Phase II Environmental Site Assessment

Assessor's Parcel Numbers 644-050-13 and -14 and the Western Portion of 644-050-08 821 Main Street, Chula Vista, CA 91911

Presented to:

VWP-OP Nirvana Owner, LLC 2390 East Camelback Road Ste. 305 Phoenix, Arizona 85016

SCS ENGINEERS

01221156.00 | December 7, 2021

8799 Balboa Avenue, Suite 290 San Diego, CA 92123 858-571-5500

December 7, 2021 Number: 01221156.00

Mr. Steven Schwarz VWP-OP Nirvana Owner, LLC 2390 East Camelback Road Ste. 305 Phoenix, AZ 85016

RE: Phase II Environmental Site Assessment

Site: Assessor's Parcel Numbers (APNs) 644-050-13 and -14 and the Western Portion of 644-050-08 821 Main Street, Chula Vista, California 91911

Dear Mr. Schwarz:

SCS Engineers (SCS) is pleased to present this report (Report) of the soil and soil vapor sampling and human health risk screening (Phase II Environmental Site Assessment [Phase II ESA]) of the above-described Site that was conducted in order to evaluate the Site's current environmental conditions.

The work described in this Report was performed by SCS in general accordance with Exhibit 00 to the Assignment and Assumption of Contracts (Contract) between SCS and VWP-OP Nirvana Owner, LLC (Client), fully executed on June 22, 2021, and Scope of Services Change Number 3, fully executed on November 3, 2021. SCS enjoyed working with you on this project. Providing economical environmental solutions to meet your needs is more than our goal—it is our mission and the measure of our success. If we may assist you in any way, now or in the future, please call our office at (858) 571-5500.

Sincerely,

allingten

Allison O'Neal Staff Professional SCS ENGINEERS

Luke Montague, MESM, PG 8071 Vice President SCS ENGINEERS

Table of Contents

Sect	tion Pa	ge
1	Background	1
2	Objectives	1
3	Phase II ESA	2
	Preparation for Fieldwork	2
	Preparation of Health and Safety Plan	2
	Utility Search and Markout	2
	Field Activities	2
	Soil Vapor Sampling and Analysis	2
	Soil Sampling and Analysis	3
	Soil Screening Regulatory Criteria for CoC-Bearing Soil	4
	Health Risk-Based Mitigation Criteria	5
	Waste-Based Mitigation Criteria	5
4	Findings	6
	Topography, Geology, Hydrogeology, and Water Quality Survey	6
	Topography	6
	Geology	7
	Hydrogeology	7
	Water Quality Survey	7
	Laboratory Analytical Results and Screening	8
	Soil Vapor Sample Analytical Results	8
	VOCs	8
	VOCs in Soil Vapor	8
	Vapor Intrusion Risk Screening (VIRS)	9
	Approach	9
	VIRS Results	9
	Soil Sample Analytical Results	10
	Lead and Other Metals	10
	Comparison of Metals Concentrations to Waste-Based Mitigation Criteria (i.e., for Soil Export)	11
	Comparison of Metals Concentrations to Risk-Based Mitigation Criteria (i.e.,	
	for Soil that Remains on-Site)	12
	Total Petroleum Hydrocarbons (TPH)	12
	Comparison of TPH Concentrations to Waste-Based Mitigation Criteria (i.e., for Soil Export)	13
	Comparison of TPH Concentrations to Risk-Based Mitigation Criteria (i.e., for Soil that Remains on-Site)	13
	Volatile Organic Compounds (VOCs)	13
	Polycyclic Aromatic Hydrocarbons (PAHs)	14
	Comparison of PAH Concentrations to Waste-Based Mitigation Criteria (i.e., for Soil Export)	
	Comparison of PAH Concentrations to Risk-Based Mitigation Criteria (i.e., for	- •
	Soil that Remains on-Site)	15

5	Conclusions	15
	Soil Investigation	
6	Recommendations	
	Soil Vapor Investigation	. 17
	Soil Investigation	. 17
7	Report Usage and Future Site Conditions	17
7	Likelihood Statements	18
8	Special Contractual Conditions Between User and Environmental Professional	18

Tables

- 2 Soil Sample Analytical Results for TPH, VOCs, and PAHs
- 3 Soil Sample Analytical Results for Metals

Figures

- 1 Four-Way Site Location Map
- 2 Site Map with Soil Vapor Analytical Results
- 3 Site Map with Soil Sample Analytical Results

Appendix

A Laboratory Analytical Reports

1 BACKGROUND

SCS Engineers (SCS) understands that 821 Main Street consists of two full parcels of land (APNs 644-050-13 & -14)and the western portion of a third parcel of land (APN 644-050-08) totaling approximately 17.11 acres of land in Chula Vista, California (Site) (Figure 1). The Site consists of a vacant hillside that is bordered by Main Street to the south, and several industrial properties to the east and upgradient of the Site, including a general contractor yard and vehicle storage and salvage lots. The Client is proposing to purchase the Site for development into an industrial land use.

SCS completed a report titled *Phase I Environmental Site Assessment* for the Site, dated September 23, 2021 (Phase I ESA). Although the Phase I ESA did not reveal evidence of recognized environmental conditions, after discussions with the Client and the Client's investor, the Client is requesting subsurface assessment activities for the following environmental concerns that were identified in the Phase I ESA:

- On-Site drainage channels and adjacent upgradient industrial properties two drainage channels transect the central and western portions of the Site that convey surface water from upgradient industrial properties, and portions of these drainage channels are unlined (Figures 2 and 3). The central portion of the north adjacent property at 800 to 880 Energy Way, identified as LKQ Pick Your Part that serves as an automobile maintenance/storage yard (former wrecking yard), was interpreted to drain into the central drainage system that transects the Site. The western drainage channel adjacent to the northwest tenant, FJ Willert Contracting at 1869 Nirvana Way, was obscured due to heavy vegetation.
- Totes adjacent to the Site with unidentified contents several totes with unidentified dark colored liquid and solid contents, with grassy vegetation growing from within the totes, were observed adjacent to the northern property line toward the eastern edge of the Site (Figures 2 and 3) at the time of the Phase I ESA (note that these totes were removed from the adjacent northern property at the time that subsurface assessment activities were conducted by SCS on November 11, 2021). These totes are believed to be derived from the adjacent LKQ Pick Your Part facility at 800 to 880 Energy Way.

Based on the findings presented in the Phase I ESA, SCS previously collected three representative surficial soil samples from sediments within the on-Site drainage channels on July 13, 2021, and analyzed the samples for constituents of concern (CoCs) including total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), and Title 22 metals. The results of the sampling indicated detectable levels of TPH that were below health risk-based screening levels, and were transmitted to the Client within an email submittal.

Based on a request from the Client's investor and conversations with the Client, SCS has conducted the following scope of services consisting of additional shallow soil sampling as well as soil vapor sampling to additionally assess for the potential environmental concerns that were identified in the Phase I ESA associated with the drainage channels and adjacent upgradient industrial properties and totes adjacent to the Site with unidentified contents.

2 OBJECTIVES

The objectives of the scope of services were to:

- Assess the possible presence and concentrations of CoCs (i.e., petroleum hydrocarbons, polycyclic aromatic hydrocarbons [PAHs], VOCs, and Title 22 metals) within representative locations within the on-Site drainage channels, in connection with possible impacts from the northern adjacent industrial properties.
- Assess the possible presence and concentrations of VOCs in the shallow soil vapor beneath the Site in connection with possible releases from the northern adjacent industrial properties that may have impacted the Site.
- Assess the likelihood that Significant¹ human health risk exists at the Site as a result of vapor phase migration of VOCs.

3 PHASE II ESA

PREPARATION FOR FIELDWORK

Preparation of Health and Safety Plan

A health and safety plan for work conducted at the Site and workers within the "exclusion zone" is required pursuant to the regulations found in 29 Code of Federal Regulations (CFR) Part 1910.120 and California Code of Regulations (CCR), Title 8, Section 5192. Therefore, a health and safety plan was prepared for the proposed work scope, which outlined the potential chemical and physical hazards that may have been encountered during drilling and sampling activities. The appropriate personal protective equipment and emergency response procedures for the anticipated Site-specific chemical and physical hazards were detailed in this plan. SCS and contracted personnel involved with the proposed field work were required to read and sign this document in order to encourage proper health and safety practices.

Utility Search and Markout

SCS notified Underground Service Alert on November 4, 2021, as required by state law, prior to drilling and sampling activities and was issued ticket number B213080820. In addition, a private utility locator, Subsurface Alert, was subcontracted to clear the proposed boring locations for possible subsurface utility conflicts. These procedures were designed to minimize the likelihood of drilling into a subsurface utility.

FIELD ACTIVITIES

Soil Vapor Sampling and Analysis

On November 11, 2021, SCS oversaw the drilling and installation of three soil vapor probes (SV1 through SV3) to assess the possible presence and concentrations of VOCs in the soil vapor in connection with possible subsurface impacts from the adjacent upgradient industrial facilities. The following table describes the proposed soil vapor sampling locations and depth. Locations of soil vapor samples are included in Figure 2.

¹ For the purposes of this assessment, significant is defined as greater than one in 1,000,000 excess lifetime cancer risk or a hazard index of greater than 1.

Vapor Boring ID	Location	Sample Depth (feet bgs)	Analysis
SV1	Northwest corner of the Site toward the top of the western drainage channel, to assess for possible impacts from the adjacent FJ Willert Contracting at 1869 Nirvana Way	4	1 VOC
SV2	Toward the center of the northern property line at the Site toward the top of the central drainage channel, to assess for possible impacts from the adjacent LKQ Pick Your Part facility at 800 to 880 Energy Way	2	1 VOC
SV3, SV3-3 RepNortheast corner of the Site adjacent to unidentified totes, to assess for possible impacts from the totes and the adjacent LKQ Pick Your Part facility at 800 to 880 Energy Way		3	2 VOCs

Note:

bgs: below ground surface.

The soil vapor sample borings SV1 through SV3 were advanced with an electric rotohammer to the attempted depth of 5 feet below grade, although due to practical refusal encountered with the rotohammer due to stiff and rocky soil, the borings were advanced to the maximum attainable depths ranging from approximately 2 to 4 feet below grade. Note that due to the rugged and slopped nature of the Site, it was not considered feasible to use a drill rig or limited access drill rig to advance the proposed soil vapor borings.

Soil vapor sampling activities were conducted in general accordance with the Department of Toxic Substances Control (DTSC), Los Angeles Regional Water Quality Control Board (RWQCB), and San Francisco RWQCB Advisory on Active Soil Gas Investigations, dated July 2015. A temporary soil vapor well, consisting of Nylaflow™ tubing attached to a soil gas probe tip, was installed near the bottom of each boring. An appropriate sand pack a minimum of 6 inches thick was placed around the soil gas probe tip, and the borings were backfilled with at least 6 inches of dry granular bentonite above each sample port, then topped with hydrated granular bentonite to the surface. The soil vapor sampling probes were allowed to stabilize for approximately 2 hours prior to sampling, followed by removing the DTSC-default of three purge volumes, and performing a shut-in test and leak test.

Soil vapor samples were collected from the soil vapor sampling probes by collecting soil vapor drawn through the probes into laboratory-provided glass syringes. Soil vapor samples were delivered to an off-Site state-certified, mobile laboratory (H&P Mobile Geochemistry) and analyzed for VOCs in general accordance with U.S. Environmental Protection Agency (EPA) Method TO-15. In accordance with the DTSC guidance, one replicate sample was analyzed (SV3-3 Rep). Chain-of-custody procedures were implemented for sample tracking.

Soil Sampling and Analysis

On July 13, 2021, SCS collected soil samples using a trowel (borings SB1 through SB3) to the total depth of 0.5 feet below grade at the Site. On November 11, 2021, SCS advanced five additional soil borings by using a hand-held auger (borings SB4 through SB8) to total depths of up to 2.0 feet below grade at the Site, collecting soil samples at approximate depths of 0.5 feet below grade and 1 to 2 feet below grade. Locations of the soil samples are included in Figure 3. The following table summarizes the completed soil borings with depths and laboratory analysis for soil samples.

Boring ID	Boring Location	Sample Depths/ Lab Analysis	Number of Samples Analyzed	
SB1	Within representative portions of the western drainage channel	0.5 feet: TPH, VOCs, and Title 22 Metals	1 TPH 1 VOCs 1 Metals	
SB2, SB3	Within representative portions of the central drainage channel	0.5 feet: TPH, VOCs, and Title 22 Metals	2 TPH 2 VOCs 2 Metals	
SB4, SB5, SB6	Within representative portions of the western drainage channel	0.5 feet: TPH, PAHs, and VOCs 1-1.75 feet (SB6) or 2 feet (SB4 and SB5): Archived	3 TPH 3 PAHs 3 VOCs	
SB7, SB8	Within representative portions of the central drainage channel	0.5 feet: TPH, PAHs, and VOCs 1-1.75 feet (SB7) and 2 feet (SB8): Archive	2 TPH 2 PAHs 2 VOCs	
TOTALS	1	Soil Samples Analyses: 8 TPH, 5 PAHs, 8 VOCs, 3 Metals		

Notes:

PAHs: Polycyclic aromatic hydrocarbons analyzed in general accordance with EPA Method 8270C SIM. TPH: Total petroleum hydrocarbons analyzed in general accordance with EPA Method 8015B. VOCs: Volatile organic compounds analyzed in general accordance with EPA Method 8260B. Title 22 Metals analyzed in general accordance with EPA Method 6010B.

Soil samples were collected with the trowel or hand-held auger and were transferred directly from the blade or barrel of the hand auger with a gloved hand into a new 4-ounce glass jar.

The sampling equipment was decontaminated on-Site between soil samples to minimize the likelihood of "cross-contaminating" the samples and to minimize the potential for a "false positive" in the soil samples analyzed. The soil cuttings from the hand auger borings were used to backfill the borings.

The sample containers were labeled and delivered to an off-Site laboratory for analysis. Chain-ofcustody procedures were implemented for sample tracking. A copy of the laboratory analytical report is provided in Appendix A.

SOIL SCREENING REGULATORY CRITERIA FOR COC-BEARING SOIL

Concentrations of CoCs that are reported by the laboratory in soils at the Site are compared to applicable regulatory screening values to assess whether certain soils will require segregation and proper management during Site development.

There are two categories of mitigation work that will be required and are principally based upon riskbased corrective action. These categories include:

• Health Risk-Based Mitigation Criteria - risk-driven remediation required by future land uses and protection of workers, and

• Waste-Based Mitigation Criteria - in the event that soil is exported off Site, in which case soil may be considered regulated waste provided it contains detectable concentrations of TPH, VOCs, PAHs, or elevated concentrations of metals such as lead or arsenic.

Soil screening criteria are used in this Report for comparison of the reported soil sample results to applicable health risk-based and waste-based soil for the detected CoCs. The applicable soil screening applied in the "Findings" section below includes the following:

Health Risk-Based Mitigation Criteria

For health risk-based screening purposes, to screen soil for possible risks to residential users and workers at the Site:

- For TPH and VOCs, the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) Environmental Screening Levels (ESLs) for commercial/industrial users, dated 2019, revision 2
- For SVOCs and metals, the DTSC Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number 3, June 2020: Recommended Screening Levels (RSLs) for commercial/industrial soil are used.
- For other PAHs where the DTSC RSLs are not established (phenanthrene), the EPA RSLs for commercial/industrial soil, November 2021, are used.

Waste-Based Mitigation Criteria

For waste-based screening purposes, the below criteria are applied in the event that soil is exported from the Site. Also, based on our experience working with the San Diego County Department of Health Services (DEH), it is recommended that soil that is classified as a hazardous waste be exported to an appropriately licensed facility rather than be left on-Site.

• For "clean" or inert (Inert²) soil that is exported from the Site, the San Diego RWQCB Tier 1 Soil Screening Levels³ (SSLs) established in the RWQCB Order No. R9-2019-0005, Conditional Waivers of Waste Discharge Requirements for Low Threat Discharges in the San Diego Region, May 2019 (Waiver) are intended to be the criteria by which exported waste soil is judged to be inert, described within the Waiver as "inert waste soils that can be reused without restriction."

² Inert soil - For the purposes of this Report, Inert is defined as soil that does not contain detectable concentrations of constituents of concern with the possible exception of California Code Regulations Title 22 metals (with metals concentrations below the San Diego Regional Water Quality Control Board [RWQCB] Tier 1 Soil Screening Levels using a 90 percent upper confidence limit), or leachable concentrations of organic constituents that are consistent with the definition of "inert waste" specified in California Code of Regulations Title 27, section 20230, consistent with the RWQCB Order No. R9-2019-0005, Conditional Waivers of Waste Discharge Requirements for Low Threat Discharges in the San Diego Region, May 2019 (Waiver). This soil may consist of native/formational material as well as fill soil that does not have significant quantities of debris.

³ The Tier 1 SSLs presented in the RWQCB Waiver are intended to be the criteria by which soils are judged to be Inert waste soils that can be reused without restriction, subject to the General Waiver Conditions. The General Waiver Conditions stipulate that discharges/disposal of solid wastes to land must not be allowed to directly or indirectly enter any municipal separate storm sewer system (MS4s) or surface waters of the State, must not cause or threaten to cause a condition of contamination, pollution, or nuisance, and must comply with local, State, and federal ordinances and regulations and obtain any required permits, certifications, and/or licenses.

- For chemical CoCs including TPH, VOCs, and PAHs, all soil containing any detectable or leachable concentrations of chemical CoCs proposed for export off Site would need to be disposed of as regulated, non-hazardous waste at a minimum per the Tier 1 SSLs.
- For metals that are naturally occurring, the Tier 1 SSL for lead is 23.9 milligrams per kilogram (mg/kg) and the Tier 1 SSL for arsenic is 3.5 mg/kg. If soil was to be exported as Inert, excavated Site soils must be shown through the collection of soil samples and analysis for lead and other metals, with the 90% upper confidence limit (UCL), to be below the Tier 1 SSL.
- Non-hazardous regulated waste soils are exported soils that have concentrations of CoCs that exceed the Tier 1 SSLs (discussed above), and also have concentrations of CoCs below hazardous waste-based criteria (discussed below). Non-hazardous regulated soils must be disposed of at a properly licensed facility, such as a landfill. The acceptance of non-hazardous soils at disposal facilities are subject to the acceptance criteria established by these facilities.
- For characterizing soil as hazardous waste, the California Code of Regulations, Title 22 Article 3, was used.
 - Soil is characterized as a California hazardous waste, at a minimum, upon exceedance of the total concentrations of a CoC to the Total Threshold Limit Concentration (TTLC), and/or by comparing the results of a Waste Extraction Test (WET) to the Soluble Threshold Limit Concentration (STLC).
 - Soil is characterized as a federal or Resource, Conservation, and Recovery Act (RCRA) hazardous waste through an exceedance of Toxicity Characteristic Leaching Procedure (TCLP) laboratory results upon comparison to the respective Maximum Contaminant Concentration for the Toxicity Characteristic (MCCTC).

