# **Chula Vista Nirvana Business Park**

# **Noise Impact Study**

# City of Chula Vista, CA

Prepared for:

Mr. Steven Schwarz VWP-OP Nirvana Owner, LLC 2390 E. Camelback Rd. Ste. 305 Phoenix, AZ 85016

Prepared by:

# **MD** Acoustics, LLC

Mike Dickerson, INCE Robert Pearson 1197 Los Angeles Avenue, Ste 256 Simi Valley, CA 93065

Date: 1/24/2023



Noise Study Reports | Vibration Studies | Air Quality | Greenhouse Gas | Health Risk Assessments

# **TABLE OF CONTENTS**

| 1.0 | Intro  | duction                                                               | 1  |
|-----|--------|-----------------------------------------------------------------------|----|
|     | 1.1    | Purpose of Analysis and Study Objectives                              | 1  |
|     | 1.2    | Site Location and Study Area                                          | 1  |
|     | 1.3    | Proposed Project Description                                          | 1  |
| 2.0 | Funda  | lamentals of Noise                                                    | 4  |
|     | 2.1    | Sound, Noise and Acoustics                                            | 4  |
|     | 2.2    | Frequency and Hertz                                                   | 4  |
|     | 2.3    | Sound Pressure Levels and Decibels                                    | 4  |
|     | 2.4    | Addition of Decibels                                                  | 4  |
|     | 2.5    | Human Response to Changes in Noise Levels                             | 5  |
|     | 2.6    | Noise Descriptors                                                     | 5  |
|     | 2.7    | Traffic Noise Prediction                                              | 6  |
|     | 2.8    | Sound Propagation                                                     | 6  |
| 3.0 | Grou   | ınd-Borne Vibration Fundamentals                                      | 8  |
|     | 3.1    | Vibration Descriptors                                                 | 8  |
|     | 3.2    | Vibration Perception                                                  | 8  |
|     | 3.3    | Vibration Propagation                                                 | 8  |
| 4.0 | Regul  | ılatory Setting                                                       | 9  |
|     | 4.1    | Federal Regulations                                                   | 9  |
|     | 4.2    | State Regulations                                                     | 9  |
|     | 4.3    | City of Chula Vista Noise Regulations                                 | 10 |
| 5.0 | Study  | y Method and Procedure                                                | 14 |
|     | 5.1    | Noise Measurement Procedure and Criteria                              | 14 |
|     | 5.2    | Noise Measurement Locations                                           | 14 |
|     | 5.3    | Stationary Noise Modeling                                             | 14 |
|     | 5.4    | FHWA Traffic Noise Prediction Model                                   | 15 |
|     | 5.5    | FHWA Roadway Construction Noise Model                                 | 16 |
| 6.0 | Existi | ing Noise Environment                                                 | 18 |
|     | 6.1    | Short-Term Noise Measurement Results                                  | 18 |
| 7.0 | Futur  | re Noise Environment Impacts and Mitigation                           | 19 |
|     | 7.1    | Future Exterior Noise                                                 | 19 |
|     |        | 7.1.1 Noise Impacts to Off-Site Receptors Due to Stationary Sources   | 19 |
|     |        | 7.1.2 Noise Impacts to On/Off-Site Receptors Due to Project Generated |    |
|     |        | Traffic                                                               | 20 |
|     |        | 7.1.3 Noise Impacts to On/Off-Site Receptors Due to Project           |    |
|     |        | Maintenance Equipment                                                 | 22 |
| 8.0 | Const  | truction Noise Impact                                                 | 24 |
|     | 8.1    | Construction Noise                                                    | 24 |
|     | 8.2    | Construction Vibration                                                | 25 |

| 8.3          | Construction Noise Reduction Policies                                   | 26 |
|--------------|-------------------------------------------------------------------------|----|
| 9.0 Refe     | erences                                                                 | 27 |
|              |                                                                         |    |
|              | LIST OF APPENDICES                                                      |    |
| Appendix A   | A: Photographs and Field Measurement Data                               | 1  |
| Appendix B   | 3: SoundPlan Input/Output                                               | 2  |
| Appendix C   | C: Construction Input                                                   | 3  |
| Appendix D   | D: Traffic Noise Calculations                                           | 4  |
| Appendix E   | Cumulative Project Analysis                                             | 5  |
|              | LIST OF EXHIBITS                                                        |    |
| Exhibit A:   | Location Map                                                            | 2  |
| Exhibit B:   | Site Plan                                                               |    |
| Exhibit C:   | Typical A-Weighted Noise Levels                                         | 4  |
| Exhibit D:   | Land Use Compatibility Guidelines                                       | 10 |
| Exhibit E:   | Measurement Locations                                                   | 17 |
| Exhibit F:   | Operational Noise Levels Leq(h)                                         | 23 |
|              | LIST OF TABLES                                                          |    |
| Table 1: Tal | ble III Exterior Noise Limits                                           | 11 |
| Table 2: Tal | ble IV Maximum permissible dwelling interior sound levels               | 11 |
| Table 3: Re  | ference Sound Level Measurements for SoundPlan Model <sup>1</sup>       | 15 |
| Table 4: Ro  | adway Parameters and Vehicle Distribution                               | 16 |
| Table 5: Sh  | ort-Term Noise Measurement Data (dBA)                                   | 18 |
| Table 6: Wo  | orst-case Predicted Operational Leq Noise Level <sup>1</sup>            | 20 |
| Table 7: Ch  | ange in Noise Level Characteristics <sup>1</sup>                        | 20 |
| Table 8: Exi | isting Scenario - Noise Levels Along Roadways (dBA CNEL) <sup>1,2</sup> | 21 |
| Table 9։ Туլ | pical Construction Equipment Noise Levels <sup>1</sup>                  | 24 |
|              | Guideline Vibration Damage Potential Threshold Criteria                 |    |
| Table 11: V  | ibration Source Levels for Construction Equipment                       | 26 |

# 1.0 Introduction

# 1.1 Purpose of Analysis and Study Objectives

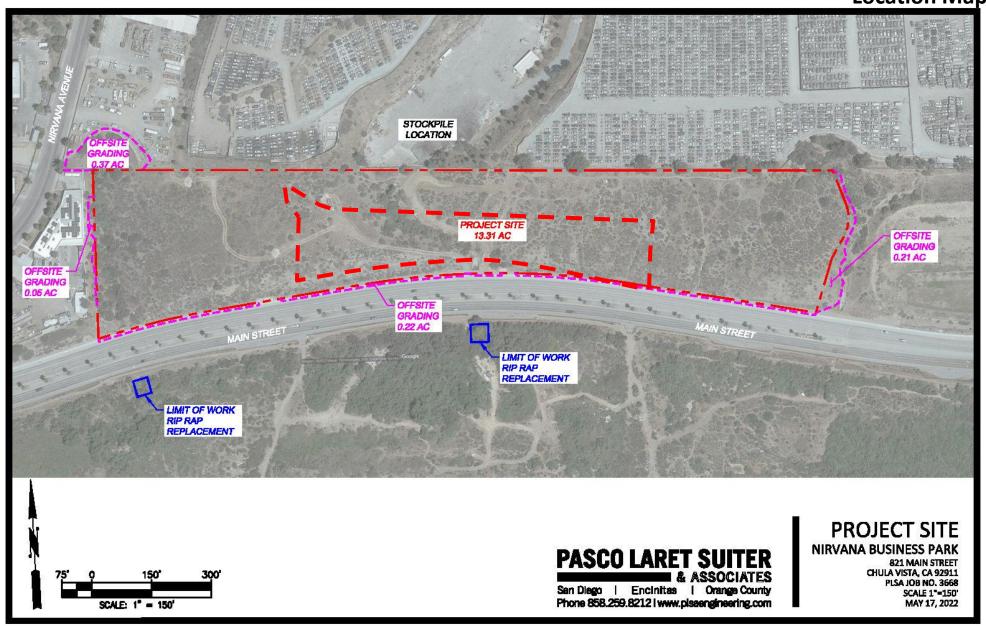
This noise assessment was prepared to evaluate the potential noise impacts for the project study area and to recommend noise mitigation measures, if necessary, to minimize the potential noise impacts. The assessment was conducted and compared to the noise standards set forth by the Federal, State and Local agencies. Consistent with the City's Noise Guidelines, the project must demonstrate compliance to the applicable noise criterion as outlined within the City's Noise Element and Municipal Code.

The following is provided in this report:

- A description of the study area and the proposed project
- Information regarding the fundamentals of noise
- A description of the local noise guidelines and standards
- An evaluation of the existing ambient noise environment
- An analysis of stationary noise impacts from the project site to adjacent land uses
- Construction noise and vibration evaluation

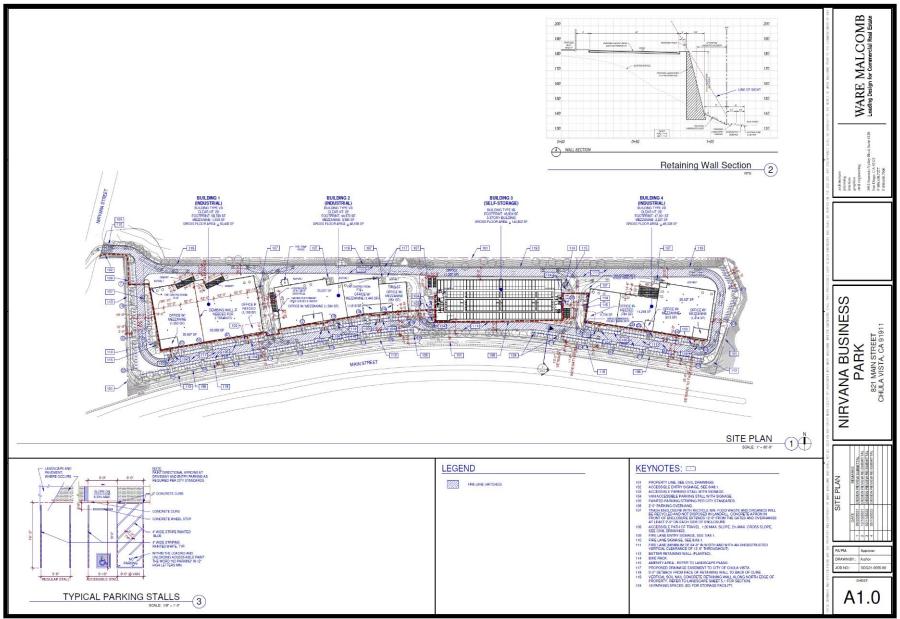
# 1.2 Site Location and Study Area

The project site is located at 821 Main Street between Nirvana Avenue and Heritage Road in the City of Chula Vista, San Diego County, California as shown in Exhibit A. The site is currently designated Limited Industrial (IL) according to the City of Chula Vista General Plan Land Use Diagram and the proposed use is industrial. Land uses surrounding the site include retention area for Escaya to the east, heavy industrial uses to the north like LKQ Pick Your Part ,heavy industrial uses to the west like Bradford Powder Coating, and Main Street to the south with open space further south. The closest existing sensitive receptors (to the site area) are the single-family residential land uses located approximately 1,425 feet (~435 meters) northeast and 1,430 feet (~436 meters) southwest of the project site.


# 1.3 Proposed Project Description

The approximately 13.31-acre project site is proposed to be developed with three new industrial buildings and one new storage building totaling 299,218 square feet of industrial building. Hours of operation for the business park are planned to be Monday through Friday 6:00 a.m. to 6:00 p.m. and Saturday 6:00 a.m. to noon. The self-storage facilities will have 24/7 access. Exhibit B demonstrates the site plan for the project.

Construction activities within the Project area will consist of on-site grading, building, paving, and architectural coating.


# Exhibit A

# **Location Map**



# Exhibit B

# Site Plan



# 2.0 Fundamentals of Noise

This section of the report provides basic information about noise and presents some of the terms used in the report.

# 2.1 Sound, Noise and Acoustics

Sound is a disturbance created by a moving or vibrating source and is capable of being detected by the hearing organs. Sound may be thought of as mechanical energy of a moving object transmitted by pressure waves through a medium to a human ear. For traffic or stationary noise, the medium of concern is air. *Noise* is defined as sound that is loud, unpleasant, unexpected, or unwanted.

# 2.2 Frequency and Hertz

A continuous sound is described by its *frequency* (pitch) and its *amplitude* (loudness). Frequency relates to the number of pressure oscillations per second. Low-frequency sounds are low in pitch (bass sounding) and high-frequency sounds are high in pitch (squeak). These oscillations per second (cycles) are commonly referred to as Hertz (Hz). The human ear can hear from the bass pitch starting out at 20 Hz all the way to the high pitch of 20,000 Hz.

# 2.3 Sound Pressure Levels and Decibels

The *amplitude* of a sound determines its loudness. The loudness of sound increases or decreases as the amplitude increases or decreases. Sound pressure amplitude is measured in units of micro-Newton per square inch meter ( $\mu N/m^2$ ), also called micro-Pascal ( $\mu Pa$ ). One  $\mu Pa$  is approximately one hundred billionths (0.00000000001) of normal atmospheric pressure. Sound pressure level (SPL or  $L_p$ ) is used to describe in logarithmic units the ratio of actual sound pressures to a reference pressure squared. These units are called decibels, abbreviated dB.

**Exhibit C:** Typical A-Weighted Noise Levels

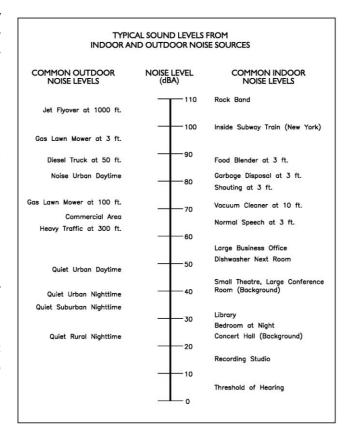



Exhibit C illustrates references sound levels for different noise sources.

## 2.4 Addition of Decibels

Because decibels are on a logarithmic scale, sound pressure levels cannot be added or subtracted by simple plus or minus addition. When two sounds or equal SPL are combined, they will produce an SPL 3 dB greater than the original single SPL. In other words, sound energy must be doubled to produce a 3 dB increase. If two sounds differ by approximately 10 dB, the higher sound level is the predominant sound.

# 2.5 Human Response to Changes in Noise Levels

In general, the healthy human ear is most sensitive to sounds between 1,000 Hz and 5,000 Hz, and it perceives a sound within that range as being more intense than a sound with a higher or lower frequency with the same magnitude. For purposes of this report as well as with most environmental documents, the A-scale weighting is typically reported in terms of A-weighted decibel (dBA), a scale designed to account for the frequency-dependent sensitivity of the ear. Typically, the human ear can barely perceive a change in noise level of 3 dB. A change in 5 dB is readily perceptible, and a change in 10 dB is perceived as being twice or half as loud. As previously discussed, a doubling of sound energy results in a 3 dB increase in sound, which means that a doubling of sound energy (e.g. doubling the volume of traffic on a highway) would result in a barely perceptible change in sound level.

# 2.6 Noise Descriptors

Noise in our daily environment fluctuates over time. Some noise levels occur in regular patterns, others are random. Some noise levels are constant while others are sporadic. Noise descriptors were created to describe the different time-varying noise levels.

<u>A-Weighted Sound Level:</u> The sound pressure level in decibels as measured on a sound level meter using the A-weighted filter network. The A-weighting filter de-emphasizes the very low and very high-frequency components of the sound in a manner similar to the response of the human ear. A numerical method of rating human judgment of loudness.

<u>Ambient Noise Level</u>: The composite of noise from all sources, near and far. In this context, the ambient noise level constitutes the normal or existing level of environmental noise at a given location.

<u>Community Noise Equivalent Level (CNEL):</u> The average equivalent A-weighted sound level during a 24-hour day, obtained after addition of five (5) decibels to sound levels in the evening from 7:00 to 10:00 PM and after addition of ten (10) decibels to sound levels in the night before 7:00 AM and after 10:00 PM.

<u>Decibel (dB)</u>: A unit for measuring the amplitude of a sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micro-pascals.

**dB(A)**: A-weighted sound level (see definition above).

**Equivalent Sound Level (LEQ):** The sound level corresponding to a steady noise level over a given sample period with the same amount of acoustic energy as the actual time-varying noise level. The energy average noise level during the sample period.

<u>Habitable Room:</u> Any room meeting the requirements of the Uniform Building Code, or other applicable regulations, which is intended to be used for sleeping, living, cooking or dining purposes, excluding such enclosed spaces as closets, pantries, bath or toilet rooms, service rooms, connecting corridors, laundries, unfinished attics, foyers, storage spaces, cellars, utility rooms and similar spaces.

<u>L(n):</u> The A-weighted sound level exceeded during a certain percentage of the sample time. For example, L10 in the sound level exceeded 10 percent of the sample time. Similarly L50, L90, and L99, etc.

**Noise:** Any unwanted sound or sound which is undesirable because it interferes with speech and hearing, or is intense enough to damage hearing, or is otherwise annoying. The State Noise Control Act defines noise as "...excessive undesirable sound...".

<u>Outdoor Living Area:</u> Outdoor spaces that are associated with residential land uses typically used for passive recreational activities or other noise-sensitive uses. Such spaces include patio areas, barbecue areas, jacuzzi areas, etc. associated with residential uses; outdoor patient recovery or resting areas associated with hospitals, convalescent hospitals, or rest homes; outdoor areas associated with places of worship which have a significant role in services or other noise-sensitive activities; and outdoor school facilities routinely used for educational purposes which may be adversely impacted by noise. Outdoor areas usually not included in this definition are: front yard areas, driveways, greenbelts, maintenance areas and storage areas associated with residential land uses; exterior areas at hospitals that are not used for patient activities; outdoor areas associated with places of worship and principally used for short-term social gatherings; and, outdoor areas associated with school facilities that are not typically associated with educational uses prone to adverse noise impacts (for example, school play yard areas).

Percent Noise Levels: See L(n).

**Sound Level (Noise Level):** The weighted sound pressure level obtained by use of a sound level meter having a standard frequency filter for attenuating part of the sound spectrum.

