
Technical Memorandum

To:Mark H. Carpenter, Jr., Rockefeller Acquisitions, LLCFrom:Nick Johnson, Johnson Aviation, Inc.Date:October 9, 2022

A. Findings

The findings of this Solar Glare Analysis are that the Proposed Project <u>PASSES</u> the FAA's recommended solar glare tests and <u>PASSES</u> these same tests for four critical flight paths required by the March Air Reserve Base. This Technical Memorandum outlines the study of the potential solar PV Project and substantiates these findings.

B. Introduction

The purpose of this technical memorandum is to assess the airport compatibility of a potential solar PV installation on the roof of the Patterson Commerce Center Project (Project). The Project site is located west of Patterson Avenue, north of Washington Street, east of Wade Street, and south of Nance Street in the City of Perris (City) and within the March Air Reserve Base (March ARB) airport influence area (AIA) (See Figure 1). The analysis and findings of this memo are intended for review and acceptance by the City, Riverside County Airport Land Use Commission (ALUC) and the March ARB staff.

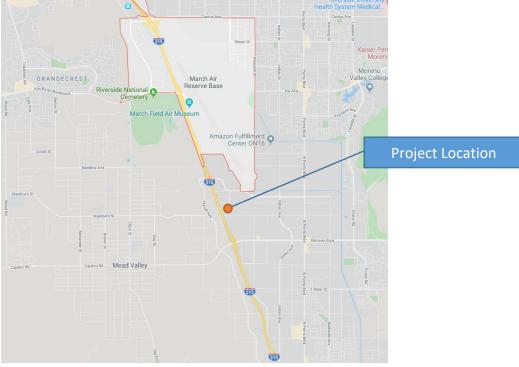


Figure 1: Project Location

C. Project Description

Rockefeller Acquisitions, LLC, the Project Owner, is planning to develop a roof-top solar PV installation on the Project site. The building is planned for a total of 263,820 square feet. The potential solar PV

Johnson Aviation, Inc. | 6524 Deerbrook Road, Oak Park, California 91377

installation is studied to cover the entire warehouse portion of the roof area to allow flexibility in the size and location of the array (See Figure 2).

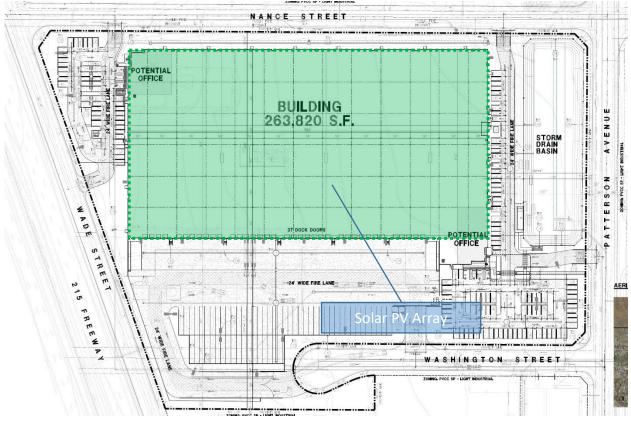


Figure 2: Patterson Commerce Center Project – Solar PV Installation

D. Standard of Review

This study and its findings have been prepared consistent with the Federal Aviation Administration's (FAA) policy to eliminate hazards to air navigation that may arise as the result of implementing solar energy facilities on and near airports. The FAA adopted an Interim Policy¹ for Solar PV project review in 2013 and completed a final solar glare policy in 2021². In both the 2013 Interim Policy and the 2021 Final Policy, off-airport solar arrays are <u>not</u> required to meet the FAA's policies, but they are <u>strongly encouraged</u> to consider the requirements of this policy guidance when siting systems. Neither the FAA nor the US Department of Defense (DOD) control land use off airport or base property. Both entities encourage collaboration with local land use jurisdictions like the ALUC and the County.

As solar PV was being implemented on and near airports in recent years, the FAA was finding that solar PV reflections of sunlight glint and glare were affecting pilots' vision, particularly on final approach to

Johnson Aviation, Inc. | 6524 Deerbrook Road, Oak Park, California 91377

¹ Background on the Interim Policy, FAA Review of Solar Energy System Projects on Federally Obligated Airports, Federal Register, October 23, 2013.

² Federal Aviation Administration Policy: Review of Solar Energy System Projects on Federally-Obligated Airports, 86 Fed. Reg. 25801 (May 11, 2021), <u>https://www.federalregister.gov/documents/2021/05/11/2021-09862/federal-aviation-administration-policy-review-of-solar-energy-system-projects-on-federally-obligated</u>

Technical Memorandum Solar Glare Analysis – Patterson Commerce Center Project October 9, 2022 Page 3 of 10

runways, and was also impacting some air traffic controllers' vision when controlling aircraft near airports. In conjunction with Sandia National Laboratories, the FAA developed a computer analysis tool to measure the potential impact of reflected glint and glare from Solar PV installations. The analysis of this impact is achieved through use of the Solar Glare Hazard Assessment Tool (SGHAT). At the time of the Interim Policy, Sandia Labs produced the tool to meet the analysis requirement. Since then, Sandia Labs has licensed the tool to other providers to sell commercially for solar glare analysis. ForgeSolar licensed the SGHAT tool and incorporated its software into their Glare Analysis tool. Johnson Aviation, Inc. uses the ForgeSolar Glare Analysis tool under subscription license from Sims Industries d/b/a ForgeSolar.