4 FINDINGS

TOPOGRAPHY, GEOLOGY, HYDROGEOLOGY, AND WATER QUALITY SURVEY

Topography

A topographic map for the Site vicinity was reviewed and is summarized in the following table.

Reported Elevation	135 to 220 feet above mean sea level
Reported Slope Direction	Slopes down to the south toward the Otay River
Source	United States Geological Survey 7.5 Minute Topographic Map Imperial Beach Quadrangle, California – San Diego County, 2018

Geology

A geological map for the Site vicinity was reviewed and is summarized in the following table.

Reported Formation	Young alluvial flood plain deposits (Qya) Holocene and late Pleistocene aged
Reported Description	Poorly consolidated, poorly sorted, permeable flood-plain deposits of sandy, silty or clay-bearing alluvium
Source	Kennedy, Michael P., and Siang S. Tan, Geologic Map of the San Diego $30' \times 60'$ Quadrangle, California, California Geological Survey, 2008

Hydrogeology

Data regarding depth to groundwater and flow direction for the Site were not readily available. In the absence of Site-specific data, depth to groundwater and flow direction information was reviewed for properties within the Site vicinity using the State Water Resources Control Board GeoTracker database. The following table summarizes the results of this review.

Property Location	Approximately 425 feet to the west of the Site			
Reported Depth to Groundwater	48.3 feet below grade in monitoring well MW12, closest to the Site			
Reported Groundwater Flow Direction	Southwest			
Source	Second Semi-Annual 2020 Groundwater Monitoring and Remedial Progress Report Former Crown Chemical Corporation Facility, 1888 Nirvana Avenue Chula Vista, California 91911 prepared by Arcadis and dated January 29, 2021			

Please note that many variables influence depth to groundwater and flow direction and the actual depth to groundwater and flow direction at the Site may be different than presented in this section.

Water Quality Survey

The following table summarizes the reported water quality in the Site vicinity.

Reported Hydrologic Area	Otay Valley (910.20)
Reported Hydrologic Unit	Otay (910.00)
Reported Beneficial Use	Industrial
Source	California RWQCB, San Diego Region, Water Quality Control Plan for the San Diego Basin, September 8, 1994, with amendments effective prior to May 17, 2016

LABORATORY ANALYTICAL RESULTS AND SCREENING

Soil Vapor Sample Analytical Results

A summary of the laboratory analytical results for soil vapor is presented below. A complete listing of the results is presented in the laboratory analytical report included in Appendix A. The data are presented in Table 1 and depicted on Figure 2.

VOCs

A total of four soil vapor samples, identified as SV1-4, SV2-2, SV3-3, and SV3-3 Rep, were analyzed for VOCs in general accordance with EPA Method TO-15.

Carbon disulfide was reported to be present in one of the four soil vapor samples at the concentration of 47 micrograms per liter (μ g/L) (SV2-2).

Toluene was reported to be present in three of the four soil vapor samples at concentrations ranging from 8.8 μ g/L (SV3-3 Rep) and 19 μ g/L (SV2-2).

m,p-Xylene was reported to be present in two of the four soil vapor samples at concentrations ranging from 9.2 μ g/L (SV3-3) and 26 μ g/L (SV2-2).

o-Xylene was reported to be present in one of the four soil vapor samples at the concentration of 7.2 μ g/L (SV2-2).

1,2,4-Trimethlybenzene was reported to be present in one of the four soil vapor samples at the concentration of 12 μ g/L (SV2-2).

Chloroform was reported to be present in one of the four soil vapor samples at the concentration of $9.0 \ \mu$ g/L (SV1-4).

All other VOCs analyzed were reported to be below the respective laboratory reporting limits. Please refer to the analytical laboratory reports contained in Appendix A for a full listing of VOCs analyzed and their respective reporting limits.

Since VOCs were reported to be present above laboratory reporting limits, a vapor intrusion risk screening (VIRS) was conducted to assess the likelihood that a Significant vapor intrusion risk exists at the Site as a result of vapor phase migration of CVOCs. See the "Vapor Intrusion Risk Screening (VIRS)" section below.

VOCs in Soil Vapor

The VOCs reported to be present in soil vapor beneath the Site included carbon disulfide, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, and chloroform. Carbon disulfide, toluene, m,p-xylene, o-xylene, and 1,2,4-trimethylbenzene are typical constituents of petroleum hydrocarbons, likely from the nearby industrial properties or other off-Site sources. Chloroform is a routine drinking water disinfection byproduct (trihalomethanes) and is often present in soil and soil vapor from treated tap water via irrigation or other sources of drinking water. Chloroform is formed when chlorine reacts with natural organic humic materials and bromine via the haloform reaction in water.⁴ Overall, based on the low concentrations at which they were detected, it's unlikely the VOCs in soil vapor resulted

⁴ Morrison, D. and B.L. Murphy. 2013. Chlorinated Solvents: A Forensic Evaluation. RSC Publishing. Cambridge.

from a point source or significant release at the Site, but more likely have migrated beneath the Site from the nearby industrial properties or another off-Site source.

Vapor Intrusion Risk Screening (VIRS)

Since VOCs were reported to be present in soil vapor beneath the Site, a VIRS was conducted to assess the potential for Significant human health risk posed to occupants of the proposed commercial/industrial Site buildings due to the upward migration of VOCs in soil vapor. SCS understands that as of January 24, 2019, the DTSC has archived the Johnson and Ettinger Human Health Risk Assessment Model. Therefore, SCS has conducted a vapor intrusion risk screening using current DTSC screening criteria, as described below, and the Site-specific slab attenuation factor, as described above.

Approach

VOCs may originate from either impacted soil or groundwater. In this case, VOCs are interpreted to be from possible subsurface impacts from the adjacent upgradient industrial facilities or another off-Site source, which were able to migrate in soil vapor beneath the Site. The highest soil vapor concentrations detected beneath the Site were conservatively assumed to be present beneath the entire Site to estimate conservative case-scenario-predicted indoor air concentrations for the future commercial/industrial buildings at the Site. The estimates of the theoretical indoor air concentrations were then compared against the most recently published screening levels⁵ to assess the potential for Significant human health risk posed to commercial/industrial users of the Site due to the upward migration of VOCs in soil vapor.

The VIRS was conducted using the DTSC default Attenuation Factor⁶ (AF) of 0.0005 for future commercial industrial buildings. To be conservative, the AF was applied to the highest reported concentration of each constituent (carbon disulfide, toluene, m,p-xylene, o-xylene, 1,2,4-trimethlybenzene, and chloroform) reported in soil vapor. The resulting values were compared against the DTSC-Modified Screening Levels (DTSC-SLs) provided in DTSC Human Health Risk Assessment (HHRA) Note 3.⁵

VIRS Results

The maximum reported concentrations of VOCs detected at the Site are presented in the table below, along with the associated DTSC-SL. Please note that only the constituents reported to be present beneath the Site building were evaluated.

voc	Maximum Concentration Detected Beneath the Site Building	Predicted Indoor Air Concentration1	DTSC/EPA Screening Levels2
		(µg/m3)	
Carbon disulfide	47	0.0235	3,100^
Toluene	19	0.0095	1,300
m,p-Xylene	26	0.013	440^
o-Xylene	7.2	0.0036	440^

⁵ Human Health Risk Assessment Note 3 - DTSC-Modified Screening Levels (DTSC-SLs), Table 3. Screening Levels for Ambient Air, June 2020 Update.

⁶ Department of Toxic Substances Control (DTSC), State of California Vapor Intrusion Guidance Document - Final, dated October 2011.

voc	Maximum Concentration Detected Beneath the Site Building	Predicted Indoor Air Concentration1	DTSC/EPA Screening Levels2
		(µg/m3)	
1,2,4- Trimethylbenzene	12	0.006	260^
Chloroform	9.0	0.0045	0.53^

Notes:

 $\mu g/m^3$ – micrograms per cubic meter.

1 Soil vapor concentration multiplied by the attenuation factor (AF) of 0.0005 for future commercial use, as determined by DTSC Final Vapor Intrusion Guidance dated October 2011.

2 DTSC Human Health Risk Assessment Note 3 - DTSC-Modified Screening Levels (DTSC-SLs), June 2020. ^ A DTSC-SL has not been established for this constituent (carbon disulfide, m,p- and o-xylenes, and 1, 2, 4trimethylbenzene). The Environmental Protection Agency (EPA) Regional Screening Level (RSL), dated November 2021, was used for this constituent.

After applying the DTSC attenuation factor of 0.0005 for a future commercial/industrial land use to the maximum reported concentrations of the constituents reported to be present beneath the Site (carbon disulfide, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, and chloroform), the maximum theoretical concentrations of VOCs in indoor air at the Site are below the commercial/industrial screening levels (DTSC-SLs or RSLs).⁷

Soil Sample Analytical Results

A summary of the laboratory analytical results for soil is presented below, along with screening the reported results to the Site to the Health Risk-Based Mitigation Criteria and Waste-Based Mitigation Criteria, as defined in the "Soil Screening Regulatory Criteria for CoC-Bearing Soil" section above. A complete listing of the results is presented in the laboratory analytical report included in Appendix A. The data are presented in Tables 1 through 3 and depicted on Figure 3.

Lead and Other Metals

Soil analytical results for lead and other metals are summarized here:

Note that vapor intrusion standards are currently in a state of transition, and if more conservative standards are adopted, it is possible that in using the vapor concentration data obtained by SCS that the derived theoretical indoor air concentrations exceed applicable indoor air screening criteria. For example, if a default attenuation factor of 0.03 for sub-slab soil vapor and "near-source" exterior soil vapor was used, as described in 2015 by USEPA and USEPA and in February 2020 by DTSC in their *Draft Supplemental Guidance: Screening and Evaluating Vapor Intrusion*, the reported maximum chloroform concentration at the Site exceed residential EPA screening level (U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response (OSWER) June 2015 – OWSER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air). However, the 2015 EPA Guidance indicates attenuation factors for deeper soil vapor data would be expected to be less than those for sub-slab soil vapor due to additional attenuation through the vadose zone. It is our understanding that, based on recent projects with DTSC oversight, the DTSC is still allowing the use of the DTSC 2011 Guidance and attenuation factors. Therefore, based on our experience and because this assessment includes deeper soil vapor sampling depths than sub-slab depths, the DTSC 2011 Guidance is used herein.

	Number		Maximum	Waste- Scree		Health Risl Screen	
Title 22 Metal	of Number of Samples Detections Analyzed	Site Concentration (mg/kg)	Tier 1 SSL (mg/kg)	Above Tier 1 SSL?	DTSC RSL/ EPA RSL (mg/kg)	Above DTSC RSL/ EPA RSL?	
Lead	3	3	33.6	23.9	Yes	80	No
Antimony	3	1	0.699	5.0	No	31	No
Arsenic	3	3	5.10	3.5	Yes	12*	No
Barium	3	3	111	509	No	22,000	No
Beryllium	3	0	<0.500	4.0	No	6,900	No
Cadmium	3	3	1.43	4.0	No	4,000	No
Chromium	3	3	16.9	122	No	1,800,000	No
Cobalt	3	3	4.73	20	No	350	No
Copper	3	3	25.3	60	No	47,000	No
Mercury	3	0	< 0.0500	0.26	No	4.4	No
Molybdenum	3	2	1.69	2.0	No	5,800	No
Nickel	3	3	7.77	57	No	64,000	No
Selenium	3	0	<0.500	0.21	No	5,800	No
Silver	3	0	<0.500	2.0	No	5,800	No
Thallium	3	0	<0.500	0.78	No	1.2	No
Vanadium	3	3	39.6	112	No	5,800	No
Zinc	3	3	170	149	Yes	350,000	No

Notes:

mg/kg - milligrams per kilogram.

Waste-Based Screening - Tier 1 SSLs = Tier 1 Soil Screening Level for inert waste soils that can be reused without restriction. For exceedances, the 90 percent upper confidence limit was used to derive a Site-specific value, as discussed in the Report below.

Health Risk-Based Screening – DTSC RSL/ EPA RSL = Health Risk-Based Criteria - For metals, the DTSC HERO HHRA Note Number: 3, June 2020, using the RSLs for commercial/ industrial soil and cancer endpoint, or, for other metals not listed in HHRA Note 3, the Regional Screening levels for commercial/ industrial soil, provided by the EPA and updated as of May 2021 were used.

< - Concentration reported below the listed laboratory reporting limit.

* - For arsenic, although the DTSC RSL is 0.11 mg/kg, concentrations of naturally occurring arsenic typically exceed human health risk screening criteria. Therefore, the DTSC upper-bound background concentration for arsenic of 12 mg/kg was used.

Red font – the maximum Site concentration for a particular metal exceeds the Tier 1 SSL.

Comparison of Metals Concentrations to Waste-Based Mitigation Criteria (i.e., for Soil Export)

The analytical results of the Title 22 metal analyses were compared to the respective Tier 1 SSL for each metal, which are established in the San Diego RWQCB Waiver² and apply to waste export (i.e., for soil that is exported from the Site only). Tier 1 SSLs were exceeded in select sample results for lead, arsenic, and zinc. Below is a discussion of each metal that was reported with concentrations that exceed the Tier 1 SSL.

Arsenic – Three soil samples were reported to exceed the Tier 1 SSL for arsenic (samples SB1, SB2, and SB3); they were collected from a depth of approximately 0.5 feet within the drainage channels and reported with arsenic concentrations of 5.10, 3.73, and 3.70 mg/kg, respectively.

Although arsenic was reported to exceed the DTSC RSL for commercial land use and select samples exceed the Tier 1 SSL for soil that is exported, the levels reported were within typical background concentration ranges. In an abstract presented by Department of Toxic Substances Control staff at the 2008 Society of Toxicology Annual Meeting,⁸ it was reported that the upper-bound background concentration for arsenic in southern California soil is 12 mg/kg. Therefore, the maximum reported arsenic concentration of 5.10 mg/kg is below the upper-bound background concentrations in shallow soil at the Site are within the range of typical background concentrations and do not appear to be indicative of a release of arsenic.

Lead - One soil sample was reported to exceed the Tier 1 SSL for lead (sample SB1); it was collected from the depth of approximately 0.5 feet within the southern portion of the western drainage channel and reported with a lead concentration of 33.6 mg/kg.

The Client reported that it is not known whether soil export will be required during the grading activities for the proposed project. If soil export is proposed for the Site, it is recommended that the soil proposed for export be tested for lead so that the soil can be characterized for proper disposal.

Zinc - One soil sample was reported to exceed the Tier 1 SSL for zinc (sample SB1); it was collected from the depth of approximately 0.5 feet within the southern portion of the western drainage channel and reported with a zinc concentration of 170 mg/kg.

The Client reported that it is not known whether soil export will be required during the grading activities for the proposed project. If soil export is proposed for the Site, it is recommended that the soil proposed for export be tested for zinc so that the soil can be characterized for proper disposal.

Comparison of Metals Concentrations to Risk-Based Mitigation Criteria (i.e., for Soil that Remains on-Site)

Regarding the comparison of metals to Risk-Based Mitigation Criteria, with the exception of arsenic, the reported metals concentrations are below applicable residential human health risk-screening criteria (i.e., DTSC HERO HHRA Note Number 3, June 2020, and EPA RSLs, May 2021).

For the metal arsenic, concentrations were reported above the DTSC RSL for arsenic of 0.36 mg/kg in all three of the soil samples analyzed for arsenic. Although arsenic was reported to exceed the commercial/industrial DTSC RSL, the levels reported were below the DTSC upper-bound background concentration for arsenic in southern California soil of 12 mg/kg. Therefore, the maximum reported arsenic concentration of 5.10 mg/kg is below the upper-bound background concentration of 12 mg/kg established by the DTSC. Therefore, the reported arsenic concentrations in shallow soil at the Site are within the range of typical background concentrations and do not appear to be indicative of a release of arsenic.

Total Petroleum Hydrocarbons (TPH)

Soil analytical results for TPH were compared to Waste Based Mitigation-Criteria (i.e., Tier 1 SSLs) and Health Risk-Based Mitigation Criteria (i.e., SFBRWQCB ESLs) as summarized in the table below.

⁸ Determination of a Southern California Regional Background Arsenic Concentration in Soil, Chernoff, G., Bosan, W., Oudiz, D., and California Department of Toxic Substances Control, 2008 Society of Toxicology Annual Meeting.

	Maximum Site	Waste-Based	Screening1	Health Risk-Based Screening1			
Analyte	Concentration (mg/kg)	Tier 1 SSL (mg/kg)	Above Tier 1 SSL?	Mitigation Criteria (mg/kg)	Above Mitigation Criteria?		
TPHg	<0.5	ND	No	2,000	No		
TPHd	128	ND	Yes	1,200	No		
TPHo	352	ND	Yes	180,000	No		

Notes:

mg/kg = milligrams per kilogram.

- 1= Waste-Based Screening Tier 1 SSLs = Tier 1 Soil Screening Level for inert waste soils that can be reused without restriction.
- 2= Health Risk-Based Mitigation Criteria San Francisco Bay Regional Water Quality Control Board (SFBRWQCB), Environmental Screening Levels for commercial/industrial users (ESLs) (2019, Rev. 2). Risk value was not established; the non-cancer hazard value was used.
- TPHg= TPH as gasoline.
- TPHd= TPH as diesel.
- TPHo= TPH as oil.
- <= Not detected above the specified laboratory reporting limit.

Red font = the maximum Site concentration for a particular metal exceeds the waste-based screening criteria or health risk-based screening criteria.

Comparison of TPH Concentrations to Waste-Based Mitigation Criteria (i.e., for Soil Export)

Regarding waste-based screening criteria, detectable concentrations of chemical constituents such as TPH would be considered a regulated waste if exported from the Site per the RWQCB Tier 1 SSLs. A total of five of the eight soil samples (samples SB1, SB2, SB4-0.5, SB7-0.5, and SB8-0.5) analyzed for TPH were reported with detectable concentrations of TPH; soil represented by these samples would be considered a regulated waste if exported from the Site.

