

Patterson Commerce Center Air Quality Impact Analysis City of Perris

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Ali Dadabhoy adadabhoy@urbanxroads.com

March 27, 2023

TABLE OF CONTENTS

		F CONTENTS	
		ICES	
		EXHIBITS	
		TABLES	
		ABBREVIATED TERMS	
EXE	ECUTI	VE SUMMARY	9
	ES.1	Summary of Findings	9
	ES.2	Regulatory Requirements	
	ES.3	Perris Valley Commerce Center Specific Plan (PVCCSP) Environmental Impact Repo	•
1	•	TRODUCTION	
	1.1	Site Location	_
	1.2	Project Description	
2		R QUALITY SETTING	
	2.1	South Coast Air Basin (SCAB)	
	2.2	Regional Climate	
	2.3	Wind Patterns and Project Location	
	2.4	Criteria Pollutants	
	2.5	Existing Air Quality	
	2.6 2.7	Regional Air Quality	
	2.7	Local Air Quality Regulatory Background	
	2.8	Regional Air Quality Improvement	
3		OJECT AIR QUALITY IMPACT	
	3.1	Introduction	
	3.2	Standards of Significance	
	3.3	Models Employed To Analyze Air Quality	
	3.4	Construction Emissions	
	3.5	Operational Emissions	
	3.6	Localized Significance	
	3.7	Construction-Source Emissions LST Analysis	66
	3.8	Operational-Source Emissions LST Analysis	67
	3.9	CO "Hot Spot" Analysis	
	3.10	AQMP	
	3.11	Potential Impacts to Sensitive Receptors	
	3.12	Odors	
	3.13	Cumulative Impacts	74
4	REI	FERENCES	77
5	CE	RTIFICATIONS	81

APPENDICES

APPENDIX 2.1:	STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS
APPENDIX 3.1:	CALEEMOD EMISSIONS MODEL OUTPUTS
APPENDIX 3.2:	CALEEMOD EMISSIONS MODEL OUTPUTS - OPERATIONAL LOCALIZED SOURCE
EMISSION	IS
APPENDIX 3.3:	CALEEMOD EMISSIONS MODEL OUTPUTS – EXISTING LAND USE
APPENDIX 3.4:	SCAQMD AMICUS BRIEF

LIST OF EXHIBITS

EXHIBIT 1-A: LOCATION MAP	. 20
EXHIBIT 1-B: SITE PLAN	. 21
EXHIBIT 1-C: OFFSITE IMPROVEMENTS AREAS	. 22
EXHIBIT 2-A: DPM AND DIESEL VEHICLE MILES TREND	. 48
EXHIBIT 3-A: SENSITIVE RECEPTOR LOCATIONS	. 65
LIST OF TABLES	
TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	. 9
TABLE 2-1: CRITERIA POLLUTANTS	
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)	
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)	
TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE SCAB	
TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020	
TABLE 2-5: SCAB O₃ TREND	
TABLE 2-6: SCAB AVERAGE 24-HOUR CONCENTRATION PM ₁₀ TREND (BASED ON FEDERAL STANDARI	
	. 42
TABLE 2-7: SCAB ANNUAL AVERAGE CONCENTRATION PM ₁₀ TREND (BASED ON STATE STANDARD) ¹ .	. 42
TABLE 2-8: SCAB 24-HOUR AVERAGE CONCENTRATION PM _{2.5} TREND (BASED ON FEDERAL STANDAR	D)¹
TABLE 2-9: SCAB ANNUAL AVERAGE CONCENTRATION PM2.5 TREND (BASED ON STATE STANDARD)1.	
TABLE 2-10: SCAB 8-HOUR AVERAGE CONCENTRATION CO TREND ¹	
TABLE 2-11: SCAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON FEDERAL STANDARD	•
TABLE 2-12: SCAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON STATE STANDARD)	
TABLE 3-1: MAXIMUM DAILY REGIONAL EMISSIONS THRESHOLDS	
TABLE 3-2: CONSTRUCTION TRIP ASSUMPTIONS	
TABLE 3-3: CONSTRUCTION DURATION	
TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS	
TABLE 3-5: OVERALL CONSTRUCTION EMISSIONS SUMMARY – WITHOUT MITIGATION	
TABLE 3-6: PASSENGER CAR FLEET MIX – INDUSTRIAL USE	_
TABLE 3-7: TRUCK FLEET MIX – INDUSTRIAL USE	
TABLE 3-8: EMISSIONS FROM EXISTING DEVELOPMENT	
TABLE 3-9: SUMMARY OF PEAK OPERATIONAL EMISSIONS	
TABLE 3-10: MAXIMUM DAILY DISTURBED-ACREAGE	
TABLE 3-11: MAXIMUM DAILY LOCALIZED CONSTRUCTION EMISSIONS THRESHOLDS	66

TABLE 3-12: LOCALIZED CONSTRUCTION-SOURCE EMISSIONS – WITHOUT MITIGATION	67
TABLE 3-13: MAXIMUM DAILY LOCALIZED OPERATIONAL EMISSIONS THRESHOLDS	68
TABLE 3-14: LOCALIZED SIGNIFICANCE SUMMARY OF OPERATIONS – WITHOUT MITIGATION.	68
TABLE 3-15: CO MODEL RESULTS	69
TABLE 3-16: TRAFFIC VOLUMES	70

LIST OF ABBREVIATED TERMS

% Percent

°F Degrees Fahrenheit

(1) Reference

μg/m³ Microgram per Cubic Meter

1992 CO Plan 1992 Federal Attainment Plan for Carbon Monoxide

1993 CEQA Handbook SCAQMD's CEQA Air Quality Handbook (1993)

2016-2040 RTP/SCS 2016-2040 Regional Transportation Plan/Sustainable

Communities Strategy

AB 2595 California Clean Air Act

ADA Americans with Disabilities Act
AQIA Air Quality Impact Analysis
AQMP Air Quality Management Plan

Ave. Avenue

BACT Best Available Control Technology

BC Black Carbon
Blvd. Boulevard

Brief Brief of Amicus Curiae by the SCAQMD in the Friant Ranch

Case

 C_2Cl_4 Perchloroethylene C_4H_6 1,3-butadiene

C₆H₆ Benzene

 C_2H_3Cl Vinyl Chloride C_2H_4O Acetaldehyde

CAA Federal Clean Air Act

CAAQS California Ambient Air Quality Standards
CalEEMod California Emissions Estimator Model

CalEPA California Environmental Protection Agency
CALGreen California Green Building Standards Code

CAP Climate Action Plan

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board
CCR California Code of Regulations
CEC California Energy Commission

CEQA California Environmental Quality Act

CEQA Guidelines Guidelines for Implementation of the California

Environmental Quality Act

CH₂O Formaldehyde City City of Perris

CO Carbon Monoxide
COH Coefficient of Haze
COHb Carboxyhemoglobin

Cr(VI) Chromium

CTP Clean Truck Program

DPM Diesel Particulate Matter

DRRP Diesel Risk Reduction Plan

EC Elemental Carbon

EIR Environmental Impact Report EMFAC EMissions FACtor Model

EPA Environmental Protection Agency

ETW Equivalent Test Weight

Exwy. Expressway

GHG Greenhouse Gas

GVWR Gross Vehicle Weight Rating

H₂S Hydrogen Sulfide HDT Heavy Duty Trucks

HHDT Heavy-Heavy-Duty Trucks

HI Hazard Index hp Horsepower

HRA Health Risk Assessment

HVIP Hybrid and Zero-Emission Truck and Bus Voucher Incentive

Project

Hwy. Highway lbs Pounds

Ibs/day Pounds Per Day
LDA Light Duty Auto
LDT1/LDT2 Light-Duty Trucks

LHDT1/LHDT2 Light-Heavy-Duty Trucks

LST Localized Significance Threshold

LST Methodology Final Localized Significance Threshold Methodology

MARB/IPA March Air Reserve Base/Inland Port Airport

MATES Multiple Air Toxics Exposure Study

MCY Motorcycles

MDV Medium-Duty Vehicles
MHDT Medium-Heavy-Duty Trucks

MICR Maximum Individual Cancer Risk

MM Mitigation Measures

mph Miles Per Hour

MWELO California Department of Water Resources' Model Water

Efficient

N₂ Nitrogen

N₂O Nitrous Oxide

NAAQS National Ambient Air Quality Standards

NB Northbound NO Nitric Oxide

NO₂ Nitrogen Dioxide NO_X Nitrogen Oxides

O₂ Oxygen
O₃ Ozone

O₂ Deficiency Chronic Hypoxemia
OBD-II On-Board Diagnostic

ODC Ozone Depleting Compounds

Pb Lead

PM₁₀ Particulate Matter 10 microns in diameter or less PM_{2.5} Particulate Matter 2.5 microns in diameter or less

POLA Port of Los Angeles
POLB Port of Long Beach
ppm Parts Per Million

Project Patterson Commerce Center

PVCCSP Perris Valley Commerce Center Specific Plan

PVCCSP EIR Perris Valley Commerce Center Specific Plan Environmental

Impact Report SCH No. 2009081086

RECLAIM Regional Clean Air Incentives Market RFG-2 Reformulated Gasoline Regulation

ROG Reactive Organic Gases
RTA Riverside Transit Agency

SB Southbound

SCAB South Coast Air Basin

SCAG Southern California Association of Governments
SCAQMD South Coast Air Quality Management District

sf Square Feet

SIPs State Implementation Plans

SO₂ Sulfur Dioxide

SO₄ Sulfates

SO_X Sulfur Oxides

SoCalGas The Southern California Gas Company

SOON Surplus Off-Road Opt-in for Nitrogen Oxides

SRA Source Receptor Area

St. Street

TA Patterson Commerce Center Traffic Analysis

TAC Toxic Air Contaminant

TDM Transportation Demand Management

Title 24 California Building Code
TITLE I Non-Attainment Provisions
TITLE II Mobile Sources Provisions
TRU Transport Refrigeration Unit

UFP Ultrafine Particles
URBEMIS URBan EMISsions

VICS Voluntary Interindustry Commerce Solutions
VIP On-road Heavy Duty Voucher Incentive Program

VMT Vehicle Miles Traveled

VOC Volatile Organic Compounds

vph Vehicles Per Hour

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Patterson Commerce Center Air Quality Impact Analysis* (AQIA) are summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the *Guidelines for Implementation of the California Environmental Quality Act* (*CEQA Guidelines*) (1). Table ES-1 shows the findings of significance for each potential air quality impact under CEQA before and after any required mitigation measures (MM) described below.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Analysis	Report	Significance Findings	
Allalysis	Section	Unmitigated	Mitigated
Regional Construction Emissions	3.4	Less Than Significant	n/a
Localized Construction Emissions	3.7	Less Than Significant	n/a
Regional Operational Emissions	3.5	Less Than Significant	n/a
Localized Operational Emissions	3.8	Less Than Significant	n/a
CO "Hot Spot" Analysis	3.9	Less Than Significant	n/a
Air Quality Management Plan	3.10	Less Than Significant	n/a
Sensitive Receptors	3.11	Less Than Significant	n/a
Odors	3.12	Less Than Significant	n/a
Cumulative Impacts	3.13	Less Than Significant	n/a

ES.2 REGULATORY REQUIREMENTS

There are numerous requirements that development projects must comply with by law and that were put in place by federal, State, and local regulatory agencies for the improvement of air quality.

Any operation or activity that might cause the emission of any smoke, fly ash, dust, fumes, vapors, gases, or other forms of air pollution, which can cause damage to human health, vegetation, or

other forms of property, or can cause excessive soiling on any other parcel shall conform to the requirements of the South Coast Air Quality Management District (SCAQMD).

SCAQMD RULES

SCAQMD Rules that are currently applicable during construction activity for this Project are described below.

SCAQMD RULE 201

A person shall not build, erect, install, alter, or replace any equipment permit unit, the use of which may cause the issuance of air contaminants or the use of which may eliminate, reduce, or control the issuance of air contaminants without first obtaining written authorization for such construction from the Executive Officer. A permit to construct shall remain in effect until the permit to operate the equipment for which the application was filed as granted or denied, or the application is canceled.

SCAQMD RULE 401

A person shall not discharge into the atmosphere from any single source of emission whatsoever any air contaminant for a period or periods aggregating more than three minutes in any 1 hour that is as dark or darker in shade as that designated No. 1 on the Ringelmann Chart, as published by the U.S. Bureau of Mines.

SCAQMD RULE 402

A person shall not discharge from any source whatsoever such quantities of air contaminants or other material that cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or that endanger the comfort, repose, health, or safety of any such persons or the public, or that cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule do not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.

SCAQMD RULE 403

This rule is intended to reduce the amount of particulate matter entrained in the ambient air as a result of anthropogenic (human-made) fugitive dust sources by requiring actions to prevent and reduce fugitive dust emissions. Rule 403 applies to any activity or human-made condition capable of generating fugitive dust and requires best available control measures to be applied to earth moving and grading activities.

SCAQMD RULE 1113

This rule serves to limit the VOC content of architectural coatings used on projects in the SCAQMD. Any person who supplies, sells, offers for sale, or manufactures any architectural coating for use on projects in the SCAQMD must comply with the current VOC standards set in this rule.

SCAQMD RULE 1301

This rule is intended to provide that pre-construction review requirements to ensure that new or relocated facilities do not interfere with progress in attainment of the National Ambient Air Quality Standards (NAAQS), while future economic growth within the SCAQMD is not unnecessarily restricted. The specific air quality goal is to achieve no net increases from new or modified permitted sources of nonattainment air contaminants or their precursors. Rule 1301 also limits emission increases of ammonia, and Ozone Depleting Compounds (ODCs) from new, modified or relocated facilities by requiring the use of Best Available Control Technology (BACT).

SCAQMD RULE 2305

The SCAQMD adopted Rule 2305, the Warehouse Indirect Source Rule, on May 7, 2021. Owners and operators associated with warehouses 100,000 square feet (sf) or larger are required to directly reduce nitrogen oxides (NO_X) and particulate matter emissions, or to otherwise facilitate emission and exposure reductions of these pollutants in nearby communities.

Although the Project would comply with the above regulatory requirements, it should be noted that emission reductions associated with Rules 201, 401, 402, 461, 1301, 1401, and 2305 cannot be quantified in the California Emissions Estimator Model (CalEEMod) and are therefore not reflected in the emissions presented herein. Conversely, Rule 403 (Fugitive Dust) (2) and Rule 1113 (Architectural Coatings) (3) can be modeled in CalEEMod. As such, credit for Rule 403 and Rule 1113 have been taken in the analysis.

ES.3 PERRIS VALLEY COMMERCE CENTER SPECIFIC PLAN (PVCCSP) ENVIRONMENTAL IMPACT REPORT (PVCCSP EIR) MITIGATION MEASURES

The Project site is located within the PVCCSP planning area of the City of Perris. As such, and unless otherwise noted, the Project is required to comply with the following applicable mitigation measures (MMs) from the *Perris Valley Commerce Center Specific Plan Environmental Impact Report (SCH No. 2009081086)* (4).

MM AIR 1

To identify potential implementing development project-specific impacts resulting from construction activities, proposed development projects that are subject to CEQA shall have construction-related air quality impacts analyzed using the latest available URBan EMISsions (URBEMIS) model, or other analytical method determined in conjunction with the SCAQMD. The results of the construction-related air quality impacts analysis shall be included in the development project's CEQA documentation. To address potential localized impacts, the air quality analysis may incorporate SCAQMD's Localized Significance Threshold (LST) analysis or other appropriate analyses as determined in conjunction with SCAQMD. If such analyses identify potentially significant regional or local air quality impacts, the City shall require the incorporation of appropriate mitigation to reduce such impacts.

Project-specific construction-related air quality and LST analyses have been included in this AQIA to comply with this mitigation measure. The URBEMIS model has been replaced by CalEEMod.

MM Air 2

Each individual implementing development project shall submit a traffic control plan prior to the issuance of a grading permit. The traffic control plan shall describe in detail safe detours and provide temporary traffic control during construction activities for that project. To reduce traffic congestion, the plan shall include, as necessary, appropriate, and practicable, the following: temporary traffic controls such as a flag person during all phases of construction to maintain smooth traffic flow, dedicated turn lanes for movement of construction trucks and equipment on- and off-site, scheduling of construction activities that affect traffic flow on the arterial system to off-peak hour, consolidating truck deliveries, rerouting of construction trucks away from congested streets or sensitive receptors, and/or signal synchronization to improve traffic flow.

MM Air 3

To reduce fugitive dust emissions, the development of each individual implementing development project shall comply with SCAQMD Rule 403. The developer of each implementing project shall provide the City of Perris with the SCAQMD-approved dust control plan, or other sufficient proof of compliance with Rule 403, prior to grading permit issuance. Dust control measures shall include, but are not limited to:

- requiring the application of non-toxic soil stabilizers according to manufacturers' specifications to all inactive construction areas (previously graded areas inactive for 20 days or more, assuming no rain),
- keeping disturbed/loose soil moist at all times,
- requiring trucks entering or leaving the site hauling dirt, sand, or soil, or other loose materials on public roads to be covered,
- installation of wheel washers or gravel construction entrances where vehicles enter and exit unpaved roads onto paved roads, or wash off trucks and any equipment leaving the site each trip,
- posting and enforcement of traffic speed limits of 15 miles per hour (mph) or less on all unpaved potions of the project sites,
- suspending all excavating and grading operations when wind gusts (as instantaneous gust) exceed 25 mph,
- appointment of a construction relations officer to act as a community liaison concerning on-site construction activity including resolution of issues related to Particulate Matter 10 microns in diameter or less (PM10) generation,
- sweeping streets at the end of the day if visible soil material is carried onto adjacent paved public roads and use of SCAQMD Rule 1186 and 1186.1 certified street sweepers or roadway washing trucks when sweeping streets to remove visible soil materials,
- replacement of ground cover in disturbed areas as quickly as possible.

MM AIR 4

Building and grading permits shall include a restriction that limits idling of construction equipment on site to no more than five minutes.

MM AIR 5

Electricity from power poles shall be used instead of temporary diesel or gasoline-powered generators to reduce the associated emissions. Approval will be required by the City of Perris' Building Division prior to issuance of grading permits.

MM AIR 6

The developer of each implementing development project shall require, by contract specifications, the use of alternative fueled off-road construction equipment, the use of construction equipment that demonstrates early compliance with off-road equipment with the California Air Resources Board (CARB) in-use off-road diesel vehicle regulation (SCAQMD Rule 2449) and/or meets or exceeds Tier 3 standards with available CARB verified or Environmental Protection Agency (EPA) certified technologies. Diesel equipment shall use water emulsified diesel fuel such as PuriNO_X unless it is unavailable in Riverside County at the time of project construction activities. Contract specifications shall be included in project construction documents, which shall be reviewed by the City of Perris' Building Division prior to issuance of a grading permit.

It should be noted that in compliance with this PVCCSP EIR mitigation measure, all equipment used during Project construction will meet or exceed CARB Tier 4 Interim emission standards.

MM AIR 7

During construction, ozone (O₃) precursor emissions from mobile construction equipment shall be controlled by maintaining equipment engines in good condition and in proper tune per manufacturers' specifications to the satisfaction of the City of Perris' Building Division. Equipment maintenance records and equipment design specification data sheets shall be kept on-site during construction. Compliance with this measure shall be subject to periodic inspections by the City of Perris' Building Division.

MM AIR 8

Each individual implementing development project shall apply paints using either high volume low pressure (HVLP) spray equipment with a minimum transfer efficiency of at least 50% or other application techniques with equivalent or higher transfer efficiency.

MM AIR 9

To reduce VOC emissions associated with architectural coating, the project designer and contractor shall reduce the use of paints and solvents by utilizing pre-coated materials (e.g., bathroom stall dividers, metal awnings), materials that do not require painting, and require coatings and solvents with a VOC content lower than required under Rule 1113 to be utilized. The construction contractor shall be required to utilize "Super-Compliant" VOC paints, which are defined in SCAQMD's Rule 1113. Construction specifications shall be included in building specifications that assure these requirements are implemented. The specifications for each

implementing development project shall be reviewed by the City of Perris' Building Division for compliance with this MM prior to issuance of a building permit for that project.

MM AIR 10

To identify potential implementing development project-specific impacts resulting from operational activities, proposed development projects that are subject to CEQA shall have long-term operational-related air quality impacts analyzed using the latest available URBEMIS model, or other analytical method determined by the City of Perris as lead agency in conjunction with the SCAQMD. The results of the operational-related air quality impacts analysis shall be included in the development project's CEQA documentation. To address potential localized impacts, the air quality analysis may incorporate SCAQMD's LST analysis, Carbon Monoxide (CO) Hot Spot analysis, or other appropriate analyses as determined by the City of Perris in conjunction with SCAQMD. If such analyses identify potentially significant regional or local air quality impacts, the City shall require the incorporation of appropriate mitigation to reduce such impacts.

Project-specific operational air quality, LST, and CO hotspots analyses have been included in this AQIA to comply with this mitigation measure. The URBEMIS model has been replaced by CalEEMod.

MM Air 11

Signage shall be posted at loading docks and all entrances to loading areas prohibiting all on-site truck idling in excess of five minutes.

MM AIR 13

In order to promote alternative fuels, and help support "clean" truck fleets, the developer/successor-in-interest shall provide building occupants and businesses with information related to SCAQMD's Carl Moyer Program, or other state programs that restrict operations to "clean" trucks, such as 2007 or newer model year or 2010 compliant vehicles and information including, but not limited to, the health effect of diesel particulates, benefits of reduced idling time, CARB regulations, and importance of not parking in residential areas. If trucks older than 2007 model year would be used at a facility with three or more dock-high doors, the developer/successor-in-interest shall require, within one year of signing a lease, future tenants to apply in good-faith for funding for diesel truck replacement/retrofit through grant programs such as the Carl Moyer, Prop 1B, On-road Heavy Duty Voucher Incentive Program (VIP), Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP), and Surplus Off-Road Opt-in for NO_X (SOON) funding programs, as identified on SCAQMD's website (http://www.agmd.gov). Tenants would be required to use those funds, if awarded.

Implementation of this mitigation measure is required; however, for purposes of analysis, the estimated Project-generated emissions presented in this AQIA do not reflect emission reductions that would occur with implementation of this mitigation measure since emissions reductions from this measure are not readily quantifiable.

MM Air 14

Each implementing development project shall designate parking spaces for high-occupancy vehicles and provide larger parking spaces to accommodate vans used for ride sharing. Proof of compliance would be required prior to the issuance of occupancy permits.

Implementation of this mitigation measure is required; however, for purposes of analysis, the estimated Project-generated emissions presented in this AQIA do not reflect emission reductions that would occur with implementation of this mitigation measure since emissions reductions from this measure are not readily quantifiable.

MM Air 15

To identify potential implementing development project-specific impacts resulting from the use of diesel trucks, proposed implementing development projects that include an excess of 10 dock doors for a single building, a minimum of 100 truck trips per day, 40 truck trips with TRUs per day, or TRU operations exceeding 300 hours per week, and that are subject to CEQA and are located adjacent to sensitive land uses; shall have a facility-specific Health Risk Assessment (HRA) performed to assess the diesel particulate matter (DPM) impacts from mobile-source traffic generated by that implementing development project. The results of the HRA shall be included in the CEQA documentation for each implementing development project.

Because the Project would have more than 10 dock doors, and more that 100 daily truck trips, a project-specific HRA has been prepared under separate cover to comply with this mitigation measure.

MM Air 18

Prior to the approval of each implementing development project, the Riverside Transit Agency (RTA) shall be contacted to determine if the RTA has plans for the future provision of bus routing within any street that is adjacent to the implementing development project that would require bus stops at the project access points. If the RTA has future plans for the establishment of a bus route that will serve the implementing development project, road improvements adjacent to the Project sites shall be designed to accommodate future bus turnouts at locations established through consultation with the RTA. RTA shall be responsible for the construction and maintenance of the bus stop facilities. The area set aside for bus turnouts shall conform to RTA design standards, including the design of the contact between sidewalks and curb and gutter at bus stops and the use of Americans with Disabilities Act (ADA)-compliant paths to the major building entrances in the project.

The RTA was contacted regarding its plans for the future provision of bus routing adjacent to the Project site that could require bus stops at the Project boundaries. The RTA indicated that no bus stops are required at the Project boundaries. By contacting the RTA, the Project has complied with this mitigation measure.

MM Air 19

In order to reduce energy consumption from the individual implementing development projects, applicable plans (e.g., electrical plans, improvement maps) submitted to the City shall include the installation of energy-efficient street lighting throughout the Project sites These plans shall be reviewed and approved by the applicable City Department (e.g., City of Perris' Building Division) prior to conveyance of applicable streets.

Implementation of this mitigation measure is required; however, for purposes of analysis, the estimated Project-generated emissions presented in this AQIA do not reflect emission reductions that would occur with implementation of this mitigation measure since emissions reductions from this measure are not readily quantifiable.

MM Air 20

Each implementing development project shall be encouraged to implement, at a minimum, an increase in each building's energy efficiency 15% beyond Title 24, and reduce indoor water use by 25%. All reductions would be documented through a checklist to be submitted prior to issuance of building permits for the implementing development project with building plans and calculations.

Implementation of this mitigation measure is required; however, for purposes of analysis, the estimated Project-generated emissions presented in this AQIA do not reflect emission reductions that would occur with implementation of this mitigation measure since emissions reductions from this measure are not readily quantifiable.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the AQIA prepared by Urban Crossroads, Inc., for the proposed Patterson Commerce Center (Project). The purpose of this AQIA is to evaluate the potential impacts to air quality associated with construction and operation of the Project and recommend measures to mitigate impacts considered potentially significant in comparison to thresholds established by the SCAQMD.

1.1 SITE LOCATION

The proposed Patterson Commerce Center site is located south of Nance Street, generally north of Markham Street, and between Wade Avenue and Patterson Avenue within the City of Perris Perris Valley Commerce Center Specific Plan (PVCCSP) planning area as shown on Exhibit 1-A. March Air Reserve Base/Inland Port Airport (MARB/IPA) is located approximately 0.60 mile north of the Project site boundary.

According to the PVCCSP, the Project site is designated for Light Industrial (LI) uses, which provides for activities including research, manufacturing, warehouse and distribution, assembly of non-hazardous material and retail associated with manufacturing.

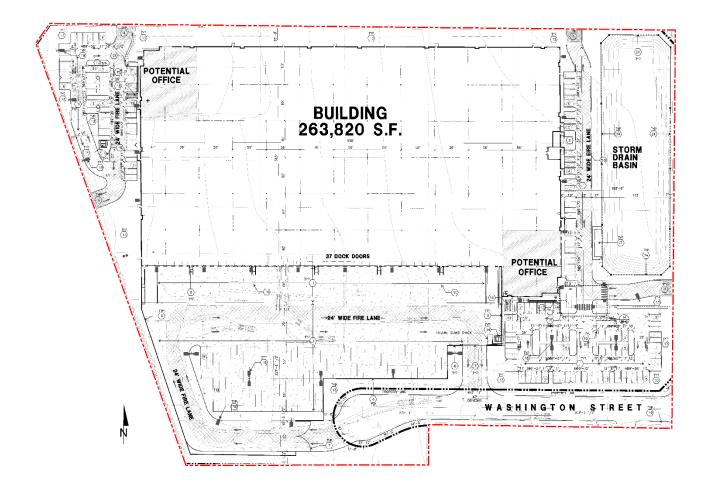
The entire Project site is disturbed. With the exception of the vacant parcel in the northwest portion of the Project site (4585 Wade Avenue; approximately 0.78 acres), GRFCO owned and occupied the Project site between 1984 and 2022 and vacated the site with the purchase of the property by RG Patterson, LLC (herein "Project Applicant") on July 14, 2022. GRFCO operated a staging yard for a construction company, conducted concrete crushing and recycling, and conducted fleet maintenance and equipment washing onsite. When the environmental analysis commenced in late 2021, the southwest portion of the Project site (including former residential structures) was occupied by GRFCO, and GRFCO leased the eastern and northern portions of the Project site for truck trailer storage (starting in 2018). GRFCO vacated the site in July 2022 due to the sale and pending Project. At that time, the truck trailer storage operator entered into a lease agreement with the Project Applicant for the entire site. The property is currently leased monthto-month by the trailer storage operator and that lease will terminate upon receipt of the Project entitlements. The foundation from a previous portable structure remains at the northwest corner of the site; this area has been vacant since 2020. For purposes of the analysis in this report, the baseline condition reflects the operation of various industrial uses at the Project site, which occurred consistently for approximately 40 years and were ongoing when the environmental analysis for the Project commenced in late 2021.

The area adjacent to and south of the Project site, south of Washington Street, has an LI land use designation in the PVCCSP and is developed with retail and non-conforming residential properties. The area further south of the retail and non-conforming residential properties, on the opposite side of Markham Street, has a Potential Basin Area land use designation in the PVCCSP and is currently undeveloped with the exception of church uses. The area to the north of the Project site (north of Nance Street) has an LI PVCCSP land use designation and is occupied by various uses consistent with this land use designation. The area to the east and northeast of the

site (east of Patterson Avenue) also has an LI PVCCSP land use designation. The area to the northeast and area east of the northern portion of the Project site is undeveloped, and there is an industrial park warehouse use east of the southern portion of the Project site. Wade Avenue is immediately west of the Project site and further west, on the opposite side of Wade Avenue is I-215. I-215 is located approximately 60 feet to the west of the Project site and forms the western boundary of the City of Perris and the PVCCSP planning area.

1.2 PROJECT DESCRIPTION

The Project is proposed to consist of a single 263,820-square-foot warehouse building which will be evaluated assuming 237,438 square feet (sf) of high-cube fulfillment center warehouse use (90% of the total square footage) and 26,382 sf of manufacturing use (10% of the total square footage). The Project is anticipated to be constructed in a single phase by the year 2024. The Project would also include roadway and access improvements, and utility infrastructure connections along the roadways extending beyond the Project site, including Patterson Avenue, Nance Street, and Wade Avenue. Exhibit 1-C details the areas in which construction activity is anticipated, including offsite improvement areas.



≡Harley≅Kn ox≅Blv.d≡ Oleander Ave. Old Oleander Ave Harley#Knox#Blvd# California Ave Nance St W Nance St Site Wash 1.1 Dp 1490 ft arkham St W Markham St Lisa Ln Val Verde perry St Perry St Patterson Ave 1.5 Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, L . . NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), (c) OpenStreetMap contributors, and the GIS Cougar St N Martin St amona Expy

EXHIBIT 1-A: LOCATION MAP

EXHIBIT 1-B: SITE PLAN

EXHIBIT 1-C: OFFSITE IMPROVEMENTS AREAS

Construction Activity

This page intentionally left blank

2 AIR QUALITY SETTING

This section provides an overview of the existing air quality conditions in the Project area and region.

2.1 SOUTH COAST AIR BASIN (SCAB)

The Project site is located within the SCAB, a 6,745-square-mile subregion which includes portions of Los Angeles, Riverside, and San Bernardino Counties, and all of Orange County. The SCAB is bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east.

The SCAB is under the jurisdiction of the SCAQMD (5). The SCAQMD was created by the 1977 Lewis-Presley Air Quality Management Act, which merged four county air pollution control bodies into one regional district. Under the Act, the SCAQMD is responsible for bringing air quality in areas under its jurisdiction into conformity with federal and state air quality standards.

2.2 REGIONAL CLIMATE

The regional climate has a substantial influence on air quality in the SCAB. In addition, the temperature, wind, humidity, precipitation, and amount of sunshine influence the air quality.

The annual average temperatures throughout the SCAB vary from the low to middle 60s degrees Fahrenheit (°F). Due to a decreased marine influence, the eastern portion of the SCAB shows greater variability in average annual minimum and maximum temperatures. January is the coldest month throughout the SCAB, with average minimum temperatures of 47°F in downtown Los Angeles and 36°F in San Bernardino. All portions of the SCAB have recorded maximum temperatures above 100°F.

Although the climate of the SCAB can be characterized as semi-arid, the air near the land surface is quite moist on most days because of the presence of a marine layer. This shallow layer of sea air is an important modifier of SCAB climate. Humidity restricts visibility in the SCAB, and the conversion of sulfur dioxide (SO_2) to sulfates (SO_4) is heightened in air with high relative humidity. The marine layer provides an environment for that conversion process, especially during the spring and summer months. The annual average relative humidity within the SCAB is 71% along the coast and 59% inland. Since the ocean effect is dominant, periods of heavy early morning fog are frequent and low stratus clouds are a characteristic feature. These effects decrease with distance from the coast.

More than 90% of the SCAB's rainfall occurs from November through April. The annual average rainfall varies from approximately nine inches in Riverside to fourteen inches in downtown Los Angeles. Monthly and yearly rainfall totals are extremely variable. Summer rainfall usually consists of widely scattered thunderstorms near the coast and slightly heavier shower activity in the eastern portion of the SCAB with frequency being higher near the coast.

Due to its generally clear weather, about three-quarters of available sunshine is received in the SCAB. The remaining one-quarter is absorbed by clouds. The ultraviolet portion of this abundant

radiation is a key factor in photochemical reactions. On the shortest day of the year there are approximately 10 hours of possible sunshine, and on the longest day of the year there are approximately 14½ hours of possible sunshine.

The importance of wind to air pollution is considerable. The direction and speed of the wind determines the horizontal dispersion and transport of the air pollutants. During the late autumn to early spring rainy season, the SCAB is subjected to wind flows associated with the traveling storms moving through the region from the northwest. This period also brings five to ten periods of strong, dry offshore winds, locally termed "Santa Anas" each year. During the dry season, which coincides with the months of maximum photochemical smog concentrations, the wind flow is bimodal, typified by a daytime onshore sea breeze and a nighttime offshore drainage wind. Summer wind flows are created by the pressure differences between the relatively cold ocean and the unevenly heated and cooled land surfaces that modify the general northwesterly wind circulation over southern California. Nighttime drainage begins with the radiational cooling of the mountain slopes. Heavy, cool air descends the slopes and flows through the mountain passes and canyons as it follows the lowering terrain toward the ocean. Another characteristic wind regime in the SCAB is the "Catalina Eddy," a low level cyclonic (counterclockwise) flow centered over Santa Catalina Island which results in an offshore flow to the southwest. On most spring and summer days, some indication of an eddy is apparent in coastal sections.

In the SCAB, there are two distinct temperature inversion structures that control vertical mixing of air pollution. During the summer, warm high-pressure descending (subsiding) air is undercut by a shallow layer of cool marine air. The boundary between these two layers of air is a persistent marine subsidence/inversion. This boundary prevents vertical mixing which effectively acts as an impervious lid to pollutants over the entire SCAB. The mixing height for the inversion structure is normally situated 1,000 to 1,500 feet above mean sea level.

A second inversion-type forms in conjunction with the drainage of cool air off the surrounding mountains at night followed by the seaward drift of this pool of cool air. The top of this layer forms a sharp boundary with the warmer air aloft and creates nocturnal radiation inversions. These inversions occur primarily in the winter when nights are longer and onshore flow is weakest. They are typically only a few hundred feet above mean sea level. These inversions effectively trap pollutants, such as NO_X and CO from vehicles, as the pool of cool air drifts seaward. Winter is therefore a period of high levels of primary pollutants along the coastline.

2.3 WIND PATTERNS AND PROJECT LOCATION

The distinctive climate of the Project area and the SCAB is determined by its terrain and geographical location. The SCAB is located in a coastal plain with connecting broad valleys and low hills, bounded by the Pacific Ocean in the southwest quadrant with high mountains forming the remainder of the perimeter.

Wind patterns across the south coastal region are characterized by westerly and southwesterly onshore winds during the day and easterly or northeasterly breezes at night. Winds are characteristically light although the speed is somewhat greater during the dry summer months than during the rainy winter season.

