that the complete removal of sidecast material could lead to localized surface instability and sloughing of the existing soils beneath, either during the removal process or during future rain events. Therefore, in these four potential areas of constraint, the focus will be on the maximum removal of all sidecast material from the 2019 incident while not creating an unstable slope. While constraint circumstances precluding full sidecast removal are not anticipated at these locations, SCE recognizes the possibility and will monitor the slopes during the construction process and maximize removal, where safe and feasible.

3. Potential Impacts by Resource Area

Experts in the areas of hydrology/geomorphology, native vegetation and sensitive plant habitat, fish and fish habitat, waters and waterways, stormwater and water quality, engineering and geology, as well as safety, participated in the Project Scoping Survey and comparative analysis. The resource experts were asked to rate each removal method on how it would impact resources within their respective areas of expertise. The four removal methods included in the Proposed Project scope were rated as low or not likely to impact their resource area by most evaluators. Moderate ratings were identified for native vegetation and sensitive plant habitats at SC 16 in Road Area 9 due to the presence of Santa Barbara honeysuckle (*Lonicera subspicata* var. *denudata*) and the expected disturbance to native vegetation re-establishing within sidecast piles. Moderate ratings were also identified for stormwater and water quality in all areas due to the nature of all removal methods to disturb soils during the removal process. Measures to offset any impacts to these and other resources, such as sensitive species revegetation, erosion control, and soil stabilization best management practice (BMP) measures, will be integrated into the Proposed Project. Resource expert assessments are detailed in Table 2, *Scoping Analysis, Project Description and Potential Impacts by Resource*.

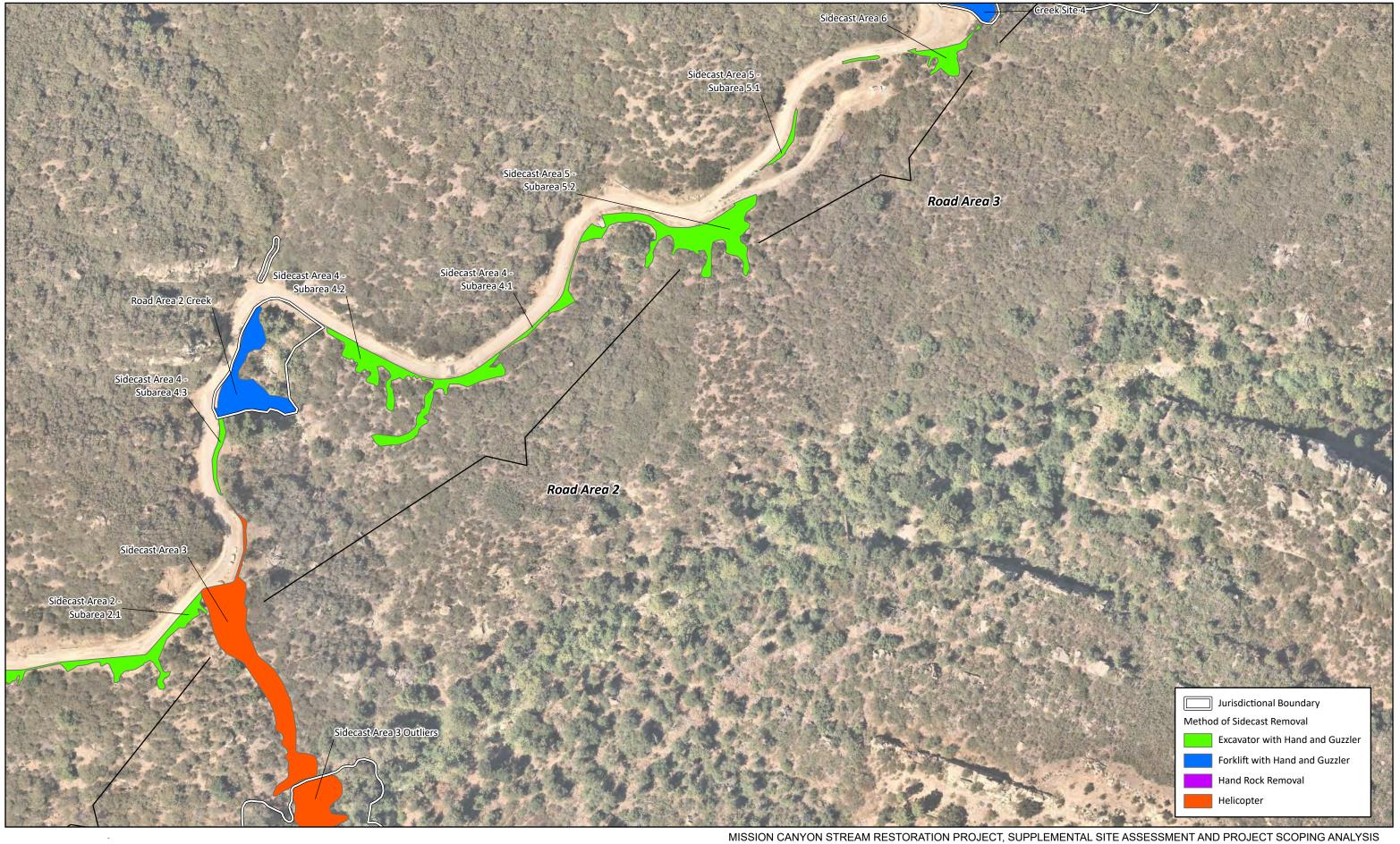
⁵ "Feasible" is defined as "capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, legal, social, and technological factors." Cal. Code Regs. Tit. 14, § 15364.


100 Feet MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

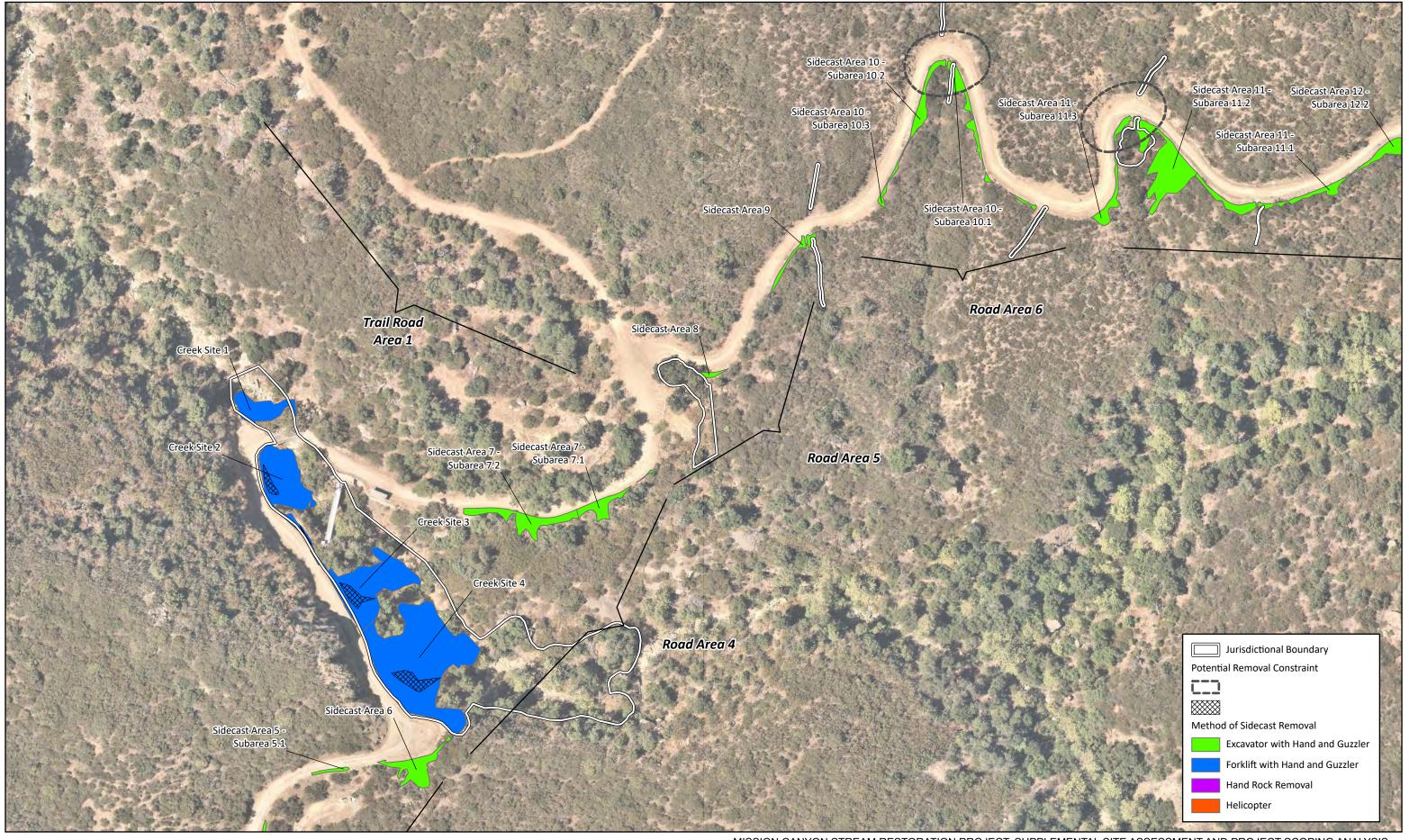
Proposed Project: Method of Sidecast Removal by Sidecast Area

Sidecast Area 3

Sidecast Area 2 -Subarea 2.1

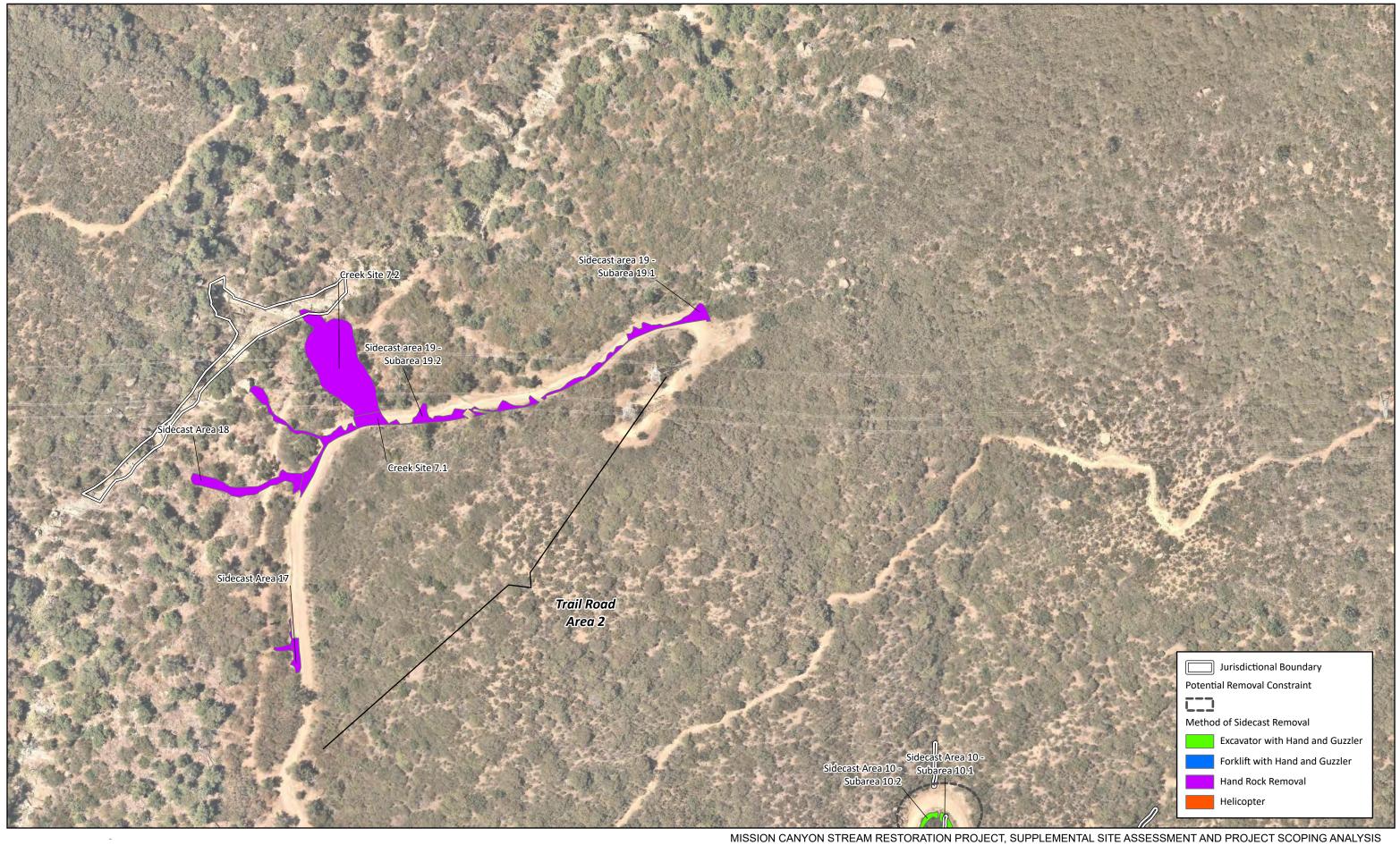

> Sidecast Area 3 Outliers Road Area 1

Excavator with Hand and Guzzler Forklift with Hand and Guzzler Hand Rock Removal Helicopter


Exhibit 4a

Proposed Project: Method of Sidecast Removal by Sidecast Area

Exhibit 4b



MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Proposed Project: Method of Sidecast Removal by Sidecast Area

Exhibit 4c

HELIX Environmental Planning

100 Feet 0 25 50

Proposed Project: Method of Sidecast Removal by Sidecast Area

Exhibit 4d

0 25 50 100

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Proposed Project: Method of Sidecast Removal by Sidecast Area

Exhibit 4e

		r with Hand and Guzzler		or with Hand and Guzzler		r with Hand and Guzzler	Forklift wi	ith Hand and Guzzler	Hel	icopter Removal	Heli	copter Removal		Hand Removal
		Areas 1-4 (SC 1 Arough 6)	Road Area	s 5-9 (SC 7 through 15)		Area 9 (SC 16)		es 1-4 and tributaries t Road Areas 1 and 2		SC03		C 03 Outliers	Creek	Site 7 and SC 17-19
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Hydrology	Not likely	Low potential for impact - no veg removal & no expected sediment or rock migration to the creek during removal activities.	Not likely	Limited removal & not hydrologically connection to creek. Removed rock will not reach or impact creek. Sediment transport/erosio n control w/BMPs during removal.	Not likely	Low potential for impact - no vegetation removal and no expected sediment or rock migration to the creek during removal activities.	Not likely	Removal of material from the creek and adjacent slopes is likely to improve overall stream hydrology and natural sediment transport function of the drainage. Incidental small	Not likely	Helicopter removal from the slope after hand removal is not likely to impact the hydrology of the creek. Sidecast material is expected to be contained to localized areas and removed without slope impacts.	Low	BMPs to include working only during the dry season, slope erosion control, and designating work areas away from the stream minimizing rock movement downslope while aircraft is lifting loaded baskets. BMP utilization will also minimize movement of upslope material.	Not likely	Limited material present, hand removal via pre- established trail.

Table 2: Project Scoping Survey, Proposed Project- Potential Impacts by Resource

		or with Hand and Guzzler		or with Hand and Guzzler		with Hand and Suzzler	Eorklift w	ith Hand and Guzzler	На	elicopter Removal	Helic	copter Removal		Hand Removal
	Road	Areas 1-4 (SC 1 hrough 6)		s 5-9 (SC 7 through 15)		rea 9 (SC 16)	Creek Site	es 1-4 and tributaries It Road Areas 1 and 2		SC03		C 03 Outliers		Site 7 and SC 17-19
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Native Vegetation/ Sensitive Plant Habitat	Low	Temporary impacts to herbaceous cover should quickly recover following sediment removal. Minimal cover currently exists. Woody resprouts would likely not be impacted	Not likely	Minor vegetation impacts where herbs and shrubs are growing through sidecast. Overall vegetation cover is low. Some scattered sensitive species can be avoided. Few Santa Barbara Honeysuckle in area, particularly SC 15, but impacts are not anticipated.	Moderate	Some impacts to SBHS and associated vegetation. 100% removal includes veg impacts where vegetation is re-establishing on top of sidecast. SBHS established in sidecast	Low	Impacts to vegetation would be low. Manually breaking up of rocks could fall onto establishing vegetation, but would then be promptly removed, minimizing any long-term impacts. Guzzler removal would likely have no impacts to vegetation.	Low	Some minor impacts to vegetation as trails are created to haul out locations. Impacted areas may be revegetated following construction	Low	Minor trimming of tree canopy anticipated to clear a small laydown area where sidecast materials may be stockpiled for aerial removal. Trimmed canopy is expected to naturally recover	Not likely	Hand removal - minimal impacts to native vegetation. Few Plummer's baccharis in area, however no impacts to the species is expected since sidecast consists of a few scattered boulders.

		r with Hand and Guzzler		or with Hand and Guzzler	1	r with Hand and Guzzler		vith Hand and Guzzler	He	licopter Removal	Heli	copter Removal	H	Hand Removal
		Areas 1-4 (SC 1 Arough 6)	Road Area	s 5-9 (SC 7 through 15)		Area 9 (SC 16)		es 1-4 and tributaries at Road Areas 1 and 2		SC03	s	C 03 Outliers	Creek	Site 7 and SC 17-19
Resource						· · ·								
Area Fish and Fish Habitat	Rating Not likely	Comment Site is hydrologically disconnected from creek	Rating Not likely	Comment Site is hydrologically disconnected from creek	Rating	Comment Site is hydrologically disconnected from creek	Low	Comment Treatment involves near 100% removal of sidecast materials from stream channel and adjacent uplands. Removal of sidecast materials within the creek sidecast materials within the creek sites will reestablish/expos e the native streambed, which could result in a temporary flush in sediment following the first storm event after implementation, however it would be at a level negligible to the background inputs from the watershed. Impacts to fisheries habitat/passage are not expected	Low	Comment Access trails & sidecast removal could result in minor flushes of sediment following implementation but @ a level that would be negligible over background inputs to watershed. No significant impacts to fish/fish habitat or passage are expected	Low	Comment Minimal disturbance to fish habitat anticipated aside from incidental disturbance around sediment removal. See above under hand removal for description of similar effects due to slight relocation of habitats. Low potential for passage impacts.	Rating Not likely	Comment Treatment involves removal of rock cobble & boulders from stream channel and adjacent area. Impacts to fisheries/habitat/p assage are not expected