**Sound Level Meter:** An instrument, including a microphone, an amplifier, an output meter, and frequency weighting networks for the measurement and determination of noise and sound levels.

<u>Single Event Noise Exposure Level (SENEL):</u> The dB(A) level which, if it lasted for one second, would produce the same A-weighted sound energy as the actual event.

## 2.7 Traffic Noise Prediction

Noise levels associated with traffic depends on a variety of factors: (1) volume of traffic, (2) speed of traffic, (3) auto, medium truck (2–3 axle) and heavy truck percentage (4 axle and greater), and sound propagation. The greater the volume of traffic, higher speeds and truck percentages equate to a louder volume in noise. A doubling of the Average Daily Traffic (ADT) along a roadway will increase noise levels by approximately 3 dB; reasons for this are discussed in the sections above.

# 2.8 Sound Propagation

As sound propagates from a source it spreads geometrically. Sound from a small, localized source (i.e., a point source) radiates uniformly outward as it travels away from the source in a spherical pattern. The sound level attenuates at a rate of 6 dB per doubling of distance. The movement of vehicles down a roadway makes the source of the sound appear to propagate from a line (i.e., line source) rather than a point source. This line source results in the noise propagating from a roadway in a cylindrical spreading versus a spherical spreading that results from a point source. The sound level attenuates for a line source at a rate of 3 dB per doubling of distance.

As noise propagates from the source, it is affected by the ground and atmosphere. Noise models use hard site (reflective surfaces) and soft site (absorptive surfaces) to help calculate predicted noise levels. Hard site conditions assume no excessive ground absorption between the noise source and the receiver.

Soft site conditions such as grass, soft dirt or landscaping attenuate noise at a rate of 1.5 dB per doubling of distance. When added to the geometric spreading, the excess ground attenuation results in an overall noise attenuation of 4.5 dB per doubling of distance for a line source and 7.5 dB per doubling of distance for a point source.

Research has demonstrated that atmospheric conditions can have a significant effect on noise levels when noise receivers are located 200 feet from a noise source. Wind, temperature, air humidity, and turbulence can further impact have far sound can travel.

# 3.0 Ground-Borne Vibration Fundamentals

# 3.1 Vibration Descriptors

Ground-borne vibrations consist of rapidly fluctuating motions within the ground that have an average motion of zero. The effects of ground-borne vibrations typically only cause a nuisance to people, but at extreme vibration levels, damage to buildings may occur. Although ground-borne vibration can be felt outdoors, it is typically only an annoyance to people indoors where the associated effects of the shaking of a building can be notable. Ground-borne noise is an effect of ground-borne vibration and only exists indoors since it is produced from noise radiated from the motion of the walls and floors of a room and may also consist of the rattling of windows or dishes on shelves.

Several different methods are used to quantify vibration amplitude.

**PPV** – Known as the peak particle velocity (PPV) which is the maximum instantaneous peak in vibration velocity, typically given in inches per second.

**RMS** – Known as root mean squared (RMS) can be used to denote vibration amplitude

*VdB* – A commonly used abbreviation to describe the vibration level (VdB) for a vibration source.

# 3.2 Vibration Perception

Typically, developed areas are continuously affected by vibration velocities of 50 VdB or lower. These continuous vibrations are not noticeable to humans whose threshold of perception is around 65 VdB. Outdoor sources that may produce perceptible vibrations are usually caused by construction equipment, steel-wheeled trains, and traffic on rough roads, while smooth roads rarely produce perceptible ground-borne noise or vibration. To counter the effects of ground-borne vibration, the Federal Transit Administration (FTA) has published guidance relative to vibration impacts. According to the FTA, fragile buildings can be exposed to ground-borne vibration levels of 0.3 inches per second without experiencing structural damage.

# 3.3 Vibration Propagation

There are three main types of vibration propagation: surface, compression, and shear waves. Surface waves, or Rayleigh waves, travel along the ground's surface. These waves carry most of their energy along an expanding circular wavefront, similar to ripples produced by throwing a rock into a pool of water. P-waves, or compression waves, are body waves that carry their energy along an expanding spherical wavefront. The particle motion in these waves is longitudinal (i.e., in a "push-pull" fashion). P-waves are analogous to airborne sound waves. S-waves, or shear waves, are also body waves that carry energy along an expanding spherical wavefront. However, unlike P-waves, the particle motion is transverse, or side-to-side and perpendicular to the direction of propagation.

As vibration waves propagate from a source, the vibration energy decreases in a logarithmic nature and the vibration levels typically decrease by 6 VdB per doubling of the distance from the vibration source. As stated above, this drop-off rate can vary greatly depending on the soil but has been shown to be effective enough for screening purposes, in order to identify potential vibration impacts that may need to be studied through actual field tests.

# 4.0 Regulatory Setting

The proposed project is located in the City of Chula Vista, California and noise regulations are addressed through the efforts of various federal, state and local government agencies. The agencies responsible for regulating noise are discussed below.

# 4.1 Federal Regulations

The adverse impact of noise was officially recognized by the federal government in the Noise Control Act of 1972, which serves three purposes:

- Publicize noise emission standards for interstate commerce
- Assist state and local abatement efforts
- Promote noise education and research

The Federal Office of Noise Abatement and Control (ONAC) originally was tasked with implementing the Noise Control Act. However, it was eventually eliminated leaving other federal agencies and committees to develop noise policies and programs. Some examples of these agencies are as follows: The Department of Transportation (DOT) assumed a significant role in noise control through its various agencies. The Federal Aviation Agency (FAA) is responsible for regulating noise from aircraft and airports. The Federal Highway Administration (FHWA) is responsible for regulating noise from the interstate highway system. The Occupational Safety and Health Administration (OSHA) is responsible for the prohibition of excessive noise exposure to workers. The Housing and Urban Development (HUD) is responsible for establishing noise regulations as it relates to exterior/interior noise levels for new HUD-assisted housing developments near high noise areas.

The federal government advocates that local jurisdictions use their land use regulatory authority to arrange new development in such a way that "noise sensitive" uses are either prohibited from being constructed adjacent to a highway or, or alternatively that the developments are planned and constructed in such a manner that potential noise impacts are minimized.

Since the federal government has preempted the setting of standards for noise levels that can be emitted by the transportation source, the City is restricted to regulating the noise generated by the transportation system through nuisance abatement ordinances and land use planning.

# 4.2 State Regulations

Established in 1973, the California Department of Health Services Office of Noise Control (ONC) was instrumental in developing regularity tools to control and abate noise for use by local agencies. One significant model is the "Land Use Compatibility for Community Noise Environments Matrix." The matrix allows the local jurisdiction to clearly delineate compatibility of sensitive uses with various incremental levels of noise.

The State of California has established noise insulation standards as outlined in Title 24 and the Uniform Building Code (UBC) which in some cases requires acoustical analyses to outline exterior noise levels and to ensure interior noise levels do not exceed the interior threshold. The State mandates that the legislative body of each county and city adopt a noise element as part of its comprehensive general plan.

The local noise element must recognize the land use compatibility guidelines published by the State Department of Health Services. The guidelines rank noise land use compatibility in terms of normally acceptable, conditionally acceptable, normally unacceptable, and clearly unacceptable as illustrated in Exhibit D.

**Exhibit D: Land Use Compatibility Guidelines** 

| TABLE 9-2<br>EXTERIOR LAND USE/NOISE COMPATIBILITY GUIDELINES                                                                          |                         |    |    |    |    |    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----|----|----|----|----|--|--|--|
|                                                                                                                                        | Annual CNEL in Decibels |    |    |    |    |    |  |  |  |
| Land Use                                                                                                                               | 50                      | 55 | 60 | 65 | 70 | 75 |  |  |  |
| Residential                                                                                                                            |                         |    |    |    |    |    |  |  |  |
| Schools, Libraries, Daycare Facilities, Convalescent Homes,<br>Outdoor Use Areas, and Other Similar Uses Considered Noise<br>Sensitive |                         |    |    |    |    |    |  |  |  |
| Neighborhood Parks, Playgrounds                                                                                                        |                         |    |    |    |    |    |  |  |  |
| Community Parks, Athletic Fields                                                                                                       |                         |    |    |    |    |    |  |  |  |
| Offices and Professional                                                                                                               |                         |    |    |    |    |    |  |  |  |
| Places of Worship (excluding outdoor use areas)                                                                                        |                         |    |    |    |    |    |  |  |  |
| Golf Courses                                                                                                                           |                         |    |    |    |    |    |  |  |  |
| Retail and Wholesale Commercial, Restaurants, Movie Theaters                                                                           |                         |    |    |    |    |    |  |  |  |
| Industrial, Manufacturing                                                                                                              |                         |    |    |    |    |    |  |  |  |

# 4.3 City of Chula Vista Noise Regulations

The City of Chula Vista outlines their noise regulations and standards within the Municipal Code Chapter 19.68 and Chapter 9 of the Environmental Element of the City of Chula Vista General Plan.

# City of Chula Vista Municipal Code

### SEC. 19.68.030 - Exterior noise limits

19.68.030(A)(4) No person shall operate, or cause to be operated, any source of sound at any location within the City or allow the creation of any noise on property owned, leased occupied or otherwise controlled by such person which causes the noise level to exceed the environmental and/or nuisance interpretation of the applicable limits given in Table III.

**Table 1: Table III Exterior Noise Limits** 

Sound Level Standards (dBA Leg\*)

|                                            | Noise Level [dB(A)]          |                              |  |  |  |  |
|--------------------------------------------|------------------------------|------------------------------|--|--|--|--|
| Receiving Land Use Category                | 10 p.m. to 7 a.m. (Weekdays) | 7 a.m. to 10 p.m. (Weekdays) |  |  |  |  |
|                                            | 10 p.m. to 8 a.m. (Weekends) | 8 a.m. to 10 p.m. (Weekends) |  |  |  |  |
| All residential (except multiple dwelling) | 45                           | 55                           |  |  |  |  |
| Multiple dwelling residential              | 50                           | 60                           |  |  |  |  |
| Commercial                                 | 60                           | 65                           |  |  |  |  |
| Light industry - I-R and I-L zone          | 70                           | 70                           |  |  |  |  |
| Heavy industry – I zone                    | 80                           | 80                           |  |  |  |  |

### SEC. 19.68.040 - Interior noise limits.

No person shall operate, or cause to be operated, any source of sound within a residential dwelling unit or allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person which causes the noise level when measured inside a neighboring receiving dwelling unit to exceed the environmental and/or nuisance interpretation of the applicable limits given in Table IV.

Table 2: Table IV Maximum permissible dwelling interior sound levels

|                  |               | Noise Level [dB(A)] |               |               |  |  |
|------------------|---------------|---------------------|---------------|---------------|--|--|
| Type of Land Use | Time Interval | Any time            | 1 min in 1 hr | 5 min in 1 hr |  |  |
| Multifamily      | 10 pm – 7 am  | 45                  | 40            | 35            |  |  |
| Residential      | 7 am – 10 pm  | 55                  | 50            | 45            |  |  |

### Sec. 19.68.060(C) - Exemptions.

*Exemption from Exterior Noise Standards*. The provisions of CVMC 19.68.030 shall not apply to activities covered by the following sections:

(2) Construction/demolition.

## City of Chula Vista General Plan

Chapter 9. Environmental from the City's General Plan includes Section 3.5 Noise. Section 3.5.1 describes noise planning and standards, and the exterior land use/noise compatibility guidelines. The General Plan includes objectives and policies with the goal of protecting the community from noise impacts.

Objective – E 21: Protect people from excessive noise through careful land use planning and the incorporation of appropriate mitigation techniques

- E 21.1 Apply the exterior land use-noise compatibility guidelines listed in Table 9-2 of this Environmental Element to new development, where applicable, and in light of project-specific considerations
- E 21.1 Where applicable, the assessment and mitigation of interior noise levels shall adhere to the applicable requirements of the California Building Code with local amendments and other applicable established City standards.
- E 21.3 Promote the use of available technologies in building construction to improve noise attenuation capacities.
- E 21.4 Continue to implement and enforce the City's noise control ordinance.
- Objective E 22 Protect the community from the effects of transportation noise.
  - E 22.1 Work to stabilize traffic volumes in residential neighborhoods by limiting throughways and by facilitating the use of alternative routes around, rather than through, Neighborhoods.
  - E 22.2 Explore the feasibility of using new technologies to minimize traffic noise, such as use of rubberized asphalt in road surface materials.
  - E 22.3 Employ traffic calming measures, where appropriate, such as narrow roadways and onstreet parking, in commercial and mixed use districts.
  - E 22.4 Encourage walking; biking; carpooling; use of public transit; and other alternative modes of transportation to minimize vehicular use and associated traffic noise.
  - E 22.5 Require projects to construct appropriate mitigation measures in order to attenuate existing and projected traffic noise levels, in accordance with applicable standards, including the exterior land use/noise compatibility guidelines listed in Table 9-2 of this Environmental Element.

### **Brown Field Airport**

The project is located in Area 2 of the Brown Field Airport Land Use Compatibility. However, the project is outside the noise contours of the Brown Field Airport and will not be impacted by the airport.

## **Construction**

Section 17.24.040 (C)(8) states that the use of any tools, power machinery, or equipment or the conduct of construction and building work in residential zones so as to cause noises disturbing to the peace, comfort, and quiet enjoyment of property of any person residing or working in the vicinity between the hours of 10:00 p.m. and 7:00 a.m., Monday through Friday, and between the hours of

10:00 p.m. and 8:00 a.m., Saturday and Sunday, except when the work is necessary for emergency repairs required for the health and safety of any member of the community;

# 5.0 Study Method and Procedure

The following section describes the noise modeling procedures and assumptions used for this assessment.

# 5.1 Noise Measurement Procedure and Criteria

Noise measurements are taken to determine the existing noise levels. A noise receiver or receptor is any location in the noise analysis in which noise might produce an impact. The following criteria are used to select measurement locations and receptors:

- Locations expected to receive the highest noise impacts, such as the first row of houses
- Locations that are acoustically representative and equivalent of the area of concern
- Human land usage
- Sites clear of major obstruction and contamination

MD conducted the sound level measurements in accordance to City's noise ordinance, the Federal Highway Transportation (FHWA) and Caltrans (TeNS) technical noise specifications. All measurement equipment meets American National Standards Institute (ANSI) specifications for sound level meters (S1.4-1983 identified in Chapter 19.68.020.AA). The following gives a brief description of the Caltrans Technical Noise Supplement procedures for sound level measurements:

- Microphones for sound level meters were placed 5-feet above the ground for all measurements
- Sound level meters were calibrated (Larson Davis CAL 200) before and after each measurement
- Following the calibration of equipment, a windscreen was placed over the microphone
- Frequency weighting was set on "A" and slow response
- Results of the long-term noise measurements were recorded on field data sheets
- During any short-term noise measurements, any noise contaminations such as barking dogs, local traffic, lawn mowers, or aircraft fly-overs were noted
- Temperature and sky conditions were observed and documented

# 5.2 Noise Measurement Locations

Noise monitoring locations were selected based on the project site's boundary. Three (3) short-term 10-minute noise measurements were conducted at the site's property lines and is illustrated in Exhibit E. Appendix A includes photos, field sheet, and measured noise data.

# 5.3 Stationary Noise Modeling

SoundPLAN (SP) acoustical modeling software was utilized to model future worst-case stationary noise impacts to the adjacent land uses. SP is capable of evaluating multiple stationary noise source impacts at various receiver locations. SP's software utilizes algorithms (based on the inverse square law and reference equipment noise level data) to calculate noise level projections. The software allows the user to input specific noise sources, spectral content, sound barriers, building placement, topography, and sensitive receptor locations.

The future worst-case noise level projections were modeled using referenced sound level data for the various stationary on-site sources (parking spaces and loading docks). The model assumes that the

building facility has a total of five (5) dock high truck doors and sixteen (16) grade level truck doors for loading and unloading, and approximately 309 parking spaces.

Trucks idling at the dock high door loading and unloading area were modeled as a point source with a reference noise level of 74 dBA 10 feet from the source idling continuously for an hour. This is a conservative measure as the trucks will likely only idle for a few minutes within an hour.

Truck back up beepers at the grade level door loading and unloading areas were modeled as a point source with a reference noise level of 69 dBA Leq at 5 ft active for 5 minutes in an hour.

MD added two 7.5-ton HVAC units to the corners each building to account for HVAC noise. There are no parapets in the model as a worst-case. The actual HVAC equipment will likely be much quieter and placed further from the edges of the building.

The cars idling and coming and going in the parking spots were modeled at 3 cars per hour.

The SP model assumes that all noise sources are operating simultaneously (worst-case scenario), when in actuality the noise will be intermittent and lower in noise level.

Finally, the model is able to evaluate the noise attenuating effects of any existing or proposed property line walls. Input and output calculations are provided in Appendix C.

Source Reference Level (dBA) **Source Type** Descriptor Idling Semi Truck **Point Source** 10ft 74 Parking Area (SP Parking Tool) 3 cars per hr Back Up Beeper **Point Source** 5ft 69 Sound Power Carrier 7.5 ton HVAC units Point 83 Reference noise levels in Appendix B

Table 3: Reference Sound Level Measurements for SoundPlan Model<sup>1</sup>

# 5.4 FHWA Traffic Noise Prediction Model

Per the Local Mobility Analysis *Local Mobility Analysis, Chula Vista, California* existing traffic counts measured 14,260 ADT. The project is anticipated to create 153 ADT. Existing plus Project ADT are anticipated to create a 0.7 dB increase in noise level. Therefore, the increase in traffic noise would be negligible when compared to the existing noise

Traffic noise from vehicular traffic was projected using a computer program that replicates the FHWA Traffic Noise Prediction Model (FHWA-RD-77-108). The FHWA model predicts a noise level increment of 3 dB per doubling the traffic volume. Roadway volumes and percentages correspond to the project's

traffic scoping agreement, The City's traffic counts, and roadway classification. The traffic data is included in Appendix D.

Table 4 indicates the roadway parameters and vehicle distribution utilized for this study.

