Air Quality, Greenhouse Gas Emissions, and Energy Supporting	Appendix A: g Information

Mapes & Sherman Commerce Center (DEV2022-003)

AIR QUALITY IMPACT ANALYSIS
CITY OF MENIFEE

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Alyssa Barnett abarnett@urbanxroads.com

DECEMBER 13, 2022

TABLE OF CONTENTS

		F CONTENTS	
		CES	
LIS	T OF E	XHIBITS	II
		ABLES	
LIS	T OF A	ABBREVIATED TERMS	III
EX	ECUTIV	VE SUMMARY	8
	ES.1	Summary of Findings	8
	ES.2	Regulatory Requirements	
		MD Rules	
1	INT	RODUCTION	12
	1.1	Site Location	
	1.1	Project Description	
		•	
2	AIR	R QUALITY SETTING	16
	2.1	South Coast Air Basin	16
	2.2	Regional Climate	16
	2.3	Wind Patterns and Project Location	17
	2.4	Criteria Pollutants	18
	2.5	Existing Air Quality	25
	2.6	Regional Air Quality	28
	2.7	Local Air Quality	28
	2.8	Regulatory Background	29
3	PRO	OJECT AIR QUALITY IMPACT	35
	3.1	Introduction	35
	3.2	Standards of Significance	
	3.3	Models Employed To Analyze Air Quality	
	3.4	Construction Emissions	
	3.5	Operational Emissions	39
	3.6	Localized Significance	
	3.7	Construction-Source Emissions LST Analysis	46
	3.8	Operational-Source Emissions LST Analysis	49
	3.9	CO "Hot Spot" Analysis	51
	3.10	AQMP	53
	3.11	Potential Impacts to Sensitive Receptors	55
	3.12	Odors	56
	3.13	Cumulative Impacts	57
4	REF	FERENCES	60
5		RTIFICATIONS	

APPENDICES

APPENDIX 2.1: S	TATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS
APPENDIX 3.1: C	CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS
APPENDIX 3.2: C	ALEEMOD PROJECT REGIONAL OPERATIONAL EMISSIONS MODEL OUTPUTS
APPENDIX 3.3: C	ALEEMOD PROJECT LOCALIZED OPERATIONAL EMISSIONS MODEL OUTPUTS

LIST OF EXHIBITS

EXHIBIT 1-A: LOCATION MAP	
EXHIBIT 1-B: SITE PLAN	
EXHIBIT 3-A: RECEPTOR LOCATIONS	48
LIST OF TABLES	
TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	8
TABLE 2-1: CRITERIA POLLUTANTS	
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)	26
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)	
TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE SCAB	28
TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020	29
TABLE 3-1: MAXIMUM DAILY REGIONAL EMISSIONS THRESHOLDS	35
TABLE 3-2: CONSTRUCTION TRIP ASSUMPTIONS	37
TABLE 3-3: CONSTRUCTION DURATION	
TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS	38
TABLE 3-5: OVERALL CONSTRUCTION EMISSIONS SUMMARY	39
TABLE 3-6: PASSENGER CAR FLEET MIX	41
TABLE 3-7: TRUCK FLEET MIX	
TABLE 3-8: SUMMARY OF PEAK OPERATIONAL EMISSIONS	
TABLE 3-9: MAXIMUM DAILY DISTURBED-ACREAGE	
TABLE 3-10: MAXIMUM DAILY LOCALIZED CONSTRUCTION EMISSIONS THRESHOLDS	
TABLE 3-11: LOCALIZED CONSTRUCTION-SOURCE EMISSIONS — WITHOUT MITIGATION	
TABLE 3-12: MAXIMUM DAILY LOCALIZED OPERATIONAL EMISSIONS THRESHOLDS	
TABLE 3-13: LOCALIZED SIGNIFICANCE SUMMARY OF OPERATIONS	
TABLE 3-14: CO MODEL RESULTS	_
TABLE 3-15: TRAFFIC VOLUMES	
TABLE 3-16: PEAK HOUR TRAFFIC VOLUMES	53

LIST OF ABBREVIATED TERMS

% Percent

°F Degrees Fahrenheit

(1) Reference

μg/m³ Microgram per Cubic Meter

1992 CO Plan 1992 Federal Attainment Plan for Carbon Monoxide

1993 CEQA Handbook SCAQMD's CEQA Air Quality Handbook (1993)

2016-2040 RTP/SCS 2016-2040 Regional Transportation Plan/Sustainable

Communities Strategy

AB 2595 California Clean Air Act
AQIA Air Quality Impact Analysis
AQMP Air Quality Management Plan
BACT Best Available Control Technology

BC Black Carbon

Brief Brief of Amicus Curiae by the SCAQMD in the Friant Ranch

Case

C₂Cl₄ Perchloroethylene C₄H₆ 1,3-butadiene

C₆H₆ Benzene

 C_2H_3Cl Vinyl Chloride C_2H_4O Acetaldehyde

CAA Federal Clean Air Act

CAAQS California Ambient Air Quality Standards
CalEEMod California Emissions Estimator Model

CalEPA California Environmental Protection Agency
CALGreen California Green Building Standards Code

CAP Climate Action Plan

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board
CCR California Code of Regulations
CEC California Energy Commission

CEQA California Environmental Quality Act
CEQA Guidelines 2019 CEQA Statute and Guidelines

CH₂O Formaldehyde
City City of Menifee
CO Carbon Monoxide
COH Coefficient of Haze

COHb Carboxyhemoglobin

Cr(VI) Chromium

CTP Clean Truck Program

DPM Diesel Particulate Matter

DRRP Diesel Risk Reduction Plan

EC Elemental Carbon

EIR Environmental Impact Report
EMFAC Emissions FACtor Model

EPA Environmental Protection Agency

ETW Equivalent Test Weight

EV Electric Vehicle
GHG Greenhouse Gas

GVWR Gross Vehicle Weight Rating

H₂S Hydrogen SulfideHDT Heavy-Duty Trucks

HHDT Heavy-Heavy-Duty Trucks

HI Hazard Index
hp Horsepower
I-215 Interstate 215

lbs Pounds

Ibs/day Pounds Per Day
LDA Light Duty Auto
LDT1/LDT2 Light-Duty Trucks

LHDT1/LHDT2 Light-Heavy-Duty Trucks

LST Localized Significance Threshold

LST Methodology Final Localized Significance Threshold Methodology

MATES Multiple Air Toxics Exposure Study

MCY Motorcycles

MDV Medium-Duty Vehicles

MHDT Medium-Heavy-Duty Trucks
MICR Maximum Individual Cancer Risk

MM Mitigation Measures

mph Miles Per Hour

MWELO California Department of Water Resources' Model Water

Efficient

N₂ Nitrogen

N₂O Nitrous Oxide

NAAQS National Ambient Air Quality Standards

NO Nitric Oxide

NO₂ Nitrogen Dioxide NO_X Nitrogen Oxides

 O_2 Oxygen O_3 Ozone

O₂ Deficiency Chronic Hypoxemia
OBD-II On-Board Diagnostic

ODC Ozone Depleting Compounds

Pb Lead

PM Particulate Matter

PM₁₀ Particulate Matter 10 microns in diameter or less PM_{2.5} Particulate Matter 2.5 microns in diameter or less

POLA Port of Los Angeles
POLB Port of Long Beach
ppm Parts Per Million

Project Mapes & Sherman Commerce Center (DEV2022-003)

RECLAIM Regional Clean Air Incentives Market RFG-2 Reformulated Gasoline Regulation

ROG Reactive Organic Gases

SB Senate Bill

SCAB South Coast Air Basin

SCAG Southern California Association of Governments
SCAQMD South Coast Air Quality Management District

sf Square Feet

SIPs State Implementation Plans

SO₂ Sulfur Dioxide

SO₄ Sulfates

SO_X Sulfur Oxides SR-74 State Route 74

SRA Source Receptor Area
TAC Toxic Air Contaminant
Title 24 California Building Code
TITLE I Non-Attainment Provisions
TITLE II Mobile Sources Provisions

UFP Ultrafine Particles URBEMIS URBan EMISsions

VMT Vehicle Miles Traveled

VOC Volatile Organic Compounds

vph

Vehicles Per Hour

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Mapes & Sherman Commerce Center (DEV2022-003) Air Quality Impact Analysis* (AQIA) are summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the *CEQA Guidelines* (*CEQA Guidelines*) (1). Table ES-1 shows the findings of significance for each potential air quality impact under CEQA before and after any required mitigation measures (MM) described below.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Analysis	Report Significan		nce Findings	
Allalysis	Section	Unmitigated	Mitigated	
Regional Construction Emissions	3.4	Less Than Significant	n/a	
Localized Construction Emissions	3.7	Less Than Significant	n/a	
Regional Operational Emissions	3.5	Less Than Significant	n/a	
Localized Operational Emissions	3.8	Less Than Significant	n/a	
CO "Hot Spot" Analysis	3.9	Less Than Significant	n/a	
Air Quality Management Plan	3.10	Less Than Significant	n/a	
Sensitive Receptors	3.11	Less Than Significant	n/a	
Odors	3.12	Less Than Significant	n/a	
Cumulative Impacts	3.13	Less Than Significant	n/a	

ES.2 REGULATORY REQUIREMENTS

There are numerous requirements that development projects must comply with by law, and that were put in place by federal, State, and local regulatory agencies for the improvement of air quality.

Any operation or activity that might cause the emission of any smoke, fly ash, dust, fumes, vapors, gases, or other forms of air pollution, which can cause damage to human health, vegetation, or

other forms of property, or can cause excessive soiling on any other parcel shall conform to the requirements of the SCAQMD.

SCAQMD RULES

SCAQMD Rules that are currently applicable during construction activity for this Project are described below.

SCAQMD RULE 402

A person shall not discharge from any source whatsoever such quantities of air contaminants or other material that cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or that endanger the comfort, repose, health, or safety of any such persons or the public, or that cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule do not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.

Odor Emissions. All uses shall be operated in a manner such that no offensive odor is perceptible at or beyond the property line of that use.

SCAQMD RULE 403

This rule is intended to reduce the amount of particulate matter (PM) entrained in the ambient air as a result of anthropogenic (human-made) fugitive dust sources by requiring actions to prevent and reduce fugitive dust emissions. Rule 403 applies to any activity or human-made condition capable of generating fugitive dust and requires best available control measures to be applied to earth moving and grading activities.

Dust Control, Operations. Any operation or activity that might cause the emission of any smoke, fly ash, dust, fumes, vapors, gases, or other forms of air pollution, which can cause damage to human health, vegetation, or other forms of property, or can cause excessive soiling on any other parcel, shall conform to the requirements of the SCAQMD.

SCAQMD RULE 1113

This rule serves to limit the Volatile Organic Compound (VOC) content of architectural coatings used on projects in the SCAQMD. Any person who supplies, sells, offers for sale, or manufactures any architectural coating for use on projects.

SCAQMD RULE 1301

This rule is intended to provide that pre-construction review requirements to ensure that new or relocated facilities do not interfere with progress in attainment of the National Ambient Air Quality Standards (NAAQS), while future economic growth within the SCAQMD is not unnecessarily restricted. The specific air quality goal is to achieve no net increases from new or modified permitted sources of nonattainment air contaminants or their precursors. Rule 1301 also limits emission increases of ammonia, and Ozone Depleting Compounds (ODCs) from new, modified or relocated facilities by requiring the use of Best Available Control Technology (BACT).

SCAQMD RULE 1401

A person shall not discharge into the atmosphere from any single source of emission whatsoever any air contaminant for a period or periods aggregating more than three minutes in any 1 hour that is as dark or darker in shade as that designated No. 1 on the Ringelmann Chart, as published by the United States (U.S.) Bureau of Mines.

SCAQMD RULE 2305

The SCAQMD adopted Rule 2305, the Warehouse Indirect Source Rule, on May 7, 2021. Owners and operators associated with warehouses 100,000 square feet (sf) or larger are required to directly reduce nitrogen oxides (NO_X) and particulate matter emissions, or to otherwise facilitate emission and exposure reductions of these pollutants in nearby communities.

Although the Project would comply with the above regulatory requirements, it should be noted that there is no way to quantify these reductions in the California Emissions Estimator Model (CalEEMod). The two most pertinent regulatory requirements that could be modeled, are Rule 403 (Fugitive Dust) (2) and Rule 1113 (Architectural Coatings) (3). Because they are required by law, credit for emissions reductions resulting from application of Rule 403 and Rule 1113 are reflected in the analyses presented here.

This page intentionally left blank

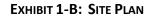
1 INTRODUCTION

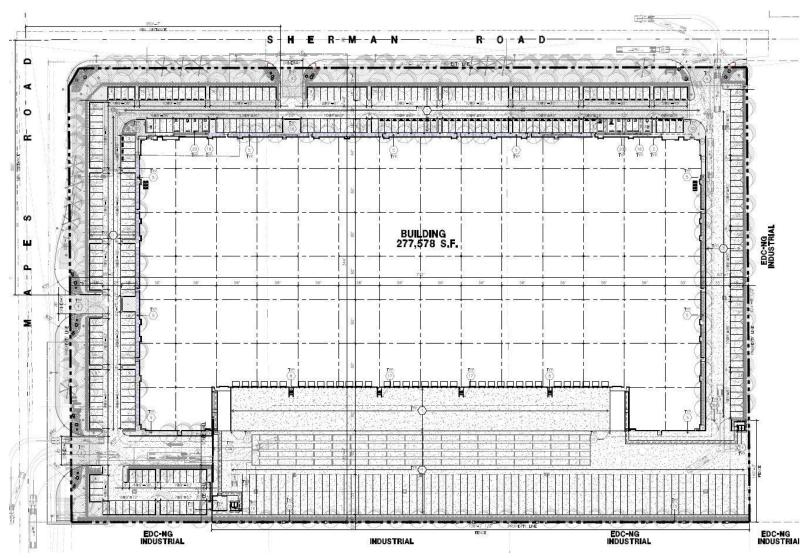
This report presents the results of the AQIA prepared by Urban Crossroads, Inc., for the proposed Mapes & Sherman Commerce Center (DEV2022-003) (Project). The purpose of this AQIA is to evaluate the potential impacts to air quality associated with construction and operation of the Project and recommend measures to mitigate impacts considered potentially significant in comparison to thresholds established by the SCAQMD.

1.1 SITE LOCATION

The proposed Project is located in the City of Menifee at the southwest corner of Sherman Road and Mapes Road, as shown on Exhibit 1-A. The City is surrounded by the City of Moreno Valley to the north, unincorporated Riverside County to the east, the City of Murrieta and unincorporated Riverside County to the south, and the Cities of Perris and Lake Elsinore to the west. Regional access to the site is provided via Interstate 215 (I-215) and State Route 74 (SR-74). Local access to the site is provided via Mapes Road and Sherman Avenue.

1.2 PROJECT DESCRIPTION


The Project is proposed to consist of the development of 277,578 sf of high-cube fulfillment center warehouse use within a single building. It is anticipated that the Project would operate seven days a week 24 hours a day and be developed in a single phase with an anticipated Opening Year of 2024. The site plan for the proposed Project is shown on Exhibit 1-B.



Wayne Ln White Marble Ct. Commander Ct Blue Topaz Dr. Ball Rd Mapes Rd Mapes Rd Work Site 1433 ft Blue Diamond Ln Baranı Rd Baroni Rd Watson Rd Watson Rd. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GERCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Radaster NL, Ordnance Survey, Esri, Igpan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS

EXHIBIT 1-A: LOCATION MAP

This page intentionally left blank

2 AIR QUALITY SETTING

This section provides an overview of the existing air quality conditions in the Project area and region.

2.1 SOUTH COAST AIR BASIN

The Project site is located in the South Coast Air Basin (SCAB) within the jurisdiction of SCAQMD (4). The SCAQMD was created by the 1977 Lewis-Presley Air Quality Management Act, which merged four county air pollution control bodies into one regional district. Under the Act, the SCAQMD is responsible for bringing air quality in areas under its jurisdiction into conformity with federal and state air quality standards. As previously stated, the Project site is located within the SCAB, a 6,745-square mile subregion of the SCAQMD, which includes the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties, and all of Orange County.

The SCAB is bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east, and the San Diego Air Basin to the south.

2.2 REGIONAL CLIMATE

The regional climate has a substantial influence on air quality in the SCAB. In addition, the temperature, wind, humidity, precipitation, and amount of sunshine influence the air quality.

The annual average temperatures throughout the SCAB vary from the low to middle 60s degrees Fahrenheit (°F). Due to a decreased marine influence, the eastern portion of the SCAB shows greater variability in average annual minimum and maximum temperatures. January is the coldest month throughout the SCAB, with average minimum temperatures of 47°F in downtown Los Angeles and 36°F in San Bernardino. All portions of the SCAB have recorded maximum temperatures above 100°F.

Although the climate of the SCAB can be characterized as semi-arid, the air near the land surface is quite moist on most days because of the presence of a marine layer. This shallow layer of sea air is an important modifier of SCAB climate. Humidity restricts visibility in the SCAB, and the conversion of sulfur dioxide (SO_2) to sulfates (SO_4) is heightened in air with high relative humidity. The marine layer provides an environment for that conversion process, especially during the spring and summer months. The annual average relative humidity within the SCAB is 71% along the coast and 59% inland. Since the ocean effect is dominant, periods of heavy early morning fog are frequent and low stratus clouds are a characteristic feature. These effects decrease with distance from the coast.

More than 90% of the SCAB's rainfall occurs from November through April. The annual average rainfall varies from approximately nine inches in Riverside to fourteen inches in downtown Los Angeles. Monthly and yearly rainfall totals are extremely variable. Summer rainfall usually consists of widely scattered thunderstorms near the coast and slightly heavier shower activity in the eastern portion of the SCAB with frequency being higher near the coast.

Due to its clear weather, about three-quarters of available sunshine is received in the SCAB. The remaining one-quarter is absorbed by clouds. The ultraviolet portion of this abundant radiation is a key factor in photochemical reactions. On the shortest day of the year, there are approximately 10 hours of sunshine, and on the longest day of the year, there are approximately 14½ hours of sunshine.

The importance of wind to air pollution is considerable. The direction and speed of the wind determines the horizontal dispersion and transport of the air pollutants. During the late autumn to early spring rainy season, the SCAB is subjected to wind flows associated with the traveling storms moving through the region from the northwest. This period also brings five to ten periods of strong, dry offshore winds, locally termed "Santa Anas" each year. During the dry season, which coincides with the months of maximum photochemical smog concentrations, the wind flow is bimodal, typified by a daytime onshore sea breeze and a nighttime offshore drainage wind. Summer wind flows are created by the pressure differences between the cold ocean and the unevenly heated and cooled land surfaces that modify the general northwesterly wind circulation over southern California. Nighttime drainage begins with the radiational cooling of the mountain slopes. Heavy, cool air descends the slopes and flows through the mountain passes and canyons as it follows the lowering terrain toward the ocean. Another characteristic wind regime in the SCAB is the "Catalina Eddy," a low level cyclonic (counterclockwise) flow centered over Santa Catalina Island which results in an offshore flow to the southwest. On most spring and summer days, some indication of an eddy is apparent in coastal sections.

In the SCAB, there are two distinct temperature inversion structures that control vertical mixing of air pollution. During the summer, warm high-pressure descending (subsiding) air is undercut by a shallow layer of cool marine air. The boundary between these two layers of air is a persistent marine subsidence/inversion. This boundary prevents vertical mixing which effectively acts as an impervious lid to pollutants over the entire SCAB. The mixing height for the inversion structure is normally situated 1,000 to 1,500 feet above mean sea level.

A second inversion-type forms in conjunction with the drainage of cool air off the surrounding mountains at night followed by the seaward drift of this pool of cool air. The top of this layer forms a sharp boundary with the warmer air aloft and creates nocturnal radiation inversions. These inversions occur primarily in the winter when nights are longer and onshore flow is weakest. They are typically only a few hundred feet above mean sea level. These inversions effectively trap pollutants, such as nitrogen oxides (NO_X) and carbon monoxide (CO) from vehicles, as the pool of cool air drifts seaward. Winter is therefore a period of high levels of primary pollutants along the coastline.

2.3 WIND PATTERNS AND PROJECT LOCATION

The distinctive climate of the Project area and the SCAB is determined by its terrain and geographical location. The SCAB is located in a coastal plain with connecting broad valleys and low hills, bounded by the Pacific Ocean in the southwest quadrant with high mountains forming the remainder of the perimeter.

Wind patterns across the south coastal region are characterized by westerly and southwesterly onshore winds during the day and easterly or northeasterly breezes at night. Winds are characteristically light although the speed is greater during the dry summer months than during the rainy winter season.

2.4 CRITERIA POLLUTANTS

Criteria pollutants are pollutants that are regulated through the development of human health based and/or environmentally based criteria for setting permissible levels. Criteria pollutants, their typical sources, and health effects are identified below (5):

TABLE 2-1: CRITERIA POLLUTANTS

Criteria Pollutant	Description	Sources	Health Effects
СО	CO is a colorless, odorless gas produced by the incomplete combustion of carbon-containing fuels, such as gasoline or wood. CO concentrations tend to be the highest during the winter morning, when little to no wind and surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines, unlike ozone (O ₃), motor vehicles operating at slow speeds are the primary source of CO in the SCAB. The highest ambient CO concentrations are found near congested transportation corridors and intersections.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Individuals with a deficient blood supply to the heart are the most susceptible to the adverse effects of CO exposure. The effects observed include earlier onset of chest pain with exercise, and electrocardiograph changes indicative of decreased oxygen (O ₂) supply to the heart. Inhaled CO has no direct toxic effect on the lungs but exerts its effect on tissues by interfering with O ₂ transport and competing with O ₂ to combine with hemoglobin present in the blood to form carboxyhemoglobin (COHb). Hence, conditions with an increased demand for O ₂ supply can be adversely affected by exposure to CO. Individuals most at risk include fetuses, patients with diseases involving heart and blood vessels, and patients with chronic hypoxemia (O ₂ deficiency) as seen at high altitudes.
SO ₂	SO ₂ is a colorless, extremely irritating gas or liquid. It enters the atmosphere as a pollutant	Coal or oil burning power plants and industries,	A few minutes of exposure to low levels of SO ₂ can result in airway constriction in some

Criteria Pollutant	Description	Sources	Health Effects
	mainly as a result of burning high sulfur-content fuel oils and coal and from chemical processes occurring at chemical plants and refineries. When SO ₂ oxidizes in the atmosphere, it forms SO ₄ . Collectively, these pollutants are referred to as sulfur oxides (SO _X).	refineries, diesel engines	asthmatics, all of whom are sensitive to its effects. In asthmatics, increase in resistance to air flow, as well as reduction in breathing capacity leading to severe breathing difficulties, are observed after acute exposure to SO ₂ . In contrast, healthy individuals do not exhibit similar acute responses even after exposure to higher concentrations of SO ₂ . Animal studies suggest that despite SO ₂ being a respiratory irritant, it does not cause substantial lung injury at ambient concentrations. However, very high levels of exposure can cause lung edema (fluid accumulation), lung tissue damage, and sloughing off of cells lining the respiratory tract. Some population-based studies indicate that the mortality and morbidity effects associated with fine particles show a similar association with ambient SO ₂ levels. In these studies, efforts to separate the effects of SO ₂ from those of fine particles have not been successful. It is not clear whether the two pollutants act synergistically, or one pollutant alone is the predominant factor.
NOx	NO _x consist of nitric oxide (NO), nitrogen dioxide (NO ₂) and nitrous oxide (N ₂ O) and are formed when nitrogen (N ₂) combines with O ₂ . Their lifespan in the atmosphere ranges from	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming	Population-based studies suggest that an increase in acute respiratory illness, including infections and respiratory symptoms in children (not infants), is

Criteria Pollutant	Description	Sources	Health Effects
	one to seven days for nitric oxide and nitrogen dioxide, to 170 years for nitrous oxide. NOx is typically created during combustion processes and are major contributors to smog formation and acid deposition. NO2 is a criteria air pollutant and may result in numerous adverse health effects; it absorbs blue light, resulting in a brownish-red cast to the atmosphere and reduced visibility. Of the seven types of nitrogen oxide compounds, NO2 is the most abundant in the atmosphere. As ambient concentrations of NO2 are related to traffic density, commuters in heavy traffic may be exposed to higher concentrations of NO2 than those indicated by regional monitoring station.	equipment and residential heating.	associated with long-term exposure to NO2 at levels found in homes with gas stoves, which are higher than ambient levels found in Southern California. Increase in resistance to air flow and airway contraction is observed after short-term exposure to NO2 in healthy subjects. Larger decreases in lung functions are observed in individuals with asthma or chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) than in healthy individuals, indicating a greater susceptibility of these sub-groups. In animals, exposure to levels of NO2 higher than ambient concentrations result in increased susceptibility to infections, due to the observed changes in cells involved in maintaining immune functions. The severity of lung tissue damage associated with high levels of O3 exposure increases when animals are exposed to a combination of O3 and NO2.
О3	O ₃ is a highly reactive and unstable gas that is formed when VOCs and NO _x , both byproducts of internal combustion engine exhaust, undergo slow photochemical reactions in the presence of sunlight. O ₃ concentrations are highest during the summer months when direct sunlight, light wind, and warm temperature conditions are favorable to the formation of this pollutant.	Formed when reactive organic gases (ROG) and NOx react in the presence of sunlight. ROG sources include any source that burns fuels, (e.g., gasoline, natural gas, wood, oil) solvents, petroleum	Individuals exercising outdoors, children, and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the most susceptible subgroups for O ₃ effects. Short-term exposure (lasting for a few hours) to O ₃ at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased

Criteria Pollutant	Description	Sources	Health Effects
		processing, storage, and pesticides.	susceptibility to infections, inflammation of the lung tissue, and some immunological changes. Elevated O3 levels are associated with increased school absences. In recent years, a correlation between elevated ambient O3 levels and increases in daily hospital admission rates, as well as mortality, has also been reported. An increased risk for asthma has been found in children who participate in multiple outdoor sports and live in communities with high O3 levels. O3 exposure under exercising conditions is known to increase the severity of the responses described above. Animal studies suggest that exposure to a combination of pollutants that includes O3 may be more toxic than exposure to O3 alone. Although lung volume and resistance changes observed after a single exposure diminish with repeated exposures, biochemical and cellular changes appear to persist, which can lead to subsequent lung structural changes.
Particulate Matter	PM ₁₀ : A major air pollutant consisting of tiny solid or liquid particles of soot, dust, smoke, fumes, and aerosols. Particulate matter pollution is a major cause of reduce visibility (haze) which is caused by the scattering of light and consequently the significant reduction air clarity. The size of the particles (10 microns or smaller, about 0.0004 inches or less) allows them to easily enter the lungs where they may be	Sources of PM ₁₀ include road dust, windblown dust and construction. Also formed from other pollutants (acid rain, NO _X , SO _X , organics). Incomplete combustion of any fuel. PM _{2.5} comes from	A consistent correlation between elevated ambient fine particulate matter (PM ₁₀ and PM _{2.5}) levels and an increase in mortality rates, respiratory infections, number and severity of asthma attacks and the number of hospital admissions has been observed in different parts of the United States and various areas around the world. In

Criteria Pollutant	Description	Sources	Health Effects
	deposited, resulting in adverse health effects. Additionally, it should be noted that PM ₁₀ is considered a criteria air pollutant. PM _{2.5} : A similar air pollutant to PM ₁₀ consisting of tiny solid or liquid particles which are 2.5 microns or smaller (which is often referred to as fine particles). These particles are formed in the atmosphere from primary gaseous emissions that include SO ₄ formed from SO ₂ release from power plants and industrial facilities and nitrates that are formed from NO _x release from power plants, automobiles, and other types of combustion sources. The chemical composition of fine particles highly depends on location, time of year, and weather conditions. PM _{2.5} is a criteria air pollutant.	fuel combustion in motor vehicles, equipment, and industrial sources, residential and agricultural burning. Also formed from reaction of other pollutants (acid rain, NO _x , SO _x , organics).	recent years, some studies have reported an association between long-term exposure to air pollution dominated by fine particles and increased mortality, reduction in lifespan, and an increased mortality from lung cancer. Daily fluctuations in PM _{2.5} concentration levels have also been related to hospital admissions for acute respiratory conditions in children, to school and kindergarten absences, to a decrease in respiratory lung volumes in normal children, and to increased medication use in children and adults with asthma. Recent studies show lung function growth in children is reduced with long term exposure to particulate matter. The elderly, people with preexisting respiratory or cardiovascular disease, and children are more susceptible to the effects of high levels of PM ₁₀ and PM _{2.5} .
VOC	VOCs are hydrocarbon compounds (any compound containing various combinations of hydrogen and carbon atoms) that exist in the ambient air. VOCs contribute to the formation of smog through atmospheric photochemical reactions and/or may be toxic. Compounds of carbon (also known as organic compounds) have different levels of reactivity; that is, they do not react at the same speed or do not form O ₃ to the same extent when exposed to photochemical processes. VOCs often have an odor, and some examples include gasoline, alcohol, and the	Organic chemicals are widely used as ingredients in household products. Paints, varnishes, and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing and hobby products. Fuels are made up of organic chemicals. All of these products can release organic	Breathing VOCs can irritate the eyes, nose, and throat, can cause difficulty breathing and nausea, and can damage the central nervous system as well as other organs. Some VOCs can cause cancer. Not all VOCs have all these health effects, though many have several.

Criteria Pollutant	Description	Sources	Health Effects
	solvents used in paints. Exceptions to the VOC designation include CO, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate. VOCs are a criteria pollutant since they are a precursor to O ₃ , which is a criteria pollutant. The terms VOC and ROG (see below) interchangeably.	compounds while you are using them, and, to some degree, when they are stored.	
ROG	Similar to VOC, ROGs are also precursors in forming O ₃ and consist of compounds containing methane, ethane, propane, butane, and longer chain hydrocarbons, which are typically the result of some type of combustion/decomposition process. Smog is formed when ROG and NO _x react in the presence of sunlight. ROGs are a criteria pollutant since they are a precursor to O ₃ , which is a criteria pollutant. The terms ROG and VOC (see previous) interchangeably.	Sources similar to VOCs.	Health effects similar to VOCs.
Lead (Pb)	Pb is a heavy metal that is highly persistent in the environment and is considered a criteria pollutant. In the past, the primary source of Pb in the air was emissions from vehicles burning leaded gasoline. The major sources of Pb emissions are ore and metals processing, particularly Pb smelters, and piston-engine aircraft operating on leaded aviation gasoline. Other stationary sources include waste incinerators, utilities, and lead-acid battery manufacturers. It should be noted that the Project does not include operational activities such as metal processing or Pb acid battery manufacturing. As such, the Project is not anticipated to	Metal smelters, resource recovery, leaded gasoline, deterioration of Pb paint.	Fetuses, infants, and children are more sensitive than others to the adverse effects of Pb exposure. Exposure to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased Pb levels are associated with increased blood pressure. Pb poisoning can cause anemia, lethargy, seizures, and death; although it appears that there are no direct effects of Pb on the respiratory system. Pb can be

Criteria Pollutant	Description	Sources	Health Effects
	generate a quantifiable amount of Pb emissions.		stored in the bone from early age environmental exposure, and elevated blood Pb levels can occur due to breakdown of bone tissue during pregnancy, hyperthyroidism (increased secretion of hormones from the thyroid gland) and osteoporosis (breakdown of bony tissue). Fetuses and breast-fed babies can be exposed to higher levels of Pb because of previous environmental Pb exposure of their mothers.
Odor	Odor means the perception experienced by a person when one or more chemical substances in the air come into contact with the human olfactory nerves (6).	Odors can come from many sources including animals, human activities, industry, natures, and vehicles.	Offensive odors can potentially affect human health in several ways. First, odorant compounds can irritate the eye, nose, and throat, which can reduce respiratory volume. Second, studies have shown that the VOCs that cause odors can stimulate sensory nerves to cause neurochemical changes that might influence health, for instance, by compromising the immune system. Finally, unpleasant odors can trigger memories or attitudes linked to unpleasant odors, causing cognitive and emotional effects such as stress.

2.5 EXISTING AIR QUALITY

Existing air quality is measured at established SCAQMD air quality monitoring stations. Monitored air quality is evaluated in the context of ambient air quality standards. These standards are the levels of air quality that are considered safe, with an adequate margin of safety, to protect the public health and welfare. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) currently in effect are shown in Table 2-2 (7).

The determination of whether a region's air quality is healthful or unhealthful is determined by comparing contaminant levels in ambient air samples to the state and federal standards. At the time of this AQIA, the most recent state and federal standards were updated by CARB on May ,4 2016 and are presented in Table 2-2. The air quality in a region is considered to be in attainment by the state if the measured ambient air pollutant levels for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, PM₁₀, and PM_{2.5} are not to be exceeded. All others are not to be equaled or exceeded. It should be noted that the three-year period is presented for informational purposes and is not the basis for how the State assigns attainment status. Attainment status for a pollutant means that the SCAQMD meets the standards set by the EPA or the California EPA (CalEPA). Conversely, nonattainment means that an area has monitored air quality that does not meet the NAAQS or CAAQS standards. In order to improve air quality in nonattainment areas, a State Implementation Plan (SIP) is drafted by CARB. The SIP outlines the measures that the state will take to improve air quality. Once nonattainment areas meet the standards and additional redesignation requirements, the EPA will designate the area as a maintenance area (8).

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)

		Ambient A	Air Qualit	y Standard	ds		
Pollutant	Averaging Time	California Standards 1		National Standards ²			
		Concentration ³	Method ⁴	Primary 3,5	Secondary 3,6	Method 7	
Ozone (O ₃) ⁸	1 Hour	0.09 ppm (180 µg/m³)	Ultraviolet Photometry	=	Same as	Ultraviolet Photometry	
	8 Hour	0.070 ppm (137 μg/m³)		0.070 ppm (137 μg/m³)	Primary Standard		
Respirable Particulate Matter (PM10) ⁹	24 Hour	50 μg/m³	Gravimetric or	150 μg/m ³	Same as	Inertial Separation	
	Annual Arithmetic Mean	20 μg/m ³	Beta Attenuation	2 <u>0—</u> 13	Primary Standard	and Gravimetric Analysis	
Fine Particulate	24 Hour	7 <u>-2</u>	_	35 μg/m³	Same as Primary Standard	Inertial Separation and Gravimetric Analysis	
Matter (PM2.5) ⁹	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12.0 μg/m ³	15 μg/m³		
Carbon Monoxide (CO)	1 Hour	20 ppm (23 mg/m ³)		35 ppm (40 mg/m ³)	- STEELS	Non-Dispersive Infrared Photometry (NDIR)	
	8 Hour	9.0 ppm (10 mg/m ³)	Non-Dispersive Infrared Photometry	9 ppm (10 mg/m ³)	=		
	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)	(NDIR)	2 <u>—</u> 12	<u>997</u>		
Nitrogen	1 Hour	0.18 ppm (339 µg/m³)	Gas Phase	100 ppb (188 µg/m³)	-	Gas Phase	
Dioxide (NO ₂) ¹⁰	Annual Arithmetic Mean	0.030 ppm (57 μg/m³)	Chemiluminescence	0.053 ppm (100 μg/m³)	Same as Primary Standard	Chemiluminescence	
Sulfur Dioxide (SO ₂) ¹¹	1 Hour	0.25 ppm (655 µg/m³)	Ultraviolet	75 ppb (196 μg/m³)	_	Ultraviolet Flourescence; Spectrophotometry (Pararosaniline Method)	
	3 Hour	(H		-	0.5 ppm (1300 µg/m³)		
	24 Hour	0.04 ppm (105 µg/m³)	Fluorescence	0.14 ppm (for certain areas) ¹¹	(C)		
	Annual Arithmetic Mean	-		0.030 ppm (for certain areas) ¹¹	_		
Lead ^{12,13}	30 Day Average	1.5 μg/m³		-		8	
	Calendar Quarter	_	Atomic Absorption	1.5 µg/m ³ (for certain areas) ¹²	Same as	High Volume Sampler and Atomic Absorption	
	Rolling 3-Month Average	«—»		0.15 µg/m³	Primary Standard		
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape	No			
Sulfates	24 Hour	25 μg/m³	Ion Chromatography	National Standards			
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m³)	Ultraviolet Fluorescence				
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m³)	Gas Chromatography				

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and
 particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be
 equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the
 California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of
 the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
 - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 µg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

2.6 REGIONAL AIR QUALITY

Air pollution contributes to a wide variety of adverse health effects. The EPA has established NAAQS for six of the most common air pollutants: CO, Pb, O_3 , particulate matter (PM $_{10}$ and PM $_{2.5}$), NO $_2$, and SO $_2$ which are known as criteria pollutants. The SCAQMD monitors levels of various criteria pollutants at 37 permanent monitoring stations and 5 single-pollutant source Pb air monitoring sites throughout the air district (9). On January 5, 2021, CARB posted the 2020 amendments to the state and national area designations. See Table 2-3 for attainment designations for the SCAB (10). Appendix 2.1 provides geographic representation of the state and federal attainment status for applicable criteria pollutants within the SCAB.

TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE SCAB

Criteria Pollutant	State Designation	Federal Designation		
O ₃ – 1-hour standard	Nonattainment			
O ₃ – 8-hour standard	Nonattainment	Nonattainment		
PM ₁₀	Nonattainment	Attainment		
PM _{2.5}	Nonattainment	Nonattainment		
СО	Attainment	Unclassifiable/Attainment		
NO ₂	Attainment	Unclassifiable/Attainment		
SO ₂	Attainment	Unclassifiable/Attainment		
Pb ¹	Attainment	Unclassifiable/Attainment		

Note: See Appendix 2.1 for a detailed map of State/National Area Designations within the SCAB

2.7 LOCAL AIR QUALITY

The SCAQMD has designated general forecast areas and air monitoring areas (referred to as Source Receptor Areas [SRA]) throughout the district in order to provide Southern California residents about the air quality conditions. The Project site is located within SRA 24. Within SRA 24, the Perris Valley monitoring station, located approximately 3.5 miles northwest of the Project site, reports air quality statistics for O₃ and PM₁₀. It should be noted that the Perris Valley monitoring station does not provide data for CO, NO₂, or PM_{2.5}. As such, the next nearest monitoring stations will be utilized. Data for CO and NO₂ was obtained from the Lake Elsinore monitoring station, located in SRA 25, approximately 9.8 miles southwest of the Project site. Data for PM_{2.5} was obtained from the Metropolitan Riverside County 1 monitoring station, located in SRA 23 approximately 21.5 miles northwest of the Project site. It should be noted that data from Lake Elsinore and Metropolitan Riverside County 1 monitoring stations were utilized in lieu of the Perris Valley monitoring station only in instances where data was not available.

The most recent three (3) years of data available is shown on Table 2-4 and identifies the number of days ambient air quality standards were exceeded for the study area, which is considered to

[&]quot;-" = The national 1-hour O₃ standard was revoked effective June 15, 2005.

¹ The Federal nonattainment designation for lead is only applicable towards the Los Angeles County portion of the SCAB.

be representative of the local air quality at the Project site. Data for O_3 , CO, NO_2 , PM_{10} , and $PM_{2.5}$ for 2018 through 2020 was obtained from the SCAQMD Air Quality Data Tables (11). Additionally, data for SO_2 has been omitted as attainment is regularly met in the SCAB and few monitoring stations measure SO_2 concentrations.

TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020

Pollutant	Chandand	Year							
Pollutant	Standard	2018	2019	2020					
O ₃									
Maximum Federal 1-Hour Concentration (ppm)		0.103	0.118	0.125					
Maximum Federal 8-Hour Concentration (ppm)		0.117	0.095	0.106					
Number of Days Exceeding State 1-Hour Standard	> 0.09 ppm	31	26	34					
Number of Days Exceeding State/Federal 8-Hour Standard	> 0.070 ppm	67	64	74					
со									
Maximum Federal 1-Hour Concentration	> 35 ppm	1.1	1.6	0.9					
Maximum Federal 8-Hour Concentration	> 20 ppm	0.8	0.7	0.7					
NO ₂									
Maximum Federal 1-Hour Concentration	> 0.100 ppm	0.041	0.038	0.044					
Annual Federal Standard Design Value		0.009	0.007	0.007					
PM ₁₀									
Maximum Federal 24-Hour Concentration (μg/m³)	> 150 μg/m ³	64	97	77					
Annual Federal Arithmetic Mean (μg/m³)		29.7	25.3	35.9					
Number of Days Exceeding Federal 24-Hour Standard	> 150 μg/m ³	0	0	0					
Number of Days Exceeding State 24-Hour Standard	> 50 μg/m ³	3	4	6					
PM _{2.5}									
Maximum Federal 24-Hour Concentration (μg/m³)	> 35 μg/m ³	50.70	46.70	41.00					
Annual Federal Arithmetic Mean (μg/m³)	> 12 μg/m ³	12.41	11.13	12.63					
Number of Days Exceeding Federal 24-Hour Standard	> 35 μg/m ³	2	4	4					

ppm = Parts Per Million

 $\mu g/m^3 = Microgram per Cubic Meter$

Source: Data for O_3 , CO, NO_2 , PM_{10} , and $PM_{2.5}$ was obtained from SCAQMD Air Quality Data Tables.

2.8 REGULATORY BACKGROUND

2.8.1 FEDERAL REGULATIONS

The EPA is responsible for setting and enforcing the NAAQS for O_3 , CO, NO_X , SO_2 , PM_{10} , and Pb (12). The EPA has jurisdiction over emissions sources that are under the authority of the federal government including aircraft, locomotives, and emissions sources outside state waters (Outer Continental Shelf). The EPA also establishes emission standards for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission requirements of CARB.

The Federal Clean Air Act (CAA) was first enacted in 1955 and has been amended numerous times in subsequent years (1963, 1965, 1967, 1970, 1977, and 1990). The CAA establishes the federal air quality standards, the NAAQS, and specifies future dates for achieving compliance (13). The CAA also mandates that states submit and implement SIPs for local areas not meeting these standards. These plans must include pollution control measures that demonstrate how the standards will be met.

The 1990 amendments to the CAA that identify specific emission reduction goals for areas not meeting the NAAQS require a demonstration of reasonable further progress toward attainment and incorporate additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA most directly applicable to the development of the Project site include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions) (14) (15). Title I provisions were established with the goal of attaining the NAAQS for the following criteria pollutants O₃, NO₂, SO₂, PM₁₀, CO, PM_{2.5}, and Pb. The NAAQS were amended in July 1997 to include an additional standard for O₃ and to adopt a NAAQS for PM_{2.5}. Table 2-3 (previously presented) provides the NAAQS within the SCAB.

Mobile source emissions are regulated in accordance with Title II provisions. These provisions require the use of cleaner burning gasoline and other cleaner burning fuels such as methanol and natural gas. Automobile manufacturers are also required to reduce tailpipe emissions of hydrocarbons and NO_X . NO_X is a collective term that includes all forms of NO_X which are emitted as byproducts of the combustion process.

2.8.2 CALIFORNIA REGULATIONS

CARB

CARB, which became part of CalEPA in 1991, is responsible for ensuring implementation of the California Clean Air Act (AB 2595), responding to the federal CAA, and for regulating emissions from consumer products and motor vehicles. AB 2595 mandates achievement of the maximum degree of emissions reductions possible from vehicular and other mobile sources in order to attain the state ambient air quality standards by the earliest practical date. CARB established the CAAQS for all pollutants for which the federal government has NAAQS and, in addition, establishes standards for SO_4 , visibility, hydrogen sulfide (H_2S), and vinyl chloride (C_2H_3Cl). However, at this time, H_2S and C_2H_3Cl are not measured at any monitoring stations in the SCAB because they are not considered to be a regional air quality problem. Generally, the CAAQS are more stringent than the NAAQS (16) (12).

Local air quality management districts, such as the SCAQMD, regulate air emissions from stationary sources such as commercial and industrial facilities. All air pollution control districts have been formally designated as attainment or non-attainment for each CAAQS.

Serious non-attainment areas are required to prepare Air Quality Management Plans (AQMP) that include specified emission reduction strategies in an effort to meet clean air goals. These plans are required to include:

• Application of Best Available Retrofit Control Technology to existing sources;

- Developing control programs for area sources (e.g., architectural coatings and solvents) and indirect sources (e.g. motor vehicle use generated by residential and commercial development);
- A District permitting system designed to allow no net increase in emissions from any new or modified permitted sources of emissions;
- Implementing available transportation control measures and assuring a substantial reduction in growth rate of vehicle trips and miles traveled;
- Significant use of low emissions vehicles by fleet operators;
- Sufficient control strategies to achieve a 5% or more annual reduction in emissions or 15% or more in a period of three years for ROGs, NO_x, CO and PM₁₀. However, air basins may use alternative emission reduction strategy that achieves a reduction of less than 5% per year under certain circumstances.

TITLE 24 ENERGY EFFICIENCY STANDARDS AND CALIFORNIA GREEN BUILDING STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission.

CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that will be effective on January 1, 2023. The CEC anticipates that the 2022 energy code will provide \$1.5 billion in consumer benefits and reduce GHG emissions by 10 million metric tons (17). The Project would be required to comply with the applicable standards in place at the time plan check submittals are made. These require, among other items (18):

NONRESIDENTIAL MANDATORY MEASURES

- Short-term bicycle parking. If the new project or an additional alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5% of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1.1).
- Long-term bicycle parking. For new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5% of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility (5.106.4.1.2).
- Designated parking for clean air vehicles. In new projects or additions to alterations that add 10 or more vehicular parking spaces, provide designated parking for any combination of low-emitting, fuel-efficient and carpool/van pool vehicles as shown in Table 5.106.5.2 (5.106.5.2).

- EV charging stations. New construction shall facilitate the future installation of EV supply equipment. The compliance requires empty raceways for future conduit and documentation that the electrical system has adequate capacity for the future load. The number of spaces to be provided for is contained in Table 5.106. 5.3.3 (5.106.5.3). Additionally, Table 5.106.5.4.1 specifies requirements for the installation of raceway conduit and panel power requirements for medium- and heavy-duty EV supply equipment for warehouses, grocery stores, and retail stores.
- Outdoor light pollution reduction. Outdoor lighting systems shall be designed to meet the backlight, uplight and glare ratings per Table 5.106.8 (5.106.8).
- Construction waste management. Recycle and/or salvage for reuse a minimum of 65% of the nonhazardous construction and demolition waste in accordance with Section 5.408.1.1. 5.405.1.2, or 5.408.1.3; or meet a local construction and demolition waste management ordinance, whichever is more stringent (5.408.1).
- Excavated soil and land clearing debris. 100% of trees, stumps, rocks and associated vegetation and soils resulting primarily from land clearing shall be reuse or recycled. For a phased project, such material may be stockpiled on site until the storage site is developed (5.408.3).
- Recycling by Occupants. Provide readily accessible areas that serve the entire building and are
 identified for the depositing, storage, and collection of non-hazardous materials for
 recycling, including (at a minimum) paper, corrugated cardboard, glass, plastics, organic
 waste, and metals or meet a lawfully enacted local recycling ordinance, if more restrictive
 (5.410.1).
- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following:
 - Water Closets. The effective flush volume of all water closets shall not exceed
 1.28 gallons per flush (5.303.3.1)
 - Urinals. The effective flush volume of wall-mounted urinals shall not exceed
 0.125 gallons per flush (5.303.3.2.1). The effective flush volume of floor- mounted or other urinals shall not exceed 0.5 gallons per flush (5.303.3.2.2).
 - Showerheads. Single showerheads shall have a minimum flow rate of not more than 1.8 gallons per minute and 80 psi (5.303.3.3.1). When a shower is served by more than one showerhead, the combine flow rate of all showerheads and/or other shower outlets controlled by a single valve shall not exceed 1.8 gallons per minute at 80 psi (5.303.3.3.2).
 - Faucets and fountains. Nonresidential lavatory faucets shall have a maximum flow rate of not more than 0.5 gallons per minute at 60 psi (5.303.3.4.1). Kitchen faucets shall have a maximum flow rate of not more than 1.8 gallons per minute of 60 psi (5.303.3.4.2). Wash fountains shall have a maximum flow rate of not more than 1.8 gallons per minute (5.303.3.4.3). Metering faucets shall not deliver more than 0.20 gallons per cycle (5.303.3.4.4). Metering faucets for wash fountains shall have a maximum flow rate not more than 0.20 gallons per cycle (5.303.3.4.5).
- Outdoor potable water uses in landscaped areas. Nonresidential developments shall comply
 with a local water efficient landscape ordinance or the current California Department of
 Water Resources' Model Water Efficient Landscape Ordinance (MWELO), whichever is more
 stringent (5.304.1).

- Water meters. Separate submeters or metering devices shall be installed for new buildings or additions in excess of 50,000 sf or for excess consumption where any tenant within a new building or within an addition that is project to consume more than 1,000 gallons per day (GPD) (5.303.1.1 and 5.303.1.2).
- Outdoor water uses in rehabilitated landscape projects equal or greater than 2,500 sf. Rehabilitated landscape projects with an aggregate landscape area equal to or greater than 2,500 sf requiring a building or landscape permit (5.304.3).
- Commissioning. For new buildings 10,000 sf and over, building commissioning shall be included in the design and construction processes of the building project to verify that the building systems and components meet the owner's or owner representative's project requirements (5.410.2).

2.8.3 AQMP

Currently, the NAAQS and CAAQS are exceeded in most parts of the SCAB. In response, the SCAQMD has adopted a series of AQMP to meet the state and federal ambient air quality standards (19). AQMPs are updated regularly to ensure an effective reduction in emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy. A detailed discussion on the AQMP and Project consistency with the AQMP is provided in Section 3.10.

This page intentionally left blank

3 PROJECT AIR QUALITY IMPACT

3.1 Introduction

This study quantifies air quality emissions generated by construction and operation of the Project and addresses whether the Project conflicts with implementation of the SCAQMD's AQMP and Lead Agency planning regulations. The analysis of Project-generated air emissions determines whether the Project would result in a cumulatively considerable net increase of any criteria pollutant for which the SCAB is in non-attainment under an applicable NAAQS and CAAQS. Additionally, the Project has been evaluated to determine whether the Project would expose sensitive receptors to substantial pollutant concentrations and the impacts of odors. The significance of these potential impacts is described in the following sections.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the *CEQA Guidelines* (14 CCR §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to air quality if it would (1):

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard.
- Expose sensitive receptors to substantial pollutant concentrations.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

The SCAQMD has also developed regional significance thresholds for other regulated pollutants, as summarized at Table 3-1 (20). The SCAQMD's CEQA Air Quality Significance Thresholds (April 2019) indicate that any projects in the SCAB with daily emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact.

TABLE 3-1: MAXIMUM DAILY REGIONAL EMISSIONS THRESHOLDS

Pollutant	Regional Construction Threshold	Regional Operational Thresholds
NO _X	100 lbs/day	55 lbs/day
VOC	75 lbs/day	55 lbs/day
PM ₁₀	150 lbs/day	150 lbs/day
PM _{2.5}	55 lbs/day	55 lbs/day
SOx	150 lbs/day	150 lbs/day
со	550 lbs/day	550 lbs/day
Pb	3 lbs/day	3 lbs/day

lbs/day = Pounds Per Day

3.3 Models Employed To Analyze Air Quality

3.3.1 CALEEMOD

Land uses such as the Project affect air quality through construction-source and operational-source emissions.

In May 2022, the California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of CalEEMod version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NOx, SOx, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures (21). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality emissions. Output from the model runs for both construction and operational activity are provided in Appendices 3.1 through 3.3.

3.4 CONSTRUCTION EMISSIONS

3.4.1 CONSTRUCTION ACTIVITIES

Construction activities associated with the Project would result in emissions of VOCs, NO_X, SO_X, CO, PM₁₀, and PM_{2.5}. Construction related emissions are expected from the following construction activities:

- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

GRADING ACTIVITIES

Dust is typically a major concern during grading activities. Because such emissions are not amenable to collection and discharge through a controlled source, they are called "fugitive emissions". Fugitive dust emissions rates vary as a function of many parameters (soil silt, soil moisture, wind speed, area disturbed, number of vehicles, depth of disturbance or excavation, etc.). CalEEMod was utilized to calculate fugitive dust emissions resulting from this phase of activity. The site requires 12,100 cubic yards of cut and 22,200 cubic yards of fill. The Project would therefore require 10,100 cubic yards of import.

OFF-SITE UTILITY AND INFRASTRUCTURE IMPROVEMENTS

In addition, to support the Project development, there may be paving for off-site improvements associated with roadway construction and utility installation for the Project. It is expected that the off-site construction activities would not take place at one location for the entire duration of construction. Impacts associated with these activities are not expected to exceed the emissions identified for Project-related construction activities since the off-site construction areas would

have physical constraints on the amount of daily activity that could occur. The physical constraints would limit the amount of construction equipment that could be used, and any off-site and utility infrastructure construction would not use equipment totals that would exceed the equipment totals on Table 3-5. As such, no impacts beyond what has already been identified in this report are expected to occur.

ON-ROAD TRIPS

Construction generates on-road vehicle emissions from vehicle usage for workers, vendors, and haul trucks commuting to and from the site. The number of worker, vendor, and hauling trips are presented below in Table 3-2. Worker trips are based on CalEEMod defaults. It should be noted that for vendor trips, specifically, CalEEMod only assigns vendor trips to the Building Construction phase. Vendor trips would occur during all phases of construction. As such, the CalEEMod defaults for vendor trips have been adjusted based on a ratio of the total vendor trips to the number of days of each subphase of activity.

Worker Trips Vendor Trips Hauling Trips Construction Activity Per Day Per Day Per Day Site Preparation 18 3 0 Grading 20 7 42 **Building Construction** 117 37 0 15 0 **Paving** 23 0 0 **Architectural Coating**

TABLE 3-2: CONSTRUCTION TRIP ASSUMPTIONS

3.4.2 Construction Duration

For purposes of analysis, construction of Project is expected to commence in July 2023 and would last through September 2024. The construction schedule utilized in the analysis, shown in Table 3-3, represents a "worst-case" analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent². The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (1).

3.4.3 Construction Equipment

Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 3-4 will operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed pursuant to the code.

² As shown in the CalEEMod User's Guide Version 2022.1, Section 4.3 "Off-Road Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

TABLE 3-3: CONSTRUCTION DURATION

Construction Activity	Start Date	End Date	Working Days
Site Preparation	10/03/2023	10/16/2023	10
Grading	10/17/2023	11/27/2023	30
Building Construction	11/28/2023	08/05/2024	180
Paving	07/09/2024	08/05/2024	20
Architectural Coating	06/11/2024	08/05/2024	40

TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Construction Activity	Equipment ¹	Amount	Hours Per Day
C'. D	Rubber Tired Dozers	3	8
Site Preparation	Crawler Tractors	4	8
	Graders	1	8
	Excavators	2	8
Grading	Scrapers	2	8
	Rubber Tired Dozers	1	8
	Crawler Tractors	2	8
	Forklifts	3	8
	Generator Sets	1	8
Building Construction	Cranes	1	8
	Welders	1	8
	Crawler Tractors	3	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

¹ In order to account for fugitive dust emissions, Crawler Tractors were used in lieu of Tractors/Loaders/Backhoes during the site preparation and grading phases of Project construction.

3.4.4 Construction Emissions Summary

IMPACTS WITHOUT MITIGATION

The estimated maximum daily construction emissions without mitigation are summarized on Table 3-5. Detailed construction model outputs are presented in Appendix 3.1. Under the assumed scenarios, emissions resulting from the Project construction will not exceed the thresholds established by the SCAQMD for emissions of any criteria pollutant.

TABLE 3-5: OVERALL CONSTRUCTION EMISSIONS SUMMARY

Very	Emissions (lbs/day)					
Year	voc	NOx	со	SOx	PM ₁₀	PM _{2.5}
Summer						
2023	n/a	n/a	n/a	n/a	n/a	n/a
2024	39.20	28.20	40.90	0.05	3.82	1.92
		Winter				
2023	4.99	47.20	39.30	0.08	8.46	5.08
2024	2.53	19.10	23.80	0.04	2.89	1.41
Maximum Daily Emissions	39.20	47.20	40.90	0.08	8.46	5.08
SCAQMD Regional Threshold	75	100	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

Source: CalEEMod construction-source (unmitigated) emissions are presented in Appendix 3.1.

3.5 OPERATIONAL EMISSIONS

Operational activities associated with the Project would result in emissions of VOCs, NO_X , SO_X , CO, PM_{10} , and $PM_{2.5}$. Operational emissions are expected from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions
- On-Site Cargo Handling Equipment Emissions
- Stationary Source Emissions

3.5.1 AREA SOURCE EMISSIONS

ARCHITECTURAL COATINGS

Over a period of time the buildings that are part of this Project would require maintenance and would therefore produce emissions resulting from the evaporation of solvents contained in paints, varnishes, primers, and other surface coatings. The emissions associated with architectural coatings were calculated using CalEEMod.

CONSUMER PRODUCTS

Consumer products include, but are not limited to detergents, cleaning compounds, polishes, personal care products, and lawn and garden products. Many of these products contain organic compounds which when released in the atmosphere can react to form ozone and other photochemically reactive pollutants. The emissions associated with use of consumer products were calculated based on defaults provided within CalEEMod.

LANDSCAPE MAINTENANCE EQUIPMENT

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shedders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. It should be noted that as October 9, 2021, Governor Gavin Newsom signed AB 1346. The bill aims to ban the sale of new gasoline-powered equipment under 25 gross horsepower (known as small off-road engines [SOREs]) by 2024. For purposes of analysis, the emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod.

3.5.2 ENERGY SOURCE EMISSIONS

COMBUSTION EMISSIONS ASSOCIATED WITH ELECTRICITY

Criteria pollutant emissions are emitted through the generation of electricity. However, because electrical generating facilities for the Project area are located either outside the region (state) or offset through the use of pollution credits (RECLAIM) for generation within the SCAB, criteria pollutant emissions from offsite generation of electricity are excluded from the evaluation of significance. Based on information provided by the Project applicant, the site is also not expected to utilize natural gas for the building envelope, and therefore would not generate any emissions from direct energy consumption.

3.5.3 MOBILE SOURCE EMISSIONS

The Project related operational air quality emissions derive primarily from vehicle trips generated by the Project, including employee trips to and from the site and truck trips associated with the proposed uses. Trip characteristics available from the *Mapes & Sherman Commerce Center (DEV2022-003) Traffic Analysis* were utilized in this analysis (22).

APPROACH FOR ANALYSIS OF THE PROJECT

In order to determine emissions from passenger car vehicles, CalEEMod defaults for trip length and trip purpose were utilized. Default vehicle trip lengths for primary trips will be populated using data from the local metropolitan planning organizations/Regional Transportation Planning Agencies (MPO/RTPA). Trip type percentages and trip lengths provided by MPO/RTPAs truncate data at their demonstrative borders. This analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1³ & LDT2⁴), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. In order to account for emissions generated by passenger cars, the fleet mix in Table 3-6 was utilized.

_

³ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

⁴ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

TABLE 3-6: PASSENGER CAR FLEET MIX

Londillo	% Vehicle Type					
Land Use	LDA	LDT1	LDT2	MDV	MCY	
High-Cube Fulfillment	55.76%	4.52%	22.17%	15.30%	2.25%	

Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, and MDV vehicle types.

To determine emissions from trucks for the proposed industrial uses, the analysis incorporated the SCAQMD recommended truck trip length of 15.3 miles for 2-axle (LHDT1, LHDT2), 14.2 miles for 3-axle (MHDT) trucks, and 40 miles for 4+-axle (HHDT) trucks and weighting the average trip lengths using traffic trip percentages. The trip length function for the industrial uses have been revised to 34.44 miles for the high-cube fulfillment center use, respectively, an assumption of 100% primary trips for the proposed industrial land uses. Trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided by the SCAQMD recommended truck mix, by axle type. Heavy trucks are broken down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT1⁵ & LHDT2 ⁶)/2-axle, Medium-Heavy-Duty Trucks (MHDT)/3-axle, and Heavy-Heavy-Duty Trucks (HHDT)/4+-axle. To account for emissions generated by trucks, the fleet mix in Table 3-7 was utilized.

TABLE 3-7: TRUCK FLEET MIX

Lord Hea	% Vehicle Type				
Land Use	LHDT1	LHDT2	MHDT	HHDT	
High-Cube Fulfillment	8.75%	2.47%	11.21%	77.57%	

Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT1, LHDT2, MHDT, and HHDT) relative to the total number of truck trips.

FUGITIVE DUST RELATED TO VEHICULAR TRAVEL

Vehicles traveling on paved roads would be a source of fugitive emissions due to the generation of road dust inclusive of brake and tire wear particulates. The emissions estimate for travel on paved roads were calculated using CalEEMod.

3.5.4 On-Site Cargo Handling Equipment Source Emissions

It is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this Project, on-site modeled operational equipment includes up to three (3) 175 horsepower (hp), natural gas-powered cargo handling equipment – port tractor operating 4 hours a day⁷ for 365 days of the year.

OURBAN

14804-03 AQ Report

⁵ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs.

⁶ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs.

⁷ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo

3.5.5 OPERATIONAL EMISSIONS SUMMARY

As previously stated, CalEEMod utilizes summer and winter EMFAC2021 emission factors in order to derive vehicle emissions associated with Project operational activities, which vary by season. The estimated operational-source emissions are summarized on Table 3-8. Detailed operation model outputs for the Project are presented in Appendix 3.2. As shown on Table 3-8, the Project's daily regional emissions from on-going operations would not exceed the thresholds of significance for emissions of any criteria pollutant.

TABLE 3-8: SUMMARY OF PEAK OPERATIONAL EMISSIONS

Commo			Emissions	(lbs/day)			
Source	voc	NOx	со	SOx	PM ₁₀	PM _{2.5}	
	Summer						
Mobile Source	2.27	9.23	31.70	0.13	3.41	0.76	
Area Source	8.68	0.10	12.10	0.00	0.02	0.02	
On-Site Equipment Source	0.12	0.38	16.44	0.00	0.03	0.03	
Project Maximum Daily Emissions	11.07	9.71	60.24	0.13	3.46	0.81	
SCAQMD Regional Threshold	55	55	550	150	150	55	
Threshold Exceeded?	NO	NO	NO	NO	NO	NO	
	•	Winter					
Mobile Source	2.16	9.74	26.00	0.12	3.41	0.76	
Area Source	6.70	0.00	0.00	0.00	0.00	0.00	
On-Site Equipment Source	0.12	0.38	16.44	0.00	0.03	0.03	
Project Maximum Daily Emissions	8.98	10.12	42.44	0.12	3.44	0.79	
SCAQMD Regional Threshold	55	55	550	150	150	55	
Threshold Exceeded?	NO	NO	NO	NO	NO	NO	

Source: CalEEMod operational-source emissions are presented in Appendix 3.2.

3.6 LOCALIZED SIGNIFICANCE

BACKGROUND ON LST DEVELOPMENT

The analysis makes use of methodology included in the SCAQMD Final Localized Significance Threshold Methodology (LST Methodology). The SCAQMD has established that impacts to air quality are significant if there is a potential to contribute or cause localized exceedances of the federal and/or state ambient air quality standards (NAAQS/CAAQS). Collectively, these are referred to as Localized Significance Thresholds (LSTs).

Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

14804-03 AQ Report

The SCAQMD established LSTs in response to the SCAQMD Governing Board's Environmental Justice Initiative I-4⁸. LSTs represent the maximum emissions from a project that would not cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard at the nearest residence or sensitive receptor. The SCAQMD states that lead agencies can use the LSTs as another indicator of significance in its air quality impact analyses.

LSTs were developed in response to environmental justice and health concerns raised by the public regarding exposure of individuals to criteria pollutants in local communities. To address the issue of localized significance, the SCAQMD adopted LSTs that show whether a project would cause or contribute to localized air quality impacts and thereby cause or contribute to potential localized adverse health effects. The analysis makes use of methodology included in the *LST Methodology* (23).

APPLICABILITY OF LSTS FOR THE PROJECT

For this Project, the appropriate SRA for the LST analysis is the SCAQMD Perris Valley (SRA 24). LSTs apply to CO, NO₂, PM₁₀, and PM_{2.5}. The SCAQMD produced look-up tables for projects less than or equal to 5 acres in size.

In order to determine the appropriate methodology for determining localized impacts that could occur as a result of Project-related construction, the following process is undertaken:

- Identify the maximum daily on-site emissions that would occur during construction activity:
 - The maximum daily on-site emissions could be based on information provided by the Project Applicant; or
 - The SCAQMD's Fact Sheet for Applying CalEEMod to Localized Significance Thresholds and CalEEMod User's Guide Appendix A: Calculation Details for CalEEMod can be used to determine the maximum site acreage that is actively disturbed based on the construction equipment fleet and equipment hours as estimated in CalEEMod (24) (25).
- If the total acreage disturbed is less than or equal to 5 acres per day, then the SCAQMD's screening look-up tables are utilized to determine if a Project has the potential to result in a significant impact. The look-up tables establish a maximum daily emissions threshold in lbs/day that can be compared to CalEEMod outputs.
- If the total acreage disturbed is greater than 5 acres per day, then LST impacts may still be conservatively evaluated using the LST look-up tables for a 5-acre disturbance area. Use of the 5-acre disturbance area thresholds can be used to show that even if the daily emissions from all construction activity were emitted within a 5-acre area, and therefore concentrated over a smaller area which would result in greater site adjacent concentrations, the impacts would still be less than significant if the applicable 5-acre thresholds are utilized.
- The LST Methodology presents mass emission rates for each SRA, project sizes of 1, 2, and 5 acres, and nearest receptor distances of 25, 50, 100, 200, and 500 meters. For project sizes between the

⁸ The purpose of SCAQMD's Environmental Justice program is to ensure that everyone has the right to equal protection from air pollution and fair access to the decision-making process that works to improve the quality of air within their communities. Further, the SCAQMD defines Environmental Justice as "...equitable environmental policymaking and enforcement to protect the health of all residents, regardless of age, culture, ethnicity, gender, race, socioeconomic status, or geographic location, from the health effects of air pollution."

14804-03 AQ Report

values given, or with receptors at distances between the given receptors, the methodology uses linear interpolation to determine the thresholds.

EMISSIONS CONSIDERED

Based on SCAQMD's LST Methodology, emissions for concern during construction activities are on-site NO_X, CO, PM_{2.5}, and PM₁₀. The LST Methodology clearly states that "off-site mobile emissions from the Project should not be included in the emissions compared to LSTs (26)." As such, for purposes of the construction LST analysis, only emissions included in the CalEEMod "on-site" emissions outputs were considered.

MAXIMUM DAILY DISTURBED-ACREAGE

The "acres disturbed" for analytical purposes are based on specific equipment type for each subcategory of construction activity and the estimated maximum area a given piece of equipment can pass over in an 8-hour workday (as shown on Table 3-9). The equipment-specific grading rates are summarized in the SCAQMD's Fact Sheet for Applying CalEEMod to Localized Significance Thresholds and CalEEMod User's Guide Appendix C: Emission Calculation Details for CalEEMod (24) (27). It The disturbed area per day is representative of a piece of equipment making multiple passes over the same land area. In other words, one Rubber Tired Dozer can make multiple passes over the same land area totaling 0.5 acres in a given 8-hour day. Based on Table 3-9, the Project's construction activities could actively disturb approximately 3.5 acres per day during site preparation and 4.0 acres per day during grading activities. For purposes of analysis and in order to use linear regression, this analysis conservatively assumes that 5 acres can be disturbed during grading activities.

TABLE 3-9: MAXIMUM DAILY DISTURBED-ACREAGE

Construction Activity	Equipment Type	Equipment Quantity	Acres graded per 8-hour day	Operating Hours per Day	Acres graded per day	
Site Droparation	Crawler Tractors	4	0.5	8	2.0	
Site Preparation	Rubber Tired Dozers	3	0.5	8	1.5	
Total acres disturbed	Total acres disturbed per day during Site Preparation					
	Crawler Tractors	2	0.5	8	1.0	
Cunding	Graders	1	0.5	8	0.5	
Grading	Rubber Tired Dozers	1	0.5	8	0.5	
	Scrapers	2	1	8	2.0	
Total acres disturbed	4.0					

Source: Maximum daily disturbed acreage based on equipment list presented in Appendix 4.1.

RECEPTORS

As previously stated, LSTs represent the maximum emissions from a project that would not cause or contribute to an exceedance of the most stringent applicable NAAQS and CAAQS at the nearest residence or sensitive receptor. Receptor locations are off-site locations where individuals may be exposed to emissions from Project activities.

Some people are especially sensitive to air pollution and are given special consideration when evaluating air quality impacts from projects. These groups of people include children, the elderly, and individuals with pre-existing respiratory or cardiovascular illness. Structures that house these persons or places where they gather are defined as "sensitive receptors". These structures typically include uses such as residences, hotels, and hospitals where an individual can remain for 24 hours. Consistent with the LST Methodology, the nearest land use where an individual could remain for 24 hours to the Project site has been used to determine construction and operational air quality impacts for emissions of PM₁₀ and PM_{2.5}, since PM₁₀ and PM_{2.5} thresholds are based on a 24-hour averaging time.

LSTs apply, even for non-sensitive land uses, consistent with *LST Methodology* and SCAQMD guidance. Per the *LST Methodology*, commercial and industrial facilities are not included in the definition of sensitive receptor because employees and patrons do not typically remain onsite for a full 24 hours but are typically onsite for 8 hours or less. However, *LST Methodology* explicitly states that "*LSTs based on shorter averaging periods, such as the NO2 and CO LSTs, could also be applied to receptors such as industrial or commercial facilities since it is reasonable to assume that a worker at these sites could be present for periods of one to eight hours (26)." Therefore, any adjacent land use where an individual could remain for 1 or 8-hours, that is located at a closer distance to the Project site than the receptor used for PM₁₀ and PM_{2.5} analysis, must be considered to determine construction and operational LST air impacts for emissions of NO₂ and CO since these pollutants have an averaging time of 1 and 8-hours.*

PROJECT-RELATED RECEPTORS

Receptors in the Project study area are described below and shown on Exhibit 4-A. Localized air quality impacts were evaluated at sensitive receptor land uses nearest the Project site. All distances are measured from the Project site boundary to the outdoor living areas (e.g., backyards) or at the building façade, whichever is closer to the Project site.

- R1: Location R1 represents Big League Dreams Perris sports complex located at 2155 Trumble Road, approximately 125 feet north of the Project site.
- R2: Location R2 represents an existing residence at 27570 Mapes Road, approximately 162 feet northeast of the Project site. R2 is placed in the private outdoor living areas (backyard) facing the Project site.
- R3: Location R3 represents the existing residence at 25100 Sherman Road, approximately 126 feet east of the Project site. Because there are no private outdoor living areas (backyards) facing the Project site, R4 is placed at the building façade.

- R4: Location R4 represents the existing residence at 25210 Sherman Road, approximately 284 feet southeast of the Project site. Because there are no private outdoor living areas (backyards) facing the Project site, R4 is placed at the building façade.
- R5: Location R5 represents the Southern California Gas Company located at 25200 Trumble Road, approximately 44 feet southwest of the Project site. R5 is placed in the common outdoor area facing the Project site.
- R6: Location R6 represents the existing residence at 25146 Sherman Road, approximately 126 feet east of the Project site. Because there are no private outdoor living areas (backyards) facing the Project site, R6 is placed at the building façade.
- R7: Location R7 represents Sturgeon Electric, located at 25110 Trumble Road, approximately 139 feet west of the Project site.

The SCAQMD recommends that the nearest sensitive receptor be considered when determining the Project's potential to cause an individual a cumulatively significant impact. The nearest land use where an individual could remain for 24 hours to the Project site has been used to determine localized construction and operational air quality impacts for emissions of PM₁₀ and PM_{2.5} (since PM₁₀ and PM_{2.5} thresholds are based on a 24-hour averaging time). The nearest receptor used for evaluation of localized impacts of PM₁₀ and PM_{2.5} is the existing residence at 25100 Sherman Road, approximately 126 feet (38 meters) east of the Project site, represented by R3. For purposes of analysis, a 38-meter distance will be used for evaluation of localized of PM₁₀ and PM_{2.5} impacts.

As previously stated, and consistent with *LST Methodology*, the nearest commercial/industrial use to the Project site is used to determine construction and operational LST air impacts for emissions of NO_X and CO as the averaging periods for these pollutants are shorter (8 hours or less) and it is reasonable to assumed that an individual could be present at these sites for periods of one to 8 hours. The nearest receptor used for evaluation of localized impacts of NO_X and CO is the Southern California Gas Company, represented by R5, approximately 44 feet (13 meters) southwest of the Project site. It should be noted that the *LST Methodology* explicitly states that "It is possible that a project may have receptors closer than 25 meters. Projects with boundaries located closer than 25 meters to the nearest receptor should use the *LSTs* for receptors located at 25 meters (28)." As such a 25-meter receptor distance will be used for evaluation of localized NO_X and CO.

3.7 CONSTRUCTION-SOURCE EMISSIONS LST ANALYSIS

3.7.1 LOCALIZED THRESHOLDS FOR CONSTRUCTION ACTIVITY

Since the total acreage disturbed is less than five acres per day for site preparation grading activities, the SCAQMD's screening look-up tables are utilized in determining impacts. Consistent with SCAQMD guidance, the thresholds presented in Table 3-10 were calculated by interpolating the threshold values for the Project's disturbed acreage.

TABLE 3-10: MAXIMUM DAILY LOCALIZED CONSTRUCTION EMISSIONS THRESHOLDS

Comptunition Astinity	Construction Localized Thresholds					
Construction Activity	NOx	со	PM ₁₀	PM _{2.5}		
Site Preparation	220 lbs/day	1,230 lbs/day	20 lbs/day	7 lbs/day		
Grading	237 lbs/day	1,346 lbs/day	23 lbs/day	8 lbs/day		

Source: Localized Thresholds presented in this table are based on the SCAQMD Final LST Methodology, July 2008

PR1 MAPES RD Site 126' RB

EXHIBIT 3-A: RECEPTOR LOCATIONS

LEGEND:

Receptor Locations

Distance from receptor to Project site boundary (in feet)

3.7.2 CONSTRUCTION-SOURCE LOCALIZED EMISSIONS

IMPACTS WITHOUT MITIGATION

Table 3-11 identifies the localized impacts at the nearest receptor location in the vicinity of the Project. Without mitigation, localized construction emissions would not exceed the applicable SCAQMD LSTs for emissions of any criterial pollutant. Outputs from the model runs for unmitigated construction LSTs are provided in Appendix 3.1.

TABLE 3-11: LOCALIZED CONSTRUCTION-SOURCE EMISSIONS – WITHOUT MITIGATION

Construction	Year	Scenario		Emissions	ns (lbs/day)		
Activity	Tear	Scenario	NOx	СО	PM ₁₀	PM _{2.5}	
		Summer	n/a	n/a	n/a	n/a	
		Winter	47.00	38.00	8.19	5.02	
Site Preparation	2023	Maximum Daily Emissions	47.00	38.00	8.19	5.02	
reparation	rreparation	SCAQMD Localized Threshold	220	1,230	20	7	
		Threshold Exceeded?	NO	NO	NO	NO	
		Summer	n/a	n/a	n/a	n/a	
		Winter	40.90	32.70	4.63	2.78	
Grading	Grading 2023	Maximum Daily Emissions	40.90	32.70	4.63	2.78	
	SCAQMD Localized Threshold	237	1,346	23	8		
		Threshold Exceeded?	NO	NO	NO	NO	

Source: CalEEMod unmitigated localized construction-source emissions are presented in Appendix 3.1.

3.8 OPERATIONAL-SOURCE EMISSIONS LST ANALYSIS

As previously stated, the Project is located on an approximately 13.33-acre parcel. As noted previously, the LST Methodology provides look-up tables for sites with an area with daily disturbance of 5 acres or less. For projects that exceed 5 acres, the 5-acre LST look-up tables can be used as a screening tool to determine whether pollutants require additional detailed analysis. This approach is conservative as it assumes that all on-site emissions associated with the Project would occur within a concentrated 5-acre area. This screening method would therefore overpredict potential localized impacts, because by assuming that on-site operational activities are occurring over a smaller area, the resulting concentrations of air pollutants are more highly concentrated once they reach the smaller site boundary than they would be for activities if they were spread out over a larger surface area. On a larger site, the same amount of air pollutants generated would disperse over a larger surface area and would result in a lower concentration once emissions reach the project-site boundary. As such, LSTs for a 5-acre site during operations are used as a screening tool to determine if further detailed analysis is required. The LST analysis generally includes on-site sources (area, energy, mobile, on-site cargo handling equipment, and stationary equipment – are previously discussed in Section 4.5 of this report). However, it should be noted that the CalEEMod outputs do not separate on-site and off-site emissions from mobile

sources. As such, in an effort to establish a maximum potential impact scenario for analytic purposes, the emissions shown on Table 3-13 represent all on-site Project-related stationary (area) sources and Project-related mobile sources. It should be noted that the longest on-site distance is roughly 0.5 mile for both trucks and passenger cars. Modeling based on these assumptions demonstrates that even within broad encompassing parameters, Project operational-source emissions would not exceed applicable LSTs.

3.8.1 LOCALIZED THRESHOLDS FOR OPERATIONAL ACTIVITY

Consistent with SCAQMD guidance, the thresholds presented in Table 3-12 were calculated by interpolating the threshold values for the Project's acreage.

TABLE 3-12: MAXIMUM DAILY LOCALIZED OPERATIONAL EMISSIONS THRESHOLDS

Operational Localized Thresholds					
NO _X CO PM ₁₀ PM _{2.5}					
270 lbs/day	1,577 lbs/day	7 lbs/day	3 lbs/day		

Source: Localized Thresholds presented in this table are based on the SCAQMD Final LST Methodology, July 2008

3.8.2 OPERATIONAL-SOURCE LOCALIZED EMISSIONS

IMPACTS WITHOUT MITIGATION

As shown on Table 3-13 operational emissions would not exceed the LST thresholds for the nearest sensitive receptor. Therefore, the Project would have a less than significant localized impact during operational activity.

TABLE 3-13: LOCALIZED SIGNIFICANCE SUMMARY OF OPERATIONS

Scenario	Emissions (lbs/day)				
Scenario	NOx	со	PM ₁₀	PM _{2.5}	
Summer	2.18	33.18	0.14	0.07	
Winter	2.17	21.47	0.13	0.05	
Maximum Daily Emissions	2.18	33.18	0.14	0.07	
SCAQMD Localized Threshold	270	1,577	7	3	
Threshold Exceeded?	NO	NO	NO	NO	

 $Source: Cal EEMod\ localized\ operational - source\ emissions\ are\ presented\ in\ Appendix\ 3.3.$

3.9 CO "HOT SPOT" ANALYSIS

As discussed below, the Project would not result in potentially adverse CO concentrations or "hot spots." Further, detailed modeling of Project-specific CO "hot spots" is not needed to reach this conclusion. An adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 ppm or the eight-hour standard of 9 ppm were to occur.

It has long been recognized that CO hotspots are caused by vehicular emissions, primarily when idling at congested intersections. In response, vehicle emissions standards have become increasingly stringent in the last twenty years. Currently, the allowable CO emissions standard in California is a maximum of 3.4 grams/mile for passenger cars (there are requirements for certain vehicles that are more stringent). With the turnover of older vehicles, introduction of cleaner fuels, and implementation of increasingly sophisticated and efficient emissions control technologies, CO concentration in the SCAB is now designated as attainment. To establish a more accurate record of baseline CO concentrations affecting the SCAB, a CO "hot spot" analysis was conducted in 2003 for four busy intersections in Los Angeles at the peak morning and afternoon time periods. This "hot spot" analysis did not predict any violation of CO standards, as shown on Table 3-14.

TABLE 3-14: CO MODEL RESULTS

Intersection Location	CO Concentrations (ppm)				
intersection Location	Morning 1-hour	Afternoon 1-hour	8-hour		
Wilshire Boulevard/Veteran Avenue	4.6	3.5	3.7		
Sunset Boulevard/Highland Avenue	4	4.5	3.5		
La Cienega Boulevard/Century Boulevard	3.7	3.1	5.2		
Long Beach Boulevard/Imperial Highway	3	3.1	8.4		

Source: 2003 AQMP, Appendix V: Modeling and Attainment Demonstrations

Notes: Federal 1-hour standard is 35 ppm and the deferral 8-hour standard is 9.0 ppm.

Based on the SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan), peak carbon monoxide concentrations in the SCAB were a result of unusual meteorological and topographical conditions and not a result of traffic volumes and congestion at a particular intersection. As evidence of this, for example, 8.4 ppm 8-hr CO concentration measured at the Long Beach Blvd. and Imperial Hwy. intersection (highest CO generating intersection within the "hot spot" analysis), only 0.7 ppm was attributable to the traffic volumes and congestion at this intersection; the remaining 7.7 ppm were due to the ambient air measurements at the time the 2003 AQMP was prepared (29). In contrast, an adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 parts per million (ppm) or the eight-hour standard of 9 ppm were to occur.

The ambient 1-hr and 8-hr CO concentration within the Project study area is estimated to be 0.9 ppm and 0.7 ppm, respectively (data from Perris Valley monitoring station for 2020). Therefore, even if the traffic volumes for the proposed Project were double or even triple of the traffic

volumes generated at the Long Beach Blvd. and Imperial Hwy. intersection, coupled with the ongoing improvements in ambient air quality, the Project would not be capable of resulting in a CO "hot spot" at any study area intersections.

Similar considerations are also employed by other Air Districts when evaluating potential CO concentration impacts. More specifically, the Bay Area Air Quality Management District (BAAQMD) concludes that under existing and future vehicle emission rates, a given project would have to increase traffic volumes at a single intersection by more than 44,000 vehicles per hour (vph)—or 24,000 vph where vertical and/or horizontal air does not mix—in order to generate a significant CO impact (30). Traffic volumes generating the CO concentrations for the "hot spot" analysis is shown on Table 3-15. The busiest intersection evaluated was that at Wilshire Boulevard and Veteran Avenue, which has a daily traffic volume of approximately 100,000 vph and AM/PM traffic volumes of 8,062 vph and 7,719 vph respectively (29). The 2003 AQMP estimated that the 1-hour concentration for this intersection was 4.6 ppm; this indicates that, should the daily traffic volume increase four times to 400,000 vehicles per day, CO concentrations (4.6 ppm x 4= 18.4 ppm) would still not likely exceed the most stringent 1-hour CO standard (20.0 ppm)⁹.

TABLE 3-15: TRAFFIC VOLUMES

Intersection Location	Peak Traffic Volumes (vph)				
	Eastbound (AM/PM)	Westbound (AM/PM)	Southbound (AM/PM)	Northbound (AM/PM)	Total (AM/PM)
Wilshire Boulevard/Veteran Avenue	4,954/2,069	1,830/3,317	721/1,400	560/933	8,062/7,719
Sunset Boulevard/Highland Avenue	1,417/1,764	1,342/1,540	2,304/1,832	1,551/2,238	6,614/5,374
La Cienega Boulevard/Century Boulevard	2,540/2,243	1,890/2,728	1,384/2,029	821/1,674	6,634/8,674
Long Beach Boulevard/Imperial Highway	1,217/2,020	1,760/1,400	479/944	756/1,150	4,212/5,514

Source: 2003 AQMP

As summarized on Table 3-16 below, the intersection of Trumble Road and SR-74 would have the highest AM and PM traffic volumes of 2,871 vph and 2,921 vph, respectively. As such, total traffic volumes at the intersections considered are less than the traffic volumes identified in the 2003 AQMP. As such, the Project considered herein along with background and cumulative development would not produce the volume of traffic required to generate a CO "hot spot" either in the context of the 2003 Los Angeles hot spot study or based on representative BAAQMD CO threshold considerations. Therefore, CO "hot spots" are not an environmental impact of concern for the Project. Localized air quality impacts related to mobile-source emissions would therefore be less than significant.

 $^{^{9}}$ Based on the ratio of the CO standard (20.0 ppm) and the modeled value (4.6 ppm)

TABLE 3-16: PEAK HOUR TRAFFIC VOLUMES

	Peak Traffic Volumes (vph)					
Intersection Location	Northbound (AM/PM)	Southbound (AM/PM)	Eastbound (AM/PM)	Westbound (AM/PM)	Total (AM/PM)	
I-215 Southbound Ramps/Case Road	958/794	633/907	389/426	0/0	1,980/2,127	
I-215 Northbound Ramps/SR-74	0/0	368/401	867/1,120	1,595/1,327	2,831/2,847	
Trumble Road/SR-74	0/0	794/656	1,056/1,345	1,020/919	2,871/2,921	
Sherman Road/SR-74	0/0	125/95	673/1,019	853/765	1,650/1,879	

Source: Mapes & Sherman Commerce Center (DEV2022-003) Traffic Analysis (Urban Crossroads, Inc., 2022)

3.10 AQMP

The Project site is located within the SCAB, which is characterized by poor air quality. The SCAQMD has jurisdiction over an approximately 10,743 square-mile area consisting of the four-county Basin and the Los Angeles County and Riverside County portions of what use to be referred to as the Southeast Desert Air Basin. In these areas, the SCAQMD is principally responsible for air pollution control, and works directly with the SCAG, county transportation commissions, local governments, as well as state and federal agencies to reduce emissions from stationary, mobile, and indirect sources to meet state and federal ambient air quality standards.

Currently, these state and federal air quality standards are exceeded in most parts of the SCAB. In response, the SCAQMD has adopted a series of AQMPs to meet the state and federal ambient air quality standards. AQMPs are updated regularly in order to more effectively reduce emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy.

In March 2017, the SCAQMD released the *Final 2016 AQMP* (2016 AQMP). The 2016 AQMP continues to evaluate current integrated strategies and control measures to meet the NAAQS, as well as explore new and innovative methods to reach its goals. Some of these approaches include utilizing incentive programs, recognizing existing co-benefit programs from other sectors, and developing a strategy with fair-share reductions at the federal, state, and local levels (31). Similar to the 2012 AQMP, the 2016 AQMP incorporates scientific and technological information and planning assumptions, including the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (2016-2040 RTP/SCS), a planning document that supports the integration of land use and transportation to help the region meet the federal CAA requirements (19). The Project's consistency with the AQMP will be determined using the 2016 AQMP as discussed below.

The 2022 AQMP is currently being developed by SCAQMD to address the EPA's strengthened ozone standard. Development of the 2022 AQMP is in its early stages and no formal timeline for completion and adoption is currently known.

Criteria for determining consistency with the AQMP are defined in Chapter 12, Section 12.2, and Section 12.3 of the 1993 CEQA Handbook (32). These indicators are discussed below:

3.10.1 Consistency Criterion No. 1

The proposed Project will not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP.

The violations that Consistency Criterion No. 1 refer to are the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if regional or localized significance thresholds were exceeded.

Construction Impacts - Consistency Criterion 1

Consistency Criterion No. 1 refers to violations of the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if localized or regional significance thresholds were exceeded. As evaluated, the Project's localized and regional construction-source emissions would not exceed applicable regional significance threshold and LST thresholds. As such, a less than significant impact is expected.

Operational Impacts - Consistency Criterion 1

As evaluated, the Project's localized and regional operation-source emissions would not exceed applicable regional significance threshold and LST thresholds. As such, a less than significant impact is expected.

On the basis of the preceding discussion, the Project is determined to be consistent with the first criterion.

3.10.2 CONSISTENCY CRITERION NO. 2

The Project will not exceed the assumptions in the AQMP based on the years of Project buildout phase.

The 2016 AQMP demonstrates that the applicable ambient air quality standards can be achieved within the timeframes required under federal law. Growth projections from local general plans adopted by cities in the district are provided to the SCAG, which develops regional growth forecasts, which are then used to develop future air quality forecasts for the AQMP. Development consistent with the growth projections in City of Menifee General Plan is considered to be consistent with the AQMP.

Construction Impacts – Consistency Criterion 2

Peak day emissions generated by construction activities are independent of land use assignments but are a function of development scope and maximum area of disturbance. Irrespective of the site's land use designation, development of the site to its maximum potential would occur, with disturbance of the entire site occurring during construction activities. As such, when considering that no emissions thresholds will be exceeded, a less than significant impact would result.

Operational Impacts – Consistency Criterion 2

The General Plan Land Use designation for the Project site is Economic Development Corridor (Northern Gateway). The intent of the Economic Development Corridor(EDC) designation is to identify areas where a mixture of residential, commercial, office, industrial, entertainment, educational, and/or recreational uses, or other uses is planned. Both horizontal and vertical mixed uses are permitted. In general, areas designated as EDC are envisioned to develop primarily as nonresidential uses with residential uses playing a supporting role. In addition to identifying a citywide preferred land use mix for all property designated as EDC, the General Plan will also identify a preferred mix of uses desired for each of the City's five EDC subareas (see above). Each subarea has a unique identity and plays a specific role in the City of Menifee. The General Plan will use these subareas to focus policy direction in the Land Use and Community Design elements. The Project is located within the Northern Gateway subarea. This area is envisioned as an employment center at Menifee's northern gateway that focuses on providing opportunity for business park development and more traditional industrial (less office) uses. As previously discussed, the Project consist of the development277,578 sf of high-cube fulfillment center warehouse use within a single building which is consistent with the proposed uses allowed under the land use designation and therefore, the Project does not propose or require amendment of the site's underlying land use designation.

On the basis of the preceding discussion, the Project is determined to be consistent with the second criterion.

AQMP CONSISTENCY CONCLUSION

The Project would not have the potential to result in or cause NAAQS or CAAQS violations. The Project's proposed uses are consistent with the General Plan land use designation. Additionally, the Project would not exceed the regional or localized construction and operational thresholds, as such, the Project's development intensity is consistent with the development intensities allowed within the General Plan as previously stated. As such, the Project is considered to be consistent with the AQMP.

3.11 POTENTIAL IMPACTS TO SENSITIVE RECEPTORS

The potential impact of Project-generated air pollutant emissions at sensitive receptors has also been considered. Results of the LST analysis indicate that the Project would not exceed the SCAQMD localized significance thresholds during construction. Therefore, sensitive receptors would not be exposed to substantial pollutant concentrations during Project construction.

Additionally, the Project would not exceed the SCAQMD localized significance thresholds during operational activity. Further Project traffic would not create or result in a CO "hotspot." Therefore, sensitive receptors would not be exposed to substantial pollutant concentrations as the result of Project operations.

3.11.1 FRIANT RANCH CASE

In December 2018, in the case of *Sierra Club v. County of Fresno* (2018) 6 Cal.5th 502, the California Supreme Court held that an Environmental Impact Report's (EIR) air quality analysis must meaningfully connect the identified air quality impacts to the human health consequences of those impacts, or meaningfully explain why that analysis cannot be provided.

Most local agencies, including the City of Menifee, lack the data to do their own assessment of potential health impacts from criteria air pollutant emissions, as would be required to establish customized, locally specific thresholds of significance based on potential health impacts from an individual development project. The use of national or "generic" data to fill the gap of missing local data would not yield accurate results because such data does not capture local air patterns, local background conditions, or local population characteristics, all of which play a role in how a population experiences air pollution. Because it is impracticable to accurately isolate the exact cause of a human disease (for example, the role a particular air pollutant plays compared to the role of other allergens and genetics in causing asthma), existing scientific tools cannot accurately estimate health impacts of the Project's air emissions without undue speculation. Instead, readers are directed to the Project's air quality impact analysis above and the Project's Health Risk Assessment, which provides extensive information concerning the quantifiable and non-quantifiable health risks related to the Project's construction and long-term operation.

Notwithstanding, this AQIA does evaluate the proposed Project's localized impact to air quality for emissions of CO, NO_x, PM₁₀, and PM_{2.5} by comparing the proposed project's on-site emissions to the SCAQMD's applicable LST thresholds. The LST analysis above determined that the Project would not result in emissions exceeding SCAQMD's LSTs. Therefore, the proposed Project would not be expected to exceed the most stringent applicable federal or state ambient air quality standards for emissions of CO, NO_x, PM₁₀, and PM_{2.5}.

As the Project's emissions would comply with federal, state, and local air quality standards, the proposed Project's emissions are not sufficiently high enough to use a regional modeling program to correlate health effects on a basin-wide level and would not provide a reliable indicator of health effects if modeled.

3.12 ODORS

The potential for the Project to generate objectionable odors has also been considered. Land uses associated with odor complaints include:

- Agricultural uses (livestock and farming)
- Wastewater treatment plants
- Food processing plants
- Chemical plants
- Composting operations
- Refineries
- Landfills

- Dairies
- Fiberglass molding facilities

The Project does not contain land uses typically associated with emitting objectionable odors. Potential odor sources associated with the proposed Project may result from construction equipment exhaust and the application of asphalt and architectural coatings during construction activities and the temporary storage of typical solid waste (refuse) associated with the proposed Project's (long-term operational) uses. Standard construction requirements would minimize odor impacts from construction. The construction odor emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of construction and is thus considered less than significant. It is expected that Project-generated refuse would be stored in covered containers and removed at regular intervals in compliance with current solid waste regulations. The proposed Project would also be required to comply with SCAQMD Rule 402 to prevent occurrences of public nuisances. Therefore, odors and other emissions (such as those leading to odors) associated with construction and operations activities of the proposed Project would be less than significant and no mitigation is required (33).

3.13 CUMULATIVE IMPACTS

As previously shown in Table 2-3, the CAAQS designate the Project site as nonattainment for O_3 PM₁₀, and PM_{2.5} while the NAAQS designates the Project site as nonattainment for O_3 and PM_{2.5}.

The SCAQMD has published a report on how to address cumulative impacts from air pollution: White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution (34). In this report the SCAQMD clearly states (Page D-3):

"...the SCAQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for TAC emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant."

Therefore, this analysis assumes that individual projects that do not generate operational or construction emissions that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would also not cause a cumulatively considerable increase in emissions for those pollutants for which SCAB is in nonattainment, and, therefore, would not be considered to have a significant, adverse air quality impact. Alternatively, individual project-related construction and operational emissions that exceed SCAQMD thresholds for project-specific impacts would be considered cumulatively considerable.

CONSTRUCTION IMPACTS

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that proposed Project construction-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, proposed Project construction-source emissions would be considered less than significant on a Project-specific and cumulative basis.

OPERATIONAL IMPACTS

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that proposed Project operation-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, proposed Project operation-source emissions would be considered less than significant on a project-specific and cumulative basis.

This page intentionally left blank

4 REFERENCES

- 1. State of California. 2020 CEQA California Environmental Quality Act. 2020.
- 2. **South Coast Air Quality Management District.** RULE 403. FUGITIVE DUST. [Online] https://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-403.pdf?sfvrsn=4.
- 3. —. RULE 1113. Architectural Coatings. [Online] http://www.aqmd.gov/docs/default-source/rule-book/reg-xi/r1113.pdf.
- 4. —. Southern California Air Basins. [Online] https://www.arb.ca.gov/msprog/onroad/porttruck/maps/scabc7map.pdf.
- 5. —. Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. 2005.
- 6. **St. Croix Sensory, Inc.** *The "Gray Line" Between Odor Nuisance and Health Effects.* 2000.
- 7. **California Air Resources Board.** Ambient Air Quality Standards (AAQS). [Online] 2016. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf.
- 8. **United State Environmental Protection Agency.** Frequent Questions about General Conformity . *EPA.* [Online] https://www.epa.gov/general-conformity/frequent-questions-about-general-conformity#8.
- 9. **South Coast Air Quality Management District.** Annual Air Quality Monitoring Network Plan. [Online] July 2018. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-monitoring-network-plan/annual-air-quality-monitoring-network-plan-v2.pdf?sfvrsn=2.
- 10. **Air Resources Board.** State and National Ambient Air Quality Standards. [Online] https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2021/sad20/appc.pdf.
- 11. **District, South Coast Air Quality Management.** Air Quality Data Tables. [Online] https://www.aqmd.gov/home/air-quality/air-quality-data-studies/historical-data-by-year.
- 12. **Environmental Protection Agency.** National Ambient Air Quality Standards (NAAQS). [Online] 1990. https://www.epa.gov/environmental-topics/air-topics.
- 13. —. Air Pollution and the Clean Air Act. [Online] http://www.epa.gov/air/caa/.
- 14. **United States Environmental Protection Agency.** 1990 Clean Air Act Amendment Summary: Title I. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-i.
- 15. —. 1990 Clean Air Act Amendment Summary: Title II. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-ii.
- 16. **Air Resources Board.** California Ambient Air Quality Standards (CAAQS). [Online] 2009. [Cited: April 16, 2018.] http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm.
- 17. California Energy Commission. Energy Commission Adopts Updated Building Standards to Improve Efficiency, Reduce Emissions from Homes and Businesses. [Online] August 11, 2021. https://www.energy.ca.gov/news/2021-08/energy-commission-adopts-updated-building-standards-improve-efficiency-reduce-0.
- 18. **California Department of General Services.** 2022 CALGreen Code. *CALGreen.* [Online] https://codes.iccsafe.org/content/CAGBC2022P1.
- 19. **Southern California Association of Governments.** 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy. [Online] April 2016. https://scag.ca.gov/sites/main/files/file-attachments/f2016rtpscs.pdf?1606005557.

- 20. **South Coast Air Quality Management District (SCAQMD).** SCAQMD Air Quality Significance Thresholds. [Online] http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2.
- 21. California Air Pollution Control Officers Association (CAPCOA). California Emissions Estimator Model (CalEEMod). [Online] May 2022. www.caleemod.com.
- 22. **Urban Crossroads, Inc.** *Mapes & Sherman Commerce Center (DEV2022-003) Traffic Analysis.* 2022.
- 23. **Lake Environmental.** US EPA Models. *Lake Environmental.* [Online] http://www.weblakes.com/download/us_epa.html.
- 24. **South Coast Air Quality Management District.** Fact Sheet for Applying CalEEMod to Localized Significance Thresholds. [Online] http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/caleemod-guidance.pdf.
- 25. **California Air Pollution Control Officers Association (CAPCOA).** Appendix C: Emission Calculation Details for CalEEMod. *CalEEMod.* [Online] May 2022. https://www.caleemod.com/documents/userguide/04 Appendix%20C.pdf.
- 26. **South Coast Air Quality Management District.** *Localized Significance Thresholds Methodology.* s.l. : South Coast Air Quality Management District, 2008.
- 27. California Air Pollution Control Officers Association (CAPCOA). Appendix C: Emission Calculation Details for CalEEMod. [Online] May 2022. https://www.caleemod.com/documents/userguide/04_Appendix%20C.pdf.
- 28. **South Coast Air Quality Management District.** *Localized Significance Thresholds Methodology.* s.l. : South Coast Air Quality Management District, 2003.
- 29. —. 2003 Air Quality Management Plan. [Online] 2003. https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/2003-aqmp.
- 30. **Bay Area Air Quality Management District.** California Environmental Quality Act Air Quality Guidelines. [Online] https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/ceqa_guidelines_may2017-pdf.pdf?la=en.
- 31. **South Coast Air Quality Management District.** Final 2016 Air Quality Management Plan (AQMP). [Online] March 2017. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-aqmp/final2016aqmp.pdf?sfvrsn=11.
- 32. South coast Air Quality Management District. CEQA Air Quality Handbook (1993). 1993.
- 33. **South Coast Air Quality Management District.** RULE 402 NUISANCE. [Online] http://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-402.pdf.
- 34. **Goss, Tracy A and Kroeger, Amy.** White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, 2003. http://www.aqmd.gov/docs/default-source/Agendas/Environmental-Justice/cumulative-impacts-working-group/cumulative-impacts-white-paper.pdf.

This page intentionally left blank

5 CERTIFICATIONS

The contents of this air study report represent an accurate depiction of the environmental impacts associated with the proposed Mapes & Sherman Commerce Center (DEV2022-003). The information contained in this air quality impact assessment report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com

Haseeb Qureshi
Principal
URBAN CROSSROADS, INC.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June, 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – CARB • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 2.1:

STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

This attachment fulfills the requirement of Health and Safety Code section 40718 for CARB to publish maps that identify areas where one or more violations of any State ambient air quality standard (State standard) or national ambient air quality standard (national standard) have been measured. The national standards are those promulgated under section 109 of the federal Clean Air Act (42 U.S.C. 7409).

This attachment is divided into three parts. The first part comprises a table showing the levels, averaging times, and measurement methods for each of the State and national standards. This is followed by a section containing maps and tables showing the area designations for each pollutant for which there is a State standard in the California Code of Regulations, title 17, section 70200. The last section contains maps and tables showing the most current area designations for the national standards.

	Ambient Air Quality Standards (Updated 5/4/16)						
Pollutant	Averaging	California S	tandards ¹	National Standards ²			
Politiani	Time	Concentration ³	Method 4	Primary 3,5	Secondary 3,6	Method 7	
Ozone (O₃)s	1 Hour	0.09 ppm (180 μg/m³)	Ultraviolet Photometry	_	Same as Primary	Ultraviolet	
020110 (O ₃)	8 Hour	0.070 ppm (137 μg/m²)	,	0.070 ppm (137 μg/m²)	Standard	Photometry	
Respirable Particulate	24 Hour	50 μg/m³	Gravimetric or Beta	150 μg/m ³	Same as Primary	Inertial Separation and Gravimetric	
Matter (PM10)	Annual Arithmetic Mean	20 μg/m ^s	Attenuation	Standard	Analysis		
Fine Particulate	24 Hour	-	-	35 μg/m ^s	Same as Primary Standard	Inertial Separation and Gravimetric	
Matter (PM2.5) [,]	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12.0 µg/m²	15 μg/m ^s	Analysis	
Carbon	1 Hour	20 ppm (23 mg/m²)	Non-Dispersive	35 ppm (40 mg/m²)	_	Non-Dispersive	
Monoxide	8 Hour	9.0 ppm (10 mg/m²)	Infrared Photometry (NDIR)	9 ppm (10 mg/m²)	_	Infrared Photometry (NDIR)	
(CO)	8 Hour (Lake Tahoe)	6 ppm (7 mg/m²)	(NDIIV)	1	_	(NDIIV)	
Nitrogen Dioxide	1 Hour	0.18 ppm (339 µg/m²)	Gas Phase	100 ppb (188 µg/m³)	_	Gas Phase	
(NO ₂)10	Annual Arithmetic Mean	0.030 ppm (57 μg/m³)	Chemiluminescence	0.053 ppm (100 μg/m³)	Same as Primary Standard	Chemiluminescence	
	1 Hour	0.25 ppm (655 μg/m ³)		75 ppb (196 μg/m²)	_	I litro violet	
Sulfur Dioxide	3 Hour	-	Ultraviolet	-	0.5 ppm (1300 μg/m²)	Ultraviolet Flourescence; Spectrophotometry	
(SO ₂) ¹¹	24 Hour	0.04 ppm (105 μg/m²)	Fluorescence	0.14 ppm (for certain areas) ¹¹	_	(Pararosaniline Method)	
	Annual Arithmetic Mean	_		0.030 ppm (for certain areas) ¹¹	_		
	30 Day Average	1.5 μg/m³		_	_		
Lead ¹² , 13	Calendar Quarter	_	Atomic Absorption	1.5 μg/m³ (for certain areas)¹²	Same as Primary	High Volume Sampler and Atomic Absorption	
	Rolling 3-Month Average	_		0.15 μg/m ^s	Standard	/ todorption	
Visibility Reducing Particles ⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape		No		
Sulfates	24 Hour	25 μg/m³	lon Chromatography		National		
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m²)	Ultraviolet Fluorescence		Standards		
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m²)	Gas Chromatography				
See footnotes	on next page						

- 1. California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1- and 24-hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 μg/m³ is equal to or less than one. For PM2.5, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the CARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
 - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 μ g/m³)as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the CARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

Area Designations for the State Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a State standard set forth in the California Code of Regulations, title 17, section 60200. Each area is identified as attainment, nonattainment, nonattainment, nonattainment, as shown below:

Attainment A
Nonattainment N
Nonattainment-Transitional NA-T
Unclassified U

In general, CARB designates areas by air basin for pollutants with a regional impact and by county for pollutants with a more local impact. However, when there are areas within an air basin or county with distinctly different air quality deriving from sources and conditions not affecting the entire air basin or county, CARB may designate a smaller area. Generally, when boundaries of the designated area differ from the air basin or county boundaries, the description of the specific area is referenced at the bottom of the summary table.