	Excavator	r with Hand and	Excavato	or with Hand and	Excavator	r with Hand and								
		Guzzler		Guzzler	G	Guzzler		vith Hand and Guzzler	Hel	licopter Removal	Hel	icopter Removal		Hand Removal
		reas 1-4 (SC 1	Road Areas	s 5-9 (SC 7 through				es 1-4 and tributaries						
	th	rough 6)		15)	Road A	vrea 9 (SC 16)	located a	t Road Areas 1 and 2		SC03	S	SC 03 Outliers	Creek	Site 7 and SC 17-19
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Waters and Waterways	Moderate	Loose rocks & soils could tumble below. Workers will stay ~10' left or right of operating equipment 100% tie offs while in hillside & use buddy system	Not likely	Limited removal area (small size), little to no vegetation. Impacts unlikely w/BMPs incorporated. NOTE: SC11 jurisdictional; but no impact (work under tree)	Not likely	no impacts anticipated due to distance from CDFW/ACOE jurisdiction and removal methods. Long-term slope stabilization and BMPs to be deployed	Low	Road Areas 1 and 2, as well as Creek Sites 1 through 4, have areas that fall under the jurisdiction of the USACE, CDFW, and RWQCB. While the removal will have some temporary impacts (potential incidental fallback for rock material), the impacts can be reduced by the removal approach (guzzler and hand removal) and deployment of recommended Best Management Practices. Thinning and removal of vegetation is not anticipated.	Not likely	Aerial removal to not impact watershed. Implement BMPs as directed to limit erosion & fall back	Low	Temporary work zone in ACOE/CDFW jurisdiction. Limited impacts to riparian canopy could occur for basket lift	Not likely	Few boulders (sparse) in CDFW/ACOE jurisdiction. Impacts not anticipated due to small number of rocks and approval to carry off-site

		r with Hand and		r with Hand and		r with Hand and				Den el				
		Guzzler .reas 1-4 (SC 1		Guzzler s 5-9 (SC 7 through		Guzzler		th Hand and Guzzler s 1-4 and tributaries	Hell	copter Removal	Helic	opter Removal	r	Hand Removal
		rough 6)	Noau Areas	15)		Area 9 (SC 16)		t Road Areas 1 and 2		SC03	so	03 Outliers	Creek	Site 7 and SC 17-19
Resource														
Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Stormwater/ Water Quality	Moderate	Foot traffic will cause minimal disturbance. Erosion and sediment control BMPs will be required for disturbed walk way areas.	Moderate	Large amounts of sediment removal exposing barren slopes. Extensive erosion and sediment control BMPs will be required, especially for stabilization measures.	Moderate	Assuming large boulder removals and berm establishment (compaction, etc.) Stabilization measures required (i.e., BMPs) for disturbed areas. Moderate impact severity without stabilization measures, risks may be offset if extensive soil stabilization BMPs are implemented on denuded areas following removal. Long term stabilization with vegetation will be necessary of exposed slopes.	Moderate	Assuming removals are performed during dry conditions, and necessary stabilization measures are implemented, and post removal soil stabilization BMP are implemented on denuded areas following removal. Long term stabilization with vegetation will be necessary.	Moderate	Vegetation removal will be required to conduct this work leaving barren slopes with a potential of sediment discharge. Soil stabilization BMPs will be required for removal areas. Removal of rock will have the potential for erosion and soil stabilization BMP measures should be implemented to offset risk of sediment transport. Moderate impact severity without stabilization measures, risks may be offset if extensive soil stabilization BMPs are implemented on denuded slopes following removal. Long term stabilization with vegetation will be necessary of exposed slopes.	Low/ Moderate	Foot traffic expected to cause low level of disturbance. Extensive soil stabilization BMPs on exposed slopes following removal. Long term stabilization with vegetation will be necessary of exposed slopes.	Low	Foot traffic is expected with minimal disturbance. Rocks are smaller, so smaller footprints of bare soil expected. Will evaluate the work area post construction for erosion and sediment control BMPs, if needed

		r with Hand and Guzzler		r with Hand and Guzzler		with Hand and Suzzler	Forklift wi	ith Hand and Guzzler	Heli	copter Removal	Helic	opter Removal	F	land Removal
		reas 1-4 (SC 1 rough 6)	Road Areas	5-9 (SC 7 through 15)		rea 9 (SC 16)		es 1-4 and tributaries t Road Areas 1 and 2		SC03	sc	C 03 Outliers	Creek	Site 7 and SC 17-19
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating			Comment
Engineering and Geology	Not likely	Minor, loose debris removal likely minimal impact to existing slope.	Moderate	Based on review of working road limits and projected daylight of removals, some areas will require partial berm restoration. Other areas will require reshaping of the existing berms and tamping in- place.	Moderate	Full berm restoration to the standard dimension is likely with partial restoration in select areas.	Low/ Not Likely	Impact not likely to the existing berms and slopes depending on	Not likely	Hand removal to staging areas. Minor, loose debris removal likely minimal impact to existing slope.	low/not likely	Foot traffic impacts are minimal, slope impacts are not likely.	Rating Not likely	Loose debris removal likely minimal impact to existing slope.
Safety	Low	Loose rock and soils could tumble below. Workers will stay approximately 10' left or right of operating equipment, 100% tie-off while on hillside and use buddy system.	Moderate	Workers to stay approximately 10'-20' left or right of heavy equipment. Ties off at all times when on slope, utilize buddy system. Maintain eye contact with operator, stay clear of excavator swing radius. Level D+ PPE (steel toe boots, long sleeves, eye/ear/hand/h ead protection as needed with fall protection on hillsides. Tyvek suits and respiratory	Moderate	Workers to stay approximately 10'-20' left or right of heavy equipment. Ties off at all times when on slope, utilize buddy system. Maintain eye contact with operator, stay clear of excavator swing radius. Level D+ PPE (steel toe boots, long sleeves, eye/ear/hand/ head protection as needed with fall protection on hillsides.	Low	Fall protection measures will be in place to ensure worker safety	Moderate	A clear and unobstructed flight path is needed, so the trail would need to be shut down, notices would need to be sent/posted, and controls would need to be in place to ensure no hikers are present during the operation. Fire mitigation would be necessary at a landing zone. There would also be a central landing zone for all equipment. The canopy does not appear to be a concern as there are enough open areas. AirOps safety training would be required for ground crews. Loose soils & rock		Same as SC03	Modera te	Hand work w/tools protect hands with gloves. Be aware of sledgehammer swing radius. Lift heavy items carefully & use legs

		with Hand and	Excavat	or with Hand and		or with Hand and								
	0	Guzzler		Guzzler		Guzzler		ith Hand and Guzzler	Hel	icopter Removal	Heli	icopter Removal	ŀ	land Removal
		reas 1-4 (SC 1	Road Area	as 5-9 (SC 7 through				es 1-4 and tributaries						
	th	rough 6)		15)	Road	Area 9 (SC 16)	located at	t Road Areas 1 and 2		SC03	S	SC 03 Outliers	Creek	Site 7 and SC 17-19
Resource														
Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
				protection		Tyvek suits and				create overhead fall				
				excluded)		respiratory				hazards. Make sure				
						protection				workers stay 20' left				
						excluded)				or right of equipment				
										& lines. Remain tied				
										off at all times & use				
										buddy system.				
										Poison oak in area,				
										only long sleeve				
										shirts and full-length				
										pants should be				
										worn. Stay left or				
										right of load while it				
										is being winched up				
										hill to avoid other				
										falling rock. Maintain				
										distance from				
										excavator/stay out of				
										swing radius.				

		or with Hand and		or with Hand and		or with Hand and								
		Guzzler		Guzzler		Guzzler		vith Hand and Guzzler	Heli	copter Removal	Helic	opter Removal		Hand Removal
		Areas 1-4 (SC 1 hrough 6)	Road Area	is 5-9 (SC 7 through 15)	Pood	Area 9 (SC 16)		es 1-4 and tributaries It Road Areas 1 and 2		SC03		03 Outliers	Crook	Site 7 and SC 17-19
Resource		inough 0j		15)	Nudu	Alea 9 (5C 10)	iocateu a			3003	30	US Outliers	CIEEN	Site 7 and SC 17-19
Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
CEQA Checklist	Low	None, assuming slope is stabilized, and habitat restoration and revegetation is implemented.	Low	None, assuming slope is stabilized, and habitat restoration and revegetation is implemented.	Low	None, assuming slope is stabilized, and habitat restoration and revegetation is implemented.	Low	None, assuming slope is stabilized, and habitat restoration and revegetation is implemented.	Moderate	CEQA item: Noise. The closest sensitive receptor is located within 600 ft of this location. Use of a helicopter at this distance would likely exceed the County's 65 dB significance threshold for noise. Although no noise attenuation measures are available, limiting the few days of helicopter use to weekdays between 8 am and 5 pm would mitigate this impact to less than significant.	Moderate	CEQA item: Noise. The closest sensitive receptor is located within 600 ft of this location. Use of a helicopter at this distance would likely exceed the County's 65 dB significance threshold for noise. Although no noise attenuation measures are available, limiting the few days of helicopter use to weekdays between 8 am and 5 pm would mitigate this impact to less than significant.	Low	None, assuming slope is stabilized, and habitat restoration and revegetation is implemented.

SCE's Proposed Project scope, described herein, aligns with the Project goal to do no further environmental harm. Methods were selected according to their consistency with this goal and ability to achieve maximum extraction of sidecast material and minimize impacts to sensitive environmental resources and maintain safe conditions. As stated previously, SCE anticipates the full removal of all sidecast material during the 2019 road widening activities, with the exception only for the potential constraints noted above. While SCE recognizes the possibility of these constraints limiting the full removal of materials, the Project design does not intend to leave material in place if it can be safely and feasibly removed in these areas. Furthermore, SCE will endeavor to remove all material, and material within these areas of constraint would remain solely to protect road access or slope stability. Therefore, compensatory mitigation for material left in place has not been integrated into the Project scope, as environmental impacts are not anticipated to result from leaving minor amounts of sidecast materials in place at the identified discrete locations (i.e., such areas would either be incorporated into road safety features or revegetated as part of the Proposed Project).

SCE has integrated comprehensive habitat restoration actions as well as sensitive plant and tree mitigations into the Proposed Project scope. The habitat restoration and sensitive plant and tree mitigation scope are designed to offset impacts resulting both from the road grading activities in 2019, as well as potential impacts from the sidecast removal activities of the Stream Restoration Project. The restoration and mitigation Project scope is described in detail in the Creek HRP (*draft revision in prep*).

B. FULL SIDECAST REMOVAL PROJECT

As compared to the Proposed Project, the Full Sidecast Removal Project assumes the extraction of all sidecast material despite the identified safety-related constraints and would disregard the resulting undesirable conditions.

1. Sidecast Removal Method(s)

The sidecast removal methods for the Full Sidecast Removal Project would be in kind to those proposed in the Proposed Project described in Part 2, Section A above.

2. Constraints to Sidecast Removal

The Full Sidecast Removal Project would proceed with full removal of all sidecast material despite potential constraints identified by SCE in certain locations (see Part 2, Section A.2).

3. Potential Impacts by Resource Area

The Full Sidecast Removal Project would extract sidecast from all deposit areas, including those noted by SCE as having potential constraints to full removal. The potential impacts of removing sidecast from the constraint areas are as follows.

Potential constraints exist along slopes adjacent to five road bends within Road Areas 6 through 9. The current road width in these areas is at minimum tolerance for vehicle safety. In these five locations, it is believed the outer edge of the berms were built upon sidecast material placed at the edge of the roadway in 2019. Should sidecast material be fully removed in these five areas, it is possible this action could narrow the road width below safety tolerance levels. Insufficient road width at road bends would increase the risk of vehicle incidents by not providing a sufficient road surface for a vehicle to safely turn. Not only

would the narrow road sections potentially restrict or delay SCE's response to maintenance or emergency operations on facilities up the road, but they may also restrict or delay response by other emergency vehicles of comparable size (e.g., fire trucks). Safe access is needed not only for SCE operations and maintenance crews but also for other utilities and local agencies such as the City of Santa Barbara Water Department, Santa Barbara County Fire, and the Los Padres National Forest. Construction of retaining walls or similar structures may become necessary in narrowed road areas to reconstruct a safe road width to preserve safe access. Alternatively, if feasible, the necessary road width may be regained by cutting further into the upland slopes to widen the road; however, this would cause additional impacts, as further discussed below.

Construction of retaining walls or cutting further into the slope in order to maintain a safe road width would generate both new and likely considerable impacts to native habitat, stormwater/water quality, waters and waterways, visual resources, and recreation within the Project area, such as:

- Native vegetation: Construction of a retention wall or cutting into vegetated hillside slopes would require the removal of native vegetation and create a permanent disturbance area.
- Storm Water/ Water Quality: Construction of a retaining wall or cutting into hillside slopes would cause soil disturbance and introduce sources of erosion.
- Waters and Waterways: Construction of retaining walls or cutting into hillside slopes would disturb natural features currently functioning to direct flow from above the road down the canyon. Additional engineering methods to dissipate the altered flows may be required resulting in more impacts to the natural features. Visual Resources: The presence of retaining wall structures or, alternatively, additional cuts into the slope would result in undesirable changes to the visual aesthetics of the access road and the natural character of the canyon visible to viewers both along the trail and from nearby residential properties. Should upland slope cuts be considered to widen the road, it is very likely that areas of the slope would be disturbed due to the nature of the steep slopes of the existing upland areas. Although some surface treatments to alter the color of artificial structures, such as Natina[®], can offset visual impacts, changes to the visual aesthetics of the canyon would be permanent.
- Recreation: Construction of a retention wall or cutting into hillside slopes would increase the construction period and require extended trail closures to safeguard the public while completing the work.

SCE has identified four areas with potential constraints to full sidecast removal within Creek Sites 2, 3, and 4. In these four areas of potential constraint, it is possible some sidecast material may need to remain in place if it is essential to slope stability or to maintain the general grade of the slope. The natural conditions of the slopes in these areas are steep and unstable, with frequent rockslides into the creek. It is possible that the presence of sidecast material in these four areas is helping to stabilize the slopes and currently prohibiting natural material from falling into the drainage. A Full Sidecast Removal Project would extract all of this sidecast material and potentially destabilize sections of the slopes above Mission Creek and the adjacent roadway.

Destabilized slopes above Mission Creek could generate new and potentially significant impacts to hydrology, fish and fish habitat, stormwater/water quality, and waters and waterways, as well as visual resources, such as:

- Hydrology: If the sidecast is determined as supporting slope stability and is removed anyway, the eventual uncontrolled release of newly destabilized native material into the drainage has the potential to change stream hydrology, cause bed and bank erosion in areas downstream, and impede natural stream flow and function.
- Fish and Fish Habitat: In the event of the deposit of newly disturbed native material in the creek, a temporary but minor obstruction could occur from the mobilization of fine sediments, which could result in scour and pool creation. In addition, a temporary flush of sediment (i.e., first flush) could temporarily increase water temperature and turbidity.
- Storm Water/ Water Quality: If confirmed to be supporting slope stability, the removal of sidecast
 in these four areas has the potential to increase sediment loads from newly destabilized native
 material to the drainage during rain events and further increase long-term slope instability.
 Removal of this sidecast material would require engineering measures to stabilize the affected
 sections of the banks and roadway. Extensive BMPs would be required to help control sediment
 loads, although the long-term risk of sediment discharges is expected to persist due to slope
 steepness.
- Waters and Waterways: Potential slope instability, leading to fallback of newly destabilized native material into Mission Creek and jurisdictional areas could occur if slope stability is compromised by material removal. Material fall-back would need to be mitigated by implementing slope stabilization measures and BMPs to protect waters from discharge.
- Visual Resources: Engineering measures and BMPs needed to stabilize affected sections of the banks and roadways could temporarily or permanently change the natural character of the canyon, and negatively impact the aesthetic experience of viewers both along the trail and from nearby residential properties.

In the Full Sidecast Removal Project scenario, sidecast material would not be left behind following the implementation of the Project, and, as such, compensatory mitigation for remnant sidecast materials would not be included. However, the Full Sidecast Removal Project scenario would likely result in other impacts to environmental resources, including impacts that would permanently alter the canyon views and displace natural resources. These impacts would be greater than the impacts resulting from the Proposed Project, which would avoid such impacts by leaving sidecast in place in discrete locations if constraints to full removal are confirmed during construction. The Full Sidecast Removal Project scenario would need to include proportional mitigation to offset impacts to resources, some of which would need to be implemented in a different location (potentially outside of the Project area) due to the permanence of the on-site impact. Overall, the Full Sidecast Removal Project scenario would likely be more impactful to native vegetation, hydrology, fish and fish habitat, stormwater and water quality, waters and waterways, visual resources, and recreation when compared to the Proposed Project if the identified constraints to full sidecast removal are confirmed during Project construction.

C. SIDECAST REMOVAL METHODS NOT SELECTED

SCE's evaluation of sidecast removal methods was completed in separate levels of review. The review started broadly through a competitive contractor selection process in 2020. A wide range of sidecast removal method ideas was presented by the prospective contractors, including but not limited to: the construction of roads either into the creek down the slope, or by way of a catwalk accessible from the

road; the use of a crane lifting rock sacks; or use of a small excavator or skid steer in the creek to load larger rock pieces into a fabricated sled positioned on the slope and pulled up using a vehicle with a heavyduty winch. Pulley systems, fabricated sleds, access roads, and the use of excavation and extraction machinery were all considered in various capacities. These methods were eliminated from further consideration on the basis that all approaches would result in disturbance to the streambed and/or canyon slopes, and at least one proposal was determined to be unreliable in effective approach to removing all sidecast material and re-enforcing unstable slopes below the road. However, SCE determined this approach would cause unacceptable impacts to the streambed or creek contours in addition to the resulting tree and vegetation removal. The proposed use of a fabricated sled system was determined to be infeasible due to the limited road width and would require equipment in the streambed that would result in impacts to the stream and cause downstream sedimentation.

Hand and Guzzler Removal was selected as the proposed primary method to remove sidecast because it would minimize impacts to resources and maximize the effectiveness of the removal. This method ultimately was determined to be the most environmentally sound, comprehensive, and safest strategy presented to SCE for use in most sidecast areas. However, Hand and Guzzler Removal cannot be used for some sidecast areas that are not accessible from the road; consequently, a broader range of methods needed to be evaluated in order for maximum sidecast removal to be achieved.

As a secondary level of review, in follow up to the 2020 scoping review, SCE's team of technical resource experts conducted the Project Scoping Survey in 2022 (described in Part 1, Section B.2 above) to investigate additional alternative sidecast removal techniques considered to be feasible, effective, and have a low level of impact. Primarily, alternative sidecast removal methods were reviewed for areas with limited road access, including SC 03, SC 03 Outliers, Creek Site 7, and Sidecast Areas 17 and 18. All other sidecast areas were then reviewed to refine the sidecast removal techniques selected for each area and identify any resource concerns and prospective solutions.

Several methods were considered by the team, a subset of which were reviewed and discussed at length as part of the field review. Removal methods considered and not selected for further consideration are briefly described below. Evaluation ratings and comments by the resource experts for methods ultimately not selected are presented in Table 3.