The Client reported that it is not known whether soil export will be required during the grading activities for the proposed project. If soil export is proposed for the Site, it is recommended that the soil proposed for export be tested for TPH so that the soil can be characterized for proper disposal.

Comparison of TPH Concentrations to Risk-Based Mitigation Criteria (i.e., for Soil that Remains on-Site)

TPH was not detected above the Health Risk-Based Mitigation in any of the eight soil samples collected and analyzed. Therefore, based on the soil samples collected and analyzed for TPH, the soil is not considered to represent a human health risk to future commercial/industrial users of the Site, and can be freely graded on-Site during proposed grading activities.

Volatile Organic Compounds (VOCs)

The eight soil samples analyzed for VOCs were reported to be below the respective laboratory reporting limits. Please refer to the analytical laboratory reports contained in Appendix A for a full listing of VOCs analyzed and their respective reporting limits.

Polycyclic Aromatic Hydrocarbons (PAHs)

The PAHs benzo(a)anthracene, chrysene, fluoranthene, phenanthrene, and were reported above the laboratory reporting limits in various samples collected and analyzed from the Site. Below is a discussion of the reported concentrations of PAHs at the Site compared to soil screening regulatory criteria.

PAHs	Maximum Site	Waste- Screen		Health Risk-Based Screening3			
	Concentration	Tier 1 SSL	Abov e Tier 1 SSL?	SFBRWQCB ESL/ DTSC RSL/ EPA RSL	Above SFBRWQCB ESL/ DTSC RSL/ EPA RSL?		
			µg/kg				
Benzo(a)anthracene	10.7	ND	Yes	12,000	No		
Chrysene	15.3	ND	Yes	1,300,000	No		
Fluoranthene	22.7	ND	Yes	18,000,000	No		
Phenanthrene	14.7	ND	Yes	NE	No		
Pyrene	19.3	ND	Yes	13,000,000	No		

Notes:

µg/kg: micrograms per kilogram.

- 1) Waste-Based Screening Tier 1 SSLs = Tier 1 Soil Screening Level for inert waste soils that can be reused without restriction.
- Hazardous Waste Criteria: Values shown from CA code of regulations, Title 22 Article 3, July 20, 2005, regarding characteristics of hazardous waste. Exceedances of the TTLC would be considered a California hazardous waste, at a minimum.
- 3) Health Risk-Based Criteria For PAHs based on DTSC HERO HHRA Note Number: 3, June 2020, using the Recommended Screening Levels for industrial/commercial soil, or, for chemicals not listed in HHRA Note 3, the Regional Screening levels for residential soil, provided by the EPA and updated as of May 2021 were used.
- * = Health risk- and hazardous waste-based criteria for alpha chlordane not available; therefore, applicable criteria from chlordane used.
- ND = non-detect above the specified laboratory reporting limits.
- Red font = the maximum Site concentration for a particular metal exceeds the waste-based screening criteria or health risk-based screening criteria.

Comparison of PAH Concentrations to Waste-Based Mitigation Criteria (i.e., for Soil Export)

Regarding waste-based screening criteria, detectable concentrations of chemical constituents such as PAH would be considered a regulated waste if exported from the Site per the RWQCB Tier 1 SSLs. A total of three of the five soil samples (samples SB4-0.5, SB7-0.5, and SB8-0.5) analyzed for PAHs were reported with detectable concentrations of PAHs; soil represented by these samples would be considered a regulated waste if exported from the Site.

The Client reported that it is not known whether soil export will be required during the grading activities for the proposed project. If soil export is proposed for the Site, it is recommended that the soil proposed for export be tested for PAH so that the soil can be characterized for proper disposal.

Comparison of PAH Concentrations to Risk-Based Mitigation Criteria (i.e., for Soil that Remains on-Site)

PAHs were not detected above the Health Risk-Based Mitigation in any of the five soil samples collected and analyzed. Therefore, based on the soil samples collected and analyzed for PAHs, the soil is not considered to represent a human health risk to future commercial/industrial users of the Site, and can be freely graded on-Site during grading activities.

5 CONCLUSIONS

Based on the samples collected as part of this Phase II Environmental Site Assessment (ESA), laboratory results, current regulatory guidelines, and SCS' experience and professional judgment, SCS concludes and recommends the following:

Background

- SCS performed a Phase II ESA consisting of the following:
 - Advancement and sampling of three soil vapor probes (identified as SV1 through SV3), and the collection of four soil vapor samples (including a replicate sample) from depths ranging 2 to 4 feet below grade for analysis of volatile organic compounds (VOCs), in order to assess possible impacts from the northern adjacent industrial properties, and from some former totes previously situated adjacent to the northeastern portion of the Site. Note that sample depths of 5 feet deep could not be attained due to practical refusal encountered with a hand held roto-hammer, the only sampling method considered feasible for the steep and rugged terrain at the Site.
 - Advancement of three soil borings using a trowel (borings SB1 through SB3) and five soil borings by using a hand-held auger (borings SB4 through SB8) to total depths of up to 2.0 feet below grade at the Site to assess the possible presence and concentrations of constituents of concern (CoCs) (i.e., petroleum hydrocarbons, Title 22 metals, polycyclic aromatic hydrocarbons [PAHs], and volatile organic compounds [VOCs]) within representative locations within the on-Site drainage channels, in connection with possible impacts from the northern adjacent industrial properties.

Soil Vapor Investigation

- The VOCs carbon disulfide, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, and chloroform were reported to be present in soil vapor beneath the Site.
 - Carbon disulfide, toluene, m,p-xylene, o-xylene, and 1,2,4-trimethylbenzene are typical constituents of petroleum hydrocarbons, likely from the nearby industrial facilities or another off-Site source. Chloroform is a routine drinking water disinfection byproduct (trihalomethanes) and is often present in soil and soil vapor from treated tap water via irrigation or other sources of drinking water.
 - Overall, based on the low concentrations at which they were detected, it's unlikely the VOCs in soil vapor resulted from a point source or significant release at the Site, but more likely have migrated beneath the Site from the nearby industrial facilities facility or another off-Site source.

- Because VOCs were reported above the laboratory reporting limits in the soil vapor samples collected from the Site, a vapor intrusion risk screening (VIRS) was conducted to assess the potential for Significant vapor intrusion risk posed to the future commercial/industrial occupants at the Site due to the upward migration of VOCs in soil vapor.
 - After applying the Department of Toxic Substances Control (DTSC) attenuation factor 0.0005 for a future commercial/industrial land use to the maximum reported concentrations of the constituents reported to be present beneath the Site (carbon disulfide, toluene, m,p-xylene, o-xylene, 1,2,4-trimethylbenzene, and chloroform), the maximum theoretical concentrations of VOCs in indoor air at the Site are below the commercial/industrial screening levels (DTSC- Modified Screening Levels or EPA Regional Screening Levels).

Soil Investigation

- Detectable concentrations of total petroleum hydrocarbons (TPH) and Polycyclic Aromatic Hydrocarbons (PAHs) and somewhat elevated concentrations of the metals arsenic, lead, and zinc were reported to be present in certain samples collected at the Site and exceed Waste-Based Mitigation Criteria (i.e., Regional Water Quality Control Board [RWQCB] Tier 1 Soil Screening Levels [SSLs]). Reported concentrations of TPH include relatively low concentrations in the diesel and oil carbon chain lengths. Reported concentrations of PAHs include relatively low concentrations of benzo(a)anthracene, chrysene, fluoranthene, phenanthrene, and pyrene, and would be considered a regulated waste, likely a nonhazardous regulated waste, if this soil is exported from the Site. In the event that the soil is exported from the Site, representative portions of the stockpiles to be exported should be analyzed for TPH, Title 22 metals, and PAHs for proper waste characterization and disposal.
- With the possible exception of arsenic that is further described in the bullet below, none of the reported TPH, PAHs, and metal concentrations were reported to exceed Health Risk-Based Mitigation Criteria for commercial/industrial users established by the DTSC (Recommended Screening Levels [RSLs]), San Francisco Bay Regional Water Quality Control Board (Environmental Screening Levels), and US Environmental Protection Agency (RSLs), as stipulated in the Report. Therefore, based on the soil samples collected and analyzed for TPH, PAHs, VOCs, and Title 22 metals, the soil is not considered to represent a human health risk to future commercial/industrial users of the Site, and can be freely graded on-Site during grading activities.
- For the metal arsenic, concentrations were reported above the DTSC RSL for arsenic of 0.36 milligrams per kilogram (mg/kg) in all three of the soil samples analyzed for arsenic. Arsenic was reported with a maximum concentration of 5.10 mg/kg at the Site. Although arsenic concentrations at the Site reported to exceed the commercial/industrial DTSC RSL and the Tier 1 SSL for arsenic, the levels reported were below the DTSC upper-bound background concentration for arsenic in southern California soil of 12 mg/kg. Therefore, the maximum reported arsenic concentration of 5.10 mg/kg is below the upper-bound background concentration of 12 mg/kg established by the DTSC. Therefore, the reported arsenic concentrations in shallow soil at the Site are within the range of typical background concentrations and do not appear to be indicative of a release of arsenic.

6 **RECOMMENDATIONS**

Based on the data obtained during this Assessment and our conclusions, current regulatory guidelines, and our experience and professional judgment, SCS recommends the following:

Soil Vapor Investigation

• No further action for the Site related to soil vapor intrusion at this time for the proposed commercial/industrial land use.

Soil Investigation

• The Client reported that it is not known whether soil import will be required during the grading activities for the proposed project. If soil export is proposed for the Site, it is recommended that the soil proposed for export be tested for the identified CoCs for the Site including TPH, PAHs, and Title 22 metals and so that the soil can be characterized for proper disposal.

7 REPORT USAGE AND FUTURE SITE CONDITIONS

This Report is intended for the sole usage of the Client and other parties designated by SCS. The methodology used during this Phase II ESA was in general conformance with the requirements of the Client and the specifications and limitations presented in the Master Services Agreement (Contract) between the Client and SCS. This Report contains information from a variety of public and other sources, and SCS makes no representation or warranty about the accuracy, reliability, suitability, or completeness of the information. Any use of this Report, whether by the Client or by a third party, shall be subject to the provisions of the Contract between the Client and SCS. Any misuse of or reliance upon the Report shall be without risk or liability to SCS.

Assessments are qualitative, not comprehensive, in nature and may not identify all environmental problems or eliminate all risk. For every property, but especially for properties in older downtown or urban areas, it is possible for there to be unknown, unreported recognized environmental conditions, USTs, or other features of concern that might become apparent through demolition, construction, or excavation activities, etc. In addition, the scope of services for this project was limited to those items specifically named in the scope of services for this Report. Environmental issues not specifically addressed in the scope of services for this project are not included in this Report.

Land use, condition of the properties within the Site, and other factors may change over time. The information and conclusions of this Report are judged to have been relevant at the time the work described in this Report was conducted. This Report should not be relied upon to represent future Site conditions unless a qualified consultant familiar with the practice of Phase II Environmental Site Assessments in the County of San Diego is consulted to assess the necessity of updating this Report.

The property owners at the Site are solely responsible for notifying all governmental agencies and the public of the existence, release, or disposal of any hazardous materials/wastes or petroleum products at the Site, whether before, during, or after the performance of SCS' services. SCS assumes no responsibility or liability for any claim, loss of property value, damage, or injury that results from hazardous materials/wastes or petroleum products being present or encountered within the Site.

Although this Phase II ESA has attempted to assess the likelihood that the Site has been impacted by a hazardous material/waste release, potential sources of impact may have escaped detection for

reasons that include, but are not limited to, (1) inadequate or inaccurate information rightfully provided to SCS by third parties, such as public agencies and other outside sources; (2) the limited scope of this Phase II ESA; and (3) the presence of undetected, unknown, or unreported environmental releases.

7 LIKELIHOOD STATEMENTS

Statements of "likelihood" have been made in this report. Likelihood statements are based on professional judgments of SCS. The term "likelihood," as used herein, pertains to the probability of a match between the prediction for an event and its actual occurrence. The likelihood statement assigns a measure for a "degree of belief" for the match between the prediction for the event and the actual occurrence of the event.

The likelihood statements in this Report are made qualitatively (expressed in words). The qualitative terms can be approximately related to quantitative percentages. The term "low likelihood" is used by SCS to approximate a range of 10 to 20 percent; the term "moderate likelihood" refers to an approximate range of 40 to 60 percent; and the term "high likelihood" refers to an approximate range of 80 to 90 percent.

8 SPECIAL CONTRACTUAL CONDITIONS BETWEEN USER AND ENVIRONMENTAL PROFESSIONAL

There were no special contractual conditions between the user of this Phase II ESA, the environmental professional, and SCS.

Tables

Table 1 Soil Vapor Sample Analytical Results 821 Main Street Chula Vista, California

Sample Depth Identifier (feet bgs)		Date Collected	Carbon Disulfide	Toluene	m,p-Xylene	o-Xylene	1, 2, 4- Trimethlybenzene	Chloroform	Other VOCs			
			ug/m ³									
SV1-4	4	11/11/2021	< 6.3	< 3.8	< 8.8	< 4.4	< 5.0	9.0	ND			
SV2-2	2	11/11/2021	47	19	26	7.2	12	< 4.9	ND			
SV3-3	3	11/11/2021	< 6.3	9.8	9.2	< 4.4	< 5.0	< 4.9	ND			
SV3-3 Rep	3	11/11/2021	< 6.3	8.8	< 8.8	< 4.4	< 5.0	< 4.9	ND			
Maximum	Maximum Site Concentration (µg/m ³)				26	7.2	12	9.0				
Predicted Indoor Air Concentration for Future Commercial Use ¹			0.0235	0.0095	0.013	0.0036	0.006	0.0045				
Commercial DTS	Commercial DTSC/EPA Screening Level ² (µg/m ³			1,300	440^	440^	260^	0.53^				

Notes:

Soil vapor samples collected by SCS Engineers on November 11, 2021, and analyzed for volatile organic compounds (VOCs) in accordance with EPA Method TO-15. Depth in feet below ground surface (bgs).

< = less than indicated laboratory reporting limit.

ND = group of constituents not detected above laboratory reporting limits; refer to the laboratory analytical report for a full listing of analytes and associated reporting limits.

Bold = analyte detected above laboratory reporting limit.

Results presented in micrograms per cubic meter (µg/m³).

1= Maximum soil vapor concentration multiplied by the default Department of Substances Control (DTSC) attenuation factor of 0.0005 for a future commercial building, per Table 2 - Attenuation Factors for Preliminary Screening Evaluations of the Vapor Intrusion Guidance.

2= Human Health Risk Assessment Note 3 - DTSC-Modified Screening Levels (DTSC-SLs), Table 3 - Screening Levels for Ambient Air, Commercial/Industrial June 2020 update.

^ A DTSC-SL has not been established for this constituent (carbon disulfide, m,p- and o-xylenes, and 1, 2, 4-trimethylbenzene). The Environmental Protection Agency (EPA) Regional Screening Level (RSL), dated May 2021, was used for this constituent.

Table 2Soil Sample Analytical Results for TPH, VOCs, and PAHs821 Main StreetChula Vista, California

								Hs	S						
Sample	Depth in Feet bgs	Date	TPHo TPHd		TPHg	VOCs	Benzo(a)anthracene	Chrysene	Fluoranthene	Phenanthrene	Pyrene	All other PAHs			
				mg/kg			μg/kg				g/kg				
SB1	0.5	7/13/2021	210	74.0	< 0.500	ND									
SB2	0.5	7/13/2021	290	74.0	< 0.500	ND									
SB3	0.5	7/13/2021	< 50.0	< 10.0	< 0.500	ND									
SB4-0.5	0.5	11/11/21	82.4	< 10.0	< 0.500	ND	4.00	15.3	9.33	< 5.80	10.0	ND			
SB5-0.5	0.5	11/11/2021	< 50.0	< 10.0	< 0.500	ND	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	ND			
SB6-0.5	0.5	11/11/2021	< 50.0	< 10.0	< 0.500	ND	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	ND			
SB7-0.5	0.5	11/11/2021	352	128	< 0.500	ND	4.67	10.0	10.0	< 5.80	10.7	ND			
SB8-0.5	0.5	11/11/2021	298	58.0	< 0.500	ND	10.7	15.3	22.7	14.7	19.3	ND			
Health	Risk-Based	Criteria ¹	180,000	1,200	2,000	NA	12,000	1,300,000	18,000,000	^7,800	13,000,000	NA			

Notes:

Soil samples collected by SCS Engineers on 7/13/21 and 11/11/21.

VOCs: Volatile Organic Compounds. Samples from SCS analyzed in general accordance with EPA Method 8260B.

TPH: Total Petroleum Hydrocarbons. Samples from SCS analyzed in general accordance with EPA Method 8015B.

Polycyclic Aromatic Hydrocarbons (PAHs) samples analyzed in general accordance with EPA Method 8270C.

mg/kg : milligrams per kilogram.

µg/kg : micrograms per kilogram.

< : less than the laboratory reporting limit.

bgs : below ground surface

ND: Not detected above the laboratory reporting limit.

TPHo: TPH oil-range organics.

TPHd: TPH diesel-range organics.

TPHg: TPH gasoline-range organics.

--: not analyzed.

ND : not detected above the laboratory reporting limits for the group of constituents.

1) Health Risk-Based Criteria - For TPH, VOCs the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB)

Environmental Screening Levels (ESLs) for commercial/ industrial users, dated 2019 (revised).

For PAHs the Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment

(HHRA) Note Number: 3, June 2020, using the recommended Screening Levels (SL) for industrial soil.

^For chemicals not listed in HHRA Note 3, the EPA RSLs for commercial/industrial soil, November 2021 were used.

NA: Not applicable.

Bold : Result indicating above laboratory reporting limits.