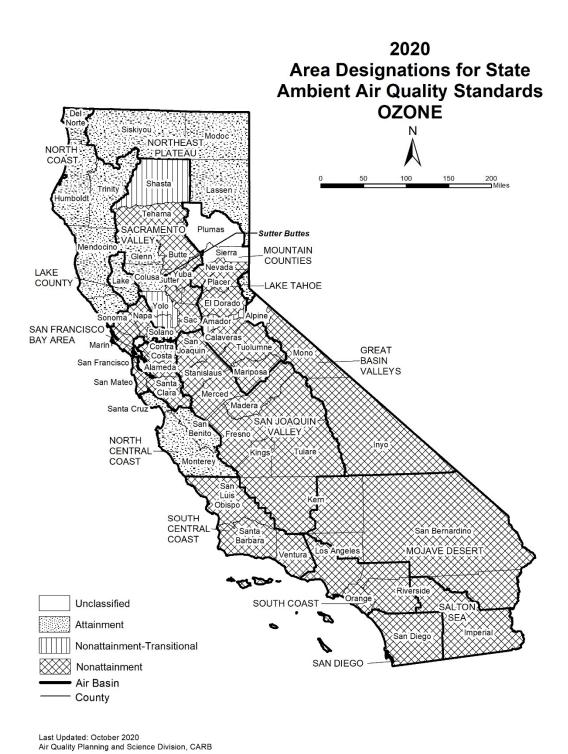


TABLE 1

California Ambient Air Quality Standards Area Designations for Ozone ¹

	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Х	
Inyo County	Х			
Mono County	Х			
LAKE COUNTY AIR BASIN				Χ
AKE TAHOE AIR BASIN				Χ
MOJAVE DESERT AIR BASIN	Х			
MOUNTAIN COUNTIES AIR BASIN				
Amador County		Х		
Calaveras County	Х			
El Dorado County (portion)	Х			
Mariposa County	Х			
Nevada County	Х			
Placer County (portion)	Х			
Plumas County			Х	
Sierra County			Х	
Tuolumne County	Х			
NORTH CENTRAL COAST AIR BASIN				Χ
NORTH COAST AIR BASIN				Χ

	N	NA-T	U	Α
NORTHEAST PLATEAU AIR BASIN				Х
SACRAMENTO VALLEY AIR BASIN				
Colusa and Glenn Counties				Х
Shasta County		Χ		
Sutter/Yuba Counties				
Sutter Buttes	Х			
Remainder of Sutter County	Х			
Yuba County	Х			
Yolo/Solano Counties		Х		
Remainder of Air Basin	Х			
SALTON SEA AIR BASIN	Х			
SAN DIEGO AIR BASIN	Х			
SAN FRANCISCO BAY AREA AIR BASIN	Х			
SAN JOAQUIN VALLEY AIR BASIN	Х			
SOUTH CENTRAL COAST AIR BASIN				
San Luis Obispo County	Х			
Santa Barbara County	Х			
Ventura County	Χ			
SOUTH COAST AIR BASIN	Χ			

¹ AB 3048 (Olberg) and AB 2525 (Miller) signed into law in 1996, made changes to Health and Safety Code, section 40925.5. One of the changes allows nonattainment districts to become nonattainment-transitional for ozone by operation of law.

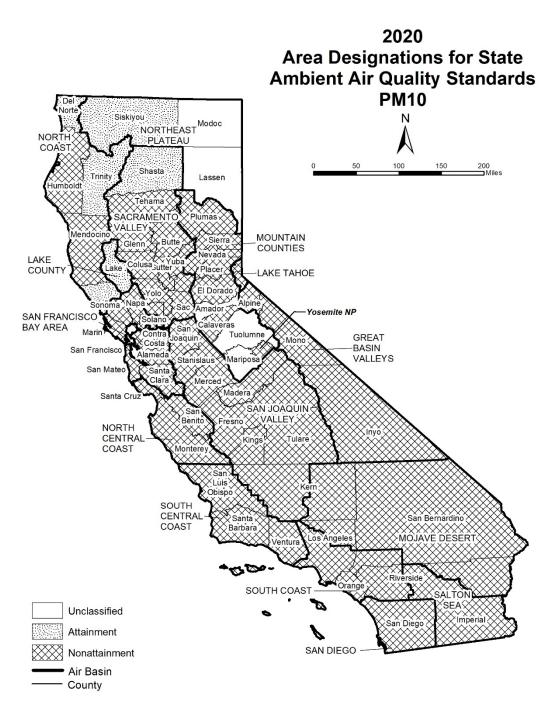


TABLE 2

California Ambient Air Quality Standards Area Designation for Suspended Particulate Matter (PM_{10})

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN	Χ		
LAKE COUNTY AIR BASIN			Х
LAKE TAHOE AIR BASIN	Χ		
MOJAVE DESERT AIR BASIN	Χ		
MOUNTAIN COUNTIES AIR BASIN			
Amador County		Χ	
Calaveras County	Χ		
El Dorado County (portion)	Χ		
Mariposa County			
- Yosemite National Park	Χ		
- Remainder of County		Х	
Nevada County	Χ		
Placer County (portion)	Χ		
Plumas County	Χ		
Sierra County	Χ		
Tuolumne County		Х	

	N	כ	Α
NORTH CENTRAL COAST AIR BASIN	Χ		
NORTH COAST AIR BASIN			
Del Norte, Sonoma (portion) and Trinity Counties			Χ
Remainder of Air Basin	Χ		
NORTHEAST PLATEAU AIR BASIN			
Siskiyou County			Χ
Remainder of Air Basin		Χ	
SACRAMENTO VALLEY AIR BASIN			
Shasta County			Χ
Remainder of Air Basin	Χ		
SALTON SEA AIR BASIN	Χ		
SAN DIEGO AIR BASIN	Χ		
SAN FRANCISCO BAY AREA AIR BASIN	Χ		
SAN JOAQUIN VALLEY AIR BASIN	Χ		
SOUTH CENTRAL COAST AIR BASIN	Χ		
SOUTH COAST AIR BASIN	Χ		

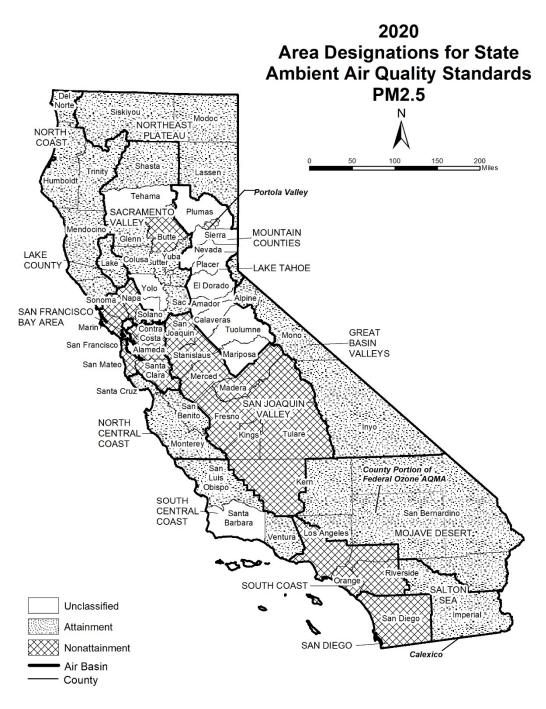


TABLE 3

California Ambient Air Quality Standards Area Designations for Fine Particulate Matter ($PM_{2.5}$)

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			
San Bernardino County			
 County portion of federal Southeast Desert Modified AQMA for Ozone¹ 			Х
Remainder of Air Basin			Χ
MOUNTAIN COUNTIES AIR BASIN			
Plumas County			
- Portola Valley²	Х		
Remainder of Air Basin		Χ	
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Χ
SACRAMENTO VALLEY AIR BASIN			
Butte County	Х		
Colusa County			Χ
Glenn County			Χ
Placer County (portion)			Χ
Sacramento County			Χ
Shasta County			Χ
Sutter and Yuba Counties			Χ
Remainder of Air Basin		Х	

	N	U	Α
SALTON SEA AIR BASIN			
Imperial County			
- City of Calexico ³	Χ		
Remainder of Air Basin			Χ
SAN DIEGO AIR BASIN	Χ		
SAN FRANCISCO BAY AREA AIR BASIN	Χ		
SAN JOAQUIN VALLEY AIR BASIN	Χ		
SOUTH CENTRAL COAST AIR BASIN			
San Luis Obispo County			Χ
Santa Barbara County		Χ	
Ventura County			Χ
SOUTH COAST AIR BASIN	Х		

¹ California Code of Regulations, title 17, section 60200(b)

² California Code of Regulations, title 17, section 60200(c)

³ California Code of Regulations, title 17, section 60200(a)

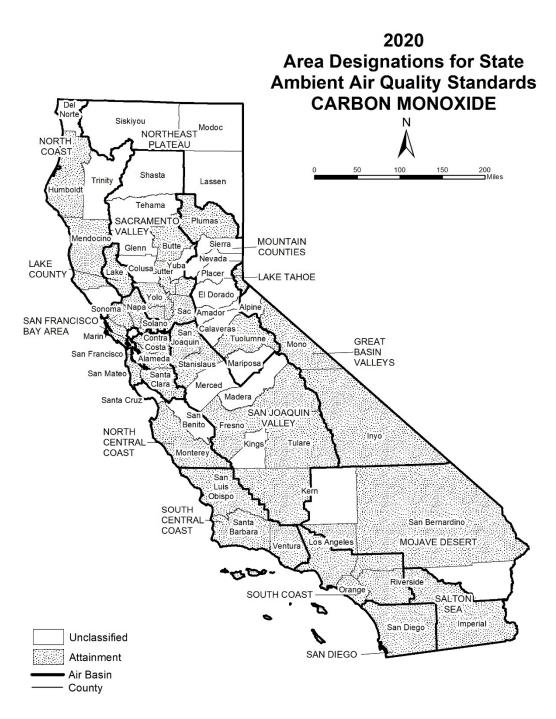


TABLE 4

California Ambient Air Quality Standards Area Designation for Carbon Monoxide*

	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Χ	
Inyo County				Χ
Mono County				Х
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN				Χ
MOJAVE DESERT AIR BASIN				
Kern County (portion)			Χ	
Los Angeles County (portion)				Х
Riverside County (portion)			Χ	
San Bernardino County (portion)				Х
MOUNTAIN COUNTIES AIR BASIN				
Amador County			Χ	
Calaveras County			Χ	
El Dorado County (portion)			Χ	
Mariposa County			Χ	
Nevada County			Χ	
Placer County (portion)			Χ	
Plumas County				Χ
Sierra County			Χ	
Tuolumne County				Χ
NORTH CENTRAL COAST AIR BASIN				
Monterey County				Х
San Benito County			Χ	
Santa Cruz County			Χ	
NORTH COAST AIR BASIN				
Del Norte County			Χ	
Humboldt County				Х
Mendocino County				Х
Sonoma County (portion)			Χ	
Trinity County			Χ	
NORTHEAST PLATEAU AIR BASIN			Χ	

	N	NA-T	U	Α
SACRAMENTO VALLEY AIR BASIN		1100		
Butte County				Х
Colusa County			Х	
Glenn County			Х	
Placer County (portion)				Х
Sacramento County				Х
Shasta County			Х	
Solano County (portion)				Х
Sutter County				Х
Tehama County			Х	
Yolo County				Х
Yuba County			Х	
SALTON SEA AIR BASIN				Х
SAN DIEGO AIR BASIN				Χ
SAN FRANCISCO BAY AREA AIR BASIN				Χ
SAN JOAQUIN VALLEY AIR BASIN				
Fresno County				Χ
Kern County (portion)				Χ
Kings County			Χ	
Madera County			Χ	
Merced County			Χ	
San Joaquin County				Χ
Stanislaus County				Χ
Tulare County				Х
SOUTH CENTRAL COAST AIR BASIN				Х
SOUTH COAST AIR BASIN				Χ

 $[\]ensuremath{^{\star}}$ The area designated for carbon monoxide is a county or portion of a county

TABLE 5

California Ambient Air Quality Standards Area Designations for Nitrogen Dioxide

	N	J	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ
MOUNTAIN COUNTIES AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Χ

	N	J	Α
SACRAMENTO VALLEY AIR BASIN			Χ
SALTON SEA AIR BASIN			Χ
SAN DIEGO AIR BASIN			Χ
SAN FRANCISCO BAY AREA AIR BASIN			Χ
SAN JOAQUIN VALLEY AIR BASIN			Χ
SOUTH CENTRAL COAST AIR BASIN			Χ
SOUTH COAST AIR BASIN			
CA 60 Near-road Portion of San Bernardino, Riverside, and Los Angeles Counties	Х		
Remainder of Air Basin			Χ



TABLE 6

California Ambient Air Quality Standards Area Designation for Sulfur Dioxide*

	N	Α
GREAT BASIN VALLEYS AIR BASIN		Χ
LAKE COUNTY AIR BASIN		Χ
LAKE TAHOE AIR BASIN		Χ
MOJAVE DESERT AIR BASIN		Χ
MOUNTAIN COUNTIES AIR BASIN		Χ
NORTH CENTRAL COAST AIR BASIN		Χ
NORTH COAST AIR BASIN		Χ
NORTHEAST PLATEAU AIR BASIN		Х

	N	Α
SACRAMENTO VALLEY AIR BASIN		Χ
SALTON SEA AIR BASIN		Χ
SAN DIEGO AIR BASIN		Χ
SAN FRANCISCO BAY AREA AIR BASIN		Χ
SAN JOAQUIN VALLEY AIR BASIN		Χ
SOUTH CENTRAL COAST AIR BASIN		Χ
SOUTH COAST AIR BASIN		Χ

^{*} The area designated for sulfur dioxide is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

TABLE 7

California Ambient Air Quality Standards Area Designation for Sulfates

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Х
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Х
NORTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Х
NORTHEAST PLATEAU AIR BASIN			Х

N	U	Α
		Χ
		Χ
		Χ
		Χ
		Χ
		Χ
		Χ
	N	N U

TABLE 8

California Ambient Air Quality Standards Area Designations for Lead (particulate)*

	N	J	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ
MOUNTAIN COUNTIES AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Χ
SACRAMENTO VALLEY AIR BASIN			Χ

	Ν	U	Α
SALTON SEA AIR BASIN			Χ
SAN DIEGO AIR BASIN			Χ
SAN FRANCISCO BAY AREA AIR BASIN			Χ
SAN JOAQUIN VALLEY AIR BASIN			Χ
SOUTH CENTRAL COAST AIR BASIN			Χ
SOUTH COAST AIR BASIN			Χ

^{*} The area designated for lead is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

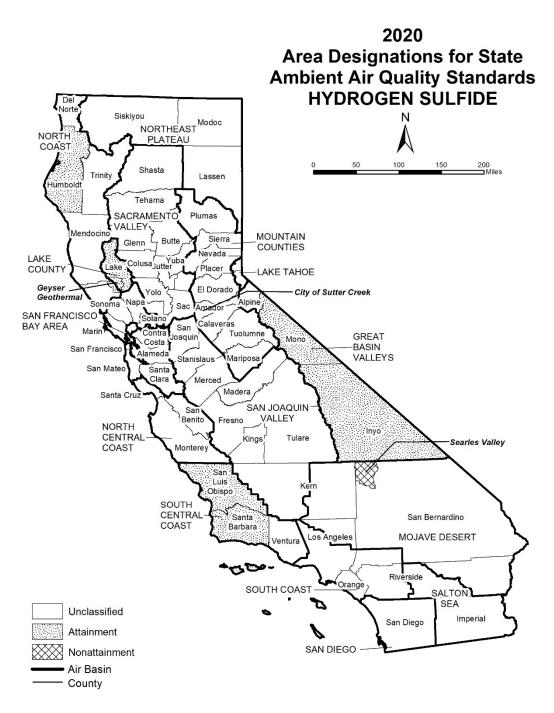


TABLE 9

California Ambient Air Quality Standards Area Designation for Hydrogen Sulfide*

	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Χ	
Inyo County				Х
Mono County				Х
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN			Х	
MOJAVE DESERT AIR BASIN				
Kern County (portion)			Х	
Los Angeles County (portion)			Х	
Riverside County (portion)			Х	
San Bernardino County (portion)				
- Searles Valley Planning Area ¹	Х			
- Remainder of County			Χ	
MOUNTAIN COUNTIES AIR BASIN				
Amador County				
- City of Sutter Creek	Х			
- Remainder of County			Χ	
Calaveras County			Χ	
El Dorado County (portion)			Χ	
Mariposa County			Χ	
Nevada County			Χ	
Placer County (portion)			Х	
Plumas County			Х	
Sierra County			Х	
Tuolumne County			Х	

	Τ	l	l	l <u>.</u>
	N	NA-T	U	Α
NORTH CENTRAL COAST AIR BASIN			Х	
NORTH COAST AIR BASIN				
Del Norte County			Χ	
Humboldt County				Χ
Mendocino County			Χ	
Sonoma County (portion)				
- Geyser Geothermal Area ²				Χ
- Remainder of County			Χ	
Trinity County			Χ	
NORTHEAST PLATEAU AIR BASIN			Χ	
SACRAMENTO VALLEY AIR BASIN			Χ	
SALTON SEA AIR BASIN			Χ	
SAN DIEGO AIR BASIN			Χ	
SAN FRANCISCO BAY AREA AIR BASIN			Χ	
SAN JOAQUIN VALLEY AIR BASIN			Χ	
SOUTH CENTRAL COAST AIR BASIN				
San Luis Obispo County				Х
Santa Barbara County				Х
Ventura County			Χ	
SOUTH COAST AIR BASIN			Χ	

 $[\]ensuremath{^{\star}}$ The area designated for hydrogen sulfide is a county or portion of a county

¹ 52 Federal Register 29384 (August 7, 1987)

² California Code of Regulations, title 17, section 60200(d)

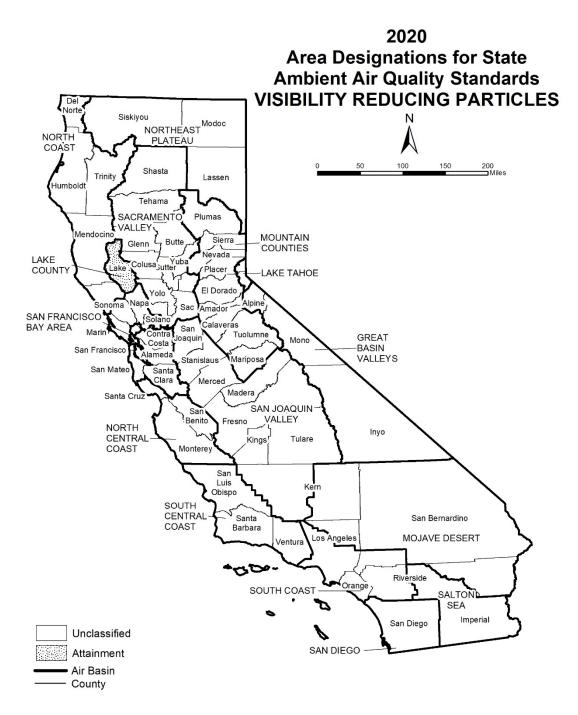


TABLE 10

California Ambient Air Quality Standards Area Designation for Visibility Reducing Particles

	N	NA-T	J	Α
GREAT BASIN VALLEYS AIR BASIN			Χ	
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN			Χ	
MOJAVE DESERT AIR BASIN			Х	
MOUNTAIN COUNTIES AIR BASIN			Χ	
NORTH CENTRAL COAST AIR BASIN			Χ	
NORTH COAST AIR BASIN			Χ	
NORTHEAST PLATEAU AIR BASIN			Х	

	N	NA-T	U	Α
SACRAMENTO VALLEY AIR BASIN			Х	
SALTON SEA AIR BASIN			Х	
SAN DIEGO AIR BASIN			Х	
SAN FRANCISCO BAY AREA AIR BASIN			Х	
SAN JOAQUIN VALLEY AIR BASIN			Х	
SOUTH CENTRAL COAST AIR BASIN			Х	
SOUTH COAST AIR BASIN			Х	

Area Designations for the National Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a national ambient air quality standard. Additional information about the federal area designations is available on the U.S. EPA website:

https://www.epa.gov/green-book

Over the last several years, U.S. EPA has been reviewing the levels of the various national standards. The agency has already promulgated new standard levels for some pollutants and is considering revising the levels for others. Information about the status of these reviews is available on the U.S. EPA website:

https://www.epa.gov/criteria-air-pollutants

Designation Categories

Suspended Particulate Matter (PM_{10}). The U.S. EPA uses three categories to designate areas with respect to PM_{10} :

- Attainment (A)
- Nonattainment (N)
- Unclassifiable (U)

Ozone, Fine Suspended Particulate Matter ($PM_{2.5}$), Carbon Monoxide (CO), and Nitrogen Dioxide (NO_2). The U.S. EPA uses two categories to designate areas with respect to these standards:

- Nonattainment (N)
- Unclassifiable/Attainment (U/A)

The national 1-hour ozone standard was revoked effective June 15, 2005, and the area designations map reflects the 2015 national 8-hour ozone standard of 0.070 ppm. Area designations were finalized on August 3, 2018.

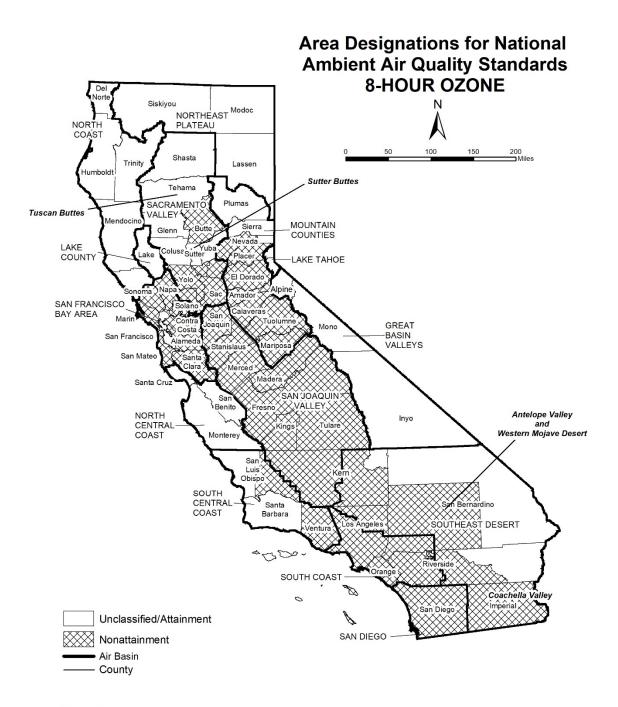
On December 14, 2012, the U.S. EPA established a new national annual primary PM_{2.5} standard of 12.0 μ g/m³. Area designations were finalized in December 2014. The current designation map reflects the most recently revised (2012) annual average standard of 12.0 μ g/m³ as well as the 24-hour standard of 35 μ g/m³, revised in 2006.

On January 22, 2010, the U.S. EPA established a new national 1-hour NO₂ standard of 100 parts per billion (ppb) and retained the annual average standard of 53 ppb. Designations for the primary NO₂ standard became effective on February 29, 2012. All areas of California meet this standard.

Sulfur Dioxide (SO₂). The U.S. EPA uses three categories to designate areas with respect to the 24-hour and annual average sulfur dioxide standards. These designation categories are:

- Nonattainment (N),
- Unclassifiable (U), and
- Unclassifiable/Attainment (U/A).

On June 2, 2010, the U.S. EPA established a new primary 1-hour SO₂ standard of 75 parts per billion (ppb). At the same time, U.S. EPA revoked the 24-hour and annual


average standards. Area designations for the 1-hour SO_2 standard were finalized on December 21, 2017 and are reflected in the area designations map.

Lead (particulate). The U.S. EPA promulgated a new rolling 3-month average lead standard in October 2008 of 0.15 μ g/m³. Designations were made for this standard in November 2010.

Designation Areas

From time to time, the boundaries of the California air basins have been changed to facilitate the planning process. CARB generally initiates these changes, and they are not always reflected in the U.S. EPA's area designations. For purposes of consistency, the maps in this attachment reflect area designation boundaries and nomenclature as promulgated by the U.S. EPA. In some cases, these may not be the same as those adopted by CARB. For example, the national area designations reflect the former Southeast Desert Air Basin. In accordance with Health and Safety Code section 39606.1, CARB redefined this area in 1996 to be the Mojave Desert Air Basin and Salton Sea Air Basin. The definitions and boundaries for all areas designated for the national standards can be found in Title 40, Code of Federal Regulations (CFR), Chapter I, Subchapter C, Part 81.305. They are available on the web at:

https://ecfr.io/Title-40/se40.20.81 1305

Source Date: August 2019 Air Quality Planning and Science Division

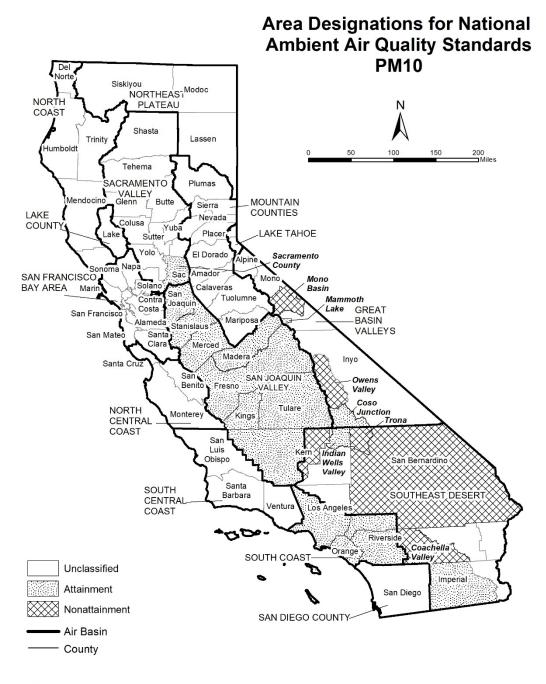
TABLE 11

National Ambient Air Quality Standards Area Designations for 8-Hour Ozone*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		
Amador County	Х	
Calaveras County	Х	
El Dorado County (portion) ¹	Х	
Mariposa County	Х	
Nevada County		
- Western Nevada County	Х	
- Remainder of County		Х
Placer County (portion) ¹	Х	
Plumas County		Х
Sierra County		Х
Tuolumne County	Х	
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		
Butte County	Х	
Colusa County		Х
Glenn County		Х
Sacramento Metro Area ¹	Х	
Shasta County		Х
Sutter County		
- Sutter Buttes	Х	
- Southern portion of Sutter County ¹	Х	
- Remainder of Sutter County		Х
Tehama County		
- Tuscan Buttes	Х	
- Remainder of Tehama County		Х

	N	U/A
SACRAMENTO VALLEY AIR BASIN (cont.)		
Yolo County ¹	Х	
Yuba County		Χ
SAN DIEGO COUNTY	Х	
SAN FRANCISCO BAY AREA AIR BASIN	Х	
SAN JOAQUIN VALLEY AIR BASIN	Х	
SOUTH CENTRAL COAST AIR BASIN ²		
San Luis Obispo County		
- Eastern San Luis Obispo County	Х	
- Remainder of County		Х
Santa Barbara County		Χ
Ventura County		
- Area excluding Anacapa and San Nicolas Islands	Х	
- Channel Islands ²		Χ
SOUTH COAST AIR BASIN ²	Х	
SOUTHEAST DESERT AIR BASIN		
Kern County (portion)	Х	
- Indian Wells Valley		Χ
Imperial County	Х	
Los Angeles County (portion)	Х	
Riverside County (portion)		
- Coachella Valley	Х	
- Non-AQMA portion		Х
San Bernardino County		
- Western portion (AQMA)	Х	
- Eastern portion (non-AQMA)		Х

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. NOTE: This map and table reflect the 2015 8-hour ozone standard of 0.070 ppm.


¹ For this purpose, the Sacramento Metro Area comprises all of Sacramento and Yolo Counties, the Sacramento Valley Air Basin portion of Solano County, the southern portion of Sutter County, and the Sacramento Valley and Mountain Counties Air Basins portions of Placer and El Dorado counties.

² South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands. Ventura County includes Anacapa and San Nicolas Islands.

South Coast Air Basin:

Los Angeles County includes San Clemente and Santa Catalina Islands.

Source Date: October 2020 Air Quality Planning and Science Division

TABLE 12

National Ambient Air Quality Standards Area Designations for Suspended Particulate Matter (PM_{10})*

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN			
Alpine County		Χ	
Inyo County		•	
- Owens Valley Planning Area	Х		
- Coso Junction			Х
- Remainder of County		Χ	
Mono County			
- Mammoth Lake Planning Area			Х
- Mono Lake Basin	Х		
- Remainder of County		Χ	
LAKE COUNTY AIR BASIN		Χ	
LAKE TAHOE AIR BASIN		Χ	
MOUNTAIN COUNTIES AIR BASIN		•	
Placer County (portion) ¹		Χ	
Remainder of Air Basin		Χ	
NORTH CENTRAL COAST AIR BASIN		Χ	
NORTH COAST AIR BASIN		Χ	
NORTHEAST PLATEAU AIR BASIN		Χ	
SACRAMENTO VALLEY AIR BASIN			
Butte County		Χ	
Colusa County		Χ	
Glenn County		Χ	
Placer County (portion) ¹		Χ	
Sacramento County ²			Х
Shasta County		Χ	
Solano County (portion)		Χ	
Sutter County		Χ	
Tehama County		Χ	
Yolo County		Χ	
Yuba County		Χ	

	-	ı	ı
	N	U	Α
SAN DIEGO COUNTY		Χ	
SAN FRANCISCO BAY AREA AIR BASIN		Χ	
SAN JOAQUIN VALLEY AIR BASIN			Χ
SOUTH CENTRAL COAST AIR BASIN		Χ	
SOUTH COAST AIR BASIN			Χ
SOUTHEAST DESERT AIR BASIN			
Eastern Kern County			
- Indian Wells Valley			Χ
- Portion within San Joaquin Valley Planning Area	Х		
- Remainder of County		Χ	
Imperial County			
- Imperial Valley Planning Area ³			Χ
- Remainder of County		Χ	
Los Angeles County (portion)		Χ	
Riverside County (portion)			
- Coachella Valley ⁴	Х		
- Non-AQMA portion		Χ	
San Bernardino County			
- Trona	Х		
- Remainder of County	Х		

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

¹ U.S. EPA designation puts the Sacramento Valley Air Basin portion of Placer County in the Mountain Counties Air Basin.

 $^{^{2}}$ Air quality in Sacramento County meets the national PM₁₀ standards. The request for redesignation to attainment was approved by U.S. EPA in September 2013.

³ The request for redesignation to attainment for the Imperial Valley Planning Area was approved by U.S. EPA and in September 2020, effective October 2020.

 $^{^4}$ Air quality in Coachella Valley meets the national PM $_{10}$ standards. A request for redesignation to attainment has been submitted to U.S. EPA.

FIGURE 13

Area Designations for National Ambient Air Quality Standards PM2.5

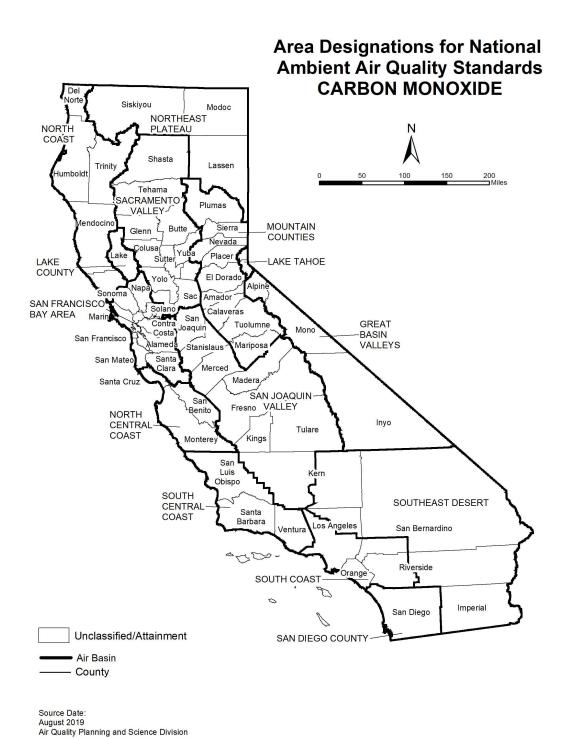
Air Quality Planning and Science Division

TABLE 13

National Ambient Air Quality Standards Area Designations for Fine Particulate Matter (PM_{2.5})

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		X
LAKE COUNTY AIR BASIN		Χ
LAKE TAHOE AIR BASIN		Χ
MOUNTAIN COUNTIES AIR BASIN		
Plumas County		
- Portola Valley Portion of Plumas	Х	
- Remainder of Plumas County		Χ
Remainder of Air Basin		Χ
NORTH CENTRAL COAST AIR BASIN		Χ
NORTH COAST AIR BASIN		Χ
NORTHEAST PLATEAU AIR BASIN		Χ
SACRAMENTO VALLEY AIR BASIN		
Sacramento Metro Area ¹	Х	
Sutter County		Χ
Yuba County (portion)		Χ
Remainder of Air Basin		Х

	N	U/A
SAN DIEGO COUNTY		Χ
SAN FRANCISCO BAY AREA AIR BASIN ²	Х	
SAN JOAQUIN VALLEY AIR BASIN	Х	
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN ³	Х	
SOUTHEAST DESERT AIR BASIN		
Imperial County (portion) ⁴	Х	
Remainder of Air Basin		Х


^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. This map reflects the 2006 24-hour $PM_{2.5}$ standard as well as the 1997 and 2012 $PM_{2.5}$ annual standards.

 $^{^{1}}$ For this purpose, Sacramento Metro Area comprises all of Sacramento and portions of El Dorado, Placer, Solano, and Yolo Counties. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

 $^{^2}$ Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

 $^{^3}$ Those lands of the Santa Rosa Band of Cahulla Mission Indians in Riverside County are designated Unclassifiable/Attainment.

 $^{^4}$ That portion of Imperial County encompassing the urban and surrounding areas of Brawley, Calexico, El Centro, Heber, Holtville, Imperial, Seeley, and Westmorland. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

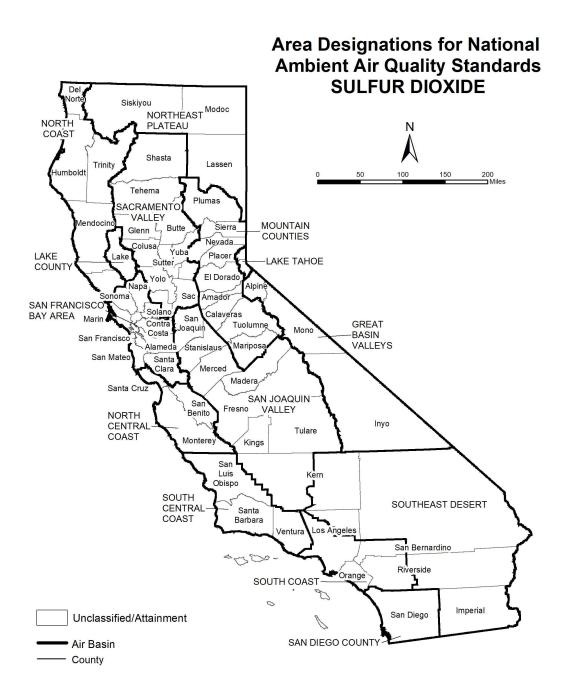
TABLE 14

National Ambient Air Quality Standards Area Designations for Carbon Monoxide*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х

	Ν	U/A
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Χ
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Χ
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		Х

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.


TABLE 15

National Ambient Air Quality Standards Area Designations for Nitrogen Dioxide*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х

	N	U/A
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		Х

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Source Date: August 2019 Air Quality Planning and Science Division

TABLE 16

National Ambient Air Quality Standards Area Designations for Sulfur Dioxide*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Χ
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Χ
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Χ
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		
Fresno County		Х
Kern County (portion)		Χ
Kings County		Х
Madera County		Χ
Merced County		Х
San Joaquin County		Х
Stanislaus County		Х
Tulare County		Х

	N	U/A
SOUTH CENTRAL COAST AIR BASIN		
San Luis Obispo County		Х
Santa Barbara County		Х
Ventura County		Х
Channel Islands ¹		Х
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		
Imperial County		Х
Remainder of Air Basin		Х

Note that the San Clemente and Santa Catalina Islands are considered part of Los Angeles County, and therefore, are included as part of the South Coast Air Basin.

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. NOTE: This map and table reflect the 2010 1-hour SO_2 standard of 75 ppb.

¹ South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands. Ventura County includes Anacapa and San Nicolas Islands.

Area Designations for National Ambient Air Quality Standards LEAD Siskiyou Modoc NORTHEAST NORTH PLATEAU COAST Shasta 50 100 150 Lassen 200 Miles Humboldt Tehama ACRAMENTO VALLEY-MOUNTAIN € Butte Sierra Glenn COUNTIES Nevada sa Yuba Sutter Placer LAKE LAKE TAHOE COUNTY El Dorad SAN FRANCISCO Calaveras **BAY AREA GREAT** Tuolumne Joaquir Mono Costa BASIN San Francisco Alamed Stanislaus Mariposa **VALLEYS** Santa Merced Santa Cruz Madera SAN JOAQUIN San Benito Fresno VALLEY NORTH CENTRAL COAST Inyo Tulare Kings Montere San Obispo SOUTH SOUTHEAST DESERT CENTRAL COAST Barbara San Bernardino Riverside SOUTH COAST Imperial Unclassified/Attainment San Diego Nonattainment SAN DIEGO COUNTY Air Basin - County

Source Date: August 2019 Air Quality Planning and Science Division

TABLE 17

National Ambient Air Quality Standards Area Designations for Lead (particulate)

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		Х

	N	U/A
SAN DIEGO COUNTY		Χ
SAN FRANCISCO BAY AREA AIR BASIN		Χ
SAN JOAQUIN VALLEY AIR BASIN		Χ
SOUTH CENTRAL COAST AIR BASIN		Χ
SOUTH COAST AIR BASIN		
Los Angeles County (portion) ¹	Χ	
Remainder of Air Basin		Χ
SOUTHEAST DESERT AIR BASIN		Х

¹ Portion of County in Air Basin, not including Channel Islands

This page intentionally left blank

APPENDIX 3.1:

CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Construction) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2023) Unmitigated
 - 3.3. Grading (2023) Unmitigated
 - 3.5. Building Construction (2023) Unmitigated
 - 3.7. Building Construction (2024) Unmitigated
 - 3.9. Paving (2024) Unmitigated
 - 3.11. Architectural Coating (2024) Unmitigated

- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
 - 5.5. Architectural Coatings
 - 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies

- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores

- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Construction)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_

Other Asphalt	145	1000sqft	3.34	0.00	0.00	0.00	_	_
Surfaces								

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Unmit.	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily, Winter (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.21	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
																		4

Daily - Summer (Max)	_			_	_	_		_	_	_		_	_	_	_			_
2024	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
2024	2.98	2.53	19.1	23.8	0.04	1.04	1.85	2.89	0.96	0.45	1.41	_	5,503	5,503	0.21	0.25	0.26	5,584
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.80	0.67	6.35	5.62	0.01	0.31	0.59	0.91	0.29	0.21	0.50	_	1,369	1,369	0.05	0.07	0.61	1,390
2024	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.20	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_
2023	0.15	0.12	1.16	1.03	< 0.005	0.06	0.11	0.17	0.05	0.04	0.09	_	227	227	0.01	0.01	0.10	230
2024	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

3. Construction Emissions Details

3.1. Site Preparation (2023) - Unmitigated

Location		ROG		СО		PM10E	<u> </u>		PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.90	47.0	38.0	0.05	2.53	_	2.53	2.33	_	2.33	_	5,530	5,530	0.22	0.04	_	5,549

Dust From Material Movemen	<u> </u>	_	_	_	_	_	5.66	5.66	_	2.69	2.69	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.13	1.29	1.04	< 0.005	0.07	_	0.07	0.06	_	0.06	_	152	152	0.01	< 0.005	_	152
Dust From Material Movemen		_	_	_	_	_	0.16	0.16	_	0.07	0.07	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.24	0.19	< 0.005	0.01	_	0.01	0.01	_	0.01	_	25.1	25.1	< 0.005	< 0.005	_	25.2
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_		-	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.10	0.09	0.11	1.24	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	243	243	0.01	0.01	0.03	246
Vendor	< 0.005	< 0.005	0.12	0.04	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	94.3	94.3	< 0.005	0.01	0.01	98.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

8 / 30

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	6.74	6.74	< 0.005	< 0.005	0.01	6.84
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.58	2.58	< 0.005	< 0.005	< 0.005	2.70
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.12	1.12	< 0.005	< 0.005	< 0.005	1.13
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.43	0.43	< 0.005	< 0.005	< 0.005	0.45
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2023) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.20	40.9	32.7	0.06	1.96	_	1.96	1.80	_	1.80	_	6,715	6,715	0.27	0.05	_	6,738
Dust From Material Movemen [:]	<u> </u>	_	_	_	_	_	2.67	2.67	_	0.98	0.98	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.34	3.36	2.69	0.01	0.16	_	0.16	0.15	_	0.15	_	552	552	0.02	< 0.005	_	554

Dust From Material Movemen	-	_	_	_	_	_	0.22	0.22	_	0.08	0.08	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.06	0.61	0.49	< 0.005	0.03	_	0.03	0.03	_	0.03	_	91.4	91.4	< 0.005	< 0.005	_	91.7
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.04	0.04	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	-	_	-	_	_	-	_	_	-	_	_	_
Worker	0.11	0.10	0.12	1.37	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	270	270	0.01	0.01	0.03	273
Vendor	0.01	0.01	0.27	0.08	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	0.01	_	220	220	< 0.005	0.03	0.02	230
Hauling	0.12	0.04	3.58	0.83	0.02	0.06	0.20	0.26	0.06	0.07	0.13	_	2,984	2,984	0.05	0.47	0.16	3,127
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	0.01	0.01	0.01	0.12	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	22.5	22.5	< 0.005	< 0.005	0.04	22.8
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	18.1	18.1	< 0.005	< 0.005	0.02	18.9
Hauling	0.01	< 0.005	0.30	0.07	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	245	245	< 0.005	0.04	0.22	257
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	3.72	3.72	< 0.005	< 0.005	0.01	3.77
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.99	2.99	< 0.005	< 0.005	< 0.005	3.13

⊟Ha	ulina	< 0.005	< 0.005	0.05	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	40.6	40.6	< 0.005	0.01	0.04	42.6
0	· · · · · · · · · · · ·	1 0.000	1 0.000	0.00	0.0.	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000		.0.0	.0.0	1 0.000	0.0.	0.0.	

3.5. Building Construction (2023) - Unmitigated

	TOG	ROG	NOx	СО	so2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_
Off-Road Equipmen		2.07	18.3	16.2	0.03	1.14	_	1.14	1.05	_	1.05	_	2,806	2,806	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.14	1.22	1.08	< 0.005	0.08	_	0.08	0.07	_	0.07	_	187	187	0.01	< 0.005	_	187
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.22	0.20	< 0.005	0.01	_	0.01	0.01	_	0.01	_	30.9	30.9	< 0.005	< 0.005	_	31.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.65	0.59	0.72	8.04	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,579	1,579	0.08	0.06	0.19	1,599
Vendor	0.06	0.03	1.42	0.43	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,163	1,163	0.02	0.17	0.08	1,215
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.05	0.56	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	106	106	0.01	< 0.005	0.21	108
Vendor	< 0.005	< 0.005	0.10	0.03	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	77.3	77.3	< 0.005	0.01	0.09	80.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.10	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	17.6	17.6	< 0.005	< 0.005	0.03	17.9
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	12.8	12.8	< 0.005	< 0.005	0.02	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Off-Road Equipmen		0.82	7.29	6.83	0.01	0.44	_	0.44	0.40	_	0.40	-	1,197	1,197	0.05	0.01	-	1,201
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.15	1.33	1.25	< 0.005	0.08	_	0.08	0.07	_	0.07	-	198	198	0.01	< 0.005	_	199
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.66	0.60	0.56	9.77	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,684	1,684	0.07	0.06	6.68	1,710
Vendor	0.05	0.03	1.30	0.40	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,149	1,149	0.02	0.17	3.24	1,204
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_
Worker	0.62	0.56	0.67	7.38	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,548	1,548	0.07	0.06	0.17	1,567
Vendor	0.05	0.03	1.36	0.41	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,150	1,150	0.02	0.17	0.08	1,202
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.27	0.24	0.28	3.32	0.00	0.00	0.04	0.04	0.00	0.00	0.00	_	669	669	0.03	0.02	1.23	678
Vendor	0.02	0.01	0.58	0.18	< 0.005	0.01	0.03	0.04	0.01	0.01	0.02	_	490	490	0.01	0.07	0.59	513

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	_	<u> </u>	_
Worker	0.05	0.04	0.05	0.61	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	111	111	0.01	< 0.005	0.20	112
Vendor	< 0.005	< 0.005	0.11	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	81.2	81.2	< 0.005	0.01	0.10	84.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.85	7.81	10.0	0.01	0.39	_	0.39	0.36	_	0.36	_	1,512	1,512	0.06	0.01	_	1,517
Paving	_	0.70	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Average Daily	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.43	0.55	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.8	82.8	< 0.005	< 0.005	_	83.1
Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.08	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.8

Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
Worker	0.08	0.08	0.07	1.25	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	216	216	0.01	0.01	0.86	219
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	11.0	11.0	< 0.005	< 0.005	0.02	11.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.82	1.82	< 0.005	< 0.005	< 0.005	1.85
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2024) - Unmitigated

Ontona	· onatan	()	, .c. aa	<i>y</i> ,, <i>y</i> .	.0	an, and	O OO (o, aay .c.	ua,,	, ,	ai ii iaai,							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	_	_
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																		
(Max)																		

Off-Road Equipmen		0.18	1.21	1.53	< 0.005	0.04	_	0.04	0.04	_	0.04	-	178	178	0.01	< 0.005	_	179
Architect ural Coatings	_	34.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.13	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	19.5	19.5	< 0.005	< 0.005	_	19.6
Architect ural Coatings	_	3.81	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.02	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	3.23	3.23	< 0.005	< 0.005	_	3.24
Architect ural Coatings	_	0.69	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.13	0.12	0.11	1.92	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	331	331	0.01	0.01	1.31	336
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.17	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	33.8	33.8	< 0.005	< 0.005	0.06	34.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	5.59	5.59	< 0.005	< 0.005	0.01	5.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
	_	_	_	_	_		_	_		_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Fliase Ivallie	rnase Type	Start Date	Liiu Dale	Days Fel Week	Work Days per Friase	Friase Description

Site Preparation	Site Preparation	10/3/2023	10/16/2023	5.00	10.0	_
Grading	Grading	10/17/2023	11/27/2023	5.00	30.0	_
Building Construction	Building Construction	11/28/2023	8/5/2024	5.00	180	_
Paving	Paving	7/9/2024	8/5/2024	5.00	20.0	_
Architectural Coating	Architectural Coating	6/11/2024	8/5/2024	5.00	40.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Site Preparation	Crawler Tractors	Diesel	Average	4.00	8.00	87.0	0.43
Grading	Crawler Tractors	Diesel	Average	2.00	8.00	87.0	0.43
Building Construction	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation				Verificie IVIIX
	Wadaa	_	40.5	- LDA LDTA LDTO
Site Preparation	Worker	18.0	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	3.00	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	0.00	0.00	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	7.00	10.2	ННОТ,МНОТ
Grading	Hauling	42.0	20.0	HHDT
Grading	Onsite truck	0.00	0.00	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	117	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	37.0	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	0.00	0.00	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	0.00	10.2	ннот,мнот
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	0.00	0.00	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	23.0	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	0.00	10.2	HHDT,MHDT

Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	0.00	0.00	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	427,392	142,464	14,700

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	35.0	0.00	_
Grading	10,100	0.00	120	0.00	_
Paving	0.00	0.00	0.00	0.00	5.36

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Edita 000	Trica ravea (acres)	70 / Opridit

Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	2.02	100%
Other Asphalt Surfaces	3.34	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

	(ne, iiii)			
Year	kWh per Year	CO2	CH4	N2O
2023	0.00	532	0.03	< 0.005
2024	0.00	532	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
vegetation Earla God Type	vegetation con Type	Third 7 to 60	That 7 to co

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A

Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator Result for Project Census Tract

Exposure Indicators	-
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6
Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	_
Auto Access	49.51879892
Active commuting	15.06480175
Social	_
2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	_

Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0

Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD PROJECT REGIONAL OPERATIONAL EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Operations) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Operations)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
User Defined Industrial	278	User Defined Unit	0.00	0.00	0.00	0.00	_	_

Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_
Other Asphalt Surfaces	145	1000sqft	3.34	0.00	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.79	10.9	9.33	43.8	0.13	0.16	3.26	3.43	0.16	0.62	0.78	264	15,058	15,321	27.2	1.54	326	16,785
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	2.54	8.86	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	264	14,518	14,782	27.2	1.55	284	16,205
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	3.32	9.63	7.28	28.0	0.09	0.12	2.39	2.50	0.12	0.45	0.57	264	11,162	11,426	27.1	1.22	297	12,763
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.61	1.76	1.33	5.11	0.02	0.02	0.44	0.46	0.02	0.08	0.10	43.6	1,848	1,892	4.48	0.20	49.1	2,113

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.64	2.27	9.23	31.7	0.13	0.15	3.26	3.41	0.14	0.62	0.76	_	13,291	13,291	0.33	1.21	43.1	13,705
Area	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	<u> </u>	_	_	_	_	<u> </u>	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	4.79	10.9	9.33	43.8	0.13	0.16	3.26	3.43	0.16	0.62	0.78	264	15,058	15,321	27.2	1.54	326	16,785
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.54	2.16	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	_	12,801	12,801	0.34	1.23	1.12	13,176
Area	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	2.54	8.86	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	264	14,518	14,782	27.2	1.55	284	16,205
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.85	1.57	7.21	19.7	0.09	0.11	2.39	2.49	0.10	0.45	0.55	_	9,411	9,411	0.25	0.90	13.6	9,699
Area	1.47	8.06	0.07	8.27	< 0.005	0.01	_	0.01	0.01	_	0.01	_	34.0	34.0	< 0.005	< 0.005	_	35.0
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283

Total	3.32	9.63	7.28	28.0	0.09	0.12	2.39	2.50	0.12	0.45	0.57	264	11,162	11,426	27.1	1.22	297	12,763
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.34	0.29	1.32	3.60	0.02	0.02	0.44	0.45	0.02	0.08	0.10	_	1,558	1,558	0.04	0.15	2.25	1,606
Area	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	214	214	0.02	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
Waste	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8
Total	0.61	1.76	1.33	5.11	0.02	0.02	0.44	0.46	0.02	0.08	0.10	43.6	1,848	1,892	4.48	0.20	49.1	2,113

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	2.33	2.10	1.47	29.6	0.06	0.03	0.29	0.32	0.03	0.09	0.11		6,337	6,337	0.20	0.15	25.2	6,411
User Defined Industrial	0.31	0.16	7.76	2.13	0.06	0.12	0.49	0.61	0.11	0.16	0.27	_	6,954	6,954	0.13	1.07	17.9	7,294
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.64	2.27	9.23	31.7	0.13	0.15	0.78	0.92	0.14	0.24	0.38	_	13,291	13,291	0.33	1.21	43.1	13,705
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	2.23	2.00	1.63	23.8	0.06	0.03	0.29	0.32	0.03	0.09	0.11	_	5,844	5,844	0.21	0.16	0.65	5,897
User Defined Industrial	0.30	0.16	8.10	2.15	0.06	0.12	0.49	0.61	0.11	0.16	0.27	-	6,957	6,957	0.13	1.07	0.46	7,279
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.54	2.16	9.74	26.0	0.12	0.15	0.78	0.92	0.14	0.24	0.38	_	12,801	12,801	0.34	1.23	1.12	13,176
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.30	0.27	0.22	3.32	0.01	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	716	716	0.03	0.02	1.32	724
User Defined Industrial	0.04	0.02	1.09	0.28	0.01	0.02	0.07	0.08	0.02	0.02	0.04	-	842	842	0.02	0.13	0.94	882
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.34	0.29	1.32	3.60	0.02	0.02	0.10	0.12	0.02	0.03	0.05		1,558	1,558	0.04	0.15	2.25	1,606

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land	TOG	ROG	NOx	CO	SO2	PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		
Daily, Summer (Max)	_	_	_			_	_	_	_	_	_			_		_		_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,294	1,294	0.12	0.01	_	1,301
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_		_	_	1,294	1,294	0.12	0.01	_	1,301
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	_	_	_	_	_	_	202	202	0.02	< 0.005	_	203
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	12.2	12.2	< 0.005	< 0.005	_	12.3
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	-	_	_	_	_	_	_	_	_	214	214	0.02	< 0.005	_	215

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

										_	_							
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	2.15	1.98	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Total	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.09	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.27	0.25	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Total	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	-	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	_	_	_	-	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	-	_	_	-	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	-	_	_	-	_	_	_	-	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_		_	_	-	_	_	_	_	_	-	_	_	-	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	-	_	_	-	_	_	_	_	_	-	_	_	-	46.8	46.8
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																		
Туре																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n		ROG							PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_		_		_	_	_	_	_	_	_		_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	_	_
iotai																

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_		_	_	_	_		_	_		_	_	_	_	_
_	_	_	_	_		_	_	_	_	_	<u> </u>	_		_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	486	41.1	16.5	129,712	8,497	719	288	2,267,884
User Defined Industrial	106	8.97	3.58	28,292	2,219	188	75.0	592,254
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	426,865	142,288	13,998

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	1,277,512	349	0.0330	0.0040	0.00
User Defined Industrial	0.00	349	0.0330	0.0040	0.00
Parking Lot	77,080	349	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	64,189,912	1,109,599
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	261	0.00
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Unrefrigerated Warehouse-No Rail	Cold storage	User Defined	150	7.50	7.50	7.50	25.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor	Factor
--	--------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
- qa.po , p o				110010 por 1001		

5.16.2. Process Boilers

Equipment Type F	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
------------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full

day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A

Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6

Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	
Auto Access	49.51879892
Active commuting	15.06480175
Social	

2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	
Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9

II. AAN LEDAL : :	
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0
Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113
Operations: Vehicle Data	Trip characteristics based on information provided in the Traffic analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis
Operations: Energy Use	The Project will not use natural gas

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022
promoted from difficing reingerants with a GWF of 150 of greater as of 1 Jan 2022

This page intentionally left blank

APPENDIX 3.3:

CALEEMOD PROJECT LOCALIZED OPERATIONAL EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Localized Operations) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Localized Operations)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
User Defined Industrial	278	User Defined Unit	0.00	0.00	0.00	0.00	_	_

Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_
Other Asphalt Surfaces	145	1000sqft	3.34	0.00	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

				٠, ,	_				J,			_				_		_
Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Unmit.	3.72	10.2	1.80	16.7	0.01	0.02	0.09	0.11	0.03	0.02	0.04	264	2,328	2,592	26.9	0.41	284	3,672
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.48	8.10	1.79	5.03	0.01	0.01	0.09	0.10	0.01	0.02	0.02	264	2,268	2,532	27.0	0.41	283	3,610
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	2.54	9.07	1.36	12.0	< 0.005	0.02	0.06	0.08	0.02	0.01	0.03	264	2,154	2,418	26.9	0.39	283	3,490
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Unmit.	0.46	1.65	0.25	2.18	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	0.01	43.6	357	400	4.46	0.06	46.9	578

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_
Mobile	1.57	1.49	1.70	4.64	0.01	0.01	0.09	0.09	0.01	0.02	0.02	_	562	562	0.11	0.09	1.15	591
Area	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	283	283
Total	3.72	10.2	1.80	16.7	0.01	0.02	0.09	0.11	0.03	0.02	0.04	264	2,328	2,592	26.9	0.41	284	3,672
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Mobile	1.48	1.40	1.79	5.03	0.01	0.01	0.09	0.10	0.01	0.02	0.02	_	552	552	0.12	0.09	0.03	581
Area	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	1.48	8.10	1.79	5.03	0.01	0.01	0.09	0.10	0.01	0.02	0.02	264	2,268	2,532	27.0	0.41	283	3,610
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.07	1.01	1.29	3.71	< 0.005	< 0.005	0.06	0.07	< 0.005	0.01	0.02	_	404	404	0.09	0.06	0.36	425
Area	1.47	8.06	0.07	8.27	< 0.005	0.01	_	0.01	0.01	_	0.01	_	34.0	34.0	< 0.005	< 0.005	_	35.0
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283

Total	2.54	9.07	1.36	12.0	< 0.005	0.02	0.06	0.08	0.02	0.01	0.03	264	2,154	2,418	26.9	0.39	283	3,490
Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.20	0.18	0.23	0.68	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	66.8	66.8	0.01	0.01	0.06	70.4
Area	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	214	214	0.02	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
Waste	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8
Total	0.46	1.65	0.25	2.18	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	0.01	43.6	357	400	4.46	0.06	46.9	578

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	1.46	1.42	0.32	3.72	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	0.01		261	261	0.08	0.04	0.72	275
User Defined Industrial	0.11	0.07	1.38	0.91	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	0.01	_	301	301	0.04	0.05	0.43	316
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.57	1.49	1.70	4.64	0.01	0.01	0.02	0.03	0.01	0.01	0.01	_	562	562	0.11	0.09	1.15	591
Daily, Winter (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	1.38	1.34	0.34	4.08	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	0.01	_	248	248	0.09	0.04	0.02	262
User Defined Industrial	0.10	0.06	1.45	0.95	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	0.01	_	304	304	0.04	0.05	0.01	319
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.48	1.40	1.79	5.03	0.01	0.01	0.02	0.03	0.01	0.01	0.01	_	552	552	0.12	0.09	0.03	581
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.18	0.18	0.05	0.55	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	30.3	30.3	0.01	< 0.005	0.04	32.0
User Defined Industrial	0.01	0.01	0.19	0.12	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	36.6	36.6	< 0.005	0.01	0.02	38.4
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
														_			_	\rightarrow

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	-	-
Unrefrige rated Warehou se-No Rail			_	_	_		_	_			_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	-	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,294	1,294	0.12	0.01	_	1,301
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_			_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,294	1,294	0.12	0.01	_	1,301
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	202	202	0.02	< 0.005	_	203
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	-	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	12.2	12.2	< 0.005	< 0.005	-	12.3
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	214	214	0.02	< 0.005	_	215

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Daily, Winter (Max)	_	_	_	-	_	_	_	_	_	-	_	-	_	-	_	-	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	-	0.00	-	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	2.15	1.98	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Total	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.09	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.27	0.25	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Total	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_		_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_		_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	_	_	_	-	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	-	_	_	-	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	-	_	_	-	_	_	_	-	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_		_	_	-	_	_	_	_	_	-	_	_	-	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	-	_	_	-	_	_	_	_	_	-	_	_	-	46.8	46.8
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equi	pme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																			
Type	;																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

				<i>J</i> ,					<u>, , , , , , , , , , , , , , , , , , , </u>									
Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(<i>y</i> , (0, <i>y</i> .		· · · · · · · · · · · · · · · · · · ·		.,,	y ,		,							
Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	486	41.1	16.5	129,712	243	20.6	8.23	64,856
User Defined Industrial	106	8.97	3.58	28,292	53.0	4.48	1.79	14,146
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)		Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	426,865	142,288	13,998

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	1,277,512	349	0.0330	0.0040	0.00
User Defined Industrial	0.00	349	0.0330	0.0040	0.00
Parking Lot	77,080	349	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	64,189,912	1,109,599
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	261	0.00
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Unrefrigerated Warehouse-No Rail	Cold storage	User Defined	150	7.50	7.50	7.50	25.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor	Factor
--	--------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equip	pment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
	- 1	21					

5.16.2. Process Boilers

Equipment type If dei type India heat input (mimble)	Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
--	----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A

Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6

Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	_
Auto Access	49.51879892
Active commuting	15.06480175
Social	_

62.08135506
24.39368664
_
66.20043629
2.194276915
9.316052868
32.97831387
0.667265495
_
65.03272167
43.02579238
15.44976261
71.34607982
14.42320031
_
9.547029385
32.0
60.6
38.5
55.0
27.9
28.5
23.6
33.2
16.6
44.8
87.9

II. AAN LEDAL : :	
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0
Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

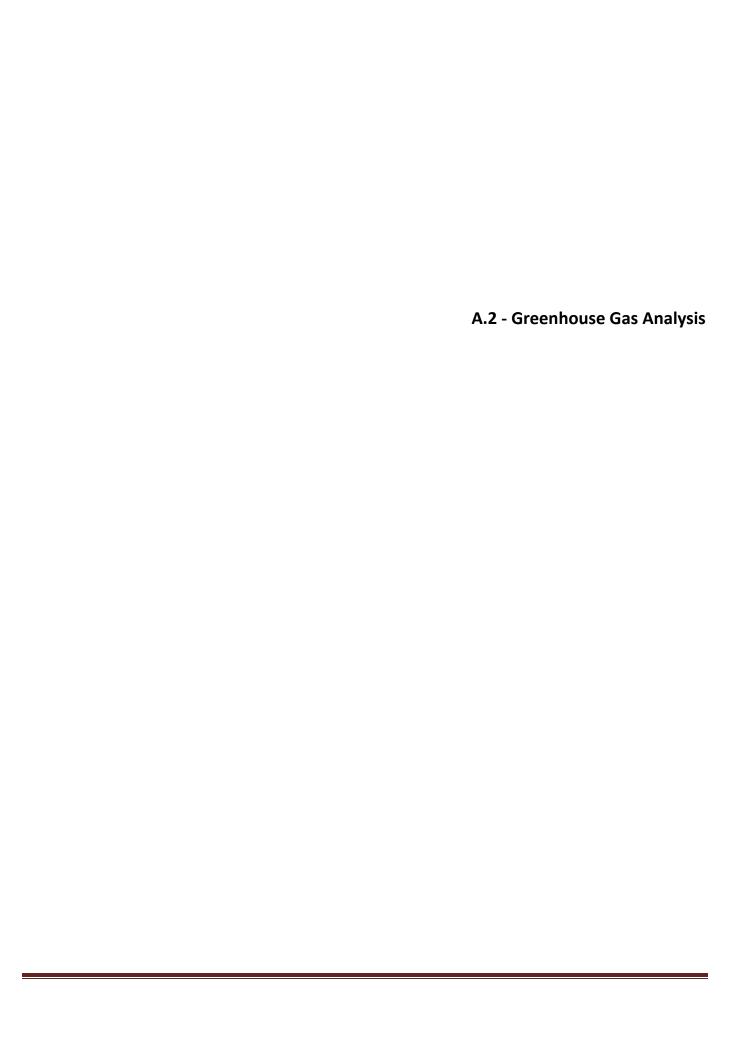
No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113
Operations: Vehicle Data	Trip characteristics based on information provided in the Traffic analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis
Operations: Energy Use	The Project will not use natural gas


b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

'	Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022
	promotied from dutilizing reinigerants with a GWF of 130 of greater as of 1 Jan 2022

This page intentionally left blank

Mapes & Sherman Commerce Center (DEV2022-003)

GREENHOUSE GAS ANALYSIS
CITY OF MENIFEE

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Alyssa Barnett abarnett@urbanxroads.com

DECEMBER 13, 2022

TABLE OF CONTENTS

T/	ABLE O	F CONTENTS	I
ΑI	PPEND	ICES II	
LIS	ST OF E	XHIBITS	II
		TABLES	
		ABBREVIATED TERMS	
EX	(ECUTI	VE SUMMARY	9
	ES.1	Summary of Findings	9
	ES.2	Project Requirements	
1	INT	roduction	12
	1.1	Site Location	12
	1.2	Project Description	12
2	CLI	MATE CHANGE SETTING	16
	2.1	Introduction to Global Climate Change (GCC)	16
	2.2	Global Climate Change Defined	
	2.3	GHGs	16
	2.4	Global Warming Potential	23
	2.5	GHG Emissions Inventories	23
	2.6	Effects of Climate Change in California	
	2.7	Regulatory Setting	26
3	PR	OJECT GHG IMPACT	48
	3.1	Introduction	48
	3.2	Standards of Significance	48
	3.3	Models Employed To Analyze GHGs	48
	3.4	Life-Cycle Analysis Not Required	
	3.5	Construction Emissions	
	3.6	Operational Emissions	
	3.7	GHG Emissions Findings and Recommendations	54
4	RE	FERENCES	62
5	CEI	RTIFICATIONS	67

APPENDICES

APPENDIX 3.1: CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS APPENDIX 3.2: CALEEMOD PROJECT OPERATIONAL EMISSIONS MODEL OUTPUTS

LIST OF EXHIBITS

EXHIBIT 1-A: LOCATION MAP EXHIBIT 1-B: SITE PLAN EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED WIT 1961-1990)	. 14 TH
EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED WIT	ТН
·	
=50= =500 j	
LIST OF TABLES	
TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	9
TABLE 2-1: GHGS	. 17
TABLE 2-2: GWP AND ATMOSPHERIC LIFETIME OF SELECT GHGS	.23
TABLE 2-3: TOP GHG PRODUCING COUNTRIES AND THE EUROPEAN UNION	.24
TABLE 3-1: CONSTRUCTION DURATION	.50
TABLE 3-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS	
TABLE 3-3: AMORTIZED ANNUAL CONSTRUCTION EMISSIONS	.51
TABLE 3-4: PASSENGER CAR FLEET MIX	
TABLE 3-5: TRUCK FLEET MIX	
TABLE 3-6: PROJECT GHG EMISSIONS	
TABLE 3-7: 2017 SCOPING PLAN CONSISTENCY SUMMARY	

LIST OF ABBREVIATED TERMS

% Percent

°C Degrees Celsius
°F Degrees Fahrenheit

(1) Reference

2017 Scoping Plan Final 2017 Scoping Plan Update

AB Assembly Bill

AB 32 Global Warming Solutions Act of 2006

AB 1493 Pavley Fuel Efficiency Standards

AB 1881 California Water Conservation Landscaping Act of 2006

Annex I Industrialized Nations

APA Administrative Procedure Act

AQIA Mapes & Sherman Commerce Center (DEV2022-003) Air

Quality Impact Analysis

BAU Business as Usual C_2F_6 Hexafluoroethane

C₂H₆ Ethane

C₂H₂F₄ Tetrafluroethane C₂H₄F₂ Ethylidene Fluoride CAA Federal Clean Air Act

CalEEMod California Emissions Estimator Model

CalEPA California Environmental Protection Agency

CAL FIRE California Department of Forestry and Fire Protection
CALGAPS California LBNL GHG Analysis of Policies Spreadsheet

CALGreen California Green Building Standards Code
CalSTA California State Transportation Agency
Caltrans California Department of Transportation

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resource Board

CBSC California Building Standards Commission

CEC California Energy Commission
CCR California Code of Regulations

CEQA California Environmental Quality Act
CEQA Guidelines 2019 CEQA Statute and Guidelines

CDFA California Department of Food and Agriculture

CFC Tetrafluoromethane
CFC Chlorofluorocarbons

CFC-113 Trichlorotrifluoroethane

CH₄ Methane

City City of Menifee

CNRA California Natural Resources Agency

CNRA 2009 2009 California Climate Adaptation Strategy

CO₂ Carbon Dioxide

CO₂e Carbon Dioxide Equivalent

Convention United Nation's Framework Convention on Climate Change

COP Conference of the Parties

CPUC California Public Utilities Commission
CTC California Transportation Commission

DOF Department of Finance

DWR Department of Water Resources

EMFAC Emission Factor Model

EPA Environmental Protection Agency

EV Electric Vehicle

FED Functional Equivalent Document

GCC Global Climate Change

Gg Gigagram

GHGA Greenhouse Gas Analysis

GO-Biz Governor's Office of Business and Economic Development

gpd Gallons Per Day gpm Gallons Per Minute

GWP Global Warming Potential

H₂O Water

HFC Hydrofluorocarbons
HDT Heavy-Duty Trucks

HFC-23 Fluoroform

HFC-134a 1,1,1,2-tetrafluoroethane

HFC-152a 1,1-difluoroethane

HHDT Heavy-Heavy-Duty Trucks

hp Horsepower I-15 Interstate 15

IBANK California Infrastructure and Economic Development Bank

IPCC Intergovernmental Panel on Climate Change

IRP Integrated Resource Planning
ISO Independent System Operator

ITE Institute of Transportation Engineers

kWh Kilowatt Hours

lbs Pounds

LBNL Lawrence Berkeley National Laboratory

LCA Life-Cycle Analysis
LCD Liquid Crystal Display

LCFS Low Carbon Fuel Standard or Executive Order S-01-07

LDA Light-Duty Auto
LDT1/LDT2 Light-Duty Trucks
LEV III Low-Emission Vehicle
LHDT1/LHDT2 Light-Heavy-Duty Trucks

LULUCF Land-Use, Land-Use Change and Forestry

MCA Municipal Code Amendment

MCY Motorcycles MD Medium Duty

MDT Medium-Duty Trucks
MDV Medium-Duty Vehicles
MHDT Medium-Heavy-Duty Tucks
MMR Mandatory Reporting Rule

MMTCO₂e Million Metric Ton of Carbon Dioxide Equivalent

mpg Miles Per Gallon

MPOs Metropolitan Planning Organizations

MMTCO₂e/yr Million Metric Ton of Carbon Dioxide Equivalent Per Year

MT/yr Metric Tons Per Year

MTCO₂e Metric Ton of Carbon Dioxide Equivalent

MTCO₂e/yr Metric Ton of Carbon Dioxide Equivalent Per Year

MW Megawatts

MWh Megawatts Per Hour

MWELO California Department of Water Resources' Model Water

Efficient

N₂O Nitrous Oxide

NDC Nationally Determined Contributions

NF₃ Nitrogen Trifluoride

NHTSA National Highway Traffic Safety Administration

NIOSH National Institute for Occupational Safety and Health

NO_X Nitrogen Oxides Non-Annex I Developing Nations

OAL Office of Administrative Law
OPR Office of Planning and Research

PFC Perfluorocarbons
ppb Parts Per Billion
ppm Parts Per Million
ppt Parts Per Trillion

Project Mapes & Sherman Commerce Center (DEV2022-003)

RTP Regional Transportation Plan

SAFE Safer Affordable Fuel-Efficient Vehicles Rule

SB Senate Bill

SB 32 California Global Warming Solutions Act of 2006

SB 375 Regional GHG Emissions Reduction Targets/Sustainable

Communities Strategies

SB 1078 Renewable Portfolio Standards

SB 1368 Statewide Retail Provider Emissions Performance

Standards

SCAB South Coast Air Basin

SCAG Southern California Association of Governments
SCAQMD South Coast Air Quality Management District

SCE Southern California Edison

Scoping Plan California Air Resources Board Climate Change Scoping Plan

SCS Sustainable Communities Strategy

sf Square Feet

SF₆ Sulfur Hexaflouride

SGC Strategic Growth Council
SHGC Solar Heat Gain Coefficient

SLPS Short-Lived Climate Pollutant Strategy

SP Service Population
SR-74 State Route 74

SWCRB State Water Resources Control Board
TDM Transportation Demand Measures
Title 20 Appliance Energy Efficiency Standards

Title 24 California Building Code

U.N. United Nations U.S. United States

UNFCCC United Nations' Framework Convention on Climate Change

URBEMIS Urban Emissions
UTR Utility Tractors

VFP Vehicle Fueling Positions
VMT Vehicle Miles Traveled

WCI Western Climate Initiative
WRI World Resources Institute
ZE/NZE Zero and Near-Zero Emissions
ZEV Zero-Emissions Vehicles

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Mapes & Sherman Commerce Center (DEV2022-003) Greenhouse Gas Analysis* (GHGA) is summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the *CEQA Guidelines* (*CEQA Guidelines*) (1). Table ES-1 shows the findings of GHG impacts under CEQA.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Analysis	Report	Significan	ce Findings
Analysis	Section	Unmitigated	Mitigated
GHG Impact #1: Would the Project generate GHG emissions either directly or indirectly, that may have a significant impact on the environment?	3.7	Less Than Significant	n/a
GHG Impact #2: Would the Project conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs?	3.7	Less Than Significant	n/a

ES.2 PROJECT REQUIREMENTS

The Project would be required to comply with regulations imposed by the State of California and the South Coast Air Quality Management District (SCAQMD) aimed at the reduction of air pollutant emissions. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of GHG emissions include:

- Global Warming Solutions Act of 2006 (Assembly Bill [AB] 32) (2).
- Regional GHG Emissions Reduction Targets/Sustainable Communities Strategies (Senate Bill [SB] 375) (3).
- Pavley Fuel Efficiency Standards (AB 1493). Establishes fuel efficiency ratings for new vehicles (4).
- California Building Code (Title 24 California Code of Regulations [CCR]). Establishes energy efficiency requirements for new construction (5).
- Appliance Energy Efficiency Standards (Title 20 CCR). Establishes energy efficiency requirements for appliances (6).
- Low Carbon Fuel Standard (LCFS). Requires carbon content of fuel sold in California to be 10 percent (%) less by 2020 (7).
- California Water Conservation in Landscaping Act of 2006 (AB 1881). Requires local agencies to adopt the Department of Water Resources updated Water Efficient Landscape Ordinance or

- equivalent to ensure efficient landscapes in new development and reduced water waste in existing landscapes (8).
- Statewide Retail Provider Emissions Performance Standards (SB 1368). Requires energy generators to achieve performance standards for GHG emissions (9).
- Renewable Portfolio Standards (SB 1078 also referred to as RPS). Requires electric corporations
 to increase the amount of energy obtained from eligible renewable energy resources to 20% by
 2010 and 33% by 2020 (10).
- California Global Warming Solutions Act of 2006 (SB 32). Requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive Order B-30-15 (11).
- SCAQMD Rule 2305. The SCAQMD adopted Rule 2305, the Warehouse Indirect Source Rule, on May 7, 2021. Owners and operators associated with warehouses 100,000 square feet (sf) or larger are required to directly reduce nitrogen oxides (NO_x) and particulate matter emissions, or to otherwise facilitate emission and exposure reductions of these pollutants in nearby communities.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the GHGA prepared by Urban Crossroads, Inc., for the proposed Mapes & Sherman Commerce Center (DEV2022-003) (Project). The purpose of this GHGA is to evaluate Project-related construction and operational emissions and determine the level of GHG impacts as a result of constructing and operating the Project.

1.1 SITE LOCATION

The proposed Project is located in the City of Menifee at the southwest corner of Sherman Road and Mapes Road, as shown on Exhibit 1-A. The City is surrounded by the City of Moreno Valley to the north, unincorporated Riverside County to the east, the City of Murrieta and unincorporated Riverside County to the south, and the Cities of Perris and Lake Elsinore to the west. Regional access to the site is provided via Interstate 215 (I-215) and State Route 74 (SR-74). Local access to the site is provided via Mapes Road and Sherman Avenue.

1.2 PROJECT DESCRIPTION

The Project is proposed to consist of the development of 277,578 sf of high-cube fulfillment center warehouse use within a single building. It is anticipated that the Project would operate seven days a week 24 hours a day and be developed in a single phase with an anticipated Opening Year of 2024. The site plan for the proposed Project is shown on Exhibit 1-B.

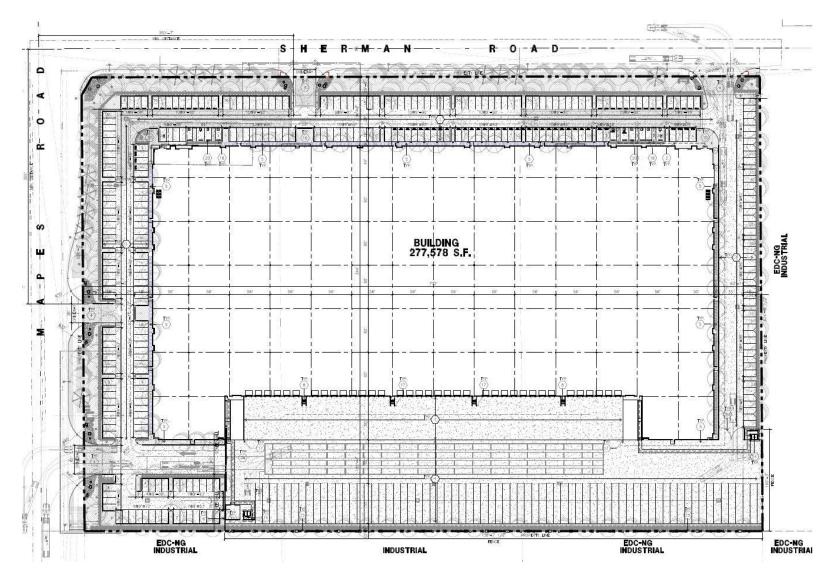

Wayne Ln White Marble Ct. Commander Ct Blue Topaz Dr. Ball Rd Mapes Rd Mapes Rd Work Site 1433 ft Blue Diamond Ln Baranı Rd Baroni Rd Watson Rd Watson Rd.

EXHIBIT 1-A: LOCATION MAP

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GERCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Radaster NL, Ordnance Survey, Esri, Igpan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS

EXHIBIT 1-B: SITE PLAN

This page intentionally left blank

2 CLIMATE CHANGE SETTING

2.1 Introduction to Global Climate Change (GCC)

GCC is defined as the change in average meteorological conditions on the earth with respect to temperature, precipitation, and storms. The majority of scientists believe that the climate shift taking place since the Industrial Revolution is occurring at a quicker rate and magnitude than in the past. Scientific evidence suggests that GCC is the result of increased concentrations of GHGs in the earth's atmosphere, including carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), and fluorinated gases. The majority of scientists believe that this increased rate of climate change is the result of GHGs resulting from human activity and industrialization over the past 200 years.

An individual project like the Project evaluated in this GHGA cannot generate enough GHG emissions to affect a discernible change in global climate. However, the Project may participate in the potential for GCC by its incremental contribution of GHGs combined with the cumulative increase of all other sources of GHGs, which when taken together constitute potential influences on GCC. Because these changes may have serious environmental consequences, Section 4.0 will evaluate the potential for the Project to have a significant effect upon the environment as a result of its potential contribution to the greenhouse effect.

2.2 GLOBAL CLIMATE CHANGE DEFINED

GCC refers to the change in average meteorological conditions on the earth with respect to temperature, wind patterns, precipitation, and storms. Global temperatures are regulated by naturally occurring atmospheric gases such as water vapor, CO_2 , N_2O , CH_4 , hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). These particular gases are important due to their residence time (duration they stay) in the atmosphere, which ranges from 10 years to more than 100 years. These gases allow solar radiation into the earth's atmosphere, but prevent radioactive heat from escaping, thus warming the earth's atmosphere. GCC can occur naturally as it has in the past with the previous ice ages.

Gases that trap heat in the atmosphere are often referred to as GHGs. GHGs are released into the atmosphere by both natural and anthropogenic activity. Without the natural GHG effect, the earth's average temperature would be approximately 61 degrees Fahrenheit (°F) cooler than it is currently. The cumulative accumulation of these gases in the earth's atmosphere is considered to be the cause for the observed increase in the earth's temperature.

2.3 GHGs

2.3.1 GHGS AND **HEALTH EFFECTS**

GHGs trap heat in the atmosphere, creating a GHG effect that results in global warming and climate change. Many gases demonstrate these properties and as discussed in Table 2-1. For the purposes of this analysis, emissions of CO₂, CH₄, and N₂O were evaluated (see Table 4-1 later in this report) because these gases are the primary contributors to GCC from development projects. Although there are other substances such as fluorinated gases that also contribute to GCC, these

fluorinated gases were not evaluated as their sources are not well-defined and do not contain accepted emissions factors or methodology to accurately calculate these gases.

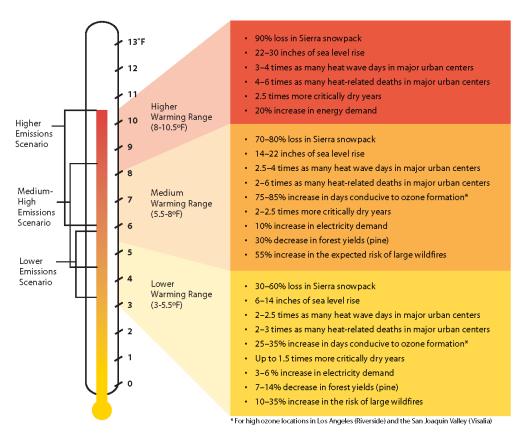
TABLE 2-1: GHGS

GHGs	Description	Sources	Health Effects
Water	Water is the most abundant,	The main source of	There are no known direct
	important, and variable GHG in	water vapor is	health effects related to
	the atmosphere. Water vapor is	evaporation from	water vapor at this time. It
	not considered a pollutant; in	the oceans	should be noted however
	the atmosphere it maintains a	(approximately	that when some pollutants
	climate necessary for life.	85%). Other sources	react with water vapor, the
	Changes in its concentration are	include evaporation	reaction forms a transport
	primarily considered to be a	from other water	mechanism for some of
	result of climate feedbacks	bodies, sublimation	these pollutants to enter the
	related to the warming of the	(change from solid to	human body through water
	atmosphere rather than a direct	gas) from sea ice and	vapor.
	result of industrialization.	snow, and	
	Climate feedback is an indirect,	transpiration from	
	or secondary, change, either	plant leaves.	
	positive or negative, that occurs		
	within the climate system in		
	response to a forcing		
	mechanism. The feedback loop		
	in which water is involved is		
	critically important to projecting		
	future climate change.		
	As the temperature of the		
	atmosphere rises, more water is		
	evaporated from ground storage		
	(rivers, oceans, reservoirs, soil).		
	Because the air is warmer, the		
	relative humidity can be higher		
	(in essence, the air is able to		
	'hold' more water when it is		
	warmer), leading to more water		
	vapor in the atmosphere. As a		
	GHG, the higher concentration of water vapor is then able to		
	absorb more thermal indirect		
	energy radiated from the Earth,		
	thus further warming the		
	atmosphere. The warmer		
	atmosphere can then hold more		
	water vapor and so on and so		
	on. This is referred to as a		
	"positive feedback loop." The		
	extent to which this positive		
	feedback loop would continue is		
	unknown as there are also		
	dynamics that hold the positive		

GHGs	Description	Sources	Health Effects
	feedback loop in check. As an example, when water vapor increases in the atmosphere, more of it would eventually condense into clouds, which are more able to reflect incoming solar radiation (thus allowing less energy to reach the earth's surface and heat it up) (12).		
CO ₂	CO ₂ is an odorless and colorless GHG. Since the industrial revolution began in the mid-1700s, the sort of human activity that increases GHG emissions has increased dramatically in scale and distribution. Data from the past 50 years suggests a corollary increase in levels and concentrations. As an example, prior to the industrial revolution, CO ₂ concentrations were fairly stable at 280 parts per million (ppm). Today, they are around 370 ppm, an increase of more than 30%. Left unchecked, the concentration of CO ₂ in the atmosphere is projected to increase to a minimum of 540 ppm by 2100 as a direct result of anthropogenic sources (13).	CO2 is emitted from natural and manmade sources. Natural sources include: the decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungus; evaporation from oceans; and volcanic outgassing. Anthropogenic sources include: the burning of coal, oil, natural gas, and wood. CO2 is naturally removed from the air by photosynthesis, dissolution into ocean water, transfer to soils and ice caps, and chemical weathering of carbonate rocks (14).	Outdoor levels of CO2 are not high enough to result in negative health effects. According to the National Institute for Occupational Safety and Health (NIOSH) high concentrations of CO2 can result in health effects such as: headaches, dizziness, restlessness, difficulty breathing, sweating, increased heart rate, increased cardiac output, increased blood pressure, coma, asphyxia, and/or convulsions. It should be noted that current concentrations of CO2 in the earth's atmosphere are estimated to be approximately 370 ppm, the actual reference exposure level (level at which adverse health effects typically occur) is at exposure levels of 5,000 ppm averaged over 10 hours in a 40-hour workweek and short-term reference exposure levels of 30,000 ppm averaged over a 15-minute period (15).

GHGs	Description	Sources	Health Effects
CH4	CH ₄ is an extremely effective absorber of radiation, although its atmospheric concentration is less than CO ₂ and its lifetime in the atmosphere is brief (10-12 years), compared to other GHGs.	CH4 in the atmosphere is generated by many different sources, such as fossil fuel production, transport, and use, from the decay of organic matter in wetlands, and as a byproduct of digestion by ruminant animals such as cows. Determining which specific sources are responsible for variations in annual increases of CH4 is complex, but scientists estimate that fossil fuel production and use contributes roughly 30% of the total CH4 emissions. These industrial sources of CH4 are relatively simple to pinpoint and control using current technology (16).	CH4 is extremely reactive with oxidizers, halogens, and other halogen-containing compounds. Exposure to elevated levels of CH4 can cause asphyxiation, loss of consciousness, headache and dizziness, nausea and vomiting, weakness, loss of coordination, and an increased breathing rate.
N ₂ O	N ₂ O, also known as laughing gas, is a colorless GHG. Concentrations of N ₂ O also began to rise at the beginning of the industrial revolution. In 1998, the global concentration was 314 parts per billion (ppb).	N ₂ O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions)	N ₂ O can cause dizziness, euphoria, and sometimes slight hallucinations. In small doses, it is considered harmless. However, in some cases, heavy and extended use can cause Olney's Lesions (brain damage) (17).

GHGs	Description	Sources	Health Effects
		also contribute to its	
		atmospheric load. It	
		is used as an aerosol	
		spray propellant, i.e.,	
		in whipped cream	
		bottles. It is also	
		used in potato chip	
		bags to keep chips	
		fresh. It is used in	
		rocket engines and	
		in race cars. N ₂ O can	
		be transported into	
		the stratosphere, be	
		deposited on the	
		earth's surface, and	
		be converted to	
		other compounds by	
		chemical reaction	
		(17).	
Chlorofluorocarbons	CFCs are gases formed	CFCs have no natural	In confined indoor locations,
(CFCs)	=	source. They are	working with CFC-113 or
(C) (C)	synthetically by replacing all	found in aerosol	other CFCs is thought to
	hydrogen atoms in CH ₄ or ethane	sprays, blowing	result in death by cardiac
	(C ₂ H ₆) with chlorine and/or	agents for foams,	arrhythmia (heart frequency
	fluorine atoms. CFCs are	and packing	too high or too low) or
	nontoxic, nonflammable,	materials, as	asphyxiation.
	insoluble and chemically	solvents, and as	. ,
	unreactive in the troposphere	refrigerants. (18).	
	(the level of air at the earth's		
	surface).		
	- Sarracej.		
HFCs	HECk are synthetic man made	HECe are manmade	No health offects are known
nrus	HFCs are synthetic, man-made chemicals that are used as a	HFCs are manmade for applications such	No health effects are known to result from exposure to
	substitute for CFCs. Out of all the	as automobile air	HFCs.
	GHGs, they are one of three	conditioners and	111 C3.
	groups with the highest global	refrigerants.	
	warming potential (GWP). The	. ciriberants.	
	HFCs with the largest measured		
	atmospheric abundances are (in		
	order), Fluoroform (HFC-23),		
	1,1,1,2-tetrafluoroethane (HFC-		
	134a), and 1,1-difluoroethane		
	(HFC-152a). Prior to 1990, the		
	only significant emissions were		
	of HFC-23. HCF-134a emissions		
	are increasing due to its use as a		
	refrigerant.		


GHGs	Description	Sources	Health Effects
PFCs	PFCs have stable molecular structures and do not break down through chemical processes in the lower atmosphere. High-energy ultraviolet rays, which occur about 60 kilometers above earth's surface, are able to destroy the compounds. Because of this, PFCs have exceptionally long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (CF4) and hexafluoroethane (C ₂ F ₆). The EPA estimates that concentrations of CF4 in the atmosphere are over 70 parts per trillion (ppt).	The two main sources of PFCs are primary aluminum production and semiconductor manufacture.	No health effects are known to result from exposure to PFCs.
SF ₆	SF ₆ is an inorganic, odorless, colorless, nontoxic, nonflammable gas. It also has the highest GWP of any gas evaluated (23,900) (19). The EPA indicates that concentrations in the 1990s were about 4 ppt.	SF ₆ is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.	In high concentrations in confined areas, the gas presents the hazard of suffocation because it displaces the oxygen needed for breathing.

GHGs	Description	Sources	Health Effects
Nitrogen Trifluoride (NF ₃)	NF ₃ is a colorless gas with a distinctly moldy odor. The World Resources Institute (WRI) indicates that NF ₃ has a 100-year GWP of 17,200 (20).	NF ₃ is used in industrial processes and is produced in the manufacturing of semiconductors, Liquid Crystal Display (LCD) panels, types of solar panels, and chemical lasers.	Long-term or repeated exposure may affect the liver and kidneys and may cause fluorosis (21).

The potential health effects related directly to the emissions of CO₂, CH₄, and N₂O as they relate to development projects such as the Project are still being debated in the scientific community. Their cumulative effects to GCC have the potential to cause adverse effects to human health. Increases in Earth's ambient temperatures would result in more intense heat waves, causing more heat-related deaths. Scientists also purport those higher ambient temperatures would increase disease survival rates and result in more widespread disease. Climate change would likely cause shifts in weather patterns, potentially resulting in devastating droughts and food shortages in some areas (22). Exhibit 2-A presents the potential impacts of global warming (23).

EXHIBIT 2-A: SUMMARY OF PROJECTED GLOBAL WARMING IMPACT, 2070-2099 (AS COMPARED WITH 1961-1990)

Source: Barbara H. Allen-Diaz. "Climate change affects us all." University of California, Agriculture and Natural Resources, 2009.

2.4 GLOBAL WARMING POTENTIAL

GHGs have varying GWP values. GWP of a GHG indicates the amount of warming a gas cause over a given period of time and represents the potential of a gas to trap heat in the atmosphere. CO_2 is utilized as the reference gas for GWP, and thus has a GWP of 1. CO_2 equivalent (CO_2 e) is a term used for describing the difference GHGs in a common unit. CO_2 e signifies the amount of CO_2 which would have the equivalent GWP.

The atmospheric lifetime and GWP of selected GHGs are summarized at Table 2-2. As shown in the table below, GWP for the 2^{nd} Assessment Report, the Intergovernmental Panel on Climate Change (IPCC)'s scientific and socio-economic assessment on climate change, range from 1 for CO_2 to 23,900 for SF_6 and GWP for the IPCC's 5^{th} Assessment Report range from 1 for CO_2 to 23,500 for SF_6 (24).

TABLE 2-2: GWP AND ATMOSPHERIC LIFETIME OF SELECT GHGS

Gas	Atmospheric Lifetime	ospheric Lifetime GWP (100-year time horizon	r time horizon)
Gas	(years)	2 nd Assessment Report	5 th Assessment Report
CO ₂	See*	1	1
CH ₄	12 .4	21	28
N ₂ O	121	310	265
HFC-23	222	11,700	12,400
HFC-134a	13.4	1,300	1,300
HFC-152a	1.5	140	138
SF ₆	3,200	23,900	23,500

^{*}As per Appendix 8.A. of IPCC's 5th Assessment Report, no single lifetime can be given.

Source: Table 2.14 of the IPCC Fourth Assessment Report, 2007

2.5 GHG EMISSIONS INVENTORIES

2.5.1 GLOBAL

Worldwide anthropogenic GHG emissions are tracked by the IPCC for industrialized nations (referred to as Annex I) and developing nations (referred to as Non-Annex I). Human GHG emissions data for Annex I nations are available through 2018. Based on the latest available data, the sum of these emissions totaled approximately 28,768,440 gigagram (Gg) CO_2e^1 (25) (26) as summarized on Table 2-3.

The global emissions are the sum of Annex I and non-Annex I countries, without counting Land-Use, Land-Use Change and Forestry (LULUCF). For countries without 2018 data, the United Nations' Framework Convention on Climate Change (UNFCCC) data for the most recent year were used U.N. Framework Convention on Climate Change, "Annex I Parties – GHG total without LULUCF," The most recent GHG emissions for China and India are from 2014 and 2010, respectively.

14804-03 GHG Report

2.5.2 UNITED STATES

As noted in Table 2-3, the United States, as a single country, was the number two producer of GHG emissions in 2018.

TABLE 2-3: TOP GHG PRODUCING COUNTRIES AND THE EUROPEAN UNION 2

Emitting Countries	GHG Emissions (Gg CO₂e)
China	12,300,200
United States	6,676,650
European Union (28-member countries)	4,232,274
Russian Federation	2,220,123
India	2,100,850
Japan	1,238,343
Total	28,768,440

2.5.3 STATE OF CALIFORNIA

California has significantly slowed the rate of growth of GHG emissions due to the implementation of energy efficiency programs as well as adoption of strict emission controls but is still a substantial contributor to the United States (U.S.) emissions inventory total (27). The California Air Resource Board (CARB) compiles GHG inventories for the State of California. Based upon the 2021 GHG inventory data (i.e., the latest year for which data are available) for the 2000-2019 GHG emissions period, California emitted an average 418.2 million metric tons of CO₂e per year (MMTCO₂e/yr) or 418,200 Gg CO₂e (6.26% of the total United States GHG emissions) (28).

2.6 EFFECTS OF CLIMATE CHANGE IN CALIFORNIA

2.6.1 PUBLIC HEALTH

Higher temperatures may increase the frequency, duration, and intensity of conditions conducive to air pollution formation. For example, days with weather conducive to ozone formation could increase from 25 to 35% under the lower warming range to 75 to 85% under the medium warming range. In addition, if global background ozone levels increase as predicted in some scenarios, it may become impossible to meet local air quality standards. Air quality could be further compromised by increases in wildfires, which emit fine particulate matter that can travel long distances, depending on wind conditions. Based on *Our Changing Climate Assessing the Risks to California by the California Climate Change Center*, large wildfires could become up to 55% more frequent if GHG emissions are not significantly reduced (29).

In addition, under the higher warming range scenario, there could be up to 100 more days per year with temperatures above 90°F in Los Angeles and 95°F in Sacramento by 2100. This is a

² Used https://unfccc.int data for Annex I countries. Consulted the CAIT Climate Data Explorer in https://www.climatewatchdata.org site to reference Non-Annex I countries of China and India.

significant increase over historical patterns and approximately twice the increase projected if temperatures remain within or below the lower warming range. Rising temperatures could increase the risk of death from dehydration, heat stroke/exhaustion, heart attack, stroke, and respiratory distress caused by extreme heat.

2.6.2 WATER RESOURCES

A vast network of man-made reservoirs and aqueducts captures and transports water throughout the state from northern California rivers and the Colorado River. The current distribution system relies on Sierra Nevada snowpack to supply water during the dry spring and summer months. Rising temperatures, potentially compounded by decreases in precipitation, could severely reduce spring snowpack, increasing the risk of summer water shortages.

If temperatures continue to increase, more precipitation could fall as rain instead of snow, and the snow that does fall could melt earlier, reducing the Sierra Nevada spring snowpack by as much as 70 to 90%. Under the lower warming range scenario, snowpack losses could be only half as large as those possible if temperatures were to rise to the higher warming range. How much snowpack could be lost depends in part on future precipitation patterns, the projections for which remain uncertain. However, even under the wetter climate projections, the loss of snowpack could pose challenges to water managers and hamper hydropower generation. It could also adversely affect winter tourism. Under the lower warming range, the ski season at lower elevations could be reduced by as much as a month. If temperatures reach the higher warming range and precipitation declines, there might be many years with insufficient snow for skiing and snowboarding.

The State's water supplies are also at risk from rising sea levels. An influx of saltwater could degrade California's estuaries, wetlands, and groundwater aquifers. Saltwater intrusion caused by rising sea levels is a major threat to the quality and reliability of water within the southern edge of the Sacramento/San Joaquin River Delta – a major fresh water supply.

2.6.3 AGRICULTURE

Increased temperatures could cause widespread changes to the agriculture industry reducing the quantity and quality of agricultural products statewide. First, California farmers could possibly lose as much as 25% of the water supply needed. Although higher CO₂ levels can stimulate plant production and increase plant water-use efficiency, California's farmers could face greater water demand for crops and a less reliable water supply as temperatures rise. Crop growth and development could change, as could the intensity and frequency of pest and disease outbreaks. Rising temperatures could aggravate ozone pollution, which makes plants more susceptible to disease and pests and interferes with plant growth.

Plant growth tends to be slow at low temperatures, increasing with rising temperatures up to a threshold. However, faster growth can result in less-than-optimal development for many crops, so rising temperatures could worsen the quantity and quality of yield for a number of California's agricultural products. Products likely to be most affected include wine grapes, fruits, and nuts.

In addition, continued GCC could shift the ranges of existing invasive plants and weeds and alter competition patterns with native plants. Range expansion could occur in many species while range contractions may be less likely in rapidly evolving species with significant populations already established. Should range contractions occur, new or different weed species could fill the emerging gaps. Continued GCC could alter the abundance and types of many pests, lengthen pests' breeding season, and increase pathogen growth rates.

2.6.4 FORESTS AND LANDSCAPES

GCC has the potential to intensify the current threat to forests and landscapes by increasing the risk of wildfire and altering the distribution and character of natural vegetation. If temperatures rise into the medium warming range, the risk of large wildfires in California could increase by as much as 55%, which is almost twice the increase expected if temperatures stay in the lower warming range. However, since wildfire risk is determined by a combination of factors, including precipitation, winds, temperature, and landscape and vegetation conditions, future risks would not be uniform throughout the state. In contrast, wildfires in northern California could increase by up to 90% due to decreased precipitation.

Moreover, continued GCC has the potential to alter natural ecosystems and biological diversity within the state. For example, alpine and subalpine ecosystems could decline by as much as 60 to 80% by the end of the century as a result of increasing temperatures. The productivity of the state's forests has the potential to decrease as a result of GCC.

2.6.5 RISING SEA LEVELS

Rising sea levels, more intense coastal storms, and warmer water temperatures could increasingly threaten the state's coastal regions. Under the higher warming range scenario, sea level is anticipated to rise 22 to 35 inches by 2100. Elevations of this magnitude would inundate low-lying coastal areas with saltwater, accelerate coastal erosion, threaten vital levees and inland water systems, and disrupt wetlands and natural habitats. Under the lower warming range scenario, sea level could rise 12-14 inches.

2.7 REGULATORY SETTING

2.7.1 INTERNATIONAL

Climate change is a global issue involving GHG emissions from all around the world; therefore, countries such as the ones discussed below have made an effort to reduce GHGs.

IPCC

In 1988, the United Nations (U.N.) and the World Meteorological Organization established the IPCC to assess the scientific, technical, and socioeconomic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts, and options for adaptation and mitigation.

United Nation's Framework Convention on Climate Change (UNFCCC)

On March 21, 1994, the U.S. joined a number of countries around the world in signing the Convention. Under the UNFCCC, governments gather and share information on GHG emissions, national policies, and best practices; launch national strategies for addressing GHG emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries; and cooperate in preparing for adaptation to the impacts of climate change.

INTERNATIONAL CLIMATE CHANGE TREATIES

The Kyoto Protocol is an international agreement linked to the UNFCCC. The major feature of the Kyoto Protocol is that it sets binding targets for 37 industrialized countries and the European community for reducing GHG emissions at an average of 5% against 1990 levels over the five-year period 2008–2012. The Convention (as discussed above) encouraged industrialized countries to stabilize emissions; however, the Protocol commits them to do so. Developed countries have contributed more emissions over the last 150 years; therefore, the Protocol places a heavier burden on developed nations under the principle of "common but differentiated responsibilities."

In 2001, President George W. Bush indicated that he would not submit the treaty to the U.S. Senate for ratification, which effectively ended American involvement in the Kyoto Protocol. In December 2009, international leaders met in Copenhagen to address the future of international climate change commitments post-Kyoto. No binding agreement was reached in Copenhagen; however, the UN Climate Change Committee identified the long-term goal of limiting the maximum global average temperature increase to no more than 2 degrees Celsius (°C) above preindustrial levels, subject to a review in 2015. The Committee held additional meetings in Durban, South Africa in November 2011; Doha, Qatar in November 2012; and Warsaw, Poland in November 2013. The meetings gradually gained consensus among participants on individual climate change issues.

On September 23, 2014, more than 100 Heads of State and Government and leaders from the private sector and civil society met at the Climate Summit in New York hosted by the U.N. At the Summit, heads of government, business and civil society announced actions in areas that would have the greatest impact on reducing emissions, including climate finance, energy, transport, industry, agriculture, cities, forests, and building resilience.

Parties to the UNFCCC reached a landmark agreement on December 12, 2015, in Paris, charting a fundamentally new course in the two-decade-old global climate effort. Culminating a four-year negotiating round, the new treaty ends the strict differentiation between developed and developing countries that characterized earlier efforts, replacing it with a common framework that commits all countries to put forward their best efforts and to strengthen them in the years ahead. This includes, for the first time, requirements that all parties report regularly on their emissions and implementation efforts and undergo international review.

The agreement and a companion decision by parties were the key outcomes of the conference, known as the 21st session of the UNFCCC Conference of the Parties (COP) 21. Together, the Paris Agreement and the accompanying COP decision:

- Reaffirm the goal of limiting global temperature increase well below 2°C, while urging efforts to limit the increase to 1.5 degrees;
- Establish binding commitments by all parties to make "nationally determined contributions" (NDCs), and to pursue domestic measures aimed at achieving them;
- Commit all countries to report regularly on their emissions and "progress made in implementing and achieving" their NDCs, and to undergo international review;
- Commit all countries to submit new NDCs every five years, with the clear expectation that they would "represent a progression" beyond previous ones;
- Reaffirm the binding obligations of developed countries under the UNFCCC to support the
 efforts of developing countries, while for the first time encouraging voluntary contributions
 by developing countries too;
- Extend the current goal of mobilizing \$100 billion a year in support by 2020 through 2025, with a new, higher goal to be set for the period after 2025;
- Extend a mechanism to address "loss and damage" resulting from climate change, which explicitly would not "involve or provide a basis for any liability or compensation;"
- Require parties engaging in international emissions trading to avoid "double counting;" and
- Call for a new mechanism, similar to the Clean Development Mechanism under the Kyoto Protocol, enabling emission reductions in one country to be counted toward another country's NDC (C2ES 2015a) (30).