**Table 4: Roadway Parameters and Vehicle Distribution** 

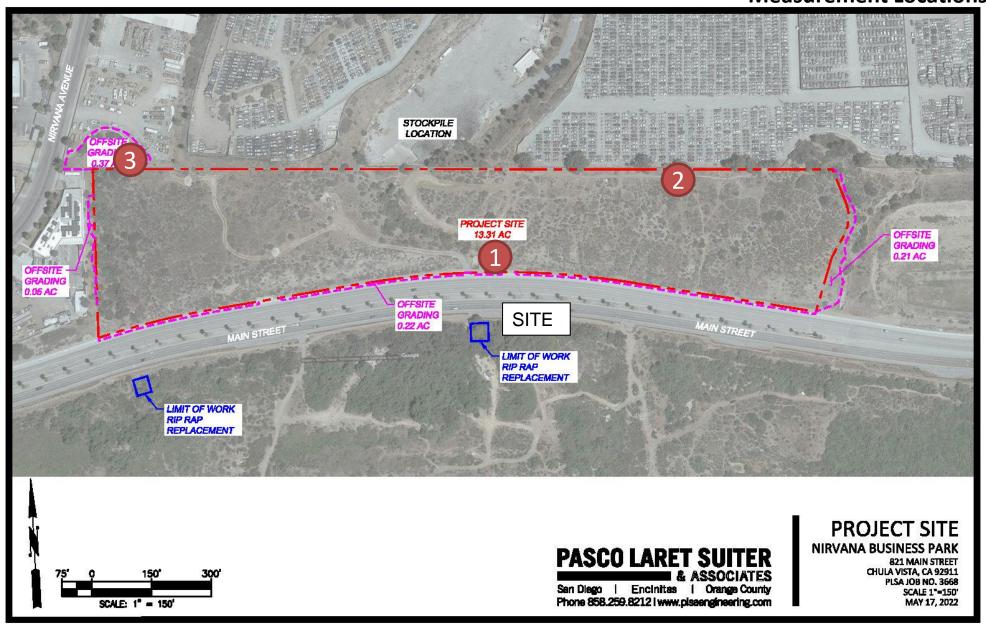
| Roadway            | Segment                                       | Existing<br>ADT <sup>1</sup> |     | ng Plus | Cumulative<br>Distribution <sup>1</sup> | Speed<br>(MPH)   | Site Cor         | nditions                         |  |
|--------------------|-----------------------------------------------|------------------------------|-----|---------|-----------------------------------------|------------------|------------------|----------------------------------|--|
| Main Street        | Nirvana Ave to Heritage Rd                    | 14,260                       | 14, | ,413    | 16,719                                  | 50               | На               | rd                               |  |
|                    | Vehicle Distribution (Truck Mix) <sup>2</sup> |                              |     |         |                                         |                  |                  |                                  |  |
| Motor-Vehicle Type |                                               | Daytime %<br>(7AM to 7 PM)   |     |         | vening %<br>M to 10 PM)                 | Nigl<br>(10 PM t | nt %<br>:o 7 AM) | Total %<br>of<br>Traffic<br>Flow |  |
|                    | Automobiles                                   |                              |     | 12.9    |                                         | 9.6              |                  | 97.42                            |  |
| Medium Trucks      |                                               | 84.8                         |     |         | 4.9                                     | 10               | 1.3              | 1.84                             |  |
|                    | Heavy Trucks                                  | 86.5                         |     |         | 2.7                                     | 10               | 0.8              | 0.74                             |  |
| Notes:             |                                               |                              |     |         |                                         |                  |                  | 1                                |  |

### 5.5 **FHWA Roadway Construction Noise Model**

The construction noise analysis utilizes the Federal Highway Administration (FHWA) Roadway Construction Noise Model (RNCM), together with several key construction parameters. Key inputs include distance to the sensitive receiver, equipment usage, % usage factor, and baseline parameters for the project site.

The project was analyzed based on the different construction phases. Construction noise is expected to be loudest during the grading, paving, and building phases of construction. The construction noise calculation output worksheet is located in Appendix E. of the Noise Impact Study (Appendix M). The following assumptions relevant to short-term construction noise impacts were used:

It is estimated that construction will be carried out over 24-months. Daily construction hours are expected to be during allowable daytime hours per the City's Municipal Code. The model includes key inputs like distance to the sensitive receiver, equipment type, and 40% usage factor. Construction noise is expected to be the loudest during the grading, paving, and building phases.


<sup>&</sup>lt;sup>1</sup> Traffic counts provided by Linscott Law & Greenspan. This model takes the total ADT and uses the vehicle distribution mix for the calculations. <sup>2</sup> Vehicle mix distribution per SANDAG.

# 1

# = Short term measurement

# Exhibit E

# **Measurement Locations**



# 6.0 Existing Noise Environment

Three (3) ten-minute short-term ambient noise measurements were conducted at the property boundary to the south, northwest, and northeast (See Appendix A). The measurement measured the Leq, Lmin, Lmax and other statistical data (e.g., L2, L8...). The noise measurement was taken to determine the existing ambient noise levels. Noise data indicates that traffic along main street and general industrial noise is the primary source of noise impacting the site and the adjacent uses. This assessment utilizes the ambient noise data as a basis and compares project operational levels to said data.

# 6.1 Short-Term Noise Measurement Results

The results of the noise data are presented in Table 5.

Table 5: Short-Term Noise Measurement Data (dBA)

| Location                            | Time                            | dB(A)           |                  |                  |                |                |                 |                 |                 |
|-------------------------------------|---------------------------------|-----------------|------------------|------------------|----------------|----------------|-----------------|-----------------|-----------------|
| 20041011                            | Time                            | L <sub>EQ</sub> | L <sub>MAX</sub> | L <sub>MIN</sub> | L <sub>2</sub> | L <sub>8</sub> | L <sub>25</sub> | L <sub>50</sub> | L <sub>90</sub> |
| 1                                   | 7:29PM-7:39PM                   | 74              | 89               | 51               | 82             | 79             | 75              | 70              | 56              |
| 2                                   | 7:40PM-7:50PM                   | 56              | 69               | 49               | 63             | 60             | 56              | 54              | 52              |
| 3                                   | 1:23PM-1:33PM                   | 62              | 74               | 54               | 66             | 64             | 63              | 61              | 90              |
| Notes:                              |                                 |                 |                  |                  |                |                |                 |                 |                 |
| <ol> <li>Short-term nois</li> </ol> | se monitoring location is illus | strated in E    | Exhibit E.       |                  |                |                |                 |                 |                 |

Noise data indicates the ambient noise level ranged between 56 dBA Leq to 74 dBA Leq near project site and surrounding area. Maximum levels reach 89 dBA as a result of traffic along Main Street. Additional field notes and photographs are provided in Appendix A.

For this evaluation, MD has utilized the ambient noise level and has compared the project's projected noise levels to the said ambient level.

# 7.0 Future Noise Environment Impacts and Mitigation

This assessment analyzes future noise impacts as a result of the project. The analysis details the estimated exterior noise levels. Stationary noise impacts are analyzed from the on-site noise sources such as trucks loading and unloading.

### 7.1 Future Exterior Noise

The following outlines the exterior noise levels associated with the proposed project.

# 7.1.1 Noise Impacts to Off-Site Receptors Due to Stationary Sources

Adjacent uses that may be affected by project operational noise include general industrial to the north, south, east, and west. The single-family residential land uses located approximately 1,425 feet northeast and 1,430 feet southwest of the project site will not be affected by the project. The worst-case stationary noise was modeled using SoundPLAN acoustical modeling software. Worst-case assumes that all project activities are always operational when in reality the noise will be intermittent and cycle on/off depending on usage.

A total of three (3) receptors were modeled to evaluate the proposed project's operational impact. A receptor is denoted by a yellow dot. All yellow dots represent a property line or building facade.

This study compares the Project's operational noise levels to two (2) different noise assessment scenarios: 1) Project Only operational noise level projections, 2) Project plus ambient noise level projections.

### **Project Operational Noise Levels**

Exhibit F shows the "project only" operational noise levels at the property lines and adjacent areas. Exhibit F shows the noise contours at the project site and illustrates how the noise will propagate at the site. Project only noise levels range from 46 to 58 dBA.

### **Project Plus Ambient Operational Noise Levels**

Table 6 demonstrates the project plus the ambient noise levels. Project plus ambient noise level projections are anticipated to measure 60 to 74 dBA Leg at receptors (R1 – R3).

<Table 6 Next Page>

1

4

0

Project **Exterior Noise Existing Ambient Total Combined Change in Noise Noise Limit Nighttime Noise Level** Level as Result of **Noise Level** Level 10PM to 7AM (dBA, Leq)<sup>2</sup> (dBA, Leq(h)) **Project** (dBA, Leq) (dBA,Leq)<sup>3</sup>

70

Table 6: Worst-case Predicted Operational Leq Noise Level<sup>1</sup>

63

60

74

### Notes:

Receptor<sup>1</sup>

1

2

3

1. Receptor 1 to Receptor 3 represent the nearest property lines

62

56

74

- <sup>2.</sup> The measured existing ambient condition.
- <sup>3.</sup> Per Chula Vista Municipal Code Sec 19.68.030 Nighttime Industrial noise limit is 70 dBA.

As shown in Table 6, the project only noise levels will not exceed the City's exterior nighttime noise limit of 70 dBA. The project plus ambient noise levels will increase the worst-case noise level by approximately 0 to 4 dBA Leq depending on location. It takes a change of 3 dBA to hear a noticeable difference. The increase in noise level is below the typical noticeable difference in change of noise levels.

Table 7 provides the characteristics associated with changes in noise levels.

53

58

46

Table 7: Change in Noise Level Characteristics<sup>1</sup>

| Changes in Intensity Level, dBA | Changes in Apparent<br>Loudness |
|---------------------------------|---------------------------------|
| 1                               | Not perceptible                 |
| 3                               | Just perceptible                |
| 5                               | Clearly noticeable              |
| 10                              | Twice (or half) as loud         |

https://www.fhwa.dot.gov/environMent/noise/regulations\_and\_guidance/polguide/polguide02.cfm

The change in noise level would fall within the "Not Perceptible" to "Clearly Noticeable" acoustic characteristic depending on location. Based on the industrial land use of the receiving property, lack of sensitive receptors to the location, and that the City of Chula Vista noise limit is not exceeded at the property line, the change in noise level would be less than significant.

# 7.1.2 Noise Impacts to On/Off-Site Receptors Due to Project Generated Traffic

A worst-case project generated traffic noise level was modeled utilizing the FHWA Traffic Noise Prediction Model - FHWA-RD-77-108. Traffic noise levels were calculated 50 feet from the centerline of the analyzed roadway. The modeling is theoretical and does not take into account any existing barriers, structures, and/or topographical features that may further reduce noise levels. Therefore, the levels are shown for comparative purposes only to show the difference in with and without project conditions. In addition, the noise contours for 60, 65 and 70 dBA CNEL were calculated. The potential off-site noise impacts caused by an increase of traffic from operation of the proposed project on the nearby roadways were calculated for the following scenarios:

Existing Year (without Project): This scenario refers to existing year traffic noise conditions.

Existing Year (Plus Project): This scenario refers to existing year + project traffic noise conditions.

*Cumulative (Plus Project)*: This scenario refers to existing year + cumulative traffic + project traffic noise conditions.

Table 8 compares the existing, existing with project scenario, and cumulative project and shows the change in traffic noise levels as a result of the proposed project. It takes a change of 3 dB or more to hear a perceptible difference. As demonstrated in Table 8, the project is anticipated to change the noise by 0.7 dBA CNEL in the worst-case scenario.

Although there is an increase in traffic noise levels the impact is considered to have less than significant impact as the noise levels at or near any existing proposed sensitive receptor would be 70 dBA CNEL or less and the change in noise level is 3 dBA or less.

Table 8: Existing Scenario - Noise Levels Along Roadways (dBA CNEL)<sup>1,2</sup>

### **Existing Without Project Exterior Noise Levels**

|                |                               | CNIEL                  | Distance to Contour (Ft) |             |             |                |  |
|----------------|-------------------------------|------------------------|--------------------------|-------------|-------------|----------------|--|
| Roadwa         | y Segment                     | CNEL<br>at 50 Ft (dBA) | 70 dBA CNEL              | 65 dBA CNEL | 60 dBA CNEL | 55 dBA<br>CNEL |  |
| Main<br>Street | Nirvana Ave to<br>Heritage Rd | 69.3                   | 45                       | 97          | 208         | 449            |  |

### **Existing With Project Exterior Noise Levels**

|                | CNEL                          |                | Distance to Contour (Ft) |             |             |                |  |
|----------------|-------------------------------|----------------|--------------------------|-------------|-------------|----------------|--|
| Roadway        | Segment                       | at 50 Ft (dBA) | 70 dBA CNEL              | 65 dBA CNEL | 60 dBA CNEL | 55 dBA<br>CNEL |  |
| Main<br>Street | Nirvana Ave to<br>Heritage Rd | 69.3           | 45                       | 97          | 210         | 452            |  |

### **Cumulative Projects Exterior Noise Levels**

|                |                               |                        | Distance to Contour (Ft) |             |             |                |  |
|----------------|-------------------------------|------------------------|--------------------------|-------------|-------------|----------------|--|
| Roadway        | Segment                       | CNEL<br>at 50 Ft (dBA) | 70 dBA CNEL              | 65 dBA CNEL | 60 dBA CNEL | 55 dBA<br>CNEL |  |
| Main<br>Street | Nirvana Ave to<br>Heritage Rd | 70.0                   | 50                       | 107         | 232         | 499            |  |

# Change in Existing Noise Levels as a Result of Project

|   | - 1 G - 11 G - 1 |                               |                                  |                       |                          |                                 |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-----------------------|--------------------------|---------------------------------|--|--|--|--|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | CNEL at 50 Feet dBA <sup>2</sup> |                       |                          |                                 |  |  |  |  |
| ı | Roadway <sup>1</sup> Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Existing Without Project         | Cumulative<br>Project | Change in<br>Noise Level | Potential<br>Significant Impact |  |  |  |  |
|   | Main<br>Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nirvana Ave to<br>Heritage Rd | 69.3                             | 70.0                  | 0.7                      | No                              |  |  |  |  |

Notes

<sup>&</sup>lt;sup>1</sup> Exterior noise levels calculated at 5 feet above ground level.

<sup>&</sup>lt;sup>2</sup> Noise levels calculated from centerline of subject roadway.

# **7.1.3** Noise Impacts to On/Off-Site Receptors Due to Project Maintenance Equipment

Project maintenance activities such as parking lot sweeper machines and/or landscaping machinery should not be used before 7 a.m. or after 10 p.m. or according to Section 17.24.040(C)(8).

# Exhibit F

# **Future Operational Noise Levels**



# 8.0 Construction Noise Impact

The degree of construction noise may vary for different areas of the project site and also vary depending on the construction activities. Noise levels associated with the construction will vary with the different phases of construction.

### 8.1 Construction Noise

The Environmental Protection Agency (EPA) has compiled data regarding the noise generated characteristics of typical construction activities. The data is presented in Table 9.

Table 9: Typical Construction Equipment Noise Levels<sup>1</sup>

| Туре                                                                   | Lmax (dBA) at 50 Feet |  |  |  |  |
|------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Backhoe                                                                | 80                    |  |  |  |  |
| Truck                                                                  | 88                    |  |  |  |  |
| Concrete Mixer                                                         | 85                    |  |  |  |  |
| Pneumatic Tool                                                         | 85                    |  |  |  |  |
| Pump                                                                   | 76                    |  |  |  |  |
| Saw, Electric                                                          | 76                    |  |  |  |  |
| Air Compressor                                                         | 81                    |  |  |  |  |
| Generator                                                              | 81                    |  |  |  |  |
| Paver                                                                  | 89                    |  |  |  |  |
| Roller                                                                 | 74                    |  |  |  |  |
| Notes:  ¹ Referenced Noise Levels from FTA noise and vibration manual. | <u> </u>              |  |  |  |  |

Construction is considered a short-term impact and would be considered significant if construction activities are taken outside the allowable times as described in the City's Municipal Code 17.24.040(C)(8). Construction is anticipated to occur during the permissible hours of 7AM to 10PM on weekdays and 8AM to 10PM Saturday and Sunday according to the City's Municipal Code. Construction noise will have a temporary or periodic increase in the ambient noise level above the existing within the project vicinity. Furthermore, noise reduction measures are provided to further reduce construction noise. The impact is considered less than significant however construction noise level projections are provided.

Typical operating cycles for these types of construction equipment may involve one or two minutes of full power operation followed by three to four minutes at lower power settings. Noise levels will be loudest during grading phase. A likely worst-case construction noise scenario during grading assumes the use of 1-grader, 1-dozer, 2-excavators, 2-backhoes, and 2-scrapers operating at the center of the site, 250 feet from the property boundary.

Assuming a usage factor of 40 percent for each piece of equipment, unmitigated noise levels at 250 feet have the potential to reach 73 dBA  $L_{eq}$  at the property boundary during building construction.

### 8.2 Construction Vibration

Construction activities can produce vibration that may be felt by adjacent land uses. The construction of the proposed project would not require the use of equipment such as pile drivers, which are known to generate substantial construction vibration levels. The primary vibration source during construction may be from a bulldozer. A large bulldozer has a vibration impact of 0.089 inches per second peak particle velocity (PPV) at 25 feet which is perceptible but below any risk to architectural damage.

The fundamental equation used to calculate vibration propagation through average soil conditions and distance is as follows:

$$PPV_{equipment} = PPV_{ref} (100/D_{rec})^n$$

Where:  $PPV_{ref}$  = reference PPV at 100ft.

 $D_{rec}$  = distance from equipment to receiver in ft.

n = 1.1 (the value related to the attenuation rate through ground)

The thresholds from the Caltrans Transportation and Construction Induced Vibration Guidance Manual in Table 10 (below) provides general thresholds and guidelines as to the vibration damage potential from vibratory impacts.