SCS ENGINEERS

Table 3Soil Sample Analytical Results for Metals821 Main StreetChula Vista, California

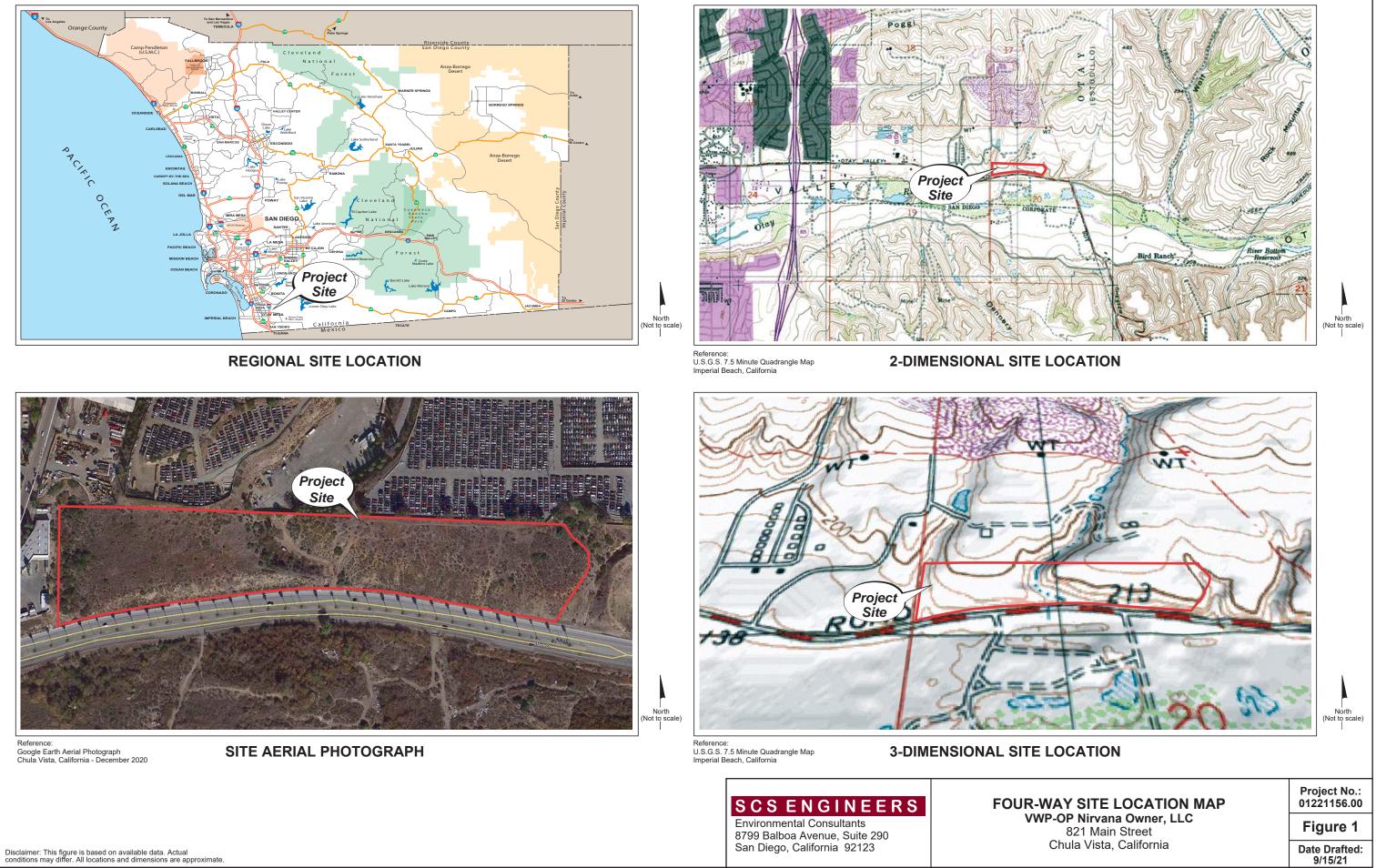
Sample	Depth in Feet bgs	Date	Lead	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Mercury	Molybdenu m	Nickel	Selenium	Silver	Thallium	Vanadiu m	Zinc
											mg/kg								
SB1	0.5	7/13/2021	33.6	0.699	5.10	111	< 0.500	1.43	16.9	4.73	22.5	< 0.0500	1.00	7.77	< 0.500	< 0.500	< 0.500	39.6	170
SB2	0.5	7/13/2021	7.99	< 0.500	3.73	55.0	< 0.500	1.13	12.7	4.61	25.3	< 0.0500	1.69	5.20	< 0.500	< 0.500	< 0.500	35.3	58.1
SB3	0.5	7/13/2021	7.33	< 0.500	3.70	110	< 0.500	0.863	5.79	3.82	5.87	< 0.0500	< 0.500	3.13	< 0.500	< 0.500	< 0.500	26.7	33.8
Heal	th Risk-Based Cri	teria ¹	80 31 12 22,000 6,900 4,000 1,800,000 350 47,000 4.4 5,800 64,000 5,800 5,800							1.2	5,800	350,000							
Haz	ardous Waste Cri	teria ²	1,000	500	500	10,000	75	100	2,500	8,000	2,500	20	3,500	2,000	100	500	700	2,400	5,000

Notes:

Soil samples collected by SCS Engineers on 7/13/21.

Soil samples were analyzed for Title 22 metals by Environmental Protection Agency (EPA) Method 6010B.

mg/kg : milligrams per kilogram.


< : less than the laboratory reporting limit.

bgs : below ground surface

Bold : Result indicating above laboratory reporting limits.

Health Risk-Based Criteria - For lead, the Department of Toxic Substances Control (DTSC) Human and Ecological Risk Office (HERO) Human Health Risk Assessment (HHRA) Note Number: 3, June 2020, using the Recommended Screening Levels (RSL) for commercial/ industrial soil and cancer endpoint, or, for other metals not listed in HHRA Note 3, the Regional Screening levels for commercial/industrial soil, provided by the EPA and updated as of November 2021 were used.
 For arsenic, although the DTSC RSL is 0.11 mg/kg, naturally occuring arsenic typically exceeds human health risk screening criteria. Therefore, the DTSC upper-bound background concentration for arsenic of 12 mg/kg was used.
 Hazardous Waste Criteria: Values shown from CA code of regulations, Title 22 Article 3, July 20, 2005 regarding characteristics of hazardous waste. Exceedances of the Total Threshold Limit Concentration (TTLC) would be considered a California hazardous waste, at a minimum.

Figures

LEGEND

Approximate Site boundary

Trash/debris pile

O Approximate soil vapor sample location

Approximate soil sample location

Approximate location of drainages

Disclaimer: This figure is based on available data. Actual conditions may differ. All locations and dimensions are approximate

Soil vapor samples, with depth in feet below grade, collected by SCS Engineers on November 11, 2021, and analyzed for volatile organic compounds (VOCs) by EPA Method TO-15. Results reported in micrograms per cubic meter (µg/m³). **Bold** font indicates sample results above the laboratory reporting limit. < indicates results less than the laboratory reporting limit, number indicates individual analyte reporting limit. ND indicates concentration not detected above laboratory reporting limits.

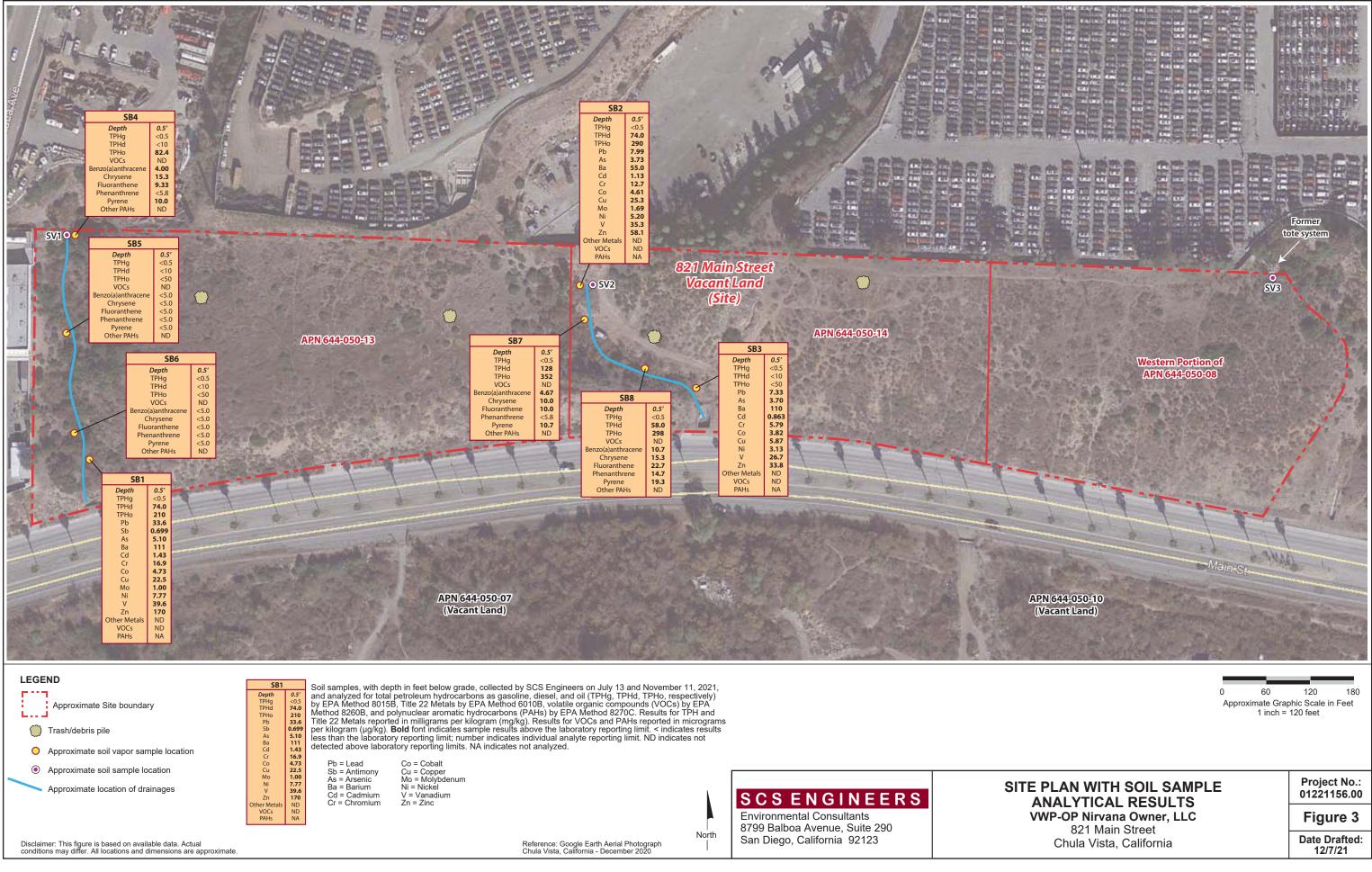
CD = carbon disulfide CF = chloroform 1,2,4-TMB = 1,2,4-trimethylbenzene

Reference: Google Earth Aerial Photograph Chula Vista, California - December 2020

60 120 180 Approximate Graphic Scale in Feet 1 inch = 120 feet

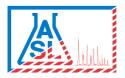
North

SCS ENGINEERS Environmental Consultants 8799 Balboa Avenue, Suite 290 San Diego, California 92123


SITE PLAN WITH SOIL VAPOR **ANALYTICAL RESULTS**

VWP-OP Nirvana Owner, LLC 821 Main Street Chula Vista, California

Project No.: 01221156.00


Figure 2

Date Drafted: 12/7/21

Appendix A

Laboratory Analytical Reports

17 November 2021 Luke Montague SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego, CA 92123

Work Order #: 2111096 Project Name: Nirvana Properties Project ID: 01221156.00 Site Address: 821 Main Street Chula Vista, CA

Enclosed are the results of analyses for samples received by the laboratory on November 11, 2021. If you have any questions concerning this report, please feel free to contact us.

mb Bran

Molky Brar

Laboratory Director

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL, is complete and accurate. ASL accepts all samples subject to the following conditions:

1) ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

2) ASL is not responsible for any consequences resulting from any inaccuracies, omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

- or -

Page ____

R R Ш 0 0 0 Т 0 4 0 Ц S 0 > Z Date ||||/2| Time 2 - u Normal 2 developed a devRemarks TAT ASL JOB# 2111096 ANALYSIS REQUESTED 24 ADY P Kaley Date (////2) Time () 55 XXX 0 ^ \times 82018 XXX XXX (85108) 02-8)5 SHA9 EDF Relinquished By: A.S.L. Preservation ice Condition of Sample: E REPORT: X PDF 2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500 Received For Laboratory Report To: Invoice To: Matrix Address: 51:1 Address. P.O.# Date /// ///2 [Time | 35 D Date || | || | 2| Time |0:04 347 1 Tozahus Container(s) com Manager Ly ke Montague Type Nigrana Properties Chula Vista, CA 821 Main Street Time # 10:01 9:09 Fregerial Instruction: 1/1/21 21 Project ID: 1/56.00 E-mail: 1 monte que Oscos roguager. Project 90% 9:43 9:49 349 853 Sh: 6 9.13 Time Date 12/11/11 Project Name: Site Address: SAMPLE DESCRIPTION Date > GLOBAL ID 2111096-06 587-1.75 2111096-01 SB3-0.5 SB4-2.0 SB5-0.5 584-1.0 2111096-04 SB7-6.5 2111096-05 5B7- 1.0 534-0.5 533-2.0 Address: 87999 Balboa Ave 538-1.0 Received By: Aust' Buirz company: SCS Engineurs White - Report, Yellow - Laboratory, Pink - Client A SCS engineers .com Sample ID Relinquished By: Fax: 858 571 5500 Sandrego Cut COC# No. 86552 2111096-02 2111096-03 60-9601112 80-2601110 to-9601110 2111096-10 LAB USE ONLY Lab ID Lonen Telephone ⊢ш≥ Page 2 of 28

L	=
L	
L	
L	
L	
Ŀ	SIN
L	
L	
L	

0 4 C Т 0 ш S 0 > Z F Remarks ANALYSIS REQUESTED Page 2 of 2 ASL JOB# 2110 96 24 chive \times \times >(2000) 25108 Dolt8) × Hal THA × EDF W SH S Preservation $\overline{}$ S E REPORT: X PDF 2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500 Invoice To: Matrix Report To. 50:1 Address: Address: P.O.# 1 yozglas AMERICAN SCIENTIFIC LABORATORIES, LLC Container(s) Type # Project ID: 1156.00 10:01 1211 11 14:01 1041 87:01 2.0 Time Environmental Testing Services Project Name: Site Address: SAMPLE DESCRIPTION Date Manager 7 Project 84909 GLOBAL ID 2111096-13 5360-0.5 21.1-0985-15 586-1.75 585-1.0 Engineers Sel paga 2111 096-12 585-2.0 Sample ID 12/11/11/2 stives 2111096-11 LAB USE ONLY Special Instruction: Lab ID COC# Nº Company: Telephone: Address. E-mail: Fax:

⊢ш≥

Relinquished By: Austhy Pail of Date 11/11/21 Time 135 Condition of Sample: Received For Laboratory Date 1|||| 2| Time 10: 4| Date 1/1//2 [Time 1 350 Time Date white - Report, Yellow - Laboratory, Pink -

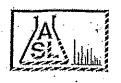
ш

R

C

0

TAT


Rysh 3-day

tat

Ľ

O Normal

Date 11/11/2\Time 2.

Job# 2111096

ASL Sample Receipt Form

Client: SCS Engineers	
Date: 11-11-2021	
Sample Information:	·
Temperature:°C	口Blank 又Sample
Custody Seal:	口 Yes 又No 口 Not Available
Received Within Holding Time:	
Container:	
Proper Containers and Sufficient Volume:	XYes □No
Soil: <u>IS</u> 4oz <u>Seeve</u> VOA	
Water:500AG1AG125PB250P	B C1500PB CIVOA Ciother
Air:Tedlar®	
Sample Containers Intact:	⊠Yes ⊡No
Trip Blank	□Yes ⊠XîNo
Chain-of-Custody (COC):	
Received:	XYes □No
Samplers Name:	XYes □No
Container Labels match COC:	
COC documents received complete:	⊠(Yes □No ⊠(Yes □No
Proper Preservation Noted:	Yes □ No. N/A
	Completed By: Janet Chin

AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services 2520 N. San Fernando Road, LA CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

ANALYTICAL SUMMARY REPORT

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB8-0.5	2111096-01	Solid	11/11/2021 08:47	11/11/2021 14:00
SB7-0.5	2111096-04	Solid	11/11/2021 09:04	11/11/2021 14:00
SB4-0.5	2111096-07	Solid	11/11/2021 09:43	11/11/2021 14:00
SB5-0.5	2111096-10	Solid	11/11/2021 10:04	11/11/2021 14:00
SB6-0.5	2111096-13	Solid	11/11/2021 10:27	11/11/2021 14:00

Bran L

Amolk Brar, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SCS Engineers		Project	: Nirvana	Propertie	es			Wo	rk Order No:	2111096
8799 Balboa Avenue, Suite 290		Project	Number:	0122115	56.00				Reporte	d:
San Diego CA, 92123		Project	Manager:	Luke M	Iontague				11/17/2021	12:58
			Ana	lytical R	Results					
			Client	Sample	ID: SB8-(0.5				
		Lab	oratory Sa	mple ID	: 2111096	-01 (Solid)	1			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total Petroleum Hydrocarbons(TI	PH-g)			Batcl	h ID: Bł	\$10608	Pre	pared: 11/11/2021 17	/:00	
Gasoline Range Organics	ND		250	500	ug/kg	1	5030A	11/12/2021 15:19	DW	8015B
Surrogate: Bromofluorobenzene			103	%	70-120		5030A	11/12/2021 15:19	DW	8015B
Total Petroleum Hydrocarbons(TI	PH DROORO)		Batcl	h ID: Bł	X10606	Pre	pared: 11/12/2021 10):00	
Diesel range organics	58.0		2.00	20.0	mg/kg	2	3550B	11/13/2021 02:57	DW	8015B
Oil Range Organics	298		34.0	100	mg/kg	2	3550B	11/13/2021 02:57	DW	8015B
Surrogate: Chlorobenzene			100	%	70-120		3550B	11/13/2021 02:57	DW	8015B
Volatile Organic Compounds				Batch	h ID: Bł	K10607	Pre	pared: 11/11/2021 17	2:00	
Acetone	ND		12.7	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Benzene	ND		0.930	2.00	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromobenzene	ND		3.39	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromochloromethane	ND		0.380	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromodichloromethane	ND		0.630	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromoform	ND		3.39	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromomethane	ND		2 75	30.0	110/ko	1	5030A	11/12/2021 13:05	DW	8260B