Following President Biden's day one executive order, the United States officially rejoined the landmark Paris Agreement on February 19, 2021, positioning the country to once again be part of the global climate solution. Meanwhile, city, state, business, and civic leaders across the country and around the world have been ramping up efforts to drive the clean energy advances needed to meet the goals of the agreement and put the brakes on dangerous climate change.

2.7.2 NATIONAL

Prior to the last decade, there have been no concrete federal regulations of GHGs or major planning for climate change adaptation. The following are actions regarding the federal government, GHGs, and fuel efficiency.

GHG ENDANGERMENT

In Massachusetts v. Environmental Protection Agency 549 U.S. 497 (2007), decided on April 2, 2007, the United States Supreme Court (Supreme Court) found that four GHGs, including CO₂, are air pollutants subject to regulation under Section 202(a)(1) of the Clean Air Act (CAA). The Supreme Court held that the EPA Administrator must determine whether emissions of GHGs from new motor vehicles cause or contribute to air pollution, which may reasonably be anticipated to endanger public health or welfare, or whether the science is too uncertain to make a reasoned

decision. On December 7, 2009, the EPA Administrator signed two distinct findings regarding GHGs under section 202(a) of the CAA:

- Endangerment Finding: The Administrator finds that the current and projected concentrations of the six key well-mixed GHGs— CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆—in the atmosphere threaten the public health and welfare of current and future generations.
- Cause or Contribute Finding: The Administrator finds that the combined emissions of these well-mixed GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution, which threatens public health and welfare.

These findings do not impose requirements on industry or other entities. However, this was a prerequisite for implementing GHG emissions standards for vehicles, as discussed in the section "Clean Vehicles" below. After a lengthy legal challenge, the Supreme Court declined to review an Appeals Court ruling that upheld the EPA Administrator's findings (31).

CLEAN VEHICLES

Congress first passed the Corporate Average Fuel Economy law in 1975 to increase the fuel economy of cars and light duty trucks. The law has become more stringent over time. On May 19, 2009, President Obama put in motion a new national policy to increase fuel economy for all new cars and trucks sold in the U.S. On April 1, 2010, the EPA, and the Department of Transportation's National Highway Traffic Safety Administration (NHTSA) announced a joint final rule establishing a national program that would reduce GHG emissions and improve fuel economy for new cars and trucks sold in the U.S.

The first phase of the national program applies to passenger cars, light-duty trucks, and medium-duty (MD) passenger vehicles, covering model years 2012 through 2016. They require these vehicles to meet an estimated combined average emissions level of 250 grams of CO₂ per mile, equivalent to 35.5 miles per gallon (mpg) if the automobile industry were to meet this CO₂ level solely through fuel economy improvements. Together, these standards would cut CO₂ emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012–2016). The EPA and the NHTSA issued final rules on a second-phase joint rulemaking establishing national standards for light-duty vehicles for model years 2017 through 2025 in August 2012. The new standards for model years 2017 through 2025 apply to passenger cars, light-duty trucks, and MD passenger vehicles. The final standards are projected to result in an average industry fleetwide level of 163 grams/mile of CO₂ in model year 2025, which is equivalent to 54.5 mpg if achieved exclusively through fuel economy improvements.

The EPA and the U.S. Department of Transportation issued final rules for the first national standards to reduce GHG emissions and improve fuel efficiency of heavy-duty trucks (HDT) and buses on September 15, 2011, effective November 14, 2011. For combination tractors, the agencies are proposing engine and vehicle standards that begin in the 2014 model year and achieve up to a 20% reduction in CO_2 emissions and fuel consumption by the 2018 model year. For HDT and vans, the agencies are proposing separate gasoline and diesel truck standards, which phase in starting in the 2014 model year and achieve up to a 10% reduction for gasoline vehicles and a 15% reduction for diesel vehicles by the 2018 model year (12 and 17% respectively if

accounting for air conditioning leakage). Lastly, for vocational vehicles, the engine and vehicle standards would achieve up to a 10% reduction in fuel consumption and CO_2 emissions from the 2014 to 2018 model years.

On April 2, 2018, the EPA signed the Mid-term Evaluation Final Determination, which declared that the MY 2022-2025 GHG standards are not appropriate and should be revised (32). This Final Determination serves to initiate a notice to further consider appropriate standards for MY 2022-2025 light-duty vehicles. On August 2, 2018, the NHTSA in conjunction with the EPA, released a notice of proposed rulemaking, the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks (SAFE Vehicles Rule). The SAFE Vehicles Rule was proposed to amend existing Corporate Average Fuel Economy (CAFE) and tailpipe CO2 standards for passenger cars and light trucks and to establish new standards covering model years 2021 through 2026. As of March 31, 2020, the NHTSA and EPA finalized the SAFE Vehicle Rule which increased stringency of CAFE and CO₂ emissions standards by 1.5% each year through model year 2026 (33). On December 21, 2021, after reviewing all the public comments submitted on NHTSA's April 2021 Notice of Proposed Rulemaking, NHTSA finalizes the CAFE Preemption rulemaking to withdraw its portions of the so-called SAFE I Rule. The final rule concludes that the SAFE I Rule overstepped the agency's legal authority and established overly broad prohibitions that did not account for a variety of important state and local interests. The final rule ensures that the SAFE I Rule will no longer form an improper barrier to states exploring creative solutions to address their local communities' environmental and public health challenges (34).

On March 31, 2022, NHTSA finalized CAFE standards for MY 2024-2026. The standards for passenger cars and light trucks for MYs 2024-2025 were increased at a rate of 8% per year and then increased at a rate of 10% per year for MY 2026 vehicles. NHTSA currently projects that the revised standards would require an industry fleet-wide average of roughly 49 mpg in MY 2026 and would reduce average fuel outlays over the lifetimes of affected vehicles that provide consumers hundreds of dollars in net savings. These standards are directly responsive to the agency's statutory mandate to improve energy conservation and reduce the nation's energy dependence on foreign sources (35).

MANDATORY REPORTING OF GHGS

The Consolidated Appropriations Act of 2008, passed in December 2007, requires the establishment of mandatory GHG reporting requirements. On September 22, 2009, the EPA issued the Final Mandatory Reporting of GHGs Rule, which became effective January 1, 2010. The rule requires reporting of GHG emissions from large sources and suppliers in the U.S. and is intended to collect accurate and timely emissions data to inform future policy decisions. Under the rule, suppliers of fossil fuels or industrial GHGs, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons per year (MT/yr) or more of GHG emissions are required to submit annual reports to the EPA.

NEW SOURCE REVIEW

The EPA issued a final rule on May 13, 2010, that establishes thresholds for GHGs that define when permits under the New Source Review Prevention of Significant Deterioration and Title V

Operating Permit programs are required for new and existing industrial facilities. This final rule "tailors" the requirements of these CAA permitting programs to limit which facilities would be required to obtain Prevention of Significant Deterioration and Title V permits. In the preamble to the revisions to the Federal Code of Regulations, the EPA states:

"This rulemaking is necessary because without it the Prevention of Significant Deterioration and Title V requirements would apply, as of January 2, 2011, at the 100 or 250 tons per year levels provided under the CAA, greatly increasing the number of required permits, imposing undue costs on small sources, overwhelming the resources of permitting authorities, and severely impairing the functioning of the programs. EPA is relieving these resource burdens by phasing in the applicability of these programs to GHG sources, starting with the largest GHG emitters. This rule establishes two initial steps of the phase-in. The rule also commits the agency to take certain actions on future steps addressing smaller sources but excludes certain smaller sources from Prevention of Significant Deterioration and Title V permitting for GHG emissions until at least April 30, 2016."

The EPA estimates that facilities responsible for nearly 70% of the national GHG emissions from stationary sources would be subject to permitting requirements under this rule. This includes the nation's largest GHG emitters—power plants, refineries, and cement production facilities.

STANDARDS OF PERFORMANCE FOR GHG EMISSIONS FOR NEW STATIONARY SOURCES: ELECTRIC UTILITY GENERATING UNITS

As required by a settlement agreement, the EPA proposed new performance standards for emissions of CO₂ for new, affected, fossil fuel-fired electric utility generating units on March 27, 2012. New sources greater than 25 megawatts (MW) would be required to meet an output-based standard of 1,000 pounds (lbs) of CO₂ per MW-hour (MWh), based on the performance of widely used natural gas combined cycle technology. It should be noted that on February 9, 2016, the Supreme Court issued a stay of this regulation pending litigation. Additionally, the current EPA Administrator has also signed a measure to repeal the Clean Power Plan, including the CO₂ standards. The Clean Power Plan was officially repealed on June 19, 2019, when the EPA issued the final Affordable Clean Energy rule (ACE). Under ACE, new state-specific emission guidelines were established that provided existing coal-fired electric utility generating units with achievable standards.

On January 19, 2021, the D.C. Circuit Court of Appeals ruled that the EPA's ACE Rule for GHG emissions from power plants rested on an erroneous interpretation of the CAA that barred EPA from considering measures beyond those that apply at and to an individual source. The court therefore vacated and remanded the ACE Rule and adopted a replacement rule which regulates CO₂ emissions from existing power plants, potentially again considering generation shifting and other measures to more aggressively target power sector emissions.

CAP-AND-TRADE

Cap-and-trade refers to a policy tool where emissions are limited to a certain amount and can be traded or provides flexibility on how the emitter can comply. Successful examples in the U.S. include the Acid Rain Program and the N_2O Budget Trading Program and Clean Air Interstate Rule in the northeast. There is no federal GHG cap-and-trade program currently; however, some states have joined to create initiatives to provide a mechanism for cap-and-trade.

The Regional GHG Initiative is an effort to reduce GHGs among the states of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont. Each state caps CO₂ emissions from power plants, auctions CO₂ emission allowances, and invests the proceeds in strategic energy programs that further reduce emissions, save consumers money, create jobs, and build a clean energy economy. The Initiative began in 2008 and in 2020 has retained all participating states.

The Western Climate Initiative (WCI) partner jurisdictions have developed a comprehensive initiative to reduce regional GHG emissions to 15% below 2005 levels by 2020. The partners were originally California, British Columbia, Manitoba, Ontario, and Quebec. However, Manitoba and Ontario are not currently participating. California linked with Quebec's cap-and-trade system January 1, 2014, and joint offset auctions took place in 2015. While the WCI has yet to publish whether it has successfully reached the 2020 emissions goal initiative set in 2007, SB 32 requires that California, a major partner in the WCI, adopt the goal of reducing statewide GHG emissions to 40% below the 1990 level by 2030.

SMARTWAY PROGRAM

The SmartWay Program is a public-private initiative between the EPA, large and small trucking companies, rail carriers, logistics companies, commercial manufacturers, retailers, and other federal and state agencies. Its purpose is to improve fuel efficiency and the environmental performance (reduction of both GHG emissions and air pollution) of the goods movement supply chains. SmartWay is comprised of four components (36):

- 1. SmartWay Transport Partnership: A partnership in which freight carriers and shippers commit to benchmark operations, track fuel consumption, and improve performance annually.
- 2. SmartWay Technology Program: A testing, verification, and designation program to help freight companies identify equipment, technologies, and strategies that save fuel and lower emissions.
- 3. SmartWay Vehicles: A program that ranks light-duty cars and small trucks and identifies superior environmental performers with the SmartWay logo.
- 4. SmartWay International Interests: Guidance and resources for countries seeking to develop freight sustainability programs modeled after SmartWay.

SmartWay effectively refers to requirements geared towards reducing fuel consumption. Most large trucking fleets driving newer vehicles are compliant with SmartWay design requirements. Moreover, over time, all HDTs would have to comply with the CARB GHG Regulation that is designed with the SmartWay Program in mind, to reduce GHG emissions by making them more fuel-efficient. For instance, in 2015, 53 foot or longer dry vans or refrigerated trailers equipped

with a combination of SmartWay-verified low-rolling resistance tires and SmartWay-verified aerodynamic devices would obtain a total of 10% or more fuel savings over traditional trailers.

Through the SmartWay Technology Program, the EPA has evaluated the fuel saving benefits of various devices through grants, cooperative agreements, emissions, and fuel economy testing, demonstration projects and technical literature review. As a result, the EPA has determined the following types of technologies provide fuel saving and/or emission reducing benefits when used properly in their designed applications, and has verified certain products:

- Idle reduction technologies less idling of the engine when it is not needed would reduce fuel consumption.
- Aerodynamic technologies minimize drag and improve airflow over the entire tractor-trailer vehicle. Aerodynamic technologies include gap fairings that reduce turbulence between the tractor and trailer, side skirts that minimize wind under the trailer, and rear fairings that reduce turbulence and pressure drop at the rear of the trailer.
- Low rolling resistance tires can roll longer without slowing down, thereby reducing the amount of fuel used. Rolling resistance (or rolling friction or rolling drag) is the force resisting the motion when a tire rolls on a surface. The wheel would eventually slow down because of this resistance.
- Retrofit technologies include things such as diesel particulate filters, emissions upgrades (to a higher tier), etc., which would reduce emissions.
- Federal excise tax exemptions.

EXECUTIVE ORDER 13990

On January 20, 2021, Federal agencies were directed to immediately review, and take action to address, Federal regulations promulgated and other actions taken during the last 4 years that conflict with national objectives to improve public health and the environment; ensure access to clean air and water; limit exposure to dangerous chemicals and pesticides; hold polluters accountable, including those who disproportionately harm communities of color and low-income communities; reduce GHG emissions; bolster resilience to the impacts of climate change; restore and expand our national treasures and monuments; and prioritize both environmental justice and employment.

2.7.3 CALIFORNIA

2.7.3.1 LEGISLATIVE ACTIONS TO REDUCE GHGS

The State of California legislature has enacted a series of bills that constitute the most aggressive program to reduce GHGs of any state in the nation. Some legislation such as the landmark AB 32 was specifically enacted to address GHG emissions. Other legislation such as Title 24 and Title 20 energy standards were originally adopted for other purposes such as energy and water conservation, but also provide GHG reductions. This section describes the major provisions of the legislation.

AB 1881

The Water Conservation in Landscaping Act of 2006 requires local agencies to adopt the updated DWR model ordinance or equivalent. AB 1881 also requires the CEC to consult with the DWR to adopt, by regulation, performance standards and labeling requirements for landscape irrigation equipment, including irrigation controllers, moisture sensors, emission devices, and valves to reduce the wasteful, uneconomic, inefficient, or unnecessary consumption of energy or water.

SB 1368

California SB 1368 adds Sections 8340 and 8341 to the Public Utilities Code (effective January 1, 2007) with the intent "to prevent long-term investments in power plants with GHG emissions in excess of those produced by a combined-cycle natural gas power plant" with the aim of "reducing emissions of GHGs from the state's electricity consumption, not just the state's electricity production." SB 1368 provides a mechanism for reducing the GHG emissions of electricity providers, both in-state and out-of-state, thereby assisting CARB in meeting its mandate under AB 32, the Global Warming Solutions Act of 2006.

AB32

The California State Legislature enacted AB 32, which required that GHGs emitted in California be reduced to 1990 levels by the year 2020 (this goal has been met³). GHGs as defined under AB 32 include CO_2 , CH_4 , N_2O , HFCs, PFCs, and SF_6 . Since AB 32 was enacted, a seventh chemical, NF_3 , has also been added to the list of GHGs. CARB is the state agency charged with monitoring and regulating sources of GHGs. Pursuant to AB 32, CARB adopted regulations to achieve the maximum technologically feasible and cost-effective GHG emission reductions. AB 32 states the following:

"Global warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California. The potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious diseases, asthma, and other human health-related problems."

SB 375

On September 30, 2008, Governor Schwarzenegger signed SB 375. According to SB 375, the transportation sector is the largest contributor of GHG emissions, which emits over 40% of the total GHG emissions in California. SB 375 states, "Without improved land use and transportation policy, California would not be able to achieve the goals of AB 32." SB 375 does the following: it (1) requires metropolitan planning organizations (MPOs) to include sustainable community strategies in their

_

³ Based upon the 2019 GHG inventory data (i.e., the latest year for which data are available) for the 2000-2017 GHG emissions period, California emitted an average 424.1 MMTCO₂e (29). This is less than the 2020 emissions target of 431 MMTCO₂e.

regional transportation plans for reducing GHG emissions, (2) aligns planning for transportation and housing, and (3) creates specified incentives for the implementation of the strategies.

SB 375 requires MPOs to prepare a Sustainable Communities Strategy (SCS) within the Regional Transportation Plan (RTP) that guides growth while taking into account the transportation, housing, environmental, and economic needs of the region. SB 375 uses CEQA streamlining as an incentive to encourage residential projects, which help achieve AB 32 goals to reduce GHG emissions. Although SB 375 does not prevent CARB from adopting additional regulations, such actions are not anticipated in the foreseeable future.

Concerning CEQA, SB 375, as codified in Public Resources Code Section 21159.28, states that CEQA findings for certain projects are not required to reference, describe, or discuss (1) growth inducing impacts, or (2) any project-specific or cumulative impacts from cars and light-duty truck trips generated by the project on global warming or the regional transportation network, if the project:

- 1. Is in an area with an approved sustainable communities strategy or an alternative planning strategy that CARB accepts as achieving the GHG emission reduction targets.
- 2. Is consistent with that strategy (in designation, density, building intensity, and applicable policies).
- 3. Incorporates the MMs required by an applicable prior environmental document.

AB 1493 - Pavley Fuel Efficiency Standards

The second phase of the implementation for the Pavley bill was incorporated into Amendments to the Low-Emission Vehicle Program (LEV III) or the Advanced Clean Cars (ACC) program. The ACC program combines the control of smog-causing pollutants and GHG emissions into a single coordinated package of requirements for MY 2017 through 2025. The regulation will reduce GHGs from new cars by 34% from 2016 levels by 2025. The new rules will clean up gasoline and diesel-powered cars, and deliver increasing numbers of zero-emission technologies, such as full battery electric cars, newly emerging plug-in hybrid EV and hydrogen fuel cell cars. The package will also ensure adequate fueling infrastructure is available for the increasing numbers of hydrogen fuel cell vehicles planned for deployment in California. On March 9, EPA reinstated California's authority under the Clean Air Act to implement its own GHG emission standards for cars and light trucks, which other states can also adopt and enforce. With this authority restored, EPA will continue partnering with states to advance the next generation of clean vehicle technologies.

CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350)

In October 2015, the legislature approved, and Governor Jerry Brown signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the RPS, higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for EV charging stations. Provisions for a 50% reduction in the use of petroleum statewide were removed from the Bill because of opposition and concern that it would prevent the Bill's passage. Specifically, SB 350 requires the following to reduce statewide GHG emissions:

- Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027.
- Double the energy efficiency in existing buildings by 2030. This target would be achieved through the California Public Utilities Commission (CPUC), the California Energy Commission (CEC), and local publicly owned utilities.
- Reorganize the Independent System Operator (ISO) to develop more regional electrify transmission markets and to improve accessibility in these markets, which would facilitate the growth of renewable energy markets in the western United States.

SB 32

On September 8, 2016, Governor Brown signed SB 32 and its companion bill, AB 197. SB 32 requires the state to reduce statewide GHG emissions to 40% below 1990 levels by 2030, a reduction target that was first introduced in Executive Order B-30-15. The new legislation builds upon the AB 32 goal and provides an intermediate goal to achieving S-3-05, which sets a statewide GHG reduction target of 80% below 1990 levels by 2050. AB 197 creates a legislative committee to oversee regulators to ensure that CARB not only responds to the Governor, but also the Legislature (11).

CARB SCOPING PLAN UPDATE

In November 2017, CARB released the *Final 2017 Scoping Plan Update* (2017 Scoping Plan), which identifies the State's post-2020 reduction strategy. The 2017 Scoping Plan reflects the 2030 target of a 40% reduction below 1990 levels, set by Executive Order B-30-15 and codified by SB 32. Key programs that the proposed Second Update builds upon include the Cap-and-Trade Regulation, the LCFS, and much cleaner cars, trucks, and freight movement, utilizing cleaner, renewable energy, and strategies to reduce CH₄ emissions from agricultural and other wastes.

The 2017 Scoping Plan establishes a new emissions limit of 260 MMTCO₂e for the year 2030, which corresponds to a 40% decrease in 1990 levels by 2030 (37).

California's climate strategy would require contributions from all sectors of the economy, including the land base, and would include enhanced focus on zero and near-zero emission (ZE/NZE) vehicle technologies; continued investment in renewables, including solar roofs, wind, and other distributed generation; greater use of low carbon fuels; integrated land conservation and development strategies; coordinated efforts to reduce emissions of short-lived climate pollutants (CH₄, black carbon, and fluorinated gases); and an increased focus on integrated land use planning to support livable, transit-connected communities and conservation of agricultural and other lands. Requirements for direct GHG reductions at refineries would further support air quality co-benefits in neighborhoods, including in disadvantaged communities historically located adjacent to these large stationary sources, as well as efforts with California's local air pollution control and air quality management districts (air districts) to tighten emission limits on a broad spectrum of industrial sources. Major elements of the *2017 Scoping Plan* framework include:

• Implementing and/or increasing the standards of the Mobile Source Strategy, which include increasing zero-emission vehicles (ZEV) buses and trucks.

- LCFS, with an increased stringency (18% by 2030).
- Implementing SB 350, which expands the RPS to 50% RPS and doubles energy efficiency savings by 2030.
- California Sustainable Freight Action Plan, which improves freight system efficiency, utilizes near-zero emissions technology, and deployment of ZEV trucks.
- Implementing the proposed Short-Lived Climate Pollutant Strategy (SLPS), which focuses on reducing CH₄ and HCF emissions by 40% and anthropogenic black carbon emissions by 50% by year 2030.
- Continued implementation of SB 375.
- Post-2020 Cap-and-Trade Program that includes declining caps.
- 20% reduction in GHG emissions from refineries by 2030.
- Development of a Natural and Working Lands Action Plan to secure California's land base as a net carbon sink.

Note, however, that the 2017 Scoping Plan acknowledges that:

"[a]chieving net zero increases in GHG emissions, resulting in no contribution to GHG impacts, may not be feasible or appropriate for every project, however, and the inability of a project to mitigate its GHG emissions to net zero does not imply the project results in a substantial contribution to the cumulatively significant environmental impact of climate change under CEQA."

In addition to the statewide strategies listed above, the 2017 Scoping Plan also identifies local governments as essential partners in achieving the State's long-term GHG reduction goals and identifies local actions to reduce GHG emissions. As part of the recommended actions, CARB recommends that local governments achieve a community-wide goal to achieve emissions of no more than 6 metric tons of CO₂e (MTCO₂e) or less per capita by 2030 and 2 MTCO₂e or less per capita by 2050. For CEQA projects, CARB states that lead agencies may develop evidence-based bright-line numeric thresholds—consistent with the 2017 Scoping Plan and the State's long-term GHG goals—and projects with emissions over that amount may be required to incorporate onsite design features and MMs that avoid or minimize project emissions to the degree feasible; or a performance-based metric using a CAP or other plan to reduce GHG emissions is appropriate.

According to research conducted by the Lawrence Berkeley National Laboratory (LBNL) and supported by CARB, California, under its existing and proposed GHG reduction policies, could achieve the 2030 goals under SB 32. The research utilized a new, validated model known as the California LBNL GHG Analysis of Policies Spreadsheet (CALGAPS), which simulates GHG and criteria pollutant emissions in California from 2010 to 2050 in accordance to existing and future GHG-reducing policies. The CALGAPS model showed that by 2030, emissions could range from 211 to 428 MTCO₂e per year (MTCO₂e/yr), indicating that "even if all modeled policies are not implemented, reductions could be sufficient to reduce emissions 40% below the 1990 level [of SB 32]." CALGAPS analyzed emissions through 2050 even though it did not generally account for policies that might be put in place after 2030. Although the research indicated that the emissions

would not meet the State's 80% reduction goal by 2050, various combinations of policies could allow California's cumulative emissions to remain very low through 2050 (38) (39).

CAP-AND-TRADE PROGRAM

The 2017 Scoping Plan identifies a Cap-and-Trade Program as one of the key strategies for California to reduce GHG emissions. According to CARB, a cap-and-trade program would help put California on the path to meet its goal of achieving a 40% reduction in GHG emissions from 1990 levels by 2030. Under cap-and-trade, an overall limit on GHG emissions from capped sectors is established, and facilities subject to the cap would be able to trade permits to emit GHGs within the overall limit.

CARB adopted a California Cap-and-Trade Program pursuant to its authority under AB 32. The Cap-and-Trade Program is designed to reduce GHG emissions from regulated entities by more than 16% between 2013 and 2020, and by an additional 40% by 2030. The statewide cap for GHG emissions from the capped sectors (e.g., electricity generation, petroleum refining, and cement production) commenced in 2013 and would decline over time, achieving GHG emission reductions throughout the program's duration.

Covered entities that emit more than 25,000 MTCO₂e/yr must comply with the Cap-and-Trade Program. Triggering of the 25,000 MTCO₂e/yr "inclusion threshold" is measured against a subset of emissions reported and verified under the California Regulation for the Mandatory Reporting of GHG Emissions (Mandatory Reporting Rule or "MRR").

Under the Cap-and-Trade Program, CARB issues allowances equal to the total amount of allowable emissions over a given compliance period and distributes these to regulated entities. Covered entities are allocated free allowances in whole or part (if eligible), and may buy allowances at auction, purchase allowances from others, or purchase offset credits. Each covered entity with a compliance obligation is required to surrender "compliance instruments" for each MTCO₂e of GHG they emit. There also are requirements to surrender compliance instruments covering 30% of the prior year's compliance obligation by November of each year (40).

The Cap-and-Trade Program provides a firm cap, which provides the highest certainty of achieving the 2030 target. An inherent feature of the Cap-and-Trade program is that it does not guarantee GHG emissions reductions in any discrete location or by any particular source. Rather, GHG emissions reductions are only guaranteed on an accumulative basis. As summarized by CARB in the *First Update to the Climate Change Scoping Plan*:

"The Cap-and-Trade Regulation gives companies the flexibility to trade allowances with others or take steps to cost-effectively reduce emissions at their own facilities. Companies that emit more have to turn in more allowances or other compliance instruments. Companies that can cut their GHG emissions have to turn in fewer allowances. But as the cap declines, aggregate emissions must be reduced. In other words, a covered entity theoretically could increase its GHG emissions every year and still comply with the Cap-and-Trade Program if there is a reduction in GHG emissions from other covered entities. Such a focus on aggregate GHG emissions

is considered appropriate because climate change is a global phenomenon, and the effects of GHG emissions are considered cumulative." (41)

The Cap-and-Trade Program covers approximately 80% of California's GHG emissions (37). The Cap-and-Trade Program covers the GHG emissions associated with electricity consumed in California, whether generated in-state or imported. Accordingly, GHG emissions associated with CEQA projects' electricity usage are covered by the Cap-and-Trade Program. The Cap-and-Trade Program also covers fuel suppliers (natural gas and propane fuel providers and transportation fuel providers) to address emissions from such fuels and from combustion of other fossil fuels not directly covered at large sources in the Program's first compliance period. The Cap-and-Trade Program covers the GHG emissions associated with the combustion of transportation fuels in California, whether refined in-state or imported.

2.7.3.2 EXECUTIVE ORDERS RELATED TO GHG EMISSIONS

California's Executive Branch has taken several actions to reduce GHGs through the use of Executive Orders. Although not regulatory, they set the tone for the state and guide the actions of state agencies.

EXECUTIVE ORDER S-3-05

California Governor Arnold Schwarzenegger announced on June 1, 2005, through Executive Order S-3-05, the following reduction targets for GHG emissions:

- By 2010, reduce GHG emissions to 2000 levels.
- By 2020, reduce GHG emissions to 1990 levels.
- By 2050, reduce GHG emissions to 80% below 1990 levels.

The 2050 reduction goal represents what some scientists believe is necessary to reach levels that would stabilize the climate. The 2020 goal was established to be a mid-term target. Because this is an executive order, the goals are not legally enforceable for local governments or the private sector.

EXECUTIVE ORDER S-01-07 (LCFS)

Governor Schwarzenegger signed Executive Order S-01-07 on January 18, 2007. The order mandates that a statewide goal shall be established to reduce the carbon intensity of California's transportation fuels by at least 10% by 2020. CARB adopted the LCFS on April 23, 2009.

After a series of legal changes, in order to address the Court ruling, CARB was required to bring a new LCFS regulation to the Board for consideration in February 2015. The proposed LCFS regulation was required to contain revisions to the 2010 LCFS as well as new provisions designed to foster investments in the production of the low-carbon intensity fuels, offer additional flexibility to regulated parties, update critical technical information, simplify, and streamline program operations, and enhance enforcement. On November 16, 2015, the Office of Administrative Law (OAL) approved the Final Rulemaking Package. The new LCFS regulation became effective on January 1, 2016.

In 2018, CARB approved amendments to the regulation, which included strengthening the carbon intensity benchmarks through 2030 in compliance with the SB 32 GHG emissions reduction target for 2030. The amendments included crediting opportunities to promote zero emission vehicle adoption, alternative jet fuel, carbon capture and sequestration, and advanced technologies to achieve deep decarbonization in the transportation sector (42).

EXECUTIVE ORDER S-13-08

Executive Order S-13-08 states that "climate change in California during the next century is expected to shift precipitation patterns, accelerate sea level rise and increase temperatures, thereby posing a serious threat to California's economy, to the health and welfare of its population and to its natural resources." Pursuant to the requirements in the Order, the 2009 California Climate Adaptation Strategy (CNRA 2009) was adopted, which is the "...first statewide, multi-sector, region-specific, and information-based climate change adaptation strategy in the United States." Objectives include analyzing risks of climate change in California, identifying, and exploring strategies to adapt to climate change, and specifying a direction for future research.

EXECUTIVE ORDER B-30-15

On April 29, 2015, Governor Brown issued an executive order to establish a California GHG reduction target of 40% below 1990 levels by 2030. The Governor's executive order aligned California's GHG reduction targets with those of leading international governments ahead of the U.N. Climate Change Conference in Paris late 2015. The Order sets a new interim statewide GHG emission reduction target to reduce GHG emissions to 40% below 1990 levels by 2030 in order to ensure California meets its target of reducing GHG emissions to 80% below 1990 levels by 2050 and directs CARB to update the *2017 Scoping Plan* to express the 2030 target in terms of MMTCO₂e. The Order also requires the state's climate adaptation plan to be updated every three years, and for the State to continue its climate change research program, among other provisions. As with Executive Order S-3-05, this Order is not legally enforceable as to local governments and the private sector. Legislation that would update AB 32 to make post 2020 targets and requirements a mandate is in process in the State Legislature.

EXECUTIVE ORDER B-55-18 AND SB 100

SB 100 and Executive Order B-55-18 were signed by Governor Brown on September 10, 2018. Under the existing RPS, 25% of retail sales of electricity are required to be from renewable sources by December 31, 2016, 33% by December 31, 2020, 40% by December 31, 2024, 45% by December 31, 2027, and 50% by December 31, 2030. SB 100 raises California's RPS requirement to 50% renewable resources target by December 31, 2026, and to achieve a 60% target by December 31, 2030. SB 100 also requires that retail sellers and local publicly owned electric utilities procure a minimum quantity of electricity products from eligible renewable energy resources so that the total kilowatt hours (kWh) of those products sold to their retail end-use customers achieve 44% of retail sales by December 31, 2024, 52% by December 31, 2027, and 60% by December 31, 2030. In addition to targets under AB 32 and SB 32, Executive Order B-55-18 establishes a carbon neutrality goal for the state of California by 2045; and sets a goal to maintain net negative emissions thereafter. The Executive Order directs the California Natural

Resources Agency (CNRA), California EPA (CalEPA), the California Department of Food and Agriculture (CDFA), and CARB to include sequestration targets in the Natural and Working Lands Climate Change Implementation Plan consistent with the carbon neutrality goal.

2.7.3.3 CALIFORNIA REGULATIONS AND BUILDING CODES

California has a long history of adopting regulations to improve energy efficiency in new and remodeled buildings. These regulations have kept California's energy consumption relatively flat even with rapid population growth.

TITLE 20 CCR SECTIONS 1601 ET SEQ. — APPLIANCE EFFICIENCY REGULATIONS

The Appliance Efficiency Regulations regulate the sale of appliances in California. The Appliance Efficiency Regulations include standards for both federally regulated appliances and non-federally regulated appliances. 23 categories of appliances are included in the scope of these regulations. The standards within these regulations apply to appliances that are sold or offered for sale in California, except those sold wholesale in California for final retail sale outside the state and those designed and sold exclusively for use in recreational vehicles (RV) or other mobile equipment (CEC 2012).

TITLE 24 CCR PART 6 - CALIFORNIA ENERGY CODE

The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods.

TITLE 24 CCR PART 11 - CALIFORNIA GREEN BUILDING STANDARDS CODE

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission.

CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that will be effective on January 1, 2023. The CEC anticipates that the 2022 energy code will provide \$1.5 billion in consumer benefits and reduce GHG emissions by 10 million metric tons (43). The Project would be required to comply with the applicable standards in place at the time plan check submittals are made. These require, among other items (44):

NONRESIDENTIAL MANDATORY MEASURES

- Short-term bicycle parking. If the new project or an additional alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5% of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1.1).
- Long-term bicycle parking. For new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5% of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility (5.106.4.1.2).
- Designated parking for clean air vehicles. In new projects or additions to alterations that add 10 or more vehicular parking spaces, provide designated parking for any combination of low-emitting, fuel-efficient and carpool/van pool vehicles as shown in Table 5.106.5.2 (5.106.5.2).
- EV charging stations. New construction shall facilitate the future installation of EV supply equipment. The compliance requires empty raceways for future conduit and documentation that the electrical system has adequate capacity for the future load. The number of spaces to be provided for is contained in Table 5.106. 5.3.3 (5.106.5.3). Additionally, Table 5.106.5.4.1 specifies requirements for the installation of raceway conduit and panel power requirements for medium- and heavy-duty electric vehicle supply equipment for warehouses, grocery stores, and retail stores.
- Outdoor light pollution reduction. Outdoor lighting systems shall be designed to meet the backlight, uplight and glare ratings per Table 5.106.8 (5.106.8).
- Construction waste management. Recycle and/or salvage for reuse a minimum of 65% of the nonhazardous construction and demolition waste in accordance with Section 5.408.1.1. 5.405.1.2, or 5.408.1.3; or meet a local construction and demolition waste management ordinance, whichever is more stringent (5.408.1).
- Excavated soil and land clearing debris. 100% of trees, stumps, rocks and associated vegetation and soils resulting primarily from land clearing shall be reuse or recycled. For a phased project, such material may be stockpiled on site until the storage site is developed (5.408.3).
- Recycling by Occupants. Provide readily accessible areas that serve the entire building and are
 identified for the depositing, storage, and collection of non-hazardous materials for
 recycling, including (at a minimum) paper, corrugated cardboard, glass, plastics, organic
 waste, and metals or meet a lawfully enacted local recycling ordinance, if more restrictive
 (5.410.1).
- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following:
 - Water Closets. The effective flush volume of all water closets shall not exceed
 1.28 gallons per flush (5.303.3.1)
 - Urinals. The effective flush volume of wall-mounted urinals shall not exceed
 0.125 gallons per flush (5.303.3.2.1). The effective flush volume of floor- mounted or other urinals shall not exceed 0.5 gallons per flush (5.303.3.2.2).

- Showerheads. Single showerheads shall have a minimum flow rate of not more than 1.8 gallons per minute and 80 psi (5.303.3.3.1). When a shower is served by more than one showerhead, the combine flow rate of all showerheads and/or other shower outlets controlled by a single valve shall not exceed 1.8 gallons per minute at 80 psi (5.303.3.3.2).
- O Faucets and fountains. Nonresidential lavatory faucets shall have a maximum flow rate of not more than 0.5 gallons per minute at 60 psi (5.303.3.4.1). Kitchen faucets shall have a maximum flow rate of not more than 1.8 gallons per minute of 60 psi (5.303.3.4.2). Wash fountains shall have a maximum flow rate of not more than 1.8 gallons per minute (5.303.3.4.3). Metering faucets shall not deliver more than 0.20 gallons per cycle (5.303.3.4.4). Metering faucets for wash fountains shall have a maximum flow rate not more than 0.20 gallons per cycle (5.303.3.4.5).
- Outdoor potable water uses in landscaped areas. Nonresidential developments shall comply
 with a local water efficient landscape ordinance or the current California Department of
 Water Resources' Model Water Efficient Landscape Ordinance (MWELO), whichever is more
 stringent (5.304.1).
- Water meters. Separate submeters or metering devices shall be installed for new buildings or additions in excess of 50,000 sf or for excess consumption where any tenant within a new building or within an addition that is project to consume more than 1,000 gallons per day (GPD) (5.303.1.1 and 5.303.1.2).
- Outdoor water uses in rehabilitated landscape projects equal or greater than 2,500 sf. Rehabilitated landscape projects with an aggregate landscape area equal to or greater than 2,500 sf requiring a building or landscape permit (5.304.3).
- Commissioning. For new buildings 10,000 sf and over, building commissioning shall be included in the design and construction processes of the building project to verify that the building systems and components meet the owner's or owner representative's project requirements (5.410.2).

CARB REFRIGERANT MANAGEMENT PROGRAM

CARB adopted a regulation in 2009 to reduce refrigerant GHG emissions from stationary sources through refrigerant leak detection and monitoring, leak repair, system retirement and retrofitting, reporting and recordkeeping, and proper refrigerant cylinder use, sale, and disposal. The regulation is set forth in sections 95380 to 95398 of Title 17, CCR. The rules implementing the regulation establish a limit on statewide GHG emissions from stationary facilities with refrigeration systems with more than 50 pounds of a high GWP refrigerant. The refrigerant management program is designed to (1) reduce emissions of high-GWP GHG refrigerants from leaky stationary, non-residential refrigeration equipment; (2) reduce emissions from the installation and servicing of refrigeration and air-conditioning appliances using high-GWP refrigerants; and (3) verify GHG emission reductions.

TRACTOR-TRAILER GHG REGULATION

The tractors and trailers subject to this regulation must either use EPA SmartWay certified tractors and trailers or retrofit their existing fleet with SmartWay verified technologies. The regulation applies primarily to owners of 53-foot or longer box-type trailers, including both dryvan and refrigerated-van trailers, and owners of the HD tractors that pull them on California highways. These owners are responsible for replacing or retrofitting their affected vehicles with

compliant aerodynamic technologies and low rolling resistance tires. Sleeper cab tractors MY 2011 and later must be SmartWay certified. All other tractors must use SmartWay verified low rolling resistance tires. There are also requirements for trailers to have low rolling resistance tires and aerodynamic devices.

Phase I and 2 Heavy-Duty Vehicle GHG Standards

In September 2011, CARB has adopted a regulation for GHG emissions from HDTs and engines sold in California. It establishes GHG emission limits on truck and engine manufacturers and harmonizes with the EPA rule for new trucks and engines nationally. Existing HD vehicle regulations in California include engine criteria emission standards, tractor-trailer GHG requirements to implement SmartWay strategies (i.e., the Heavy-Duty Tractor-Trailer GHG Regulation), and in-use fleet retrofit requirements such as the Truck and Bus Regulation. The EPA rule has compliance requirements for new compression and spark ignition engines, as well as trucks from Class 2b through Class 8. Compliance requirements began with MY 2014 with stringency levels increasing through MY 2018. The rule organizes truck compliance into three groupings, which include a) HD pickups and vans; b) vocational vehicles; and c) combination tractors. The EPA rule does not regulate trailers.

CARB staff has worked jointly with the EPA and the NHTSA on the next phase of federal GHG emission standards for medium-duty trucks (MDT) and HDT vehicles, called federal Phase 2. The federal Phase 2 standards were built on the improvements in engine and vehicle efficiency required by the Phase 1 emission standards and represent a significant opportunity to achieve further GHG reductions for 2018 and later MY HDT vehicles, including trailers. The EPA and NHTSA have proposed to roll back GHG and fuel economy standards for cars and light-duty trucks, which suggests a similar rollback of Phase 2 standards for MDT and HDT vehicles may be pursued.

SB 97 AND THE CEQA GUIDELINES UPDATE

Passed in August 2007, SB 97 added Section 21083.05 to the Public Resources Code. The code states "(a) On or before July 1, 2009, the Office of Planning and Research (OPR) shall prepare, develop, and transmit to the Resources Agency guidelines for the mitigation of GHG emissions or the effects of GHG emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption. (b) On or before January 1, 2010, the Resources Agency shall certify and adopt guidelines prepared and developed by the OPR pursuant to subdivision (a)."

In 2012, Public Resources Code Section 21083.05 was amended to state:

"The Office of Planning and Research and the Natural Resources Agency shall periodically update the guidelines for the mitigation of greenhouse gas emissions or the effects of greenhouse gas emissions as required by this division, including, but not limited to, effects associated with transportation or energy consumption, to incorporate new information or criteria established by the State Air Resources Board pursuant to Division 25.5 (commencing with Section 38500) of the Health and Safety Code."

On December 28, 2018, the Natural Resources Agency announced the OAL approved the amendments to the *CEQA Guidelines* for implementing CEQA. The CEQA Amendments provide guidance to public agencies regarding the analysis and mitigation of the effects of GHG emissions in CEQA documents. The CEQA Amendments fit within the existing CEQA framework by amending existing *CEQA Guidelines* to reference climate change.

Section 15064.4 was added the *CEQA Guidelines* and states that in determining the significance of a project's GHG emissions, the lead agency should focus its analysis on the reasonably foreseeable incremental contribution of the project's emissions to the effects of climate change. A project's incremental contribution may be cumulatively considerable even if it appears relatively insignificant compared to statewide, national, or global emissions. The agency's analysis should consider a timeframe that is appropriate for the project. The agency's analysis also must reasonably reflect evolving scientific knowledge and state regulatory schemes. Additionally, a lead agency may use a model or methodology to estimate GHG emissions resulting from a project. The lead agency has discretion to select the model or methodology it considers most appropriate to enable decision makers to intelligently take into account the project's incremental contribution to climate change. The lead agency must support its selection of a model or methodology with substantial evidence. The lead agency should explain the limitations of the particular model or methodology selected for use (45).

2.7.4 REGIONAL

The project is within the SCAB, which is under the jurisdiction of the SCAQMD.

SCAQMD

SCAQMD is the agency responsible for air quality planning and regulation in the SCAB. The SCAQMD addresses the impacts to climate change of projects subject to SCAQMD permit as a lead agency if they are the only agency having discretionary approval for the project and acts as a responsible agency when a land use agency must also approve discretionary permits for the project. The SCAQMD acts as an expert commenting agency for impacts to air quality. This expertise carries over to GHG emissions, so the agency helps local land use agencies through the development of models and emission thresholds that can be used to address GHG emissions.

In 2008, SCAQMD formed a Working Group to identify GHG emissions thresholds for land use projects that could be used by local lead agencies in the SCAB. The Working Group developed several different options that are contained in the SCAQMD Draft Guidance Document – Interim CEQA GHG Significance Threshold, which could be applied by lead agencies. The working group has not provided additional guidance since release of the interim guidance in 2008. The SCAQMD Board has not approved the thresholds; however, the Guidance Document provides substantial evidence supporting the approaches to significance of GHG emissions that can be considered by the lead agency in adopting its own threshold. The current interim thresholds consist of the following tiered approach:

 Tier 1 consists of evaluating whether or not the project qualifies for any applicable exemption under CEQA.

- Tier 2 consists of determining whether the project is consistent with a GHG reduction plan.
 If a project is consistent with a qualifying local GHG reduction plan, it does not have significant GHG emissions.
- Tier 3 consists of screening values, which the lead agency can choose, but must be
 consistent with all projects within its jurisdiction. A project's construction emissions are
 averaged over 30 years and are added to the project's operational emissions. If a project's
 emissions are below one of the following screening thresholds, then the project is less than
 significant:
 - Residential and commercial land use: 3,000 MTCO₂e/yr
 - o Industrial land use: 10,000 MTCO₂e/yr
 - Based on land use type: residential: 3,500 MTCO₂e/yr; commercial: 1,400 MTCO₂e/yr; or mixed use: 3,000 MTCO₂e/yr
- Tier 4 has the following options:
 - Option 1: Reduce Business-as-Usual (BAU) emissions by a certain percentage; this percentage is currently undefined.
 - Option 2: Early implementation of applicable AB 32 Scoping Plan measures
 - Option 3: 2020 target for service populations (SP), which includes residents and employees: 4.8 MTCO₂e per SP per year for projects and 6.6 MTCO₂e per SP per year for plans;
 - Option 3, 2035 target: 3.0 MTCO₂e per SP per year for projects and 4.1 MTCO₂e per SP per year for plans
- Tier 5 involves mitigation offsets to achieve target significance threshold.

The SCAQMD's interim thresholds used the Executive Order S-3-05-year 2050 goal as the basis for the Tier 3 screening level. Achieving the Executive Order's objective would contribute to worldwide efforts to cap CO₂ concentrations at 450 ppm, thus stabilizing global climate.

SCAQMD only has authority over GHG emissions from development projects that include air quality permits. At this time, it is unknown if the project would include stationary sources of emissions subject to SCAQMD permits. Notwithstanding, if the Project requires a stationary permit, it would be subject to the applicable SCAQMD regulations.

SCAQMD Regulation XXVII, adopted in 2009 includes the following rules:

- Rule 2700 defines terms and post global warming potentials.
- Rule 2701, SoCal Climate Solutions Exchange, establishes a voluntary program to encourage, quantify, and certify voluntary, high quality certified GHG emission reductions in the SCAQMD.
- Rule 2702, GHG Reduction Program created a program to produce GHG emission reductions within the SCAQMD. The SCAQMD would fund projects through contracts in response to requests for proposals or purchase reductions from other parties.

This page intentionally left blank

3 PROJECT GHG IMPACT

3.1 Introduction

The Project has been evaluated to determine if it would result in a significant GHG impact. The significance of these potential impacts is described in the following sections.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related GHG impacts are taken from the Initial Study Checklist in Appendix G of the State *CEQA Guidelines* (14 CCR of Regulations §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to GHG if it would (46):

- Generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?
- Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of GHGs?

3.2.1 DISCUSSION ON ESTABLISHMENT OF SIGNIFICANCE THRESHOLDS

The SCAQMD's adopted numerical threshold of 10,000 MTCO₂e/yr for industrial stationary source emissions is typically selected as the significance criterion. However, the City has determined that the SCAQMD's draft threshold of 3,000 MTCO₂e/yr is more conservative and appropriate for industrial and warehouse land use development projects. The 3,000 MTCO₂e/yr threshold is based on the SCAQMD staff's proposed GHG screening threshold for stationary source emissions for non-industrial projects, as described in the SCAQMD Interim Thresholds. The SCAQMD Interim Threshold identifies a screening threshold to determine whether additional analysis is required.

3.3 Models Employed To Analyze GHGs

3.3.1 CALIFORNIA EMISSIONS ESTIMATOR MODEL (CALEEMOD)

In May 2022, the California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of CalEEMod Version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures (47). Accordingly, the latest version of CalEEMod has been used for this Project to determine GHG emissions. Output from the model runs for construction and operational activity are provided in Appendices 3.1 through 3.2. CalEEMod includes GHG emissions from the following source categories: construction, area, energy, mobile, waste, water.

3.4 LIFE-CYCLE ANALYSIS NOT REQUIRED

A full life-cycle analysis (LCA) for construction and operational activity is not included in this analysis due to the lack of consensus guidance on LCA methodology at this time (48). Life-cycle analysis (i.e., assessing economy-wide GHG emissions from the processes in manufacturing and transporting all raw materials used in the Project development, infrastructure, and on-going operations) depends on emission factors or econometric factors that are not well established for all processes. At this time, a LCA would be extremely speculative and thus has not been prepared.

Additionally, the SCAQMD recommends analyzing direct and indirect project GHG emissions generated within California and not life-cycle emissions because the life-cycle effects from a project could occur outside of California, might not be very well understood, or documented, and would be challenging to mitigate (49). Additionally, the science to calculate life cycle emissions is not yet established or well defined; therefore, SCAQMD has not recommended, and is not requiring, life-cycle emissions analysis.

3.5 CONSTRUCTION EMISSIONS

Project construction activities would generate CO₂ and CH₄ emissions The *Mapes & Sherman Commerce Center (DEV2022-003) Air Quality Impact Analysis* (AQIA) report contains detailed information regarding Project construction activities (50). As discussed in the AQIA, Construction related emissions are expected from the following construction activities:

- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

3.5.1 CONSTRUCTION DURATION

For purposes of analysis, construction of Project is expected to commence in July 2023 and would last through September 2024. The construction schedule utilized in the analysis, shown in Table 3-1, represents a "worst-case" analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent⁴. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (51).

_

⁴ As shown in the CalEEMod User's Guide Version 2022.1, Section 4.3 "Off-Road Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

TABLE 3-1: CONSTRUCTION DURATION

Construction Activity	Start Date	End Date	Working Days
Site Preparation	10/03/2023	10/16/2023	10
Grading	10/17/2023	11/27/2023	30
Building Construction	11/28/2023	08/05/2024	180
Paving	07/09/2024	08/05/2024	20
Architectural Coating	06/11/2024	08/05/2024	40

3.5.2 CONSTRUCTION EQUIPMENT

Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 3-2 will operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed pursuant to the code.

TABLE 3-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Construction Activity	Equipment	Amount	Hours Per Day
Cita Danasantina	Rubber Tired Dozers	3	8
Site Preparation	Crawler Tractors	4	8
	Graders	1	8
	Excavators	2	8
Grading	Scrapers	2	8
	Rubber Tired Dozers	1	8
	Crawler Tractors	2	8
	Forklifts	3	8
	Generator Sets	1	8
Building Construction	Cranes	1	8
	Welders	1	8
	Crawler Tractors	3	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

3.5.3 CONSTRUCTION EMISSIONS SUMMARY

For construction phase Project emissions, GHGs are quantified and amortized over the life of the Project. To amortize the emissions over the life of the Project, the SCAQMD recommends calculating the total GHG emissions for the construction activities, dividing it by a 30-year Project

life then adding that number to the annual operational phase GHG emissions (52). As such, construction emissions were amortized over a 30-year period and added to the annual operational phase GHG emissions. The amortized construction emissions are presented in Table 3-3.

TABLE 3-3: AMORTIZED ANNUAL CONSTRUCTION EMISSIONS

Year	Emissions (MT/yr)				
Teal	CO ₂	CH ₄	N₂O	Refrigerants	Total CO₂e ⁵
2023	227.00	0.01	0.01	0.10	230.00
2024	414.00	0.02	0.02	0.32	421.00
Total GHG Emissions	641.00	0.03	0.03	0.42	651.00
Amortized Construction Emissions	21.37	1.00E-03	1.00E-03	0.01	21.70

Source: CalEEMod annual construction-source emissions are presented in Appendix 3.1.

3.6 OPERATIONAL EMISSIONS

Operational activities associated with the Project would result in emissions of CO₂, CH₄, and N₂O from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions
- On-Site Cargo Handling Equipment Emissions
- Water Supply, Treatment, and Distribution
- Solid Waste

3.6.1 AREA SOURCE EMISSIONS

LANDSCAPE MAINTENANCE EQUIPMENT

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shedders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. It should be noted that as October 9, 2021, Governor Gavin Newsom signed AB 1346. The bill aims to ban the sale of new gasoline-powered equipment under 25 gross horsepower (known as small off-road engines [SOREs]) by 2024. For purposes of analysis, the emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod.

 $^{^{5}}$ CalEEMod reports the most common GHGs emitted which include CO₂, CH₄, and N₂O. These GHGs are then converted into the CO₂e by multiplying the individual GHG by the GWP.

14804-03 GHG Report

ACalEEMod reports the most common GHGs emitted which include CO₂, CH₄, and N₂O. These GHGs are then converted into the CO₂e by multiplying the individual GHG by the GWP.

3.6.2 ENERGY SOURCE EMISSIONS

COMBUSTION EMISSIONS ASSOCIATED WITH NATURAL GAS AND ELECTRICITY

GHGs are emitted from buildings as a result of activities for which electricity and natural gas are typically used as energy sources. Combustion of any type of fuel emits CO₂ and other GHGs directly into the atmosphere; these emissions are considered direct emissions associated with a building; the building energy use emissions do not include street lighting⁶. GHGs are also emitted during the generation of electricity from fossil fuels; these emissions are considered to be indirect emissions. Based on information provided by the Project applicant, the site is also not expected to utilize natural gas for the building envelope, and therefore would not generate any emissions from direct energy consumption. Electricity usage associated with the Project were calculated by CalEEMod using default parameters.

3.6.3 MOBILE SOURCE EMISSIONS

The Project related GHG emissions derive primarily from vehicle trips generated by the Project, including employee trips to and from the site and truck trips associated with the proposed uses. Trip characteristics available from the *Mapes & Sherman Commerce Center (DEV2022-003)Traffic Analysis* were utilized in this analysis (53).

APPROACH FOR ANALYSIS OF THE PROJECT

In order to determine emissions from passenger car vehicles, CalEEMod defaults for trip length and trip purpose were utilized. Default vehicle trip lengths for primary trips will be populated using data from the local metropolitan planning organizations/Regional Transportation Planning Agencies (MPO/RTPA). Trip type percentages and trip lengths provided by MPO/RTPAs truncate data at their demonstrative borders. This analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1⁷ & LDT2⁸), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. In order to account for emissions generated by passenger cars, the fleet mix in Table 3-4 was utilized.

TABLE 3-4: PASSENGER CAR FLEET MIX

l and like	% Vehicle Type				
Land Use	LDA	LDT1	LDT2	MDV	MCY
High-Cube Fulfillment	55.76%	4.52%	22.17%	15.30%	2.25%

Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, and MDV vehicle types.

OURBAN

14804-03 GHG Report

⁶ The CalEEMod emissions inventory model does not include indirect emission related to street lighting. Indirect emissions related to street lighting are expected to be negligible and cannot be accurately quantified at this time as there is insufficient information as to the number and type of street lighting that would occur.

⁷ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

 $^{^8}$ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

To determine emissions from trucks for the proposed industrial uses, the analysis incorporated the SCAQMD recommended truck trip length of 15.3 miles for 2-axle (LHDT1, LHDT2), 14.2 miles for 3-axle (MHDT) trucks, and 40 miles for 4+-axle (HHDT) trucks and weighting the average trip lengths using traffic trip percentages. The trip length function for the industrial uses have been revised to 34.44 miles for the high-cube fulfillment center use, respectively, an assumption of 100% primary trips for the proposed industrial land uses. Trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided by the SCAQMD recommended truck mix, by axle type. Heavy trucks are broken down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT19 & LHDT2 10)/2-axle, Medium-Heavy-Duty Trucks (MHDT)/3-axle, and Heavy-Heavy-Duty Trucks (HHDT)/4+-axle. To account for emissions generated by trucks, the fleet mix in Table 3-5 was utilized.

TABLE 3-5: TRUCK FLEET MIX

Lond Hea	% Vehicle Type			
Land Use	LHDT1	LHDT2	MHDT	HHDT
High-Cube Fulfillment	8.75%	2.47%	11.21%	77.57%

Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT1, LHDT2, MHDT, and HHDT) relative to the total number of truck trips.

3.6.4 On-Site Cargo Handling Equipment Emissions

It is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this particular Project, on-site modeled operational equipment includes up to three (3) 175 horsepower (hp), natural gas-powered cargo handling equipment – port tractor operating at 4 hours a day¹¹ for 365 days of the year.

3.6.5 WATER SUPPLY, TREATMENT AND DISTRIBUTION

Indirect GHG emissions result from the production of electricity used to convey, treat, and distribute water and wastewater. The amount of electricity required to convey, treat, and distribute water depends on the volume of water as well as the sources of the water. Unless otherwise noted, CalEEMod default parameters were used.

3.6.6 SOLID WASTE

Industrial land uses would result in the generation and disposal of solid waste. A percentage of this waste would be diverted from landfills by a variety of means, such as reducing the amount of waste generated, recycling, and/or composting. The remainder of the waste not diverted would be disposed of at a landfill. GHG emissions from landfills are associated with the anaerobic

¹¹ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

14804-03 GHG Report

 $^{^{9}}$ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs.

 $^{^{\}rm 10}$ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs.

breakdown of material. GHG emissions associated with the disposal of solid waste associated with the proposed Project were calculated by CalEEMod using default parameters.

3.6.7 EMISSIONS SUMMARY

The estimated Project-related GHG emissions are summarized on Table 3-6. Detailed operation model outputs for the Project are presented in Appendix 3.2. As shown in Table 3-6, construction and operation of the Project would generate a 2,420.94 MTCO₂e/yr.

TABLE 3-6: PROJECT GHG EMISSIONS

Emission Source	Emissions (MT/yr)				
Emission source	CO ₂	CH ₄	N₂O	Refrigerants	Total CO₂e
Annual construction-related emissions amortized over 30 years	21.37	1.00E-03	1.00E-03	0.01	21.70
Mobile Source	1,558.00	0.04	0.15	2.25	1,606.00
Area Source	5.63	0.00	0.00	0.00	5.79
Energy Source	214.00	0.02	0.00	0.00	215.00
Water Usage	90.40	2.09	0.05	0.00	158.00
Waste	23.30	2.33	0.00	0.00	81.50
Refrigerants	0.00	0.00	0.00	46.80	46.80
On-Site Equipment					286.15
Total CO₂e (All Sources)	2,420.94				

Source: CalEEMod output, See Appendix 3.2 for detailed model outputs.

3.7 GHG EMISSIONS FINDINGS AND RECOMMENDATIONS

3.7.1 **GHG IMPACT 1**

Potential to generate direct or indirect GHG emissions that would result in a significant impact on the environment.

A numerical threshold for determining the significance of GHG emissions in the SCAB has not been established by the SCAQMD for Projects where it is not the lead agency. As an interim threshold based on guidance provided in the CAPCOA CEQA and Climate Change handbook, the City has opted to use a non-zero threshold approach based on Approach 2 of the handbook. Threshold 2.5 (Unit-Based Thresholds Based on Market Capture) establishes a numerical threshold based on capture of approximately 90% of emissions from future development. The latest threshold developed by SCAQMD using this method is 3,000 MTCO₂e/yr for all projects (54).

The Project would result in approximately 814.94 MTCO₂e/yr from construction, area, energy, waste, and water usage. In addition, the Project has the potential to result in an additional 1,606.00 MTCO₂e/yr from mobile sources if the assumption is made that all of the vehicle trips to and from the Project are "new" trips resulting from the development of the Project. As such,

the Project has the potential to generate a total of approximately 2,420.94 MTCO₂e/yr. As such, the Project would not exceed the SCAQMD's numeric threshold of 3,000 MTCO₂e/yr if it were applied. Thus, the Project would not have the potential to result in a cumulatively considerable impact with respect to GHG emissions.

The Project would not have the potential to generate direct or indirect GHG emissions that would result in a significant impact on the environment.

3.7.2 **GHG IMPACT 2**

Potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs.

As previously stated, pursuant to 15604.4 of the *CEQA Guidelines*, a lead agency may rely on qualitative analysis or performance-based standards to determine the significance of impacts from GHG emissions (51). Project consistency with SB 32 (2017 Scoping Plan) is evaluated in the following discussion. Here, in order to provide a full disclosure of the Project's GHG impacts, both quantitative and qualitative analyses are employed.

SB 32/2017 Scoping Plan Consistency

The 2017 Scoping Plan Update reflects the 2030 target of a 40% reduction below 1990 levels, set by Executive Order B-30-15 and codified by SB 32. Table 3-7 summarizes the project's consistency with the 2017 Scoping Plan. As summarized, the project will not conflict with any of the provisions of the Scoping Plan and in fact supports seven of the action categories.

TABLE 3-7: 2017 SCOPING PLAN CONSISTENCY SUMMARY¹²

Action	Responsible Parties	Consistency				
Implement SB 350 by 2030						
Increase the Renewables Portfolio Standard to 50% of retail sales by 2030 and ensure grid reliability.	CPUC, CEC, CARB	Consistent. The Project would use energy from Southern California Edison (SCE). SCE has committed to diversify its portfolio of energy sources by increasing energy from wind and solar sources. The Project would not interfere with or obstruct SCE energy source diversification efforts.				
Establish annual targets for statewide energy efficiency savings and demand reduction that will achieve a cumulative doubling of statewide energy efficiency savings in electricity and natural gas end uses by 2030.		Consistent. The Project would be constructed in compliance with applicable California Building Code requirements. Specifically, new buildings must achieve compliance with the current Building and Energy Efficiency Standards and the				

¹² Source California Air Resources Board, California's 2017 Climate Change Scoping Plan, November 2017 and CARB, Climate Change Scoping Plan, December 2008.

14804-03 GHG Report

55

Action	Responsible Parties	Consistency
Reduce GHG emissions in the electricity sector through the implementation of the above measures and other actions as modeled in Integrated Resource Planning (IRP) to meet GHG emissions reductions planning targets in the IRP process. Loadserving entities and publicly- owned utilities meet GHG emissions reductions planning targets through a combination of measures as described in IRPs.		current California Green Building Standards requirements, or the applicable standards in place at the time building permit document submittals are made. The proposed Project includes energy efficient field lighting and fixtures that meet the current Title 24 Standards throughout the Project Site and would be a modern development with energy efficient boilers, heaters, and air conditioning systems.
Implement Mobile Source Strategy (Cleaner	Technology and Fuels)	
At least 1.5 million zero emission and plugin hybrid light-duty EVs by 2025.		Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB zero emission and plug-in hybrid light-duty EV 2025 targets. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy.
At least 4.2 million zero emission and plugin hybrid light-duty EVs by 2030.	CARB, California State Transportation Agency (CaISTA), Strategic Growth Council (SGC), California Department of Transportation	Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB zero emission and plug-in hybrid light-duty EV 2030 targets. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy.
Further increase GHG stringency on all light-duty vehicles beyond existing Advanced Clean cars regulations.	(Caltrans), CEC, OPR, Local Agencies	Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB efforts to further increase GHG stringency on all light-duty vehicles beyond existing Advanced Clean cars regulations. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy.
Medium- and Heavy-Duty GHG Phase 2.		Consistent. This is a CARB Mobile Source Strategy. The Project would not obstruct or interfere with CARB efforts to

Action	Responsible Parties	Consistency
		implement Medium- and Heavy-Duty GHG Phase 2. As this is a CARB enforced standard, vehicles that access the Project are required to comply with the standards and will therefore comply with the strategy.
Innovative Clean Transit: Transition to a suite of to-be-determined innovative clean transit options. Assumed 20% of new urban buses purchased beginning in 2018 will be zero emission buses with the penetration of zero-emission technology ramped up to 100% of new sales in 2030. Also, new natural gas buses, starting in 2018, and diesel buses, starting in 2020, meet the optional heavy-duty low-NO _X standard.		Consistent. The Project would not obstruct or interfere with agency efforts to transition to a suite of to-bedetermined innovative clean transit options.
Last Mile Delivery: New regulation that would result in the use of low NO _X or cleaner engines and the deployment of increasing numbers of zero-emission trucks primarily for class 3-7 last mile delivery trucks in California. This measure assumes ZEVs comprise 2.5% of new Class 3–7 truck sales in local fleets starting in 2020, increasing to 10% in 2025 and remaining flat through 2030.		Consistent. The Project would not obstruct or interfere with agency efforts to use low NO _x or cleaner engines or the deployment of increasing numbers of zero-emission trucks primarily for class 3-7 last mile delivery trucks in California.
Further reduce VMT through continued implementation of SB 375 and regional Sustainable Communities Strategies; forthcoming statewide implementation of SB 743; and potential additional VMT reduction strategies not specified in the Mobile Source Strategy but included in the document "Potential VMT Reduction Strategies for Discussion."		Consistent. This Project would not obstruct or interfere with implementation of SB 375 and would therefore not conflict with this measure.
Increase stringency of SB 375 Sustainable Communities Strategy (2035 targets).	CARB	Consistent. The Project would not obstruct or interfere with agency efforts to increase stringency of SB 375 Sustainable Communities Strategy.

Action	Responsible Parties	Consistency
Harmonize project performance with emissions reductions and increase competitiveness of transit and active transportation modes (e.g., via guideline documents, funding programs, project selection, etc.).	CalSTA, SGC, OPR, CARB, Governor's Office of Business and Economic Development (GO- Biz), California Infrastructure and Economic Development Bank (IBank), Department of Finance (DOF), California Transportation Commission (CTC), Caltrans	Consistent. The Project would not obstruct or interfere with agency efforts to harmonize transportation facility project performance with emissions reductions, increase competitiveness of transit and active transportation modes, implantation of sidewalks/Class I shared use trails, and bus stops.
By 2019, develop pricing policies to support low-GHG transportation (e.g., low-emission vehicle zones for heavy duty, road user, parking pricing, transit discounts).	CalSTA, Caltrans, CTC, OPR, SGC, CARB	Consistent. The Project would not obstruct or interfere with agency efforts to develop pricing policies to support low-GHG transportation.
Implement California Sustainable Freight Ac	tion Plan	
Improve freight system efficiency.	CalSTA, CalEPA, CNRA, CARB,	Consistent. This measure would apply to all trucks accessing the Project site, this may include existing trucks or new trucks that are part of the statewide goods movement sector. The Project would not obstruct or interfere with agency efforts to Improve freight system efficiency.
Deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030.	Caltrans, CEC, GO-Biz	Consistent. The Project would not obstruct or interfere with agency efforts to deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030.
Adopt a Low Carbon Fuel Standard with a Carbon Intensity reduction of 18%.	CARB	Consistent. When adopted, this measure would apply to all fuel purchased and used by the Project in the state. The

Action	Responsible Parties	Consistency
	·	Project would not obstruct or interfere with agency efforts to adopt a Low Carbon Fuel Standard with a Carbon Intensity reduction of 18%.
Implement the Short-Lived Climate Pollutan	t Strategy (SLPS) by 203	30
40% reduction in methane and hydrofluorocarbon emissions below 2013 levels.	CARB, CalRecycle, CDFA, California State	Consistent. The Project would not obstruct or interfere with agency efforts to reach a 40% reduction in methane and
50% reduction in black carbon emissions below 2013 levels.	Water Resource Control Board (SWRCB), Local Air Districts	hydrofluorocarbon emissions below 2013 levels or 50% reduction in black carbon emissions below 2013 levels.
By 2019, develop regulations and programs to support organic waste landfill reduction goals in the SLCP and SB 1383.	CARB, CalRecycle, CDFA, SWRCB, Local Air Districts	Consistent. The Project would not obstruct or interfere with agency efforts to develop regulations and programs to support organic waste landfill reduction goals in the SLCP and SB 1383.
Implement the post-2020 Cap-and-Trade Program with declining annual caps.	CARB	Consistent. Cap-and-Trade Program provisions do not apply to this Project. The Project would not obstruct or interfere agency efforts to implement the post-2020 Cap-and-Trade Program.
By 2018, develop Integrated Natural and Wo	orking Lands Implemen	tation Plan to secure California's land base
Protect land from conversion through conservation easements and other incentives.	CNRA, Departments Within CDFA, CalEPA, CARB	Consistent. The Project would not obstruct or interfere with agency efforts to protect land from conversion through conservation easements and other incentives. It should also be noted that the Project site is not an identified property that needs to be conserved.
Increase the long-term resilience of carbon storage in the land base and enhance sequestration capacity.		Consistent. The Project site is vacant disturbed property and does not comprise an area that would effectively provide for carbon sequestration. The Project would not obstruct or interfere agency efforts to increase the long-term resilience of carbon storage in the land base and enhance sequestration capacity.

Action	Responsible Parties	Consistency
Utilize wood and agricultural products to increase the amount of carbon stored in the natural and built environments.		Consistent. To the extent appropriate for the proposed buildings, wood products would be used in construction, including for the roof structure. Additionally, the proposed project includes landscaping, including.
Establish scenario projections to serve as the foundation for the Implementation Plan.		Consistent. The Project would not obstruct or interfere with agency efforts to establish scenario projections to serve as the foundation for the Implementation Plan.
Implement Forest Carbon Plan	CNRA, California Department of Forestry and Fire Protection (CAL FIRE), CalEPA and Departments Within	Consistent. The Project would not obstruct or interfere with agency efforts to implement Forest Carbon Plan.
Identify and expand funding and financing mechanisms to support GHG reductions across all sectors.	State Agencies & Local Agencies	Consistent. The Project would not obstruct or interfere with agency efforts to fund and finance mechanisms to support GHG reductions across all sectors.

As shown above, the Project would not conflict with any of the 2017 Scoping Plan elements as any regulations adopted would apply directly or indirectly to the Project. Further, recent studies show that the State's existing and proposed regulatory framework will allow the State to reduce its GHG emissions level to 40% below 1990 levels by 2030 (38).

The Project would not have the potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs.

This page intentionally left blank

4 REFERENCES

- 1. **State of California.** 2020 CEQA California Environmental Quality Act. 2020.
- 2. **Air Resources Board.** Assembly Bill 32: Global Warming Solutions Act. [Online] 2006. https://ww2.arb.ca.gov/resources/fact-sheets/ab-32-global-warming-solutions-act-2006.
- 3. —. Sustainable Communities. [Online] 2008. https://ww2.arb.ca.gov/our-work/programs/sustainable-communities-climate-protection-program/about.
- 4. —. Clean Car Standards Pavley, Assembly Bill 1493. [Online] September 24, 2009. http://www.arb.ca.gov/cc/ccms/ccms.htm.
- 5. **Building Standards Commission.** California Building Standards Code (Title 24, California Code of Regulations). [Online] http://www.bsc.ca.gov/codes.aspx.
- California Energy Commission. California Code of Regulations, TITLE 20, Division 2. [Online] September 3, 2013. https://www.energy.ca.gov/sites/default/files/2021-07/Title%2020%20Updated%20July%2023%2C%202021.pdf.
- 7. **Air Resources Board.** Title 17 California Code of Regulation. [Online] 2010. https://ww2.arb.ca.gov/sites/default/files/2020-09/basics-notes.pdf.
- 8. **Department of Water Resources.** Updated Model Water Efficient Landscape Ordinance AB 1881. [Online] 2006. [Cited: November 13, 2013.] https://water.ca.gov/Programs/Water-Use-And-Efficiency/Urban-Water-Use-Efficiency/Model-Water-Efficient-Landscape-Ordinance.
- 9. **California Energy Commission.** SB 1368 Emission Performance Standards. [Online] September 29, 2006. http://www.energy.ca.gov/emission_standards/.
- 10. —. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/.
- 11. **California Legislative Information.** Senate Bill No. 32. [Online] September 8, 2016. https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB32.
- 12. **National Environmental Education Foundation.** The Principal Greenhouse Gases and Their Sources. *National Environmental Education Foundation.* [Online] https://www.neefusa.org/weather-and-climate/climate-change/principal-greenhouse-gases-and-their-sources#WaterVapor.
- 13. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. International Panel on Climate Change. 4, 2007.
- 14. *The Carbon Cycle and Climate Change.* **Bennington, Bret J.** 1, s.l.: Brooks/Cole. ISBN 1 3: 978-0-495-73855-8.
- 15. **The National Institute for Occupational Safety and Health.** Carbon Dioxide. *Centers for Disease Control and Prevention.* [Online] https://www.cdc.gov/niosh/npg/npgd0103.html.
- 16. **National Oceanic and Atmospheric Administration.** Increase in atmospheric methane set another record during 2021. *National Oceanic and Atmospheric Administration*. [Online] https://www.noaa.gov/news-release/increase-in-atmospheric-methane-set-another-record-during-2021#:~:text=NOAA's%20preliminary%20analysis%20showed%20the,during%202020%20was%2015.3%20ppb..
- 17. World Resources Institute. Climate Analysis Indicator Tool (CAIT). [Online] http://cait.wri.org.
- 18. **National Oceanic and Atmospheric Administration.** CFCs and their substitutes in stratospheric ozone depletion. *National Oceanic and Atmospheric Administration*. [Online] https://gml.noaa.gov/hats/about/cfc.html.

- 19. **United States Environmental Protection Agency.** Regulation for Reducting Sulfur Hexafluoride Emissions from Gas Insulated Switchgear. *Environmental Protection Agency.* [Online] May 7, 2014. https://www.epa.gov/sites/production/files/2016-02/documents/mehl-arb-presentation-2014-wkshp.pdf.
- 20. **World Resources Institute.** Nitrogen Trifluoride Now Required in GHG Protocol Greenhouse Gas Emissions Inventory. [Online] May 22, 2013. https://www.wri.org/blog/2013/05/nitrogentrifluoride-now-required-ghg-protocol-greenhouse-gas-emissions-inventories.
- 21. **National Center for Biotechnology Information.** Nitrogen Trifluoride. *PubChem Compound Database*. [Online] https://pubchem.ncbi.nlm.nih.gov/compound/24553.
- 22. **American Lung Association.** Climate Change. [Online] http://www.lung.org/our-initiatives/healthy-air/outdoor/climate-change/.
- 23. **Barbara H. Allen-Diaz.** Climate change affects us all. *University of California Agriculture and Natural Resources*. [Online] April 1, 2009. http://calag.ucanr.edu/Archive/?article=ca.v063n02p51.
- 24. Intergovernmental Panel on Climate Change. Climate Change 2013 The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. AR5 Climate Change 2013: The Physical Science Basis. [Online] September 2013. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_all_final.pdf.
- 25. United Nations. GHG Profiles Annex I. [Online] http://di.unfccc.int/ghg profile annex1.
- 26. GHG Profiles Non-Annex I. [Online] http://di.unfccc.int/ghg profile non annex1.
- 27. World Resources Institute. Climate Analysis Indicator Tool (CAIT). [Online] http://cait.wri.org.
- 28. **Air Resources Board.** 2019 GHG Inventory. *California Greenhouse Gas Emission Inventory 2000-2017 Edition*. [Online] [Cited: September 19, 2019.] http://www.arb.ca.gov/cc/inventory/data/data.htm.
- 29. California Energy Commission. Our Changing Climate Assessing the Risks to California. 2006.
- 30. **Center for Climate and Energy Solutions (C2ES).** Outcomes of the U.N. Climate Change Conference. *Center for Climate and Energy Solutions (C2ES).* [Online] 2015. http://www.c2es.org/international/negotiations/cop21-paris/summary.
- 31. **Agency, United States Environmental Protection.** Endangerment and Cause or Contribute Findings for Greenhouse Gases under the Section 202(a) of the Clean Air Act. *United States Environmental Protection Agency.* [Online] 2020. https://www.epa.gov/climate-change/endangerment-and-cause-or-contribute-findings-greenhouse-gases-under-section-202a.
- 32. **Federal Register.** Mid-Term Evaluation of Greenhouse Gas Emissions Standards for Model Year 2022-2025 Light-Duty Vehicles. [Online] 2018. https://www.federalregister.gov/documents/2018/04/13/2018-07364/mid-term-evaluation-of-greenhouse-gas-emissions-standards-for-model-year-2022-2025-light-duty.
- 33. Administration, National Highway Traffic Safety. SAFE: The Safer Affordable Fuel-Efficient 'SAFE' Vehicle Rule. *National Highway Traffic Safety Administration*. [Online] 2020. https://www.nhtsa.gov/corporate-average-fuel-economy/safe.
- 34. **National Highway Traffic Safety Administration.** Corporate Average Fuel Economy. [Online] https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy.
- 35. **Department of Transportation.** Corporate Average Fuel Economy Standards for Model Years 2024-2026 Passenger Cars and Light Trucks. [Online] https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-04/Final-Rule-Preamble_CAFE-MY-2024-2026.pdf.

- 36. **United States Environmental Protection Agency.** SmartWay. [Online] 2017. https://www.epa.gov/smartway/learn-about-smartway.
- 37. **California Air Resources Board.** California's 2017 Climate Change Scoping Plan . [Online] 2017. https://ww3.arb.ca.gov/cc/scopingplan/scoping_plan_2017_es.pdf.
- 38. Lawrence Berkeley National Laboratory. California's Policies Can Significantly Cut Greenhouse Gas Emissions through 2030. *Lawrence Berkeley National Laboratory*. [Online] January 22, 2015. http://newscenter.lbl.gov/2015/01/22/californias-policies-can-significantly-cut-greenhouse-gas-emissions-2030/.
- 39. **Science Direct.** Modeling California policy impacts on greenhouse gas emissions. [Online] 2015. https://www.sciencedirect.com/science/article/abs/pii/S0301421514006892.
- 40. **California Air Resources Board.** Legal Disclaimer & User's Notice. [Online] April 2019. https://ww2.arb.ca.gov/sites/default/files/2021-02/ct_reg_unofficial.pdf.
- 41. —. Climate Change Scoping Plan. [Online] 2014. https://ww2.arb.ca.gov/sites/default/files/classic/cc/scopingplan/2013_update/first_update_climate_change_scoping_plan.pdf.
- 42. —. Low Carbon Fuel Standard. [Online] December 2019. https://ww3.arb.ca.gov/fuels/lcfs/lcfs.htm.
- 43. **California Energy Commission.** Energy Commission Adopts Updated Building Standards to Improve Efficiency, Reduce Emissions from Homes and Businesses. [Online] August 11, 2021. https://www.energy.ca.gov/news/2021-08/energy-commission-adopts-updated-building-standards-improve-efficiency-reduce-0.
- 44. **California Department of General Services.** 2022 CALGreen Code. *CALGreen.* [Online] https://codes.iccsafe.org/content/CAGBC2022P1.
- 45. **Association of Environmental Professionals.** 2018 CEQA California Environmental Quality Act. 2018.
- 46. State of California. 2020 CEQA California Environmental Quality Act. 2020.
- 47. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] www.caleemod.com.
- 48. California Natural Resources Agency. Final Statement of Reasons for Regulatory Action, Amendments to the State CEQA Guidelines Addressing Analysis and Mitigation of Greenhouse Gas Emissions Pursuant to SB97. [Online] December 2009. https://resources.ca.gov/CNRALegacyFiles/ceqa/docs/Final_Statement_of_Reasons.pdf.
- 49. **South Coast Air Quality Managment District.** Minutes for the GHG CEQA Significance. [Online] 2008. http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-2008-2009/ghg-meeting-2/ghg-meeting-2-minutes.pdf.
- 50. **Urban Crossroads, Inc.** *Mapes & Sherman Commerce Center (DEV2022-003) Air Quality Impact Analysis.* 2022.
- 51. State of California. 2019 CEQA California Environmental Quality Act. 2019.
- 52. **South Coast Air Quality Management District.** *Greenhouse Gas CEQA Significance Threshold Stakeholder Working Group #13.* [Powerpoint] Diamond Bar: s.n., 2009.
- 53. **Urban Crossroads, Inc.** *Mapes & Sherman Commerce Center (DEV2022-003) Traffic Analysis.* 2022.
- 54. **South Coast Air Quality Management District.** BOARD MEETING DATE: December 5, 2008 Agenda No. 31. *South Coast Air Quality Management District.* [Online] December 5, 2008. http://www.aqmd.gov/hb/2008/December/081231a.htm .

55. **Air Resources Board.** 2020 GHG Inventory. *California Greenhouse Gas Emission Inventory 2000-2019 Edition*. [Online]

https://ww3.arb.ca.gov/cc/inventory/pubs/reports/2000_2019/ghg_inventory_trends_00-19.pdf.

This page intentionally left blank

5 CERTIFICATIONS

The contents of this GHG study report represent an accurate depiction of the GHG impacts associated with the proposed Mapes & Sherman Commerce Center (DEV2022-003) Project. The information contained in this GHG report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com.

Haseeb Qureshi
Principal
URBAN CROSSROADS, INC.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June, 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011
Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008
Principles of Ambient Air Monitoring – California Air Resources Board • August 2007
AB2588 Regulatory Standards – Trinity Consultants • November 2006
Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 3.1:

CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Construction) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2023) Unmitigated
 - 3.3. Grading (2023) Unmitigated
 - 3.5. Building Construction (2023) Unmitigated
 - 3.7. Building Construction (2024) Unmitigated
 - 3.9. Paving (2024) Unmitigated
 - 3.11. Architectural Coating (2024) Unmitigated

- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
 - 5.5. Architectural Coatings
 - 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies

- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores

- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Construction)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_

Other Asphalt	145	1000sqft	3.34	0.00	0.00	0.00	_	_
Surfaces								

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Unmit.	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily, Winter (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.21	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
																		4

Daily - Summer (Max)	_			_	_	_		_	_	_		_	_	_	_			_
2024	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
2024	2.98	2.53	19.1	23.8	0.04	1.04	1.85	2.89	0.96	0.45	1.41	_	5,503	5,503	0.21	0.25	0.26	5,584
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.80	0.67	6.35	5.62	0.01	0.31	0.59	0.91	0.29	0.21	0.50	_	1,369	1,369	0.05	0.07	0.61	1,390
2024	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.20	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_
2023	0.15	0.12	1.16	1.03	< 0.005	0.06	0.11	0.17	0.05	0.04	0.09	_	227	227	0.01	0.01	0.10	230
2024	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

3. Construction Emissions Details

3.1. Site Preparation (2023) - Unmitigated

Location		ROG		СО		PM10E	<u> </u>		PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.90	47.0	38.0	0.05	2.53	_	2.53	2.33	_	2.33	_	5,530	5,530	0.22	0.04	_	5,549

Dust From Material Movemen	<u> </u>	_	_	_	_	_	5.66	5.66	_	2.69	2.69	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.13	1.29	1.04	< 0.005	0.07	_	0.07	0.06	_	0.06	_	152	152	0.01	< 0.005	_	152
Dust From Material Movemen		_	_	_	_	_	0.16	0.16	_	0.07	0.07	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.24	0.19	< 0.005	0.01	_	0.01	0.01	_	0.01	_	25.1	25.1	< 0.005	< 0.005	_	25.2
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_		_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.10	0.09	0.11	1.24	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	243	243	0.01	0.01	0.03	246
Vendor	< 0.005	< 0.005	0.12	0.04	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	94.3	94.3	< 0.005	0.01	0.01	98.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

8 / 30

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	6.74	6.74	< 0.005	< 0.005	0.01	6.84
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.58	2.58	< 0.005	< 0.005	< 0.005	2.70
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.12	1.12	< 0.005	< 0.005	< 0.005	1.13
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.43	0.43	< 0.005	< 0.005	< 0.005	0.45
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2023) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.20	40.9	32.7	0.06	1.96	_	1.96	1.80	_	1.80	_	6,715	6,715	0.27	0.05	_	6,738
Dust From Material Movemen [:]	<u> </u>	_	_	_	_	_	2.67	2.67	_	0.98	0.98	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.34	3.36	2.69	0.01	0.16	_	0.16	0.15	_	0.15	_	552	552	0.02	< 0.005	_	554

Dust From Material Movemen	-	_	_	_	_	_	0.22	0.22	_	0.08	0.08	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.06	0.61	0.49	< 0.005	0.03	_	0.03	0.03	_	0.03	_	91.4	91.4	< 0.005	< 0.005	_	91.7
Dust From Material Movemen	<u> </u>	_	_	_	_		0.04	0.04	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	-	_	-	_	_	-	_	_	-	_	_	_
Worker	0.11	0.10	0.12	1.37	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	270	270	0.01	0.01	0.03	273
Vendor	0.01	0.01	0.27	0.08	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	0.01	_	220	220	< 0.005	0.03	0.02	230
Hauling	0.12	0.04	3.58	0.83	0.02	0.06	0.20	0.26	0.06	0.07	0.13	_	2,984	2,984	0.05	0.47	0.16	3,127
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	0.01	0.01	0.01	0.12	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	22.5	22.5	< 0.005	< 0.005	0.04	22.8
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	18.1	18.1	< 0.005	< 0.005	0.02	18.9
Hauling	0.01	< 0.005	0.30	0.07	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	245	245	< 0.005	0.04	0.22	257
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	3.72	3.72	< 0.005	< 0.005	0.01	3.77
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.99	2.99	< 0.005	< 0.005	< 0.005	3.13

⊟Ha	ulina	< 0.005	< 0.005	0.05	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	40.6	40.6	< 0.005	0.01	0.04	42.6
0	· · · · · · · · · · · ·	1 0.000	1 0.000	0.00	0.0.	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000		.0.0	.0.0	1 0.000	0.0.	0.0.	

3.5. Building Construction (2023) - Unmitigated

	TOG	ROG	NOx	СО	so2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_
Off-Road Equipmen		2.07	18.3	16.2	0.03	1.14	_	1.14	1.05	_	1.05	_	2,806	2,806	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.14	1.22	1.08	< 0.005	0.08	_	0.08	0.07	_	0.07	_	187	187	0.01	< 0.005	_	187
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.22	0.20	< 0.005	0.01	_	0.01	0.01	_	0.01	_	30.9	30.9	< 0.005	< 0.005	_	31.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.65	0.59	0.72	8.04	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,579	1,579	0.08	0.06	0.19	1,599
Vendor	0.06	0.03	1.42	0.43	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,163	1,163	0.02	0.17	0.08	1,215
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.05	0.56	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	106	106	0.01	< 0.005	0.21	108
Vendor	< 0.005	< 0.005	0.10	0.03	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	77.3	77.3	< 0.005	0.01	0.09	80.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.10	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	17.6	17.6	< 0.005	< 0.005	0.03	17.9
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	12.8	12.8	< 0.005	< 0.005	0.02	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Off-Road Equipmen		0.82	7.29	6.83	0.01	0.44	_	0.44	0.40	_	0.40	-	1,197	1,197	0.05	0.01	-	1,201
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.15	1.33	1.25	< 0.005	0.08	_	0.08	0.07	_	0.07	-	198	198	0.01	< 0.005	_	199
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.66	0.60	0.56	9.77	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,684	1,684	0.07	0.06	6.68	1,710
Vendor	0.05	0.03	1.30	0.40	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,149	1,149	0.02	0.17	3.24	1,204
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_
Worker	0.62	0.56	0.67	7.38	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,548	1,548	0.07	0.06	0.17	1,567
Vendor	0.05	0.03	1.36	0.41	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,150	1,150	0.02	0.17	0.08	1,202
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.27	0.24	0.28	3.32	0.00	0.00	0.04	0.04	0.00	0.00	0.00	_	669	669	0.03	0.02	1.23	678
Vendor	0.02	0.01	0.58	0.18	< 0.005	0.01	0.03	0.04	0.01	0.01	0.02	_	490	490	0.01	0.07	0.59	513

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	_	<u> </u>	_
Worker	0.05	0.04	0.05	0.61	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	111	111	0.01	< 0.005	0.20	112
Vendor	< 0.005	< 0.005	0.11	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	81.2	81.2	< 0.005	0.01	0.10	84.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.85	7.81	10.0	0.01	0.39	_	0.39	0.36	_	0.36	_	1,512	1,512	0.06	0.01	_	1,517
Paving	_	0.70	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.43	0.55	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.8	82.8	< 0.005	< 0.005	_	83.1
Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.08	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.8

Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.08	0.08	0.07	1.25	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	216	216	0.01	0.01	0.86	219
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	11.0	11.0	< 0.005	< 0.005	0.02	11.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.82	1.82	< 0.005	< 0.005	< 0.005	1.85
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2024) - Unmitigated

Ontona	· onatan	()	, .c. aa	<i>y</i> ,, <i>y</i> .	.0	an, and	O OO (o, aay .c.	ua,,	, ,	ai ii iaai,							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	_	_
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																		
(Max)																		

Off-Road Equipmen		0.18	1.21	1.53	< 0.005	0.04	_	0.04	0.04	_	0.04	-	178	178	0.01	< 0.005	_	179
Architect ural Coatings	_	34.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.13	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	19.5	19.5	< 0.005	< 0.005	_	19.6
Architect ural Coatings	_	3.81	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.02	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	3.23	3.23	< 0.005	< 0.005	_	3.24
Architect ural Coatings	_	0.69	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.13	0.12	0.11	1.92	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	331	331	0.01	0.01	1.31	336
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.17	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	33.8	33.8	< 0.005	< 0.005	0.06	34.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	5.59	5.59	< 0.005	< 0.005	0.01	5.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
	_	_	_	_	_		_	_		_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Fliase Ivallie	rnase Type	Start Date	Liiu Dale	Days Fel Week	Work Days per Friase	Friase Description

Site Preparation	Site Preparation	10/3/2023	10/16/2023	5.00	10.0	_
Grading	Grading	10/17/2023	11/27/2023	5.00	30.0	_
Building Construction	Building Construction	11/28/2023	8/5/2024	5.00	180	_
Paving	Paving	7/9/2024	8/5/2024	5.00	20.0	_
Architectural Coating	Architectural Coating	6/11/2024	8/5/2024	5.00	40.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Site Preparation	Crawler Tractors	Diesel	Average	4.00	8.00	87.0	0.43
Grading	Crawler Tractors	Diesel	Average	2.00	8.00	87.0	0.43
Building Construction	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation				Verificie IVIIX
	Wadaa	_	40.5	- LDA LDTA LDTO
Site Preparation	Worker	18.0	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	3.00	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	0.00	0.00	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	7.00	10.2	ННОТ,МНОТ
Grading	Hauling	42.0	20.0	HHDT
Grading	Onsite truck	0.00	0.00	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	117	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	37.0	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	0.00	0.00	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	0.00	10.2	ннот,мнот
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	0.00	0.00	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	23.0	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	0.00	10.2	HHDT,MHDT

Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	0.00	0.00	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	427,392	142,464	14,700

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	35.0	0.00	_
Grading	10,100	0.00	120	0.00	_
Paving	0.00	0.00	0.00	0.00	5.36

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Edita 000	Trica ravea (acres)	70 / Opridit

Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	2.02	100%
Other Asphalt Surfaces	3.34	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

	(ne, iiii)			
Year	kWh per Year	CO2	CH4	N2O
2023	0.00	532	0.03	< 0.005
2024	0.00	532	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
vegetation Earla God Type	vegetation con Type	Third 7 to 60	That 7 to co

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A

Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator Result for Project Census Tract

Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6
Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	_
Auto Access	49.51879892
Active commuting	15.06480175
Social	_
2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	_

Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0

Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD PROJECT OPERATIONAL EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Operations) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Operations)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
User Defined Industrial	278	User Defined Unit	0.00	0.00	0.00	0.00	_	_

Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_
Other Asphalt Surfaces	145	1000sqft	3.34	0.00	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.79	10.9	9.33	43.8	0.13	0.16	3.26	3.43	0.16	0.62	0.78	264	15,058	15,321	27.2	1.54	326	16,785
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	2.54	8.86	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	264	14,518	14,782	27.2	1.55	284	16,205
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	3.32	9.63	7.28	28.0	0.09	0.12	2.39	2.50	0.12	0.45	0.57	264	11,162	11,426	27.1	1.22	297	12,763
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.61	1.76	1.33	5.11	0.02	0.02	0.44	0.46	0.02	0.08	0.10	43.6	1,848	1,892	4.48	0.20	49.1	2,113

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.64	2.27	9.23	31.7	0.13	0.15	3.26	3.41	0.14	0.62	0.76	_	13,291	13,291	0.33	1.21	43.1	13,705
Area	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	<u> </u>	_	_	_	_	<u> </u>	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	4.79	10.9	9.33	43.8	0.13	0.16	3.26	3.43	0.16	0.62	0.78	264	15,058	15,321	27.2	1.54	326	16,785
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.54	2.16	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	_	12,801	12,801	0.34	1.23	1.12	13,176
Area	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	2.54	8.86	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	264	14,518	14,782	27.2	1.55	284	16,205
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.85	1.57	7.21	19.7	0.09	0.11	2.39	2.49	0.10	0.45	0.55	_	9,411	9,411	0.25	0.90	13.6	9,699
Area	1.47	8.06	0.07	8.27	< 0.005	0.01	_	0.01	0.01	_	0.01	_	34.0	34.0	< 0.005	< 0.005	_	35.0
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283

Total	3.32	9.63	7.28	28.0	0.09	0.12	2.39	2.50	0.12	0.45	0.57	264	11,162	11,426	27.1	1.22	297	12,763
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.34	0.29	1.32	3.60	0.02	0.02	0.44	0.45	0.02	0.08	0.10	_	1,558	1,558	0.04	0.15	2.25	1,606
Area	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	214	214	0.02	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
Waste	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8
Total	0.61	1.76	1.33	5.11	0.02	0.02	0.44	0.46	0.02	0.08	0.10	43.6	1,848	1,892	4.48	0.20	49.1	2,113

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	2.33	2.10	1.47	29.6	0.06	0.03	0.29	0.32	0.03	0.09	0.11		6,337	6,337	0.20	0.15	25.2	6,411
User Defined Industrial	0.31	0.16	7.76	2.13	0.06	0.12	0.49	0.61	0.11	0.16	0.27	_	6,954	6,954	0.13	1.07	17.9	7,294
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.64	2.27	9.23	31.7	0.13	0.15	0.78	0.92	0.14	0.24	0.38	_	13,291	13,291	0.33	1.21	43.1	13,705
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	2.23	2.00	1.63	23.8	0.06	0.03	0.29	0.32	0.03	0.09	0.11	_	5,844	5,844	0.21	0.16	0.65	5,897
User Defined Industrial	0.30	0.16	8.10	2.15	0.06	0.12	0.49	0.61	0.11	0.16	0.27	-	6,957	6,957	0.13	1.07	0.46	7,279
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.54	2.16	9.74	26.0	0.12	0.15	0.78	0.92	0.14	0.24	0.38	_	12,801	12,801	0.34	1.23	1.12	13,176
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.30	0.27	0.22	3.32	0.01	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	716	716	0.03	0.02	1.32	724
User Defined Industrial	0.04	0.02	1.09	0.28	0.01	0.02	0.07	0.08	0.02	0.02	0.04	-	842	842	0.02	0.13	0.94	882
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.34	0.29	1.32	3.60	0.02	0.02	0.10	0.12	0.02	0.03	0.05		1,558	1,558	0.04	0.15	2.25	1,606

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land	TOG	ROG	NOx	CO	SO2	PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		
Daily, Summer (Max)	_	_	_				_	_	_	_	_			_		_		_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,294	1,294	0.12	0.01	_	1,301
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_		_	_	_	1,294	1,294	0.12	0.01	_	1,301
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_		_			_	_		202	202	0.02	< 0.005	_	203
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	12.2	12.2	< 0.005	< 0.005	_	12.3
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	214	214	0.02	< 0.005	_	215

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

										_	_							
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	2.15	1.98	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Total	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.09	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.27	0.25	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Total	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	-	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	_	_	_	-	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	-	_	_	-	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	-	_	_	-	_	_	_	-	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_		_	_	-	_	_	_	_	_	-	_	_	-	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	-	46.8	46.8
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																		
Туре																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n		ROG							PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_		_		_	_	_	_	_	_	_		_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_		_	_	_	_		_	_		_	_	_	_	_
_	_	_	_	_		_	_	_	_	_	<u> </u>	_		_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	486	41.1	16.5	129,712	8,497	719	288	2,267,884
User Defined Industrial	106	8.97	3.58	28,292	2,219	188	75.0	592,254
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	426,865	142,288	13,998

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	1,277,512	349	0.0330	0.0040	0.00
User Defined Industrial	0.00	349	0.0330	0.0040	0.00
Parking Lot	77,080	349	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	64,189,912	1,109,599
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	261	0.00
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Unrefrigerated Warehouse-No Rail	Cold storage	User Defined	150	7.50	7.50	7.50	25.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor	Factor
--	--------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
- 4a.ba				110010 por 1001		

5.16.2. Process Boilers

Equipment Type F	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
------------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full

day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A

Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6

Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	
Auto Access	49.51879892
Active commuting	15.06480175
Social	

2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	
Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9

II. AAN LEDAL : :	
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0
Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

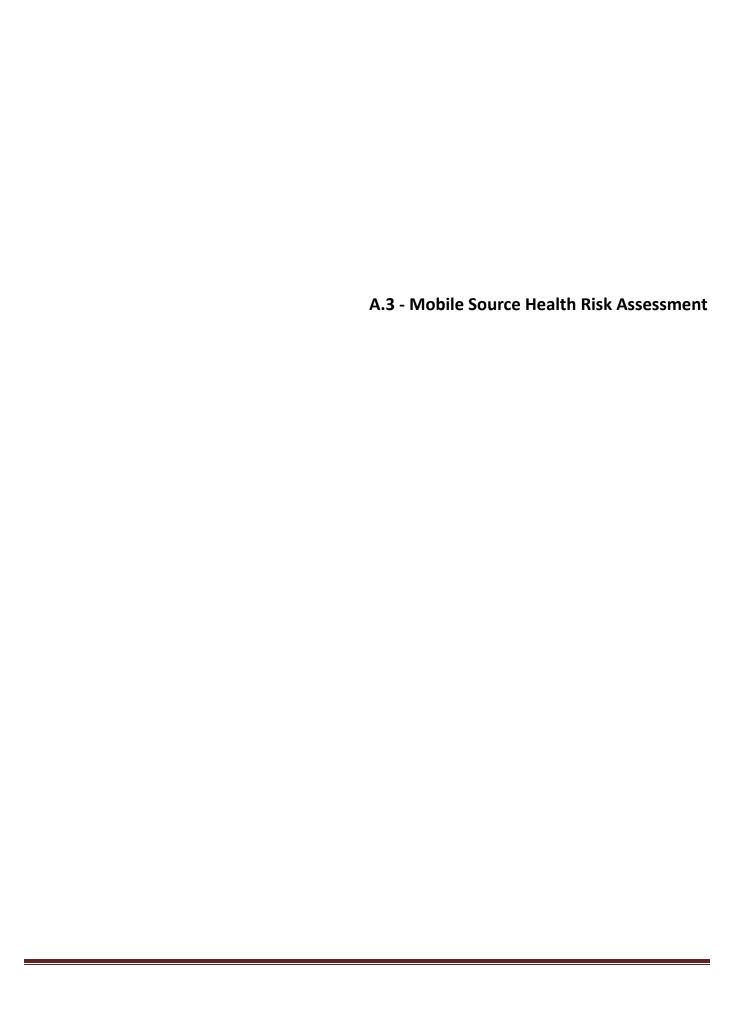
7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

8. User Changes to Default Data


Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113
Operations: Vehicle Data	Trip characteristics based on information provided in the Traffic analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis
Operations: Energy Use	The Project will not use natural gas

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Operations: Refrigerants	Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022
	promote that a series of the s

This page intentionally left blank

Mapes & Sherman Commerce Center (DEV2022-003) MOBILE SOURCE HEALTH RISK ASSESSMENT CITY OF PERRIS

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Michael Tirohn mtirohn@urbanxroads.com

DECEMBER 13, 2022

TABLE OF CONTENTS

TABLE (OF CONTENTS	l
APPENI	DICES	
	EXHIBITS	
LIST OF	TABLES	II
LIST OF	ABBREVIATED TERMS	
EXECU1	TIVE SUMMARY	1
	ITRODUCTION	
1.1	Site Location	6
1.2	Project Description	
2 B	ACKGROUND	10
2.1	Background on Recommended Methodology	10
2.2	Construction Health Risk Assessment	10
2.3	Operational Health Risk Assessment	13
2.4	Exposure Quantification	18
2.5	Carcinogenic Chemical Risk	20
2.6	Non-carcinogenic Exposures	21
2.7	Potential Project-Related DPM Source Cancer and Non-Cancer Risks	22
3 R	EFERENCES	26
	FRTIFICATIONS	

APPENDICES

APPENDIX 2.1: CALEEMOD OUTPUTS

APPENDIX 2.2: EMFAC EMISSIONS SUMMARY APPENDIX 2.3: AERMOD MODEL INPUT/OUTPUT

APPENDIX 2.4: RISK CALCULATIONS

LIST OF EXHIBITS

EXHIBIT 1-A: LOCATION MAP	7
EXHIBIT 1-B: SITE PLAN	8
EXHIBIT 2-A: MODELED CONSTRUCTION EMISSION SOURCES	12
EXHIBIT 2-B: MODELED ON-SITE EMISSION SOURCES	15
EXHIBIT 2-C: MODELED OFF-SITE EMISSION SOURCES	
EXHIBIT 2-D: RECEPTOR LOCATIONS	24
<u>LIST OF TABLES</u>	
TABLE ES-1: SUMMARY OF CONSTRUCTION CANCER AND NON-CANCER RISKS	3
TABLE ES-2: SUMMARY OF OPERATIONAL CANCER AND NON-CANCER RISKS	
TABLE ES-3: SUMMARY OF CONSTRUCTION AND OPERATIONAL CANCER AND NON-CANCE	R RISKS4
TABLE 2-1: CONSTRUCTION DURATION	
TABLE 2-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS	
TABLE 2-3: 2024 WEIGHTED AVERAGE DPM EMISSIONS FACTORS	14
TABLE 2-4: DPM EMISSIONS FROM PROJECT TRUCKS (2024 ANALYSIS YEAR)	
TABLE 2-5: AERMOD MODEL PARAMETERS	18
TABLE 2-6: EXPOSURE ASSUMPTIONS FOR INDIVIDUAL CANCER RISK (CONSTRUCTION ACT	VITY)19
TABLE 2-7: EXPOSURE ASSUMPTIONS FOR INDIVIDUAL CANCER RISK (30 YEAR RESIDENTIA	L)19
TABLE 2-8: EXPOSURE ASSUMPTIONS FOR INDIVIDUAL CANCER RISK (25 YEAR WORKER)	20

LIST OF ABBREVIATED TERMS

(1) Reference µg Microgram

AERMOD American Meteorological Society/Environmental

Protection Agency Regulatory Model

APS Auxiliary Power System

AQMD Air Quality Management District

ARB Air Resources Board

CEQA California Environmental Quality Act

CPF Cancer Potency Factor
DPM Diesel Particulate Matter
EMFAC Emission Factor Model

EPA Environmental Protection Agency

HHD Heavy Heavy-Duty

HI Hazard Index

HRA Health Risk Assessment

LHD Light Heavy-Duty

MATES Multiple Air Toxics Exposure Study

MEIR Maximally Exposed Individual Receptor

MEIW Maximally Exposed Individual Worker

MHD Medium Heavy-Duty
NAD North American Datum

OEHHA Office of Environmental Health Hazard Assessment
PM₁₀ Particulate Matter 10 microns in diameter or less
Project Mapes & Sherman Commerce Center (DEV2022-003)

REL Reference Exposure Level RM Recommended Measures

SCAQMD South Coast Air Quality Management District

SRA Source Receptor Area
TAC Toxic Air Contaminant

TA Traffic Analysis

TRU Transport Refrigeration Unit

URF Unit Risk Factor

UTM Universal Transverse Mercator

VMT Vehicle Miles Traveled

This page intentionally left blank

EXECUTIVE SUMMARY

This report evaluates the potential mobile-source emissions health risk impacts associated with the development of the proposed Project. More specifically, potential health risk impacts that could result from exposure to Toxic Air Contaminants (TACs), in this case, diesel particulate matter (DPM) generated by heavy-duty diesel trucks accessing the site. This section summarizes the significance criteria and Project health risks.