2.4 CRITERIA POLLUTANTS

Criteria pollutants are pollutants that are regulated through the development of human health based and/or environmentally based criteria for setting permissible levels. Criteria pollutants, their typical sources, and health effects are identified below (6):

TABLE 2-1: CRITERIA POLLUTANTS

Criteria Pollutant	Description	Sources	Health Effects
CO (Carbon Monoxide)	CO is a colorless, odorless gas produced by the incomplete combustion of carbon-containing fuels, such as gasoline or wood. CO concentrations tend to be the highest during the winter morning, when little to no wind and surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines, unlike O ₃ , motor vehicles operating at slow speeds are the primary source of CO in the SCAB. The highest ambient CO concentrations are generally found near congested transportation corridors and intersections.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Individuals with a deficient blood supply to the heart are the most susceptible to the adverse effects of CO exposure. The effects observed include earlier onset of chest pain with exercise, and electrocardiograph changes indicative of decreased oxygen (O ₂) supply to the heart. Inhaled CO has no direct toxic effect on the lungs but exerts its effect on tissues by interfering with O ₂ transport and competing with hemoglobin present in the blood to form carboxyhemoglobin (COHb). Hence, conditions with an increased demand for O ₂ supply can be adversely affected by exposure to CO. Individuals most at risk include fetuses, patients with diseases involving heart and blood vessels, and patients with chronic hypoxemia (O ₂ deficiency) as seen at high altitudes.
SO ₂ (Sulfur Dioxide)	SO ₂ is a colorless, extremely irritating gas or liquid. It enters the atmosphere as a pollutant mainly as a result of burning high sulfur-content fuel oils and coal and from chemical processes occurring at chemical plants and refineries. When SO ₂ oxidizes in the atmosphere, it forms SO ₄ .	Coal or oil burning power plants and industries, refineries, diesel engines	A few minutes of exposure to low levels of SO ₂ can result in airway constriction in some asthmatics, all of whom are sensitive to its effects. In asthmatics, increase in resistance to air flow, as well as reduction in breathing capacity leading to severe breathing difficulties, are

Criteria Pollutant	Description	Sources	Health Effects
Criteria Pollutant	Collectively, these pollutants are referred to as sulfur oxides (SO _x).	Sources	observed after acute exposure to SO ₂ . In contrast, healthy individuals do not exhibit similar acute responses even after exposure to higher concentrations of SO ₂ . Animal studies suggest that despite SO ₂ being a respiratory irritant, it does not cause substantial lung injury at ambient concentrations. However, very high levels of exposure can cause lung edema (fluid accumulation), lung tissue damage, and sloughing off of cells lining the respiratory tract. Some population-based studies indicate that the mortality and morbidity effects associated with fine particles show a similar association with ambient SO ₂ levels. In these studies, efforts to separate the effects of SO ₂ from those of fine particles have not been successful. It is not clear whether the two pollutants act synergistically, or one pollutant alone is the predominant factor.
NO _x (Nitrogen Oxides)	NO _x consist of nitric oxide (NO), nitrogen dioxide (NO ₂) and nitrous oxide (N ₂ O) and are formed when nitrogen (N ₂) combines with O ₂ . Their lifespan in the atmosphere ranges from one to seven days for nitric oxide and nitrogen dioxide, to 170 years for nitrous oxide. NO _x is typically created during combustion processes and are major contributors to smog formation and acid deposition. NO ₂ is a criteria air pollutant and	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Population-based studies suggest that an increase in acute respiratory illness, including infections and respiratory symptoms in children (not infants), is associated with long-term exposure to NO ₂ at levels found in homes with gas stoves, which are higher than ambient levels found in Southern California. Increase in resistance to air flow and airway contraction is

Criteria Pollutant	Description	Sources	Health Effects
Criteria Poliutant	may result in numerous adverse health effects; it absorbs blue light, resulting in a brownish-red cast to the atmosphere and reduced visibility. Of the seven types of NO _x compounds, NO ₂ is the most abundant in the atmosphere. As ambient concentrations of NO ₂ are related to traffic density, commuters in heavy traffic may be exposed to higher concentrations of NO ₂ than those indicated by regional monitoring station.	Sources	observed after short-term exposure to NO ₂ in healthy subjects. Larger decreases in lung functions are observed in individuals with asthma or chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) than in healthy individuals, indicating a greater susceptibility of these sub-groups. In animals, exposure to levels of NO ₂ considerably higher than ambient concentrations result in increased susceptibility to infections, possibly due to the observed changes in cells involved in maintaining immune functions. The severity of lung tissue damage associated with high levels of O ₃ exposure increases when animals are exposed to a combination of O ₃ and NO ₂ .
O ₃ (Ozone)	O ₃ is a highly reactive and unstable gas that is formed when VOCs and NO _x , both byproducts of internal combustion engine exhaust, undergo slow photochemical reactions in the presence of sunlight. O ₃ concentrations are generally highest during the summer months when direct sunlight, light wind, and warm temperature conditions are favorable to the formation of this pollutant.	Formed when reactive organic gases (ROG) and NO _X react in the presence of sunlight. ROG sources include any source that burns fuels, (e.g., gasoline, natural gas, wood, oil) solvents, petroleum processing and storage and pesticides.	Individuals exercising outdoors, children, and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the most susceptible subgroups for O ₃ effects. Shortterm exposure (lasting for a few hours) to O ₃ at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes. Elevated O ₃ levels are associated with increased school absences. In recent years, a correlation between

Criteria Pollutant	Description	Sources	Health Effects
			elevated ambient O ₃ levels and increases in daily hospital admission rates, as well as mortality, has also been reported. An increased risk for asthma has been found in children who participate in multiple outdoor sports and reside in communities with high O ₃ levels. O ₃ exposure under exercising conditions is known to increase the severity of the responses described above. Animal studies suggest that exposure to a combination of pollutants that includes O ₃ may be more toxic than exposure to O ₃ alone. Although lung volume and resistance changes observed after a single exposure diminish with repeated exposures, biochemical and cellular changes appear to persist, which can lead to subsequent lung structural changes.
Particulate Matter (PM)	PM ₁₀ : A major air pollutant consisting of tiny solid or liquid particles of soot, dust, smoke, fumes, and aerosols. Particulate matter pollution is a major cause of reduce visibility (haze) which is caused by the scattering of light and consequently the significant reduction air clarity. The size of the particles (10 microns or smaller, about 0.0004 inches or less) allows them to easily enter the lungs where they may be deposited, resulting in adverse health effects. Additionally, it should be noted that PM ₁₀ is considered a criteria air pollutant. PM _{2.5} : A similar air pollutant to PM ₁₀ consisting of tiny solid or	Sources of PM ₁₀ include road dust, windblown dust and construction. Also formed from other pollutants (acid rain, NO _X , SO _X , organics). Incomplete combustion of any fuel. PM _{2.5} comes from fuel combustion in motor vehicles, equipment, and industrial sources, residential and agricultural burning. Also	A consistent correlation between elevated ambient fine particulate matter (PM ₁₀ and PM _{2.5}) levels and an increase in mortality rates, respiratory infections, number and severity of asthma attacks and the number of hospital admissions has been observed in different parts of the United States and various areas around the world. In recent years, some studies have reported an association between long-term exposure to air pollution dominated by fine particles and increased mortality, reduction in lifespan, and an increased mortality from lung cancer.

Criteria Pollutant	Description	Sources	Health Effects
	liquid particles which are 2.5	formed from	Daily fluctuations in PM _{2.5}
	microns or smaller (which is often referred to as fine particles). These particles are formed in the atmosphere from primary gaseous emissions that include SO ₄ formed from SO ₂ release from power plants and industrial facilities and nitrates that are formed from NO _x release from power plants, automobiles, and other types of combustion sources. The chemical composition of fine particles highly depends on location, time of year, and weather conditions. PM _{2.5} is a criteria air pollutant.	reaction of other pollutants (acid rain, NO _X , SO _X , organics).	concentration levels have also been related to hospital admissions for acute respiratory conditions in children, to school and kindergarten absences, to a decrease in respiratory lung volumes in normal children, and to increased medication use in children and adults with asthma. Recent studies show lung function growth in children is reduced with long term exposure to particulate matter. The elderly, people with preexisting respiratory or cardiovascular disease, and children appear to be more susceptible to the effects of high levels of PM ₁₀ and PM _{2.5} .
VOC (Volatile Organic Compounds)	VOCs are hydrocarbon compounds (any compound containing various combinations of hydrogen and carbon atoms) that exist in the ambient air. VOCs contribute to the formation of smog through atmospheric photochemical reactions and/or may be toxic. Compounds of carbon (also known as organic compounds) have different levels of reactivity; that is, they do not react at the same speed or do not form O ₃ to the same extent when exposed to photochemical processes. VOCs often have an odor, and some examples include gasoline, alcohol, and the solvents used in paints. Exceptions to the VOC designation include CO, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate. VOCs are a criteria pollutant since they are a precursor to O ₃ , which is a criteria pollutant. The terms VOC	Organic chemicals are widely used as ingredients in household products. Paints, varnishes, and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.	Breathing VOCs can irritate the eyes, nose, and throat, can cause difficulty breathing and nausea, and can damage the central nervous system as well as other organs. Some VOCs can cause cancer. Not all VOCs have all these health effects, though many have several.

Criteria Pollutant	Description	Sources	Health Effects
	and ROG (see below) interchangeably.		
ROG (Reactive Organic Compounds)	Similar to VOC, ROGs are also precursors in forming O ₃ and consist of compounds containing methane, ethane, propane, butane, and longer chain hydrocarbons, which are typically the result of some type of combustion/decomposition process. Smog is formed when ROG and NO _X react in the presence of sunlight. ROGs are a criteria pollutant since they are a precursor to O ₃ , which is a criteria pollutant. The terms ROG and VOC (see previous) interchangeably.	Sources similar to VOCs.	Health effects similar to VOCs.
Lead (Pb)	Pb is a heavy metal that is highly persistent in the environment and is considered a criteria pollutant. In the past, the primary source of Pb in the air was emissions from vehicles burning leaded gasoline. The major sources of Pb emissions are ore and metals processing, particularly Pb smelters, and piston-engine aircraft operating on leaded aviation gasoline. Other stationary sources include waste incinerators, utilities, and lead-acid battery manufacturers. It should be noted that the Project does not include operational activities such as metal processing or Pb acid battery manufacturing. As such, the Project is not anticipated to generate a quantifiable amount of Pb emissions.	Metal smelters, resource recovery, leaded gasoline, deterioration of Pb paint.	Fetuses, infants, and children are more sensitive than others to the adverse effects of Pb exposure. Exposure to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased Pb levels are associated with increased blood pressure. Pb poisoning can cause anemia, lethargy, seizures, and death; although it appears that there are no direct effects of Pb on the respiratory system. Pb can be stored in the bone from early age environmental exposure, and elevated blood Pb levels can occur due to breakdown of bone tissue during pregnancy, hyperthyroidism (increased secretion of

Criteria Pollutant	Description	Sources	Health Effects
			hormones from the thyroid gland) and osteoporosis (breakdown of bony tissue). Fetuses and breast-fed babies can be exposed to higher levels of Pb because of previous environmental Pb exposure of their mothers.
Odor	Odor means the perception experienced by a person when one or more chemical substances in the air come into contact with the human olfactory nerves (7).	Odors can come from many sources including animals, human activities, industry, natures, and vehicles.	Offensive odors can potentially affect human health in several ways. First, odorant compounds can irritate the eye, nose, and throat, which can reduce respiratory volume. Second, studies have shown that the VOCs that cause odors can stimulate sensory nerves to cause neurochemical changes that might influence health, for instance, by compromising the immune system. Finally, unpleasant odors can trigger memories or attitudes linked to unpleasant odors, causing cognitive and emotional effects such as stress.

2.5 EXISTING AIR QUALITY

Existing air quality is measured at established SCAQMD air quality monitoring stations. Monitored air quality is evaluated in the context of ambient air quality standards. These standards are the levels of air quality that are considered safe, with an adequate margin of safety, to protect the public health and welfare. NAAQS and California Ambient Air Quality Standards (CAAQS) currently in effect are shown in Table 2-2 (8).

The determination of whether a region's air quality is healthful or unhealthful is determined by comparing contaminant levels in ambient air samples to the state and federal standards. At the time of this AQIA, the most recent state and federal standards were updated by CARB on May 4, 2016, as presented in Table 2-2. The air quality in a region is considered to be in attainment by the state if the measured ambient air pollutant levels for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, PM₁₀, and PM_{2.5} do not exceed standards. All others are not to be equaled or exceeded. It should be noted that the three-year period is presented for informational purposes and is not the basis for how the State assigns attainment status. Attainment status for a pollutant means that the SCAQMD meets the standards set by the EPA or the California EPA (CalEPA). Conversely, nonattainment means that an area has monitored air quality that does not meet the NAAQS or CAAQS standards. In order to improve air quality in nonattainment areas, CARB has implemented a State Implementation Plan (SIP). The SIP outlines the measures that the state will take to improve air quality. Once nonattainment areas meet the standards and additional redesignation requirements, the EPA will designate the area as a maintenance area (9).

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)

		Ambient A	Air Qualit	y Standard	ds	
Pollutant	Averaging Time	California Standards 1		National Standards ²		
		Concentration ³	Method ⁴	Primary 3,5	Secondary 3,6	Method ⁷
Ozone (O ₃) ⁸	1 Hour	0.09 ppm (180 μg/m³)	Ultraviolet Photometry	-	Same as	Ultraviolet Photometry
	8 Hour	0.070 ppm (137 µg/m³)		0.070 ppm (137 µg/m³)	Primary Standard	
Respirable Particulate Matter (PM10) ⁹	24 Hour	50 μg/m ³	Gravimetric or Beta Attenuation	150 µg/m ³	Same as	Inertial Separation and Gravimetric Analysis
	Annual Arithmetic Mean	20 μg/m ³		_	Primary Standard	
Fine Particulate Matter (PM2.5) ⁹	24 Hour	-	_	35 μg/m³	Same as Primary Standard	Inertial Separation and Gravimetric Analysis
	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12.0 μg/m ³	15 μg/m ³	
Carbon Monoxide (CO)	1 Hour	20 ppm (23 mg/m ³)	Non-Dispersive Infrared Photometry (NDIR)	35 ppm (40 mg/m ³)	1175 .	Non-Dispersive Infrared Photometry (NDIR)
	8 Hour	9.0 ppm (10 mg/m ³)		9 ppm (10 mg/m ³)	550	
	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)		_	=	
Nitrogen Dioxide (NO ₂) ¹⁰	1 Hour	0.18 ppm (339 μg/m³)	Gas Phase Chemiluminescence	100 ppb (188 µg/m³)	_	Gas Phase Chemiluminescence
	Annual Arithmetic Mean	0.030 ppm (57 μg/m³)		0.053 ppm (100 µg/m³)	Same as Primary Standard	
Sulfur Dioxide (SO ₂) ¹¹	1 Hour	0.25 ppm (655 μg/m³)	Ultraviolet Fluorescence	75 ppb (196 μg/m³)	_	Ultraviolet Flourescence; Spectrophotometry (Pararosaniline Method)
	3 Hour	_		-	0.5 ppm (1300 µg/m³)	
	24 Hour	0.04 ppm (105 µg/m³)		0.14 ppm (for certain areas) ¹¹	<u>may</u>	
	Annual Arithmetic Mean	_		0.030 ppm (for certain areas) ¹¹	_	
Lead ^{12,13}	30 Day Average	1.5 μg/m ³	Atomic Absorption	-	_	High Volume Sampler and Atomic Absorption
	Calendar Quarter	_		1.5 µg/m ³ (for certain areas) ¹²	Same as	
	Rolling 3-Month Average	c—		0.15 μg/m ³	Primary Standard	
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape	No National Standards		
Sulfates	24 Hour	25 μg/m³	Ion Chromatography			
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m³)	Ultraviolet Fluorescence			
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m³)	Gas Chromatography			

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and
 particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be
 equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the
 California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of
 the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
 - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 µg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

2.6 REGIONAL AIR QUALITY

Air pollution contributes to a wide variety of adverse health effects. The EPA has established NAAQS for six of the most common air pollutants: CO, Pb, O_3 , particulate matter (PM₁₀ and PM_{2.5}), NO₂, and SO₂ which are known as criteria pollutants. The SCAQMD monitors levels of various criteria pollutants at 37 permanent monitoring stations and 5 single-pollutant source Pb air monitoring sites throughout the air district (10). On December 28, 2021, CARB posted the proposed 2021 amendments to the state and national area designations. See Table 2-3 for attainment designations for the SCAB (11). Appendix 2.1 provides geographic representation of the state and federal attainment status for applicable criteria pollutants within the SCAB.

TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE SCAB

Criteria Pollutant	State Designation	Federal Designation
O ₃ – 1-hour standard	Nonattainment	
O ₃ – 8-hour standard	Nonattainment	Nonattainment
PM ₁₀	Nonattainment	Attainment
PM _{2.5}	Nonattainment	Nonattainment
СО	Attainment	Unclassifiable/Attainment
NO ₂	Attainment	Unclassifiable/Attainment
SO ₂	Attainment	Unclassifiable/Attainment
Pb ¹	Attainment	Unclassifiable/Attainment

Note: See Appendix 2.1 for a detailed map of State/National Area Designations within the SCAB

2.7 LOCAL AIR QUALITY

The SCAQMD has designated general forecast areas and air monitoring areas (referred to as Source Receptor Areas [SRA]) throughout the district in order to provide Southern California residents about the air quality conditions. The Project site is located within the Perris Valley area (SRA 24). The Perris Valley monitoring station is located approximately 4.70 miles south of the Project site and reports air quality statistics for O₃ and PM₁₀. The Metropolitan Riverside County monitoring station which is located 13.69 miles northwest of the Project site in SRA 23, records air quality data for CO, NO₂, and PM_{2.5}. It should be noted that data from Metropolitan Riverside County monitoring station was utilized in lieu of the Perris Valley monitoring station only in instances where data was not available.

The most recent three (3) years of data available is shown on Table 2-4 and identifies the number of days ambient air quality standards were exceeded for the study area, which is considered to be representative of the local air quality at the Project Site. Data for O₃, CO, NO₂, PM₁₀, and PM_{2.5} for 2018 through 2020 was obtained from the SCAQMD Air Quality Data Tables (12). Additionally,

[&]quot;-" = The national 1-hour O₃ standard was revoked effective June 15, 2005.

 $^{^{}m I}$ The Federal nonattainment designation for lead is only applicable towards the Los Angeles County portion of the SCAB.

data for SO_2 has been omitted as attainment is regularly met in the SCAB and few monitoring stations measure SO_2 concentrations.

TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020

Dellutout	Stondard	Year		
Pollutant	Standard	2018	2019	2020
O ₃				
Maximum Federal 1-Hour Concentration (ppm)		0.117	0.118	0.125
Maximum Federal 8-Hour Concentration (ppm)		0.103	0.095	0.106
Number of Days Exceeding State 1-Hour Standard	> 0.09 ppm	31	26	34
Number of Days Exceeding State/Federal 8-Hour Standard	> 0.070 ppm	67	64	74
СО	•			
Maximum Federal 1-Hour Concentration	> 35 ppm	2.2	1.5	1.9
Maximum Federal 8-Hour Concentration	> 20 ppm	2.0	1.2	1.4
NO ₂	•			
Maximum Federal 1-Hour Concentration	> 0.100 ppm	0.055	0.056	0.066
Annual Federal Standard Design Value		0.014	0.014	0.014
PM ₁₀				
Maximum Federal 24-Hour Concentration (μg/m³)	> 150 μg/m ³	64	97	77
Annual Federal Arithmetic Mean (μg/m³)		29.7	25.3	35.9
Number of Days Exceeding Federal 24-Hour Standard	> 150 μg/m ³	0	0	0
Number of Days Exceeding State 24-Hour Standard	> 50 μg/m ³	3	4	6
PM _{2.5}	•			
Maximum Federal 24-Hour Concentration (μg/m³)	> 35 μg/m ³	50.70	46.70	41.00
Annual Federal Arithmetic Mean (μg/m³)	> 12 μg/m ³	12.41	11.13	12.63
Number of Days Exceeding Federal 24-Hour Standard	> 35 μg/m ³	2	4	4

ppm = Parts Per Million

μg/m³ = Microgram per Cubic Meter

Source: Data for O₃, CO, NO₂, PM₁₀, and PM_{2.5} was obtained from SCAQMD Air Quality Data Tables.

2.8 REGULATORY BACKGROUND

2.8.1 FEDERAL REGULATIONS

The EPA is responsible for setting and enforcing the NAAQS for O₃, CO, NO_x, SO₂, PM₁₀, and Pb (13). The EPA has jurisdiction over emissions sources that are under the authority of the federal government including aircraft, locomotives, and emissions sources outside state waters (Outer Continental Shelf). The EPA also establishes emission standards for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission requirements of CARB.

The Federal Clean Air Act (CAA) was first enacted in 1955 and has been amended numerous times in subsequent years (1963, 1965, 1967, 1970, 1977, and 1990). The CAA establishes the federal air quality standards, the NAAQS, and specifies future dates for achieving compliance (14). The CAA also mandates that states submit and implement SIPs for local areas not meeting these standards. These plans must include pollution control measures that demonstrate how the standards would be met.

The 1990 amendments to the CAA that identify specific emission reduction goals for areas not meeting the NAAQS require a demonstration of reasonable further progress toward attainment and incorporate additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA most directly applicable to the development of the Project site include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions) (15) (16). Title I provisions were established with the goal of attaining the NAAQS for the following criteria pollutants O₃, NO₂, SO₂, PM₁₀, CO, PM_{2.5}, and Pb. The NAAQS were amended in July 1997 to include an additional standard for O₃ and to adopt a NAAQS for PM_{2.5}. Table 2-3 (previously presented) provides the NAAQS within the SCAB.

Mobile source emissions are regulated in accordance with Title II provisions. These provisions require the use of cleaner burning gasoline and other cleaner burning fuels such as methanol and natural gas. Automobile manufacturers are also required to reduce tailpipe emissions of hydrocarbons and NO_X . NO_X is a collective term that includes all forms of NO_X which are emitted as byproducts of the combustion process.

2.8.2 CALIFORNIA REGULATIONS

CARB

CARB, which became part of the CalEPA in 1991, is responsible for ensuring implementation of the California Clean Air Act (AB 2595), responding to the federal CAA, and for regulating emissions from consumer products and motor vehicles. AB 2595 mandates achievement of the maximum degree of emissions reductions possible from vehicular and other mobile sources in order to attain the state ambient air quality standards by the earliest practical date. CARB established the CAAQS for all pollutants for which the federal government has NAAQS and, in addition, establishes standards for SO₄, visibility, hydrogen sulfide (H₂S), and vinyl chloride (C₂H₃Cl). However, at this time, H₂S and C₂H₃Cl are not measured at any monitoring stations in the SCAB because they are not considered to be a regional air quality problem. Generally, the CAAQS are more stringent than the NAAQS (17) (13).

Local air quality management districts, such as the SCAQMD, regulate air emissions from stationary sources such as commercial and industrial facilities. All air pollution control districts have been formally designated as attainment or non-attainment for each CAAQS.

Serious non-attainment areas are required to prepare Air Quality Management Plans (AQMP) that include specified emission reduction strategies in an effort to meet clean air goals. These plans are required to include:

Application of Best Available Retrofit Control Technology to existing sources;

- Developing control programs for area sources (e.g., architectural coatings and solvents) and indirect sources (e.g., motor vehicle use generated by residential and commercial development);
- A District permitting system designed to allow no net increase in emissions from any new or modified permitted sources of emissions;
- Implementing reasonably available transportation control measures and assuring a substantial reduction in growth rate of vehicle trips and miles traveled;
- Significant use of low emissions vehicles by fleet operators;
- Sufficient control strategies to achieve a 5% or more annual reduction in emissions or 15% or more in a period of three years for ROGs, NO_x, CO and PM₁₀. However, air basins may use alternative emission reduction strategy that achieves a reduction of less than 5% per year under certain circumstances.

TITLE 24 ENERGY EFFICIENCY STANDARDS AND CALIFORNIA GREEN BUILDING STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. The most recent update to the California Energy Code was a on August 11, 2021. Buildings whose permit applications are submitted after January 1, 2023 must comply with the 2022 Energy Code.

CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on August 1, 2009, and is administered by the California Building Standards Commission. The Project would be required to comply with the applicable standards in place at the time building permit document submittals are made.

CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2022 California Green Building Code Standards that will be effective on January 1, 2023. The CEC anticipates that the 2022 energy code will provide \$1.5 billion in consumer benefits and reduce GHG emissions by 10 million metric tons (18).

2.8.3 AQMP

Currently, the NAAQS and CAAQS are exceeded in most parts of the SCAB. In response, the SCAQMD has adopted a series of AQMP to meet the state and federal ambient air quality standards (19). AQMPs are updated regularly to ensure an effective reduction in emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy. A detailed discussion on the AQMP and Project consistency with the AQMP is provided in Section 3.10.

2.9 REGIONAL AIR QUALITY IMPROVEMENT

The Project is within the jurisdiction of the SCAQMD. In 1976, California adopted the Lewis Air Quality Management Act which created SCAQMD from a voluntary association of air pollution control districts in Los Angeles, Orange, Riverside, and San Bernardino counties. The geographic

area of which SCAQMD consists of is known as the SCAB. The SCAQMD develops comprehensive plans and regulatory programs for the region to attain federal standards by dates specified in federal law. The agency is also responsible for meeting state standards by the earliest date achievable, using reasonably available control measures.

SCAQMD rule development through the 1970s and 1980s resulted in dramatic improvement in SCAB air quality. Nearly all control programs developed through the early 1990s relied on (i) the development and application of cleaner technology; (ii) add-on emission controls, and (iii) uniform CEQA review throughout the SCAB. Industrial emission sources have been significantly reduced by this approach and vehicular emissions have been reduced by technologies implemented at the state level by CARB.

As discussed above, the SCAQMD is the lead agency charged with regulating air quality emission reductions for the entire SCAB. SCAQMD created AQMPs which represent a regional blueprint for achieving healthful air on behalf of the 16 million residents of the SCAB. AQMPs are updated regularly to ensure an effective reduction in emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy.

Emissions of O₃, NO_X, VOC, and CO have been decreasing in the SCAB since 1975 (20). These decreases result primarily from motor vehicle controls and reductions in evaporative emissions. Although vehicle miles traveled (VMT) in the SCAB continue to increase, NO_X and VOC levels are decreasing because of the mandated controls on motor vehicles and the replacement of older polluting vehicles with lower-emitting vehicles. NO_X emissions from electric utilities have also decreased due to use of cleaner fuels and renewable energy. O₃ contour maps show that the number of days exceeding the 8-hour NAAQS has generally decreased between 1980 and 2020. For 2020, there was an overall decrease in exceedance days compared with the 1980 period. However, as shown on Table 2-5, O₃ levels have increased in the past three years due to higher temperatures and stagnant weather conditions. Notwithstanding, O₃ levels in the SCAB have decreased substantially over the last 30 years with the current maximum measured concentrations being approximately one-third of concentrations within the late 70's (21).

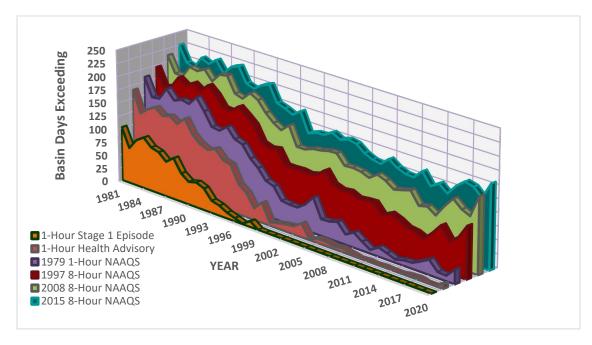


TABLE 2-5: SCAB O₃ TREND

Source: 2020 SCAQMD, Historical O₃ Air Quality Trends (1976-2020)

The overall trends of PM_{10} and $PM_{2.5}$ levels in the air (not emissions) show an overall improvement since 1975. Direct emissions of PM_{10} have remained somewhat constant in the SCAB and direct emissions of $PM_{2.5}$ have decreased slightly since 1975. Area wide sources (fugitive dust from roads, dust from construction, and other sources) contribute the greatest amount of direct particulate matter emissions.

As with other pollutants, the most recent PM_{10} statistics show an overall improvement as illustrated in Tables 2-6 and 2-7. During the period for which data are available, the 24-hour national annual average concentration for PM_{10} decreased by approximately 46%, from 103.7 microgram per cubic meter ($\mu g/m^3$) in 1988 to 55.5 $\mu g/m^3$ in 2020 (22). Although the values are below the federal standard, it should be noted that there are days within the year where the concentrations would exceed the threshold. The 24-hour state annual average for emissions for PM_{10} , have decreased by approximately 64%, from 93.9 $\mu g/m^3$ in 1989 to 33.9 $\mu g/m^3$ in 2020 (22). Although data in the late 1990's show some variability, this is probably due to the advances in meteorological science rather than a change in emissions. Similar to the ambient concentrations, the calculated number of days above the 24-hour PM_{10} standards has also shown an overall drop.

180.0 160.0 140.0 PM₁₀ (µg/m³) 120.0 100.0 80.0 60.0 40.0 20.0 0.0 National 24-Hour Average Federal Standard

TABLE 2-6: SCAB AVERAGE 24-HOUR CONCENTRATION PM₁₀ TREND (BASED ON FEDERAL STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM₁₀ 24-Hour Averages (1988-2020)

¹Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

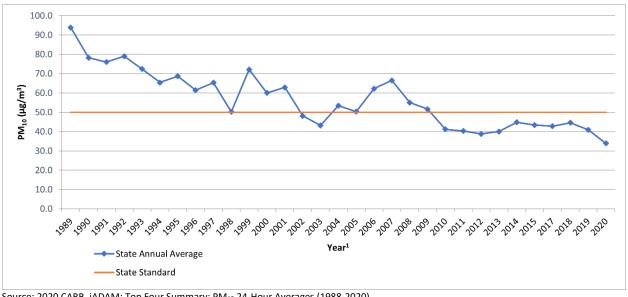


TABLE 2-7: SCAB ANNUAL AVERAGE CONCENTRATION PM₁₀ TREND (BASED ON STATE STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM₁₀ 24-Hour Averages (1988-2020)

Tables 2-8 and 2-9 shows the most recent 24-hour average PM_{2.5} concentrations in the SCAB from 1999 through 2020. Overall, the national and state annual average concentrations have decreased by almost 50% and 31% respectively (22). It should be noted that the SCAB is currently designated as nonattainment for the state and federal PM_{2.5} standards.

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

50.0
45.0
40.0
35.0
25.0
15.0
10.0
5.0
0.0

45.0
40.0

45.0
40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

TABLE 2-8: SCAB 24-HOUR AVERAGE CONCENTRATION PM_{2.5} TREND (BASED ON FEDERAL STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM_{2.5} 24-Hour Averages (1999-2020)

Federal Standard

Federal 24-Hour Average

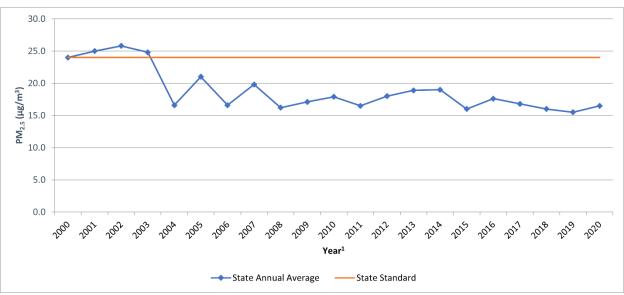


TABLE 2-9: SCAB ANNUAL AVERAGE CONCENTRATION PM_{2.5} TREND (BASED ON STATE STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM_{2.5} 24-Hour Averages (1999-2020)

While the 2012 AQMP PM_{10} attainment demonstration and the 2015 associated supplemental SIP submission indicated that attainment of the 24-hour standard was predicted to occur by the end of 2015, it could not anticipate the effect of the ongoing drought on the measured $PM_{2.5}$.

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

¹Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

The 2006 to 2010 base period used for the 2012 attainment demonstration had near-normal rainfall. While the trend of PM_{2.5}-equivalent emission reductions continued through 2015, the severe drought conditions contributed to the PM_{2.5} increases observed after 2012. As a result of the disrupted progress toward attainment of the federal 24-hour PM_{2.5} standard, SCAQMD submitted a request and the EPA approved, in January 2016, a "bump up" to the nonattainment classification from "moderate" to "serious," with a new attainment deadline as soon as practicable, but not beyond December 31, 2019. As of March 14, 2019, the EPA approved portions of a SIP revision submitted by California to address CAA requirements for the 2006 24-hour PM_{2.5} NAAQS in the Los Angeles-SCAB Serious PM_{2.5} nonattainment area. The EPA also approved 2017 and 2019 motor vehicle emissions budgets for transportation conformity purposes and inter-pollutant trading ratios for use in transportation conformity analyses (23).

In December 2022, the SCAQMD released the Final 2022 AQMP. The 2022 AQMP continues to evaluate current integrated strategies and control measures to meet the NAAQS, as well as explore new and innovative methods to reach its goals. Some of these approaches include utilizing incentive programs, recognizing existing co-benefit programs from other sectors, and developing a strategy with fair-share reductions at the federal, state, and local levels (24). Similar to the 2016 AQMP, the 2022 AQMP incorporates scientific and technological information and planning assumptions, including the 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy (2020-2045 RTP/SCS) and updated emission inventory methodologies for various source categories (19).

The most recent CO concentrations in the SCAB are shown in Table 2-10 (22). CO concentrations in the SCAB have decreased markedly — a total decrease of more about 80% in the peak 8-hour concentration from 1986 to 2012. It should be noted 2012 is the most recent year where 8-hour CO averages and related statistics are available in the SCAB. The number of exceedance days has also declined. The entire SCAB is now designated as attainment for both the state and national CO standards. Ongoing reductions from motor vehicle control programs should continue the downward trend in ambient CO concentrations.

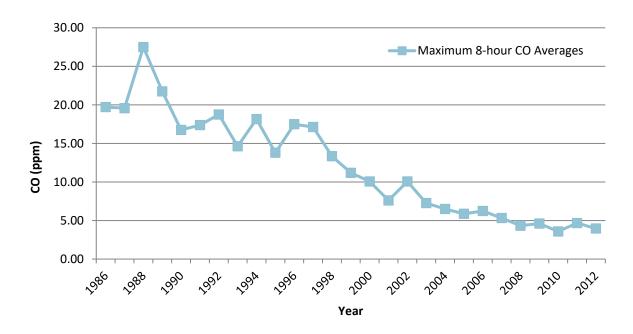


TABLE 2-10: SCAB 8-HOUR AVERAGE CONCENTRATION CO TREND¹

Source: 2020 CARB, iADAM: Top Four Summary: CO 8-Hour Averages (1986-2012)

Part of the control process of the SCAQMD's duty to greatly improve the air quality in the SCAB is the uniform CEQA review procedures recommended in the SCAQMD's CEQA Air Quality Handbook (1993) (1993 CEQA Handbook) (25). The single threshold of significance used to assess Project direct and cumulative impacts has in fact "worked" as evidenced by the track record of the air quality in the SCAB dramatically improving over the course of the past decades. As stated by the SCAQMD, the District's thresholds of significance are based on factual and scientific data and are therefore appropriate thresholds of significance to use for this Project.

The most recent NO_2 data for the SCAB is shown in Tables 2-11 and 2-12 (22). Over the last 50 years, NO_2 values have decreased significantly; the peak 1-hour national and state averages for 2020 is approximately 80% lower than what it was during 1963. The SCAB attained the State 1-hour NO_2 standard in 1994, bringing the entire state into attainment. A new state annual average standard of 0.030 ppm was adopted by CARB in February 2007 (26). The new standard is just barely exceeded in the SCAB. NO_2 is formed from NO_X emissions, which also contribute to O_3 . As a result, the majority of the future emission control measures would be implemented as part of the overall O_3 control strategy. Many of these control measures would target mobile sources, which account for more than three-quarters of California's NO_X emissions. These measures are expected to bring the SCAB into attainment of the state annual average standard.

¹ The most recent year where 8-hour concentration data is available is 2012.

800.0
700.0
600.0
500.0
200.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

TABLE 2-11: SCAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON FEDERAL STANDARD)

Source: 2020 CARB, iADAM: Top Four Summary: CO 1-Hour Averages (1963-2020)

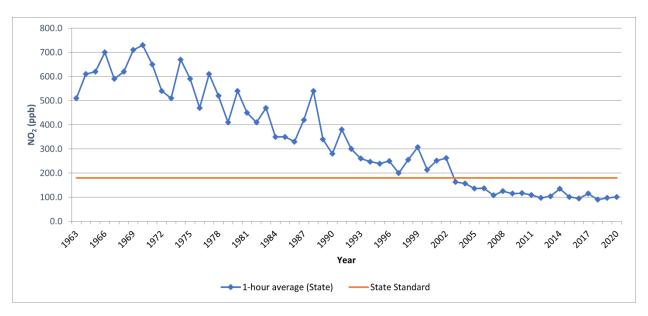


TABLE 2-12: SCAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON STATE STANDARD)

Source: 2020 CARB, iADAM: Top Four Summary: CO 1-Hour Averages (1963-2020)

2.9.1 TOXIC AIR CONTAMINANTS (TAC) TRENDS

In 1984, as a result of public concern for exposure to airborne carcinogens, CARB adopted regulations to reduce the amount of TAC emissions resulting from mobile and area sources, such as cars, trucks, stationary sources, and consumer products. According to the *Ambient and Emission Trends of Toxic Air Contaminants in California* journal article (27) which was prepared for CARB, results show that between 1990-2012, ambient concentration and emission trends for

the seven TACs responsible for most of the known cancer risk associated with airborne exposure in California have declined significantly (between 1990 and 2012). The seven TACs studied include those that are derived from mobile sources: diesel particulate matter (DPM), benzene (C_6H_6), and 1,3-butadiene (C_4H_6); those that are derived from stationary sources: perchloroethylene (C_2Cl_4) and hexavalent chromium (Cr(VI)); and those derived from photochemical reactions of emitted VOCs: formaldehyde (C_2H_4O) and acetaldehyde (C_2H_4O). The decline in ambient concentration and emission trends of these TACs are a result of various regulations CARB has implemented to address cancer risk.

MOBILE SOURCE TACS

CARB introduced two programs that aimed at reducing mobile emissions for light and medium duty vehicles through vehicle emissions controls and cleaner fuel. In California, light-duty vehicles sold after 1996 are equipped with California's second-generation On-Board Diagnostic (OBD-II) system. The OBD-II system monitors virtually every component that can affect the emission performance of the vehicle to ensure that the vehicle remains as clean as possible over its entire life and assists repair technicians in diagnosing and fixing problems with the computerized engine controls. If a problem is detected, the OBD-II system illuminates a warning lamp on the vehicle instrument panel to alert the driver. This warning lamp typically contains the phrase "Check Engine" or "Service Engine Soon." The system would also store important information about the detected malfunction so that a repair technician can accurately find and fix the problem. CARB has recently developed similar OBD requirements for heavy-duty vehicles over 14,000 pounds (lbs). CARB's phase II Reformulated Gasoline Regulation (RFG-2), adopted in 1996, also led to a reduction of mobile source emissions. Through such regulations, benzene levels declined 88% from 1990-2012. 1,3-Butadiene concentrations also declined 85% from 1990-2012 as a result of the use of reformulated gasoline and motor vehicle regulations (27).

In 2000, CARB's Diesel Risk Reduction Plan (DRRP) recommended the replacement and retrofit of diesel-fueled engines and the use of ultra-low-sulfur (<15 ppm) diesel fuel. As a result of these measures, DPM concentrations have declined 68% since 2000, even though the state's population increased 31% and the amount of diesel vehicles miles traveled increased 81%, as shown on Exhibit 2-B. With the implementation of these diesel-related control regulations, CARB expects a DPM decline of 71% for 2000-2020.