The following is the Standard for Measuring Ocular Impact from the FAA's 2013 Interim Policy:

Standard for Measuring Ocular Impact

FAA adopts the Solar Glare Hazard Analysis Plot as the standard for measuring the ocular impact of any proposed solar energy system on a federally obligated airport. To obtain FAA approval to revise an airport layout plan to depict a solar installation and/or a "no objection" to a Notice of Proposed Construction Form 7460-1, the airport sponsor will be required to demonstrate that the proposed solar energy system meets the following standards:

- 1. No potential for glint or glare in the existing or planned Airport Traffic Control Tower (ATCT) cab; and
- 2. No potential for glare or "low potential for after-image" along the final approach path for any existing landing threshold or future landing thresholds (including any planned interim phases of the landing thresholds) as shown on the current FAA-approved Airport Layout Plan (ALP). The final approach path is defined as two (2) miles from fifty (50) feet above the landing threshold using a standard three (3) degree glidepath.
- 3. Ocular impact must be analyzed over the entire calendar year in one (1) minute intervals from when the sun rises above the horizon until the sun sets below the horizon.

After significant additional study of the issue, the FAA concluded in its final 2021 Policy that less restrictive analysis can achieve the same goals for limiting solar PV glare. The following are the revised FAA 2021 Policy limitations:

This policy does not apply to:

- 1. Solar energy systems on airports that do not have an ATCT,
- 2. Airports that are not federally-obligated, or
- 3. Solar energy systems not located on airport property.

Though this policy does not apply to proponents of solar energy systems located off airport property, they are encouraged to consider ocular impact for proposed systems in proximity to airports with ATCTs. In these cases, solar energy system proponents should coordinate with the local airport sponsor.

In addition to the FAA's standards for runway final approach paths and air traffic control tower visibility, the March ARB staff in conjunction with the Riverside County ALUC staff have established a series of air traffic patterns for the two runways located at the Base. Their concern is to ensure that land uses around

Technical Memorandum Solar Glare Analysis – Patterson Commerce Center Project October 9, 2022 Page 4 of 10

the base are compatible with its air operations and that solar PV installations will not create a hazard to air navigation as a result of reflected sunlight and the associated potential glare. March ARB staff have provided four sets of geographic coordinates to define the standard traffic patterns listed below:

- FAA 2013 Policy Review (See Attachment A-1)
- FAA 2021 Policy Review (See Attachment A-2)
- Runway 12/30 General Aviation Traffic Pattern (See Attachment B)
- Runway 14/32 General Aviation Traffic Pattern (See Attachment C)
- Runway 14/32 C-17/KC-135 Traffic Pattern (See Attachment D)
- Runway 14/32 Overhead Traffic Pattern (See Attachment E)

E. Solar Glare Analysis Reports

The following pages of this Technical Memorandum provide the solar glare analysis reports for each of the suggested and required studies. The FAA standard study of the final approach paths to the runway ends and the Air Traffic Control Tower analysis is included in each individual report. The six reports are grouped by the flight path studies required by the March ARB and ALUC staff using the SGHAT program.

Technical Memorandum Solar Glare Analysis – Patterson Commerce Center Project October 9, 2022 Page 5 of 10

> Attachment A-1 2013 FAA Policy Review

Johnson Aviation, Inc. | 6524 Deerbrook Road, Oak Park, California 91377

FORGESOLAR GLARE ANALYSIS

Project: RG Patterson Commerce Center

Site configuration: RG Patterson-All Final Approaches

Analysis conducted by Nick Johnson (nick.johnson@johnson-aviation.com) at 16:48 on 09 Oct, 2022.

U.S. FAA 2013 Policy Adherence

The following table summarizes the policy adherence of the glare analysis based on the 2013 U.S. Federal Aviation Administration Interim Policy 78 FR 63276. This policy requires the following criteria be met for solar energy systems on airport property:

- No "yellow" glare (potential for after-image) for any flight path from threshold to 2 miles
- No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
- Default analysis and observer characteristics (see list below)

ForgeSolar does not represent or speak officially for the FAA and cannot approve or deny projects. Results are informational only.

COMPONENT	STATUS	DESCRIPTION
Analysis parameters	PASS	Analysis time interval and eye characteristics used are acceptable
2-mile flight path(s)	PASS	Flight path receptor(s) do not receive yellow glare
ATCT(s)	PASS	Receptor(s) marked as ATCT do not receive glare

Default glare analysis parameters and observer eye characteristics (for reference only):

- Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- Eye focal length: 0.017 meters
- Sun subtended angle: 9.3 milliradians

FAA Policy 78 FR 63276 can be read at https://www.federalregister.gov/d/2013-24729

SITE CONFIGURATION

Analysis Parameters

DNI: peaks at 1,000.0 W/m^2 Time interval: 1 min Ocular transmission coefficient: 0.5 Pupil diameter: 0.002 m Eye focal length: 0.017 m Sun subtended angle: 9.3 mrad Site Config ID: 77253.13676 Methodology: V2

PV Array(s)

Name: RG Patterson Rooftop Solar PV Axis tracking: Fixed (no rotation) Tilt: 10.0° Orientation: 180.0° Rated power: -Panel material: Smooth glass with AR coating Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.855320	-117.255571	1508.00	50.00	1558.00
2	33.855327	-117.253306	1508.00	50.00	1558.00
3	33.854336	-117.253303	1508.00	50.00	1558.00
4	33.854333	-117.255578	1508.00	50.00	1558.00