The results of the health risk assessment from Project-generated DPM emissions are provided in Table ES-1, ES-2, and ES-3, presented subsequently.

CONSTRUCTION IMPACTS

The land use with the greatest potential exposure to Project construction-source DPM emissions is Location R6 which is located approximately 126 feet east the Project site at an existing residence located at 25146 Sherman Road. Because there are no private outdoor living areas facing the Project site, R6 is placed at the building façade nearest the Project site. At the maximally exposed individual receptor (MEIR), the maximum incremental cancer risk attributable to Project construction-source DPM emissions is estimated at 4.75 in one million, which is less than the SCAQMD's significance threshold of 10 in one million. At this same location, non-cancer risks were estimated to be <0.01, which would not exceed the applicable threshold of 1.0. As such, the Project will not cause a significant human health or cancer risk to adjacent land uses as a result of Project construction activity. All other receptors during construction activity would experience less risk than what is identified for this location. The nearest modeled receptors are illustrated on Exhibit 2-D.

OPERATIONAL IMPACTS

Residential Exposure Scenario:

The residential land use with the greatest potential exposure to Project operational-source DPM emissions is Location R6 which is located approximately 126 feet east of the Project site at an existing residence located at 25146 Sherman Road. Because there are no private outdoor living areas facing the Project site, R6 is placed at the building façade nearest the Project site. At the MEIR, the maximum incremental cancer risk attributable to Project operational-source DPM emissions is estimated at 0.31 in one million, which is less than the SCAQMD's significance threshold of 10 in one million. At this same location, non-cancer risks were estimated to be <0.01, which would not exceed the applicable significance threshold of 1.0. Because all other modeled residential receptors are exposed to lesser concentrations and are located at a greater distance from the Project site than the MEIR analyzed herein, and TACs generally dissipates with distance from the source, all other residential receptors in the vicinity of the Project site would be exposed to less emissions and therefore less risk than the MEIR identified herein. As such, the Project will not cause a significant human health or cancer risk to nearby residences. The nearest modeled receptors are illustrated on Exhibit 2-D.

Worker Exposure Scenario¹:

The worker receptor land use with the greatest potential exposure to Project operational-source DPM emissions is Location R7, which represents the potential worker receptor approximately 139 feet west of the Project site. At the maximally exposed individual worker (MEIW), the maximum incremental cancer risk impact is 0.08 in one million which is less than the SCAQMD's threshold of 10 in one million. Maximum non-cancer risks at this same location were estimated to be <0.01, which would not exceed the applicable significance threshold of 1.0. Because all other modeled worker receptors are located at a greater distance than the MEIW analyzed herein, and DPM dissipates with distance from the source, all other worker receptors in the vicinity of the Project would be exposed to less emissions and therefore less risk than the MEIW identified herein. As such, the Project will not cause a significant human health or cancer risk to adjacent workers. The nearest modeled receptors are illustrated on Exhibit 2-D.

School Child Exposure Scenario:

Proximity to sources of toxics is critical to determining the impact. In traffic-related studies, the additional non-cancer health risk attributable to proximity was seen within 1,000 feet and was strongest within 300 feet. California freeway studies show about a 70-percent drop-off in particulate pollution levels at 500 feet. Based on California Air Resources Board (CARB) and SCAQMD emissions and modeling analyses, an 80-percent drop-off in pollutant concentrations is expected at approximately 1,000 feet from a distribution center (1).

The 1,000-foot evaluation distance is supported by research-based findings concerning Toxic Air Contaminant (TAC) emission dispersion rates from roadways and large sources showing that emissions diminish substantially between 500 and 1,000 feet from emission sources.

A one-quarter mile radius, or 1,320 feet, is commonly utilized for identifying sensitive receptors, such as schools, that may be impacted by a proposed project. This radius is more robust than, and therefore provides a more health protective scenario for evaluation than the 1,000-foot impact radius identified above.

There are no schools within ¼ mile of the Project site. The nearest school is Romoland Elementary School, which is located approximately 4,130 feet southeast of the Project site. Because there is no reasonable potential that TAC emissions would cause significant health impacts at distances of more than ¼ mile from the air pollution source, there would be no significant impacts that would occur to any schools in the vicinity of the Project.

CONSTRUCTION AND OPERATIONAL IMPACTS

The land use with the greatest potential increased cancer risk due to exposure to Project construction-source and operational-source DPM emissions is Location R6. At this location, the maximum incremental cancer risk attributable to Project construction and operational DPM

¹ SCAQMD guidance does not require assessment of the potential health risk to on-site workers. Excerpts from the document OEHHA Air Toxics Hot Spots Program Risk Assessment Guidelines—The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments (OEHHA 2003), also indicate that it is not necessary to examine the health effects to on-site workers unless required by RCRA (Resource Conservation and Recovery Act) / CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) or the worker resides on-site.

14804-03 HRA Report

source emissions is estimated at 4.90 in one million, which is less than the threshold of 10 in one million. At this same location, non-cancer risks were estimated to be <0.01, which would not exceed the applicable threshold of 1.0. As such, the Project will not cause a significant human health or cancer risk to adjacent land uses as a result of Project construction and operational activity. All other receptors during construction and operational activity would experience less risk than what is identified for this location. The nearest modeled receptors are illustrated on Exhibit 2-D.

SUMMARY OF FINDINGS

As shown on Tables ES-1, ES-2, and ES-3, the Project would not result in a significant cancer or non-cancer health risk impact from construction or operational activities. As such, a less than significant impact associated with potential exposure to DPM would occur.

TABLE ES-1: SUMMARY OF CONSTRUCTION CANCER AND NON-CANCER RISKS

Time Period	Location	Maximum Lifetime Cancer Risk (Risk per Million)	Significance Threshold (Risk per Million)	Exceeds Significance Threshold	Significance Findings
0.84 Year Exposure	Maximum Exposed Sensitive Receptor	4.75	10	NO	Less Than Significant
Time Period	Location	Maximum Hazard Index	Significance Threshold	Exceeds Significance Threshold	Significance Findings
Annual Average	Maximum Exposed Sensitive Receptor	≤0.01	1.0	NO	Less Than Significant

TABLE ES-2: SUMMARY OF OPERATIONAL CANCER AND NON-CANCER RISKS

Time Period	Location	Maximum Lifetime Cancer Risk (Risk per Million)	Significance Threshold (Risk per Million)	Exceeds Significance Threshold	Significance Findings
30 Year Exposure	Maximum Exposed Sensitive Receptor	0.31	10	NO	Less Than Significant
25 Year Exposure	Maximum Exposed Worker Receptor	0.08	10	NO	Less Than Significant
Time Period	Location	Maximum Hazard Index	Significance Threshold	Exceeds Significance Threshold	Significance Findings
Annual Average	Maximum Exposed Sensitive Receptor	≤0.01	1.0	NO	Less Than Significant
Annual Average	Maximum Exposed Worker Receptor	≤0.01	1.0	NO	Less Than Significant

TABLE ES-3: SUMMARY OF CONSTRUCTION AND OPERATIONAL CANCER AND NON-CANCER RISKS

Time Period	Location	Maximum Lifetime Cancer Risk (Risk per Million)	Significance Threshold (Risk per Million)	Exceeds Significance Threshold	Significance Findings
30 Year Exposure	Maximum Exposed Sensitive Receptor	4.90	10	NO	Less Than Significance
Time Period	Location	Maximum Hazard Index	Significance Threshold	Exceeds Significance Threshold	Significance Findings
Annual Average	Maximum Exposed Sensitive Receptor	≤0.01	1.0	NO	Less Than Significance

1 INTRODUCTION

The South Coast Air Quality Management District (SCAQMD) typically issues a comment letter on the Notice of Preparation of a CEQA Document. Per the SCAQMD's typical comment letter, if a proposed Project is expected to generate/attract diesel trucks, which emit diesel particulate matter (DPM) or other Toxic Air Contaminants (TACs), preparation of a HRA is necessary. This document serves to meet the SCAQMD's request for preparation of a HRA. This HRA has been prepared in accordance with the document <a href="Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (2) and is comprised of all relevant and appropriate procedures presented by the United States Environmental Protection Agency (U.S. EPA), California EPA and SCAQMD. Cancer risk is expressed in terms of expected incremental incidence per million population. The SCAQMD has established an incidence rate of ten (10) persons per million as the maximum acceptable incremental cancer risk due to TAC exposure from a project such as the proposed Project. This threshold serves to determine whether or not a given project has a potentially significant development-specific and cumulatively considerable impact.

The AQMD has published a report on how to address cumulative impacts from air pollution: White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution (3). In this report the AQMD states (Page D-3):

"...the AQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for toxic air contaminant (TAC) emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant."

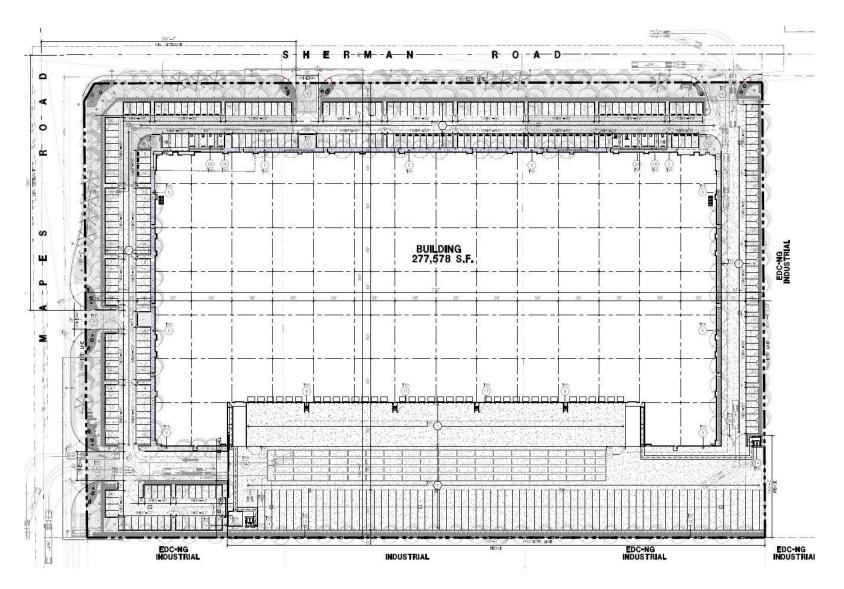
The SCAQMD has also established non-carcinogenic risk parameters for use in HRAs. Non-carcinogenic risks are quantified by calculating a "hazard index," expressed as the ratio between the ambient pollutant concentration and its toxicity or Reference Exposure Level (REL). An REL is a concentration at or below which health effects are not likely to occur. A hazard index less of than one (1.0) means that adverse health effects are not expected. In this HRA, non-carcinogenic exposures of less than 1.0 are considered less-than-significant. Both the cancer risk and non-carcinogenic risk thresholds are applied to the nearest sensitive receptors below.

1.1 SITE LOCATION

The proposed Project is located in the City of Perris at the southwest corner of Sherman Road and Mapes Road, as shown on Exhibit 1-A. The City is surrounded by the City of Moreno Valley to the north, unincorporated Riverside County to the east, the City of Murrieta and unincorporated Riverside County to the south, and the Cities of Perris and Lake Elsinore to the west. Regional access to the site is provided via Interstate 215 (I-215) and State Route 74 (SR-74). Local access to the site is provided via Mapes Road and Sherman Avenue.

1.2 PROJECT DESCRIPTION

The Project is proposed to consist of the development of 277,578 sf of high-cube fulfillment center warehouse use within a single building. It is anticipated that the Project would operate seven days a week 24 hours a day and be developed in a single phase with an anticipated Opening Year of 2024. The site plan for the proposed Project is shown on Exhibit 1-B.



Wayne Ln White Marble Ct. Commander Ct Blue Topaz Dr. Ball Rd Mapes Rd Mapes Rd Work Site 1433 ft Blue Diamond Ln Baranı Rd Baroni Rd Watson Rd Watson Rd. Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GERCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Radaster NL, Ordnance Survey, Esri, Igpan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS

EXHIBIT 1-A: LOCATION MAP

EXHIBIT 1-B: SITE PLAN

This page intentionally left blank

2 BACKGROUND

2.1 BACKGROUND ON RECOMMENDED METHODOLOGY

This HRA is based on SCAQMD guidelines to produce conservative estimates of human health risk posed by exposure to DPM. The conservative nature of this analysis is due primarily to the following factors:

- The ARB-adopted diesel exhaust Unit Risk Factor (URF) of 300 in one million per μg/m³ is based upon the upper 95 percentile of estimated risk for each of the epidemiological studies utilized to develop the URF. Using the 95th percentile URF represents a very conservative (health-protective) risk posed by DPM because it represents breathing rates that are high for the human body (95% higher than the average population).
- The emissions derived assume that every truck accessing the Project site will idle for 15 minutes under the unmitigated scenario, and this is an overestimation of actual idling times and thus conservative.² The California Air Resources Board (CARB's) anti-idling requirements impose a 5-minute maximum idling time and therefore the analysis conservatively overestimates DPM emissions from idling by a factor of 3.

2.2 CONSTRUCTION HEALTH RISK ASSESSMENT

2.2.1 EMISSIONS CALCULATIONS

The emissions calculations for the construction HRA component are based on an assumed mix of construction equipment and hauling activity as presented in the *Mapes & Sherman Commerce Center (DEV2022-003) Air Quality Impact Analysis* ("technical study") prepared by Urban Crossroads, Inc. (4)

Construction related DPM emissions are expected to occur primarily as a function of heavy-duty construction equipment that would be operating on-site.

As discussed in the technical study, the Project would result in approximately 220 total working-days of construction activity. The construction duration by phase is shown on Table 2-1. A detailed summary of construction equipment assumptions by phase is provided at Table 2-2. The CalEEMod emissions outputs are presented in Appendix 2.1. The modeled emission sources for construction activity are illustrated on Exhibit 2-A.

Although the Project is required to comply with ARB's idling limit of 5 minutes, staff at SCAQMD recommends that the on-site idling emissions should be estimated for 15 minutes of truck idling (personal communication, in person, with Jillian Wong, December 22, 2016), which would take into account on-site idling which occurs while the trucks are waiting to pull up to the truck bays, idling at the bays, idling at check-in and check-out, etc.

TABLE 2-1: CONSTRUCTION DURATION

Construction Activity	Start Date	End Date	Working Days	
Site Preparation	10/03/2023	10/16/2023	10	
Grading	10/17/2023	11/27/2023	30	
Building Construction	11/28/2023	08/05/2024	180	
Paving	07/09/2024	08/05/2024	20	
Architectural Coating	06/11/2024	08/05/2024	40	

TABLE 2-2: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Construction Activity	Equipment	Amount	Hours Per Day
Cita Dranavation	Rubber Tired Dozers	3	8
Site Preparation	Crawler Tractors	4	8
	Graders	1	8
Grading	Excavators	2	8
	Scrapers	2	8
	Rubber Tired Dozers	1	8
	Crawler Tractors	2	8
	Forklifts	3	8
	Generator Sets	1	8
Building Construction	Cranes	1	8
	Welders	1	8
	Crawler Tractors	3	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

MAPES RD

EXHIBIT 2-A: MODELED CONSTRUCTION EMISSION SOURCES

2.3 OPERATIONAL HEALTH RISK ASSESSMENT

2.3.1 ON-SITE AND OFF-SITE TRUCK ACTIVITY

Vehicle DPM emissions were calculated using emission factors for particulate matter less than $10\mu m$ in diameter (PM₁₀) generated with the 2021 version of the EMission FACtor model (EMFAC) developed by the CARB. EMFAC 2021 is a mathematical model that CARB developed to calculate emission rates from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the ARB to project changes in future emissions from on-road mobile sources (5). The most recent version of this model, EMFAC 2021, incorporates regional motor vehicle data, information and estimates regarding the distribution of vehicle miles traveled (VMT) by speed, and number of starts per day.

Several distinct emission processes are included in EMFAC 2021. Emission factors calculated using EMFAC 2021 are expressed in units of grams per vehicle miles traveled (g/VMT) or grams per idle-hour (g/idle-hr), depending on the emission process. The emission processes and corresponding emission factor units associated with diesel particulate exhaust for this Project are presented below.

For this Project, annual average PM_{10} emission factors were generated by running EMFAC 2021 in EMFAC Mode for vehicles in the Riverside County jurisdiction. The EMFAC Mode generates emission factors in terms of grams of pollutant emitted per vehicle activity and can calculate a matrix of emission factors at specific values of temperature, relative humidity, and vehicle speed. The model was run for speeds traveled in the vicinity of the Project. The vehicle travel speeds for each segment modeled are summarized below.

- Idling on-site loading/unloading and truck gate
- 5 miles per hour on-site vehicle movement including driving and maneuvering
- 25 miles per hour off-site vehicle movement including driving and maneuvering.

Calculated emission factors are shown at Table 2-3. As a conservative measure, a 2024 EMFAC 2021 run was conducted and a static 2024 emissions factor data set was used for the entire duration of analysis herein (e.g., 30 years). Use of 2024 emission factors would overstate potential impacts since this approach assumes that emission factors remain "static" and do not change over time due to fleet turnover or cleaner technology with lower emissions that would be incorporated into vehicles after 2024. Additionally, based on EMFAC 2021, Light-Heavy-Duty Trucks are comprised of 57.0% diesel, Medium-Heavy-Duty Trucks are comprised of 91.3% diesel, and Heavy-Heavy-Duty Trucks are comprised of 95.2% diesel. Trucks fueled by diesel are accounted for by these percentages accordingly in the emissions factor generation. Appendix 2.2 includes additional details on the emissions estimates from EMFAC.

The vehicle DPM exhaust emissions were calculated for running exhaust emissions. The running exhaust emissions were calculated by applying the running exhaust PM_{10} emission factor (g/VMT) from EMFAC over the total distance traveled. The following equation was used to estimate off-site emissions for each of the different vehicle classes comprising the mobile sources (6):

Emissions_{speedA} (g/s) = $EF_{RunExhaust}$ (g/VMT) * Distance (VMT/trip) * Number of Trips (trips/day) / seconds per day

Where:

Emissions_{speedA} (g/s): Vehicle emissions at a given speed A;

EF_{RunExhaust} (g/VMT): EMFAC running exhaust PM₁₀ emission factor at speed A;

Distance (VMT/trip): Total distance traveled per trip.

Similar to off-site traffic, on-site vehicle running emissions were calculated by applying the running exhaust PM_{10} emission factor (g/VMT) from EMFAC and the total vehicle trip number over the length of the driving path using the same formula presented above for on-site emissions. In addition, on-site vehicle idling exhaust emissions were calculated by applying the idle exhaust PM_{10} emission factor (g/idle-hr) from EMFAC and the total truck trip over the total assumed idle time (15 minutes). The following equation was used to estimate the on-site vehicle idling emissions for each of the different vehicle classes (6):

Emissions_{idle} $(g/s) = EF_{idle} (g/hr) * Number of Trips (trips/day) * Idling Time (min/trip) *$

60 minutes per hour / seconds per day

Where:

Emissions_{idle} (g/s): Vehicle emissions during idling;

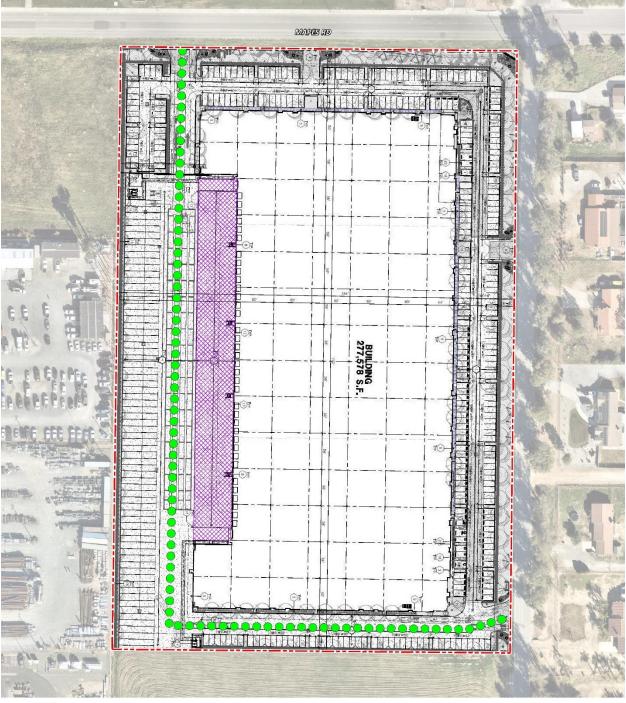

 $EF_{idle}(g/s)$: EMFAC idle exhaust PM₁₀ emission factor.

TABLE 2-3: 2024 WEIGHTED AVERAGE DPM EMISSIONS FACTORS

Speed	Weighted Average
0 (idling)	0.06299 (g/idle-hr)
5	0.01945 (g/s)
25	0.00866 (g/s)

Each roadway was modeled as a line source (made up of multiple adjacent volume sources). Due to the large number of volume sources modeled for this analysis, the corresponding coordinates of each volume source have not been included in this report but are included in Appendix 2.3. The DPM emission rate for each volume source was calculated by multiplying the emission factor (based on the average travel speed along the roadway) by the number of trips and the distance traveled along each roadway segment and dividing the result by the number of volume sources along that roadway, as illustrated on Table 2-4. The modeled emission sources are illustrated on Exhibit 2-B for on-site sources and Exhibit 2-C for off-site sources. The modeling domain is limited to the Project's primary truck route and includes off-site sources in the study area for more than 34 mile. This modeling domain is more inclusive and conservative than using only a 34 mile modeling domain which is the distance supported by several reputable studies which conclude that the greatest potential risks occur within a 34 mile of the primary source of emissions (1) (in the case of the Project, the primary source of emissions is the on-site idling and on-site travel).

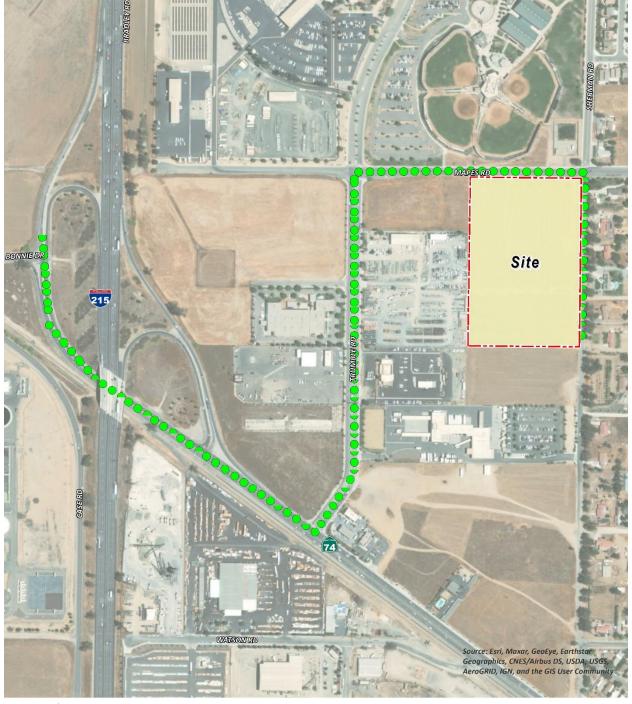


EXHIBIT 2-B: MODELED ON-SITE EMISSION SOURCES

EXHIBIT 2-C: MODELED OFF-SITE EMISSION SOURCES

TABLE 2-4: DPM EMISSIONS FROM PROJECT TRUCKS (2024 ANALYSIS YEAR)

Truck Emission Rates							
	Trucks Per	VMT ^a	Truck Emission Rate b	Truck Emission Rate b	Daily Truck Emissions ^c	Modeled Emission Rates	
Source	Day	(miles/day)	(grams/mile)	(grams/idle-hour)	(grams/day)	(g/second)	
On-Site Idling	53			0.0630	0.83	9.660E-06	
On-Site Travel	106	29.38	0.0194		0.57	6.613E-06	
Off-Site Travel - Sherman Road 15% Inbound/Outbound	16	2.79	0.0087		0.02	2.797E-07	
Off-Site Travel - Mapes Road 15% Inbound/Outbound	16	1.69	0.0087		0.01	1.697E-07	
Off-Site Travel - Mapes Road 100% Inbound/Outbound	106	109.11	0.0087		0.94	1.093E-05	

^a Vehicle miles traveled are for modeled truck route only.

b Emission rates determined using EMFAC 2021. Idle emission rates are expressed in grams per idle hour rather than grams per mile.

^c This column includes the total truck travel and truck idle emissions. For idle emissions this column includes emissions based on the assumption that each truck idles for 15 minutes.

On-site truck idling was estimated to occur as trucks enter and travel through the Project site. Although the Project's diesel-fueled truck and equipment operators will be required by State law to comply with CARB's idling limit of 5 minutes, staff at SCAQMD recommends that the on-site idling emissions be calculated assuming 15 minutes of truck idling (7), which would take into account on-site idling which occurs while the trucks are waiting to pull up to the truck bays, idling at the bays, idling at check-in and check-out, etc. As such, this analysis calculates truck idling at 15 minutes, consistent with SCAQMD's recommendation.

The Project is expected to generate a total of approximately 592 vehicular trip-ends (actual vehicles) per day (296 vehicles inbound + 296 vehicles outbound) which includes 486 two-way passenger car trip-ends (243 passenger cars inbound + 243 passenger cars outbound) and 106 two-way truck trip-ends per day (53 trucks inbound + 53 trucks outbound) (8).

2.4 EXPOSURE QUANTIFICATION

The analysis herein has been conducted in accordance with the guidelines in the <u>Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (2).</u> SCAQMD recommends using the Environmental Protection Agency's (U.S. EPA's) AERMOD model. For purposes of this analysis, the Lakes AERMOD View (Version 11.0.0) was used to calculate annual average particulate concentrations associated with site operations. Lakes AERMOD View was utilized to incorporate the U.S. EPA's latest AERMOD Version 22112 (9).

The model offers additional flexibility by allowing the user to assign an initial release height and vertical dispersion parameters for mobile sources representative of a roadway. For this HRA, the roadways were modeled as adjacent volume sources. Roadways were modeled using the U.S. EPA's haul route methodology for modeling of on-site and off-site truck movement. More specifically, the Haul Road Volume Source Calculator in Lakes AERMOD View has been utilized to determine the release height parameters. Based on the US EPA methodology, the Project's modeled sources would result in a release height of 3.49 meters, and an initial lateral dimension of 4.0 meters, and an initial vertical dimension of 3.25 meters.

SCAQMD-recommended model parameters are presented in Table 2-5 (10). The model requires additional input parameters including emission data and local meteorology. Meteorological data from the SCAQMD's Perris Valley monitoring station was used to represent local weather conditions and prevailing winds (10).

TABLE 2-5: AERMOD MODEL PARAMETERS

Dispersion Coefficient (Urban/Rural)	Urban (Population 2,189,641)
Terrain (Flat/Elevated)	Elevated (Regulatory Default)
Averaging Time	1 year (5-year Meteorological Data Set)
Receptor Height	0 meters (Regulatory Default)

Universal Transverse Mercator (UTM) coordinates for World Geodetic System (WGS) 84 were used to locate the Project site boundaries, each volume source location, and receptor locations in the Project site's vicinity. The AERMOD dispersion model summary output files for the

proposed Project are presented in Appendix 2.3. Modeled sensitive receptors were placed at residential and non-residential locations.

Receptors may be placed at applicable structure locations for residential and worker property and not necessarily the boundaries of the properties containing these uses because the human receptors (residents and workers) spend a majority of their time at the residence or in the workplace's building, and not on the property line. It should be noted that the primary purpose of receptor placement is focused on long-term exposure. For example, the HRA evaluates the potential health risks to residents and workers over a period of 30 or 25 years of exposure, respectively. Notwithstanding, as a conservative measure, receptors were placed at either the outdoor living area or the building façade, whichever is closer to the Project site.

For purposes of this HRA, receptors include both residential and non-residential (worker) land uses in the vicinity of the Project. These receptors are included in the HRA since residents and workers may be exposed at these locations over a long-term duration of 30 and 25 years, respectively. This methodology is consistent with SCAQMD and OEHHA recommended guidance.

Any impacts to residents or workers located further away from the Project site than the modeled residential and workers would have a lesser impact than what has already been disclosed in the HRA at the MEIR and MEIW because concentrations dissipate with distance.

Consistent with SCAQMD modeling guidance, all receptors were set to existing elevation height so that only ground-level concentrations are analyzed (11). United States Geological Survey (USGS) Digital Elevation Model (DEM) terrain data based on a 7.5-minute topographic quadrangle map series using AERMAP was utilized in the HRA modeling to set elevations (12).

Discrete variants for daily breathing rates, exposure frequency, and exposure duration were obtained from relevant distribution profiles presented in the 2015 OEHHA Guidelines. Tables 2-6 through 2-8 summarize the Exposure Parameters for Residents and Workers based on 2015 OEHHA Guidelines. Appendix 2.4 includes the detailed risk calculation.

TABLE 2-6: EXPOSURE ASSUMPTIONS FOR INDIVIDUAL CANCER RISK (CONSTRUCTION ACTIVITY)

Age	Daily	Age	Exposure	Fraction	Exposure	Exposure
	Breathing	Specific	Duration	of Time	Frequency	Time
	Rate (L/kg-	Factor	(years)	at Home	(days/year)	(hours/day)
	day)					
0 to 2	1,090	10	0.84	1.0	260	8

TABLE 2-7: EXPOSURE ASSUMPTIONS FOR INDIVIDUAL CANCER RISK (30 YEAR RESIDENTIAL)

Age	Daily Breathing Rate (L/kg- day)	Age Specific Factor	Exposure Duration (years)	Fraction of Time at Home	Exposure Frequency (days/year)	Exposure Time (hours/day)
-0.25 to 0	361	10	0.25	0.85	350	24
0 to 2	1,090	10	2	0.85	350	24

	Age	Daily Breathing Rate (L/kg- day)	Age Specific Factor	Exposure Duration (years)	Fraction of Time at Home	Exposure Frequency (days/year)	Exposure Time (hours/day)
ľ	2 to 16	572	3	14	0.72	350	24
	16 to 30	261	1	14	0.73	350	24

TABLE 2-8: EXPOSURE ASSUMPTIONS FOR INDIVIDUAL CANCER RISK (25 YEAR WORKER)

Age	Daily	Age	Exposure	Exposure	Exposure
	Breathing	Specific	Duration	Frequency	Time
	Rate (L/kg-	Factor	(years)	(days/year)	(hours/day)
	day)				
16 to 41	230	1	25	250	12

2.5 CARCINOGENIC CHEMICAL RISK

The SCAQMD <u>CEQA Air Quality Handbook</u> (1993) states that emissions of toxic air contaminants (TACs) are considered significant if a HRA shows an increased risk of greater than 10 in one million. Based on guidance from the SCAQMD in the document <u>Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis</u> (2), for purposes of this analysis, 10 in one million is used as the cancer risk threshold for the proposed Project.

Excess cancer risks are estimated as the upper-bound incremental probability that an individual will develop cancer over a lifetime as a direct result of exposure to potential carcinogens over a specified exposure duration. The estimated risk is expressed as a unitless probability. The cancer risk attributed to a chemical is calculated by multiplying the chemical intake or dose at the human exchange boundaries (e.g., lungs) by the chemical-specific cancer potency factor (CPF). A risk level of 10 in one million implies a likelihood that up to 10 people, out of one million equally exposed people would contract cancer if exposed continuously (24 hours per day) to the levels of toxic air contaminants over a specified duration of time.

Guidance from CARB and the California Environmental Protection Agency, Office of Environmental Health Hazard Assessment (OEHHA) recommends a refinement to the standard point estimate approach when alternate human body weights and breathing rates are utilized to assess risk for susceptible subpopulations such as children. For the inhalation pathway, the procedure requires the incorporation of several discrete variates to effectively quantify dose. Once determined, contaminant dose is multiplied by the cancer potency factor (CPF) in units of inverse dose expressed in milligrams per kilogram per day (mg/kg/day)⁻¹ to derive the cancer risk estimate. Therefore, to assess exposures, the following dose algorithm was utilized.

DOSE_{air} =
$$(C_{air} \times [BR/BW] \times A \times EF) \times (1 \times 10^{-6})$$

Where:

 $DOSE_{air}$ = chronic daily intake (mg/kg/day)

Cair = concentration of contaminant in air (ug/m^3)

[BR/BW] = daily breathing rate normalized to body weight (L/kg

BW-day)

A = inhalation absorption factor

EF = exposure frequency (days/365 days)

BW = body weight (kg)

1 x 10^{-6} = conversion factors (µg to mg, L to m³)

 $RISK_{air} = DOSE_{air} \times CPF \times ED/AT$

Where:

 $DOSE_{air}$ = chronic daily intake (mg/kg/day)

CPF = cancer potency factor

ED = number of years within particular age group

AT = averaging time

2.6 Non-carcinogenic Exposures

An evaluation of the potential noncarcinogenic effects of chronic exposures was also conducted. Adverse health effects are evaluated by comparing a compound's annual concentration with its toxicity factor or Reference Exposure Level (REL). The REL for diesel particulates was obtained from OEHHA for this analysis. The chronic reference exposure level (REL) for DPM was established by OEHHA as $5 \mu g/m^3$ (13).

The non-cancer hazard index was calculated (consistent with SCAQMD methodology) as follows:

The relationship for the non-cancer health effects of DPM is given by the following equation:

$$HI_{DPM} = C_{DPM}/REL_{DPM}$$

Where:

HI_{DPM} = Hazard Index; an expression of the potential for non-cancer health effects.

 C_{DPM} = Annual average DPM concentration (µg/m³).

REL_{DPM} = Reference exposure level (REL) for DPM; the DPM concentration

at which no adverse health effects are anticipated.

2.7 POTENTIAL PROJECT-RELATED DPM SOURCE CANCER AND NON-CANCER RISKS

CONSTRUCTION IMPACTS

The land use with the greatest potential exposure to Project construction-source DPM emissions is Location R6 which is located approximately 126 feet east the Project site at an existing residence located at 25146 Sherman Road. Because there are no private outdoor living areas facing the Project site, R6 is placed at the building façade nearest the Project site. At the MEIR, the maximum incremental cancer risk attributable to Project construction-source DPM emissions is estimated at 4.75 in one million, which is less than the SCAQMD's significance threshold of 10 in one million. At this same location, non-cancer risks were estimated to be <0.01, which would not exceed the applicable threshold of 1.0. As such, the Project will not cause a significant human health or cancer risk to adjacent land uses as a result of Project construction activity. All other receptors during construction activity would experience less risk than what is identified for this location. The nearest modeled receptors are illustrated on Exhibit 2-D.

OPERATIONAL IMPACTS

Residential Exposure Scenario:

The residential land use with the greatest potential exposure to Project operational-source DPM emissions is Location R6 which is located approximately 126 feet east of the Project site at an existing residence located at 25146 Sherman Road. Because there are no private outdoor living areas facing the Project site, R6 is placed at the building façade nearest the Project site. At the MEIR, the maximum incremental cancer risk attributable to Project operational-source DPM emissions is estimated at 0.31 in one million, which is less than the SCAQMD's significance threshold of 10 in one million. At this same location, non-cancer risks were estimated to be <0.01, which would not exceed the applicable significance threshold of 1.0. Because all other modeled residential receptors are exposed to lesser concentrations and are located at a greater distance from the Project site than the MEIR analyzed herein, and TACs generally dissipates with distance from the source, all other residential receptors in the vicinity of the Project site would be exposed to less emissions and therefore less risk than the MEIR identified herein. As such, the Project will not cause a significant human health or cancer risk to nearby residences. The nearest modeled receptors are illustrated on Exhibit 2-D.

Worker Exposure Scenario³:

The worker receptor land use with the greatest potential exposure to Project operational-source DPM emissions is Location R7, which represents the potential worker receptor approximately 139 feet west of the Project site. At the MEIW, the maximum incremental cancer risk impact is 0.08 in one million which is less than the SCAQMD's threshold of 10 in one million. Maximum

³ SCAQMD guidance does not require assessment of the potential health risk to on-site workers. Excerpts from the document OEHHA Air Toxics Hot Spots Program Risk Assessment Guidelines—The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments (OEHHA 2003), also indicate that it is not necessary to examine the health effects to on-site workers unless required by RCRA (Resource Conservation and Recovery Act) / CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) or the worker resides on-site.

14804-03 HRA Report

non-cancer risks at this same location were estimated to be <0.01, which would not exceed the applicable significance threshold of 1.0. Because all other modeled worker receptors are located at a greater distance than the MEIW analyzed herein, and DPM dissipates with distance from the source, all other worker receptors in the vicinity of the Project would be exposed to less emissions and therefore less risk than the MEIW identified herein. As such, the Project will not cause a significant human health or cancer risk to adjacent workers. The nearest modeled receptors are illustrated on Exhibit 2-D.

<u>School Child Exposure Scenario:</u>

Proximity to sources of toxics is critical to determining the impact. In traffic-related studies, the additional non-cancer health risk attributable to proximity was seen within 1,000 feet and was strongest within 300 feet. California freeway studies show about a 70-percent drop-off in particulate pollution levels at 500 feet. Based on California Air Resources Board (CARB) and SCAQMD emissions and modeling analyses, an 80-percent drop-off in pollutant concentrations is expected at approximately 1,000 feet from a distribution center (1).

The 1,000-foot evaluation distance is supported by research-based findings concerning Toxic Air Contaminant (TAC) emission dispersion rates from roadways and large sources showing that emissions diminish substantially between 500 and 1,000 feet from emission sources.

A one-quarter mile radius, or 1,320 feet, is commonly utilized for identifying sensitive receptors, such as schools, that may be impacted by a proposed project. This radius is more robust than, and therefore provides a more health protective scenario for evaluation than the 1,000-foot impact radius identified above.

There are no schools within ¼ mile of the Project site. The nearest school is Romoland Elementary School, which is located approximately 4,130 feet southeast of the Project site. Because there is no reasonable potential that TAC emissions would cause significant health impacts at distances of more than ¼ mile from the air pollution source, there would be no significant impacts that would occur to any schools in the vicinity of the Project.

CONSTRUCTION AND OPERATIONAL IMPACTS

The land use with the greatest potential increased cancer risk due to exposure to Project construction-source and operational-source DPM emissions is Location R6. At this location, the maximum incremental cancer risk attributable to Project construction and operational DPM source emissions is estimated at 4.90 in one million, which is less than the threshold of 10 in one million. At this same location, non-cancer risks were estimated to be <0.01, which would not exceed the applicable threshold of 1.0. As such, the Project will not cause a significant human health or cancer risk to adjacent land uses as a result of Project construction and operational activity. All other receptors during construction and operational activity would experience less risk than what is identified for this location. The nearest modeled receptors are illustrated on Exhibit 2-D.

It should be noted that the receptors presented in Exhibit 2-D do not represent all modeled receptors.

RA MAPES RD Site R5 **LEGEND:**

EXHIBIT 2-D: RECEPTOR LOCATIONS

Receptor Locations

Distance from receptor to Project site boundary (in feet)

This page intentionally left blank

3 REFERENCES

- 1. Air Resources Board. Air Quality and Land Use Handbook: A Community Health Perspective. 2005.
- 2. **South Coast Air Quality Managment District.** Mobile Source Toxics Analysis. [Online] 2003. http://www.aqmd.gov/ceqa/handbook/mobile_toxic/mobile_toxic.html.
- 3. Goss, Tracy A and Kroeger, Amy. White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, 2003. [Cited: June 6, 2019.] http://www.aqmd.gov/docs/default-source/Agendas/Environmental-Justice/cumulative-impacts-working-group/cumulative-impacts-white-paper.pdf?sfvrsn=2.
- 4. **Urban Crossroads, Inc.** *Mapes Commerce Center Air Quality Impact Analysis.* 2022.
- 5. California Air Resources Board. EMFAC 2021. [Online] https://www.arb.ca.gov/emfac/.
- 6. **California Department of Transportation.** EMFAC Software. [Online] http://www.dot.ca.gov/hq/env/air/pages/emfac.htm.
- 7. Wong, Jillian. Planning, Rule Development & Area Sources. December 22, 2016.
- 8. **EPD Solutions, Inc.** *Mapes Commerce Center VMT Analysis.* 2022.
- Environmental Protection Agency. User's Guide for the AMS/EPA Regulatory Model (AERMOD).
 [Online] June 2022.
 https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_userguide.pdf.
- 10. **South Coast Air Quality Management District.** Data for AERMOD. [Online] [Cited: December 16, 2021.] https://www.aqmd.gov/home/air-quality/air-quality-data-studies/meteorological-data/data-for-aermod.
- 11. —. South Coast AQMD Modeling Guidance for AERMOD. [Online] [Cited: September 18, 2019.] http://www.aqmd.gov/home/air-quality/meteorological-data/modeling-guidance.
- Environmental Protection Agency. User's Guide for the AERMOD Terrain Preprocessor (AERMAP).
 [Online] 2018.
 https://gaftp.epa.gov/Air/aqmg/SCRAM/models/related/aermap/aermap_userguide_v18081.pdf.
- 13. California Office of Environmental Health Hazard Assessment. Chemical Database. [Online] https://oehha.ca.gov/chemicals.

This page intentionally left blank

4 CERTIFICATIONS

The contents of this health risk assessment represent an accurate depiction of the impacts to sensitive receptors associated with the proposed Mapes & Sherman Commerce Center (DEV2022-003) Project. The information contained in this health risk assessment report is based on the best available data at the time of preparation. If you have any questions, please contact me at (949) 660-1994.

Haseeb Qureshi
Associate Principal
URBAN CROSSROADS, INC.
(949) 660-1994
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Environmental Site Assessment – American Society for Testing and Materials • June 2013 Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – California Air Resources Board • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 2.1:

CALEEMOD OUTPUTS

Mapes & Sherman (Construction) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2023) Unmitigated
 - 3.3. Grading (2023) Unmitigated
 - 3.5. Building Construction (2023) Unmitigated
 - 3.7. Building Construction (2024) Unmitigated
 - 3.9. Paving (2024) Unmitigated
 - 3.11. Architectural Coating (2024) Unmitigated

- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
 - 5.5. Architectural Coatings
 - 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies

- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores

- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Construction)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_

Other Asphalt	145	1000sqft	3.34	0.00	0.00	0.00	_	_
Surfaces								

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		,	,	J. J		,		,	J ,		,					_		
Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Unmit.	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.21	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
					1					_								

Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2024	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
2024	2.98	2.53	19.1	23.8	0.04	1.04	1.85	2.89	0.96	0.45	1.41	_	5,503	5,503	0.21	0.25	0.26	5,584
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
2023	0.80	0.67	6.35	5.62	0.01	0.31	0.59	0.91	0.29	0.21	0.50	_	1,369	1,369	0.05	0.07	0.61	1,390
2024	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.20	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.15	0.12	1.16	1.03	< 0.005	0.06	0.11	0.17	0.05	0.04	0.09	_	227	227	0.01	0.01	0.10	230
2024	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

3. Construction Emissions Details

3.1. Site Preparation (2023) - Unmitigated

			,	<i>y</i> , <i>y</i> .		any ana												
Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.90	47.0	38.0	0.05	2.53	_	2.53	2.33	_	2.33	_	5,530	5,530	0.22	0.04	_	5,549

Dust From Material Movemen	<u> </u>	_	_	_	_	_	5.66	5.66	_	2.69	2.69	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.13	1.29	1.04	< 0.005	0.07	_	0.07	0.06	_	0.06	_	152	152	0.01	< 0.005	_	152
Dust From Material Movemen		_	_	_	_	_	0.16	0.16	_	0.07	0.07	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.24	0.19	< 0.005	0.01	_	0.01	0.01	_	0.01	_	25.1	25.1	< 0.005	< 0.005	_	25.2
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_		_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.10	0.09	0.11	1.24	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	243	243	0.01	0.01	0.03	246
Vendor	< 0.005	< 0.005	0.12	0.04	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	94.3	94.3	< 0.005	0.01	0.01	98.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

8 / 30

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	6.74	6.74	< 0.005	< 0.005	0.01	6.84
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.58	2.58	< 0.005	< 0.005	< 0.005	2.70
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.12	1.12	< 0.005	< 0.005	< 0.005	1.13
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.43	0.43	< 0.005	< 0.005	< 0.005	0.45
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2023) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.20	40.9	32.7	0.06	1.96	_	1.96	1.80	_	1.80	_	6,715	6,715	0.27	0.05	_	6,738
Dust From Material Movement	<u> </u>	_	_	-	_	_	2.67	2.67	_	0.98	0.98	-	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.34	3.36	2.69	0.01	0.16	_	0.16	0.15	_	0.15	_	552	552	0.02	< 0.005	_	554

Dust From Material Movemen	-	_	_	_	_	_	0.22	0.22	_	0.08	0.08	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.06	0.61	0.49	< 0.005	0.03	_	0.03	0.03	_	0.03	_	91.4	91.4	< 0.005	< 0.005	_	91.7
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.04	0.04	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	-	-	-	_	_	-	_	_	-	_	_	_
Worker	0.11	0.10	0.12	1.37	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	270	270	0.01	0.01	0.03	273
Vendor	0.01	0.01	0.27	0.08	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	0.01	_	220	220	< 0.005	0.03	0.02	230
Hauling	0.12	0.04	3.58	0.83	0.02	0.06	0.20	0.26	0.06	0.07	0.13	_	2,984	2,984	0.05	0.47	0.16	3,127
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	0.01	0.01	0.01	0.12	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	22.5	22.5	< 0.005	< 0.005	0.04	22.8
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	18.1	18.1	< 0.005	< 0.005	0.02	18.9
Hauling	0.01	< 0.005	0.30	0.07	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	245	245	< 0.005	0.04	0.22	257
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	3.72	3.72	< 0.005	< 0.005	0.01	3.77
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.99	2.99	< 0.005	< 0.005	< 0.005	3.13

⊟Ha	ulina	< 0.005	< 0.005	0.05	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	40.6	40.6	< 0.005	0.01	0.04	42.6
0	· · · · · · · · · · · ·	1 0.000	1 0.000	0.00	0.0.	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000		.0.0	.0.0	1 0.000	0.0.	0.0.	

3.5. Building Construction (2023) - Unmitigated

	TOG	ROG	NOx	СО	so2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_
Off-Road Equipmen		2.07	18.3	16.2	0.03	1.14	_	1.14	1.05	_	1.05	_	2,806	2,806	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.14	1.22	1.08	< 0.005	0.08	_	0.08	0.07	_	0.07	_	187	187	0.01	< 0.005	_	187
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.22	0.20	< 0.005	0.01	_	0.01	0.01	_	0.01	_	30.9	30.9	< 0.005	< 0.005	_	31.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.65	0.59	0.72	8.04	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,579	1,579	0.08	0.06	0.19	1,599
Vendor	0.06	0.03	1.42	0.43	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,163	1,163	0.02	0.17	0.08	1,215
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.05	0.56	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	106	106	0.01	< 0.005	0.21	108
Vendor	< 0.005	< 0.005	0.10	0.03	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	77.3	77.3	< 0.005	0.01	0.09	80.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.10	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	17.6	17.6	< 0.005	< 0.005	0.03	17.9
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	12.8	12.8	< 0.005	< 0.005	0.02	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmer		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Off-Road Equipmen		0.82	7.29	6.83	0.01	0.44	_	0.44	0.40	_	0.40	-	1,197	1,197	0.05	0.01	-	1,201
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.15	1.33	1.25	< 0.005	0.08	_	0.08	0.07	_	0.07	-	198	198	0.01	< 0.005	_	199
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.66	0.60	0.56	9.77	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,684	1,684	0.07	0.06	6.68	1,710
Vendor	0.05	0.03	1.30	0.40	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,149	1,149	0.02	0.17	3.24	1,204
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_
Worker	0.62	0.56	0.67	7.38	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,548	1,548	0.07	0.06	0.17	1,567
Vendor	0.05	0.03	1.36	0.41	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,150	1,150	0.02	0.17	0.08	1,202
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.27	0.24	0.28	3.32	0.00	0.00	0.04	0.04	0.00	0.00	0.00	_	669	669	0.03	0.02	1.23	678
Vendor	0.02	0.01	0.58	0.18	< 0.005	0.01	0.03	0.04	0.01	0.01	0.02	_	490	490	0.01	0.07	0.59	513

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	_	<u> </u>	_
Worker	0.05	0.04	0.05	0.61	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	111	111	0.01	< 0.005	0.20	112
Vendor	< 0.005	< 0.005	0.11	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	81.2	81.2	< 0.005	0.01	0.10	84.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.85	7.81	10.0	0.01	0.39	_	0.39	0.36	_	0.36	_	1,512	1,512	0.06	0.01	_	1,517
Paving	_	0.70	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Average Daily	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.43	0.55	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.8	82.8	< 0.005	< 0.005	_	83.1
Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.08	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.8

Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
Worker	0.08	0.08	0.07	1.25	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	216	216	0.01	0.01	0.86	219
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	11.0	11.0	< 0.005	< 0.005	0.02	11.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.82	1.82	< 0.005	< 0.005	< 0.005	1.85
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2024) - Unmitigated

Ontona	· onatan	()	, .c. aa	<i>y</i> ,, <i>y</i> .	.0	an, ana	O OO (o, aay .c.	ua,,	, ,	ai ii iaai,							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	_	_
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																		
(Max)																		

Off-Road Equipmen		0.18	1.21	1.53	< 0.005	0.04	_	0.04	0.04	_	0.04	-	178	178	0.01	< 0.005	_	179
Architect ural Coatings	_	34.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.13	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	19.5	19.5	< 0.005	< 0.005	_	19.6
Architect ural Coatings	_	3.81	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.02	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	3.23	3.23	< 0.005	< 0.005	_	3.24
Architect ural Coatings	_	0.69	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.13	0.12	0.11	1.92	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	331	331	0.01	0.01	1.31	336
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.17	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	33.8	33.8	< 0.005	< 0.005	0.06	34.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	5.59	5.59	< 0.005	< 0.005	0.01	5.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG		СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Subtotal	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
	_	_	_	_	_		_	_		_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
I Hase Maille	I hase type	Julian Date	Liiu Dale	Days I di Week	Work Days per i Hase	i nase Description

Site Preparation	Site Preparation	10/3/2023	10/16/2023	5.00	10.0	_
Grading	Grading	10/17/2023	11/27/2023	5.00	30.0	_
Building Construction	Building Construction	11/28/2023	8/5/2024	5.00	180	_
Paving	Paving	7/9/2024	8/5/2024	5.00	20.0	_
Architectural Coating	Architectural Coating	6/11/2024	8/5/2024	5.00	40.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Site Preparation	Crawler Tractors	Diesel	Average	4.00	8.00	87.0	0.43
Grading	Crawler Tractors	Diesel	Average	2.00	8.00	87.0	0.43
Building Construction	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	_	_
Site Preparation	Worker	18.0	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	3.00	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	0.00	0.00	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	7.00	10.2	HHDT,MHDT
Grading	Hauling	42.0	20.0	HHDT
Grading	Onsite truck	0.00	0.00	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	117	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	37.0	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	0.00	0.00	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	0.00	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	0.00	0.00	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	23.0	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	0.00	10.2	HHDT,MHDT

Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	0.00	0.00	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	427,392	142,464	14,700

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	35.0	0.00	_
Grading	10,100	0.00	120	0.00	_
Paving	0.00	0.00	0.00	0.00	5.36

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Edita 000	Trica ravea (acres)	70 / Opridit

Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	2.02	100%
Other Asphalt Surfaces	3.34	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2023	0.00	532	0.03	< 0.005
2024	0.00	532	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
vegetation Land Ose Type	vegetation our type	Illitial Acres	i ilidi Adica

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
Zioniaso Gorei ijpo	Thursday 1 is 100	7 man 7 to 100

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A

Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator Result for Project Census Tract

Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6
Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	_
Auto Access	49.51879892
Active commuting	15.06480175
Social	_
2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	_

Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0

Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113

This page intentionally left blank

APPENDIX 2.2:

EMFAC EMISSIONS **S**UMMARY

Emissions	Phase	Lb/Day	# Days	Emissions	Avg/Lb Day	Avg/Hourly
On-Site	Site Preparation	2.53	10	25.3	2.53	0.31625
Exhaust PM-10	·	1.96	30	58.8	1.96	0.245
	Building Construction	1.09	180	195.3	1.085	0.135625
	Paving	0.39	20	7.8	0.39	0.04875
	Architectural Coatings	0.04	40	1.6	0.04	0.005
		6.01	. 220	288.8	1.312727273	0.164090909
Off-Site	Site Preparation	2.00E-02	10	0.2	0.02	0.0025
Exhaust PM-10	Grading	6.50E-02	30	1.95	0.065	0.008125
	Building Construction	2.00E-02	180	3.6	0.02	0.0025
	Paving	0.00E+00	20	0	0	0
	Architectural Coatings	0.00E+00	40	0	0	0
		1.05E-01	. 220	5.75	0.026136364	0.003267045

Phase	Start Date	End Date	No. Days
Site Preparation	10/3/2023	10/16/2023	10
Grading	10/17/2023	11/27/2023	30
Building Construction	11/28/2023	8/5/2024	180
Paving	7/9/2024	8/5/2024	20
Arch Coatings	6/11/2024	8/5/2024	40
		Total Days of Construction	220

AVERAGE EMISSION FACTOR RIVERSIDE COUNTY 2024

Speed	LHD1	LHD2	MHD	HHD
0	0.364164	0.578609	0.062209	0.01271
5	0.048579	0.069107	0.036909	0.01206
25	0.022221	0.03303	0.009618	0.00621

Speed	Weighted Average Emissions
0	0.06299
5	0.01945
25	0.00866

Truck Emission Rates										
VMT ^a Truck Emission Rate ^b Truck Emission Rate ^b Daily Truck Emissions ^c Modeled Emission Rates										
Source	Trucks Per Day	(miles/day)	(grams/mile)	(grams/idle-hour)	(grams/day)	(g/second)				
On-Site Idling	53			0.0630	0.83	9.660E-06				
On-Site Travel	106	29.38	0.0194		0.57	6.613E-06				
Off-Site Travel - Sherman Road 15% Inbound/Outbound	16	2.79	0.0087		0.02	2.797E-07				
Off-Site Travel - Mapes Road 15% Inbound/Outbound	16	1.69	0.0087		0.01	1.697E-07				
Off-Site Travel - Mapes Road 100% Inbound/Outbound	106	109.11	0.0087		0.94	1.093E-05				

Vehicle miles traveled are for modeled truck route only.

 Emission rates determined using EMFAC 2021. Idle emission rates are expressed in grams per idle hour rather than grams per mile.

^c This column includes the total truck travel and truck idle emissions. For idle emissions this column includes emissions based on the assumption that each truck idles for 15 minutes.

alendar_y season_m	sub_area vehicle_class	fuel	temperatur relat	ive_huprocess	speed_tim pollutant	emission_rate
2024 Annual	Riverside (HHDT	Dsl	60	70 RUNEX	5 PM10	0.012665
2024 Annual	Riverside (HHDT	Dsl	60	70 RUNEX	25 PM10	0.006524
2024 Annual	Riverside (HHDT	Dsl		IDLEX	PM10	0.013354
2024 Annual	Riverside (LHDT1	Dsl	60	70 RUNEX	5 PM10	0.105382
2024 Annual	Riverside (LHDT1	Dsl	60	70 RUNEX	25 PM10	0.048204
2024 Annual	Riverside (LHDT1	Dsl		IDLEX	PM10	0.789975
2024 Annual	Riverside (LHDT2	Dsl	60	70 RUNEX	5 PM10	0.094294
2024 Annual	Riverside (LHDT2	Dsl	60	70 RUNEX	25 PM10	0.045068
2024 Annual	Riverside (LHDT2	Dsl		IDLEX	PM10	0.789487
2024 Annual	Riverside (MHDT	Dsl	60	70 RUNEX	5 PM10	0.040436
2024 Annual	Riverside (MHDT	Dsl	60	70 RUNEX	25 PM10	0.010537
2024 Annual	Riverside (MHDT	Dsl		IDLEX	PM10	0.068154

Source: EMFAC2021 (v1.0.2) Emissions Inventory

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2024 Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

Region	Calendar 'Vehicle C	CaModel YeaSpeed Fuel	Population
Riverside	2024 HHDT	Aggregate Aggregate Gasoline	7.58948
Riverside	2024 HHDT	Aggregate Aggregate Diesel	14792
Riverside	2024 HHDT	Aggregate Aggregate Natural Ga	740.071
Riverside	2024 LHDT1	Aggregate Aggregate Gasoline	17828.7
Riverside	2024 LHDT1	Aggregate Aggregate Diesel	15247.6
Riverside	2024 LHDT2	Aggregate Aggregate Gasoline	2494.68
Riverside	2024 LHDT2	Aggregate Aggregate Diesel	6844.93
Riverside	2024 MHDT	Aggregate Aggregate Gasoline	1238
Riverside	2024 MHDT	Aggregate Aggregate Diesel	12954.4
Riverside	2024 MHDT	Aggregate Aggregate Natural Ga	158.047

HHDT% GAS/NG	0.04811
HHDT% DSL	0.95189
LHDT1% GAS	0.53902
LHDT1% DSL	0.46098
LHDT2% GAS	0.26711
LHDT2% DSL	0.73289
MHDT% GAS	0.08723
MHDT% DSL	0.91277

This page intentionally left blank

APPENDIX 2.3:

AERMOD MODEL INPUT/OUTPUT


```
*********
* *
** AERMOD Input Produced by:
** AERMOD View Ver. 11.0.0
** Lakes Environmental Software Inc.
** Date: 9/15/2022
** File: C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 Construction\14804
Construction.ADI
*********
***********
** AERMOD Control Pathway
* *
CO STARTING
  TITLEONE C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O
  MODELOPT DFAULT CONC
  AVERTIME ANNUAL
  URBANOPT 2189641 Riverside County
  POLLUTID DPM
  RUNORNOT RUN
  ERRORFIL "14804 Construction.err"
CO FINISHED
********
** AERMOD Source Pathway
*********
* *
* *
SO STARTING
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
  LOCATION VOL1 VOLUME 483136.255 3735242.300
                                                      434.000
  LOCATION VOL2
                     VOLUME
                              483230.210 3735241.097
                                                        434.000
  LOCATION VOL3
                    VOLUME
                             483136.656 3735144.330
                                                       434.000
                             483135.853 3735047.564
  LOCATION VOL4
                    VOLUME
                                                      434.000
  LOCATION VOL5
                             483230.210 3735143.126
                    VOLUME
  LOCATION VOL6 VOLUME 483229.407 3735048.367 435.000
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE1
** DESCRSRC
** PREFIX
** Length of Side = 14.00
** Configuration = Adjacent
** Emission Rate = 0.0004116407
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 10
** 483274.778, 3735300.120, 434.52, 3.49, 6.51
** 482892.532, 3735298.112, 433.00, 3.49, 6.51
** 482888.516, 3734771.720, 433.98, 3.49, 6.51
** 482823.872, 3734672.143, 433.86, 3.49, 6.51
** 482523.937, 3734882.138, 433.00, 3.49, 6.51
** 482416.329, 3734960.836, 433.00, 3.49, 6.51
** 482384.609, 3734998.980, 432.91, 3.49, 6.51
** 482366.943, 3735034.716, 432.43, 3.49, 6.51
** 482355.298, 3735086.110, 432.13, 3.49, 6.51
** 482353.692, 3735159.588, 432.06, 3.49, 6.51
** -----
  LOCATION L0000001 VOLUME 483267.778 3735300.083 434.31
  LOCATION L0000002 VOLUME 483253.779 3735300.010 434.07
```

LOCATION	L0000003	VOLUME	483239.779	3735299.936	434.00
LOCATION	L0000004	VOLUME	483225.779	3735299.863	434.00
LOCATION	L0000005	VOLUME	483211.779	3735299.789	434.00
	L0000006	VOLUME	483197.779	3735299.716	434.00
	L0000007	VOLUME	483183.780	3735299.642	434.00
					434.00
	L0000008	VOLUME	483169.780	3735299.568	
	L0000009	VOLUME	483155.780	3735299.495	434.00
	L0000010	VOLUME	483141.780	3735299.421	434.00
LOCATION	L0000011	VOLUME	483127.780	3735299.348	433.92
LOCATION	L0000012	VOLUME	483113.780	3735299.274	433.46
LOCATION	L0000013	VOLUME	483099.781	3735299.201	433.00
LOCATION	L0000014	VOLUME	483085.781	3735299.127	433.00
	L0000015	VOLUME	483071.781	3735299.054	433.00
	L0000016	VOLUME	483057.781	3735298.980	433.00
	L0000017				433.00
		VOLUME		3735298.907	
	L0000018	VOLUME		3735298.833	433.00
	L0000019	VOLUME		3735298.760	433.00
LOCATION	L0000020	VOLUME		3735298.686	433.00
LOCATION	L0000021	VOLUME	482987.782	3735298.613	433.00
LOCATION	L0000022	VOLUME	482973.782	3735298.539	433.00
LOCATION	L0000023	VOLUME	482959.783	3735298.466	433.00
LOCATION	L0000024	VOLUME	482945.783	3735298.392	433.00
	L0000025	VOLUME	482931.783	3735298.319	433.00
	L0000025	VOLUME	482917.783	3735298.245	433.00
	L0000020			3735298.243	433.00
		VOLUME	482903.783		
	L0000028	VOLUME	482892.511	3735295.364	433.00
	L0000029	VOLUME	482892.404	3735281.365	433.00
LOCATION	L0000030	VOLUME	482892.297	3735267.365	433.00
LOCATION	L0000031	VOLUME	482892.190	3735253.366	433.00
LOCATION	L0000032	VOLUME	482892.084	3735239.366	433.00
LOCATION	L0000033	VOLUME	482891.977	3735225.366	433.00
LOCATION	L0000034	VOLUME	482891.870	3735211.367	433.00
	L0000035	VOLUME	482891.763	3735197.367	433.00
	L0000036	VOLUME	482891.656	3735183.368	433.00
	L0000030		482891.550	3735169.368	433.00
		VOLUME			
	L0000038	VOLUME	482891.443	3735155.368	433.00
	L0000039	VOLUME		3735141.369	433.00
	L0000040	VOLUME		3735127.369	
LOCATION	L0000041	VOLUME		3735113.370	
LOCATION	L0000042	VOLUME	482891.016	3735099.370	433.00
LOCATION	L0000043	VOLUME	482890.909	3735085.370	433.00
LOCATION	L0000044	VOLUME	482890.802	3735071.371	433.00
	L0000045	VOLUME	482890.695	3735057.371	433.00
	L0000046	VOLUME	482890.589	3735043.372	433.00
	L0000047	VOLUME	482890.482	3735029.372	433.00
	L0000047	VOLUME	482890.375	3735025.372	433.00
	L0000048			3735013.372	
		VOLUME	482890.268		433.00
	L0000050	VOLUME		3734987.373	433.00
	L0000051	VOLUME		3734973.374	433.00
	L0000052	VOLUME		3734959.374	433.00
LOCATION	L0000053	VOLUME	482889.841	3734945.375	433.00
LOCATION	L0000054	VOLUME	482889.734	3734931.375	433.00
LOCATION	L0000055	VOLUME	482889.627	3734917.375	433.00
LOCATION	L0000056	VOLUME	482889.521	3734903.376	433.00
	L0000057	VOLUME	482889.414	3734889.376	433.00
	L0000058	VOLUME	482889.307	3734875.377	433.00
	L0000059	VOLUME	482889.200	3734861.377	433.00
				3734847.377	
	L0000060	VOLUME	482889.094		433.00
	L0000061	VOLUME	482888.987	3734833.378	433.00
	L0000062	VOLUME	482888.880	3734819.378	433.00
	L0000063	VOLUME		3734805.379	
	L0000064	VOLUME		3734791.379	
LOCATION	L0000065	VOLUME	482888.560	3734777.379	433.91
LOCATION	L0000066	VOLUME	482883.975	3734764.724	433.80
	L0000067	VOLUME	482876.352	3734752.982	433.54
	L0000068	VOLUME		3734741.239	
	-	- ·-			

	LOCATION	L0000069	VOLUME	482861.1	105 373472	29.497 433	.57
	LOCATION		VOLUME			L7.754 433	
	LOCATION		VOLUME			06.012 433	
	LOCATION		VOLUME			94.269 433	
	LOCATION		VOLUME			32.527 434	
	LOCATION		VOLUME			73.073 433	
	LOCATION		VOLUME			31.102 433	
	LOCATION		VOLUME			39.132 433	
	LOCATION		VOLUME			97.161 433	
	LOCATION	L0000078	VOLUME			05.191 433	
	LOCATION		VOLUME			13.220 433	
	LOCATION	L0000080	VOLUME	482753.7	733 373472	21.250 433	.00
	LOCATION	L0000081	VOLUME	482742.2	265 373472	29.279 433	.00
	LOCATION	L0000082	VOLUME	482730.7	796 373473	37.309 433	.00
	LOCATION		VOLUME	482719.3	328 373474	15.338 433	.00
	LOCATION		VOLUME			53.368 433	
	LOCATION		VOLUME			51.397 433	
	LOCATION		VOLUME			59.427 433	
	LOCATION		VOLUME			77.456 433	
	LOCATION		VOLUME			35.486 433	
	LOCATION		VOLUME			93.515 433	
	LOCATION		VOLUME			01.545 433	
	LOCATION		VOLUME			9.574 433	
	LOCATION		VOLUME			L7.604 433	
	LOCATION	L0000093	VOLUME			25.633 433	
	LOCATION	L0000094	VOLUME	482593.1	174 373483	33.663 433	.83
	LOCATION	L0000095	VOLUME	482581.7	705 373484	11.692 433	.59
	LOCATION	L0000096	VOLUME	482570.2	237 373484	19.722 433	.18
	LOCATION	L0000097	VOLUME	482558.7	768 373485	57.751 433	.01
	LOCATION	L0000098	VOLUME	482547.3	300 373486	55.781 433	.00
	LOCATION	L0000099	VOLUME	482535.8	331 373487	73.810 433	.00
	LOCATION		VOLUME			31.840 433	
	LOCATION		VOLUME			90.096 433	
	LOCATION		VOLUME			98.360 433	
	LOCATION		VOLUME			06.624 433	
	LOCATION		VOLUME			L4.889 433	
	LOCATION					23.153 433	
			VOLUME			31.418 433	
	LOCATION		VOLUME				
	LOCATION		VOLUME			39.682 433	
	LOCATION		VOLUME			17.947 433	
	LOCATION		VOLUME			56.211 433	
	LOCATION		VOLUME			55.577 433	
	LOCATION		VOLUME			76.341 433	
	LOCATION		VOLUME			37.105 433	
	LOCATION		VOLUME			97.870 433	
	LOCATION	L0000114	VOLUME			10.236 432	
	LOCATION	L0000115	VOLUME	482372.8	340 373502	22.786 432	.76
	LOCATION	L0000116	VOLUME	482366.7	790 373503	35.390 432	.56
	LOCATION	L0000117	VOLUME	482363.6	696 373504	19.044 432	.46
	LOCATION	L0000118	VOLUME	482360.6	603 373506	52.698 432	.35
	LOCATION	L0000119	VOLUME	482357.5	509 373507	76.352 432	.25
	LOCATION					90.104 432	
	LOCATION					04.101 432	
		L0000122	VOLUME	482354	599 373511	18.097 432	15
		L0000123	VOLUME	482354	293 373513 293 373513	32.094 432	1 <u>4</u>
		L0000123	VOLUME	182353.2		16.091 432	
*		INE VOLUME So			007 07001-	10.071 432	• 1 3
*			durce in -	STINET			
		arameters **	0 0024454	0511	E 000	22 500	1 100
	SRCPARAM		0.0034458		5.000	22.598	1.400
	SRCPARAM		0.0034458		5.000	22.598	1.400
	SRCPARAM		0.0034458		5.000	22.598	1.400
	SRCPARAM		0.0034458		5.000	22.598	1.400
	SRCPARAM		0.0034458		5.000	22.598	1.400
	SRCPARAM		0.0034458	3511	5.000	22.598	1.400
*		JME Source II					
	SRCPARAM	L0000001	0.0000033	32 3	3.49	6.51	3.25

SRCPARAM L00000	02 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	0.00000332	3.49	6.51	3.25
SRCPARAM L00000	0.00000332	3.49	6.51	3.25
SRCPARAM L00000	10 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	16 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	17 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	18 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	19 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	24 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	25 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	26 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	27 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	
				3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	33 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	34 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	35 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	36 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000			6.51	3.25
SRCPARAM L00000			6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	0.00000332	3.49	6.51	3.25
SRCPARAM L00000	45 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	46 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	
		3.49		3.25
SRCPARAM L00000			6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	53 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	54 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000			6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000	62 0.00000332	3.49	6.51	3.25
SRCPARAM L00000	63 0.00000332	3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
SRCPARAM L00000		3.49	6.51	3.25
PICLADAM HUUUU	0.00000332	5.49	0.01	٧.٧

	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000069	0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM SRCPARAM		0.00000332 0.00000332	3.49 3.49	6.51 6.51	3.25 3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000092	0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000093	0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000094	0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000095	0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000096	0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM SRCPARAM		0.00000332 0.00000332	3.49	6.51 6.51	3.25 3.25
	SRCPARAM		0.00000332	3.49 3.49	6.51	3.25
		L0000103	0.00000332	3.49	6.51	3.25
		L0000100	0.00000332	3.49	6.51	3.25
		L0000107	0.00000332	3.49	6.51	3.25
		L0000109	0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000115	0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000116	0.00000332	3.49	6.51	3.25
	SRCPARAM	L0000117	0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
	SRCPARAM		0.00000332	3.49	6.51	3.25
		L0000121	0.00000332	3.49	6.51	3.25
		L0000122	0.00000332	3.49	6.51	3.25
		L0000123	0.00000332	3.49	6.51	3.25
4	SRCPARAM	L0000124	0.00000332	3.49	6.51	3.25

**

URBANSRC ALL

EMISFACT VOL1 HRDOW 0.0 0.0 0.0 0.0 0.0 0.0 EMISFACT VOL1 HRDOW 0.0 0.0 1.0 1.0 1.0 1.0 EMISFACT VOL1 HRDOW 1.0 1.0 1.0 1.0 0.0 0.0

^{**} Variable Emissions Type: "By Hour / Day (HRDOW)"

^{**} Variable Emission Scenario: "Scenario 1"

^{**} WeekDays:

	EMISFACT VOL1	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	Saturday:							
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	bullady.	1100011	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW						
**	EMISFACT VOL1 WeekDays:	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
~ ~	EMISFACT VOL2	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
**		IIINDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL2	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
**	Sunday:							
	EMISFACT VOL2	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL2	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	WeekDays:							
	EMISFACT VOL3	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL3	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	bacaraay.							
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	bullday.		0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW HRDOW						
	EMISFACT VOL3 EMISFACT VOL3	HRDOW						
**	WeekDays:	IINDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW						
**	Saturday:		-	-	-	-	-	-
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	Sunday:							
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW	U.U	U.U	U.U	U.U	0.0	U.U
**	WeekDays:	IIDDO:-	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL5	HRDOW						
	EMISFACT VOL5	HRDOW HRDOW						
	EMISFACT VOL5 EMISFACT VOL5	HRDOW						
**	Saturday:	IIKDOM	0.0	0.0	0.0	0.0	0.0	0.0
^	EMISFACT VOL5	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL5	HRDOW						
	EMISFACT VOL5	HRDOW						
	EMISFACT VOL5	HRDOW						
		111(1) (1)	J. U	0.0	0.0	J . U	J. U	J . U

```
** Sunday:
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL5
  EMISFACT VOL5
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL5
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL5
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
** WeekDays:
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT VOL6
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
** Saturday:
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
** Sunday:
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT VOL6
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
** WeekDays:
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000001
  EMISFACT L000001
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L000001
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L000001
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000002
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000002
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L0000002
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L0000002
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000003
  EMISFACT L000003
                       HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L000003
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L000003
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000004
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000004
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L0000004
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L0000004
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000005
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000005
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L000005
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L0000005
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000006
                       HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L000006
  EMISFACT L000006
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L000006
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000007
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000007
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L0000007
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L0000007
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L000008
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000008
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L000008
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L0000008
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000009
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000009
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L0000009
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
  EMISFACT L0000009
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000010
  EMISFACT L0000010
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L0000010
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000010
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000011
  EMISFACT L0000011
                        HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
  EMISFACT L0000011
                        HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
  EMISFACT L0000011
  EMISFACT L0000012
                        HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
```

EMISFACT	L0000012	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000012	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000013		0.0		1.0	1.0	1.0	1.0
EMISFACT				0.0				
EMISFACT	L0000013	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000014	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000015							
EMISFACT		HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000015	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000015	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000016	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000017	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
	L0000017		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000018	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000019	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000020	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000021	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000022	HRDOW				1.0	1.0	1.0
	L0000022	HRDOW				1.0	0.0	
	L0000022	HRDOW				0.0	0.0	0.0
	L0000022							
		HRDOW			0.0	0.0	0.0	0.0
	L0000023	HRDOW			1.0	1.0	1.0	1.0
	L0000023	HRDOW			1.0	1.0	0.0	0.0
	L0000023	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0		0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000024	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW					0.0	
EMISFACT	L0000025	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000025	HRDOW			1.0	1.0	0.0	0.0
	L0000025							
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW			1.0	1.0	1.0	1.0
	L0000026	HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
	L0000027	HRDOW			1.0	1.0	0.0	0.0
	L0000027	HRDOW				0.0	0.0	0.0
	L0000027	HRDOW				0.0	0.0	0.0
	L0000028	HRDOW					1.0	
						1.0		1.0
EMISFACT	πυυυυσα	HRDOW	⊥.∪	⊥.∪	⊥.∪	⊥.∪	0.0	0.0

EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000029	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000029		0.0	0.0	0.0			0.0
						0.0	0.0	
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000030	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000031	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0		0.0	0.0	0.0
					0.0			
EMISFACT	L0000032	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000032		1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000033	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000034	HRDOW						
EMISFACT		-	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000034	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000035	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
	L0000036							
EMISFACT		HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000037	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT		HRDOW						
	L0000038	HRDOW				0.0		
	L0000030	HRDOW				0.0	0.0	0.0
	L0000039	HRDOW				1.0	1.0	1.0
	L0000039	HRDOW			1.0	1.0	0.0	0.0
	L0000039	HRDOW	0.0		0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000040	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000041	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000041	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000041	HRDOW				0.0	0.0	0.0
EMISFACT	L0000042	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000042	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW		0.0	1.0	1.0	1.0	1.0
	L0000043	HRDOW		1.0	1.0	1.0	0.0	0.0
	L0000043	HRDOW				0.0	0.0	0.0
	L0000043	HRDOW			0.0	0.0	0.0	0.0
	L0000044	HRDOW				1.0	1.0	1.0
	L0000044	HRDOW			1.0	1.0	0.0	0.0
	L0000044	HRDOW				0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

```
EMISFACT L0000045
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000045
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000045
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000046
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000046
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000046
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000046
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000047
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000047
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000047
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000047
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000048
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000048
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000048
EMISFACT L0000048
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000049
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000049
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000049
EMISFACT L0000049
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000050
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000050
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000050
EMISFACT L0000050
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000051
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000051
EMISFACT L0000051
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000051
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L000052
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000052
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000052
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000052
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000053
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000053
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000053
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000053
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000054
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000054
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000054
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000054
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000055
EMISFACT L0000055
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000055
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000055
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000056
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000056
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000056
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000056
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000057
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000057
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000057
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000057
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000058
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000058
EMISFACT L0000058
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000058
EMISFACT L0000059
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000059
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000059
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000059
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000060
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000060
EMISFACT L0000060
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
EMISFACT L0000060
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000061
                      HRDOW 0.0 0.0 0.0 0.0 0.0 0.0
EMISFACT L0000061
                      HRDOW 0.0 0.0 1.0 1.0 1.0 1.0
EMISFACT L0000061
                      HRDOW 1.0 1.0 1.0 1.0 0.0 0.0
```

EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000062	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000063	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000064	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065		0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000065	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000066	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000067	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000068	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000069	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000070	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT		HRDOW						
EMISFACT		HRDOW					0.0	0.0
EMISFACT		HRDOW			0.0		0.0	0.0
EMISFACT		HRDOW	0.0		1.0	1.0	1.0	1.0
EMISFACT	L0000072	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW			1.0	1.0	1.0	1.0
EMISFACT		HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000073	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000074	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000074	HRDOW				0.0	0.0	0.0
EMISFACT	L0000075	HRDOW				0.0	0.0	0.0
EMISFACT	L0000075	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000075	HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000076	HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000077	HRDOW				1.0	1.0	1.0
EMISFACT	L0000077	HRDOW	1.0		1.0	1.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW				0.0	0.0	0.0
	-	-··						

EMISFACT	L0000078	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000078	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079		0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000079	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000080	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081					0.0		
		HRDOW	0.0	0.0	0.0		0.0	0.0
EMISFACT	L0000081	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000081	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000082	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000083	HRDOW						
EMISFACT			0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000083	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000084	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000084		0.0	0.0	0.0	0.0	0.0	0.0
	L0000085		0.0		0.0			0.0
EMISFACT				0.0		0.0	0.0	
EMISFACT	L0000085	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000085	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000086	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000087							
EMISFACT		HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000087			1.0	1.0	1.0	0.0	0.0
	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW				0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000088	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000088	HRDOW				0.0	0.0	0.0
	L0000089	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW			1.0	1.0	1.0	1.0
	L0000089							
		HRDOW			1.0	1.0	0.0	0.0
	L0000089	HRDOW			0.0	0.0	0.0	0.0
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000090	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000091	HRDOW			1.0	1.0	0.0	0.0
	L0000091							
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000092	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000093	HRDOW			0.0	0.0	0.0	0.0
	L0000093	HRDOW			1.0	1.0	1.0	1.0
	L0000093	HRDOW			1.0	1.0	0.0	0.0
	L0000093	HRDOW				0.0	0.0	0.0
	L0000094	HRDOW				0.0	0.0	0.0
	L0000094	HRDOW				1.0	1.0	1.0
EMISFACT	L0000094	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0

EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000095	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000096	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097		0.0					
		HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000097	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098		0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000098	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000099	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000100	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000101	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000102	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000102							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000103	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104		0.0		0.0	0.0	0.0	0.0
	L0000104	HRDOW						
EMISFACT	L0000104	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW	0 0	0 0	0.0	0 0	0.0	0.0
						1.0	1.0	
EMISFACT		HRDOW						1.0
EMISFACT		HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW			1.0	1.0	1.0	1.0
EMISFACT		HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000107	HRDOW				1.0	0.0	0.0
EMISFACT	L0000107	HRDOW				0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT		HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000109	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000110	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW					0.0	0.0
EMISFACT		HRDOW					0.0	0.0
EMIOTACI	TOOODIT	TITYDOM	0.0	0.0	0.0	0.0	0.0	0.0

	L0000111 L0000111	HRDOW						
EMISFACT		HRDOW					0.0	0.0
	L0000111	HRDOW HRDOW			0.0	0.0	0.0	0.0
	L0000112	HRDOW			1.0	1.0		1.0
	L0000112	HRDOW			1.0			0.0
	L0000112	HRDOW						
EMISFACT		HRDOW						
EMISFACT		HRDOW						1.0
EMISFACT		HRDOW					0.0	0.0
EMISFACT		HRDOW					0.0	
EMISFACT		HRDOW						0.0
EMISFACT	L0000114	HRDOW			1.0		1.0	1.0
EMISFACT	L0000114	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000115	HRDOW						1.0
EMISFACT	L0000115	HRDOW						
EMISFACT		HRDOW						
EMISFACT		HRDOW					0.0	
EMISFACT		HRDOW					1.0	1.0
EMISFACT		HRDOW					0.0	
EMISFACT		HRDOW						0.0
EMISFACT EMISFACT		HRDOW HRDOW					0.0	1.0
EMISFACT		HRDOW		1.0	1.0		1.0	0.0
EMISFACT		HRDOW					0.0	
EMISFACT		HRDOW					0.0	
EMISFACT		HRDOW			1.0		1.0	1.0
EMISFACT		HRDOW			1.0		0.0	
EMISFACT		HRDOW			0.0		0.0	0.0
EMISFACT		HRDOW					0.0	0.0
EMISFACT	L0000119	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000119	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000120	HRDOW						1.0
	L0000120	HRDOW						
	L0000120	HRDOW						
	L0000121	HRDOW						
	L0000121	HRDOW						
	L0000121 L0000121	HRDOW						
	L0000121	HRDOW HRDOW						
	L0000122	HRDOW						
	L0000122	HRDOW						
	L0000122	HRDOW						
	L0000123	HRDOW						
	L0000123	HRDOW						
EMISFACT	L0000123	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000124	HRDOW						
	L0000124	HRDOW						
	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
** Saturday			0 0	0 0	0 0	0 0	0 0	0 0
	L0000001	HRDOW						
	L0000001	HRDOW						
	L0000001 L0000001	HRDOW HRDOW						
	L0000001 L0000002	HRDOW						
	L0000002	HRDOW						
	L0000002	HRDOW						
	L0000002	HRDOW						
	L0000003	HRDOW						
	L0000003	HRDOW						

EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000005		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000005	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000005	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000010		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0		0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW				0.0	0.0	0.0
EMISFACT	L0000016	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000016	HRDOW				0.0	0.0	0.0
EMISFACT	L0000017	HRDOW				0.0	0.0	0.0
EMISFACT	L0000017	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW		0.0		0.0	0.0	0.0
					0.0			
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW				0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000020	HRDOW						
EMISFACT		_	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000024	-	0.0	0.0				0.0
EMISFACT		HRDOW			0.0	0.0	0.0	
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000029	HRDOW						
EMISFACT		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT								
	L0000031	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW				0.0	0.0	0.0
EMISFACT	L0000033	HRDOW				0.0	0.0	0.0
EMISFACT	L0000033	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW					0.0	0.0
DELIGEACT	-0000000	111/10/01/	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW		0.0	0.0	0.0	0.0	0.0
		-						
EMISFACT	L0000037		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0		0.0
							0.0	
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000041	HRDOW						
EMISFACT			0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045		0.0	0.0	0.0	0.0	0.0	0.0
	L0000046	HRDOW						
	L0000046	HRDOW						
EMISFACT	L0000046	HRDOW				0.0	0.0	
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW			0.0	0.0	0.0	0.0
	L0000048	HRDOW			0.0	0.0	0.0	0.0
	L0000048	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050			0.0		0.0	0.0	
		HRDOW			0.0			0.0
EMISFACT	L0000051	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000051	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000051	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW				0.0	0.0	0.0
	L0000052	HRDOW				0.0	0.0	0.0
	-							

EMISFACT	L0000053	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000051		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000062	HRDOW						
EMISFACT		HRDOW						
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW				0.0	0.0	0.0
EMISFACT	L0000063	HRDOW				0.0	0.0	0.0
EMISFACT	L0000064	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000065	HRDOW				0.0	0.0	0.0
EMISFACT	L0000065	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000066	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000068	HRDOW				0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW					0.0	0.0
				- • 0	- • 0	- • •	- • •	- • •

EMISFACT	L0000069	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000071							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000075				0.0	0.0		
EMISFACT		HRDOW	0.0	0.0			0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000079	HRDOW						
EMISFACT	L0000079	HRDOW						
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000080	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW				0.0	0.0	0.0
EMISFACT	L0000081	HRDOW				0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW				0.0	0.0	0.0
	L0000083							
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	υ.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW				0.0	0.0	0.0
EMISFACT	L0000085	HRDOW				0.0	0.0	0.0
EMISFACT	L0000085	HRDOW				0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000086	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000087		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000089		0.0	0.0		0.0		
EMISFACT					0.0		0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091							
		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW					0 0	0 0
EMISFACT	L0000095							
		HRDOW						
EMISFACT	L0000096	HRDOW				0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW						
	L0000097			0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW				0.0	0.0	0.0
EMISFACT	L0000098	HRDOW				0.0	0.0	0.0
EMISFACT	L0000098	HRDOW				0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW				0.0	0.0	0.0
EMISFACT	L0000099	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	υ.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW				0.0	0.0	0.0
	L0000101	HRDOW				0.0	0.0	0.0
EMISFACT								
EMISFACT	L0000102	HRDOW				0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	- 0 0 0 0 1 1 0	-						
EMISFACT		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000113	HRDOW				0.0	0.0	0.0
EMISFACT	L0000113	HRDOW				0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000115	HRDOW				0.0	0.0	0.0
EMISFACT	L0000116	HRDOW				0.0	0.0	0.0
EMISFACT	L0000116	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW				0.0	0.0	0.0
EMISFACT	L0000118	HRDOW		0.0	0.0	0.0	0.0	0.0

										ı
	EMISFACT	T 0 0 0 0 1 1 0	IIDDOM	0 0	0 0	0 0	0 0	0 0	0.0	
	EMISFACT	L0000119	HRDOW HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0				
	EMISFACT		HRDOW			0.0		0.0		
		L0000119	HRDOW			0.0		0.0		
		L0000120	HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0	0.0		0.0	
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT	L0000121	HRDOW			0.0			0.0	
	EMISFACT	L0000121	HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW				0.0			
	EMISFACT	L0000122	HRDOW			0.0		0.0		
	EMISFACT	L0000122	HRDOW			0.0		0.0		
	EMISFACT	L0000123	HRDOW			0.0				
	EMISFACT	L0000123	HRDOW			0.0		0.0		
	EMISFACT	L0000123	HRDOW			0.0	0.0		0.0	
	EMISFACT	L0000123	HRDOW			0.0			0.0	
	EMISFACT	L0000124	HRDOW			0.0				
	EMISFACT	L0000124	HRDOW			0.0				
	EMISFACT	L0000124	HRDOW			0.0				
*	Sunday:	10000121	III(DOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000001	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0	
	EMISFACT		HRDOW			0.0				
	EMISFACT		HRDOW			0.0		0.0		
	EMISFACT	L0000001	HRDOW			0.0		0.0		
	EMISFACT	L0000002	HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0	0.0			
	EMISFACT		HRDOW			0.0	0.0		0.0	
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT	L0000003	HRDOW			0.0	0.0		0.0	
	EMISFACT	L0000003	HRDOW	0.0	0.0	0.0			0.0	
	EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000005	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT	L0000005	HRDOW			0.0	0.0	0.0	0.0	
	EMISFACT		HRDOW	0.0	0.0	0.0			0.0	
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0	
	EMISFACT		HRDOW			0.0				
	EMISFACT		HRDOW			0.0				
	EMISFACT		HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0		0.0		
		L0000007	HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0		0.0		
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0				
	EMISFACT		HRDOW		0.0	0.0				
	EMISFACT		HRDOW			0.0			0.0	
	EMISFACT		HRDOW			0.0		0.0		
		L0000009	HRDOW			0.0	0.0	0.0		
		LOODOONA	コトレンスだ	Ω	Ω	(1)	Ω	Ω	\cap	

HRDOW 0.0 0.0 0.0 0.0 0.0 0.0

HRDOW 0.0 0.0 0.0 0.0 0.0 0.0

HRDOW 0.0 0.0 0.0 0.0 0.0 0.0

EMISFACT L0000009

EMISFACT L0000010

EMISFACT L0000010

EMISFACT L0000010

EMISFACT L0000010 EMISFACT L0000011

EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW				0.0	0.0	0.0
EMISFACT	L0000024	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000024	HRDOW				0.0	0.0	0.0
EMISFACT	L0000024	HRDOW				0.0	0.0	0.0
EMISFACT	L0000024	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW				0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000028	HRDOW						
EMISFACT		-	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000032	-	0.0	0.0				0.0
EMISFACT		HRDOW			0.0	0.0	0.0	
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000037	HRDOW						
EMISFACT		HRDOW						
EMISFACT		HRDOW					0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT	L0000041	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000043	HRDOW				0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW					0.0	0.0
LITULACI	2000011	111/10/01/	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000044	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
		_						
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000050		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW				0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW				0.0	0.0	0.0
EMISFACT	L0000057	HRDOW				0.0	0.0	0.0
EMISFACT	L0000057	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000059	HRDOW				0.0	0.0	0.0
EMISFACT	L0000060	HRDOW				0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0

EMISFACT	L0000060	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000062							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000063							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000064							
EMISFACT			0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000068							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000070	HRDOW						
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW				0.0	0.0	0.0
EMISFACT	L0000071	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000071	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW				0.0	0.0	0.0
EMISFACT	L0000073	HRDOW				0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW				0.0	0.0	0.0
	L0000074							
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000076	HRDOW				0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0			0.0	0.0	0.0
EMISFACT	L0000076	HRDOW				0.0	0.0	0.0
EMISFACT	L0000077	HRDOW				0.0	0.0	
питогACT	тооооо 1 1	TIKDOM	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000077	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000078		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
		_						
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000083		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000087	HRDOW				0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW				0.0	0.0	0.0
EMISFACT	L0000090	HRDOW				0.0	0.0	0.0
EMISFACT	L0000090	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000092	HRDOW				0.0	0.0	0.0
EMISFACT	L0000092	HRDOW				0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0

EMISFACT	L0000093	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
		_						
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000100		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000104	HRDOW				0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW				0.0	0.0	0.0
EMISFACT	L0000106	HRDOW				0.0	0.0	0.0
EMISFACT	L0000106	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000109	HRDOW				0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0

	EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000110	HRDOW		0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000112	HRDOW		0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119		0.0			0.0	0.0	0.0
		L0000119	HRDOW						
		L0000120	HRDOW						
		L0000120	HRDOW				0.0		
		L0000120	HRDOW				0.0		
		L0000120	HRDOW				0.0		
		L0000121	HRDOW				0.0		
		L0000121	HRDOW				0.0		
		L0000121	HRDOW				0.0		
	EMISFACT		HRDOW				0.0		
		L0000122	HRDOW						
		L0000122	HRDOW						
		L0000122	HRDOW						
		L0000122	HRDOW				0.0		
		L0000123	HRDOW				0.0		
		L0000123	HRDOW				0.0		
		L0000123	HRDOW				0.0		
		L0000123	HRDOW				0.0		
		L0000124	HRDOW				0.0		
		L0000124	HRDOW				0.0		
		L0000124	HRDOW						
		L0000124	HRDOW	U.U	0.0	0.0	0.0	0.0	U.U
`	SRCGROUP FINISHED	ТП							
,	ттитопел								

SO

**

** AERMOD Receptor Pathway

```
RE STARTING
  INCLUDED "14804 Construction.rou"
RE FINISHED
*********
** AERMOD Meteorology Pathway
*********
* *
ME STARTING
  SURFFILE PERI V9 ADJU\PERI v9.SFC
  PROFFILE PERI V9 ADJU\PERI v9.PFL
  SURFDATA 3171 2010
  UAIRDATA 3190 2010
  SITEDATA 99999 2010
  PROFBASE 442.0 METERS
ME FINISHED
*********
** AERMOD Output Pathway
**
* *
OU STARTING
** Auto-Generated Plotfiles
  PLOTFILE ANNUAL ALL "14804 CONSTRUCTION.AD\AN00GALL.PLT" 31
  SUMMFILE "14804 Construction.sum"
OU FINISHED
**
*********
** Project Parameters
*********
** PROJCTN CoordinateSystemUTM
** DESCPTN UTM: Universal Transverse Mercator
** DATUM
        North American Datum 1983
** DTMRGN CONUS
** UNITS m
** ZONE
         11
```

** ZONEINX 0

```
** Lakes Environmental AERMOD MPI
********
** AERMOD Input Produced by:
** AERMOD View Ver. 11.0.0
** Lakes Environmental Software Inc.
** Date: 9/15/2022
** File: C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 Construction\14804
Construction.ADI
*********
*********
** AERMOD Control Pathway
**********
* *
CO STARTING
  TITLEONE C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O
  MODELOPT DFAULT CONC
  AVERTIME ANNUAL
  URBANOPT 2189641 Riverside County
  POLLUTID DPM
  RUNORNOT RUN
  ERRORFIL "14804 Construction.err"
CO FINISHED
*********
** AERMOD Source Pathway
***********
* *
* *
SO STARTING
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
                                                     434.000
  LOCATION VOL1
                    VOLUME 483136.255 3735242.300
                             483230.210 3735241.097
                                                      434.000
  LOCATION VOL2
                    VOLUME
                             483136.656 3735144.330
  LOCATION VOL3
                    VOLUME
                                                      434.000
  LOCATION VOL4
                    VOLUME
                             483135.853 3735047.564
  LOCATION VOL5
                    VOLUME
                             483230.210 3735143.126
                                                      434.340
  LOCATION VOL6 VOLUME 483229.407 3735048.367 435.000
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE1
** DESCRSRC
** PREFIX
** Length of Side = 14.00
** Configuration = Adjacent
** Emission Rate = 0.0004116407
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 10
** 483274.778, 3735300.120, 434.52, 3.49, 6.51
** 482892.532, 3735298.112, 433.00, 3.49, 6.51
** 482888.516, 3734771.720, 433.98, 3.49, 6.51
** 482823.872, 3734672.143, 433.86, 3.49, 6.51
** 482523.937, 3734882.138, 433.00, 3.49, 6.51
** 482416.329, 3734960.836, 433.00, 3.49, 6.51
** 482384.609, 3734998.980, 432.91, 3.49, 6.51
** 482366.943, 3735034.716, 432.43, 3.49, 6.51
** 482355.298, 3735086.110, 432.13, 3.49, 6.51
** 482353.692, 3735159.588, 432.06, 3.49, 6.51
```

	L0000002	VOLUME	483253.779	3735300.010	434.07
LOCATION	L0000003	VOLUME	483239.779	3735299.936	434.00
LOCATION	L0000004	VOLUME	483225.779	3735299.863	434.00
LOCATION	L0000005	VOLUME	483211.779	3735299.789	434.00
	L0000006	VOLUME	483197.779	3735299.716	434.00
	L0000007	VOLUME	483183.780	3735299.642	434.00
	L0000008	VOLUME	483169.780	3735299.568	434.00
	L0000009	VOLUME	483155.780	3735299.495	434.00
LOCATION	L0000010	VOLUME	483141.780	3735299.421	434.00
LOCATION	L0000011	VOLUME	483127.780	3735299.348	433.92
LOCATION	L0000012	VOLUME	483113.780	3735299.274	433.46
LOCATION	L0000013	VOLUME	483099.781	3735299.201	433.00
	L0000014	VOLUME	483085.781	3735299.127	433.00
	L0000015	VOLUME	483071.781	3735299.054	433.00
			483057.781	3735298.980	433.00
	L0000016	VOLUME			
	L0000017	VOLUME	483043.781	3735298.907	433.00
	L0000018	VOLUME	483029.782	3735298.833	433.00
LOCATION	L0000019	VOLUME	483015.782	3735298.760	433.00
LOCATION	L0000020	VOLUME	483001.782	3735298.686	433.00
LOCATION	L0000021	VOLUME	482987.782	3735298.613	433.00
LOCATION	L0000022	VOLUME	482973.782	3735298.539	433.00
LOCATION	L0000023	VOLUME	482959.783	3735298.466	433.00
	L0000024	VOLUME	482945.783	3735298.392	433.00
	L0000024	VOLUME	482931.783	3735298.319	433.00
	L0000026	VOLUME	482917.783	3735298.245	433.00
	L0000027	VOLUME	482903.783	3735298.171	433.00
LOCATION	L0000028	VOLUME	482892.511	3735295.364	433.00
LOCATION	L0000029	VOLUME	482892.404	3735281.365	433.00
LOCATION	L0000030	VOLUME	482892.297	3735267.365	433.00
LOCATION	L0000031	VOLUME	482892.190	3735253.366	433.00
	L0000032	VOLUME	482892.084	3735239.366	433.00
	L0000033	VOLUME	482891.977	3735225.366	433.00
	L0000033	VOLUME	482891.870	3735223.360	433.00
	L0000035	VOLUME	482891.763	3735197.367	433.00
	L0000036	VOLUME	482891.656	3735183.368	433.00
LOCATION	L0000037	VOLUME	482891.550	3735169.368	433.00
LOCATION	L0000038	VOLUME	482891.443	3735155.368	433.00
LOCATION	L0000039	VOLUME	482891.336	3735141.369	433.00
LOCATION	L0000040	VOLUME	482891.229	3735127.369	433.00
	L0000041	VOLUME		3735113.370	
	L0000042	VOLUME		3735099.370	433.00
	L0000043	VOLUME	482890.909	3735085.370	433.00
	L0000044	VOLUME	482890.802	3735071.371	433.00
	L0000045	VOLUME	482890.695	3735057.371	433.00
	L0000046	VOLUME	482890.589	3735043.372	433.00
	L0000047	VOLUME	482890.482	3735029.372	433.00
	L0000048	VOLUME	482890.375	3735015.372	433.00
LOCATION	L0000049	VOLUME		3735001.373	433.00
LOCATION	L0000050	VOLUME	482890.161	3734987.373	433.00
	L0000051	VOLUME	482890.055	3734973.374	433.00
	L0000052	VOLUME	482889.948	3734959.374	433.00
	L0000053	VOLUME	482889.841	3734945.375	433.00
	L0000054	VOLUME	482889.734	3734931.375	433.00
	L0000055	VOLUME	482889.627	3734917.375	433.00
	L0000056	VOLUME	482889.521	3734903.376	433.00
	L0000057	VOLUME	482889.414	3734889.376	433.00
	L0000058	VOLUME	482889.307	3734875.377	433.00
LOCATION	L0000059	VOLUME	482889.200	3734861.377	433.00
	L0000060	VOLUME	482889.094	3734847.377	433.00
	L0000061	VOLUME	482888.987	3734833.378	433.00
	L0000062	VOLUME	482888.880	3734819.378	433.00
	L0000063	VOLUME	482888.773	3734805.379	433.02
	L0000063		482888.666	3734791.379	433.46
		VOLUME			
	L0000065	VOLUME	482888.560	3734777.379	433.91
	L0000066	VOLUME		3734764.724	433.80
LOCATION	L0000067	VOLUME	482876.352	3734752.982	433.54

	LOCATION	L0000068	VOLUME	482868.729	373474	11.239	433.40
	LOCATION	L0000069	VOLUME	482861.105	373472	29.497	433.57
	LOCATION	L0000070	VOLUME	482853.482	373471	17.754	433.74
	LOCATION		VOLUME	482845.859	373470	06.012	433.68
	LOCATION	L0000072	VOLUME	482838.236	373469	94.269	433.80
	LOCATION	L0000073	VOLUME	482830.613			
	LOCATION	L0000074	VOLUME	482822.544	373467	73.073	433.75
	LOCATION	L0000075	VOLUME	482811.076	373468	31.102	433.37
	LOCATION	L0000076	VOLUME	482799.607	373468	39.132	433.00
	LOCATION	L0000077	VOLUME	482788.139	373469	97.161	433.00
		L0000078	VOLUME	482776.670	373470	05.191	433.00
	LOCATION	L0000079	VOLUME	482765.202	373471	13.220	433.00
	LOCATION	L0000080	VOLUME	482753.733			
	LOCATION		VOLUME	482742.265	373472	29.279	433.00
		L0000082	VOLUME	482730.796	373473	37.309	433.00
		L0000083	VOLUME	482719.328			
	LOCATION		VOLUME	482707.859			
	LOCATION			482696.391			
		L0000086		482684.922			
		L0000087	VOLUME	482673.454			
	LOCATION		VOLUME	482661.985			
		L0000089	VOLUME	482650.516			
		L0000090	VOLUME	482639.048			
	LOCATION		VOLUME	482627.579			
		L0000092	VOLUME	482616.111			
		L0000093	VOLUME	482604.642			
	LOCATION		VOLUME	482593.174			
	LOCATION			482581.705			
	LOCATION			482570.237			
	LOCATION		VOLUME	482558.768			
	LOCATION		VOLUME	482547.300			
		L0000099	VOLUME	482535.831			
		L0000100	VOLUME	482524.363			
		L0000101	VOLUME	482513.056 482501.756			
		L0000102 L0000103	VOLUME VOLUME	482490.455			
	LOCATION		VOLUME				
	LOCATION		VOLUME	482467.855			
		L0000105		482456.554			
		L0000107		482445.254			
		L0000107	VOLUME	482433.953	373494	17 947	433 00
		L0000100		482422.653			
		L0000110		482412.387			
		L0000111		482403.436			
		L0000112	VOLUME				
		L0000113		482385.533			
		L0000114		482379.045			
	LOCATION	L0000115		482372.840			
	LOCATION	L0000116		482366.790			
	LOCATION	L0000117	VOLUME	482363.696	373504	19.044	432.46
	LOCATION	L0000118	VOLUME	482360.603	373506	52.698	432.35
	LOCATION	L0000119	VOLUME	482357.509	373507	76.352	432.25
	LOCATION	L0000120		482355.211			
	LOCATION	L0000121	VOLUME	482354.905	373510	04.101	432.16
	LOCATION	L0000122	VOLUME	482354.599	373511	18.097	432.15
				482354.293			
				482353.987	373514	46.091	432.13
		INE VOLUME Sou	arce ID =	SLINE1			
*	Source Pa	arameters **					
	SRCPARAM	VOL1	0.0034458	3511 5.	000	22.598	
	SRCPARAM	VOL2	0.0034458	3511 5.	000	22.598	
	SRCPARAM	VOL3	0.0034458	3511 5. 3511 5.	000	22.598	
	SRCPARAM	VOL4	0.0034458	3511 5.	000	22.598	1.400
	SRCPARAM	VOL5	0.0034458	3511 5.	000		
		VOL6		3511 5.	000	22.598	1.400
*	LINE VOLU	JME Source ID	= SLINE1				