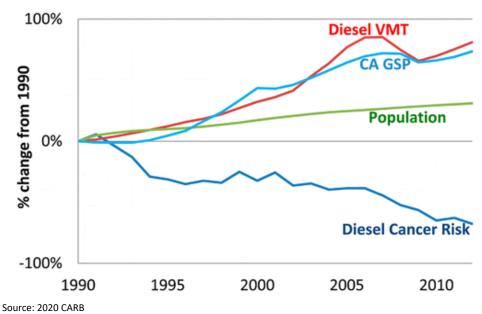

² It should be noted that ambient DPM concentrations are not measured directly. Rather, a surrogate method using the coefficient of haze (COH) and elemental carbon (EC) is used to estimate DPM concentrations.

EXHIBIT 2-A: DPM AND DIESEL VEHICLE MILES TREND

California Population, Gross State Product (GSP), Diesel Cancer Risk, Diesel Vehicle-Miles-Traveled (VMT)

DIESEL REGULATIONS

CARB and the Ports of Los Angeles and Long Beach (POLA and POLB) have adopted several iterations of regulations for diesel trucks that are aimed at reducing DPM. More specifically, CARB Drayage Truck Regulation (28), CARB statewide On-road Truck and Bus Regulation (29), and the Ports of Los Angeles and Long Beach Clean Truck Program (CTP) require accelerated implementation of "clean trucks" into the statewide truck fleet (30). In other words, older more polluting trucks would be replaced with newer, cleaner trucks as a function of these regulatory requirements.

Moreover, the average statewide DPM emissions for Heavy Duty Trucks (HDT), in terms of grams of DPM generated per mile traveled, would dramatically be reduced due to the aforementioned regulatory requirements.

Diesel emissions identified in this analysis would therefore overstate future DPM emissions since not all the regulatory requirements are reflected in the modeling.

CANCER RISK TRENDS

Based on information available from CARB, overall cancer risk throughout the SCAB has had a declining trend since 1990. In 1998, following an exhaustive 10-year scientific assessment process, CARB identified particulate matter from diesel-fueled engines as a toxic air contaminant. The SCAQMD initiated a comprehensive urban toxic air pollution study called the Multiple Air Toxics Exposure Study (MATES). DPM accounts for more than 70% of the cancer risk.

In January 2018, as part of the overall effort to reduce air toxics exposure in the SCAB, SCAQMD began conducting the MATES V Program. MATES V field measurements were conducted at ten fixed sites (the same sites selected for MATES III and IV) to assess trends in air toxics levels. MATES V also included measurements of ultrafine particles (UFP) and black carbon (BC) concentrations, which can be compared to the UFP levels measured in MATES IV (31). The final report for the MATES V study was published in in August 2021. In addition to new measurements and updated modeling results, several key updates were implemented in MATES V. First, MATES V estimates cancer risks by taking into account multiple exposure pathways, which includes inhalation and non-inhalation pathways. This approach is consistent with how cancer risks are estimated in South Coast AQMD's programs such as permitting, Air Toxics Hot Spots (AB2588), and CEQA. Previous MATES studies quantified the cancer risks based on the inhalation pathway only. Second, along with cancer risk estimates, MATES V includes information on the chronic noncancer risks from inhalation and non-inhalation pathways for the first time. Cancer risks and chronic non-cancer risks from MATES II through IV measurements have been re-examined using current Office of Environmental Health Hazard Assessment (OEHHA) and CalEPA risk assessment methodologies and modern statistical methods to examine the trends over time (32).

MATES-V calculated cancer risks based on monitoring data collected at ten fixed sites within the SCAB. None of the fixed monitoring sites are within the local area of the Project site. However, MATES-V has extrapolated the excess cancer risk levels throughout the SCAB by modeling the specific grids. The Project is located within a quadrant of the geographic grid of the MATES-V model which predicted a cancer risk of 308 in one million for the area containing the Project site. The air toxic cancer risk in the Project area is higher than 15% of the SCAQMD population. DPM is included in this cancer risk along with all other TAC sources. As in previous MATES iterations, diesel PM is the largest contributor to overall air toxics cancer risk. However, the average levels of diesel PM in MATES V are 53% lower at the 10 monitoring sites compared to MATES IV. Cumulative Project generated TACs are limited to DPM.

This page intentionally left blank

3 PROJECT AIR QUALITY IMPACT

3.1 Introduction

This study quantifies air quality emissions generated by construction and operation of the Project and addresses whether the Project conflicts with implementation of the SCAQMD's AQMP and Lead Agency planning regulations. The analysis of Project-generated air emissions determines whether the Project would result in a cumulatively considerable net increase of any criteria pollutant for which the SCAB is in non-attainment under an applicable NAAQS and CAAQS. Additionally, the Project has been evaluated to determine whether the Project would expose sensitive receptors to substantial pollutant concentrations and the impacts of odors. The significance of these potential impacts is described in the following sections.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the *CEQA Guidelines* (14 CCR §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to air quality if it would (1):

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard.
- Expose sensitive receptors to substantial pollutant concentrations.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

The SCAQMD has developed regional significance thresholds for criteria pollutants, as summarized at Table 3-1 (33). The SCAQMD's CEQA Air Quality Significance Thresholds (April 2019) indicate that any projects in the SCAB with daily emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact.

TABLE 3-1: MAXIMUM MASS DAILY REGIONAL EMISSIONS THRESHOLDS

Pollutant	Regional Construction Threshold	Regional Operational Thresholds		
NO _X	100 lbs/day	55 lbs/day		
VOC	75 lbs/day	55 lbs/day		
PM ₁₀	150 lbs/day	150 lbs/day		
PM _{2.5}	55 lbs/day	55 lbs/day		
SO _X	150 lbs/day	150 lbs/day		
СО	550 lbs/day	550 lbs/day		
Pb	3 lbs/day	3 lbs/day		

lbs/day = Pounds Per Day

3.3 MODELS EMPLOYED TO ANALYZE AIR QUALITY

3.3.1 CALEEMOD

Land uses such as the Project affect air quality through construction-source and operational-source emissions.

In May 2022 California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of CalEEMod version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NOx, SOx, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from MMs (34). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality emissions. Output from the model runs for both construction and operational activity are provided in Appendix 3.1.

3.4 Construction Emissions

Construction activities associated with the Project will result in emissions of VOCs, NO_X, SO_X, CO, PM₁₀, and PM_{2.5}. Construction related emissions are expected from the following construction activities:

- Demolition
- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

DEMOLITION ACTIVITIES

The site is currently developed with existing buildings which total approximately 2,627 sf that will be demolished. Demolished material associated with demolition will be hauled off-site.

GRADING ACTIVITIES

Dust is typically a major concern during grading activities. Because such emissions are not amenable to collection and discharge through a controlled source, they are called "fugitive emissions". Fugitive dust emissions rates vary as a function of many parameters (soil silt, soil moisture, wind speed, area disturbed, number of vehicles, depth of disturbance or excavation, etc.). CalEEMod was utilized to calculate fugitive dust emissions resulting from this phase of activity. This analysis assumes that earthwork activities are expected to balance on site and no import or export of soils would be required.

OFF-SITE PROJECT SITE UTILITY AND INFRASTRUCTURE IMPROVEMENTS

In addition, to support the Project development, there will be paving for off-site improvements associated with roadway construction and utility installation. It is expected that the off-site construction activities would not take place at one location for the entire duration of construction. Impacts associated with these activities are not expected to exceed the emissions identified for Project-related construction activities since the off-site construction areas would have physical constraints such as, roadway travel lanes, traffic signals, and sidewalks which would limit the amount of daily activity that could occur. The physical constraints would limit the amount of construction equipment that could be used, and any off-site and utility infrastructure construction would not use equipment totals that would exceed the equipment totals on Table 3-4. On the basis of the previous discussion, no impacts beyond what has already been identified in this report are expected to occur.

ON-ROAD TRIPS

Construction generates on-road vehicle emissions from vehicle usage for workers and vendors commuting to and from the site. The number of workers and vendor trips are presented below in Table 3-2. It should be noted that for Vendor Trips, specifically, CalEEMod only assigns Vendor Trips to the Building Construction phase. Vendor trips would likely occur during all phases of construction. As such, the CalEEMod defaults for Vendor Trips have been adjusted upward based on a ratio of the total vendor trips to the number of days of each subphase of activity.

Worker Trips Vendor Trips Hauling Trip Construction Activity Per Day **Per Day** Per Day Demolition 2 3 15 **Site Preparation** 2 0 18 20 4 0 Grading **Building Construction** 111 35 0 Paving 15 0 0 22 **Architectural Coating** 0 0

TABLE 3-2: CONSTRUCTION TRIP ASSUMPTIONS

ARCHITECTURAL COATINGS

Consistent with PVCCSP EIR mitigation measure MM Air 9, the proposed Project will utilize "Super-Compliant" VOC paints during construction, defined in SCAQMD Rule 1113 as having a VOC content <10 grams per liter. As such, a VOC content of 10 grams per liter was utilized in CalEEMod for interior and exterior coatings.

3.4.1 Construction Duration

For purposes of analysis, construction of the Project is expected to last approximately 10 months, commencing in April 2023 and being completed in February 2024. The construction schedule utilized in the analysis, shown in Table 3-3, represents a "worst-case" analysis scenario should

construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent³. The duration of construction activity and associated equipment was based on information provided by the Project Applicant and represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (1).

3.4.2 CONSTRUCTION EQUIPMENT

Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 3-4 will operate up to a total of eight (8) hours per day, or four (4) hours fewer than the 12-hour daily maximum allowed by the City's Municipal Code, Section 7.34.060 (Appendix 3.1) (35). PVCCSP EIR mitigation measure MM Air 6 requires the use of equipment that meets or exceeds Tier 3 standards. All equipment used during Project construction will meet or exceed CARB Tier 4 Interim emission standards.

TABLE 3-3: CONSTRUCTION DURATION

Construction Activity	Start Date	End Date	Days
Demolition	4/3/2023	4/14/2023	10
Site Preparation	4/15/2023	4/28/2023	10
Grading	4/29/2023	5/26/2023	20
Building Construction	5/27/2023	2/9/2024	185
Paving	1/15/2024	2/9/2024	20
Architectural Coating	12/18/2023	2/9/2024	40

TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS

Construction Activity	Equipment ¹	Amount	Hours Per Day
	Concrete/Industrial Saws	1	8
Demolition	Excavators	3	8
	Rubber Tired Dozers	2	8
Cita Dranaration	Crawler Tractors	4	8
Site Preparation	Rubber Tired Dozers	3	8
	Crawler Tractors	2	8
Crading	Excavators	2	8
Grading	Graders	1	8
	Rubber Tired Dozers	1	8

³ As shown in the CalEEMod User's Guide Version 2022.1, Section 4.3 "Off-Road Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

Construction Activity	Equipment ¹	Amount	Hours Per Day
	Scrapers	2	8
	Cranes	1	8
	Forklifts	3	8
Building Construction	Generator Sets	1	8
	Tractors/Loaders/Backhoes	3	8
	Welders	1	8
	Pavers		8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

¹ In order to account for fugitive dust emissions, Crawler Tractors were used in lieu of Tractors/Loaders/Backhoes during the site preparation and grading phases.

3.4.3 Mass Daily Construction Emissions Summary

IMPACTS WITHOUT MITIGATION

CalEEMod calculates maximum daily emissions for summer and winter periods. The estimated maximum daily construction emissions without mitigation are summarized on Table 3-5. Detailed construction model outputs are presented in Appendix 3.1. The emissions presented below in Table 3-5 assume the implementation of required dust control measures (PVCCSP EIR mitigation measure MM Air 3), the use of CARB Tier 4 Interim equipment (PVCCSP EIR MM Air 6), and the use of "Super-Compliant" architectural coatings (PVCCSP EIR mitigation measure MM Air 9). Under the assumed scenarios, emissions resulting from the Project construction will not exceed criteria pollutant thresholds established by the SCAQMD for emissions of any criteria pollutant.

TABLE 3-5: OVERALL CONSTRUCTION EMISSIONS SUMMARY – WITHOUT MITIGATION

Year	Emissions (lbs/day)						
Teal	voc	NO _x	со	so _x	PM ₁₀	PM _{2.5}	
Summer (Smog Season)							
2023	1.07	20.20	38.00	0.06	6.01	2.85	
		Winter					
2023	9.70	13.90	27.00	0.04	2.22	0.66	
2024	10.30	18.90	28.10	0.04	2.30	0.75	
Maximum Daily Emissions	10.30	20.20	38.00	0.06	6.01	2.85	
SCAQMD Regional Threshold	75	100	550	150	150	55	
Threshold Exceeded?	NO	NO	NO	NO	NO	NO	

Source: CalEEMod construction-source (unmitigated) emissions are presented in Appendix 3.1.

3.5 Mass Daily Operational Emissions

Operational activities associated with the Project will result in emissions of VOCs, NO_X , SO_X , CO, PM_{10} , and $PM_{2.5}$. Operational emissions are expected from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions
- On-Site Cargo Handling Equipment Emissions
- Diesel Fire Water Pump Backup Generator

3.5.1 AREA SOURCE EMISSIONS

ARCHITECTURAL COATINGS

Over a period of time the buildings that are part of this Project will require maintenance and will therefore produce emissions resulting from the evaporation of solvents contained in paints, varnishes, primers, and other surface coatings. The emissions associated with architectural coatings were calculated using CalEEMod.

CONSUMER PRODUCTS

Consumer products include, but are not limited to detergents, cleaning compounds, polishes, personal care products, and lawn and garden products. Many of these products contain organic compounds which when released in the atmosphere can react to form ozone and other photochemically reactive pollutants. The emissions associated with use of consumer products were calculated based on defaults provided within CalEEMod.

LANDSCAPE MAINTENANCE EQUIPMENT

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. The emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod.

3.5.2 ENERGY SOURCE EMISSIONS

COMBUSTION EMISSIONS ASSOCIATED WITH NATURAL GAS AND ELECTRICITY

Electricity and natural gas are used by almost every project. Although it is not anticipated that the Project will utilize natural gas, its use has been conservatively included in this analysis. Criteria pollutant emissions are emitted through the generation of electricity and consumption of natural gas. However, because electrical generating facilities for the Project area are located either outside the region (state) or offset through the use of pollution credits (RECLAIM) for generation within the SCAB, criteria pollutant emissions from offsite generation of electricity are generally excluded from the evaluation of significance and only natural gas use is considered. The emissions associated with natural gas use were calculated using CalEEMod.

3.5.3 MOBILE SOURCE EMISSIONS

The Project related operational air quality emissions derive primarily from vehicle trips generated by the Project, including employee trips to and from the site and truck trips associated with the proposed uses. Trip characteristics available from the *Patterson Commerce Center Traffic Analysis Scoping Agreement* were utilized in this analysis (36). Per the *Patterson Commerce Center Traffic Analysis Scoping Agreement*, the proposed Project is expected to generate approximately 632 two-way trips per day. However, a comparison between trips generated when traffic counts were collected at the Project site driveways on December 1 and 2, 2021, at the commencement of environmental analysis (when the Project site was occupied by historic uses that had operated onsite for over 40 years) and the proposed Project results in 492 total net trips per day, which include 456 passenger car trips per day and 36 truck trips per day.

APPROACH FOR ANALYSIS OF THE PROJECT

To determine emissions from passenger car vehicles, the CalEEMod defaults were utilized for trip length and trip purpose for the proposed industrial land uses. For the proposed industrial uses, it is important to note that although the *Patterson Commerce Center Traffic Analysis Scoping Agreement* does not breakdown passenger cars by type, as a conservative measure, this analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1⁴ & LDT2⁵), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. In order to account for emissions generated by passenger cars, the fleet mix in Table 3-6 was utilized.

TABLE 3-6: PASSENGER CAR FLEET MIX - INDUSTRIAL USE

Lord Hee	% Vehicle Type					
Land Use	LDA	LDT1	LDT2	MDV	MCY	
High-Cube Fulfillment Center Warehouse (90%)	54.02%	4.38%	21.48%	17.54%	2.58%	
Manufacturing (10%)	54.02%	4.38%	21.48%	17.54%	2.58%	

Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, and MDV vehicle types.

To determine emissions from trucks for the proposed industrial uses, the analysis incorporated the SCAQMD recommended truck trip length of 14.2 miles for 2-axle and 3-axle (LHDT1, LHDT2, and MHDT) trucks and 40 miles for 4+-axle (HHDT) trucks and weighting the average trip lengths using traffic trip percentages taken from the *Patterson Commerce Center Traffic Analysis Scoping Agreement*. The trip length function for the proposed industrial building use has been calculated to 34.10 miles and an assumption of 100% primary trips. This trip length assumption is higher than the CalEEMod defaults for trucks. In order to be consistent with the *Patterson Commerce Center Traffic Analysis Scoping Agreement*, trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided in the *Patterson Commerce Center Traffic Analysis Scoping Agreement*. Heavy trucks are broken

 $^{^{5}}$ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

⁴ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT1 6 & LHDT2 7)/2-axle, Medium-Heavy-Duty Trucks (MHD)/3-axle, and Heavy-Heavy-Duty Trucks (HHD)/4+-axle. Based on the above methodology, and to account for emissions generated by trucks, the following fleet mix was utilized in this analysis:

TABLE 3-7: TRUCK FLEET MIX – INDUSTRIAL USE

Land Hea	% Vehicle Type					
Land Use	LHDT1	LHDT2	MHDT	HHDT		
High-Cube Fulfillment Center Warehouse (90%)	9.09%	2.57%	11.65%	76.70%		
Manufacturing (10%)	9.09%	2.57%	11.65%	76.70%		

Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT1, LHDT2, MHDT, and HHDT) relative to the total number of truck trips.

FUGITIVE DUST RELATED TO VEHICULAR TRAVEL

Vehicles traveling on paved roads would be a source of fugitive emissions due to the generation of road dust inclusive of break and tire wear particulates. The emissions estimate for travel on paved roads were calculated using CalEEMod.

3.5.4 On-Site Cargo Handling Equipment Emissions

It is common for warehouse buildings to require the operation of exterior yard trucks or cargo handling equipment (CHE) to move empty containers and empty chassis in the building's truck court areas. The cargo handling equipment is assumed to have a horsepower (hp) range of approximately 175 hp to 200 hp. Based on the latest available information from SCAQMD (37); for example, warehouse projects typically have 3.6-yard trucks/CHE per million square feet of building space. Since the proposed Project includes up to a 263,820-square-foot warehouse building, on-site modeled operational equipment is estimated to include up to one (1) 200 horsepower (hp), compressed natural gas or gasoline-powered tractors/loaders/backhoes operating at 4 hours a day⁸ for 365 days of the year. Additionally, no outdoor forklifts will be used at the project site.

3.5.5 EMERGENCY DIESEL FIRE PUMP

It is anticipated that the Project would utilize a 197 hp diesel fire water pump backup generator. For analytical purposes, it is anticipated that the diesel fire water pump generator would result in a maximum time of 0.5 hour per day and 26 hours per year for testing.

⁸ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

14329-11 AQ Report

 $^{^{6}}$ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs.

 $^{^{7}}$ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs.

3.5.6 OPERATIONAL EMISSIONS SUMMARY

As previously stated, CalEEMod utilizes summer and winter EMFAC2021 emission factors in order to derive vehicle emissions associated with Project operational activities, which vary by season. The estimated operational-source emissions are summarized on Table 3-9. Detailed operation model outputs for the Project are presented in Appendices 3.1. As shown on Table 3-9, the Project's daily regional emissions from on-going operations will not exceed any of the thresholds of significance.

EXISTING USE EMISSIONS

As previously stated, the Project site is currently occupied with an industrial use. The estimated mass daily operation-source emissions from the existing development are summarized on Table 3-8. Detailed operation model outputs are presented in Appendix 3.3

TABLE 3-8: MASS DAILY EMISSIONS FROM EXISTING DEVELOPMENT

Course	Emissions (lbs/day)					
Source	voc	NO _X	со	SO _x	PM ₁₀	PM _{2.5}
	Summer	(Smog Seas	on)			
Mobile Source	1.00	4.73	4.68	0.05	0.99	0.26
Area Source	0.03	< 0.005	0.04	< 0.005	< 0.005	< 0.005
Energy Source	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Maximum Daily Emissions	1.03	4.73	4.72	0.05	0.99	0.26
		Winter				
Mobile Source	0.98	4.95	4.09	0.05	0.99	0.26
Area Source	0.02	0.00	0.00	0.00	0.00	0.00
Energy Source	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Maximum Daily Emissions	1.00	4.95	4.09	0.05	0.99	0.26

PROPOSED PROJECT EMISSIONS

The mass daily operational-source emissions are summarized on Table 3-9. As indicated, the Project would not exceed regional thresholds of significance established by the SCAQMD for any criteria pollutant. As previously stated, the Project is required to comply with the applicable PVCCSP EIR mitigation measures identified in Section ES.3. In particular, PVCCSP EIR mitigation measures MM Air 8 and MM Air 9 would reduce VOC emissions resulting from the application of architectural coatings.

Although the Project would implement the mitigation measures listed in section ES.2, it should be noted that there is no way to definitively quantify these reductions in CalEEMod. As such, as a conservative measure, no reductions are shown (i.e., impacts are overstated).

TABLE 3-9: SUMMARY OF PEAK OPERATIONAL EMISSIONS

Course	Emissions (lbs/day)					
Source	voc	NO _x	со	SO _x	PM ₁₀	PM _{2.5}
	Summe	r (Smog Seas	son)			
Mobile Source	2.40	12.60	27.30	0.15	3.52	0.86
Area Source	8.25	0.10	11.50	< 0.005	0.02	0.02
Energy Source	0.08	1.52	1.28	0.01	0.12	0.12
On-Site Equipment Source	0.12	0.38	16.44	0.00	0.03	0.03
Diesel Fire Water Pump Generator	0.16	0.45	0.41	< 0.005	0.02	0.02
Project Maximum Daily Emissions	11.01	15.05	56.93	0.16	3.71	1.05
Existing Emissions	1.03	4.73	4.72	0.05	0.99	0.26
Total Maximum Daily Emissions	9.98	10.32	52.21	0.11	2.72	0.79
SCAQMD Regional Threshold	55	55	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO
		Winter		•		•
Mobile Source	2.28	13.30	23.00	0.15	3.52	0.86
Area Source	6.37	0.00	0.00	0.00	0.00	0.00
Energy Source	0.08	1.52	1.28	0.01	0.12	0.12
On-Site Equipment Source	0.12	0.38	16.44	0.00	0.03	0.03
Diesel Fire Water Pump Generator	0.16	0.45	0.41	< 0.005	0.02	0.02
Project Maximum Daily Emissions	9.01	15.65	41.13	0.16	3.69	1.01
Existing Emissions	1.00	4.95	4.09	0.05	0.99	0.26
Total Maximum Daily Emissions	8.01	10.70	37.04	0.11	2.70	0.77
SCAQMD Regional Threshold	55	55	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

Source: CalEEMod operation-source emissions are presented in Appendix 3.1.

3.6 LOCALIZED EMISSIONS

BACKGROUND ON LST DEVELOPMENT

This analysis makes use of methodology included in the SCAQMD Final Localized Significance Threshold Methodology (LST Methodology). The SCAQMD has established that impacts to air

quality are significant if there is a potential to contribute or cause localized exceedances of the federal and/or state ambient air quality standards (NAAQS/CAAQS). Collectively, these are referred to as LSTs.

The SCAQMD established LSTs in response to the SCAQMD Governing Board's Environmental Justice Initiative I-4⁹. LSTs represent the maximum emissions from a project that would not cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard at the nearest residence or sensitive receptor. The SCAQMD states that lead agencies can use the LSTs as another indicator of significance in its air quality impact analyses.

LSTs were developed in response to environmental justice and health concerns raised by the public regarding exposure of individuals to criteria pollutants in local communities. To address the issue of localized significance, the SCAQMD's adopted LSTs that show whether a project would cause or contribute to localized air quality impacts and thereby cause or contribute to potential localized adverse health effects. The analysis makes use of methodology included in the LST Methodology (38).

APPLICABILITY OF LSTS FOR THE PROJECT

For this Project, the appropriate Source Receptor Area (SRA) for the LST analysis is the SCAQMD Perris Valley (SRA 24). LSTs apply to CO, NO₂, PM₁₀, and PM_{2.5}. The SCAQMD produced look-up tables for projects less than or equal to 5 acres in size.

In order to determine the appropriate methodology for determining localized impacts that could occur as a result of Project-related construction, the following process is undertaken:

- Identify the maximum daily on-site emissions that will occur during construction activity:
 - The maximum daily on-site emissions could be based on information provided by the Project Applicant; or
 - The SCAQMD's Fact Sheet for Applying CalEEMod to Localized Significance Thresholds and CalEEMod User's Guide Appendix A: Calculation Details for CalEEMod can be used to determine the maximum site acreage that is actively disturbed based on the construction equipment fleet and equipment hours as estimated in CalEEMod (39) (40).
- If the total acreage disturbed is less than or equal to 5 acres per day, then the SCAQMD's screening look-up tables are utilized to determine if a Project has the potential to result in a significant impact. The look-up tables establish a maximum daily emissions threshold in lbs/day that can be compared to CalEEMod outputs.
- If the total acreage disturbed is greater than 5 acres per day, then LST impacts may still be conservatively evaluated using the LST look-up tables for a 5-acre disturbance area. Use of the 5-acre disturbance area thresholds can be used to show that even if the daily emissions from all construction activity were emitted within a 5-acre area, and therefore concentrated over a smaller area which would result in greater site adjacent concentrations, the impacts would still be less than significant if the applicable 5-acre thresholds are utilized.

⁹ The purpose of the SCAQMD's Environmental Justice program is to ensure that everyone has the right to equal protection from air pollution and fair access to the decision-making process that works to improve the quality of air within their communities. Further, the SCAQMD defines Environmental Justice as "...equitable environmental policymaking and enforcement to protect the health of all residents, regardless of age, culture, ethnicity, gender, race, socioeconomic status, or geographic location, from the health effects of air pollution."

 The LST Methodology presents mass emission rates for each SRA, project sizes of 1, 2, and 5 acres, and nearest receptor distances of 25, 50, 100, 200, and 500 meters. For project sizes between the values given, or with receptors at distances between the given receptors, the methodology uses linear interpolation to determine the thresholds.

EMISSIONS CONSIDERED

Based on the SCAQMD's LST Methodology, emissions for concern during construction activities are on-site NO_X , CO, $PM_{2.5}$, and PM_{10} . The LST Methodology clearly states that "off-site mobile emissions from the Project should not be included in the emissions compared to LSTs (41)." As such, for purposes of the construction LST analysis, only emissions included in the CalEEMod "onsite" emissions outputs were considered.

MAXIMUM DAILY DISTURBED-ACREAGE

The "acres disturbed" for analytical purposes are based on specific equipment type for each subcategory of construction activity and the estimated maximum area a given piece of equipment can pass over in an 8-hour workday (as shown on Table 3-9). The equipment-specific grading rates are summarized in the SCAQMD's Fact Sheet for Applying CalEEMod to Localized Significance Thresholds and CalEEMod User's Guide Appendix C: Emission Calculation Details for CalEEMod (39) (42). The disturbed area per day is representative of a piece of equipment making multiple passes over the same land area. In other words, one Rubber Tired Dozer can make multiple passes over the same land area totaling 0.5 acres in a given 8-hour day. Based on Table 3-10, the Project's construction activities could actively disturb approximately 1 acre per day during demolition, 3.5 acres per day during site preparation and 4 acres per day during grading activities.

TABLE 3-10: MAXIMUM DAILY DISTURBED-ACREAGE

Construction Activity	Equipment Type	Equipment Quantity	Acres graded per 8-hour day	Operating Hours per Day	Acres graded per day		
Demolition	Rubber Tired Dozers	2	0.5	8	1.0		
Total acres disturbed	Total acres disturbed per day during Demolition						
Cita Duanavatian	Crawler Tractors	4	0.5	8	2.0		
Site Preparation	Rubber Tired Dozers	3	0.5	8	1.5		
Total acres disturbed	per day during Site Prepa	aration			3.5		
	Crawler Tractors	2	0.5	8	1		
Cuadina	Graders	1	0.5	8	0.5		
Grading	Rubber Tired Dozers	1	0.5	8	0.5		
	Scrapers	2	1	8	2		
Total acres disturbed	Total acres disturbed per day during Grading						

Source: Maximum daily disturbed acreage based on equipment list presented in Appendix 3.1.

RECEPTORS

As previously stated, LSTs represent the maximum emissions from a project that would not cause or contribute to an exceedance of the most stringent applicable NAAQS and CAAQS at the nearest residence or sensitive receptor. Receptor locations are off-site locations where individuals may be exposed to emissions from Project activities.

Some people are especially sensitive to air pollution and are given special consideration when evaluating air quality impacts from projects. These groups of people include children, the elderly, and individuals with pre-existing respiratory or cardiovascular illness. Structures that house these persons or places where they gather are defined as "sensitive receptors". These structures typically include uses such as residences, hotels, and hospitals where an individual can remain for 24 hours. Consistent with the LST Methodology, the nearest land use where an individual could remain for 24 hours to the Project site has been used to determine construction and operational air quality impacts for emissions of PM₁₀ and PM_{2.5}, since PM₁₀ and PM_{2.5} thresholds are based on a 24-hour averaging time¹⁰.

LSTs apply, even for non-sensitive land uses, consistent with *LST Methodology* and SCAQMD guidance. Per the *LST Methodology*, commercial, educational, and industrial facilities are not included in the definition of sensitive receptor because employees and patrons do not typically remain onsite for a full 24 hours but are typically onsite for 8 hours or less. However, *LST Methodology* explicitly states that "*LSTs based on shorter averaging periods, such as the NO₂ and CO LSTs, could also be applied to receptors such as industrial or commercial facilities since it is reasonable to assume that a worker at these sites could be present for periods of one to eight hours (41)." Therefore, any adjacent land use where an individual could remain for 1 or 8-hours, that is located at a closer distance to the Project site than the receptor used for PM₁₀ and PM_{2.5} analysis, must be considered to determine construction and operational LST air impacts for emissions of NO₂ and CO since these pollutants have an averaging time of 1 and 8-hours.*

RECEPTORS

Receptors relative to the Project area are described below and shown on Exhibit 3-A. Localized air quality impacts were evaluated at receptor land uses nearest the Project site.

- R1: Location R1 represents the property line of the existing residence at 1307 West Nance Street, approximately 44 feet north of the Project site.
- R2: Location R2 represents the property line of the existing residence at 1210 West Nance Street, approximately 44 feet north of the Project site.
- R3: Location R3 represents the property line of the existing residence at 953 West Nance Street, approximately 1,599 feet east of the Project site.
- R4: Location R4 represents the property line of the existing worker receptor at 4451 Wade Avenue, approximately 19 feet south of the Project site.

¹⁰ It should be noted that a school use is not included in SCAQMD's specific definition of sensitive land uses for LST purposes, since the LST definition includes locations where an individual has a likelihood to remain for 24-hours per day. School receptors are considered for localized emissions of NO2 and CO – which have averaging times of 1 and 8-hours as noted above.

1

- R5: Location R5 represents the property line of the existing residence at 4439 Wade Avenue, approximately 234 feet south of the Project site.
- R6: Location R6 represents the existing commercial warehouse Xpo Logistics at 4413 Patterson Ave, approximately 214 feet east of the Project site.

The SCAQMD recommends that the nearest sensitive receptor be considered when determining the Project's potential to cause an individual or a cumulatively significant impact. The nearest land use where an individual could remain for 24 hours to the Project site has been used to determine localized construction and operational air quality impacts for emissions of PM_{10} and $PM_{2.5}$ (since PM_{10} and $PM_{2.5}$ thresholds are based on a 24-hour averaging time). The nearest receptor used for evaluation of localized impacts of PM_{10} and $PM_{2.5}$ is represented by location R1 which represents the existing residence at 1307 West Nance Street, approximately 44 feet/13 meters north of the Project site. As such, for evaluation of localized PM_{10} and $PM_{2.5}$, a 25-meter distance will be used.

As previously stated, and consistent with LST Methodology, the nearest commercial, educational, or industrial use to the Project site is used to determine construction and operational LST air impacts for emissions of NO_X and CO as the averaging periods for these pollutants are shorter (8 hours or less) and it is reasonable to assumed that an individual could be present at these sites for periods of one to 8 hours. The nearest receptor used for evaluation of localized impacts of NO_X and CO is represented by location R4 which represents the existing worker receptor at 4451 Wade Avenue, approximately 19 feet/6-meters south of the Project site.

It should be noted that the LST Methodology explicitly states that "It is possible that a project may have receptors closer than 25 meters. Projects with boundaries located closer than 25 meters to the nearest receptor should use the LSTs for receptors located at 25 meters (43)." As such a 25-meter receptor distance will be used for evaluation of localized NO_X and CO.

HARLEY KNOX BUYD ONEANDER AVE BT 64 REQ \$ NANGE ST 1,599' Site MARKHAM ST Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community **LEGEND:** Site Boundary Receptor Locations — Distance from receptor to Project site boundary (in feet)

EXHIBIT 3-A: SENSITIVE RECEPTOR LOCATIONS

3.7 CONSTRUCTION-SOURCE EMISSIONS LST ANALYSIS

3.7.1 LOCALIZED THRESHOLDS FOR CONSTRUCTION ACTIVITY

Since the total acreage disturbed is 1 acre for demolition, 3.5 acre per day for site preparation and 4 acres per day grading activities, the SCAQMD's screening look-up tables are utilized in determining impacts. It should be noted that since the look-up tables identify thresholds at only 1 acre, 2 acres, and 5 acres, linear regression has been utilized to determine localized significance thresholds. Consistent with SCAQMD guidance, the thresholds presented in Table 3-11 were calculated by interpolating the threshold values for the Project's disturbed acreage.

TABLE 3-11: MAXIMUM DAILY LOCALIZED CONSTRUCTION EMISSIONS THRESHOLDS

Construction Activity	Construction Localized Thresholds				
	NO _X	со	PM ₁₀	PM ₁₀	
Demolition	167 lbs/day	1,145 lbs/day	4 lbs/day	3 lbs/day	
Site Preparation	219 lbs/day	1,207 lbs/day	10 lbs/day	6 lbs/day	
Grading	290 lbs/day	2,221 lbs/day	11 lbs/day	7 lbs/day	

Source: Localized Thresholds presented in this table are based on the SCAQMD Final LST Methodology, July 2008

3.7.2 CONSTRUCTION-SOURCE LOCALIZED EMISSIONS

IMPACTS WITHOUT MITIGATION

Table 3-12 identifies the localized impacts at the nearest receptor location in the vicinity of the Project. Without mitigation, localized construction emissions would not exceed the applicable SCAQMD LSTs for emissions of any criterial pollutant. Outputs from the model runs for unmitigated construction LSTs are provided in Appendix 3.1.

TABLE 3-12: LOCALIZED CONSTRUCTION-SOURCE EMISSIONS – WITHOUT MITIGATION

Construction	Year	Emissions (lbs/day)			
Activity	Year	NO _x	со	PM ₁₀	PM _{2.5}
Demolition	2023	11.90	18.20	0.46	0.23
	Maximum Daily Emissions	11.90	18.20	0.46	0.23
	SCAQMD Localized Threshold	167	1,145	4	3
	Threshold Exceeded?	NO	NO	NO	NO
	2023	15.70	30.00	5.76	2.79
Site	Maximum Daily Emissions	15.70	30.00	5.76	2.79
Preparation	SCAQMD Localized Threshold	219	1,207	10	6
	Threshold Exceeded?	NO	NO	NO	NO
Grading	2023	19.90	36.20	2.85	1.16
	Maximum Daily Emissions	19.90	36.20	2.85	1.16
	SCAQMD Localized Threshold	290	2,221	11	7
	Threshold Exceeded?	NO	NO	NO	NO

Source: CalEEMod unmitigated localized construction-source emissions are presented in Appendix 3.1.

3.8 OPERATIONAL-SOURCE EMISSIONS LST ANALYSIS

The Project site is located on an approximately 14.15-net-acre parcel. As noted previously, the *LST Methodology* provides look-up tables for sites with an area with daily disturbance of 5 acres or less. For projects that exceed 5 acres, the 5-acre LST look-up tables can be used as a screening tool to determine whether pollutants require additional detailed analysis. This approach is conservative as it assumes that all on-site emissions associated with the project would occur within a concentrated 5-acre area. This screening method would therefore over-predict potential localized impacts, because by assuming that on-site operational activities are occurring over a smaller area, the resulting concentrations of air pollutants are more highly concentrated once they reach the smaller site boundary than they would be for activities if they were spread out over a larger surface area. On a larger site, the same amount of air pollutants generated would disperse over a larger surface area and would result in a lower concentration once emissions reach the project-site boundary. As such, LSTs for a 5-acre site during operations are used as a screening tool to determine if further detailed analysis is required.

The LST analysis generally includes on-site sources (area, energy, mobile, and on-site cargo handling equipment – are previously discussed in Section 3.5 of this report). However, it should be noted that the CalEEMod outputs do not separate on-site and off-site emissions from mobile sources. As such, in an effort to establish a maximum potential impact scenario for analytic purposes, the emissions shown on Table 3-13 represent all on-site Project-related stationary (area) sources and mobile sources. It should be noted that the longest on-site distance is roughly 0.25 miles for both trucks and passenger cars. Modeling based on these assumptions

demonstrates that even within broad encompassing parameters, Project operational-source emissions would not exceed applicable LSTs.

3.8.1 LOCALIZED THRESHOLDS FOR OPERATIONAL ACTIVITY

As previously stated, LSTs for a 5-acre site during operations are used as a screening tool to determine if further detailed analysis is required.

TABLE 3-13: MAXIMUM DAILY LOCALIZED OPERATIONAL EMISSIONS THRESHOLDS

Operational Localized Thresholds					
NO _x CO PN		PM ₁₀	PM _{2.5}		
325 lbs/day	2,556 lbs/day	4 lbs/day	2 lbs/day		

Source: Localized Thresholds presented in this table are based on the SCAQMD Final LST Methodology, July 2008

3.8.2 OPERATIONAL-SOURCE LOCALIZED EMISSIONS

IMPACTS WITHOUT MITIGATION

As shown on Table 3-14 operational emissions would not exceed the LST thresholds for the nearest sensitive receptor. Therefore, the Project would have a less than significant localized impact during operational activity.