Flight Path Receptor(s)

Name: RWY 12 Final Description: None Threshold height: 50 ft Direction: 135.0° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°

Point	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
Threshold	33.890258	-117.260681	1500.00	50.00	1550.00
Two-mile	33.898508	-117.270608	1500.00	1300.00	2800.00

Name: RWY 14 Final Description: None Threshold height: 50 ft Direction: 149.5° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°

Point	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
Threshold	33.896431	-117.270636	1500.00	50.00	1550.00
Two-mile	33.906486	-117.277783	1500.00	1500.00	3000.00

lame: RWY 30 Final Description: None Threshold height: 50 ft Direction: 315.0° Silde slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0°					R.	
			and the same state of the same			
			Google	an Bernardino, Maxar Technologies, U.S. Geo	Nogical Survey, USDA/FPAC/GE	
Point	Latitude (°)	Longitude (°)	Google Ground elevation (ft)	an Bernardino, Maxar Technologies, U.S. Geo Height above ground (ft)	Nogical Survey, USDA/FPAC/GE Total elevation (ft)	
		Longitude (°)				

Name: RWY 32 Final Description: None Threshold height: 50 ft Direction: 329.5° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°

Point	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
Threshold	33.864994	-117.248281	1500.00	50.00	1550.00
Two-mile	33.854942	-117.241136	1500.00	1500.00	3000.00

Discrete Observation Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (ft)	Height (ft)
1-ATCT	1	33.891572	-117.251203	1511.00	118.00

Map image of 1-ATCT

Summary of Glare

PV Array Name	Tilt	Orient	"Green" Glare	"Yellow" Glare	Energy
	(°)	(°)	min	min	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	0	0	-

Total annual glare received by each receptor

Receptor	Annual Green Glare (min)	Annual Yellow Glare (min)
RWY 12 Final	0	0
RWY 14 Final	0	0
RWY 30 Final	0	0
RWY 32 Final	0	0
1-ATCT	0	0

Results for: RG Patterson Rooftop Solar PV

Receptor	Green Glare (min)	Yellow Glare (min)
RWY 12 Final	0	0
RWY 14 Final	0	0
RWY 30 Final	0	0
RWY 32 Final	0	0
1-ATCT	0	0

Flight Path: RWY 12 Final

0 minutes of yellow glare 0 minutes of green glare

Flight Path: RWY 14 Final

0 minutes of yellow glare 0 minutes of green glare

Flight Path: RWY 30 Final

0 minutes of yellow glare 0 minutes of green glare

Flight Path: RWY 32 Final

0 minutes of yellow glare 0 minutes of green glare

Point Receptor: 1-ATCT

0 minutes of yellow glare 0 minutes of green glare

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

Glare analyses do not account for physical obstructions between reflectors and receptors. This includes buildings, tree cover and geographic obstructions.

Several calculations utilize the PV array centroid, rather than the actual glare spot location, due to V1 algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Glare vector plots are simplified representations of analysis data. Actual glare emanations and results may differ.

The glare hazard determination relies on several approximations including observer eye characteristics, angle of view, and typical blink response time. Actual results and glare occurrence may differ.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Technical Memorandum Solar Glare Analysis – Patterson Commerce Center Project October 9, 2022 Page 6 of 10

> Attachment A-2 2021 FAA Policy Review

Johnson Aviation, Inc. | 6524 Deerbrook Road, Oak Park, California 91377

FORGESOLAR GLARE ANALYSIS

Project: **RG Patterson Commerce Center** Site configuration: **RG Patterson-All Final Approaches**

Client: RG Patterson LLC

Created 09 Oct, 2022 Updated 09 Oct, 2022 Time-step 1 minute Timezone offset UTC-8 Site ID 77253.13676 DNI peaks at 1,000.0 W/m^2 Ocular transmission coefficient 0.5 Pupil diameter 0.002 m Eye focal length 0.017 m Sun subtended angle 9.3 mrad Methodology V2

Glare Policy Adherence

The following table estimates the policy adherence of this glare analysis according to the 2021 U.S. Federal Aviation Administration Policy:

Review of Solar Energy System Projects on Federally-Obligated Airports

This policy may require the following criteria be met for solar energy systems on airport property:

- No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
- Default analysis and observer characteristics, including 1-minute time step.

ForgeSolar is not affiliated with the U.S. FAA and does not represent or speak officially for the U.S. FAA. ForgeSolar cannot approve or deny projects - results are informational only. Contact the relevant airport and FAA district office for information on policy and requirements.

COMPONENT	STATUS	DESCRIPTION
Analysis parameters	PASS	Analysis time interval and eye characteristics used are acceptable
ATCT(s)	PASS	Receptor(s) marked as ATCT do not receive glare

The referenced policy can be read at https://www.federalregister.gov/d/2021-09862

Component Data

This report includes results for PV arrays and Observation Point ("OP") receptors marked as ATCTs. Components that are not pertinent to the policy, such as routes, flight paths, and vertical surfaces, are excluded.