Table 3: Project Scoping Survey, Project Alternatives Considered-Potential Impacts by Resource

Hand Removal SC03 Outliers		Hand & Winch Removal SC03 Outliers		Leave In Place (No Removal) SC03 Outliers		Hand & Guzzler Removal/Hand & Winch Removal (combination) SC03		
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Hydrology	Not likely	Vegetation will be trimmed during for temporary trail development from terrace to creek. so as not to No impediment to creek flow - hydrologic & sediment transport function of the creek will not be changed.	Low w/mitigation	Mitigation to protect the slope during removal could include plywood or HDPE plates. Dislodged material, if any, will also need to be removed if flow channels are impacted, slope restoration will be required & BMPs for stormwater erosion deployed.	Not likely	Potential risk of sidecast material movement is considered low. If the material were to move, anticipate minimal impacts, if any, to stream hydrology. Individual rocks of specific concern could be grouted in place, as needed.	Moderate	Some potential for slope erosion & sediment transport downslope toward the creek. Rock material movement downslope will need to be removed to avoid potential stream impacts. Slope restoration and erosion control measures would mitigate higher potential impacts.
Native Vegetation/ Sensitive Plant Habitat	Low	Trimming of vegetation and creation of minor foot trails are anticipated. No anticipated impacts to roots. Low impact severity can be mitigated through revegetation practices upon completion.	Moderate	Vegetation may need to be cleared along corridors where materials may be winched upslopes. Soil compaction is likely along hauling routes that would need to be recontoured and decompacted following sidecast removal. All disturbed areas may be revegetated following sidecast removal activities.	Not likely	Vegetation is naturally recovering. No impacts to existing veg.	Low	Temporary impacts to herbaceous cover should quickly recover following sediment removal. Minimal cover currently exists. Woody resprouts would likely not be impacted

Hand Removal SC03 Outliers		Hand & Winch Removal SC03 Outliers		Leave In Place (No Removal) SC03 Outliers		Hand & Guzzler Removal/Hand & Winch Removal (combination) SC03		
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Fish and Fish Habitat	Low	Temporary disturbance to in-channel debris for laborer access. Potential slight adjustments to the stream channel are possible. Movement of substrates may cause slight in channel modifications, the impact is low, as habitats from these substrates will still be present. Alterations to fish passage are not likely.	Low	Temporary disturbance to in-channel debris for laborer access. Potential slight adjustments to the stream channel are possible. Movement of substrates may cause slight in channel modifications, the impact is low, as habitats from these substrates will still be present. Alterations to fish passage are not likely. Low potential for passage impacts.	Moderate	In the event of disposition of sidecast material in creek temporary obstruction could occur which would result in scour and pool creation. In addition, a temp. flush of sediment could increase water temp/turbidity, but not to a significant level and not likely discernable over background levels.	Low	Sediment delivery to site would be minimized w/the implementation of BMPs and revegetation efforts. Any incidental sediment transport is not expected to be significant compared to background impacts to watershed. Thus, impacts to fish/fisheries, including passage are also expected to be minimal due to relocation of smaller gravel/cobble sediments during above average flow events
Waters and Waterways	Moderate	Moderate to low impacts w/in CDFW jurisdiction. Anticipated impacts largely tied to cutting/thinning of riparian vegetation. No fill impacts anticipated to ACOE.	Low	Temporary work zone to break rock in ACOE/CDFW jurisdiction. Potential for fall back of material in creek. CDFW impacts to native vegetation along removal path.	Not likely	No additional impacts anticipated. Slope revegetation underway. Work zone and temporary impacts would not occur. Rock in creek would remain but appears de minimis. No trail impacts would occur.	Low	Potential for fill discharge is low due to removal approved and distance from jurisdiction. Deploy BMPs as recommended

Hand Removal SC03 Outliers		Hand & Winch Removal SC03 Outliers		Leave In Place (No Removal) SC03 Outliers		Hand & Guzzler Removal/Hand & Winch Removal (combination) SC03		
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Stormwater/ Water Quality	Moderate	Moderate impacts anticipated from creation of trail through creek area. Removal of rock and sidecast material from terraced area above creek will have potential for erosion therefore soil stabilization BMP measures should be implemented. Extensive soil stabilization BMPs are warranted on exposed slopes following removal. Long term stabilization with vegetation will be necessary of exposed slopes.	High	Scouring to slopes is expected. Full vegetation removal is expected along path, which could create a concentrated flow path and lead to scouring of the slopes. Extensive Soil stabilization BMPs will be required for scour path. Removal of rock and sidecast material from terraced area above creek will have potential for erosion therefore soil stabilization BMP measures should be implemented to offset risk of sediment transport. Potentially high impact severity without stabilization measures may offset risks if extensive soil stabilization BMPs are implemented on exposed slopes following removal. Long term stabilization with vegetation will be necessary of exposed slopes.	Not likely	No impacts. Area is fully vegetated and stabilized.	High	Vegetation removal will be required to conduct this work leaving barren slopes with a potential of sediment discharge. Soil stabilization BMPs will be required for removal areas. Removal of rock will have the potential for erosion and soil stabilization BMP measures should be implemented to offset risk of sediment transport. Moderate impact severity without stabilization measures, risks may be offset if extensive soil stabilization BMPs are implemented on denuded slopes following removal. Long term stabilization with vegetation will be necessary of exposed slopes.

Hand Removal SC03 Outliers		Hand & Winch Removal SC03 Outliers		Leave In Place (No Removal) SC03 Outliers		Hand & Guzzler Removal/Hand & Winch Removal (combination) SC03		
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
Engineering and Geology	low/not likely	Minimal impacts on footpath. Minimal to no impacts to slopes. Impacts are dependent on means and methods used and route in which sidecast material is removed.	High/ Moderate	Moderate to high impacts to slope are expected, depending on contractor means & methods. Disturbance to surface may cause localized scour and/or sloughing	Not likely	No impact to slope stability	Low	Minor, loose debris removal likely minimal impact to existing slope.
Safety	Moderate	Foot access over rocks carry loads. Potential for cuts to hands by hand tools, wear cut resistant gloves. Work areas will need to be clear of personnel if larger trees or limbs are felled. Poison oak in area, only long sleeve shirts and full- length pants should be worn.	Moderate	Risk of rock particles or material falling on personnel, ensure all workers are clear from winch route, min. 50 yards to sides. Loose soils will need to be identified and ensure works stay off when going up & down the hillside	Low	None	Moderate	Loose soils & rock create overhead fall hazards. Make sure workers stay 20' left or right of equipment & lines. Remain tied off at all times & use buddy system. Poison oak in area, only long sleeve shirts and full- length pants should be worn. Stay left or right of load while it is being winched up hill to avoid other falling rock.

Hand Removal SC03 Outliers		Hand & Winch Removal SC03 Outliers		Leave In Place (No Removal) SC03 Outliers		Hand & Guzzler Removal/Hand & Winch Removal (combination) SC03		
Resource Area	Rating	Comment	Rating	Comment	Rating	Comment	Rating	Comment
CEQA Checklist	Moderate	CEQA item: Recreation. The hand removal through the creek would extend the schedule by several days, possibly weeks to complete manual removal safely and completely. The extended schedule to accommodate this removal method would result in an extension of trail closure period.	Moderate	CEQA item: Visual Resources. This method would require removal of vegetation and would create an open slope and scarring visible from both the trail and across the Canyon.	Not likely	None	Moderate	CEQA item: Visual Resources. This method would require removal of vegetation and would create an open slope and scarring visible from both the trail and across the Canyon.

Alternate Method 1: Hand and Winch Removal System (Sidecast Area 3 and Sidecast Area 3 Outliers)

The Hand Removal and Winch Removal method was considered for Sidecast Area 3 (SC 03) and SC 03 Outliers, where the sidecast deposits are located down a steep slope more than 250 feet from the road. Sidecast materials would be manually broken into manageable pieces and loaded into rock sacks. The sacks would then be placed on frame packs where they would be hand carried upslope to areas accessible for connection to a winch or pulley system. The sleds would be attached to the cable of a winch system operated by a vehicle staged in the road and pulled upslope to the road. Materials would be collected and hauled away. This sidecast removal method could easily transport larger quantities of sidecast materials, when compared to other methods. However, it was not selected due to the potential impacts noted by Hydrology and Stormwater/Water Quality resource experts.

- Hydrology: potential for sediment movement and transport toward the creek, vegetation would be removed from steep slopes during removal activities, creating an open slope, with high flow velocities and erosion.
- Storm Water/Water Quality: following removal, slopes will be barren, requiring full stabilization measures. Extensive sediment/ and erosion controls will be required. There are stormwater concerns with the capacity to achieve long-term stabilization.
- Visual Resources: This method would require the removal of vegetation and would create an open slope and scarring visible from both the trail and across the Canyon.

Alternate Method 2: Hand Removal and Hike Out (Sidecast Area 3 Outliers)

The sidecast deposits at SC 03 Outliers consist of a few large rocks near the bottom of Mission Canyon and adjacent to Mission Creek. Hand removal of rocks in this area was considered, as rocks could be broken apart into manageable pieces (50 pounds or less) using sledgehammers and expanding joint compound, loaded into backpacks, and hiked out by technicians along approximately 2,000 linear feet adjacent to Mission Creek to Spyglass Ridge Road. There is no established trail, so this method would require the creation of a footpath along the Creek, and the use of a trail near local residential structures. While this method would avoid impacts from machinery and could remove large materials in proximity to the creek, it would introduce a new impact footprint and would likely require vegetation disturbance, removal of woody debris, and manipulation of unstable rocks within the creek for safety. This method was not selected due to potential impacts noted by SCE's Fish/Fish Habitat, Storm Water/Water Quality, Waters and Waterways, and Safety resource experts.

- Fish/Fish Habitat: This method would generate temporary disturbance to riparian vegetation and may require removal of in-channel debris, for laborer access. Potential slight adjustments to the stream channel are possible. Movement of substrates may cause slight in-channel modifications; however, the impact is low, as habitats from these substrates will still be present. Alterations to fish passage are not likely.
- Stormwater/Water Quality: Moderate impacts would be anticipated from the creation of a trail through the creek area, assuming vegetation roots remain along the footpath up to the established foot trail, and work is completed during a dry season.

- Waters and Waterways: Moderate impacts would be anticipated within CDFW jurisdiction, largely tied to cutting/thinning of riparian vegetation.
- Safety: Anticipated hazards would include the risk of injury resulting from slips, trips, and falls while carrying a load, and poison oak throughout the creek area.

Alternate Method 3: Pack Mules (Creek Site 7 and Sidecast Areas 17 and 18)

Pack mules were considered as a method for removal at sidecast areas located up Trail Road 2, where vehicle access is limited. These areas are Creek Site 7 and Sidecast Areas 17 and 18 (SC 17 and 18). This method includes the removal of small rocks, boulders, and soils by use of technicians raking, sorting, and digging up materials, then placing the material into bags (no more than 45 pounds each) to be loaded into pack saddles on mules. An animal handler would lead the team of mules up the Jesusita Trail to a designated staging area for offload. The use of mules (or other pack animals) was not selected for the Project due to several factors, including:

- Logistical challenges for animal housing near the Project Area, animal safety, and daily transportation.
- Disturbance to the trail resulting from animals traversing for ingress and egress.
- Daily manure produced from pack animals could introduce unwanted non-native seeds into the Mission Canyon ecosystem.

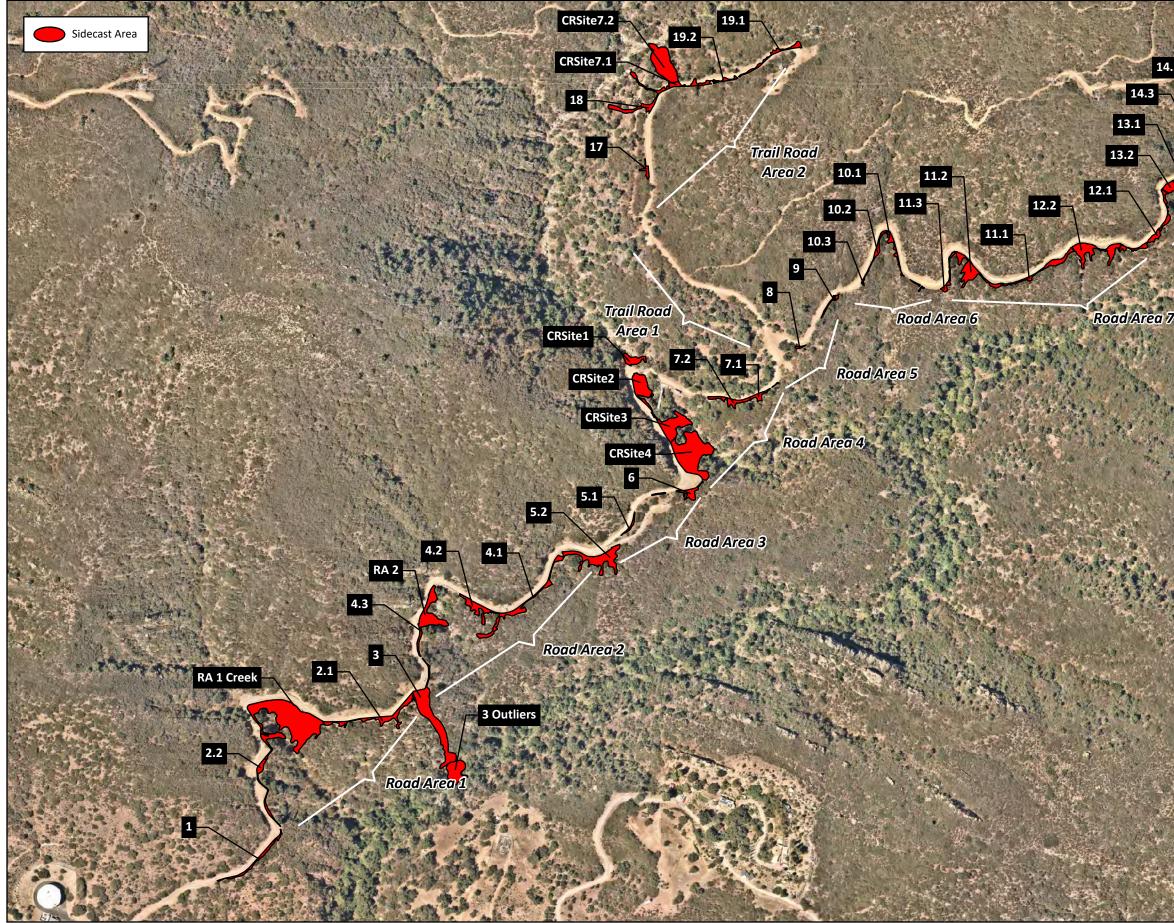
This method was not evaluated by resource experts during the Project Scoping Survey because the Hand Removal method was identified as the preferred technique, and no further evaluation of pack mule use was warranted after considering the factors listed above.

D. CONCLUSION

The scoping exercise and analysis described in this Report were important steps in developing the revised scope for the Proposed Project. As previously noted, the objective was to evaluate various techniques and identify methods that would result in safely removing the largest volume of sidecast material possible without causing additional harm to environmental resources. SCE achieved this objective by identifying two new methods to extract materials in certain locations that were previously thought to be unremovable.

The evaluation of methods revealed that removing the material from the SC 03 and SC 03 outlier sidecast areas by helicopter is by far the least impactful and most effective method for remote and inaccessible areas where Hand and Guzzler Removal is not feasible. This method will facilitate the full removal of material from this location. The SC 03 and SC 03 Outlier sidecast area is in proximity to the fish pool habitat within Mission Creek. The ability of the Project to extract this material will avoid the potentially reduced depth or loss of pools used by *Oncorhynchus mykiss* to move within the reach and to refugia sites along Mission Creek if sidecast material were left on the banks and were to later move downgradient into the creek. Additionally, it will avoid the possible increased sediment loads that could result from the possible downgradient movement if sidecast were left on the banks, which could reduce habitat quality. The brief duration of flight time and focus on manual methods to load materials for removal will minimize

disturbance to the public and protect against the potential loss of spawning gravel, instream cover, food resources, and decreased fish passage for *O. mykiss* and other aquatic resources.


The second method to use Hand Removal to extract materials from sidecast areas Creek Site 7, SC 17, and 18 was also added to the Proposed Project scope. This method to remove the scattered boulders and limited fines will be less impactful than other methods considered for sidecast removal at these locations, such as using pack mules, and is expected to fully remove materials from these areas.

As shown through the comparison between the Proposed Project and the Full Sidecast Removal Project scenarios, SCE determined that the Proposed Project would be the least impactful of the two Project options. While the Proposed Project notes potential constraints to full removal in certain locations, it will remove nearly 100 percent of the sidecast materials. In contrast, the Full Sidecast Removal Project scenario could result in greater impacts to resources by extracting all materials despite the noted constraints when compared to the Proposed Project, which would avoid these potential impacts.

In conclusion, SCE's Proposed Project, as described in detail in the Creek HRP, provides for safe and highly effective methods to fully restore the Mission Canyon areas affected by the 2019 road widening activities in a manner that is least impactful to environmental resources. The revisions to the scope discussed in this Report ensure the Proposed Project would optimize the removal of sidecast material while protecting the environment.

Appendix A

Map Book of Mission Creek Sidecast Areas and Analysis

300 Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Map Book Pag

Map Book Overview

21 1	Sidecast Abbreviation	Sidecast Area	Map Book Page		
	1	Sidecast Area 1	Page 2		
	2.2	Sidecast Area 2 - Subarea 2.2	Page 3		
	RA 1 Creek	Road Area 1 Creek	Page 4		
~?!!	2.1	Sidecast Area 2 - Subarea 2.1	Page 5		
the	3	Sidecast Area 3	Page 6		
104	3 Outliers	Sidecast Area 3 - Outliers	Page 7		
國家	4.3	Sidecast Area 4 - Subarea 4.3	Page 8		
Star.	RA 2 Creek	Road Area 2	Page 9		
2.54	4.2	Sidecast Area 4 - Subarea 4.2	Page 10		
1	4.1	Sidecast Area 4 - Subarea 4.1	Page 11		
	5.2	Sidecast Area 5 - Subarea 5.2	Page 12		
	5.1	Sidecast Area 5 - Subarea 5.1	Page 13		
14	6	Sidecast Area 6	Page 14		
112	CRSite4	Creek Site 4	Page 15		
10.10	CRSite3	Creek Site 3	Page 16		
19	CRSite2	Creek Site 2	Page 17		
12. 33	CRSite1	Creek Site 1	Page 18		
1	7.2	Sidecast Area 7 - Subarea 7.2	Page 19		
	7.1	Sidecast Area 7 - Subarea 7.1	Page 20		
	17	Sidecast Area 17	Page 21		
6.69	18	Sidecast Area 18	Page 22		
	CRSite7.1	Creek Site 7.1	Page 23		
40	CRSite7.2	Creek Site 7.2	Page 24		
-4-	19.2	Sidecast Area 19 - Subarea 19.2	Page 25		
201	19.1	Sidecast Area 19 - Subarea 19.1	Page 26		
- 42	8	Sidecast Area 8	Page 27		
	9	Sidecast Area 9	Page 28		
1	10.3	Sidecast Area 10 - Subarea 10.3	Page 29		
\$ 35	10.2	Sidecast Area 10 - Subarea 10.2	Page 30		
E.S.	10.1	Sidecast Area 10 - Subarea 10.1	Page 31		
10.8	11.3	Sidecast Area 11 - Subarea 11.3	Page 32		
	11.2	Sidecast Area 11 - Subarea 11.2	Page 33		
	11.1	Sidecast Area 11 - Subarea 11.1	Page 34		
	12.2	Sidecast Area 12 - Subarea 12.2	Page 35		
1	12.1	Sidecast Area 12 - Subarea 12.1	Page 36		
No.	13.2	Sidecast Area 13 - Subarea 13.2	Page 37		
	13.1	Sidecast Area 13 - Subarea 13.1	Page 38		
- Series	14.3	Sidecast Area 14 - Subarea 14.3	Page 39		
- Cal	14.2	Sidecast Area 14 - Subarea 14.2	Page 40		
1	14.1	Sidecast Area 14 - Subarea 14.1	Page 41		
1	15	Sidecast Area 15	Page 42		
* *	16.2	Sidecast Area 16 - Subarea 16.2	Page 43		
	16.1	Sidecast Area 16 - Subarea 16.1	Page 44		