TABLE 3-14: LOCALIZED SIGNIFICANCE SUMMARY OF OPERATIONS – WITHOUT MITIGATION

On Site Funicaione	Emissions (lbs/day)				
On-Site Emissions	NO _x	со	PM ₁₀	PM _{2.5}	
Maximum Daily Emissions	3.64	17.70	0.21	0.17	
SCAQMD Localized Threshold	325	2,556	4	2	
Threshold Exceeded?	NO	NO	NO	NO	

 $Source: Cal EEMod\ localized\ operational - source\ emissions\ are\ presented\ in\ Appendix\ 3.2.$

3.9 CO "HOT SPOT" ANALYSIS

As discussed below, the Project would not result in potentially adverse CO concentrations or "hot spots." Further, detailed modeling of Project-specific CO "hot spots" is not needed to reach this conclusion. An adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 ppm or the eight-hour standard of 9 ppm were to occur.

It has long been recognized that CO hotspots are caused by vehicular emissions, primarily when idling at congested intersections. In response, vehicle emissions standards have become increasingly stringent in the last twenty years. Currently, the allowable CO emissions standard in California is a maximum of 3.4 grams/mile for passenger cars (there are requirements for certain vehicles that are more stringent). With the turnover of older vehicles, introduction of cleaner

fuels, and implementation of increasingly sophisticated and efficient emissions control technologies, CO concentration in the SCAB is now designated as attainment.

To establish a more accurate record of baseline CO concentrations affecting the SCAB, a CO "hot spot" analysis was conducted in 2003 for four busy intersections in Los Angeles at the peak morning and afternoon time periods. This "hot spot" analysis did not predict any violation of CO standards, as shown on Table 3-15.

TABLE 3-15: CO MODEL RESULTS

Interesetion Legation	CO Concentrations (ppm)			
Intersection Location	Morning 1-hour	Afternoon 1-hour	8-hour	
Wilshire Blvd./Veteran Ave.	4.6	3.5	4.2	
Sunset Blvd./Highland Ave.	4	4.5	3.9	
La Cienega Blvd./Century Blvd.	3.7	3.1	5.8	
Long Beach Blvd./Imperial Hwy.	3	3.1	9.3	

Blvd. = Boulevard Highway = Hwy.

Source: 2003 AQMP, Appendix V: Modeling and Attainment Demonstrations

Notes: Federal 1-hour standard is 35 ppm and the deferral 8-hour standard is 9.0 ppm.

Based on the SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan), peak CO concentrations in the SCAB were a result of unusual meteorological and topographical conditions and not a result of traffic volumes and congestion at a particular intersection. As evidence of this, for example, 9.3 ppm 8-hr CO concentration measured at the Long Beach Blvd. and Imperial Hwy. intersection (highest CO generating intersection within the "hot spot" analysis), only 0.7 ppm was attributable to the traffic volumes and congestion at this intersection; the remaining 8.6 ppm were due to the ambient air measurements at the time the 2003 AQMP was prepared (44). In contrast, an adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 parts per million (ppm) or the eight-hour standard of 9 ppm were to occur.

The ambient 1-hr and 8-hr CO concentration within the Project study area is estimated to be 1.9 ppm and 1.4 ppm, respectively (data from Perris Valley station for 2020). Therefore, even if the traffic volumes for the proposed Project were double or even triple of the traffic volumes generated at the Long Beach Blvd. and Imperial Hwy. intersection, coupled with the on-going improvements in ambient air quality, the Project would not be capable of resulting in a CO "hot spot" at any study area intersections.

Similar considerations are also employed by other air districts when evaluating potential CO concentration impacts. More specifically, the Bay Area Air Quality Management District (BAAQMD) concludes that under existing and future vehicle emission rates, a given project would have to increase traffic volumes at a single intersection by more than 44,000 vehicles per hour (vph)—or 24,000 vph where vertical and/or horizontal air does not mix—in order to generate a significant CO impact (45). Traffic volumes generating the CO concentrations for the "hot spot"

analysis is shown on Table 3-16. The busiest intersection evaluated was that at Wilshire Blvd. and Veteran Ave., which has a daily traffic volume of approximately 100,000 vph and AM/PM traffic volumes of 8,062 vph and 7,719 vph respectively (44). The 2003 AQMP estimated that the 1-hour concentration for this intersection was 4.6 ppm; this indicates that, should the daily traffic volume increase four times to 400,000 vehicles per day, CO concentrations (4.6 ppm x 4= 18.4 ppm) would still not likely exceed the most stringent 1-hour CO standard (20.0 ppm)¹¹.

TABLE 3-16: TRAFFIC VOLUMES

	Peak Traffic Volumes (vph)					
Intersection Location	Eastbound (AM/PM)	Westbound (AM/PM)	Southbound (AM/PM)	Northbound (AM/PM)	Total (AM/PM)	
Wilshire Blvd./Veteran Ave.	4,954/2,069	1,830/3,317	721/1,400	560/933	8,062/7,719	
Sunset Blvd./Highland Ave.	1,417/1,764	1,342/1,540	2,304/1,832	1,551/2,238	6,614/5,374	
La Cienega Blvd./Century Blvd.	2,540/2,243	1,890/2,728	1,384/2,029	821/1,674	6,634/8,674	
Long Beach Blvd./Imperial Hwy.	1,217/2,020	1,760/1,400	479/944	756/1,150	4,212/5,514	

Source: 2003 AQMP

3.10 AQMP

The Project site is located within the SCAB, which is characterized by relatively poor air quality. The SCAQMD has jurisdiction over an approximately 10,743 square-mile area consisting of the four-county Basin and the Los Angeles County and Riverside County portions of what use to be referred to as the Southeast Desert Air Basin. In these areas, the SCAQMD is principally responsible for air pollution control, and works directly with the SCAG, county transportation commissions, local governments, as well as state and federal agencies to reduce emissions from stationary, mobile, and indirect sources to meet state and federal ambient air quality standards.

Currently, these state and federal air quality standards are exceeded in most parts of the SCAB. In response, the SCAQMD has adopted a series of AQMPs to meet the state and federal ambient air quality standards. AQMPs are updated regularly to more effectively reduce emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy.

In December 2022, the SCAQMD released the *Final 2022 AQMP* (2022 AQMP). The 2022 AQMP continues to evaluate current integrated strategies and control measures to meet the NAAQS, as well as explore new and innovative methods to reach its goals. Some of these approaches include utilizing incentive programs, recognizing existing co-benefit programs from other sectors, and developing a strategy with fair-share reductions at the federal, state, and local levels (46). Similar to the 2016 AQMP, the 2022 AQMP incorporates scientific and technological information and planning assumptions, including the 2020-2045 RTP/SCS, a planning document that supports the integration of land use and transportation to help the region meet the federal CAA requirements

¹¹ Based on the ratio of the CO standard (20.0 ppm) and the modeled value (4.6 ppm)

(19). The Project's consistency with the AQMP will be determined using the 2022 AQMP as discussed below.

Criteria for determining consistency with the AQMP are defined in Chapter 12, Section 12.2 and Section 12.3 of the 1993 CEQA Handbook (47). These indicators are discussed below:

3.10.1 CONSISTENCY CRITERION NO. 1

The proposed Project will not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP.

The violations that Consistency Criterion No. 1 refers to are the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if regional or localized significance thresholds were exceeded.

Construction Impacts – Consistency Criterion 1

Consistency Criterion No. 1 refers to violations of the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if localized or regional significance thresholds were exceeded. As evaluated, the Project's localized and regional construction-source emissions would not exceed applicable regional significance threshold and LST thresholds. As such, a less than significant impact is expected.

Operational Impacts – Consistency Criterion 1

As evaluated, the Project would not exceed the applicable regional and localized significance thresholds for operational activity. Therefore, the Project would not conflict with the AQMP according to this criterion.

On the basis of the preceding discussion, the Project is determined to be consistent with the first criterion.

3.10.2 CONSISTENCY CRITERION NO. 2

The Project will not exceed the assumptions in the AQMP based on the years of Project buildout phase.

The 2022 AQMP demonstrates that the applicable ambient air quality standards can be achieved within the timeframes required under federal law. Growth projections from local general plans adopted by cities in the district are provided to SCAG, which develops regional growth forecasts, which are then used to develop future air quality forecasts for the AQMP. Development consistent with the growth projections in City of Perris General Plan is considered to be consistent with the AQMP.

Construction Impacts – Consistency Criterion 2

Peak day emissions generated by construction activities are largely independent of land use assignments, but rather are a function of development scope and maximum area of disturbance. Irrespective of the site's land use designation, development of the site to its maximum potential would likely occur, with disturbance of the entire site occurring during construction activities. As

such, when considering that no emissions thresholds will be exceeded, a less than significant impact would result.

Operational Impacts – Consistency Criterion 2

As previously stated, according to the PVCCSP, the Project site is designated as a Light Industrial use, which provides for activities including research, manufacturing, warehouse and distribution, assembly of non-hazardous material and retail associated with manufacturing (48).

The Project consists of up to approximately 237,438 sf (90% of total square footage) warehouse use, which will be evaluated assuming high-cube fulfillment warehouse use, and approximately 26,382 sf of manufacturing use (10% of total square footage), for a total of approximately 263,820 sf, which is consistent with the proposed Light Industrial designation. Therefore, the Project does not propose or require amendment of the site's underlying land use designation.

On the basis of the preceding discussion, the Project is determined to be consistent with the second criterion.

AQMP CONSISTENCY CONCLUSION

The Project would not have the potential to result in or cause NAAQS or CAAQS violations. Additionally, Project construction and operational-source emissions would not exceed the regional or localized significance thresholds. The Project is therefore considered to be consistent with the AQMP.

3.11 POTENTIAL IMPACTS TO SENSITIVE RECEPTORS

The potential impact of Project-generated air pollutant emissions at sensitive receptors has also been considered. Results of the LST analysis indicate that the Project will not exceed the SCAQMD localized significance thresholds during construction. Therefore, sensitive receptors would not be exposed to substantial pollutant concentrations during Project construction.

Additionally, the Project will not exceed the SCAQMD localized significance thresholds during operational activity. Further Project traffic would not create or result in a CO "hotspot." Therefore, sensitive receptors would not be exposed to substantial pollutant concentrations as the result of Project operations.

3.11.1 FRIANT RANCH CASE

In December 2018, in the case of *Sierra Club v. County of Fresno* (2018) 6 Cal.5th 502, the California Supreme Court held that an EIR air quality analysis must meaningfully connect the identified air quality impacts to the human health consequences of those impacts, or meaningfully explain why that analysis cannot be provided.

As discussed in briefs filed in the Friant Ranch case, correlating a project's criteria air pollutant emissions to specific health impacts is challenging. The SCAQMD, which has among the most sophisticated air quality modeling and health impact evaluation capability of any of the air districts in the State, and thus it is uniquely situated to express an opinion on how lead agencies should correlate air quality impacts with specific health outcomes (49) noted that it may be

"difficult to quantify health impacts for criteria pollutants." The SCAQMD used O_3 as an example of why it is impracticable to determine specific health outcomes from criteria pollutants for all but very large, regional-scale projects. First, forming O_3 "takes time and the influence of meteorological conditions for these reactions to occur, so ozone may be formed at a distance downwind from the sources." (SCAQMD, 2015a, p. 11) Second, "it takes a large amount of additional precursor emissions (NO_X and VOCs) to cause a modeled increase in ambient ozone levels over an entire region," with a 2012 study showing that "reducing NO_X by 432 tons per day (157,680 tons/year) and reducing VOC by 187 tons per day (68,255 tons/year) would reduce ozone levels at the SCAQMD's monitor site with the highest levels by only 9 parts per billion." (SCAQMD, 2015a, pp. 12-14)

The SCAQMD concluded that it "does not currently know of a way to accurately quantify ozonerelated health impacts caused by NO_X or VOC emissions from relatively small projects." (SCAQMD, 2015a, pp. 12-14) The San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) ties the difficulty of correlating the emission of criteria pollutants to health impacts to how ozone and particulate matter are formed, stating that "[b]ecause of the complexity of ozone formation, a specific tonnage amount of NO_X or VOCs emitted in a particular area does not equate to a particular concentration of ozone in that area." (SJVUAPCD, 2015, p. 4) Similarly, the tonnage of PM "emitted does not always equate to the local PM concentration because it can be transported long distances by wind," and "[s]econdary PM, like ozone, is formed via complex chemical reactions in the atmosphere between precursor chemicals such as sulfur dioxides (SO_x) and NO_X," meaning that "the tonnage of PM-forming precursor emissions in an area does not necessarily result in an equivalent concentration of secondary PM in that area." (SJVUAPCD, 2015, p. 5) The disconnect between the amount of precursor pollutants and the concentration of ozone or PM formed makes it difficult to determine potential health impacts, which are related to the concentration of ozone and particulate matter experienced by the receptor rather than levels of NO_X , SO_X , and VOCs produced by a source.

Most local agencies lack the data to do their own assessment of potential health impacts from criteria air pollutant emissions, as would be required to establish customized, locally specific thresholds of significance based on potential health impacts from an individual development project. The use of national or "generic" data to fill the gap of missing local data would not yield accurate results because such data does not capture local air patterns, local background conditions, or local population characteristics, all of which play a role in how a population experiences air pollution. Because it is impracticable to accurately isolate the exact cause of a human disease (for example, the role a particular air pollutant plays compared to the role of other allergens and genetics in cause asthma), existing scientific tools cannot accurately estimate health impacts of the Project's air emissions without undue speculation. Instead, readers are directed to the Project's air quality impact analysis above, which provides extensive information concerning the quantifiable and non-quantifiable health risks related to the Project's construction and long-term operation.

The LST analysis above determined that the Project would not result in emissions exceeding SCAQMD's LSTs. Additionally, it should be noted that the proposed Project is significantly smaller than the project evaluated in the Friant Ranch case, and consequently would be more difficult to

analyze impacts. Therefore, the proposed Project would not be expected to exceed the most stringent applicable federal or state ambient air quality standards for emissions of CO, NO_X , PM_{10} , and $PM_{2.5}$.

As the Project's emissions will comply with federal, state, and local air quality standards, the proposed Project's emissions are not sufficiently high enough to use a regional modeling program to correlate health effects on a basin-wide level and would not provide a reliable indicator of health effects if modeled.

3.12 ODORS

The potential for the Project to generate objectionable odors has also been considered. Land uses generally associated with odor complaints include:

- Agricultural uses (livestock and farming)
- Wastewater treatment plants
- Food processing plants
- Chemical plants
- Composting operations
- Refineries
- Landfills
- Dairies
- Fiberglass molding facilities

The Project does not contain land uses typically associated with emitting objectionable odors. Potential odor sources associated with the proposed Project may result from construction equipment exhaust and the application of asphalt and architectural coatings during construction activities and the temporary storage of typical solid waste (refuse) associated with the proposed Project's (long-term operational) uses. Standard construction requirements would minimize odor impacts from construction. The construction odor emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of construction and is thus considered less than significant. It is expected that Project-generated refuse would be stored in covered containers and removed at regular intervals in compliance with the solid waste regulations. The proposed Project would also be required to comply with SCAQMD Rule 402 to prevent occurrences of public nuisances. Therefore, odors associated with the proposed Project construction and operations would be less than significant and no mitigation is required (50).

3.13 CUMULATIVE IMPACTS

As previously shown in Table 2-3, the CAAQS designate the Project site as nonattainment for O_3 PM₁₀, and PM_{2.5} while the NAAQS designates the Project site as nonattainment for O_3 and PM_{2.5}.

The SCAQMD has published a report on how to address cumulative impacts from air pollution: White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution (51). In this report the SCAQMD clearly states (Page D-3):

"...the SCAQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for TAC emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant."

Therefore, this analysis assumes that individual projects that do not generate operational or construction emissions that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would also not cause a cumulatively considerable increase in emissions for those pollutants for which SCAB is in nonattainment, and, therefore, would not be considered to have a significant, adverse air quality impact. Alternatively, individual project-related construction and operational emissions that exceed SCAQMD thresholds for project-specific impacts would be considered cumulatively considerable.

CONSTRUCTION IMPACTS

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that proposed Project construction-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, proposed Project construction-source emissions would be considered less than significant on a project-specific and cumulative basis.

OPERATIONAL IMPACTS

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that proposed Project operational-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, proposed Project operational-source emissions would be considered less than significant on a project-specific and cumulative basis.

This page intentionally left blank

4 REFERENCES

- Association of Environmental Professionals. 2022 California Environmental Quality Act (CEQA) Statutes and Guidelines. [Online] 2022. https://www.califaep.org/docs/2022_CEQA_Statue_and_Guidelines.pdf..
- 2. **South Coast Air Quality Management District.** RULE 403. FUGITIVE DUST. [Online] https://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-403.pdf?sfvrsn=4.
- 3. —. RULE 1113. Architectural Coatings. [Online] http://www.aqmd.gov/docs/default-source/rule-book/reg-xi/r1113.pdf.
- 4. **A. Webb Associates.** Perris Valley Commerce Center Specific Plan Final Environmental Impact Report. Perris: s.n., 2011.
- 5. **South Coast Air Quality Management District.** Southern California Air Basins. [Online] https://www.arb.ca.gov/msprog/onroad/porttruck/maps/scabc7map.pdf.
- 6. —. Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. 2005.
- 7. **St. Croix Sensory, Inc.** The "Gray Line" Between Odor Nuisance and Health Effects. 2000.
- 8. **California Air Resources Board.** Ambient Air Quality Standards (AAQS). [Online] 2016. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf.
- 9. **United State Environmental Protection Agency.** Frequent Questions about General Conformity . *EPA.* [Online] https://www.epa.gov/general-conformity/frequent-questions-about-general-conformity#8.
- 10. **South Coast Air Quality Management District.** Annual Air Quality Monitoring Network Plan. [Online] July 2018. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-monitoring-network-plan/annual-air-quality-monitoring-network-plan-v2.pdf?sfvrsn=2.
- 11. **California Air Resources Board.** State and National Ambient Air Quality Standards. [Online] https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2021/sad20/appc.pdf.
- 12. **South Coast Air Quality Management District.** Air Quality Data Tables. [Online] https://www.aqmd.gov/home/air-quality/air-quality-data-studies/historical-data-by-year.
- 13. **United States Environmental Protection Agency.** National Ambient Air Quality Standards (NAAQS). [Online] 1990. https://www.epa.gov/environmental-topics/air-topics.
- 14. —. Air Pollution and the Clean Air Act. [Online] http://www.epa.gov/air/caa/.
- 15. —. 1990 Clean Air Act Amendment Summary: Title I. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-i.
- 16. —. 1990 Clean Air Act Amendment Summary: Title II. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-ii.
- 17. **California Air Resources Board.** California Ambient Air Quality Standards (CAAQS). [Online] 2009. [Cited: April 16, 2018.] http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm.
- 18. **California Energy Commission.** Energy Commission Adopts Updated Building Standards to Improve Efficiency, Reduce Emissions from Homes and Businesses. [Online] August 11, 2021. https://www.energy.ca.gov/news/2021-08/energy-commission-adopts-updated-building-standards-improve-efficiency-reduce-0.
- 19. **Southern California Association of Governments.** 2020-2045 Regional Transportation Plan/Sustainable Communities Strategy. [Online] September 2020. https://scag.ca.gov/sites/main/files/file-attachments/0903fconnectsocal-plan_0.pdf?1606001176.

- 20. California Air Resources Board. The California Almanac of Emissions and Air Quality. 2013.
- 21. **South Coast Air Quality Management District.** South Coast Air Basin Ozone Trend. [Online] https://www.aqmd.gov/home/air-quality/historical-air-quality-data/historic-ozone-air-quality-trends.
- 22. **California Air Resources Board.** iADAM: Air Quality Data Statistics. *California Air Resources Board.* [Online] https://arb.ca.gov/adam/topfour/topfour1.php.
- 23. **United States Environmental Protection Agency.** Approval and Promulgation of Implementation Plans; California; South Coast Serious Area Plan for the 2006 PM2.5. [Online] 2019. https://www.federalregister.gov/documents/2019/02/12/2019-01922/approval-and-promulgation-of-implementation-plans-california-south-coast-serious-area-plan-for-the.
- 24. **South Coast Air Quality Management District.** Final 2016 Air Quality Management Plan. *South Coast Air Quality Management District.* [Online] March 2017. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-aqmp/final2016aqmp.pdf.
- 25. —. CEQA Air Quality Handbook (1993). 1993.
- 26. **California Air Resources Board.** Air Board Approved Stronger Nitrogen Dioxide Standards. [Online] https://ww2.arb.ca.gov/news/air-board-approves-stronger-nitrogen-dioxide-standards.
- 27. Ralph Propper, Patrick Wong, Son Bui, Jeff Austin, William Vance, Alvaro Alvarado, Bart Croes, and Dongmin Luo. Ambient and Emission Trends of Toxic Air Contaminants in California. *American Chemical Society: Environmental Science & Technology*. 2015.
- 28. **California Air Resources Board.** ARB's Drayage Truck Regulatory Activities. [Online] http://www.arb.ca.gov/msprog/onroad/porttruck/porttruck.htm.
- 29. —. Truck and Bus Regulation. *On-Road Heavy-Duty Diesel Vehicles (In-Use) Regulation*. [Online] http://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm.
- 30. **The Port of Los Angeles.** Clean Truck Program. [Online] http://www.portoflosangeles.org/ctp/idx_ctp.asp.
- 31. South Coast Air Quality Management District. Transfer Funds, Appropriate Funding, Execute Purchase Orders, Execute Contrat and Authorize Release of RFQs for the Fifth Multiple Air Toxics Exposure Study. South Coast Air Quality Management District. [Online] 2017. http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2017/2017-jul7-009.pdf?sfvrsn=7.
- 32. —. Executive Summary. *MATES V Draft Report*. [Online] 2021. http://www.aqmd.gov/docs/default-source/planning/mates-v/draft-mates-v-executive-summary_v2.pdf?sfvrsn=6.
- 33. —. SCAQMD Air Quality Significance Thresholds. [Online] http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2.
- 34. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] May 2022. www.caleemod.com.
- 35. **City of Perris.** *Municipal Code, Chapter 7.34 Noise Control.*
- 36. **Urban Crossroads, Inc.** Patterson Commerce Center Traffic Analysis Scoping Agreement. 2023.
- 37. **South Coast Air Quality Management District.** *SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results.* 2014.

- 38. **Lake Environmental.** US EPA Models. *Lake Environmental.* [Online] http://www.weblakes.com/download/us_epa.html.
- 39. **South Coast Air Quality Management District.** Fact Sheet for Applying CalEEMod to Localized Significance Thresholds. [Online] http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/caleemod-guidance.pdf.
- 40. **California Air Pollution Control Officers Association (CAPCOA).** Appendix A: Calculation Details for CalEEMod. *CalEEMod.* [Online] October 2017. http://www.aqmd.gov/docs/default-source/caleemod/02_appendix-a2016-3-2.pdf?sfvrsn=6.
- 41. **South Coast Air Quality Management District.** *Localized Significance Thresholds Methodology.* s.l. : South Coast Air Quality Management District, 2008.
- 42. California Air Pollution Control Officers Association (CAPCOA). Appendix C: Emission Calculation Details for CalEEMod. [Online] May 2022. https://www.caleemod.com/documents/userguide/04_Appendix%20C.pdf.
- 43. **South Coast Air Quality Management District.** *Localized Significance Thresholds Methodology.* s.l. : South Coast Air Quality Management District, 2003.
- 44. —. 2003 Air Quality Management Plan. [Online] 2003. https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/2003-aqmp.
- 45. Bay Area Air Quality Management District. [Online] http://www.baaqmd.gov/.
- 46. **South Coast Air Quality Management District.** Final 2016 Air Quality Management Plan (AQMP). [Online] March 2017. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plan/final-2016-aqmp/final2016aqmp.pdf?sfvrsn=11.
- 47. —. CEQA Air Quality Handbook (1993). 1993.
- 48. City of Perris. Perris Valley Commerce Center Specific Plan. Perris: s.n., 2022.
- 49. **South Coast Air Quality Management District.** Sierra Club, Revive the San Joaquin and League of Women Voters of Fresno, Plaintiffs and Appellants, v. County of Fresno, Defendant and Respondent and, Friant Ranchm L.P. Real Party in Interest and Respondent. [Online] 2015. https://www.courts.ca.gov/documents/9-s219783-ac-south-coast-air-quality-mgt-dist-041315.pdf.
- 50. —. RULE 402 NUISANCE. [Online] http://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-402.pdf.
- 51. Goss, Tracy A and Kroeger, Amy. White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, August 2003. http://www.aqmd.gov/docs/default-source/Agendas/Environmental-Justice/cumulative-impacts-working-group/cumulative-impacts-white-paper.pdf.

This page intentionally left blank

5 CERTIFICATIONS

The contents of this air study report represent an accurate depiction of the environmental impacts associated with the proposed Patterson Commerce Center. The information contained in this air quality impact assessment report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com

Haseeb Qureshi
Principal
URBAN CROSSROADS, INC.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June, 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Professionals AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – CARB • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 2.1:

STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

This attachment fulfills the requirement of Health and Safety Code section 40718 for CARB to publish maps that identify areas where one or more violations of any State ambient air quality standard (State standard) or national ambient air quality standard (national standard) have been measured. The national standards are those promulgated under section 109 of the federal Clean Air Act (42 U.S.C. 7409).

This attachment is divided into three parts. The first part comprises a table showing the levels, averaging times, and measurement methods for each of the State and national standards. This is followed by a section containing maps and tables showing the area designations for each pollutant for which there is a State standard in the California Code of Regulations, title 17, section 70200. The last section contains maps and tables showing the most current area designations for the national standards.

	Ambient Air Quality Standards (Updated 5/4/16)						
Pollutant	Averaging	California S	tandards 1	National Standards ²			
Pollutalit	Time	Concentration ³	Method 4	Primary 3,5	Secondary 3.6	Method 7	
Ozone (O₃)s	1 Hour	0.09 ppm (180 μg/m³)	Ultraviolet Photometry	_	Same as Primary	Ultraviolet	
020110 (O ₃)	8 Hour	0.070 ppm (137 μg/m²)	,	0.070 ppm (137 µg/m²)	Standard	Photometry	
Respirable Particulate	24 Hour	50 μg/m³	Gravimetric or Beta	150 μg/m ^s	Same as Primary	Inertial Separation and Gravimetric	
Matter (PM10)	Annual Arithmetic Mean	20 μg/m ^s	Attenuation — —	Standard	Analysis		
Fine Particulate	24 Hour	-	_	35 μg/m³	Same as Primary Standard	Inertial Separation and Gravimetric	
Matter (PM2.5) [,]	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12.0 µg/m³	15 μg/m ^s	Analysis	
Carbon	1 Hour	20 ppm (23 mg/m²)	Non-Dispersive	35 ppm (40 mg/m²)	_	Non-Dispersive	
Monoxide	8 Hour	9.0 ppm (10 mg/m²)	Infrared Photometry (NDIR)	9 ppm (10 mg/m²)	_	Infrared Photometry (NDIR)	
(CO)	8 Hour (Lake Tahoe)	6 ppm (7 mg/m²)	(INDII ()	_	_	(NDIIV)	
Nitrogen Dioxide	1 Hour	0.18 ppm (339 µg/m²)	Gas Phase	100 ppb (188 µg/m³)	_	Gas Phase	
(NO ₂)10	Annual Arithmetic Mean	0.030 ppm (57 μg/m³)	Chemiluminescence	0.053 ppm (100 μg/m²)	Same as Primary Standard	Chemiluminescence	
	1 Hour	0.25 ppm (655 μg/m ³)		75 ppb (196 μg/m²)	_	I litro violet	
Sulfur Dioxide	3 Hour	_	Ultraviolet	_	0.5 ppm (1300 μg/m²)	Ultraviolet Flourescence; Spectrophotometry	
(SO ₂) ¹¹	24 Hour	0.04 ppm (105 μg/m²)	Fluorescence	0.14 ppm (for certain areas) ¹¹	_	(Pararosaniline Method)	
	Annual Arithmetic Mean	_		0.030 ppm (for certain areas) ¹¹	_		
	30 Day Average	1.5 μg/m³		_	_		
Lead ¹² , 13	Calendar Quarter	_	Atomic Absorption	1.5 µg/m³ (for certain areas)¹²	Same as Primary	High Volume Sampler and Atomic Absorption	
	Rolling 3-Month Average	_		0.15 μg/m ^s	Standard	, 1200. pilo.:	
Visibility Reducing Particles ⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape		No		
Sulfates	24 Hour	25 μg/m³	lon Chromatography		National		
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m²)	Ultraviolet Fluorescence		Standards		
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m²)	Gas Chromatography				
See footnotes	on next page						

- 1. California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1- and 24-hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 μg/m³ is equal to or less than one. For PM2.5, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the CARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- 6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
 - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 μ g/m³)as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the CARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

Area Designations for the State Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a State standard set forth in the California Code of Regulations, title 17, section 60200. Each area is identified as attainment, nonattainment, nonattainment, nonattainment, as shown below:

Attainment A
Nonattainment N
Nonattainment-Transitional NA-T
Unclassified U

In general, CARB designates areas by air basin for pollutants with a regional impact and by county for pollutants with a more local impact. However, when there are areas within an air basin or county with distinctly different air quality deriving from sources and conditions not affecting the entire air basin or county, CARB may designate a smaller area. Generally, when boundaries of the designated area differ from the air basin or county boundaries, the description of the specific area is referenced at the bottom of the summary table.

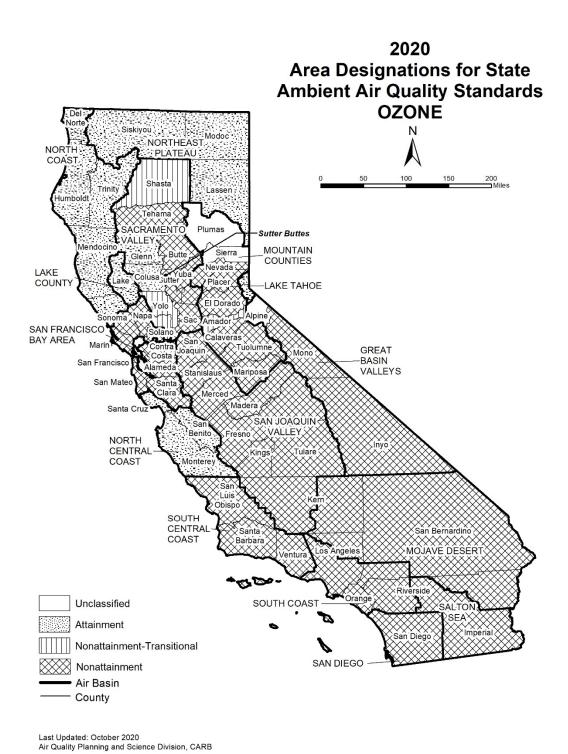


TABLE 1

California Ambient Air Quality Standards Area Designations for Ozone ¹

	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Х	
Inyo County	Х			
Mono County	Х			
LAKE COUNTY AIR BASIN				Χ
LAKE TAHOE AIR BASIN				Χ
MOJAVE DESERT AIR BASIN	Х			
MOUNTAIN COUNTIES AIR BASIN				
Amador County		Χ		
Calaveras County	Х			
El Dorado County (portion)	Х			
Mariposa County	Х			
Nevada County	Х			
Placer County (portion)	Х			
Plumas County			Х	
Sierra County			Х	
Tuolumne County	Х			
NORTH CENTRAL COAST AIR BASIN				Χ
NORTH COAST AIR BASIN				Х

	N	NA-T	U	Α
NORTHEAST PLATEAU AIR BASIN				Х
SACRAMENTO VALLEY AIR BASIN				
Colusa and Glenn Counties				Х
Shasta County		Χ		
Sutter/Yuba Counties				
Sutter Buttes	Х			
Remainder of Sutter County	Х			
Yuba County	Х			
Yolo/Solano Counties		Х		
Remainder of Air Basin	Х			
SALTON SEA AIR BASIN	Х			
SAN DIEGO AIR BASIN	Х			
SAN FRANCISCO BAY AREA AIR BASIN	Х			
SAN JOAQUIN VALLEY AIR BASIN	Х			
SOUTH CENTRAL COAST AIR BASIN				
San Luis Obispo County	Х			
Santa Barbara County	Х			
Ventura County	Χ			
SOUTH COAST AIR BASIN	Χ			

¹ AB 3048 (Olberg) and AB 2525 (Miller) signed into law in 1996, made changes to Health and Safety Code, section 40925.5. One of the changes allows nonattainment districts to become nonattainment-transitional for ozone by operation of law.