PV Arrays

Name: RG Patterson Rooftop Solar PV Axis tracking: Fixed (no rotation) Tilt: 10.0° Orientation: 180.0° Rated power: -Panel material: Smooth glass with AR coating Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.855320	-117.255571	1508.00	50.00	1558.00
2	33.855327	-117.253306	1508.00	50.00	1558.00
3	33.854336	-117.253303	1508.00	50.00	1558.00
4	33.854333	-117.255578	1508.00	50.00	1558.00

Observation Point ATCT Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (ft)	Height (ft)
1-ATCT	1	33.891572	-117.251203	1511.00	118.00

Map image of 1-ATCT

Summary of Results No glare predicted

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Yel	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	0	0.0	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Gr	een Glare	Annual Ye	ellow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV: RG Patterson Rooftop Solar PV

Receptor	Annual Gr	Annual Green Glare		llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

RG Patterson Rooftop Solar PV

and 1-ATCT

Receptor type: ATCT Observation Point **No glare found**

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily

affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- · Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- · Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Attachment B March ARB Runway 12/30 General Aviation Traffic Pattern Analysis

FORGESOLAR GLARE ANALYSIS

Project: RG Patterson Commerce Center Site configuration: RG Patterson-MARB Runway 12-30 GA Analysis

Client: RG Patterson LLC

Created 09 Oct, 2022 Updated 09 Oct, 2022 Time-step 1 minute Timezone offset UTC-8 Site ID 77254.13676 Category 1 MW to 5 MW DNI peaks at 1,000.0 W/m^2 Ocular transmission coefficient 0.5 Pupil diameter 0.002 m Eye focal length 0.017 m Sun subtended angle 9.3 mrad Methodology V2

Summary of Results No glare predicted

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Yel	low Glare	Energy
	٥	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	0	0.0	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
RWY 12 GA Pattern Route	0	0.0	0	0.0
RWY 30 GA Pattern Route	0	0.0	0	0.0
RWY 12 Final	0	0.0	0	0.0
RWY 30 Final	0	0.0	0	0.0
1-ATCT	0	0.0	0	0.0

Component Data

PV Arrays

Name: RG Patterson Rooftop Solar PV Axis tracking: Fixed (no rotation) Tilt: 10.0° Orientation: 180.0° Rated power: -Panel material: Smooth glass with AR coating Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.855320	-117.255571	1508.00	50.00	1558.00
2	33.855327	-117.253306	1508.00	50.00	1558.00
3	33.854336	-117.253303	1508.00	50.00	1558.00
4	33.854333	-117.255578	1508.00	50.00	1558.00

Route Receptors

Name: RWY 12 GA Pattern Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.884319	-117.253536	1500.00	50.00	1550.00
2	33.876069	-117.243611	1500.00	1300.00	2800.00
3	33.876081	-117.235119	1500.00	1300.00	2800.00
4	33.880814	-117.229467	1500.00	1300.00	2800.00
5	33.887897	-117.229483	1500.00	1300.00	2800.00
6	33.910333	-117.256469	1500.00	1300.00	2800.00
7	33.910322	-117.264967	1500.00	1300.00	2800.00
8	33.905592	-117.270622	1500.00	1300.00	2800.00
9	33.898508	-117.270608	1500.00	1300.00	2800.00
10	33.890258	-117.260681	1500.00	50.00	1550.00

Name: RWY 30 GA Pattern Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.890258	-117.260681	1500.00	50.00	1550.00
2	33.898508	-117.270608	1500.00	1300.00	2800.00
3	33.905592	-117.270622	1500.00	1300.00	2800.00
4	33.910322	-117.264967	1500.00	1300.00	2800.00
5	33.910333	-117.256469	1500.00	1300.00	2800.00
6	33.887897	-117.229483	1500.00	1300.00	2800.00
7	33.880814	-117.229467	1500.00	1300.00	2800.00
8	33.876081	-117.235119	1500.00	1300.00	2800.00
9	33.876069	-117.243611	1500.00	1300.00	2800.00
10	33.884319	-117.253536	1500.00	50.00	1550.00

Flight Path Receptors

Description: No Threshold heig Direction: 135. Glide slope: 3. Pilot view restr Vertical view: 3 Azimuthal view	ght : 50 ft 0° 0° ricted? Yes 30.0°				
			Google	an Bernardino, Maxar Technologies, U.S. Ge	eological Survey, USDA/FPAC/GEO
Point	Latitude (°)	Longitude (°)	Google Ground elevation (ft)	an Bernardino, Maxar Technologies, U.S. Ge Height above ground (ft)	eological Survey, USDA/FPAC/GEO
Point Threshold	Latitude (°) 33.890258	Longitude (°)			

Vescription: N Inreshold hei Virection: 315 Vilot slope: 3 Vilot view rest Vertical view: Virtical view: Virtical view	ght : 50 ft .0° .0° tricted? Yes 30.0°				
				- MAR	
Point	Latitude (°)	Longitude (°)	Google Ground elevation (ft)	ean Bernardino, Maxar Technologies, U.S. Ge Height above ground (ft)	eological Survey, USDA/FPAC/G Total elevation (ft)
Point Threshold	Latitude (°) 33.884319	Longitude (°) -117.253536			

Discrete Observation Point Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (ft)	Height (ft)
1-ATCT	1	33.891572	-117.251203	1511.00	118.00

Map image of 1-ATCT

Summary of Results No glare predicted

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Yel	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	0	0.0	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
RWY 12 GA Pattern Route	0	0.0	0	0.0
RWY 30 GA Pattern Route	0	0.0	0	0.0
RWY 12 Final	0	0.0	0	0.0
RWY 30 Final	0	0.0	0	0.0
1-ATCT	0	0.0	0	0.0