				0 0					
Bromodichloromethane	ND	0.630	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromoform	ND	3.39	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Bromomethane	ND	2.75	30.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
2-Butanone	ND	5.83	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
n-Butylbenzene	ND	2.05	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
sec-Butylbenzene	ND	3.04	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
tert-Butylbenzene	ND	1.34	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Carbon disulfide	ND	5.53	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Carbon tetrachloride	ND	2.48	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Chlorobenzene	ND	0.890	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Chloroethane	ND	2.15	30.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
2-Chloroethylvinyl Ether	ND	5.53	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Chloroform	ND	1.24	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Chloromethane	ND	1.74	30.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
4-Chlorotoluene	ND	1.34	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
2-Chlorotoluene	ND	2.35	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,2-Dibromo-3-chloropropane	ND	2.69	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Dibromochloromethane	ND	0.650	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,2-Dibromoethane	ND	2.75	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Dibromomethane	ND	2.30	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,2-Dichlorobenzene	ND	1.65	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,3-Dichlorobenzene	ND	1.03	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,4-Dichlorobenzene	ND	2.23	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B

Bran mb

SCS Engineers		Project:		a Properties	5			Wo	ork Order No	: 2111096
8799 Balboa Avenue, Suite 290		Project N	umber:	0122115	6.00				Reporte	ed:
San Diego CA, 92123		Project N	lanager:	Luke M	ontague				11/17/2021	12:58
			Ana	lytical R	esults					
			Client	Sample I	D: SB8-().5				
		Labor	atory Sa	mple ID:	2111096	-01 (Solid))			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch	ID: BI	K10607	Prep	oared: 11/11/2021 17	7:00	
Dichlorodifluoromethane	ND		2.07	30.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1-Dichloroethane	ND		1.30	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,2-Dichloroethane	ND		1.57	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1-Dichloroethene	ND		1.60	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
cis-1,2-Dichloroethene	ND		2.16	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
trans-1,2-Dichloroethene	ND		2.60	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1-Dichloropropene	ND		0.660	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,2-Dichloropropane	ND		0.920	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
,3-Dichloropropane	ND		1.36	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
2,2-Dichloropropane	ND		1.12	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
cis-1,3-Dichloropropene	ND		0.980	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
rans-1,3-Dichloropropene	ND		0.960	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Ethylbenzene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Hexachlorobutadiene	ND		2.77	30.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
2-Hexanone	ND		3.18	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
sopropylbenzene	ND		1.42	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
o-Isopropyltoluene	ND		3.86	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Methyl tert-Butyl Ether (MTBE)	ND		1.81	5.00	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
4-Methyl-2-pentanone (MIBK)	ND		3.14	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Methylene chloride	ND		3.31	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Naphthalene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
n-Propylbenzene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Styrene	ND		0.800	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1,1,2-Tetrachloroethane	ND		1.28	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1,2,2-Tetrachloroethane	ND		3.25	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Tetrachloroethene	ND		0.930	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Foluene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
,2,3-Trichlorobenzene	ND		1.23	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
,2,4-Trichlorobenzene	ND		2.82	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1,1-Trichloroethane	ND		2.03	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
1,1,2-Trichloroethane	ND		1.74	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Trichloroethene	ND		1.15	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Frichlorofluoromethane	ND		3.15	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
,2,3-Trichloropropane	ND		1.74	10.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
			2.10		4		50204	11/10/2021 12:05		00(00

Amb Bran

ND

ND

3.19

1.23

10.0

10.0

ug/kg

ug/kg

1

1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11/12/2021 13:05

11/12/2021 13:05

5030A

5030A

Amolk Brar, Lab Director

1,2,4-Trimethylbenzene

1,3,5- Trimethylbenzene

8260B

8260B

DW

DW

SCS Engineers 8799 Balboa Avenue, Suite 290		Project: Project	Nirvana Number:	Propertion 012211				Wo	rk Order No: Peparte	
San Diego CA, 92123		•	Manager:		10ntague				Reporte 11/17/2021	
Sun Diego Cri, 92125		Tiojeet	_		6				11/1//2021	12.50
				lytical F						
			Client	Sample	ID: SB8-0	0.5				
		Labo	ratory Sa	mple ID	: 2111096	-01 (Solid)				
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Bate	h ID: Bł	K10607	Prep	oared: 11/11/2021 17	7:00	
Vinyl acetate	ND		10.8	50.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Vinyl chloride	ND		2.79	30.0	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
m,p-Xylenes	ND		1.80	4.00	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
o-Xylene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:05	DW	8260B
Surrogate: 4-Bromofluorobenzene			90.1	%	70-120		5030A	11/12/2021 13:05	DW	8260B
Surrogate: Dibromofluoromethane			75.0	%	70-120		5030A	11/12/2021 13:05	DW	8260B
Surrogate: Toluene-d8			89.8	%	70-120		5030A	11/12/2021 13:05	DW	8260B
8270 PAH SIM				Bate	h ID: BI	K10609	Prep	pared: 11/15/2021 09	9:10	
Acenaphthene	ND		5.52	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Acenaphthylene	ND		5.52	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Anthracene	ND		4.96	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Benzo(a)anthracene	10.7	J	3.40	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Benzo[a]pyrene	ND		9.20	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Benzo[b]fluoranthene	ND		9.24	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Benzo(ghi)perylene	ND		20.0	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Benzo[k]fluoranthene	ND		9.72	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Chrysene	15.3	J	5.68	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Dibenz(a,h)anthracene	ND		18.9	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Fluoranthene	22.7		4.16	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Fluorene	ND		5.00	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Indeno (1,2,3-cd) pyrene	ND		17.7	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Naphthalene	ND		6.32	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Phenanthrene	14.7	J	5.80	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Pyrene	19.3	J	4.12	20.0	ug/kg	4	3550 SV	11/15/2021 16:12	AY	8270C
Surrogate: Nitrobenzene-d5			71.6	%	35-114		3550 SV	11/15/2021 16:12	AY	8270C
Surrogate: 1,4-Dioxane-d8			30.4	%	21-105		3550 SV	11/15/2021 16:12	AY	8270C
			Ana	lytical F	Results					
			Client	Sample	ID: SB7-(0.5				
		Labo	ratory Sa	mple ID	: 2111096	-04 (Solid)				
							Prep			

Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
<u>Total Petroleum Hydrocarbons(TPI</u>	I-g)			Batch	ID: BK	\$10608	Prep	pared: 11/11/2021 1	7:00	
Gasoline Range Organics	ND		250	500	ug/kg	1	5030A	11/12/2021 15:48	DW	8015B

mal Bran

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		5	Nirvana Number: Manager:	Propertie 0122115 Luke M	6.00			Wor	k Order No: Reporte 11/17/2021	ed:
			Ana	lytical R	esults					
			Client	Sample l	D: SB7-().5				
		Labo	oratory Sa	mple ID:	2111096	-04 (Solid))			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total Petroleum Hydrocarbons(Tl	PH-g)			Batch	ID: BH	K10608	Prep	oared: 11/11/2021 17:	:00	
Surrogate: Bromofluorobenzene			109	%	70-120		5030A	11/12/2021 15:48	DW	8015B
Total Petroleum Hydrocarbons(Tl	PH DROORO)			Batch	ID: BH	K10606	Prep	pared: 11/12/2021 10	:00	
Diesel range organics	128		2.00	20.0	mg/kg	2	3550B	11/13/2021 03:40	DW	8015B
Oil Range Organics	352		34.0	100	mg/kg	2	3550B	11/13/2021 03:40	DW	8015B
Surrogate: Chlorobenzene			102	%	70-120		3550B	11/13/2021 03:40	DW	8015B
Volatile Organic Compounds				Batch	ID: BH	K10607	Prep	pared: 11/11/2021 17	:00	
Acetone	ND		12.7	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Benzene	ND		0.930	2.00	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Bromobenzene	ND		3.39	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Bromochloromethane	ND		0.380	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Bromodichloromethane	ND		0.630	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Bromoform	ND		3.39	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Bromomethane	ND		2.75	30.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
-Butanone	ND		5.83	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
n-Butylbenzene	ND		2.05	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
sec-Butylbenzene	ND		3.04	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
ert-Butylbenzene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Carbon disulfide	ND		5.53	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Carbon tetrachloride	ND		2.48	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Chlorobenzene	ND		0.890	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Chloroethane	ND		2.15	30.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
2-Chloroethylvinyl Ether	ND		5.53	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Chloroform	ND		1.24	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Chloromethane	ND		1.74	30.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
-Chlorotoluene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
2-Chlorotoluene	ND		2.35	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
,2-Dibromo-3-chloropropane	ND		2.69	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Dibromochloromethane	ND		0.650	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
,2-Dibromoethane	ND		2.75	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Dibromomethane	ND		2.30	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,2-Dichlorobenzene	ND		1.65	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,3-Dichlorobenzene	ND		1.03	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,4-Dichlorobenzene	ND		2.23	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Dichlorodifluoromethane	ND		2.07	30.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B

Bran mb

SCS Engineers		Project		Properties				Wo	rk Order No:	
8799 Balboa Avenue, Suite 290			Number:	0122115					Reporte	
San Diego CA, 92123		Project	Manager:	Luke Mo	ontague				11/17/2021	12:58
			Ana	lytical Ro	esults					
			Client	Sample I	D: SB7-0).5				
		Lab	oratory Sa	mple ID:	2111096	-04 (Solid)	1			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch	ID: Bk	\$10607	Prep	oared: 11/11/2021 17	7:00	
1,1-Dichloroethane	ND		1.30	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,2-Dichloroethane	ND		1.57	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,1-Dichloroethene	ND		1.60	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
cis-1,2-Dichloroethene	ND		2.16	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
trans-1,2-Dichloroethene	ND		2.60	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,1-Dichloropropene	ND		0.660	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,2-Dichloropropane	ND		0.920	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,3-Dichloropropane	ND		1.36	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
2,2-Dichloropropane	ND		1.12	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
cis-1,3-Dichloropropene	ND		0.980	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
trans-1,3-Dichloropropene	ND		0.960	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Ethylbenzene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Hexachlorobutadiene	ND		2.77	30.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
2-Hexanone	ND		3.18	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Isopropylbenzene	ND		1.42	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
p-Isopropyltoluene	ND		3.86	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Methyl tert-Butyl Ether (MTBE)	ND		1.81	5.00	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
4-Methyl-2-pentanone (MIBK)	ND		3.14	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Methylene chloride	ND		3.31	50.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Naphthalene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
n-Propylbenzene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Styrene	ND		0.800	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,1,1,2-Tetrachloroethane	ND		1.28	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,1,2,2-Tetrachloroethane	ND		3.25	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Tetrachloroethene	ND		0.930	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Toluene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
1,2,3-Trichlorobenzene	ND		1.23	10.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B

ND

ND

ND

ND

ND

ND

ND

ND

2.03

1.74

1.15

3.15

1.74

3.19

1.23

10.8

10.0

10.0

10.0

10.0

10.0

10.0

10.0

50.0

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

1

1

1

1

1

1

1

1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5030A

5030A

5030A

5030A

5030A

5030A

5030A

5030A

11/12/2021 13:31

11/12/2021 13:31

11/12/2021 13:31

11/12/2021 13:31

11/12/2021 13:31

11/12/2021 13:31

11/12/2021 13:31

11/12/2021 13:31

DW

DW

DW

DW

DW

DW

DW

DW

8260B

8260B

8260B

8260B

8260B

8260B

8260B

8260B

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5- Trimethylbenzene

Trichloroethene

Vinyl acetate

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		·	: Nirvana Number: Manager:	n Propertie 012211 Luke M				Wo	rk Order No: Reporte 11/17/2021	d:
			Ana	lytical F	Results					
			Client	Sample	ID: SB7-0	0.5				
		Labo	oratory Sa	mple ID	: 2111096	-04 (Solid)				
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batel	h ID: BI	K10607	Prep	oared: 11/11/2021 17	:00	
Vinyl chloride	ND		2.79	30.0	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
m,p-Xylenes	ND		1.80	4.00	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
p-Xylene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:31	DW	8260B
Surrogate: 4-Bromofluorobenzene			91.7	%	70-120		5030A	11/12/2021 13:31	DW	8260B
Surrogate: Dibromofluoromethane			74.6	%	70-120		5030A	11/12/2021 13:31	DW	8260B
Surrogate: Toluene-d8			93.6	%	70-120		5030A	11/12/2021 13:31	DW	8260B
8270 PAH SIM				Batc	h ID: Bl	K10609	Prep	pared: 11/15/2021 09	:10	
Acenaphthene	ND		5.52	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Acenaphthylene	ND		5.52	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Anthracene	ND		4.96	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Benzo(a)anthracene	4.67	J	3.40	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Benzo[a]pyrene	ND		9.20	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Benzo[b]fluoranthene	ND		9.24	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Benzo(ghi)perylene	ND		20.0	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Benzo[k]fluoranthene	ND		9.72	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Chrysene	10.0	J	5.68	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Dibenz(a,h)anthracene	ND		18.9	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Fluoranthene	10.0	J	4.16	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Fluorene	ND		5.00	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
ndeno (1,2,3-cd) pyrene	ND		17.7	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Naphthalene	ND		6.32	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Phenanthrene	ND		5.80	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Pyrene	10.7	J	4.12	20.0	ug/kg	4	3550 SV	11/15/2021 16:42	AY	8270C
Surrogate: Nitrobenzene-d5			92.8	%	35-114		3550 SV	11/15/2021 16:42	AY	8270C
Surrogate: 1,4-Dioxane-d8			27.2	%	21-105		3550 SV	11/15/2021 16:42	AY	8270C
			Ana	lytical F	Results					
			Client	Sample	ID: SB4-(0.5				
		Labo	oratory Sa	mple ID	: 2111096	-07 (Solid)				

Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
<u>Total Petroleum Hydrocarbons(</u>	TPH-g)			Batch	n ID: Bł	K10608	Prep	oared: 11/11/2021 17	7:00	
Gasoline Range Organics	ND		250	500	ug/kg	1	5030A	11/12/2021 16:17	DW	8015B
Surrogate: Bromofluorobenzene			106	%	70-120		5030A	11/12/2021 16:17	DW	8015B

moh Bran

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		5	Number: Manager:	Propertie 0122115 Luke M	56.00 ontague			Wo	rk Order No: Reporte 11/17/2021	ed:
		Labo		-	(D: SB4-(1			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total Petroleum Hydrocarbons(Tl	PH DROORO)			Batch	n ID: BH	K10606	Prep	oared: 11/12/2021 10	:00	
Diesel range organics	ND		1.00	10.0	mg/kg	1	3550B	11/13/2021 02:15	DW	8015B
Oil Range Organics	82.4		17.0	50.0	mg/kg	1	3550B	11/13/2021 02:15	DW	8015B
Surrogate: Chlorobenzene			99.2	%	70-120		3550B	11/13/2021 02:15	DW	8015B
Volatile Organic Compounds				Batch	n ID: Bł	K10607	Prep	oared: 11/11/2021 17	:00	
Acetone	ND		12.7	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Benzene	ND		0.930	2.00	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Bromobenzene	ND		3.39	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Bromochloromethane	ND		0.380	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Bromodichloromethane	ND		0.630	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Bromoform	ND		3.39	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Bromomethane	ND		2.75	30.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
2-Butanone	ND		5.83	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
n-Butylbenzene	ND		2.05	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
sec-Butylbenzene	ND		3.04	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
ert-Butylbenzene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Carbon disulfide	ND		5.53	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Carbon tetrachloride	ND		2.48	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Chlorobenzene	ND		0.890	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Chloroethane	ND		2.15	30.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
2-Chloroethylvinyl Ether	ND		5.53	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Chloroform	ND		1.24	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Chloromethane	ND		1.74	30.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
4-Chlorotoluene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
2-Chlorotoluene	ND		2.35	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2-Dibromo-3-chloropropane	ND		2.69	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Dibromochloromethane	ND		0.650	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2-Dibromoethane	ND		2.75	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Dibromomethane	ND		2.30	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2-Dichlorobenzene	ND		1.65	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,3-Dichlorobenzene	ND		1.03	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
,4-Dichlorobenzene	ND		2.23	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Dichlorodifluoromethane	ND		2.07	30.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,1-Dichloroethane	ND		1.30	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2-Dichloroethane	ND		1.57	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,1-Dichloroethene	ND		1.60	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B

Bran mb

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123	Project: Nirvana Properties Work Order No: 2 Project Number: 01221156.00 Reported: Project Manager: Luke Montague 11/17/2021 12 Analytical Results Control of the second s											
			An	alytical R	esults							
			Client	Sample I	D: SB4-().5						
		Labo	oratory Sa	ample ID:	2111096	-07 (Solid))					
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method		
Volatile Organic Compounds												
cis-1,2-Dichloroethene	ND		2.16	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B		
trans-1,2-Dichloroethene	ND		2.60	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B		

Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch	ID: Bk	\$10607	Prep	ared: 11/11/2021 17	:00	
cis-1,2-Dichloroethene	ND		2.16	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
trans-1,2-Dichloroethene	ND		2.60	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,1-Dichloropropene	ND		0.660	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2-Dichloropropane	ND		0.920	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,3-Dichloropropane	ND		1.36	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
2,2-Dichloropropane	ND		1.12	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
cis-1,3-Dichloropropene	ND		0.980	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
rans-1,3-Dichloropropene	ND		0.960	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Ethylbenzene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Hexachlorobutadiene	ND		2.77	30.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
2-Hexanone	ND		3.18	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Isopropylbenzene	ND		1.42	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
o-Isopropyltoluene	ND		3.86	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Methyl tert-Butyl Ether (MTBE)	ND		1.81	5.00	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
-Methyl-2-pentanone (MIBK)	ND		3.14	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Methylene chloride	ND		3.31	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Naphthalene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
n-Propylbenzene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Styrene	ND		0.800	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
,1,1,2-Tetrachloroethane	ND		1.28	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
,1,2,2-Tetrachloroethane	ND		3.25	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Fetrachloroethene	ND		0.930	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Foluene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2,3-Trichlorobenzene	ND		1.23	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
,2,4-Trichlorobenzene	ND		2.82	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
,1,1-Trichloroethane	ND		2.03	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,1,2-Trichloroethane	ND		1.74	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Trichloroethene	ND		1.15	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Frichlorofluoromethane	ND		3.15	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2,3-Trichloropropane	ND		1.74	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,2,4-Trimethylbenzene	ND		3.19	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
1,3,5- Trimethylbenzene	ND		1.23	10.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Vinyl acetate	ND		10.8	50.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
Vinyl chloride	ND		2.79	30.0	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
m,p-Xylenes	ND		1.80	4.00	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B
o-Xylene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 13:57	DW	8260B

mal Bran

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		-	Number: Manager:		56.00 Iontague			Wo	rk Order No: Reporte 11/17/2021	d:
				lytical R Sample	lesults ID: SB4-(0.5				
		Lab	oratory Sa	mple ID	: 2111096	5-07 (Solid)	1			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batcl	n ID: Bl	K10607	Prep	pared: 11/11/2021 17	:00	
Surrogate: 4-Bromofluorobenzene			87.9	%	70-120		5030A	11/12/2021 13:57	DW	8260B
Surrogate: Dibromofluoromethane			74.1	%	70-120		5030A	11/12/2021 13:57	DW	8260B
Surrogate: Toluene-d8			92.8		70-120		5030A	11/12/2021 13:57	DW	8260B
3270 PAH SIM				Batcl	n ID: Bl	K10609	Pren	pared: 11/15/2021 09	0.10	
Acenaphthene	ND		5.52	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Acenaphthylene	ND		5.52	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C 8270C
Anthracene	ND		4.96	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Benzo(a)anthracene	4.00	J	3.40	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Benzo[a]pyrene	ND	-	9.20	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Benzo[b]fluoranthene	ND		9.24	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Benzo(ghi)perylene	ND		20.0	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Benzo[k]fluoranthene	ND		9.72	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Chrysene	15.3	J	5.68	20.0	ug/kg	4	3550 SV		AT	8270C
Dibenz(a,h)anthracene	ND	5	18.9	20.0	ug/kg	4	3550 SV	11/15/2021 17:11 11/15/2021 17:11	AY	8270C
Tuoranthene	9.33	J	4.16	20.0	ug/kg	4	3550 SV		AY	8270C
luorene	ND	Ū	5.00	20.0	ug/kg	4	3550 SV	11/15/2021 17:11 11/15/2021 17:11	AY	8270C
ndeno (1,2,3-cd) pyrene	ND		17.7	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
Vaphthalene	ND		6.32	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
rhenanthrene	ND		5.80	20.0	ug/kg	4	3550 SV	11/15/2021 17:11	AY	8270C
	10.0	J	4.12		ug/kg	4	3550 SV		AT	8270C
Pyrene /urrogate: Nitrobenzene-d5	10.0	3	4.12	20.0	ид/кд 35-114	4	3550 SV	11/15/2021 17:11 11/15/2021 17:11	AY	
-										8270C
urrogate: 1,4-Dioxane-d8			32.4		21-105		3550 SV	11/15/2021 17:11	AY	8270C
				lytical R						
		Lah		-	ID: SB5-(: 2111096	0.5 5-10 (Solid)	1			
Analyte	Result	Notes	MDL	PQL	Units	. ,	Prep	Analyzed	Analyst	Method
Analyte	Kesuit	Notes	MDL	~		Dilution	Method	-		Wiethou
Total Petroleum Hydrocarbons(T	'PH-g)			Batcl	n ID: Bl	K10608		pared: 11/11/2021 17	:00	
Gasoline Range Organics	ND		250	500	ug/kg	1	5030A	11/12/2021 16:45	DW	8015B
Surrogate: Bromofluorobenzene			113	%	70-120		5030A	11/12/2021 16:45	DW	8015B
Total Petroleum Hydrocarbons(T	PH DROORO)		Batcl	n ID: Bl	K10606	Prep	pared: 11/12/2021 10):00	
Diesel range organics	ND		1.00	10.0	mg/kg	1	3550B	11/13/2021 00:50	DW	8015B

Bran h

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

٦

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123			Number: Manager:	Propertie 0122115 Luke M	56.00 Iontague			Wo	rk Order No: Reporte 11/17/2021	ed:
				·	ID: SB5-	0.5				
		Lab	oratory Sa	mple ID	: 2111090	5-10 (Solid)				
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total Petroleum Hydrocarbons(T	PH DROORO)		Batch	n ID: B	K10606	Prep	pared: 11/12/2021 10):00	
Oil Range Organics	ND		17.0	50.0	mg/kg	1	3550B	11/13/2021 00:50	DW	8015B
Surrogate: Chlorobenzene			98.2	%	70-120		3550B	11/13/2021 00:50	DW	8015B
Volatile Organic Compounds				Batch	n ID: B	K10607	Prep	oared: 11/11/2021 17	7:00	
Acetone	ND		12.7	50.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Benzene	ND		0.930	2.00	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Bromobenzene	ND		3.39	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Bromochloromethane	ND		0.380	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Bromodichloromethane	ND		0.630	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Bromoform	ND		3.39	50.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Bromomethane	ND		2.75	30.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
-Butanone	ND		5.83	50.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
-Butylbenzene	ND		2.05	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
ec-Butylbenzene	ND		3.04	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
ert-Butylbenzene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Carbon disulfide	ND		5.53	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Carbon tetrachloride	ND		2.48	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Chlorobenzene	ND		0.890	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Chloroethane	ND		2.15	30.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
-Chloroethylvinyl Ether	ND		5.53	50.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Chloroform	ND		1.24	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Chloromethane	ND		1.74	30.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
-Chlorotoluene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
2-Chlorotoluene	ND		2.35	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,2-Dibromo-3-chloropropane	ND		2.69	50.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Dibromochloromethane	ND		0.650	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,2-Dibromoethane	ND		2.75	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Dibromomethane	ND		2.30	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,2-Dichlorobenzene	ND		1.65	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,3-Dichlorobenzene	ND		1.03	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,4-Dichlorobenzene	ND		2.23	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
Dichlorodifluoromethane	ND		2.07	30.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,1-Dichloroethane	ND		1.30	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
,2-Dichloroethane	ND		1.57	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
1,1-Dichloroethene	ND		1.60	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
cis-1,2-Dichloroethene	ND		2.16	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B

Bran moh

American Scientific Laboratories, LLC **Environmental Testing Services** 2520 N. San Fernando Road, LA CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		5	: Nirvana Number: Manager:	a Propertie 0122115 Luke M	6.00			Wo	rk Order No: Reporte 11/17/2021	ed:
			Ana	alytical R	esults					
			Client	Sample l	D: SB5-0	0.5				
		Lab	oratory Sa	mple ID:	2111096	-10 (Solid)				
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch	ID: Bk	K10607	Prep	oared: 11/11/2021 17	7:00	
trans-1,2-Dichloroethene	ND		2.60	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
1,1-Dichloropropene	ND		0.660	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B
1,2-Dichloropropane	ND		0.920	10.0	ug/kg	1	5030A	11/12/2021 14:23	DW	8260B

10.0

10.0

10.0

10.0

2.00

30.0

50.0

10.0

10.0

5.00

50.0

50.0

10.0

ug/kg

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5030A

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

11/12/2021 14:23

DW

8260B

1.36

1.12

0.980

0.960

1.00

2.77

3.18

1.42

3.86

1.81

3.14

3.31

1.14

1.80

1.00

86.1 %

4.00

2.00

ug/kg

ug/kg

70-120

			1010	00	
n-Propylbenzene	ND	1.14	10.0	ug/kg	
Styrene	ND	0.800	10.0	ug/kg	
1,1,1,2-Tetrachloroethane	ND	1.28	10.0	ug/kg	
1,1,2,2-Tetrachloroethane	ND	3.25	10.0	ug/kg	
Tetrachloroethene	ND	0.930	10.0	ug/kg	
Toluene	ND	1.00	2.00	ug/kg	
1,2,3-Trichlorobenzene	ND	1.23	10.0	ug/kg	
1,2,4-Trichlorobenzene	ND	2.82	10.0	ug/kg	
1,1,1-Trichloroethane	ND	2.03	10.0	ug/kg	
1,1,2-Trichloroethane	ND	1.74	10.0	ug/kg	
Trichloroethene	ND	1.15	10.0	ug/kg	
Trichlorofluoromethane	ND	3.15	10.0	ug/kg	
1,2,3-Trichloropropane	ND	1.74	10.0	ug/kg	
1,2,4-Trimethylbenzene	ND	3.19	10.0	ug/kg	
1,3,5- Trimethylbenzene	ND	1.23	10.0	ug/kg	
Vinyl acetate	ND	10.8	50.0	ug/kg	
Vinyl chloride	ND	2.79	30.0	ug/kg	

ND

o-Xylene Surrogate: 4-Bromofluorobenzene

1,2-Dichloropropane 1,3-Dichloropropane

2,2-Dichloropropane

Hexachlorobutadiene

Isopropylbenzene

p-Isopropyltoluene

Methylene chloride

Naphthalene

m,p-Xylenes

Methyl tert-Butyl Ether (MTBE)

4-Methyl-2-pentanone (MIBK)

Ethylbenzene

2-Hexanone

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

h Bran

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		•	Nirvana Number: Manager:	a Propertie 012211 Luke M				Wo	ork Order No Reporte 11/17/2021	ed:
			Ana	alytical F	Results					
			Client	Sample	ID: SB5-	0.5				
		Labo	oratory Sa	mple ID	: 2111096	5-10 (Solid)				
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batel	h ID: B	K10607	Prep	oared: 11/11/2021 17	7:00	
Surrogate: Dibromofluoromethane			72.0	%	70-120		5030A	11/12/2021 14:23	DW	8260B
Surrogate: Toluene-d8			93.9	%	70-120		5030A	11/12/2021 14:23	DW	8260B
8270 PAH SIM				Batel	h ID: B	K10609	Prep	pared: 11/15/2021 09	9:10	
Acenaphthene	ND		1.38	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Acenaphthylene	ND		1.38	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Anthracene	ND		1.24	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Benzo(a)anthracene	ND		0.849	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Benzo[a]pyrene	ND		2.30	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Benzo[b]fluoranthene	ND		2.30	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Benzo(ghi)perylene	ND		5.00	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Benzo[k]fluoranthene	ND		2.43	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Chrysene	ND		1.42	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Dibenz(a,h)anthracene	ND		4.73	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Fluoranthene	ND		1.04	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Fluorene	ND		1.25	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Indeno (1,2,3-cd) pyrene	ND		4.42	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Naphthalene	ND		1.58	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Phenanthrene	ND		1.45	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Pyrene	ND		1.03	5.00	ug/kg	1	3550 SV	11/15/2021 17:42	AY	8270C
Surrogate: Nitrobenzene-d5	ND		78.1		35-114		3550 SV	11/15/2021 17:42	AY	8270C
-										
Surrogate: 1,4-Dioxane-d8			33.2		21-105		3550 SV	11/15/2021 17:42	AY	8270C
				alytical F	ID: SB6-	0.5				
		Labo		-		0.5 5-13 (Solid)				
			-	-			Prep			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Method	Analyzed	Analyst	Method
Total Petroleum Hydrocarbons(TI	PH-g)			Batel	h ID: B	K10608	Prep	pared: 11/11/2021 17	7:00	
Gasoline Range Organics	ND		250	500	ug/kg	1	5030A	11/12/2021 17:14	DW	8015B
Surrogate: Bromofluorobenzene			100	%	70-120		5030A	11/12/2021 17:14	DW	8015B
Total Petroleum Hydrocarbons(TI	<u>PH DR</u> OORO			Batel	h ID: B	K10606	Prep	pared: 11/12/2021 10	0:00	_
Diesel range organics	ND		1.00	10.0	mg/kg	1	3550B	11/13/2021 01:32	DW	8015B
0 0				- 0.0	00					

And Bran

ND

17.0

50.0

mg/kg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11/13/2021 01:32

3550B

1

Oil Range Organics

8015B

DW

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		Project: Project Nu Project Ma	ımber: anager:	Propertie 0122115 Luke M	6.00 ontague			Wo	rk Order No: Reporte 11/17/2021	ed:
				llytical R Sample I		0.5				
		Labora	tory Sa	mple ID:	2111096	-13 (Solid)				
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total Petroleum Hydrocarbons(T	PH DROORO)		Batch	ID: BI	K10606	Prep	oared: 11/12/2021 10):00	
Surrogate: Chlorobenzene			99.9	%	70-120		3550B	11/13/2021 01:32	DW	8015B
Volatile Organic Compounds				Batch	ID: BI	K10607	Pre	pared: 11/11/2021 17	:00	
Acetone	ND		12.7	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Benzene	ND		0.930	2.00	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Bromobenzene	ND		3.39	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Bromochloromethane	ND		0.380	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Bromodichloromethane	ND		0.630	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Bromoform	ND		3.39	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Bromomethane	ND		2.75	30.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
2-Butanone	ND		5.83	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
n-Butylbenzene	ND		2.05	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
sec-Butylbenzene	ND		3.04	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
ert-Butylbenzene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Carbon disulfide	ND		5.53	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Carbon tetrachloride	ND		2.48	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Chlorobenzene	ND		0.890	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Chloroethane	ND		2.15	30.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
2-Chloroethylvinyl Ether	ND		5.53	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Chloroform	ND		1.24	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Chloromethane	ND		1.74	30.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
4-Chlorotoluene	ND		1.34	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
2-Chlorotoluene	ND		2.35	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,2-Dibromo-3-chloropropane	ND		2.69	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Dibromochloromethane	ND		0.650	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,2-Dibromoethane	ND		2.75	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Dibromomethane	ND		2.30	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,2-Dichlorobenzene	ND		1.65	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,3-Dichlorobenzene	ND		1.03	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,4-Dichlorobenzene	ND		2.23	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Dichlorodifluoromethane	ND		2.07	30.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,1-Dichloroethane	ND		1.30	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,2-Dichloroethane	ND		1.57	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,1-Dichloroethene	ND		1.60	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
cis-1,2-Dichloroethene	ND		2.16	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
trans-1,2-Dichloroethene	ND		2.60	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B

Bran moh

SCS Engineers		Project:		Propertie				Wo	rk Order No	: 2111096
8799 Balboa Avenue, Suite 290		Project N		0122115	56.00				Reporte	
San Diego CA, 92123		Project N	lanager:	Luke M	ontague				11/17/2021	12:58
			Ana	lytical R	esults					
				-	ID: SB6-(
		Labor	atory Sa	mple ID:	: 2111096	-13 (Solid))			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch	n ID: Bł	K10607	Pre	oared: 11/11/2021 17	7:00	
1,1-Dichloropropene	ND		0.660	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,2-Dichloropropane	ND		0.920	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,3-Dichloropropane	ND		1.36	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
2,2-Dichloropropane	ND		1.12	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
cis-1,3-Dichloropropene	ND		0.980	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
trans-1,3-Dichloropropene	ND		0.960	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Ethylbenzene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Hexachlorobutadiene	ND		2.77	30.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
2-Hexanone	ND		3.18	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
sopropylbenzene	ND		1.42	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
p-Isopropyltoluene	ND		3.86	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Methyl tert-Butyl Ether (MTBE)	ND		1.81	5.00	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
4-Methyl-2-pentanone (MIBK)	ND		3.14	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Methylene chloride	ND		3.31	50.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Naphthalene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1-Propylbenzene	ND		1.14	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Styrene	ND		0.800	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,1,1,2-Tetrachloroethane	ND		1.28	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,1,2,2-Tetrachloroethane	ND		3.25	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Tetrachloroethene	ND		0.930	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Foluene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1.2.3-Trichlorobenzene	ND		1.23	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
1,2,4-Trichlorobenzene	ND		2.82	10.0	ug/kg	1	5030A	11/12/2021 15:14	DW DW	8260B
					ug/kg	1	5030A	11/12/2021 15:14		8260B
1,1,1-Trichloroethane	ND ND		2.03 1.74	10.0		1	5030A	11/12/2021 15:14	DW	8260B
l,1,2-Trichloroethane Frichloroethene	ND		1.14	10.0	ug/kg ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Frichlorofluoromethane	ND		3.15	10.0	ug/kg ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
				10.0			5030A	11/12/2021 15:14	DW	
1,2,3-Trichloropropane	ND		1.74	10.0	ug/kg	1	5030A 5030A		DW	8260B
1,2,4-Trimethylbenzene	ND		3.19	10.0	ug/kg	1	5030A 5030A	11/12/2021 15:14	DW	8260B
1,3,5- Trimethylbenzene	ND		1.23	10.0	ug/kg	1	5030A 5030A	11/12/2021 15:14	DW	8260B
Vinyl acetate	ND		10.8	50.0	ug/kg	1		11/12/2021 15:14	DW	8260B
Vinyl chloride	ND		2.79	30.0	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
m,p-Xylenes	ND		1.80	4.00	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
p-Xylene	ND		1.00	2.00	ug/kg	1	5030A	11/12/2021 15:14	DW	8260B
Surrogate: 4-Bromofluorobenzene			87.4	%	70-120		5030A	11/12/2021 15:14	DW	8260B
Surrogate: Dibromofluoromethane			73.7	%	70-120		5030A	11/12/2021 15:14	DW	8260B

And Bran

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123		•	Number: Manager:		56.00 Iontague			Wo	ork Order No Reporte 11/17/2021	d:
			Ana	lytical R	Results					
			Client	Sample	ID: SB6-0).5				
		Lab	oratory Sa	mple ID	: 2111096	-13 (Solid))			
Analyte	Result	Notes	MDL	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batcl	h ID: BI	K10607	Prep	ared: 11/11/2021 17	7:00	
Surrogate: Toluene-d8			91.9	%	70-120		5030A	11/12/2021 15:14	DW	8260B
8270 PAH SIM				Batcl	n ID: BI	K10609	Prep	oared: 11/15/2021 09	9:10	
Acenaphthene	ND		1.38	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Acenaphthylene	ND		1.38	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Anthracene	ND		1.24	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Benzo(a)anthracene	ND		0.849	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Benzo[a]pyrene	ND		2.30	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Benzo[b]fluoranthene	ND		2.31	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Benzo(ghi)perylene	ND		5.00	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Benzo[k]fluoranthene	ND		2.43	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Chrysene	ND		1.42	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Dibenz(a,h)anthracene	ND		4.73	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Fluoranthene	ND		1.04	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Fluorene	ND		1.25	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Indeno (1,2,3-cd) pyrene	ND		4.42	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Naphthalene	ND		1.58	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Phenanthrene	ND		1.45	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Pyrene	ND		1.03	5.00	ug/kg	1	3550 SV	11/15/2021 18:12	AY	8270C
Surrogate: Nitrobenzene-d5			89.7	%	35-114		3550 SV	11/15/2021 18:12	AY	8270C
Surrogate: 1,4-Dioxane-d8			36.6	%	21-105		3550 SV	11/15/2021 18:12	AY	8270C