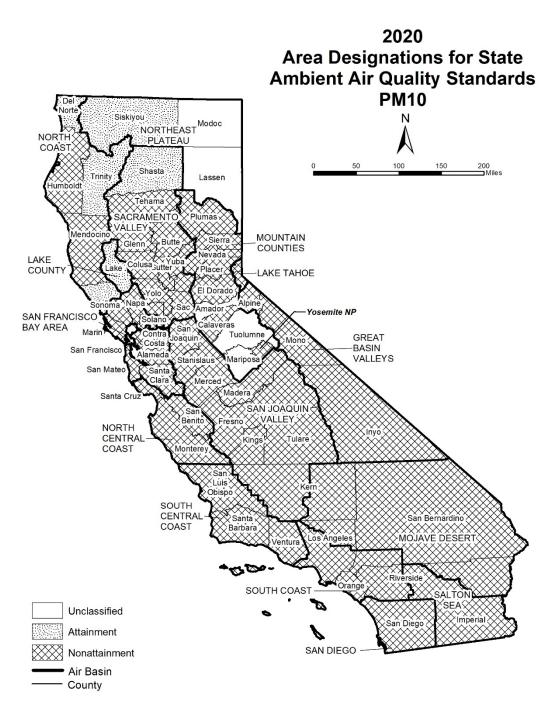


TABLE 2

California Ambient Air Quality Standards Area Designation for Suspended Particulate Matter (PM_{10})

	N	υ	Α
GREAT BASIN VALLEYS AIR BASIN	Χ		
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN	Χ		
MOJAVE DESERT AIR BASIN	Χ		
MOUNTAIN COUNTIES AIR BASIN			
Amador County		Χ	
Calaveras County	Χ		
El Dorado County (portion)	Χ		
Mariposa County			
- Yosemite National Park	Χ		
- Remainder of County		Χ	
Nevada County	Χ		
Placer County (portion)	Χ		
Plumas County	Х		
Sierra County	Х		
Tuolumne County		Х	

	N	U	Α
NORTH CENTRAL COAST AIR BASIN	Χ		
NORTH COAST AIR BASIN			
Del Norte, Sonoma (portion) and Trinity Counties			Χ
Remainder of Air Basin	Χ		
NORTHEAST PLATEAU AIR BASIN			
Siskiyou County			Χ
Remainder of Air Basin		Χ	
SACRAMENTO VALLEY AIR BASIN			
Shasta County			Χ
Remainder of Air Basin	Χ		
SALTON SEA AIR BASIN	Χ		
SAN DIEGO AIR BASIN	Χ		
SAN FRANCISCO BAY AREA AIR BASIN	Χ		
SAN JOAQUIN VALLEY AIR BASIN	Χ		
SOUTH CENTRAL COAST AIR BASIN	Χ		
SOUTH COAST AIR BASIN	Х		

TABLE 3

California Ambient Air Quality Standards Area Designations for Fine Particulate Matter ($PM_{2.5}$)

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			
San Bernardino County			
 County portion of federal Southeast Desert Modified AQMA for Ozone¹ 			Х
Remainder of Air Basin			Χ
MOUNTAIN COUNTIES AIR BASIN			
Plumas County			
- Portola Valley²	Х		
Remainder of Air Basin		Χ	
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Χ
SACRAMENTO VALLEY AIR BASIN			
Butte County	Х		
Colusa County			Χ
Glenn County			Χ
Placer County (portion)			Χ
Sacramento County			Χ
Shasta County			Χ
Sutter and Yuba Counties			Χ
Remainder of Air Basin		Х	

	N	U	Α
SALTON SEA AIR BASIN			
Imperial County			
- City of Calexico ³	Χ		
Remainder of Air Basin			Χ
SAN DIEGO AIR BASIN	Χ		
SAN FRANCISCO BAY AREA AIR BASIN	Χ		
SAN JOAQUIN VALLEY AIR BASIN	Χ		
SOUTH CENTRAL COAST AIR BASIN			
San Luis Obispo County			Χ
Santa Barbara County		Χ	
Ventura County			Χ
SOUTH COAST AIR BASIN	Х		

¹ California Code of Regulations, title 17, section 60200(b)

² California Code of Regulations, title 17, section 60200(c)

³ California Code of Regulations, title 17, section 60200(a)

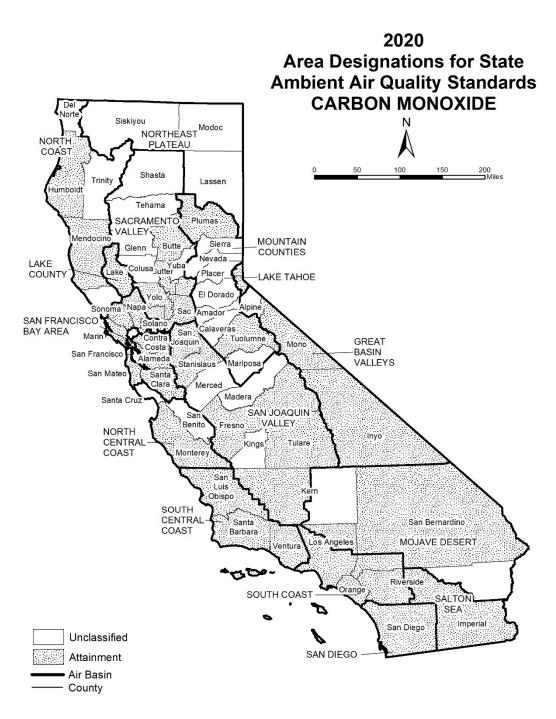


TABLE 4

California Ambient Air Quality Standards Area Designation for Carbon Monoxide*

	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Χ	
Inyo County				Χ
Mono County				Х
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN				Х
MOJAVE DESERT AIR BASIN				
Kern County (portion)			Χ	
Los Angeles County (portion)				Х
Riverside County (portion)			Χ	
San Bernardino County (portion)				Х
MOUNTAIN COUNTIES AIR BASIN				
Amador County			Χ	
Calaveras County			Χ	
El Dorado County (portion)			Χ	
Mariposa County			Χ	
Nevada County			Χ	
Placer County (portion)			Χ	
Plumas County				Χ
Sierra County			Χ	
Tuolumne County				Χ
NORTH CENTRAL COAST AIR BASIN				
Monterey County				Х
San Benito County			Χ	
Santa Cruz County			Χ	
NORTH COAST AIR BASIN				
Del Norte County			Χ	
Humboldt County				Х
Mendocino County				Х
Sonoma County (portion)			Χ	
Trinity County			Χ	
NORTHEAST PLATEAU AIR BASIN			Χ	

	N	NA-T	U	Α
SACRAMENTO VALLEY AIR BASIN		1100		
Butte County				Х
Colusa County			Х	
Glenn County			Х	
Placer County (portion)				Х
Sacramento County				Х
Shasta County			Х	
Solano County (portion)				Х
Sutter County				Х
Tehama County			Х	
Yolo County				Х
Yuba County			Х	
SALTON SEA AIR BASIN				Х
SAN DIEGO AIR BASIN				Χ
SAN FRANCISCO BAY AREA AIR BASIN				Χ
SAN JOAQUIN VALLEY AIR BASIN				
Fresno County				Х
Kern County (portion)				Χ
Kings County			Х	
Madera County			Х	
Merced County			Х	
San Joaquin County				Χ
Stanislaus County				Χ
Tulare County				Χ
SOUTH CENTRAL COAST AIR BASIN				Х
SOUTH COAST AIR BASIN				Χ

 $[\]ensuremath{^{\star}}$ The area designated for carbon monoxide is a county or portion of a county

TABLE 5

California Ambient Air Quality Standards Area Designations for Nitrogen Dioxide

	N	J	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ
MOUNTAIN COUNTIES AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Χ

	N	J	Α
SACRAMENTO VALLEY AIR BASIN			Χ
SALTON SEA AIR BASIN			Χ
SAN DIEGO AIR BASIN			Χ
SAN FRANCISCO BAY AREA AIR BASIN			Χ
SAN JOAQUIN VALLEY AIR BASIN			Χ
SOUTH CENTRAL COAST AIR BASIN			Χ
SOUTH COAST AIR BASIN			
CA 60 Near-road Portion of San Bernardino, Riverside, and Los Angeles Counties	Х		
Remainder of Air Basin			Χ

TABLE 6

California Ambient Air Quality Standards Area Designation for Sulfur Dioxide*

	N	Α
GREAT BASIN VALLEYS AIR BASIN		Χ
LAKE COUNTY AIR BASIN		Χ
LAKE TAHOE AIR BASIN		Χ
MOJAVE DESERT AIR BASIN		Χ
MOUNTAIN COUNTIES AIR BASIN		Χ
NORTH CENTRAL COAST AIR BASIN		Χ
NORTH COAST AIR BASIN		Χ
NORTHEAST PLATEAU AIR BASIN		Х

	N	Α
SACRAMENTO VALLEY AIR BASIN		Χ
SALTON SEA AIR BASIN		Χ
SAN DIEGO AIR BASIN		Χ
SAN FRANCISCO BAY AREA AIR BASIN		Χ
SAN JOAQUIN VALLEY AIR BASIN		Χ
SOUTH CENTRAL COAST AIR BASIN		Χ
SOUTH COAST AIR BASIN		Х

^{*} The area designated for sulfur dioxide is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

TABLE 7

California Ambient Air Quality Standards Area Designation for Sulfates

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ
MOUNTAIN COUNTIES AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Χ

N	U	Α
		Χ
		Χ
		Χ
		Χ
		Χ
		Χ
		Χ
	N	N U

TABLE 8

California Ambient Air Quality Standards Area Designations for Lead (particulate)*

	N	J	Α
GREAT BASIN VALLEYS AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ
LAKE TAHOE AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ
MOUNTAIN COUNTIES AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ
NORTH COAST AIR BASIN			Χ
NORTHEAST PLATEAU AIR BASIN			Х
SACRAMENTO VALLEY AIR BASIN			Χ

	Ν	U	Α
SALTON SEA AIR BASIN			Χ
SAN DIEGO AIR BASIN			Χ
SAN FRANCISCO BAY AREA AIR BASIN			Χ
SAN JOAQUIN VALLEY AIR BASIN			Χ
SOUTH CENTRAL COAST AIR BASIN			Χ
SOUTH COAST AIR BASIN			Χ

^{*} The area designated for lead is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

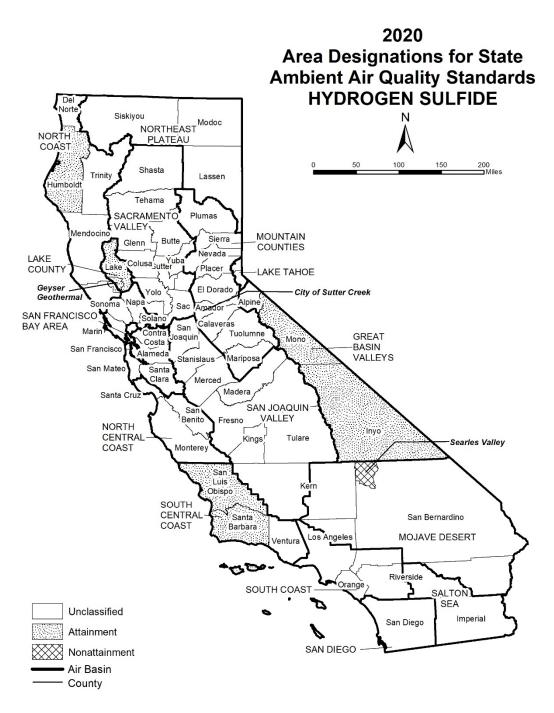
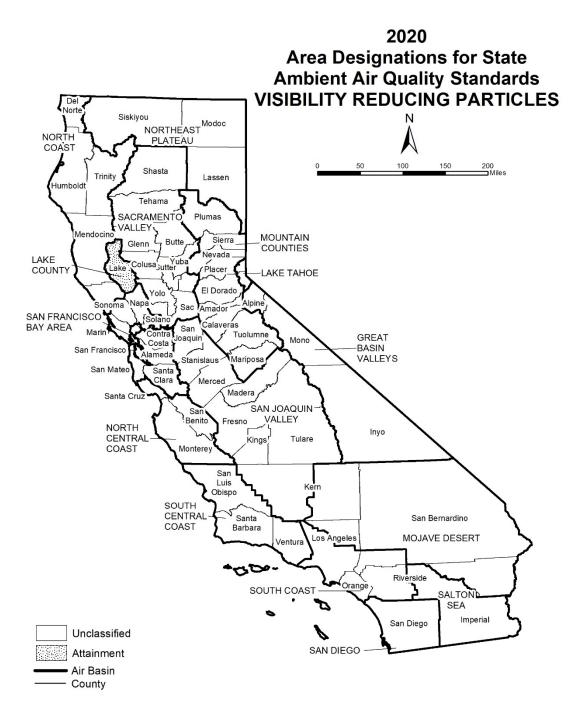


TABLE 9

California Ambient Air Quality Standards Area Designation for Hydrogen Sulfide*


	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Х	
Inyo County				Х
Mono County				Х
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN			Χ	
MOJAVE DESERT AIR BASIN				
Kern County (portion)			Χ	
Los Angeles County (portion)			Χ	
Riverside County (portion)			Χ	
San Bernardino County (portion)				
- Searles Valley Planning Area ¹	Х			
- Remainder of County			Χ	
MOUNTAIN COUNTIES AIR BASIN				
Amador County				
- City of Sutter Creek	Х			
- Remainder of County			Χ	
Calaveras County			Χ	
El Dorado County (portion)			Χ	
Mariposa County			Χ	
Nevada County			Χ	
Placer County (portion)			Х	
Plumas County			Χ	
Sierra County			Х	
Tuolumne County			Х	

		I		l
	N	NA-T	U	Α
NORTH CENTRAL COAST AIR BASIN			Χ	
NORTH COAST AIR BASIN				
Del Norte County			Χ	
Humboldt County				Χ
Mendocino County			Χ	
Sonoma County (portion)				
- Geyser Geothermal Area ²				Χ
- Remainder of County			Χ	
Trinity County			Χ	
NORTHEAST PLATEAU AIR BASIN			Χ	
SACRAMENTO VALLEY AIR BASIN			Χ	
SALTON SEA AIR BASIN			Χ	
SAN DIEGO AIR BASIN			Χ	
SAN FRANCISCO BAY AREA AIR BASIN			Χ	
SAN JOAQUIN VALLEY AIR BASIN			Χ	
SOUTH CENTRAL COAST AIR BASIN				
San Luis Obispo County				Х
Santa Barbara County				Χ
Ventura County			Χ	
SOUTH COAST AIR BASIN			Χ	

 $[\]ensuremath{^{\star}}$ The area designated for hydrogen sulfide is a county or portion of a county

¹ 52 Federal Register 29384 (August 7, 1987)

² California Code of Regulations, title 17, section 60200(d)

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

TABLE 10

California Ambient Air Quality Standards Area Designation for Visibility Reducing Particles

	N	NA-T	J	Α
GREAT BASIN VALLEYS AIR BASIN			Χ	
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN			Χ	
MOJAVE DESERT AIR BASIN			Х	
MOUNTAIN COUNTIES AIR BASIN			Χ	
NORTH CENTRAL COAST AIR BASIN			Х	
NORTH COAST AIR BASIN			Χ	
NORTHEAST PLATEAU AIR BASIN			Х	

	N	NA-T	U	Α
SACRAMENTO VALLEY AIR BASIN			Х	
SALTON SEA AIR BASIN			Х	
SAN DIEGO AIR BASIN			Х	
SAN FRANCISCO BAY AREA AIR BASIN			Х	
SAN JOAQUIN VALLEY AIR BASIN			Х	
SOUTH CENTRAL COAST AIR BASIN			Х	
SOUTH COAST AIR BASIN			Х	

Area Designations for the National Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a national ambient air quality standard. Additional information about the federal area designations is available on the U.S. EPA website:

https://www.epa.gov/green-book

Over the last several years, U.S. EPA has been reviewing the levels of the various national standards. The agency has already promulgated new standard levels for some pollutants and is considering revising the levels for others. Information about the status of these reviews is available on the U.S. EPA website:

https://www.epa.gov/criteria-air-pollutants

Designation Categories

Suspended Particulate Matter (PM_{10}). The U.S. EPA uses three categories to designate areas with respect to PM_{10} :

- Attainment (A)
- Nonattainment (N)
- Unclassifiable (U)

Ozone, Fine Suspended Particulate Matter ($PM_{2.5}$), Carbon Monoxide (CO), and Nitrogen Dioxide (NO_2). The U.S. EPA uses two categories to designate areas with respect to these standards:

- Nonattainment (N)
- Unclassifiable/Attainment (U/A)

The national 1-hour ozone standard was revoked effective June 15, 2005, and the area designations map reflects the 2015 national 8-hour ozone standard of 0.070 ppm. Area designations were finalized on August 3, 2018.

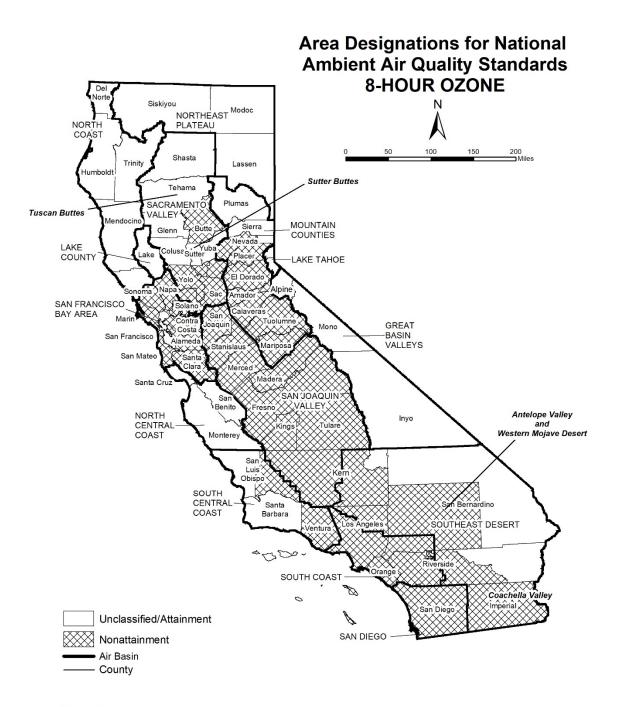
On December 14, 2012, the U.S. EPA established a new national annual primary PM_{2.5} standard of 12.0 μ g/m³. Area designations were finalized in December 2014. The current designation map reflects the most recently revised (2012) annual average standard of 12.0 μ g/m³ as well as the 24-hour standard of 35 μ g/m³, revised in 2006.

On January 22, 2010, the U.S. EPA established a new national 1-hour NO₂ standard of 100 parts per billion (ppb) and retained the annual average standard of 53 ppb. Designations for the primary NO₂ standard became effective on February 29, 2012. All areas of California meet this standard.

Sulfur Dioxide (SO₂). The U.S. EPA uses three categories to designate areas with respect to the 24-hour and annual average sulfur dioxide standards. These designation categories are:

- Nonattainment (N),
- Unclassifiable (U), and
- Unclassifiable/Attainment (U/A).

On June 2, 2010, the U.S. EPA established a new primary 1-hour SO₂ standard of 75 parts per billion (ppb). At the same time, U.S. EPA revoked the 24-hour and annual


average standards. Area designations for the 1-hour SO_2 standard were finalized on December 21, 2017 and are reflected in the area designations map.

Lead (particulate). The U.S. EPA promulgated a new rolling 3-month average lead standard in October 2008 of 0.15 μ g/m³. Designations were made for this standard in November 2010.

Designation Areas

From time to time, the boundaries of the California air basins have been changed to facilitate the planning process. CARB generally initiates these changes, and they are not always reflected in the U.S. EPA's area designations. For purposes of consistency, the maps in this attachment reflect area designation boundaries and nomenclature as promulgated by the U.S. EPA. In some cases, these may not be the same as those adopted by CARB. For example, the national area designations reflect the former Southeast Desert Air Basin. In accordance with Health and Safety Code section 39606.1, CARB redefined this area in 1996 to be the Mojave Desert Air Basin and Salton Sea Air Basin. The definitions and boundaries for all areas designated for the national standards can be found in Title 40, Code of Federal Regulations (CFR), Chapter I, Subchapter C, Part 81.305. They are available on the web at:

https://ecfr.io/Title-40/se40.20.81 1305

Source Date: August 2019 Air Quality Planning and Science Division

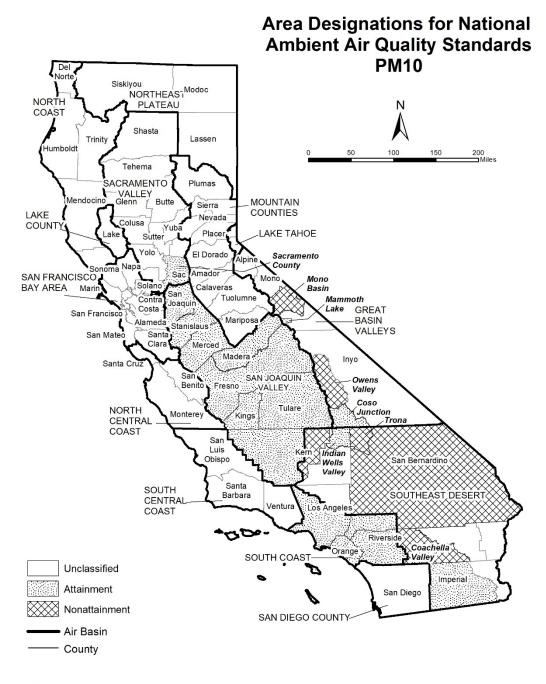
TABLE 11

National Ambient Air Quality Standards Area Designations for 8-Hour Ozone*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		
Amador County	Х	
Calaveras County	Х	
El Dorado County (portion) ¹	Х	
Mariposa County	Х	
Nevada County		
- Western Nevada County	Х	
- Remainder of County		Х
Placer County (portion) ¹	Х	
Plumas County		Х
Sierra County		Х
Tuolumne County	Х	
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		
Butte County	Х	
Colusa County		Х
Glenn County		Х
Sacramento Metro Area ¹	Х	
Shasta County		Х
Sutter County		
- Sutter Buttes	Х	
- Southern portion of Sutter County ¹	Х	
- Remainder of Sutter County		Х
Tehama County		
- Tuscan Buttes	Х	
- Remainder of Tehama County		Х

	N	U/A
SACRAMENTO VALLEY AIR BASIN (cont.)		
Yolo County ¹	Х	
Yuba County		Χ
SAN DIEGO COUNTY	Х	
SAN FRANCISCO BAY AREA AIR BASIN	Х	
SAN JOAQUIN VALLEY AIR BASIN	Х	
SOUTH CENTRAL COAST AIR BASIN ²		
San Luis Obispo County		
- Eastern San Luis Obispo County	Х	
- Remainder of County		Х
Santa Barbara County		Χ
Ventura County		
- Area excluding Anacapa and San Nicolas Islands	Х	
- Channel Islands ²		Χ
SOUTH COAST AIR BASIN ²	Х	
SOUTHEAST DESERT AIR BASIN		
Kern County (portion)	Х	
- Indian Wells Valley		Χ
Imperial County	Х	
Los Angeles County (portion)	Х	
Riverside County (portion)		
- Coachella Valley	Х	
- Non-AQMA portion		Х
San Bernardino County		
- Western portion (AQMA)	Х	
- Eastern portion (non-AQMA)		Х

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. NOTE: This map and table reflect the 2015 8-hour ozone standard of 0.070 ppm.


¹ For this purpose, the Sacramento Metro Area comprises all of Sacramento and Yolo Counties, the Sacramento Valley Air Basin portion of Solano County, the southern portion of Sutter County, and the Sacramento Valley and Mountain Counties Air Basins portions of Placer and El Dorado counties.

² South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands. Ventura County includes Anacapa and San Nicolas Islands.

South Coast Air Basin:

Los Angeles County includes San Clemente and Santa Catalina Islands.

Source Date: October 2020 Air Quality Planning and Science Division

TABLE 12

National Ambient Air Quality Standards Area Designations for Suspended Particulate Matter (PM_{10})*

	N	U	Α
GREAT BASIN VALLEYS AIR BASIN			
Alpine County		Χ	
Inyo County		•	
- Owens Valley Planning Area	Х		
- Coso Junction			Х
- Remainder of County		Χ	
Mono County			
- Mammoth Lake Planning Area			Х
- Mono Lake Basin	Х		
- Remainder of County		Χ	
LAKE COUNTY AIR BASIN		Χ	
LAKE TAHOE AIR BASIN		Χ	
MOUNTAIN COUNTIES AIR BASIN		•	
Placer County (portion) ¹		Χ	
Remainder of Air Basin		Χ	
NORTH CENTRAL COAST AIR BASIN		Χ	
NORTH COAST AIR BASIN		Χ	
NORTHEAST PLATEAU AIR BASIN		Χ	
SACRAMENTO VALLEY AIR BASIN			
Butte County		Χ	
Colusa County		Χ	
Glenn County		Χ	
Placer County (portion) ¹		Χ	
Sacramento County ²			Х
Shasta County		Χ	
Solano County (portion)		Χ	
Sutter County		Χ	
Tehama County		Χ	
Yolo County		Χ	
Yuba County		Χ	

	-	ı	ı
	N	U	Α
SAN DIEGO COUNTY		Χ	
SAN FRANCISCO BAY AREA AIR BASIN		Χ	
SAN JOAQUIN VALLEY AIR BASIN			Χ
SOUTH CENTRAL COAST AIR BASIN		Χ	
SOUTH COAST AIR BASIN			Χ
SOUTHEAST DESERT AIR BASIN			
Eastern Kern County			
- Indian Wells Valley			Χ
- Portion within San Joaquin Valley Planning Area	Х		
- Remainder of County		Χ	
Imperial County			
- Imperial Valley Planning Area ³			Χ
- Remainder of County		Χ	
Los Angeles County (portion)		Χ	
Riverside County (portion)			
- Coachella Valley ⁴	Х		
- Non-AQMA portion		Χ	
San Bernardino County			
- Trona	Х		
- Remainder of County	Х		

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

¹ U.S. EPA designation puts the Sacramento Valley Air Basin portion of Placer County in the Mountain Counties Air Basin.

 $^{^{2}}$ Air quality in Sacramento County meets the national PM₁₀ standards. The request for redesignation to attainment was approved by U.S. EPA in September 2013.

³ The request for redesignation to attainment for the Imperial Valley Planning Area was approved by U.S. EPA and in September 2020, effective October 2020.

 $^{^4}$ Air quality in Coachella Valley meets the national PM $_{10}$ standards. A request for redesignation to attainment has been submitted to U.S. EPA.

FIGURE 13

Area Designations for National Ambient Air Quality Standards PM2.5

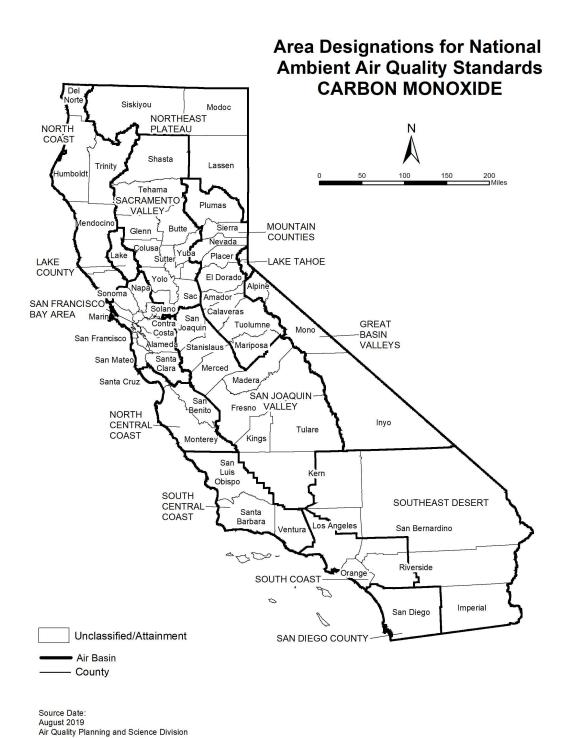
Air Quality Planning and Science Division

TABLE 13

National Ambient Air Quality Standards Area Designations for Fine Particulate Matter (PM_{2.5})

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		
Plumas County		
- Portola Valley Portion of Plumas	Х	
- Remainder of Plumas County		Х
Remainder of Air Basin		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		
Sacramento Metro Area ¹	Х	
Sutter County		Х
Yuba County (portion)		Х
Remainder of Air Basin		Х

	N	U/A
SAN DIEGO COUNTY		Χ
SAN FRANCISCO BAY AREA AIR BASIN ²	Χ	
SAN JOAQUIN VALLEY AIR BASIN	Χ	
SOUTH CENTRAL COAST AIR BASIN		Χ
SOUTH COAST AIR BASIN ³	Χ	
SOUTHEAST DESERT AIR BASIN		
Imperial County (portion) ⁴	Χ	
Remainder of Air Basin		Х

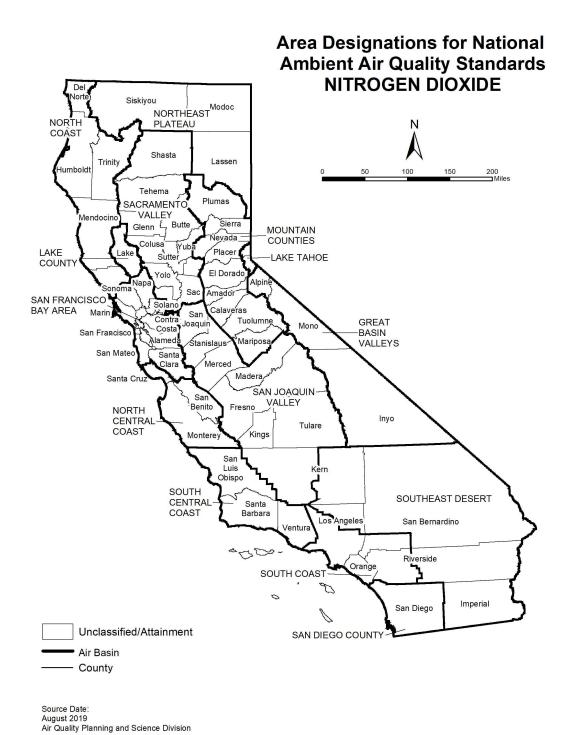

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. This map reflects the 2006 24-hour $PM_{2.5}$ standard as well as the 1997 and 2012 $PM_{2.5}$ annual standards.

¹ For this purpose, Sacramento Metro Area comprises all of Sacramento and portions of El Dorado, Placer, Solano, and Yolo Counties. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

 $^{^2}$ Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

 $^{^3}$ Those lands of the Santa Rosa Band of Cahulla Mission Indians in Riverside County are designated Unclassifiable/Attainment.

 $^{^4}$ That portion of Imperial County encompassing the urban and surrounding areas of Brawley, Calexico, El Centro, Heber, Holtville, Imperial, Seeley, and Westmorland. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

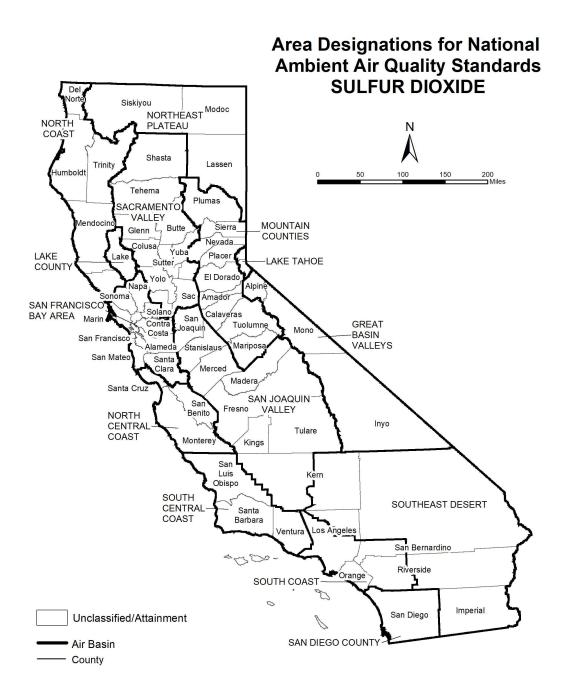

TABLE 14

National Ambient Air Quality Standards Area Designations for Carbon Monoxide*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х

	N	U/A
SACRAMENTO VALLEY AIR BASIN		Χ
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		Χ
SOUTHEAST DESERT AIR BASIN		Х

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.


TABLE 15

National Ambient Air Quality Standards Area Designations for Nitrogen Dioxide*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х

	N	U/A
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		Х

 $^{^{\}star}$ Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Source Date: August 2019 Air Quality Planning and Science Division

TABLE 16

National Ambient Air Quality Standards Area Designations for Sulfur Dioxide*

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Χ
LAKE COUNTY AIR BASIN		Χ
LAKE TAHOE AIR BASIN		Χ
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Χ
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Χ
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		
Fresno County		Χ
Kern County (portion)		Х
Kings County		Х
Madera County		Χ
Merced County		Х
San Joaquin County		Х
Stanislaus County		Х
Tulare County		Х

	N	U/A
SOUTH CENTRAL COAST AIR BASIN		
San Luis Obispo County		Х
Santa Barbara County		Х
Ventura County		Х
Channel Islands ¹		Х
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		
Imperial County		Х
Remainder of Air Basin		Х

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. NOTE: This map and table reflect the 2010 1-hour SO_2 standard of 75 ppb.

¹ South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands. Ventura County includes Anacapa and San Nicolas Islands.

Note that the San Clemente and Santa Catalina Islands are considered part of Los Angeles County, and therefore, are included as part of the South Coast Air Basin.

Area Designations for National Ambient Air Quality Standards LEAD Siskiyou Modoc NORTHEAST NORTH PLATEAU COAST Shasta 50 100 150 Lassen 200 Miles Humboldt Tehama ACRAMENTO VALLEY-MOUNTAIN € Butte Sierra Glenn COUNTIES Nevada sa Yuba Sutter Placer LAKE LAKE TAHOE COUNTY El Dorad SAN FRANCISCO Calaveras **BAY AREA GREAT** Tuolumne Joaquir Mono Costa BASIN San Francisco Alamed Stanislaus Mariposa **VALLEYS** Santa Merced Santa Cruz Madera SAN JOAQUIN San Benito Fresno VALLEY NORTH CENTRAL COAST Inyo Tulare Kings Montere San Obispo SOUTH SOUTHEAST DESERT CENTRAL COAST Barbara San Bernardino Riverside SOUTH COAST Imperial Unclassified/Attainment San Diego Nonattainment SAN DIEGO COUNTY Air Basin - County

Source Date: August 2019 Air Quality Planning and Science Division

TABLE 17

National Ambient Air Quality Standards Area Designations for Lead (particulate)

	N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		Х

	N	U/A
SAN DIEGO COUNTY		Χ
SAN FRANCISCO BAY AREA AIR BASIN		Χ
SAN JOAQUIN VALLEY AIR BASIN		Χ
SOUTH CENTRAL COAST AIR BASIN		Χ
SOUTH COAST AIR BASIN		
Los Angeles County (portion) ¹	Χ	
Remainder of Air Basin		Χ
SOUTHEAST DESERT AIR BASIN		Х

¹ Portion of County in Air Basin, not including Channel Islands

This page intentionally left blank

APPENDIX 3.1:

CALEEMOD EMISSIONS MODEL OUTPUTS

14329-Patterson Commerce Center (Proposed) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2023) Unmitigated
 - 3.3. Site Preparation (2023) Unmitigated
 - 3.5. Grading (2023) Unmitigated
 - 3.7. Building Construction (2023) Unmitigated

- 3.9. Building Construction (2024) Unmitigated
- 3.11. Paving (2024) Unmitigated
- 3.13. Architectural Coating (2023) Unmitigated
- 3.15. Architectural Coating (2024) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.2. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use

- 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated

- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated

- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment
 - 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated

- 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	14329-Patterson Commerce Center (Proposed)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	9.00
Location	33.85471411289154, -117.25488206050593
County	Riverside-South Coast
City	Perris
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5580
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	237	1000sqft	5.45	237,438	80,733	_	_	_
Manufacturing	26.4	1000sqft	0.61	26,382	0.00	_	_	_
Parking Lot	204	Space	1.23	0.00	0.00	_	_	_

Other Asphalt Surfaces	292	1000sqft	6.71	0.00	0.00	_	_	_
User Defined Industrial	264	User Defined Unit	0.00	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.17	1.07	20.2	38.0	0.06	0.21	5.91	6.01	0.19	2.74	2.85	_	7,129	7,129	0.29	0.24	10.1	7,163
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.29	10.3	18.9	28.1	0.04	0.25	2.05	2.30	0.24	0.51	0.75	_	5,714	5,714	0.22	0.25	0.30	5,796
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.58	0.77	7.21	14.1	0.02	0.08	1.09	1.17	0.08	0.32	0.39	_	2,922	2,922	0.11	0.11	1.95	2,960
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.11	0.14	1.32	2.57	< 0.005	0.01	0.20	0.21	0.01	0.06	0.07	_	484	484	0.02	0.02	0.32	490

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	1.17	1.07	20.2	38.0	0.06	0.21	5.91	6.01	0.19	2.74	2.85	_	7,129	7,129	0.29	0.24	10.1	7,163
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	1.29	9.70	13.9	27.0	0.04	0.18	2.04	2.22	0.17	0.49	0.66	_	5,714	5,714	0.22	0.25	0.30	5,796
2024	0.73	10.3	18.9	28.1	0.04	0.25	2.05	2.30	0.24	0.51	0.75	_	4,320	4,320	0.18	0.04	_	4,335
Average Daily	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.58	0.77	7.21	14.1	0.02	0.08	1.09	1.17	0.08	0.32	0.39	_	2,922	2,922	0.11	0.11	1.95	2,960
2024	0.05	0.77	1.31	1.95	< 0.005	0.02	0.16	0.17	0.02	0.04	0.06	_	303	303	0.01	< 0.005	_	304
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2023	0.11	0.14	1.32	2.57	< 0.005	0.01	0.20	0.21	0.01	0.06	0.07	_	484	484	0.02	0.02	0.32	490
2024	0.01	0.14	0.24	0.36	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	50.1	50.1	< 0.005	< 0.005	_	50.3

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	5.19	10.9	14.7	40.5	0.16	0.36	3.32	3.68	0.36	0.66	1.02	255	19,408	19,663	26.5	2.09	54.5	21,001
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	3.04	8.90	15.3	24.7	0.16	0.35	3.32	3.66	0.34	0.66	1.00	255	18,984	19,239	26.5	2.10	8.10	20,534

Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	3.90	9.72	13.5	29.7	0.14	0.31	2.89	3.20	0.31	0.58	0.89	255	17,121	17,376	26.4	1.89	24.9	18,626
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.71	1.77	2.47	5.42	0.03	0.06	0.53	0.58	0.06	0.11	0.16	42.2	2,835	2,877	4.38	0.31	4.12	3,084

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.80	2.40	12.6	27.3	0.15	0.21	3.32	3.52	0.20	0.66	0.86	_	15,729	15,729	0.37	1.78	47.6	16,316
Area	2.04	8.25	0.10	11.5	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.2	47.2	< 0.005	< 0.005	_	47.4
Energy	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	3,146	3,146	0.29	0.02	_	3,158
Water	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Waste	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Stationar y	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	5.19	10.9	14.7	40.5	0.16	0.36	3.32	3.68	0.36	0.66	1.02	255	19,408	19,663	26.5	2.09	54.5	21,001
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.69	2.28	13.3	23.0	0.15	0.21	3.32	3.52	0.20	0.66	0.86	_	15,353	15,353	0.38	1.79	1.24	15,897
Area	_	6.37	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_
Energy	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	3,146	3,146	0.29	0.02	_	3,158
Water	_	_	<u> </u>	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907

Waste	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00		483
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Stationar y	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	3.04	8.90	15.3	24.7	0.16	0.35	3.32	3.66	0.34	0.66	1.00	255	18,984	19,239	26.5	2.10	8.10	20,534
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	2.31	1.95	11.9	20.5	0.13	0.18	2.89	3.07	0.17	0.58	0.75	_	13,528	13,528	0.33	1.59	18.0	14,027
Area	1.40	7.66	0.07	7.86	< 0.005	0.01	_	0.01	0.01	_	0.01	_	32.3	32.3	< 0.005	< 0.005	_	32.4
Energy	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	3,146	3,146	0.29	0.02	_	3,158
Water	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Waste	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Stationar y	0.03	0.02	0.06	0.06	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.8	11.8	< 0.005	< 0.005	_	11.8
Total	3.90	9.72	13.5	29.7	0.14	0.31	2.89	3.20	0.31	0.58	0.89	255	17,121	17,376	26.4	1.89	24.9	18,626
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.42	0.36	2.17	3.74	0.02	0.03	0.53	0.56	0.03	0.11	0.14	_	2,240	2,240	0.06	0.26	2.98	2,322
Area	0.25	1.40	0.01	1.43	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.35	5.35	< 0.005	< 0.005	_	5.37
Energy	0.03	0.02	0.28	0.23	< 0.005	0.02	_	0.02	0.02	_	0.02	_	521	521	0.05	< 0.005	_	523
Water	_	_	_	_	_	_	_	_	_	_	_	19.4	66.8	86.1	1.99	0.05	_	150
Waste	_	_	_	_	_	_	_	_	_	_	_	22.8	0.00	22.8	2.28	0.00	_	79.9
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.14	1.14
Stationar y	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.95	1.95	< 0.005	< 0.005	-	1.96
Total	0.71	1.77	2.47	5.42	0.03	0.06	0.53	0.58	0.06	0.11	0.16	42.2	2,835	2,877	4.38	0.31	4.12	3,084

3. Construction Emissions Details

3.1. Demolition (2023) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.41	11.9	18.2	0.03	0.20	_	0.20	0.19	_	0.19	_	3,425	3,425	0.14	0.03	_	3,437
Demolitio n	_	_	_	_	_	_	0.26	0.26	_	0.04	0.04	_	_			_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.33	0.50	< 0.005	0.01	_	0.01	0.01	_	0.01	-	93.8	93.8	< 0.005	< 0.005	_	94.2
Demolitio n	_	_	_	-	-	_	0.01	0.01	_	< 0.005	< 0.005	-	-	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.06	0.09	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	15.5	15.5	< 0.005	< 0.005	_	15.6
Demolitio n	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.09	0.08	0.08	1.36	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	220	220	0.01	0.01	0.94	224
Vendor	< 0.005	< 0.005	0.07	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	60.0	60.0	< 0.005	0.01	0.17	62.9
Hauling	0.01	< 0.005	0.25	0.06	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	220	220	< 0.005	0.03	0.46	231
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.62	5.62	< 0.005	< 0.005	0.01	5.70
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.64	1.64	< 0.005	< 0.005	< 0.005	1.72
Hauling	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.03	6.03	< 0.005	< 0.005	0.01	6.33
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.93	0.93	< 0.005	< 0.005	< 0.005	0.94
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.27	0.27	< 0.005	< 0.005	< 0.005	0.28
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.00	1.00	< 0.005	< 0.005	< 0.005	1.05