PV: RG Patterson Rooftop Solar PV no glare found

Receptor results ordered by category of glare

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
RWY 12 GA Pattern Route	0	0.0	0	0.0
RWY 30 GA Pattern Route	0	0.0	0	0.0
RWY 12 Final	0	0.0	0	0.0
RWY 30 Final	0	0.0	0	0.0
1-ATCT	0	0.0	0	0.0

RG Patterson Rooftop Solar PV

RG Patterson Rooftop Solar PV

and RWY 30 GA Pattern Route

and RWY 12 GA Pattern Route

Receptor type: Route No glare found

Receptor type: Route
No glare found

RG Patterson Rooftop Solar PV

and RWY 12 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and RWY 30 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and 1-ATCT

Receptor type: Observation Point **No glare found**

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily

affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- · Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- · Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Attachment C March ARB Runway 14/32 General Aviation Traffic Pattern Analysis

FORGESOLAR GLARE ANALYSIS

Project: RG Patterson Commerce Center Site configuration: RG Patterson-MARB Runway 14-32 GA Analysis

Client: RG Patterson LLC

Created 09 Oct, 2022 Updated 09 Oct, 2022 Time-step 1 minute Timezone offset UTC-8 Site ID 77255.13676 Category 1 MW to 5 MW DNI peaks at 1,000.0 W/m^2 Ocular transmission coefficient 0.5 Pupil diameter 0.002 m Eye focal length 0.017 m Sun subtended angle 9.3 mrad Methodology V2

Summary of Results Glare with low potential for temporary after-image predicted

PV Array	Tilt	Orient	Annual G	reen Glare	Annual Yel	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	8,622	143.7	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
RWY 14 GA Pattern Route	0	0.0	0	0.0	
RWY 32 GA Pattern Route	8,622	143.7	0	0.0	
RWY 14 Final	0	0.0	0	0.0	
RWY 32 Final	0	0.0	0	0.0	
1-ATCT	0	0.0	0	0.0	

Component Data

PV Arrays

Name: RG Patterson Rooftop Solar PV Axis tracking: Fixed (no rotation) Tilt: 10.0° Orientation: 180.0° Rated power: -Panel material: Smooth glass with AR coating Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.855320	-117.255571	1508.00	50.00	1558.00
2	33.855327	-117.253306	1508.00	50.00	1558.00
3	33.854336	-117.253303	1508.00	50.00	1558.00
4	33.854333	-117.255578	1508.00	50.00	1558.00

Route Receptors

Name: RWY 14 GA Pattern Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.864994	-117.248281	1500.00	50.00	1550.00
2	33.854942	-117.241136	1500.00	1500.00	3000.00
3	33.848078	-117.243236	1500.00	1500.00	3000.00
4	33.844669	-117.250119	1500.00	1500.00	3000.00
5	33.846422	-117.258344	1500.00	1500.00	3000.00
6	33.897972	-117.295011	1500.00	1500.00	3000.00
7	33.904833	-117.292903	1500.00	1500.00	3000.00
8	33.908242	-117.286017	1500.00	1500.00	3000.00
9	33.906486	-117.277783	1500.00	1500.00	3000.00
10	33.896431	-117.270636	1500.00	50.00	1550.00

Name: RWY 32 GA Pattern Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.896431	-117.270636	1500.00	50.00	1550.00
2	33.906486	-117.277783	1500.00	1500.00	3000.00
3	33.908242	-117.286017	1500.00	1500.00	3000.00
4	33.904833	-117.292903	1500.00	1500.00	3000.00
5	33.897972	-117.295011	1500.00	1500.00	3000.00
6	33.846422	-117.258344	1500.00	1500.00	3000.00
7	33.844669	-117.250119	1500.00	1500.00	3000.00
8	33.848078	-117.243236	1500.00	1500.00	3000.00
9	33.854942	-117.241136	1500.00	1500.00	3000.00
10	33.864994	-117.248281	1500.00	50.00	1550.00

Flight Path Receptors

Name: RWY 14 Final Description: None Threshold height: 50 ft Direction: 149.5° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°

Point	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
Threshold	33.896431	-117.270636	1500.00	50.00	1550.00
Two-mile	33.906486	-117.277783	1500.00	1500.00	3000.00

Description: N Threshold hei Direction: 329 Glide slope: 3 Pilot view rest Vertical view: Azimuthal view	ght : 50 ft .5° .0° t ricted? Yes 30.0°				
			Google	an Bernardino, Maxar Technologies, U.S. Ge	eological Survey, USDA/FPAC/GE
Point	Latitude (°)	Longitude (°)	Google Ground elevation (ft)	an Bernardino, Maxar Technologies, U.S. Ge Height above ground (ft)	eological Survey, USDA/FPAC/GE Total elevation (ft)
Point Threshold	Latitude (°) 33.864994	Longitude (°)			

Discrete Observation Point Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (ft)	Height (ft)
1-ATCT	1	33.891572	-117.251203	1511.00	118.00

Map image of 1-ATCT

Glare Analysis Results

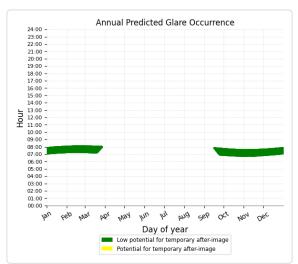
PV Array	Tilt	Orient	Annual G	reen Glare	Annual Ye	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	8,622	143.7	0	0.0	-

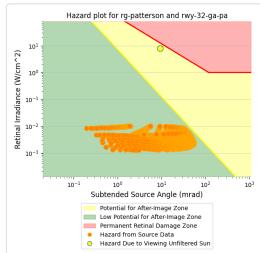
Summary of Results Glare with low potential for temporary after-image predicted