**Table 10: Guideline Vibration Damage Potential Threshold Criteria** 

|                                                                | Maximum PPV (in/sec) |                      |  |  |
|----------------------------------------------------------------|----------------------|----------------------|--|--|
| Structure and Condition                                        | Transient Sources    | Continuous/Frequent  |  |  |
|                                                                | Transient Sources    | Intermittent Sources |  |  |
| Extremely fragile historic buildings, ruins, ancient monuments | 0.12                 | 0.08                 |  |  |
| Fragile buildings                                              | 0.2                  | 0.1                  |  |  |
| Historic and some old buildings                                | 0.5                  | 0.25                 |  |  |
| Older residential structures                                   | 0.5                  | 0.3                  |  |  |
| New residential structures                                     | 1.0                  | 0.5                  |  |  |
| Modern industrial/commercial buildings                         | 2.0                  | 0.5                  |  |  |

Source: Table 19, Transportation and Construction Vibration Guidance Manual, Caltrans, Sept. 2013.

Note: Transient sources create a single isolated vibration event, such as blasting or drop balls. Continuous/frequent intermittent sources include impact pile drivers, pogo-stick compactors, crack-and-seat equipment, vibratory pile drivers, and vibratory compaction equipment.

Table 11 gives approximate vibration levels for particular construction activities. This data provides a reasonable estimate for a wide range of soil conditions.

<Table 11, next page>

Table 11: Vibration Source Levels for Construction Equipment<sup>1</sup>

| Equipment                                                     | Peak Particle Velocity<br>(inches/second) at 25 feet | Approximate Vibration Level<br>LV (dVB) at 25 feet |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--|--|--|
| Dila drivar (immast)                                          | 1.518 (upper range)                                  | 112                                                |  |  |  |
| Pile driver (impact)                                          | 0.644 (typical)                                      | 104                                                |  |  |  |
| Dila drivar (cania)                                           | 0.734 upper range                                    | 105                                                |  |  |  |
| Pile driver (sonic)                                           | 0.170 typical                                        | 93                                                 |  |  |  |
| Clam shovel drop (slurry wall)                                | 0.202                                                | 94                                                 |  |  |  |
| Hydromill                                                     | 0.008 in soil                                        | 66                                                 |  |  |  |
| (slurry wall)                                                 | 0.017 in rock                                        | 75                                                 |  |  |  |
| Vibratory Roller                                              | 0.21                                                 | 94                                                 |  |  |  |
| Hoe Ram                                                       | 0.089                                                | 87                                                 |  |  |  |
| Large bulldozer                                               | 0.089                                                | 87                                                 |  |  |  |
| Caisson drill                                                 | 0.089                                                | 87                                                 |  |  |  |
| Loaded trucks                                                 | 0.076                                                | 86                                                 |  |  |  |
| Jackhammer                                                    | 0.035                                                | 79                                                 |  |  |  |
| Small bulldozer                                               | 0.003                                                | 58                                                 |  |  |  |
| <sup>1</sup> Source: Transit Noise and Vibration Impact Asset | ssment, Federal Transit Administration, September 20 | 018.                                               |  |  |  |

At a distance of 24 feet (distance of nearest structure from the site's western boundary), a large bulldozer would yield a worst-case 0.093 PPV (in/sec) which may be perceptible for short periods of time during grading along the western property line of the project site but is below any threshold of damage. The impact is less than significant, and no mitigation is required.

### 8.3 Construction Noise Reduction Policies

Construction operations must follow the City's General Plan and the Noise Ordinance, which states that construction, repair or excavation work performed must occur within the permissible hours. To further ensure that construction activities do not disrupt the adjacent land uses, the following policies shall be taken and will be applied as conditions of approval:

- 1. Construction shall occur during the permissible hours (7AM to 10PM on weekdays and 8AM to 10PM Saturday and Sunday) as defined in Section 17.24.040(C)(8) of the City's Municipal Code.
- 2. During construction, the contractor shall ensure all construction equipment is equipped with appropriate noise attenuating devices.
- 3. The contractor shall locate equipment staging areas that will create the greatest distance between construction-related noise/vibration sources and sensitive receptors nearest the project site during all project construction.
- 4. Idling equipment shall be turned off when not in use.
- 5. Equipment shall be maintained so that vehicles and their loads are secured from rattling and banging.

# 9.0 References

State of California General Plan Guidelines: 1998. Governor's Office of Planning and Research

City of Chula Vista: General Plan Noise Element.

City of Chula Vista: Municipal Code

# Appendix A:

Photographs and Field Measurement Data

4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

1197 E Los Angeles Ave, C-256 Simi Valley, CA 93065

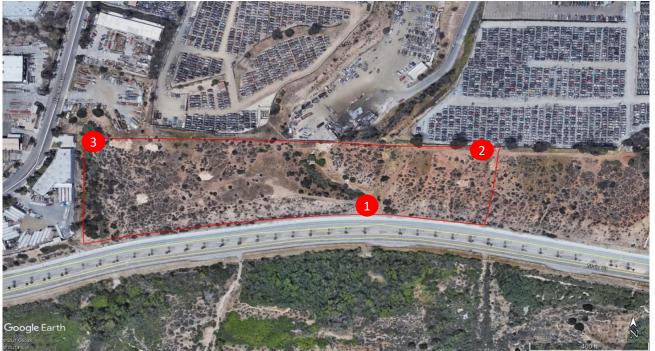
### **10-Minute Continuous Noise Measurement Datasheet**

Chula Vista Self Storage **Project: Site Observations:** Clear sky, measurements were performed on the site and measured the

Site Address/Location: Between Nirvana ave and Heritage Rd

6/23/2021 Date: Field Tech/Engineer: Jason Schuyler baseline noise conditions. Winds 3-5MPH. Measurments taken at the

nearest property lines


**General Location:** 

**Sound Meter:** NTi Audio **SN:** A2A-05967-E0 **Settings:** A-weighted, slow, 1-sec, 10-minute interval

Meteorological Con.: Temps in the hi 70's, minimal wind, west-southwest, 5mphs

Site ID: ST-1 thru ST-3

### **Figure 1: Monitoring Locations**



Site Topo: Flat

Ground Type: soft site conditions,

## Noise Source(s) w/ Distance:

1 - 72' from CL of Main Street

2 - 5' from Northwest property line

3-5' from Northwest property line

Figure 2: ST-1 Photo



Figure 3: ST-2 Photo



www.mdacoustics.com

4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

## 10-Minute Continuous Noise Measurement Datasheet - Cont.

**Project:** Chula Vista Self Storage

Site Address/Location: Between Nirvana ave and Heritage Rd

Site ID: ST-1 thru ST-3

Figure 4: ST-3 Photo

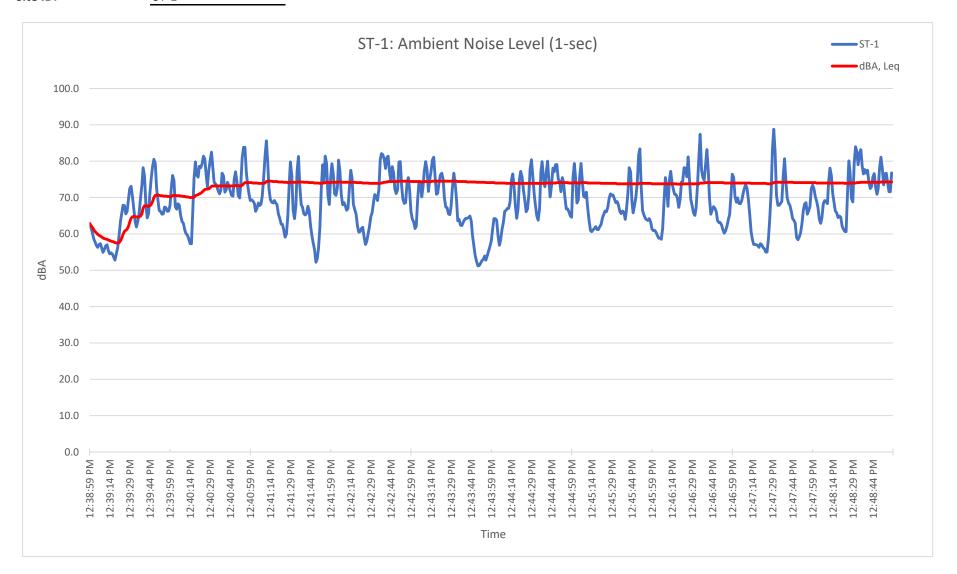


**Table 1: Morning - Baseline Noise Measurement Summary** 

| Location | Start    | Stop     | Leq  | Lmax | Lmin | L2   | L8   | L25  | L50  | L90  |
|----------|----------|----------|------|------|------|------|------|------|------|------|
| 1        | 12:38 PM | 12:48 PM | 74.3 | 88.8 | 51.2 | 82.3 | 78.9 | 75.2 | 70.1 | 59.5 |
| 2        | 12:54 PM | 1:04 PM  | 56.2 | 69.1 | 49.0 | 63.1 | 60.1 | 56.3 | 54.0 | 51.7 |
| 3        | 1:23 PM  | 1:33 PM  | 66.8 | 76.2 | 50.4 | 71.9 | 70.5 | 68.6 | 65.7 | 56.4 |
|          |          |          |      |      |      |      |      |      |      |      |

AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

1197 E Los Angeles Ave, C-256 Simi Valley, CA 93065


### 10-Minute Continuous Noise Measurement Datasheet - Cont.

**Project:** Chula Vista Self Storage

Site Address/Location: Between Nirvana ave and Heritage Rd

Site ID: ST-1

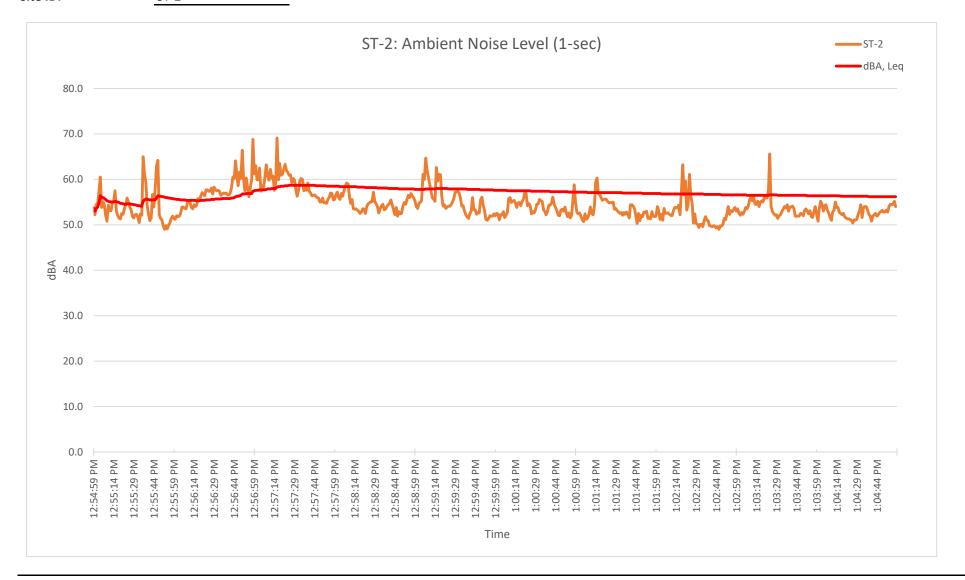
www.mdacoustics.com





AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

1197 E Los Angeles Ave, C-256 Simi Valley, CA 93065


### 10-Minute Continuous Noise Measurement Datasheet - Cont.

**Project:** Chula Vista Self Storage

Site Address/Location: Between Nirvana ave and Heritage Rd

Site ID: ST-2

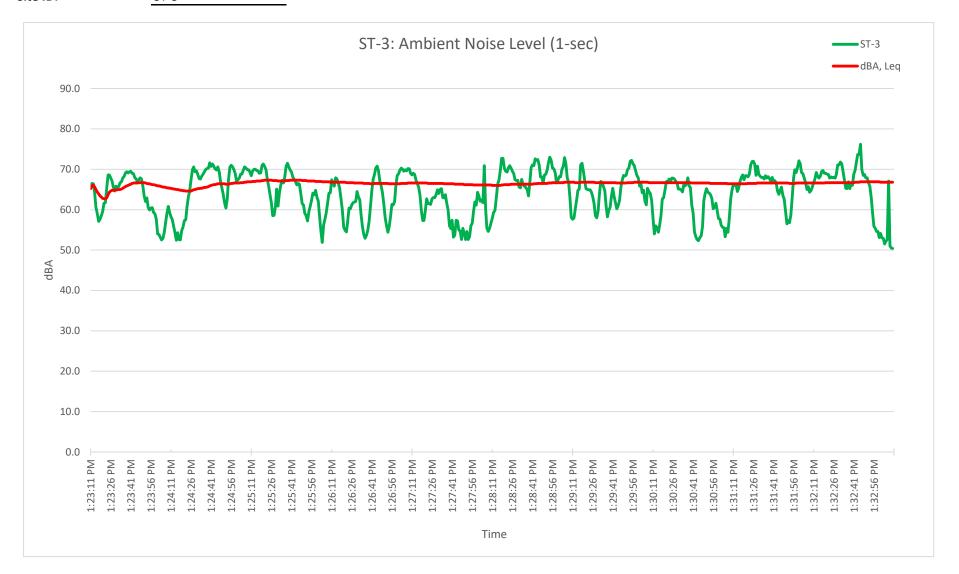
www.mdacoustics.com





AZ Office 4960 S. Gilbert Rd, Ste 1-461 Chandler, AZ 85249

1197 E Los Angeles Ave, C-256 Simi Valley, CA 93065


### 10-Minute Continuous Noise Measurement Datasheet - Cont.

**Project:** Chula Vista Self Storage

Site Address/Location: Between Nirvana ave and Heritage Rd

Site ID: ST-3

www.mdacoustics.com



Appendix B:

SoundPlan Input/Output

**Project:** Nance and Arrow Warehouse

**Job Number:** 0551-2020-16

Site Address/Location: 170 S William Dillard Dr, Ste A105, Gilbert, AZ 85233

Date: 08/11/2020
Field Tech/Engineer: Shon Baldwin
Source/System: Idling Semi-Truck

**General Location:** Loading Docks - 10ft from source

Sound Meter: NTi XL2 SN: A2A-05967-E0

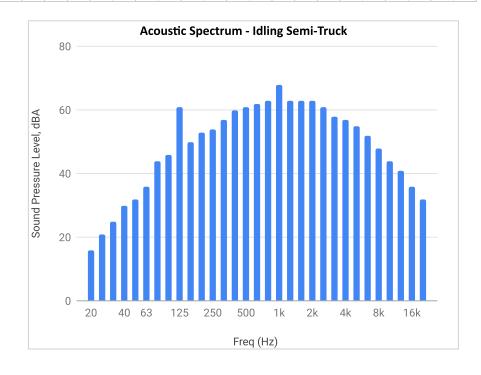
**Settings:** A-weighted, slow, 1-sec, 30-sec duration

**Meteorological Cond.:** 95 degrees F, no wind

#### **Site Observations:**

SLM was placed 10-ft from idiling semi-truck

| Leq  | Lmin | Lmax |
|------|------|------|
| 73.8 | 73.0 | 74.9 |


| Ln 2 | Ln 8 | Ln 25 | Ln 50 | Ln 90 | Ln 99 |
|------|------|-------|-------|-------|-------|
| 74.2 | 74.1 | 73.9  | 73.8  | 73.5  | 73.4  |

#### **Table 1: Summary Measurement Data**

| Source/System     | Overall Source | Overall |      |      |      |      |      |      |      |      |      |      |      |      | 3    | 3rd Oc | tave | Banc | l Data | (dBA | ١)   |      |      |      |      |      |      |      |      |         |        |       |     |
|-------------------|----------------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|------|------|--------|------|------|------|------|------|------|------|------|------|------|---------|--------|-------|-----|
|                   |                | dB(A)   | 20   | 25   | 31.5 | 40   | 50   | 63   | 80   | 100  | 125  | 160  | 200  | 250  | 315  | 400    | 500  | 630  | 800    | 1k   | 12.5 | 1.6k | 2k   | 2.5k | 3.15 | 4k   | 5k   | 6.3k | 8k   | 10k 12  | 2.5  1 | 6k 2  | .0k |
| Idling Semi-Truck | Semi-Truck     | 73.8    | 16.0 | 21.0 | 25.0 | 30.0 | 32.0 | 36.0 | 44.0 | 46.0 | 61.0 | 50.0 | 53.0 | 54.0 | 57.0 | 60.0   | 61.0 | 62.0 | 63.0   | 68.0 | 63.0 | 63.0 | 63.0 | 61.0 | 58.0 | 57.0 | 55.0 | 52.0 | 48.0 | 44.0 43 | 1.0 36 | 6.0 3 | 2.0 |

Figure 1: Idling Semi-Truck

MC 454425
US DOT 1103809



Project: Fork Lift noise With Back up Beeper

Site Address/Location: MD Acoustics and Lab

10/04/2021 Date:

Field Tech/Engineer: **Robert Pearson** 

Source/System: Fork Lift

Job Number:

**General Location:** 5 feet

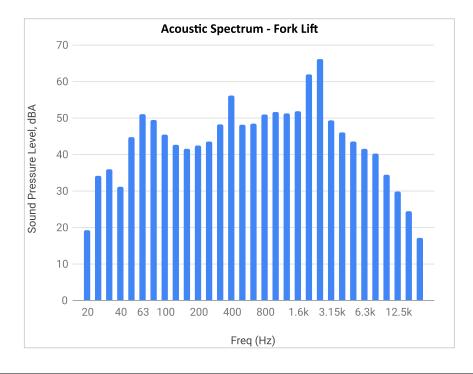
**Sound Meter:** NTi XL2 **SN:** A2A-16164-E0

Second by Second Settings:

**Meteorological Cond.:** Clear Skies, 70 degrees

#### **Site Observations:**

Measurment taken 5' away as forklift is running and beeping.


| Leq  | Lmin | Lmax |
|------|------|------|
| 68.8 | 67.1 | 70.4 |

| Ln 2 | Ln 8 | Ln 10 | Ln 50 | Ln 90 | Ln 99 |
|------|------|-------|-------|-------|-------|
| 72.7 | 71.6 | 70.9  | 68.5  | 64.8  | 0.0   |