Road Area

Road Area

Are

14.1 14.2

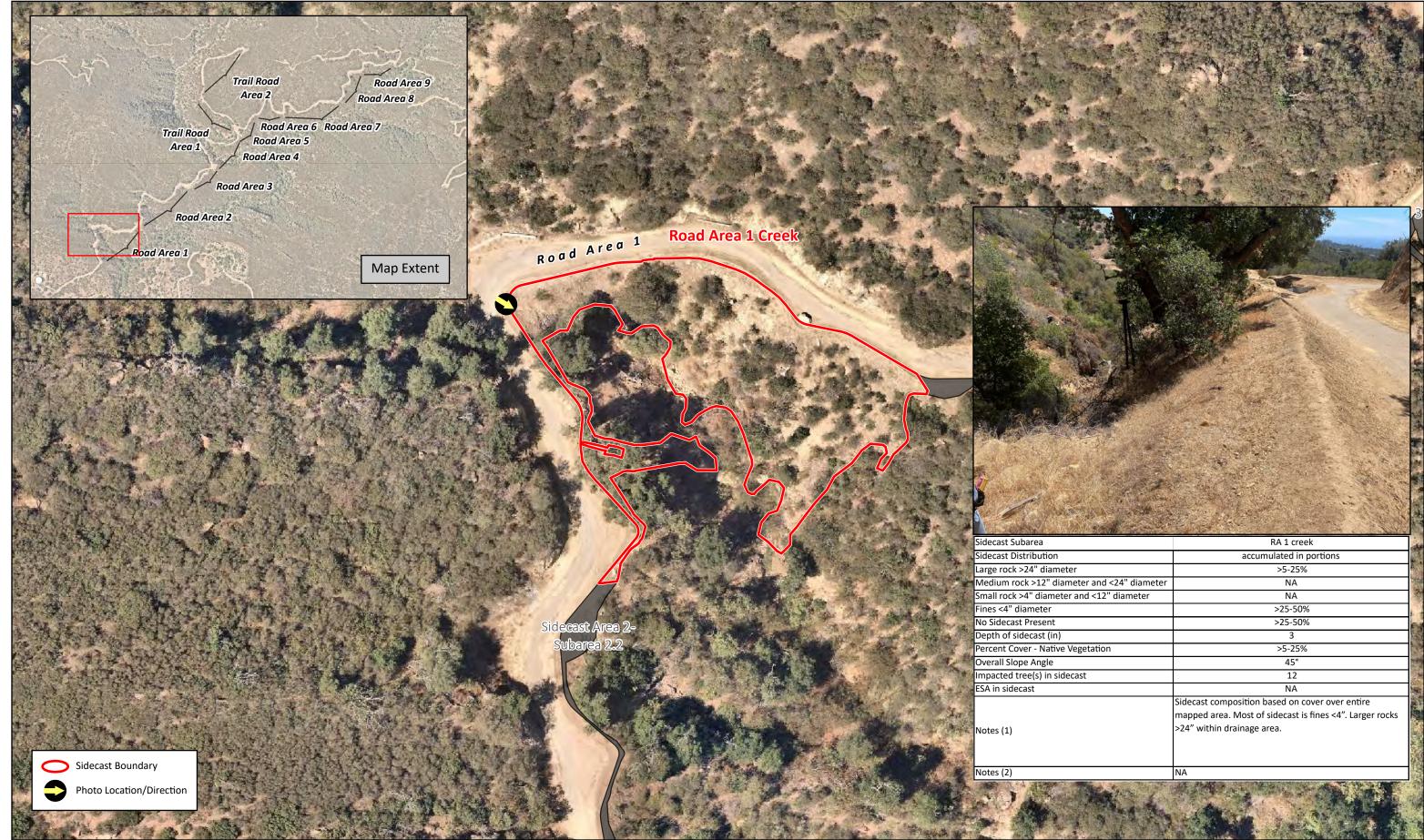
50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	1.0	100
	evenly distributed	-W
ter	NA	
meter and <24" diameter	0-1%	
er and <12" diameter	>1-5%	
	>25-50%	
	>50-75%	14
	1	
Vegetation	>25-50%	
	33°	í.
ecast	NA	
	NA	
	Sidecast composition based on cover over entire	
	mapped area. Sidecast is mostly fines. Some rocks 4-12"	
	scattered throughout. No rocks >12" present.	and the second s
		新 、作
	Mostly native vegetation	
	ואוסגווי וומנויב יכפכנמנוטוו	1
		1

Sidecast Area 1



50 Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	2.2	1
	accumulated in portions	
ter	NA	
meter and <24" diameter	NA	1
er and <12" diameter	NA	
	>50-75%	
	>25-50%	
	3	
Vegetation	>5-25%	24
	40°	
ecast	13	
	NA	1.12
	Sidecast composition based on cover over entire	調査
	mapped area. Very steep slopes, some accumulations of	Nº:
	larger rocks >6" at base of shrubs, most of sidecast is	
	fines and rocks <4".	
		The second
	NA	10116
	A CARLES AND A CARLE	

Sidecast Area 2 - Subarea 2.2

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	RA 1 creek
1	accumulated in portions
neter	>5-25%
liameter and <24" diameter	NA
eter and <12" diameter	NA
	>25-50%
	>25-50%
n)	3
ve Vegetation	>5-25%
	45°
sidecast	12
	NA
	Sidecast composition based on cover over entire
	mapped area. Most of sidecast is fines <4". Larger rocks
	>24" within drainage area.
	NA
Malan	Mary Charles

Road Area 1 Creek

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPP

Sidecast Area 2 - Subarea 2.1

	A Company of the second s
PLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING A	NALYSIS

11	A CONTRACT OF A
	2.1
n	accumulated in portions
neter	>1-5%
diameter and <24" diameter	NA
eter and <12" diameter	NA
	>50-75%
	>25-50%
n)	1
ive Vegetation	>5-25%
	45°
sidecast	NA
	NA
	Sidecast composition based on cover over entire mapped area. One section about 100ft long with dense vegetation. Remaining area is bare. Several large rocks 3- 4' present. Most of sidecast is small, <6". Mostly fines.
	NA

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPP


Sidecast Area 3

	CONJENT AND		A N I A I V/010
AL SITE ASSE	SSMENT AND	SCOPING	
		0001 1107	

1、家庭之	
	3.0
1	accumulated in portions
neter	>1-5%
liameter and <24" diameter	NA
eter and <12" diameter	>5-25%
	>50-75%
	>5-25%
ו)	1
ve Vegetation	>5-25%
	40°
sidecast	Trees are far downslope not surveyed
	NA
	Sidecast composition based on cover over entire
	mapped area. Mostly bare ground. Most of large material
	appears to have fallen far downslope. Sidecast <4"
	throughout the area. One Peruvian pepper tree about 20
	m downslope.
	Depth varies.
R. Harris	

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	3 Outliers
	accumulated in portions
neter	>1-5%
iameter and <24" diameter	>1-5%
eter and <12" diameter	NA
	NA
	>75%
)	NA
ve Vegetation	>75%
	NA
idecast	254
	NA
	A few scattered medium rocks at toe of slope and two
	large rocks >4' in diameter. Most of area has no sidecast
	present.
	No data collected on sidecast depth
「「「「「「「「「」」」」」	
	A State of the second second second

Sidecast Area 3 Outliers

HELIX Environmental Planning Source: 12.5 25

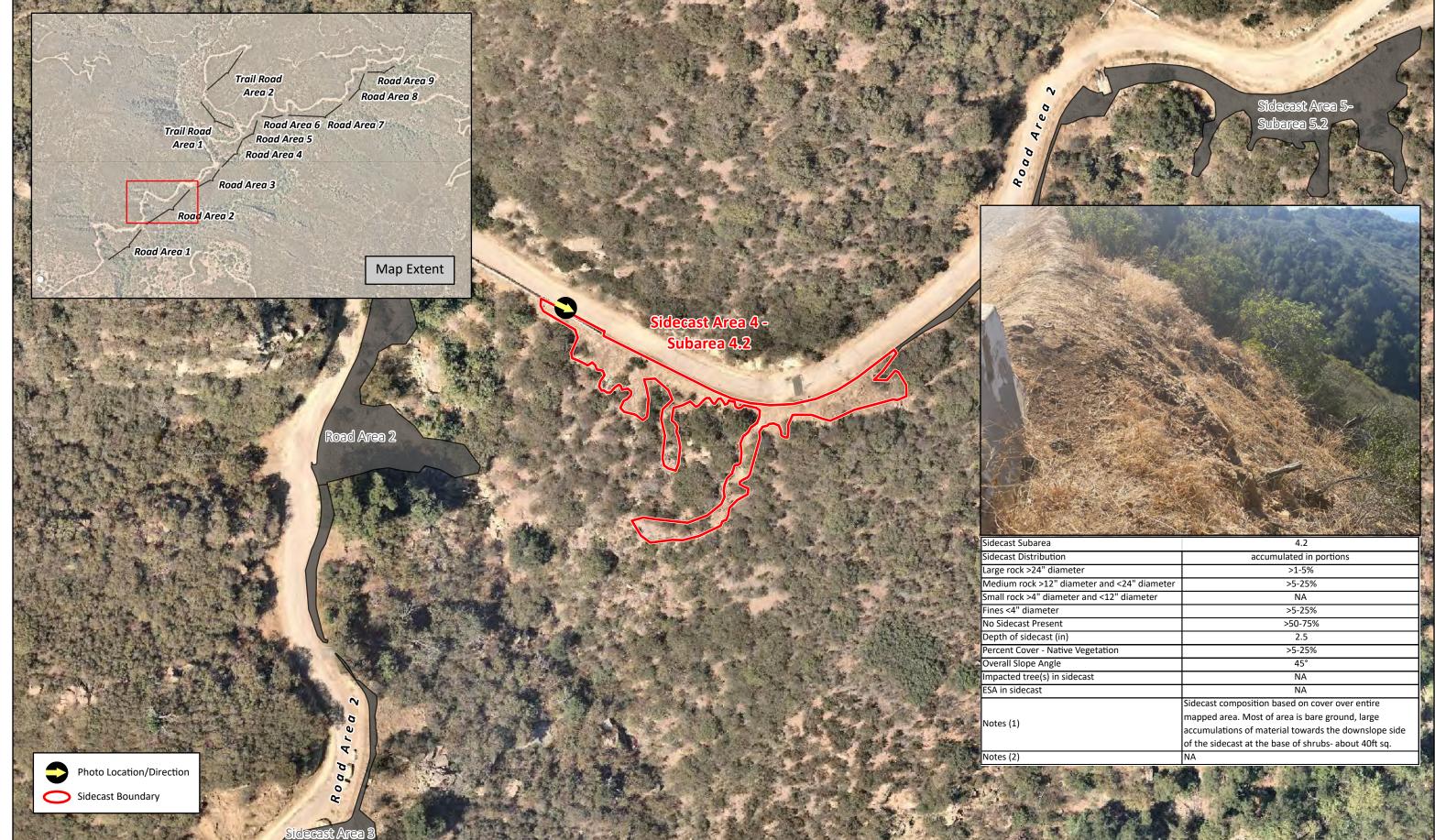
50

Feet

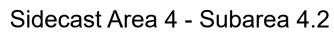
MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	4.3	15
l	accumulated in portions	
neter	NA	
iameter and <24" diameter	>1-5%	
eter and <12" diameter	NA	10
	>5-25%	- And
	>75%	
)	3	
ve Vegetation	>5-25%	
	45°	
idecast	16	E.
	NA	4
	Sidecast composition based on cover over entire	190
	mapped area. Sidecast is minimal in this area. Some	1
	rocks 4-12" scattered in around and some accumulations	-
	of small material <4" and fines present.	物
	NA	の時間
		Service of the
A CAR	Charles and the	

Sidecast Area 4 - Subarea 4.3

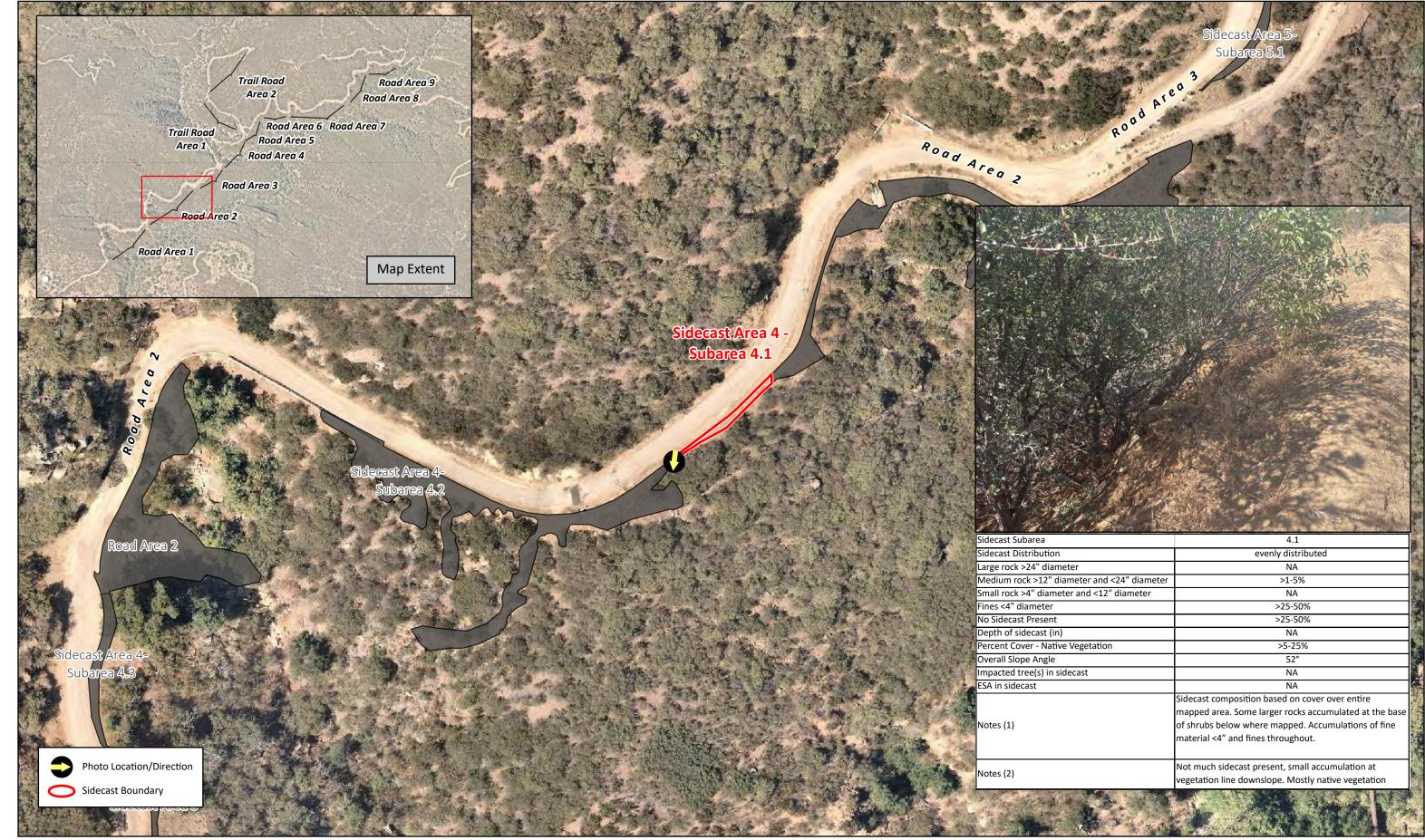

0 12.5 25 HELIX Environmental Planning

50 Feet MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEM


Road	Area	2	Creek

	No data collected on sidecast depth	(Y)
MENTAL SITE ASSE	ESSMENT AND PROJECT SCOPING ANALYSIS	

a sur contrate to	
	Road Area 2
1	evenly distributed
neter	>5-25%
liameter and <24" diameter	>25-50%
eter and <12" diameter	>25-50%
	>5-25%
	>5-25%
ו)	NA
ve Vegetation	>5-25%
	NA
sidecast	17, 18, 19, 20
	NA
	Sidecast composition based on cover over entire
	mapped area. Most of sidecast is small to medium rocks
	with few large rocks. All sidecast is within within
	jurisdictional drainage area.
	No data collected on sidecast depth
a manual of the second	



MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	Suecast composition based on cover over entire	1.50
	mapped area. Most of area is bare ground, large	
	accumulations of material towards the downslope side	1
	of the sidecast at the base of shrubs- about 40ft sq.	
	NA	
Mary		*
	R - Martin Start - Takit	NP-
and the second	Contraction of the second second second	1
Law Market		100

	4.2
n	accumulated in portions
neter	>1-5%
diameter and <24" diameter	>5-25%
eter and <12" diameter	NA
	>5-25%
	>50-75%
n)	2.5
ive Vegetation	>5-25%
	45°
sidecast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Most of area is bare ground, large
	accumulations of material towards the downslope side
	of the sidecast at the base of shrubs- about 40ft sq.
	NA

HELIX Environmental Planning

0 12.5 25 50 Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

1	evenly distributed
neter	NA
liameter and <24" diameter	>1-5%
eter and <12" diameter	NA
	>25-50%
	>25-50%
ו)	NA
ve Vegetation	>5-25%
	52°
sidecast	NA
	NA
	Sidecast composition based on cover over entire mapped area. Some larger rocks accumulated at the base of shrubs below where mapped. Accumulations of fine material <4" and fines throughout.
	Not much sidecast present, small accumulation at vegetation line downslope. Mostly native vegetation

Sidecast Area 4 - Subarea 4.1

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Sidecast Area 5 - Subarea 5.2

	5.2
n	accumulated in portions
neter	>5-25%
diameter and <24" diameter	NA
eter and <12" diameter	NA
	NA
	>75%
ו)	3
ve Vegetation	>1-5%
	40°
sidecast	21
	NA
	Sidecast composition based on cover over entire
	mapped area. Area is mostly bare ground. Sidecast <4"
	throughout but larger rocks 4-20" accumulated at base of
	shrubs. Some larger rocks >24 scattered throughout (45-
	50 sqft total).
	Side cast accumulated along vegetation line.
A the second second	TALLAR AND A CONTRACT OF A DATE OF

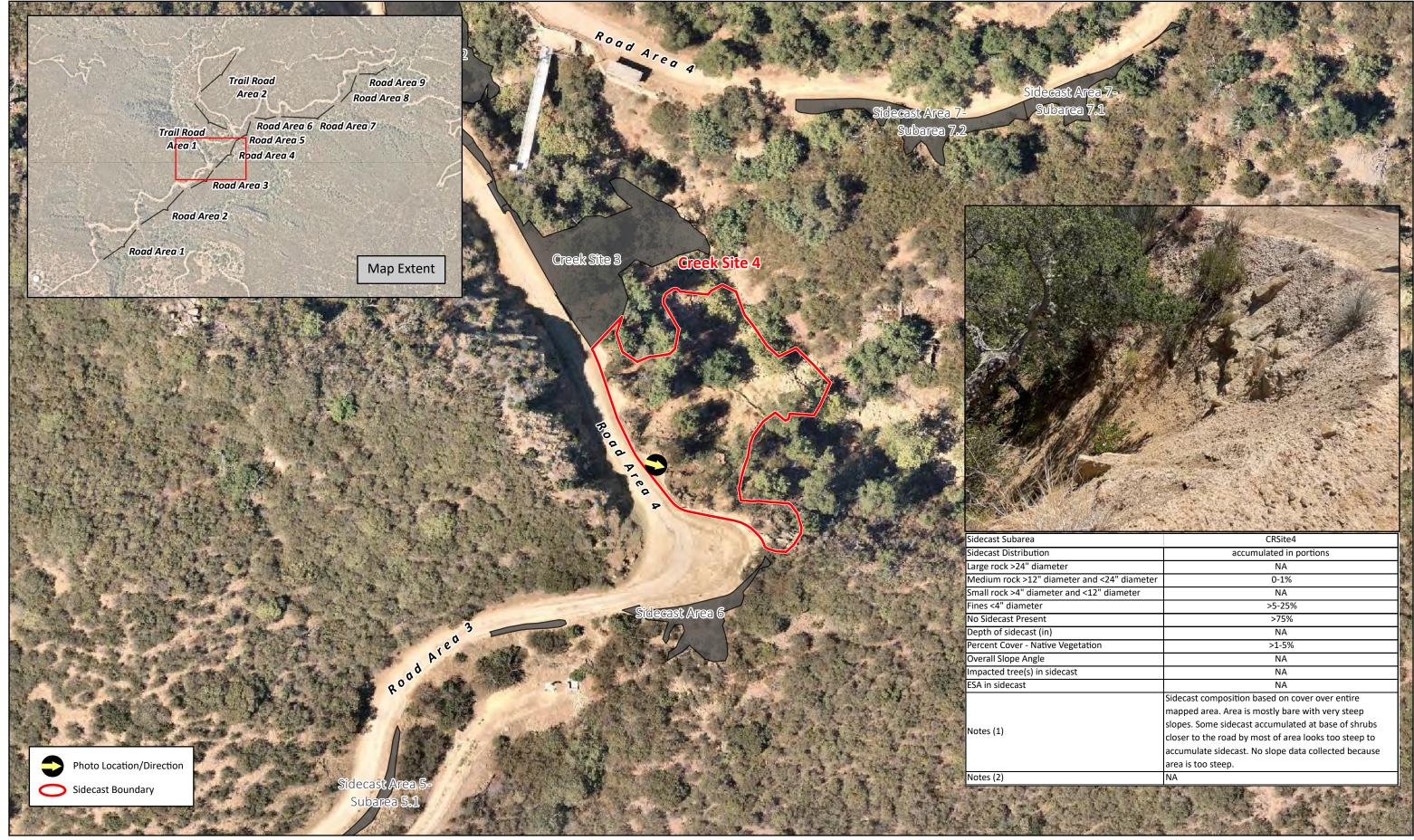
50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	5.1	1
1	evenly distributed	
neter	NA	
liameter and <24" diameter	NA	100
eter and <12" diameter	NA	
	>50-75%	4
	>25-50%	-ti
ı)	4	
ve Vegetation	>1-5%	and a
	40°	
sidecast	NA	ALC: NO
	NA	4
	Sidecast composition based on cover over entire	1
	mapped area. Most of sidecast is fines and <4". One	and the second
	ceanothus m. And one malosma in northern sidecast,	
	less than 5 percent of total area.	
	NA	1
	The All Child	A A A
	A Contraction of the second	T.L. MARINE