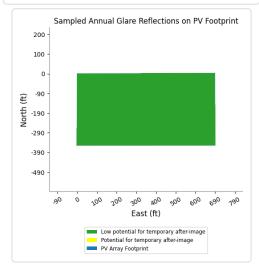
Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

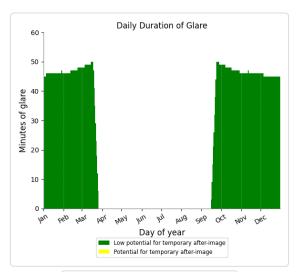
Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
RWY 14 GA Pattern Route	0	0.0	0	0.0	
RWY 32 GA Pattern Route	8,622	143.7	0	0.0	
RWY 14 Final	0	0.0	0	0.0	
RWY 32 Final	0	0.0	0	0.0	
1-ATCT	0	0.0	0	0.0	

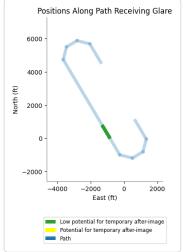
PV: RG Patterson Rooftop Solar PV low potential for temporary after-image


Receptor results ordered by category of glare


Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
RWY 32 GA Pattern Route	8,622	143.7	0	0.0
RWY 14 GA Pattern Route	0	0.0	0	0.0
RWY 14 Final	0	0.0	0	0.0
RWY 32 Final	0	0.0	0	0.0
1-ATCT	0	0.0	0	0.0




RG Patterson Rooftop Solar PV and RWY 32 GA Pattern Route


Receptor type: Route 0 minutes of yellow glare 8,622 minutes of green glare

RG Patterson Rooftop Solar PV

and RWY 14 GA Pattern Route

Receptor type: Route
No glare found

RG Patterson Rooftop Solar PV

and RWY 14 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and RWY 32 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and 1-ATCT

Receptor type: Observation Point **No glare found**

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily

affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- · Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- · Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Attachment D March ARB Runway 14/32 C-17/KC-135 Traffic Pattern Analysis

FORGESOLAR GLARE ANALYSIS

Project: RG Patterson Commerce Center Site configuration: RG Patterson-MARB RWY 14-32 C-17 Analysis

Client: RG Patterson LLC

Created 09 Oct, 2022 Updated 09 Oct, 2022 Time-step 1 minute Timezone offset UTC-8 Site ID 77256.13676 Category 1 MW to 5 MW DNI peaks at 1,000.0 W/m^2 Ocular transmission coefficient 0.5 Pupil diameter 0.002 m Eye focal length 0.017 m Sun subtended angle 9.3 mrad Methodology V2

Summary of Results Glare with low potential for temporary after-image predicted

PV Array	Tilt	Orient	Annual G	reen Glare	Annual Yel	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	6,535	108.9	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Gr	een Glare	Annual Yellow Glare		
	min	hr	min	hr	
RWY 14 C-17 - KC-135 Pattern Route	0	0.0	0	0.0	
RWY 32 C-17 - KC-135 Pattern Route	6,535	108.9	0	0.0	
RWY 14 Final	0	0.0	0	0.0	
RWY 32 Final	0	0.0	0	0.0	
1-ATCT	0	0.0	0	0.0	

Component Data

PV Arrays

Name: RG Patterson Rooftop Solar PV Axis tracking: Fixed (no rotation) Tilt: 10.0° Orientation: 180.0° Rated power: -Panel material: Smooth glass with AR coating Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.855320	-117.255571	1508.00	50.00	1558.00
2	33.855327	-117.253306	1508.00	50.00	1558.00
3	33.854336	-117.253303	1508.00	50.00	1558.00
4	33.854333	-117.255578	1508.00	50.00	1558.00

Route Receptors

Name: RWY 14 C-17 - KC-135 Pattern Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.864994	-117.248281	1500.00	50.00	1550.00
2	33.836269	-117.227869	1500.00	1500.00	3000.00
3	33.821961	-117.228367	1500.00	1500.00	3000.00
4	33.813147	-117.244350	1500.00	1500.00	3000.00
5	33.819225	-117.262269	1500.00	1500.00	3000.00
6	33.908131	-117.325528	1500.00	1500.00	3000.00
7	33.922394	-117.325047	1500.00	1500.00	3000.00
8	33.931244	-117.309014	1500.00	1500.00	3000.00
9	33.925156	-117.291061	1500.00	1500.00	3000.00
10	33.896431	-117.270636	1500.00	50.00	1550.00

Name: RWY 32 C-17 - KC-135 Pattern Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.896431	-117.270636	1500.00	50.00	1550.00
2	33.925156	-117.291061	1500.00	1500.00	3000.00
3	33.931244	-117.309014	1500.00	1500.00	3000.00
4	33.922394	-117.325047	1500.00	1500.00	3000.00
5	33.908131	-117.325528	1500.00	1500.00	3000.00
6	33.819225	-117.262269	1500.00	1500.00	3000.00
7	33.813147	-117.244350	1500.00	1500.00	3000.00
8	33.821961	-117.228367	1500.00	1500.00	3000.00
9	33.836269	-117.227869	1500.00	1500.00	3000.00
10	33.864994	-117.248281	1500.00	50.00	1550.00

Flight Path Receptors

Name: RWY 14 Final
Description: None
Threshold height: 50 ft
Direction: 149.5°
Glide slope: 3.0°
Pilot view restricted? Yes
Vertical view: 30.0°
Azimuthal view: 50.0°