#### **Table 1: Summary Measurement Data**

| Source/System | Overall Source | Overall |      |      |      |      |      |         |     |         |      |      |      |      | 3    | rd Oc | tave | Band | Data | a (dB/ | 4)   |      |      |      |      |      |      |      |      |           |      |      |
|---------------|----------------|---------|------|------|------|------|------|---------|-----|---------|------|------|------|------|------|-------|------|------|------|--------|------|------|------|------|------|------|------|------|------|-----------|------|------|
|               |                | dB(A)   | 20   | 25   | 31.5 | 40   | 50   | 63 8    | 0 : | 100 1   | 25 : | 160  | 200  | 250  | 315  | 400   | 500  | 630  | 800  | 1k     | 12.5 | 1.6k | 2k   | 2.5k | 3.15 | 4k   | 5k   | 6.3k | 8k   | 10k 12.5  | 16k  | 20k  |
| Fork Lift     | Fork Lift      | 68.8    | 19.4 | 34.3 | 36.1 | 31.3 | 44.9 | 51.2 49 | 9.6 | 15.6 42 | 2.8  | 11.7 | 42.6 | 43.7 | 48.4 | 56.3  | 48.3 | 48.6 | 51.1 | 51.8   | 51.4 | 52.0 | 62.1 | 66.3 | 49.5 | 46.2 | 43.7 | 41.7 | 40.4 | 34.6 30.0 | 24.6 | 17.3 |







#### MINIMUM - MAXIMUM AIRFLOWS (CFM) COOLING AND ELECTRIC HEAT

|          |                | COOLING                                       |                                                    | El          | ECTRIC HEATERS |                |
|----------|----------------|-----------------------------------------------|----------------------------------------------------|-------------|----------------|----------------|
| UNIT     | Minimum<br>CFM | Minimum CFM 2-Speed Fan Motor (at High Speed) | Minimum CFM<br>2-Speed Fan Motor (at Low<br>Speed) | Maximum CFM | Minimum CFM    | Maximum<br>CFM |
| 50HCQA04 | 900            | N/A                                           | N/A                                                | 1500        | 900            | 1500           |
| 50HCQA05 | 1200           | N/A                                           | N/A                                                | 2000        | 1200           | 2000           |
| 50HCQA06 | 1500           | N/A                                           | N/A                                                | 2500        | 1500           | 2500           |
| 50HCQA07 | 1800           | N/A                                           | N/A                                                | 3000        | 1800           | 3000           |
| 50HCQD07 | 1800           | 1800                                          | 1200                                               | 3000        | 1800           | 3000           |
| 50HCQD08 | 2250           | 2250                                          | 1500                                               | 3750        | 2250*          | 3750           |
| 50HCQD09 | 2550           | 2873                                          | 1915                                               | 4250        | 2252*          | 4250           |
| 50HCQD12 | 3000           | 3380                                          | 2253                                               | 5000        | 3000*          | 5000           |

<sup>\*</sup> Minimum electric heat CFM exceptions:

| UNIT     | UNIT VOLTAGE | HEATER kW | UNIT CONFIGURATION     | REQUIRED MINIMUM CFM |
|----------|--------------|-----------|------------------------|----------------------|
| 50HCQD08 | 575          | 17.0      | Horizontal or Vertical | 2800                 |
| 50HCQD09 | 3/3          | 34.0      | Tionzontal of Vertical | 2350                 |
|          |              | 50.0      | Vertical               | 3550                 |
|          | 230          | 50.0      | Horizontal             | 3420                 |
|          |              | 43.5      | Horizontal or Vertical | 3040                 |
| 50HCQD12 |              | 50.0      | Vertical               | 3150                 |
|          | 575          | 33.5      | Vertical               | 3520                 |
|          | 3/3          | 33.5      | Horizontal             | 3420                 |
|          |              | 26.5      | Vertical               | 3610                 |

#### **SOUND PERFORMANCE**

| 50HCQ |            |      | OU.  | TDOOR SOU | ND (dB) AT 6 | 0 Hz |      |      |      |
|-------|------------|------|------|-----------|--------------|------|------|------|------|
| UNIT  | A-Weighted | 63   | 125  | 250       | 500          | 1000 | 2000 | 4000 | 8000 |
| A04   | 76         | 51.8 | 69.0 | 64.6      | 67.8         | 70.7 | 63.8 | 60.9 | 59.0 |
| A05   | 79         | 56.1 | 69.6 | 68.7      | 72.5         | 72.8 | 68.9 | 65.0 | 61.2 |
| A06   | 79         | 57.7 | 66.6 | 68.7      | 72.9         | 74.5 | 71.1 | 67.6 | 62.6 |
| A07   | 81         | 86.7 | 82.7 | 79.1      | 78.4         | 75.4 | 71.2 | 67.8 | 62.9 |
| D07   | 81         | 86.7 | 82.7 | 79.1      | 78.4         | 75.4 | 71.2 | 67.8 | 62.9 |
| D08   | 83         | 87.3 | 81.6 | 79.7      | 80.6         | 79.0 | 73.5 | 69.2 | 66.1 |
| D09   | 87         | 61.7 | 74.7 | 77.4      | 82.6         | 84.9 | 81.9 | 78.8 | 75.9 |
| D12   | 83         | 61.0 | 67.3 | 75.1      | 77.7         | 78.1 | 75.5 | 71.2 | 66.7 |

**LEGEND** 

dB -Decibel

#### NOTES:

- 1. Outdoor sound data is measure in accordance with AHRI standard
- Measurements are expressed in terms of sound power. Do not compare these values to sound pressure values because sound pressure depends on specific environmental factors which normally do not match individual applications. Sound power values are independent of the environment and therefore more accurate.
   A-weighted sound ratings filter out very high and very low frequencies, to better approximate the response of "average" human ear. A-weighted measurements for Carrier units are taken in accordance with AHRI standard 270.

| Source        |              | Source group              | Source ty | Tr. lane | Leq,n | Α   |  |
|---------------|--------------|---------------------------|-----------|----------|-------|-----|--|
|               |              |                           |           |          | dB(A) | dB  |  |
| Receiver R1 F | FIG Irlim di | B(A) Leq,n 53.5 dB(A)     |           |          | ( )   |     |  |
| Loading 1     | LI,IIII GE   | Default industrial noise  | Point     |          | 51.2  | 0.0 |  |
| Loading 2     |              | Default industrial noise  | Point     |          | 48.3  | 0.0 |  |
| Parking 1     |              | Default parking lot noise | PLot      |          | 42.9  | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 35.4  | 0.0 |  |
| Beeper 1      |              | Default industrial noise  | Point     |          | 26.3  | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 23.9  | 0.0 |  |
| Beeper 2      |              | Default industrial noise  | Point     |          | 22.5  | 0.0 |  |
| Beeper 3      |              | Default industrial noise  | Point     |          | 18.6  | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 18.2  | 0.0 |  |
| Beeper 4      |              | Default industrial noise  | Point     |          | 16.8  | 0.0 |  |
| Loading 4     |              | Default industrial noise  | Point     |          | 16.2  | 0.0 |  |
| Beeper 5      |              | Default industrial noise  | Point     |          | 15.5  | 0.0 |  |
| Parking 22    |              | Default parking lot noise | PLot      |          | 14.9  | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 14.4  | 0.0 |  |
| Parking 2     |              | Default parking lot noise | PLot      |          | 13.7  | 0.0 |  |
| Parking 8     |              | Default parking lot noise | PLot      |          | 11.8  | 0.0 |  |
| Parking 18    |              | Default parking lot noise | PLot      |          | 11.8  | 0.0 |  |
| Parking 17    |              | Default parking lot noise | PLot      |          | 11.5  | 0.0 |  |
| Parking 9     |              | Default parking lot noise | PLot      |          | 11.3  | 0.0 |  |
| Parking 3     |              | Default parking lot noise | PLot      |          | 11.2  | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 11.0  | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 10.8  | 0.0 |  |
| Parking 7     |              | Default parking lot noise | PLot      |          | 10.8  | 0.0 |  |
| Parking 4     |              | Default parking lot noise | PLot      |          | 9.9   | 0.0 |  |
| Parking 10    |              | Default parking lot noise | PLot      |          | 9.9   | 0.0 |  |
| Parking 6     |              | Default parking lot noise | PLot      |          | 9.7   | 0.0 |  |
| Loading 3     |              | Default industrial noise  | Point     |          | 9.6   | 0.0 |  |
| Parking 15    |              | Default parking lot noise | PLot      |          | 9.5   | 0.0 |  |
| Parking 5     |              | Default parking lot noise | PLot      |          | 9.3   | 0.0 |  |
| Parking 16    |              | Default parking lot noise | PLot      |          | 9.2   | 0.0 |  |
| Parking 19    |              | Default parking lot noise | PLot      |          | 9.1   | 0.0 |  |
| Parking 11    |              | Default parking lot noise | PLot      |          | 8.7   | 0.0 |  |
| Parking 14    |              | Default parking lot noise | PLot      |          | 8.2   | 0.0 |  |
| Parking 13    |              | Default parking lot noise | PLot      |          | 7.5   | 0.0 |  |
| Parking 24    |              | Default parking lot noise | PLot      |          | 7.4   | 0.0 |  |
| Beeper 7      |              | Default industrial noise  | Point     |          | 7.4   | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 6.7   | 0.0 |  |
| Parking 12    |              | Default parking lot noise | PLot      |          | 4.5   | 0.0 |  |
| Beeper 6      |              | Default industrial noise  | Point     |          | 4.2   | 0.0 |  |
| Parking 37    |              | Default parking lot noise | PLot      |          | 4.0   | 0.0 |  |
| HVAC          |              | Default industrial noise  | Point     |          | 3.9   | 0.0 |  |
| Parking 20    |              | Default parking lot noise | PLot      |          | 3.8   | 0.0 |  |
| Parking 34    |              | Default parking lot noise | PLot      |          | 3.7   | 0.0 |  |
| Parking 32    |              | Default parking lot noise | PLot      |          | 3.6   | 0.0 |  |

| Source     | Source group              | Source ty T | r Jane   | Leq,n | Α   |  |
|------------|---------------------------|-------------|----------|-------|-----|--|
| Source     | Source group              | Source ty 1 | i. iaiie |       |     |  |
|            |                           |             |          | dB(A) | dB  |  |
| Parking 33 | Default parking lot noise | PLot        |          | 3.2   | 0.0 |  |
| Parking 30 | Default parking lot noise | PLot        |          | 2.9   | 0.0 |  |
| Beeper 9   | Default industrial noise  | Point       |          | 2.7   | 0.0 |  |
| Beeper 8   | Default industrial noise  | Point       |          | 2.7   | 0.0 |  |
| Parking 29 | Default parking lot noise | PLot        |          | 2.5   | 0.0 |  |
| Beeper 10  | Default industrial noise  | Point       |          | 2.4   | 0.0 |  |
| Parking 28 | Default parking lot noise | PLot        |          | 2.4   | 0.0 |  |
| Parking 27 | Default parking lot noise | PLot        |          | 2.3   | 0.0 |  |
| Parking 23 | Default parking lot noise | PLot        |          | 2.2   | 0.0 |  |
| Parking 35 | Default parking lot noise | PLot        |          | 2.0   | 0.0 |  |
| Parking 21 | Default parking lot noise | PLot        |          | 1.7   | 0.0 |  |
| Parking 26 | Default parking lot noise | PLot        |          | 1.6   | 0.0 |  |
| Parking 25 | Default parking lot noise | PLot        |          | 1.6   | 0.0 |  |
| Beeper 12  | Default industrial noise  | Point       | İ        | 0.2   | 0.0 |  |
| Parking 36 | Default parking lot noise | PLot        |          | -0.2  | 0.0 |  |
| Beeper 15  | Default industrial noise  | Point       |          | -1.7  | 0.0 |  |
| Beeper 16  | Default industrial noise  | Point       |          | -1.8  | 0.0 |  |
| Beeper 17  | Default industrial noise  | Point       |          | -1.9  | 0.0 |  |
| Beeper 11  | Default industrial noise  | Point       |          | -2.0  | 0.0 |  |
| Beeper 14  | Default industrial noise  | Point       |          | -2.9  | 0.0 |  |
| Beeper 13  | Default industrial noise  | Point       |          | -2.9  | 0.0 |  |
| Parking 31 | Default parking lot noise | PLot        |          | -3.5  | 0.0 |  |
| Beeper 18  | Default industrial noise  | Point       |          | -6.6  | 0.0 |  |
| Beeper 19  | Default industrial noise  | Point       |          | -6.8  | 0.0 |  |
| Beeper 20  | Default industrial noise  | Point       |          | -13.1 | 0.0 |  |
| Beeper 21  | Default industrial noise  | Point       |          | -13.5 | 0.0 |  |
| ·          | B(A) Leq,n 57.6 dB(A)     | j. 5        |          |       | 0.0 |  |
| Loading 4  | Default industrial noise  | Point       |          | 54.8  | 0.0 |  |
| Loading 3  | Default industrial noise  | Point       |          | 54.1  | 0.0 |  |
| HVAC       | Default industrial noise  | Point       |          | 36.9  | 0.0 |  |
| Beeper 19  | Default industrial noise  | Point       |          | 34.2  | 0.0 |  |
| Beeper 18  | Default industrial noise  | Point       |          | 33.9  | 0.0 |  |
| Beeper 17  | Default industrial noise  | Point       |          | 32.3  | 0.0 |  |
| Beeper 16  | Default industrial noise  | Point       |          | 31.7  | 0.0 |  |
| HVAC       | Default industrial noise  | Point       |          | 31.1  | 0.0 |  |
| Beeper 15  | Default industrial noise  | Point       |          | 31.0  | 0.0 |  |
| Parking 37 | Default parking lot noise | PLot        |          | 29.1  | 0.0 |  |
| •          |                           |             |          | 25.0  | 0.0 |  |
| Parking 24 | Default industrial paige  | PLot        |          |       |     |  |
| Loading 2  | Default industrial noise  | Point       |          | 23.5  | 0.0 |  |
| HVAC       | Default industrial noise  | Point       |          | 22.0  | 0.0 |  |
| HVAC       | Default industrial noise  | Point       |          | 21.7  | 0.0 |  |
| Loading 1  | Default industrial noise  | Point       |          | 21.6  | 0.0 |  |
| Parking 36 | Default parking lot noise | PLot        |          | 20.6  | 0.0 |  |
| HVAC       | Default industrial noise  | Point       |          | 18.4  | 0.0 |  |
| Beeper 13  | Default industrial noise  | Point       |          | 17.3  | 0.0 |  |

| d |   |   |
|---|---|---|
| ľ | 1 | ۱ |
| ٠ | ч | , |
| ٠ | ı | , |

| Source     | Source group              | Source ty Tr. lane | Leq,n | Α   |  |
|------------|---------------------------|--------------------|-------|-----|--|
|            |                           |                    | dB(A) | dB  |  |
| HVAC       | Default industrial noise  | Point              | 15.9  | 0.0 |  |
| HVAC       | Default industrial noise  | Point              | 14.9  | 0.0 |  |
| Parking 10 | Default parking lot noise | PLot               | 14.6  | 0.0 |  |
| Parking 9  | Default parking lot noise | PLot               | 14.1  | 0.0 |  |
| Parking 18 | Default parking lot noise | PLot               | 13.8  | 0.0 |  |
| Parking 1  | Default parking lot noise | PLot               | 13.7  | 0.0 |  |
| Parking 19 | Default parking lot noise | PLot               | 13.7  | 0.0 |  |
| Parking 11 | Default parking lot noise | PLot               | 13.7  | 0.0 |  |
| HVAC       | Default industrial noise  | Point              | 13.4  | 0.0 |  |
| Parking 8  | Default parking lot noise | PLot               | 12.7  | 0.0 |  |
| Parking 7  | Default parking lot noise | PLot               | 12.4  | 0.0 |  |
| Parking 17 | Default parking lot noise | PLot               | 12.1  | 0.0 |  |
| Parking 6  | Default parking lot noise | PLot               | 11.7  | 0.0 |  |
| Parking 15 | Default parking lot noise | PLot               | 11.5  | 0.0 |  |
| Parking 16 | Default parking lot noise | PLot               | 11.0  | 0.0 |  |
| Parking 25 | Default parking lot noise | PLot               | 10.9  | 0.0 |  |
| Parking 14 | Default parking lot noise | PLot               | 10.2  | 0.0 |  |
| Parking 20 | Default parking lot noise | PLot               | 10.2  | 0.0 |  |
| Parking 32 | Default parking lot noise | PLot               | 9.7   | 0.0 |  |
| Parking 33 | Default parking lot noise | PLot               | 9.7   | 0.0 |  |
| Parking 27 | Default parking lot noise | PLot               | 9.1   | 0.0 |  |
| Parking 4  | Default parking lot noise | PLot               | 8.9   | 0.0 |  |
| Parking 28 | Default parking lot noise | PLot               | 8.9   | 0.0 |  |
| Parking 5  | Default parking lot noise | PLot               | 8.8   | 0.0 |  |
| Parking 22 | Default parking lot noise | PLot               | 8.5   | 0.0 |  |
| Parking 12 | Default parking lot noise | PLot               | 8.4   | 0.0 |  |
| Parking 34 | Default parking lot noise | PLot               | 8.2   | 0.0 |  |
| Parking 26 | Default parking lot noise | PLot               | 8.2   | 0.0 |  |
| Parking 29 | Default parking lot noise | PLot               | 8.2   | 0.0 |  |
| Beeper 9   | Default industrial noise  | Point              | 7.7   | 0.0 |  |
| Beeper 8   | Default industrial noise  | Point              | 7.6   | 0.0 |  |
| Beeper 14  | Default industrial noise  | Point              | 7.5   | 0.0 |  |
| Parking 30 | Default parking lot noise | PLot               | 7.4   | 0.0 |  |
| Beeper 20  | Default industrial noise  | Point              | 7.3   | 0.0 |  |
| Parking 13 | Default parking lot noise | PLot               | 7.2   | 0.0 |  |
| Beeper 7   | Default industrial noise  | Point              | 6.6   | 0.0 |  |
| Parking 21 | Default parking lot noise | PLot               | 6.1   | 0.0 |  |
| Parking 23 | Default parking lot noise | PLot               | 5.4   | 0.0 |  |
| Beeper 21  | Default industrial noise  | Point              | 5.3   | 0.0 |  |
| Parking 35 | Default parking lot noise | PLot               | 5.2   | 0.0 |  |
| Beeper 5   | Default industrial noise  | Point              | 4.7   | 0.0 |  |
| Beeper 12  | Default industrial noise  | Point              | 4.5   | 0.0 |  |
| Beeper 10  | Default industrial noise  | Point              | 4.5   | 0.0 |  |
| Beeper 4   | Default industrial noise  | Point              | 4.4   | 0.0 |  |
| Beeper 3   | Default industrial noise  | Point              | 4.1   | 0.0 |  |