3.3. Site Preparation (2023) - Unmitigated

Location	TOG	ROG		СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.68	15.7	30.0	0.05	0.10	_	0.10	0.10	_	0.10	_	5,530	5,530	0.22	0.04	_	5,549

_							T	T		1	1							
Dust From Material Movemen	<u> </u>	_		_	_	_	5.66	5.66	_	2.69	2.69	_	_	_		_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.43	0.82	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	152	152	0.01	< 0.005	_	152
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.16	0.16	_	0.07	0.07	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.08	0.15	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	25.1	25.1	< 0.005	< 0.005	_	25.2
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.10	0.09	0.09	1.59	0.00	0.00	0.23	0.23	0.00	0.05	0.05	_	257	257	0.01	0.01	1.10	261
Vendor	< 0.005	< 0.005	0.07	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	60.0	60.0	< 0.005	0.01	0.17	62.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	6.55	6.55	< 0.005	< 0.005	0.01	6.65
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.64	1.64	< 0.005	< 0.005	< 0.005	1.72
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.09	1.09	< 0.005	< 0.005	< 0.005	1.10
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.27	0.27	< 0.005	< 0.005	< 0.005	0.28
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Grading (2023) - Unmitigated

Location		ROG	NOx	СО				PM10T	PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.82	19.9	36.2	0.06	0.18	_	0.18	0.18	_	0.18	_	6,715	6,715	0.27	0.05	_	6,738
Dust From Material Movemen		_	_	_	_	_	2.67	2.67	_	0.98	0.98	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Average Daily		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.04	1.09	1.98	< 0.005	0.01	_	0.01	0.01	_	0.01	_	368	368	0.01	< 0.005	_	369
Dust From Material Movemen	<u> </u>	_	_	_	_	_	0.15	0.15	_	0.05	0.05	_	-	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.20	0.36	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	60.9	60.9	< 0.005	< 0.005	_	61.1
Dust From Material Movemen		_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	-	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.12	0.11	0.11	1.81	0.00	0.00	0.26	0.26	0.00	0.06	0.06	_	294	294	0.01	0.01	1.26	298
Vendor	0.01	< 0.005	0.14	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	120	120	< 0.005	0.02	0.33	126
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.08	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	15.0	15.0	< 0.005	< 0.005	0.03	15.2
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.58	6.58	< 0.005	< 0.005	0.01	6.88

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.48	2.48	< 0.005	< 0.005	< 0.005	2.52
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.09	1.09	< 0.005	< 0.005	< 0.005	1.14
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2023) - Unmitigated

	O O . 1 O	1.57 4.4	<i>,</i>	J, J-	.0	,		,,	. aa,	· · · , · · · · ·								
Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.45	10.3	16.2	0.03	0.13	_	0.13	0.12	_	0.12	_	2,630	2,630	0.11	0.02	_	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.45	10.3	16.2	0.03	0.13	_	0.13	0.12	_	0.12	_	2,630	2,630	0.11	0.02	_	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.19	4.41	6.94	0.01	0.05	_	0.05	0.05	_	0.05	_	1,127	1,127	0.05	0.01	_	1,131
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Road Equipmer		0.03	0.80	1.27	< 0.005	0.01	_	0.01	0.01	_	0.01		187	187	0.01	< 0.005	_	187
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.65	0.59	0.59	10.0	0.00	0.00	1.45	1.45	0.00	0.34	0.34	_	1,628	1,628	0.07	0.05	6.98	1,653
Vendor	0.06	0.03	1.30	0.40	0.01	0.02	0.30	0.32	0.02	0.08	0.10	_	1,111	1,111	0.02	0.17	3.09	1,164
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.62	0.56	0.68	7.62	0.00	0.00	1.45	1.45	0.00	0.34	0.34	_	1,496	1,496	0.07	0.05	0.18	1,514
Vendor	0.06	0.03	1.36	0.42	0.01	0.02	0.30	0.32	0.02	0.08	0.10	_	1,111	1,111	0.02	0.17	0.08	1,161
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	0.26	0.24	0.29	3.42	0.00	0.00	0.62	0.62	0.00	0.14	0.14	_	649	649	0.03	0.02	1.29	658
Vendor	0.02	0.01	0.59	0.18	< 0.005	0.01	0.13	0.14	0.01	0.04	0.04	_	476	476	0.01	0.07	0.58	498
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.05	0.04	0.05	0.62	0.00	0.00	0.11	0.11	0.00	0.03	0.03	_	107	107	0.01	< 0.005	0.21	109
Vendor	< 0.005	< 0.005	0.11	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	78.8	78.8	< 0.005	0.01	0.10	82.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction (2024) - Unmitigated

Loca	ation	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
------	-------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.45	10.3	16.2	0.03	0.12	_	0.12	0.12	_	0.12	_	2,630	2,630	0.11	0.02	_	2,639
Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Average Daily	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	0.80	1.27	< 0.005	0.01	_	0.01	0.01	_	0.01	_	206	206	0.01	< 0.005	_	207
Onsite truck	_	_	_	-	-	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.15	0.23	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	34.1	34.1	< 0.005	< 0.005	_	34.2
Onsite truck	_	_	_	-	-	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	1.36	1.36	_	0.34	0.34	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.24	0.24	_	0.06	0.06	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	0.11	0.11	_	0.03	0.03	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.02	0.02	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	0.02	0.02	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_

3.11. Paving (2024) - Unmitigated

Location	TOG	ROG	NOx	СО			PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.23	7.21	10.6	0.01	0.09	_	0.09	0.08	_	0.08	_	1,512	1,512	0.06	0.01	_	1,517
Paving	_	1.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.39	0.58	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	82.8	82.8	< 0.005	< 0.005	_	83.1
Paving	_	0.06	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.07	0.11	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.7	13.7	< 0.005	< 0.005	_	13.8
Paving	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	0.18	0.18	_	0.05	0.05	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	0.01	0.01	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_

3.13. Architectural Coating (2023) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	1.43	1.28	< 0.005	0.04	_	0.04	0.04	_	0.04	_	178	178	0.01	< 0.005	_	179
Architect ural Coatings	_	8.52	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.04	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.88	4.88	< 0.005	< 0.005	_	4.89
Architect ural Coatings	_	0.23	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.81	0.81	< 0.005	< 0.005	_	0.81
Architect ural Coatings	_	0.04	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.12	0.11	0.14	1.52	0.00	0.00	0.29	0.29	0.00	0.07	0.07	_	299	299	0.01	0.01	0.04	303
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.30	8.30	< 0.005	< 0.005	0.02	8.42
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.37	1.37	< 0.005	< 0.005	< 0.005	1.39
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Architectural Coating (2024) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.03	1.43	1.28	< 0.005	0.04	_	0.04	0.04	_	0.04	_	178	178	0.01	< 0.005	_	179

Architect Coatings	_	8.52	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Average Daily	_	_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	_
Off-Road Equipmen		< 0.005	0.11	0.10	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	13.9	13.9	< 0.005	< 0.005	_	14.0
Architect ural Coatings	_	0.67	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	2.31	2.31	< 0.005	< 0.005	_	2.32
Architect ural Coatings	_	0.12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	-	_	_	_	-	_	_	-	-	_	-	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	0.27	0.27	_	0.07	0.07	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Average Daily	_		_	_		_	_	_	_	_	_	_	_	_	_		_	

Worker	_	_	_	_	_	_	0.02	0.02	_	0.01	0.01	_	_	_	_	_	_	_
Vendor	_	_	<u> </u>	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Vendor	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_
Hauling	_	_	_	_	_	_	0.00	0.00	_	0.00	0.00	_	_	_	_	_	_	_

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	1.87	1.71	0.99	19.2	0.04	0.02	1.37	1.38	0.02	0.23	0.25	_	3,886	3,886	0.15	0.10	15.3	3,935
Manufact uring	0.51	0.47	0.27	5.27	0.01	< 0.005	0.37	0.38	< 0.005	0.06	0.07	_	1,065	1,065	0.04	0.03	4.18	1,078
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

User Defined Industrial	0.43	0.22	11.4	2.81	0.10	0.18	1.57	1.76	0.18	0.37	0.54	_	10,778	10,778	0.18	1.65	28.2	11,303
Total	2.80	2.40	12.6	27.3	0.15	0.21	3.32	3.52	0.20	0.66	0.86	_	15,729	15,729	0.37	1.78	47.6	16,316
Daily, Winter (Max)	_	_	_	_	_	_	-	-	_	_	-	_	_	_	-	_	_	_
Unrefrige rated Warehou se-No Rail	1.78	1.63	1.10	15.9	0.04	0.02	1.37	1.38	0.02	0.23	0.25	_	3,588	3,588	0.16	0.11	0.40	3,624
Manufact uring	0.49	0.45	0.30	4.35	0.01	< 0.005	0.37	0.38	< 0.005	0.06	0.07	_	983	983	0.04	0.03	0.11	993
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	0.42	0.21	11.9	2.83	0.10	0.18	1.57	1.76	0.18	0.37	0.54	_	10,781	10,781	0.18	1.65	0.73	11,279
Total	2.69	2.28	13.3	23.0	0.15	0.21	3.32	3.52	0.20	0.66	0.86	_	15,353	15,353	0.38	1.79	1.24	15,897
Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.28	0.26	0.18	2.63	0.01	< 0.005	0.22	0.22	< 0.005	0.04	0.04	_	525	525	0.02	0.02	0.95	532
Manufact uring	0.07	0.06	0.04	0.65	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.01	_	130	130	0.01	< 0.005	0.24	131
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

User Defined Industrial	0.07	0.03	1.95	0.46	0.02	0.03	0.25	0.28	0.03	0.06	0.09	_	1,584	1,584	0.03	0.24	1.79	1,659
Total	0.42	0.36	2.17	3.74	0.02	0.03	0.53	0.56	0.03	0.11	0.14	_	2,240	2,240	0.06	0.26	2.98	2,322

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,044	1,044	0.10	0.01	_	1,050
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	241	241	0.02	< 0.005	_	243
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	44.8	44.8	< 0.005	< 0.005	_	45.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,330	1,330	0.13	0.02	_	1,337
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_

Unrefrige rated	_	_	_	_	_	_	_	_	_	_	_	_	1,044	1,044	0.10	0.01	-	1,050
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	241	241	0.02	< 0.005	_	243
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	44.8	44.8	< 0.005	< 0.005	-	45.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,330	1,330	0.13	0.02	_	1,337
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	-	_	_	_	_	_	_	_	_	173	173	0.02	< 0.005	_	174
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	39.9	39.9	< 0.005	< 0.005	_	40.2
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	7.42	7.42	< 0.005	< 0.005	-	7.47
Other Asphalt Surfaces	_	_	_	_	_	-	_	_	_	_	_	-	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	220	220	0.02	< 0.005	_	221

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	-	_	-	_	-	_	-	-	_	_	-	-	_	_	-
Unrefrige rated Warehou se-No Rail	0.13	0.07	1.22	1.02	0.01	0.09	_	0.09	0.09	_	0.09	_	1,453	1,453	0.13	< 0.005	_	1,457
Manufact uring	0.03	0.02	0.30	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	363	363	0.03	< 0.005	-	364
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	1,816	1,816	0.16	< 0.005	_	1,821
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.13	0.07	1.22	1.02	0.01	0.09	_	0.09	0.09	_	0.09	_	1,453	1,453	0.13	< 0.005	_	1,457
Manufact uring	0.03	0.02	0.30	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	363	363	0.03	< 0.005	-	364
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00

User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	1,816	1,816	0.16	< 0.005	_	1,821
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.02	0.01	0.22	0.19	< 0.005	0.02	_	0.02	0.02	_	0.02	_	241	241	0.02	< 0.005	_	241
Manufact uring	0.01	< 0.005	0.06	0.05	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	60.1	60.1	0.01	< 0.005	_	60.3
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.03	0.02	0.28	0.23	< 0.005	0.02	_	0.02	0.02	_	0.02	_	301	301	0.03	< 0.005	_	301

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.67	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect Coatings	_	0.70	_	_	_		_	_	_	_	_	_	_	_	_	_		_
Landsca pe Equipme nt	2.04	1.88	0.10	11.5	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.2	47.2	< 0.005	< 0.005	_	47.4
Total	2.04	8.25	0.10	11.5	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.2	47.2	< 0.005	< 0.005	_	47.4
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.67	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.37	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.04	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.25	0.24	0.01	1.43	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.35	5.35	< 0.005	< 0.005	_	5.37
Total	0.25	1.40	0.01	1.43	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.35	5.35	< 0.005	< 0.005	_	5.37

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	-	-	-	_	-	-	_	-	_	_	-	-	-	_	-
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	_	_	_	_	_	105	364	469	10.8	0.26	_	817
Manufact uring	_	_	_	_	_	_	_	_	_	-	_	11.7	39.7	51.4	1.20	0.03	-	90.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	-	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	-	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	
Unrefrige rated Warehou se-No Rail	_	_	-	_	_	_	_	-	-	_	_	105	364	469	10.8	0.26	_	817
Manufact uring	_	_	_	_	_	_	_	_	_	-	_	11.7	39.7	51.4	1.20	0.03	_	90.0
Parking Lot	_	_	-	_	_	-	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00

User Defined Industrial	_				_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Annual	_		_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_		_	_	_	_	_		17.4	60.2	77.6	1.79	0.04	_	135
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	1.94	6.57	8.50	0.20	< 0.005	_	14.9
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	19.4	66.8	86.1	1.99	0.05	_	150

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige rated Warehou se-No	_	_		_	_	_	_	_	_	_	_	120	0.00	120	12.0	0.00	_	421
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	17.6	0.00	17.6	1.76	0.00	_	61.7
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	120	0.00	120	12.0	0.00	_	421
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	17.6	0.00	17.6	1.76	0.00	_	61.7
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	Ī_

Unrefrige Warehous Rail		_	_	_	_	_	_	_	_	_	_	19.9	0.00	19.9	1.99	0.00	_	69.7
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	2.92	0.00	2.92	0.29	0.00	_	10.2
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	22.8	0.00	22.8	2.28	0.00	_	79.9

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG		СО		PM10E			PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manufact uring	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	6.87	6.87
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.14	1.14
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.14	1.14

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type		ROG								PM2.5D		BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

				<i>y</i>														
Equipme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																		
Type																		

Daily, Summer (Max)	_	_	_	_	_		_	_	_	_	_	_		_	_	_	-	_
Fire Pump	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	-	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	-	82.7	82.7	< 0.005	< 0.005	_	83.0
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fire Pump	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fire Pump	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.95	1.95	< 0.005	< 0.005	_	1.96
Total	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.95	1.95	< 0.005	< 0.005	_	1.96

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_		_	_	_	_	_	_		_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n		ROG		со	SO2	PM10E			PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	-	-	_	_	-	-	-	_	-	-	_	_	-	-	-
Avoided	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	4/3/2023	4/14/2023	5.00	10.0	_
Site Preparation	Site Preparation	4/15/2023	4/28/2023	5.00	10.0	_
Grading	Grading	4/29/2023	5/26/2023	5.00	20.0	_
Building Construction	Building Construction	5/27/2023	2/9/2024	5.00	185	_
Paving	Paving	1/15/2024	2/9/2024	5.00	20.0	_
Architectural Coating	Architectural Coating	12/18/2023	2/9/2024	5.00	40.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor

Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Interim	1.00	8.00	33.0	0.73
Demolition	Excavators	Diesel	Tier 4 Interim	3.00	8.00	36.0	0.38
Demolition	Rubber Tired Dozers	Diesel	Tier 4 Interim	2.00	8.00	367	0.40
Site Preparation	Rubber Tired Dozers	Diesel	Tier 4 Interim	3.00	8.00	367	0.40
Grading	Excavators	Diesel	Tier 4 Interim	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Tier 4 Interim	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 4 Interim	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Tier 4 Interim	2.00	8.00	423	0.48
Building Construction	Cranes	Diesel	Tier 4 Interim	1.00	8.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 4 Interim	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Tier 4 Interim	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Backh oes	Diesel	Tier 4 Interim	3.00	8.00	84.0	0.37
Building Construction	Welders	Diesel	Tier 4 Interim	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Tier 4 Interim	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Tier 4 Interim	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Tier 4 Interim	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Tier 4 Interim	1.00	8.00	37.0	0.48
Site Preparation	Crawler Tractors	Diesel	Tier 4 Interim	4.00	8.00	87.0	0.43
Grading	Crawler Tractors	Diesel	Tier 4 Interim	2.00	8.00	87.0	0.43

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	_
Demolition	Worker	15.0	18.5	LDA,LDT1,LDT2

Demolition	Vendor	1.91	10.2	HHDT,MHDT
Demolition	Hauling	3.10	20.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Site Preparation	_	_	_	_
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	1.91	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	3.82	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	111	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	35.4	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	_	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	22.2	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	10.2	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT

Architectural Coating Onsite truck	_	_	HHDT
------------------------------------	---	---	------

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	395,730	131,910	20,749

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (Building Square Footage)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	2,627	_
Site Preparation	_	_	35.0	0.00	_
Grading	_	_	80.0	0.00	_
Paving	0.00	0.00	0.00	0.00	7.94

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt

Unrefrigerated Warehouse-No Rail	0.00	0%
Manufacturing	0.00	0%
Parking Lot	1.23	100%
Other Asphalt Surfaces	6.71	100%
User Defined Industrial	0.00	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2023	0.00	349	0.03	< 0.005
2024	0.00	349	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	416	237	227	132,684	5,142	2,932	2,812	1,640,106
Manufacturing	114	35.6	23.6	32,807	1,409	440	292	405,533
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	102	63.1	60.9	33,084	3,482	2,150	2,078	1,128,163

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	395,730	131,910	20,749

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Warehouse-No Rail	1,092,773	349	0.0330	0.0040	4,533,209
Manufacturing	252,451	349	0.0330	0.0040	1,133,116
Parking Lot	46,935	349	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00
User Defined Industrial	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	54,907,538	1,280,079
Manufacturing	6,100,838	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00
User Defined Industrial	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	223	0.00
Manufacturing	32.7	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00
User Defined Industrial	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Manufacturing	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
- qu.p	. 4.5 , p 5	g	1. tannos, por 2 ay			

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
Fire Pump	Diesel	1.00	0.50	26.0	197	0.73

5.16.2. Process Boilers

Equations and Times	Fuel Tors	Missonhous	Boiler Rating (MMBtu/hr)	Daily Heat Janut (MMD4, /day)	A constal I look look to MANADA(vw)
Equipment Type	Fuel Type	Number	Boller Rating (MMBtu/nr)	Dally Heat Input (MIMBtu/day)	Annuai Heat Input (MMBtu/yr)
 1 1 21			3 (

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
vegetation Land Ose Type	vegetation con Type	Illitial Acres	i ilai Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Final Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
21			· • • • • • • • • • • • • • • • • • • •

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.10	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	6.94	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	4	0	0	N/A

Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	4	1	1	4
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.			
Indicator	Result for Project Census Tract		
Exposure Indicators	_		
AQ-Ozone	97.6		
AQ-PM	53.3		
AQ-DPM	47.8		
Drinking Water	10.2		
Lead Risk Housing	22.0		
Pesticides	58.8		
Toxic Releases	37.7		
Traffic	81.9		
Effect Indicators	_		
CleanUp Sites	69.4		
Groundwater	0.00		
Haz Waste Facilities/Generators	53.5		
Impaired Water Bodies	0.00		
Solid Waste	40.1		
Sensitive Population	_		
Asthma	65.6		
Cardio-vascular	90.6		
Low Birth Weights	62.9		
Socioeconomic Factor Indicators			
Education	74.7		
Housing	57.9		

Linguistic	53.4
Poverty	64.5
Unemployment	15.8

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	36.04516874
Employed	38.00846914
Median HI	_
Education	_
Bachelor's or higher	28.6154241
High school enrollment	100
Preschool enrollment	5.440780187
Transportation	_
Auto Access	94.58488387
Active commuting	6.723983062
Social	_
2-parent households	87.71974849
Voting	9.636853587
Neighborhood	_
Alcohol availability	84.04978827
Park access	11.88245862
Retail density	29.21852945
Supermarket access	12.06210702
Tree canopy	0.590273322

Housing	-
Homeownership	79.23777749
Housing habitability	40.67753112
Low-inc homeowner severe housing cost burden	12.19042731
Low-inc renter severe housing cost burden	27.61452586
Uncrowded housing	47.8121391
Health Outcomes	_
Insured adults	26.49813936
Arthritis	79.8
Asthma ER Admissions	42.9
High Blood Pressure	64.8
Cancer (excluding skin)	87.6
Asthma	27.9
Coronary Heart Disease	81.5
Chronic Obstructive Pulmonary Disease	59.8
Diagnosed Diabetes	52.6
Life Expectancy at Birth	37.8
Cognitively Disabled	88.7
Physically Disabled	83.0
Heart Attack ER Admissions	7.5
Mental Health Not Good	28.5
Chronic Kidney Disease	64.9
Obesity	17.5
Pedestrian Injuries	92.5
Physical Health Not Good	37.9
Stroke	70.4
Health Risk Behaviors	_

Binge Drinking	30.9
Current Smoker	25.4
No Leisure Time for Physical Activity	29.5
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	35.2
Elderly	90.4
English Speaking	42.3
Foreign-born	59.5
Outdoor Workers	11.9
Climate Change Adaptive Capacity	_
Impervious Surface Cover	72.4
Traffic Density	65.3
Traffic Access	23.0
Other Indices	_
Hardship	70.6
Other Decision Support	_
2016 Voting	23.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	69.0
Healthy Places Index Score for Project Location (b)	30.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Taken From Site Plan
Construction: Construction Phases	Building, Paving, and Architectural Coating overlap to present conservative analysis
Construction: Off-Road Equipment	T/L/B replaced with Crawler Tractor to accurately calculate disturbance for Site Preparation and Grading phases Standard 8-hour work days
Construction: Architectural Coatings	PVCC SP EIR MM Air 9: Super-Compliant VOC Paint (10 g/L) for nonresidential interior and exterior surfaces
Operations: Vehicle Data	Trip Characteristics based on information provided in the Traffic Analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, MCY). Truck Fleet Mix based on 2, 3 and 4 axle
Operations: Refrigerants	Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022. Unrefrigerated warehouse modeled with no refrigerant emissions
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Demolition, Site Preparation, Grading, and Building Construction
Construction: Dust From Material Movement	Based on Project acreage.

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD EMISSIONS MODEL OUTPUTS — OPERATIONAL LOCALIZED SOURCE EMISSIONS

14329-Patterson Commerce Center (Operational LSTs) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	14329-Patterson Commerce Center (Operational LSTs)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	9.00
Location	33.85471411289154, -117.25488206050593
County	Riverside-South Coast
City	Perris
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5580
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	237	1000sqft	5.45	237,438	80,733	_	_	_
Manufacturing	26.4	1000sqft	0.61	26,382	0.00	_	_	_
Parking Lot	204	Space	1.23	0.00	0.00	_	_	_

Other Asphalt Surfaces	292	1000sqft	6.71	0.00	0.00	_	_	_
User Defined Industrial	264	User Defined Unit	0.00	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.12	10.2	3.64	17.7	0.01	0.16	0.05	0.21	0.16	0.01	0.17	255	4,077	4,332	26.2	0.38	7.47	5,109
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.98	8.17	3.64	6.77	0.01	0.14	0.05	0.19	0.14	0.01	0.15	255	4,026	4,281	26.2	0.38	6.88	5,058
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	2.98	9.08	3.09	13.6	0.01	0.13	0.04	0.17	0.14	0.01	0.14	255	3,937	4,192	26.2	0.37	7.09	4,966
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.54	1.66	0.56	2.48	< 0.005	0.02	0.01	0.03	0.02	< 0.005	0.03	42.2	652	694	4.34	0.06	1.17	822

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.74	1.66	1.57	4.55	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.01	_	398	398	0.12	0.07	0.60	424
Area	2.04	8.25	0.10	11.5	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.2	47.2	< 0.005	< 0.005	_	47.4
Energy	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	3,146	3,146	0.29	0.02	_	3,158
Water	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Waste	_	_	_	-	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Refrig.	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Stationar y	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	4.12	10.2	3.64	17.7	0.01	0.16	0.05	0.21	0.16	0.01	0.17	255	4,077	4,332	26.2	0.38	7.47	5,109
Daily, Winter (Max)	_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.64	1.56	1.66	5.07	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.01	_	395	395	0.13	0.08	0.02	420
Area	_	6.37	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	3,146	3,146	0.29	0.02	_	3,158
Water	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Waste	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Stationar y	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	1.98	8.17	3.64	6.77	0.01	0.14	0.05	0.19	0.14	0.01	0.15	255	4,026	4,281	26.2	0.38	6.88	5,058
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.39	1.32	1.44	4.40	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	344	344	0.11	0.07	0.22	366
Area	1.40	7.66	0.07	7.86	< 0.005	0.01	_	0.01	0.01	_	0.01	_	32.3	32.3	< 0.005	< 0.005	_	32.4
Energy	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	3,146	3,146	0.29	0.02	_	3,158

Water	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Waste	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Stationar y	0.03	0.02	0.06	0.06	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.8	11.8	< 0.005	< 0.005	_	11.8
Total	2.98	9.08	3.09	13.6	0.01	0.13	0.04	0.17	0.14	0.01	0.14	255	3,937	4,192	26.2	0.37	7.09	4,966
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.25	0.24	0.26	0.80	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	56.9	56.9	0.02	0.01	0.04	60.7
Area	0.25	1.40	0.01	1.43	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.35	5.35	< 0.005	< 0.005	_	5.37
Energy	0.03	0.02	0.28	0.23	< 0.005	0.02	_	0.02	0.02	_	0.02	_	521	521	0.05	< 0.005	_	523
Water	_	_	_	_	_	_	_	_	_	_	_	19.4	66.8	86.1	1.99	0.05	_	150
Waste	_	_	_	_	_	_	_	_	_	_	_	22.8	0.00	22.8	2.28	0.00	_	79.9
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.14	1.14
Stationar y	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.95	1.95	< 0.005	< 0.005	_	1.96
Total	0.54	1.66	0.56	2.48	< 0.005	0.02	0.01	0.03	0.02	< 0.005	0.03	42.2	652	694	4.34	0.06	1.17	822

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Jnrefrige ated Warehou Rail	1.28	1.25	0.26	2.90	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005	0.01	_	148	148	0.07	0.03	0.31	159
Manufact uring	0.35	0.34	0.07	0.79	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	40.5	40.5	0.02	0.01	0.08	43.6
Parking ∟ot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Jser Defined ndustrial	0.10	0.07	1.24	0.86	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	210	210	0.03	0.03	0.21	221
Total	1.74	1.66	1.57	4.55	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.01	_	398	398	0.12	0.07	0.60	424
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	1.21	1.18	0.28	3.28	< 0.005	< 0.005	0.03	0.03	< 0.005	< 0.005	0.01	_	143	143	0.07	0.03	0.01	154
Manufact uring	0.33	0.32	0.08	0.90	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	39.1	39.1	0.02	0.01	< 0.005	42.3
Parking ∟ot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Jser Defined ndustrial	0.10	0.06	1.31	0.89	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	213	213	0.03	0.03	0.01	224
Total	1.64	1.56	1.66	5.07	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.01	_	395	395	0.13	0.08	0.02	420
Annual	_	_			_	_	_	_	_	_	_	_	_	_	_		_	_

Unrefrige Warehous Rail		0.18	0.05	0.53	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	20.8	20.8	0.01	< 0.005	0.02	22.5
Manufact uring	0.05	0.05	0.01	0.13	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	5.14	5.14	< 0.005	< 0.005	< 0.005	5.56
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	0.02	0.01	0.21	0.14	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	31.0	31.0	< 0.005	0.01	0.01	32.6
Total	0.25	0.24	0.26	0.80	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	56.9	56.9	0.02	0.01	0.04	60.7

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E		PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,044	1,044	0.10	0.01	_	1,050
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	241	241	0.02	< 0.005	_	243
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	44.8	44.8	< 0.005	< 0.005	_	45.1

														T				1
Other Asphalt Surfaces	_		_	_		_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,330	1,330	0.13	0.02	_	1,337
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	1,044	1,044	0.10	0.01	_	1,050
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	241	241	0.02	< 0.005	_	243
Parking Lot	_	-	_	-	_	_	_	_	_	_	_	_	44.8	44.8	< 0.005	< 0.005	_	45.1
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	1,330	1,330	0.13	0.02	_	1,337
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	_	173	173	0.02	< 0.005	_	174
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	39.9	39.9	< 0.005	< 0.005	_	40.2
Parking Lot	_	_	_		_	_	_	_	_	_	_	_	7.42	7.42	< 0.005	< 0.005	_	7.47

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	220	220	0.02	< 0.005	_	221

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.13	0.07	1.22	1.02	0.01	0.09	_	0.09	0.09	_	0.09	_	1,453	1,453	0.13	< 0.005	_	1,457
Manufact uring	0.03	0.02	0.30	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	_	363	363	0.03	< 0.005	_	364
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	1,816	1,816	0.16	< 0.005	_	1,821
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige Warehous Rail		0.07	1.22	1.02	0.01	0.09	_	0.09	0.09	_	0.09	_	1,453	1,453	0.13	< 0.005	_	1,457
Manufact uring	0.03	0.02	0.30	0.26	< 0.005	0.02	_	0.02	0.02	_	0.02	-	363	363	0.03	< 0.005	_	364
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.17	0.08	1.52	1.28	0.01	0.12	_	0.12	0.12	_	0.12	_	1,816	1,816	0.16	< 0.005	_	1,821
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.02	0.01	0.22	0.19	< 0.005	0.02	_	0.02	0.02	_	0.02	_	241	241	0.02	< 0.005	_	241
Manufact uring	0.01	< 0.005	0.06	0.05	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	60.1	60.1	0.01	< 0.005	_	60.3
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	-	0.00	0.00	0.00	0.00	-	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.03	0.02	0.28	0.23	< 0.005	0.02	_	0.02	0.02	_	0.02	_	301	301	0.03	< 0.005	_	301

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	aily, ton/y	SO2	PM10E	PM10D	PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.67	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	2.04	1.88	0.10	11.5	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.2	47.2	< 0.005	< 0.005	_	47.4
Total	2.04	8.25	0.10	11.5	< 0.005	0.02	_	0.02	0.02	_	0.02	_	47.2	47.2	< 0.005	< 0.005	_	47.4
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	5.67	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.70	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	6.37	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	1.04	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Landsca Equipmer	0.25 t	0.24	0.01	1.43	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.35	5.35	< 0.005	< 0.005	_	5.37
Total	0.25	1.40	0.01	1.43	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.35	5.35	< 0.005	< 0.005	_	5.37

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	_	-	_	-	-	_	_	_	-	-	-	-	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	105	364	469	10.8	0.26	_	817
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	11.7	39.7	51.4	1.20	0.03	_	90.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	-	_	_	-	-	_	-	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	-	_	_	-	_	_	-	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	<u> </u>	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige rated Warehou Rail	_	_	_	_	_	_	_	_	_	_	_	105	364	469	10.8	0.26	_	817
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	11.7	39.7	51.4	1.20	0.03	_	90.0
Parking Lot	_	_	_	_	_	_	_	-	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	-	_	_	-	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	-	-	_	_	-	-	-	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	117	403	520	12.0	0.29	_	907
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	17.4	60.2	77.6	1.79	0.04	_	135
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	1.94	6.57	8.50	0.20	< 0.005	_	14.9
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	-	_	_	-	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	-	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	19.4	66.8	86.1	1.99	0.05	_	150

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T		PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	_	-	-	_	-	-	_	-	-	-	_	-	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	-	_	-	_	_	_	120	0.00	120	12.0	0.00	_	421
Manufact uring	_	-	-	_	_	_	_	-	-	_	_	17.6	0.00	17.6	1.76	0.00	_	61.7
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Daily, Winter (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	-
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	120	0.00	120	12.0	0.00	_	421
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	17.6	0.00	17.6	1.76	0.00	_	61.7
Parking Lot	_	-	-	_	_	_	_	_	-	_	-	0.00	0.00	0.00	0.00	0.00	_	0.00

Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	138	0.00	138	13.8	0.00	_	483
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_		-	-	_	_	_	_	_	_	19.9	0.00	19.9	1.99	0.00	_	69.7
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	2.92	0.00	2.92	0.29	0.00	_	10.2
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Other Asphalt Surfaces	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	22.8	0.00	22.8	2.28	0.00	_	79.9

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG		СО			PM10D			PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Manufact	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Total	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.87	6.87
Annual	_		_		_	_	_	_	_	_	_	_		_	_	_	_	_
Manufact uring	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.14	1.14
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.14	1.14

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(1.07 0.0.	,	<i>J</i> ,				ie, e.e.,	,,		J							
Equipme nt Type	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fire Pump	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fire Pump	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Total	0.18	0.16	0.45	0.41	< 0.005	0.02	_	0.02	0.02	_	0.02	_	82.7	82.7	< 0.005	< 0.005	_	83.0
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fire Pump	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.95	1.95	< 0.005	< 0.005	_	1.96
Total	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.95	1.95	< 0.005	< 0.005	_	1.96

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

			,	, ,					,									
Equipme	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
nt																		
Туре																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

				iy, tori/yr														
Species	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_		_	_	_	_	_	_		_	_	_	_	_	_	_	<u> </u>	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	416	237	227	132,684	104	59.3	56.9	33,171
Manufacturing	114	35.6	23.6	32,807	28.5	8.89	5.91	8,202

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
User Defined Industrial	102	63.1	60.9	33,084	25.5	15.8	15.2	8,271

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	395,730	131,910	20,749

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

			a riatara Gas (ND 1 5/ j.)			
Land Use		Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Unrefrigerated Rail	d Warehouse-No	1,092,773	349	0.0330	0.0040	4,533,209

Manufacturing	252,451	349	0.0330	0.0040	1,133,116
Parking Lot	46,935	349	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	349	0.0330	0.0040	0.00
User Defined Industrial	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	54,907,538	1,280,079
Manufacturing	6,100,838	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00
User Defined Industrial	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	223	0.00
Manufacturing	32.7	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00
User Defined Industrial	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Manufacturing	Other commercial A/C and heat pumps	R-410A	2,088	0.30	4.00	4.00	18.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
_qa.po)po	. 33) 53	g	rumos por Day			2000 1 00101

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
Fire Pump	Diesel	1.00	0.50	26.0	197	0.73

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		J ()		

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

 Vegetation Land Use Type
 Vegetation Soil Type
 Initial Acres
 Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
Diomass Cover Type	Titual Acres	i ilai Acies

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
nee type	Number	Lieuticity Daved (KWIII/year)	Natural Gas Gaved (blu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.10	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	6.94	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	4	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	4	1	1	4
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A

Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	97.6
AQ-PM	53.3
AQ-DPM	47.8
Drinking Water	10.2
Lead Risk Housing	22.0
Pesticides	58.8
Toxic Releases	37.7
Traffic	81.9
Effect Indicators	_
CleanUp Sites	69.4
Groundwater	0.00
Haz Waste Facilities/Generators	53.5

Impaired Water Bodies	0.00
Solid Waste	40.1
Sensitive Population	_
Asthma	65.6
Cardio-vascular	90.6
Low Birth Weights	62.9
Socioeconomic Factor Indicators	_
Education	74.7
Housing	57.9
Linguistic	53.4
Poverty	64.5
Unemployment	15.8

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_
Above Poverty	36.04516874
Employed	38.00846914
Median HI	_
Education	_
Bachelor's or higher	28.6154241
High school enrollment	100
Preschool enrollment	5.440780187
Transportation	_
Auto Access	94.58488387
Active commuting	6.723983062

Social	_
2-parent households	87.71974849
Voting	9.636853587
Neighborhood	_
Alcohol availability	84.04978827
Park access	11.88245862
Retail density	29.21852945
Supermarket access	12.06210702
Tree canopy	0.590273322
Housing	_
Homeownership	79.23777749
Housing habitability	40.67753112
Low-inc homeowner severe housing cost burden	12.19042731
Low-inc renter severe housing cost burden	27.61452586
Uncrowded housing	47.8121391
Health Outcomes	_
Insured adults	26.49813936
Arthritis	79.8
Asthma ER Admissions	42.9
High Blood Pressure	64.8
Cancer (excluding skin)	87.6
Asthma	27.9
Coronary Heart Disease	81.5
Chronic Obstructive Pulmonary Disease	59.8
Diagnosed Diabetes	52.6
Life Expectancy at Birth	37.8
Cognitively Disabled	88.7

Physically Disabled	83.0
Heart Attack ER Admissions	7.5
Mental Health Not Good	28.5
Chronic Kidney Disease	64.9
Obesity	17.5
Pedestrian Injuries	92.5
Physical Health Not Good	37.9
Stroke	70.4
Health Risk Behaviors	_
Binge Drinking	30.9
Current Smoker	25.4
No Leisure Time for Physical Activity	29.5
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	35.2
Elderly	90.4
English Speaking	42.3
Foreign-born	59.5
Outdoor Workers	11.9
Climate Change Adaptive Capacity	_
Impervious Surface Cover	72.4
Traffic Density	65.3
Traffic Access	23.0
Other Indices	_
Hardship	70.6
Other Decision Support	_

2016 Voting	23.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	69.0
Healthy Places Index Score for Project Location (b)	30.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Taken From Site Plan
Construction: Construction Phases	Building, Paving, and Architectural Coating overlap to present conservative analysis
Construction: Off-Road Equipment	T/L/B replaced with Crawler Tractor to accurately calculate disturbance for Site Preparation and Grading phases Standard 8-hour work days
Construction: Architectural Coatings	PVCC SP EIR MM Air 9: Super-Compliant VOC Paint (10 g/L) for nonresidential interior and exterior surfaces

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

14329-Patterson Commerce Center (Operational LSTs) Detailed Report, 3/27/2023

Operations: Vehicle Data	Trip Characteristics based on information provided in the Traffic Analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, MCY). Truck Fleet Mix based on 2, 3 and 4 axle
Operations: Refrigerants	Per 17 CCR 95371, new refrigeration equipment containing >50 lbs of refrigerant in new facilities is prohibited from utilizing refrigerants with a GWP of 150 or greater as of 1 Jan 2022. Unrefrigerated warehouse modeled with no refrigerant emissions
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Demolition, Site Preparation, Grading, and Building Construction
Construction: Dust From Material Movement	Based on Project acreage.