Bran mb

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

Total Petroleum Hydrocarbons(TPH-g) - Quality Control Report

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BK10608 - 5030A - 8015B											
Blank (BK10608-BLK1)					Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Gasoline Range Organics	ND	250	500	ug/kg							
LCS (BK10608-BS1)					Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Gasoline Range Organics	563			ug/L	500		113	75-120			
LCS Dup (BK10608-BSD1)					Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Gasoline Range Organics	562			ug/L	500		112	75-120	0.105	15	
Matrix Spike (BK10608-MS1)		Source: 2	111096-10		Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Gasoline Range Organics	550			ug/L	500	0.00	110	75-120			
Matrix Spike Dup (BK10608-MSD1)		Source: 2	111096-10		Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Gasoline Range Organics	557			ug/L	500	0.00	111	75-120	1.30	15	

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

Total Petroleum Hydrocarbons(TPH DROORO) - Quality Control Report

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BK10606 - 3550B - 8015B											
Blank (BK10606-BLK1)					Prepared: 1	1/12/202 A	nalyzed: 1	1/13/202			
Diesel range organics	ND	1.00	10.0	mg/kg							
Oil Range Organics	ND	17.0	50.0	"							
Surrogate: Chlorobenzene	92.9			mg/L	100		92.9	70-120			
LCS (BK10606-BS1)					Prepared: 1	1/12/202 A	nalyzed: 1	1/13/202			
Diesel range organics	551			mg/L	500		110	75-120			
Surrogate: Chlorobenzene	106			"	100		106	70-120			
LCS Dup (BK10606-BSD1)					Prepared: 1	1/12/202 A	nalyzed: 1	1/13/202			
Diesel range organics	558			mg/L	500		112	75-120	1.20	20	
Surrogate: Chlorobenzene	105			"	100		105	70-120			
Matrix Spike (BK10606-MS1)		Source: 2	2111096-10		Prepared: 1	1/12/202 A	nalyzed: 1	1/13/202			
Diesel range organics	547			mg/L	500	0.00	109	75-120			
Surrogate: Chlorobenzene	104			"	100		104	70-120			
Matrix Spike Dup (BK10606-MSD1)		Source: 2	2111096-10		Prepared: 1	1/12/202 A	nalyzed: 1	1/13/202			
Diesel range organics	550			mg/L	500	0.00	110	75-120	0.622	20	
Surrogate: Chlorobenzene	105			"	100		105	70-120			

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

Volatile Organic Compounds - Quality Control Report

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BK10607 - 5030A - 8260B											
Blank (BK10607-BLK1)					Prepared:	11/11/202 A	nalyzed: 11	/12/202			
Acetone	ND	12.7	50.0	ug/kg							
Benzene	ND	0.930	2.00	"							
Bromobenzene	ND	3.39	10.0	"							
Bromochloromethane	ND	0.380	10.0	"							
Bromodichloromethane	ND	0.630	10.0	"							
Bromoform	ND	3.39	50.0	"							
Bromomethane	ND	2.75	30.0	"							
2-Butanone	ND	5.83	50.0	"							
n-Butylbenzene	ND	2.05	10.0	"							
sec-Butylbenzene	ND	3.04	10.0	"							
tert-Butylbenzene	ND	1.34	10.0	"							
Carbon disulfide	ND	5.53	10.0	"							
Carbon tetrachloride	ND	2.48	10.0	"							
Chlorobenzene	ND	0.890	10.0	"							
Chloroethane	ND	2.15	30.0	"							
2-Chloroethylvinyl Ether	ND	5.53	50.0	"							
Chloroform	ND	1.24	10.0	"							
Chloromethane	ND	1.74	30.0	"							
4-Chlorotoluene	ND	1.34	10.0	"							
2-Chlorotoluene	ND	2.35	10.0	"							
1,2-Dibromo-3-chloropropane	ND	2.69	50.0	"							
Dibromochloromethane	ND	0.650	10.0	"							
1,2-Dibromoethane	ND	2.75	10.0								
Dibromomethane	ND	2.30	10.0								
1,2-Dichlorobenzene	ND	1.65	10.0								
1,3-Dichlorobenzene	ND	1.03	10.0	"							
1,4-Dichlorobenzene	ND	2.23	10.0								
Dichlorodifluoromethane	ND	2.07	30.0								
1,1-Dichloroethane	ND	1.30 1.57	10.0								
1,2-Dichloroethane 1,1-Dichloroethene	ND ND	1.60	10.0 10.0								
cis-1,2-Dichloroethene	ND	2.16	10.0								
rans-1,2-Dichloroethene	ND	2.60	10.0								
,1-Dichloropropene		0.660	10.0								
,2-Dichloropropane	ND ND	0.920	10.0								
1,3-Dichloropropane	ND	1.36	10.0								
2,2-Dichloropropane	ND	1.12	10.0								
zis-1,3-Dichloropropene	ND	0.980	10.0								
trans-1,3-Dichloropropene	ND	0.980	10.0								
Ethylbenzene	ND	1.00	2.00								
Hexachlorobutadiene	ND	2.77	30.0								

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

Volatile Organic Compounds - Quality Control Report

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BK10607 - 5030A - 8260B											
Blank (BK10607-BLK1)					Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
2-Hexanone	ND	3.18	50.0	ug/kg							
Isopropylbenzene	ND	1.42	10.0	"							
p-Isopropyltoluene	ND	3.86	10.0	"							
Methyl tert-Butyl Ether (MTBE)	ND	1.81	5.00	"							
4-Methyl-2-pentanone (MIBK)	ND	3.14	50.0	"							
Methylene chloride	ND	3.31	50.0	"							
Naphthalene	ND	1.14	10.0	"							
n-Propylbenzene	ND	1.14	10.0	"							
Styrene	ND	0.800	10.0	"							
1,1,1,2-Tetrachloroethane	ND	1.28	10.0	"							
1,1,2,2-Tetrachloroethane	ND	3.25	10.0	"							
Tetrachloroethene	ND	0.930	10.0	"							
Toluene	ND	1.00	2.00	"							
1,2,3-Trichlorobenzene	ND	1.23	10.0	"							
1,2,4-Trichlorobenzene	ND	2.82	10.0	"							
1,1,1-Trichloroethane	ND	2.03	10.0	"							
1,1,2-Trichloroethane	ND	1.74	10.0	"							
Trichloroethene	ND	1.15	10.0	"							
Trichlorofluoromethane	ND	3.15	10.0	"							
1,2,3-Trichloropropane	ND	1.74	10.0	"							
1,2,4-Trimethylbenzene	ND	3.19	10.0	"							
1,3,5- Trimethylbenzene	ND	1.23	10.0	"							
Vinyl acetate	ND	10.8	50.0	"							
Vinyl chloride	ND	2.79	30.0	"							
n,p-Xylenes	ND	1.80	4.00	"							
-Xylene	ND	1.00	2.00	"							
LCS (BK10607-BS1)					Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Benzene	53.4			ug/L	50.0		107	75-120			
Chlorobenzene	50.2			"	50.0		100	75-120			
1,1-Dichloroethene	55.5			"	50.0		111	75-120			
Methyl tert-Butyl Ether (MTBE)	44.4			"	50.0		88.8	75-120			
Toluene	44.7			"	50.0		89.5	75-120			
Trichloroethene	43.8			"	50.0		87.6	75-120			

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

Volatile Organic Compounds - Quality Control Report

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BK10607 - 5030A - 8260B											
LCS Dup (BK10607-BSD1)					Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Benzene	55.4			ug/L	50.0		111	75-120	3.77	20	
Chlorobenzene	50.4			"	50.0		101	75-120	0.438	20	
1,1-Dichloroethene	60.1			"	50.0		120	75-120	7.87	15	
Methyl tert-Butyl Ether (MTBE)	45.5			"	50.0		91.0	75-120	2.47	15	
Toluene	43.1			"	50.0		86.2	75-120	3.73	15	
Trichloroethene	45.0			"	50.0		89.9	75-120	2.64	20	
Matrix Spike (BK10607-MS1)		Source: 2	111096-10		Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Benzene	49.4			ug/L	50.0	0.00	98.9	75-120			
Chlorobenzene	47.8			"	50.0	0.00	95.5	75-120			
1,1-Dichloroethene	51.7			"	50.0	0.00	103	75-120			
Methyl tert-Butyl Ether (MTBE)	38.5			"	50.0	0.00	77.0	75-120			
Toluene	40.7			"	50.0	0.00	81.4	75-120			
Trichloroethene	40.6			"	50.0	0.00	81.1	75-120			
Matrix Spike Dup (BK10607-MSD1)		Source: 2	111096-10		Prepared: 1	1/11/202 A	nalyzed: 11	/12/202			
Benzene	53.4			ug/L	50.0	0.00	107	75-120	7.80	15	
Chlorobenzene	49.6			"	50.0	0.00	99.1	75-120	3.72	15	
1,1-Dichloroethene	56.1			"	50.0	0.00	112	75-120	8.09	15	
Methyl tert-Butyl Ether (MTBE)	43.8			"	50.0	0.00	87.7	75-120	12.9	15	
Toluene	43.5			"	50.0	0.00	87.0	75-120	6.65	15	
Frichloroethene	43.9			"	50.0	0.00	87.7	75-120	7.84	15	

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

8270 PAH SIM - Quality Control Report

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BK10609 - 3550 SV - 8270C											
Blank (BK10609-BLK1)					Prepared &	Analyzed:	11/15/202				
Acenaphthene	ND	1.38	5.00	ug/kg							
Acenaphthylene	ND	1.38	5.00	"							
Anthracene	ND	1.24	5.00	"							
Benzo(a)anthracene	ND	0.849	5.00	"							
Benzo[a]pyrene	ND	2.30	5.00	"							
Benzo[b]fluoranthene	ND	2.31	5.00	"							
Benzo(ghi)perylene	ND	5.00	5.00	"							
Benzo[k]fluoranthene	ND	2.43	5.00	"							
Chrysene	ND	1.42	5.00	"							
Dibenz(a,h)anthracene	ND	4.73	5.00	"							
Fluoranthene	ND	1.04	5.00	"							
Fluorene	ND	1.25	5.00	"							
ndeno (1,2,3-cd) pyrene	ND	4.42	5.00	"							
Naphthalene	ND	1.58	5.00	"							
Phenanthrene	ND	1.45	5.00	"							
Pyrene	ND	1.03	5.00	"							
LCS (BK10609-BS1)					Prepared &	Analyzed:	11/15/202				
Acenaphthene	19.5	1.38	5.00	ug/kg	33.3		58.5	43-118			
Pyrene	18.3	1.03	5.00	"	33.3		55.0	26-127			
LCS Dup (BK10609-BSD1)					Prepared &	Analyzed:	11/15/202				
Acenaphthene	19.0	1.38	5.00	ug/kg	33.3		57.0	43-118	2.60	30	
Pyrene	18.7	1.03	5.00	"	33.3		56.0	26-127	1.80	30	
Matrix Spike (BK10609-MS1)		Source: 2	111096-13		Prepared &	Analyzed:	11/15/202				
Acenaphthene	24.5	1.38	5.00	ug/kg	33.3	ND	73.5	43-118			
Pyrene	26.3	1.03	5.00	"	33.3	ND	79.0	26-127			

Bran L

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

8270 PAH SIM - Quality Control Report

Analyte	Result	MDL	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BK10609 - 3550 SV - 8270C											
Matrix Spike Dup (BK10609-MSD1)		Source: 2	111096-13		Prepared &	Analyzed:	11/15/202				
Acenaphthene	21.8	1.38	5.00	ug/kg	33.3	ND	65.5	43-118	11.5	30	
Pyrene	24.0	1.03	5.00	"	33.3	ND	72.0	26-127	9.27	30	

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: Nirvana Properties	Work Order No: 2111096
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	11/17/2021 12:58

Notes and Definitions

- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the practical quantitation limit (PQL)
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

16 November 2021

Luke Montague SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290 San Diego, CA 92123

H&P Project: SCS111221-11 Client Project: 01221156.00/ 821 Main Street

Dear Luke Montague:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 11-Nov-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- Notes and Definitions / Appendix
- Chain of Custody
- Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H& P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

Quality. Accuracy. Experience.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA P 1.800.834.9888 / 760.804.9678 F 760.804.9159 W handpmg.com

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

San Diego, CA 92123 Project Manager: Luke Montague 16-Nov-21 15:37 ANALYTICAL REPORT FOR SAMPLES								
8799 Balboa Avenue, Suite 290	ş	01221156.00/ 821 Main Street	Reported:					
SCS Engineers - San Diego	Project:	SCS111221-11						

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV3-3	E111044-01	Vapor	11-Nov-21	11-Nov-21
SV3-3 Rep	E111044-02	Vapor	11-Nov-21	11-Nov-21
SV2-2	E111044-03	Vapor	11-Nov-21	11-Nov-21
SV1-4	E111044-04	Vapor	11-Nov-21	11-Nov-21

The percent recoveries for 2-Butanone, 2 Hexanone and 1,2,4-Trichlorobenzene fell below the method criteria in the continuing calibration verification. Any results for these analytes may be biased low.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290 San Diego, CA 92123	Project: SCS111 Project Number: 012211 Project Manager: Luke M		Reported: 16-Nov-21 15:37		
	DETECTIONS SUMM	IARY			
Sample ID: SV3-3	Laboratory ID: E11	1044-01			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Toluene	9.8	3.8	ug/m3	EPA TO-15	
m,p-Xylene	9.2	8.8	ug/m3	EPA TO-15	
Sample ID: SV3-3 Rep	Laboratory ID: E11	1044-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Toluene	8.8	3.8	ug/m3	EPA TO-15	
Sample ID: SV2-2	Laboratory ID: E11	1044-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Carbon disulfide	47	6.3	ug/m3	EPA TO-15	
Toluene	19	3.8	ug/m3	EPA TO-15	
m,p-Xylene	26	8.8	ug/m3	EPA TO-15	
o-Xylene	7.2	4.4	ug/m3	EPA TO-15	
1,2,4-Trimethylbenzene	12	5.0	ug/m3	EPA TO-15	
Sample ID: SV1-4	Laboratory ID: E11	1044-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Chloroform	9.0	4.9	ug/m3	EPA TO-15	

1,2-Dichloropropane

Toluene

Bromodichloromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

2-Hexanone (MBK)

Tetrachloroethene

Chlorobenzene

Ethylbenzene

m,p-Xylene

Styrene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

4-Methyl-2-pentanone (MIBK)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego			•	5111221-11						
8799 Balboa Avenue, Suite 290		Project Nu	mber: 012	21156.00/ 8	321 Main Str	eet		Reported:		
San Diego, CA 92123		Project Mar	nager: Luk	e Montagu	e			16-Nov-21 15:37		
	Volatile	Organic	Compou	inds by]	EPA TO-	15				
	Н	&P Mobil	le Geocl	nemistry	, Inc.					
		Reporting		Dilution						
Analyte	Result	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes	
SV3-3 (E111044-01) Vapor Sampled: 11-Nov-	21 Received: 11	-Nov-21								
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15		
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"		
Chloromethane	ND	2.1	"	"	"	"	"	"		
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"		
Vinyl chloride	ND	2.6	"	"	"	"	"	"		
Bromomethane	ND	16	"	"	"	"	"	"		
Chloroethane	ND	8.0	"	"	"	"	"	"		
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"		
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"		
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"		
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"		
Carbon disulfide	ND	6.3	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"		
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"		
2-Butanone (MEK)	ND	30	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"		
Chloroform	ND	4.9	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"		
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"		
Benzene	ND	3.2	"	"	"	"	"	"		
Carbon tetrachloride	ND	6.4	"	"	"	"	"	"		
Trichloroethene	ND	5.5	"	"	"	"	"	"		
		. .								

ND

ND

ND

ND

ND

9.8

ND

ND

ND

ND

ND

ND

ND

ND

9.2

ND

9.4

6.8

4.6

8.3

4.6

3.8

5.5

8.3

8.6

6.9

7.8

7.0

4.7

4.4

8.8

4.3

"

"

..

..

"

..

"

"

..

..

"

"

..

"

"

..

"

"

"

"

"

"

"

"

"

"

"

"

..

..

"

..

"

"

"

.,

"

"

"

"

"

.,

..

"

"

"

"

.,

.,

"

"

..

..

..

..

"

"

..

..

"

..

"

"

"

..

..

"

.,

..

..

.,

"

"

..

..

..

.,

"

"

.,

..

"

"

..