## Nirvana Chula Vista Self Storage Noise Contribution level - 001 - Warehouse : Outdoor SP

| Source      | Source group               | Source ty Tr. lane | e Leq,n | Α     |  |
|-------------|----------------------------|--------------------|---------|-------|--|
| Source      | Source group               | Source ty 11. lane | 1       | dB    |  |
| D           | Defection description of a | Deint              | dB(A)   |       |  |
| Beeper 2    | Default industrial noise   | Point              | 3.7     | 0.0   |  |
| Parking 31  | Default parking lot noise  | PLot               | 3.6     | 0.0   |  |
| Beeper 1    | Default industrial noise   | Point              | 3.5     | 0.0   |  |
| Beeper 6    | Default industrial noise   | Point              | 3.0     | 0.0   |  |
| Beeper 11   | Default industrial noise   | Point              | 2.6     | 0.0   |  |
| Parking 3   | Default parking lot noise  | PLot               | -3.2    | 0.0   |  |
| Parking 2   | Default parking lot noise  | PLot               | -3.6    | 0.0   |  |
|             | B(A) Leq,n 46.3 dB(A)      |                    |         |       |  |
| Parking 12  | Default parking lot noise  | PLot               | 41.3    | 0.0   |  |
| Parking 23  | Default parking lot noise  | PLot               | 40.8    | 0.0   |  |
| Parking 11  | Default parking lot noise  | PLot               | 36.7    | 0.0   |  |
| Parking 21  | Default parking lot noise  | PLot               | 32.9    | 0.0   |  |
| Parking 20  | Default parking lot noise  | PLot               | 31.3    | 0.0   |  |
| HVAC        | Default industrial noise   | Point              | 31.2    | 0.0   |  |
| Beeper 11   | Default industrial noise   | Point              | 30.6    | 0.0   |  |
| Beeper 12   | Default industrial noise   | Point              | 30.6    | 0.0   |  |
| Parking 10  | Default parking lot noise  | PLot               | 29.7    | 0.0   |  |
| Parking 19  | Default parking lot noise  | PLot               | 28.8    | 0.0   |  |
| Parking 25  | Default parking lot noise  | PLot               | 26.4    | 0.0   |  |
| Parking 9   | Default parking lot noise  | PLot               | 25.9    | 0.0   |  |
| Parking 18  | Default parking lot noise  | PLot               | 24.4    | 0.0   |  |
| Parking 27  | Default parking lot noise  | PLot               | 24.0    | 0.0   |  |
| Parking 26  | Default parking lot noise  | PLot               | 23.9    | 0.0   |  |
| Parking 32  | Default parking lot noise  | PLot               | 23.8    | 0.0   |  |
| HVAC        | Default industrial noise   | Point              | 23.4    | 0.0   |  |
| Parking 8   | Default parking lot noise  | PLot               | 22.4    | 0.0   |  |
| HVAC        | Default industrial noise   | Point              | 22.0    | 0.0   |  |
| Parking 28  | Default parking lot noise  | PLot               | 21.1    | 0.0   |  |
| HVAC        | Default industrial noise   | Point              | 21.0    | 0.0   |  |
| Parking 17  | Default parking lot noise  | PLot               | 21.0    | 0.0   |  |
| Parking 34  | Default parking lot noise  | PLot               | 20.4    | 0.0   |  |
| Parking 30  | Default parking lot noise  | PLot               | 20.2    | 0.0   |  |
| Parking 29  | Default parking lot noise  | PLot               | 20.1    | 0.0   |  |
| Parking 33  | Default parking lot noise  | PLot               | 20.0    | 0.0   |  |
| Parking 7   | Default parking lot noise  | PLot               | 19.8    | 0.0   |  |
| HVAC        | Default industrial noise   | Point              | 19.6    | 0.0   |  |
| Parking 31  | Default parking lot noise  | PLot               | 18.4    | 0.0   |  |
| Parking 35  | Default parking lot noise  | PLot               | 17.7    | 0.0   |  |
| Parking 16  | Default parking lot noise  | PLot               | 17.7    | 0.0   |  |
| Parking 6   | Default parking lot noise  | PLot               | 17.5    | 0.0   |  |
| Parking 15  | Default parking lot noise  | PLot               | 16.9    | 0.0   |  |
| HVAC        | Default industrial noise   | Point              | 16.3    | 0.0   |  |
| Beeper 13   | Default industrial noise   | Point              | 15.6    | 0.0   |  |
| Beeper 14   | Default industrial noise   | Point              | 14.7    | 0.0   |  |
| Parking 1   | Default parking lot noise  | PLot               | 14.7    | 0.0   |  |
| ı arkılıy ı | perault parking lot hoise  | Ji LUL             | 14.7    | J 0.0 |  |

MD Acoustics 1197 E Los Angeles Ave, Unit C 256 Simi Valley, CA 93065 USA

9

## Nirvana Chula Vista Self Storage Noise Contribution level - 001 - Warehouse : Outdoor SP

| ľ |   | ١ |   | ۱ |
|---|---|---|---|---|
|   | ١ | 4 |   | ı |
| Į | ŀ | ø | , | • |

| Source     | Source group              | Source ty Tr. lane | Leq,n | Α   |  |
|------------|---------------------------|--------------------|-------|-----|--|
|            |                           |                    | dB(A) | dB  |  |
| Parking 14 | Default parking lot noise | PLot               | 14.7  | 0.0 |  |
| Parking 5  | Default parking lot noise | PLot               | 14.5  | 0.0 |  |
| Loading 1  | Default industrial noise  | Point              | 14.1  | 0.0 |  |
| Parking 24 | Default parking lot noise | PLot               | 13.4  | 0.0 |  |
| Loading 4  | Default industrial noise  | Point              | 13.4  | 0.0 |  |
| Loading 2  | Default industrial noise  | Point              | 13.1  | 0.0 |  |
| Parking 4  | Default parking lot noise | PLot               | 12.3  | 0.0 |  |
| Parking 22 | Default parking lot noise | PLot               | 11.1  | 0.0 |  |
| Loading 3  | Default industrial noise  | Point              | 11.1  | 0.0 |  |
| Parking 13 | Default parking lot noise | PLot               | 10.1  | 0.0 |  |
| HVAC       | Default industrial noise  | Point              | 9.0   | 0.0 |  |
| HVAC       | Default industrial noise  | Point              | 8.4   | 0.0 |  |
| Beeper 8   | Default industrial noise  | Point              | 6.6   | 0.0 |  |
| Beeper 7   | Default industrial noise  | Point              | 6.5   | 0.0 |  |
| Parking 37 | Default parking lot noise | PLot               | 4.4   | 0.0 |  |
| Parking 36 | Default parking lot noise | PLot               | 4.0   | 0.0 |  |
| Beeper 5   | Default industrial noise  | Point              | 3.9   | 0.0 |  |
| Beeper 4   | Default industrial noise  | Point              | 3.7   | 0.0 |  |
| Beeper 3   | Default industrial noise  | Point              | 3.4   | 0.0 |  |
| Beeper 9   | Default industrial noise  | Point              | 3.2   | 0.0 |  |
| Beeper 2   | Default industrial noise  | Point              | 3.0   | 0.0 |  |
| Beeper 10  | Default industrial noise  | Point              | 2.7   | 0.0 |  |
| Beeper 6   | Default industrial noise  | Point              | 2.6   | 0.0 |  |
| Beeper 1   | Default industrial noise  | Point              | -0.7  | 0.0 |  |
| Parking 3  | Default parking lot noise | PLot               | -0.8  | 0.0 |  |
| Beeper 15  | Default industrial noise  | Point              | -3.4  | 0.0 |  |
| Parking 2  | Default parking lot noise | PLot               | -3.4  | 0.0 |  |
| Beeper 16  | Default industrial noise  | Point              | -3.7  | 0.0 |  |
| Beeper 17  | Default industrial noise  | Point              | -3.9  | 0.0 |  |
| Beeper 18  | Default industrial noise  | Point              | -4.3  | 0.0 |  |
| Beeper 19  | Default industrial noise  | Point              | -4.4  | 0.0 |  |
| Beeper 20  | Default industrial noise  | Point              | -7.7  | 0.0 |  |
| Beeper 21  | Default industrial noise  | Point              | -7.9  | 0.0 |  |
| Beeper 21  | Default industrial noise  | Point              | -7.9  | 0.0 |  |

## Nirvana Chula Vista Self Storage Noise Octave spectra of the sources in dB(A) - 001 - Warehouse Night: Outdoor SP

| Name      | Source type | I or A | Li    | R'w | L'w   | Lw    | KI  | KT  | LwMax | DO-Wall | Time histogram | Emission spectrum            | 63Hz  | 125Hz | 250Hz | 500Hz | 1kHz  | 2kHz  | 4kHz  | 8kHz  | 16kHz |
|-----------|-------------|--------|-------|-----|-------|-------|-----|-----|-------|---------|----------------|------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|           |             |        |       |     |       |       |     |     |       |         |                |                              |       |       |       |       |       |       |       |       |       |
|           |             | m,m²   | dB(A) | dB  | dB(A) | dB(A) | dB  | dB  | dB(A) | dB      |                |                              | dB(A) |
| Beeper 1  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 2  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 3  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 4  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 5  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 6  | Point       |        |       |     | 80.2  | 80.2  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Beeper                       | 61.1  | 63.0  | 63.6  | 70.3  | 70.3  | 78.4  | 68.3  | 59.9  | 41.3  |
| Beeper 7  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 8  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 9  | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 10 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 11 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 12 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 13 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 14 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 15 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 16 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 17 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 18 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 19 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 20 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| Beeper 21 | Point       |        |       |     | 83.4  | 83.4  | 0.0 | 0.0 |       | 0       | Back up Alarm  | Back up Beeper               | 68.6  | 63.0  | 65.0  | 72.1  | 70.8  | 82.4  | 66.4  | 59.1  | 45.8  |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| HVAC      | Point       |        |       |     | 82.9  | 82.9  | 0.0 | 0.0 |       | 0       | 100%/24h       | Carrier 7.5 ton rooftop unit | 61.1  | 65.5  | 71.1  | 77.4  | 79.0  | 74.7  | 70.2  | 65.0  |       |
| Loading 1 | Point       |        |       |     | 93.0  | 93.0  | 0.0 | 0.0 |       | 0       | 100%/24h       | Idiling Semi-Truck           | 46.1  | 57.4  | 80.5  | 76.7  | 83.7  | 89.3  | 87.1  | 83.1  | 76.1  |

: Outdoor SP

## Nirvana Chula Vista Self Storage Noise Octave spectra of the sources in dB(A) - 001 - Warehouse

| Name       | Source type | I or A | Li    | R'w | L'w   | Lw    | KI  | KT  | LwMax | DO-Wall | Time histogram    | Emission spectrum  | 63Hz  | 125Hz | 250Hz | 500Hz | 1kHz  | 2kHz  | 4kHz  | 8kHz  | 16kHz |
|------------|-------------|--------|-------|-----|-------|-------|-----|-----|-------|---------|-------------------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|            |             |        |       |     |       |       |     |     |       |         |                   |                    |       |       |       |       |       |       |       |       |       |
|            |             | m,m²   | dB(A) | dB  | dB(A) | dB(A) | dB  | dB  | dB(A) | dB      |                   |                    | dB(A) |
| Loading 2  | Point       |        |       |     | 93.0  | 93.0  | 0.0 | 0.0 |       | 0       | 100%/24h          | Idiling Semi-Truck | 46.1  | 57.4  | 80.5  | 76.7  | 83.7  | 89.3  | 87.1  | 83.1  | 76.1  |
| Loading 3  | Point       |        |       |     | 93.0  | 93.0  |     | 0.0 |       | 0       | 100%/24h          | Idiling Semi-Truck | 46.1  | 57.4  | 80.5  | 76.7  | 83.7  | 89.3  | 87.1  | 83.1  | 76.1  |
| Loading 4  | Point       |        |       |     | 93.0  | 93.0  | 0.0 | 0.0 |       | 0       | 100%/24h          | Idiling Semi-Truck | 46.1  | 57.4  | 80.5  | 76.7  | 83.7  | 89.3  | 87.1  | 83.1  | 76.1  |
| Parking 1  | PLot        | 616.30 |       |     | 57.7  | 85.6  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 69.0  | 80.6  | 73.1  | 77.6  | 77.7  | 78.1  | 75.4  | 69.2  | 56.4  |
| Parking 2  | PLot        | 94.50  |       |     | 56.3  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 3  | PLot        | 104.63 |       |     | 55.8  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 4  | PLot        | 121.31 |       |     | 56.2  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 5  | PLot        | 134.29 |       |     | 55.7  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 6  | PLot        | 123.46 |       |     | 56.1  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 7  | PLot        | 113.88 |       |     | 56.4  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 8  | PLot        | 138.83 |       |     | 55.6  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 9  | PLot        | 131.93 |       |     | 55.8  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 10 | PLot        | 117.79 |       |     | 56.3  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 11 | PLot        | 132.97 |       |     | 55.8  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |
| Parking 12 | PLot        | 89.39  |       |     | 55.3  | 74.8  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 58.1  | 69.7  | 62.2  | 66.7  | 66.8  | 67.2  | 64.5  | 58.3  | 45.5  |
| Parking 13 | PLot        | 130.38 |       |     | 54.9  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 14 | PLot        | 113.01 |       |     | 55.5  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 15 | PLot        | 134.55 |       |     | 55.3  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 16 | PLot        | 93.71  |       |     | 55.7  | 75.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 58.8  | 70.4  | 62.9  | 67.4  | 67.5  | 67.9  | 65.2  | 59.0  | 46.2  |
| Parking 17 | PLot        | 117.58 |       |     | 54.7  | 75.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 58.8  | 70.4  | 62.9  | 67.4  | 67.5  | 67.9  | 65.2  | 59.0  | 46.2  |
| Parking 18 | PLot        | 141.98 |       |     | 55.0  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 19 | PLot        | 75.79  |       |     | 57.2  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 20 | PLot        | 66.34  |       |     | 56.6  | 74.8  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 58.1  | 69.7  | 62.2  | 66.7  | 66.8  | 67.2  | 64.5  | 58.3  | 45.5  |
| Parking 21 | PLot        | 80.30  |       |     | 54.9  | 74.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 57.3  | 68.9  | 61.4  | 65.9  | 66.0  | 66.4  | 63.7  | 57.5  | 44.7  |
| Parking 22 | PLot        | 45.12  |       |     | 55.2  | 71.8  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 55.1  | 66.7  | 59.2  | 63.7  | 63.8  | 64.2  | 61.5  | 55.3  | 42.5  |
| Parking 23 | PLot        | 102.97 |       |     | 54.7  | 74.8  | 0.0 | 0.0 | İ     | 0       | Convenience Store | Typical spectrum   | 58.1  | 69.7  | 62.2  | 66.7  | 66.8  | 67.2  | 64.5  | 58.3  | 45.5  |
| Parking 24 | PLot        | 90.58  |       |     | 54.4  | 74.0  | 0.0 | 0.0 | l i   | 0       | Convenience Store | Typical spectrum   | 57.3  | 68.9  | 61.4  | 65.9  | 66.0  | 66.4  | 63.7  | 57.5  | 44.7  |
| Parking 25 | PLot        | 136.91 |       |     | 55.2  | 76.5  | 0.0 | 0.0 | j i   | 0       | Convenience Store | Typical spectrum   | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 26 | PLot        | 153.82 |       |     | 54.7  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 27 | PLot        | 130.52 |       |     | 55.4  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum   | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |

: Outdoor SP

| Name       | Source type | I or A | Li    | R'w | L'w   | Lw    | KI  | KT  | LwMax | DO-Wall | Time histogram    | Emission spectrum | 63Hz  | 125Hz | 250Hz | 500Hz | 1kHz  | 2kHz  | 4kHz  | 8kHz  | 16kHz |
|------------|-------------|--------|-------|-----|-------|-------|-----|-----|-------|---------|-------------------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|            |             |        |       |     |       |       |     |     |       |         |                   |                   |       |       |       |       |       |       |       |       |       |
|            |             | m,m²   | dB(A) | dB  | dB(A) | dB(A) | dB  | dB  | dB(A) | dB      |                   |                   | dB(A) | dB(A) | dB(A) | dB(A) | dB(A) | dB(A) | dB(A) | dB(A) | dB(A) |
| Parking 28 | PLot        | 153.91 |       |     | 54.7  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 29 | PLot        | 154.25 |       |     | 54.7  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 30 | PLot        | 155.90 |       |     | 54.6  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 31 | PLot        | 33.49  |       |     | 54.8  | 70.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 53.4  | 65.0  | 57.5  | 62.0  | 62.1  | 62.5  | 59.8  | 53.6  | 40.8  |
| Parking 32 | PLot        | 142.69 |       |     | 54.5  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 33 | PLot        | 140.73 |       |     | 55.1  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 34 | PLot        | 107.20 |       |     | 55.7  | 76.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.4  | 71.0  | 63.5  | 68.0  | 68.1  | 68.5  | 65.8  | 59.6  | 46.8  |
| Parking 35 | PLot        | 79.71  |       |     | 55.0  | 74.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 57.3  | 68.9  | 61.4  | 65.9  | 66.0  | 66.4  | 63.7  | 57.5  | 44.7  |
| Parking 36 | PLot        | 142.66 |       |     | 55.0  | 76.5  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 59.9  | 71.5  | 64.0  | 68.5  | 68.6  | 69.0  | 66.3  | 60.1  | 47.3  |
| Parking 37 | PLot        | 133.33 |       |     | 55.8  | 77.0  | 0.0 | 0.0 |       | 0       | Convenience Store | Typical spectrum  | 60.3  | 71.9  | 64.4  | 68.9  | 69.0  | 69.4  | 66.7  | 60.5  | 47.7  |