This page intentionally left blank

APPENDIX 3.3:

CALEEMOD EMISSIONS MODEL OUTPUTS – EXISTING LAND USE

14329 Patterson Commerce Center (Existing) Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	14329 Patterson Commerce Center (Existing)
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	2.50
Precipitation (days)	9.00
Location	4517 Wade Ave, Perris, CA 92571, USA
County	Riverside-South Coast
City	Perris
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5580
EDFZ	11
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Unrefrigerated Warehouse-No Rail	1.00	1000sqft	0.02	1,000	0.00	_	_	_
User Defined Industrial	1.00	User Defined Unit	0.00	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	всо2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.11	1.03	4.73	4.73	0.05	0.07	0.92	0.99	0.07	0.19	0.26	0.95	5,335	5,336	0.19	0.70	16.6	5,567
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.09	1.01	4.95	4.09	0.05	0.07	0.92	0.99	0.07	0.19	0.26	0.95	5,283	5,284	0.19	0.71	0.43	5,500
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.07	0.99	5.00	4.22	0.05	0.07	0.92	0.99	0.07	0.19	0.26	0.95	5,280	5,281	0.19	0.71	7.17	5,503
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Unmit.	0.19	0.18	0.91	0.77	0.01	0.01	0.17	0.18	0.01	0.04	0.05	0.16	874	874	0.03	0.12	1.19	911

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer (Max)																		

Mobile	1.10	1.00	4.73	4.68	0.05	0.07	0.92	0.99	0.07	0.19	0.26	_	5,324	5,324	0.09	0.70	16.6	5,553
Area	0.01	0.03	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.18	0.18	< 0.005	< 0.005	_	0.18
Energy	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	9.10	9.10	< 0.005	< 0.005	_	9.14
Water	_	_	_	_	_	_	_	_	_	_	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
Waste	_	_	_	_	_	_	_	_	_	_	_	0.51	0.00	0.51	0.05	0.00	_	1.77
Total	1.11	1.03	4.73	4.73	0.05	0.07	0.92	0.99	0.07	0.19	0.26	0.95	5,335	5,336	0.19	0.70	16.6	5,567
Daily, Winter (Max)	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.08	0.98	4.95	4.09	0.05	0.07	0.92	0.99	0.07	0.19	0.26	_	5,273	5,273	0.09	0.71	0.43	5,486
Area	_	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	9.10	9.10	< 0.005	< 0.005	_	9.14
Water	_	_	_	_	_	_	_	_	_	_	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
Waste	_	_	_	_	_	_	_	_	_	_	_	0.51	0.00	0.51	0.05	0.00	_	1.77
Total	1.09	1.01	4.95	4.09	0.05	0.07	0.92	0.99	0.07	0.19	0.26	0.95	5,283	5,284	0.19	0.71	0.43	5,500
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.06	0.96	4.99	4.19	0.05	0.07	0.92	0.99	0.07	0.19	0.26	_	5,270	5,270	0.09	0.70	7.17	5,489
Area	0.01	0.03	< 0.005	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.12	0.12	< 0.005	< 0.005	_	0.12
Energy	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	9.10	9.10	< 0.005	< 0.005	_	9.14
Water	_	_	_	_	_	_	_	_	_	_	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
Waste	_	_	_	_	_	_	_	_	_	_	_	0.51	0.00	0.51	0.05	0.00	_	1.77
Total	1.07	0.99	5.00	4.22	0.05	0.07	0.92	0.99	0.07	0.19	0.26	0.95	5,280	5,281	0.19	0.71	7.17	5,503
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.19	0.17	0.91	0.76	0.01	0.01	0.17	0.18	0.01	0.04	0.05	_	872	872	0.02	0.12	1.19	909
Area	< 0.005	0.01	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.02	0.02	< 0.005	< 0.005	_	0.02
Energy	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.51	1.51	< 0.005	< 0.005	_	1.51
Water	_	_	_	_	_	_	_	_	_	_	_	0.07	0.25	0.32	0.01	< 0.005	_	0.57
Waste	_	_	_	_	_	_	_	_	_	_	_	0.08	0.00	0.08	0.01	0.00	_	0.29

Total	0.19	0.18	0.91	0.77	0.01	0.01	0.17	0.18	0.01	0.04	0.05	0.16	874	874	0.03	0.12	1 19	911
iotai	0.10	0.10	0.01	0.77	0.01	0.01	0.17	0.10	0.01	0.01	0.00	0.10	07 1	07 1	0.00	0.12	1.10	011

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	-	-	_	_	_	_	_	_	-	_	-	_	_	_
Unrefrige rated Warehou se-No Rail	0.87	0.85	0.18	3.42	0.01	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	691	691	0.03	0.02	2.72	700
User Defined Industrial	0.23	0.16	4.55	1.26	0.04	0.07	0.29	0.36	0.06	0.09	0.16	_	4,633	4,633	0.06	0.69	13.9	4,853
Total	1.10	1.00	4.73	4.68	0.05	0.07	0.32	0.39	0.07	0.10	0.17	_	5,324	5,324	0.09	0.70	16.6	5,553
Daily, Winter (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.86	0.83	0.20	2.82	0.01	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	638	638	0.03	0.02	0.07	645
User Defined Industrial	0.23	0.15	4.75	1.27	0.04	0.07	0.29	0.36	0.06	0.09	0.16	_	4,634	4,634	0.06	0.69	0.36	4,841
Total	1.08	0.98	4.95	4.09	0.05	0.07	0.32	0.39	0.07	0.10	0.17	_	5,273	5,273	0.09	0.71	0.43	5,486

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	0.15	0.15	0.04	0.53	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	107	107	< 0.005	< 0.005	0.19	108
User Defined Industrial	0.04	0.03	0.87	0.23	0.01	0.01	0.05	0.07	0.01	0.02	0.03	_	766	766	0.01	0.11	0.99	801
Total	0.19	0.17	0.91	0.76	0.01	0.01	0.06	0.07	0.01	0.02	0.03	_	872	872	0.02	0.12	1.19	909

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated $\,$

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_		4.40	4.40	< 0.005	< 0.005		4.42
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	4.40	4.40	< 0.005	< 0.005	_	4.42
Daily, Winter (Max)	_	_	_		_		_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige rated Warehou se-No	_	_	_	_	_	_	_	_	_	_	_	_	4.40	4.40	< 0.005	< 0.005	_	4.42
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_		_	_	_	_	_	4.40	4.40	< 0.005	< 0.005	_	4.42
Annual	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_		_	_		_	_	0.73	0.73	< 0.005	< 0.005		0.73
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	_	0.73	0.73	< 0.005	< 0.005	_	0.73

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

		(1.07 0.0.	,	<i>y</i> ,, <i>y</i> .		,	(,,	J. J. J. J.		/							
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.70	4.70	< 0.005	< 0.005	_	4.71
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.70	4.70	< 0.005	< 0.005	_	4.71

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.70	4.70	< 0.005	< 0.005	_	4.71
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	4.70	4.70	< 0.005	< 0.005	_	4.71
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.78	0.78	< 0.005	< 0.005	_	0.78
User Defined Industrial	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.78	0.78	< 0.005	< 0.005	_	0.78

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect Coatings	_	< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.01	0.01	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.18	0.18	< 0.005	< 0.005	_	0.18
Total	0.01	0.03	< 0.005	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.18	0.18	< 0.005	< 0.005	_	0.18
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.02	_	-	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Architect ural Coatings	_	< 0.005	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Total	_	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	< 0.005	_	-	_	_	_	_	_	_	_	-	_	_	_	_	-	_
Landsca pe Equipme nt	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.02	0.02	< 0.005	< 0.005	_	0.02
Total	< 0.005	0.01	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.02	0.02	< 0.005	< 0.005	_	0.02

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	-	-	-	-	_	_	-	-	_	_	-	-	-	-	_	-
Unrefrige rated Warehou se-No Rail	_	-	-	_	-	_	-	-	-	-	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
User Defined Industrial	_	_	_	-	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
Daily, Winter (Max)	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	-	_	_	_	_	-	-	_	_	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.44	1.50	1.95	0.05	< 0.005	_	3.41
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	0.07	0.25	0.32	0.01	< 0.005	_	0.57
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.07	0.25	0.32	0.01	< 0.005	_	0.57

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Land	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T		PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_		_	0.51	0.00	0.51	0.05	0.00	_	1.77
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.51	0.00	0.51	0.05	0.00	_	1.77
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unrefrige rated Warehou se-No Rail		_	_	_	_	_	_		_			0.51	0.00	0.51	0.05	0.00	_	1.77
User Defined Industrial	_	_	_	_		_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.51	0.00	0.51	0.05	0.00	_	1.77
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Unrefrige rated Warehou se-No Rail	_	_	_	_	_	_	_	_	_	_	_	0.08	0.00	0.08	0.01	0.00	_	0.29
User Defined Industrial	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.08	0.00	0.08	0.01	0.00	_	0.29

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG		СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme nt	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_
Total	_		_	_	_		_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt Type	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt						PM10E				PM2.5D		BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_		_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Remove	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_		_	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_		_	_	_		_	_		_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Unrefrigerated Warehouse-No Rail	74.0	73.5	73.5	26,958	915	909	908	333,229
User Defined Industrial	66.0	65.6	65.5	24,044	1,657	1,646	1,645	603,498

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	1,500	500	_

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Land USE	LIGGUIGHT (KVVII/91)	002	0114	1120	Natural Gas (KDTO/yr)

Unrefrigerated Warehouse-No Rail	4,602	349	0.0330	0.0040	14,667
User Defined Industrial	0.00	349	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Unrefrigerated Warehouse-No Rail	231,250	0.00
User Defined Industrial	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Unrefrigerated Warehouse-No Rail	0.94	0.00
User Defined Industrial	0.00	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Equipment Type	i dei type	Linging field	Trumber per bay	riodis i ci Day	riorsopower	Load I doloi

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Doy	Hours per Voor	Haraanawar	Lood Factor
Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

Equipment Type Fuel Type Number Boiler Rating (MMBtu/hr) Daily Heat Input (MMBtu/day) Annual Heat Input (MMBtu/y	Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
--	----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
_	_

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Veretation Lend Hea Time	Vegetation Soil Type	Initial Agree	Final Association
Vegetation Land Use Type	vedetation Soil Type	Initial Acres	Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Bi	omass Cover Type	Initial Acres	Final Acres
DI	omass Cover Type	Illiliai Acies	Filial Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
21.5			

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	29.1	annual days of extreme heat
Extreme Precipitation	2.10	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	6.94	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about ¾ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	4	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A

Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	4	1	1	4
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

he maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.			
Indicator	Result for Project Census Tract		
Exposure Indicators	_		
AQ-Ozone	97.6		
AQ-PM	53.3		
AQ-DPM	47.8		
Drinking Water	10.2		
Lead Risk Housing	22.0		
Pesticides	58.8		
Toxic Releases	37.7		
Traffic	81.9		
Effect Indicators	_		
CleanUp Sites	69.4		
Groundwater	0.00		
Haz Waste Facilities/Generators	53.5		
Impaired Water Bodies	0.00		
Solid Waste	40.1		
Sensitive Population	_		
Asthma	65.6		
Cardio-vascular	90.6		
Low Birth Weights	62.9		
Socioeconomic Factor Indicators	_		
Education	74.7		
Housing	57.9		
Linguistic	53.4		
Poverty	64.5		

Unemployment	15.8
Champioymone	10.0

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.			
Indicator	Result for Project Census Tract		
Economic	_		
Above Poverty	36.04516874		
Employed	38.00846914		
Education	_		
Bachelor's or higher	28.6154241		
High school enrollment	100		
Preschool enrollment	5.440780187		
Transportation	_		
Auto Access	94.58488387		
Active commuting	6.723983062		
Social	_		
2-parent households	87.71974849		
Voting	9.636853587		
Neighborhood	_		
Alcohol availability	84.04978827		
Park access	11.88245862		
Retail density	29.21852945		
Supermarket access	12.06210702		
Tree canopy	0.590273322		
Housing	_		
Homeownership	79.23777749		
Housing habitability	40.67753112		

Low-inc homeowner severe housing cost burden	12.19042731
Low-inc renter severe housing cost burden	27.61452586
Uncrowded housing	47.8121391
Health Outcomes	_
Insured adults	26.49813936
Arthritis	79.8
Asthma ER Admissions	42.9
High Blood Pressure	64.8
Cancer (excluding skin)	87.6
Asthma	27.9
Coronary Heart Disease	81.5
Chronic Obstructive Pulmonary Disease	59.8
Diagnosed Diabetes	52.6
Life Expectancy at Birth	37.8
Cognitively Disabled	88.7
Physically Disabled	83.0
Heart Attack ER Admissions	7.5
Mental Health Not Good	28.5
Chronic Kidney Disease	64.9
Obesity	17.5
Pedestrian Injuries	92.5
Physical Health Not Good	37.9
Stroke	70.4
Health Risk Behaviors	_
Binge Drinking	30.9
Current Smoker	25.4
No Leisure Time for Physical Activity	29.5

Climate Change Exposures	
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	35.2
Elderly	90.4
English Speaking	42.3
Foreign-born	59.5
Outdoor Workers	11.9
Climate Change Adaptive Capacity	_
Impervious Surface Cover	72.4
Traffic Density	65.3
Traffic Access	23.0
Other Indices	_
Hardship	70.6
Other Decision Support	_
2016 Voting	23.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	69.0
Healthy Places Index Score for Project Location (b)	30.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	No
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health and Equity Evaluation Scorecard not completed.

8. User Changes to Default Data

Screen	Justification
Operations: Vehicle Data	Trip Characteristics based on information provided in the Traffic Analysis
Operations: Fleet Mix	Passenger Car Mix estimated based on CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, MCY). Truck Fleet Mix based on 2, 3 and 4 axle
Operations: Refrigerants	No refrigerants

This page intentionally left blank

APPENDIX 3.4:

SCAQMD AMICUS BRIEF

IN THE SUPREME COURT OF C ALIFORNIA

SIERRA CLUB, REVIVE THE SAN JOAQUIN, and LEAGUE OF WOMEN VOTERS OF FRESNO,

Plaintiffs and Appellants,

v.

SHAKEME COOK!

COUNTY OF FRESNO,

Defendant and Respondent,

and,

APR 1 3 2015

Frank A. McGure Clerk

Jepuly

FRIANT RANCH, L.P.,

Real Party in Interest and Respondent.

After a Published Decision by the Court of Appeal, filed May 27, 2014 Fifth Appellate District Case No. F066798

Appeal from the Superior Court of California, County of Fresno Case No. 11CECG00726 Honorable Rosendo A. Pena, Jr.

APPLICATION OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT FOR LEAVE TO FILE BRIEF OF AMICUS CURIAE IN SUPPORT OF NEITHER PARTY AND [PROPOSED] BRIEF OF AMICUS CURIAE

Kurt R. Wiese, General Counsel (SBN 127251)
*Barbara Baird, Chief Deputy Counsel (SBN 81507)
SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
21865 Copley Drive, Diamond Bar, CA 91765
Telephone: 900, 306, 2302; Faccimile: 900, 306, 2061

Telephone: 909-396-2302; Facsimile: 909-396-2961

Email: bbaird@aqmd.gov

Counsel for [Proposed] Amicus Curiae,

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

BECEIVED

APR = 6 2015

CLERK SUPREME COURT

TABLE OF CONTENTS

APPL	ICATI	ON FOR LEAVE TO FILE amicus curiae brief	App-1
HOW	THIS	BRIEF WILL ASSIST THE COURT	App-1
STAT	EMEN	TOF INTEREST OF AMICUS CURIAE	App-3
CERT	ΓIFICA	TION REGARDING AUTHORSHIP & FUNDING	App-4
BRIE	F OF A	MICUS CURIAE	1
SUM	MARY	OF ARGUMENT	1
ARG	UMEN'	Т	2
I.	RELE	EVANT FACTUAL AND LEGAL FRAMEWORK	2
	A.	Air Quality Regulatory Background	2
	B.	The SCAQMD's Role Under CEQA	6
II.	RULE MUS	COURT SHOULD NOT SET A HARD-AND-FAST E CONCERNING THE EXTENT TO WHICH AN EIR IT CORRELATE A PROJECT'S EMISSION OF UTANTS WITH RESULTING HEALTH IMPACTS	8
III.	SUFF REQU AND	QUESTION OF WHETHER AN EIR CONTAINS ICIENT ANALYSIS TO MEET CEQA'S JIREMENTS IS A MIXED QUESTION OF FACT LAW GOVERNED BY TWO DIFFERENT IDARDS OF REVIEW	16
	A.	Standard of Review for Feasibility Determination and Sufficiency as an Informative Document	16
	B.	Friant Ranch's Rationale for Rejecting the Independent Judgment Standard of Review is Unsupported by Case Law	23
IV.	REQU WITH	RTS MUST SCRUPULOUSLY ENFORCE THE JIREMENTS THAT LEAD AGENCIES CONSULT I AND OBTAIN COMMENTS FROM AIR	
	DIST	RICTS	26
CON	CLUSI	ON	29

TABLE OF AUTHORITIES

State Cases Association of Irritated Residents v. County of Madera (2003) Bakersfield Citizens for Local Control v. City of Bakersfield (2004) Berkeley Keep Jets Over the Bay v. Board of Port Commissioners (2007) 91 Cal.App.4th 1344......21, 28 Center for Biological Diversity v. County of San Bernardino (2010) Citizens of Goleta Valley v. Bd. of Supervisors (1990) County of Amador v. El Dorado County Water Agency (1999) 76 Cal.App.4th 93123 Crocker National Bank v. City and County of San Francisco (1989) Ebbetts Pass Forest Watch v. California Dept. of Forestry & Fire Protection (2008) 43 Cal.4th 936......21 Fall River Wild Trout Foundation v. County of Shasta, (1999) Gray v. County of Madera (2008) 167 Cal.App.4th 109925 Laurel Heights Improvement Assn. v. Regents of the Univ of Cal. ("Laurel Heights I") Natural Res. Def. Council v SCAOMD, Neighbors for Smart Rail v. Exposition Metro Line (2013)

State Cases (cont'd)

Orange County Air Pollution Control District v. Public Util. Com. (1971) 4 Cal.3d 9452'	7
Save Our Peninsula Comm. v. Monterey County Bd. of Supervisors (2001) 87 Cal.App.4th 9919	9
Schenck v. County of Sonoma (2011) 198 Cal.App.4th 949	7
Sierra Club v. County of Fresno (2014) 226 Cal.App.4th 704 (superseded by grant of review) 172 Cal.Rptr.3d 271	3
Sierra Club v. State Bd. Of Forestry (1994) 7 Cal.4th 121528	8
Uphold Our Heritage v. Town of Woodside (2007) 147 Cal.App.4th 58720	0
Vineyard Area Citizens for Responsible Growth, Inc. v. City of Rancho Cordova (2007) 40 Cal.4th 4121, 17, 19, 24, 25, 26	6
Western Oil & Gas Assn. v. Monterey Bay Unified APCD (1989) 49 Cal.3d 4085	
California Statutes	
Health & Saf. Code § 39666 5 Health & Saf. Code § 40000 3 Health & Saf. Code § 40001 3 Health & Saf. Code § 40410 3 Health & Saf. Code § 40460, et seq 4	
Health & Saf. Code § 41508 5 Health & Saf. Code § 42300, et seq 5 Health & Saf. Code § 44320 5 Health & Saf. Code § 44322 5 Health & Saf. Code § 44360 5	
Pub. Resources Code § 20180.3 27 Pub. Resources Code § 21061 19 Pub. Resources Code § 21061.1 16	

California Statutes (cont'd) California Regulations Cal. Code Regs., tit. 14, §§ 15000, et seq. ("CEQA Guidelines") CEQA Guidelines § 15050......6 CEQA Guidelines § 15381......6 **Federal Statutes**

Rules Other Association of Environmental Professionals, 2015 CEQA Statute and Guidelines (2015) (Appendix G, "Environmental Checklist CARB, Health Impacts Analysis: PM Premature Death Relationship......14 CARB, Health Impacts Analysis: CARB, Resolution 98-35, Aug. 27, 19988 SCAQMD, Final Subsequent Mitigated Negative Declaration for: Warren E&P, Inc. WTU Central Facility, New Equipment Project (certified July 19, 2011) 14-15 SCAQMD Governing Board Agenda, February 4, 2011, Agenda Item 26, Assessment for: Re-adoption of Proposed Rule 1315 – Federal New Source Review Tracking System, 12 SCAQMD Governing Board Agenda, April 3, 2015, SCAQMD, Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and U.S. EPA, Guideline on Ozone Monitoring Site Selection (Aug. 1998) EPA-454/R-98-002 § 5.1.211 U.S. EPA, Health Effects of Ozone in the General Population, Figure 9,11

U.S. EPA, National Ambient Air Quality Standards (NAAQS).......4

U.S. EPA, Particulate Matter (PM)......4

TO THE HONORABLE CHIEF JUSTICE AND JUSTICES OF THE SUPREME COURT:

APPLICATION FOR LEAVE TO FILE AMICUS CURIAE BRIEF

Pursuant to Rule 8.520(f) of the California Rules of Court, the South Coast Air Quality Management District (SCAQMD) respectfully requests leave to file the attached *amicus curiae* brief. Because SCAQMD's position differs from that of either party, we request leave to submit this amicus brief in support of neither party.

HOW THIS BRIEF WILL ASSIST THE COURT

SCAQMD's proposed amicus brief takes a position on two of the issues in this case. In both instances, its position differs from that of either party. The issues are:

- 1) Does the California Environmental Quality Act (CEQA) require an environmental impact report (EIR) to correlate a project's air pollution emissions with specific levels of health impacts?
- 2) What is the proper standard of review for determining whether an EIR provides sufficient information on the health impacts caused by a project's emission of air pollutants?

This brief will assist the Court by discussing the practical realities of correlating identified air quality impacts with specific health outcomes. In short, CEQA requires agencies to provide detailed information about a project's air quality impacts that is sufficient for the public and decisionmakers to adequately evaluate the project and meaningfully understand its impacts. However, the level of analysis is governed by a rule of reason; CEQA only requires agencies to conduct analysis if it is reasonably feasible to do so.

With regard to health-related air quality impacts, an analysis that correlates a project's air pollution emissions with specific levels of health impacts will be feasible in some cases but not others. Whether it is feasible depends on a variety of factors, including the nature of the project and the nature of the analysis under consideration. The feasibility of analysis may also change over time as air districts and others develop new tools for measuring projects' air quality related health impacts. Because SCAQMD has among the most sophisticated air quality modeling and health impact evaluation capability of any of the air districts in the State, it is uniquely situated to express an opinion on the extent to which the Court should hold that CEQA requires lead agencies to correlate air quality impacts with specific health outcomes.

SCAQMD can also offer a unique perspective on the question of the appropriate standard of review. SCAQMD submits that the proper standard of review for determining whether an EIR is sufficient as an informational document is more nuanced than argued by either party. In our view, this is a mixed question of fact and law. It includes determining whether additional analysis is feasible, which is primarily a factual question that should be reviewed under the substantial evidence standard. However, it also involves determining whether the omission of a particular analysis renders an EIR insufficient to serve CEQA's purpose as a meaningful, informational document. If a lead agency has not determined that a requested analysis is infeasible, it is the court's role to determine whether the EIR nevertheless meets CEQA's purposes, and courts should not defer to the lead agency's conclusions regarding the legal sufficiency of an EIR's analysis. The ultimate question of whether an EIR's analysis is "sufficient" to serve CEQA's informational purposes is predominately a question of law that courts should review de novo.

This brief will explain the rationale for these arguments and may assist the Court in reaching a conclusion that accords proper respect to a lead agency's factual conclusions while maintaining judicial authority over the ultimate question of what level of analysis CEQA requires.

STATEMENT OF INTEREST OF AMICUS CURIAE

The SCAQMD is the regional agency primarily responsible for air pollution control in the South Coast Air Basin, which consists of all of Orange County and the non-desert portions of the Los Angeles, Riverside, and San Bernardino Counties. (Health & Saf. Code § 40410; Cal. Code Regs., tit. 17, § 60104.) The SCAQMD participates in the CEQA process in several ways. Sometimes it acts as a lead agency that prepares CEQA documents for projects. Other times it acts as a responsible agency when it has permit authority over some part of a project that is undergoing CEQA review by a different lead agency. Finally, SCAQMD also acts as a commenting agency for CEQA documents that it receives because it is a public agency with jurisdiction by law over natural resources affected by the project.

In all of these capacities, SCAQMD will be affected by the decision in this case. SCAQMD sometimes submits comments requesting that a lead agency perform an additional type of air quality or health impacts analysis. On the other hand, SCAQMD sometimes determines that a particular type of health impact analysis is not feasible or would not produce reliable and informative results. Thus, SCAQMD will be affected by the Court's resolution of the extent to which CEQA requires EIRs to correlate emissions and health impacts, and its resolution of the proper standard of review.

CERTIFICATION REGARDING AUTHORSHIP AND FUNDING

No party or counsel in the pending case authored the proposed amicus curiae brief in whole or in part, or made any monetary contribution intended to fund the preparation or submission of the brief. No person or entity other than the proposed *Amicus Curiae* made any monetary contribution intended to fund the preparation or submission of the brief.

Respectfully submitted,

DATED: April 3, 2015

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT KURT R. WIESE, GENERAL COUNSEL BARBARA BAIRD, CHIEF DEPUTY COUNSEL

Barbara I

Attorneys for [proposed] Amicus Curiae SOUTH COAST AIR QUALITY MANAGEMENT DISTICT

BRIEF OF AMICUS CURIAE

SUMMARY OF ARGUMENT

The South Coast Air Quality Management District (SCAQMD) submits that this Court should not try to establish a hard-and-fast rule concerning whether lead agencies are required to correlate emissions of air pollutants with specific health consequences in their environmental impact reports (EIR). The level of detail required in EIRs is governed by a few, core CEQA (California Environmental Quality Act) principles. As this Court has stated, "[a]n EIR must include detail sufficient to enable those who did not participate in its preparation to understand and to consider meaningfully the issues raised by the proposed project." (Laurel Heights Improvement Assn. v. Regents of the Univ of Cal. (1988) 47 Cal.3d 376, 405 ["Laurel Heights 1"]) Accordingly, "an agency must use its best efforts to find out and disclose all that it reasonably can." (Vineyard Area Citizens for Responsible Growth, Inc. v. City of Rancho Cordova (2007) 40 Cal.4th 412, 428 (quoting CEOA Guidelines § 15144)¹.). However, "[a]nalysis of environmental effects need not be exhaustive, but will be judged in light of what is reasonably feasible." (Association of Irritated Residents v. County of Madera (2003) 107 Cal. App. 4th 1383, 1390; CEQA Guidelines §§ 15151, 15204(a).)

With regard to analysis of air quality related health impacts, EIRs must generally quantify a project's pollutant emissions, but in some cases it is not feasible to correlate these emissions to specific, quantifiable health impacts (e.g., premature mortality; hospital admissions). In such cases, a general description of the adverse health impacts resulting from the pollutants at issue may be sufficient. In other cases, due to the magnitude

¹ The CEQA Guidelines are found at Cal. Code Regs., tit. 14 §§ 15000, et seq.

or nature of the pollution emissions, as well as the specificity of the project involved, it may be feasible to quantify health impacts. Or there may be a less exacting, but still meaningful analysis of health impacts that can feasibly be performed. In these instances, agencies should disclose those impacts.

SCAQMD also submits that whether or not an EIR complies with CEQA's informational mandates by providing sufficient, feasible analysis is a mixed question of fact and law. Pertinent here, the question of whether an EIR's discussion of health impacts from air pollution is sufficient to allow the public to understand and consider meaningfully the issues involves two inquiries: (1) Is it feasible to provide the information or analysis that a commenter is requesting or a petitioner is arguing should be required?; and (2) Even if it is feasible, is the agency relying on other policy or legal considerations to justify not preparing the requested analysis? The first question of whether an analysis is feasible is primarily a question of fact that should be judged by the substantial evidence standard. The second inquiry involves evaluating CEQA's information disclosure purposes against the asserted reasons to not perform the requested analysis. For example, an agency might believe that its EIR meets CEQA's informational disclosure standards even without a particular analysis, and therefore choose not to conduct that analysis. SCAQMD submits that this is more of a legal question, which should be reviewed de novo as a question of law.

ARGUMENT

I. RELEVANT FACTUAL AND LEGAL FRAMEWORK.

A. Air Quality Regulatory Background

The South Coast Air Quality Management District (SCAQMD) is one of the local and regional air pollution control districts and air quality management districts in California. The SCAQMD is the regional air pollution agency for the South Coast Air Basin, which consists of all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. (Health & Saf. Code § 40410, 17 Cal. Code Reg. § 60104.) The SCAQMD also includes the Coachella Valley in Riverside County (Palm Springs area to the Salton Sea). (SCAQMD, *Final 2012 AQMP (Feb. 2013)*, http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan/final-2012-air-quality-mgt-plan/final-2012 AQMP (Feb. 2013), http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan/final-2012-air-quality-management-plan; then follow "Executive Summary" hyperlink p. ES-1 (last visited Apr. 1, 2015).)

Under California law, the local and regional districts are primarily responsible for controlling air pollution from all sources except motor vehicles. (Health & Saf. Code § 40000.) The California Air Resources Board (CARB), part of the California Environmental Protection Agency, is primarily responsible for controlling pollution from motor vehicles. (*Id.*) The air districts must adopt rules to achieve and maintain the state and federal ambient air quality standards within their jurisdictions. (Health & Saf. Code § 40001.)

The federal Clean Air Act (CAA) requires the United States Environmental Protection Agency (EPA) to identify pollutants that are widely distributed and pose a threat to human health, developing a so-called "criteria" document. (42 U.S.C. § 7408; CAA § 108.) These pollutants are frequently called "criteria pollutants." EPA must then establish "national ambient air quality standards" at levels "requisite to protect public health",

allowing "an adequate margin of safety." (42 U.S.C. § 7409; CAA § 109.) EPA has set standards for six identified pollutants: ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, particulate matter (PM), and lead. (U.S. EPA, National Ambient Air Quality Standards (NAAQS), http://www.epa.gov/air/criteria.html (last updated Oct. 21, 2014).)²

Under the Clean Air Act, EPA sets emission standards for motor vehicles and "nonroad engines" (mobile farm and construction equipment, marine vessels, locomotives, aircraft, etc.). (42 U.S.C. §§ 7521, 7547; CAA §§ 202, 213.) California is the only state allowed to establish emission standards for motor vehicles and most nonroad sources; however, it may only do so with EPA's approval. (42 U.S.C. §§ 7543(b), 7543(e); CAA §§ 209(b), 209(c).) Sources such as manufacturing facilities, power plants and refineries that are not mobile are often referred to as "stationary sources." The Clean Air Act charges state and local agencies with the primary responsibility to attain the national ambient air quality standards. (42 U.S.C. § 7401(a)(3); CAA § 101(a)(3).) Each state must adopt and implement a plan including enforceable measures to achieve and maintain the national ambient air quality standards. (42 U.S.C. § 7410; CAA § 110.) The SCAQMD and CARB jointly prepare portion of the plan for the South Coast Air Basin and submit it for approval by EPA. (Health & Saf. Code §§ 40460, et seq.)

The Clean Air Act also requires state and local agencies to adopt a permit program requiring, among other things, that new or modified "major" stationary sources use technology to achieve the "lowest achievable emission rate," and to control minor stationary sources as

² Particulate matter (PM) is further divided into two categories: fine particulate or PM_{2.5} (particles with a diameter of less than or equal to 2.5 microns) and coarse particulate (PM₁₀) (particles with a diameter of 10 microns or less). (U.S. EPA, Particulate Matter (PM), http://www.epa.gov/airquality/particlepollution/ (last visited Apr. 1, 2015).)

needed to help attain the standards. (42 U.S.C. §§ 7502(c)(5), 7503(a)(2), 7410(a)(2)(C); CAA §§ 172(c)(5), 173(a)(2), 110(a)(2)(C).) The air districts implement these permit programs in California. (Health & Saf. Code §§ 42300, et seq.)

The Clean Air Act also sets out a regulatory structure for over 100 so-called "hazardous air pollutants" calling for EPA to establish "maximum achievable control technology" (MACT) for sources of these pollutants. (42 U.S.C. § 7412(d)(2); CAA § 112(d)(2).) California refers to these pollutants as "toxic air contaminants" (TACs) which are subject to two state-required programs. The first program requires "air toxics control measures" for specific categories of sources. (Health & Saf. Code § 39666.) The other program requires larger stationary sources and sources identified by air districts to prepare "health risk assessments" for impacts of toxic air contaminants. (Health & Saf. Code §§ 44320(b), 44322, 44360.) If the health risk exceeds levels identified by the district as "significant," the facility must implement a "risk reduction plan" to bring its risk levels below "significant" levels. Air districts may adopt additional more stringent requirements than those required by state law, including requirements for toxic air contaminants. (Health & Saf. Code § 41508; Western Oil & Gas Assn. v. Monterey Bay Unified APCD (1989) 49 Cal.3d 408, 414.) For example, SCAQMD has adopted a rule requiring new or modified sources to keep their risks below specified levels and use best available control technology (BACT) for toxics. (SCAQMD, Rule 1401-New Source Review of Toxic Air Contaminants, http://www.aqmd.gov/home/regulations/rules/scaqmd-rule-book/regulation-

B. The SCAQMD's Role Under CEQA

The California Environmental Quality Act (CEQA) requires public agencies to perform an environmental review and appropriate analysis for projects that they implement or approve. (Pub. Resources Code § 21080(a).) The agency with primary approval authority for a particular project is generally the "lead agency" that prepares the appropriate CEQA document. (CEQA Guidelines §§ 15050, 15051.) Other agencies having a subsequent approval authority over all or part of a project are called "responsible" agencies that must determine whether the CEQA document is adequate for their use. (CEQA Guidelines §§ 15096(c), 15381.) Lead agencies must also consult with and circulate their environmental impact reports to "trustee agencies" and agencies "with jurisdiction by law" including "authority over resources which may be affected by the project." (Pub. Resources Code §§ 21104(a), 21153; CEQA Guidelines §§ 15086(a)(3), 15073(c).) The SCAQMD has a role in all these aspects of CEQA.

Fulfilling its responsibilities to implement its air quality plan and adopt rules to attain the national ambient air quality standards, SCAQMD adopts a dozen or more rules each year to require pollution reductions from a wide variety of sources. The SCAQMD staff evaluates each rule for any adverse environmental impact and prepares the appropriate CEQA document. Although most rules reduce air emissions, they may have secondary environmental impacts such as use of water or energy or disposal of waste—e.g., spent catalyst from control equipment.³

³ The SCAQMD's CEQA program for its rules is a "Certified Regulatory Program" under which it prepares a "functionally equivalent" document in lieu of a negative declaration or EIR. (Pub. Resources Code § 21080.5, CEQA Guidelines § 15251(l).)

The SCAQMD also approves a large number of permits every year to construct new, modified, or replacement facilities that emit regulated air pollutants. The majority of these air pollutant sources have already been included in an earlier CEQA evaluation for a larger project, are currently being evaluated by a local government as lead agency, or qualify for an exemption. However, the SCAQMD sometimes acts as lead agency for major projects where the local government does not have a discretionary approval. In such cases, SCAQMD prepares and certifies a negative declaration or environmental impact report (EIR) as appropriate.⁴ SCAQMD evaluates perhaps a dozen such permit projects under CEQA each year. SCAQMD is often also a "responsible agency" for many projects since it must issue a permit for part of the projects (e.g., a boiler used to provide heat in a commercial building). For permit projects evaluated by another lead agency under CEQA, SCAQMD has the right to determine that the CEQA document is inadequate for its purposes as a responsible agency, but it may not do so because its permit program already requires all permitted sources to use the best available air pollution control technology. (SCAQMD, Rule 1303(a)(1) – Requirements, http://www.aqmd.gov/home/regulations/rules/scaqmd-rule-book/regulationxiii; then follow "Rule 1303" hyperlink (last visited Apr. 1, 2015).)

Finally, SCAQMD receives as many as 60 or more CEQA documents each month (around 500 per year) in its role as commenting agency or an agency with "jurisdiction by law" over air quality—a natural resource affected by the project. (Pub. Resources Code §§ 21104(a), 21153; CEQA Guidelines § 15366(a)(3).) The SCAQMD staff provides comments on as many as 25 or 30 such documents each month.

⁴ The SCAQMD's permit projects are not included in its Certified Regulatory Program, and are evaluated under the traditional local government CEQA analysis. (Pub. Resources Code §§ 21150-21154.)

(SCAQMD Governing Board Agenda, Apr. 3, 2015, Agenda Item 16, Attachment A, http://www.aqmd.gov/home/library/meeting-agendas-minutes/agenda?title=governing-board-meeting-agenda-april-3-2015; then follow "16. Lead Agency Projects and Environmental Documents Received by SCAQMD" hyperlink (last visited Apr. 1, 2015).) Of course, SCAQMD focuses its commenting efforts on the more significant projects.

Typically, SCAQMD comments on the adequacy of air quality analysis, appropriateness of assumptions and methodology, and completeness of the recommended air quality mitigation measures. Staff may comment on the need to prepare a health risk assessment detailing the projected cancer and noncancer risks from toxic air contaminants resulting from the project, particularly the impacts of diesel particulate matter, which CARB has identified as a toxic air contaminant based on its carcinogenic effects. (California Air Resources Board, Resolution 98-35, Aug. 27, 1998, http://www.arb.ca.gov/regact/diesltac/diesltac.htm; then follow Resolution 98-35 hyperlink (last visited Apr. 1, 2015).) Because SCAQMD already requires new or modified stationary sources of toxic air contaminants to use the best available control technology for toxics and to keep their risks below specified levels, (SCAQMD Rule 1401, supra, note 15), the greatest opportunity to further mitigate toxic impacts through the CEQA process is by reducing emissions—particularly diesel emissions—from vehicles.