Sidecast Area 5 - Subarea 5.1



50

Feet

Sidecast Area 6 Page 14

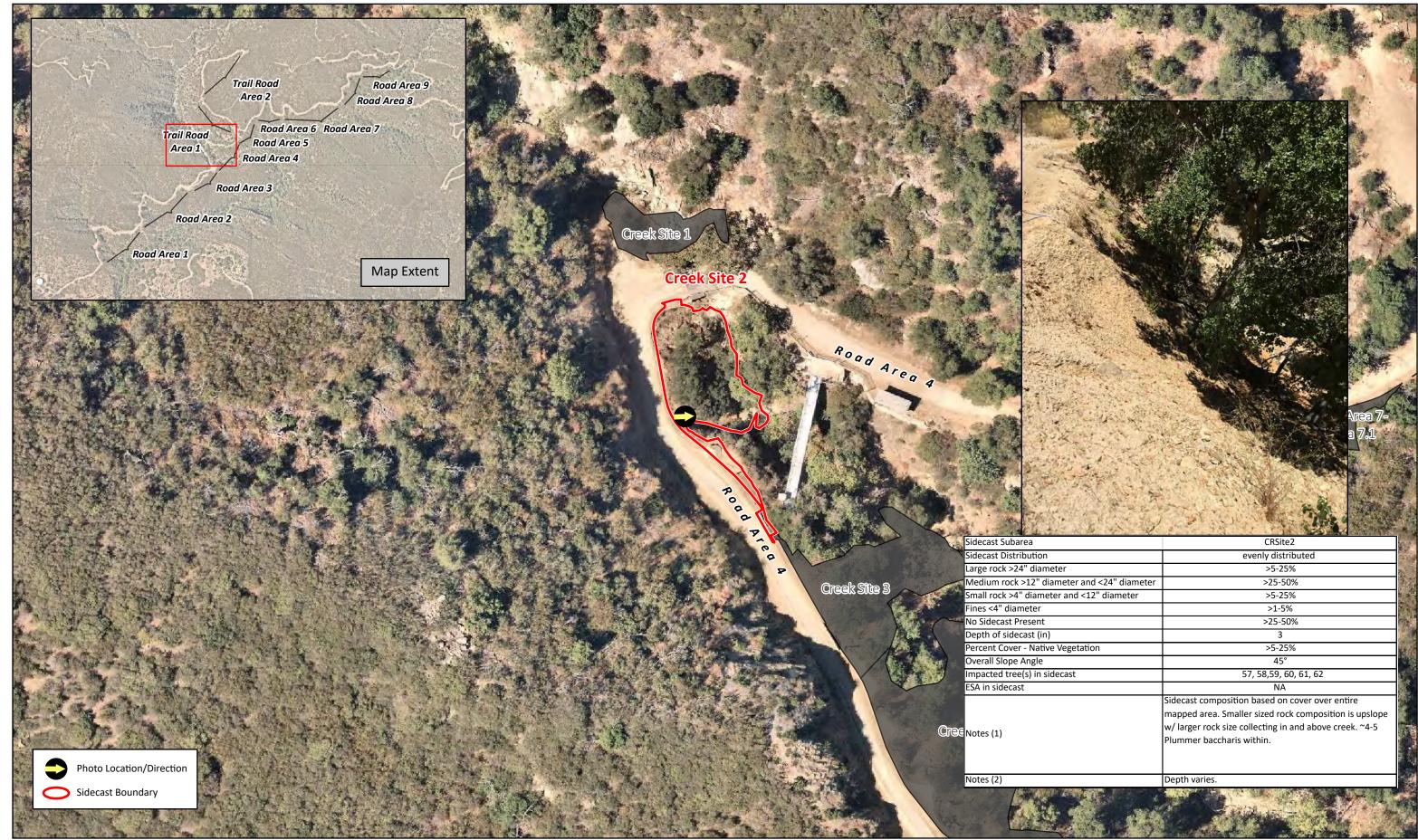
	>25-50%
	>25-50%
	1.5
Vegetation	>5-25%
	50°
ecast	NA
	NA
	Sidecast composition based on cover over entire mapped area. Vegetation cover is low. Fines and rocks <4" present throughout, rocks >6" up to 20" accumulated at the most downslope portion of the area.
	NA

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	CRSite4
1	accumulated in portions
neter	NA
iameter and <24" diameter	0-1%
eter and <12" diameter	NA
	>5-25%
	>75%
)	NA
ve Vegetation	>1-5%
	NA
idecast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Area is mostly bare with very steep
	slopes. Some sidecast accumulated at base of shrubs
	closer to the road by most of area looks too steep to
	accumulate sidecast. No slope data collected because
	area is too steep.
	NA
に思いたから	the man man the second

Creek Site 4


50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	CRSite3
1	accumulated in portions
neter	>5-25%
iameter and <24" diameter	>5-25%
eter and <12" diameter	NA
	>25-50%
	>25-50%
)	1
ve Vegetation	>5-25%
	60°
idecast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Lots of sidecast in this area and distributed
	throughout. Accumulations of rock about 40 percent of
	area. 3-4 large boulders 3-5' against trees.
	NA
we the second	- A CALL AND A CALL
NA TONY	
the second of the second second	

Creek Site 3

0 12.5 25 HELIX Environmental Planning


50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	CRSite2	20
	evenly distributed	15 P
eter	>5-25%	1
ameter and <24" diameter	>25-50%	
er and <12" diameter	>5-25%	
	>1-5%	
	>25-50%	12
	3	200
e Vegetation	>5-25%	1.41
	45°	1.24
decast	57, 58,59, 60, 61, 62	
	NA	
	Sidecast composition based on cover over entire	
	mapped area. Smaller sized rock composition is upslope	
	w/ larger rock size collecting in and above creek. ~4-5	100
	Plummer baccharis within.	
		- 10 10
	Depth varies.	
	and the second sec	-
		int.
		dat.

Creek Site 2

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

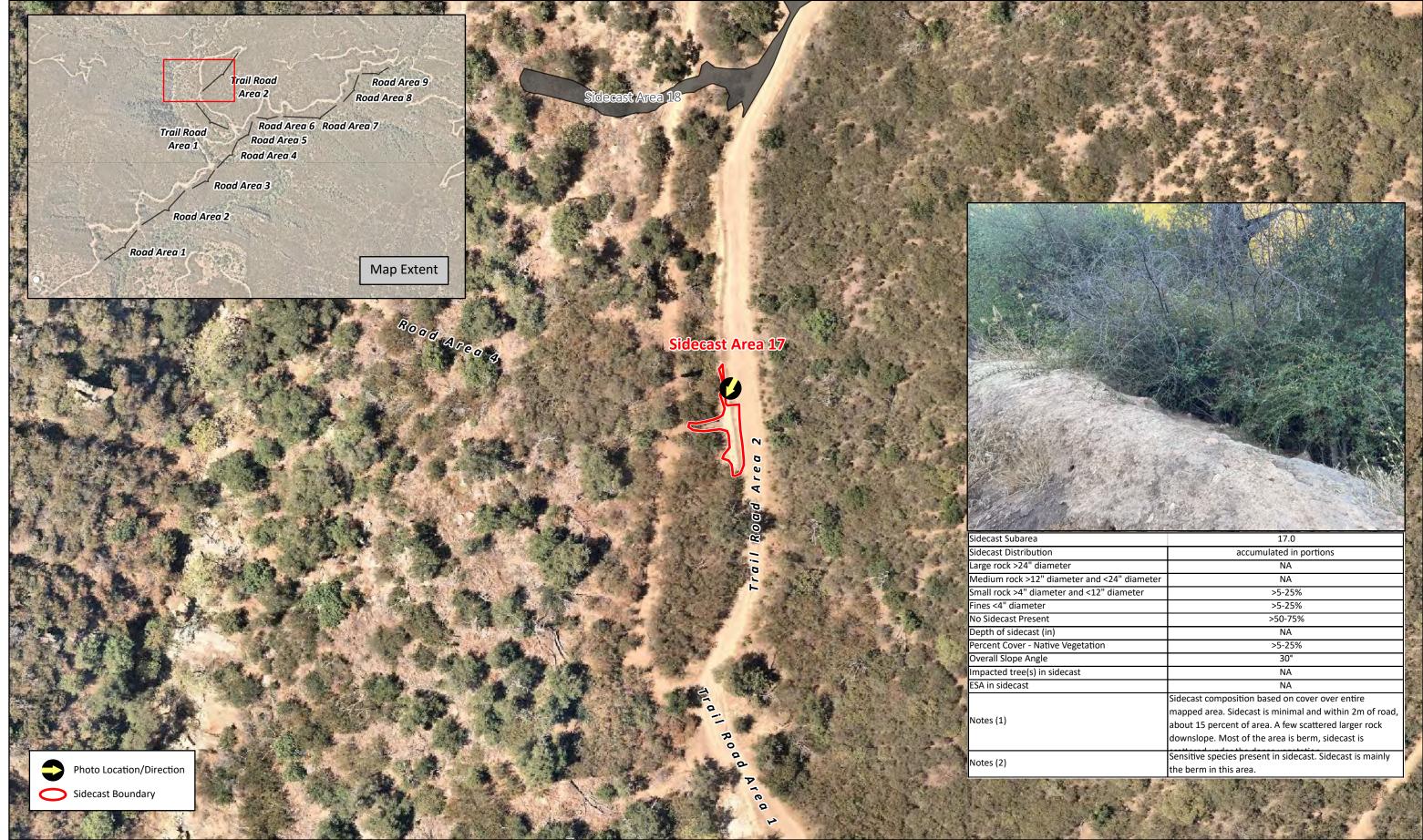
evenly distributed >25-50% NA NA NA
NA NA
NA
NA
INA NA
>50-75%
NA
>25-50%
NA
NA
NA
Sidecast composition based on cover over entire
mapped area. Most sidecast appears to be large
boulders, covered with netting. No soil data collected
because area is mostly large boulders with some fines in
between.
NA

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Sidecast Area 7 - Subarea 7.2

7.2	The second
evenly distributed	
>25-50%	時代
NA	
NA	1
>25-50%	
>25-50%	
5	1000
>5-25%	
45°	
NA	
NA	RIS
Sidecast composition based on cover over entire mapped area. Some rocks up to 5' present. Rocks 20-36" in piles throughout area. Area up to 90% sidecast.	朝空を
Depth varies.	23
	evenly distributed >25-50% NA NA >25-50% >25-50% 5 >5-25% 45° NA NA Sidecast composition based on cover over entire mapped area. Some rocks up to 5' present. Rocks 20-36" in piles throughout area. Area up to 90% sidecast.

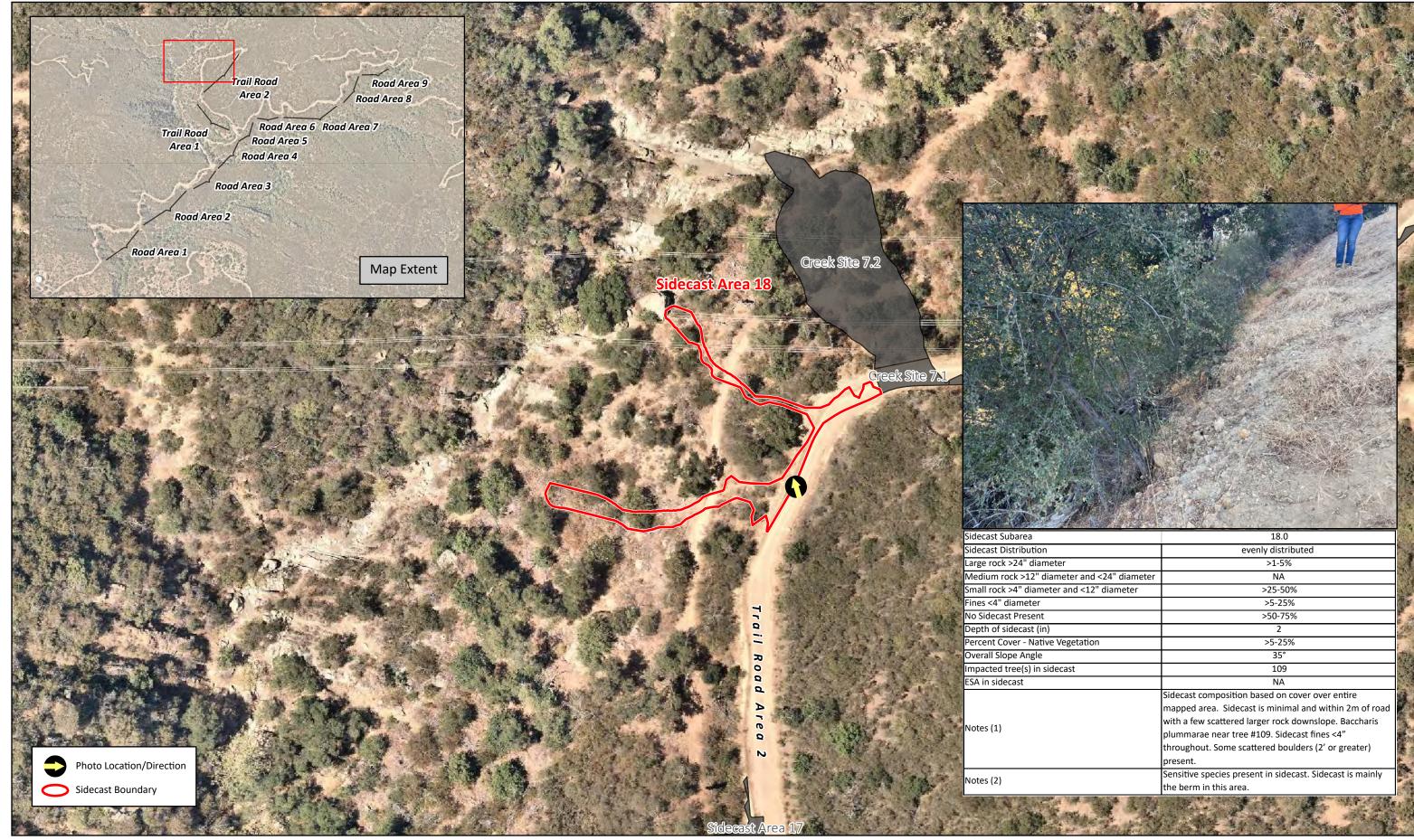


MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Page 20

Sidecast Area 7 - Subarea 7.1

1 Kesseter ??		
	7.1	
	evenly distributed	and a
eter	NA	100
ameter and <24" diameter	0-1%	
ter and <12" diameter	NA	
	>1-5%	1
	>75%	
	5	
e Vegetation	>25-50%	1
	45°	
decast	195, 196	1000
	NA	1000
	Sidecast composition based on cover over entire	1000
	mapped area. Sidecast <4" (including sand) throughout.	100

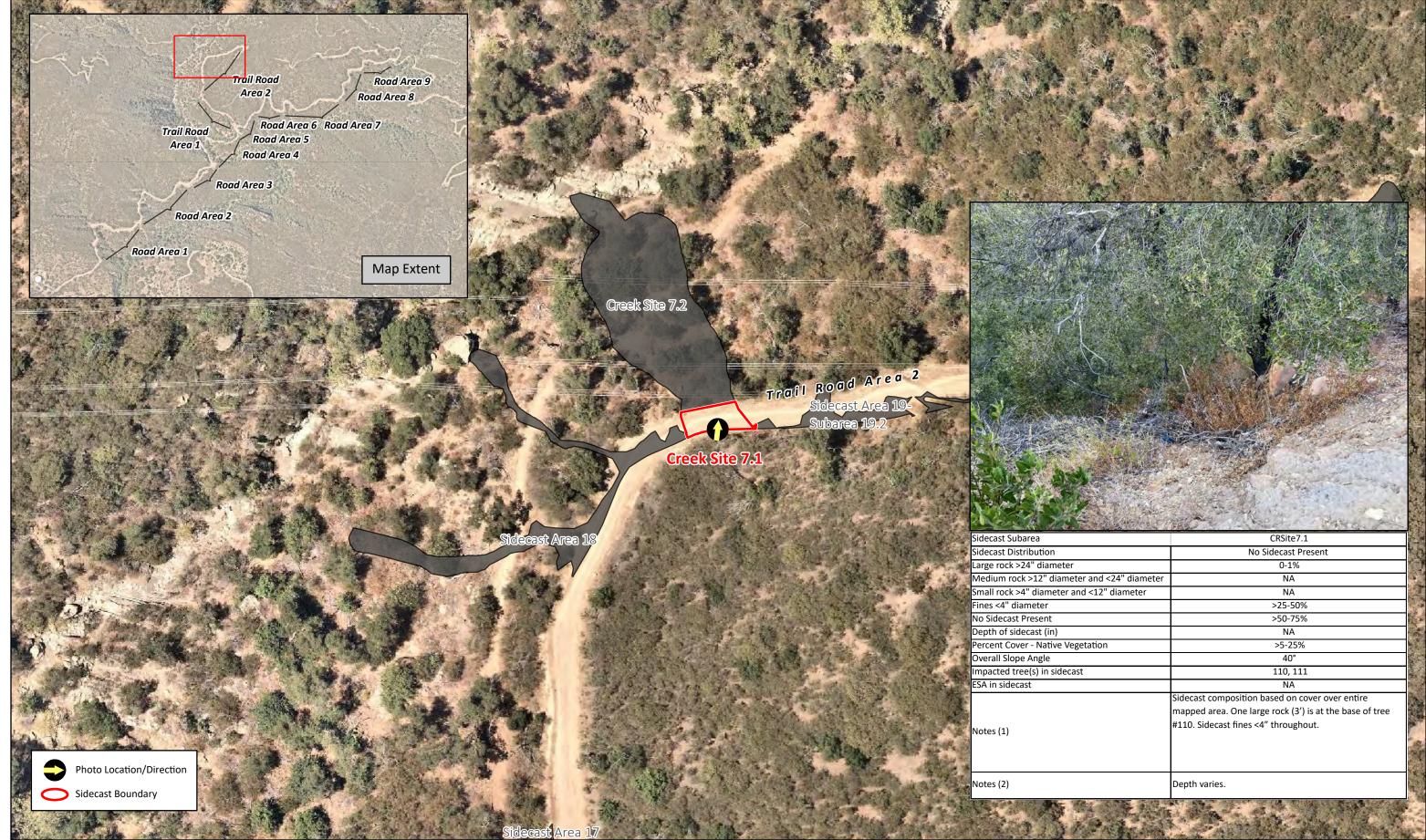

50 Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPP

Sidecast Area 17

PLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANA	ALYSIS

	17.0
	accumulated in portions
neter	NA
liameter and <24" diameter	NA
eter and <12" diameter	>5-25%
	>5-25%
	>50-75%
n)	NA
ve Vegetation	>5-25%
	30°
sidecast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Sidecast is minimal and within 2m of road,
	about 15 percent of area. A few scattered larger rock
	downslope. Most of the area is berm, sidecast is
	Sensitive species present in sidecast. Sidecast is mainly
	the berm in this area.