Point	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
Threshold	33.896431	-117.270636	1500.00	50.00	1550.00
Two-mile	33.906486	-117.277783	1500.00	1500.00	3000.00

Name: RWY 32 Final Description: None Threshold height: 50 ft Direction: 329.5° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°		Gogle an Bernardino, Maxar Technologies, U.S. Geological Surv			
			Google	an Bernardino, Maxar Technologies, U.S. Ge	eological Survey, USDA/FPAC/GE
Point	Latitude (°)	Longitude (°)	Google Ground elevation (ft)	an Bernardino, Maxar Technologies, U.S. Ge Height above ground (ft)	eological Survey, USDA/FPAC/GE Total elevation (ft)
Point Threshold	Latitude (°) 33.864994	Longitude (°)			

Discrete Observation Point Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (ft)	Height (ft)
1-ATCT	1	33.891572	-117.251203	1511.00	118.00

Map image of 1-ATCT

Glare Analysis Results

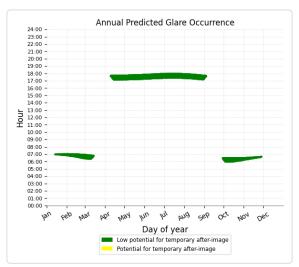
PV Array	Tilt	Orient	Annual G	reen Glare	Annual Ye	llow Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	6,535	108.9	0	0.0	-

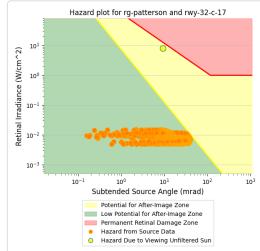
Summary of Results Glare with low potential for temporary after-image predicted

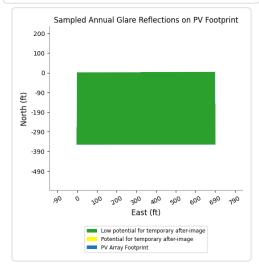
Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

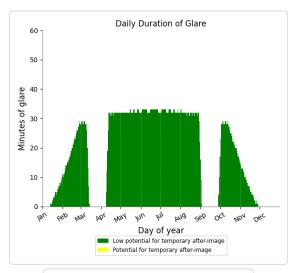
Receptor	Annual Gr	een Glare	Annual Yellow Glare		
	min	hr	min	hr	
RWY 14 C-17 - KC-135 Pattern Route	0	0.0	0	0.0	
RWY 32 C-17 - KC-135 Pattern Route	6,535	108.9	0	0.0	
RWY 14 Final	0	0.0	0	0.0	
RWY 32 Final	0	0.0	0	0.0	
1-ATCT	0	0.0	0	0.0	

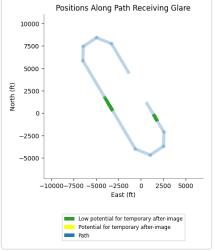
PV: RG Patterson Rooftop Solar PV low potential for temporary after-image


Receptor results ordered by category of glare


Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
RWY 32 C-17 - KC-135 Pattern Route	6,535	108.9	0	0.0
RWY 14 C-17 - KC-135 Pattern Route	0	0.0	0	0.0
RWY 14 Final	0	0.0	0	0.0
RWY 32 Final	0	0.0	0	0.0
1-ATCT	0	0.0	0	0.0




RG Patterson Rooftop Solar PV and RWY 32 C-17 - KC-135 Pattern Route


Receptor type: Route 0 minutes of yellow glare 6,535 minutes of green glare

RG Patterson Rooftop Solar PV

and RWY 14 C-17 - KC-135

Pattern Route

Receptor type: Route
No glare found

RG Patterson Rooftop Solar PV

and RWY 14 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and RWY 32 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and 1-ATCT

Receptor type: Observation Point **No glare found**

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily

affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- · Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- · Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Attachment E March ARB Runway 14/32 Overhead Traffic Pattern Analysis

FORGESOLAR GLARE ANALYSIS

Project: RG Patterson Commerce Center Site configuration: RG Patterson-MARB RWY 14-32 Overhead Analysis

Client: RG Patterson LLC

Created 09 Oct, 2022 Updated 09 Oct, 2022 Time-step 1 minute Timezone offset UTC-8 Site ID 77257.13676 Category 1 MW to 5 MW DNI peaks at 1,000.0 W/m^2 Ocular transmission coefficient 0.5 Pupil diameter 0.002 m Eye focal length 0.017 m Sun subtended angle 9.3 mrad Methodology V2

Summary of Results Glare with low potential for temporary after-image predicted

PV Array	Tilt	Orient	Annual Gro	een Glare	Annual Yel	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	12,783	213.1	0	0.0	-

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Gr	een Glare	Annual Yellow Glare		
	min	hr	min	hr	
RWY 14 Overhead Route	0	0.0	0	0.0	
RWY 32 Overhead Route	12,783	213.1	0	0.0	
RWY 14 Final	0	0.0	0	0.0	
RWY 32 Final	0	0.0	0	0.0	
1-ATCT	0	0.0	0	0.0	

Component Data

PV Arrays

Name: RG Patterson Rooftop Solar PV Axis tracking: Fixed (no rotation) Tilt: 10.0° Orientation: 180.0° Rated power: -Panel material: Smooth glass with AR coating Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.855320	-117.255571	1508.00	50.00	1558.00
2	33.855327	-117.253306	1508.00	50.00	1558.00
3	33.854336	-117.253303	1508.00	50.00	1558.00
4	33.854333	-117.255578	1508.00	50.00	1558.00