** LINE VOLUME Source ID = SLINE1

SRCPARAM	L0000001	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000002	0.00000332	3.49	6.51	3.25
	L0000003	0.00000332	3.49	6.51	3.25
	L0000003	0.00000332	3.49	6.51	3.25
	L0000005	0.00000332	3.49	6.51	3.25
	L0000006	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000007	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000008	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000009	0.00000332	3.49	6.51	3.25
	L0000010	0.00000332	3.49	6.51	3.25
	L0000011	0.00000332	3.49	6.51	3.25
				6.51	
	L0000012	0.00000332	3.49		3.25
	L0000013	0.00000332	3.49	6.51	3.25
	L0000014	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000015	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000016	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000017	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000018	0.00000332	3.49	6.51	3.25
	L0000019	0.00000332	3.49	6.51	3.25
	L0000020	0.00000332	3.49	6.51	3.25
	L0000021	0.00000332	3.49	6.51	3.25
	L0000022	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000023	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000024	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000025	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000026	0.00000332	3.49	6.51	3.25
	L0000027	0.00000332	3.49	6.51	3.25
	L0000027	0.00000332	3.49	6.51	3.25
	L0000029	0.00000332	3.49	6.51	3.25
	L0000030	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000031	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000032	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000033	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000034	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000035	0.00000332	3.49	6.51	3.25
	L0000036	0.00000332	3.49	6.51	3.25
	L0000037	0.00000332	3.49	6.51	3.25
		0.00000332	3.49		
	L0000038			6.51	3.25
	L0000039	0.0000332	3.49	6.51	3.25
	L0000040	0.00000332	3.49	6.51	3.25
	L0000041	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000042	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000043	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000044	0.00000332	3.49	6.51	3.25
	L0000045	0.00000332	3.49	6.51	3.25
	L0000046	0.00000332	3.49	6.51	3.25
	L0000047	0.00000332	3.49	6.51	3.25
	L0000048	0.00000332	3.49	6.51	3.25
	L0000049	0.00000332	3.49	6.51	3.25
	L0000050	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000051	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000052	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000053	0.00000332	3.49	6.51	3.25
	L0000054	0.00000332	3.49	6.51	3.25
	L0000055	0.00000332	3.49	6.51	3.25
	L0000055	0.00000332	3.49	6.51	3.25
	L0000057	0.00000332	3.49	6.51	3.25
	L0000058	0.00000332	3.49	6.51	3.25
	L0000059	0.00000332	3.49	6.51	3.25
	L0000060	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000061	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000062	0.00000332	3.49	6.51	3.25
	L0000063	0.00000332	3.49	6.51	3.25
	L0000064	0.00000332	3.49	6.51	3.25
	L0000065	0.00000332	3.49	6.51	3.25
			3.49		
SKUPAKAM	L0000066	0.00000332	3.49	6.51	3.25

SRCPARAM	L0000067	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000068	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000069	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000070	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000071	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000072	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000073	0.00000332	3.49	6.51	3.25
	L0000074	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000075	0.00000332	3.49	6.51	3.25
	L0000076	0.00000332	3.49	6.51	3.25
	L0000077	0.00000332	3.49	6.51	3.25
	L0000078	0.00000332	3.49	6.51	3.25
	L0000079	0.00000332	3.49	6.51	3.25
	L0000080	0.00000332	3.49	6.51	3.25
	L0000081	0.00000332	3.49	6.51	3.25
	L0000082	0.00000332	3.49	6.51	3.25
	L0000083	0.00000332	3.49	6.51	3.25
	L0000084	0.00000332	3.49	6.51	3.25
	L0000085	0.00000332	3.49	6.51	3.25
	L0000086	0.00000332	3.49	6.51	3.25
	L0000087	0.00000332	3.49	6.51	3.25
	L0000088	0.00000332	3.49	6.51	3.25
	L0000089	0.00000332	3.49	6.51	3.25
	L0000090	0.00000332	3.49	6.51	3.25
	L0000091	0.00000332	3.49	6.51	3.25
	L0000092 L0000093	0.00000332	3.49	6.51 6.51	3.25 3.25
		0.00000332	3.49		
	L0000094 L0000095	0.00000332 0.00000332	3.49 3.49	6.51 6.51	3.25 3.25
	L0000095	0.00000332	3.49	6.51	3.25
	L0000090	0.00000332	3.49	6.51	3.25
	L0000097	0.00000332	3.49	6.51	3.25
	L0000099	0.00000332	3.49	6.51	3.25
	L0000100	0.00000332	3.49	6.51	3.25
	L0000100	0.00000332	3.49	6.51	3.25
	L0000101	0.00000332	3.49	6.51	3.25
	L0000103	0.00000332	3.49	6.51	3.25
	L0000104	0.00000332	3.49	6.51	3.25
	L0000105	0.00000332	3.49	6.51	3.25
	L0000106	0.00000332	3.49	6.51	3.25
		0.00000332	3.49	6.51	3.25
SRCPARAM	L0000108	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000109	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000110	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000111	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000112	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000113	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000114	0.00000332	3.49	6.51	3.25
	L0000115	0.00000332	3.49	6.51	3.25
	L0000116	0.00000332	3.49	6.51	3.25
	L0000117	0.00000332	3.49	6.51	3.25
	L0000118	0.00000332	3.49	6.51	3.25
	L0000119	0.00000332	3.49	6.51	3.25
	L0000120	0.00000332	3.49	6.51	3.25
	L0000121	0.00000332	3.49	6.51	3.25
	L0000122	0.00000332	3.49	6.51	3.25
	L0000123	0.00000332	3.49	6.51	3.25
SRCPARAM	L0000124	0.00000332	3.49	6.51	3.25

** -----

URBANSRC ALL

^{**} Variable Emissions Type: "By Hour / Day (HRDOW)"

^{**} Variable Emission Scenario: "Scenario 1"

^{**} WeekDays:

	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	Saturday: EMISFACT VOL1	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW						
**								
	EMISFACT VOL1	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL1	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL1	HRDOW						
	EMISFACT VOL1	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	WeekDays:							
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2 EMISFACT VOL2	HRDOW HRDOW						
	EMISFACT VOL2	HRDOW						
**		IIINDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL2	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	bullday.							
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
	EMISFACT VOL2	HRDOW						
**	EMISFACT VOL2 WeekDays:	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL3	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	Saturday:							
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
**	EMISFACT VOL3	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
^ ^	banaay.	HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL3 EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
	EMISFACT VOL3	HRDOW						
**	WeekDays:							
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW						
-11-	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
* *	Saturday:	TID DOM	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL4 EMISFACT VOL4	HRDOW HRDOW						
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW						
**	Sunday:							
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL4	HRDOW						
	EMISFACT VOL4	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	WeekDays:	110000	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT VOL5	HRDOW						
	EMISFACT VOL5 EMISFACT VOL5	HRDOW HRDOW						
	EMISFACT VOL5	HRDOW						
**	Saturday:	111/10/01/	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL5	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT VOL5	HRDOW						
	EMISFACT VOL5	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

	EMISFACT	VOL5	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	Sunday:								
	EMISFACT		HRDOW						
	EMISFACT		HRDOW			0.0			0.0
	EMISFACT		HRDOW						
**	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
^ ^	WeekDays: EMISFACT		HRDOW	0 0	0 0	0 0	0 0	0 0	0 0
	EMISFACT		HRDOW						
	EMISFACT		HRDOW					0.0	
	EMISFACT		HRDOW			0.0			0.0
**	Saturday		11112011	•••	•••	•••	•••	•••	•••
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	VOL6	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	VOL6	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
**	Sunday:								
	EMISFACT		HRDOW						
	EMISFACT		HRDOW						0.0
	EMISFACT		HRDOW						0.0
* *	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
~ ~	WeekDays: EMISFACT		HRDOW	0 0	0 0	0.0	0 0	0 0	0.0
		L0000001	HRDOW						1.0
	EMISFACT		HRDOW						0.0
	EMISFACT		HRDOW						0.0
		L0000002	HRDOW						0.0
	EMISFACT		HRDOW			1.0			1.0
	EMISFACT	L0000002	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
	EMISFACT	L0000002	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
		L0000003	HRDOW					0.0	0.0
		L0000003	HRDOW		0.0		1.0		1.0
		L0000003	HRDOW		1.0			0.0	0.0
	EMISFACT		HRDOW		0.0			0.0	0.0
	EMISFACT		HRDOW			0.0			0.0
	EMISFACT	L0000004 L0000004	HRDOW HRDOW			1.0		0.0	1.0
	EMISFACT	L0000004	HRDOW						0.0
		L0000004	HRDOW						
		L0000005	HRDOW						1.0
		L0000005	HRDOW			1.0			0.0
		L0000005	HRDOW			0.0			0.0
	EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000006	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
		L0000006	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
		L0000006	HRDOW		0.0	0.0		0.0	0.0
		L0000007	HRDOW		0.0	0.0		0.0	0.0
	EMISFACT		HRDOW		0.0	1.0		1.0	1.0
	EMISFACT		HRDOW		1.0	1.0		0.0	
	EMISFACT EMISFACT	L0000007 L0000008	HRDOW HRDOW			0.0			0.0
		L0000008	HRDOW		0.0				1.0
		L0000008	HRDOW		1.0			0.0	0.0
		L0000008	HRDOW		0.0			0.0	0.0
		L0000009	HRDOW		0.0			0.0	0.0
		L0000009	HRDOW		0.0	1.0		1.0	1.0
	EMISFACT	L0000009	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
		L0000009	HRDOW			0.0			0.0
		L0000010	HRDOW		0.0		0.0		0.0
		L0000010	HRDOW		0.0	1.0		1.0	1.0
		L0000010	HRDOW		1.0		1.0		0.0
	EMISFACT	L0000010	HRDOW			0.0			0.0
		L0000011	HRDOW		0.0		0.0		0.0
		L0000011 L0000011	HRDOW HRDOW		0.0	1.0		0.0	1.0
		L0000011	HRDOW						
	THI OF ACT	TOOOOTI	TITYDOM	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000012	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000012	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000012		0.0		0.0			0.0
EMISFACT				0.0		0.0	0.0	
EMISFACT	L0000013	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000013	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000014	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000014	-						
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000015	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000016	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
	L0000017			1.0			0.0	
EMISFACT		HRDOW	1.0		1.0	1.0		0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000018	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000019	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000020	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000021	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW						
	L0000022	HRDOW				0.0		
	L0000022	HRDOW				1.0	1.0	1.0
	L0000022	HRDOW				1.0	0.0	0.0
	L0000022	HRDOW			0.0	0.0	0.0	0.0
	L0000023	HRDOW			0.0	0.0	0.0	0.0
	L0000023	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000023	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000024	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
	L0000024	HRDOW				0.0	0.0	
EMISFACT	L0000025	HRDOW			0.0	0.0	0.0	0.0
	L0000025	HRDOW				1.0	1.0	
EMISFACT					1.0			1.0
EMISFACT	L0000025	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000025	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000026	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000027	HRDOW			0.0	0.0	0.0	0.0
	L0000027	HRDOW			1.0	1.0	1.0	1.0
	L0000027	HRDOW				1.0	0.0	
	L0000027	HRDOW				0.0	0.0	0.0
	L0000027	HRDOW				0.0	0.0	0.0
		HRDOW						
EMISFACT	ПООООГО	UKDOM	0.0	0.0	⊥.∪	1.0	1.0	1.0

EMISFACT	L0000028	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000029							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000029	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000030	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000031	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000031	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000032	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000032	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033		0.0	0.0			0.0	0.0
		HRDOW			0.0	0.0		
EMISFACT	L0000033	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000033	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000031	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
		-						
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000035	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000036	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000037	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW					0 0	
EMISFACT		HRDOW						
EMISFACT	L0000038	HRDOW					0.0	0.0
EMISFACT	L0000038	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000039	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000039	HRDOW				0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000040	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000040	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000041	HRDOW				1.0	0.0	0.0
EMISFACT	L0000041	HRDOW				0.0	0.0	0.0
EMISFACT	L0000042	HRDOW				0.0	0.0	0.0
EMISFACT	L0000042	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000042	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000043	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000043	HRDOW				0.0	0.0	0.0
EMISFACT	L0000044	HRDOW				0.0	0.0	
EMISFACT	L0000044	HRDOW				1.0	1.0	1.0
EMISFACT	L0000044	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000045	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000045	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000045		0.0		0.0		0.0	0.0
EMISFACT				0.0		0.0		
EMISFACT	L0000046	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000046	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000047	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
		-						
EMISFACT	L0000048	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000048	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000048	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000049	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0		1.0	1.0	1.0	1.0
				0.0				
EMISFACT	L0000050	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000051	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000052	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000053	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT		HRDOW						
	L0000054	HRDOW						
	L0000055	HRDOW				0.0		
	L0000055	HRDOW				1.0	1.0	1.0
	L0000055	HRDOW				1.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000056	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000057	HRDOW			0.0	0.0	0.0	0.0
	L0000057	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000057	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000057	HRDOW				0.0	0.0	0.0
EMISFACT	L0000058	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000058	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW			1.0	1.0	1.0	1.0
	L0000059	HRDOW		1.0	1.0	1.0	0.0	0.0
	L0000059	HRDOW			0.0	0.0	0.0	0.0
	L0000060	HRDOW			0.0	0.0	0.0	0.0
	L0000060	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000060	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000060	HRDOW				0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0

EMISFACT	L0000061	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000061	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000062	HRDOW						
EMISFACT		_	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000062	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000063	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000064	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000064	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000065	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000065	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000066		0.0	0.0			0.0	0.0
EMISFACT		HRDOW			0.0	0.0		
EMISFACT	L0000066	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000066	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000067	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000068	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000069	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000070	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000070		0.0		0.0	0.0	0.0	0.0
	L0000071	HRDOW						
EMISFACT		HRDOW						
EMISFACT	L0000071	HRDOW				1.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000072	HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT								
	L0000072	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000073	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000073	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW				1.0	1.0	1.0
EMISFACT	L0000071	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000074	HRDOW				0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000075	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000076	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000076	HRDOW				0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW				1.0	1.0	1.0
EMISFACT	L0000077	HRDOW			1.0		0.0	0.0
EMISFACT		HRDOW					0.0	0.0
LITULACI	<u> </u>	111/17/04/	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000078	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000078	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
	L0000079			1.0		1.0		
EMISFACT		HRDOW	1.0		1.0		0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000080	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000081	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000081		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000082	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L00000083							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000083	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000084	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000085	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT				1.0				
	L0000086	HRDOW	1.0		1.0	1.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000087	HRDOW					0 0	0 0
EMISFACT								
		HRDOW						
EMISFACT	L0000088	HRDOW					0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000088	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000088	HRDOW				0.0	0.0	0.0
	L0000089				0.0			
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000089	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW				0.0	0.0	0.0
EMISFACT	L0000090	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000090	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000091	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000091	HRDOW	υ.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000092	HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000092	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000093	HRDOW				1.0	0.0	0.0
	L0000093	HRDOW				0.0	0.0	0.0
EMISFACT								
EMISFACT	L0000094	HRDOW					0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0

EMISFACT	L0000094	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000095					0.0		
EMISFACT		HRDOW	0.0	0.0	0.0		0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000095	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000096	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000097	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000097	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000098	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000098	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099		0.0	0.0			0.0	0.0
		HRDOW			0.0	0.0		
EMISFACT	L0000099	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000099	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000100	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000101	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000102	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000103	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000103		0.0		0.0	0.0	0.0	0.0
	L0000104	HRDOW						
EMISFACT		HRDOW						
EMISFACT	L0000104	HRDOW					0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW			1.0	1.0	1.0	1.0
EMISFACT		HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000106	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000106	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW				0.0	0.0	0.0
EMISFACT	L0000107	HRDOW				1.0	1.0	1.0
EMISFACT	L0000107	HRDOW			1.0	1.0	0.0	0.0
EMISFACT	L0000107	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT		HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000108	HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000109	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW				0.0	0.0	0.0
EMISFACT	L0000110	HRDOW				1.0	1.0	1.0
EMISFACT		HRDOW			1.0		0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000111	HRDOW	0 0	0 0	0 0	0 0	0.0	0 0
EMISFACT	L0000111	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000111	HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000112	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000112	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000112	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW			1.0	1.0	1.0	1.0
EMISFACT		HRDOW		1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000113	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000114	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000115	HRDOW			1.0	1.0		0.0
							0.0	
EMISFACT	L0000115	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000116	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW		0.0	1.0	1.0	1.0	1.0
	L0000117	HRDOW			1.0		0.0	0.0
EMISFACT						1.0		
EMISFACT	L0000117	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW		0.0	1.0	1.0	1.0	1.0
EMISFACT	L0000118	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000119	HRDOW			1.0	1.0	1.0	1.0
EMISFACT	L0000119	HRDOW						
		_	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000119	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW					1.0	1.0
EMISFACT	L0000120	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000121	HRDOW						
	L0000121	HRDOW						
	L0000121	HRDOW						
	L0000122	HRDOW						
	L0000122	HRDOW						
EMISFACT	L0000122	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	1.0	1.0	1.0	1.0
	L0000123	HRDOW						
	L0000123	HRDOW						
	L0000124	HRDOW						
	L0000124	HRDOW						
EMISFACT	L0000124	HRDOW	1.0	1.0	1.0	1.0	0.0	0.0
EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
* Saturday	:							
-	L0000001	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000001	HRDOW						
	L0000001	HRDOW						
	L0000001	HRDOW						
	L0000002	HRDOW						
	L0000002	HRDOW						
	L0000002	HRDOW						
EMISFACT	L0000002	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000003	HRDOW						

EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000004	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000005	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000005	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000005	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000005		0.0	0.0				
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	T0000008	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000009	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000012	HRDOW				0.0		
	L0000013	HRDOW				0.0		
	L0000013	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	υ.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000019	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000021		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000023							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000028		0.0	0.0				
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW				0.0	0.0	0.0
EMISFACT	L0000030	HRDOW				0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW				0.0	0.0	0.0
EMISFACT	L0000032	HRDOW				0.0	0.0	0.0
EMISFACT	L0000032	HRDOW				0.0	0.0	0.0
EMISFACT	L0000032	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000033	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000035	HRDOW				0.0	0.0	0.0
EMISFACT	L0000035	HRDOW				0.0	0.0	0.0
EMISFACT	L0000035	HRDOW				0.0	0.0	0.0
EMISFACT	L0000035	HRDOW				0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000010		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0				0.0
					0.0	0.0	0.0	
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW						
EMISFACT		HRDOW					0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW	0.0		0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW			0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW	0 0	0 0	\cap		0.0	0.0

EMISFACT	L0000052	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000054		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000057	HRDOW	0.0	0.0				
EMISFACT		_			0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	T-0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW						
EMISFACT	L0000062	HRDOW				0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0		0.0	0.0	0.0
EMISFACT	L0000063	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW				0.0	0.0	0.0
EMISFACT	L0000065	HRDOW				0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000066	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000067			0.0				
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW				0.0	0.0	0.0
		HRDOW						
EMISFACT	L0000068					0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	U.U	U.U	U.U	U.U	0.0	0.0

EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000078							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW						0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000079	HRDOW				0.0	0.0	0.0
EMISFACT	L0000079	HRDOW				0.0	0.0	0.0
EMISFACT	L0000079	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW				0.0	0.0	0.0
EMISFACT	L0000082	HRDOW				0.0	0.0	0.0
EMISFACT	L0000083	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000003	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW		0.0	0.0	0.0	0.0	0.0
							0.0	
EMISFACT	L0000084	HRDOW		0.0	0.0	0.0		0.0
EMISFACT	L0000084	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW				0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	U.U	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000085	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000087		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000092		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000096	HRDOW				0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW				0.0	0.0	0.0
EMISFACT	L0000098	HRDOW				0.0	0.0	0.0
EMISFACT	L0000098	HRDOW				0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099			0.0	0.0	0.0	0.0	0.0
		HRDOW						
EMISFACT	L0000100	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000101	HRDOW				0.0	0.0	0.0
EMISFACT	L0000101	HRDOW				0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW				0.0	0.0	0.0
	-	***						

EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000105		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW						0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000112	HRDOW				0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
						0.0	0.0	
EMISFACT	L0000115	HRDOW						0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000115	HRDOW				0.0	0.0	0.0
EMISFACT	L0000115	HRDOW				0.0	0.0	0.0
EMISFACT	L0000116	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW				0.0	0.0	
		HRDOW		0.0				0.0
EMISFACT	L0000118	UKDOM	0.0	0.0	0.0	0.0	0.0	0.0

	EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000119	HRDOW	0.0		0.0	0.0	0.0	0.0
	EMISFACT	L0000120	HRDOW	0.0		0.0	0.0	0.0	0.0
	EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000123	HRDOW	0.0		0.0	0.0	0.0	0.0
	EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
*	Sunday:								
	EMISFACT	L0000001	HRDOW	0.0				0.0	0.0
	EMISFACT	L0000001	HRDOW	0.0		0.0	0.0	0.0	0.0
	EMISFACT	L0000001	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000001	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000002	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000002	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000002	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000002	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000003	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000003	HRDOW			0.0			0.0
		L0000003	HRDOW						
	EMISFACT		HRDOW						
	EMISFACT		HRDOW					0.0	
	EMISFACT		HRDOW			0.0		0.0	0.0
	EMISFACT		HRDOW					0.0	0.0
	EMISFACT		HRDOW			0.0		0.0	
	EMISFACT		HRDOW			0.0		0.0	0.0
	EMISFACT		HRDOW			0.0		0.0	0.0
	EMISFACT		HRDOW	0.0		0.0		0.0	0.0
	EMISFACT	L0000006	HRDOW	0.0		0.0	0.0	0.0	0.0
	EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000006	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000007	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT		HRDOW					0.0	
	EMISFACT		HRDOW	0.0		0.0		0.0	0.0
	EMISFACT		HRDOW	0.0		0.0		0.0	0.0
	EMISFACT		HRDOW	0.0		0.0		0.0	0.0
	EMISFACT	L00000008	HRDOW	0.0		0.0		0.0	0.0
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT		HRDOW			0.0		0.0	0.0
	EMISFACT		HRDOW					0.0	0.0
	EMISFACT		HRDOW					0.0	0.0
	EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	EMISFACT	L0000010	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000011	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000011	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000012		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000012	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000013	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000013							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000014		0.0			0.0		
				0.0	0.0		0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000015	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000016	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000017	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000018	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000019							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000019	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000020	HRDOW						
EMISFACT	L0000020	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000021	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000022	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000023	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000024	HRDOW				0.0	0.0	0.0
EMISFACT	L0000024	HRDOW				0.0	0.0	0.0
EMISFACT	L0000024	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000025	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000026	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000026	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW					0.0	
шитог ACT	поооог/	TIKDOM	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000027	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000028	HRDOW						
EMISFACT		-	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000028	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000029	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000030	HRDOW	0.0	0.0			0.0	0.0
					0.0	0.0		
EMISFACT	L0000030	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000031	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000031	-	0.0	0.0				0.0
EMISFACT		HRDOW			0.0	0.0	0.0	
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000032	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000033	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000034	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000035	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000036	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000037	HRDOW						
EMISFACT		HRDOW						
EMISFACT		HRDOW					0.0	0.0
EMISFACT	L0000037	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000038	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT								
		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000039	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT	L0000040	HRDOW				0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000041	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000042	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000042	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000043	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW					0.0	0.0
DELLOCACI	70000040	111/17/01/	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000044	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000044	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000045							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000045	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000046	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000047	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000048	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000049	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000050	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000050		0.0	0.0				
EMISFACT		HRDOW			0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000051	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000052	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000053	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000053	HRDOW						
EMISFACT		HRDOW						
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000054	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000055	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000055	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000056	HRDOW			0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000056	HRDOW				0.0	0.0	0.0
EMISFACT	L0000056	HRDOW				0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000057	HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000057	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000058	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000059	HRDOW				0.0	0.0	0.0
EMISFACT	L0000059	HRDOW	0.0			0.0	0.0	0.0
EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
		•.•						

EMISFACT	L0000060	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000060	HRDOW		0.0	0.0	0.0	0.0	0.0
	L0000061			0.0		0.0		
EMISFACT		HRDOW	0.0		0.0		0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000061	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000062	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000063	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000064		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000065	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000066	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000067							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000067	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000068	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000069	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000070	HRDOW					0 0	0 0
EMISFACT								
		HRDOW						
EMISFACT	L0000070	HRDOW				0.0	0.0	0.0
EMISFACT	L0000070	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW						
				0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000072	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000073	HRDOW				0.0	0.0	0.0
EMISFACT	L0000073	HRDOW				0.0	0.0	0.0
EMISFACT	L0000073	HRDOW				0.0	0.0	0.0
EMISFACT	L0000073	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000071	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000074	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000075	HRDOW				0.0	0.0	0.0
	L0000075	HRDOW				0.0	0.0	0.0
EMISFACT								
EMISFACT	L0000076	HRDOW				0.0	0.0	0.0
EMISFACT	L0000076	HRDOW				0.0	0.0	0.0
EMISFACT	L0000076	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000077	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000077	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000078		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000078	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000079	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000079							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000080	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000081	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000082	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000083	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000084	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000004							
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000085	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000086	HRDOW						
EMISFACT	L0000086	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000087	HRDOW				0.0	0.0	0.0
	L0000087							
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000088	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000088	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000089	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000089	HRDOW				0.0	0.0	0.0
EMISFACT	L0000089	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW				0.0	0.0	0.0
EMISFACT	L0000090	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000090	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000091	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT	L0000092	HRDOW				0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000092	HRDOW	0.0			0.0	0.0	0.0
EMISFACT	L0000093	HRDOW				0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	
ENTOLACT	T0000033	TITYDOM	0.0	0.0	0.0	0.0	0.0	0.0

EMISFACT	L0000093	HRDOW	0 0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000093	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000094	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
	L0000095		0.0					
EMISFACT		HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000095	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000096	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097		0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000097	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000098	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000099	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000100	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000102	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000103	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000103	HRDOW				0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000104	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000101			0.0	0.0	0.0	0.0	0.0
		HRDOW						
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000105	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000106	HRDOW				0.0	0.0	0.0
EMISFACT	L0000106	HRDOW				0.0	0.0	0.0
EMISFACT	L0000106	HRDOW				0.0	0.0	0.0
EMISFACT	L0000106	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000107			0.0	0.0	0.0	0.0	0.0
		HRDOW						
EMISFACT	L0000107	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000108	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT		HRDOW		0.0		0.0	0.0	0.0
EMISFACT		HRDOW				0.0	0.0	0.0
EMISFACT	L0000109	HRDOW				0.0	0.0	0.0
EMISFACT	L0000109	HRDOW				0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000109	HRDOW	0.0			0.0	0.0	0.0

EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000110	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000111	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000112	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000113	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000114	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000115	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000116	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000117	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW		0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000118	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000119	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000120	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000121	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000122	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000123	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000124	HRDOW	0.0	0.0	0.0	0.0	0.0	0.0
EMISFACT	L0000124							
	L0000124							
SRCGROUP								
O FINISHED								
*								
	* * * * * * * * * * * * *		****	****	* *			
* AERMOD Re	eceptor Pathw	ay						

SO * *

```
RE STARTING
  INCLUDED "14804 Construction.rou"
RE FINISHED
* *
*********
** AERMOD Meteorology Pathway
***********
* *
* *
ME STARTING
  SURFFILE PERI V9 ADJU\PERI v9.SFC
  PROFFILE PERI_V9_ADJU\PERI_v9.PFL
SURFDATA 3171 2010
  UAIRDATA 3190 2010
  SITEDATA 99999 2010
  PROFBASE 442.0 METERS
ME FINISHED
* *
*********
** AERMOD Output Pathway
*********
* *
OU STARTING
** Auto-Generated Plotfiles
  PLOTFILE ANNUAL ALL "14804 CONSTRUCTION.AD\AN00GALL.PLT" 31
  SUMMFILE "14804 Construction.sum"
OU FINISHED
  *** Message Summary For AERMOD Model Setup ***
 ----- Summary of Total Messages -----
                   0 Fatal Error Message(s)
A Total of
A Total of
                   2 Warning Message(s)
A Total of
                    0 Informational Message(s)
   ****** FATAL ERROR MESSAGES ******
            *** NONE ***
   ****** WARNING MESSAGES
                            ******
ME W186
         1931
                  MEOPEN: THRESH 1MIN 1-min ASOS wind speed threshold used
                                                                              0.50
ME W187
         1931
                    MEOPEN: ADJ U* Option for Stable Low Winds used in AERMET
 ********
 *** SETUP Finishes Successfully ***
 *********
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
 ***
                                                                ***
                                                                          15:14:07
                   PAGE 1
 *** MODELOPTs:
                RegDFAULT CONC ELEV URBAN ADJ U*
                                      * * *
                                            MODEL SETUP OPTIONS SUMMARY
```

** Model Options Selected:

```
* Model Uses Regulatory DEFAULT Options
     * Model Is Setup For Calculation of Average CONCentration Values.
     * NO GAS DEPOSITION Data Provided.
     * NO PARTICLE DEPOSITION Data Provided.
     * Model Uses NO DRY DEPLETION. DDPLETE = F
     * Model Uses NO WET DEPLETION. WETDPLT = F
     * Stack-tip Downwash.
     * Model Accounts for ELEVated Terrain Effects.
     * Use Calms Processing Routine.
     * Use Missing Data Processing Routine.
     * No Exponential Decay.
     * Model Uses URBAN Dispersion Algorithm for the SBL for 130 Source(s),
      for Total of 1 Urban Area(s):
 Urban Population = 2189641.0 ; Urban Roughness Length = 1.000 m
     * Urban Roughness Length of 1.0 Meter Used.
     * ADJ U* - Use ADJ U* option for SBL in AERMET
     * CCVR Sub - Meteorological data includes CCVR substitutions
     * TEMP Sub - Meteorological data includes TEMP substitutions
     * Model Assumes No FLAGPOLE Receptor Heights.
     * The User Specified a Pollutant Type of: DPM
**Model Calculates ANNUAL Averages Only
**This Run Includes: 130 Source(s); 1 Source Group(s); and 27 Receptor(s)
                        0 POINT(s), including
               with:
                          0 POINTCAP(s) and 0 POINTHOR(s)
                and: 130 VOLUME source(s)
                and: 0 AREA type source(s)
and: 0 LINE source(s)
and: 0 RLINE/RLINEXT source(s)
and: 0 OPENPIT source(s)
and: 0 BUOYANT LINE source(s) with a total of 0 line(s)
and: 0 SWPOINT source(s)
**Model Set To Continue RUNning After the Setup Testing.
**The AERMET Input Meteorological Data Version Date: 16216
**Output Options Selected:
         Model Outputs Tables of ANNUAL Averages by Receptor
         Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
         Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
                                                                  m for Missing Hours
                                                                  b for Both Calm and Missing
                                                                 Hours
**Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 442.00; Decay Coef. =
0.000
       ; Rot. Angle = 0.0
                 Emission Units = GRAMS/SEC
                                                                             ; Emission Rate
                 Unit Factor = 0.10000E+07
                 Output Units = MICROGRAMS/M**3
**Approximate Storage Requirements of Model = 3.6 MB of RAM.
**Input Runstream File:
aermod.inp
**Output Print File:
aermod.out
**Detailed Error/Message File: 14804
Construction.err
**File for Summary of Results: 14804
```

Construction.sum

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and

Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

* * * 15:14:07

PAGE

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** VOLUME SOURCE DATA ***

		EMISSION RATE			BASE	RELEASE	INIT.	INIT.	
SOURCE SOURCE SCA:		(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
(METERS)		BY							
				. – – – –					
VOL1 YES HRDOW	0	0.34459E-02	483136.3	3735242.3	434.0	5.00	22.60	1.40	
VOL2 YES HRDOW	0	0.34459E-02	483230.2	3735241.1	434.0	5.00	22.60	1.40	
YES HRDOW VOL3 YES HRDOW	0	0.34459E-02	483136.7	3735144.3	434.0	5.00	22.60	1.40	
VOL4 YES HRDOW	0	0.34459E-02	483135.9	3735047.6	434.0	5.00	22.60	1.40	
VOL5	0	0.34459E-02	483230.2	3735143.1	434.3	5.00	22.60	1.40	
YES HRDOW VOL6	0	0.34459E-02	483229.4	3735048.4	435.0	5.00	22.60	1.40	
YES HRDOW L000001	0	0.33200E-05	483267.8	3735300.1	434.3	3.49	6.51	3.25	
YES HRDOW L000002	0	0.33200E-05	483253.8	3735300.0	434.1	3.49	6.51	3.25	
YES HRDOW									
L0000003 YES HRDOW	0	0.33200E-05	483239.8	3735299.9	434.0	3.49	6.51	3.25	
L0000004	0	0.33200E-05	483225.8	3735299.9	434.0	3.49	6.51	3.25	
YES HRDOW L000005	0	0.33200E-05	483211.8	3735299.8	434.0	3.49	6.51	3.25	
YES HRDOW	0	0.33200E-05	483197.8	3735299.7	434.0	3.49	6.51	3.25	
YES HRDOW	0								
L0000007 YES HRDOW	0	0.33200E-05	483183.8	3/35299.6	434.0	3.49	6.51	3.25	
L0000008 YES HRDOW	0	0.33200E-05	483169.8	3735299.6	434.0	3.49	6.51	3.25	
L0000009 YES HRDOW	0	0.33200E-05	483155.8	3735299.5	434.0	3.49	6.51	3.25	
L0000010	0	0.33200E-05	483141.8	3735299.4	434.0	3.49	6.51	3.25	
YES HRDOW L0000011	0	0.33200E-05	483127.8	3735299.3	433.9	3.49	6.51	3.25	
YES HRDOW L0000012	0	0.33200E-05	483113.8	3735299.3	433.5	3.49	6.51	3.25	
YES HRDOW L0000013	0	0.33200E-05	483099.8	3735299.2	433.0	3.49	6.51	3.25	
YES HRDOW L0000014	0	0.33200E-05	483085.8	3735299.1	433.0	3.49	6.51	3.25	
YES HRDOW L0000015	0	0.33200E-05	483071.8	3735299.1	433.0	3.49	6.51	3.25	
YES HRDOW L0000016	0	0.33200E-05	483057.8	3735299.0	433.0	3.49	6.51	3.25	
YES HRDOW L0000017	0	0.33200E-05	483043.8	3735298.9	433.0	3.49	6.51	3.25	
	-		- · · ·	· · ·				-	

YES HRDOW							
L0000018	0	0.33200E-05	483029.8 3735298.8	433.0	3.49	6.51	3.25
YES HRDOW	O	0.552000 05	403029.0 3733290.0	433.0	3.43	0.51	3.23
L0000019	0	0.33200E-05	483015.8 3735298.8	433.0	3.49	6.51	3.25
YES HRDOW	Ŭ	0.002001 00	100010:0 0,00290:0	100.0	J • 13	0.01	3.23
L0000020	0	0.33200E-05	483001.8 3735298.7	433.0	3.49	6.51	3.25
YES HRDOW							
L0000021	0	0.33200E-05	482987.8 3735298.6	433.0	3.49	6.51	3.25
YES HRDOW							
L0000022	0	0.33200E-05	482973.8 3735298.5	433.0	3.49	6.51	3.25
YES HRDOW							
L0000023	0	0.33200E-05	482959.8 3735298.5	433.0	3.49	6.51	3.25
YES HRDOW							
L0000024	0	0.33200E-05	482945.8 3735298.4	433.0	3.49	6.51	3.25
YES HRDOW							
L0000025	0	0.33200E-05	482931.8 3735298.3	433.0	3.49	6.51	3.25
YES HRDOW	•			400	0 10		0 05
L0000026	0	0.33200E-05	482917.8 3735298.2	433.0	3.49	6.51	3.25
YES HRDOW	0	0 222000	402002 0 2725200 2	122 0	2 40	C F1	2 05
L0000027	0	0.33200E-05	482903.8 3735298.2	433.0	3.49	6.51	3.25
YES HRDOW L0000028	0	0.33200E-05	482892.5 3735295.4	433.0	3.49	6.51	3.25
YES HRDOW	U	0.33200E-03	402092.3 3733293.4	433.0	3.49	0.31	3.23
L0000029	0	0.33200E-05	482892.4 3735281.4	433.0	3.49	6.51	3.25
YES HRDOW	O	0.332001 03	102092.1 3733201.1	133.0	3.13	0.01	3.23
L0000030	0	0.33200E-05	482892.3 3735267.4	433.0	3.49	6.51	3.25
YES HRDOW							
L0000031	0	0.33200E-05	482892.2 3735253.4	433.0	3.49	6.51	3.25
YES HRDOW							
L0000032	0	0.33200E-05	482892.1 3735239.4	433.0	3.49	6.51	3.25
YES HRDOW							
L0000033	0	0.33200E-05	482892.0 3735225.4	433.0	3.49	6.51	3.25
YES HRDOW							
L0000034	0	0.33200E-05	482891.9 3735211.4	433.0	3.49	6.51	3.25
YES HRDOW							

PAGE 3

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** VOLUME SOURCE DATA ***

U	RBAN	EMISSION RATE	Ε		BASE	RELEASE	INIT.	INIT.	
	PART.	,	X	Y	ELEV.	HEIGHT	SY	SZ	
	R VAR CATS.	-	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
(METERS)		BY							
L0000035	0	0.33200E-05	482891.8	3735197.4	433.0	3.49	6.51	3.25	
YES HRDOW									
L0000036	0	0.33200E-05	482891.7	3735183.4	433.0	3.49	6.51	3.25	
YES HRDOW L0000037 YES HRDOW	0	0.33200E-05	482891.5	3735169.4	433.0	3.49	6.51	3.25	
L0000038	0	0.33200E-05	482891.4	3735155.4	433.0	3.49	6.51	3.25	
YES HRDOW									
L0000039	0	0.33200E-05	482891.3	3735141.4	433.0	3.49	6.51	3.25	
YES HRDOW L0000040	0	0.33200E-05	482891.2	3735127.4	433.0	3.49	6.51	3.25	

L00000		0	0.33200E-05	482891.1	3735113.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW)42	0	0.33200E-05	482891.0	3735099.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW)43	0	0.33200E-05	482890.9	3735085.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW	0	0.33200E-05	482890 8	3735071.4	433.0	3.49	6.51	3.25
	HRDOW	0	0.33200E-05		3735057.4	433.0		6.51	3.25
YES	HRDOW						3.49		
	HRDOW	0	0.33200E-05	482890.6	3735043.4	433.0	3.49	6.51	3.25
L00000 YES)47 HRDOW	0	0.33200E-05	482890.5	3735029.4	433.0	3.49	6.51	3.25
L00000 YES)48 HRDOW	0	0.33200E-05	482890.4	3735015.4	433.0	3.49	6.51	3.25
L00000 YES)49 HRDOW	0	0.33200E-05	482890.3	3735001.4	433.0	3.49	6.51	3.25
L00000)50	0	0.33200E-05	482890.2	3734987.4	433.0	3.49	6.51	3.25
L00000		0	0.33200E-05	482890.1	3734973.4	433.0	3.49	6.51	3.25
L00000	HRDOW)52	0	0.33200E-05	482889.9	3734959.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW)53	0	0.33200E-05	482889.8	3734945.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW)54	0	0.33200E-05	482889.7	3734931.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW)55	0	0.33200E-05	482889.6	3734917.4	433.0	3.49	6.51	3.25
YES L00000	HRDOW)56	0	0.33200E-05	482889.5	3734903.4	433.0	3.49	6.51	3.25
YES	HRDOW	0	0.33200E-05	482889 4	3734889.4	433.0	3.49	6.51	3.25
	HRDOW	0	0.33200E-05		3734875.4	433.0	3.49	6.51	3.25
	HRDOW	0	0.33200E-05		3734861.4		3.49	6.51	3.25
YES	HRDOW					433.0			
	HRDOW	0	0.33200E-05				3.49	6.51	3.25
L00000 YES)61 HRDOW	0	0.33200E-05	482889.0	3734833.4	433.0	3.49	6.51	3.25
L00000 YES)62 HRDOW	0	0.33200E-05	482888.9	3734819.4	433.0	3.49	6.51	3.25
L00000 YES)63 HRDOW	0	0.33200E-05	482888.8	3734805.4	433.0	3.49	6.51	3.25
L00000 YES)64 HRDOW	0	0.33200E-05	482888.7	3734791.4	433.5	3.49	6.51	3.25
L00000		0	0.33200E-05	482888.6	3734777.4	433.9	3.49	6.51	3.25
L00000		0	0.33200E-05	482884.0	3734764.7	433.8	3.49	6.51	3.25
L00000)67	0	0.33200E-05	482876.4	3734753.0	433.5	3.49	6.51	3.25
L00000		0	0.33200E-05	482868.7	3734741.2	433.4	3.49	6.51	3.25
L00000		0	0.33200E-05	482861.1	3734729.5	433.6	3.49	6.51	3.25
L00000		0	0.33200E-05	482853.5	3734717.8	433.7	3.49	6.51	3.25
YES L00000	HRDOW)71	0	0.33200E-05	482845.9	3734706.0	433.7	3.49	6.51	3.25
YES L00000	HRDOW)72	0	0.33200E-05	482838.2	3734694.3	433.8	3.49	6.51	3.25
	HRDOW	0	0.33200E-05				3.49	6.51	3.25
							-		

YES HRDOW L0000074 0 0.33200E-05 482822.5 3734673.1 433.8 3.49 6.51 3.25

YES HRDOW

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and

Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 4

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** VOLUME SOURCE DATA ***

		EMISSION RATE			BASE	RELEASE	INIT.	INIT.
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ
ID	LAR VARY CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	
(METERS)		BY						
L0000075 YES HRDOW	0	0.33200E-05	482811.1	3734681.1	433.4	3.49	6.51	3.25
L0000076 YES HRDOW	0	0.33200E-05	482799.6	3734689.1	433.0	3.49	6.51	3.25
L0000077 YES HRDOW	0	0.33200E-05	482788.1	3734697.2	433.0	3.49	6.51	3.25
L0000078 YES HRDOW	0	0.33200E-05	482776.7	3734705.2	433.0	3.49	6.51	3.25
L0000079 YES HRDOW	0	0.33200E-05	482765.2	3734713.2	433.0	3.49	6.51	3.25
L0000080 YES HRDOW	0	0.33200E-05	482753.7	3734721.2	433.0	3.49	6.51	3.25
L0000081 YES HRDOW	0	0.33200E-05	482742.3	3734729.3	433.0	3.49	6.51	3.25
L0000082 YES HRDOW	0	0.33200E-05	482730.8	3734737.3	433.0	3.49	6.51	3.25
L0000083 YES HRDOW	0	0.33200E-05	482719.3	3734745.3	433.0	3.49	6.51	3.25
L0000084	0	0.33200E-05	482707.9	3734753.4	433.0	3.49	6.51	3.25
YES HRDOW L0000085 YES HRDOW	0	0.33200E-05	482696.4	3734761.4	433.0	3.49	6.51	3.25
L0000086 YES HRDOW	0	0.33200E-05	482684.9	3734769.4	433.0	3.49	6.51	3.25
L0000087 YES HRDOW	0	0.33200E-05	482673.5	3734777.5	433.0	3.49	6.51	3.25
L0000088 YES HRDOW	0	0.33200E-05	482662.0	3734785.5	433.0	3.49	6.51	3.25
L0000089 YES HRDOW	0	0.33200E-05	482650.5	3734793.5	433.0	3.49	6.51	3.25
L0000090 YES HRDOW	0	0.33200E-05	482639.0	3734801.5	433.0	3.49	6.51	3.25
L0000091 YES HRDOW	0	0.33200E-05	482627.6	3734809.6	433.0	3.49	6.51	3.25
L0000092	0	0.33200E-05	482616.1	3734817.6	433.1	3.49	6.51	3.25
YES HRDOW L0000093 YES HRDOW	0	0.33200E-05	482604.6	3734825.6	433.3	3.49	6.51	3.25
L0000094 YES HRDOW	0	0.33200E-05	482593.2	3734833.7	433.8	3.49	6.51	3.25
L0000095 YES HRDOW	0	0.33200E-05	482581.7	3734841.7	433.6	3.49	6.51	3.25
L0000096	0	0.33200E-05	482570.2	3734849.7	433.2	3.49	6.51	3.25

	YES	HRDOW								
	L00000	097	0	0.33200E-05	482558.8	3734857.8	433.0	3.49	6.51	3.25
	YES L00000		0	0.33200E-05	482547.3	3734865.8	433.0	3.49	6.51	3.25
	YES L00000		0	0.33200E-05	482535.8	3734873.8	433.0	3.49	6.51	3.25
	YES L00001		0	0.33200E-05	482524.4	3734881.8	433.0	3.49	6.51	3.25
	YES		0	0.33200E-05	482513.1	3734890.1	433.0	3.49	6.51	3.25
	YES L00001		0	0.33200E-05	482501.8	3734898.4	433.0	3.49	6.51	3.25
	YES		0	0.33200E-05	482490.5	3734906.6	433.0	3.49	6.51	3.25
	YES L00001		0	0.33200E-05	482479.2	3734914.9	433.0	3.49	6.51	3.25
	YES L00001		0	0.33200E-05	482467.9	3734923.2	433.0	3.49	6.51	3.25
	YES L00001		0	0.33200E-05	482456.6	3734931.4	433.0	3.49	6.51	3.25
	YES L00001		0	0.33200E-05	482445.3	3734939.7	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 108	0	0.33200E-05	482434.0	3734947.9	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 109	0	0.33200E-05	482422.7	3734956.2	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 110	0	0.33200E-05	482412.4	3734965.6	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 111	0	0.33200E-05	482403.4	3734976.3	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 112	0	0.33200E-05	482394.5	3734987.1	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 113	0	0.33200E-05	482385.5	3734997.9	433.0	3.49	6.51	3.25
	YES L00001	HRDOW 114	0	0.33200E-05	482379.0	3735010.2	433.0	3.49	6.51	3.25
ī	YES FF ***	HRDOW AERMOD - VI	ERSIC	ON 22112 ***	*** C:\	.Users\Michae	el Tirohn\I	Desktop\HI	RAs\14804	Mapes a
S	Sherman	n\14804 O **	* *	09/15/22	2					
	*** AT	ERMET - VERS	SION	16216 ***						

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 5
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

* * *	VOLUME	SOURCE	DATA	* * *

	NUMBER URBAN	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	
ID (METERS)	CATS.	BY	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
L0000115	0	0.33200E-05	482372.8	2725022 0	432.8	3.49	6.51	3.25	
YES HRDOW	U	0.33200E-03	402372.0	3/33022.0	432.0	3.49	0.31	3.23	
L0000116 YES HRDOW	0	0.33200E-05	482366.8	3735035.4	432.6	3.49	6.51	3.25	
L0000117 YES HRDOW	0	0.33200E-05	482363.7	3735049.0	432.5	3.49	6.51	3.25	
L0000118	0	0.33200E-05	482360.6	3735062.7	432.4	3.49	6.51	3.25	
YES HRDOW L0000119	0	0.33200E-05	482357.5	3735076.4	432.2	3.49	6.51	3.25	

YES HRDOW							
L0000120	0	0.33200E-05	482355.2 3735090.1	432.2	3.49	6.51	3.25
YES HRDOW							
L0000121	0	0.33200E-05	482354.9 3735104.1	432.2	3.49	6.51	3.25
YES HRDOW							
L0000122	0	0.33200E-05	482354.6 3735118.1	432.2	3.49	6.51	3.25
YES HRDOW							
L0000123	0	0.33200E-05	482354.3 3735132.1	432.1	3.49	6.51	3.25
YES HRDOW							
L0000124	0	0.33200E-05	482354.0 3735146.1	432.1	3.49	6.51	3.25
YES HRDOW							

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 6

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** SOURCE IDs DEFINING SOURCE GROUPS ***

SRCGROUP ID	SOURCE IDs

ALL L0000001	VOL1 , L0000002	, VOL2	, VOL3	, VOL4	, VOL5	, VOL6	,
	L0000003 L0000009	, L0000004 , L0000010	, L0000005	, L0000006	, L0000007	, L0000008	,
	L0000011 L0000017	, L0000012	, L0000013	, L0000014	, L0000015	, L0000016	,
	L0000019 L0000025	, L0000020	, L0000021	, L0000022	, L0000023	, L0000024	,
	L0000027 L0000033	, L0000028	, L0000029	, L0000030	, L0000031	, L0000032	,
	L0000035 L0000041	, L0000036	, L0000037	, L0000038	, L0000039	, L0000040	,
	L0000043 L0000049	, L0000044	, L0000045	, L0000046	, L0000047	, L0000048	,
	L0000051 L0000057	, L0000052	, L0000053	, L0000054	, L0000055	, L0000056	,
	L0000059 L0000065	, L0000060	, L0000061	, L0000062	, L0000063	, L0000064	,
	L0000067 L0000073	, L0000068	, L0000069	, L0000070	, L0000071	, L0000072	,
	L0000075 L0000081	, L0000076	, L0000077	, L0000078	, L0000079	, L0000080	,
	L0000083 L0000089	, L0000084	, L0000085	, L0000086	, L0000087	, L0000088	,
	L0000091 L0000097	, L0000092 , L0000098	, L0000093	, L0000094	, L0000095	, L0000096	,
	L0000099	, L0000100	, L0000101	, L0000102	, L0000103	, L0000104	,

```
, L0000106
             L0000105
                                         , L0000109
             L0000107
                          , L0000108
                                                       , L0000110
                                                                      , L0000111
                                                                                     , L0000112
                          , L0000114
             L0000113
                                         , L0000117
             L0000115
                          , L0000116
                                                       , L0000118
                                                                      , L0000119
                                                                                     , L0000120
                          , L0000122
             L0000121
                         , L0000124
             L0000123
                                       *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
*** AERMOD - VERSION 22112 ***
Sherman\14804 O ***
                            09/15/22
 *** AERMET - VERSION 16216 ***
 * * *
                                                                              * * *
                                                                                         15:14:07
                       PAGE
                              7
 *** MODELOPTs:
                   RegDFAULT CONC ELEV URBAN ADJ U*
                                            *** SOURCE IDS DEFINED AS URBAN SOURCES ***
                                                             SOURCE IDs
 URBAN ID
             URBAN POP
                                      , VOL2
              2189641.
                          VOL1
                                                     , VOL3
                                                                    , VOL4
                                                                                   , VOL5
                          , L000001
              VOL6
L0000002
             L000003
                          , L000004
                                         , L0000005
                                                        , L0000006
                                                                      , L0000007
                                                                                     , L0000008
                          , L0000010
             L0000009
             L0000011
                          , L0000012
                                         , L0000013
                                                        , L0000014
                                                                      , L0000015
                                                                                     , L0000016
                          , L0000018
             L000017
                                         , L0000021
             L0000019
                          , L0000020
                                                                                     , L0000024
                                                        , L0000022
                                                                      , L0000023
                          , L0000026
             L0000025
             L0000027
                          , L0000028
                                         , L0000029
                                                        , L0000030
                                                                      , L0000031
                                                                                     , L0000032
                          , L0000034
             L0000033
                                         , L0000037
             L0000035
                          , L0000036
                                                        , L0000038
                                                                      , L0000039
                                                                                     , L0000040
                          , L0000042
             L0000041
                          , L0000044
                                         , L0000045
             L0000043
                                                                      , L0000047
                                                                                     , L0000048
                                                        , L0000046
                          , L0000050
             L0000049
                                         , L0000053
             L0000051
                          , L0000052
                                                        , L0000054
                                                                      , L0000055
                                                                                     , L0000056
             L0000057
                          , L0000058
             L0000059
                          , L0000060
                                         , L0000061
                                                                      , L0000063
                                                                                     , L0000064
                                                        , L0000062
             L0000065
                          , L0000066
             L0000067
                          , L0000068
                                         , L0000069
                                                                                     , L0000072
                                                        , L0000070
                                                                      , L0000071
                          , L0000074
             L0000073
                                         , L0000077
                                                                      , L0000079
                                                                                     , L0000080
             L0000075
                          , L0000076
                                                        , L0000078
                          , L0000082
             L0000081
                                         , L0000085
                                                        , L0000086
                                                                                     , L0000088
             L0000083
                          , L0000084
                                                                      , L0000087
             L0000089
                          , L0000090
                                         , L0000093
                                                                                     , L0000096
                                                        , L0000094
                                                                      , L0000095
             L0000091
                          , L0000092
                          , L0000098
             L0000097
                                         , L0000101
                          , L0000100
             L0000099
                                                       , L0000102
                                                                      , L0000103
                                                                                     , L0000104
             L0000105
                          , L0000106
```

```
L0000115 , L0000116 , L0000117 , L0000118 , L0000119 , L0000120
         L0000121 , L0000122
         L0000123 , L0000124
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                       ***
                                                               15:14:07
                PAGE 8
*** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = VOL1 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
             2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
  1 .0000E+00
                                                              6
   .0000E+00 7 .0000E+00 8 .0000E+00
  9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                              14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                              22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
  .0000E+00 7 .0000E+00 8 .0000E+00
  9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                              14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                              22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                 DAY OF WEEK = SUNDAY
  1 .0000E+00
             2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                              6
  .0000E+00 7 .0000E+00 8 .0000E+00
  9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                       ***
                                                               15:14:07
                PAGE 9
*** MODELOPTs:
              RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = VOL2
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                              6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
```

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 10
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = VOL3 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                               DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
  9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00
                                                                  14
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
* * *
                                                           *** 15:14:07
                PAGE 11
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
               ; SOURCE TYPE = VOLUME :
SOURCE ID = VOL4
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
```

SCALAR HOUR SCALAR HOUR SCALAR DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 15 .0000E+00 16 .0000E+00 .0000E+00 14 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 1 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 *** 15:14:07 PAGE 12 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = VOL5; SOURCE TYPE = VOLUME : HOUR SCALAR DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 1 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14

17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00

*** AERMET - VERSION 16216 ***

.0000E+00 15 .0000E+00 16 .0000E+00

22

PAGE 13

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

	(HRDOW)	*							
SOURCE ID = VOL6 HOUR SCALAR SCALAR HOUR	HOUR S	SCALAR I	HOUR	SCALAR		SCALAR	HOUR	SCALAR	HOUR
1 .0000E+00				0000E+00		:0000E+00		.0000E+00	6
.0000E+00 7 9 .1000E+01 .1000E+01 15	10 .10	000E+01	11 .	1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00 .0000E+00 23	18 .00	000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
.00002100 20	.00002		• • • • • •		OF WE	EK = SATUR	DAY		
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6
9 .0000E+00 .0000E+00 15	10 .00	000E+00	11 .	0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 .0000E+00 23	18 .00	000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
.00000100 20	.0000	. 50 21	• 5 5 5 5 5		OF WF	EK = SUNDA	Y		
1 .0000E+00 .0000E+00 7				0000E+00				.0000E+00	6
9 .0000E+00 .0000E+00 15	10 .00	000E+00	11 .	0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 .0000E+00 23	18 .00	000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
TE *** AERMOD - VE Sherman\14804 O ** *** AERMET - VERS ***	*	09/15/22		C:\Users	\Micha	el Tirohn\	Deskto	pp\HRAs\148 ***	04 Mapes and 15:14:07
	* SOURG (HRDOW)	CE EMISSIO * ; SOURCE SCALAR I	ON RAT: TYPE :	E SCALARS = VOLUME SCALAR	WHICH	I VARY DIUR SCALAR			
SCALAR HOUR	SCALAR	HOUR :	CALAR						
						CEK = WEEKD			
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6
9 .1000E+01 .1000E+01 15					12	.1000E+01	13	.1000E+01	14
17 .0000E+00 .0000E+00 23				0000E+00 E+00	20	.0000E+00	21	.0000E+00	22
						EEK = SATUR			
1 .0000E+00 .0000E+00 7	.0000E	E+00 8	.000	0E+00	4	.0000E+00	5	.0000E+00	6
9 .0000E+00 .0000E+00 15	.00001	E+00 16	.000	0E+00		.0000E+00		.0000E+00	14
17 .0000E+00 .0000E+00 23					20	.0000E+00	21	.0000E+00	22
						EEK = SUNDA			
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6
9 .0000E+00	10 .00	000E+00	11 .	0000E+00	12	.0000E+00	13	.0000E+00	14

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14

```
.0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 15
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000002
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
***
                 PAGE 16
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000003 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                               DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                               DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
```

17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22

.0000E+00 15 .0000E+00 16 .0000E+00

```
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           ***
                                                                    15:14:07
                 PAGE 17
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000004
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                         .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                                    15:14:07
                 PAGE 18
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000005
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
```

```
.0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                       .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                       .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          ***
                                                                  15:14:07
                 PAGE 19
              RegDFAULT CONC ELEV URBAN ADJ U*
*** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000006 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                          ***
                                                                  15:14:07
```

PAGE 20

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

^{*} SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR SCALAR HOUR	HOUR SCALAR SCALAR	HOUR	SCALAR			
				EEK = WEEKD			
	2 .0000E+00		4	.0000E+00	5	.0000E+00	6
9 .1000E+01	.0000E+00 8 10 .1000E+01 .1000E+01 16	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00	18 .0000E+00 .0000E+00 24	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
• • • • • • • • • • • • • • • • • • • •	.00002.00		OF WE	EEK = SATUR	DAY		
	2 .0000E+00 .0000E+00 8	3 .0000E+00				.0000E+00	6
	10 .0000E+00 .0000E+00 16		12	.0000E+00	13	.0000E+00	14
	18 .0000E+00 .0000E+00 24		20	.0000E+00	21	.0000E+00	22
				EEK = SUNDA			
	2 .0000E+00 .0000E+00 8		4	.0000E+00	5	.0000E+00	6
	10 .0000E+00 .0000E+00 16		12	.0000E+00	13	.0000E+00	14
.0000E+00 23	18 .0000E+00 .0000E+00 24	.0000E+00					
PB *** AERMOD - VE Sherman\14804 O **	* 09/15/2	*** C:\Users	\Micha	ael Tirohn\	Deskto	p\HRAs\148	04 Mapes and
*** AERMET - VERS ***	ION 16216 ***					***	15:14:07
	D 7 0 D 0 1						
*** MODELOPTs:	_	ELEV URBAN A	_		NALLY	AND BY DAY	OF WEEK
	RegDFAULT CONC * SOURCE EMISSI (HRDOW) *	ON RATE SCALARS	- WHICE		NALLY	AND BY DAY	OF WEEK
SOURCE ID = L0000 HOUR SCALAR	RegDFAULT CONC * SOURCE EMISSI (HRDOW) * 008 ; SOURCE	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR	- WHICH	H VARY DIUR			
SOURCE ID = L0000 HOUR SCALAR	RegDFAULT CONC * SOURCE EMISSI (HRDOW) * 008 ; SOURCE HOUR SCALAR	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR	- WHICH	H VARY DIUR			
SOURCE ID = L0000 HOUR SCALAR	RegDFAULT CONC * SOURCE EMISSI (HRDOW) * 008 ; SOURCE HOUR SCALAR	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	- WHICH : HOUR	H VARY DIUR SCALAR	HOUR		
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00	RegDFAULT CONC * SOURCE EMISSI (HRDOW) * 008 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	WHICH : HOUR	H VARY DIUR	HOUR		
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01	RegDFAULT CONC * SOURCE EMISSI (HRDOW) * 008 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 .0000E+00 8 10 .1000E+01	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 11 .1000E+01	WHICH : HOUR OF WH	H VARY DIUR SCALAR EEK = WEEKD	HOUR 	SCALAR	HOUR
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 11 .1000E+01 .1000E+01 19 .0000E+00	HOUR OF WE 4	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5	SCALAR	HOUR
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	RegDFAULT CONC * SOURCE EMISSI (HRDOW) * 008 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 .0000E+00 8 10 .1000E+01 .1000E+01 16	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	WHICH HOUR OF WH 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01	HOUR 2AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00	HOUR 2AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 .0000E+00 7 9 .0000E+00	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 11 .1000E+01 .1000E+01 19 .0000E+00 .0000E+00 .0000E+00 11 .0000E+00 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00	WHICH HOUR OF WE 4 12 20 OF WE 4 12	SCALAR SCALAR SCALAR SEK = WEEKD O000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR 0AY 5 13 21 0DAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 .1000E+01 .1000E+01 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .10000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	## HOUR OF WE 4 12 20 OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 23 1 .0000E+00 15 17 .0000E+00 .0000E+00 23	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 .0000E+01 .1000E+01 .1000E+01 .1000E+00 .0000E+00	* SOURCE EMISSI (HRDOW) * 008	ON RATE SCALARS TYPE = VOLUME HOUR SCALAR SCALAR	## HOUR OF WH 4 12 20 OF WH 4 12 20 OF WH 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 2AY 5 13 21 21 3DAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22

PAGE 22

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000009; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

		DAY	OF WE	EK = WEEKDA	Y.		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00					
9 .1000E+01	10 .1000E+01	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
.1000E+01 15	.1000E+01 16	.1000E+01					
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00					
		DAY	OF WE	EK = SATURD	AY		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00					
9 .0000E+00	10 .0000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 15	.0000E+00 16	.0000E+00					
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00					
		DAY	OF WE	EK = SUNDAY			
1 .0000E+00	2 .0000E+00	3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00					
9 .0000E+00	10 .0000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 15	.0000E+00 16	.0000E+00					
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00					
F *** AERMOD - VE	RSION 22112 ***	*** C:\Users	\Micha	el Tirohn\D	eskt	op\HRAs\1480	04 Mapes and
herman\14804 O **	* 09/15/2	2					

Sherman $\14804$ O

*** AERMET - VERSION 16216 ***

* * * 15:14:07

PAGE 23

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000010 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

	DAY OF WEEK = WEEKDAY	
1 .0000E+00 2 .0000E+00	3 .0000E+00 4 .0000E+00 5 .0000E+00	6
.0000E+00 7 .0000E+00 8	.0000E+00	
9 .1000E+01 10 .1000E+01	11 .1000E+01 12 .1000E+01 13 .1000E+01	14
.1000E+01 15 .1000E+01 16	.1000E+01	
17 .0000E+00 18 .0000E+00	19 .0000E+00 20 .0000E+00 21 .0000E+00 2	22
.0000E+00 23 .0000E+00 24	.0000E+00	
	DAY OF WEEK = SATURDAY	
1 .0000E+00 2 .0000E+00	3 .0000E+00 4 .0000E+00 5 .0000E+00	6
.0000E+00 7 .0000E+00 8	.0000E+00	
9 .0000E+00 10 .0000E+00	11 .0000E+00 12 .0000E+00 13 .0000E+00 1	14
.0000E+00 15 .0000E+00 16	.0000E+00	
17 .0000E+00 18 .0000E+00	19 .0000E+00 20 .0000E+00 21 .0000E+00 2	22
.0000E+00 23 .0000E+00 24 .	.0000E+00	
	DAY OF WEEK = SUNDAY	

```
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                            *** 15:14:07
                 PAGE 24
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000011 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                DAY OF WEEK = SUNDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                            *** 15:14:07
                 PAGE 25
 *** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000012 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00
                                                                   6
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
```

```
DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 26
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000013 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 27
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000014 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
```

SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 22 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 *** *** 15:14:07 PAGE 28 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = L0000015; SOURCE TYPE = VOLUME : HOUR SCALAR DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 1 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

15:14:07

PAGE 29

*** AERMET - VERSION 16216 ***

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

 * Source emission rate scalars which vary diurnally and by day of week (HrDow) *

SOURCE ID = L0000										
HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR S	SCALAR		SCALAR	HOUR	SCALAR	HOUR	
				DAY	OF WE	EEK = WEEKD	ΑY			
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6	
9 .1000E+01 .1000E+01 15	10 .1	1000E+01	11 .10	000E+01	12	.1000E+01	13	.1000E+01	14	
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .00	000E+00	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23	.00001	5+00 24	.0000E		OE WE	EEK = SATUR	DVA			
1 .0000E+00	2 ()))))	3 01					00005+00	6	
.0000E+00 7	7 .0000)E+00 8	.00001	E+00						
9 .0000E+00 .0000E+00 15	.0000)E+00 16	.00001	E+00				.0000E+00		
17 .0000E+00 .0000E+00 23				+00				.0000E+00	22	
						EEK = SUNDA				
1 .0000E+00 .0000E+00 7	7 .0000)E+00 8	.00001	E+00				.0000E+00	6	
9 .0000E+00 .0000E+00 15					12	.0000E+00	13	.0000E+00	14	
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .00	000E+00	20	.0000E+00	21	.0000E+00	22	
FE *** AERMOD - VE Sherman\14804 O ** *** AERMET - VERS	ERSION 2	22112 *** 09/15/2	*** (\Micha	ael Tirohn\	Deskto	op\HRAs\148	304 Mape	s and
***	STOM I	0210 ^^^						***	15:	14:07
*** MODELOPTs:	RegDF	RCE EMISSI			_	I VARY DIUR	NALLY	AND BY DAY	Y OF WEE	K
SOUDE ID - IOOO			₩VD₽ —	VOI IIME					. OI WIII.	
SCALAR HOUR	0017 HOUR SCALAR	; SOURCE SCALAR	HOUR SCALAR	SCALAR		SCALAR		SCALAR		
HOUR SCALAR SCALAR HOUR	0017 HOUR SCALAR	; SOURCE SCALAR HOUR	HOUR SCALAR	SCALAR			HOUR	SCALAR		
HOUR SCALAR SCALAR HOUR	0017 HOUR SCALAR	; SOURCE SCALAR HOUR	HOUR SCALAR	SCALAR	HOUR		HOUR	SCALAR		
HOUR SCALAR SCALAR HOUR 1 .0000E+00	0017 HOUR SCALAR	; SOURCE SCALAR HOUR	HOUR SCALAR	SCALAR DAY 000E+00	HOUR OF WE		HOUR 	SCALAR	HOUR	
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01	0017 HOUR SCALAR 2 .0	; SOURCE SCALAR HOUR 0000E+00 0E+00 8	HOUR S SCALAR	DAY 000E+00 E+00 000E+01	HOUR OF WE 4		HOUR DAY 5	SCALAR	HOUR	
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15	0017 HOUR SCALAR 2 .(7 .0000 10 .1 5 .1000	; SOURCE SCALAR HOUR 0000E+00 DE+00 8 1000E+01 DE+01 16	3 .00 .00001 11 .10 .10001	DAY 000E+00 E+00 000E+01 E+01 000E+00	HOUR OF WE 4	 CEK = WEEKD .0000E+00	HOUR 0AY 5 13	SCALAR	HOUR 6 14	
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15	0017 HOUR SCALAR 2 .(7 .0000 10 .1 5 .1000	; SOURCE SCALAR HOUR 0000E+00 DE+00 8 1000E+01 DE+01 16	3 .00 .00001 11 .10 .10001	DAY 000E+00 E+00 000E+01 E+01 000E+00 +00	HOUR OF WE 4 12 20	CEK = WEEKD .0000E+00 .1000E+01	HOUR 0AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14	
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23	0017 HOUR SCALAR 2 .(7 .0000 10 .1 5 .1000 18 .(.00000	; SOURCE SCALAR HOUR 0000E+00 0E+00 8 1000E+01 16 0000E+01 24	3 .00 .00001 11 .10 .10001 19 .00 .0000E-	DAY 000E+00 E+00 000E+01 E+01 000E+00 +00 DAY	HOUR OF WE 4 12 20 OF WE	CEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR DAY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14	
HOUR SCALAR SCALAR HOUR	0017 HOUR SCALAR 7 .0000 10 .1 5 .1000 18 .0 .0000H	; SOURCE SCALAR HOUR 0000E+00 0E+00 8 1000E+01 16 0000E+00 E+00 24 0000E+00 0E+00 8	3 .00 .00001 11 .10 .10001 19 .00 .0000E	DAY 000E+00 E+00 000E+01 E+01 000E+00 +00 DAY 000E+00 E+00 000E+00	HOUR OF WE 4 12 20 OF WE 4	CEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR DAY 5 13 21 CDAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22	
HOUR SCALAR SCALAR HOUR	0017 HOUR SCALAR 7 .0000 10 .1 5 .1000 18 .0 7 .0000 10 .0 10 .0	; SOURCE SCALAR HOUR 0000E+00 0E+00 8 1000E+01 16 0000E+01 16 0000E+00 0E+00 24 0000E+00 0E+00 8 0000E+00	3 .00 .000001 11 .10 .100001 19 .00 .000001 11 .00 .000001 11 .00	DAY 000E+00 E+00 000E+01 E+01 000E+00 DAY 000E+00 E+00 000E+00	HOUR OF WE 4 12 20 OF WE 4 12	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR DAY 5 13 21 CDAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22	
HOUR SCALAR SCALAR HOUR	0017 HOUR SCALAR 7 .0000 10 .1 5 .1000 18 .0 7 .0000 10 .0 10 .0	; SOURCE SCALAR HOUR 0000E+00 0E+00 8 1000E+01 16 0000E+01 16 0000E+00 0E+00 24 0000E+00 0E+00 8 0000E+00	3 .00 .000001 11 .10 .100001 19 .00 .000001 11 .00 .000001 11 .00	DAY 000E+00 E+00 000E+01 E+01 000E+00 +00 DAY 000E+00 E+00 000E+00 E+00 000E+00	HOUR OF WE 4 12 20 OF WE 4 12 20	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	HOUR DAY 5 13 21 SDAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14	
HOUR SCALAR SCALAR HOUR	2 .0 7 .0000 10 .1 5 .1000 18 .0 7 .0000 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0	; SOURCE SCALAR HOUR 0000E+00 0E+00 8 1000E+01 0E+01 16 0000E+00 0E+00 24 0000E+00 0E+00 16 0000E+00 0E+00 24	3 .00 .00001 11 .10 .10001 19 .00 .0000E- 3 .00 .00001 11 .00 .0000E- 3 .00	DAY 000E+00 E+00 000E+01 E+01 000E+00 +00 DAY 000E+00 E+00 000E+00 DAY 000E+00 DAY	HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE OF WE	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	HOUR DAY 5 13 21 SDAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14	
HOUR SCALAR SCALAR HOUR	2 .0 7 .0000 10 .1 5 .1000 18 .0 7 .0000 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0	; SOURCE SCALAR HOUR 0000E+00 0E+00 8 1000E+01 16 0000E+00 24 0000E+00 8 0000E+00 16 0000E+00 16 0000E+00 24	HOUR S SCALAR 3 .00 .00001 11 .10 .10001 19 .00 .00001 11 .00 .00001 19 .00 .00001 11 .00 .00001 11 .00	DAY 000E+00 E+00 000E+01 E+01 000E+00 +00 DAY 000E+00 E+00 000E+00 E+00 000E+00 DAY	HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	HOUR 0AY 5 13 21 8DAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22	
HOUR SCALAR SCALAR HOUR	2 .0 7 .0000 10 .1 5 .1000 18 .0 7 .0000 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0 10 .0	; SOURCE SCALAR HOUR 	HOUR S SCALAR 3 .00 .00001 11 .10 .10001 19 .00 .00001 11 .00 .00001 11 .00 .00001 11 .00 .00001 11 .00 .00001	DAY 000E+00 E+00 000E+01 E+01 000E+00 H00 DAY 000E+00 E+00 000E+00 E+00 000E+00 E+00 000E+00 E+00 000E+00 E+00 000E+00 E+00	HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4 12	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	HOUR 0AY 5 13 21 8DAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22 6	

```
.0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          ***
                                                                  15:14:07
                 PAGE 31
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000018 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                 DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 32
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000019
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
```

1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00

.0000E+00 7 .0000E+00 8 .0000E+00

.0000E+00 15 .0000E+00 16 .0000E+00

6

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                        ***
                                                                 15:14:07
                PAGE 33
*** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000020
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                6
  .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                      .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                        ***
                                                                 15:14:07
                PAGE 34
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000021 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                                  DAY OF WEEK = WEEKDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
```

```
.1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                    6
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                    14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                    14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                            ***
                                                                     15:14:07
                 PAGE 35
              RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000022 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                    14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                    6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                          .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                    6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                    14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                            *** 15:14:07
                 PAGE 36
               RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
```

SOURCE ID = L0000023 ; SOURCE TYPE = VOLUME :

SCALAR HOUR	SCALAR	HOUR	SCALAF		HOUR	SCALAR	HOUR	SCALAR	HOUR
				DAY	OF WI	EEK = WEEKD	AY		
1 .0000E+00					4	.0000E+00	5	.0000E+00	6
.0000E+00									
9 .1000E+01					12	.1000E+01	13	.1000E+01	14
.1000E+01 15									
17 .0000E+00					20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.00001	E+00 24	.0000				D311		
1 .0000E+00	2 (0000=100	2			EEK = SATUR .0000E+00		.0000E+00	6
		0000E+00 0E+00			4	.0000E+00	5	.0000E+00	O
9 .0000E+00					12	.0000E+00	13	.0000E+00	14
		OE+00 1			12	.0000100	13	.0000100	14
17 .0000E+00					20	.0000E+00	21	.0000E+00	22
.0000E+00 23					20	.00001.00		.00001.00	22
					OF WI	EEK = SUNDA	Y		
1 .0000E+00	2 .0	0000E+00	3.	.0000E+00	4	.0000E+00	5	.0000E+00	6
		0E+00							
9 .0000E+00	10 .0	0000E+00	11 .	.0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 15	5 .0000	OE+00 1	6 .000	00E+00					
17 .0000E+00	18 .0	0000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23 *** AERMOD - VE									
***									15:14:07
*** MODELOPTs:		GE 37 AULT CON	C ELEV	7 URBAN	ADJ_U	*			10.11107
	RegDF	AULT CON			_	* H VARY DIUR	NALLY	AND BY DAY	
*** MODELOPTs: SOURCE ID = L0000 HOUR SCALAR	RegDFA * SOUN (HRDON)024 HOUR	AULT CON RCE EMISS W) * ; SOURC SCALAR	ION RATE TYPE HOUR	TE SCALARS = VOLUME SCALAR	_	H VARY DIUR	NALLY HOUR		
*** MODELOPTs: SOURCE ID = L0000 HOUR SCALAR	RegDFA * SOUN (HRDON)024 HOUR	AULT CON RCE EMISS N) * ; SOURC	ION RAT	TE SCALARS = VOLUME SCALAR	- WHICE	H VARY DIUR			OF WEEK
*** MODELOPTs: SOURCE ID = L0000 HOUR SCALAR	RegDFA * SOUN (HRDON)024 HOUR	AULT CON RCE EMISS W) * ; SOURC SCALAR	ION RATE TYPE HOUR	TE SCALARS = VOLUME SCALAR	- WHICE	H VARY DIUR			OF WEEK
*** MODELOPTs: SOURCE ID = L0000 HOUR SCALAR	RegDFA * SOUN (HRDON)024 HOUR	AULT CON RCE EMISS W) * ; SOURC SCALAR	ION RATE TYPE HOUR	TE SCALARS = VOLUME SCALAR	WHICE	H VARY DIUR SCALAR EEK = WEEKD	HOUR 	SCALAR	OF WEEK HOUR
*** MODELOPTs: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00	* SOUN (HRDON 0024 HOUR SCALAR 	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR	ION RATE TYPE HOUR SCALAR	TE SCALARS = VOLUME SCALAR COUNTY DAY	HOUR	H VARY DIUR SCALAR EEK = WEEKD	HOUR 		OF WEEK
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00	* SOUN (HRDON 0024 HOUR SCALAR 2 .0	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR	E TYPE HOUR SCALAF	TE SCALARS = VOLUME SCALAR DAY 0000E+00	: HOUR OF WE	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5	SCALAR	OF WEEK HOUR 6
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01	* SOUN (HRDOWN 0024 HOUR SCALAR 2 .(7 .0000	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 DE+00 1000E+01	E TYPE HOUR SCALAH 3 . 8 .000	= VOLUME SCALAR COUNTERS DAY 0000E+00 00E+00 1000E+01	: HOUR OF WE	H VARY DIUR SCALAR EEK = WEEKD	HOUR AY 5	SCALAR	OF WEEK HOUR
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 15	* SOUN (HRDOW 0024 HOUR SCALAR 2 .(7 .0000 10 .: 5 .1000	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 1	E TYPE HOUR SCALAF 3 .8 .000 11 .6 .100	= VOLUME SCALAR R DAY .0000E+00 .1000E+01	WHICH HOUR OF WH	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5 13	SCALAR0000E+00 .1000E+01	OF WEEK HOUR 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOUN (HRDOW 0024 HOUR SCALAR 2 .0 7 .0000 10 .3 5 .1000	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 DE+01 10000E+01	E TYPE HOUR SCALAF 8 .000 11 . 6 .100	= VOLUME SCALAR R DAY .0000E+00 .1000E+01 .00E+01 .0000E+00	WHICH HOUR OF WH	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5 13	SCALAR	OF WEEK HOUR 6
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 15	* SOUN (HRDOW 0024 HOUR SCALAR 2 .0 7 .0000 10 .3 5 .1000	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 DE+01 10000E+01	E TYPE HOUR SCALAF 8 .000 11 . 6 .100	DAY .0000E+00 .1000E+01 .0000E+01 .0000E+00	HOUR OF WH 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	OF WEEK HOUR 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOUN (HRDOWN) 0024 HOUR SCALAR 2 .0 7 .0000 10 .3 5 .1000 18 .0 .00000	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+01 224	E TYPE HOUR SCALAF 3 .8 .000 11 . 6 .100 19 .	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+01 .0000E+00 .DAY	HOUR OF WI 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21 DAY	SCALAR0000E+00 .1000E+01 .0000E+00	OF WEEK HOUR
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOUN (HRDON DO24 HOUR SCALAR	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+01 0E+00 24	E TYPE HOUR SCALAR	DAY .0000E+00 .1000E+01 .0000E+00 .E+00 .DAY	HOUR OF WI 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01	HOUR AY 5 13 21 DAY	SCALAR0000E+00 .1000E+01	OF WEEK HOUR 6 14
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23	* SOUN (HRDOW 0024 HOUR SCALAR 2 .0 7 .0000 10 .3 5 .1000 18 .0 .00000 2 .0	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+01 0E+01 24 0000E+00 0E+00	E TYPE HOUR SCALAR 3 .8 .000 11 .6 6 .100 19 .0000 3 .8 .000	DAY .0000E+00 .1000E+01 .0000E+00 .2000E+00 .2000E+00 .2000E+00 .2000E+00	S WHICE HOUR OF WE 4 12 20 C OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR	SCALAR00000E+00 .10000E+01 .00000E+00	OF WEEK HOUR 6 14 22
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 .17 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 9 .0000E+00	* SOUN (HRDOWN COOL) * SOUN (HRDOWN COOL) **COOL (HRDOWN COOL)	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+01 0E+00 24 0000E+00 0000E+00	E TYPE HOUR SCALAR 3 .8 .000 11 .6 .100 19 .0000 3 .8 .000 11 .	DAY .0000E+00 .1000E+01 .0000E+00 .2000E+00 .2000E+00 .2000E+00 .2000E+00 .2000E+00 .2000E+00	S WHICE HOUR OF WE 4 12 20 C OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR	SCALAR0000E+00 .1000E+01 .0000E+00	OF WEEK HOUR
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 .17 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOUR (HRDOWN COOLS AND C	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+01 0E+00 24 0000E+00 0E+00 0000E+00 0E+00 0000E+00	E TYPE HOUR SCALAH 3 .8 .000 11 .6 .100 3 .8 .000 11 .6 .000	= VOLUME SCALAR R DAY .0000E+00 .1000E+01 .0000E+01 .0000E+00 .0000E+00 .0000E+00	S WHICH HOUR OF WH 12 20 OF WH 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	OF WEEK HOUR 6 14 22 6 14
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 .17 .0000E+00 .0000E+00 .0000E+00 9 .0000E+00 .0000E+00 17 .0000E+00	* SOUN (HRDOW 0024 HOUR SCALAR 2 .(7 .0000 10 .2 5 .1000 18 .(7 .0000 10 .(10 .(AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 1000E+01 10000E+01 2E+00 10000E+00 24 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	E TYPE HOUR SCALAF 8 .000 11 . 6 .100 19 . 8 .000 11 . 6 .000 11 .	= VOLUME SCALAR R 	S WHICH HOUR OF WH 12 20 OF WH 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR00000E+00 .10000E+01 .00000E+00	OF WEEK HOUR 6 14 22
*** MODELOPTS: SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 .17 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOUN (HRDOW 0024 HOUR SCALAR 2 .(7 .0000 10 .2 5 .1000 18 .(7 .0000 10 .(10 .(AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 1000E+01 10000E+01 2E+00 10000E+00 24 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	E TYPE HOUR SCALAF 8 .000 11 . 6 .100 19 . 8 .000 11 . 6 .000 11 .	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+00 .2000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	: HOUR : HOUR	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00	OF WEEK HOUR 6 14 22 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOUN (HRDOW 0024 HOUR SCALAR 7 .0000 10 .3 5 .1000 18 .0 7 .0000 10 .0 10 .0 10 .0 10 .0	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 DE+01 10000E+01 DE+00 24 0000E+00 0000E+00 DE+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	E TYPE HOUR SCALAF 3 .8 .000 11 .0 6 .100 19 .0000 11 .6 .000 19 .0000	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	: HOUR : HOUR	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	OF WEEK HOUR 6 14 22 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOUN (HRDOWN COOLS) * SOUN (HRDOWN COOLS) * SCALAR	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 10000E+01 24 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	ION RATE TYPE HOUR SCALAR	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	: HOUR : HOUR	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00	OF WEEK HOUR 6 14 22 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 9 .1000E+01 .1000E+01 17 .0000E+00 .0000E+00 .0000E+00 9 .0000E+00 .0000E+00 17 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOUN (HRDOWN) 0024 HOUR SCALAR 2 .0 7 .0000 10 .2 5 .1000 18 .0 7 .0000 18 .0 10 .0 7 .0000 17 .0000 18 .0	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 10000E+01 2E+00 24 0000E+00 0E+00 0000E+00 0E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	E TYPE HOUR SCALAF 3 .8 .000 11 .0 6 .100 19 .0000 3 .8 .000 11 .6 6 .000 19 .0000 3 .8	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	: HOUR	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	OF WEEK HOUR 6 14 22 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 9 .1000E+01 .1000E+01 .1000E+01 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOUN (HRDOWN) 0024 HOUR SCALAR 2 .0 7 .0000 10 .2 5 .1000 18 .0 7 .0000 18 .0 7 .0000 18 .0 7 .0000 18 .0 7 .0000 18 .0 10 .0 10 .0 10 .0 10 .0 10 .0	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 10000E+01 2E+00 24 0000E+00 0E+00 0000E+00 0E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	E TYPE HOUR SCALAF 3 .8 .000 11 .0 6 .100 19 .0000 3 .8 .000 11 .0 6 .000 11 .0 6 .000 11 .0	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+00 .1000E+00 .0000E+00	: HOUR	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	OF WEEK HOUR 6 14 22 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 9 .1000E+01 .1000E+01 .1000E+01 .1000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	* SOUN (HRDOWN) 0024 HOUR SCALAR 2 .() 7 .0000 10 .2 5 .1000 18 .() .00001 2 .() 7 .0000 10 .() 5 .0000 10 .() 5 .0000 10 .() 5 .0000 10 .() 5 .0000 10 .() 5 .0000 10 .()	AULT CON RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 1000E+01 1000E+01 1000E+01 24 0000E+00 000E+00	E TYPE HOUR SCALAF 3 .8 .000 11 . 6 .100 190000 3 . 8 .000 11 . 6 .000 3 . 8 .000 11 . 6 .000	DAY .0000E+00 .1000E+01 .0000E+00 .1000E+00 .1000E+00 .0000E+00	: HOUR : HOUR 4 12 20 : OF WI 4 12 20 : OF WI 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	OF WEEK HOUR 6 14 22 6 14 22

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

15:14:07

PAGE 38

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK

	(HRDOW) *	1011		***************************************	· viiiti bioit	11111111		OI WEEK
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR	SCALAR	HOUR	SCALAR		SCALAR	HOUR	SCALAR	HOUR
			-						
1 .0000E+00				000E+00		:0000E+00		.0000E+00	6
9 .1000E+01 .1000E+01 15	10 .1	000E+01	11 .1	L000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22
					OF WE	EK = SATUR	DAY		
1 .0000E+00 .0000E+00				000E+00				.0000E+00	6
9 .0000E+00 .0000E+00 15	10 .0	000E+00	11 .0	000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22
					OF WE	EK = SUNDA	Y		
1 .0000E+00 .0000E+00					4	.0000E+00	5	.0000E+00	6
9 .0000E+00 .0000E+00 15					12	.0000E+00	13	.0000E+00	14
17 .0000E+00 .0000E+00 23					20	.0000E+00	21	.0000E+00	22
Sherman\14804 O ** *** AERMET - VERS ***			22					***	15:14:07
*** MODELOPTs:	_	E 39 ULT CONC	C ELEV	URBAN .	ADJ_U*				
	* SOUR (HRDOW		ION RATE	E SCALARS	WHICH	I VARY DIUR	NALLY	AND BY DAY	OF WEEK
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR	SCALAR	: HOUR	SCALAR	HOUR	SCALAR	HOUR
			_						
				DAY	OF WE	EK = WEEKD	AY		
1 .0000E+00 .0000E+00					4	.0000E+00	5	.0000E+00	6
9 .1000E+01 .1000E+01 15					12	.1000E+01	13	.1000E+01	14
17 .0000E+00 .0000E+00 23				E+00				.0000E+00	22
				DAY	OF WE	EEK = SATUR	DAY		
1 .0000E+00 .0000E+00	.0000	E+00 8	.0000)E+00				.0000E+00	6
9 .0000E+00 .0000E+00 15	.0000	E+00 16	.0000)E+00				.0000E+00	14
17 .0000E+00 .0000E+00 23				E+00				.0000E+00	22
						EEK = SUNDA			_
1 .0000E+00 .0000E+00					4	.0000E+00	5	.0000E+00	6

```
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 40
 *** MODELOPTs: ReqDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000027 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                PAGE 41
 *** MODELOPTs:
              RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000028 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
```

```
.0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                              DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                PAGE 42
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000029 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 43
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
SOURCE ID = L0000030 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
```

DAY OF WEEK = WEEKDAY

```
4 .0000E+00 5 .0000E+00
   1 .0000E+00 2 .0000E+00 3 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                        .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                        .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
.0000E+00 23 .0000E+00 24 .0000E+00

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
***
                                                          * * *
                                                                   15:14:07
                 PAGE 44
             RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000031 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
    DAY OF WEEK = WEEKDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                        .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                        .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          * * *
                                                                   15:14:07
```

PAGE 45

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

^{*} SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK

(HRDOW) *

	HOUR SCALAR SCALAR HOUR	SCALAR	HOUR	SCALAR			HOUR
	2 .0000E+00 7 .0000E+00 8	3 .0000E+00		EEK = WEEKD		.0000E+00	6
9 .1000E+01	10 .1000E+01 5 .1000E+01 16	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00	18 .0000E+00 .0000E+00 24	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
				EEK = SATUR			
.0000E+00 7	2 .0000E+00 7 .0000E+00 8	.0000E+00		.0000E+00			6
.0000E+00 15	10 .0000E+00 5 .0000E+00 16	.0000E+00				.0000E+00	14
	18 .0000E+00 .0000E+00 24		20	.0000E+00	21	.0000E+00	22
			OF WE	EEK = SUNDA	Y.		
	2 .0000E+00 ' .0000E+00 8		4	.0000E+00	5	.0000E+00	6
	10 .0000E+00 5 .0000E+00 16		12	.0000E+00	13	.0000E+00	14
	18 .0000E+00 .0000E+00 24		20	.0000E+00	21	.0000E+00	22
Sherman\14804 O ** *** AERMET - VERS ***		2				* * *	15:14:07
	RegDFAULT CONC		_				
SOURCE ID = L0000	(HRDOW) *		:				
HOUR SCALAR	(HRDOW) *	TYPE = VOLUME HOUR SCALAR	:				
HOUR SCALAR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR	TYPE = VOLUME HOUR SCALAR SCALAR	: HOUR	SCALAR	HOUR		
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00	: HOUR		HOUR 		HOUR
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 7 .0000E+00 8 10 .1000E+01	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 11 .1000E+01	: HOUR OF WE	SCALAR CEK = WEEKD	HOUR AY 5	SCALAR	HOUR
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 15	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 3 .0000E+00 8 10 .1000E+01 5 .1000E+01 16 18 .0000E+00	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 11 .1000E+01 1 .1000E+01 19 .0000E+00	: HOUR OF WE 4	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5 13	SCALAR	HOUR 6
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 15	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 7 .0000E+00 8 10 .1000E+01 6 .1000E+01 16	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 11 .1000E+01 1 .1000E+01 19 .0000E+00 .0000E+00	: HOUR OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR
HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 9 .1000E+01 .1000E+01 17 .0000E+00 .0000E+00 23	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 3 .0000E+00 8 10 .1000E+01 5 .1000E+01 16 18 .0000E+00 .0000E+00 24 2 .0000E+00	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 11 .1000E+01 19 .0000E+01 19 .0000E+00 .0000E+00 DAY 3 .0000E+00	: HOUR OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 0 .0000E+00 8 10 .1000E+01 16 18 .0000E+00 .0000E+00 24 2 .0000E+00 0 .0000E+00 8 10 .0000E+00	DAY 3 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	: HOUR OF WE 4 12 20 COF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 3 .0000E+00 6 .1000E+01 16 .1000E+01 18 .0000E+00 .0000E+00 24 2 .0000E+00 3 .0000E+00 6 .0000E+00 10 .0000E+00 10 .0000E+00 10 .0000E+00 11 .0000E+00	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 DAY 3 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00	: HOUR OF WE 4 12 20 OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 3 .0000E+00 4 .0000E+01 5 .1000E+01 6 .1000E+01 6 .1000E+00 0000E+00 0000E+00 10 .0000E+00	TYPE = VOLUME HOUR SCALAR SCALAR DAY 3 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 DAY 3 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00	: HOUR OF WE 4 12 20 OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR 2 .0000E+00 3 .0000E+00 4 .0000E+01 16 .1000E+01 17 .1000E+01 18 .0000E+00 0.0000E+00 0.0000E+00 10 .0000E+00	DAY 3 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 11 .0000E+00 .0000E+00 .0000E+00 11 .0000E+00	: HOUR OF WE 4 12 20 COF WE 4 12 20 COF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR	DAY 3 .0000E+00 11 .1000E+01 19 .0000E+00 10 .0000E+00 11 .0000E+00	: HOUR OF WE 4 12 20 COF WE 4 12 20 COF WE 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .EEK = SATUR .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR	HOUR 6 14 22 6 14 22 6 14 4
HOUR SCALAR SCALAR HOUR	(HRDOW) * 0033 ; SOURCE HOUR SCALAR SCALAR HOUR	DAY 3 .0000E+00 11 .1000E+01 19 .0000E+00 11 .0000E+00 10 .0000E+00 11 .0000E+00	: HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR	HOUR 6 14 22 6 14 22 6 14 22 2

Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

* * * 15:14:07

PAGE 47

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000034 ; SOURCE TYPE = VOLUME :

HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

Ω	AY OF WI	EEK = WEEKDA	λY		
1 .0000E+00 2 .0000E+00 3 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00	-			.0000E+00	6
9 .1000E+01 10 .1000E+01 11 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01	1 12	.1000E+01	13	.1000E+01	14
17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00	20	.0000E+00	21	.0000E+00	22
DA	AY OF WI	EEK = SATURI	DAY		
1 .0000E+00 2 .0000E+00 3 .0000E+00) 4	.0000E+00	5	.0000E+00	6
.0000E+00 7 .0000E+00 8 .0000E+00					
9 .0000E+00 10 .0000E+00 11 .0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 15 .0000E+00 16 .0000E+00					
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23 .0000E+00 24 .0000E+00					
DA	AY OF WI	EEK = SUNDAY	ζ		
1 .0000E+00 2 .0000E+00 3 .0000E+00) 4	.0000E+00	5	.0000E+00	6
.0000E+00 7 .0000E+00 8 .0000E+00					
9 .0000E+00 10 .0000E+00 11 .0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 15 .0000E+00 16 .0000E+00					
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23 .0000E+00 24 .0000E+00					
FF *** AERMOD - VERSION 22112 *** *** C:\Use	rs\Micha	ael Tirohn\I	Deskt	op\HRAs\1480	04 Mapes and
Sherman\14804 O *** 09/15/22					
*** AERMET - VERSION 16216 ***					

AERMET - VERSION 16216

*** 15:14:07

PAGE 48

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000035 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR

SCALAR HOUR SCALAR HOUR SCALAR

		DAY	OF W	EEK = WEEKDA	ΑY		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00					
9 .1000E+01	10 .1000E+01	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
.1000E+01 15	.1000E+01 16	.1000E+01					
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00					
		DAY	OF W	EEK = SATURI	DAY		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00					
9 .0000E+00	10 .0000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 15	.0000E+00 16	.0000E+00					
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00					

```
DAY OF WEEK = SUNDAY
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
```

.0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14

.0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22

.0000E+00 23 .0000E+00 24 .0000E+00

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 49

RegDFAULT CONC ELEV URBAN ADJ U* *** MODELOPTs:

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000036 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

				DAY	OF W	EEK = WEEKDA	ΑY		
	1 .0000E+00	2 .0000E+00	3	.0000E+00	4	.0000E+00	5	.0000E+00	6
	.0000E+00 7	.0000E+00 8	.0	000E+00					
	9 .1000E+01	10 .1000E+01	11	.1000E+01	12	.1000E+01	13	.1000E+01	14
	.1000E+01 15	.1000E+01 16	. 1	000E+01					
1	7 .0000E+00	18 .0000E+00	19	.0000E+00	20	.0000E+00	21	.0000E+00	22
	0000E+00 23	.0000E+00 24	.00						
						EEK = SATURI			
		2 .0000E+00	_		4	.0000E+00	5	.0000E+00	6
		.0000E+00 8							
		10 .0000E+00			12	.0000E+00	13	.0000E+00	14
		.0000E+00 16							
		18 .0000E+00			20	.0000E+00	21	.0000E+00	22
•	0000E+00 23	.0000E+00 24	.00						
				DAY		EEK = SUNDAY	_		
		2 .0000E+00	_		4	.0000E+00	5	.0000E+00	6
		.0000E+00 8							
		10 .0000E+00			12	.0000E+00	13	.0000E+00	14
		.0000E+00 16							
	7 .0000E+00		-		20	.0000E+00	21	.0000E+00	22
-		.0000E+00 24							
*	** AERMOD - VE	RSION 22112 ***	*	** C:\Users	\Mich	ael Tirohn\I	Deskt	op\HRAs\148()4 Mapes and

* AERMOD - VERSION 22112 C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

15:14:07

PAGE 50

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000037 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR

SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00

```
.0000E+00 23 .0000E+00 24 .0000E+00
                                     DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
    .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
                                                                     14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                                     22
                                                           .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                      DAY OF WEEK = SUNDAY
     .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                           .0000E+00
                                                                      6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00
                                                                     22
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                                      15:14:07
                  PAGE 51
 *** MODELOPTs:
               RegDFAULT CONC ELEV URBAN ADJ U*
                * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
                (HRDOW) *
SOURCE ID = L0000038
                    ; SOURCE TYPE = VOLUME
                                         :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
                                                                   HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00
                                         4 .0000E+00 5
                                                           .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                           .1000E+01
                                                                     14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                                     22
                                                           .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                     DAY OF WEEK = SATURDAY
   1 .0000E+00
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                           .0000E+00
                                                                      6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
                                                                     14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                           .0000E+00
                                                                     22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                     DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                           .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                     22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
 * * *
                                                              ***
                                                                       15:14:07
                  PAGE 52
               RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
                * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
                (HRDOW) *
SOURCE ID = L0000039
                    ; SOURCE TYPE = VOLUME
              HOUR SCALAR
```

HOUR

SCALAR

SCALAR HOUR

SCALAR

HOUR

SCALAR

HOUR SCALAR

HOUR

HOUR

SCALAR

SCALAR

HOUR

DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 *** * * * 15:14:07 PAGE 53 RegDFAULT CONC ELEV URBAN ADJ U* *** MODELOPTs: * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = L0000040 ; SOURCE TYPE = VOLUME : HOUR SCALAR ______ DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 7 .0000E+00 8 .0000E+00 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

15:14:07

*** AERMET - VERSION 16216 ***

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

 * Source emission rate scalars which vary diurnally and by day of week (HRDOW) *

	(HRDOW	1) *								
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR	SCALAR	HOUR				HOUR	
			_							
				DAY	OF WE	EEK = WEEKD.	AY			
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6	
9 .1000E+01 .1000E+01 15	10 .1	.000E+01	11 .1	000E+01	12	.1000E+01	13	.1000E+01	14	
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
.00001100 23	.00001	1100 21	.00001		OF WE	EEK = SATUR	DΣV			
1 .0000E+00 .0000E+00 7				000E+00				.0000E+00	6	
9 .0000E+00 9 .0000E+00 .0000E+00 15	10 .0	000E+00	11 .0	000E+00	12	.0000E+00	13	.0000E+00	14	
17 .0000E+00 13 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23	.0000E	1+00 24	.00001			TOTAL OTTALON				
1 000000	0 0	.000=.00	2 (EEK = SUNDA		0000=100	6	
1 .0000E+00 .0000E+00 7	.0000	E+00	8 .0000)E+00					6	
9 .0000E+00 .0000E+00 15	.0000	E+00 1	6 .0000)E+00				.0000E+00	14	
17 .0000E+00 .0000E+00 23	.0000E	1+00 24	.0000E	E+00						
*** AERMOD - VE Sherman\14804 O **	*	09/15/2		C:\Users	\M1Cna	ael Tironn\	Deskto	op\HRAs\148	3U4 Mapes	and
*** AERMET - VERS	ION 16	216 ***						***	15:14	1:07
*** MODELOPTs:	RegDFA	RCE EMISS			_	H VARY DIUR	NALLY	AND BY DAY	OF WEEK	
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR	SCALAR		SCALAR	HOUR	SCALAR	HOUR	
			_							
				DVA		EEK = WEEKD	7/ 🗸			
1 .0000E+00 .0000E+00 7				000E+00	-	.0000E+00		.0000E+00	6	
9 .1000E+01 .1000E+01 15	10 .1	.000E+01	11 .1	000E+01	12	.1000E+01	13	.1000E+01	14	
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
					OF WE	EEK = SATUR	DAY			
1 .0000E+00 .0000E+00 7				000E+00				.0000E+00	6	
9 .0000E+00 .0000E+00 15	10 .0	000E+00		000E+00	12	.0000E+00	13	.0000E+00	14	
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
111302:00 20		1			OF WE	EEK = SUNDA	Υ			
1 .0000E+00 .0000E+00 7				000E+00	4	.0000E+00	5	.0000E+00	6	
9 .0000E+00 .0000E+00 15	10 .0	000E+00	11 .0	000E+00	12	.0000E+00	13	.0000E+00	14	

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         *** 15:14:07
                 PAGE 56
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000043
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                       .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         *** 15:14:07
                PAGE 57
*** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000044
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                6
```

.0000E+00 7 .0000E+00 8 .0000E+00

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00

14

```
.0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           ***
                                                                   15:14:07
                PAGE 58
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000045 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 59
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000046 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                   DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
```

```
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                PAGE 60
             RegDFAULT CONC ELEV URBAN ADJ U*
*** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000047 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                               DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         *** 15:14:07
                 PAGE 61
```

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

^{*} SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SCALAR HOUR	HOUR SCALAR SCALAR HOUR	HOUR SCALAR SCALAR		SCALAR			HOUR
		DA	Y OF WI	EEK = WEEKD	PΑΥ		
	2 .0000E+00 .0000E+00		4	.0000E+00	5	.0000E+00	6
9 .1000E+01	10 .1000E+01 .1000E+01 1	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24		Y OF WI	EEK = SATUR	DAY		
	2 .0000E+00	3 .0000E+00				.0000E+00	6
9 .0000E+00	10 .0000E+00 .0000E+00 1	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24		V OE 141	EEK = SUNDA	37		
1 .0000E+00	2 .0000E+00					.0000E+00	6
.0000E+00 7	.0000E+00 10 .0000E+00	8 .0000E+00				.0000E+00	1 4
.0000E+00 15	.0000E+00 1	6 .0000E+00					
	18 .0000E+00 .0000E+00 24	.0000E+00					
erman\14804 O ** ** AERMET - VERS **		22				***	15:14:0
** MODELOPTs:	_	C ELEV URBAN	_		NALLY	AND BY DAY	OF WEEK
DURCE ID = L0000	* SOURCE EMISS (HRDOW) *	ION RATE SCALAR E TYPE = VOLUME	- S WHICE :	H VARY DIUR			
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR	* SOURCE EMISS (HRDOW) * 049 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	- S WHICE :	H VARY DIUR			
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR	* SOURCE EMISS (HRDOW) * 049 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	- S WHICE :	H VARY DIUR			
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR	* SOURCE EMISS (HRDOW) * 049 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH	H VARY DIUR	HOUR		
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00	* SOURCE EMISS (HRDOW) * 049 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR DA 3 .0000E+00	S WHICH HOUR Y OF WH	H VARY DIUR SCALAR EEK = WEEKD	HOUR 	SCALAR	HOUR
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01	* SOURCE EMISS (HRDOW) * 049 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH HOUR Y OF WI	SCALAR EEK = WEEKD .0000E+00	HOUR DAY 5	SCALAR	HOUR
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH HOUR Y OF WH 4	SCALAR EEK = WEEKE .0000E+00	HOUR DAY 5 13	SCALAR0000E+00 .1000E+01	HOUR 6 14
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15	* SOURCE EMISS (HRDOW) * 049 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH HOUR Y OF WH 4 12 20	SCALAR EEK = WEEKE .0000E+00 .1000E+01	HOUR 0AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH HOUR Y OF WH 4 12 20 Y OF WH	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00	HOUR DAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH HOUR Y OF WH 4 12 20 Y OF WH 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR 0AY 5 13 21 CDAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR DA 3 .0000E+00 8 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 DA 3 .0000E+00 DA 3 .0000E+00 11 .0000E+00 11 .0000E+00	S WHICH HOUR Y OF WH 4 12 20 Y OF WH 4	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR DAY 5 13 21 RDAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR DA 3 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 DA 3 .0000E+00 11 .0000E+00 0 .0000E+00 11 .0000E+00	S WHICH HOUR Y OF WH 4 12 20 Y OF WH 4 12 20	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 0AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00 .0000E+00 23	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR DA 3 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 DA 3 .0000E+00 11 .0000E+00 11 .0000E+00 DA 3 .0000E+00 11 .0000E+00 11 .0000E+00 11 .0000E+00	S WHICH : HOUR Y OF WH 4 12 20 Y OF WH 4 12 20 Y OF WH	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 0AY 5 13 21 8DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 7 9 .0000E+00 .0000E+00 7 9 .0000E+00	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH HOUR Y OF WH 4 12 20 Y OF WH 4 12 20 Y OF WH 4	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR DAY 5 13 21 SDAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 .1000E+01 .1000E+01 .1000E+01 .17 .0000E+00	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH : HOUR Y OF WH 4 12 20 Y OF WH 4 12 20 Y OF WH 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR DAY 5 13 21 SDAY 5 13 21 13 13	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22 6 14 4
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00	* SOURCE EMISS (HRDOW) * 049	E TYPE = VOLUME HOUR SCALAR SCALAR SCALAR	S WHICH : HOUR Y OF WH 4 12 20 Y OF WH 4 12 20 Y OF WH 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR 0AY 5 13 21 13 21 14 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22 6 14 22 2
OURCE ID = L0000 OUR SCALAR CALAR HOUR 1 .0000E+00 .0000E+00 .1000E+01 .1000E+01 .1000E+01 .1000E+00 .0000E+00	* SOURCE EMISS (HRDOW) * 049	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	S WHICH : HOUR Y OF WH 4 12 20 Y OF WH 4 12 20 Y OF WH 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR 0AY 5 13 21 13 21 14 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22 6 14 22 2

PAGE 63

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000050 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 64

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000051 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR

DAY OF WEEK = WEEKDAY										
1 .0000E+00	2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6				
.0000E+00 7	.0000E+00 8	.0000E+00								
9 .1000E+01 10	.0 .1000E+01	11 .1000E+01	12 .1000E+01	13	.1000E+01	14				
.1000E+01 15	.1000E+01 16	.1000E+01								
17 .0000E+00 18	.8 .0000E+00	19 .0000E+00	20 .0000E+00	21	.0000E+00	22				
.0000E+00 23 .0	0000E+00 24	.0000E+00								
	DAY OF WEEK = SATURDAY									
1 .0000E+00	2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6				
.0000E+00 7	.0000E+00 8	.0000E+00								
9 .0000E+00 10	.0 .0000E+00	11 .0000E+00	12 .0000E+00	13	.0000E+00	14				
.0000E+00 15	.0000E+00 16	.0000E+00								
17 .0000E+00 18	.8 .0000E+00	19 .0000E+00	20 .0000E+00	21	.0000E+00	22				
.0000E+00 23 .0	0000E+00 24	.0000E+00								
		DAY	OF WEEK = SUNDAY	Y						
1 .0000E+00	2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6				