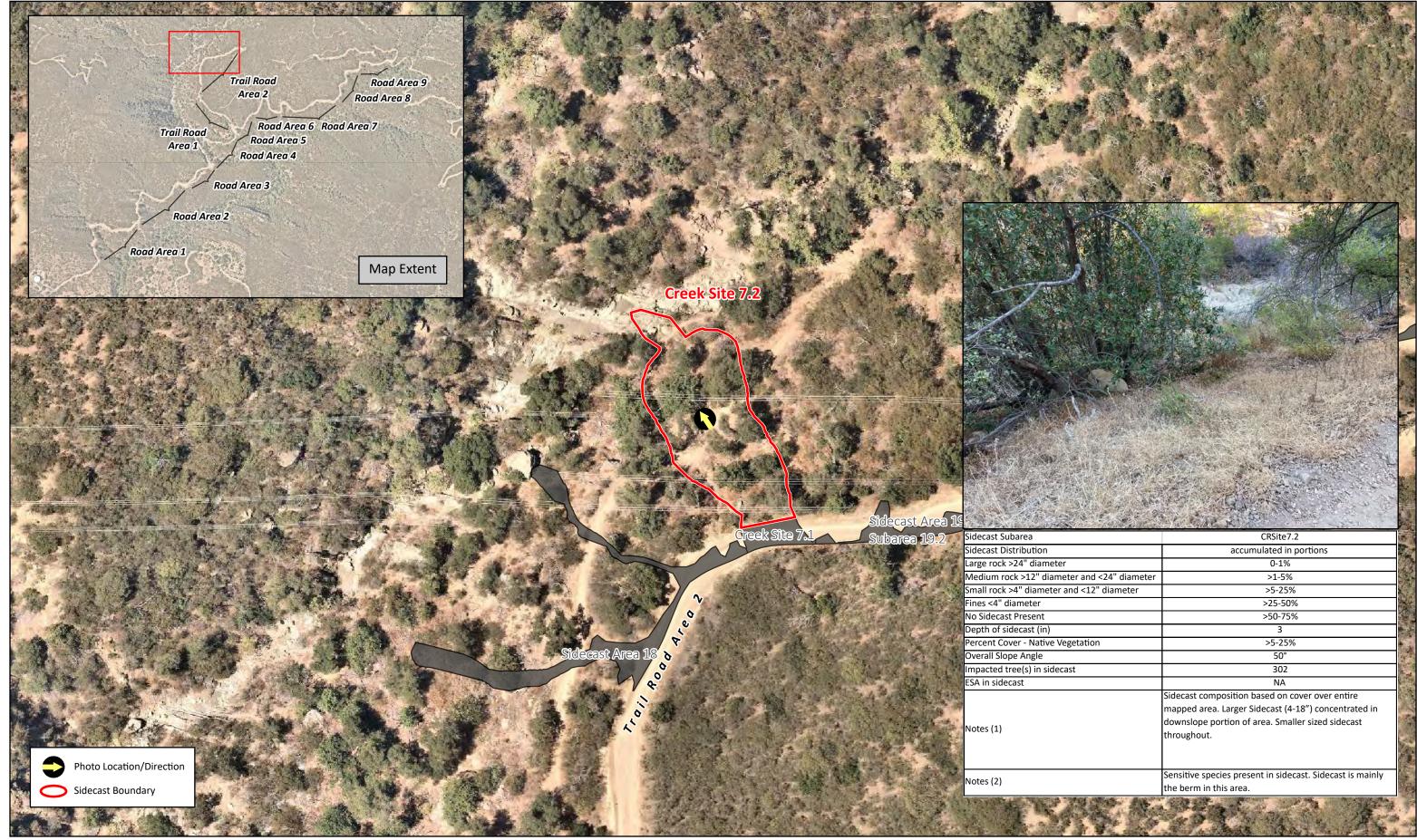

HELIX Environmental Planning

50 Feet 0 12.5 25

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	18.0	10
	evenly distributed	1.00
eter	>1-5%	A
ameter and <24" diameter	NA	No.
ter and <12" diameter	>25-50%	4
	>5-25%	ALC I
	>50-75%	
	2	10
e Vegetation	>5-25%	
	35°	旗
decast	109	The second
	NA	100 M
	Sidecast composition based on cover over entire	
	mapped area. Sidecast is minimal and within 2m of road	
	with a few scattered larger rock downslope. Baccharis	and the second
	plummarae near tree #109. Sidecast fines <4"	
	throughout. Some scattered boulders (2' or greater)	-
	present.	-
	Sensitive species present in sidecast. Sidecast is mainly	
	the berm in this area.	C.A.R.
		-

Sidecast Area 18



50 Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

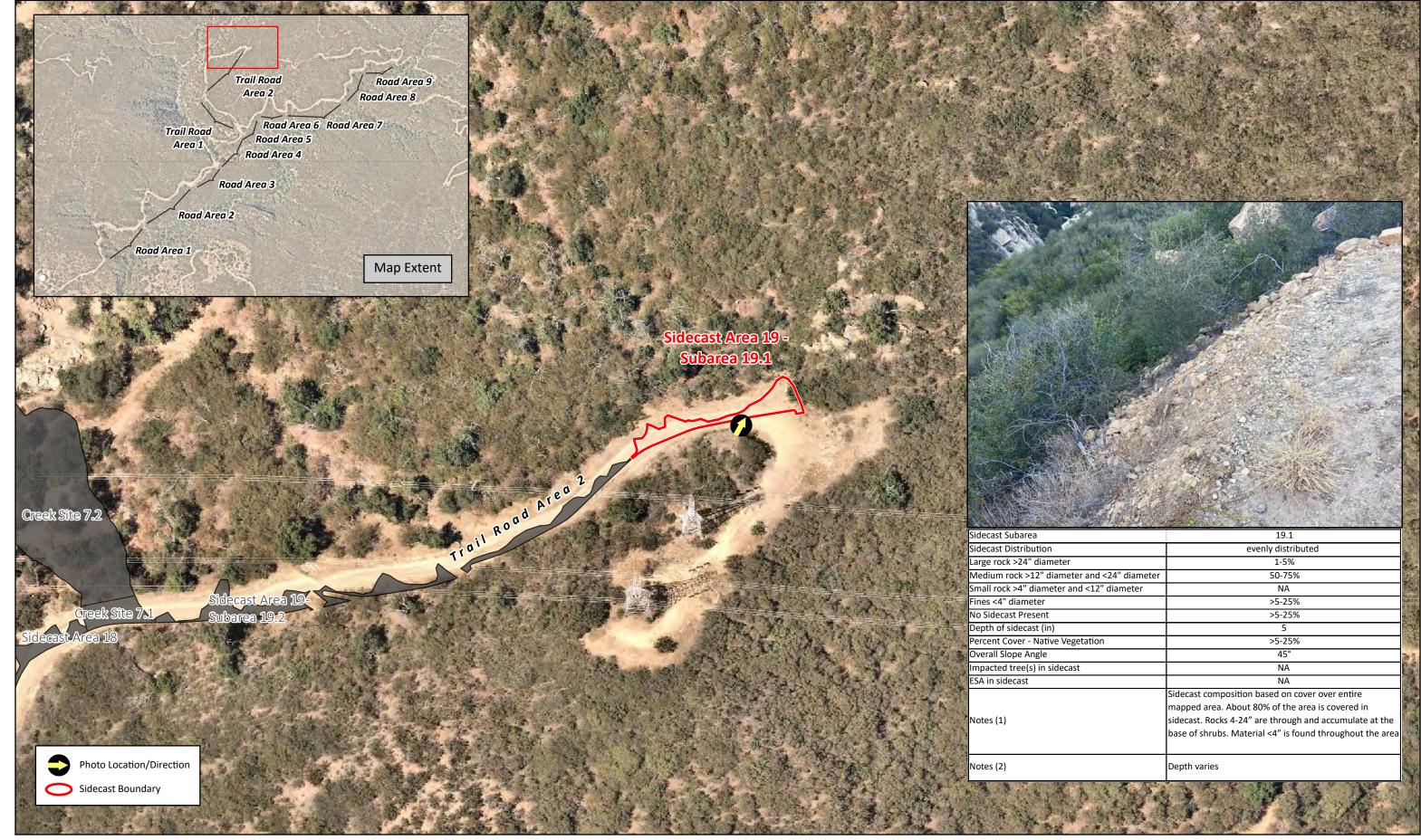
	CRSite7.1	1 2
	No Sidecast Present	the second
eter	0-1%	
ameter and <24" diameter	NA	2
ter and <12" diameter	NA	1
	>25-50%	1.65
	>50-75%	
	NA	100
e Vegetation	>5-25%	Ser.
	40°	がい
decast	110, 111	
	NA	100
	Sidecast composition based on cover over entire	
	mapped area. One large rock (3') is at the base of tree	The second
	#110. Sidecast fines <4" throughout.	-
		1
		104
		1.00
	Depth varias	
	Depth varies.	100
E MALE CAME AND		N.
the states and the		1

Creek Site 7.1

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	CRSite7.2	100
	accumulated in portions	
eter	0-1%	
ameter and <24" diameter	>1-5%	
ter and <12" diameter	>5-25%	
	>25-50%	i an
	>50-75%	
	3	1
e Vegetation	>5-25%	
	50°	
decast	302	C.
	NA	
	Sidecast composition based on cover over entire	
	mapped area. Larger Sidecast (4-18") concentrated in	
	downslope portion of area. Smaller sized sidecast	120
	throughout.	
		10
	Sensitive species present in sidecast. Sidecast is mainly	
	the berm in this area.	The second
	States - 2 Mary	and the second s

Creek Site 7.2



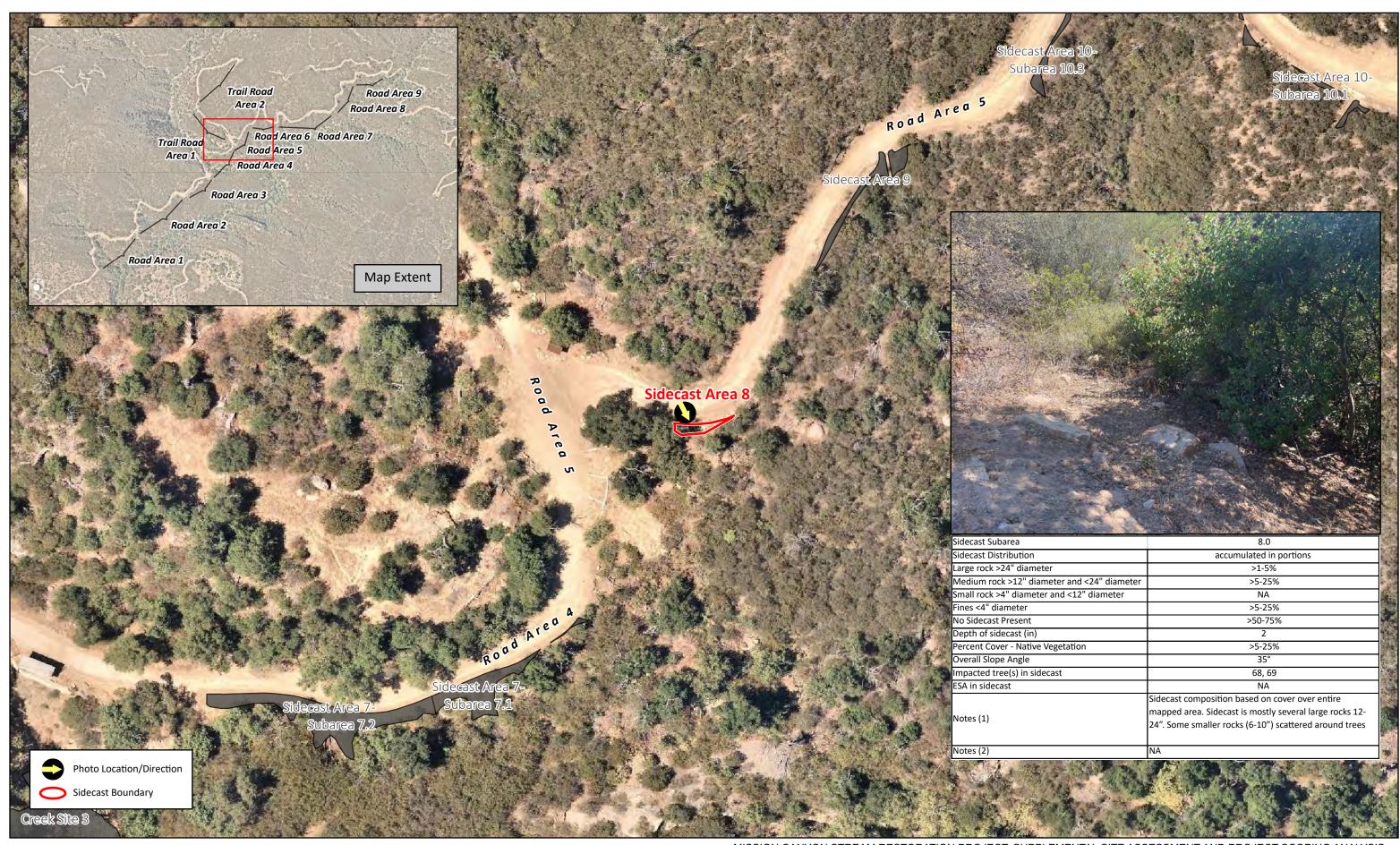
HELIX Environmental Planning 0 12.5 25 50 MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Page 25

Sidecast Area 19 - Subarea 19.2

Real States of the	
	19.2
	evenly distributed
neter	NA
iameter and <24" diameter	NA
eter and <12" diameter	NA
	>25-50%
	>50-75%
	4
e Vegetation	>25-50%
	35°
idecast	113, 114
	Several Lonicera subspicata var. denudata
	Sidecast composition based on cover over entire
	mapped area. Sidecast is mostly fine materials (sand to
	<4") and even throughout. Some areas of larger material
	(4"-8") accumulated at the base of shrubs.
	NA

50


Feet

Sidecast Area 19 - Subarea 19.1

Page 26

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

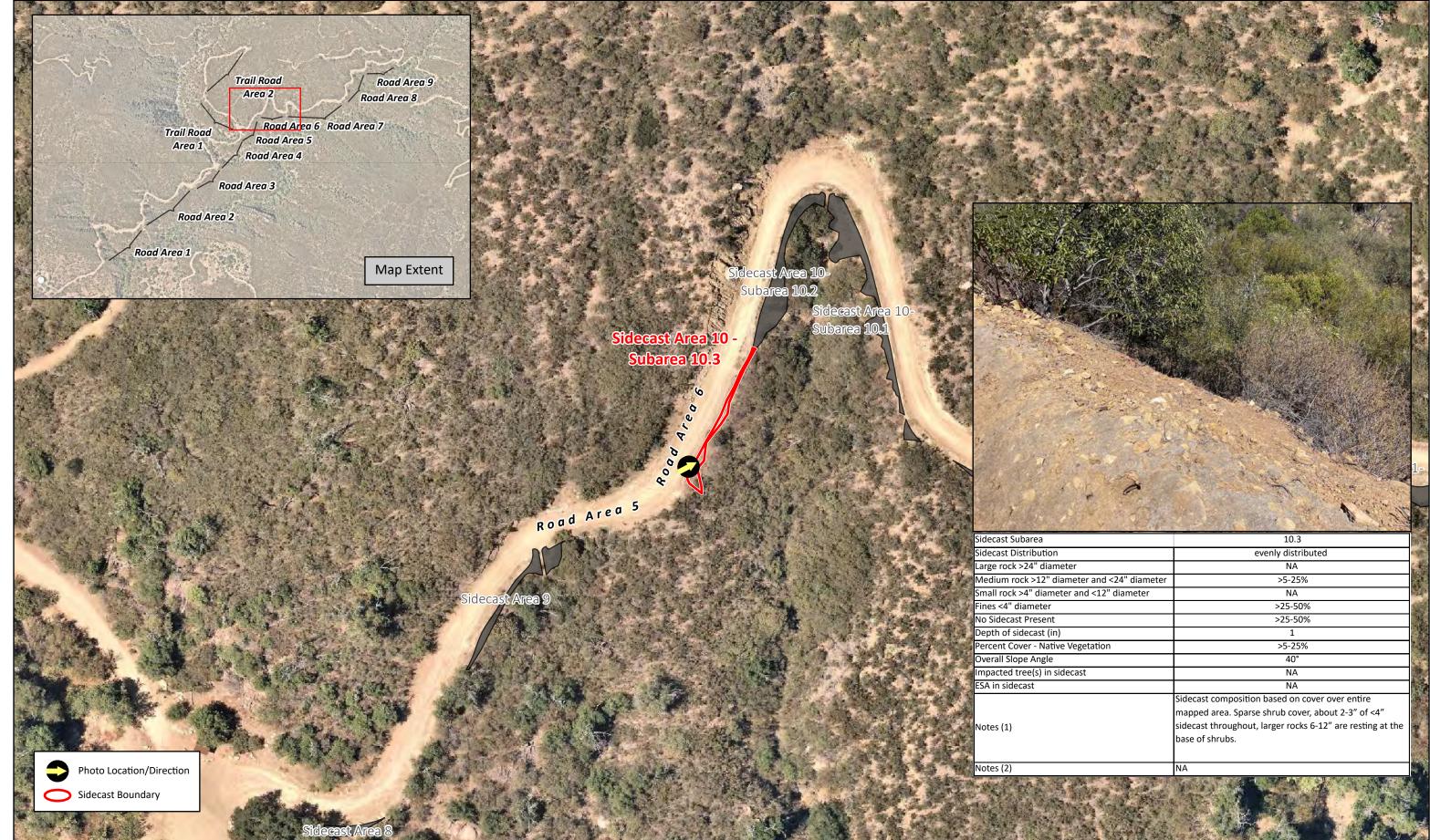
	19.1
	evenly distributed
eter	1-5%
meter and <24" diameter	50-75%
er and <12" diameter	NA
	>5-25%
	>5-25%
	5
e Vegetation	>5-25%
	45°
lecast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. About 80% of the area is covered in
	sidecast. Rocks 4-24" are through and accumulate at the
	base of shrubs. Material <4" is found throughout the area
	Depth varies