**Appendix C:** 

Construction Input

| Activity              | L <sub>eq</sub> at 250 feet<br>dBA | L <sub>Max</sub> at 250 feet dBA |
|-----------------------|------------------------------------|----------------------------------|
| Grading               | 73                                 | 71                               |
| Building Construction | 70                                 | 72                               |
| Paving                | 69                                 | 73                               |

| Equipment Summary    | Reference (dBA)<br>50 ft Lmax |
|----------------------|-------------------------------|
| Rock Drills          | 96                            |
| Jack Hammers         | 82                            |
| Pneumatic Tools      | 85                            |
| Pavers               | 80                            |
| Dozers               | 85                            |
| Scrapers             | 87                            |
| Haul Trucks          | 88                            |
| Cranes               | 82                            |
| Portable Generators  | 80                            |
| Rollers              | 80                            |
| Tractors             | 80                            |
| Front-End Loaders    | 86                            |
| Hydraulic Excavators | 86                            |
| Graders              | 86                            |
| Air Compressors      | 86                            |
| Trucks               | 86                            |

# Grading

|               |                                    | Noise Level Calcula        | ation Prior to | Implementat         | ion of Noise A | ttenuation Re | equirements |           |          |            |
|---------------|------------------------------------|----------------------------|----------------|---------------------|----------------|---------------|-------------|-----------|----------|------------|
|               |                                    |                            |                |                     | Distance to    |               |             |           |          |            |
|               |                                    | Reference (dBA)            |                | Usage               | Receptor       | Ground        | Shielding   | Calculate | ed (dBA) |            |
| No.           | <b>Equipment Description</b>       | 50 ft Lmax                 | Quantity       | Factor <sup>1</sup> | (ft)           | Effect        | (dBA)       | Lmax      | Leq      | Energy     |
| 1             | Grader                             | 86                         | 1              | 40                  | 250            | 0.5           | 0           | 68.5      | 64.5     | 2848623.03 |
| 2             | Dozer                              | 85                         | 1              | 40                  | 250            | 0.5           | 0           | 67.5      | 63.5     | 2262741.7  |
| 3             | Excavator                          | 86                         | 2              | 40                  | 250            | 0.5           | 0           | 71.5      | 67.6     | 5697246.05 |
| 4             | Tractor/Backhoe                    | 80                         | 2              | 40                  | 250            | 0.5           | 0           | 65.5      | 61.6     | 1431083.51 |
| 5             | Scrapers                           | 87                         | 2              | 40                  | 250            | 0.5           | 0           | 72.5      | 68.6     | 7172407.83 |
| Source: MD    | Acoustics, August 2021.            |                            |                |                     | •              |               | Lmax*       | 71        | Leq      | 73         |
| I - Percentag | ge of time that a piece of equipme | nt is operating at full po | wer            |                     |                |               | Lw          | 107       | Lw       | 105        |

dBA – A-weighted Decibels Lmax- Maximum Level

Leq- Equivalent Level

| Leq- Equival | lent Level |                      |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|--------------|------------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|              |            |                      | No        | 1 dBA     | 2 dBA     | 3 dBA     | 4 dBA     | 5 dBA     | 6 dBA     | 7 dBA     | 8 dBA     | 9 dBA     | 10 dBA    | 11 dBA    | 12 dBA    | 13 dBA    | 14 dBA    | 15 dBA    |
|              |            |                      | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding |
| Feet         | Meters     | <b>Ground Effect</b> | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | LeqdBA    | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   |
| 50           | 15.2       | 0.5                  | 73        | 72        | 71        | 70        | 69        | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        |
| 60           | 18.3       | 0.5                  | 71        | 70        | 69        | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        |
| 70           | 21.3       | 0.5                  | 69        | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        |
| 80           | 24.4       | 0.5                  | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        |
| 90           | 27.4       | 0.5                  | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        |
| 100          | 30.5       | 0.5                  | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        |
| 110          | 33.5       | 0.5                  | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        |
| 120          | 36.6       | 0.5                  | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        |
| 130          | 39.6       | 0.5                  | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        |
| 140          | 42.7       | 0.5                  | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        |
| 150          | 45.7       | 0.5                  | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        |
| 160          | 48.8       | 0.5                  | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        |
| 170          | 51.8       | 0.5                  | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        |
| 180          | 54.9       | 0.5                  | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        |
| 190          | 57.9       | 0.5                  | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        |
| 200          | 61.0       | 0.5                  | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        |
| 210          | 64.0       | 0.5                  | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        |
| 220          | 67.1       | 0.5                  | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        |
| 230          | 70.1       | 0.5                  | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        |
| 240          | 73.1       | 0.5                  | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        |
| 250          | 76.2       | 0.5                  | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        |
| 260          | 79.2       | 0.5                  | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        |
| 270          | 82.3       | 0.5                  | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        |
| 280          | 85.3       | 0.5                  | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        |
| 290          | 88.4       | 0.5                  | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        |
| 300          | 91.4       | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        |
| 310          | 94.5       | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        |
| 320          | 97.5       | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        |
| 330          | 100.6      | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |
| 340          | 103.6      | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |
| 350          | 106.7      | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |
| 360          | 109.7      | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |
| 370          | 112.8      | 0.5                  |           | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |
| 370          | 112.8      | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |           |

# **Building Construction**

|               |                                                                                     | Noise Level Calcula | ation Prior to | Implementat         | ion of Noise A | ttenuation Re | equirements |           |          |            |  |
|---------------|-------------------------------------------------------------------------------------|---------------------|----------------|---------------------|----------------|---------------|-------------|-----------|----------|------------|--|
|               |                                                                                     |                     |                |                     | Distance to    |               |             |           |          |            |  |
|               |                                                                                     | Reference (dBA)     |                | Usage               | Receptor       | Ground        | Shielding   | Calculate | ed (dBA) |            |  |
| No.           | <b>Equipment Description</b>                                                        | 50 ft Lmax          | Quantity       | Factor <sup>1</sup> | (ft)           | <b>Effect</b> | (dBA)       | Lmax      | Leq      | Energy     |  |
| 1             | Cranes                                                                              | 82                  | 2              | 40                  | 250            | 0.5           | 0           | 67.5      | 63.6     | 2268114.51 |  |
| 2             | Forklift/Tractor                                                                    | 80                  | 5              | 40                  | 250            | 0.5           | 0           | 69.5      | 65.5     | 3577708.76 |  |
| 3             | Generator                                                                           | 80                  | 2              | 40                  | 250            | 0.5           | 0           | 65.5      | 61.6     | 1431083.51 |  |
| 4             | Tractor/Backhoe                                                                     | 80                  | 5              | 40                  | 250            | 0.5           | 0           | 69.5      | 65.5     | 3577708.76 |  |
|               |                                                                                     |                     |                |                     |                |               |             |           |          |            |  |
| Source: MD    | Acoustics, August 2021.                                                             |                     |                |                     |                |               | Lmax*       | 72        | Leq      | 70         |  |
| 1- Percentage | Percentage of time that a piece of equipment is operating at full power.  Lw 103 Lw |                     |                |                     |                |               |             |           |          |            |  |

dBA – A-weighted Decibels Lmax- Maximum Level Leg- Equivalent Level

| Leq- Equival | lent Level |                      |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |           |
|--------------|------------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|              |            |                      | No        | 1 dBA     | 2 dBA     | 3 dBA     | 4 dBA     | 5 dBA     | 6 dBA     | 7 dBA     | 8 dBA     | 9 dBA     | 10 dBA    | 11 dBA    | 12 dBA    | 13 dBA    | 14 dBA    | 15 dBA    |
|              |            |                      | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding |
| Feet         | Meters     | <b>Ground Effect</b> | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   | LeqdBA    | Leq dBA   | Leq dBA   | Leq dBA   | Leq dBA   |
| 50           | 15.2       | 0.5                  | 70        | 69        | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        |
| 60           | 18.3       | 0.5                  | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        |
| 70           | 21.3       | 0.5                  | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        |
| 80           | 24.4       | 0.5                  | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        |
| 90           | 27.4       | 0.5                  | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        |
| 100          | 30.5       | 0.5                  | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        |
| 110          | 33.5       | 0.5                  | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        |
| 120          | 36.6       | 0.5                  | 61        | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        |
| 130          | 39.6       | 0.5                  | 60        | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        |
| 140          | 42.7       | 0.5                  | 59        | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        |
| 150          | 45.7       | 0.5                  | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        |
| 160          | 48.8       | 0.5                  | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        |
| 170          | 51.8       | 0.5                  | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        |
| 180          | 54.9       | 0.5                  | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        |
| 190          | 57.9       | 0.5                  | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        |
| 200          | 61.0       | 0.5                  | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        |
| 210          | 64.0       | 0.5                  | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        |
| 220          | 67.1       | 0.5                  | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        |
| 230          | 70.1       | 0.5                  | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        |
| 240          | 73.1       | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        |
| 250          | 76.2       | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        |
| 260          | 79.2       | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |
| 270          | 82.3       | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |
| 280          | 85.3       | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        |
| 290          | 88.4       | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |
| 300          | 91.4       | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |
| 310          | 94.5       | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |
| 320          |            |                      |           | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |           |
| 330          | 100.6      | 0.5                  | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        | 35        |
| 340          |            |                      | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        |           |
| 350          | 106.7      | 0.5                  |           | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        | 35        |           |
| 360          | 109.7      | 0.5                  | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        | 35        |           |
| 370          |            |                      | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39        | 38        | 37        | 36        | 35        | 34        |

<sup>1-</sup> Percentage of time that a piece of equipment is operating at full power.

**Paving** 

| Noise Level Calculation Prior to Implementation of Noise Attenuation Requirements |                                    |                             |          |                     |             |        |           |          |          |            |
|-----------------------------------------------------------------------------------|------------------------------------|-----------------------------|----------|---------------------|-------------|--------|-----------|----------|----------|------------|
|                                                                                   |                                    |                             |          |                     | Distance to |        |           |          |          |            |
|                                                                                   |                                    | Reference (dBA)             |          | Usage               | Receptor    | Ground | Shielding | Calculat | ed (dBA) |            |
| No.                                                                               | <b>Equipment Description</b>       | 50 ft Lmax                  | Quantity | Factor <sup>1</sup> | (ft)        | Effect | (dBA)     | Lmax     | Leq      | Energy     |
| 1                                                                                 | Pavers                             | 86                          | 2        | 40                  | 250         | 0.5    | 0         | 71.5     | 67.6     | 5697246.05 |
| 2                                                                                 | Rollers                            | 80                          | 2        | 40                  | 250         | 0.5    | 0         | 65.5     | 61.6     | 1431083.51 |
| 3                                                                                 | Paving Equipment                   | 80                          | 2        | 40                  | 250         | 0.5    | 0         | 65.5     | 61.6     | 1431083.51 |
|                                                                                   |                                    |                             |          |                     |             |        |           |          |          |            |
|                                                                                   |                                    |                             |          |                     |             |        |           |          |          |            |
| Source: MD Acoustics, August 2021. Lmax* 73 Leq                                   |                                    |                             |          |                     |             |        |           |          |          | 69         |
| 1- Percentag                                                                      | ge of time that a piece of equipme | nt is operating at full poy | wer.     |                     |             |        | Lw        | 104      | Lw       | 101        |

dBA – A-weighted Decibels Lmax- Maximum Level

Leq- Equivalent Level

| Leq- Equiva | lent Lever     |                      | No        | 1 dBA     | 2 dBA     | 3 dBA     | 4 dBA     | 5 dBA     | 6 dBA     | 7 dBA     | 8 dBA     | 9 dBA      | 10 dBA    | 11 dBA    | 12 dBA    | 13 dBA    | 14 dBA    | 15 dBA    |
|-------------|----------------|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
|             |                |                      | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding  | Shielding | Shielding | Shielding | Shielding | Shielding | Shielding |
| Feet        | Meters         | <b>Ground Effect</b> | Leq dBA   |           | Leq dBA    | Leq dBA   | LeqdBA    | Leq dBA   | Leq dBA   |           | Leq dBA   |
| 50          | 15.2           |                      |           | 68        | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60         | 59        | 58        | 57        | 56        | 55        |           |
| 60          | 18.3           | 0.5                  | 67        | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58         | 57        | 56        |           | 54        | 53        |           |
| 70          | 21.3           | 0.5                  | 66        | 65        | 64        | 63        | 62        | 61        | 60        | 59        | 58        | 57         | 56        | 55        | 54        | 53        | 52        |           |
| 80          | 24.4           | 0.5                  |           | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56        | 55         | 54        | 53        | 52        | 51        | 50        |           |
| 100         | 27.4           | 0.5                  | 63        | 62        | 61        | 60        | 59        | 58        | 57        | 56<br>55  | 55        | 54         | 53        | 52        | 51        | 50        | 49        |           |
| 100         | 30.5           | 0.5                  |           | 61        | 60<br>50  | 59        | 58<br>57  | 57<br>56  | 56<br>55  | 55<br>54  | 54<br>53  | 53         | 52        | 51<br>50  | 50        | 49        | 48<br>47  | 47        |
| 120         | 33.5<br>36.6   | 0.5<br>0.5           | 61<br>60  | 60<br>59  | 59<br>58  | 58<br>57  | 56        | 56<br>55  | 55<br>54  | 54<br>53  | 52        | 52<br>51   | 51<br>50  | 49        | 49        | 40        | 47        | 46        |
| 130         | 39.6           | 0.5                  |           | 58        | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50         | 30<br>40  | 48        | 40        | 47        | 45        | 43        |
| 140         | 42.7           | 0.5                  |           | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | <i>1</i> 0 | 49        | 46        | 47        | 40        | 43<br>44  | 43        |
| 150         | 45.7           | 0.5                  |           | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48         | 47        | 46        | 45        | 43        | 43        | 42        |
| 160         | 48.8           | 0.5                  | 57        | 56        | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48         | 47        | 46        | 45        | 44        | 43        | 42        |
| 170         | 51.8           | 0.5                  |           | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47         | 46        | 45        | 44        | 43        | 42        | 41        |
| 180         | 54.9           |                      | 55        | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46         | 45        | 44        | 43        | 42        | 41        | 40        |
| 190         | 57.9           | 0.5                  |           | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46         | 45        | 44        | 43        | 42        | 41        | 40        |
| 200         | 61.0           | 0.5                  | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45         | 44        | 43        | 42        | 41        | 40        | 39        |
| 210         | 64.0           | 0.5                  | 54        | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45         | 44        | 43        | 42        | 41        | 40        | 39        |
| 220         | 67.1           | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44         | 43        | 42        | 41        | 40        | 39        | 38        |
| 230         | 70.1           | 0.5                  | 53        | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44         | 43        | 42        | 41        | 40        | 39        | 38        |
| 240         | 73.1           | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43         | 42        | 41        | 40        | 39        | 38        | 37        |
| 250         | 76.2           | 0.5                  | 52        | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43         | 42        | 41        | 40        | 39        | 38        |           |
| 260         | 79.2           | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42         | 41        | 40        | 39        | 38        | 37        |           |
| 270         | 82.3           | 0.5                  |           | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42         | 41        | 40        | 39        | 38        | 37        |           |
| 280         | 85.3           | 0.5                  | 51        | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42         | 41        | 40        | 39        | 38        | 37        |           |
| 290         | 88.4           | 0.5                  | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41         | 40        | 39        | 38        | 37        | 36        |           |
| 300         | 91.4           | 0.5                  | 50        | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41         | 40        | 39        | 38        | 37        | 36        | 35        |
| 310         |                |                      |           | 49        | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41         | 40        | 39        | 38        | 37        | 36        |           |
| 320         | 97.5           |                      |           | 48        | 47        | 46        | 45        | 44        | 43        | 42        |           | 40         | 39        | 38        |           |           |           |           |
| 330         |                |                      |           |           | 47        | 46        |           | 44        | 43        | 42        |           |            |           | 38        |           |           |           |           |
| 340         |                |                      |           | 48        | 47        | 46        | 45        | 44        | 43        | 42        |           | 40         | 39        | 38        |           |           |           |           |
| 350<br>360  | 106.7          | 0.5                  |           | 47<br>47  | 46<br>46  | 45        | 44        | 43        | 42        | 41        | 40        | 39         |           | 37        |           |           |           |           |
| 360<br>370  | 109.7<br>112.8 | 0.5<br>0.5           |           | 47<br>47  | 46<br>46  | 45<br>45  | 44        | 43        | 42        | 41<br>41  | 40<br>40  | 39<br>39   | 38<br>38  | 37<br>37  | 36<br>36  | 35<br>35  | 34<br>34  |           |
| 3/0         | 112.8          | 0.5                  | 48        | 47        | 46        | 45        | 44        | 43        | 42        | 41        | 40        | 39         | 38        | 37        | 36        | 35        | 34        | 33        |

### **VIBRATION LEVEL IMPACT**

Project: Chula Vista Self Storage Date: 8/10/21

Source: Large Bulldozer
Scenario: Unmitigated
Location: Project Site

Address:

PPV = PPVref(25/D)^n (in/sec)