```
.0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 65
 *** MODELOPTs:
              RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000052 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 _______
                                DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 66
             RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000053 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                   DAY OF WEEK = WEEKDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
```

```
1 .0000E+00 2 .0000E+00 3 .0000E+00
                                         4 .0000E+00 5
                                                        .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           * * *
                                                                    15:14:07
                 PAGE 67
             RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000054
                    ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                         .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                            * * *
                                                                    15:14:07
                 PAGE 68
 *** MODELOPTs:
               RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000055
                   ; SOURCE TYPE = VOLUME
                                        :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
                                                                 HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
```

```
DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                                 15:14:07
                PAGE 69
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000056 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                               14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
```

*** 15:14:07

*** AERMET - VERSION 16216 ***

 * Source emission rate scalars which vary diurnally and by day of week (HrDow) *

SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCA SCALAR	ALAR	HOUR		HOUR	SCALAR	HOUR	
				DAY	OF WE	EK = WEEKD	AY			
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6	
9 .1000E+01	10 .1	L000E+01	11 .100)E+01	12	.1000E+01	13	.1000E+01	14	
.1000E+01 15 17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .000	DE+00 D				.0000E+00	22	
						EEK = SATURI				
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6	
9 .0000E+00 .0000E+00 15					12	.0000E+00	13	.0000E+00	14	
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .000)E+00	20	.0000E+00	21	.0000E+00	22	
.00002.00	•00001	2.00 21			OF WF	EK = SUNDA	Υ			
1 .0000E+00 .0000E+00 7			3 .000	0E+00				.0000E+00	6	
9 .0000E+00 .0000E+00 15	10 .0	000E+00	11 .000)E+00	12	.0000E+00	13	.0000E+00	14	
17 .0000E+00 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .000	00+3C	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23 FF *** AERMOD - VE Sherman\14804 0 **	ERSION 2	22112 ***	*** C:		\Micha	el Tirohn\	Deskto	p\HRAs\148	04 Mapes a	nd
*** AERMET - VERS			Z							
***)10N 10	7210						***	15:14:	07
*** MODELOPTs: SOURCE ID = L0000	* SOUF	RCE EMISSION *	ON RATE SO	CALARS	- WHICH	I VARY DIURI	NALLY	AND BY DAY	OF WEEK	
HOUR SCALAR SCALAR HOUR				ALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR	
									110010	
1 .0000E+00 .0000E+00 7	2 (OF WE	EK = WEEKD				
9 .1000E+01	.0000)000E+00)E+00 8	3 .000	00+3C	OF WE					
	.0000 10 .1)E+00 8 L000E+01	3 .0000 .0000E+0)E+00)0)E+01	OF WE	.0000E+00	5	0000E+00		
.1000E+01 15 17 .0000E+00	.0000 10 .1 5 .1000 18 .0	0E+00 8 L000E+01 0E+01 16 0000E+00	3 .0000 .0000E+0 11 .1000 .1000E+0	DE+00 DO DE+01 D1 DE+00	OF WE 4 12	.0000E+00	5 13	.1000E+01	6	
.1000E+01 15	.0000 10 .1 5 .1000 18 .0	0E+00 8 L000E+01 0E+01 16 0000E+00	3 .0000 .0000E+0 11 .1000 .1000E+0	DE+00 DO DE+01 D1 DE+00	OF WE 4 12 20	.0000E+00 .1000E+01 .0000E+00	5 13 21	.1000E+01	6	
.1000E+01 15 17 .0000E+00 .0000E+00 23	2 .0000 10 .1 5 .1000 18 .0 .0000E	0E+00 8 1000E+01 16 0000E+00 E+00 24 0000E+00	3 .000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+00	DE+00 DE+01 D1 DE+00 DAY DE+00	OF WE 4 12 20 OF WE	.0000E+00 .1000E+01 .0000E+00 EEK = SATUR	5 13 21 DAY	.1000E+01	6	
.1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00	2 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 10 .0	0E+00 8 1000E+01 16 0000E+00 24 0000E+00 0 0E+00 8 0000E+00 8	3 .000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+0 3 .0000 .0000E+0	DE+00 DO DE+01 D1 DE+00 DAY DE+00 D0 DE+00	OF WE	.0000E+00 .1000E+01 .0000E+00 EEK = SATUR	5 13 21 DAY 5	.1000E+01	6 14 22	
.1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00	2 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 10 .0 5 .0000 18 .0	0E+00 8 1000E+01 16 0000E+00 24 0000E+00 8 0000E+00 8 0000E+00 16 0000E+00	3 .000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+0 3 .0000 .0000E+0 11 .0000 .0000E+0	DE+00 DE+01 D1 DE+00 DAY DE+00 D0 DC+00 D0 DC+00 D0 D	OF WE 4 12 20 OF WE 4 12	.0000E+00 .1000E+01 .0000E+00 GEK = SATURN .0000E+00	5 13 21 DAY 5	.1000E+01 .0000E+00 .0000E+00	6 14 22	
.1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 15	2 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 10 .0 5 .0000 18 .0	0E+00 8 1000E+01 16 0000E+00 24 0000E+00 8 0000E+00 8 0000E+00 16 0000E+00	3 .000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+0 3 .0000 .0000E+0 11 .0000 .0000E+0	DE+00 DE+01 D1 DE+00 DAY DE+00 D0 DE+00 D0 DE+00 D0 D	OF WE 4 12 20	.0000E+00 .1000E+01 .0000E+00 EEK = SATURN .0000E+00 .0000E+00	5 13 21 DAY 5 13	.1000E+01 .0000E+00 .0000E+00	6 14 22 6 14	
.1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	2 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 10 .0 5 .0000 18 .0 .0000E	0E+00 8 1000E+01 16 0000E+00 24 0000E+00 8 0000E+00 8 0000E+00 16 0000E+00 24 0000E+00 24	3 .000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+0 3 .0000 .0000E+0 11 .0000 .0000E+0 3 .0000	DE+00 DE+01 D1 DE+00 DAY DE+00 D0 DE+00 D0 DE+00 D0 DAY DE+00 D0 DAY	OF WE 4 12 20 OF WE 2	.0000E+00 .1000E+01 .0000E+00 .EK = SATURI .0000E+00 .0000E+00	5 13 21 DAY 5 13 21	.1000E+01 .0000E+00 .0000E+00 .0000E+00	6 14 22 6 14 22	
.1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 .0000E+00	2 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .00000 10 .0000000 10 .0000000 10 .0000000 10 .0000000 10 .0000000 10 .00000000	0E+00 8 1000E+01 16 0000E+00 24 0000E+00 8 0000E+00 8 0000E+00 16 0000E+00 24 0000E+00 24 0000E+00 8 0000E+00 8	3 .000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+0 11 .0000 .0000E+0 3 .0000 .0000E+0 11 .0000 .0000E+0	DE+00 DE+01 DE+00 DE+00 DAY DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DAY	OF WE 4 12 20 OF WE 4	.0000E+00 .1000E+01 .0000E+00 .EK = SATURI .0000E+00 .0000E+00	5 13 21 DAY 5 13 21	.1000E+01 .0000E+00 .0000E+00 .0000E+00	6 14 22 6 14 22	
.1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00	2 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 10 .0 .0000E 2 .0 .0000E 2 .0 .0000E	0E+00 8 1000E+01 16 0000E+00 24 0000E+00 8 0000E+00 16 0000E+00 24 0000E+00 24 0000E+00 26 0000E+00 16 0000E+00 8 0000E+00 16 0000E+00 16	3 .0000 .0000E+0 11 .1000 .1000E+0 19 .0000 .0000E+0 11 .0000 .0000E+0 19 .0000 .0000E+0 11 .0000	DE+00 DO DE+01 D1 DE+00 DAY DE+00 DO	OF WE 4 12 20 OF WE 4 12 12	.0000E+00 .1000E+01 .0000E+00 .EEK = SATURI .0000E+00 .0000E+00 .0000E+00	5 13 21 DAY 5 13 21 Y 5 13	.1000E+01 .0000E+00 .0000E+00 .0000E+00	6 14 22 6 14 22	

```
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                       * * *
                                             15:14:07
           PAGE 72
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
```

-	-											
* SOURCE	EMISSION	RATE	SCALARS	WHICH	VARY	DIURNALLY	AND	ΒY	DAY	OF	WEEK	
(HRDOW)	*											

; SOURCE TYPE = VOLUME :

SOURCE ID = L0000059

HOUR SCALAR

DAY OF WEEK = WEEKDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 1 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

15:14:07

PAGE 73 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000060; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 2 .0000E+00 3 .0000E+00 1 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22

```
.0000E+00 23 .0000E+00 24 .0000E+00
                           DAY OF WEEK = SUNDAY
              DAY OF WEEK = SUNDAY
2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
  9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                        ***
                                                               15:14:07
                PAGE 74
*** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000061 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                               14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                               22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                               14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                               22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                 DAY OF WEEK = SUNDAY
  1 .0000E+00
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                              6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                        ***
                                                               15:14:07
                PAGE 75
*** MODELOPTs:
              RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000062 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
   DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                              6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
```

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                PAGE 76
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000063 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                               DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
  9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00
                                                                  14
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
* * *
                                                          *** 15:14:07
                PAGE 77
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000064 ; SOURCE TYPE = VOLUME :
```

HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR

SCALAR	HOUR	SCALAR	HOUR	SCALAR

```
DAY OF WEEK = WEEKDAY
            2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                   6
1 .0000E+00
.0000E+00 7 .0000E+00 8 .0000E+00
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                        .1000E+01
                                                                  14
.1000E+01 15 .1000E+01 16 .1000E+01
17 .0000E+00 18 .0000E+00 19 .0000E+00
                                      20 .0000E+00 21
                                                        .0000E+00
                                                                  22
.0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                        .0000E+00
.0000E+00 7 .0000E+00 8 .0000E+00
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00
                                                    13
                                                        .0000E+00
                                                                  14
.0000E+00 15 .0000E+00 16 .0000E+00
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                        .0000E+00
                                                                  22
.0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
             2 .0000E+00 3 .0000E+00
1 .0000E+00
                                      4 .0000E+00 5
                                                        .0000E+00
                                                                   6
.0000E+00 7 .0000E+00 8 .0000E+00
```

.0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13

; SOURCE TYPE = VOLUME :

*** AERMET - VERSION 16216 ***

SOURCE ID = L0000065

15:14:07

PAGE 78

.0000E+00 15 .0000E+00 16 .0000E+00

RegDFAULT CONC ELEV URBAN ADJ U* *** MODELOPTs:

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

.0000E+00

14

22

HOUR SCALAR

DAY OF WEEK = WEEKDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 1 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

*** 15:14:07 PAGE 79

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

	(HRDOW) *						
SOURCE ID = L000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	R HOUR SCAI	LUME : LAR HOUR	SCALAR	HOUR	SCALAR	HOUR
			DAY OF W	EEK = WEEKD	ΆΥ		
		3 .0000E 8 .0000E+00	E+00 4			.0000E+00	6
9 .1000E+01	10 .1000E+0	01 11 .1000E 16 .1000E+01	E+01 12	.1000E+01	13	.1000E+01	14
17 .0000E+00 .0000E+00 23	18 .0000E+0	00 19 .0000E		.0000E+00	21	.0000E+00	22
			DAY OF W	EEK = SATUR	RDAY		
		3 .0000E 8 .0000E+00		.0000E+00	5	.0000E+00	6
9 .0000E+00	10 .0000E+0	00 11 .0000E+00	E+00 12	.0000E+00	13	.0000E+00	14
17 .0000E+00 1 .0000E+00 23	18 .0000E+0	00 19 .0000E		.0000E+00	21	.0000E+00	22
.00005+00 23	.00006+00	24 .UUUUE+UU	DAV OF M	EEK = SUNDA	V		
		3 .0000E	E+00 4	.0000E+00		.0000E+00	6
9 .0000E+00	10 .0000E+0	8 .0000E+00 00 11 .0000E	E+00 12	.0000E+00	13	.0000E+00	14
17 .0000E+00	18 .0000E+0			.0000E+00	21	.0000E+00	22
.0000E+00 23 FF *** AERMOD - V	ERSION 22112	***	Jsers\Micha	ael Tirohn\	Deskto	op\HRAs\148	304 Mapes and
Sherman\14804 O *							
*** AERMET - VER	SION 16216 *7	* *					45 44 05
* * *						* * *	15:14:07
*** MODELOPTs:	PAGE 80 RegDFAULT (CONC ELEV URE	BAN ADJ_U	*			
	* SOURCE EMI (HRDOW) *	ISSION RATE SCA	ALARS WHIC	H VARY DIUR	RNALLY	AND BY DAY	OF WEEK
SOURCE ID = L000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	R HOUR SCAI	LAR HOUR	SCALAR			HOUR
			DAY OF WI	EEK = WEEKD	λΥ		
		3 .0000E 8 .0000E+00	E+00 4			.0000E+00	6
9 .1000E+01	10 .1000E+0	01 11 .1000E	E+01 12	.1000E+01	13	.1000E+01	14
17 .0000E+00	18 .0000E+0			.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00	24 .0000E+00			T 7 7 7		
		00 3 . 0000E	E+00 4	EEK = SATUR .0000E+00		.0000E+00	6
		8 .0000E+00 00 11 .0000E		.0000E+00	13	.0000E+00	14
.0000E+00 1 17 .0000E+00		16 .0000E+00		.0000E+00	21	.0000E+00	22
.0000E+00 23				EEK = SUNDA			
1 00005±00	2 0000=10	00 3 .0000E				00000 ± 00	6
.0000E+00	7 .0000E+00	8 .0000E+00)				
9 .0000E+00	10 .0000E+0	00 11 .0000E	E+00 12	.0000E+00	13	.0000E+00	14

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 81
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000068
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
***
                 PAGE 82
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000069 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                               DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                               DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
```

.0000E+00 15 .0000E+00 16 .0000E+00

```
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           ***
                                                                    15:14:07
                 PAGE 83
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000070
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                         .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                                    15:14:07
                 PAGE 84
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000071
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
```

```
.0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                       .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                       .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          ***
                                                                  15:14:07
                 PAGE 85
              RegDFAULT CONC ELEV URBAN ADJ U*
*** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000072 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                          ***
                                                                  15:14:07
                 PAGE 86
```

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

^{*} SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000073 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	HOUR	SCALAR	HOUR	SCALAR	HOUR
		EEK = WEEKD			
1 .0000E+00 2 .0000E+00 3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23 .0000E+00 24 .0000E+00	OE WE	EK = SATUR	DVA		
1 .0000E+00 2 .0000E+00 3 .0000E+00				.0000E+00	6
.0000E+00 7 .0000E+00 8 .0000E+00					
9 .0000E+00 10 .0000E+00 11 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00	20	.0000E+00	21	.0000E+00	22
DAY	OF WE	EK = SUNDA	Y		
1 .0000E+00 2 .0000E+00 3 .0000E+00	4	.0000E+00	5	.0000E+00	6
.0000E+00 7 .0000E+00 8 .0000E+00					
9 .0000E+00 10 .0000E+00 11 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00	20	.0000E+00	21	.0000E+00	22
*** AERMOD - VERSION 22112 *** *** C:\Users	\Micha	el Tirohn\	Deskto	p\HRAs\148	04 Mapes and
Sherman\14804 O *** 09/15/22					
*** AERMET - VERSION 16216 ***				***	15 14 05
***				***	15:14:07
PAGE 87					
*** MODELOPTs: RegDFAULT CONC ELEV URBAN	ADJ_U*	-			
	_		NALLY	AND BY DAY	OF WEEK
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS	- WHICH	I VARY DIUR			
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR	- WHICH	I VARY DIUR			
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR	WHICH : HOUR	I VARY DIUR SCALAR	HOUR		
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH : HOUR	I VARY DIUR	HOUR		
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH : HOUR OF WE	SCALAR CEK = WEEKD	HOUR AY	SCALAR	HOUR
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH : HOUR OF WE 4	SCALAR CEK = WEEKD .0000E+00	HOUR AY 5	SCALAR	HOUR
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20	SCALAR CEK = WEEKD .0000E+00 .1000E+01	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21 DAY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR 1 .0000E+00 2 .0000E+00 3 .0000E+00 2 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 17 .0000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 19 .0000E+00 .0000E+00 24 .0000E+00 DAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00	WHICH HOUR OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21 DAY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY 5 13 21 DAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
*** MODELOPTs: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR		SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .EK = SATUR .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
*** MODELOPTs: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13 21 Y 5	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
*** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000074 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR		SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22

PAGE 88

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000075; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01

.1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22

.0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY

1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14

.0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22

.0000E+00 23 .0000E+00 24 .0000E+00

DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00

17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and

Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

15:14:07

PAGE 89

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000076 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR

SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 22 .0000E+00

.0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY

2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14

.0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00

DAY OF WEEK = SUNDAY

```
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                PAGE 90
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000077 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                               DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                PAGE 91
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000078 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00
                                                                 6
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
```

```
DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 92
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000079 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 93
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000080 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
```

SCALAR HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 22 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 *** *** 15:14:07 PAGE 94 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = L0000081; SOURCE TYPE = VOLUME : HOUR SCALAR DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 1 .0000E+00 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

15:14:07

PAGE 95

*** AERMET - VERSION 16216 ***

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

(HRDOW) *					
SOURCE ID = L0000082 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	: HOUR	SCALAR	HOUR	SCALAR	HOUR
DAY	OF WE	EEK = WEEKD.	AY		
1 .0000E+00 2 .0000E+00 3 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00	4	.0000E+00	5	.0000E+00	6
9 .1000E+01 10 .1000E+01 11 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23 .0000E+00 24 .0000E+00		TEN — CAMID	D 70 3.7		
1 .0000E+00 2 .0000E+00 3 .0000E+00		EEK = SATUR		0000=100	C
.0000E+00 7 .0000E+00 8 .0000E+00					6
9 .0000E+00 10 .0000E+00 11 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00	20	.0000E+00	21	.0000E+00	22
	OF WE	EEK = SUNDA	Y		
1 .0000E+00 2 .0000E+00 3 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00	4	.0000E+00	5	.0000E+00	6
9 .0000E+00 10 .0000E+00 11 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00	20	.0000E+00	21	.0000E+00	22
FE *** AERMOD - VERSION 22112	\Micha	ael Tirohn\	Deskto	p\HRAs\148	304 Mapes and
Sherman\14804 O *** 09/15/22					
*** AERMET - VERSION 16216 ***					
***				* * *	15:14:07
PAGE 96 *** MODELOPTs: RegDFAULT CONC ELEV URBAN	_				
PAGE 96	_		NALLY	AND BY DAY	OF WEEK
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR	WHICE	H VARY DIUR SCALAR			
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR	WHICE	H VARY DIUR SCALAR	HOUR		
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR	WHICH	H VARY DIUR SCALAR	HOUR		
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH : HOUR	SCALAR EEK = WEEKD	HOUR 	SCALAR	HOUR
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE	SCALAR EEK = WEEKD0000E+00	HOUR AY 5	SCALAR	HOUR
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5 13	SCALAR0000E+00 .1000E+01	HOUR
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21 DAY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21 DAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR *** SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR *** OUNCE TYPE = VOLUME ON TOWN HOUR SCALAR HOUR SCALAR HOUR SCALAR *** DAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00	WHICH HOUR OF WE 4 12 20 OF WE 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR *** SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR *** OUNCE TYPE = VOLUME ON TOWN HOUR SCALAR HOUR SCALAR HOUR SCALAR *** DAY 1 .0000E+00		SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR *** SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR *** OUNCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR *** OUNCE TYPE = VOLUME HOUR	WHICH HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR	WHICH HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
PAGE 96 *** MODELOPTS: RegDFAULT CONC ELEV URBAN * SOURCE EMISSION RATE SCALARS (HRDOW) * SOURCE ID = L0000083 ; SOURCE TYPE = VOLUME HOUR SCALAR HOUR SCALAR HOUR SCALAR SCALAR HOUR SCALAR HOUR SCALAR **SCALAR HOUR SCALAR HOUR SCALAR *** MODELOP **O **O **O **O **O **O **O **O **O *	OF WE 4 12 20 OF WE 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR	HOUR 6 14 22 6 14 22

```
.0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          ***
                                                                  15:14:07
                 PAGE 97
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000084 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                 DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 98
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000085
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                 14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                 22
```

DAY OF WEEK = SATURDAY

6

1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00

.0000E+00 23 .0000E+00 24 .0000E+00

.0000E+00 7 .0000E+00 8 .0000E+00

.0000E+00 15 .0000E+00 16 .0000E+00

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                        ***
                                                                15:14:07
                PAGE 99
*** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000086
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                6
  .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                      .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                        ***
                                                                 15:14:07
                PAGE 100
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000087 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                                  DAY OF WEEK = WEEKDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
```

```
.1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                    6
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                    14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                    14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                            ***
                                                                     15:14:07
                 PAGE 101
              RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000088 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                    14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                    6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                          .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                    22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                    6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                    14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                            *** 15:14:07
                 PAGE 102
               RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
```

SOURCE ID = L0000089 ; SOURCE TYPE = VOLUME :

HOUR SCALAR SCALAR HOUR	SCALAR	HOUR	SCALAF	2	HOUR	SCALAR	HOUR	SCALAR	HOUR	
1 .0000E+00	2 . (0000E+00	3 -			EEK = WEEKD		.0000E+00	6	
.0000E+00 7	.0000	0E+00	8 .000	00E+00						
9 .1000E+01 .1000E+01 15					12	.1000E+01	13	.1000E+01	14	
17 .000E+00					20	.0000E+00	21	.0000E+00	22	
.0000E+00 23	.00001	E+00 24	.0000							
1 .0000E+00	2 . (0000E+00	3.			EEK = SATUR .0000E+00		.0000E+00	6	
.0000E+00 7	.0000	00+3C	8 .000	00E+00						
9 .0000E+00 .0000E+00 15					12	.0000E+00	13	.0000E+00	14	
17 .0000E+00					20	.0000E+00	21	.0000E+00	22	
.0000E+00 23	.00001	E+00 24	.0000							
1 .0000E+00	2 (0000=100	2			EEK = SUNDA		0000=100	6	
.0000E+00					4	.0000E+00	5	.0000E+00	6	
9 .0000E+00	10 .0	0000E+00	11 .	0000E+00	12	.0000E+00	13	.0000E+00	14	
.0000E+00 15 17 .0000E+00					20	.0000E+00	21	.0000E+00	22	
.0000E+00 23	.0000I	E+00 24	.0000	E+00						
Sherman\14804 O ** *** AERMET - VERS ***	*	09/15/			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			***	-	
SOURCE ID = L0000 HOUR SCALAR	(HRDOV	W) * ; SOURC	E TYPE	= VOLUME	:	H VARY DIUR SCALAR				
SCALAR HOUR	SCALAR	HOUR	SCALAF							
										_
				DAY		EEK = WEEKD				
1 .0000E+00 .0000E+00 7					4	.0000E+00	5	.0000E+00	6	
9 .1000E+01				1000E+01	12	.1000E+01	13	.1000E+01	14	
.1000E+01 15					0.0	000000	0.1	0000=+00	0.0	
17 .0000E+00 .0000E+00 23		0000E+00 E+00 24		0000E+00 E+00	20	.0000E+00	21	.0000E+00	22	
					OF WE	EEK = SATUR	DAY			
1 .0000E+00					4	.0000E+00	5	.0000E+00	6	
.0000E+00 7 9 .0000E+00	10 (OE+00 OOOE+00	8 .000	0000E+00	12	.0000E+00	13	.0000E+00	14	
	.0000		6 .000		12	.00000100	13	.00000100	T-1	
17 .0000E+00				0000E+00	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23	.00001	±+∪∪ 24	.0000		י רבי ד₄זי	EEK = SUNDA	V			
1 .0000E+00	2 .0	0000E+00	3.	0000E+00		.0000E+00	5	.0000E+00	6	
		0E+00			1.0	0000=:00	1.0		1.4	
9 .0000E+00 .0000E+00 15		0000E+00		0000E+00	12	.0000E+00	13	.0000E+00	14	
.UUUUE+UU	()()()(JE+00 1	6 . ()()(りした十00						
17 .0000E+00 13	18 .0	0E+00 1 0000E+00		0000E+00	20	.0000E+00	21	.0000E+00	22	

*** AERMET - VERSION 16216 ***

** 15:14:07

PAGE 104

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

	(HRDOW) *						
SOURCE ID = L00000 HOUR SCALAR I SCALAR HOUR S	HOUR SCALAR SCALAR HOUR	HOUR SCALAR		SCALAR	HOUR	SCALAR	HOUR
				EEK = WEEKDA			
	2 .0000E+00 .0000E+00 8		4	.0000E+00	5	.0000E+00	6
9 .1000E+01	10 .1000E+01 .1000E+01 16	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00	18 .0000E+00 .0000E+00 24	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000100 23	.0000100 24		OF WE	EEK = SATURD	ΣΑΥ		
	2 .0000E+00	3 .0000E+00				.0000E+00	6
	.0000E+00 8 10 .0000E+00		12	.0000E+00	13	.0000E+00	14
	.0000E+00 16 18 .0000E+00		2.0	00005+00	21	.0000E+00	22
	.0000E+00 24		20	.0000E100	21	.0000100	2.2
			OF WE	EEK = SUNDAY	7		
	2 .0000E+00 .0000E+00 8		4	.0000E+00	5	.0000E+00	6
9 .0000E+00	10 .0000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
	.0000E+00 16 18 .0000E+00		20	.0000E+00	21	.0000E+00	22
	.0000E+00 24						
*** AERMOD - VE			\Micha	ael Tirohn\D	eskto	p\HRAs\148	04 Mapes and
Sherman\14804 0 ***		2					
*** AERMET - VERS:	ION 16216 ***					***	15:14:07
							13.14.07
*** MODELOPTs:	PAGE 105 RegDFAULT CONC	ELEV URBAN	ADJ U	r			
			_				
	* SOURCE EMISSI	ON RATE SCALARS	WHICH	H VARY DIURN	IALLY	AND BY DAY	OF WEEK
	(HRDOW) *						
SOURCE ID = L0000)92 ; SOURCE	TYPE = VOLUME	:				
HOUR SCALAR I SCALAR HOUR S	HOUR SCALAR SCALAR HOUR	HOUR SCALAR SCALAR	HOUR				
			, OE MI	יבע – אפנטס	. V		
1 00005+00	2 .0000E+00			EEK = WEEKDA		00005+00	6
.0000E+00 7	.0000E+00 8	.0000E+00					0
	10 .1000E+01 .1000E+01 16		12	.1000E+01	13	.1000E+01	14
17 .0000E+00	18 .0000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24		OF ME	EEK = SATURD) 7) V		
	2 .0000E+00	3 .0000E+00				.0000E+00	6
	.0000E+00 8 10 .0000E+00		12	.0000E+00	13	.0000E+00	14
.0000E+00 15	.0000E+00 16 18 .0000E+00	.0000E+00			0.1		22
	.0000E+00 24		∠∪	.0000E+00	Z I	.0000E+00	22
	_			EEK = SUNDAY			
	2 .0000E+00 .0000E+00 8		4	.0000E+00	5	.0000E+00	6

```
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 106
 *** MODELOPTs: ReqDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000093 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                PAGE 107
 *** MODELOPTs:
              RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000094 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
```

```
.0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                              DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                PAGE 108
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000095 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 109
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
SOURCE ID = L0000096 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
```

DAY OF WEEK = WEEKDAY

```
4 .0000E+00 5 .0000E+00
   1 .0000E+00 2 .0000E+00 3 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                        .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
.0000E+00 23 .0000E+00 24 .0000E+00

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          * * *
                                                                   15:14:07
                 PAGE 110
 *** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000097 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
    DAY OF WEEK = WEEKDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                        .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          * * *
                                                                   15:14:07
                 PAGE 111
```

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

^{*} SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK

(HRDOW) *

SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR	SCALAR	HOUR	SCALAR			HOUR
			_						
1 .0000E+00	2.	0000E+00	3.			EEK = WEEKD $.0000E+00$.0000E+00	6
.0000E+00 9 .1000E+01	10 .	1000E+01	11 .	1000E+01	12	.1000E+01	13	.1000E+01	14
.1000E+01 15 17 .0000E+00 .0000E+00 23	18 .	0000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000	ETUU 24	.0000		OF WE	EEK = SATUR	DAY		
1 .0000E+00				0000E+00		.0000E+00		.0000E+00	6
9 .0000E+00 .0000E+00 15					12	.0000E+00	13	.0000E+00	14
17 .0000E+00 .0000E+00 23	18 .	0000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000	ETUU 24	.0000		OF WE	EEK = SUNDA	Y		
1 .0000E+00					4	.0000E+00	5	.0000E+00	6
9 .0000E+00 .0000E+00 15	10 .	0000E+00	11 .	0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 .0000E+00 23	18 .	0000E+00	19 .	0000E+00	20	.0000E+00	21	.0000E+00	22
Sherman\14804 O ** *** AERMET - VERS ***	SION 1							***	15:14:07
*** MODELOPTs:			·						
1100000110.	кедин	AULI CON	C ELEV	URBAN	ADJ_U*	•			
nobelor ro.	_	RCE EMISS			_	I VARY DIUR	NALLY	AND BY DAY	OF WEEK
	* SOU! (HRDO!	RCE EMISS W) *	ION RAT	E SCALARS	- WHICH		NALLY	AND BY DAY	OF WEEK
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	* SOU: (HRDOI 0099 HOUR	RCE EMISS W) * ; SOURC	ION RAT E TYPE HOUR	E SCALARS = VOLUME SCALAR	WHICH	H VARY DIUR			
SOURCE ID = L0000 HOUR SCALAR	* SOU: (HRDOI 0099 HOUR	RCE EMISS W) * ; SOURC SCALAR	ION RAT E TYPE HOUR	E SCALARS = VOLUME SCALAR	WHICH	NARY DIUR SCALAR	HOUR		
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR	* SOU! (HRDON 0099 HOUR SCALAR 	RCE EMISS W) * ; SOURC SCALAR HOUR	ION RAT E TYPE HOUR SCALAR	PE SCALARS = VOLUME SCALAR C DAY 0000E+00	WHICH : HOUR	H VARY DIUR	HOUR AY	SCALAR	
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDOI 0099 HOUR SCALAR 2 7 .000	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01	E TYPE HOUR SCALAR 3 . 8 .000	PE SCALARS = VOLUME SCALAR DAY 0000E+00 1000E+01	WHICH HOUR OF WE	SCALAR CEK = WEEKD0000E+00	HOUR AY 5	SCALAR	HOUR
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDOI 0099 HOUR SCALAR 7 .000 10 . 5 .100 18 .	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+00	E TYPE HOUR SCALAR 8 .000 11 . 6 .100 19 .	PE SCALARS = VOLUME	WHICH : HOUR OF WE 4	SCALAR CEK = WEEKD0000E+00	HOUR AY 5 13	SCALAR	HOUR 6
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDOI 0099 HOUR SCALAR 7 .000 10 . 5 .100 18 .	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+00	E TYPE HOUR SCALAR 8 .000 11 . 6 .100 19 .	E SCALARS = VOLUME	WHICH HOUR OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO) 0099 HOUR SCALAR 7 .0000 10 .100. 18 .00000	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+01 24 0000E+00	E TYPE HOUR SCALAR 3 . 8 .000 11 . 6 .100 190000	PE SCALARS = VOLUME	WHICH HOUR OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00	HOUR AY 5 13 21 DAY	SCALAR0000E+00 .1000E+01	HOUR 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO! 0099 HOUR SCALAR 7 .000! 10 . 5 .100! 2 . 7 .000! 10 .	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+00 E+00	E TYPE HOUR SCALAR 3 . 8 .000 11 . 6 .100 190000 3 . 8 .000 11 .	PE SCALARS = VOLUME	WHICH HOUR OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21 DAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO) (H	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 10000E+00 E+00	E TYPE HOUR SCALAR 3 .8 .000 11 . 6 .100 190000 3 . 8 .000 11 . 6 .000 19 .	PE SCALARS = VOLUME	WHICH HOUR OF WE 4 12 20 OF WE 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO) 0099 HOUR SCALAR 7 .000 10 . 5 .100 180000 10 . 10 . 10 . 10 . 10 . 10 . 1	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 0E+01 0E+01 0E+00 0000E+00 0E+00 0000E+00 0E+00	E TYPE HOUR SCALAR 3 .8 .000 11 . 6 .100 190000 3 . 8 .000 11 . 6 .000 19 .	E SCALARS = VOLUME	WHICH : HOUR OF WE 4 12 20 OF WE 4 12 20	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO) 0099 HOUR SCALAR 7 .000 10 . 5 .100 180000 10 . 5 .000 180000 2 .	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 0E+01 0E+01 0E+01 0E+00 0000E+00 0E+00	ION RAT E TYPE HOUR SCALAR 3 .8 .000 11 .6 .100 190000 3 .8 .000 11 .6 .0000 190000	E SCALARS = VOLUME	WHICH HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .EEK = SATUR .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO) 0099 HOUR SCALAR 7 .000 10 . 5 .100 180000 180000 180000 10 . 7 .000 10 . 7 .000 10 .	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 1 0000E+00 E+00 24 0000E+00 0E+00 1 0000E+00 0E+00 24 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00	ION RAT E TYPE HOUR SCALAR 3 .8 .000 11 . 6 .100 190000 3 .8 .000 11 . 6 .000 190000 11 .	E SCALARS = VOLUME	WHICH HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
SOURCE ID = L0000 HOUR SCALAR SCALAR HOUR 	* SOU! (HRDO) 0099 HOUR SCALAR 7 .000 10 . 5 .100 180000 10 . 5 .000 180000 10 . 10 . 10 . 10 . 10 . 10 . 1	RCE EMISS W) * ; SOURC SCALAR HOUR 0000E+00 0E+00 1000E+01 0E+01 0E+01 0000E+00 0E+00 0E+00 10000E+00 0E+00 0000E+00 0E+00 0000E+00 0E+00 0000E+00 0000E+00 0000E+00 0000E+00	E TYPE HOUR SCALAR 3 .8 .000 11 .6 .100 190000 3 .8 .000 11 .6 .000 190000 11 .6 .000 19 .	E SCALARS = VOLUME	WHICH : HOUR OF WE 4 12 20 OF WE 4 12 20 OF WE 4 12	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .EEK = SATUR .0000E+00 .0000E+00 .0000E+00	HOUR AY	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22

Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 113

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000100 ; SOURCE TYPE = VOLUME :

HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

DAY	OF W	EEK = WEEKDA	ΔV			
1 .0000E+00 2 .0000E+00 3 .0000E+00				.0000E+00	6	
.0000E+00 7 .0000E+00 8 .0000E+00	_				-	
9 .1000E+01 10 .1000E+01 11 .1000E+01	12	.1000E+01	13	.1000E+01	14	
.1000E+01 15 .1000E+01 16 .1000E+01						
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23 .0000E+00 24 .0000E+00						
DAY	OF W	EEK = SATURI	DAY			
1 .0000E+00 2 .0000E+00 3 .0000E+00	4	.0000E+00	5	.0000E+00	6	
.0000E+00 7 .0000E+00 8 .0000E+00						
9 .0000E+00 10 .0000E+00 11 .0000E+00	12	.0000E+00	13	.0000E+00	14	
.0000E+00 15 .0000E+00 16 .0000E+00						
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23 .0000E+00 24 .0000E+00						
DAY	OF W	EEK = SUNDAY	Y			
1 .0000E+00 2 .0000E+00 3 .0000E+00	4	.0000E+00	5	.0000E+00	6	
.0000E+00 7 .0000E+00 8 .0000E+00						
9 .0000E+00 10 .0000E+00 11 .0000E+00	12	.0000E+00	13	.0000E+00	14	
.0000E+00 15 .0000E+00 16 .0000E+00						
17 .0000E+00 18 .0000E+00 19 .0000E+00	20	.0000E+00	21	.0000E+00	22	
.0000E+00 23 .0000E+00 24 .0000E+00						
*** AERMOD - VERSION 22112 *** *** C:\Users	\Mich	ael Tirohn\I	Deskt	op\HRAs\1480	04 Mapes and	L
Sherman\14804 O *** 09/15/22						

Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 114

RegDFAULT CONC ELEV URBAN ADJ U* *** MODELOPTs:

> * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000101 ; SOURCE TYPE = VOLUME :

HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR

	DAY	OF WEEK = WEEKD	AY		
1 .0000E+00 2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6
.0000E+00 7 .0000E+00 8	.0000E+00				
9 .1000E+01 10 .1000E+01	11 .1000E+01	12 .1000E+01	13	.1000E+01	14
.1000E+01 15 .1000E+01 16	.1000E+01				
17 .0000E+00 18 .0000E+00	19 .0000E+00	20 .0000E+00	21	.0000E+00	22
.0000E+00 23 .0000E+00 24	.0000E+00				
	DAY	OF WEEK = SATUR	DAY		
1 .0000E+00 2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6
.0000E+00 7 .0000E+00 8	.0000E+00				
9 .0000E+00 10 .0000E+00	11 .0000E+00	12 .0000E+00	13	.0000E+00	14
.0000E+00 15 .0000E+00 16	.0000E+00				
17 .0000E+00 18 .0000E+00	19 .0000E+00	20 .0000E+00	21	.0000E+00	22
.0000E+00 23 .0000E+00 24	.0000E+00				

```
DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         * * *
                                                                 15:14:07
                PAGE 115
              RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000102 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                              DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00
                                                                6
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         ***
                                                                 15:14:07
                PAGE 116
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000103 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
    DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
```

.1000E+01 15 .1000E+01 16 .1000E+01

17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00

22

```
.0000E+00 23 .0000E+00 24 .0000E+00
                                     DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
    .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
                                                                     14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                                     22
                                                           .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                      DAY OF WEEK = SUNDAY
     .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                           .0000E+00
                                                                      6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00
                                                                     22
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                                      15:14:07
                  PAGE 117
 *** MODELOPTs:
               RegDFAULT CONC ELEV URBAN ADJ U*
                * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
                (HRDOW) *
SOURCE ID = L0000104
                    ; SOURCE TYPE = VOLUME
                                         :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
                                                                   HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00
                                         4 .0000E+00 5
                                                           .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                           .1000E+01
                                                                     14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                                     22
                                                           .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                     DAY OF WEEK = SATURDAY
   1 .0000E+00
                                                           .0000E+00
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                                      6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
                                                                     14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                           .0000E+00
                                                                     22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                     DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                           .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                           .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                     22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
 * * *
                                                              ***
                                                                       15:14:07
                  PAGE 118
               RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
                * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
                (HRDOW) *
SOURCE ID = L0000105
                    ; SOURCE TYPE = VOLUME
```

HOUR SCALAR

SCALAR HOUR

HOUR

SCALAR

SCALAR

HOUR

SCALAR

HOUR SCALAR

HOUR

HOUR

SCALAR

SCALAR

HOUR

DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 1 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 *** * * * 15:14:07 PAGE 119 RegDFAULT CONC ELEV URBAN ADJ U* *** MODELOPTs: * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = L0000106 ; SOURCE TYPE = VOLUME : HOUR SCALAR ______ DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 7 .0000E+00 8 .0000E+00 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

15:14:07

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

 * Source emission rate scalars which vary diurnally and by day of week (Hrdow) *

SOURCE ID = L0000107	HOUR SCALAR HOUR SCALA		(HRDOW) *								
DAY OF MEEK = NMERKENY 1.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6	1	HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR	SCALAR	HOUR				HOUR	
1 .000E+00	1 .00008+00				-							
0.000B+00	0.0008+00					DAY	OF WE	EK = WEEKD	AY			
9 1.000E+01 10 1.000E+01 11 1.000E+01 12 1.000E+01 13 1.000E+01 14 1.000E+01 15 1.000E+01 18 1.000E+01 12 1.000E+00 22 .0000E+00 24 .0000E+00 21 .0000E+00 22 .000E+00 23 .0000E+00 24 .0000E+00 5 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 12 .0000E+00 12 .0000E+00 12 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 13 .0000E+00 19 .0000E+00 10 .0000E+00 12 .0000E+00 12 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 18 .0000E+00 19 .0000E+00 19 .0000E+00 19 .0000E+00 19 .0000E+00 19 .0000E+00 10 .0000E+00 19 .0000E+00 10 .0000E+00	9 10005+01 10 .0005+01 11 .10005+01 12 .10005+01 13 .0005+01 14						4	.0000E+00	5	.0000E+00	6	
17 .00008+00 23 .00008+00 24 .00008+00 20 .00008+00 21 .00008+00 6 .00008+00 7 .00008+00 9 .00008+00 17 .00008+00 9 .00008+00 10 .00008+00 11 .00008+00 12 .00008+00 13 .00008+00 14 .00008+00 15 .00008+00 14 .00008+00 15 .00008+00 18 .00008+00 19 .00008	17 .0000E+00	9 .1000E+01	10 .1	000E+01	11 .1	000E+01	12	.1000E+01	13	.1000E+01	14	
1	DAY OF MEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 21 .0000E+00 14 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 3 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 18 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 14 .0000E+00 24 .0000E+00 15 .0000E+00 15 .0000E+00 16 .0000E+00 16 .0000E+00 17 .0000E+00 23 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 18 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .00	17 .0000E+00	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
1 .0000E+00	1 .0000E+00	.00001100 23	.00001	100 21	.00001		OF WE	EK = SATIIRI	DAY			
9 .0000E+00 15 .0000E+00 16 .0000E+00 2 .0000E+00 21 .0000E+00 2 .0000E+00 15 .0000E+00 16 .0000E+00 20 .0000E+00 21 .0000E+00 2 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 5 .0000E+00 2 .0000E+00 2 .0000E+00 2 .0000E+00 2 .0000E+00 2 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 10 .0000E+00 16 .0000E+00 12 .0000E+00 13 .0000E+00 1 .0000E+00 10 .0000E+00 16 .0000E+00 20 .0000E+00 21 .0000E+00 2 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .000E+00 21 .000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .000E+00 20 .000E+00 21 .000E+00 20 .000E+00 21 .000E+00 20 .000E+00 20 .000E+00 21 .000E+00 20 .000E+00 21 .000E+00 20	9 .0000E+00 10 .0000E+00 11 .0000E+00 22 .0000E+00 23 .0000E+00 15 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 18 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 21 .0000E+00 20 .0000E+00 20 .0000E+00 5 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 10 .0000E+00 15 .0000E+00 13 .0000E+00 15 .0000E+00 10 .0000E+00 16 .0000E+00 12 .0000E+00 13 .0000E+00 12 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .000E+00 23 .000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 20 .000E+00 23 .000E+00 20 .					000E+00				.0000E+00	6	
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00	17 .0000E+00 23 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00	9 .0000E+00	10 .0	000E+00	11 .0	000E+00	12	.0000E+00	13	.0000E+00	14	
DAY OF WEEK = SUNDAY 1 .0000E+00	DAY OF WEEK = SUNDAY 1 .0000E+00	17 .0000E+00	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
1 .0000E+00 2 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 15 .0000E+00 15 .0000E+00 15 .0000E+00 19 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 23 .0000E+00 24 .0000E+00 25 .0000E+00 24 .0000E+00 25 .0000E+00 25 .0000E+00 24 .0000E+00 25 .0000E+00 25 .0000E+00 26 .0000E+00 27 .0000E+00 27 .0000E+00 28 .0000E+00 28 .0000E+00 28 .0000E+00 29 .0000E+00 29 .0000E+00 29 .0000E+00 29 .0000E+00 29 .0000E+00 29 .0000E+00 20 .0000E	1 .0000E+00	.0000E100 23	.00000	100 24			OF WE	יבע = פוואוסאי	V			
9	9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 25 .0000E+00 25 .0000E+00 25 .0000E+00 26 .0000E+00 27 .0000E+00 28 .0000E+00 28 .0000E+00 29 .0000E+00 20 .0000E+00 21 .0000E+00 20 .00				3 .0	000E+00				.0000E+00	6	
17 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 15 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 27 .0000E+00 15 .0000E+00 12 .0000E+00 16 .0000E+00 17 .0000E+00 17 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 17 .0000E+00 17 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 17 .0000E+00 18 .0000E+00 10 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 10 .0000E+00 18 .0000E+00 18 .0000E+00 10 .0000E+00 18 .0000E+00 18 .0000E+00 18 .0000E+00 19 .0000E+00 10 .0000E+00 10 .0000E+00 18 .0000E+00 10 .0000E+00 10 .0000E+00 10 .0000E+00 18 .0000E+00 10 .0000E+00 10 .0000E+00 10 .0000E+00 10 .0000E+00 17 .0000E+00 18 .0000E+00 18 .0000E+00 19 .0000E+00 12 .0000E+00 19 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 10 .0000E+00 18 .0000E+00 18 .0000E+00 19 .0000E+00 10 .0	17 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 24 .0000E+00 24 .0000E+00 25 .0000E+00 25 .0000E+00 27 .0000E+00 28 .0000E+00 29 .0000E+00 21 .0000E+00 22 .0000E+00 20 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 25 .0000E+00 24 .0000E+00 20 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 25 .0000E+00 26 .0000E+00 27 .0000E+00 28 .0000E+00 29 .0000E+00 20 .0000E+00 20 .0000E+00 21 .0000E+00 20 .0000E+00 21 .0000E+00 20 .0000E+00 20 .0000E+00 21 .0000E+00 20 .0000E+00 20 .0000E+00 21 .0000E+00 20 .0000E+00 21 .0000E+00 20 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 25 .0000E+00 25 .0000E+00 26 .0000E+00 26 .0000E+00 27 .0000E+00 28 .0	9 .0000E+00	10 .0	000E+00	11 .0	000E+00	12	.0000E+00	13	.0000E+00	14	
#** ** ARRMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 0 *** 09/15/22 *** ARRMET - VERSION 16216 ***	*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 0 *** 09/15/22 *** AERMET - VERSION 16216 ***	17 .0000E+00	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
*** MODELOPTS:	*** MODELOPTS:	FF *** AERMOD - VE Sherman\14804 O **	RSION 2:	2112 *** 09/15/2	* ***		\Micha	el Tirohn\	Deskto	p\HRAs\148	304 Mapes	and
*** MODELOPTS: RegDFAULT CONC ELEV URBAN ADJ_U* * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = L0000108 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCA	*** MODELOPTS: RegDFAULT CONC ELEV URBAN ADJ_U* * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) * SOURCE ID = L0000108 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCAL									* * *	15:14	:07
SOURCE ID = L0000108 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR S	SOURCE ID = L0000108 ; SOURCE TYPE = VOLUME : HOUR SCALAR HOUR SCA	*** MODELOPTs:	RegDFA	ULT CONC			_		NI	אות עם חווג	, OF MEER	
HOUR SCALAR HOUR S	HOUR SCALAR HOUR S				ION RAIE	. SCALARS	WHICH	I VARI DIUR	NALLI	AND BI DAI	OF WEEK	
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 15 .0000E+00 11 .0000E+00 12 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 22 .0000E+00 23 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 1 2 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00	HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR	SCALAR		SCALAR	HOUR	SCALAR	HOUR	
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 15 .0000E+00 11 .0000E+00 12 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 22 .0000E+00 23 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 1 2 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00				-							
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 21 .0000E+00 22 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 6 .0000E+00 15 .0000E+00 16 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 21 .0000E+00 22 .0000E+00 18 .0000E+00 19 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14					000E+00	-			.0000E+00	6	
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 21 .0000E+00 14 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 21 .0000E+00 22 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14	9 .1000E+01	10 .1	000E+01	11 .1	000E+01	12	.1000E+01	13	.1000E+01	14	
DAY OF WEEK = SATURDAY 1 .0000E+00	DAY OF WEEK = SATURDAY 1 .0000E+00	17 .0000E+00	18 .0	000E+00	19 .0	000E+00	20	.0000E+00	21	.0000E+00	22	
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 12 .0000E+00 21 .0000E+00 22 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14	.0000E+00 23	.0000E	+00 24	.00001							
.0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	.0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14	1 0000=.00	0 0	00000	2					0000=.00		
.0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	.0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14	.0000E+00 7	.00001	E+00 8	.0000)E+00					-	
.0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	.0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14	.0000E+00 15	.00001	E+00 16	.0000)E+00						
1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00	1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 12 .0000E+00 13 .0000E+00 14					E+00				.0000E+00	22	
.0000E+00 7 .0000E+00 8 .0000E+00	.0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14	1 0000= 100	0 0	000=+00	2 0	DAY	OF. ME	LEK = SUNDA	ĭ	0000=:00	6	
9 .UUUUE+UU 10 .UUUUE+UU 11 .UUUUE+UU 12 .UUUUE+UU 13 .UUUUE+UU 14		.0000E+00 7	.00001	E+00 8	.0000)E+00					-	
.0000E+00 15 .0000E+00 16 .0000E+00							12	.0000E+00	13	.0000E+00	14 1	

```
17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         *** 15:14:07
                 PAGE 122
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000109
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                 6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                       .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                         *** 15:14:07
                PAGE 123
*** MODELOPTs:
             RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000110
                  ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                6
   .0000E+00 7 .0000E+00 8 .0000E+00
```

9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00

14

```
.0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           ***
                                                                   15:14:07
                 PAGE 124
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000111 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 125
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000112 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                   DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6
   .0000E+00 7 .0000E+00 8 .0000E+00
```

```
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SATURDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                   DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 126
             RegDFAULT CONC ELEV URBAN ADJ U*
*** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000113 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                 14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                          *** 15:14:07
                 PAGE 127
```

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

^{*} SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

HOUR SCALAR SCALAR HOUR	HOUR SCALAR SCALAR HOUR	SCALAR	HOUR	SCALAR			
		_		EEK = WEEKD	77.57		
	2 .0000E+00	3 .0000E+00				.0000E+00	6
9 .1000E+01	10 .1000E+01 .1000E+01 1	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00		19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.00006+00 24		AY OF WI	EEK = SATUR	DAY		
	2 .0000E+00	3 .0000E+00				.0000E+00	6
9 .0000E+00	10 .0000E+00 .0000E+00 1	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00		19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24		V OE MI	EEK = SUNDA	V		
	2 .0000E+00	3 .0000E+00	-			.0000E+00	6
9 .0000E+00	10 .0000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00 13 17 .0000E+00 .0000E+00 23		19 .0000E+00	20	.0000E+00	21	.0000E+00	22
*** AERMOD - VE	RSION 22112 **	* *** C:\Use	rs\Micha	ael Tirohn\	Deskto	op\HRAs\148	04 Mapes and
erman\14804 O **		22					
** AERMET - VERS **	ION 16216 ***					***	15:14:07
** MODELOPTs:	_		_		NAT.T.V	AND BY DAY	OF MEEK
OURCE ID = L0000	<pre>RegDFAULT CON * SOURCE EMISS (HRDOW) * 115 ; SOURCE</pre>	ION RATE SCALAR	- RS WHICE	H VARY DIUR			
** MODELOPTs: OURCE ID = L0000 HOUR SCALAR SCALAR HOUR	RegDFAULT CON * SOURCE EMISS (HRDOW) * 115 ; SOURC HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	- RS WHICE	H VARY DIUR			
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR	RegDFAULT CON * SOURCE EMISS (HRDOW) * 115 ; SOURC HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	- RS WHICE E : HOUR	H VARY DIUR SCALAR	HOUR		
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00	RegDFAULT CON * SOURCE EMISS (HRDOW) * 115 ; SOURC HOUR SCALAR SCALAR HOUR 2 .0000E+00	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR WY OF WH	H VARY DIUR SCALAR EEK = WEEKD	HOUR 	SCALAR	HOUR
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7	* SOURCE EMISS (HRDOW) * 115 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR AY OF WH	SCALAR EEK = WEEKD .0000E+00	HOUR DAY 5	SCALAR	HOUR
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15	* SOURCE EMISS (HRDOW) * 115	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR HOUR YOF WH	SCALAR EEK = WEEKE .0000E+00	HOUR 0AY 5 13	SCALAR0000E+00 .1000E+01	HOUR 6 14
DURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15	RegDFAULT CON * SOURCE EMISS (HRDOW) * 115 ; SOURC HOUR SCALAR SCALAR HOUR 2 .0000E+00 .0000E+00 10 .1000E+01 .1000E+01 1	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR AY OF WH 1 12	SCALAR EEK = WEEKE .0000E+00 .1000E+01	HOUR 2AY 5 13 21	SCALAR0000E+00 .1000E+01	HOUR 6 14
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23	* SOURCE EMISS (HRDOW) * 115 ; SOURCE HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR OF WE 1 12 AY OF WE AY OF WE AY OF WE	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00	HOUR AY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 .0000E+00	* SOURCE EMISS (HRDOW) * 115	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR HOUR AY OF WH	SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR 0AY 5 13 21 DAY 5	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 .0000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00	* SOURCE EMISS (HRDOW) * 115	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR 3 .0000E+00 8 .0000E+00 11 .1000E+01 19 .0000E+00 .0000E+00 3 .0000E+00 11 .0000E+00 6 .0000E+00 11 .0000E+00 11 .0000E+00	RS WHICH E: HOUR AY OF WH) 4 L 12 D 20 AY OF WH) 4	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	HOUR DAY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 .0000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00 .1000E+00	* SOURCE EMISS (HRDOW) * 115	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	AY OF WI 12 20 AY OF WI 12 20 20 20 20	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00	HOUR 6 14 22 6 14
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 15 17 .0000E+00 .0000E+00 23	* SOURCE EMISS (HRDOW) * 115 ; SOURC HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH HOUR HOUR 1 12 20 AY OF WH 1 12 20 AY OF WH 1 12	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR AY 5 13 21 DAY 5 13	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR	* SOURCE EMISS (HRDOW) * 115 ; SOURC HOUR SCALAR SCALAR HOUR	ION RATE SCALAR E TYPE = VOLUME HOUR SCALAR SCALAR	RS WHICH E: HOUR AY OF WH 1 12 20 AY OF WH 1 12 20 AY OF WH 1 4	SCALAR EEK = WEEKE .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR DAY 5 13 21 DAY 5 13 21	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22
OURCE ID = L0000 HOUR SCALAR SCALAR HOUR 1 .0000E+00 .0000E+00 7 9 .1000E+01 .1000E+01 15 17 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 15 17 .0000E+00 .0000E+00 23 1 .0000E+00 .0000E+00 7 9 .0000E+00 .0000E+00 7 9 .0000E+00	* SOURCE EMISS (HRDOW) * 115	E TYPE = VOLUME HOUR SCALAR SCALAR		SCALAR EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00 .0000E+00	HOUR DAY 5 13 21 DAY 5 13 21 TABLE STATE	SCALAR0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	HOUR 6 14 22 6 14 22 6 14

*** 15:14:07

PAGE 129

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000116 ; SOURCE TYPE = VOLUME :

DAY OF WEEK = WEEKDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01 14 .1000E+01 15 .1000E+01 16 .1000E+01 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SATURDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00 DAY OF WEEK = SUNDAY 1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00 .0000E+00 7 .0000E+00 8 .0000E+00 9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 .0000E+00 15 .0000E+00 16 .0000E+00 17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 .0000E+00 23 .0000E+00 24 .0000E+00

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 130

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000117 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR

		DAY	OF WEEK = WEEKD	AY		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00				
9 .1000E+01	10 .1000E+01	11 .1000E+01	12 .1000E+01	13	.1000E+01	14
.1000E+01 15	.1000E+01 16	.1000E+01				
17 .0000E+00	18 .0000E+00	19 .0000E+00	20 .0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00				
		DAY	OF WEEK = SATUR	DAY		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6
.0000E+00 7	.0000E+00 8	.0000E+00				
9 .0000E+00	10 .0000E+00	11 .0000E+00	12 .0000E+00	13	.0000E+00	14
.0000E+00 15	.0000E+00 16	.0000E+00				
17 .0000E+00	18 .0000E+00	19 .0000E+00	20 .0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E+00 24	.0000E+00				
		DAY	OF WEEK = SUNDAY	Y		
1 .0000E+00	2 .0000E+00	3 .0000E+00	4 .0000E+00	5	.0000E+00	6

```
.0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                 PAGE 131
 *** MODELOPTs:
              RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000118 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 ______
                                DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                DAY OF WEEK = SATURDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                  14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                           *** 15:14:07
                PAGE 132
 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000119 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
                                   DAY OF WEEK = WEEKDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                  22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
```

```
1 .0000E+00 2 .0000E+00 3 .0000E+00
                                        4 .0000E+00 5
                                                        .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           ***
                                                                   15:14:07
                 PAGE 133
             RegDFAULT CONC ELEV URBAN ADJ U*
 *** MODELOPTs:
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000120
                   ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
 DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13
                                                         .1000E+01
                                                                   14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SATURDAY
               2 .0000E+00 3 .0000E+00 4 .0000E+00 5
   1 .0000E+00
                                                         .0000E+00
                                                                   6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21
                                                         .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                    DAY OF WEEK = SUNDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5
                                                         .0000E+00
                                                                  6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13
                                                         .0000E+00
                                                                   14
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                   22
  .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                           * * *
                                                                    15:14:07
                 PAGE 134
 *** MODELOPTs:
               RegDFAULT CONC ELEV URBAN ADJ U*
               * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
               (HRDOW) *
SOURCE ID = L0000121
                   ; SOURCE TYPE = VOLUME
                                       :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
                                                                HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
```

```
DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                                14
   .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
                                                                14
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
  9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
Sherman\14804 O *** 09/15/22
 *** AERMET - VERSION 16216 ***
                                                                15:14:07
                PAGE 135
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*
              * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK
              (HRDOW) *
SOURCE ID = L0000122 ; SOURCE TYPE = VOLUME :
 HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR
 SCALAR HOUR SCALAR HOUR SCALAR
  DAY OF WEEK = WEEKDAY
   1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
                                                               6
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .1000E+01 10 .1000E+01 11 .1000E+01 12 .1000E+01 13 .1000E+01
                                                              14
  .1000E+01 15 .1000E+01 16 .1000E+01
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SATURDAY
  1 .0000E+00 2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
  .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
   .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
  .0000E+00 23 .0000E+00 24 .0000E+00
                                  DAY OF WEEK = SUNDAY
              2 .0000E+00 3 .0000E+00 4 .0000E+00 5 .0000E+00
  1 .0000E+00
   .0000E+00 7 .0000E+00 8 .0000E+00
   9 .0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00
  .0000E+00 15 .0000E+00 16 .0000E+00
  17 .0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00
                                                                22
```

*** AERMET - VERSION 16216 ***

*** 15:14:07

 * Source emission rate scalars which vary diurnally and by day of week (HrDow) *

SOURCE ID = L0000								
SCALAR HOUR	HOUR SCALAR	SCALAR HOUR S	HOUR SCALAR SCALAR			HOUR	SCALAR	HOUR
			DAY	OF WI	EEK = WEEKD	AY		
1 .0000E+00			3 .0000E+00 .0000E+00	4	.0000E+00	5	.0000E+00	6
	10 .1	.000E+01	11 .1000E+01	12	.1000E+01	13	.1000E+01	14
17 .0000E+00 .0000E+00 23	18 .0	000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
:00001100 25	.00001	100 24		OF WI	EEK = SATUR	DAY		
1 .0000E+00 .0000E+00			3 .0000E+00				.0000E+00	6
	10 .0	000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
17 .0000E+00	18 .0	000E+00	19 .0000E+00	20	.0000E+00	21	.0000E+00	22
.0000E+00 23	.0000E	+00 24		CE WI	EEK = SUNDA	V		
1 .0000E+00			3 .0000E+00	. OF WI	.0000E+00	5	.0000E+00	6
9 .0000E+00	10 .0	000E+00	11 .0000E+00	12	.0000E+00	13	.0000E+00	14
.0000E+00 19 17 .0000E+00 .0000E+00 23	18 .0		19 .0000E+00	20	.0000E+00	21	.0000E+00	22
Sherman\14804 O *. *** AERMET - VER: ***	SION 16	216 ***					***	15:14:07
*** MODELOPTs:	_	E 137 ULT CONC	ELEV URBAN	ADJ_U	*			
	* SOUR (HRDOW		ON RATE SCALARS	WHICE	H VARY DIUR	NALLY	AND BY DAY	OF WEEK
SOURCE ID = L000								
HOUR SCALAR SCALAR HOUR	HOUR SCALAR	SCALAR HOUR	HOUR SCALAR SCALAR	: HOUR	SCALAR	HOUR	SCALAR	HOUR
SCALAR HOUR	HOUR SCALAR	SCALAR I	HOUR SCALAR SCALAR	: HOUR	SCALAR	HOUR	SCALAR	HOUR
SCALAR HOUR	HOUR SCALAR 2 .0	SCALAR HOUR S	HOUR SCALAR SCALAR DAY 3 .0000E+00	 	 EEK = WEEKD	 AY	SCALAR	HOUR
SCALAR HOUR 1 .0000E+00 .0000E+01 9 .1000E+01	HOUR SCALAR 2 .0 7 .0000 10 .1	SCALAR HOUR S	HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+01	 7 OF WI 4	 EEK = WEEKD	 AY 5		
SCALAR HOUR	HOUR SCALAR 2 .0 7 .0000 10 .1 5 .1000 18 .0	SCALAR HOUR S	DAY 3 .0000E+00 .0000E+01 .1000E+01 19 .0000E+00	 T OF WH 4	EEK = WEEKD	 AY 5		6
SCALAR HOUR	HOUR SCALAR 2 .0 7 .0000 10 .1 5 .1000 18 .0	SCALAR HOUR S HOUR S OOOE+00 E+00 8 0000E+01 E+01 16	DAY 3 .0000E+00 .0000E+01 .1000E+01 .19 .0000E+00	 OF WE 4 12 20	EEK = WEEKD .0000E+00 .1000E+01	 AY 5 13 21	0000E+00	6
SCALAR HOUR	HOUR SCALAR 2 .0 7 .0000 10 .1 5 .1000 18 .0 .0000E	SCALAR HOUR S 0000E+00 1E+00 8 .000E+01 1E+01 16 .000E+00 1+00 24	DAY 3 .0000E+00 .0000E+01 .1000E+01 .1000E+01 .0000E+00 .0000E+00 .0000E+00	OF WE 4 12 20	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00	AY 5 13 21 DAY	0000E+00	6
SCALAR HOUR	HOUR SCALAR 2 .0 7 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 7 .0000 10 .0	SCALAR HOUR S HO	HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 11 .1000E+01 .1000E+01 19 .0000E+00 .0000E+00 .0000E+00 11 .0000E+00	 OF WH 4 12 20 C OF WH	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	AY 5 13 21 DAY	.0000E+00 .1000E+01 .0000E+00	6 14 22
SCALAR HOUR	HOUR SCALAR 2 .00 7 .0000 10 .1 5 .1000 18 .0 7 .0000 2 .0 7 .0000 10 .0 5 .0000 18 .0	SCALAR HOUR S HOUR S OOOE+00 SE+00 8 0000E+01 SE+01 16 0000E+00 SE+00 24 0000E+00 SE+00 8 0000E+00 SE+00 16	DAY 3 .0000E+00 .0000E+01 .1000E+01 .1000E+01 .19 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .10000E+00 .10000E+00 .10000E+00 .10000E+00	 OF WI 12 20 OF WI 4	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00	AY 5 13 21 DAY 5	.0000E+00 .1000E+01 .0000E+00	6 14 22
SCALAR HOUR	HOUR SCALAR 2 .00 7 .0000 10 .1 5 .1000 18 .0 7 .0000 2 .0 7 .0000 10 .0 5 .0000 18 .0	SCALAR HOUR S HOUR S OOOE+00 SE+00 8 0000E+01 SE+01 16 0000E+00 SE+00 24 0000E+00 SE+00 8 0000E+00 SE+00 16	DAY 3 .0000E+00 .0000E+01 .1000E+01 .1000E+01 .19 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .10000E+00 .0000E+00 .0000E+00 .0000E+00	COF WH 4 12 20 12 20 20	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	AY 5 13 21 DAY 5 13 21	.0000E+00 .1000E+01 .0000E+00 .0000E+00	6 14 22 6 14
SCALAR HOUR	HOUR SCALAR 2 .0 7 .0000 10 .1 5 .1000 18 .0 .0000E 2 .0 7 .0000 10 .0 5 .0000 18 .0 .0000E	SCALAR HOUR S 0000E+00 0E+00 8 0000E+01 0E+01 16 000E+00 0H00 24 0000E+00 0E+00 16 0000E+00 0E+00 24	HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 11 .1000E+01 .1000E+01 19 .0000E+00 .0000E+00 .0000E+00 11 .0000E+00 .0000E+00 .0000E+00 12 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	COF WH 4 12 20 12 20 20	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	AY 5 13 21 DAY 5 13 21	.0000E+00 .1000E+01 .0000E+00 .0000E+00	6 14 22 6 14
SCALAR HOUR	HOUR SCALAR 2 .0 7 .0000 10 .1 5 .1000 18 .0 7 .0000 10 .0 5 .0000 18 .0 .0000E 2 .0 7 .0000 18 .0 7 .0000 10 .0	SCALAR HOUR S 0000E+00 1E+00 8 0000E+01 1E+01 16 1000E+00 1E+00 24 1000E+00 1E+00 16 1000E+00 1E+00 16 1000E+00 1E+00 24	HOUR SCALAR SCALAR DAY 3 .0000E+00 .0000E+00 11 .1000E+01 .1000E+01 19 .0000E+00 .0000E+00 .0000E+00 11 .0000E+00 .0000E+00 12 .0000E+00 .0000E+00 13 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	OF WI 4 12 20 OF WI 4 12 20 COF WI 4	EEK = WEEKD .0000E+00 .1000E+01 .0000E+00 EEK = SATUR .0000E+00 .0000E+00	AY 5 13 21 DAY 5 13 21	.0000E+00 .1000E+01 .0000E+00 .0000E+00 .0000E+00	6 14 22 6 14 22

.0000E+00 23 .0000E+00 24 .0000E+00

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 138

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** DISCRETE CARTESIAN RECEPTORS ***
(X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
(METERS)

	(483322.2, 3735161.2,	435.0,	435.0,	0.0);	(483315.8, 3735206.6,
	435.0, 435.0,	0.0);			
	(483329.0, 3735267.7,	435.0,	435.0,	0.0);	(483309.9, 3735329.5,
		0.0);			
	(483116.9, 3735429.0,	433.0,	433.0,	0.0);	(483151.8, 3735321.9,
	433.9, 433.9,				
	(483048.9, 3735188.7,		433.3,	0.0);	(483081.9, 3734993.2,
		0.0);	,		,
		435.0,	435.0,	0.0);	(483320.3, 3735062.8,
	435.6, 435.6,	·	,	• •	,
	(483328.1, 3735015.9,	, ,	436.0,	0.0);	(483349.5, 3734948.8,
	436.0, 436.0,	0.0);	,	, ,	, , , , , , , , , , , , , , , , , , , ,
	(483319.0, 3734871.0,	436.0,	436.0,	0.0);	(483152.4, 3734895.6,
	435.0, 435.0,	0.0);		, ,	(2002-2014, 010-2014,
		434.0,	434.0,	0.0);	(482938.7, 3734974.9,
	433.0, 433.0,	0.0);	101.07	0.0,,	(10230011, 010131113,
		434.0,	434.0,	0.0);	(483316.9, 3734817.5,
	436.0, 436.0,	·	101.07	0.0//	(100010.3) 0701017.0)
	(483315.8, 3734727.6,		436.0,	0.0);	(482855.8, 3735071.3,
	433.0, 433.0,	·	130.07	0.0//	(102000.0) 0700071.0)
	(482853.3, 3734976.5,		433.0,	0.0);	(482952.3, 3735193.1,
	433.0, 433.0,	·	455.0,	0.0/,	(402332.3, 3733133.1,
	(482296.7, 3734931.4,		432 N	0.0);	(483326.8, 3735378.2,
	435.0, 435.0,		432.0,	0.0),	(403320.0, 3733370.2,
	(482786.4, 3735421.1,		422 A	0.0);	/ /02210 / 2725/5/ 2
			432.0,	0.0);	(483310.4, 3735454.2,
	434.0, 434.0,		441 -		
	(484105.1, 3734042.9,	441.5,	441.5,		
L	0.0);	J +++ +++	C.\II\\	abaal minal\	Deskton\HDAs\1/80/ Manes and
					THERE ON THEAST LAXILL MANAS AND

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 139

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

1 1

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES

(METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

*** 15:14:07

PAGE 140

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

Surface file:

PERI V9 ADJU\PERI v9.SFC Met

Version: 16216 Profile file:

PERI V9 ADJU\PERI v9.PFL

Surface format:

FREE

Profile format:

FREE

Surface station no.: 3171 Upper air station no.: 3190

Name: UNKNOWN Name:

UNKNOWN

Year: 2010 Year: 2010

First 24 hours of scalar data
YR MO DY JDY HR HO U* W* DT/DZ ZICNV ZIMCH M-O LEN ZO BOWEN ALBEDO REF WS
WD HT REF TA HT

10 01 01 1 01 -7.9 0.125	5 -9.000 -9.000	-999. 106.	21.2 0.1	9 0.61 1.0	1.30
335. 9.1 282.5 5.5 10 01 01 1 02 -3.9 0.088	3 -9.000 -9.000	-999. 62.	15.1 0.1	9 0.61 1.0	0.90
142. 9.1 280.9 5.5 10 01 01 1 03 -3.9 0.088	3 -9.000 -9.000	- 999. 62.	15.1 0.1	9 0.61 1.0	0.90
324. 9.1 280.4 5.5 10 01 01 1 04 -1.3 0.06				9 0.61 1.0	0.40
294. 9.1 278.8 5.5					
10 01 01 1 05 -3.9 0.088 205. 9.1 278.1 5.5	3 -9.000 -9.000	-999. 62 .	15.0 0.1	9 0.61 1.0	0.90
10 01 01 1 06 -1.3 0.065 3. 9.1 277.0 5.5	5 -9.000 -9.000	- 999. 39.	18.3 0.1	9 0.61 1.0	0.40
10 01 01 1 07 -8.0 0.125 99. 9.1 277.0 5.5	5 -9.000 -9.000	-999. 106.	21.0 0.1	9 0.61 1.0	1.30
10 01 01 1 08 -3.3 0.08	6 -9.000 -9.000	-999. 61.	16.8 0.1	9 0.61 0.5	0.90
319. 9.1 278.8 5.5 10 01 01 1 09 20.1 0.128	3 0.307 0.010	49. 110.	-9.0 0.1	9 0.61 0.3	33 0.90
239. 9.1 284.2 5.5 10 01 01 1 10 56.7 0.08	7 0.560 0.010	107. 62.	-1.0 0.1	9 0.61 0.2	26 0.40
188. 9.1 289.2 5.5 10 01 01 1 11 81.5 0.323	3 0 867 0 008	277 441	- 35 9 0 1	9 0.61 0.2	23 2.70
310. 9.1 290.9 5.5					
10 01 01 1 12 97.1 0.283 357. 9.1 293.1 5.5	1 1.058 0.008	421. 357.	-19./ 0.1	9 0.61 0.2	22 2.20

10 01 01 1 13 92.2 0.279 1.1	17 0.008 523. 354.	-20.4 0.19	0.61 0.22	2.20
356. 9.1 293.8 5.5 10 01 01 1 14 77.6 0.275 1.1	02 0.008 595. 347.	-23.2 0.19	0.61 0.23	2.20
50. 9.1 294.2 5.5 10 01 01 1 15 54.9 0.230 1.0	06 0.008 640. 266.	-19.2 0.19	0.61 0.27	1.80
53. 9.1 293.8 5.5 10 01 01 1 16 12.3 0.206 0.6	13 0.008 648. 225.	-61.5 0.19	0.61 0.36	1.80
11. 9.1 292.5 5.5 10 01 01 1 17 -3.6 0.087 -9.0	00 -9.000 -999. 71.	15.6 0.19	0.61 0.64	0.90
351. 9.1 290.4 5.5 10 01 01 1 18 -3.8 0.087 -9.0	00 -9.000 -999. 62.	15.2 0.19	0.61 1.00	0.90
186. 9.1 287.5 5.5 10 01 01 1 19 -3.8 0.087 -9.0	00 -9.000 -999. 62.	15.2 0.19	0.61 1.00	0.90
275. 9.1 285.9 5.5 10 01 01 1 20 -1.2 0.064 -9.0 181. 9.1 285.4 5.5	00 -9.000 -999. 39.	18.1 0.19	0.61 1.00	0.40
10 01 01 1 21 -7.8 0.125 -9.0 318. 9.1 284.9 5.5	00 -9.000 -999. 106.	21.3 0.19	0.61 1.00	1.30
10 01 01 1 22 -3.8 0.088 -9.0 196. 9.1 283.1 5.5	00 -9.000 -999. 62.	15.1 0.19	0.61 1.00	0.90
10 01 01 1 23 -3.8 0.088 -9.0 330. 9.1 281.4 5.5	00 -9.000 -999. 62.	15.1 0.19	0.61 1.00	0.90
10 01 01 1 24 -7.9 0.125 -9.0 332. 9.1 280.9 5.5	00 -9.000 -999. 106.	21.2 0.19	0.61 1.00	1.30
10 01 01 01 5.5 0 -99999.00	-999.0 99.0 -99. below (=0)	00 -99.00 00 -99.00	.HRAs\14804 Ma	apes and
*** AERMET - VERSION 16216 *** ***			***	5:14:07
PAGE 141 *** MODELOPTs: RegDFAULT CONC	ELEV URBAN ADJ_U*			
*** THE ANNUAL A SOURCE GROUP: AL	VERAGE CONCENTRATION	VALUES AVERAGE	D OVER 5 YE	EARS FOR
I	NCLUDING SOURCE(S):	·	VOL2 ,	
VOL6 , L000 L0000005 , L000	0001 , L0000002		, L0000004 ,	
L0000003 , L000 L0000008 , L000 L0000013 , L000	, L0000010		L0000012 ,	
L0000013 , L000 L0000016 , L000 L0000021 , L000	0017 , L0000018		L0000020 ,	
HOUGGEL , HOUG	•	'E CARTESIAN RECEI	PTOR POINTS **	· *
	** CONC OF DPM			
		I IN		
	MICROGRAMS/M**3	IN	**	
X-COORD (M) Y-COORD (M) (M) CONC		X-COOF		DRD
(M) CONC	MICROGRAMS/M**3	X-COOF)RD
(M) CONC	MICROGRAMS/M**3 CONC	X-COOF	RD (M) Y-COC	DRD
(M) CONC	MICROGRAMS/M**3 CONC 0.06309	X-COOF 4833	RD (M) Y-COC 	DRD

483048.86	3735188.73	0.05878	483081.92
3734993.21	0.06952		
483322.46	3735113.17	0.06704	483320.26
3735062.79	0.06741		
483328.13	3735015.88	0.05389	483349.54
3734948.82	0.03287		
483319.00	3734871.05	0.02603	483152.44
3734895.61	0.03339		
483033.43	3734938.43	0.02349	482938.66
3734974.95	0.01392		
482865.31	3734680.57	0.00537	483316.88
3734817.52	0.01872		
483315.81	3734727.60	0.01130	482855.75
3735071.26	0.00921		
482853.34	3734976.55	0.00858	482952.27
3735193.11	0.01713		
482296.66	3734931.45	0.00132	483326.80
3735378.16	0.01613		
482786.36	3735421.08	0.00345	483310.38
3735454.22	0.01057		
484105.07	3734042.87		
0.00100			

*** AERMOD - VERSION 22112 ***
Sherman\14804 O *** 09/15/22

*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and

*** AERMET - VERSION 16216 ***

435.00, 0.00) DC 10TH HIGHEST VALUE IS

435.00, 0.00) DC

*** 15:14:07

PAGE 142

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 5 YEARS ***

0.03339 AT (483152.44, 3734895.61, 435.00,

** CONC OF DPM IN

MICROGRAMS/M**3

GROUP ID ZFLAG) OI	NETWORK F TYPE GRID-ID	AVERAGE CONC	RECEPTOR (XR, YF	2, ZELEV, ZHILL,
	1ST HIGHEST VALUE IS 0.00) DC	0.06952 AT (483081.92, 3734993.21,	434.00,
131.007			483151.81, 3735321.91,	433.95,
		0.06741 AT (483320.26, 3735062.79,	435.63,
		0.06704 AT (483322.46, 3735113.17,	435.00,
	5TH HIGHEST VALUE IS 435.00, 0.00) DC	0.06326 AT (483315.83, 3735206.60,	435.00,
	6TH HIGHEST VALUE IS 435.00, 0.00) DC	0.06309 AT (483322.24, 3735161.24,	435.00,
	7TH HIGHEST VALUE IS	0.05878 AT (483048.86, 3735188.73,	433.29,
	433.29, 0.00) DC 8TH HIGHEST VALUE IS	0.05389 AT (483328.13, 3735015.88,	436.00,
	436.00, 0.00) DC 9TH HIGHEST VALUE IS		483328.98, 3735267.73,	435.00,

```
*** RECEPTOR TYPES: GC = GRIDCART
                     GP = GRIDPOLR
                      DC = DISCCART
                     DP = DISCPOLR
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O ***
                      09/15/22
 *** AERMET - VERSION 16216 ***
 * * *
                                                                          ***
                                                                                     15:14:07
                      PAGE 143
 *** MODELOPTs:
                  RegDFAULT CONC ELEV URBAN ADJ U*
 *** Message Summary : AERMOD Model Execution ***
 ----- Summary of Total Messages -----
A Total of
                      0 Fatal Error Message(s)
 A Total of
                      4 Warning Message(s)
 A Total of
                   2028 Informational Message(s)
A Total of
            43824 Hours Were Processed
A Total of
                   978 Calm Hours Identified
A Total of
                   1050 Missing Hours Identified ( 2.40 Percent)
    ****** FATAL ERROR MESSAGES ******
               *** NONE ***
    ****** WARNING MESSAGES
                                *****
          1931 MEOPEN: THRESH 1MIN 1-min ASOS wind speed threshold used
                                                                                          0.50
ME W186
ME W187
           1931
                     MEOPEN: ADJ U* Option for Stable Low Winds used in AERMET
                     CHKDAT: Record Out of Sequence in Meteorological File at: CHKDAT: Record Out of Sequence in Meteorological File at:
```

2 year gap

MX W450 17521

MX W450 17521

******** *** AERMOD Finishes Successfully *** *******

```
***********
* *
** AERMOD Input Produced by:
** AERMOD View Ver. 11.0.0
** Lakes Environmental Software Inc.
** Date: 9/15/2022
** File: C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 Ops\14804 Ops.ADI
* *
***********
*********
** AERMOD Control Pathway
* *
CO STARTING
  TITLEONE C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O
  MODELOPT DFAULT CONC
  AVERTIME ANNUAL
  URBANOPT 2189641 Riverside County
  POLLUTID DPM
  RUNORNOT RUN
  ERRORFIL "14804 Ops.err"
CO FINISHED
***********
** AERMOD Source Pathway
* *
SO STARTING
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
** ______
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE1
** DESCRSRC Idle
** PREFIX
** Length of Side = 8.59
** Configuration = Adjacent
** Emission Rate = 9.66E-06
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 2
** 483133.488, 3735051.338, 434.00, 3.49, 4.00
** 483134.398, 3735226.219, 434.00, 3.49, 4.00
  LOCATION L0000256
                     VOLUME
                            483133.511 3735055.633 434.00
  LOCATION L0000257
                    VOLUME 483133.555 3735064.223 434.00
  LOCATION L0000258
                    VOLUME 483133.600 3735072.813 434.00
  LOCATION L0000259
                    VOLUME 483133.645 3735081.403 434.00
                    VOLUME 483133.689 3735089.993 434.00
  LOCATION L0000260
                    VOLUME
                            483133.734 3735098.583 434.00
  LOCATION L0000261
  LOCATION L0000262
                     VOLUME 483133.779 3735107.173 434.00
  LOCATION L0000263
                    VOLUME 483133.823 3735115.762 434.00
  LOCATION L0000264
                    VOLUME 483133.868 3735124.352 434.00
  LOCATION L0000265
                    VOLUME 483133.913 3735132.942 434.00
                    VOLUME 483133.957 3735141.532 434.00
  LOCATION L0000266
  LOCATION L0000267
                     VOLUME
                            483134.002 3735150.122 434.00
  LOCATION L0000268
                     VOLUME 483134.047 3735158.712 434.00
  LOCATION L0000269
                    VOLUME 483134.091 3735167.302 434.00
  LOCATION L0000270
                    VOLUME 483134.136 3735175.892 434.00
  LOCATION L0000271
                    VOLUME
                            483134.181 3735184.482 434.00
  LOCATION L0000272
                   VOLUME
                            483134.225 3735193.071 434.00
```

```
VOLUME 483134.270 3735201.661 434.00
      LOCATION L0000273
                                                        VOLUME 483134.315 3735210.251 434.00
      LOCATION L0000274
      LOCATION L0000275 VOLUME 483134.359 3735218.841 434.00
** End of LINE VOLUME Source ID = SLINE1
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE2
** DESCRSRC Onsite
** PREFIX
** Length of Side = 8.59
** Configuration = Adjacent
** Emission Rate = 6.613E-06
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 5
** 483278.314, 3735013.336, 435.99, 3.49, 4.00
** 483261.724, 3735014.138, 435.25, 3.49, 4.00
** 483247.542, 3735011.730, 435.02, 3.49, 4.00
** 483114.283, 3735010.660, 434.00, 3.49, 4.00
** 483118.297, 3735292.429, 433.67, 3.49, 4.00
** -----
      LOCATION L0000276 VOLUME 483274.024 3735013.543 435.80
      LOCATION L0000277
                                                       VOLUME 483265.444 3735013.958 435.51
                                                       VOLUME 483256.927 3735013.324 435.23
      LOCATION L0000278
      LOCATION L0000279
                                                        VOLUME 483248.459 3735011.886 435.00
     LOCATION L0000279 VOLUME 483248.459 3735011.886 435.00 LOCATION L0000280 VOLUME 483239.882 3735011.669 435.00 LOCATION L0000281 VOLUME 483231.292 3735011.600 435.00 LOCATION L0000282 VOLUME 483222.702 3735011.531 435.00 LOCATION L0000284 VOLUME 483214.113 3735011.462 435.00 LOCATION L0000285 VOLUME 483205.523 3735011.324 435.00 LOCATION L0000286 VOLUME 483196.933 3735011.324 435.00 LOCATION L0000287 VOLUME 483188.344 3735011.255 435.00 LOCATION L0000288 VOLUME 483179.754 3735011.117 435.00 LOCATION L0000289 VOLUME 483162.574 3735011.048 435.00 LOCATION L0000289 VOLUME 483153 985 3735011.048 435.00 LOCATION L0000290 VOLUME 483153 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 3735011 985 373
      LOCATION L0000290
                                                       VOLUME 483153.985 3735010.979 434.80
                                                       VOLUME 483145.395 3735010.910 434.51
      LOCATION L0000291
      LOCATION L0000291 VOLUME 483136.805 3735010.710 434.31 LOCATION L0000292 VOLUME 483128.216 3735010.772 434.00 LOCATION L0000294 VOLUME 483119.626 3735010.703 434.00
      LOCATION L0000295 VOLUME 483114.330 3735013.907 434.00 LOCATION L0000296 VOLUME 483114.452 3735022.496 434.00
     LOCATION LOU00296 VOLUME 403114.432 3735022.433 434.00
LOCATION LO000298 VOLUME 483114.697 3735039.674 434.00
LOCATION L0000299 VOLUME 483114.819 3735048.263 434.00
LOCATION L0000300 VOLUME 483114.941 3735056.853 434.00
LOCATION L0000301 VOLUME 483115.064 3735065.442 434.00
      LOCATION L0000302
                                                        VOLUME 483115.186 3735074.031 434.00
                                                       VOLUME 483115.309 3735082.620 434.00
VOLUME 483115.431 3735091.209 434.00
      LOCATION L0000303
      LOCATION L0000304
LOCATION L0000305
                                                       VOLUME 483115.553 3735099.798 434.00
                                                       VOLUME 483115.676 3735108.387 434.00
      LOCATION L0000306
      LOCATION L0000307 VOLUME 483115.798 3735116.976 434.00 LOCATION L0000308 VOLUME 483115.920 3735125.566 434.00 LOCATION L0000309 VOLUME 483116.043 3735134.155 434.00 LOCATION L0000310 VOLUME 483116.165 3735142.744 434.00 LOCATION L0000311 VOLUME 483116.287 3735151.333 434.00 LOCATION L0000312 VOLUME 483116.410 3735159.922 434.00
                                                       VOLUME 483116.532 3735168.511 434.00
      LOCATION L0000313
                                                       VOLUME 483116.654 3735177.100 434.00
      LOCATION L0000314
      LOCATION L0000315 VOLUME 483116.777 3735185.690 434.00 LOCATION L0000316 VOLUME 483116.899 3735194.279 434.00 LOCATION L0000317 VOLUME 483117.021 3735202.868 434.00 LOCATION L0000318 VOLUME 483117.144 3735211.457 434.00 LOCATION L0000319 VOLUME 483117.266 3735220.046 434.00 LOCATION L0000320 VOLUME 483117.388 3735228.635 434.00
                                                       VOLUME 483116.777 3735185.690 434.00
```

```
LOCATION L0000321 VOLUME 483117.511 3735237.224 434.00
  LOCATION L0000322
                     VOLUME 483117.633 3735245.813 434.00
  LOCATION L0000322 VOLUME 483117.633 3735243.813 434.00 LOCATION L0000323 VOLUME 483117.756 3735254.403 434.00 LOCATION L0000324 VOLUME 483117.878 3735262.992 433.91 LOCATION L0000325 VOLUME 483118.000 3735271.581 433.79
  LOCATION L0000326 VOLUME 483118.123 3735280.170 433.68 LOCATION L0000327 VOLUME 483118.245 3735288.759 433.61
** End of LINE VOLUME Source ID = SLINE2
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE3
** DESCRSRC Sherman 15%
** PREFIX
** Length of Side = 8.59
** Configuration = Adjacent
** Emission Rate = 2.797E-07
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 2
** 483286.624, 3735013.205, 435.97, 3.49, 4.00
** 483289.376, 3735295.755, 434.93, 3.49, 4.00
** -----
  LOCATION L0000328 VOLUME 483286.666 3735017.500 435.96
 LOCATION L0000329
                     VOLUME 483286.750 3735026.089 435.74
  ** End of LINE VOLUME Source ID = SLINE3
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE4
** DESCRSRC Mapes 15%
** PREFIX
** Length of Side = 14.00
** Configuration = Adjacent
** Emission Rate = 1.697E-07
** Vertical Dimension = 6.99
** SZINIT = 3.25
```

```
** Nodes = 2
** 483289.911, 3735301.910, 434.53, 3.49, 6.51
** 483118.384, 3735300.572, 433.40, 3.49, 6.51
                                 VOLUME 483282.911 3735301.855 434.52
    LOCATION L0000361
    LOCATION L0000362
                                 VOLUME 483268.912 3735301.746 434.30
   LOCATION L0000363 VOLUME 483254.912 3735301.637 434.08

LOCATION L0000364 VOLUME 483240.913 3735301.528 434.00

LOCATION L0000365 VOLUME 483226.913 3735301.418 434.00

LOCATION L0000366 VOLUME 483212.913 3735301.309 434.00

LOCATION L0000367 VOLUME 483198.914 3735301.200 434.00
    LOCATION L0000368
                                 VOLUME 483184.914 3735301.091 434.00
    LOCATION L0000369
                                 VOLUME 483170.915 3735300.982 434.00
                                 VOLUME 483156.915 3735300.872 434.00
VOLUME 483142.916 3735300.763 434.00
    LOCATION L0000370
   LOCATION L0000371 VOLUME 483142.916 3735300.763 434.00 LOCATION L0000372 VOLUME 483128.916 3735300.654 433.96
** End of LINE VOLUME Source ID = SLINE4
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE5
** DESCRSRC Mapes 100%
** PREFIX
** Length of Side = 14.00
** Configuration = Adjacent
** Emission Rate = 0.00001093
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 10
** 483117.314, 3735300.572, 433.37, 3.49, 6.51
** 482894.142, 3735298.431, 433.00, 3.49, 6.51
** 482889.325, 3734781.978, 433.96, 3.49, 6.51
** 482886.470, 3734769.082, 433.93, 3.49, 6.51
** 482823.747, 3734670.776, 433.87, 3.49, 6.51
** 482443.793, 3734940.362, 433.00, 3.49, 6.51
** 482399.164, 3734981.976, 432.96, 3.49, 6.51
** 482369.612, 3735030.224, 432.44, 3.49, 6.51
** 482353.328, 3735077.266, 432.02, 3.49, 6.51
** 482357.550, 3735231.057, 432.12, 3.49, 6.51
    LOCATION L0000373
                                 VOLUME 483110.314 3735300.505 433.34
   LOCATION LOCO0374 VOLUME 483096.315 3735300.370 433.00 LOCATION LOCO0375 VOLUME 483082.316 3735300.236 433.00 LOCATION LOCO0376 VOLUME 483068.316 3735300.102 433.00 LOCATION LOCO0377 VOLUME 483054.317 3735299.967 433.00 LOCATION LOCO0378 VOLUME 483040.317 3735299.833 433.00 LOCATION LOCO0379 VOLUME 483026.318 3735299.699 433.00 LOCATION LOCO0380 VOLUME 483012.319 3735299.565 433.00 LOCATION LOCO0381 VOLUME 482998.319 3735299.430 433.00
    LOCATION L0000381
                                 VOLUME 482998.319 3735299.430 433.00
    LOCATION L0000382
                                 VOLUME 482984.320 3735299.296 433.00
                                 VOLUME 482970.321 3735299.162 433.00
   LOCATION L0000383
LOCATION L0000384
                                 VOLUME 482956.321 3735299.027 433.00
                                 VOLUME 482942.322 3735298.893 433.00
    LOCATION L0000385
                                 VOLUME 482928.323 3735298.759 433.00
    LOCATION L0000386
    LOCATION L0000387
                                 VOLUME 482914.323 3735298.625 433.00
                                 VOLUME 482900.324 3735298.490 433.00
    LOCATION L0000388
   LOCATION L0000389 VOLUME 482894.069 3735276.614 433.00
LOCATION L0000390 VOLUME 482893.938 3735276.614 433.00
VOLUME 482893.808 3735262.615 433.00
                                 VOLUME 482893.677 3735248.616 433.00
    LOCATION L0000392
                                 VOLUME 482893.547 3735234.616 433.00
    LOCATION L0000393
   LOCATION L0000394 VOLUME 482893.416 3735220.617 433.00 LOCATION L0000395 VOLUME 482893.286 3735206.617 433.00 LOCATION L0000396 VOLUME 482893.155 3735192.618 433.00
   LOCATION L0000397 VOLUME 482893.024 3735178.619 433.00 LOCATION L0000398 VOLUME 482892.894 3735164.619 433.00 LOCATION L0000399 VOLUME 482892.763 3735150.620 433.00
```

LOCATION	L0000400	VOLUME	482892.633	3735136.620	433.00
LOCATION	L0000401	VOLUME	482892.502	3735122.621	433.00
LOCATION	L0000402	VOLUME	482892.372	3735108.622	433.00
	L0000403	VOLUME	482892.241	3735094.622	433.00
	L0000404		482892.110	3735080.623	433.00
		VOLUME			
	L0000405	VOLUME	482891.980	3735066.623	433.00
	L0000406	VOLUME	482891.849	3735052.624	433.00
LOCATION	L0000407	VOLUME	482891.719	3735038.625	433.00
LOCATION	L0000408	VOLUME	482891.588	3735024.625	433.00
LOCATION	L0000409	VOLUME	482891.458	3735010.626	433.00
LOCATION	L0000410	VOLUME	482891.327	3734996.627	433.00
	L0000411	VOLUME	482891.197	3734982.627	433.00
	L0000412	VOLUME	482891.066	3734968.628	433.00
	L0000413	VOLUME	482890.935	3734954.628	433.00
	L0000414	VOLUME	482890.805	3734940.629	433.00
LOCATION	L0000415	VOLUME	482890.674	3734926.630	433.00
LOCATION	L0000416	VOLUME	482890.544	3734912.630	433.00
LOCATION	L0000417	VOLUME	482890.413	3734898.631	433.00
LOCATION	L0000418	VOLUME	482890.283	3734884.631	433.00
	L0000419	VOLUME	482890.152	3734870.632	433.00
	L0000419	VOLUME	482890.021	3734856.633	433.00
	L0000421	VOLUME	482889.891	3734842.633	433.00
	L0000422	VOLUME	482889.760	3734828.634	433.00
LOCATION	L0000423	VOLUME	482889.630	3734814.634	433.00
LOCATION	L0000424	VOLUME	482889.499	3734800.635	433.18
LOCATION	L0000425	VOLUME	482889.369	3734786.636	433.63
LOCATION	L0000426	VOLUME	482887.306	3734772.857	433.91
	L0000427	VOLUME	482881.019	3734760.539	433.70
	L0000428	VOLUME	482873.489	3734748.737	433.45
	L0000429	VOLUME	482865.959	3734736.934	433.44
	L0000430	VOLUME	482858.428	3734725.132	433.66
	L0000431	VOLUME	482850.898	3734713.330	433.72
LOCATION	L0000432	VOLUME	482843.368	3734701.527	433.71
LOCATION	L0000433	VOLUME	482835.837	3734689.725	433.90
LOCATION	L0000434	VOLUME	482828.307	3734677.923	433.94
LOCATION	L0000435	VOLUME	482819.243	3734673.972	433.64
	L0000436	VOLUME	482807.825	3734682.073	433.26
	L0000437	VOLUME		3734690.174	
	L0000437	VOLUME		3734698.276	
	L0000439	VOLUME		3734706.377	
	L0000440	VOLUME		3734714.478	
	L0000441	VOLUME		3734722.580	433.00
LOCATION	L0000442	VOLUME	482739.318	3734730.681	433.00
LOCATION	L0000443	VOLUME	482727.900	3734738.782	433.00
LOCATION	L0000444	VOLUME	482716.482	3734746.884	433.00
LOCATION	L0000445	VOLUME	482705.064	3734754.985	433.00
	L0000446	VOLUME		3734763.086	433.00
	L0000447	VOLUME		3734771.187	433.00
	L0000448	VOLUME		3734779.289	433.00
	L0000449	VOLUME		3734787.390	433.00
	L0000450	VOLUME		3734795.491	433.00
LOCATION	L0000451	VOLUME	482636.556	3734803.593	433.00
LOCATION	L0000452	VOLUME	482625.138	3734811.694	433.00
	L0000453	VOLUME		3734819.795	433.10
	L0000454	VOLUME		3734827.896	433.43
	L0000455	VOLUME		3734835.998	433.97
	L0000456	VOLUME	482579.467	3734844.099	433.47
	L0000457	VOLUME		3734852.200	433.12
	L0000458	VOLUME		3734860.302	433.02
	L0000459	VOLUME		3734868.403	433.00
LOCATION	L0000460	VOLUME		3734876.504	433.00
LOCATION	L0000461	VOLUME		3734884.605	
LOCATION	L0000462	VOLUME	482510.959	3734892.707	433.00
	L0000463	VOLUME		3734900.808	
	L0000464	VOLUME		3734908.909	
	L0000465	VOLUME		3734917.011	
	_0000100	, 0,1,01,11	1021/0./00	J, J 1 J 1 , O 1 1	100.00

	LOCATION	L0000466	VOLUME	482465.	287	3734925	.112	433.00
	LOCATION	L0000467	VOLUME	482453.	869	3734933	.213	433.00
	LOCATION	L0000468	VOLUME	482442.	590	3734941	.484	433.00
	LOCATION	L0000469			351	3734951	.032	433.00
	LOCATION					3734960		
	LOCATION					3734970		
	LOCATION					3734979		
	LOCATION					3734991		
	LOCATION					3735002		
	LOCATION			482378.	990	3735014	.914	432.96
	LOCATION	L0000476	VOLUME	482371.	677	3735026	.852	432.72
	LOCATION	L0000477	VOLUME	482366.	326	3735039	.717	432.54
	LOCATION					3735052		
	LOCATION					3735066		
	LOCATION					3735000		
	LOCATION					3735093		
	LOCATION		VOLUME					
	LOCATION	L0000483	VOLUME					
	LOCATION	L0000484	VOLUME	482354.	927	3735135	.510	432.16
	LOCATION	L0000485	VOLUME	482355.	311	3735149	.504	432.18
	LOCATION	L0000486	VOLUME	482355.	695	3735163	.499	432.19
	LOCATION					3735177		
	LOCATION					3735191		
	LOCATION		VOLUME					
			VOLUME					
	LOCATION				232	3/35219	.4/8	432.24
		NE VOLUME Sou	rce ID =	SLINE5				
*		rameters **						
*	LINE VOLU	ME Source ID						
	SRCPARAM		0.0000004	183	3.4	19	4.00	3.25
	SRCPARAM	L0000257	0.0000004		3.4	19	4.00	3.25
	SRCPARAM	L0000258	0.0000004	183	3.4	19	4.00	3.25
	SRCPARAM	L0000259	0.0000004	183	3.4	19	4.00	3.25
		L0000260	0.0000004		3.4		4.00	
		L0000261	0.0000004		3.4		4.00	
		L0000261	0.0000004		3.4		4.00	
	SRCPARAM		0.0000004		3.4		4.00	
			0.0000004		3.4		4.00	
			0.0000004				4.00	
		L0000266	0.0000004		3.4		4.00	3.25
	SRCPARAM	L0000267					4.00	
	SRCPARAM	L0000268	0.0000004	183	3.4	19	4.00	3.25
	SRCPARAM	L0000269	0.0000004	183	3.4	19	4.00	3.25
	SRCPARAM	T.0000270	0 0000004	183	3 4	19	4.00	3.25
	SPCDADAM	T.0000271	0.000000	183	3 /	10	1 00	3.25
	CDCDADAM	T 0 0 0 0 2 7 2	0.0000004	103	2.7	10	4.00 4.00	3.25
	CDCDADAM	L0000270 L0000271 L0000272 L0000273	0.0000004	100	2.5	10	4.00	3.25
	SRCPARAM	L0000273	0.0000004	183	3.4	19	4.00	3.25
		L0000275						
*		ME Source ID						
		L0000276						
	SRCPARAM	L0000277	0.000001	.272	3.	. 49	4.0	0 3.25
	SRCPARAM	L0000278	0.0000001	272	3.	. 49	4.0	0 3.25
	SRCPARAM	L0000279	0.0000001	272	3.	. 49	4.0	0 3.25
	SRCPARAM	L0000280	0.0000001	272	3.	. 49	4.0	0 3.25 0 3.25 0 3.25 0 3.25
	SRCPARAM	T.0000281	0 0000001	272	3	49	4 0	0 3 25
	CDCDADAM	T 0000201	0.0000001	272	ວ. ວ	10	4 0	0 3.25
	ODCDYDYN OT/OLWI/WI	L0000279 L0000280 L0000281 L0000282 L0000283	0.0000001	272	ン. っ	10	1.0	0 3.43
	SKCPAKAM	LUUUUZ 03	0.0000001	. 2 1 2	ے . م	49	4.0	0 3.23
								0 3.25
								0 3.25
								0 3.25
	SRCPARAM	L0000287	0.000001	272	3.	. 49	4.0	0 3.25
	SRCPARAM							0 3.25
		L0000289		272	3.	. 49		
	SRCPARAM	L0000290	0.0000001	272	3.	.49	4.0	0 3.25
		L0000291	0.000001	272	3	. 49		
	21.011111111				٠,		1.0	3.23

SRCPARAM	L0000292	0.0000001272	3.49	4.00	3.25
	L0000293	0.0000001272	3.49	4.00	3.25
	L0000294	0.0000001272	3.49	4.00	3.25
	L0000295	0.0000001272	3.49	4.00	3.25
	L0000296	0.0000001272	3.49	4.00	3.25
	L0000290		3.49	4.00	3.25
	L0000298		3.49		3.25
	L0000299		3.49		3.25
	L0000300		3.49		3.25
	L0000301		3.49	4.00	3.25
	L0000302	0.0000001272	3.49	4.00	3.25
	L0000303	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000304	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000305	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000306	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000307	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000308	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000309	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000310	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000311	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000312	0.0000001272	3.49	4.00	3.25
SRCPARAM	L0000313	0.0000001272	3.49	4.00	3.25
	L0000314	0.0000001272	3.49	4.00	3.25
		0.0000001272	3.49	4.00	3.25
		0.0000001272	3.49	4.00	3.25
	L0000317	0.0000001272	3.49	4.00	3.25
	L0000317	0.0000001272	3.49	4.00	3.25
	L0000318		3.49	4.00	3.25
	L0000319		3.49		3.25
	L0000320		3.49		3.25
	L0000322		3.49		3.25
		0.0000001272	3.49	4.00	3.25
SRCPARAM				4 00	2 25
SRCPARAM	L0000324	0.0000001272	3.49	4.00	3.25
SRCPARAM SRCPARAM	L0000324 L0000325	0.0000001272 0.0000001272	3.49 3.49	4.00	3.25
SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326	0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325	0.0000001272 0.0000001272	3.49 3.49	4.00	3.25
SRCPARAM SRCPARAM SRCPARAM SRCPARAM *	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM SRCPARAM * * LINE VOL	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3	3.49 3.49 3.49 3.49	4.00 4.00 4.00	3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476	3.49 3.49 3.49 3.49	4.00 4.00 4.00 	3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 	4.00 4.00 4.00 	3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 	3.49 3.49 3.49 3.49 	4.00 4.00 4.00 	3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 	3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327 	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.00000008476 0.00000008476 0.00000008476 0.00000008476 0.00000008476 0.00000008476 0.00000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.00000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272 = SLINE3 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.00000008476 0.000000008476 0.00000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25
SRCPARAM SRCPARAM SRCPARAM * * LINE VOL SRCPARAM	L0000324 L0000325 L0000326 L0000327	0.0000001272 0.0000001272 0.0000001272 0.0000001272	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00	3.25 3.25