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Page 27

Sidecast Area 8

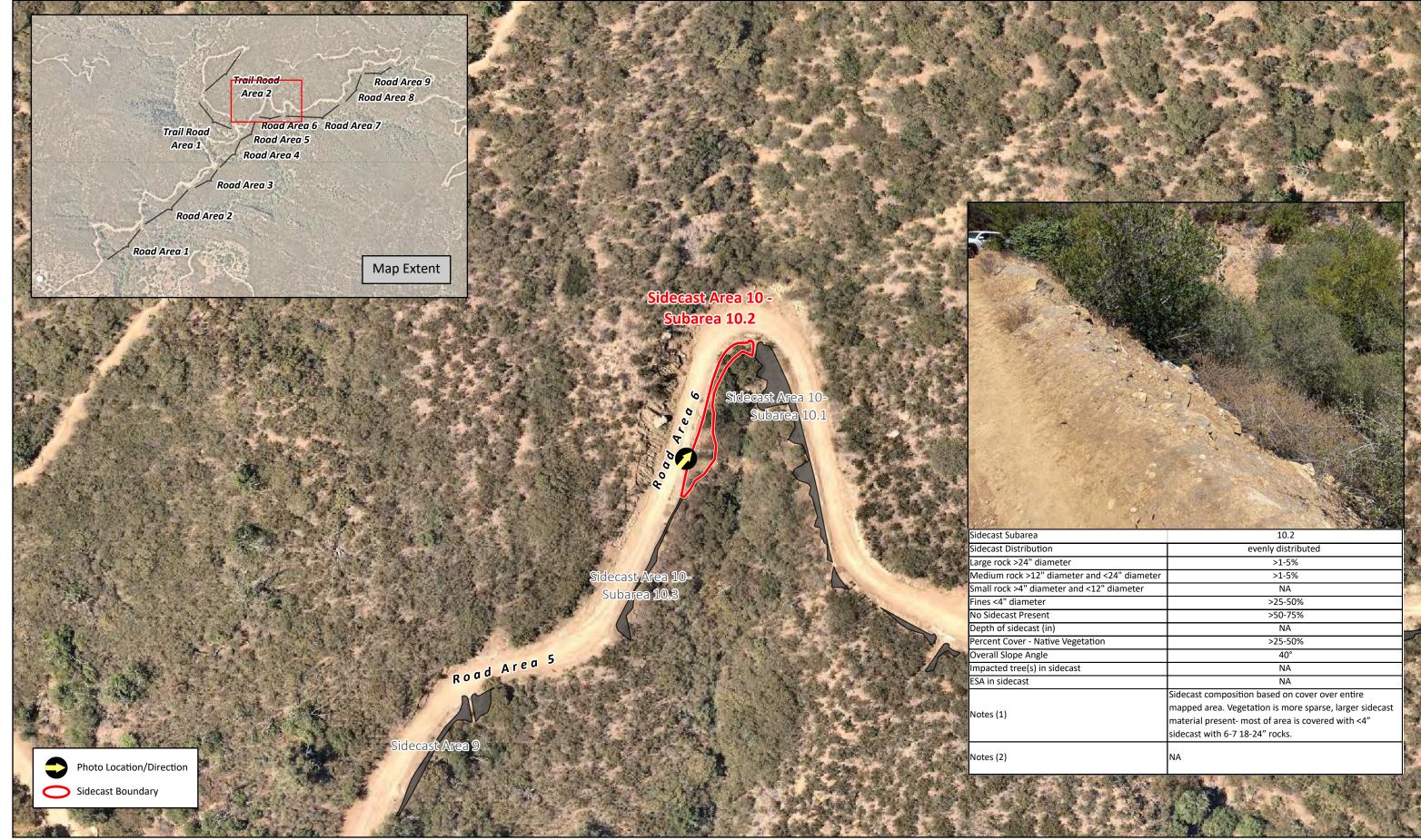
		1 1
	8.0	
	accumulated in portions	21.4
eter	>1-5%	e.
ameter and <24" diameter	>5-25%	A THE
ter and <12" diameter	NA	C.
	>5-25%	111
	>50-75%	
	2	Carlor and
e Vegetation	>5-25%	N. W. C.
	35°	No
idecast	68, 69	Contraction of the
	NA	
	Sidecast composition based on cover over entire	1
	mapped area. Sidecast is mostly several large rocks 12-	
	24". Some smaller rocks (6-10") scattered around trees	100



MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	9.0	1
	accumulated in portions	1
eter	NA	
ameter and <24" diameter	NA	
ter and <12" diameter	>1-5%	1.0
	>1-5%	1.0
	>75%	ALC: NO
	NA	
e Vegetation	>5-25%	
	9°	10
decast	194	
	NA	
	Sidecast composition based on cover over entire mapped area. Very little sidecast in this area, mostly	
	limited to area around the berm. Slope is not steep. Very dense vegetation.	
	Most of sidecast for this subarea is located at this point, which is minimal.	and a second

Sidecast Area 9



MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

the second se	
	10.3
	evenly distributed
eter	NA
ameter and <24" diameter	>5-25%
ter and <12" diameter	NA
	>25-50%
	>25-50%
	1
e Vegetation	>5-25%
	40°
decast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Sparse shrub cover, about 2-3" of <4"
	sidecast throughout, larger rocks 6-12" are resting at the
	base of shrubs.
	NA
A CONTRACT OF THE OWNER OF	
A Star Ballet	
mark that a start	

Sidecast Area 10 - Subarea 10.3

HELIX Environmental Planning 50 0 12.5 25

Feet

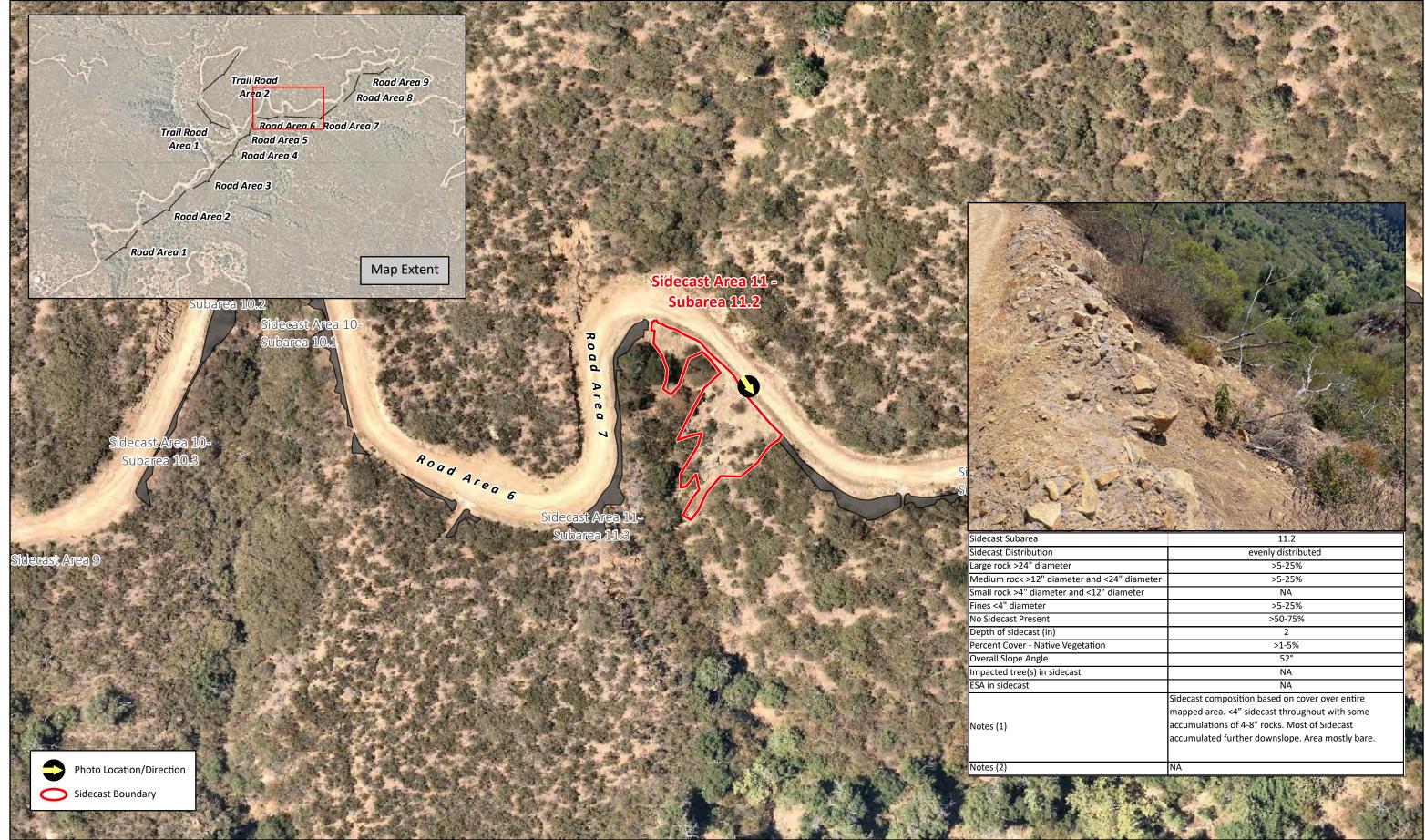
MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Sidecast Area 10 - Subarea 10.2

0 12.5 25 50 Feet MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

ameter and <24" diameter		10.1	
ameter and <24" diameter NA ter and <12" diameter NA >25-50% 250-75% e Vegetation >5-25% decast NA Sidecast NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.		evenly distributed	-
ter and <12" diameter NA >25-50% >50-75% 2 e Vegetation >5-25% decast NA Sidecast ONA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.	eter	NA	10
>25-50% >50-75% 2 e Vegetation >5-25% 45° decast NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.	ameter and <24" diameter	NA	1
>50-75% 2 e Vegetation >5-25% decast NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.	ter and <12" diameter	NA	
2 e Vegetation >5-25% 45° decast NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.		>25-50%	
e Vegetation >5-25% 45° decast NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.		>50-75%	
45° decast NA NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.		2	1
decast NA NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.	e Vegetation	>5-25%	
NA Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.		45°	
Sidecast composition based on cover over entire mapped area. Evenly distributed sidecast <4", denser native cover.	decast	NA	
mapped area. Evenly distributed sidecast <4", denser native cover.		NA	4
native cover.		Sidecast composition based on cover over entire	1
		mapped area. Evenly distributed sidecast <4", denser	
NA		native cover.	No. of
NA			-
NA			0
		NA	4
			-

Sidecast Area 10 - Subarea 10.1

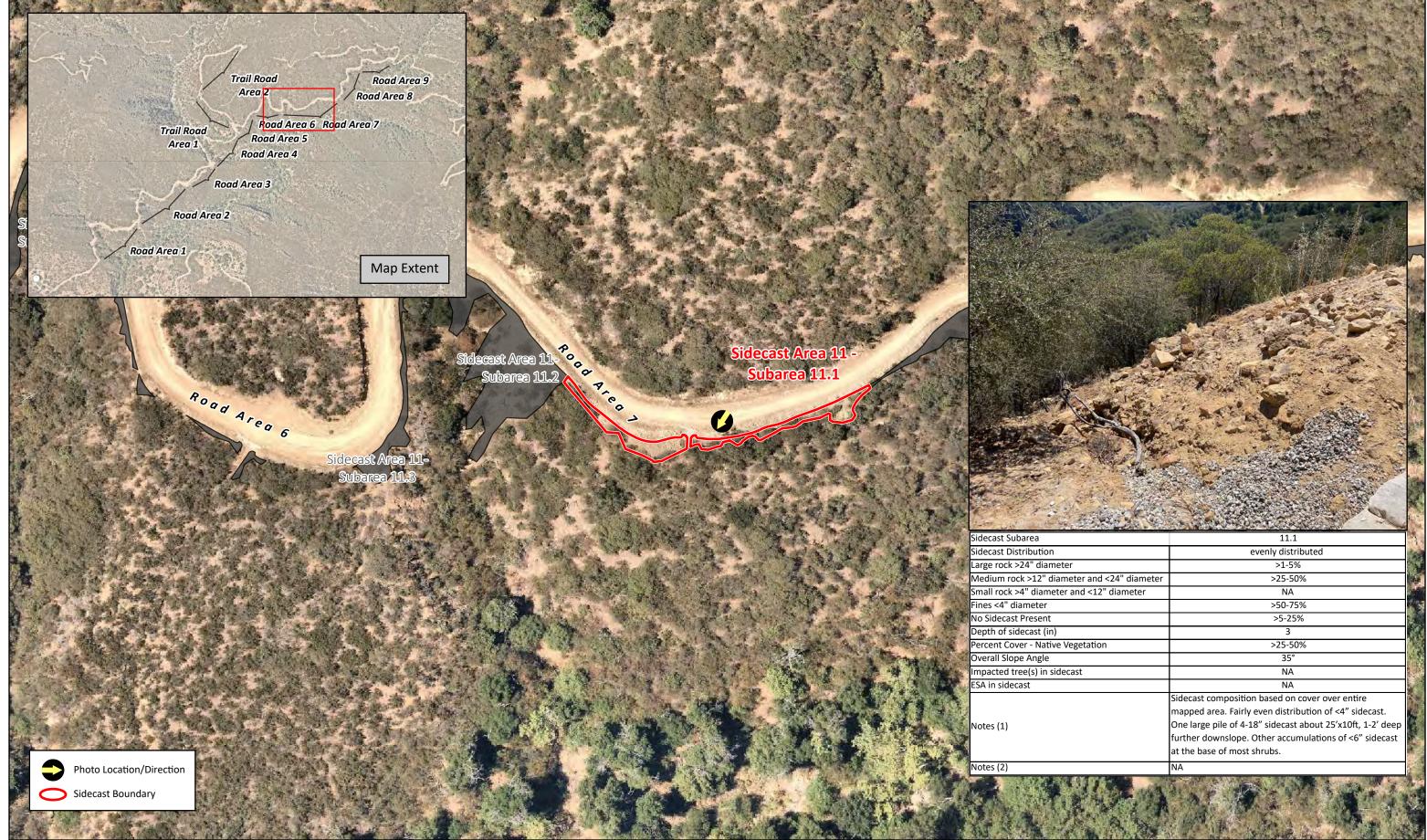


HELIX Environmental Planning 0 12.5 25

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	11.3	2. 1
	evenly distributed	100
eter	0-1%	
ameter and <24" diameter	NA	-
ter and <12" diameter	>5-25%	21
	NA	1
	>75%	FS.
	NA	100
e Vegetation	>5-25%	
	35°	
decast	NA	Right
	NA	
	Sidecast composition based on cover over entire	
	mapped area. Mostly fines throughout, some	-
	accumulations at the base of shrubs.	- 1
		200
	NA	5
		2.5
A CONTRACTOR		
		5.4

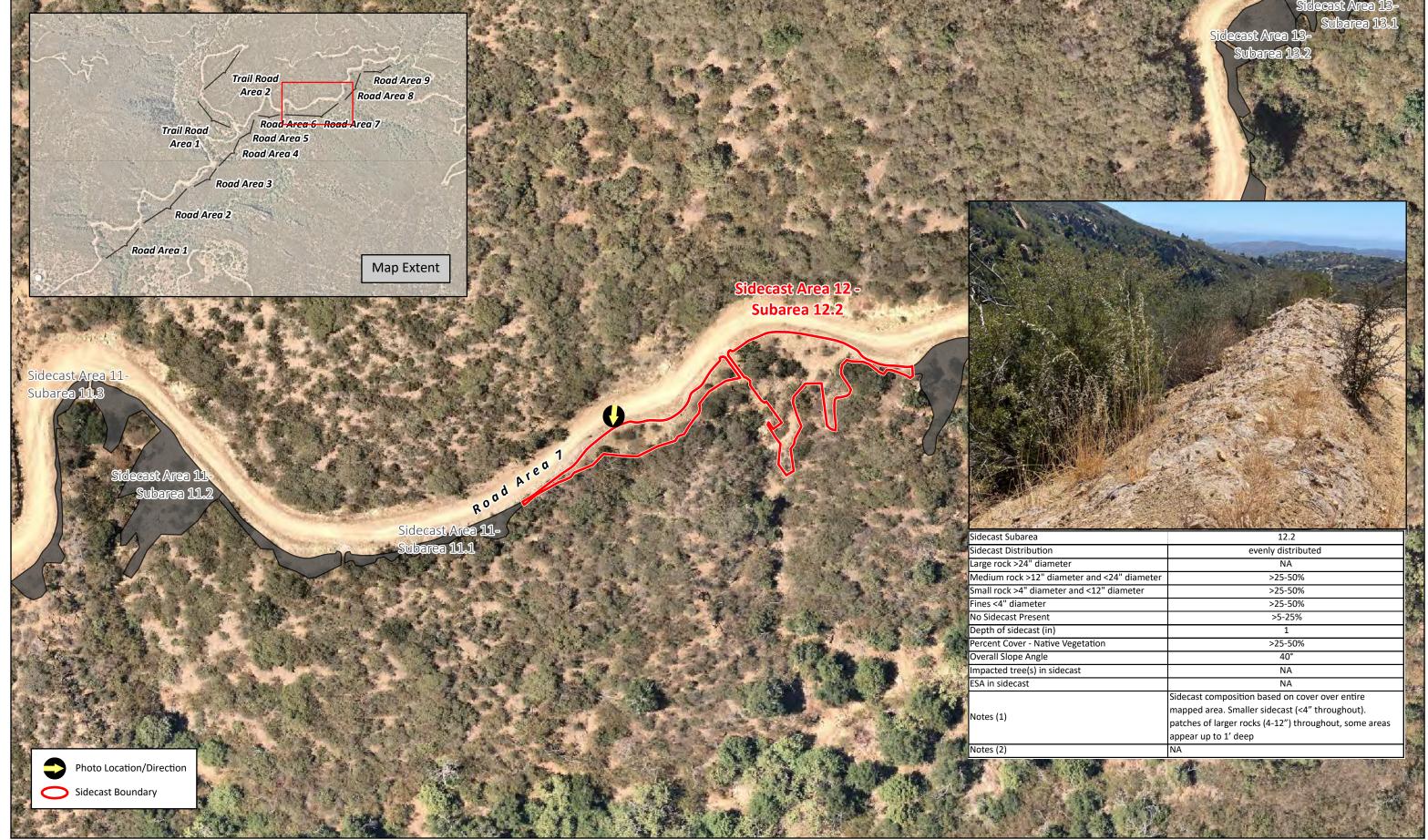
Sidecast Area 11 - Subarea 11.3


MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEM

SIS Sidecast Area 11 - Subarea 11.2

	A STATE				ALL.		
MENTAL	SITE ASSES	SMENT AN	ID PROJ	ECT	SCOPING	G ANAL	YS
	_	_		_	_		

	A DECK
11.2	
evenly distributed	1
>5-25%	121
>5-25%	100
NA	
>5-25%	-
>50-75%	110
2	
>1-5%	
52°	1
NA	1
NA	1000
Sidecast composition based on cover over entire	
mapped area. <4" sidecast throughout with some	
accumulations of 4-8" rocks. Most of Sidecast	
accumulated further downslope. Area mostly bare.	
ΝΔ	1
	evenly distributed >5-25% >5-25% NA >50-75% 2 >1-5% 52° NA NA Sidecast composition based on cover over entire mapped area. <4" sidecast throughout with some accumulations of 4-8" rocks. Most of Sidecast