### DATA INPUT

| Equipment =<br>Type                                                                                                          | 2     | Large Bulldozer INPUT SECTION IN BLUE         |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------|--|--|--|--|--|
| PPVref =                                                                                                                     | 0.089 | Reference PPV (in/sec) at 25 ft.              |  |  |  |  |  |
| D =                                                                                                                          | 24.00 | Distance from Equipment to Receiver (ft)      |  |  |  |  |  |
| n =                                                                                                                          | 1.10  | Vibration attenuation rate through the ground |  |  |  |  |  |
| Note: Based on reference equations from Vibration Guidance Manual, California Department of Transportation, 2006, pgs 38-43. |       |                                               |  |  |  |  |  |

#### DATA OUT RESULTS

| PPV = | 0.002 | IN/SEC   | OUTPUT IN RED |  |
|-------|-------|----------|---------------|--|
| PPV – | 0.055 | IIV/ SEC | OUTPOT IN RED |  |

Appendix D: Traffic Noise Calculations

### FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

PROJECT: Nirvana Self Storage JOB #: 0623-2021-04
ROADWAY: Nirvana to Heritage Rd DATE: 24-Jan-23
LOCATION: Existing ENGINEER: R.Pearson

# **NOISE INPUT DATA**

|                        | ROADWAY CONDITIONS | RECEIVER INPUT DATA              |
|------------------------|--------------------|----------------------------------|
|                        |                    |                                  |
| ADT =                  | 14,260             | RECEIVER DISTANCE = 50           |
| SPEED =                | 50                 | DIST C/L TO WALL = 0             |
| PK HR % =              | 10                 | RECEIVER HEIGHT = 5.0            |
| NEAR LANE/FAR LANE DIS | ST 0               | WALL DISTANCE FROM RECEIVER = 50 |
| ROAD ELEVATION =       | 0.0                | PAD ELEVATION = 0.5              |
| GRADE =                | 1.0 %              | ROADWAY VIEW: LF ANGLE= -90      |
| PK HR VOL =            | 1,426              | RT ANGLE= 90                     |
|                        |                    | DF ANGLE= 180                    |

AUTOMOBILES = 15
MEDIUM TRUCKS = 15 (10 = HARD SITE, 15 = SOFT SITE)
HEAVY TRUCKS = 15
HEAVY TRUCKS = 15
HOURD HEAVY TRUCKS = 15
HOURD HEAVY TRUCKS = 15
HOURD HEAVY TRUCKS = 15
HOURD HEAVY TRUCKS = 15
HOURD HEAVY TRUCKS = 15
HOURD HEAVY TRUCKS = 0.0
HOURD HEAVY TRUCKS = 0 (0 = WALL, 1 = BERM)

## VEHICLE MIX DATA

| <b>VEHICLE TYPE</b>  | DAY   | EVENING | NIGHT | DAILY  |
|----------------------|-------|---------|-------|--------|
| <b>AUTOMOBILES</b>   | 0.775 | 0.129   | 0.096 | 0.9742 |
| <b>MEDIUM TRUCKS</b> | 0.848 | 0.049   | 0.103 | 0.0184 |
| HEAVY TRUCKS         | 0.865 | 0.027   | 0.108 | 0.0074 |

# MISC. VEHICLE INFO

| VEHICLE TYPE  | HEIGHT | <b>SLE DISTANCE</b> | <b>GRADE ADJUSTMENT</b> |
|---------------|--------|---------------------|-------------------------|
| AUTOMOBILES   | 2.0    | 50.12               |                         |
| MEDIUM TRUCKS | 4.0    | 50.02               |                         |
| HEAVY TRUCKS  | 8.0    | 50.06               | 0.00                    |

# **NOISE OUTPUT DATA**

## NOISE IMPACTS (WITHOUT TOPO OR BARRIER SHIELDING)

| VEHICLE TYPE       | PK HR LEQ | DAY LEQ | <b>EVEN LEQ</b> | NIGHT LEQ | LDN  | CNEL |
|--------------------|-----------|---------|-----------------|-----------|------|------|
| AUTOMOBILES        | 68.9      | 67.0    | 65.3            | 59.2      | 67.8 | 68.4 |
| MEDIUM TRUCKS      | 59.4      | 57.9    | 51.5            | 50.0      | 58.4 | 58.7 |
| HEAVY TRUCKS       | 59.6      | 58.2    | 49.2            | 50.4      | 58.8 | 58.9 |
|                    |           |         |                 |           |      |      |
| NOISE LEVELS (dBA) | 69.8      | 68.0    | 65.5            | 60.2      | 68.8 | 69.3 |

## NOISE IMPACTS (WITH TOPO AND BARRIER SHIELDING)

| VEHICLE TYPE        | PK HR LEQ | DAY LEQ | <b>EVEN LEQ</b> | <b>NIGHT LEQ</b> | LDN  | CNEL |
|---------------------|-----------|---------|-----------------|------------------|------|------|
| AUTOMOBILES         | 68.9      | 67.0    | 65.3            | 59.2             | 67.8 | 68.4 |
| MEDIUM TRUCKS       | 59.4      | 57.9    | 51.5            | 50.0             | 58.4 | 58.7 |
| <b>HEAVY TRUCKS</b> | 59.6      | 58.2    | 49.2            | 50.4             | 58.8 | 58.9 |
|                     |           |         |                 |                  |      |      |
| NOISE LEVELS (dBA)  | 69.8      | 68.0    | 65.5            | 60.2             | 68.8 | 69.3 |

| NOISE CONTOUR (FT)                       |    |    |     |     |  |  |  |
|------------------------------------------|----|----|-----|-----|--|--|--|
| NOISE LEVELS 70 dBA 65 dBA 60 dBA 55 dBA |    |    |     |     |  |  |  |
| CNEL                                     | 45 | 97 | 208 | 449 |  |  |  |
| LDN                                      | 41 | 89 | 192 | 414 |  |  |  |

### FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

PROJECT: Nirvana Self Storage JOB #: 0623-2021-04
ROADWAY: Nirvana to Heritage Rd DATE: 24-Jan-23
LOCATION: E+P ENGINEER: R.Pearson

# **NOISE INPUT DATA**

|                      | ROADWAY CONDITIONS | RECEIVER INPUT DATA              |
|----------------------|--------------------|----------------------------------|
|                      |                    |                                  |
| ADT =                | 14,413             | RECEIVER DISTANCE = 50           |
| SPEED =              | 50                 | DIST C/L TO WALL = 0             |
| PK HR % =            | 10                 | RECEIVER HEIGHT = 5.0            |
| NEAR LANE/FAR LANE D | IST 0              | WALL DISTANCE FROM RECEIVER = 50 |
| ROAD ELEVATION =     | 0.0                | PAD ELEVATION = 0.5              |
| GRADE =              | 1.0 %              | ROADWAY VIEW: LF ANGLE= -90      |
| PK HR VOL =          | 1,441              | RT ANGLE= 90                     |
|                      |                    | DF ANGLE= 180                    |

AUTOMOBILES = 15
MEDIUM TRUCKS = 15 (10 = HARD SITE, 15 = SOFT SITE)
HEAVY TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

## VEHICLE MIX DATA MISC. VEHICLE INFO

| VEHICLE TYPE  | DAY   | EVENING | NIGHT | DAILY  |
|---------------|-------|---------|-------|--------|
| AUTOMOBILES   | 0.775 | 0.129   | 0.096 | 0.9742 |
| MEDIUM TRUCKS | 0.848 | 0.049   | 0.103 | 0.0184 |
| HEAVY TRUCKS  | 0.865 | 0.027   | 0.108 | 0.0074 |

| VEHICLE TYPE  | HEIGHT | <b>SLE DISTANCE</b> | <b>GRADE ADJUSTMENT</b> |
|---------------|--------|---------------------|-------------------------|
| AUTOMOBILES   | 2.0    | 50.12               |                         |
| MEDIUM TRUCKS | 4.0    | 50.02               | -                       |
| HEAVY TRUCKS  | 8.0    | 50.06               | 0.00                    |

# **NOISE OUTPUT DATA**

## NOISE IMPACTS (WITHOUT TOPO OR BARRIER SHIELDING)

| VEHICLE TYPE       | PK HR LEQ | DAY LEQ | <b>EVEN LEQ</b> | NIGHT LEQ | LDN  | CNEL |
|--------------------|-----------|---------|-----------------|-----------|------|------|
| AUTOMOBILES        | 69.0      | 67.1    | 65.3            | 59.3      | 67.9 | 68.5 |
| MEDIUM TRUCKS      | 59.4      | 57.9    | 51.6            | 50.0      | 58.5 | 58.7 |
| HEAVY TRUCKS       | 59.7      | 58.3    | 49.2            | 50.5      | 58.8 | 59.0 |
|                    |           |         |                 |           |      |      |
| NOISE LEVELS (dBA) | 69.9      | 68.1    | 65.6            | 60.2      | 68.8 | 69.3 |

## NOISE IMPACTS (WITH TOPO AND BARRIER SHIELDING)

| VEHICLE TYPE       | PK HR LEQ | DAY LEQ | <b>EVEN LEQ</b> | NIGHT LEQ | LDN  | CNEL |
|--------------------|-----------|---------|-----------------|-----------|------|------|
| AUTOMOBILES        | 69.0      | 67.1    | 65.3            | 59.3      | 67.9 | 68.5 |
| MEDIUM TRUCKS      | 59.4      | 57.9    | 51.6            | 50.0      | 58.5 | 58.7 |
| HEAVY TRUCKS       | 59.7      | 58.3    | 49.2            | 50.5      | 58.8 | 59.0 |
|                    |           |         |                 |           |      |      |
| NOISE LEVELS (dBA) | 69.9      | 68.1    | 65.6            | 60.2      | 68.8 | 69.3 |

| NOISE CONTOUR (FT)                       |    |    |     |     |  |  |  |
|------------------------------------------|----|----|-----|-----|--|--|--|
| NOISE LEVELS 70 dBA 65 dBA 60 dBA 55 dBA |    |    |     |     |  |  |  |
| CNEL                                     | 45 | 97 | 210 | 452 |  |  |  |
| LDN                                      | 42 | 90 | 193 | 417 |  |  |  |

### FHWA-RD-77-108 HIGHWAY NOISE PREDICTION MODEL

PROJECT: Nirvana Self Storage JOB #: 0623-2021-04
ROADWAY: Nirvana to Heritage Rd DATE: 24-Jan-23
LOCATION: E+P+Cumulative ENGINEER: R.Pearson

# **NOISE INPUT DATA**

|                         | ROADWAY CONDITIONS | RECEIVER INPUT DATA              |
|-------------------------|--------------------|----------------------------------|
|                         |                    |                                  |
|                         |                    |                                  |
| ADT =                   | 16,719             | RECEIVER DISTANCE = 50           |
| SPEED =                 | 50                 | DIST C/L TO WALL = 0             |
| PK HR % =               | 10                 | RECEIVER HEIGHT = 5.0            |
| NEAR LANE/FAR LANE DIST | T 0                | WALL DISTANCE FROM RECEIVER = 50 |
| ROAD ELEVATION =        | 0.0                | PAD ELEVATION = 0.5              |
| GRADE =                 | 1.0 %              | ROADWAY VIEW: LF ANGLE= -90      |
| PK HR VOL =             | 1,672              | RT ANGLE= 90                     |
|                         |                    | DF ANGLE= 180                    |

AUTOMOBILES = 15
MEDIUM TRUCKS = 15 (10 = HARD SITE, 15 = SOFT SITE)
HEAVY TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

MEDIUM TRUCKS = 15

## VEHICLE MIX DATA MISC. VEHICLE INFO

| VEHICLE TYPE  | DAY   | <b>EVENING</b> | NIGHT | DAILY  |
|---------------|-------|----------------|-------|--------|
| AUTOMOBILES   | 0.775 | 0.129          | 0.096 | 0.9742 |
| MEDIUM TRUCKS | 0.848 | 0.049          | 0.103 | 0.0184 |
| HEAVY TRUCKS  | 0.865 | 0.027          | 0.108 | 0.0074 |

| VEHICLE TYPE  | HEIGHT | <b>SLE DISTANCE</b> | <b>GRADE ADJUSTMENT</b> |
|---------------|--------|---------------------|-------------------------|
| AUTOMOBILES   | 2.0    | 50.12               |                         |
| MEDIUM TRUCKS | 4.0    | 50.02               |                         |
| HEAVY TRUCKS  | 8.0    | 50.06               | 0.00                    |

# **NOISE OUTPUT DATA**

## NOISE IMPACTS (WITHOUT TOPO OR BARRIER SHIELDING)

| VEHICLE TYPE       | PK HR LEQ | DAY LEQ | <b>EVEN LEQ</b> | NIGHT LEQ | LDN  | CNEL |
|--------------------|-----------|---------|-----------------|-----------|------|------|
| AUTOMOBILES        | 69.6      | 67.7    | 66.0            | 59.9      | 68.5 | 69.1 |
| MEDIUM TRUCKS      | 60.1      | 58.6    | 52.2            | 50.7      | 59.1 | 59.4 |
| HEAVY TRUCKS       | 60.3      | 58.9    | 49.9            | 51.1      | 59.5 | 59.6 |
|                    |           |         |                 |           |      |      |
| NOISE LEVELS (dBA) | 70.5      | 68.7    | 66.2            | 60.9      | 69.5 | 70.0 |

## NOISE IMPACTS (WITH TOPO AND BARRIER SHIELDING)

| VEHICLE TYPE       | PK HR LEQ | DAY LEQ | <b>EVEN LEQ</b> | <b>NIGHT LEQ</b> | LDN  | CNEL |
|--------------------|-----------|---------|-----------------|------------------|------|------|
| AUTOMOBILES        | 69.6      | 67.7    | 66.0            | 59.9             | 68.5 | 69.1 |
| MEDIUM TRUCKS      | 60.1      | 58.6    | 52.2            | 50.7             | 59.1 | 59.4 |
| HEAVY TRUCKS       | 60.3      | 58.9    | 49.9            | 51.1             | 59.5 | 59.6 |
|                    |           |         |                 |                  |      |      |
| NOISE LEVELS (dBA) | 70.5      | 68.7    | 66.2            | 60.9             | 69.5 | 70.0 |

| NOISE CONTOUR (FT)                       |    |     |     |     |  |  |  |
|------------------------------------------|----|-----|-----|-----|--|--|--|
| NOISE LEVELS 70 dBA 65 dBA 60 dBA 55 dBA |    |     |     |     |  |  |  |
| CNEL                                     | 50 | 107 | 232 | 499 |  |  |  |
| LDN                                      | 46 | 99  | 214 | 460 |  |  |  |

Appendix E: Cumulative Project Analysis

## **Nirvana Cumulative Project List**

- 1. **Project Site** 821 Main Street Nirvana Business Park located 5,000 feet to the east Design Review DR21-0024 for the review of the site plan and the three proposed warehouse buildings, and the self-storage building. Building 1 is proposed as 59,044 square feet, Building 2 is proposed as 44,592 square feet, Building 3 is proposed as three-stories 140,802 square feet for self-storage, and building 4 is proposed as 50,030 square feet. A Tentative Parcel Map TPM21-0003 is also proposed to subdivide the 13.31-acre property into four (4) parcels, one for each of the buildings. The four parcels' public right-of-way is provided via a private access easement to Nirvana Avenue.
- 1810 Main Court In-N-Out Restaurant.
- 1891 Nirvana Avenue Cannabis Dispensary Conditional Use Permit to allow the operation of a storefront retail cannabis business within an existing 3,221 sq. ft. industrial building on a 1.05-acre site located within the General Industrial (I) zone.
- 4. NWC Heritage/Santa Maya Escaya Industrial Design Review Permit to allow the construction of three industrial shell buildings. The site is in the Otay Ranch Village 3 Sectional Planning Area (SPA) and has a zoning designation of Industrial (I) and a General Plan designation of Limited Industrial (IL).
- 1855 Maxwell Road CV School District Vehicle Repair Shop Design Review to construct a proposed one-story, 15,500 sq. ft. building for vehicle repair of school buses and office space for the Chula Vista Elementary School District.
- 6. 517 Shinohara Shinohara Business Center DR21-0032 To develop a 178,156 square-foot single-story industrial building for warehousing and office uses on a vacant 9.72-acre parcel. Hours of operation are proposed as a 24-hour operation, seven days a week, with 3 varying shifts. The subject site is zoned ILP (Limited Industrial Precise Plan) and a General Plan designation of IL (Limited Industrial). The project will include one entitlement for a Design Review DR21-0032 and a Mitigated Negative Declaration with Mitigation Measures and Reporting Program IS21-0006, subject to review and approval by the Planning Commission of the City of Chula Vista.
- 7. 750 Main Street Maxwell @ Main Development of 8.21 gross-acre site within the Auto Park East Specific Plan. The project includes a Design Review, a Tentative Tract Map (seven lots), and a Notice of Exemption (under the Auto Park East Specific Plan Mitigated Negative Declaration. The site is General Plan designated IL – Limited Industrial and Zoned (ILP) Limited Industrial and is located within the Auto Park East Specific Plan. The seven commercial buildings proposed are as follows:

- Building A a 2,551-square-foot drive-through restaurant
- Building B a 2,164-square-foot drive-through restaurant
- Building C a 4,446-square-foot retail car wash
- Building D a 2,400-square-foot drive-through restaurant
- Building E a gasoline station with a 4,620-square-foot convenience store (with a type 20 off-site beer and wine license) and a 4,596-square-foot canopy covering eight dispensers,
- Building F

   a 2,221-square-foot drive-through restaurant
- Building G a 16,89- square-foot collision (auto-repair) facility
- 8. 1875 Auto Park Avenue Mossy Chrysler Dodge Ram & Jeep Chula Vista Showroom & Sales Office DR20-0025 Design Review for a two-story, 54,400 square foot building and a detached 1,200 square foot carwash for a Mossy automobile dealership with automotive repair services and associated carwash on approximately 6.51 acres within the Auto Park North Specific Plan.
- 670 Main Street BMW DR17-0031 Design Review consideration of a twostory, 37,600 sq. ft. building for a BMW auto dealership with auto repair/service and associated carwash on approximately 4.2 acres.
- 10.1880 Auto Park Place Automotive Repair DR19- 0025 Design Review consideration of a 27, 821 square-foot building with a 4, 185 square-foot covered entryway for supportive uses to include a vehicle collision and automotive repair facility.