**	SRCPARAM SRCPARAM SRCPARAM	L0000356 L0000357 L0000358 L0000359 L0000360	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49	4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25
**	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	JME Source I L0000361 L0000362 L0000363 L0000364 L0000365 L0000367 L0000367 L0000369 L0000370 L0000371 L0000372	0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414 0.00000001414	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	6.51 6.51 6.51	3.25 3.25 3.25 3.25
**			 	 	 	
**	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	JME Source I L0000373 L0000374 L0000375 L0000376 L0000377	0.0000009263 0.00000009263 0.00000009263 0.00000009263 0.00000009263	3.49 3.49 3.49 3.49	6.51 6.51 6.51 6.51	3.25 3.25 3.25 3.25
	SRCPARAM	L0000378	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000379	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000380	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000381	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000382	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000383	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000384	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000385	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000386	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000387	0.00000009263	3.49	6.51	3.25
		L0000388	0.00000009263	3.49	6.51	3.25
		L0000389	0.00000009263	3.49	6.51	3.25
		L0000390	0.00000009263	3.49	6.51	3.25
		L0000391	0.00000009263	3.49	6.51	3.25
		L0000392	0.00000009263	3.49	6.51	3.25
		L0000393	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000394	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000395	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000396	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000397	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000398	0.00000009263	3.49	6.51	3.25
		L0000399	0.00000009263	3.49	6.51	3.25
		L0000400	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000401	0.00000009263	3.49	6.51	3.25
		L0000402	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000403	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000404	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000405	0.00000009263	3.49	6.51	3.25
		L0000406	0.00000009263	3.49	6.51	3.25
		L0000407	0.00000009263	3.49	6.51	3.25
		L0000408	0.00000009263	3.49	6.51	3.25
		L0000409	0.00000009263	3.49	6.51	3.25
		L0000410	0.00000009263	3.49	6.51	3.25
		L0000411	0.00000009263	3.49	6.51	3.25
		L0000412	0.00000009263	3.49	6.51	3.25
		L0000413	0.00000009263	3.49	6.51	3.25
		L0000414	0.00000009263	3.49	6.51	3.25
		L0000415	0.00000009263	3.49	6.51	3.25
		L0000416	0.00000009263	3.49	6.51	3.25
	SKCPAKAM	L0000417	0.00000009263	3.49	6.51	3.25

SRCPARAM	L0000418	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000419	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000420	0.00000009263	3.49	6.51	3.25
	L0000421	0.00000009263	3.49	6.51	3.25
	L0000422	0.00000009263	3.49	6.51	3.25
	L0000423	0.00000009263	3.49	6.51	3.25
	L0000424	0.00000009263	3.49	6.51	3.25
	L0000425	0.0000009263	3.49	6.51	3.25
	L0000426	0.00000009263	3.49	6.51	3.25
	L0000427	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000428	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000429	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000430	0.00000009263	3.49	6.51	3.25
	L0000431	0.00000009263	3.49	6.51	3.25
	L0000432	0.00000009263	3.49	6.51	3.25
	L0000433	0.00000009263	3.49	6.51	3.25
	L0000433	0.00000009263	3.49	6.51	3.25
	L0000435	0.00000009263	3.49	6.51	3.25
	L0000436	0.0000009263	3.49	6.51	3.25
	L0000437	0.00000009263	3.49	6.51	3.25
	L0000438	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000439	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000440	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000441	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000442	0.00000009263	3.49	6.51	3.25
	L0000443	0.00000009263	3.49	6.51	3.25
	L0000443	0.00000009263	3.49	6.51	3.25
	L0000444	0.00000009263	3.49	6.51	3.25
	L0000446	0.00000009263	3.49	6.51	3.25
	L0000447	0.0000009263	3.49	6.51	3.25
	L0000448	0.00000009263	3.49	6.51	3.25
	L0000449	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000450	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000451	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000452	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000453	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000454	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000455	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000456	0.00000009263	3.49	6.51	3.25
	L0000457	0.00000009263	3.49	6.51	3.25
	L0000458	0.00000009263	3.49	6.51	3.25
	L0000459	0.00000009263	3.49	6.51	3.25
	L0000455	0.00000009263	3.49	6.51	3.25
	L0000461	0.00000009263	3.49	6.51	3.25
	L0000462	0.0000009263	3.49	6.51	3.25
	L0000463	0.0000009263	3.49	6.51	3.25
	L0000464	0.00000009263	3.49	6.51	3.25
	L0000465	0.00000009263	3.49	6.51	3.25
	L0000466	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000467	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000468	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000469	0.00000009263	3.49	6.51	3.25
	L0000470	0.00000009263	3.49	6.51	3.25
	L0000471	0.00000009263	3.49	6.51	3.25
	L0000472	0.00000009263	3.49	6.51	3.25
	L0000473	0.00000009263	3.49	6.51	3.25
	L0000473	0.00000009263	3.49	6.51	3.25
	L0000475	0.00000009263	3.49	6.51	3.25
	L0000476	0.0000009263	3.49	6.51	3.25
	L0000477	0.00000009263	3.49	6.51	3.25
	L0000478	0.00000009263	3.49	6.51	3.25
	L0000479	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000480	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000481	0.00000009263	3.49	6.51	3.25
	L0000482	0.00000009263	3.49	6.51	3.25
	L0000483	0.00000009263	3.49	6.51	3.25
	-				-

```
SRCPARAM L0000484
                 0.00000009263
                               3.49
                                       6.51
                                               3.25
                 0.00000009263
                                3.49
                                       6.51
  SRCPARAM L0000485
                                               3.25
                               3.49 6.51
3.49 6.51
3.49 6.51
3.49 6.51
  SRCPARAM L0000486 0.0000009263
SRCPARAM L0000487 0.0000009263
                                               3.25
                 0.00000009263
                                               3.25
  3.25
  SRCPARAM L0000490 0.00000009263 3.49 6.51
                                              3.25
** -----
  URBANSRC ALL
  SRCGROUP ALL
SO FINISHED
*********
** AERMOD Receptor Pathway
*********
* *
RE STARTING
  INCLUDED "14804 Ops.rou"
RE FINISHED
* *
*********
** AERMOD Meteorology Pathway
* *
ME STARTING
  SURFFILE PERI V9 ADJU\PERI v9.SFC
  PROFFILE PERI V9 ADJU\PERI v9.PFL
  SURFDATA 3171 2010
  UAIRDATA 3190 2010
  SITEDATA 99999 2010
  PROFBASE 442.0 METERS
ME FINISHED
*********
** AERMOD Output Pathway
OU STARTING
** Auto-Generated Plotfiles
  PLOTFILE ANNUAL ALL "14804 Ops.AD\AN00GALL.PLT" 31
  SUMMFILE "14804 Ops.sum"
OU FINISHED
*********
** Project Parameters
**********
** PROJCTN CoordinateSystemUTM
** DESCPTN UTM: Universal Transverse Mercator
** DATUM North American Datum 1983
** DTMRGN CONUS
** UNITS
        m
** ZONE
        11
** ZONEINX 0
```

* *

```
** Lakes Environmental AERMOD MPI
***********
** AERMOD Input Produced by:
** AERMOD View Ver. 11.0.0
** Lakes Environmental Software Inc.
** Date: 9/15/2022
** File: C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 Ops\14804 Ops.ADI
*********
* *
***********
** AERMOD Control Pathway
*********
* *
CO STARTING
  TITLEONE C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O
  MODELOPT DFAULT CONC
  AVERTIME ANNUAL
  URBANOPT 2189641 Riverside County
  POLLUTID DPM
  RUNORNOT RUN
  ERRORFIL "14804 Ops.err"
CO FINISHED
**********
** AERMOD Source Pathway
*********
* *
* *
SO STARTING
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE1
** DESCRSRC Idle
** PREFIX
** Length of Side = 8.59
** Configuration = Adjacent
** Emission Rate = 9.66E-06
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 2
** 483133.488, 3735051.338, 434.00, 3.49, 4.00
** 483134.398, 3735226.219, 434.00, 3.49, 4.00
  LOCATION L0000256
                     VOLUME 483133.511 3735055.633 434.00
  LOCATION L0000257
                    VOLUME 483133.555 3735064.223 434.00
  LOCATION L0000258
                    VOLUME 483133.600 3735072.813 434.00
                    VOLUME 483133.645 3735081.403 434.00
  LOCATION L0000259
                    VOLUME 483133.689 3735089.993 434.00
  LOCATION L0000260
                     VOLUME 483133.734 3735098.583 434.00
  LOCATION L0000261
  LOCATION L0000262
                    VOLUME 483133.779 3735107.173 434.00
  LOCATION L0000263
                    VOLUME 483133.823 3735115.762 434.00
  LOCATION L0000264
                    VOLUME 483133.868 3735124.352 434.00
                    VOLUME 483133.913 3735132.942 434.00
  LOCATION L0000265
                     VOLUME 483133.957 3735141.532 434.00
  LOCATION L0000266
  LOCATION L0000267
                     VOLUME 483134.002 3735150.122 434.00
  LOCATION L0000268
                    VOLUME 483134.047 3735158.712 434.00
  LOCATION L0000269
                    VOLUME 483134.091 3735167.302 434.00
  LOCATION L0000270
                    VOLUME 483134.136 3735175.892 434.00
                   VOLUME 483134.181 3735184.482 434.00
  LOCATION L0000271
```

```
LOCATION L0000272 VOLUME 483134.225 3735193.071 434.00
                                                VOLUME 483134.270 3735201.661 434.00
     LOCATION L0000273
     LOCATION L0000274 VOLUME 483134.315 3735210.251 434.00 LOCATION L0000275 VOLUME 483134.359 3735218.841 434.00
** End of LINE VOLUME Source ID = SLINE1
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE2
** DESCRSRC Onsite
** PREFIX
** Length of Side = 8.59
** Configuration = Adjacent
** Emission Rate = 6.613E-06
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 5
** 483278.314, 3735013.336, 435.99, 3.49, 4.00
** 483261.724, 3735014.138, 435.25, 3.49, 4.00
** 483247.542, 3735011.730, 435.02, 3.49, 4.00
** 483114.283, 3735010.660, 434.00, 3.49, 4.00
** 483118.297, 3735292.429, 433.67, 3.49, 4.00
** -----
     LOCATION L0000276 VOLUME 483274.024 3735013.543 435.80
     LOCATION L0000277
                                                VOLUME 483265.444 3735013.958 435.51
    LOCATION L0000278 VOLUME 483256.927 3735013.324 435.23 LOCATION L0000279 VOLUME 483248.459 3735011.886 435.00 LOCATION L0000280 VOLUME 483239.882 3735011.669 435.00 LOCATION L0000281 VOLUME 483231.292 3735011.600 435.00 LOCATION L0000282 VOLUME 483222.702 3735011.531 435.00 LOCATION L0000283 VOLUME 483214.113 3735011.462 435.00 LOCATION L0000284 VOLUME 483205.523 3735011.393 435.00 LOCATION L0000285 VOLUME 483196.933 3735011.324 435.00 LOCATION L0000286 VOLUME 483188.344 3735011.255 435.00 LOCATION L0000287 VOLUME 483179.754 3735011.186 435.00 LOCATION L0000288 VOLUME 483171.164 3735011.117 435.00 LOCATION L0000289 VOLUME 483162.574 3735011.048 435.00 LOCATION L0000289 VOLUME 483153.985 3735010.979 434.80
     LOCATION L0000278
                                                VOLUME 483256.927 3735013.324 435.23
    LOCATION LO000289 VOLUME 483162.574 3735011.048 435.00 LOCATION LO000290 VOLUME 483153.985 3735010.979 434.80 LOCATION LO000291 VOLUME 483145.395 3735010.910 434.51 LOCATION LO000292 VOLUME 483136.805 3735010.841 434.22 LOCATION LO000293 VOLUME 483128.216 3735010.772 434.00 LOCATION LO000294 VOLUME 483119.626 3735010.703 434.00 LOCATION LO000295 VOLUME 483114.330 3735013.907 434.00 LOCATION LO000296 VOLUME 483114.452 3735022.496 434.00 LOCATION LO000297 VOLUME 483114.574 3735031.085 434.00 LOCATION LO000298 VOLUME 483114.697 3735039.674 434.00 LOCATION LO000299 VOLUME 483114.819 3735048.263 434.00 LOCATION LO000300 VOLUME 483114.941 3735056.853 434.00
     LOCATION L0000300
                                               VOLUME 483114.941 3735056.853 434.00
     LOCATION L0000301
                                                VOLUME 483115.064 3735065.442 434.00
                                                VOLUME 483115.186 3735074.031 434.00
VOLUME 483115.309 3735082.620 434.00
     LOCATION L0000302
     LOCATION L0000303 VOLUME 483115.309 3735082.620 434.00 LOCATION L0000304 VOLUME 483115.431 3735091.209 434.00
                                                VOLUME 483115.553 3735099.798 434.00
     LOCATION L0000305
                                                VOLUME 483115.676 3735108.387 434.00
     LOCATION L0000306
     LOCATION L0000307 VOLUME 483115.798 3735106.387 434.00
LOCATION L0000308 VOLUME 483115.920 3735125.566 434.00
LOCATION L0000309 VOLUME 483116.043 3735134.155 434.00
LOCATION L0000310 VOLUME 483116.165 3735142.744 434.00
LOCATION L0000311 VOLUME 483116.287 3735151.333 434.00
LOCATION L0000312 VOLUME 483116.287 3735151.333 434.00
                                                VOLUME 483116.410 3735159.922 434.00
     LOCATION L0000312
                                                VOLUME 483116.532 3735168.511 434.00
     LOCATION L0000313
     LOCATION L0000314 VOLUME 483116.654 3735177.100 434.00 LOCATION L0000315 VOLUME 483116.777 3735185.690 434.00 LOCATION L0000316 VOLUME 483116.899 3735194.279 434.00 LOCATION L0000317 VOLUME 483117.021 3735202.868 434.00 LOCATION L0000318 VOLUME 483117.144 3735211.457 434.00 LOCATION L0000319 VOLUME 483117.266 3735220.046 434.00
```

```
LOCATION L0000320 VOLUME 483117.388 3735228.635 434.00
  LOCATION L0000321 VOLUME 483117.511 3735237.224 434.00 LOCATION L0000322 VOLUME 483117.633 3735245.813 434.00 LOCATION L0000323 VOLUME 483117.756 3735254.403 434.00 LOCATION L0000324 VOLUME 483117.878 3735262.992 433.91 LOCATION L0000325 VOLUME 483118.000 3735271.581 433.79 LOCATION L0000326 VOLUME 483118.123 3735280.170 433.68 LOCATION L0000327 VOLUME 483118.245 3735288.759 433.61
                        VOLUME 483117.511 3735237.224 434.00
   LOCATION L0000321
** End of LINE VOLUME Source ID = SLINE2
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE3
** DESCRSRC Sherman 15%
** PREFIX
** Length of Side = 8.59
** Configuration = Adjacent
** Emission Rate = 2.797E-07
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 2
** 483286.624, 3735013.205, 435.97, 3.49, 4.00
** 483289.376, 3735295.755, 434.93, 3.49, 4.00
** -----
  LOCATION L0000328
                        VOLUME 483286.666 3735017.500 435.96
   LOCATION L0000329
                        VOLUME 483286.750 3735026.089 435.74
** End of LINE VOLUME Source ID = SLINE3
** -----
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE4
** DESCRSRC Mapes 15%
** PREFIX
** Length of Side = 14.00
** Configuration = Adjacent
** Emission Rate = 1.697E-07
** Vertical Dimension = 6.99
```

```
** SZINIT = 3.25
** Nodes = 2
** 483289.911, 3735301.910, 434.53, 3.49, 6.51
** 483118.384, 3735300.572, 433.40, 3.49, 6.51
** ______
        LOCATION L0000361 VOLUME 483282.911 3735301.855 434.52
       LOCATION LO000361 VOLUME 483282.911 3735301.855 434.52
LOCATION LO000362 VOLUME 483268.912 3735301.746 434.30
LOCATION LO000363 VOLUME 483254.912 3735301.637 434.08
LOCATION LO000364 VOLUME 483240.913 3735301.528 434.00
LOCATION LO000365 VOLUME 483226.913 3735301.418 434.00
LOCATION LO000366 VOLUME 483212.913 3735301.309 434.00
LOCATION LO000367 VOLUME 483198.914 3735301.200 434.00
LOCATION LO000368 VOLUME 483184.914 3735301.091 434.00
LOCATION LO000369 VOLUME 483170.915 3735300.982 434.00
LOCATION LO000370 VOLUME 483156.915 3735300.872 434.00
LOCATION LO000371 VOLUME 483142.916 3735300.763 434.00
LOCATION LO000372 VOLUME 483128.916 3735300.654 433.96
** End of LINE VOLUME Source ID = SLINE4
** ______
** Line Source Represented by Adjacent Volume Sources
** LINE VOLUME Source ID = SLINE5
** DESCRSRC Mapes 100%
** PREFIX
** Length of Side = 14.00
** Configuration = Adjacent
** Emission Rate = 0.00001093
** Vertical Dimension = 6.99
** SZINIT = 3.25
** Nodes = 10
** 483117.314, 3735300.572, 433.37, 3.49, 6.51
** 482894.142, 3735298.431, 433.00, 3.49, 6.51
** 482889.325, 3734781.978, 433.96, 3.49, 6.51
** 482886.470, 3734769.082, 433.93, 3.49, 6.51
** 482823.747, 3734670.776, 433.87, 3.49, 6.51
** 482443.793, 3734940.362, 433.00, 3.49, 6.51
** 482399.164, 3734981.976, 432.96, 3.49, 6.51
** 482369.612, 3735030.224, 432.44, 3.49, 6.51
** 482353.328, 3735077.266, 432.02, 3.49, 6.51
** 482357.550, 3735231.057, 432.12, 3.49, 6.51
** -----
        LOCATION L0000373 VOLUME 483110.314 3735300.505 433.34
       LOCATION L0000374 VOLUME 483096.315 3735300.370 433.00 LOCATION L0000375 VOLUME 483082.316 3735300.236 433.00 LOCATION L0000376 VOLUME 483068.316 3735300.102 433.00 LOCATION L0000377 VOLUME 483054.317 3735299.967 433.00 LOCATION L0000378 VOLUME 483040.317 3735299.833 433.00 LOCATION L0000379 VOLUME 483026.318 3735299.699 433.00 LOCATION L0000380 VOLUME 483012.319 3735299.565 433.00 LOCATION L0000381 VOLUME 482998.319 3735299.430 433.00 LOCATION L0000382 VOLUME 482984.320 3735299.296 433.00 LOCATION L0000383 VOLUME 482970.321 3735299.162 433.00 LOCATION L0000384 VOLUME 482956.321 3735299.027 433.00 LOCATION L0000385 VOLUME 482942 322 3735298.893 433.00 LOCATION L0000385 VOLUME 482942 322 3735298 893 433.00 LOCATION L0
        LOCATION L0000374
                                                                    VOLUME 483096.315 3735300.370 433.00
       LOCATION L0000384 VOLUME 482956.321 3735299.027 433.00
LOCATION L0000385 VOLUME 482942.322 3735298.893 433.00
LOCATION L0000386 VOLUME 482928.323 3735298.759 433.00
LOCATION L0000387 VOLUME 482914.323 3735298.625 433.00
LOCATION L0000388 VOLUME 482900.324 3735298.490 433.00
LOCATION L0000389 VOLUME 482894.069 3735290.614 433.00
LOCATION L0000390 VOLUME 482893.938 3735276.614 433.00
LOCATION L0000391 VOLUME 482893.808 3735262.615 433.00
        LOCATION L0000392
                                                                    VOLUME 482893.677 3735248.616 433.00
       LOCATION LOU00392 VOLUME 482893.677 3735248.616 433.00
LOCATION LOU00393 VOLUME 482893.547 3735234.616 433.00
LOCATION LOU00394 VOLUME 482893.416 3735220.617 433.00
LOCATION LOU00395 VOLUME 482893.286 3735206.617 433.00
LOCATION LOU00396 VOLUME 482893.155 3735192.618 433.00
LOCATION LOU00397 VOLUME 482893.024 3735178.619 433.00
LOCATION LOU00398 VOLUME 482892.894 3735164.619 433.00
```

	L0000399	VOLUME	482892.763	3735150.620	433.00
LOCATION	L0000400	VOLUME	482892.633	3735136.620	433.00
LOCATION	L0000401	VOLUME	482892.502	3735122.621	433.00
LOCATION	L0000402	VOLUME	482892.372	3735108.622	433.00
	L0000403	VOLUME	482892.241	3735094.622	433.00
	L0000404	VOLUME	482892.110	3735080.623	433.00
	L0000405	VOLUME	482891.980	3735066.623	433.00
	L0000406	VOLUME	482891.849	3735052.624	433.00
	L0000407	VOLUME	482891.719	3735038.625	433.00
LOCATION	L0000408	VOLUME	482891.588	3735024.625	433.00
LOCATION	L0000409	VOLUME	482891.458	3735010.626	433.00
LOCATION	L0000410	VOLUME	482891.327	3734996.627	433.00
	L0000411	VOLUME	482891.197	3734982.627	433.00
	L0000412	VOLUME	482891.066	3734968.628	433.00
	L0000412	VOLUME	482890.935	3734954.628	433.00
	L0000414	VOLUME	482890.805	3734940.629	433.00
	L0000415	VOLUME	482890.674	3734926.630	433.00
	L0000416	VOLUME	482890.544	3734912.630	433.00
LOCATION	L0000417	VOLUME	482890.413	3734898.631	433.00
LOCATION	L0000418	VOLUME	482890.283	3734884.631	433.00
LOCATION	L0000419	VOLUME	482890.152	3734870.632	433.00
LOCATION	L0000420	VOLUME	482890.021	3734856.633	433.00
	L0000421	VOLUME	482889.891	3734842.633	433.00
	L0000422	VOLUME	482889.760	3734828.634	433.00
	L0000422				
		VOLUME	482889.630	3734814.634	433.00
	L0000424	VOLUME	482889.499	3734800.635	433.18
	L0000425	VOLUME	482889.369	3734786.636	433.63
LOCATION	L0000426	VOLUME	482887.306	3734772.857	433.91
LOCATION	L0000427	VOLUME	482881.019	3734760.539	433.70
LOCATION	L0000428	VOLUME	482873.489	3734748.737	433.45
LOCATION	L0000429	VOLUME	482865.959	3734736.934	433.44
	L0000430	VOLUME	482858.428	3734725.132	433.66
	L0000431	VOLUME	482850.898	3734713.330	433.72
	L0000431		482843.368	3734713.550	433.71
		VOLUME			
	L0000433	VOLUME	482835.837	3734689.725	433.90
	L0000434	VOLUME	482828.307	3734677.923	433.94
	L0000435	VOLUME	482819.243	3734673.972	433.64
LOCATION	L0000436	VOLUME	482807.825	3734682.073	433.26
LOCATION	L0000437	VOLUME	482796.407	3734690.174	433.00
LOCATION	L0000438	VOLUME	482784.989	3734698.276	433.00
	L0000439	VOLUME	482773.571	3734706.377	433.00
	L0000440	VOLUME		3734714.478	433.00
	L0000441	VOLUME		3734722.580	433.00
	L0000442	VOLUME		3734730.681	433.00
	L0000443	VOLUME		3734738.782	433.00
	L0000444	VOLUME		3734746.884	433.00
	L0000445	VOLUME		3734754.985	433.00
LOCATION	L0000446	VOLUME	482693.646	3734763.086	433.00
LOCATION	L0000447	VOLUME	482682.228	3734771.187	433.00
LOCATION	L0000448	VOLUME	482670.810	3734779.289	433.00
LOCATION	L0000449	VOLUME	482659.392	3734787.390	433.00
	L0000450	VOLUME		3734795.491	433.00
	L0000451	VOLUME	482636.556	3734803.593	433.00
	L0000451	VOLUME	482625.138	3734811.694	433.00
	L0000453	VOLUME	482613.720	3734819.795	433.10
	L0000454	VOLUME		3734827.896	433.43
	L0000455	VOLUME	482590.885	3734835.998	433.97
	L0000456	VOLUME		3734844.099	433.47
LOCATION	L0000457	VOLUME	482568.049	3734852.200	433.12
LOCATION	L0000458	VOLUME	482556.631	3734860.302	433.02
	L0000459	VOLUME	482545.213		433.00
	L0000460	VOLUME	482533.795	3734876.504	433.00
	L0000461	VOLUME	482522.377		433.00
	L0000461	VOLUME		3734892.707	433.00
	L0000462	VOLUME		3734992.707	433.00
TOCALION	L0000464	VOLUME	402400.123	3734908.909	433.00

	LOCATION	L0000489 L0000490	VOLUME	482465. 482453. 482442. 482422. 482411. 482401. 482393. 482378. 482371. 482366. 482357. 482353. 482353. 482355. 482355. 482355. 482355. 482356. 482357.	287 869 590 351 111 872 633 615 302 990 677 326 746 167 390 775 159 543 927 311 695 080 464 848	3734925 3734933 3734941 3734951 3734970 3734970 3734979 3735002 3735014 3735026 3735039 3735052 3735066 3735079 3735079 3735107 3735121 3735121 3735135 3735149 3735163 3735177 3735191 3735205	.112 .213 .484 .032 .580 .127 .675 .037 .975 .914 .852 .717 .531 .525 .520 .515 .510 .504 .499 .494 .488 .483	433.00 433.00 433.00 433.00 433.00 433.00 433.00 433.00 432.96 432.72 432.54 432.39 432.24 432.11 432.12 432.14 432.15 432.16 432.18 432.19 432.20 432.21 432.21
		INE VOLUME Son	urce ID =	SLINE5				
		arameters **	- CITNE1					
*	SRCPARAM	L0000274 L0000275	0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004 0.0000004	483 483 483 483 483 483 483 483 483 483	3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	49 49 49 49 49 49 49 49 49 49 49 49 49 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
*	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	JME Source ID L0000276 L0000277 L0000278 L0000280 L0000281 L0000282 L0000283 L0000284 L0000285 L0000286 L0000287 L0000288 L0000289 L0000290	0.0000000	1272 1272 1272 1272 1272 1272 1272 1272	3. 3. 3. 3. 3. 3. 3. 3.	. 49 . 49 . 49 . 49 . 49 . 49	4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

	SRCPARAM	L0000291	0.000001272	3.49	4.00	3.25
		L0000292	0.0000001272	3.49	4.00	3.25
		L0000293	0.0000001272	3.49	4.00	3.25
		L0000294	0.0000001272	3.49	4.00	3.25
	SRCPARAM	L0000295	0.0000001272	3.49	4.00	3.25
		L0000296		3.49	4.00	3.25
		L0000297		3.49	4.00	3.25
		L0000298		3.49	4.00	3.25
	SRCPARAM	L0000299		3.49	4.00	3.25
		L0000300	0.000001272	3.49	4.00	3.25
		L0000301	0.0000001272	3.49	4.00	3.25
		L0000302	0.0000001272	3.49	4.00	3.25
		L0000303	0.0000001272	3.49	4.00	3.25
		L0000304	0.0000001272	3.49	4.00	3.25
		L0000305	0.000001272	3.49	4.00	3.25
		L0000306		3.49	4.00	3.25
		L0000307		3.49	4.00	3.25
		L0000308		3.49	4.00	3.25
		L0000309		3.49	4.00	3.25
		L0000310		3.49	4.00	3.25
		L0000311		3.49	4.00	3.25
		L0000312		3.49	4.00	3.25
		L0000313	0.0000001272	3.49	4.00	3.25
		L0000314	0.0000001272	3.49	4.00	3.25
		L0000315	0.0000001272	3.49	4.00	3.25
		L0000316	0.0000001272	3.49	4.00	3.25
		L0000317		3.49	4.00	3.25
		L0000317		3.49	4.00	3.25
		L0000319		3.49	4.00	3.25
		L0000319		3.49	4.00	3.25
		L0000320		3.49	4.00	3.25
		L0000321		3.49	4.00	3.25
		L0000322	0.0000001272	3.49	4.00	3.25
		L0000323	0.0000001272	3.49	4.00	3.25
		L0000324	0.0000001272	3.49	4.00	3.25
				3.49	4.00	3.25
		L0000327	0.0000001272	3.49	4.00	3.25
*						
*	LINE VOLU	JME Source ID	= SLINE3			
		L0000328	0.000000008476	3.49	4.00	3.25
		L0000329	0.000000008476	3.49	4.00	3.25
		L0000330	0.000000008476			
				3.49	4.00	3.25
	OUCLAVAM			3.49 3.49	4.00	3.25 3.25
		L0000331	0.000000008476	3.49	4.00	3.25
	SRCPARAM	L0000331 L0000332	0.000000008476 0.000000008476	3.49 3.49	4.00 4.00	3.25 3.25
	SRCPARAM SRCPARAM	L0000331 L0000332 L0000333	0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49	4.00 4.00 4.00	3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334	0.000000008476 0.0000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335	0.000000008476 0.0000000008476 0.0000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336	0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476	3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337	0.000000008476 0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000338	0.000000008476 0.000000008476 0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000338 L0000339	0.000000008476 0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000338 L0000339 L0000340	0.000000008476 0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000338 L0000340 L0000341 L0000342	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000337 L0000338 L0000339 L0000340 L0000341 L0000342 L0000343	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000337 L0000338 L0000339 L0000340 L0000341 L0000342 L0000343 L0000344	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000337 L0000338 L0000339 L0000340 L0000341 L0000342 L0000343 L0000344 L0000345	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000339 L0000340 L0000341 L0000342 L0000343 L0000344 L0000345 L0000346	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000338 L0000340 L0000341 L0000342 L0000344 L0000345 L0000346 L0000347	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000337 L0000338 L0000339 L0000340 L0000341 L0000342 L0000344 L0000345 L0000346 L0000347 L0000348	0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000339 L0000340 L0000341 L0000342 L0000343 L0000344 L0000345 L0000346 L0000347 L0000349	0.000000008476 0.000000008476 0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000339 L0000340 L0000341 L0000342 L0000343 L0000344 L0000345 L0000346 L0000347 L0000348 L0000349 L0000350	0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000339 L0000340 L0000341 L0000342 L0000343 L0000345 L0000345 L0000346 L0000347 L0000348 L0000349 L0000350 L0000351	0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000339 L0000340 L0000341 L0000342 L0000343 L0000345 L0000345 L0000346 L0000347 L0000349 L0000350 L0000351 L0000352	0.000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.0000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
	SRCPARAM	L0000331 L0000332 L0000333 L0000334 L0000335 L0000336 L0000337 L0000339 L0000340 L0000341 L0000342 L0000343 L0000345 L0000345 L0000346 L0000347 L0000348 L0000349 L0000350 L0000351	0.000000008476 0.000000008476	3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

**	SRCPARAM SRCPARAM SRCPARAM SRCPARAM	L0000355 L0000356 L0000357 L0000358 L0000359 L0000360	0.000000008476 0.000000008476		4.00 4.00 4.00 4.00 4.00 4.00	3.25 3.25 3.25 3.25 3.25 3.25
**	TITNE VOL	JME Source ID	= SLINE4			
		L0000361	0.00000001414	3.49	6.51	3.25
		L0000362	0.00000001414	3.49	6.51	3.25
		L0000363	0.00000001414	3.49	6.51	3.25
	SRCPARAM	L0000364	0.0000001414	3.49	6.51	3.25
	SRCPARAM	L0000365	0.0000001414	3.49	6.51	3.25
	SRCPARAM	L0000366	0.0000001414	3.49	6.51	3.25
		L0000367	0.0000001414	3.49	6.51	3.25
		L0000368	0.0000001414	3.49	6.51	3.25
		L0000369	0.00000001414	3.49	6.51	3.25
		L0000370	0.00000001414	3.49	6.51	3.25
		L0000371 L0000372	0.0000001414 0.0000001414	3.49	6.51 6.51	3.25 3.25
**			0.0000001414	3.49	0.31	3.23
**	LINE VOLU	JME Source ID	= SLINE5			
		L0000373	0.0000009263	3.49	6.51	3.25
	SRCPARAM	L0000374	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000375	0.00000009263	3.49	6.51	3.25
		L0000376	0.00000009263	3.49	6.51	3.25
		L0000377	0.00000009263	3.49	6.51	3.25
		L0000378	0.00000009263	3.49	6.51	3.25
		L0000379	0.00000009263	3.49	6.51	3.25
		L0000380 L0000381	0.00000009263 0.00000009263	3.49 3.49	6.51 6.51	3.25 3.25
		L0000381	0.00000009263	3.49	6.51	3.25
		L0000383	0.00000009263	3.49	6.51	3.25
		L0000384	0.00000009263	3.49	6.51	3.25
		L0000385	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000386	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000387	0.00000009263	3.49	6.51	3.25
		L0000388	0.00000009263	3.49	6.51	3.25
		L0000389	0.00000009263			3.25
		L0000390	0.00000009263	3.49	6.51	3.25
		L0000391 L0000392	0.00000009263 0.00000009263	3.49 3.49	6.51 6.51	3.25 3.25
		L0000392	0.00000009263	3.49	6.51	3.25
		L0000393	0.00000009263	3.49	6.51	3.25
		L0000395	0.00000009263	3.49	6.51	3.25
		L0000396	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000397	0.00000009263	3.49	6.51	3.25
		L0000398	0.00000009263	3.49	6.51	3.25
		L0000399	0.00000009263	3.49	6.51	3.25
		L0000400	0.00000009263	3.49	6.51	3.25
		L0000401	0.00000009263	3.49	6.51	3.25
		L0000402 L0000403	0.00000009263 0.00000009263	3.49 3.49	6.51 6.51	3.25 3.25
		L0000403	0.00000009263	3.49	6.51	3.25
		L0000405	0.00000009263	3.49	6.51	3.25
		L0000406	0.00000009263	3.49	6.51	3.25
		L0000407	0.00000009263	3.49	6.51	3.25
	SRCPARAM	L0000408	0.0000009263	3.49	6.51	3.25
	SRCPARAM	L0000409	0.00000009263	3.49	6.51	3.25
		L0000410	0.00000009263	3.49	6.51	3.25
		L0000411	0.00000009263	3.49	6.51	3.25
		L0000412	0.00000009263	3.49	6.51	3.25
		L0000413	0.00000009263	3.49	6.51	3.25
		L0000414 L0000415	0.00000009263 0.00000009263	3.49 3.49	6.51 6.51	3.25 3.25
		L0000415	0.00000009263	3.49	6.51	3.25
	OUCT VIVAIA	T0000410	0.000000000	J. IJ	J.JI	J • 2 J

SRCPARAM	L0000417	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000418	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000419	0.00000009263	3.49	6.51	3.25
	L0000420	0.00000009263	3.49	6.51	3.25
	L0000421	0.00000009263	3.49	6.51	3.25
	L0000421	0.00000009263	3.49	6.51	3.25
	L0000423	0.00000009263	3.49	6.51	3.25
	L0000424	0.0000009263	3.49	6.51	3.25
	L0000425	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000426	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000427	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000428	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000429	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000430	0.00000009263	3.49	6.51	3.25
	L0000431	0.00000009263	3.49	6.51	3.25
	L0000432	0.00000009263	3.49	6.51	3.25
	L0000433	0.00000009263	3.49	6.51	3.25
	L0000433	0.00000009263	3.49	6.51	3.25
	L0000435	0.00000009263	3.49	6.51	3.25
	L0000436	0.0000009263	3.49	6.51	3.25
	L0000437	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000438	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000439	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000440	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000441	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000442	0.00000009263	3.49	6.51	3.25
	L0000443	0.00000009263	3.49	6.51	3.25
	L0000444	0.00000009263	3.49	6.51	3.25
	L0000445	0.00000009263	3.49	6.51	3.25
	L0000445	0.00000009263	3.49	6.51	3.25
	L0000447	0.00000009263	3.49	6.51	3.25
	L0000448	0.00000009263	3.49	6.51	3.25
	L0000449	0.00000009263	3.49	6.51	3.25
	L0000450	0.0000009263	3.49	6.51	3.25
	L0000451	0.00000009263	3.49	6.51	3.25
	L0000452	0.00000009263	3.49	6.51	3.25
	L0000453	0.00000009263	3.49	6.51	3.25
	L0000454	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000455	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000456	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000457	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000458	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000459	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000460	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000461	0.00000009263	3.49	6.51	3.25
	L0000462	0.00000009263	3.49	6.51	3.25
	L0000463	0.00000009263	3.49	6.51	3.25
	L0000464	0.00000009263	3.49	6.51	3.25
	L0000465	0.00000009263	3.49	6.51	3.25
	L0000465	0.00000009263	3.49	6.51	3.25
	L0000466	0.00000009263	3.49	6.51	
					3.25
	L0000468	0.00000009263	3.49	6.51	3.25
	L0000469	0.00000009263	3.49	6.51	3.25
	L0000470	0.0000009263	3.49	6.51	3.25
	L0000471	0.0000009263	3.49	6.51	3.25
	L0000472	0.00000009263	3.49	6.51	3.25
	L0000473	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000474	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000475	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000476	0.00000009263	3.49	6.51	3.25
SRCPARAM	L0000477	0.00000009263	3.49	6.51	3.25
	L0000478	0.00000009263	3.49	6.51	3.25
	L0000479	0.00000009263	3.49	6.51	3.25
	L0000480	0.00000009263	3.49	6.51	3.25
	L0000481	0.00000009263	3.49	6.51	3.25
	L0000482	0.00000009263	3.49	6.51	3.25
	-	· 	-		

```
SRCPARAM L0000484
                     0.00000009263
                                       3.49
                                               6.51
                                                         3.25
                                     3.49 6.51
3.49 6.51
3.49 6.51
3.49 6.51
3.49 6.51
  SRCPARAM L0000485
                     0.00000009263
                                                         3.25
  SRCPARAM L0000486
                                                         3.25
                     0.0000009263
  SRCPARAM L0000487 0.0000009263
SRCPARAM L0000488 0.0000009263
                                                         3.25

      SRCPARAM L0000489
      0.00000009263
      3.49
      6.51
      3.25

      SRCPARAM L0000490
      0.00000009263
      3.49
      6.51
      3.25

** -----
  URBANSRC ALL
  SRCGROUP ALL
SO FINISHED
*********
** AERMOD Receptor Pathway
**********
* *
RE STARTING
  INCLUDED "14804 Ops.rou"
RE FINISHED
********
** AERMOD Meteorology Pathway
*********
* *
* *
ME STARTING
  SURFFILE PERI V9 ADJU\PERI v9.SFC
  PROFFILE PERI V9 ADJU\PERI v9.PFL
  SURFDATA 3171 2010
  UAIRDATA 3190 2010
  SITEDATA 99999 2010
  PROFBASE 442.0 METERS
ME FINISHED
*********
** AERMOD Output Pathway
*********
* *
OU STARTING
** Auto-Generated Plotfiles
  PLOTFILE ANNUAL ALL "14804 Ops.AD\AN00GALL.PLT" 31
  SUMMFILE "14804 Ops.sum"
OU FINISHED
 *** Message Summary For AERMOD Model Setup ***
 ----- Summary of Total Messages -----
                  0 Fatal Error Message(s)
 A Total of
A Total of
                   2 Warning Message(s)
                   0 Informational Message(s)
 A Total of
   ****** FATAL ERROR MESSAGES ******
             *** NONE ***
   ****** WARNING MESSAGES ******
ME W186 628 MEOPEN: THRESH 1MIN 1-min ASOS wind speed threshold used
                                                                                 0.50
ME W187
          628
                   MEOPEN: ADJ U* Option for Stable Low Winds used in AERMET
 **********
```

6.51

3.25

3.49

SRCPARAM L0000483

0.00000009263

```
*** SETUP Finishes Successfully ***
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
 ***
                                                                     ***
                                                                               14:57:36
                    PAGE 1
 *** MODELOPTs:
               RegDFAULT CONC ELEV URBAN ADJ U*
                                       *** MODEL SETUP OPTIONS SUMMARY
 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
 ** Model Options Selected:
     * Model Uses Regulatory DEFAULT Options
     * Model Is Setup For Calculation of Average CONCentration Values.
     * NO GAS DEPOSITION Data Provided.
     * NO PARTICLE DEPOSITION Data Provided.
     * Model Uses NO DRY DEPLETION. DDPLETE = F
     * Model Uses NO WET DEPLETION. WETDPLT = F
     * Stack-tip Downwash.
     * Model Accounts for ELEVated Terrain Effects.
     * Use Calms Processing Routine.
     * Use Missing Data Processing Routine.
     * No Exponential Decay.
     * Model Uses URBAN Dispersion Algorithm for the SBL for 235 Source(s),
       for Total of 1 Urban Area(s):
  Urban Population = 2189641.0; Urban Roughness Length = 1.000 m
     * Urban Roughness Length of 1.0 Meter Used.
     * ADJ U* \, - Use ADJ U* option for SBL in AERMET
     * CCVR Sub - Meteorological data includes CCVR substitutions
     * TEMP Sub - Meteorological data includes TEMP substitutions
     * Model Assumes No FLAGPOLE Receptor Heights.
     * The User Specified a Pollutant Type of: DPM
 **Model Calculates ANNUAL Averages Only
 **This Run Includes: 235 Source(s); 1 Source Group(s); and 27 Receptor(s)
               with:
                       0 POINT(s), including
                        0 POINTCAP(s) and 0 POINTHOR(s)
               and: 235 VOLUME source(s)
                      0 AREA type source(s)
               and:
                       0 LINE source(s)
               and:
                       0 RLINE/RLINEXT source(s)
               and: 0 OPENPIT source(s)
and: 0 BUOYANT LINE source(s) with a total of 0 line(s)
and: 0 SWPOINT source(s)
 **Model Set To Continue RUNning After the Setup Testing.
 **The AERMET Input Meteorological Data Version Date: 16216
 **Output Options Selected:
         Model Outputs Tables of ANNUAL Averages by Receptor
         Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
         Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword)
 **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
                                                             m for Missing Hours
                                                             b for Both Calm and Missing
```

Hours

**Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 442.00; Decay Coef. =

0.000 ; Rot. Angle = 0.0

Emission Units = GRAMS/SEC
Unit Factor = 0.10000E+07
Output Units = MICROGRAMS/M**3

; Emission Rate

**Approximate Storage Requirements of Model = 3.6 MB of RAM.

**Input Runstream File:

aermod.inp

**Output Print File:

aermod.out

**Detailed Error/Message File: 14804

Ops.err

**File for Summary of Results: 14804

Ops.sum

Sherman\14804 O *** 09/15/22 *** AERMET - VERSION 16216 ***

*** 14:57:36

PAGE 2

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

	NUMBER URBAN	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	
SOURCE SOURCE	PART. SCALAR VAR	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	
ID (METE	CATS.	ВУ	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
 (MEIE									
			400400 5	0.000.000.000	404.0	0.10		0.05	
L0000256 YES	0	0.48300E-06	483133.5	3735055.6	434.0	3.49	4.00	3.25	
L0000257 YES	0	0.48300E-06	483133.6	3735064.2	434.0	3.49	4.00	3.25	
L0000258 YES	0	0.48300E-06	483133.6	3735072.8	434.0	3.49	4.00	3.25	
L0000259	0	0.48300E-06	483133.6	3735081.4	434.0	3.49	4.00	3.25	
YES L0000260	0	0.48300E-06	483133.7	3735090.0	434.0	3.49	4.00	3.25	
YES L0000261	0	0.48300E-06	483133.7	3735098.6	434.0	3.49	4.00	3.25	
YES L0000262	0	0.48300E-06	483133.8	3735107.2	434.0	3.49	4.00	3.25	
YES L0000263	0	0.48300E-06	483133.8	3735115.8	434.0	3.49	4.00	3.25	
YES L0000264	0	0.48300E-06	483133.9	3735124.4	434.0	3.49	4.00	3.25	
YES L0000265	0	0.48300E-06	483133.9	3735132.9	434.0	3.49	4.00	3.25	
YES L0000266	0	0.48300E-06	483134.0	3735141.5	434.0	3.49	4.00	3.25	
YES L0000267	0	0.48300E-06	483134.0	3735150.1	434.0	3.49	4.00	3.25	
YES L0000268	0	0.48300E-06	483134.0	3735158.7	434.0	3.49	4.00	3.25	
YES L0000269	0	0.48300E-06		3735167.3	434.0	3.49	4.00	3.25	
YES	•								
L0000270	0	0.48300E-06	403134.1	3735175.9	434.0	3.49	4.00	3.25	

YES L0000271	0	0.48300E-06	483134.2 373	35184.5	434.0	3.49	4.00	3.25
YES L0000272	0	0.48300E-06	483134.2 373	35193.1	434.0	3.49	4.00	3.25
YES L0000273	0	0.48300E-06	483134.3 373	35201.7	434.0	3.49	4.00	3.25
YES L0000274	0	0.48300E-06	483134.3 373	35210.3	434.0	3.49	4.00	3.25
YES L0000275	0	0.48300E-06	483134.4 373	35218.8	434.0	3.49	4.00	3.25
YES L0000276	0	0.12720E-06	483274.0 373	35013.5	435.8	3.49	4.00	3.25
YES L0000277	0	0.12720E-06	483265.4 373		435.5	3.49	4.00	3.25
YES L0000278	0	0.12720E-06	483256.9 373		435.2	3.49	4.00	3.25
YES								
L0000279 YES	0	0.12720E-06	483248.5 373	35011.9	435.0	3.49	4.00	3.25
L0000280 YES	0	0.12720E-06	483239.9 373	35011.7	435.0	3.49	4.00	3.25
L0000281 YES	0	0.12720E-06	483231.3 373	35011.6	435.0	3.49	4.00	3.25
L0000282 YES	0	0.12720E-06	483222.7 373	35011.5	435.0	3.49	4.00	3.25
L0000283	0	0.12720E-06	483214.1 373	35011.5	435.0	3.49	4.00	3.25
YES L0000284	0	0.12720E-06	483205.5 373	35011.4	435.0	3.49	4.00	3.25
YES L0000285	0	0.12720E-06	483196.9 373	35011.3	435.0	3.49	4.00	3.25
YES L0000286	0	0.12720E-06	483188.3 373	35011.3	435.0	3.49	4.00	3.25
YES L0000287	0	0.12720E-06	483179.8 373	35011.2	435.0	3.49	4.00	3.25
YES L0000288	0	0.12720E-06	483171.2 373	35011.1	435.0	3.49	4.00	3.25
YES L0000289	0	0.12720E-06	483162.6 373	35011.0	435.0	3.49	4.00	3.25
YES L0000290	0	0.12720E-06	483154.0 373	35011.0	434.8	3.49	4.00	3.25
YES L0000291	0	0.12720E-06	483145.4 373	35010.9	434.5	3.49	4.00	3.25
YES L0000292	0	0.12720E-06	483136.8 373	35010.8	434.2	3.49	4.00	3.25
YES L0000293	0	0.12720E-06	483128.2 373	35010.8	434.0	3.49	4.00	3.25
YES L0000294	0	0.12720E-06	483119.6 373	35010.7	434.0	3.49	4.00	3.25
YES L0000295	0	0.12720E-06	483114.3 373	35013.9	434.0	3.49	4.00	3.25

*** AERMET - VERSION 16216 ***

YES

*** 14:57:36

PAGE 3

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

	NUMBER EMISSION RATE			BASE	RELEASE	INIT.	INIT.
	URBAN EMISSION RATE						
SOURCE	PART. (GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ
SOURCE	SCALAR VARY						

ID CATS. (METERS) (METERS) (METERS) (METERS) (METERS) (METERS)

L0000296 YES	0	0.12720E-06	483114.5 3735022.5	434.0	3.49	4.00	3.25
L0000297 YES	0	0.12720E-06	483114.6 3735031.1	434.0	3.49	4.00	3.25
L0000298	0	0.12720E-06	483114.7 3735039.7	434.0	3.49	4.00	3.25
YES L0000299 YES	0	0.12720E-06	483114.8 3735048.3	434.0	3.49	4.00	3.25
L0000300	0	0.12720E-06	483114.9 3735056.9	434.0	3.49	4.00	3.25
YES L0000301 YES	0	0.12720E-06	483115.1 3735065.4	434.0	3.49	4.00	3.25
L0000302	0	0.12720E-06	483115.2 3735074.0	434.0	3.49	4.00	3.25
YES L0000303 YES	0	0.12720E-06	483115.3 3735082.6	434.0	3.49	4.00	3.25
L0000304	0	0.12720E-06	483115.4 3735091.2	434.0	3.49	4.00	3.25
YES L0000305 YES	0	0.12720E-06	483115.6 3735099.8	434.0	3.49	4.00	3.25
L0000306 YES	0	0.12720E-06	483115.7 3735108.4	434.0	3.49	4.00	3.25
L0000307 YES	0	0.12720E-06	483115.8 3735117.0	434.0	3.49	4.00	3.25
L0000308 YES	0	0.12720E-06	483115.9 3735125.6	434.0	3.49	4.00	3.25
L0000309 YES	0	0.12720E-06	483116.0 3735134.2	434.0	3.49	4.00	3.25
L0000310 YES	0	0.12720E-06	483116.2 3735142.7	434.0	3.49	4.00	3.25
L0000311	0	0.12720E-06	483116.3 3735151.3	434.0	3.49	4.00	3.25
YES L0000312 YES	0	0.12720E-06	483116.4 3735159.9	434.0	3.49	4.00	3.25
L0000313	0	0.12720E-06	483116.5 3735168.5	434.0	3.49	4.00	3.25
YES L0000314 YES	0	0.12720E-06	483116.7 3735177.1	434.0	3.49	4.00	3.25
L0000315	0	0.12720E-06	483116.8 3735185.7	434.0	3.49	4.00	3.25
YES L0000316 YES	0	0.12720E-06	483116.9 3735194.3	434.0	3.49	4.00	3.25
L0000317	0	0.12720E-06	483117.0 3735202.9	434.0	3.49	4.00	3.25
YES L0000318 YES	0	0.12720E-06	483117.1 3735211.5	434.0	3.49	4.00	3.25
L0000319	0	0.12720E-06	483117.3 3735220.0	434.0	3.49	4.00	3.25
YES L0000320 YES	0	0.12720E-06	483117.4 3735228.6	434.0	3.49	4.00	3.25
L0000321	0	0.12720E-06	483117.5 3735237.2	434.0	3.49	4.00	3.25
YES L0000322	0	0.12720E-06	483117.6 3735245.8	434.0	3.49	4.00	3.25
YES L0000323 YES	0	0.12720E-06	483117.8 3735254.4	434.0	3.49	4.00	3.25
L0000324 YES	0	0.12720E-06	483117.9 3735263.0	433.9	3.49	4.00	3.25
L0000325 YES	0	0.12720E-06	483118.0 3735271.6	433.8	3.49	4.00	3.25
T 0000000	0	0 107000 06	400110 1 0705000 0	400 7	2 40	4 00	2 25

L0000326 0 0.12720E-06 483118.1 3735280.2 433.7 3.49 4.00 3.25

YES							
L0000327 YES	0	0.12720E-06	483118.2 3735288.8	3 433.6	3.49	4.00	3.25
L0000328	0	0.84760E-08	483286.7 3735017.5	5 436.0	3.49	4.00	3.25
YES L0000329	0	0.84760E-08	483286.8 3735026.1	1 435.7	3.49	4.00	3.25
YES L0000330	0	0.84760E-08	483286.8 3735034.5	7 435.5	3.49	4.00	3.25
YES							
L0000331 YES	0	0.84760E-08	483286.9 3735043.3	3 435.3	3.49	4.00	3.25
L0000332 YES	0	0.84760E-08	483287.0 3735051.9	9 435.2	3.49	4.00	3.25
L0000333 YES	0	0.84760E-08	483287.1 3735060.4	4 435.1	3.49	4.00	3.25
L0000334	0	0.84760E-08	483287.2 3735069.0	435.1	3.49	4.00	3.25
YES L0000335	0	0.84760E-08	483287.3 3735077.6	6 435.0	3.49	4.00	3.25
YES							

*** AERMET - VERSION 16216 ***

*** 14:57:36

PAGE 4

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

	NUMBER URBAN	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	
SOURCE S ID (METERS	SCALAR VARY CATS. S)	Y BY	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
L0000336 YES	0	0.84760E-08	483287.3	3735086.2	435.0	3.49	4.00	3.25	
L0000337 YES	0	0.84760E-08	483287.4	3735094.8	435.0	3.49	4.00	3.25	
L0000338 YES	0	0.84760E-08	483287.5	3735103.4	435.0	3.49	4.00	3.25	
L0000339 YES	0	0.84760E-08	483287.6	3735112.0	435.0	3.49	4.00	3.25	
L0000340 YES	0	0.84760E-08	483287.7	3735120.6	435.0	3.49	4.00	3.25	
L0000341 YES	0	0.84760E-08	483287.8	3735129.2	435.0	3.49	4.00	3.25	
L0000342 YES	0	0.84760E-08	483287.8	3735137.8	435.0	3.49	4.00	3.25	
L0000343 YES	0	0.84760E-08	483287.9	3735146.3	435.0	3.49	4.00	3.25	
L0000344 YES	0	0.84760E-08	483288.0	3735154.9	435.0	3.49	4.00	3.25	
L0000345 YES	0	0.84760E-08	483288.1	3735163.5	435.0	3.49	4.00	3.25	
L0000346 YES	0	0.84760E-08	483288.2	3735172.1	435.0	3.49	4.00	3.25	
L0000347 YES	0	0.84760E-08	483288.3	3735180.7	435.0	3.49	4.00	3.25	
L0000348 YES	0	0.84760E-08	483288.3	3735189.3	435.0	3.49	4.00	3.25	
L0000349	0	0.84760E-08	483288.4	3735197.9	435.0	3.49	4.00	3.25	

YES							
L0000350 YES	0	0.84760E-08	483288.5 3735206.5	435.0	3.49	4.00	3.25
L0000351 YES	0	0.84760E-08	483288.6 3735215.1	435.0	3.49	4.00	3.25
L0000352 YES	0	0.84760E-08	483288.7 3735223.6	435.0	3.49	4.00	3.25
L0000353 YES	0	0.84760E-08	483288.8 3735232.2	435.0	3.49	4.00	3.25
L0000354 YES	0	0.84760E-08	483288.8 3735240.8	435.0	3.49	4.00	3.25
L0000355 YES	0	0.84760E-08	483288.9 3735249.4	435.0	3.49	4.00	3.25
L0000356 YES	0	0.84760E-08	483289.0 3735258.0	435.0	3.49	4.00	3.25
L0000357 YES	0	0.84760E-08	483289.1 3735266.6	435.0	3.49	4.00	3.25
L0000358 YES	0	0.84760E-08	483289.2 3735275.2	435.0	3.49	4.00	3.25
L0000359 YES	0	0.84760E-08	483289.3 3735283.8	435.0	3.49	4.00	3.25
L0000360 YES	0	0.84760E-08	483289.3 3735292.4	434.9	3.49	4.00	3.25
L0000361 YES	0	0.14140E-07	483282.9 3735301.9	434.5	3.49	6.51	3.25
L0000362 YES	0	0.14140E-07	483268.9 3735301.7	434.3	3.49	6.51	3.25
L0000363 YES	0	0.14140E-07	483254.9 3735301.6	434.1	3.49	6.51	3.25
L0000364 YES	0	0.14140E-07	483240.9 3735301.5	434.0	3.49	6.51	3.25
L0000365 YES	0	0.14140E-07	483226.9 3735301.4	434.0	3.49	6.51	3.25
L0000366 YES	0	0.14140E-07	483212.9 3735301.3	434.0	3.49	6.51	3.25
L0000367 YES	0	0.14140E-07	483198.9 3735301.2	434.0	3.49	6.51	3.25
L0000368 YES	0	0.14140E-07	483184.9 3735301.1	434.0	3.49	6.51	3.25
L0000369 YES	0	0.14140E-07	483170.9 3735301.0	434.0	3.49	6.51	3.25
L0000370 YES	0	0.14140E-07	483156.9 3735300.9	434.0	3.49	6.51	3.25
L0000371 YES	0	0.14140E-07	483142.9 3735300.8	434.0	3.49	6.51	3.25
L0000372 YES	0	0.14140E-07	483128.9 3735300.7	434.0	3.49	6.51	3.25
L0000373 YES	0	0.92630E-07	483110.3 3735300.5	433.3	3.49	6.51	3.25
L0000374 YES	0	0.92630E-07	483096.3 3735300.4	433.0	3.49	6.51	3.25
L0000375	0	0.92630E-07	483082.3 3735300.2	433.0	3.49	6.51	3.25

YES *** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and Sherman\14804 O *** 09/15/22

*** AERMET - VERSION 16216 ***

14:57:36

PAGE 5

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

SOURCE PART. (GRAMS/SEC) X Y ELEV. HEIGHT SY SZ

SOURCE SCALAR VARY

CATS.
BY (METERS) (METERS) (METERS) (METERS) ID (METERS)

(11111110)							
L0000376 YES	0	0.92630E-07	483068.3 3735300.1	433.0	3.49	6.51	3.25
L0000377 YES	0	0.92630E-07	483054.3 3735300.0	433.0	3.49	6.51	3.25
L0000378 YES	0	0.92630E-07	483040.3 3735299.8	433.0	3.49	6.51	3.25
L0000379 YES	0	0.92630E-07	483026.3 3735299.7	433.0	3.49	6.51	3.25
L0000380 YES	0	0.92630E-07	483012.3 3735299.6	433.0	3.49	6.51	3.25
L0000381 YES	0	0.92630E-07	482998.3 3735299.4	433.0	3.49	6.51	3.25
L0000382 YES	0	0.92630E-07	482984.3 3735299.3	433.0	3.49	6.51	3.25
L0000383 YES	0	0.92630E-07	482970.3 3735299.2	433.0	3.49	6.51	3.25
L0000384 YES	0	0.92630E-07	482956.3 3735299.0	433.0	3.49	6.51	3.25
L0000385 YES	0	0.92630E-07	482942.3 3735298.9	433.0	3.49	6.51	3.25
L0000386 YES	0	0.92630E-07	482928.3 3735298.8	433.0	3.49	6.51	3.25
L0000387 YES	0	0.92630E-07	482914.3 3735298.6	433.0	3.49	6.51	3.25
L0000388 YES	0	0.92630E-07	482900.3 3735298.5	433.0	3.49	6.51	3.25
L0000389 YES	0	0.92630E-07	482894.1 3735290.6	433.0	3.49	6.51	3.25
L0000390 YES	0	0.92630E-07	482893.9 3735276.6	433.0	3.49	6.51	3.25
L0000391 YES	0	0.92630E-07	482893.8 3735262.6	433.0	3.49	6.51	3.25
L0000392 YES	0	0.92630E-07	482893.7 3735248.6	433.0	3.49	6.51	3.25
L0000393 YES	0	0.92630E-07	482893.5 3735234.6	433.0	3.49	6.51	3.25
L0000394 YES	0	0.92630E-07	482893.4 3735220.6	433.0	3.49	6.51	3.25
L0000395 YES	0	0.92630E-07	482893.3 3735206.6	433.0	3.49	6.51	3.25
L0000396 YES	0	0.92630E-07	482893.2 3735192.6	433.0	3.49	6.51	3.25
L0000397 YES	0	0.92630E-07	482893.0 3735178.6	433.0	3.49	6.51	3.25
L0000398 YES	0	0.92630E-07	482892.9 3735164.6	433.0	3.49	6.51	3.25
L0000399 YES	0	0.92630E-07	482892.8 3735150.6	433.0	3.49	6.51	3.25
L0000400 YES	0	0.92630E-07	482892.6 3735136.6	433.0	3.49	6.51	3.25
L0000401 YES	0	0.92630E-07	482892.5 3735122.6	433.0	3.49	6.51	3.25
L0000402 YES	0	0.92630E-07	482892.4 3735108.6	433.0	3.49	6.51	3.25
L0000403 YES	0	0.92630E-07	482892.2 3735094.6	433.0	3.49	6.51	3.25
L0000404 YES	0	0.92630E-07	482892.1 3735080.6	433.0	3.49	6.51	3.25
	_						

L0000405 0 0.92630E-07 482892.0 3735066.6 433.0 3.49 6.51 3.25

YES							
L0000406	0	0.92630E-07	482891.8 3735052.6	433.0	3.49	6.51	3.25
YES							
L0000407 YES	0	0.92630E-07	482891.7 3735038.6	433.0	3.49	6.51	3.25
L0000408	0	0.92630E-07	482891.6 3735024.6	433.0	3.49	6.51	3.25
YES							
L0000409	0	0.92630E-07	482891.5 3735010.6	433.0	3.49	6.51	3.25
YES							
L0000410 YES	0	0.92630E-07	482891.3 3734996.6	433.0	3.49	6.51	3.25
L0000411	0	0.92630E-07	482891.2 3734982.6	433.0	3.49	6.51	3.25
YES							
L0000412	0	0.92630E-07	482891.1 3734968.6	433.0	3.49	6.51	3.25
YES							
L0000413	0	0.92630E-07	482890.9 3734954.6	433.0	3.49	6.51	3.25
YES	0	0 00600= 05	400000 0 000000	422	2 40	C 51	2 05
L0000414	0	0.92630E-07	482890.8 3734940.6	433.0	3.49	6.51	3.25
YES							
L0000415	0	0.92630E-07	482890.7 3734926.6	433.0	3.49	6.51	3.25
YES							

*** AERMET - VERSION 16216 ***

*** 14:57:36

PAGE 6

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

	NUMBER URBAN	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	
SOURCE	PART.	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	
SOURCE SCA ID (METERS)	LAR VARY	BY	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
L0000416 YES	0	0.92630E-07	482890.5	3734912.6	433.0	3.49	6.51	3.25	
L0000417 YES	0	0.92630E-07	482890.4	3734898.6	433.0	3.49	6.51	3.25	
L0000418 YES	0	0.92630E-07	482890.3	3734884.6	433.0	3.49	6.51	3.25	
L0000419 YES	0	0.92630E-07	482890.2	3734870.6	433.0	3.49	6.51	3.25	
L0000420 YES	0	0.92630E-07	482890.0	3734856.6	433.0	3.49	6.51	3.25	
L0000421 YES	0	0.92630E-07	482889.9	3734842.6	433.0	3.49	6.51	3.25	
L0000422 YES	0	0.92630E-07	482889.8	3734828.6	433.0	3.49	6.51	3.25	
L0000423 YES	0	0.92630E-07	482889.6	3734814.6	433.0	3.49	6.51	3.25	
L0000424 YES	0	0.92630E-07	482889.5	3734800.6	433.2	3.49	6.51	3.25	
L0000425 YES	0	0.92630E-07	482889.4	3734786.6	433.6	3.49	6.51	3.25	
L0000426 YES	0	0.92630E-07	482887.3	3734772.9	433.9	3.49	6.51	3.25	
L0000427 YES	0	0.92630E-07	482881.0	3734760.5	433.7	3.49	6.51	3.25	
L0000428	0	0.92630E-07	482873.5	3734748.7	433.4	3.49	6.51	3.25	

YES							
L0000429 YES	0	0.92630E-07	482866.0 3734736.9	433.4	3.49	6.51	3.25
L0000430 YES	0	0.92630E-07	482858.4 3734725.1	433.7	3.49	6.51	3.25
L0000431 YES	0	0.92630E-07	482850.9 3734713.3	433.7	3.49	6.51	3.25
L0000432 YES	0	0.92630E-07	482843.4 3734701.5	433.7	3.49	6.51	3.25
L0000433 YES	0	0.92630E-07	482835.8 3734689.7	433.9	3.49	6.51	3.25
L0000434 YES	0	0.92630E-07	482828.3 3734677.9	433.9	3.49	6.51	3.25
L0000435 YES	0	0.92630E-07	482819.2 3734674.0	433.6	3.49	6.51	3.25
L0000436 YES	0	0.92630E-07	482807.8 3734682.1	433.3	3.49	6.51	3.25
L0000437 YES	0	0.92630E-07	482796.4 3734690.2	433.0	3.49	6.51	3.25
L0000438 YES	0	0.92630E-07	482785.0 3734698.3	433.0	3.49	6.51	3.25
L0000439 YES	0	0.92630E-07	482773.6 3734706.4	433.0	3.49	6.51	3.25
L0000440 YES	0	0.92630E-07	482762.2 3734714.5	433.0	3.49	6.51	3.25
L0000441 YES	0	0.92630E-07	482750.7 3734722.6	433.0	3.49	6.51	3.25
L0000442 YES	0	0.92630E-07	482739.3 3734730.7	433.0	3.49	6.51	3.25
L0000443 YES	0	0.92630E-07	482727.9 3734738.8	433.0	3.49	6.51	3.25
L0000444 YES	0	0.92630E-07	482716.5 3734746.9	433.0	3.49	6.51	3.25
L0000445 YES	0	0.92630E-07	482705.1 3734755.0	433.0	3.49	6.51	3.25
L0000446 YES	0	0.92630E-07	482693.6 3734763.1	433.0	3.49	6.51	3.25
L0000447 YES	0	0.92630E-07	482682.2 3734771.2	433.0	3.49	6.51	3.25
L0000448 YES	0	0.92630E-07	482670.8 3734779.3	433.0	3.49	6.51	3.25
L0000449 YES	0	0.92630E-07	482659.4 3734787.4	433.0	3.49	6.51	3.25
L0000450 YES	0	0.92630E-07	482648.0 3734795.5	433.0	3.49	6.51	3.25
L0000451 YES	0	0.92630E-07	482636.6 3734803.6	433.0	3.49	6.51	3.25
L0000452 YES	0	0.92630E-07	482625.1 3734811.7	433.0	3.49	6.51	3.25
L0000453 YES	0	0.92630E-07	482613.7 3734819.8	433.1	3.49	6.51	3.25
L0000454 YES	0	0.92630E-07	482602.3 3734827.9	433.4	3.49	6.51	3.25
L0000455	0	0.92630E-07	482590.9 3734836.0	434.0	3.49	6.51	3.25

YES

PAGE 7
*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

	NUMBER URBAN	EMISSION RATE			BASE	RELEASE	INIT.	INIT.	
SOURCE SOURCE	PART. SCALAR VARY	(GRAMS/SEC)	X	Y	ELEV.	HEIGHT	SY	SZ	
ID	CATS.		(METERS)	(METERS)	(METERS)	(METERS)	(METERS)		
(METE) 	RS) 	BY 							
L0000456 YES	0	0.92630E-07	482579.5	3734844.1	433.5	3.49	6.51	3.25	
L0000457 YES	0	0.92630E-07	482568.0	3734852.2	433.1	3.49	6.51	3.25	
L0000458 YES	0	0.92630E-07	482556.6	3734860.3	433.0	3.49	6.51	3.25	
L0000459 YES	0	0.92630E-07	482545.2	3734868.4	433.0	3.49	6.51	3.25	
L0000460 YES	0	0.92630E-07	482533.8	3734876.5	433.0	3.49	6.51	3.25	
L0000461 YES	0	0.92630E-07	482522.4	3734884.6	433.0	3.49	6.51	3.25	
L0000462 YES	0	0.92630E-07	482511.0	3734892.7	433.0	3.49	6.51	3.25	
L0000463 YES	0	0.92630E-07	482499.5	3734900.8	433.0	3.49	6.51	3.25	
L0000464 YES	0	0.92630E-07	482488.1	3734908.9	433.0	3.49	6.51	3.25	
L0000465 YES	0	0.92630E-07	482476.7	3734917.0	433.0	3.49	6.51	3.25	
L0000466 YES	0	0.92630E-07	482465.3	3734925.1	433.0	3.49	6.51	3.25	
L0000467 YES	0	0.92630E-07	482453.9	3734933.2	433.0	3.49	6.51	3.25	
L0000468 YES	0	0.92630E-07	482442.6	3734941.5	433.0	3.49	6.51	3.25	
L0000469 YES	0	0.92630E-07	482432.4	3734951.0	433.0	3.49	6.51	3.25	
L0000470 YES	0	0.92630E-07	482422.1	3734960.6	433.0	3.49	6.51	3.25	
L0000471 YES	0	0.92630E-07	482411.9	3734970.1	433.0	3.49	6.51	3.25	
L0000472 YES	0	0.92630E-07	482401.6	3734979.7	433.0	3.49	6.51	3.25	
L0000473 YES	0	0.92630E-07	482393.6	3734991.0	433.0	3.49	6.51	3.25	
L0000474 YES	0	0.92630E-07	482386.3	3735003.0	433.0	3.49	6.51	3.25	
L0000475 YES	0	0.92630E-07	482379.0	3735014.9	433.0	3.49	6.51	3.25	
L0000476 YES	0	0.92630E-07	482371.7	3735026.9	432.7	3.49	6.51	3.25	
L0000477 YES	0	0.92630E-07	482366.3	3735039.7	432.5	3.49	6.51	3.25	
L0000478 YES	0	0.92630E-07	482361.7	3735052.9	432.4	3.49	6.51	3.25	
L0000479 YES	0	0.92630E-07	482357.2	3735066.2	432.2	3.49	6.51	3.25	
L0000480 YES	0	0.92630E-07	482353.4	3735079.5	432.1	3.49	6.51	3.25	
L0000481 YES	0	0.92630E-07	482353.8	3735093.5	432.1	3.49	6.51	3.25	
L0000482 YES	0	0.92630E-07	482354.2	3735107.5	432.1	3.49	6.51	3.25	
L0000483 YES	0	0.92630E-07	482354.5	3735121.5	432.2	3.49	6.51	3.25	
L0000484	0	0.92630E-07	482354.9	3735135.5	432.2	3.49	6.51	3.25	

YES							
L0000485	0	0.92630E-07	482355.3 3735149.5	432.2	3.49	6.51	3.25
YES							
L0000486	0	0.92630E-07	482355.7 3735163.5	432.2	3.49	6.51	3.25
YES							
L0000487	0	0.92630E-07	482356.1 3735177.5	432.2	3.49	6.51	3.25
YES							
L0000488	0	0.92630E-07	482356.5 3735191.5	432.2	3.49	6.51	3.25
YES							
L0000489	0	0.92630E-07	482356.8 3735205.5	432.2	3.49	6.51	3.25
	U	0.92630E-07	402330.0 3733203.3	432.2	3.49	0.31	3.23
YES							
L0000490	0	0.92630E-07	482357.2 3735219.5	432.2	3.49	6.51	3.25
VEC							

*** AERMET - VERSION 16216 ***

*** 14:57:36

PAGE 8

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** SOURCE IDS DEFINING SOURCE GROUPS ***

SRCGROUP II	D -			SOURCE	IDs		
ALL L0000262	L0000256 , L000026	, L0000257	, L0000258	, L0000259	, L0000260	, L0000261	,
	L0000264 L0000270	, L0000265	, L0000266	, L0000267	, L0000268	, L0000269	,
	L0000272 L0000278	, L0000273	, L0000274	, L0000275	, L0000276	, L0000277	,
	L0000280 L0000286	, L0000281	, L0000282	, L0000283	, L0000284	, L0000285	,
	L0000288 L0000294	, L0000289	, L0000290	, L0000291	, L0000292	, L0000293	,
	L0000296 L0000302	, L0000297	, L0000298	, L0000299	, L0000300	, L0000301	,
	L0000304 L0000310	, L0000305	, L0000306	, L0000307	, L0000308	, L0000309	,
	L0000312 L0000318	, L0000313	, L0000314	, L0000315	, L0000316	, L0000317	,
	L0000320 L0000326	, L0000321	, L0000322	, L0000323	, L0000324	, L0000325	,
	L0000328 L0000334	, L0000329	, L0000330	, L0000331	, L0000332	, L0000333	,
	L0000336 L0000342	, L0000337	, L0000338	, L0000339	, L0000340	, L0000341	,
	L0000344 L0000350	, L0000345	, L0000346	, L0000347	, L0000348	, L0000349	,
	L0000352 L0000358	, L0000353 , L0000359	, L0000354	, L0000355	, L0000356	, L0000357	,

	L0000360	, L0000361 , L0000367	, L0000362	, L0000363	, L0000364	, L0000365	,
	L0000368 L0000374	, L0000369	, L0000370	, L0000371	, L0000372	, L0000373	,
	L0000376 L0000382	, L0000377	, L0000378	, L0000379	, L0000380	, L0000381	,
	L0000384 L0000390	, L0000385	, L0000386	, L0000387	, L0000388	, L0000389	,
	L0000392 L0000398	, L0000393 , L0000399	, L0000394	, L0000395	, L0000396	, L0000397	,
	L0000400 L0000406	, L0000401	, L0000402	, L0000403	, L0000404	, L0000405	,
	L0000408 L0000414	, L0000409 , L0000415	, L0000410	, L0000411	, L0000412	, L0000413	,
FF *** AERMO	D - VERSION	N 22112 ***	*** C:\Users\M	Iichael Tirohn∖	\Desktop\HRAs\1	14804 Mapes and	
*** AERMET ·	- VERSION	16216 ***			***	14:57:36	
*** MODELOP'	Ts: Real	DFAULT CONC	ELEV URBAN AD)J_U*			
11022201	- 0 .		*** SOUR	CE IDS DEFININ	NG SOURCE GROUP	>S ***	
SRCGROUP ID			*** SOUR	RCE IDS DEFININ SOURCE		?S ***	
	L0000416 L0000422	, L0000417 , L0000423			IDs		,
	L0000416	•	, L0000418	SOURCE	IDs , L0000420	, L0000421	,
	L0000416 L0000422 L0000424	, L0000423	, L0000418 ,	SOURCE 	IDs , L0000420	, L0000421	,
	L0000416 L0000422 L0000424 L0000430	, L0000423 , L0000425 , L0000431	, L0000418 , L0000426 , L0000434	SOURCE , , L0000419 , L0000427	IDs , L0000420 , L0000428	, L0000421 , L0000429	
	L0000416 L0000422 L0000424 L0000430 L0000432 L0000438	, L0000423 , L0000425 , L0000431 , L0000439 , L0000441	, L0000418 , L0000426 , L0000434 , L0000442	SOURCE , , L0000419 , L0000427 , L0000435	, L0000420 , L0000428 , L0000436	, L0000421 , L0000429 , L0000437	,
	L0000416 L0000422 L0000424 L0000430 L0000432 L0000440 L0000446 L0000448	, L0000423 , L0000425 , L0000431 , L0000439 , L0000441 , L0000447	, L0000418 , L0000426 , L0000434 , L0000442	SOURCE , , L0000419 , L0000427 , L0000435	, L0000420 , L0000428 , L0000436	, L0000421 , L0000429 , L0000437 , L0000445	,
	L0000416 L0000422 L0000424 L0000430 L0000438 L0000440 L0000446 L0000446 L0000454	, L0000423 , L0000425 , L0000431 , L0000433 , L0000439 , L0000441 , L0000447 , L0000445 , L0000457	, L0000418 , L0000426 , L0000434 , L0000442 , L0000450 , L0000458	SOURCE , , L0000419 , L0000427 , L0000435 , L0000443	, L0000420 , L0000428 , L0000436 , L0000444 , L0000452	, L0000421 , L0000429 , L0000437 , L0000445	,
	L0000416 L0000422 L0000424 L0000430 L0000438 L0000440 L0000446 L0000446 L0000456 L0000462 L0000464	, L0000423 , L0000425 , L0000431 , L0000433 , L0000449 , L0000447 , L0000447 , L0000457 , L0000463 , L0000465	, L0000418 , L0000426 , L0000434 , L0000442 , L0000450 , L0000466	SOURCE , L0000419 , L0000427 , L0000435 , L0000443 , L0000451	, L0000420 , L0000428 , L0000436 , L0000444 , L0000452	, L0000421 , L0000429 , L0000437 , L0000445 , L0000461	,
	L0000416 L0000422 L0000424 L0000430 L0000432 L0000440 L0000446 L0000446 L0000454 L0000456 L0000462 L0000464 L0000470	, L0000423 , L0000425 , L0000431 , L0000433 , L0000439 , L0000441 , L0000447 , L0000447 , L0000445 , L0000465 , L0000473	, L0000418 , L0000426 , L0000434 , L0000442 , L0000450 , L0000466 , L0000474	SOURCE, L0000419 , L0000427 , L0000435 , L0000443 , L0000451 , L0000459 , L0000467	, L0000420 , L0000428 , L0000436 , L0000444 , L0000452 , L0000460 , L0000468	, L0000421 , L0000429 , L0000437 , L0000445 , L0000461 , L0000469	,

** 14:57:36

PAGE 10

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** SOURCE IDs DEFINED AS URBAN SOURCES ***

URBAN ID	URBAN POP			SOURCE	IDs		
L0000263	2189641. L0000261	L0000256 , L0000262	, L0000257	, L0000258	, L0000259	, L0000260	,
	L0000264 L0000270	, L0000265 , L0000271	, L0000266	, L0000267	, L0000268	, L0000269	,
	L0000272 L0000278	, L0000273	, L0000274	, L0000275	, L0000276	, L0000277	,
	L0000280 L0000286	, L0000281 , L0000287	, L0000282	, L0000283	, L0000284	, L0000285	,
	L0000288 L0000294	, L0000289 , L0000295	, L0000290	, L0000291	, L0000292	, L0000293	,
	L0000296 L0000302	, L0000297 , L0000303	, L0000298	, L0000299	, L0000300	, L0000301	,
	L0000304 L0000310	, L0000305 , L0000311	, L0000306	, L0000307	, L0000308	, L0000309	,
	L0000312 L0000318	, L0000313 , L0000319	, L0000314	, L0000315	, L0000316	, L0000317	,
	L0000320 L0000326	, L0000321 , L0000327	, L0000322	, L0000323	, L0000324	, L0000325	,
	L0000328 L0000334	, L0000329 , L0000335	, L0000330	, L0000331	, L0000332	, L0000333	,
	L0000336 L0000342	, L0000337 , L0000343	, L0000338	, L0000339	, L0000340	, L0000341	,
	L0000344 L0000350	, L0000345 , L0000351	, L0000346	, L0000347	, L0000348	, L0000349	,
	L0000352 L0000358	, L0000353 , L0000359	, L0000354	, L0000355	, L0000356	, L0000357	,
	L0000360 L0000366	, L0000361 , L0000367	, L0000362	, L0000363	, L0000364	, L0000365	,
	L0000368 L0000374	, L0000369 , L0000375	, L0000370	, L0000371	, L0000372	, L0000373	,
	L0000376 L0000382	, L0000377 , L0000383	, L0000378	, L0000379	, L0000380	, L0000381	,
	L0000384 L0000390	, L0000385 , L0000391	, L0000386	, L0000387	, L0000388	, L0000389	,
	L0000392	, L0000393	, L0000394	, L0000395	, L0000396	, L0000397	,

```
, L0000399
             L0000398
                                       , L0000402
             L0000400
                        , L0000401
                                                     , L0000403
                                                                 , L0000404
                                                                                  , L0000405
                         , L0000407
             L0000406
                                       , L0000410
                         , L0000409
                                                     , L0000411
             L0000408
                                                                    , L0000412
                                                                                  , L0000413
                        , L0000415
             L0000414
FF *** AERMOD - VERSION 22112 ***
                                     *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O ***
                           09/15/22
 *** AERMET - VERSION 16216 ***
 * * *
                                                                           * * *
                                                                                      14:57:36
                      PAGE 11
 *** MODELOPTs:
                   RegDFAULT CONC ELEV URBAN ADJ U*
                                          *** SOURCE IDS DEFINED AS URBAN SOURCES ***
  URBAN ID
             URBAN POP
                                                          SOURCE IDs
  _____
             _____
                                                           _____
                                       , L0000418
                                                                                  , L0000421
             L0000416
                         , L0000417
                                                      . L0000419
                                                                    . L0000420
             L0000422
                         , L0000423
                         , L0000425
                                                                    , L0000428
             L0000424
                                       , L0000426
                                                      , L0000427
                                                                                  , L0000429
                         , L0000431
             L0000430
             L0000432
                         , L0000433
                                       , L0000434
                                                      , L0000435
                                                                    , L0000436
                                                                                  , L0000437
             L0000438
                         , L0000439
             L0000440
                         , L0000441
                                       , L0000442
                                                      , L0000443
                                                                    , L0000444
                                                                                  , L0000445
                         , L0000447
             L0000446
                                       , L0000450
             L0000448
                         , L0000449
                                                      , L0000451
                                                                                  , L0000453
                                                                    , L0000452
             L0000454
                         , L0000455
                                       , L0000458
             L0000456
                         , L0000457
                                                      , L0000459
                                                                    , L0000460
                                                                                  , L0000461
                         , L0000463
             L0000462
                                       , L0000466
             L0000464
                         , L0000465
                                                      , L0000467
                                                                    , L0000468
                                                                                  , L0000469
                         , L0000471
             L0000470
                         , L0000473
                                       , L0000474
             L0000472
                                                      , L0000475
                                                                    , L0000476
                                                                                  , L0000477
                         , L0000479
             L0000478
                                       , L0000482
             L0000480
                         , L0000481
                                                      , L0000483
                                                                    , L0000484
                                                                                  , L0000485
             L0000486
                         , L0000487
                         , L0000489
            L0000488
                                       , L0000490
FF *** AERMOD - VERSION 22112 ***
                                     *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O ***
                         09/15/22
 *** AERMET - VERSION 16216 ***
                                                                                      14:57:36
                      PAGE 12
 *** MODELOPTs:
                   RegDFAULT CONC ELEV URBAN ADJ U*
                                             *** DISCRETE CARTESIAN RECEPTORS ***
                                            (X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG)
                                                            (METERS)
                              435.0,
                                                                       (483315.8, 3735206.6,
     (483322.2, 3735161.2,
                                           435.0,
                                                        0.0);
                             0.0);
     435.0, 435.0,
```

(483309.9, 3735329.5,

(483329.0, 3735267.7,

435.0,

435.0,

435.0,

0.0);

435.0,

0.0);

```
(483151.8, 3735321.9,
(483116.9, 3735429.0,
                            433.0,
                                        433.0,
                                                      0.0);
433.9,
          433.9,
                         0.0);
(483048.9, 3735188.7,
                            433.3,
                                        433.3,
                                                      0.0);
                                                                    (483081.9, 3734993.2,
           434.0,
                         0.0);
434.0,
(483322.5, 3735113.2,
                                                                    (483320.3, 3735062.8,
                            435.0,
                                        435.0,
                                                      0.0);
          435.6,
                         0.0);
435.6,
(483328.1, 3735015.9,
                            436.0,
                                                                     (483349.5, 3734948.8,
                                        436.0,
                                                      0.0);
436.0,
          436.0,
                         0.0);
(483319.0, 3734871.0,
                                                      0.0);
                                                                     (483152.4, 3734895.6,
                            436.0,
                                        436.0,
           435.0,
                         0.0);
435.0,
(483033.4, 3734938.4,
                                                                     (482938.7, 3734974.9,
                            434.0,
                                        434.0,
                                                      0.0);
433.0.
          433.0,
                         0.0);
(482865.3, 3734680.6,
                            434.0,
                                        434.0,
                                                      0.0);
                                                                     (483316.9, 3734817.5,
436.0,
          436.0,
                         0.0);
(483315.8, 3734727.6,
                            436.0,
                                        436.0,
                                                      0.0);
                                                                     (482855.8, 3735071.3,
433.0,
          433.0,
                         0.0);
(482853.3, 3734976.5,
                                                                     (482952.3, 3735193.1,
                            433.0,
                                        433.0,
                                                      0.0);
433.0,
          433.0,
                         0.0);
(482296.7, 3734931.4,
                                        432.0,
                                                                     (483326.8, 3735378.2,
                            432.0,
                                                      0.0);
                         0.0);
435.0,
          435.0,
                                                                     (483310.4, 3735454.2,
(482786.4, 3735421.1,
                            432.0,
                                        432.0,
                                                      0.0);
          434.0,
                         0.0);
434.0,
(484105.1, 3734042.9,
                            441.5,
                                        441.5.
0.0);
```

*** AERMET - VERSION 16216 ***

*** 14:57:36

PAGE 13

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

1 1

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES ***

(METERS/SEC)

*** AERMET - VERSION 16216 ***

14:57:36

PAGE 14

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U*

*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

Met

Surface file:

PERI V9 ADJU\PERI v9.SFC

Version: 16216
Profile file:

PERI V9 ADJU\PERI v9.PFL

Surface format:

FREE

Profile format:

FREE

Surface station no.: 3171 Upper air station no.: 3190

Name: UNKNOWN Name:

UNKNOWN

Year: 2010 Year: 2010

First 24 hours of scalar data
YR MO DY JDY HR HO U* W* DT/DZ ZICNV ZIMCH M-O LEN ZO BOWEN ALBEDO REF WS

WD HT REF TA HT									
10 01 01 1 01 -7.9 0.125	-9.000	-9.000	-999.	106.	21.2	0.19	0.61	1.00	1.30
335. 9.1 282.5 5.5 10 01 01 1 02 -3.9 0.088	-9 000	-9 000	-999	62.	15.1	0.19	0.61	1.00	0.90
142. 9.1 280.9 5.5	J.000	3.000	<i>333</i> .	02.	10.1	0.13	0.01	1.00	0.50
10 01 01 1 03 -3.9 0.088	-9.000	-9.000	-999.	62.	15.1	0.19	0.61	1.00	0.90
324. 9.1 280.4 5.5 10 01 01 1 04 -1.3 0.064	-9 000	-9 000	_999	39.	18.3	0.19	0.61	1.00	0.40
294. 9.1 278.8 5.5	J.000	3.000	<i>333</i> .	33 .	10.5	0.13	0.01	1.00	0.10
10 01 01 1 05 -3.9 0.088	-9.000	-9.000	-999.	62.	15.0	0.19	0.61	1.00	0.90
205. 9.1 278.1 5.5 10 01 01 1 06 -1.3 0.065	-9.000	-9 000	-999	39.	18.3	0.19	0.61	1.00	0.40
3. 9.1 277.0 5.5				33 .	10.0	0.13	0.01	1.00	0.10
10 01 01 1 07 -8.0 0.125	-9.000	-9.000	-999.	106.	21.0	0.19	0.61	1.00	1.30
99. 9.1 277.0 5.5 10 01 01 1 08 -3.3 0.086	-9.000	-9.000	-999.	61.	16.8	0.19	0.61	0.54	0.90
319. 9.1 278.8 5.5									
	0.307	0.010	49.	110.	-9.0	0.19	0.61	0.33	0.90
239. 9.1 284.2 5.5 10 01 01 1 10 56.7 0.087	0.560	0.010	107.	62.	-1.0	0.19	0.61	0.26	0.40
188. 9.1 289.2 5.5									
10 01 01 1 11 81.5 0.323 310. 9.1 290.9 5.5	0.867	0.008	277.	441.	-35.9	0.19	0.61	0.23	2.70
10 01 01 1 12 97.1 0.281	1.058	0.008	421.	357.	-19.7	0.19	0.61	0.22	2.20
357. 9.1 293.1 5.5									
10 01 01 1 13 92.2 0.279 356. 9.1 293.8 5.5	1.117	0.008	523.	354.	-20.4	0.19	0.61	0.22	2.20
10 01 01 1 14 77.6 0.275	1.102	0.008	595.	347.	-23.2	0.19	0.61	0.23	2.20
50. 9.1 294.2 5.5									
10 01 01 1 15 54.9 0.230 53. 9.1 293.8 5.5	1.006	0.008	640.	266.	-19.2	0.19	0.61	0.27	1.80
10 01 01 1 16 12.3 0.206	0.613	0.008	648.	225.	-61.5	0.19	0.61	0.36	1.80
11. 9.1 292.5 5.5	0 000	0 000	0.00	71	15.0	0 10	0 61	0 64	0 00
10 01 01 1 17 -3.6 0.087 351. 9.1 290.4 5.5	-9.000	-9.000	-999.	71.	15.6	0.19	0.61	0.64	0.90
10 01 01 1 18 -3.8 0.087	-9.000	-9.000	-999.	62.	15.2	0.19	0.61	1.00	0.90
186. 9.1 287.5 5.5	0 000	0 000	0.00	60	1 5 0	0 10	0 (1	1 00	0.90
10 01 01 1 19 -3.8 0.087 275. 9.1 285.9 5.5	-9.000	-9.000	-999.	62.	15.2	0.19	0.61	1.00	0.90
10 01 01 1 20 -1.2 0.064	-9.000	-9.000	-999.	39.	18.1	0.19	0.61	1.00	0.40
181. 9.1 285.4 5.5									

10 01 01 1 21 -7.8		-9.000 -999.	106.	21.3	0.19	0.61	1.00	1.30
318. 9.1 284.9 10 01 01 1 22 -3.8	0.088 -9.000 -	-9.000 -999.	62.	15.1	0.19	0.61	1.00	0.90
10 01 01 1 23 -3.8		-9.000 -999.	62.	15.1	0.19	0.61	1.00	0.90
330. 9.1 281.4 10 01 01 1 24 -7.9 332. 9.1 280.9	0.125 -9.000 -	-9.000 -999.	106.	21.2	0.19	0.61	1.00	1.30
First hour of profile YR MO DY HR HEIGHT F 10 01 01 01 5.5 0 - 10 01 01 01 9.1 1	WDIR WSPD AME 99999.00 2	$2\overline{8}2.6$ 99.0	-99.00	-99.00				
F indicates top of pro FE *** AERMOD - VERSION Sherman\14804 O *** *** AERMET - VERSION ***	22112 *** ** 09/15/22		Michael 1	Tirohn\D	esktop'	\HRAs\14 ***		es and :57:36
P	AGE 15							
	FAULT CONC ELE	EV URBAN AI	OJ_U*					
	THE ANNUAL AVERA		ATION	VALUES .	AVERAGI	ED OVER	5 YEA	RS FOR
SOUR	CE GROUP: ALL	*** JDING SOURCE	(S) ·	T.000025	6	L000025	57 -	
	L0000)258 , L00	000259	, L000	0260	,		
L00002 L00002	·		260	L000026	4 ,	L00002	65 ,	
L00002	69 , L0000270	, L00002	271 ,	L000027	2,	L00002	73 ,	
L00002 L00002		•		L000028	n	L000028	81 ,	
L00002	·		•	1000020	· ,	посост	<i>,</i>	
		*** D]	ISCRETE (CARTESIA	N RECEI	PTOR PO	INTS ***	
		** CONC OF	DDM	TNI				
		MICROGRAMS/		IN			**	
X-COORD (M) Y- (M) CONC	COORD (M)	CONC			X-COOF	RD (M)	Y-COOR	D
483322.24 3		0.00048			4833	315.83		
3735206.60 483328.98 3	0.00047 735267.73	0.00036			4833	309.87		
3735329.46 483116.87 3	0.00032 735428.96	0.00031			4831	151.81		
3735321.91	0.00083 735188.73	0.00131			1830	081.92		
3734993.21	0.00117							
483322.46 3 3735062.79	735113.17 0.00055	0.00051			4833	320.26		
483328.13 3	735015.88	0.00051			4833	349.54		
3734948.82 483319.00 3	0.00034 734871.05	0.00030			4831	152.44		
3734895.61 483033.43 3	0.00052 734938.43	0.00054			4829	938.66		
3734974.95	0.00063 734680.57	0.00059			4831	316.88		
3734817.52	0.00024							
483315.81 3 3735071.26	734727.60 0.00063	0.00017			4828	355.75		
	734976.55	0.00059			4829	952.27		

```
3734931.45
                                                             483326.80
        482296.66
                                  0.00016
       3735378.16
                    0.00023
        482786.36
                  3735421.08
                                  0.00017
                                                            483310.38
       3735454.22
                    0.00018
        484105.07 3734042.87
        0.00002
*** AERMOD - VERSION 22112 *** *** C:\Users\Michael Tirohn\Desktop\HRAs\14804 Mapes and
Sherman\14804 O *** 09/15/22
*** AERMET - VERSION 16216 ***
                                                                 ***
                                                                           14:57:36
                   PAGE 16
               RegDFAULT CONC ELEV URBAN ADJ_U*
 *** MODELOPTs:
                               *** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER 5
                              YEARS ***
                               ** CONC OF DPM IN
                                                                    * *
                               MICROGRAMS/M**3
         NETWORK
GROUP ID
                          AVERAGE CONC
                                                   RECEPTOR (XR, YR, ZELEV, ZHILL,
ZFLAG) OF TYPE GRID-ID
       1ST HIGHEST VALUE IS 0.00131 AT ( 483048.86, 3735188.73, 433.29,
        0.00) DC
        2ND HIGHEST VALUE IS 0.00117 AT ( 483081.92, 3734993.21, 434.00,
        434.00, 0.00) DC
        3RD HIGHEST VALUE IS 0.00083 AT ( 483151.81, 3735321.91, 433.95,
```

ALL 433.29, 433.95, 0.00) DC 4TH HIGHEST VALUE IS 0.00071 AT (482952.27, 3735193.11, 433.00, 433.00, 0.00) DC 5TH HIGHEST VALUE IS 0.00063 AT (482938.66, 3734974.95, 433.00, 433.00, 0.00) DC 6TH HIGHEST VALUE IS 0.00063 AT (482855.75, 3735071.26, 433.00, 433.00, 0.00) DC 7TH HIGHEST VALUE IS 0.00059 AT (482853.34, 3734976.55, 433.00, 433.00, 0.00) DC 8TH HIGHEST VALUE IS 0.00059 AT (482865.31, 3734680.57, 434.00, 434.00, 0.00) DC 9TH HIGHEST VALUE IS 0.00055 AT (483320.26, 3735062.79, 435.63, 435.63, 0.00) DC

*** RECEPTOR TYPES: GC = GRIDCART

10TH HIGHEST VALUE IS

434.00, 0.00) DC

GP = GRIDPOLR

DC = DISCCART

DP = DISCPOLR

0.00054 AT (483033.43, 3734938.43, 434.00,

14:57:36

PAGE 17

*** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U*

*** Message Summary : AERMOD Model Execution ***

----- Summary of Total Messages -----

This page intentionally left blank

APPENDIX 2.4:

RISK CALCULATIONS

Table 1 Quantification of Carcinogenic Risks and Noncarcinogenic Hazards 0-2 Age Bin Exposure Scenario - Construction Activity

Source	Mass	s GLC	Weight	Contaminant		Carcinog	genic Risk					Noncarcinoge	enic Hazards/	Toxicologica	l Endpoints**			
			Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
	(ug/m ³)	(mg/m^3)			$(ug/m^3)^{-1}$	(mg/kg/day)	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
	0.06741	6.74E-05	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	4.4E-05	4.7E-06	5.0E+00	1.4E-03	1.3E-02							
TOTAL								4.7E-06			1.3E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

exposure frequency (days/year)
exposure duration (years)
inhalation rate (L/kg-day))
inhalation absorption factor
averaging time (years)
fraction of time at home
0.85
age sensitivity factor (0 to 2 years old)

Table 3
Quantification of Carcinogenic Risks and Noncarcinogenic Hazards
2-16 Age Bin Exposure Scenario

	Source	Mass	s GLC	Weight	Contaminant		Carcinog	genic Risk					Noncarcinoge	enic Hazards/	Toxicologica	l Endpoints**			
				Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
		(ug/m ³)	(mg/m^3)			$(ug/m^3)^{-1}$	(mg/kg/day)	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
		0.00055	5.50E-07	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	3.0E-07	1.3E-07	5.0E+00	1.4E-03	1.1E-04							
5	ГОТАL								1.3E-07			1.1E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

exposure frequency (days/year)	350
exposure duration (years)	13.23
inhalation rate (L/kg-day))	572
inhalation absorption factor	1
averaging time (years)	70
fraction of time at home	0.72
age sensitivity factor (ages 2 to 16 years	3

Table 4 Quantification of Carcinogenic Risks and Noncarcinogenic Hazards 16-30 Age Bin Exposure Scenario

Source	Ma	ss GLC	Weight	Contaminant		Carcinog	genic Risk					Noncarcinoge	nic Hazards/	Toxicologica	l Endpoints**			
			Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
	(ug/m ³)	(mg/m ³)	1		$(ug/m^3)^{-1}$	(mg/kg/day)	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
	0.00055	5.50E-07	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	1.4E-07	2.1E-08	5.0E+00	1.4E-03	1.1E-04							
TOTAL								2.1E-08			1.1E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00
-	0.02																	

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

Total Risk for All Age Bins (per million)

Table 1 Quantification of Carcinogenic Risks and Noncarcinogenic Hazards -0.25 to 0 Age Bin Exposure Scenario

Source	Mass	s GLC	Weight	Contaminant		Carcinog	genic Risk					Noncarcinoge	enic Hazards/	Toxicological	l Endpoints**			
			Fraction						REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
	(ug/m ³)	(mg/m^3)			$(ug/m^3)^{-1}$	(mg/kg/day)	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
	0.00055	5.50E-07	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	1.9E-07	6.1E-09	5.0E+00	1.4E-03	1.1E-04							
TOTAL								6.1E-09			1.1E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

exposure frequency (days/year)
exposure duration (years)
inhalation rate (L/kg-day))
inhalation absorption factor
averaging time (years)
fraction of time at home
0.85
age sensitivity factor (age third trimester)

Table 2 Quantification of Carcinogenic Risks and Noncarcinogenic Hazards 0-2 Age Bin Exposure Scenario

Source	Mass	s GLC	Weight	Contaminant		Carcinog	genic Risk					Noncarcinoge	nic Hazards/	Toxicological	Endpoints**			
			Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
	(ug/m ³)	(mg/m^3)			$(ug/m^3)^{-1}$	(mg/kg/day) ⁻¹	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
	0.00055	5.50E-07	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	5.7E-07	1.5E-07	5.0E+00	1.4E-03	1.1E-04							
TOTAL								1.5E-07			1.1E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

Table 3 Quantification of Carcinogenic Risks and Noncarcinogenic Hazards 2-16 Age Bin Exposure Scenario

Source	Mass	s GLC	Weight	Contaminant		Carcinog	genic Risk					Noncarcinoge	enic Hazards/	Toxicologica	l Endpoints**	:		
			Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
	(ug/m^3)	(mg/m^3)			$(ug/m^3)^{-1}$	(mg/kg/day)	(mg/kg-day)		(ug/m ³)	(mg/kg/day)								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
	0.00055	5.50E-07	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	3.0E-07	1.4E-07	5.0E+00	1.4E-03	1.1E-04							
TOTAL								1.4E-07			1.1E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

exposure frequency (days/year)	350
exposure duration (years)	14
inhalation rate (L/kg-day))	572
inhalation absorption factor	1
averaging time (years)	70
fraction of time at home	0.72
age sensitivity factor (ages 2 to 16 years	3

Table 4 Quantification of Carcinogenic Risks and Noncarcinogenic Hazards 16-30 Age Bin Exposure Scenario

Source	Mass GLC Weigh		Weight	Contaminant	Carcinogenic Risk		Noncarcinogenic Hazards/ Toxicological Endpoints**											
			Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
	(ug/m ³)	(mg/m ³)			$(ug/m^3)^{-1}$	(mg/kg/day) ⁻¹	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
	0.00055	5.50E-07	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	1.4E-07	2.1E-08	5.0E+00	1.4E-03	1.1E-04							
TOTAL								2.1E-08			1.1E-04	0.0E+00						
0.02																		

** Key to Toxicological Endpoints

RESP Respiratory System

CNS/PNS Central/Peripheral Nervous System
CV/BL Cardiovascular/Blood System

IMMUN Immune System

KIDN Kidney

GI/LV Gastrointestinal System/Liver

REPRO Reproductive System (e.g. teratogenic and developmental effects)

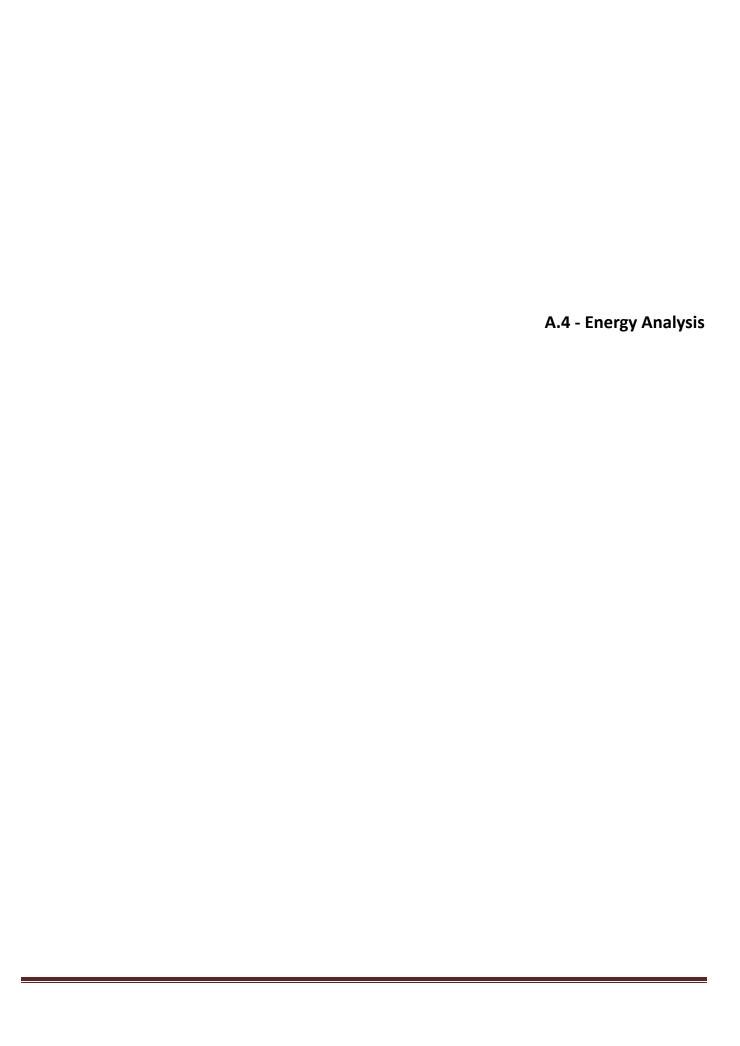
EYES Eye irritation and/or other effects

Note: Exposure factors used to calculate contaminant intake

Total Risk for All Age Bins (per million)

Table 5 Quantification of Carcinogenic Risks and Noncarcinogenic Risks 25-Year Worker Exposure Scenario

	Source Mass GLC		Weight	Contaminant	Carcinogenic Risk			Noncarcinogenic Hazards/ Toxicological Endpoints**											
				Fraction		URF	CPF	DOSE	RISK	REL	RfD	RESP	CNS/PNS	CV/BL	IMMUN	KIDN	GI/LV	REPRO	EYES
		(ug/m ³)	(mg/m^3)			$(ug/m^3)^{-1}$	(mg/kg/day) ⁻¹	(mg/kg-day)		(ug/m^3)	(mg/kg/day)								
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(p)	(q)	(r)	(s)
1	Diesel Particulates	1.31E-03	1.31E-06	1.00E+00	Diesel Particulate	3.0E-04	1.1E+00	2.1E-07	7.7E-08	5.0E+00	1.4E-03	2.6E-04							
	TOTAL								7 7F 00			2 (5 04	0.05.00	0.05.00	0.05.00	0.05.00	0.05.00	0.05+00	0.05.00
	TOTAL								7.7E-08			2.6E-04	0.0E+00						
									0.08										


** Key to Toxicological Endpoints	Note:	Exposure factors used to calculate contaminant intake
-----------------------------------	-------	---

RESP	Respiratory System	exposure frequency (days/year)	250
CNS/PNS	Central/Peripheral Nervous System	exposure duration (years)	25
CV/BL	Cardiovascular/Blood System	inhalation rate (L/kg-day))	230
IMMUN	Immune System	inhalation absorption factor	1
KIDN	Kidney	averaging time (years)	70
GI/LV	Gastrointestinal System/Liver		
REPRO	Reproductive System (e.g. teratogenic and developmental effects)		
EYES	Eye irritation and/or other effects		

This page intentionally left blank

Mapes & Sherman Commerce Center (DEV2022-003)

ENERGY ANALYSIS
CITY OF MENIFEE

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Alyssa Barnett abarnett@urbanxroads.com

SEPTEMBER 16, 2022

TABLE OF CONTENTS

		F CONTENTS	
		EXHIBITS	
LIS	ST OF A	TABLESABBREVIATED TERMS	III
	ES.1 ES.2	Summary of Findings Project Requirements	
1	INT	FRODUCTION	8
	1.1 1.2	Site LocationProject Description	
2	EXI	ISTING CONDITIONS	12
	2.12.22.32.4	Overview	14 16
3	RE	GULATORY BACKGROUND	22
	3.1 3.2	Federal Regulations California Regulations	
4	PR	OJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES	26
	4.1 4.2 4.3 4.4	Evaluation Criteria Methodology Construction Energy Demands Operational Energy Demands	26 27 34
5 6		Summary NCLUSIONS FERENCES	41
7		RTIFICATIONS	

APPENDICES

APPENDIX 4.1: CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS APPENDIX 4.2: CALEEMOD PROJECT OPERATIONS EMISSIONS MODEL OUTPUTS

APPENDIX 4.3: EMFAC2021

LIST OF EXHIBITS

HIBIT 1-A: LOCATION MAP	.9
HIBIT 1-B: SITE PLAN	
LIST OF TABLES	
<u></u>	
BLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	
BLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2021)	L3
BLE 2-2: SCE 2020 POWER CONTENT MIX	16
BLE 4-1: CONSTRUCTION DURATION	
BLE 4-2: CONSTRUCTION POWER COST	28
BLE 4-3: CONSTRUCTION ELECTRICITY USAGE	28
BLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS	29
BLE 4-5: CONSTRUCTION EQUIPMENT FUEL CONSUMPTION ESTIMATES	30
BLE 4-6: CONSTRUCTION TRIPS AND VMT	
BLE 4-7: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES	32
BLE 4-8: CONSTRUCTION VENDOR FUEL CONSUMPTION ESTIMATES	33
BLE 4-9: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION	
BLE 4-10: ON-SITE CARGO HANDLING EQUIPMENT FUEL CONSUMPTION ESTIMATES	_
BLE 4-11: PROJECT ANNUAL OPERATIONAL ENERGY DEMAND SUMMARY	

LIST OF ABBREVIATED TERMS

% Percent (1) Reference

AGSP Airport Gateway Specific Plan

AQIA Mapes & Sherman Commerce Center (DEV2022-003) Air

Quality Impact Analysis

BACM Best Available Control Measures

BTU British Thermal Units

CalEEMod California Emissions Estimator Model

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board
CCR California Code of Regulations
CEC California Energy Commission

CEQA California Environmental Quality Act

City City of Menifee

CPEP Clean Power and Electrification Pathway
CPUC California Public Utilities Commission

DMV Department of Motor Vehicles
EIA Energy Information Administration
EPA Environmental Protection Agency

EMFAC EMissions FACtor

FERC Federal Energy Regulatory Commission

GHG Greenhouse Gas GWh Gigawatt Hour

HHD Heavy-Heavy Duty Trucks
hp-hr-gal Horsepower Hours Per Gallon

I-215 Interstate 215

IEPR Integrated Energy Policy Report
ISO Independent Service Operator

ISTEA Intermodal Surface Transportation Efficiency Act

ITE Institute of Transportation Engineers kBTU Thousand-British Thermal Units

kWh Kilowatt Hour
LDA Light Duty Auto
LDT1/LDT2 Light-Duty Trucks

LHD1/LHD2 Light-Heavy Duty Trucks
MDV Medium Duty Trucks

MHD Medium-Heavy Duty Trucks
MMcfd Million Cubic Feet Per Day

mpg Miles Per Gallon

MPO Metropolitan Planning Organization

PG&E Pacific Gas and Electric

Project Mapes & Sherman Commerce Center (DEV2022-003)

PV Photovoltaic

SCAB South Coast Air Basin
SCE Southern California Edison

SDAB San Diego Air Basin

sf Square Feet

SoCalGas Southern California Gas

SR-74 State Route 74

TEA-21 Transportation Equity Act for the 21st Century

U.S. United States

VMT Vehicle Miles Traveled

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Mapes & Sherman Commerce Center (DEV2022-003) Energy Analysis* is summarized below based on the significance criteria in Section 5 of this report consistent with Appendix G of the *CEQA Guidelines* (*CEQA Guidelines*) (1). Table ES-1 shows the findings of significance for potential energy impacts under CEQA.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Amalysia	Report	Significance Findings				
Analysis	Section	Unmitigated	Mitigated			
Energy Impact #1: Would the Project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	5.0	Less Than Significant	n/a			
Energy Impact #2: Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?	5.0	Less Than Significant	n/a			

ES.2 PROJECT REQUIREMENTS

The Project would be required to comply with regulations imposed by the federal and state agencies that regulate energy use and consumption through various means and programs. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of energy usage include:

- Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA)
- The Transportation Equity Act for the 21st Century (TEA-21
- Integrated Energy Policy Report (IEPR)
- State of California Energy Plan
- California Code Title 24, Part 6, Energy Efficiency Standards
- California Code Title 24, Part 11, California Green Building Standards Code (CALGreen)
- AB 1493 Pavley Regulations and Fuel Efficiency Standards
- California's Renewable Portfolio Standard (RPS)
- Clean Energy and Pollution Reduction Act of 2015 (SB 350)

Consistency with the above regulations is discussed in detail in section 5 of this report.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the energy analysis prepared by Urban Crossroads, Inc., for the proposed Mapes & Sherman Commerce Center (DEV2022-003) Project (Project). The purpose of this report is to ensure that energy implication is considered by the City of Menifee (Lead Agency), as the lead agency, and to quantify anticipated energy usage associated with construction and operation of the proposed Project, determine if the usage amounts are efficient, typical, or wasteful for the land use type, and to emphasize avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy.