II. THIS COURT SHOULD NOT SET A HARD-AND-FAST RULE CONCERNING THE EXTENT TO WHICH AN EIR MUST CORRELATE A PROJECT'S EMISSION OF POLLUTANTS WITH RESULTING HEALTH IMPACTS.

Numerous cases hold that courts do not review the correctness of an EIR's conclusions but rather its sufficiency as an informative document. (Laurel Heights 1, supra, 47 Cal.3d at p. 392; Citizens of Goleta Valley v.

Bd. of Supervisors (1990) 52 Cal.3d 553, 569; Bakersfield Citizens for Local Control v. City of Bakersfield (2004) 124 Cal.App.4th 1184, 1197.)

As stated by the Court of Appeal in this case, where an EIR has addressed a topic, but the petitioner claims that the information provided about that topic is insufficient, courts must "draw[] a line that divides *sufficient* discussions from those that are *insufficient*." (*Sierra Club v. County of Fresno* (2014) 226 Cal.App.4th 704 (superseded by grant of review) 172 Cal.Rptr.3d 271, 290.) The Court of Appeal readily admitted that "[t]he terms themselves – sufficient and insufficient – provide little, if any, guidance as to where the line should be drawn. They are simply labels applied once the court has completed its analysis." (*Id.*)

The CEQA Guidelines, however, provide guidance regarding what constitutes a sufficient discussion of impacts. Section 15151 states that "the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible." Case law reflects this: "Analysis of environmental effects need not be exhaustive, but will be judged in light of what was reasonably feasible." (Association of Irritated Residents v. County of Madera, supra, 107 Cal.App.4th at p. 1390; see also CEQA Guidelines § 15204(a).)

Applying this test, this Court cannot realistically establish a hardand-fast rule that an analysis correlating air pollution impacts of a project to quantified resulting health impacts is always required, or indeed that it is never required. Simply put, in some cases such an analysis will be "feasible"; in some cases it will not.

For example, air pollution control districts often require a proposed new source of toxic air contaminants to prepare a "health risk assessment" before issuing a permit to construct. District rules often limit the allowable cancer risk the new source may cause to the "maximally exposed individual" (worker and residence exposures). (See, e.g., SCAQMD Rule 1401(c)(8); 1401(d)(1), supra note 15.) In order to perform this analysis, it

is necessary to have data regarding the sources and types of air toxic contaminants, location of emission points, velocity of emissions, the meteorology and topography of the area, and the location of receptors (worker and residence). (SCAQMD, Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and Assessment Act (AB2588), pp. 11-16; (last visited Apr. 1, 2015) http://www.aqmd.gov/home/library/documents-support-material; "Guidelines" hyperlink; AB2588; then follow AB2588 Risk Assessment Guidelines hyperlink.)

Thus, it is feasible to determine the health risk posed by a new gas station locating at an intersection in a mixed use area, where receptor locations are known. On the other hand, it may not be feasible to perform a health risk assessment for airborne toxics that will be emitted by a generic industrial building that was built on "speculation" (i.e., without knowing the future tenant(s)). Even where a health risk assessment can be prepared, however, the resulting maximum health risk value is only a calculation of risk—it does not necessarily mean anyone will contract cancer as a result of the project.

In order to find the "cancer burden" or expected additional cases of cancer resulting from the project, it is also necessary to know the numbers and location of individuals living within the "zone of impact" of the project: i.e., those living in areas where the projected cancer risk from the project exceeds one in a million. (SCAQMD, Health Risk Assessment Summary form, http://www.aqmd.gov/home/forms; filter by "AB2588" category; then "Health Risk Assessment" hyperlink (last visited Apr. 1, 2015).) The affected population is divided into bands of those exposed to at least 1 in a million risk, those exposed to at least 10 in a million risk, etc. up to those exposed at the highest levels. (*Id.*) This data allows agencies to calculate an approximate number of additional cancer cases expected from

the project. However, it is not possible to predict which particular individuals will be affected.

For the so-called criteria pollutants⁵, such as ozone, it may be more difficult to quantify health impacts. Ozone is formed in the atmosphere from the chemical reaction of the nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight. (U.S. EPA, Ground Level Ozone, http://www.epa.gov/airquality/ozonepollution/ (last updated Mar. 25, 2015).) It takes time and the influence of meteorological conditions for these reactions to occur, so ozone may be formed at a distance downwind from the sources. (U.S. EPA, *Guideline on Ozone Monitoring Site Selection* (Aug. 1998) EPA-454/R-98-002 § 5.1.2, http://www.epa.gov/ttnamti1/archive/cpreldoc.html (last visited Apr. 1, 2015).) NO_x and VOC are known as "precursors" of ozone.

Scientifically, health effects from ozone are correlated with increases in the ambient level of ozone in the air a person breathes. (U.S. EPA, Health Effects of Ozone in the General Population, Figure 9, http://www.epa.gov/apti/ozonehealth/population.html#levels (last visited Apr. 1, 2015).) However, it takes a large amount of additional precursor emissions to cause a modeled increase in ambient ozone levels over an entire region. For example, the SCAQMD's 2012 AQMP showed that reducing NO_x by 432 tons per day (157,680 tons/year) and reducing VOC by 187 tons per day (68,255 tons/year) would reduce ozone levels at the SCAQMD's monitor site with the highest levels by only 9 parts per billion. (South Coast Air Quality Management District, Final 2012 AQMP (February 2013), http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan/final-2012-air-quality-management-plan; then follow "Appendix V: Modeling & Attainment Demonstrations" hyperlink,

⁵ See discussion of types of pollutants, supra, Part I.A.

pp. v-4-2, v-7-4, v-7-24.) SCAQMD staff does not currently know of a way to accurately quantify ozone-related health impacts caused by NO_x or VOC emissions from relatively small projects.

On the other hand, this type of analysis may be feasible for projects on a regional scale with very high emissions of NO_x and VOCs, where impacts are regional. For example, in 2011 the SCAQMD performed a health impact analysis in its CEQA document for proposed Rule 1315, which authorized various newly-permitted sources to use offsets from the districts "internal bank" of emission reductions. This CEQA analysis accounted for essentially all the increases in emissions due to new or modified sources in the District between 2010 and 2030.6 The SCAQMD was able to correlate this very large emissions increase (e.g., 6,620 pounds per day NO_x (1,208 tons per year), 89,180 pounds per day VOC (16,275 tons per year)) to expected health outcomes from ozone and particulate matter (e.g., 20 premature deaths per year and 89,947 school absences in the year 2030 due to ozone). (SCAQMD Governing Board Agenda, February 4, 2011, Agenda Item 26, Assessment for: Re-adoption of Proposed Rule 1315 – Federal New Source Review Tracking System (see hyperlink in fn 6) at p. 4.1-35, Table 4.1-29.)

⁶ (SCAQMD Governing Board Agenda, February 4, 2011, Agenda Item 26, Attachment G, Assessment for: Re-adoption of Proposed Rule 1315 – Federal New Source Review Tracking System, Vol. 1, p.4.0-6, http://www.aqmd.gov/home/library/meeting-agenda-february-4-2011; the follow "26. Adopt Proposed Rule 1315 – Federal New Source Review Tracking System" (last visited April 1, 2015).)

⁷ The SCAQMD was able to establish the location of future NO_x and VOC emissions by assuming that new projects would be built in the same locations and proportions as existing stationary sources. This CEQA document was upheld by the Los Angeles County Superior Court in *Natural Res. Def. Council v SCAQMD*, Los Angeles Superior Court No. BS110792).

However, a project emitting only 10 tons per year of NO_x or VOC is small enough that its regional impact on ambient ozone levels may not be detected in the regional air quality models that are currently used to determine ozone levels. Thus, in this case it would not be feasible to directly correlate project emissions of VOC or NO_x with specific health impacts from ozone. This is in part because ozone formation is not linearly related to emissions. Ozone impacts vary depending on the location of the emissions, the location of other precursor emissions, meteorology and seasonal impacts, and because ozone is formed some time later and downwind from the actual emission. (EPA Guideline on Ozone Monitoring Site Selection (Aug. 1998) EPA-454/R-98-002, § 5.1.2; https://www.epa.gov/ttnamti1/archive/cpreldoc.html; then search "Guideline on Ozone Monitoring Site Selection" click on pdf) (last viewed Apr. 1, 2015).)

SCAQMD has set its CEQA "significance" threshold for NO_x and VOC at 10 tons per year (expressed as 55 lb/day). (SCAQMD, *Air Quality Analysis Handbook*, http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook; then follow "SCAQMD Air Quality Significance Thresholds" hyperlink (last visited Apr. 1, 2015).) This is because the federal Clean Air Act defines a "major" stationary source for "extreme" ozone nonattainment areas such as SCAQMD as one emitting 10 tons/year. (42 U.S.C. §§ 7511a(e), 7511a(f); CAA §§ 182(e), 182(f).) Under the Clean Air Act, such sources are subject to enhanced control requirements (42 U.S.C. §§ 7502(c)(5), 7503; CAA §§ 172(c)(5), 173), so SCAQMD decided this was an appropriate threshold for making a CEQA "significance" finding and requiring feasible mitigation. Essentially, SCAQMD takes the position that a source that emits 10 tons/year of NO_x or VOC would contribute cumulatively to ozone formation. Therefore, lead agencies that use SCAQMD's thresholds of significance may determine

that many projects have "significant" air quality impacts and must apply all feasible mitigation measures, yet will not be able to precisely correlate the project to quantifiable health impacts, unless the emissions are sufficiently high to use a regional modeling program.

In the case of particulate matter $(PM_{2.5})^8$, another "criteria" pollutant, SCAQMD staff is aware of two possible methods of analysis. SCAQMD used regional modeling to predict expected health impacts from its proposed Rule 1315, as mentioned above. Also, the California Air Resources Board (CARB) has developed a methodology that can predict expected mortality (premature deaths) from large amounts of PM_{2.5} (California Air Resources Board, Health Impacts Analysis: PM Premature Death Relationship, http://www.arb.ca.gov/research/health/pm-mort/pmmort arch.htm (last reviewed Jan. 19, 2012).) SCAQMD used the CARB methodology to predict impacts from three very large power plants (e.g., 731-1837 lbs/day). (Final Environmental Assessment for Rule 1315, supra, pp 4.0-12, 4.1-13, 4.1-37 (e.g., 125 premature deaths in the entire SCAQMD in 2030), 4.1-39 (0.05 to 1.77 annual premature deaths from power plants.) Again, this project involved large amounts of additional PM_{2.5} in the District, up to 2.82 tons/day (5,650 lbs/day of PM_{2.5}, or, or 1029 tons/year. (*Id.* at table 4.1-4, p. 4.1-10.)

However, the primary author of the CARB methodology has reported that this PM_{2.5} health impact methodology is not suited for small projects and may yield unreliable results due to various uncertainties. ⁹ (SCAQMD, *Final Subsequent Mitigated Negative Declaration for:Warren*

⁸ SCAQMD has not attained the latest annual or 24-hour national ambient air quality standards for "PM_{2.5}" or particulate matter less than 2.5 microns in diameter.

⁹ Among these uncertainties are the representativeness of the population used in the methodology, and the specific source of PM and the corresponding health impacts. (*Id.* at p. 2-24.)

E&P, Inc. WTU Central Facility, New Equipment Project (certified July 19, 2011), https://www.aqmd.gov/home/library/documents-support-material/lead-agency-permit-projects/permit-project-documents---year-2011; then follow "Final Subsequent Mitigated Negative Declaration for Warren E&P Inc. WTU Central Facility, New Equipment Project" hyperlink, pp. 2-22, 2-23 (last visited Apr. 1, 2015).) Therefore, when SCAQMD prepared a CEQA document for the expansion of an existing oil production facility, with very small PM_{2.5} increases (3.8 lb/day) and a very small affected population, staff elected not to use the CARB methodology for using estimated PM_{2.5} emissions to derive a projected premature mortality number and explained why it would be inappropriate to do so. (Id. at pp 2-22 to 2-24.) SCAQMD staff concluded that use of this methodology for such a small source could result in unreliable findings and would not provide meaningful information. (Id. at pp. 2-23, 2-25.) This CEQA document was not challenged in court.

In the above case, while it may have been technically possible to plug the data into the methodology, the results would not have been reliable or meaningful. SCAQMD believes that an agency should not be required to perform analyses that do not produce reliable or meaningful results. This Court has already held that an agency may decline to use even the "normal" "existing conditions" CEQA baseline where to do so would be misleading or without informational value. (*Neighbors for Smart Rail v. Exposition Metro Line* (2013) 57 Cal.4th 439, 448, 457.) The same should be true for a decision that a particular study or analysis would not provide reliable or meaningful results. ¹⁰

¹⁰ Whether a particular study would result in "informational value" is a part of deciding whether it is "feasible." CEQA defines "feasible" as "capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social, and

Therefore, it is not possible to set a hard-and-fast rule on whether a correlation of air quality impacts with specific quantifiable health impacts is required in all cases. Instead, the result turns on whether such an analysis is reasonably feasible in the particular case. Moreover, what is reasonably feasible may change over time as scientists and regulatory agencies continually seek to improve their ability to predict health impacts. For example, CARB staff has been directed by its Governing Board to reassess and improve the methodology for estimating premature deaths. (California Air Resources Board, *Health Impacts Analysis: PM Mortality Relationship*, http://www.arb.ca.gov/research/health/pm-mort/pm-mort.htm (last reviewed Dec. 29, 2010).) This factor also counsels against setting any hard-and-fast rule in this case.

III. THE QUESTION OF WHETHER AN EIR CONTAINS SUFFICIENT ANALYSIS TO MEET CEQA'S REQUIREMENTS IS A MIXED QUESTION OF FACT AND LAW GOVERNED BY TWO DIFFERENT STANDARDS OF REVIEW.

A. Standard of Review for Feasibility Determination and Sufficiency as an Informative Document

A second issue in this case is whether courts should review an EIR's informational sufficiency under the "substantial evidence" test as argued by Friant Ranch or the "independent judgment" test as argued by Sierra Club.

technological factors." (Pub. Resources Code § 21061.1.) A study cannot be "accomplished in a *successful* manner" if it produces unreliable or misleading results.

In this case, the lead agency did not have an opportunity to determine whether the requested analysis was feasible because the comment was non-specific. Therefore, SCAQMD suggests that this Court, after resolving the legal issues in the case, direct the Court of Appeal to remand the case to the lead agency for a determination of whether the requested analysis is feasible. Because Fresno County, the lead agency, did not seek review in this Court, it seems likely that the County has concluded that at least some level of correlation of air pollution with health impacts is feasible.

As this Court has explained, "a reviewing court must adjust its scrutiny to the nature of the alleged defect, depending on whether the claim is predominantly one of improper procedure or a dispute over the facts."

(Vineyard Area Citizens v. City of Rancho Cordova, supra, 40 Cal.4th at 435.) For questions regarding compliance with proper procedure or other legal questions, courts review an agency's action de novo under the "independent judgment" test. (Id.) On the other hand, courts review factual disputes only for substantial evidence, thereby "accord[ing] greater deference to the agency's substantive factual conclusions." (Id.)

Here, Friant Ranch and Sierra Club agree that the case involves the question of whether an EIR includes sufficient information regarding a project's impacts. However, they disagree on the proper standard of review for answering this question: Sierra Club contends that courts use the independent judgment standard to determine whether an EIR's analysis is sufficient to meet CEQA's informational purposes, ¹² while Friant Ranch contends that the substantial evidence standard applies to this question.

///

///

///

///

///

///

///

///

///

¹² Sierra Club acknowledges that courts use the substantial evidence standard when reviewing predicate factual issues, but argues that courts ultimately decide as a matter of law what CEQA requires. (Answering Brief, pp. 14, 23.)

SCAQMD submits that the issue is more nuanced than either party contends. We submit that, whether a CEQA document includes sufficient analysis to satisfy CEQA's informational mandates is a mixed question of fact and law, 13 containing two levels of inquiry that should be judged by different standards. 14

The state CEQA Guidelines set forth standards for the adequacy of environmental analysis. Guidelines Section 15151 states:

An EIR should be prepared with a sufficient degree of analysis to provide decision makers with information which enables them to make a decision which intelligently takes account of environmental consequences. An evaluation of the environmental effects of a proposed project need not be exhaustive, but the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible. Disagreement among experts does not make an EIR inadequate, but the EIR should summarize the main points of disagreement among the experts. The courts have looked not for perfection, but for adequacy, completeness, and a good-faith effort at full disclosure.

In this case, the basic question is whether the underlying analysis of air quality impacts made the EIR "sufficient" as an informative document. However, whether the EIR's analysis was sufficient is judged in light of what was reasonably feasible. This represents a mixed question of fact and law that is governed by two different standards of review.

¹³ Friant Ranch actually states that the claim that an EIR lacks sufficient relevant information is, "most properly thought of as raising mixed questions of fact and law." (Opening Brief, p. 27.) However, the remainder of its argument claims that the court should apply the substantial evidence standard of review to all aspects of the issue.

¹⁴ Mixed questions of fact and law issues may implicate predominantly factual subordinate questions that are reviewed under the substantial evidence test even though the ultimate question may be reviewed by the independent judgment test. *Crocker National Bank v. City and County of San Francisco* (1989) 49 Cal.3d 881, 888-889.

SCAQMD submits that an EIR's sufficiency as an informational document is ultimately a legal question that courts should determine using their independent judgment. This Court's language in Laurel Heights I supports this position. As this Court explained: "The court does not pass upon the correctness of the EIR's environmental conclusions, but only upon its sufficiency as an informative document." (Laurel Heights I, supra, 47 Cal.3d at 392-393) (emphasis added.) As described above, the Court in Vineyard Area Citizens v. City of Rancho Cordova, supra, 40 Cal.4th at 431, also used its independent judgment to determine what level of analysis CEQA requires for water supply impacts. The Court did not defer to the lead agency's opinion regarding the law's requirements; rather, it determined for itself what level of analysis was necessary to meet "[t]he law's informational demands." (Id. at p. 432.) Further, existing case law also holds that where an agency fails to comply with CEQA's information disclosure requirements, the agency has "failed to proceed in the manner required by law." (Save Our Peninsula Comm. v. Monterey County Bd. of Supervisors (2001) 87 Cal. App. 4th 99, 118.)

However, whether an EIR satisfies CEQA's requirements depends in part on whether it was reasonably feasible for an agency to conduct additional or more thorough analysis. EIRs must contain "a detailed statement" of a project's impacts (Pub. Res. Code § 21061), and an agency must "use its best efforts to find out and disclose all that it reasonably can." (CEQA Guidelines § 15144.) Nevertheless, "the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible." (CEQA Guidelines § 15151.)

SCAQMD submits that the question of whether additional analysis or a particular study suggested by a commenter is "feasible" is generally a question of fact. Courts have already held that whether a particular alternative is "feasible" is reviewed by the substantial evidence test.

(Uphold Our Heritage v. Town of Woodside (2007) 147 Cal. App. 4th 587, 598-99; Center for Biological Diversity v. County of San Bernardino (2010) 185 Cal. App. 4th 866, 883.) Thus, if a lead agency determines that a particular study or analysis is infeasible, that decision should generally be judged by the substantial evidence standard. However, SCAQMD urges this Court to hold that lead agencies must explain the basis of any determination that a particular analysis is infeasible in the EIR itself. An EIR must discuss information, including issues related to the feasibility of particular analyses "in sufficient detail to enable meaningful participation and criticism by the public. '[W]hatever is required to be considered in an EIR must be in that formal report; what any official might have known from other writings or oral presentations cannot supply what is lacking in the report." (Laurel Heights I, supra, 47 Cal.3d at p. 405 (quoting Santiago County Water District v. County of Orange (1981) 118 Cal. App. 3d 818, 831) (discussing analysis of alternatives).) The evidence on which the determination is based should also be summarized in the EIR itself, with appropriate citations to reference materials if necessary. Otherwise commenting agencies such as SCAQMD would be forced to guess where the lead agency's evidence might be located, thus thwarting effective public participation.

Moreover, if a lead agency determines that a particular study or analysis would not result in reliable or useful information and for that reason is not feasible, that determination should be judged by the substantial evidence test. (See *Neighbors for Smart Rail v. Exposition Metro Line Construction Authority, supra*, 57 Cal.4th 439, 448, 457:

whether "existing conditions" baseline would be misleading or uninformative judged by substantial evidence standard. ¹⁵)

If the lead agency's determination that a particular analysis or study is not feasible is supported by substantial evidence, then the agency has not violated CEQA's information disclosure provisions, since it would be infeasible to provide additional information. This Court's decisions provide precedent for such a result. For example, this Court determined that the issue of whether the EIR should have included a more detailed discussion of future herbicide use was resolved because substantial evidence supported the agency's finding that "the precise parameters of future herbicide use could not be predicted." *Ebbetts Pass Forest Watch v. California Dept. of Forestry & Fire Protection* (2008) 43 Cal.4th 936, 955.

Of course, SCAQMD expects that courts will continue to hold lead agencies to their obligations to consult with, and not to ignore or misrepresent, the views of sister agencies having special expertise in the area of air quality. (*Berkeley Keep Jets Over the Bay v. Board of Port Commissioners* (2007) 91 Cal.App.4th 1344, 1364 n.11.) In some cases, information provided by such expert agencies may establish that the purported evidence relied on by the lead agency is not in fact "substantial". (*Id.* at pp. 1369-1371.)

In sum, courts retain ultimate responsibility to determine what CEQA requires. However, the law does not require exhaustive analysis, but only what is reasonably feasible. Agencies deserve deference for their factual determinations regarding what type of analysis is reasonably feasible. On the other hand, if a commenter requests more information, and the lead agency declines to provide it but does *not* determine that the

¹⁵ The substantial evidence standard recognizes that the courts "have neither the resources nor the scientific expertise" to weigh conflicting evidence on technical issues. (*Laurel Heights I, supra,* 47 Cal.3d 376, 393.)

requested study or analysis would be infeasible, misleading or uninformative, the question becomes whether the omission of that analysis renders the EIR inadequate to satisfy CEQA's informational purposes. (*Id.* at pp. 1370-71.) Again, this is predominantly a question of law and should be judged by the de novo or independent judgment standard of review. Of course, this Court has recognized that a "project opponent or reviewing court can always imagine some additional study or analysis that might provide helpful information. It is not for them to design the EIR. That further study...might be helpful does not make it necessary." (*Laurel Heights I, supra, 47* Cal.3d 376, 415 – see also CEQA Guidelines § 15204(a) [CEQA "does not require a lead agency to conduct every test. . . recommended or demanded by commenters."].) Courts, then, must adjudicate whether an omission of particular information renders an EIR inadequate to serve CEQA's informational purposes. ¹⁶

¹⁶ We recognize that there is case law stating that the substantial evidence standard applies to "challenges to the scope of an EIR's analysis of a topic" as well as the methodology used and the accuracy of the data relied on in the document "because these types of challenges involve factual questions." (Bakersfield Citizens for Local Control v. City of Bakersfield, supra, 124 Cal.App.4th 1184, 1198, and cases relied on therein.) However, we interpret this language to refer to situations where the question of the scope of the analysis really is factual—that is, where it involves whether further analysis is feasible, as discussed above. This interpretation is supported by the fact that the Bakersfield court expressly rejected an argument that a claimed "omission of information from the EIR should be treated as inquiries whether there is substantial evidence supporting the decision approving the project." Bakersfield, supra, 124 Cal. App. 4th at p. 1208. And the Bakersfield court ultimately decided that the lead agency must analyze the connection between the identified air pollution impacts and resulting health impacts, even though the EIR already included some discussion of air-pollution-related respiratory illnesses. Bakersfield, supra, 124 Cal.App.4th at p. 1220. Therefore, the court must not have interpreted this question as one of the "scope of the analysis" to be judged by the substantial evidence standard.

B. Friant Ranch's Rationale for Rejecting the Independent Judgment Standard of Review is Unsupported by Case Law.

In its brief, Friant Ranch makes a distinction between cases where a required CEQA topic is not discussed at all (to be reviewed by independent judgment as a failure to proceed in the manner required by law) and cases where a topic is discussed, but the commenter claims the information provided is insufficient (to be judged by the substantial evidence test). (Opening Brief, pp. 13-17.) The Court of Appeal recognized these two types of cases, but concluded that both raised questions of law. (Sierra Club v. County of Fresno (2014) 226 Cal.App.4th 704 (superseded by grant of review) 172 Cal.Rptr.3d 271, 290.) We believe the distinction drawn by Friant Ranch is unduly narrow, and inconsistent with cases which have concluded that CEQA documents are insufficient. In many instances, CEQA's requirements are stated broadly, and the courts must interpret the law to determine what level of analysis satisfies CEQA's mandate for providing meaningful information, even though the EIR discusses the issue to some extent.

For example, the CEQA Guidelines require discussion of the existing environmental baseline. In *County of Amador v. El Dorado County Water Agency* (1999) 76 Cal.App.4th 931, 954-955, the lead agency had discussed the environmental baseline by describing historic month-end water levels in the affected lakes. However, the court held that this was not an adequate baseline discussion because it failed to discuss the timing and amounts of past actual water releases, to allow comparison with the proposed project. The court evidently applied the independent judgment test to its decision, even though the agency discussed the issue to some extent.

Likewise, in *Vineyard Area Citizens* (2007) 40 Cal.4th 412, this
Court addressed the question of whether an EIR's analysis of water supply impacts complied with CEQA. The parties agreed that the EIR was required to analyze the effects of providing water to the development project, "and that in order to do so the EIR had, in some manner, to identify the planned sources of that water." (*Vineyard Area Citizens, supra*, at p. 428.) However, the parties disagreed as to the level of detail required for this analysis and "what level of uncertainty regarding the availability of water supplies can be tolerated in an EIR" (*Id.*) In other words, the EIR had analyzed water supply impacts for the project, but the petitioner claimed that the analysis was insufficient.

This Court noted that neither CEQA's statutory language or the CEQA Guidelines specifically addressed the question of how precisely an EIR must discuss water supply impacts. (Id.) However, it explained that CEQA "states that '[w]hile foreseeing the unforeseeable is not possible, an agency must use its best efforts to find out and disclose all that it reasonably can." (Id., [Guidelines § 15144].) The Court used this general principle, along with prior precedent, to elucidate four "principles for analytical adequacy" that are necessary in order to satisfy "CEQA's informational purposes." (Vineyard Area Citizens, supra, at p. 430.) The Court did not defer to the agency's determination that the EIR's analysis of water supply impacts was sufficient. Rather, this Court used its independent judgment to determine for itself the level of analysis required to satisfy CEQA's fundamental purposes. (Vineyard Area Citizens, supra, at p. 441: an EIR does not serve its purposes where it neglects to explain likely sources of water and "... leaves long term water supply considerations to later stages of the project.")

Similarly, the CEQA Guidelines require an analysis of noise impacts of the project. (Appendix G, "Environmental Checklist Form." In *Gray v. County of Madera* (2008) 167 Cal.App.4th 1099, 1123, the court held that the lead agency's noise impact analysis was inadequate even though it had addressed the issue and concluded that the increase would not be noticeable. If the court had been using the substantial evidence standard, it likely would have upheld this discussion.

Therefore, we do not agree that the issue can be resolved on the basis suggested by Friant Ranch, which would apply the substantial evidence standard to *every* challenge to an analysis that addresses a required CEQA topic. This interpretation would subvert the courts' proper role in interpreting CEQA and determining what the law requires.

Nor do we agree that the Court of Appeal in this case violated CEQA's prohibition on courts interpreting its provisions "in a manner which imposes procedural or substantive requirements beyond those explicitly stated in this division or in the state guidelines." (Pub. Resources Code § 21083.1.) CEQA requires an EIR to describe *all* significant impacts of the project on the environment. (Pub. Resources Code § 21100(b)(2); *Vineyard Area Citizens, supra,* at p. 428.) Human beings are part of the environment, so CEQA requires EIRs to discuss a project's significant impacts on human health. However, except in certain particular circumstances, ¹⁸ neither the CEQA statute nor Guidelines specify the precise level of analysis that agencies must undertake to satisfy the law's requirements. (see, e.g., CEQA Guidelines § 15126.2(a) [EIRs must describe "health and safety problems caused by {a project's} physical changes"].) Accordingly, courts must interpret CEQA as a whole to

¹⁷ Association of Environmental Professionals, 2015 CEQA Statute and Guidelines (2015) p.287.

¹⁸ E.g., Pub. Resources Code § 21151.8(C)(3)(B)(iii) (requiring specific type of health risk analysis for siting schools).

determine whether a particular EIR is sufficient as an informational document. A court determining whether an EIR's discussion of human health impacts is legally sufficient does not constitute imposing a new substantive requirement. Under Friant Ranch's theory, the above-referenced cases holding a CEQA analysis inadequate would have violated the law. This is not a reasonable interpretation.

IV. COURTS MUST SCRUPULOUSLY ENFORCE THE REQUIREMENTS THAT LEAD AGENCIES CONSULT WITH AND OBTAIN COMMENTS FROM AIR DISTRICTS

Courts must "scrupulously enforce" CEQA's legislatively mandated requirements. (*Vineyard Area Citizens, supra*, 40 Cal.4th 412, 435.) Case law has firmly established that lead agencies must consult with the relevant air pollution control district before conducting an initial study, and must provide the districts with notice of the intention to adopt a negative declaration (or EIR). (*Schenck v. County of Sonoma* (2011) 198 Cal.App.4th 949, 958.) As *Schenck* held, neither publishing the notice nor providing it to the State Clearinghouse was a sufficient substitute for sending notice directly to the air district. (*Id.*) Rather, courts "must be satisfied that [administrative] agencies have fully complied with the procedural requirements of CEQA, since only in this way can the important public purposes of CEQA be protected from subversion." *Schenck*, 198 Cal.App.4th at p. 959 (citations omitted).²⁰

¹⁹ We submit that Public Resources Code Section 21083.1 was intended to prevent courts from, for example, holding that an agency must analyze economic impacts of a project where there are no resulting environmental impacts (see CEQA Guidelines § 15131), or imposing new procedural requirements, such as imposing additional public notice requirements not set forth in CEQA or the Guidelines.

²⁰ Lead agencies must consult air districts, as public agencies with jurisdiction by law over resources affected by the project, *before* releasing an EIR. (Pub. Resources Code §§ 21104(a); 21153.) Moreover, air

Lead agencies should be aware, therefore, that failure to properly seek and consider input from the relevant air district constitutes legal error which may jeopardize their project approvals. For example, the court in *Fall River Wild Trout Foundation v. County of Shasta*, (1999) 70 Cal.App.4th 482, 492 held that the failure to give notice to a trustee agency (Department of Fish and Game) was prejudicial error requiring reversal. The court explained that the lack of notice prevented the Department from providing any response to the CEQA document. (*Id.* at p. 492.) It therefore prevented relevant information from being presented to the lead agency, which was prejudicial error because it precluded informed decision-making. (*Id.*)²¹

districts should be considered "state agencies" for purposes of the requirement to consult with "trustee agencies" as set forth in Public Resources Code § 20180.3(a). This Court has long ago held that the districts are not mere "local agencies" whose regulations are superseded by those of a state agency regarding matters of statewide concern, but rather have concurrent jurisdiction over such issues. (Orange County Air Pollution Control District v. Public Util. Com. (1971) 4 Cal.3d 945, 951, 954.) Since air pollution is a matter of statewide concern, *Id* at 952, air districts should be entitled to trustee agency status in order to ensure that this vital concern is adequately protected during the CEQA process. ²¹ In Schenck, the court concluded that failure to give notice to the air district was not prejudicial, but this was partly because the trial court had already corrected the error before the case arrived at the Court of Appeal. The trial court issued a writ of mandate requiring the lead agency to give notice to the air district. The air district responded by concurring with the lead agency that air impacts were not significant. (Schenck, 198 Cal.App.4th 949, 960.) We disagree with the Schenck court that the failure to give notice to the air district would not have been prejudicial (even in the absence of the trial court writ) merely because the lead agency purported to follow the air district's published CEQA guidelines for significance. (Id., 198 Cal.App.4th at p. 960.) In the first place, absent notice to the air district, it is uncertain whether the lead agency properly followed those guidelines. Moreover, it is not realistic to expect that an air district's published guidelines would necessarily fully address all possible air-quality related issues that can arise with a CEQA project, or that those

Similarly, lead agencies must obtain additional information requested by expert agencies, including those with jurisdiction by law, if that information is necessary to determine a project's impacts. (Sierra Club v. State Bd. Of Forestry (1994) 7 Cal.4th 1215, 1236-37.) Approving a project without obtaining that information constitutes a failure to proceed in the manner prescribed by CEQA. (Id. at p. 1236.)

Moreover, a lead agency can save significant time and money by consulting with the air district early in the process. For example, the lead agency can learn what the air district recommends as an appropriate analysis on the facts of its case, including what kinds of health impacts analysis may be available, and what models are appropriate for use. This saves the lead agency from the need to do its analysis all over again and possibly needing to recirculate the document after errors are corrected, if new significant impacts are identified. (CEQA Guidelines § 15088.5(a).) At the same time, the air district's expert input can help the lead agency properly determine whether another commenter's request for additional analysis or studies is reasonable or feasible. Finally, the air district can provide input on what mitigation measures would be feasible and effective.

Therefore, we suggest that this Court provide guidance to lead agencies reminding them of the importance of consulting with the relevant air districts regarding these issues. Otherwise, their feasibility decisions may be vulnerable to air district evidence that establishes that there is no substantial evidence to support the lead agency decision not to provide specific analysis. (*See Berkeley Keep Jets Over the Bay, supra*, 91 Cal.App.4th 1344, 1369-1371.)

guidelines would necessarily be continually modified to reflect new developments. Therefore we believe that, had the trial court not already ordered the lead agency to obtain the air district's views, the failure to give notice would have been prejudicial, as in *Fall River*, *supra*, 70 Cal.App.4th 482, 492.

CONCLUSION

The SCAQMD respectfully requests this Court *not* to establish a hard-and-fast rule concerning whether CEQA requires a lead agency to correlate identified air quality impacts of a project with resulting health outcomes. Moreover, the question of whether an EIR is "sufficient as an informational document" is a mixed question of fact and law containing two levels of inquiry. Whether a particular proposed analysis is feasible is predominantly a question of fact to be judged by the substantial evidence standard of review. Where the requested analysis is feasible, but the lead agency relies on legal or policy reasons not to provide it, the question of whether the EIR is nevertheless sufficient as an informational document is predominantly a question of law to be judged by the independent judgment standard of review.

Respectfully submitted,

DATED: April 3, 2015

SOUTH COAST AIR QUALITY
MANAGEMENT DISTRICT
KURT R. WIESE, GENERAL COUNSEL
BARBARA BAIRD, CHIEF DEPUTY COUNSEL

Ву: _

Barbara Baird

Attorneys for Amicus Curiae

SOUTH COAST AIR QUALITY MANAGEMENT DISTICT

CERTIFICATE OF WORD COUNT

Pursuant to Rule 8.520(c)(1) of the California Rules of Court, I hereby certify that this brief contains 8,476 words, including footnotes, but excluding the Application, Table of Contents, Table of Authorities, Certificate of Service, this Certificate of Word Count, and signature blocks. I have relied on the word count of the Microsoft Word Vista program used to prepare this Certificate.

DATED: April 3, 2015

Respectfully submitted,

Barbara Baird

PROOF OF SERVICE

I am employed in the County of Los Angeles, California. I am over the age of 18 years and not a party to the within action. My business address is 21865 Copley Drive, Diamond Bar, California 91765.

On April 3, 2015 I served true copies of the following document(s) described as APPLICATION OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT FOR LEAVE TO FILE BRIEF OF AMICUS CURIAE IN SUPPORT OF NEITHER PARTY AND [PROPOSED] BRIEF OF AMICUS CURIAE by placing a true copy of the foregoing document(s) in a sealed envelope addressed as set forth on the attached service list as follows:

BY MAIL: I enclosed the document(s) in a sealed envelope or package addressed to the persons at the addresses listed in the Service List and placed the envelope for collection and mailing following our ordinary business practices. I am readily familiar with this District's practice for collection and processing of correspondence for mailing. Under that practice, the correspondence would be deposited with the United States Postal Service, with postage thereon fully prepaid at Diamond Bar, California, in the ordinary course of business. I am aware that on motion of the party served, service is presumed invalid if postal cancellation date or postage meter date is more than one day after date of deposit for mailing in affidavit.

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct.

Executed on April 3, 2015 at Diamond Bar, California.

Patricia Anderson

SERVICE LIST

James G. Moose, Tiffany K. Wright, Laura M. Harris REMY MOOSE MANLEY, LLP 555 Capitol Mall, Suite 800 Sacramento, CA 95814 Attorneys for Real Party in Interest and Respondent *Friant Ranch*, *L.P.*

Bryan N. Wagner WAGNER & WAGNER 7110 N. Fresno St, Suite 340 Fresno, CA 93720 Attorney for Real Party in Interest and Respondent *Friant Ranch*, *L.P.*

Sara Hedgpeth-Harris LAW OFFICE OF SARA HEDGPETH-HARRIS 5445 E. Lane Avenue Fresno, CA 93727 Attorney for Plaintiffs and Appellants Sierra Club, et al

Daniel C. Cederborg
Bruce B. Johnson, Jr.
Zachary Stephen Redmond
OFFICE OF THE FRESNO COUNTY
COUNSEL
2220 Tulare Street, Suite 500
Fresno, CA 93721

Attorneys for Respondents County of Fresno

Clerk of the Court
California Court of Appeal
Fifth Appellate District
2424 Ventura Street
Fresno, CA 93721
(via U.S. Mail & Electronic Transmission)

Clerk of the Court Superior Court of California County of Fresno 1130 O Street Fresno, CA 93721 This page intentionally left blank