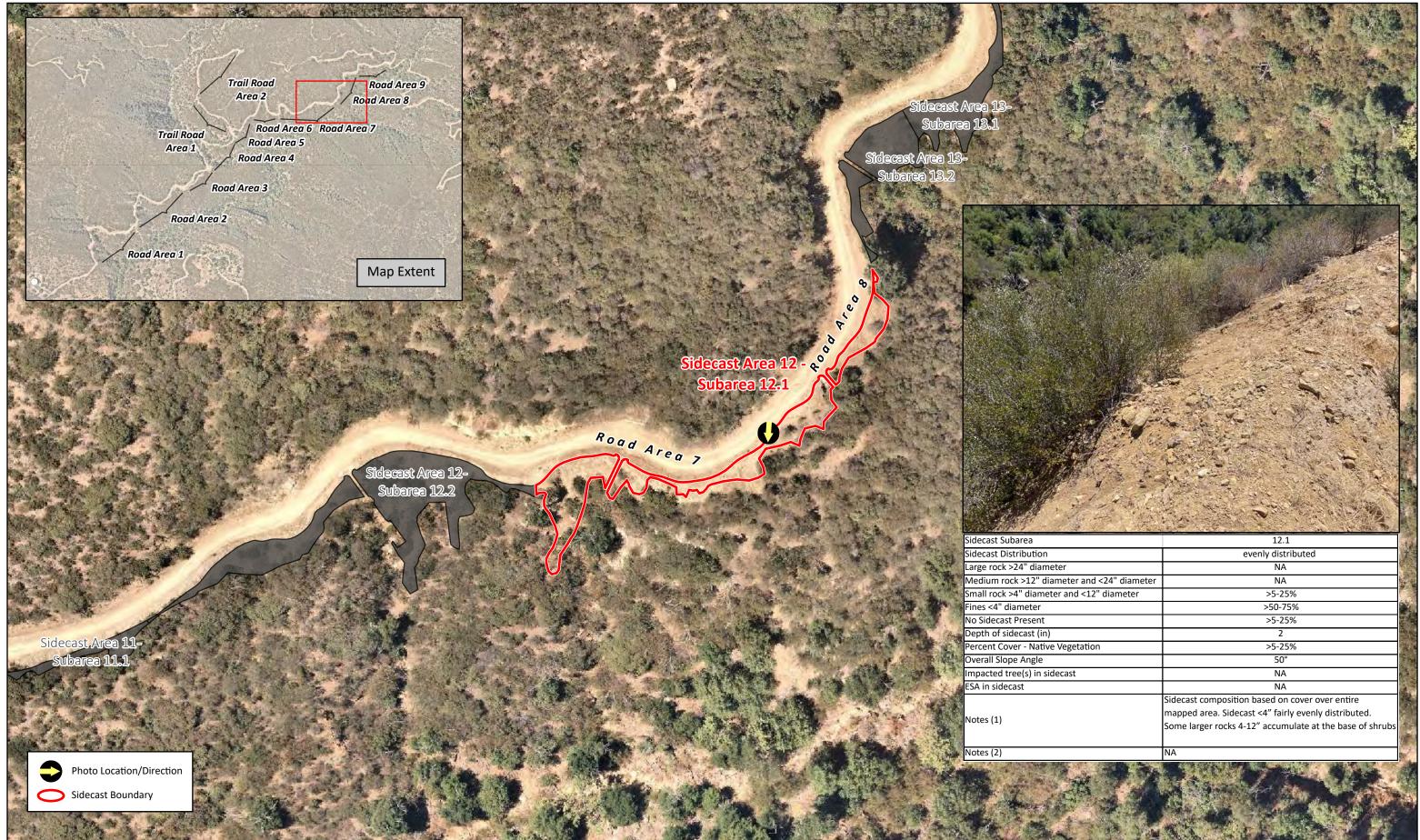


0 12.5 25 50 Feet MISSION CANYON STREAM RESTORATION PROJECT, SUPPL

Sidecast Area 11 - Subarea 11.1

STATE OF	U.S. BARRIER	A BAR AND	A STATE	the last last in	
LEMENTAL	SITE ASSE	SSMENT AN	ID PROJECT	SCOPING	ANALYSIS

		4
	11.1	100
	evenly distributed	100.000
ter	>1-5%	CO.V.
meter and <24" diameter	>25-50%	
er and <12" diameter	NA	0.000
	>50-75%	
	>5-25%	-
	3	-
Vegetation	>25-50%	1111
	35°	100
ecast	NA	1.10
	NA	
	Sidecast composition based on cover over entire	100
	mapped area. Fairly even distribution of <4" sidecast.	
	One large pile of 4-18" sidecast about 25'x10ft, 1-2' deep	
	further downslope. Other accumulations of <6" sidecast	
	at the base of most shrubs.	100
	NA	-


0 12.5 25 50 Feet

Page 35

Sidecast Area 12 - Subarea 12.2

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

A Providence		-
	12.2	T
	evenly distributed	
eter	NA	「「「
ameter and <24" diameter	>25-50%	
ter and <12" diameter	>25-50%	
	>25-50%	A REAL PROPERTY.
	>5-25%	200
	1	100
e Vegetation	>25-50%	0.00
	40°	1.00
decast	NA	
	NA	-
	Sidecast composition based on cover over entire	10.0
	mapped area. Smaller sidecast (<4" throughout).	100
	patches of larger rocks (4-12") throughout, some areas	and the second se
	appear up to 1' deep	1.
	NA	

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Page 36

Sidecast Area 12 - Subarea 12.1

	12.1
	evenly distributed
eter	NA
ameter and <24" diameter	NA
ter and <12" diameter	>5-25%
	>50-75%
	>5-25%
	2
e Vegetation	>5-25%
	50°
decast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Sidecast <4" fairly evenly distributed.
	Some larger rocks 4-12" accumulate at the base of shrubs

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	13.2	
	accumulated in portions	T.
eter	>1-5%	
ameter and <24" diameter	>5-25%	1
ter and <12" diameter	NA	
	NA	-
	>75%	19.8
	3	the state
e Vegetation	>5-25%	
	48°	-1
decast	75, 76	-3-
	NA	100
	Sidecast composition based on cover over entire	N
	mapped area. One area 15'x4' of rocks 4"-12", about 8-	
	12" deep. Some sidecast at the base of shrubs.	C.R. S.
	NA	-

Sidecast Area 13 - Subarea 13.2

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	13.1
	accumulated in portions
eter	>1-5%
ameter and <24" diameter	>5-25%
ter and <12" diameter	NA
	>5-25%
	>50-75%
	3
e Vegetation	>25-50%
	37°
decast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. 3-4 Boulder >24", one 10x10' area of
	deeper sidecast, 1-2' deep. Some pockets of sidecast at
	the base of shrubs.
	Death us rise
	Depth varies.
1013年後上進	
1. 4	and the second sec
A STATE OF THE STATE	

Sidecast Area 13 - Subarea 13.1

0 12.5 25 50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	14.3	
	accumulated in portions	1.5
eter	0-1%	
ameter and <24" diameter	>1-5%	4
eter and <12" diameter	>5-25%	14
	>25-50%	
	>25-50%	
	2	
e Vegetation	>1-5%	
	35°	
idecast	78	1
	Tree at the edge 78	2
	Sidecast composition based on cover over entire	
	mapped area. Some accumulation of sidecast under tree,	-
	6'x6', 6-8" deep of 4-12" rocks. Some patches are smaller	
	sidecast closer to road	
	NA	1
	A sector	ないたい
River St.	and the second	

Sidecast Area 14 - Subarea 14.3

50 Feet HELIX Environmental Planning 0 12.5 25

	14.2	
	accumulated in portions	102
eter	>1-5%	
ameter and <24" diameter	>5-25%	æ.,
ter and <12" diameter	>5-25%	
	NA	
	>50-75%	
	4	Tiel .
e Vegetation	>5-25%	-
	43°	
decast	NA	
	NA	
	Sidecast composition based on cover over entire	
	mapped area. Larger sidecast (rocks 4-12") accumulated	
	at base of shrubs, 100' long X 3' wide, 6-8" deep, about 5-	
	6 boulders 2-3' long, 1-2' wide.	A CA
		Ch
	Depth varies.	
	And the second	14
		E.
	Chief and the second second second	문법
		All and a second second

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Sidecast Area 14 - Subarea 14.2

50

Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

	1 1 3 m	and i	1	
		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1997 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		
			1 IN	
				2
-				
	N. A.	ę		74
	Sec. State	and the second in	ish all	Stan Lee

	14.1
)	accumulated in portions
neter	>1-5%
liameter and <24" diameter	>5-25%
eter and <12" diameter	>5-25%
	>1-5%
	>75%
1)	1
ve Vegetation	>25-50%
	50°
sidecast	NA
	NA
	Sidecast composition based on cover over entire
	mapped area. Small rock composition sidecast
	accumulation at bottom of slope in 2 sections of subarea.
	1 section goes ~30 ft down, other section ~35 ft down
	with slightly larger rocks accumulating at bottom.
	NA

Sidecast Area 14 - Subarea 14.1

HELIX Environmental Planning Source:

0 12.5 25 50

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Sidecast Area 15

		E - State -
	15.0	14
	accumulated in portions	
neter	0-1%	の
ameter and <24" diameter	NA	14. A
eter and <12" diameter	>5-25%	
	>5-25%	
	>50-75%	
	3	See.
e Vegetation	>25-50%	
	5°	
idecast	NA	1
	NA	-de
	Sidecast composition based on cover over entire	常山
	mapped area. 2 ft large boulders outside majority of	
	Sidecast. 3'x10' area consisting of smaller Sidecast.	
	NA	C.J.
	A BUT	

	and the state		
N IS PARA			关 读书
ALC AND AND A			
The second second			
Sec. 1			
		1	
	and the second		
	and the set	the state	
		FC _	
CONT.	PR 2	Francis	
	mil to		
A lost of	Cart Cart		
		and for the	Real Providence

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS

Page 43

Sidecast Area 16 - Subarea 16.2

	16.2	11- 11-
	accumulated in portions	110
ter	>1-5%	
meter and <24" diameter	>1-5%	1
er and <12" diameter	>1-5%	70
	0-1%	
	>75%	Sec.
	NA	
Vegetation	>5-25%	et
	50°	2.50
lecast	NA	12 -
	NA	
	Sidecast composition based on cover over entire	A.C.
	mapped area. Sidecast has wide random distribution	$H_{\rm e} \approx$
	mostly containing larger rocks but low Sidecast coverage.	
	Large sidecast boulders below survey point.	

HELIX Environmental Planning 0 12.5 25

50 Feet

MISSION CANYON STREAM RESTORATION PROJECT, SUPPLEMENTAL SITE ASSESSMENT AND PROJECT SCOPING ANALYSIS Sidecast Area 16 - Subarea 16.1

	10.1	ê
	accumulated in portions	
ter	>1-5%	
meter and <24" diameter	NA	11
er and <12" diameter	NA	1
	>5-25%	1
	>75%	
	3	-
Vegetation	>25-50%	-71
	45°	19
ecast	NA	6
	NA	
	Sidecast composition based on cover over entire	5
	mapped area. 1 large Boulder 3'x2', several others about	
	2' long. One area of fine sidecast (2-4", up to 6-8").	
		4
	NA	
A CARLE		
		100

Appendix B

Comparative Scoping Analysis Team: Experience and Qualifications

Appendix B Comparative Scoping Analysis Team: Experience and Qualifications

Waters and Waterways: Richard Beck, CEP, PWS, CERP, CPESC, Michael Baker International

Richard Beck, PWS, CERP, CPESC. Mr. Beck is a Vice President with Michael Baker international. Mr. Beck is a Senior Regulatory Specialist and Professional Wetland Scientist. For over 20 years, Mr. Beck has conducted wetland delineation and other functional assessments associated with state and federal regulated waters. Mr. Beck also serves as President of the Society of Wetland Scientists' Western Chapter.

Hydrology: Todd Bear, D. Env., EcoKai Environmental, Inc.

Dr. Bear is a senior environmental engineer/scientist and biologist with over 20 years of experience in a wide variety of environmental projects, including riparian habitat surveying and monitoring, geomorphological characterizations of stream systems, and multiple ground water, surface water, and storm water monitoring projects. He also performs jurisdictional delineations in urban and remote waterways and wetlands, develops hydrological monitoring plans for construction projects near sensitive resources, performs biological resource surveys and risk assessments, and regulatory compliance and permitting under Sections 401, 402, and 404 of the Clean Water Act and Section 1600, *et seq.*, of the California Fish and Wildlife Code.

Hydrology: Jim Burton P.E. QSD/P, EcoKai Environmental, Inc.

Mr. Burton is a Professional Engineer with over 30 years of experience in water resources evaluation, hydrogeological investigations, and compliance for projects with environmental and regulatory permitting requirements. He has extensive experience in the analysis of water quality, surface and groundwater hydrological characteristics, and field data collection. His experience also includes the management and implementation of mitigation and monitoring projects related to permit compliance and documentation for construction projects that are often in close proximity to sensitive natural resources. His technical experience includes the evaluation, planning, and implementation of projects balancing hydrologic and biological resources in compliance with local, state, and federal regulatory permit requirements. He has direct field management experience on large ground water and surface water monitoring programs and hydrogeological assessments for large development projects.

Air Operations: Jack Matiasevich, Operations Senior Advisor, SCE Aircraft Operations

Aircraft Management and Operations Senior Advisor with Southern California Edison, Jack Matiasevich is an accomplished pilot and has been incident- and accident- free for over 36,000 flight hours. For the past three decades, Jack has developed his skills in the utility, aerial firefighting, air ambulance, agriculture, and construction sectors. In his 10 years at Southern California Edison, Jack supports daily operations and maintenance, wildfire mitigation and fire restoration efforts including supporting human external cargo (HEG) operations. Jack was accepted into the Helicopters Association international (HAI) Board of Directors in 2018.

Appendix B: Comparative Scoping Analysis Team: Experience and Qualifications

Storm Water and Water Quality: Lucy Cortez, CPESC, CESSWI, QSD/P, SCE

Lucy Cortez-Johnson has over 18 years of experience in environmental consulting, with 15 of those years directly related to Water Quality compliance of the Construction General Permit (CGP) and local ordinance stormwater permittees. As a Qualified SWPPP Developer (QSD), Qualified SWPPP Practitioner (QSP), and CGP Trainer of Record (ToR) Lucy's primary responsibilities include managing projects that have stormwater permittee requirements, including the preparation and implementation of Storm Water Pollution Prevent Plans (SWPPPs), Erosion and Sediment Control Plans (ESCPs) and Water Quality Management Plans (WQMP), while evaluating water quality risks and mitigating with BMPs during field implementation.

Fisheries and Fish Habitat: Greg Davis, HELIX Environmental Planning, Inc.

Greg Davis is a consulting biologist with seven years of experience working as a wetland scientist and botanist throughout California. He has extensive experience in planning, design, and construction oversight for salmonid habitat restoration/enhancement projects that include fish barrier removal, road decommissioning, in-stream large woody debris placement, riparian planting, and upslope sediment reduction. Additionally, Mr. Davis is familiar with special-status plant and wildlife species, as well as sensitive habitats that occur in California, and routinely conducts biological resources assessments, rare plant surveys, and wetland delineations.

Native Vegetation and Sensitive Plant Habitats: Justin Fischbeck, CERP; HELIX Environmental Planning, Inc.

Mr. Fischbeck leads the Restoration Practice at HELIX and has 24 years of experience with the restoration of native California habitats. He is the Responsible Managing Officer for HELIX's A General Engineering and C-27 Landscape contractor's licenses, as well as a restoration biologist by training. His areas of expertise include the creation of habitat for endangered or threatened species, creation of wetlands or waterways, and solutions to construction- or development-related water quality issues. His project experience includes habitat restoration, grading for restoration and waterway projects, sensitive species propagation and translocation, and programmatic invasive species control. He has served as principal-in-charge or project manager for a variety of restoration projects ranging from small on-site restoration efforts to large-scale restoration projects covering hundreds of acres.

Engineering and Geology: Matthew Harrell PG, CEG, QSP/QSD, Ninyo & Moore

Mr. Harrell has extensive experience in engineering geology involving public work improvements, pipelines, dams, and transportation redevelopment projects. His experience includes the exploration of varied geologic environments to evaluate geologic and seismic hazards. He is well versed in exploration techniques, including aerial photo interpretation, downhole logging, hollow stem and mud rotary drilling, air percussion, cone penetrometer, monitoring wells, fault trenching, and geophysical surveys. Mr. Harrell specializes in compressible soils, construction observation, earth retaining structures, environmental assessments and remediation, geologic hazard evaluations, geomorphology, geotechnical instrumentation, SWPPP Preparation and implementation, and provides expert witness services on litigation projects.

Appendix B: Comparative Scoping Analysis Team: Experience and Qualifications

Engineering and Geology: Javier Izaguirre DEWM, SCE

Mr. Izaguirre has over 15 years of experience in Civil Engineering (Project Management, Grading and Drainage and Construction), of which more than 13 years have been with SCE. At SCE, he manages the engineering design for Major Capital Projects (Transmission), Small Civil Capital Projects (Transmission), Substation (Civil) Projects, Transmission Maintenance Projects. Mr. Izaguirre also provides support for Special Project/Emergencies and Construction.

Fisheries and Fish Habitat: Tom Keegan, HELIX Environmental Planning, Inc.

Mr. Keegan has over 36 years of experience as a fisheries scientist/ecologist. His technical expertise is focused on effects of altered stream flows and estuarine inflows to native fish species populations and their habitats, particularly special-status Steelhead (all California distinct population segments [DPSs] and including Southern Steelhead), Chinook Salmon (all California evolutionary significant units [ESUs]), Green Sturgeon, Delta Smelt, Longfin Smelt, Tidewater Goby, and Sierran trout/native fish populations. He manages technologic investigations of migratory fish (anadromous and resident) fish population dynamics and passage, impingement/ entrainment, aquatic habitat, benthic macroinvertebrate (BMI) Surface Water Ambient Monitoring Program (SWAMP) protocol bioassessments, special-status amphibian surveys, as well as effects assessments (e.g., altered flows and habitats, diversion/entrainment, contaminants).

Storm Water and Water Quality: Andrew Price, PE, QSD/P, Michael Baker International

Mr. Price is a licensed professional civil engineer with extensive experience in the field of erosion and sediment control. He serves as the lead Qualified Stormwater Pollution Prevention Plans (SWPPP) Designer (QSD) for Michael Baker International's Santa Ana Office and is responsible for inspections and/or oversight of 40+ active construction sites across Southern and Central California. He has written and reviewed SWPPPs, Erosion and Sediment Control Plans (ESCPs), Water Pollution Control Plans (WPCPs) for several of the State's largest agencies, utilities, and private developers. He has been involved in all phases of projects, including field reconnaissance, preliminary design, final design, and report preparation. He interacts regularly with Regional and State Waterboard staff for permit clarifications and responses to Notice of Violations (NOVs).

Engineering and Geology: Sean Richards PG, CEG, SCE

Mr. Richards has 20 years of experience in the southern California Geotechnical Industry. He is a California licensed Professional Geologist (PG) and Certified Engineering Geologist (CEG). Mr. Richards has been involved with geotechnical investigations, design, and construction from residential and commercial warehouses to potential Stadium sites. He has been part of feasibility reviews for large tunneling projects as well as proposed freeway extensions. At SCE, he works with small and large transmission projects, substation repairs, and extensions, as well as reviewing customer reports for interconnections and associated substations.

Appendix B: Comparative Scoping Analysis Team: Experience and Qualifications

Native Vegetation and Sensitive Plant Habitats: Peter Tomsovic, HELIX Environmental Planning, Inc.

Mr. Tomsovic is a Restoration Ecologist and Senior Project Manager for HELIX's restoration practice. He has 24 years of experience in the environmental consulting industry and holds a California Department of Pesticide Regulations Qualified Applicators License (QAL). As a restoration ecologist, he has successfully designed, implemented, and managed hundreds of restoration projects throughout California ranging in size from 0.1-acre to over 600 acres. Mr. Tomsovic's project experience ranges across all habitat types, including desert, coastal sage scrub, oak woodland, riparian, tidal wetland, chaparral, grassland, vernal pool, and wetland habitats. He has also designed and implemented numerous species-specific restoration projects for listed plant and wildlife species, and prepared mitigation plans, long-term management plans, weed management plans, erosion control plans, and whole ecosystem restoration plans for federal, state, local, and private clients. Mr. Tomsovic served on the California Society for Ecological Restoration (SERCAL) Board of Directors and was formerly the organization's president.

CEQA checklist: Phuong Trinh, SCE Environmental

Ms. Trinh has over 15 years of experience in regulatory or environmental project management, of which more than 10 years have been with Southern California Edison. At SCE, Phoung manages environmental compliance on interconnection projects and provides California Environmental Quality Act support when discretionary approvals are needed. Her CEQA support experience ranges from the review of documents prepared for third-party projects to the preparation of supporting documents for SCE-led projects.

Safety: Dan Wallace, PMP, American Integrated Services

Mr. Wallace has over 13 years of combined experience in the commercial, residential and environmental construction industries. He has managed projects up to \$23,000,000. As Project Manager, he is responsible for the overall direction, completion, and financial outcome of projects. He directs and supervises activities related to contract administration, change orders, submittals, procurement, project financial projections, and schedule requirements to ensure projects are completed safely, and within schedule and budget.

Construction Contractor: Josh Whittaker, American Integrated Services

Mr. Whittaker has over 25 years of experience in the construction/demolition industry serving public works, commercial, utility and power sectors, and oil and gas sectors. He is responsible for overseeing estimating, project management, technical quality, safety, client satisfaction, client follow-up, project budget, schedule, and overall success of all of AIS's Industrial Services, Demolition and Decontamination projects. He has extensive experience supervising all aspects of environmental remediation, construction, public works projects, and demolition projects, including various aspects of new construction, public works, utilities, street improvements, and bond release work. Understanding large-scale environmental construction, as well as various aspects of demolition and abatement allows, him a unique perspective when developing a work approach. His in-depth experience allows him to optimize the project's remediation construction approach to improve budget and schedule performance as well as to develop unique construction solutions.