Route Receptors

Name: RWY 14 Overhead Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.968036	-117.322128	1500.00	2000.00	3500.00
2	33.880706	-117.259453	1500.00	2000.00	3500.00
3	33.863564	-117.293808	1500.00	2000.00	3500.00
4	33.908131	-117.325528	1500.00	2000.00	3500.00
5	33.925156	-117.291061	1500.00	2000.00	3500.00
6	33.896431	-117.270636	1500.00	50.00	1550.00

Name: RWY 32 Overhead Route Path type: One-way (toward increasing index) Observer view angle: 50.0°

Vertex	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)
1	33.793375	-117.196878	1500.00	2000.00	3500.00
2	33.880706	-117.259453	1500.00	2000.00	3500.00
3	33.863564	-117.293808	1500.00	2000.00	3500.00
4	33.819225	-117.262269	1500.00	2000.00	3500.00
5	33.836269	-117.227869	1500.00	2000.00	3500.00
6	33.864994	-117.248281	1500.00	50.00	1550.00

Flight Path Receptors

Description: None Threshold height: 50 ft Direction: 149.5° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°		Google	Gogle an Bernardino, Maxar Technologies, U.S. Geological Survey, USDA/FPA			
Point	Latitude (°)	Longitude (°)	Ground elevation (ft)	Height above ground (ft)	Total elevation (ft)	
	00.000404	-117.270636	1500.00	50.00	1550.00	
Threshold	33.896431	-117.270636	1500.00	30.00	1550.00	

Name: RWY 32 Final Description: None Threshold height: 50 ft Direction: 329.5° Glide slope: 3.0° Pilot view restricted? Yes Vertical view: 30.0° Azimuthal view: 50.0°					
			Google	an Bernardino, Maxar Technologies, U.S. Ge	eological Survey, USDA/FPAC/GE
Point	Latitude (°)	Longitude (°)	Google Ground elevation (ft)	an Bernardino, Maxar Technologies, U.S. Ge Height above ground (ft)	eological Survey, USDA/FPAC/GE Total elevation (ft)
Point Threshold	Latitude (°) 33.864994	Longitude (°)			

Discrete Observation Point Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (ft)	Height (ft)
1-ATCT	1	33.891572	-117.251203	1511.00	118.00

Map image of 1-ATCT

Glare Analysis Results

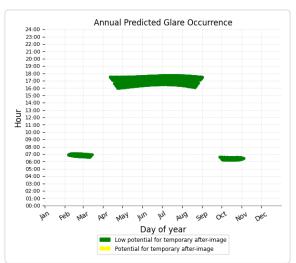
PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Ye	low Glare	Energy
	0	0	min	hr	min	hr	kWh
RG Patterson Rooftop Solar PV	10.0	180.0	12,783	213.1	0	0.0	-

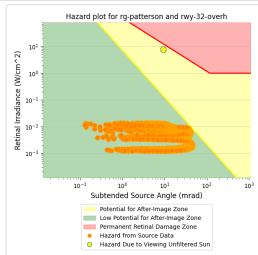
Summary of Results Glare with low potential for temporary after-image predicted

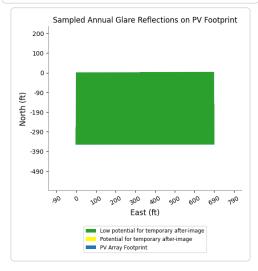
Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

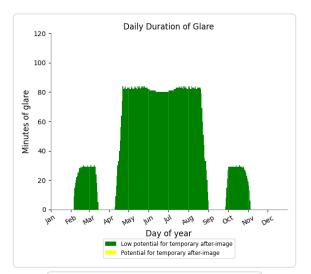
Receptor	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr	
RWY 14 Overhead Route	0	0.0	0	0.0	
RWY 32 Overhead Route	12,783	213.1	0	0.0	
RWY 14 Final	0	0.0	0	0.0	
RWY 32 Final	0	0.0	0	0.0	
1-ATCT	0	0.0	0	0.0	

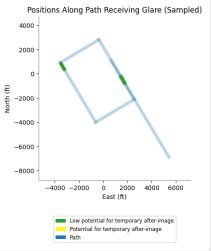
PV: RG Patterson Rooftop Solar PV low potential for temporary after-image


Receptor results ordered by category of glare


Receptor	Annual Gr	Annual Green Glare		Annual Yellow Glare		
	min	hr	min	hr		
RWY 32 Overhead Route	12,783	213.1	0	0.0		
RWY 14 Overhead Route	0	0.0	0	0.0		
RWY 14 Final	0	0.0	0	0.0		
RWY 32 Final	0	0.0	0	0.0		
1-ATCT	0	0.0	0	0.0		




RG Patterson Rooftop Solar PV and RWY 32 Overhead Route


Receptor type: Route 0 minutes of yellow glare 12,783 minutes of green glare

RG Patterson Rooftop Solar PV

and RWY 14 Overhead Route

Receptor type: Route
No glare found

RG Patterson Rooftop Solar PV

and RWY 14 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and RWY 32 Final

Receptor type: 2-mile Flight Path **No glare found**

RG Patterson Rooftop Solar PV

and 1-ATCT

Receptor type: Observation Point **No glare found**

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. "Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time. Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily

affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- · Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- · Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