1.1 SITE LOCATION

The proposed Project is located in the City of Menifee at the southwest corner of Sherman Road and Mapes Road, as shown on Exhibit 1-A. The City is surrounded by the City of Moreno Valley to the north, unincorporated Riverside County to the east, the City of Murrieta and unincorporated Riverside County to the south, and the Cities of Perris and Lake Elsinore to the west. Regional access to the site is provided via Interstate 215 (I-215) and State Route 74 (SR-74). Local access to the site is provided via Mapes Road and Sherman Avenue.

1.2 PROJECT DESCRIPTION

The Project is proposed to consist of the development of 277,578 square feet (sf) of high-cube fulfillment center warehouse use within a single building. It is anticipated that the Project would operate seven days a week 24 hours a day and be developed in a single phase with an anticipated Opening Year of 2024. The site plan for the proposed Project is shown on Exhibit 1-B.

Calls de Leon

Calls de Leon

Vata Rd

Vata Rd

Carol St

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Water Rd

Carol St

Wayne Ln

Carol St

Wayne Ln

Carol St

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Wayne Ln

Carol St

Wayne Ln

Wayne Ln

Carol St

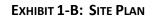
Wayne Ln

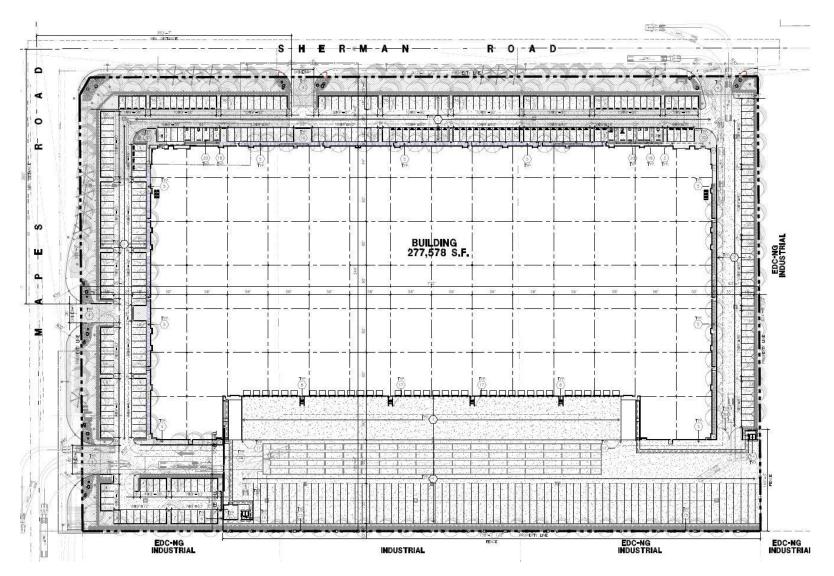
Wayne Ln

Carol St

Baranı Rd

Watson Rd.


Watson Rd


EXHIBIT 1-A: LOCATION MAP

Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GERCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Radaster NL, Ordnance Survey, Esri, Igpan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS

Baroni Rd

This page intentionally left blank

2 EXISTING CONDITIONS

This section provides an overview of the existing energy conditions in the Project region.

2.1 OVERVIEW

The most recent data for California's estimated total energy consumption and natural gas consumption is from 2020, released by the United States (U.S.) Energy Information Administration's (EIA) California State Profile and Energy Estimates in 2021 and included (2):

- As of 2020, approximately 6,923 trillion British Thermal Unit (BTU) of energy was consumed
- As of 2020, approximately 524 million barrels of petroleum
- As of 2020, approximately 2,075 billion cubic feet of natural gas
- As of 2020, approximately 1 million short tons of coal

The California Energy Commission's (CEC) Transportation Energy Demand Forecast released the 2018-2030 was released in order to support the 2017 Integrated Energy Policy Report. The Transportation energy Demand Forecast 2018-2030 lays out graphs and data supporting CEC's projections of California's future transportation energy demand. The projected inputs consider expected variable changes in fuel prices, income, population, and other variables. Predictions regarding fuel demand included:

- Gasoline demand in the transportation sector is expected to decline from approximately 15.8 billion gallons in 2017 to between 12.3 billion and 12.7 billion gallons in 2030 (3)
- Diesel demand in the transportation sector is expected to rise, increasing from approximately 3.7 billion diesel gallons in 2015 to approximately 4.7 billion in 2030 (3)
- Data from the Department of Energy states that approximately 3.9 billion gallons of diesel fuel were consumed in 2019 (4)

The most recent data provided by the EIA for energy use in California by demand sector is from 2020 and is reported as follows:

- Approximately 34.0% transportation
- Approximately 24.6% industrial
- Approximately 21.8% residential
- Approximately 19.6% commercial (5)

In 2021, total system electric generation for California was 277,764 gigawatt hours (GWh). California's massive electricity in-state generation system generated approximately 194,127 GWh which accounted for approximately 70% of the electricity it uses; the rest was imported from the Pacific Northwest (12%) and the U.S. Southwest (18%) (6). Natural gas is the main source for electricity generation at 50.19% of the total in-state electric generation system power as shown in Table 2-1.

TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2021)

Fuel Type	California In-State Generation (GWh)	% of California In- State Generation	Northwest Imports (GWh)	Southwest Imports (GWh)	Total Imports (GWh)	% of Imports	Total California Energy Mix	Total California Power Mix
Coal	303	0.2%	181	7,788	7,969	9.5%	8,272	3.0%
Natural Gas	97,431	50.2%	45	7,880	7,925	9.5%	105,356	379.0%
Oil	37	0.0%	-	-	-	0.0%	37	0.0%
Other (Waste Heat/Petroleum Coke)	382	0.2%	68	15	83	0.1%	465	0.2%
Nuclear	16,477	8.5%	524	8,756	9,281	11.1%	25,758	9.3%
Large Hydro	12,036	6.2%	12,042	1,578	13,620	16.3%	25,656	9.2%
Unspecified	-	0.0%	8,156	10,731	18,887	22.6%	18,887	6.8%
Total Thermal and Non-Renewables	126,666	65.2%	21,017	36,748	57,764	6910.0%	184,431	66.4%
Biomass	5,381	2.8%	864	26	890	1.1%	6,271	2.3%
Geothermal	11,116	5.7%	192	1,906	2,098	2.5%	13,214	4.8%
Small Hydro	2,531	1.3%	304	1	304	0.4%	2,835	1.0%
Solar	33,260	17.1%	220	5,979	6,199	7.4%	39,458	14.2%
Wind	15,173	7.8%	9,976	6,405	16,381	19.6%	31,555	11.4%
Total Renewables	67,461	34.8%	11,555	14,317	25,872	3090.0%	93,333	33.6%
SYSTEM TOTALS	194,127	100.0%	32,572	51,064	83,636	100.0%	277,764	100.0%

Source: CECs 2021 Total System Electric Generation

An updated summary of, and context for energy consumption and energy demands within the State is presented in "U.S. Energy Information Administration, California State Profile and Energy Estimates, Quick Facts" excerpted below (7):

- In 2021, California was the seventh-largest producer of crude oil among the 50 states, and, as of January 2021, it ranked third in crude oil refining capacity.
- California is the largest consumer of jet fuel and second-largest consumer of motor gasoline among the 50 states and, the state accounted for 15% of the nation's jet fuel consumption and 10% of motor gasoline consumption in 2020.
- In 2019, California was the second-largest total energy consumer among the states, but its per capita energy consumption was less than in all other states except Rhode Island, due in part to its mild climate and its energy efficiency programs.
- In 2021, California was the nation's top producer of electricity from solar, geothermal, and biomass energy. The state was fourth in the nation in conventional hydroelectric power generation, down from second in 2019, in part because of drought and increased water demand.
- In 2021, California was the fourth-largest electricity producer in the nation, but the state was also the nation's second-largest consumer of electricity, and in 2020, it received about 30% of its electricity supply from generating facilities outside of California, including imports from Mexico.

As indicated above, California is one of the nation's leading energy-producing states, and California's per capita energy use is among the nation's most efficient. Given the nature of the Project, the remainder of this discussion will focus on the three sources of energy that are most relevant to the Project—namely, electricity, natural gas, and transportation fuel for vehicle trips associated with the uses planned for the Project.

2.2 ELECTRICITY

The usage associated with electricity use were calculated using CalEEMod Version 2022.1. The Southern California region's electricity reliability has been of concern for the past several years due to the planned retirement of aging facilities that depend upon once-through cooling technologies, as well as the June 2013 retirement of the San Onofre Nuclear Generating Station (San Onofre). While the once-through cooling phase-out has been ongoing since the May 2010 adoption of the State Water Resources Control Board's once-through cooling policy, the retirement of San Onofre complicated the situation. California Independent Service Operator (ISO) studies revealed the extent to which the South Coast Air Basin (SCAB) and the San Diego Air Basin (SDAB) region were vulnerable to low-voltage and post-transient voltage instability concerns. A preliminary plan to address these issues was detailed in the 2013 Integrative Energy Policy Report (IEPR) after a collaborative process with other energy agencies, utilities, and air districts (8). Similarly, the subsequent 2021 IEPR's provides information and policy recommendations on advancing a clean, reliable, and affordable energy system.

California's electricity industry is an organization of traditional utilities, private generating companies, and state agencies, each with a variety of roles and responsibilities to ensure that electrical power is provided to consumers. The California ISO is a nonprofit public benefit

corporation and is the impartial operator of the State's wholesale power grid and is charged with maintaining grid reliability, and to direct uninterrupted electrical energy supplies to California's homes and communities. While utilities still own transmission assets, the ISO routes electrical power along these assets, maximizing the use of the transmission system and its power generation resources. The ISO matches buyers and sellers of electricity to ensure that enough power is available to meet demand. To these ends, every five minutes the ISO forecasts electrical demands, accounts for operating reserves, and assigns the lowest cost power plant unit to meet demands while ensuring adequate system transmission capacities and capabilities (9).

Part of the ISO's charge is to plan and coordinate grid enhancements to ensure that electrical power is provided to California consumers. To this end, utilities file annual transmission expansion/modification plans to accommodate the State's growing electrical needs. The ISO reviews and either approves or denies the proposed additions. In addition, and perhaps most importantly, the ISO works with other areas in the western United States electrical grid to ensure that adequate power supplies are available to the State. In this manner, continuing reliable and affordable electrical power is assured to existing and new consumers throughout the State.

Electricity is currently provided to the Project site by Southern California Edison (SCE). SCE provides electric power to more than 15 million persons in 15 counties and in 180 incorporated cities, within a service area encompassing approximately 50,000 square miles. Based on SCE's 2018 Power Content Label Mix, SCE derives electricity from varied energy resources including: fossil fuels, hydroelectric generators, nuclear power plants, geothermal power plants, solar power generation, and wind farms. SCE also purchases from independent power producers and utilities, including out-of-state suppliers (10).

Table 2-2, SCE's specific proportional shares of electricity sources in 2020. As indicated in Table 2-2, the 2020 SCE Power Mix has renewable energy at 30.9% of the overall energy resources. Geothermal resources are at 5.5%, wind power is at 9.4%, large hydroelectric sources are at 3.3%, solar energy is at 15.1%, and coal is at 0% (11).

TABLE 2-2: SCE 2020 POWER CONTENT MIX

Energy Resources	2020 SCE Power Mix
Eligible Renewable	30.9%
Biomass & Waste	0.1%
Geothermal	5.5%
Eligible Hydroelectric	0.8%
Solar	15.1%
Wind	9.4%
Coal	0.0%
Large Hydroelectric	3.3%
Natural Gas	15.2%
Nuclear	8.4%
Other	0.3%
Unspecified Sources of power*	42.0%
Total	100%

^{* &}quot;Unspecified sources of power" means electricity from transactions that are not traceable to specific generation sources

2.3 NATURAL GAS

The following summary of natural gas customers and volumes, supplies, delivery of supplies, storage, service options, and operations is excerpted from information provided by the California Public Utilities Commission (CPUC).

"The CPUC regulates natural gas utility service for approximately 10.8 million customers that receive natural gas from Pacific Gas and Electric (PG&E), Southern California Gas (SoCalGas), San Diego Gas & Electric (SDG&E), Southwest Gas, and several smaller natural gas utilities. The CPUC also regulates independent storage operators: Lodi Gas Storage, Wild Goose Storage, Central Valley Storage and Gill Ranch Storage.

California's natural gas utilities provide service to over 11 million gas meters. SoCalGas and PG&E provide service to about 5.9 million and 4.3 million customers, respectively, while SDG&E provides service to over 800, 000 customers. In 2018, California gas utilities forecasted that they would deliver about 4740 million cubic feet per day (MMcfd) of gas to their customers, on average, under normal weather conditions.

The overwhelming majority of natural gas utility customers in California are residential and small commercials customers, referred to as "core" customers. Larger volume gas customers, like electric generators and industrial customers, are called "noncore" customers. Although very small in number relative to core customers, noncore customers consume about 65% of the natural gas delivered by the state's natural gas utilities, while core customers consume about 35%.

A significant amount of gas (about 19%, or 1131 MMcfd, of the total forecasted California consumption in 2018) is also directly delivered to some California large volume consumers, without being transported over the regulated utility pipeline system. Those customers, referred to as "bypass" customers, take service directly from interstate pipelines or directly from California producers.

SDG&E and Southwest Gas' southern division are wholesale customers of SoCalGas, i.e., they receive deliveries of gas from SoCalGas and in turn deliver that gas to their own customers. (Southwest Gas also provides natural gas distribution service in the Lake Tahoe area.) Similarly, West Coast Gas, a small gas utility, is a wholesale customer of PG&E. Some other wholesale customers are municipalities like the cities of Palo Alto, Long Beach, and Vernon, which are not regulated by the CPUC.

Natural gas from out-of-state production basins is delivered into California via the interstate natural gas pipeline system. The major interstate pipelines that deliver out-of-state natural gas to California gas utilities are Gas Transmission Northwest Pipeline, Kern River Pipeline, Transwestern Pipeline, El Paso Pipeline, Ruby Pipeline, Mojave Pipeline, and Tuscarora. Another pipeline, the North Baja - Baja Norte Pipeline takes gas off the El Paso Pipeline at the California/Arizona border and delivers that gas through California into Mexico. While the Federal Energy Regulatory Commission (FERC) regulates the transportation of natural gas on the interstate pipelines, and authorizes rates for that service, the California Public Utilities Commission may participate in FERC regulatory proceedings to represent the interests of California natural gas consumers.

The gas transported to California gas utilities via the interstate pipelines, as well as some of the California-produced gas, is delivered into the PG&E and SoCalGas intrastate natural gas transmission pipelines systems (commonly referred to as California's "backbone" pipeline system). Natural gas on the utilities' backbone pipeline systems is then delivered to the local transmission and distribution pipeline systems, or to natural gas storage fields. Some large volume noncore customers take natural gas delivery directly off the high-pressure backbone and local transmission pipeline systems, while core customers and other noncore customers take delivery off the utilities' distribution pipeline systems. The state's natural gas utilities operate over 100,000 miles of transmission and distribution pipelines, and thousands more miles of service lines.

Bypass customers take most of their deliveries directly off the Kern/Mojave pipeline system, but they also take a significant amount of gas from California production.

PG&E and SoCalGas own and operate several natural gas storage fields that are located within their service territories in northern and southern California, respectively. These storage fields, and four independently owned storage utilities - Lodi Gas Storage, Wild Goose Storage, Central Valley Storage, and Gill Ranch Storage - help meet peak seasonal and daily natural gas demand and allow California natural gas customers to secure natural gas supplies more efficiently. PG&E is a 25% owner of the Gill Ranch Storage field. These storage fields provide a significant amount of infrastructure capacity to help meet

California's natural gas requirements, and without these storage fields, California would need much more pipeline capacity in order to meet peak gas requirements.

Prior to the late 1980s, California regulated utilities provided virtually all natural gas services to all their customers. Since then, the Commission has gradually restructured the California gas industry in order to give customers more options while assuring regulatory protections for those customers that wish to, or are required to, continue receiving utility-provided services.

The option to purchase natural gas from independent suppliers is one of the results of this restructuring process. Although the regulated utilities procure natural gas supplies for most core customers, core customers have the option to purchase natural gas from independent natural gas marketers, called "core transport agents" (CTA). Contact information for core transport agents can be found on the utilities' web sites. Noncore customers, on the other hand, make natural gas supply arrangements directly with producers or with marketers.

Another option resulting from the restructuring process occurred in 1993, when the Commission removed the utilities' storage service responsibility for noncore customers, along with the cost of this service from noncore customers' transportation rates. The Commission also encouraged the development of independent storage fields, and in subsequent years, all the independent storage fields in California were established. Noncore customers and marketers may now take storage service from the utility or from an independent storage provider (if available), and pay for that service, or may opt to take no storage service at all. For core customers, the Commission assures that the utility has adequate storage capacity set aside to meet core requirements, and core customers pay for that service.

In a 1997 decision, the Commission adopted PG&E's "Gas Accord", which unbundled PG&E's backbone transmission costs from noncore transportation rates. This decision gave customers and marketers the opportunity to obtain pipeline capacity rights on PG&E's backbone transmission pipeline system, if desired, and pay for that service at rates authorized by the Commission. The Gas Accord also required PG&E to set aside a certain amount of backbone transmission capacity in order to deliver gas to its core customers. Subsequent Commission decisions modified and extended the initial terms of the Gas Accord. The "Gas Accord" framework is still in place today for PG&E's backbone and storage rates and services and is now simply referred to as PG&E Gas Transmission and Storage (GT&S).

In a 2006 decision, the Commission adopted a similar gas transmission framework for Southern California, called the "firm access rights" system. SoCalGas and SDG&E implemented the firm access rights (FAR) system in 2008, and it is now referred to as the backbone transmission system (BTS) framework. As under the PG&E backbone transmission system, SoCalGas backbone transmission costs are unbundled from noncore transportation rates. Noncore customers and marketers may obtain, and pay for, firm backbone transmission capacity at various receipt points on the SoCalGas system. A

certain amount of backbone transmission capacity is obtained for core customers to assure meeting their requirements.

Many if not most noncore customers now use a marketer to provide for several of the services formerly provided by the utility. That is, a noncore customer may simply arrange for a marketer to procure its supplies, and obtain any needed storage and backbone transmission capacity, in order to assure that it will receive its needed deliveries of natural gas supplies. Core customers still mainly rely on the utilities for procurement service, but they have the option to take procurement service from a CTA. Backbone transmission and storage capacity is either set aside or obtained for core customers in amounts to assure very high levels of service.

In order properly operate their natural gas transmission pipeline and storage systems, PG&E and SoCalGas must balance the amount of gas received into the pipeline system and delivered to customers or to storage fields. Some of these utilities' storage capacity is dedicated to this service, and under most circumstances, customers do not need to precisely match their deliveries with their consumption. However, when too much or too little gas is expected to be delivered into the utilities' systems, relative to the amount being consumed, the utilities require customers to more precisely match up their deliveries with their consumption. And, if customers do not meet certain delivery requirements, they could face financial penalties. The utilities do not profit from these financial penalties - the amounts are then returned to customers as a whole. If the utilities find that they are unable to deliver all the gas that is expected to be consumed, they may even call for a curtailment of some gas deliveries. These curtailments are typically required for just the largest, noncore customers. It has been many years since there has been a significant curtailment of core customers in California." (12)

As indicated in the preceding discussions, natural gas is available from a variety of in-state and out-of-state sources and is provided throughout the state in response to market supply and demand. Complementing available natural gas resources, biogas may soon be available via existing delivery systems, thereby increasing the availability and reliability of resources in total. The CPUC oversees utility purchases and transmission of natural gas to ensure reliable and affordable natural gas deliveries to existing and new consumers throughout the State.

Based on information provided by the Project applicant, no natural gas would be used as a result of the Project, and as such use of natural gas is not considered in the analysis.

2.4 Transportation Energy Resources

The Project would generate additional vehicle trips with resulting consumption of energy resources, predominantly gasoline and diesel fuel. The Department of Motor Vehicles (DMV) identified 36.2 million registered vehicles in California (13), and those vehicles consume an estimated 17.2 billion gallons of fuel each year¹. Gasoline (and other vehicle fuels) are

¹ Fuel consumptions estimated utilizing information from EMFAC2021.

commercially provided commodities and would be available to the Project patrons and employees via commercial outlets.

California's on-road transportation system includes 396,616 lane miles, more than 26.6 million passenger vehicles and light trucks, and almost 9.0 million medium- and heavy-duty vehicles (13). While gasoline consumption has been declining since 2008 it is still by far the dominant fuel. California is the second-largest consumer of petroleum products, after Texas, and accounts for 10% of the nation's total consumption. The state is the largest U.S. consumer of motor gasoline and jet fuel, and 85% of the petroleum consumed in California is used in the transportation sector (14).

California accounts for less than 1% of total U.S. natural gas reserves and production. As with crude oil, California's natural gas production has experienced a gradual decline since 1985. In 2019, about 37% of the natural gas delivered to consumers went to the state's industrial sector, and about 28% was delivered to the electric power sector. Natural gas fueled more than two-fifths of the state's utility-scale electricity generation in 2019. The residential sector, where two-thirds of California households use natural gas for home heating, accounted for 22% of natural gas deliveries. The commercial sector received 12% of the deliveries to end users and the transportation sector consumed the remaining 1% (14).

This page intentionally left blank

3 REGULATORY BACKGROUND

Federal and state agencies regulate energy use and consumption through various means and programs. On the federal level, the United States Department of Transportation, the United States Department of Energy, and the United States Environmental Protection Agency (EPA) are three federal agencies with substantial influence over energy policies and programs. On the state level, the CPUC and the CEC are two agencies with authority over different aspects of energy. Relevant federal and state energy-related laws and plans are summarized below.

3.1 FEDERAL REGULATIONS

3.1.1 INTERMODAL SURFACE TRANSPORTATION EFFICIENCY ACT OF 1991 (ISTEA)

ISTEA promoted the development of inter-modal transportation systems to maximize mobility as well as address national and local interests in air quality and energy. ISTEA contained factors that Metropolitan Planning Organizations (MPOs) were to address in developing transportation plans and programs, including some energy-related factors. To meet the new ISTEA requirements, MPOs adopted explicit policies defining the social, economic, energy, and environmental values guiding transportation decisions.

3.1.2 THE TRANSPORTATION EQUITY ACT FOR THE 21ST CENTURY (TEA-21)

TEA-21 was signed into law in 1998 and builds upon the initiatives established in the ISTEA legislation, discussed above. TEA-21 authorizes highway, highway safety, transit, and other efficient surface transportation programs. TEA-21 continues the program structure established for highways and transit under ISTEA, such as flexibility in the use of funds, emphasis on measures to improve the environment, and focus on a strong planning process as the foundation of good transportation decisions. TEA-21 also provides for investment in research and its application to maximize the performance of the transportation system through, for example, deployment of Intelligent Transportation Systems, to help improve operations and management of transportation systems and vehicle safety.

3.2 CALIFORNIA REGULATIONS

3.2.1 Integrated Energy Policy Report (IEPR)

Senate Bill 1389 (Bowen, Chapter 568, Statutes of 2002) requires the CEC to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the state's electricity, natural gas, and transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state's economy; and protect public health and safety (Public Resources Code § 25301[a]). The CEC prepares these assessments and associated policy recommendations every two years, with updates in alternate years, as part of the Integrated Energy Policy Report.

The 2021 IEPR was adopted February 2022, and continues to work towards improving electricity, natural gas, and transportation fuel energy use in California. The 2021 IEPR provides the results

of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the state is to meet its climate, energy, air quality, and other environmental goals while maintaining reliability and controlling costs. Additionally, the 2021 IEPR provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the state is to meet its climate, energy, air quality, and other environmental goals while maintaining reliability and controlling costs (15).

3.2.2 STATE OF CALIFORNIA ENERGY PLAN

The CEC is responsible for preparing the State Energy Plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The Plan calls for the state to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies several strategies, including assistance to public agencies and fleet operators and encouragement of urban designs that reduce vehicle miles traveled (VMT) and accommodate pedestrian and bicycle access.

3.2.3 CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission.

CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that will be effective on January 1, 2023². The Project would be required to comply with the applicable standards in place at the time plan check submittals are made (16).

3.2.4 AB 1493 Payley Regulations and Fuel Efficiency Standards

California AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Under this legislation, CARB adopted regulations to reduce GHG emissions from non-commercial passenger vehicles (cars and light-duty trucks). Although aimed at reducing GHG emissions, specifically, a co-benefit of the Pavley standards is an improvement in fuel efficiency and consequently a reduction in fuel consumption.

² The 2022 California Green Building Standard Code will be published July 1, 2022.

3.2.5 CALIFORNIA'S RENEWABLE PORTFOLIO STANDARD (RPS)

First established in 2002 under Senate Bill (SB) 1078, California's Renewable Portfolio Standards (RPS) requires retail sellers of electric services to increase procurement from eligible renewable resources to 33% of total retail sales by 2020 (17).

3.2.6 CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350)

In October 2015, the legislature approved, and the Governor signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the renewables portfolio standard (RPS), higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for electric vehicle charging stations. Specifically, SB 350 requires the following to reduce statewide GHG emissions:

- Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027.
- Double the energy efficiency in existing buildings by 2030. This target will be achieved through the California Public Utility Commission (CPUC), the CEC, and local publicly owned utilities.
- Reorganize the Independent System Operator (ISO) to develop more regional electrify transmission markets and to improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States (California Leginfo 2015).

This page intentionally left blank

4 PROJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES

4.1 EVALUATION CRITERIA

Appendix F of the *State CEQA Guidelines* (18), states that the means of achieving the goal of energy conservation includes the following:

- Decreasing overall per capita energy consumption;
- Decreasing reliance on fossil fuels such as coal, natural gas, and oil; and
- Increasing reliance on renewable energy sources.

In compliance with Appendix G of the *State CEQA Guidelines* (19), this report analyzes the Project's anticipated energy use during construction and operations to determine if the Project would:

- Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation; or
- Conflict with or obstruct a state or local plan for renewable energy or energy efficiency

4.2 METHODOLOGY

Information from the CalEEMod Version 2022.1 outputs for the *Mapes & Sherman Commerce Center (DEV2022-003) Air Quality Impact Analysis* (AQIA) (20) was utilized in this analysis, detailing Project related construction equipment, transportation energy demands, and facility energy demands.

4.2.1 CALEEMOD

In May 2022, the SCAQMD, in conjunction with the California Air Pollution Control Officers Association (CAPCOA) and other California air districts, released the latest version of the CalEEMod Version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources as well as energy usage (21). Accordingly, the latest version of CalEEMod has been used to determine the proposed Project's anticipated transportation and facility energy demands. Outputs from the annual model runs are provided in Appendices 4.1 through 4.2.

4.2.2 EMISSION FACTORS MODEL

On May 2, 2022, the EPA approved the 2021 version of the EMissions FACtor model (EMFAC2021) web database for use in State Implementation Plan and transportation conformity analyses. EMFAC2021 is a mathematical model that was developed to calculate emission rates, fuel consumption, VMT from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the CARB to project changes in future emissions from onroad mobile sources (22). This energy study utilizes the different fuel types for each vehicle class from the annual EMFAC2021 emission inventory in order to derive the average vehicle fuel economy which is then used to determine the estimated annual fuel consumption associated

with vehicle usage during Project construction and operational activities. For purposes of analysis, the 2023 and 2024 analysis years were utilized to determine the average vehicle fuel economy used throughout the duration of the Project. Outputs from the EMFAC2021 model run is provided in Appendix 4.3.

4.3 CONSTRUCTION ENERGY DEMANDS

The focus within this section is the energy implications of the construction process, specifically the power cost from on-site electricity consumption during construction of the proposed Project.

4.3.1 CONSTRUCTION POWER COST

The total Project construction power costs is the summation of the products of the area (sf) by the construction duration and the typical power cost.

CONSTRUCTION DURATION

For purposes of analysis, construction of Project is expected to commence in July 2023 and would last through September 2024 (20). The construction schedule utilized in the analysis, shown in Table 4-1, represents a "worst-case" analysis scenario. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (23).

Days **End Date Construction Activity Start Date** Site Preparation 10/03/2023 10/16/2023 10 10/17/2023 Grading 11/27/2023 30 **Building Construction** 11/28/2023 08/05/2024 180 07/09/2024 **Paving** 08/05/2024 20 06/11/2024 08/05/2024 40 Architectural Coating

TABLE 4-1: CONSTRUCTION DURATION

PROJECT CONSTRUCTION POWER COST

The 2022 National Construction Estimator identifies a typical power cost per 1,000 sf of construction per month of \$2.41, which was used to calculate the Project's total construction power cost (24).

As shown on Table 4-2, the total power cost of the on-site electricity usage during the construction of the Project is estimated to be approximately \$13,999.04.

TABLE 4-2: CONSTRUCTION POWER COST

Land Use	Power Cost (per 1,000 SF of construction per month) Size (1,000 SF)		Construction Duration (months)	Project Construction Power Cost
High-Cube Fulfillment	\$2.41	277.578	10	\$6,689.63
Landscape	\$2.41	69.981	10	\$1,686.54
Parking	\$2.41	88.008	10	\$2,120.99
Other Asphalt Surfaces	\$2.41	145.306	10	\$3,501.87
	\$13,999.04			

4.3.2 CONSTRUCTION ELECTRICITY USAGE

The total Project construction electricity usage is the summation of the products of the power cost (estimated in Table 4-2) by the utility provider cost per kilowatt hour (kWh) of electricity.

PROJECT CONSTRUCTION ELECTRICITY USAGE

The SCE's general service rate schedule were used to determine the Project's electrical usage. As of June 1, 2022, SCE's general service rate is \$0.13 per kilowatt hours (kWh) of electricity for industrial services (25). As shown on Table 4-3, the total electricity usage from on-site Project construction related activities is estimated to be approximately 105,486 kWh.

TABLE 4-3: CONSTRUCTION ELECTRICITY USAGE

Land Use	Cost per kWh	Project Construction Electricity Usage (kWh)
High-Cube Fulfillment	\$0.13	50,408
Landscape	\$0.13	12,708
Parking	\$0.13	15,982
Other Asphalt Surfaces	\$0.13	26,387
ONSTRUCTIO	105,486	

4.3.3 CONSTRUCTION EQUIPMENT FUEL ESTIMATES

Fuel consumed by construction equipment would be the primary energy resource expended over the course of Project construction.

CONSTRUCTION EQUIPMENT

Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 4-4 will operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed pursuant to the code.

TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Construction Activity	Equipment	Amount	Hours Per Day
Cita Dramaration	Rubber Tired Dozers	3	8
Site Preparation	Crawler Tractors	4	8
	Graders	1	8
	Excavators	2	8
Grading	Scrapers	2	8
	Rubber Tired Dozers	1	8
	Crawler Tractors	2	8
	Forklifts	3	8
	Generator Sets	1	8
Building Construction	Cranes	1	8
	Welders	1	8
	Crawler Tractors	3	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

PROJECT CONSTRUCTION EQUIPMENT FUEL CONSUMPTION

Project construction activity timeline estimates, construction equipment schedules, equipment power ratings, load factors, and associated fuel consumption estimates are presented in Table 4-5. The aggregate fuel consumption rate for all equipment is estimated at 18.5 horsepower hour per gallon (hp-hr-gal.), obtained from CARB 2018 Emissions Factors Tables and cited fuel consumption rate factors presented in Table D-24 of the Moyer guidelines (26). For the purposes of this analysis, the calculations are based on all construction equipment being diesel-powered, which is consistent with industry standards.

Diesel fuel would be supplied by existing commercial fuel providers serving the Project area and region³. As presented in Table 4-5, Project construction activities would consume an estimated 36,791 gallons of diesel fuel. Project construction would represent a "single-event" diesel fuel demand and would not require ongoing or permanent commitment of diesel fuel resources for this purpose.

³ Based on Appendix A of the CalEEMod User's Guide, Construction consists of several types of off-road equipment. Since the majority of the off-road construction equipment used for construction projects are diesel fueled, CalEEMod assumes all of the equipment operates on diesel fuel.

TABLE 4-5: CONSTRUCTION EQUIPMENT FUEL CONSUMPTION ESTIMATES

Construction Activity	Duration (Days)	Equipment	HP Rating	Quantity	Usage Hours	Load Factor	HP- hrs/day	Total Fuel Consumption
Cita Duana nation	10	Rubber Tired Dozers	367	3	8	0.40	3,523	1,904
Site Preparation	10	Crawler Tractors	87	4	8	0.43	1,197	647
		Graders	148	1	8	0.41	485	787
		Excavators	36	2	8	0.38	219	355
Grading	30	Scrapers	423	2	8	0.48	3,249	5,268
		Rubber Tired Dozers	367	1	8	0.40	1,174	1,904
		Crawler Tractors	87	2	8	0.43	599	971
		Forklifts	82	3	8	0.20	394	3,830
		Generator Sets	14	1	8	0.74	83	806
Building Construction	180	Cranes	367	1	8	0.29	851	8,284
		Welders	46	1	8	0.45	166	1,611
		Crawler Tractors	87	3	8	0.43	898	8,736
		Pavers	81	2	8	0.42	544	588
Paving	20	Paving Equipment	89	2	8	0.36	513	554
		Rollers	36	2	8	0.38	219	237
Architectural Coating	40	Air Compressors 37 1 8 0.48 142					307	
CONSTRUCTION FUEL DEMAND (GALLONS DIESEL FUEL)							36,791	

4.3.4 CONSTRUCTION TRIPS AND VMT

Construction generates on-road vehicle emissions from vehicle usage for workers, vendors, and haul truck commuting to and from the site. The number of workers, vendor, and haul trips are presented below in Table 4-6. It should be noted that for vendor trips, specifically, CalEEMod only assigns vendor trips to the Building Construction phase. Vendor trips would likely occur during all phases of construction. As such, the CalEEMod defaults for vendor trips have been adjusted based on a ratio of the total vendor trips to the number of days of each subphase of activity.

Construction Activity	Worker Trips Per Day	Vendor Trips Per Day	Hauling Trips Per Day	
Site Preparation	18	3	0	
Grading	20	7	42	
Building Construction	117	37	0	
Paving	15	0	0	
Architectural Coating	23	0	0	

TABLE 4-6: CONSTRUCTION TRIPS AND VMT

4.3.5 CONSTRUCTION WORKER FUEL ESTIMATES

With respect to estimated VMT for the Project, the construction worker trips (personal vehicles used by workers commuting to the Project from home) would generate an estimated 434,565 VMT during the 10 months of construction (20). Based on CalEEMod methodology, it is assumed that 50% of all construction worker trips are from light-duty-auto vehicles (LDA), 25% are from light-duty-trucks (LDT1⁴), and 25% are from light-duty-trucks (LDT2⁵). Data regarding Project related construction worker trips were based on CalEEMod defaults utilized within the AQIA.

Vehicle fuel efficiencies for LDA, LDT1, and LDT2 were estimated using information generated within the 2021 version of the EMFAC developed by CARB. EMFAC2021 is a mathematical model that was developed to calculate emission rates, fuel consumption, and VMT from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the CARB to project changes in future emissions from on-road mobile sources (22). EMFAC2021 was run for the LDA, LDT1, and LDT2 vehicle class within the California sub-area for the 2023 and 2024 calendar years. Data from EMFAC2021 is shown in Appendix 4.3.

As shown in Table 4-7, the estimated annual fuel consumption resulting from Project construction worker trips is 15,811 gallons during full construction of the Project. It should be noted that construction worker trips would represent a "single-event" gasoline fuel demand and would not require ongoing or permanent commitment of fuel resources for this purpose.

 $^{^{5}}$ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

⁴ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

TABLE 4-7: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES

Year	Construction Activity	Duration (Days)	Worker Trips/Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)	
	LDA							
	Site Preparation	10	9	18.5	1,665	30.60	54	
	Grading	30	10	18.5	5,550	30.60	181	
	Building Construction	24	59	18.5	26,196	30.60	856	
				LDT1				
2022	Site Preparation	10	5	18.5	925	24.15	38	
2023	Grading	30	5	18.5	2,775	24.15	115	
	Building Construction	24	30	18.5	13,320	24.15	552	
				LDT2				
	Site Preparation	10	5	18.5	925	23.88	39	
	Grading	30	5	18.5	2,775	23.88	116	
	Building Construction	24	30	18.5	13,320	23.88	558	
				LDA				
	Building Construction	156	59	18.5	170,274	31.51	5,404	
	Paving	20	8	18.5	2,960	31.51	94	
	Architectural Coating	40	12	18.5	8,880	31.51	282	
				LDT1				
2024	Building Construction	156	30	18.5	86,580	24.62	3,516	
2024	Paving	20	4	18.5	1,480	24.62	60	
	Architectural Coating	40	6	18.5	4,440	24.62	180	
				LDT2				
	Building Construction	156	30	18.5	86,580	24.57	3,523	
	Paving	20	4	18.5	1,480	24.57	60	
	Architectural Coating	40	6	18.5	4,440	24.57	181	
	TOTAL CONSTRUCTION WORKER FUEL CONSUMPTION							

4.3.6 CONSTRUCTION VENDOR/HAULING FUEL ESTIMATES

With respect to estimated VMT, the construction vendor trips (vehicles that deliver materials to the site during construction) would generate an estimated 97,824 VMT along area roadways for the Project over the duration of construction activity (20). It is assumed that 50% of all vendor trips are from medium-heavy duty trucks (MHD), 50% of all vendor trips are from heavy-heavy duty trucks (HHD), and 100% of all hauling trips are from HHDs. These assumptions are consistent

with the CalEEMod defaults utilized within the within the AQIA (20). Vehicle fuel efficiencies for MHDs and HHDs were estimated using information generated within EMFAC2021. EMFAC2021 was run for the MHD and HHD vehicle classes within the California sub-area for the 2023 and 2024 calendar years. Data from EMFAC2021 is shown in Appendix 4.3.

Based on Table 4-8, it is estimated that 14,407 gallons of fuel will be consumed related to construction vendor trips during full construction of the Project. It should be noted that Project construction vendor trips would represent a "single-event" diesel fuel demand and would not require on-going or permanent commitment of diesel fuel resources for this purpose.

TABLE 4-8: CONSTRUCTION VENDOR FUEL CONSUMPTION ESTIMATES

Year	Construction Activity	Duration (Days)	Vendor Trips/Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)	
	MHD							
	Site Preparation	10	2	10.2	204	8.40	24	
	Grading	30	4	10.2	1,224	8.40	146	
	Building Construction	24	19	10.2	4,651	8.40	554	
2022	HHD (Vendor)							
2023	Site Preparation	10	2	10.2	204	6.04	34	
	Grading	30	4	10.2	1,224	6.04	203	
	Building Construction	24	19	10.2	4,651	6.04	770	
			Н	HD (Haulin	g)			
	Grading	30	42	20	25,200	6.04	4,170	
				MHD				
2024	Building Construction	156	19	10.2	30,233	8.47	3,568	
2024	HHD (Vendor)							
	Building Construction	156	19	10.2	30,233	6.12	4,939	
	TOTAL CONSTRUCTION VENDOR/HAULING FUEL CONSUMPTION 14,407							

4.3.7 CONSTRUCTION ENERGY EFFICIENCY/CONSERVATION MEASURES

Starting in 2014, CARB adopted the nation's first regulation aimed at cleaning up off-road construction equipment such as bulldozers, graders, and backhoes. These requirements ensure fleets gradually turnover the oldest and dirtiest equipment to newer, cleaner models and prevent fleets from adding older, dirtier equipment. As such, the equipment used for Project construction would conform to CARB regulations and California emissions standards. It should also be noted that there are no unusual Project characteristics or construction processes that would require the use of equipment that would be more energy intensive than is used for comparable activities; or equipment that would not conform to current emissions standards (and related fuel

efficiencies). Equipment employed in construction of the Project would therefore not result in inefficient wasteful, or unnecessary consumption of fuel.

Construction contractors would be required to comply with applicable CARB regulation regarding retrofitting, repowering, or replacement of diesel off-road construction equipment. Additionally, CARB has adopted the Airborne Toxic Control Measure to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to diesel particulate matter and other Toxic Air Contaminants. Compliance with anti-idling and emissions regulations would result in a more efficient use of construction-related energy and the minimization or elimination of wasteful or unnecessary consumption of energy. Idling restrictions and the use of newer engines and equipment would result in less fuel combustion and energy consumption.

Additional construction-source energy efficiencies would occur due to required California regulations and best available control measures (BACM). For example, CCR Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than five minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. Section 2449(d)(3) requires that grading plans shall reference the requirement that a sign shall be posted on-site stating that construction workers need to shut off engines at or before five minutes of idling." In this manner, construction equipment operators are required to be informed that engines are to be turned off at or prior to five minutes of idling. Enforcement of idling limitations is realized through periodic site inspections conducted by City building officials, and/or in response to citizen complaints.

A full analysis related to the energy needed to form construction materials is not included in this analysis due to a lack of detailed Project-specific information on construction materials. At this time, an analysis of the energy needed to create Project-related construction materials would be extremely speculative and thus has not been prepared.

In general, construction processes promote conservation and efficient use of energy by reducing raw materials demands, with related reduction in energy demands associated with raw materials extraction, transportation, processing, and refinement. Use of materials in bulk reduces energy demands associated with preparation and transport of construction materials as well as the transport and disposal of construction waste and solid waste in general, with corollary reduced demands on area landfill capacities and energy consumed by waste transport and landfill operations.

4.4 OPERATIONAL ENERGY DEMANDS

Energy consumption in support of or related to Project operations would include transportation fuel demands (fuel consumed by passenger car and truck vehicles accessing the Project site), fuel demands from operational equipment, and facilities energy demands (energy consumed by building operations and site maintenance activities).

4.4.1 TRANSPORTATION FUEL DEMANDS

Energy that would be consumed by Project-generated traffic is a function of total VMT and estimated vehicle fuel economies of vehicles accessing the Project site. The VMT per vehicle class

can be determined by evaluated in the vehicle fleet mix and the total VMT. As with worker and vendors trips, operational vehicle fuel efficiencies were estimated using information generated within EMFAC2021 developed by CARB (22). EMFAC2021 was run for the Riverside County area for the 2024 calendar year. Data from EMFAC2021 is shown in Appendix 4.3.

The estimated transportation energy demands are summarized on Table 4-9. As summarized on Table 4-9 the Project would result in a 2,860,138 annual VMT and an estimated annual fuel consumption of 177,455 gallons of fuel.

TABLE 4-9: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION

Vehicle Type	ype Average Vehicle Fuel Economy (mpg) Annual VMT		Estimated Annual Fuel Consumption (gallons)
LDA	31.51	1,264,572	40,137
LDT1	24.62	102,508	4,163
LDT2	24.57	502,790	20,462
MDV	15.52	346,986	22,364
MCY	15.52	51,027	3,289
LHD1	16.16	51,822	3,206
LHD2	15.52	14,629	943
MHD	8.47	66,392	7,835
HHD	6.12	459,411	75,056
	TOTAL (ALL VEHICLES)	2,860,138	177,455

4.4.2 On-Site Cargo Handling Equipment Fuel Demands

It is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this particular Project, on-site modeled operational equipment includes up to one (1) 175 horsepower (hp), natural gas-powered cargo handling equipment – port tractors operating at 4 hours a day⁶ for 365 days of the year.

Project operational activity estimates and associated fuel consumption estimates are based on the annual EMFAC2021 offroad emissions for the 2024 operational year and was used to derive the total annual fuel consumption associated on-site equipment. As presented in Table 4-10, Project on-site equipment would consume an estimated 4,642 gallons of natural gas.

⁶ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

TABLE 4-10: ON-SITE CARGO HANDLING EQUIPMENT FUEL CONSUMPTION ESTIMATES

Equipment	Quantity	Usage Hours	Days of Operation	EMFAC2021 Fuel Consumption (gal./yr)	EMFAC2021 Activity (hrs./yr)	Total Fuel Consumption
Cargo Handling Equipment	1	4	365	17,909	5,633	4,642
ON-SITE CARGO HANDLING EQUIPMENT FUEL DEMAND (GALLONS FUEL)						4,642

4.4.3 FACILITY ENERGY DEMANDS

Project building operations activities would result in the consumption of electricity, which would be supplied to the Project by SCE. Annual electricity demands of the Project are summarized in Table 4-11. As summarized on Table 4-11 the Project would result in 1,354,592 kWh/year of electricity.

Based on information provided by the Project Applicant, the Project would not use natural gas for the building envelope. As such, natural gas consumption has not been analyzed in this study.

TABLE 4-11: PROJECT ANNUAL OPERATIONAL ENERGY DEMAND SUMMARY

Land Use	Electricity Demand (kWh/year)
High-Cube Fulfillment	1,277,512
Landscape	0
Parking	77,080
Other Asphalt Surfaces	0
Landscape	1,354,592

4.4.4 OPERATIONAL ENERGY EFFICIENCY/CONSERVATION MEASURES

Energy efficiency/energy conservation attributes of the Project would be complemented by increasingly stringent state and federal regulatory actions addressing vehicle fuel economies and vehicle emissions standards; and enhanced building/utilities energy efficiencies mandated under California building codes (e.g., Title24, California Green Building Standards Code).

ENHANCED VEHICLE FUEL EFFICIENCIES

Project annual fuel consumption estimates presented previously in Table 4-9 represent likely potential maximums that would occur for the Project. Under subsequent future conditions, average fuel economies of vehicles accessing the Project site can be expected to improve as older, less fuel-efficient vehicles are removed from circulation, and in response to fuel economy and emissions standards imposed on newer vehicles entering the circulation system.

Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the

Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands.

4.5 SUMMARY

4.5.1 CONSTRUCTION ENERGY DEMANDS

The estimated power cost of on-site electricity usage during the construction of the Project is assumed to be approximately \$13,999.04. Additionally, based on the assumed power cost, it is estimated that the total electricity usage during construction, after full Project buildout, is calculated to be approximately 105,486 kWh.

Construction equipment used by the Project would result in single event consumption of approximately 36,791 gallons of diesel fuel. Construction equipment use of fuel would not be atypical for the type of construction proposed because there are no aspects of the Project's proposed construction process that are unusual or energy-intensive, and Project construction equipment would conform to the applicable CARB emissions standards, acting to promote equipment fuel efficiencies.

CCR Title 13, Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than 5 minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. BACMs inform construction equipment operators of this requirement. Enforcement of idling limitations is realized through periodic site inspections conducted by City building officials, and/or in response to citizen complaints.

Construction worker trips for full construction of the Project would result in the estimated fuel consumption of 15,811 gallons of fuel. Additionally, fuel consumption from construction vendor trips (MHDs and HHDs) will total approximately 14,407 gallons. Diesel fuel would be supplied by City and regional commercial vendors. Indirectly, construction energy efficiencies and energy conservation would be achieved using bulk purchases, transport, and use of construction materials. The 2021 IEPR released by the CEC has shown that fuel efficiencies are getting better within on and off-road vehicle engines due to more stringent government requirements (15). As supported by the preceding discussions, Project construction energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary.

4.5.2 OPERATIONAL ENERGY DEMANDS

TRANSPORTATION ENERGY DEMANDS

Annual vehicular trips and related VMT generated by the operation of the Project would result in a fuel demand of 177,455 gallons of fuel.

Fuel would be provided by current and future commercial vendors. Trip generation and VMT generated by the Project are consistent with other industrial uses of similar scale and configuration, as reflected respectively in the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th Ed., 2021); and CalEEMod. As such, Project operations would not result

in excessive and wasteful vehicle trips and VMT, nor excess and wasteful vehicle energy consumption compared to other industrial uses.

It should be noted that the state strategy for the transportation sector for medium and heavy-duty trucks is focused on making trucks more efficient and expediting truck turnover rather than reducing VMT from trucks. This is in contrast to the passenger vehicle component of the transportation sector where both per-capita VMT reductions and an increase in vehicle efficiency are forecasted to be needed to achieve the overall state emissions reductions goals.

Heavy duty trucks involved in goods movements are generally controlled on the technology side and through fleet turnover of older trucks and engines to newer and cleaner trucks and engines. The first battery-electric heavy-heavy duty trucks are being tested this year and SCAQMD is looking to integrate this new technology into large-scale truck operations. The following state strategies reduce GHG emissions from the medium and heavy-duty trucks:

- CARB's Mobile Source Strategy focuses on reducing GHGs through the transition to zero and low emission vehicles and from medium-duty and heavy-duty trucks.
- CARB's Sustainable Freight Action Plan establishes a goal to improve freight efficiency by 25% by 2030, deploy over 100,000 freight vehicles and equipment capable of zero emission operation and maximize both zero and near-zero emission freight vehicles and equipment powered by renewable energy by 2030.
- CARB's Emissions Reduction Plan for Ports and Goods Movement (Goods Movement Plan) in California focuses on reducing heavy-duty truck-related emissions focus on establishment of emissions standards for trucks, fleet turnover, truck retrofits, and restriction on truck idling (CARB 2006). While the focus of Goods Movement Plan is to reduce criteria air pollutant and air toxic emissions, the strategies to reduce these pollutants would also generally have a beneficial effect in reducing GHG emissions.
- CARB's On-Road Truck and Bus Regulation (2010) requires diesel trucks and buses that operate in California to be upgraded to reduce emissions. Newer heavier trucks and buses must meet particulate matter filter requirements beginning January 1, 2012. Lighter and older heavier trucks must be replaced starting January 1, 2015. By January 1, 2023, nearly all trucks and buses will need to have 2010 model year engines or equivalent (27).
- CARB's Heavy-Duty (Tractor-Trailer) GHG Regulation requires SmartWay tractor trailers that
 include idle-reduction technologies, aerodynamic technologies, and low-rolling resistant tires that
 would reduce fuel consumption and associated GHG emissions.

The proposed Project would implement project design features that would facilitate the accessibility, parking, and loading of trucks on-site.

Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands. The Project would implement sidewalks, facilitating and encouraging pedestrian access. Facilitating pedestrian and bicycle access would reduce VMT and associated energy consumption. In compliance with the California Green

Building Standards Code and City requirements, the Project would promote the use of bicycles as an alternative mean of transportation by providing short-term and/or long-term bicycle parking accommodations. As supported by the preceding discussions, Project transportation energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary.

ON-SITE CARGO HANDLING EQUIPMENT FUEL DEMANDS

As previously stated, it is common for industrial buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. On-site cargo handling equipment used by the Project would result in approximately 4,642 gallons of natural gas. On-site equipment use of fuel would not be atypical for the type of construction proposed because there are no aspects of the Project's proposed operations that are unusual or energy-intensive, and Project on-site equipment would conform to the applicable CARB emissions standards, acting to promote equipment fuel efficiencies.

FACILITY ENERGY DEMANDS

Project facility operational energy demands are estimated to be: 1,354,592 kWh/year of electricity which would be supplied by SCE. Based on information provided by the Project Applicant, the Project would not use natural gas. As such, natural gas consumption has not been analyzed in this study. The Project proposes conventional industrial uses reflecting contemporary energy efficient/energy conserving designs and operational programs. The Project does not propose uses that are inherently energy intensive and the energy demands in total would be comparable to other industrial uses of similar scale and configuration.

Lastly, the Project will comply with the applicable Title 24 standards. Compliance itself with applicable Title 24 standards will ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary.

This page intentionally left blank

5 CONCLUSIONS

5.1 ENERGY IMPACT 1

Would the Project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

As supported by the preceding analyses, Project construction and operations <u>would not result in the inefficient</u>, <u>wasteful</u>, <u>or unnecessary consumption of energy</u>. The Project would therefore not cause or result in the need for additional energy producing or transmission facilities. The Project would not engage in wasteful or inefficient uses of energy and aims to achieve energy conservations goals within the State of California.

5.2 ENERGY IMPACT 2

Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

The Project's consistency with the applicable state and local plans is discussed below.

CONSISTENCY WITH ISTEA

Transportation and access to the Project site is provided by the local and regional roadway systems. The Project would not interfere with, nor otherwise obstruct intermodal transportation plans or projects that may be realized pursuant to the ISTEA because SCAG is not planning for intermodal facilities on or through the Project site.

CONSISTENCY WITH TEA-21

The Project site is located along major transportation corridors with proximate access to the Interstate freeway system. The site selected for the Project facilitates access, acts to reduce vehicle miles traveled, takes advantage of existing infrastructure systems, and promotes land use compatibilities through collocation of similar uses. The Project supports the strong planning processes emphasized under TEA-21. The Project is therefore consistent with, and would not otherwise interfere with, nor obstruct implementation of TEA-21.

CONSISTENCY WITH IEPR

Electricity would be provided to the Project by SCE. SCE's *Clean Power and Electrification Pathway* (CPEP) white paper builds on existing state programs and policies. As such, the Project is consistent with, and would not otherwise interfere with, nor obstruct implementation the goals presented in the 2021 IEPR.

Additionally, the Project will comply with the applicable Title 24 standards which would ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary. As such, development of the proposed Project would support the goals presented in the 2020 IEPR.

CONSISTENCY WITH STATE OF CALIFORNIA ENERGY PLAN

The Project site is located along major transportation corridors with proximate access to the Interstate freeway system. The site selected for the Project facilitates access and takes advantage of existing infrastructure systems. The Project therefore supports urban design and planning processes identified under the State of California Energy Plan, is consistent with, and would not otherwise interfere with or obstruct, implementation of the State of California Energy Plan.

CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS

The 2022 version of Title 24 was adopted by the CEC and will become effective on January 1, 2023. As the Project building construction is anticipated in 2024, it is presumed that the Project would be required to comply with the Title 24 standards in place at that time. Therefore, the Project is would not result in a significant impact on energy resources (16). The proposed Project would be subject to Title 24 standards.

CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 11, CALGREEN

As previously stated, CCR, Title 24, Part 11: CALGreen is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on January 1, 2009, and is administered by the California Building Standards Commission. CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that were published on July 1, 2022 and will become effective on January 1, 2023. The Project would be required to comply with the applicable standards in place at the time plan check submittals are made.

CONSISTENCY WITH AB 1493

AB 1493 is not applicable to the Project as it is a statewide measure establishing vehicle emissions standards. No feature of the Project would interfere with implementation of the requirements under AB 1493.

CONSISTENCY WITH RPS

California's RPS is not applicable to the Project as it is a statewide measure that establishes a renewable energy mix. No feature of the Project would interfere with implementation of the requirements under RPS.

CONSISTENCY WITH SB 350

The proposed Project would use energy from SCE, which have committed to diversify their portfolio of energy sources by increasing energy from wind and solar sources. No feature of the Project would interfere with implementation of SB 350. Additionally, the Project would be designed and constructed to implement the energy efficiency measures for new industrial developments and would include several measures designed to reduce energy consumption.

As shown above, the Project would not conflict with any of the state or local plans. As such, a less than significant impact is expected.

This page intentionally left blank

6 REFERENCES

- 1. Association of Environmental Professionals. 2020 CEQA California Environmental Quality Act. 2020.
- 2. **Administration, U.S. Energy Information.** California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/data.php?sid=CA#ConsumptionExpenditures.
- 3. California Energy Commission. Transportation Energy Demand Forecast 2018-2030. 2018.
- 4. **U.S. Department of Energy.** Alternate Fuels Data Center. *U.S. Department of Energy.* [Online] https://afdc.energy.gov/states/ca.
- 5. **U.S. Energy Information Administration.** California Energy Consumption by End-Use Sector. *California State Profile and Energy Estimates.* [Online] https://www.eia.gov/state/?sid=CA#tabs-2.
- 6. California Energy Commission. 2021 Total System Electric Generation. CA.gov. [Online] https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2021-total-system-electric-generation#:~:text=Total%20generation%20for%20California%20was,from%2090%2C208%20GWh%20in%202020)...
- 7. **U.S. Energy Information Administration.** California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/?sid=CA.
- 8. California Energy Commission. 2013 Integrated Energy Policy Report. 2013.
- 9. **California ISO.** Understanding the ISO. [Online] http://www.caiso.com/about/Pages/OurBusiness/UnderstandingtheISO/default.aspx.
- 10. Southern California Edison. Southern California Edison's Service Area. [Online] https://download.newsroom.edison.com/create_memory_file/?f_id=5cc32d492cfac24d21aecf4c &content_verified=True.
- 11. Southern Californai Edison. 2019 Power Content Label. *Southern California Edison*. [Online] https://www.sce.com/sites/default/files/inline-files/SCE_2019PowerContentLabel.pdf.
- 12. California Public Utilities Commission. Natural Gas and California. [Online] https://www.cpuc.ca.gov/industries-and-topics/natural-gas/natural-gas-and-california.
- 13. Department of Motor Vehicles. State of California Department of Motor Vehicles Statistics For Publication January Through December 2021. 2021.
- 14. U.S. Energy Information Administration. California Analysis. *Energy Information Administration*. [Online] https://www.eia.gov/beta/states/states/ca/analysis.
- 15. California Energy Commission Staff. 2021 Integrated Energy Policy Report Update. [Online] 2021. https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2021-integrated-energy-policy-report.
- 16. The California Energy Commission. 2022 Building Energy Efficiency Standards. *California Energy Commission*. [Online] 2022. https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2022-building-energy-efficiency.
- 17. California Energy Commission. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/.
- 18. State of California. California Environmental Quality Act Guideline, California Public Resources Code, Title 14, Division 6, Chapter 3,.

- 19. Association of Environmental Professionals. 2019 CEQA California Environmental Quality Act. 2019.
- 20. Urban Crossroads, Inc. *Mapes & Sherman Commerce Center (DEV2022-003) Air Quality Impact Analysis.* 2022.
- 21. California Air Pollution Control Officers Association (CAPCOA). California Emissions Estimator Model (CalEEMod). [Online] May 2022. www.caleemod.com.
- 22. California Department of Transportation. EMFAC Software. [Online] http://www.dot.ca.gov/hq/env/air/pages/emfac.htm.
- 23. State of California. 2019 CEQA California Environmental Quality Act. 2019.
- 24. Pray, Richard. 2022 National Construction Estimator. Carlsbad: Craftsman Book Company, 2022.
- 25. Southern California Edison. Schedule GS-1 General Service. Regulatory Information Rates Pricing. [Online]

 https://edisonintl.sharepoint.com/teams/Public/TM2/Shared%20Documents/Forms/AllItems.asp
 x?ga=1&id=%2Fteams%2FPublic%2FTM2%2FShared%20Documents%2FPublic%2FRegulatory%2FT
 ariff%2DSCE%20Tariff%20Books%2FElectric%2FSchedules%2FGeneral%20Service%20%26%20Indu
 str.
- 26. California Air Resources Board. Methods to Find the Cost-Effectiveness of Funding Air Quality Projects For Evaluating Motor Vehicle Registration Fee Projects And Congestion Mitigation and Air Quality Improvement (CMAQ) Projects, Emission Factor Tables. 2018.
- 27. —. Truck and Bus Regulation. [Online] https://ww2.arb.ca.gov/our-work/programs/truck-and-bus-regulation.

This page intentionally left blank

7 CERTIFICATIONS

The contents of this energy analysis report represent an accurate depiction of the environmental impacts associated with the proposed Mapes & Sherman Commerce Center (DEV2022-003). The information contained in this energy analysis report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com.

Haseeb Qureshi
Associate Principal
Urban Crossroads, Inc.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies
California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011
Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008
Principles of Ambient Air Monitoring – California Air Resources Board • August 2007
AB2588 Regulatory Standards – Trinity Consultants • November 2006
Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 4.1:

CALEEMOD PROJECT CONSTRUCTION EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Construction) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2023) Unmitigated
 - 3.3. Grading (2023) Unmitigated
 - 3.5. Building Construction (2023) Unmitigated
 - 3.7. Building Construction (2024) Unmitigated
 - 3.9. Paving (2024) Unmitigated
 - 3.11. Architectural Coating (2024) Unmitigated

- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
 - 5.5. Architectural Coatings
 - 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies

- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores

- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Construction)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_

Other Asphalt	145	1000sqft	3.34	0.00	0.00	0.00	_	_
Surfaces								

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Unmit.	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily, Winter (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.21	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
																		4

Daily - Summer (Max)	_			_	_	_		_	_	_		_	_	_	_			_
2024	4.46	39.2	28.2	40.9	0.05	1.48	2.34	3.82	1.36	0.56	1.92	_	7,875	7,875	0.30	0.29	12.1	7,979
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	5.94	4.99	47.2	39.3	0.08	2.53	5.92	8.46	2.33	2.75	5.08	_	10,189	10,189	0.34	0.57	0.27	10,368
2024	2.98	2.53	19.1	23.8	0.04	1.04	1.85	2.89	0.96	0.45	1.41	_	5,503	5,503	0.21	0.25	0.26	5,584
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.80	0.67	6.35	5.62	0.01	0.31	0.59	0.91	0.29	0.21	0.50	_	1,369	1,369	0.05	0.07	0.61	1,390
2024	1.37	5.00	8.73	11.3	0.02	0.47	0.83	1.30	0.43	0.20	0.63	_	2,503	2,503	0.10	0.11	1.91	2,540
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_
2023	0.15	0.12	1.16	1.03	< 0.005	0.06	0.11	0.17	0.05	0.04	0.09	_	227	227	0.01	0.01	0.10	230
2024	0.25	0.91	1.59	2.06	< 0.005	0.09	0.15	0.24	0.08	0.04	0.12	_	414	414	0.02	0.02	0.32	421

3. Construction Emissions Details

3.1. Site Preparation (2023) - Unmitigated

Location		ROG		СО		PM10E	<u> </u>		PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.90	47.0	38.0	0.05	2.53	_	2.53	2.33	_	2.33	_	5,530	5,530	0.22	0.04	_	5,549

Dust From Material Movemen	<u> </u>	_	_	_	_	_	5.66	5.66	_	2.69	2.69	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.13	1.29	1.04	< 0.005	0.07	_	0.07	0.06	_	0.06	_	152	152	0.01	< 0.005	_	152
Dust From Material Movemen		_	_	_	_	_	0.16	0.16	_	0.07	0.07	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.24	0.19	< 0.005	0.01	_	0.01	0.01	_	0.01	_	25.1	25.1	< 0.005	< 0.005	_	25.2
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_		_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.10	0.09	0.11	1.24	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	243	243	0.01	0.01	0.03	246
Vendor	< 0.005	< 0.005	0.12	0.04	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	94.3	94.3	< 0.005	0.01	0.01	98.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

8 / 30

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	6.74	6.74	< 0.005	< 0.005	0.01	6.84
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.58	2.58	< 0.005	< 0.005	< 0.005	2.70
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.12	1.12	< 0.005	< 0.005	< 0.005	1.13
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.43	0.43	< 0.005	< 0.005	< 0.005	0.45
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2023) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		4.20	40.9	32.7	0.06	1.96	_	1.96	1.80	_	1.80	_	6,715	6,715	0.27	0.05	_	6,738
Dust From Material Movemen [:]	<u> </u>	_	_	_	_	_	2.67	2.67	_	0.98	0.98	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.34	3.36	2.69	0.01	0.16	_	0.16	0.15	_	0.15	_	552	552	0.02	< 0.005	_	554

Dust From Material Movemen	-	_	_	_	_	_	0.22	0.22	_	0.08	0.08	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.06	0.61	0.49	< 0.005	0.03	_	0.03	0.03	_	0.03	_	91.4	91.4	< 0.005	< 0.005	_	91.7
Dust From Material Movemen	<u> </u>	_	_	_	_		0.04	0.04	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	-	_	-	_	_	-	_	_	-	_	_	_
Worker	0.11	0.10	0.12	1.37	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	270	270	0.01	0.01	0.03	273
Vendor	0.01	0.01	0.27	0.08	< 0.005	< 0.005	0.01	0.02	< 0.005	< 0.005	0.01	_	220	220	< 0.005	0.03	0.02	230
Hauling	0.12	0.04	3.58	0.83	0.02	0.06	0.20	0.26	0.06	0.07	0.13	_	2,984	2,984	0.05	0.47	0.16	3,127
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	0.01	0.01	0.01	0.12	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	22.5	22.5	< 0.005	< 0.005	0.04	22.8
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	18.1	18.1	< 0.005	< 0.005	0.02	18.9
Hauling	0.01	< 0.005	0.30	0.07	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	245	245	< 0.005	0.04	0.22	257
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	3.72	3.72	< 0.005	< 0.005	0.01	3.77
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.99	2.99	< 0.005	< 0.005	< 0.005	3.13

⊟Ha	ulina	< 0.005	< 0.005	0.05	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	40.6	40.6	< 0.005	0.01	0.04	42.6
0	· · · · · · · · · · · ·	1 0.000	1 0.000	0.00	0.0.	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000	1 0.000		.0.0	.0.0	1 0.000	0.0.	0.0.	

3.5. Building Construction (2023) - Unmitigated

	TOG	ROG	NOx	СО	so2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	-	_	_	-	_	_	_	_
Off-Road Equipmen		2.07	18.3	16.2	0.03	1.14	_	1.14	1.05	_	1.05	_	2,806	2,806	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.14	1.22	1.08	< 0.005	0.08	_	0.08	0.07	_	0.07	_	187	187	0.01	< 0.005	_	187
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.22	0.20	< 0.005	0.01	_	0.01	0.01	_	0.01	_	30.9	30.9	< 0.005	< 0.005	_	31.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.65	0.59	0.72	8.04	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,579	1,579	0.08	0.06	0.19	1,599
Vendor	0.06	0.03	1.42	0.43	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,163	1,163	0.02	0.17	0.08	1,215
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.04	0.04	0.05	0.56	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	106	106	0.01	< 0.005	0.21	108
Vendor	< 0.005	< 0.005	0.10	0.03	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	77.3	77.3	< 0.005	0.01	0.09	80.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.10	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	17.6	17.6	< 0.005	< 0.005	0.03	17.9
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	12.8	12.8	< 0.005	< 0.005	0.02	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2024) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipmen		1.93	17.1	16.0	0.03	1.03	_	1.03	0.94	_	0.94	_	2,805	2,805	0.11	0.02	_	2,815
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Off-Road Equipmen		0.82	7.29	6.83	0.01	0.44	_	0.44	0.40	_	0.40	-	1,197	1,197	0.05	0.01	-	1,201
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.15	1.33	1.25	< 0.005	0.08	_	0.08	0.07	_	0.07	-	198	198	0.01	< 0.005	_	199
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.66	0.60	0.56	9.77	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,684	1,684	0.07	0.06	6.68	1,710
Vendor	0.05	0.03	1.30	0.40	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,149	1,149	0.02	0.17	3.24	1,204
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_
Worker	0.62	0.56	0.67	7.38	0.00	0.00	0.10	0.10	0.00	0.00	0.00	_	1,548	1,548	0.07	0.06	0.17	1,567
Vendor	0.05	0.03	1.36	0.41	0.01	0.02	0.07	0.08	0.02	0.02	0.04	_	1,150	1,150	0.02	0.17	0.08	1,202
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.27	0.24	0.28	3.32	0.00	0.00	0.04	0.04	0.00	0.00	0.00	_	669	669	0.03	0.02	1.23	678
Vendor	0.02	0.01	0.58	0.18	< 0.005	0.01	0.03	0.04	0.01	0.01	0.02	_	490	490	0.01	0.07	0.59	513

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	_	<u> </u>	_
Worker	0.05	0.04	0.05	0.61	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	111	111	0.01	< 0.005	0.20	112
Vendor	< 0.005	< 0.005	0.11	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	81.2	81.2	< 0.005	0.01	0.10	84.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2024) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.85	7.81	10.0	0.01	0.39	_	0.39	0.36	_	0.36	_	1,512	1,512	0.06	0.01	_	1,517
Paving	_	0.70	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.05	0.43	0.55	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.8	82.8	< 0.005	< 0.005	_	83.1
Paving	_	0.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.08	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.8

Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.08	0.08	0.07	1.25	0.00	0.00	0.01	0.01	0.00	0.00	0.00	_	216	216	0.01	0.01	0.86	219
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	11.0	11.0	< 0.005	< 0.005	0.02	11.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	1.82	1.82	< 0.005	< 0.005	< 0.005	1.85
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2024) - Unmitigated

Ontona	· onatan	()	, .c. aa	<i>y</i> ,, <i>y</i> .	.0	an, and	O OO (o, aay .c.	ua,,	, ,	ai ii iaai,							
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	_	_	_
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer																		
(Max)																		

Off-Road Equipmen		0.18	1.21	1.53	< 0.005	0.04	_	0.04	0.04	_	0.04	-	178	178	0.01	< 0.005	_	179
Architect ural Coatings	_	34.7	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.13	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	19.5	19.5	< 0.005	< 0.005	_	19.6
Architect ural Coatings	_	3.81	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.02	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	3.23	3.23	< 0.005	< 0.005	_	3.24
Architect ural Coatings	_	0.69	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.13	0.12	0.11	1.92	0.00	0.00	0.02	0.02	0.00	0.00	0.00	_	331	331	0.01	0.01	1.31	336
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.17	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	33.8	33.8	< 0.005	< 0.005	0.06	34.2
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	< 0.005	< 0.005	0.00	0.00	0.00	_	5.59	5.59	< 0.005	< 0.005	0.01	5.67
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
	_	_	_	_	_		_	_		_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Fliase Ivallie	rnase Type	Start Date	Liiu Dale	Days Fel Week	Work Days per Friase	Friase Description

Site Preparation	Site Preparation	10/3/2023	10/16/2023	5.00	10.0	_
Grading	Grading	10/17/2023	11/27/2023	5.00	30.0	_
Building Construction	Building Construction	11/28/2023	8/5/2024	5.00	180	_
Paving	Paving	7/9/2024	8/5/2024	5.00	20.0	_
Architectural Coating	Architectural Coating	6/11/2024	8/5/2024	5.00	40.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48
Site Preparation	Crawler Tractors	Diesel	Average	4.00	8.00	87.0	0.43
Grading	Crawler Tractors	Diesel	Average	2.00	8.00	87.0	0.43
Building Construction	Crawler Tractors	Diesel	Average	3.00	8.00	87.0	0.43

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation				Verificie IVIIX
	Wadaa	_	40.5	- LDA LDTA LDTO
Site Preparation	Worker	18.0	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	3.00	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	0.00	0.00	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	7.00	10.2	ННОТ,МНОТ
Grading	Hauling	42.0	20.0	HHDT
Grading	Onsite truck	0.00	0.00	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	117	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	37.0	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	0.00	0.00	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	0.00	10.2	ннот,мнот
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	0.00	0.00	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	23.0	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	0.00	10.2	HHDT,MHDT

Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	0.00	0.00	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	427,392	142,464	14,700

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	35.0	0.00	_
Grading	10,100	0.00	120	0.00	_
Paving	0.00	0.00	0.00	0.00	5.36

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Edita 000	Trica ravea (acres)	70 / Opridit

Unrefrigerated Warehouse-No Rail	0.00	0%
Parking Lot	2.02	100%
Other Asphalt Surfaces	3.34	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

	(ne, iiii)			
Year	kWh per Year	CO2	CH4	N2O
2023	0.00	532	0.03	< 0.005
2024	0.00	532	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
vegetation Earla God Type	vegetation con Type	Third 7 to 60	That 7 to co

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A

Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator Result for Project Census Tract

Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6
Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	_
Auto Access	49.51879892
Active commuting	15.06480175
Social	_
2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	_

Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0

Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	58.0
Healthy Places Index Score for Project Location (b)	11.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113

This page intentionally left blank

APPENDIX 4.2:

CALEEMOD PROJECT OPERATIONS EMISSIONS MODEL OUTPUTS

Mapes & Sherman (Operations) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Mapes & Sherman (Operations)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	0.20
Location	33.75710422655197, -117.18112679049779
County	Riverside-South Coast
City	Menifee
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5512
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	278	1000sqft	7.98	277,578	69,981	0.00	_	_
User Defined Industrial	278	User Defined Unit	0.00	0.00	0.00	0.00	_	_

Parking Lot	377	Space	2.02	0.00	0.00	0.00	_	_
Other Asphalt Surfaces	145	1000sqft	3.34	0.00	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.79	10.9	9.33	43.8	0.13	0.16	3.26	3.43	0.16	0.62	0.78	264	15,058	15,321	27.2	1.54	326	16,785
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	2.54	8.86	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	264	14,518	14,782	27.2	1.55	284	16,205
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	3.32	9.63	7.28	28.0	0.09	0.12	2.39	2.50	0.12	0.45	0.57	264	11,162	11,426	27.1	1.22	297	12,763
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.61	1.76	1.33	5.11	0.02	0.02	0.44	0.46	0.02	0.08	0.10	43.6	1,848	1,892	4.48	0.20	49.1	2,113

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.64	2.27	9.23	31.7	0.13	0.15	3.26	3.41	0.14	0.62	0.76	_	13,291	13,291	0.33	1.21	43.1	13,705
Area	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	<u> </u>	_	_	_	_	<u> </u>	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	4.79	10.9	9.33	43.8	0.13	0.16	3.26	3.43	0.16	0.62	0.78	264	15,058	15,321	27.2	1.54	326	16,785
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.54	2.16	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	_	12,801	12,801	0.34	1.23	1.12	13,176
Area	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	2.54	8.86	9.74	26.0	0.12	0.15	3.26	3.41	0.14	0.62	0.76	264	14,518	14,782	27.2	1.55	284	16,205
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.85	1.57	7.21	19.7	0.09	0.11	2.39	2.49	0.10	0.45	0.55	_	9,411	9,411	0.25	0.90	13.6	9,699
Area	1.47	8.06	0.07	8.27	< 0.005	0.01	_	0.01	0.01	_	0.01	_	34.0	34.0	< 0.005	< 0.005	_	35.0
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	1,294	1,294	0.12	0.01	_	1,301
Water	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Waste	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283

Total	3.32	9.63	7.28	28.0	0.09	0.12	2.39	2.50	0.12	0.45	0.57	264	11,162	11,426	27.1	1.22	297	12,763
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.34	0.29	1.32	3.60	0.02	0.02	0.44	0.45	0.02	0.08	0.10	_	1,558	1,558	0.04	0.15	2.25	1,606
Area	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Energy	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	214	214	0.02	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
Waste	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8
Total	0.61	1.76	1.33	5.11	0.02	0.02	0.44	0.46	0.02	0.08	0.10	43.6	1,848	1,892	4.48	0.20	49.1	2,113

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	2.33	2.10	1.47	29.6	0.06	0.03	0.29	0.32	0.03	0.09	0.11		6,337	6,337	0.20	0.15	25.2	6,411
User Defined Industrial	0.31	0.16	7.76	2.13	0.06	0.12	0.49	0.61	0.11	0.16	0.27	_	6,954	6,954	0.13	1.07	17.9	7,294
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.64	2.27	9.23	31.7	0.13	0.15	0.78	0.92	0.14	0.24	0.38	_	13,291	13,291	0.33	1.21	43.1	13,705
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	2.23	2.00	1.63	23.8	0.06	0.03	0.29	0.32	0.03	0.09	0.11	_	5,844	5,844	0.21	0.16	0.65	5,897
User Defined Industrial	0.30	0.16	8.10	2.15	0.06	0.12	0.49	0.61	0.11	0.16	0.27	-	6,957	6,957	0.13	1.07	0.46	7,279
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	2.54	2.16	9.74	26.0	0.12	0.15	0.78	0.92	0.14	0.24	0.38	_	12,801	12,801	0.34	1.23	1.12	13,176
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.30	0.27	0.22	3.32	0.01	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	716	716	0.03	0.02	1.32	724
User Defined Industrial	0.04	0.02	1.09	0.28	0.01	0.02	0.07	0.08	0.02	0.02	0.04	-	842	842	0.02	0.13	0.94	882
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.34	0.29	1.32	3.60	0.02	0.02	0.10	0.12	0.02	0.03	0.05		1,558	1,558	0.04	0.15	2.25	1,606

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land	TOG	ROG	NOx	CO	SO2	PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		
Daily, Summer (Max)	_	_	_			_	_	_	_	_	_			_		_		_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,294	1,294	0.12	0.01	_	1,301
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,220	1,220	0.12	0.01	_	1,227
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	73.6	73.6	0.01	< 0.005	_	74.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_		_	_	_	1,294	1,294	0.12	0.01	_	1,301
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_		_			_	_		202	202	0.02	< 0.005	_	203
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	12.2	12.2	< 0.005	< 0.005	_	12.3
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	214	214	0.02	< 0.005	_	215

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

										_	_							
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	-	0.00

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	2.15	1.98	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Total	2.15	8.68	0.10	12.1	< 0.005	0.02	_	0.02	0.02	_	0.02	_	49.6	49.6	< 0.005	< 0.005	_	51.1
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.96	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect ural Coatings	_	0.74	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.09	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.27	0.25	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79
Total	0.27	1.47	0.01	1.51	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.63	5.63	< 0.005	< 0.005	_	5.79

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	123	423	546	12.7	0.30	_	953
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	-	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	20.4	70.0	90.4	2.09	0.05	_	158

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	_	_	_	-	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	-	_	_	-	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	141	0.00	141	14.1	0.00	_	492
Annual	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5
User Defined Industrial	_	_	-	_	_	_	_	_	_	-	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Parking Lot	_	-	_	-	_	_	-	_	_	_	-	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	23.3	0.00	23.3	2.33	0.00	_	81.5

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_		_	_	-	_	_	_	_	_	-	_	_	-	283	283
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	283	283
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	-	_	_	-	_	_	_	_	_	-	_	_	-	46.8	46.8
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	46.8	46.8

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																		
Туре																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n		ROG							PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_		_		_	_	_	_	_	_	_		_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	_	_	_	_	 _	_	_	_	_	 _	_	 _
iotai															

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_		_	_	_	_		_	_		_	_	_	_	_
_	_	_	_	_		_	_	_	_		<u> </u>	_		_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	486	41.1	16.5	129,712	8,497	719	288	2,267,884
User Defined Industrial	106	8.97	3.58	28,292	2,219	188	75.0	592,254
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	426,865	142,288	13,998

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	1,277,512	349	0.0330	0.0040	0.00
User Defined Industrial	0.00	349	0.0330	0.0040	0.00
Parking Lot	77,080	349	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	64,189,912	1,109,599
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	261	0.00
User Defined Industrial	0.00	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Unrefrigerated Warehouse-No Rail	Cold storage	User Defined	150	7.50	7.50	7.50	25.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor	Factor
--	--------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
- 4a.ba				110010 por 1001		

5.16.2. Process Boilers

Equipment Type F	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
------------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.2	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full

day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A

Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	95.3
AQ-PM	50.7
AQ-DPM	43.2
Drinking Water	10.2
Lead Risk Housing	35.1
Pesticides	57.8
Toxic Releases	25.3
Traffic	81.8
Effect Indicators	_
CleanUp Sites	0.00
Groundwater	0.00
Haz Waste Facilities/Generators	35.6

Impaired Water Bodies	0.00
Solid Waste	35.7
Sensitive Population	_
Asthma	39.1
Cardio-vascular	72.9
Low Birth Weights	37.9
Socioeconomic Factor Indicators	_
Education	86.4
Housing	73.4
Linguistic	44.4
Poverty	87.8
Unemployment	67.5

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	21.59630438
Employed	8.956756063
Education	_
Bachelor's or higher	3.836776594
High school enrollment	6.685486975
Preschool enrollment	31.33581419
Transportation	
Auto Access	49.51879892
Active commuting	15.06480175
Social	

2-parent households	62.08135506
Voting	24.39368664
Neighborhood	_
Alcohol availability	66.20043629
Park access	2.194276915
Retail density	9.316052868
Supermarket access	32.97831387
Tree canopy	0.667265495
Housing	_
Homeownership	65.03272167
Housing habitability	43.02579238
Low-inc homeowner severe housing cost burden	15.44976261
Low-inc renter severe housing cost burden	71.34607982
Uncrowded housing	14.42320031
Health Outcomes	_
Insured adults	9.547029385
Arthritis	32.0
Asthma ER Admissions	60.6
High Blood Pressure	38.5
Cancer (excluding skin)	55.0
Asthma	27.9
Coronary Heart Disease	28.5
Chronic Obstructive Pulmonary Disease	23.6
Diagnosed Diabetes	33.2
Life Expectancy at Birth	16.6
Cognitively Disabled	44.8
Physically Disabled	87.9

II. AAN LEDAL : :	
Heart Attack ER Admissions	34.3
Mental Health Not Good	26.2
Chronic Kidney Disease	27.1
Obesity	17.5
Pedestrian Injuries	90.3
Physical Health Not Good	26.5
Stroke	39.4
Health Risk Behaviors	_
Binge Drinking	35.4
Current Smoker	23.0
No Leisure Time for Physical Activity	24.4
Climate Change Exposures	_
Wildfire Risk	7.3
SLR Inundation Area	0.0
Children	81.0
Elderly	85.6
English Speaking	69.8
Foreign-born	42.8
Outdoor Workers	5.3
Climate Change Adaptive Capacity	_
Impervious Surface Cover	92.8
Traffic Density	52.0
Traffic Access	23.0
Other Indices	_
Hardship	80.6
Other Decision Support	_
2016 Voting	37.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract						
CalEnviroScreen 4.0 Score for Project Location (a)	58.0						
Healthy Places Index Score for Project Location (b)	11.0						
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No						
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes						
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No						

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

8. User Changes to Default Data

Screen	Justification
Land Use	Total Project area is +/- 13.3 acres
Construction: Construction Phases	Construction anticipated to begin October 2023 and end August 2024
Construction: Off-Road Equipment	Equipment adjusted based on the changes made to the Construction Schedule
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Construction: Architectural Coatings	Rule 1113
Operations: Vehicle Data	Trip characteristics based on information provided in the Traffic analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis
Operations: Energy Use	The Project will not use natural gas

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

, ,	Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022
	promision from administration with a SVV or 100 or ground as or 1 dail 2022

This page intentionally left blank

APPENDIX 4.3:

EMFAC2021

Source: EMFAC2021 (v1.0.2) Emissions Inventory

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2023 Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/year for CVMT and EVMT, trips/year for Trips, kWh/year for Energy Consumption, tons/year for Emissions, 1000 gallons/year for Fuel Consumption

Region	CalYr	VehClass	MdlYr	Speed	Fuel	Population	VMT	Fuel_Consumption	Fuel_Consumption	Total Fuel	VMT	Total VMT	Miles per Gallon	Vehicle Class
Riverside (SC)	2023	HHDT	Aggregate	Aggregate	Gasoline	9.455104489	131459.0712	35.50354452	35503.54452	99150598.7	131459.0712	599123516.7	6.04	HHDT
Riverside (SC)	2023	HHDT	Aggregate	Aggregate	Diesel	14188.53655	583570327	96603.14331	96603143.31		583570327			
Riverside (SC)	2023	HHDT	Aggregate	Aggregate	Electricity	10.75839329	228949.2981	0	0		228949.2981			
Riverside (SC)	2023	HHDT	Aggregate	Aggregate	Natural Gas	693.7983116	15192781.36	2511.951841	2511951.841		15192781.36			
Riverside (SC)	2023	LDA	Aggregate	Aggregate	Gasoline	469124.6474	7067158685	242806.6852	242806685.2	246740301.6	7067158685	7550779257	30.60	LDA
Riverside (SC)	2023	LDA	Aggregate	Aggregate	Diesel	1558.762895	20320845.79	477.3973008	477397.3008		20320845.79			
Riverside (SC)	2023	LDA	Aggregate	Aggregate	Electricity	16185.78734	258364117.7	0	0		258364117.7			
Riverside (SC)	2023	LDA	Aggregate	Aggregate	Plug-in Hybrid	11651.42905	204935608.9	3456.219119	3456219.119		204935608.9			
Riverside (SC)	2023	LDT1	Aggregate	Aggregate	Gasoline	41569.09002	535313348.3	22207.82689	22207826.89	22223369.92	535313348.3	536734718.5	24.15	LDT1
Riverside (SC)	2023	LDT1	Aggregate	Aggregate	Diesel	20.22700504	133115.4936	5.428551707	5428.551707		133115.4936			
Riverside (SC)	2023	LDT1	Aggregate	Aggregate	Electricity	42.93918941	629191.2642	0	0		629191.2642			
Riverside (SC)	2023	LDT1	Aggregate	Aggregate	Plug-in Hybrid	33.25263876	659063.4443	10.11447806	10114.47806		659063.4443			
Riverside (SC)	2023	LDT2	Aggregate	Aggregate	Gasoline	191587.7811	2926985988	123727.7759	123727775.9	124415304.6	2926985988	2971260063	23.88	LDT2
Riverside (SC)	2023	LDT2	Aggregate	Aggregate	Diesel	577.8339592	9483128.387	294.7747611	294774.7611		9483128.387			
Riverside (SC)	2023	LDT2	Aggregate	Aggregate	Electricity	816.9774193	10243768.16	0	0		10243768.16			
Riverside (SC)	2023	LDT2	Aggregate	Aggregate	Plug-in Hybrid	1285.022226	24547178.6	392.753913	392753.913		24547178.6			
Riverside (SC)	2023	LHDT1	Aggregate	Aggregate	Gasoline	18052.34987	214710027.5	16264.43139	16264431.39	25315578.41	214710027.5	400294089.8	15.81	LHDT1
Riverside (SC)	2023	LHDT1	Aggregate	Aggregate	Diesel	15395.69696	185584062.3	9051.14702	9051147.02		185584062.3			
Riverside (SC)	2023	LHDT2	Aggregate	Aggregate	Gasoline	2523.570585	29590445.81	2489.092655	2489092.655	7416109.631	29590445.81	113374760.5	15.29	LHDT2
Riverside (SC)	2023	LHDT2	Aggregate	Aggregate	Diesel	6852.470307	83784314.72	4927.016975	4927016.975		83784314.72			
Riverside (SC)	2023	MCY	Aggregate	Aggregate	Gasoline	24170.7213	49108505.06	1180.944688	1180944.688	1180944.688	49108505.06	49108505.06	41.58	MCY
Riverside (SC)	2023	MDV	Aggregate	Aggregate	Gasoline	159138.1322	2240483695	117575.9492	117575949.2	119384446.1	2240483695	2303280197	19.29	MDV
Riverside (SC)	2023	MDV	Aggregate	Aggregate	Diesel	2483.005938	36136799.05	1546.826654	1546826.654		36136799.05			
Riverside (SC)	2023	MDV	Aggregate	Aggregate	Electricity	897.1539487	11221434.73	0	0		11221434.73			
Riverside (SC)	2023	MDV	Aggregate	Aggregate	Plug-in Hybrid	887.9224631	15438268.06	261.6701687	261670.1687		15438268.06			
Riverside (SC)	2023	MH	Aggregate	Aggregate	Gasoline	5083.841078	14589867.64	2987.294519	2987294.519	3555724.506	14589867.64	20481762.41	5.76	MH
Riverside (SC)	2023	MH	Aggregate	Aggregate	Diesel	2073.70666	5891894.766	568.4299865	568429.9865		5891894.766			
Riverside (SC)	2023	MHDT	Aggregate	Aggregate	Gasoline	1260.142241	16350653.43	3181.987303	3181987.303	22878390.46	16350653.43	192188901.4	8.40	MHDT
Riverside (SC)	2023	MHDT	Aggregate	Aggregate	Diesel	12683.243	173580543.8	19444.4315	19444431.5		173580543.8			
Riverside (SC)	2023	MHDT	Aggregate	Aggregate	Electricity	4.9202908	33851.09994	0	0		33851.09994			
Riverside (SC)	2023	MHDT	Aggregate	Aggregate	Natural Gas	147.6204682	2223853	251.9716552	251971.6552		2223853			
Riverside (SC)	2023	OBUS	Aggregate	Aggregate	Gasoline	386.6813181	4377338.625	865.1912845	865191.2845	1495782.789	4377338.625	9373868.799	6.27	OBUS
Riverside (SC)	2023	OBUS	Aggregate	Aggregate	Diesel	215.667787	4402321.003	569.9480953	569948.0953		4402321.003			
Riverside (SC)	2023	OBUS	Aggregate	Aggregate	Natural Gas	33.12387867	594209.1716	60.64340948	60643.40948		594209.1716			
Riverside (SC)	2023	SBUS	Aggregate	Aggregate	Gasoline	421.1646074	5416181.917	620.6011427	620601.1427	1928236.919	5416181.917	12328318.97	6.39	SBUS
Riverside (SC)	2023	SBUS	Aggregate	Aggregate	Diesel	499.0687276	3439904.877	470.0073536	470007.3536		3439904.877			
Riverside (SC)	2023	SBUS	Aggregate	Aggregate	Electricity	0.562315788	2136.364049	0	0		2136.364049			
Riverside (SC)	2023	SBUS	Aggregate	Aggregate	Natural Gas	428.0776414	3470095.813	837.6284223	837628.4223		3470095.813			
Riverside (SC)	2023	UBUS	Aggregate	Aggregate	Gasoline	145.9294435	6041770.968	1072.589711	1072589.711	3632187.011	6041770.968	16196846.91	4.46	UBUS
Riverside (SC)	2023	UBUS	Aggregate	Aggregate	Diesel	0.3117338	9845.875493	0.874590555	874.5905545		9845.875493			
Riverside (SC)	2023	UBUS	Aggregate	Aggregate	Electricity	0.030745281	971.0663719	0	0		971.0663719			
Riverside (SC)	2023	UBUS	Aggregate	Aggregate	Natural Gas	251.677147	10144259	2558.722709	2558722.709		10144259			

Source: EMFAC2021 (v1.0.2) Emissions Inventory

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2024 Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/year for CVMT and EVMT, trips/year for Trips, kWh/year for Energy Consumption, tons/year for Emissions, 1000 gallons/year for Fuel Consumption

Region	CalYr	VehClass	MdlYr	Speed	Fuel	Population	VMT	Fuel_Consumption	Fuel_Consumption	Total Fuel	VMT	Total VMT	Miles per Gallon	Vehicle Class
Riverside (SC)	2024	HHDT	Aggregate	Aggregate	Gasoline	7.589475903	113786.0091	30.14312909	30143.12909	100279731.4	113786.0091	613803692.2	6.12	HHDT
Riverside (SC)	2024	HHDT	Aggregate	Aggregate	Diesel	14792.02338	596340506.9	97669.72048	97669720.48		596340506.9			
Riverside (SC)	2024	HHDT	Aggregate	Aggregate	Electricity	47.99547895	1606253.347	0	0		1606253.347			
Riverside (SC)	2024	HHDT	Aggregate	Aggregate	Natural Gas	740.0705237	15743145.86	2579.867799	2579867.799		15743145.86			
Riverside (SC)	2024	LDA	Aggregate	Aggregate	Gasoline	469145.3818	7085090946	238903.8299	238903829.9	243062955.2	7085090946	7657987641	31.51	LDA
Riverside (SC)	2024	LDA	Aggregate	Aggregate	Diesel	1473.049219	18851626.2	439.7144995	439714.4995		18851626.2			
Riverside (SC)	2024	LDA	Aggregate	Aggregate	Electricity	19934.69439	328159523.9	0	0		328159523.9			
Riverside (SC)	2024	LDA	Aggregate	Aggregate	Plug-in Hybrid	12893.65575	225885544.7	3719.410801	3719410.801		225885544.7			
Riverside (SC)	2024	LDT1	Aggregate	Aggregate	Gasoline	40643.24621	528502252.2	21530.04768	21530047.68	21550200.91	528502252.2	530619904	24.62	LDT1
Riverside (SC)	2024	LDT1	Aggregate	Aggregate	Diesel	18.16927182	117875.1936	4.799392489	4799.392489		117875.1936			
Riverside (SC)	2024	LDT1	Aggregate	Aggregate	Electricity	60.98632141	968118.5799	0	0		968118.5799			
Riverside (SC)	2024	LDT1	Aggregate	Aggregate	Plug-in Hybrid	52.35545177	1031657.988	15.35383286	15353.83286		1031657.988			
Riverside (SC)	2024	LDT2	Aggregate	Aggregate	Gasoline	196761.1569	3030302696	124807.115	124807115	125588800.8	3030302696	3086012831	24.57	LDT2
Riverside (SC)	2024	LDT2	Aggregate	Aggregate	Diesel	611.2140627	10065688.28	305.506804	305506.804		10065688.28			
Riverside (SC)	2024	LDT2	Aggregate	Aggregate	Electricity	1212.721837	15079067.55	0	0		15079067.55			
Riverside (SC)	2024	LDT2	Aggregate	Aggregate	Plug-in Hybrid	1617.209463	30565379.76	476.178994	476178.994		30565379.76			
Riverside (SC)	2024	LHDT1	Aggregate	Aggregate	Gasoline	17828.73734	214762485.9	15814.52949	15814529.49	24706225.38	214762485.9	399295586.2	16.16	LHDT1
Riverside (SC)	2024	LHDT1	Aggregate	Aggregate	Diesel	15247.60565	183240310	8891.695883	8891695.883		183240310			
Riverside (SC)	2024	LHDT1	Aggregate	Aggregate	Electricity	53.50587181	1292790.328	0	0		1292790.328			
Riverside (SC)	2024	LHDT2	Aggregate	Aggregate	Gasoline	2494.679179	29349825.66	2415.690169	2415690.169	7267382.396	29349825.66	112758661.6	15.52	LHDT2
Riverside (SC)	2024	LHDT2	Aggregate	Aggregate	Diesel	6844.928194	83091798.01	4851.692227	4851692.227		83091798.01			
Riverside (SC)	2024	LHDT2	Aggregate	Aggregate	Electricity	13.8489928	317037.9282	0	0		317037.9282			
Riverside (SC)	2024	MCY	Aggregate	Aggregate	Gasoline	24077.0623	48669553.86	1165.648599	1165648.599	1165648.599	48669553.86	48669553.86	41.75	MCY
Riverside (SC)	2024	MDV	Aggregate	Aggregate	Gasoline	158529.7591	2244541310	115229.5708	115229570.8	117035531.4	2244541310	2315716725	19.79	MDV
Riverside (SC)	2024	MDV	Aggregate	Aggregate	Diesel	2456.219583	35407756.28	1494.401662	1494401.662		35407756.28			
Riverside (SC)	2024	MDV	Aggregate	Aggregate	Electricity	1347.135818	16720447.79	0	0		16720447.79			
Riverside (SC)	2024	MDV	Aggregate	Aggregate	Plug-in Hybrid	1094.492843	19047211.64	311.5588534	311558.8534		19047211.64			
Riverside (SC)	2024	MH	Aggregate	Aggregate	Gasoline	4781.777946	13610896.25	2785.688937	2785688.937	3339642.723	13610896.25	19350599.97	5.79	MH
Riverside (SC)	2024	MH	Aggregate	Aggregate	Diesel	2046.063726	5739703.715	553.953786	553953.786		5739703.715			
Riverside (SC)	2024	MHDT	Aggregate	Aggregate	Gasoline	1238.0029	16338867.45	3135.493991	3135493.991	23076682.45	16338867.45	195538138.7	8.47	MHDT
Riverside (SC)	2024	MHDT	Aggregate	Aggregate	Diesel	12954.3675	176205580.2	19676.0133	19676013.3		176205580.2			
Riverside (SC)	2024	MHDT	Aggregate	Aggregate	Electricity	40.46425607	652027.6804	0	0		652027.6804			
Riverside (SC)	2024	MHDT	Aggregate	Aggregate	Natural Gas	158.0466253	2341663.336	265.1751591	265175.1591		2341663.336			
Riverside (SC)	2024	OBUS	Aggregate	Aggregate	Gasoline	374.6153087	4179652.523	816.3886522	816388.6522	1448796.089	4179652.523	9235296.571	6.37	OBUS
Riverside (SC)	2024	OBUS	Aggregate	Aggregate	Diesel	219.2789175	4421146.516	569.7450307	569745.0307		4421146.516			
Riverside (SC)	2024	OBUS	Aggregate	Aggregate	Electricity	0.821516166	18182.28444	0	0		18182.28444			
Riverside (SC)	2024	OBUS	Aggregate	Aggregate	Natural Gas	34.6553722	616315.2475	62.66240627	62662.40627		616315.2475			
Riverside (SC)	2024	SBUS	Aggregate	Aggregate	Gasoline	423.5817437	5478383.868	626.1467184	626146.7184	1935258.575	5478383.868	12396347.67	6.41	SBUS
Riverside (SC)	2024	SBUS	Aggregate	Aggregate	Diesel	491.8063992	3343899.326	456.140685	456140.685		3343899.326			
Riverside (SC)	2024	SBUS	Aggregate	Aggregate	Electricity	2.445505521	20273.75397	0	0		20273.75397			
Riverside (SC)	2024	SBUS	Aggregate	Aggregate	Natural Gas	443.1589434	3553790.724	852.9711721	852971.1721		3553790.724			
Riverside (SC)	2024	UBUS	Aggregate	Aggregate	Gasoline	146.2127201	6053134.018	1073.421016	1073421.016	3614773.705	6053134.018	16229605.17	4.49	UBUS
Riverside (SC)	2024	UBUS	Aggregate	Aggregate	Diesel	0.3117338	9845.875493	0.874762616	874.7626165		9845.875493			
Riverside (SC)	2024	UBUS	Aggregate	Aggregate	Electricity	0.120004951	6004.935081	0	0		6004.935081			
Riverside (SC)	2024	UBUS	Aggregate	Aggregate	Natural Gas	252.109466	10160620.35	2540.477927	2540477.927		10160620.35			

This page intentionally left blank