"

"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego	Project: SCS111221-11	
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00/ 821 Main Street	Reported:
San Diego, CA 92123	Project Manager: Luke Montague	16-Nov-21 15:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV3-3 (E111044-01) Vapor Sampled: 11-Nov	-21 Received: 11-	Nov-21				_			
o-Xylene	ND	4.4	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15	
Bromoform	ND	10	"	"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"		"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"		"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"		"	
1,3-Dichlorobenzene	ND	12	"	"	"	"		"	
1,4-Dichlorobenzene	ND	12	"	"	"	"		"	
1,2-Dichlorobenzene	ND	12	"	"	"	"		"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"		"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	76-1	134	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.8 %	77-1		"	"	"	"	
SV3-3 Rep (E111044-02) Vapor Sampled: 11-	-Nov-21 Received	l: 11-Nov-21							
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15	
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	2.1	"	"	"	"	"	"	
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"	"	"	
Vinyl chloride	ND	2.6	"	"	"	"		"	
D (I									
Bromomethane	ND	16	"	"	"		"	"	
Bromomethane Chloroethane	ND ND	16 8.0		"		"	"	"	
Chloroethane	ND	8.0	"	"	"	"	"	"	
Chloroethane Trichlorofluoromethane (F11)	ND ND	8.0 5.6		"	"	"	"	"	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene	ND ND ND	8.0 5.6 4.0 7.7		" "	"	"	"	"	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113)	ND ND ND ND	8.0 5.6 4.0	""	"	" " "	" " "	" " "	" " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane)	ND ND ND ND	8.0 5.6 4.0 7.7 3.5	" " "	" " "	" " " "	" " "	" " "	" " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide	ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3		" " "	" " " "	" " "	" " "	" " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene	ND ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1		" " " "	" " " "	" " " "	" " " "	" " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane	ND ND ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3 8.0				" " " " "	" " " "	" " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK)	ND ND ND ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0				" " " " "	" " " " "	" " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene	ND ND ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9					" " " " " "	" " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane	ND ND ND ND ND ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9 5.5						" " " " "	
Chloroethane Trichlorofluoromethane (F11) 1,1-Dichloroethene 1,1,2-Trichlorotrifluoroethane (F113) Methylene chloride (Dichloromethane) Carbon disulfide trans-1,2-Dichloroethene 1,1-Dichloroethane 2-Butanone (MEK) cis-1,2-Dichloroethene Chloroform	ND ND ND ND ND ND ND ND ND	8.0 5.6 4.0 7.7 3.5 6.3 8.0 4.1 30 4.0 4.9						" " " " "	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego	Project: SCS111221-11						
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00/ 821 Main Street	Reported:					
San Diego, CA 92123	Project Manager: Luke Montague	16-Nov-21 15:37					
Volatila Organia Compounds by EPA TO 15							

Volatile Organic Compounds by EPA TO-15

				e deve	nemisti y	, me.				
Analyte		Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV3-3 Rep (E111044-02) Vapor	Sampled: 11-Nov-21	Received	: 11-Nov-21							
Trichloroethene		ND	5.5	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15	
1,2-Dichloropropane		ND	9.4	"	"	"	"		"	
Bromodichloromethane		ND	6.8		"	"	"	"	"	
cis-1,3-Dichloropropene		ND	4.6	"	"	"	"		"	
4-Methyl-2-pentanone (MIBK)		ND	8.3	"	"	"	"		"	
trans-1,3-Dichloropropene		ND	4.6	"	"	"	"		"	
Toluene		8.8	3.8		"	"	"		"	
1,1,2-Trichloroethane		ND	5.5		"	"	"		"	
2-Hexanone (MBK)		ND	8.3		"	"	"	"	"	
Dibromochloromethane		ND	8.6		"	"	"		"	
Tetrachloroethene		ND	6.9		"	"	"		"	
1,2-Dibromoethane (EDB)		ND	7.8		"	"	"	"	"	
1,1,1,2-Tetrachloroethane		ND	7.0		"	"	"		"	
Chlorobenzene		ND	4.7		"	"	"		"	
Ethylbenzene		ND	4.4		"	"	"	"	"	
m,p-Xylene		ND	8.8		"	"	"	"	"	
Styrene		ND	4.3		"	"	"	"	"	
o-Xylene		ND	4.4		"	"	"		"	
Bromoform		ND	10		"	"	"	"	"	
1,1,2,2-Tetrachloroethane		ND	7.0		"	"	"	"	"	
4-Ethyltoluene		ND	5.0		"	"	"		"	
1,3,5-Trimethylbenzene		ND	5.0		"	"	"		"	
1,2,4-Trimethylbenzene		ND	5.0		"	"	"		"	
1,3-Dichlorobenzene		ND	12		"	"	"	"	"	
1,4-Dichlorobenzene		ND	12		"	"		"	"	
1,2-Dichlorobenzene		ND	12		"	"	"		"	
1,2,4-Trichlorobenzene		ND	38		"	"		"	"	
Hexachlorobutadiene		ND	54		"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-de	4		107 %	76	-134	"	"	"	"	
Surrogate: Toluene-d8			102 %	78	-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	2		84.4 %	77	-127	"	"	"	"	

Chloroform

Benzene

Toluene

1,1,1-Trichloroethane

Carbon tetrachloride

1,2-Dichloropropane

Bromodichloromethane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2-Trichloroethane

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,1,2-Tetrachloroethane

2-Hexanone (MBK)

Tetrachloroethene

Chlorobenzene

Ethylbenzene

m,p-Xylene

Styrene

4-Methyl-2-pentanone (MIBK)

Trichloroethene

1,2-Dichloroethane (EDC)

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego		Pr	oject: SCS	Engineers - San Diego Project: SCS111221-11									
8799 Balboa Avenue, Suite 290		Project Nu	mber: 012	eet		Reported:							
San Diego, CA 92123		Project Mar	nager: Luk		16-Nov-21 15:37								
	Volatile	Organic	Compor	inds by H	EPA TO-	15							
	Н	l&P Mobil	e Geocl	nemistry,	Inc.								
Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes				
SV2-2 (E111044-03) Vapor Sampled: 11-Nov-2	21 Received: 1	1-Nov-21											
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15					
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"					
Chloromethane	ND	2.1	"	"	"	"		"					
Dichlorotetrafluoroethane (F114)	ND	7.1	"	"	"	"		"					
Vinyl chloride	ND	2.6	"	"	"	"		"					
Bromomethane	ND	16	"	"	"	"		"					
Chloroethane	ND	8.0	"	"	"	"		"					
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"		"					
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"					
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"					
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"					
Carbon disulfide	47	6.3	"	"	"	"	"	"					
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"					
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"					
2-Butanone (MEK)	ND	30	"	"	"	"	"	"					
cis-1,2-Dichloroethene	ND	4.0	"	"				"					

ND

19

ND

ND

ND

ND

ND

ND

ND

ND

26

ND

4.9

5.5

4.1

3.2

6.4

5.5

9.4

6.8

4.6

8.3

4.6

3.8

5.5

8.3

8.6

6.9

7.8

7.0

4.7

4.4

8.8

4.3

"

"

"

..

..

..

"

"

..

..

..

"

"

"

"

..

..

"

..

"

"

"

.,

"

"

..

"

"

..

"

"

..

..

..

.,

"

"

..

..

"

"

..

"

..

"

..

..

"

.,

..

"

..

..

..

"

"

"

"

..

..

"

.,

"

"

..

"

"

"

.,

.,

.,

..

..

..

..

..

..

.,

"

"

..

..

"

"

"

"

..

.,

..

.,

.,

.,

..

.,

"

"

.,

"

.,

.,

"

"

.,

..

.,

"

"

..

..

"

.,

"

"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego	Project: SCS111221-11	
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00/ 821 Main Street	Reported:
San Diego, CA 92123	Project Manager: Luke Montague	16-Nov-21 15:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV2-2 (E111044-03) Vapor Sampled: 11-Nov	-21 Received: 1	l-Nov-21							
o-Xylene	7.2	4.4	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15	
Bromoform	ND	10	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"	"	"	
4-Ethyltoluene	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	12	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"	"	
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		109 %	76-13	34	"	"	"	"	
Surrogate: Toluene-d8		102 %	78-12		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		87.2 %	77-12		"	"	"	"	

SV1-4 (E111044-04) Vapor Sampled: 11-Nov-21 Received: 11-Nov-21

1,1-Difluoroethane (LCC)	ND	5.5	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15
Dichlorodifluoromethane (F12)	ND	5.0	"	"	"	"	"	"
Chloromethane	ND	2.1		"	"	"		"
Dichlorotetrafluoroethane (F114)	ND	7.1		"	"	"		"
Vinyl chloride	ND	2.6	"	"	"	"		"
Bromomethane	ND	16	"	"	"	"	"	"
Chloroethane	ND	8.0		"	"	"		"
Trichlorofluoromethane (F11)	ND	5.6	"	"	"	"	"	"
1,1-Dichloroethene	ND	4.0	"	"	"	"	"	"
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"	"	"	"	"	"
Methylene chloride (Dichloromethane)	ND	3.5	"	"	"	"	"	"
Carbon disulfide	ND	6.3	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	8.0	"	"	"	"	"	"
1,1-Dichloroethane	ND	4.1	"	"	"	"	"	"
2-Butanone (MEK)	ND	30	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	4.0	"	"	"	"	"	"
Chloroform	9.0	4.9	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.5	"	"	"	"	"	"
1,2-Dichloroethane (EDC)	ND	4.1	"	"	"	"	"	"
Benzene	ND	3.2	"	"	"	"	"	"
Carbon tetrachloride	ND	6.4		"	"	"		"

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego	Project: SCS111221-11	
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00/ 821 Main Street	Reported:
San Diego, CA 92123	Project Manager: Luke Montague	16-Nov-21 15:37

Volatile Organic Compounds by EPA TO-15

Analyte	Result	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV1-4 (E111044-04) Vapor Sampled: 11-Nov-21 Re	ceived: 11-	Nov-21							
Trichloroethene	ND	5.5	ug/m3	1	EK11508	15-Nov-21	15-Nov-21	EPA TO-15	
1,2-Dichloropropane	ND	9.4	"	"	"	"		"	
Bromodichloromethane	ND	6.8	"	"	"	"		"	
cis-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
4-Methyl-2-pentanone (MIBK)	ND	8.3	"	"	"	"		"	
trans-1,3-Dichloropropene	ND	4.6	"	"	"	"		"	
Toluene	ND	3.8	"	"	"	"		"	
1,1,2-Trichloroethane	ND	5.5	"	"	"	"		"	
2-Hexanone (MBK)	ND	8.3	"	"		"		"	
Dibromochloromethane	ND	8.6	"	"	"	"		"	
Tetrachloroethene	ND	6.9	"	"	"	"		"	
1,2-Dibromoethane (EDB)	ND	7.8	"	"	"	"		"	
1,1,1,2-Tetrachloroethane	ND	7.0	"	"	"	"		"	
Chlorobenzene	ND	4.7	"	"	"	"		"	
Ethylbenzene	ND	4.4	"	"	"	"		"	
n,p-Xylene	ND	8.8	"	"	"	"		"	
Styrene	ND	4.3	"	"	"	"		"	
o-Xylene	ND	4.4	"	"	"	"		"	
Bromoform	ND	10	"	"	"	"		"	
1,1,2,2-Tetrachloroethane	ND	7.0	"	"	"	"		"	
4-Ethyltoluene	ND	5.0	"	"	"	"		"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"		"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"		"	
1,3-Dichlorobenzene	ND	12	"	"	"	"		"	
1,4-Dichlorobenzene	ND	12	"	"	"	"	"		
1,2-Dichlorobenzene	ND	12	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	38	"	"	"	"	"		
Hexachlorobutadiene	ND	54	"	"	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d4		107 %	7	6-134	"	"	"	"	
Surrogate: Toluene-d8		104 %	70	8-125	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		82.7 %	7	7-127	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego 8799 Balboa Avenue, Suite 290 San Diego, CA 92123	Project: SCS111221-11 Project Number: 01221156.00/ 821 Main Street Project Manager: Luke Montague	Reported: 16-Nov-21 15:37
San Diego, CA 92123	Project Manager: Luke Montague	16-Nov-21 15:37

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EK11508 - TO-15										
Blank (EK11508-BLK1)				Prepared &	Analyzed:	15-Nov-21				
1,1-Difluoroethane (LCC)	ND	5.5	ug/m3							
Dichlorodifluoromethane (F12)	ND	5.0	"							
Chloromethane	ND	2.1	"							
Dichlorotetrafluoroethane (F114)	ND	7.1	"							
Vinyl chloride	ND	2.6	"							
Bromomethane	ND	16	"							
Chloroethane	ND	8.0	"							
Trichlorofluoromethane (F11)	ND	5.6	"							
1,1-Dichloroethene	ND	4.0	"							
1,1,2-Trichlorotrifluoroethane (F113)	ND	7.7	"							
Methylene chloride (Dichloromethane)	ND	3.5	"							
Carbon disulfide	ND	6.3	"							
arans-1,2-Dichloroethene	ND	8.0	"							
1,1-Dichloroethane	ND	4.1	"							
2-Butanone (MEK)	ND	30	"							
cis-1,2-Dichloroethene	ND	4.0	"							
Chloroform	ND	4.9	"							
1,1,1-Trichloroethane	ND	5.5	"							
1,2-Dichloroethane (EDC)	ND	4.1	"							
Benzene	ND	3.2	"							
Carbon tetrachloride	ND	6.4	"							
Trichloroethene	ND	5.5	"							
1,2-Dichloropropane	ND	9.4	"							
Bromodichloromethane	ND	6.8	"							
cis-1,3-Dichloropropene	ND	4.6	"							
4-Methyl-2-pentanone (MIBK)	ND	8.3	"							
rans-1,3-Dichloropropene	ND	4.6	"							
Toluene	ND	3.8	"							
1,1,2-Trichloroethane	ND	5.5	"							
2-Hexanone (MBK)	ND	8.3	"							
Dibromochloromethane	ND	8.6	"							
Fetrachloroethene	ND	6.9	"							
1,2-Dibromoethane (EDB)	ND	7.8	"							
1,1,1,2-Tetrachloroethane	ND	7.0								

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego	Project:	SCS111221-11	
8799 Balboa Avenue, Suite 290	Project Number:	01221156.00/ 821 Main Street	Reported:
San Diego, CA 92123	Project Manager:	Luke Montague	16-Nov-21 15:37

Volatile Organic Compounds by EPA TO-15 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Blank (EK11508-BLK1)				Prepared & Ana	lyzed: 15-Nov-21	l	
Chlorobenzene	ND	4.7	ug/m3				
Ethylbenzene	ND	4.4	"				
m,p-Xylene	ND	8.8	"				
Styrene	ND	4.3	"				
o-Xylene	ND	4.4	"				
Bromoform	ND	10	"				
1,1,2,2-Tetrachloroethane	ND	7.0	"				
4-Ethyltoluene	ND	5.0	"				
1,3,5-Trimethylbenzene	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
1,3-Dichlorobenzene	ND	12	"				
1,4-Dichlorobenzene	ND	12	"				
1,2-Dichlorobenzene	ND	12	"				
1,2,4-Trichlorobenzene	ND	38	"				
Hexachlorobutadiene	ND	54	"				
Surrogate: 1,2-Dichloroethane-d4	229		"	214	107	76-134	
Surrogate: Toluene-d8	202		"	208	97.0	78-125	
Surrogate: 4-Bromofluorobenzene	298		"	363	82.0	77-127	

LCS (EK11508-BS1)				Prepared & Ana	alyzed: 15-Nov-21		
Dichlorodifluoromethane (F12)	140	5.0	ug/m3	101	136	59-128	QL-1H
Vinyl chloride	73	2.6	"	52.0	141	64-127	QL-1H
Chloroethane	72	8.0	"	53.6	134	63-127	QL-1H
Trichlorofluoromethane (F11)	120	5.6	"	113	108	62-126	
1,1-Dichloroethene	69	4.0	"	80.8	85.0	61-133	
1,1,2-Trichlorotrifluoroethane (F113)	160	7.7	"	155	103	66-126	
Methylene chloride (Dichloromethane)	60	3.5	"	70.8	84.2	62-115	
trans-1,2-Dichloroethene	60	8.0	"	80.8	74.2	67-124	
1,1-Dichloroethane	67	4.1	"	82.4	81.3	68-126	
cis-1,2-Dichloroethene	61	4.0	"	80.0	76.2	70-121	
Chloroform	97	4.9	"	99.2	98.0	68-123	
1,1,1-Trichloroethane	120	5.5	"	111	104	68-125	
1,2-Dichloroethane (EDC)	80	4.1	"	82.4	97.3	65-128	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

- 1					
	SCS Engineers - San Diego	Project:	SCS111221-11		
	8799 Balboa Avenue, Suite 290	Project Number:	01221156.00/ 821 Main Street	Reported:	
	San Diego, CA 92123	Project Manager:	Luke Montague	16-Nov-21 15:37	

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EK11508 - TO-15							
LCS (EK11508-BS1)	Prepared & Analyzed: 15-Nov-21						
Benzene	52	3.2	ug/m3	64.8	80.3	69-119	
Carbon tetrachloride	140	6.4	"	128	110	68-132	
Trichloroethene	100	5.5	"	110	95.6	71-123	
Toluene	74	3.8	"	76.8	96.2	66-119	
1,1,2-Trichloroethane	96	5.5	"	111	86.8	73-119	
Tetrachloroethene	130	6.9	"	138	96.2	66-124	
1,1,1,2-Tetrachloroethane	140	7.0	"	140	101	67-129	
Ethylbenzene	84	4.4	"	88.4	95.5	70-124	
m,p-Xylene	89	8.8	"	88.4	101	61-134	
o-Xylene	95	4.4	"	88.4	108	67-125	
1,1,2,2-Tetrachloroethane	110	7.0	"	140	77.3	65-127	
Surrogate: 1,2-Dichloroethane-d4	234		"	214	110	76-134	
Surrogate: Toluene-d8	204		"	208	98.0	78-125	
Surrogate: 4-Bromofluorobenzene	360		"	363	99.1	77-127	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

SCS Engineers - San Diego	Project: SCS111221-11	
8799 Balboa Avenue, Suite 290	Project Number: 01221156.00/ 821 Main Street	Reported:
San Diego, CA 92123	Project Manager: Luke Montague	16-Nov-21 15:37

Notes and Definitions

- QL-1H The LCS and/or LCSD recoveries fell above the established control specifications for this analyte. Any result for this compound is qualified and should be considered biased high.
- LCC Leak Check Compound
- ND Analyte NOT DETECTED at or above the reporting limit
- MDL Method Detection Limit
- %REC Percent Recovery
- RPD Relative Percent Difference

All soil results are reported in wet weight.

Appendix

H&P Mobile Geochemistry, Inc. is approved as an Environmental Testing Laboratory and Mobile Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs through PJLA, accreditation number 69070 for EPA Method TO-15, EPA Method 8260B and H&P 8260SV.

H&P is approved by the State of California as an Environmental Laboratory and Mobile Laboratory in conformance with the Environmental Laboratory Accreditation Program (ELAP) for the category of Volatile and Semi-Volatile Organic Chemistry of Hazardous Waste, certification numbers 2740, 2741, 2743 & 2745.

H&P is approved by the State of Louisiana Department of Environmental Quality under the National Environmental Laboratory Accreditation Conference (NELAC) certification number 04138

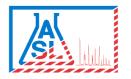
The complete list of stationary and mobile laboratory certifications along with the fields of testing (FOTs) and analyte lists are available at www.handpmg.com/about/certifications.

HzP Mobile Geochemistry, Inc.

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 111 21


	Lat	o Client an	d Projec	t Information											Sampl	e Rec	eipt (La	ab Use	Only)	
Lab Client/Consultant: SCS	Enameers	2		Project Name / #:	512	2115	6.0	0	halo		and h		Date	Rec'd:	"/1	1	Contro	ol #: 21	DT	62.1	OZ
Lab Client Project Manager:	Montagu	States and the second		Project Location:	21	Mair	A.	reot	4					Project	and the second second second		1221	- 11			
Lab Client Address: 8799 B	Iboa Av		0	Project Location: Report E-Mail(s):	hvl	a Vis	tn, 0	4					Lab V	Nork O	rder #		EIIIO				
Lab Client City, State, Zip: San Di		+ 9212		Imontag	veQ	scsei	ngme	ers.e	con	>			Samp	ole Inta] No 🗌		otes Be	low	
Phone Number: 858 \$71	SSOD		al fina da	ameal b) se	sena	ineer	-5. (0	m		53.074	. Ind	Rece	eipt Gau	uge ID:	601	06		Temp:	RI	-
Reporting Requirem	CONTRACTOR OF A DAMAGE CONTRACTOR OF A	1	urnarour			COLUMN STATES OF STREET, STREE	npler Info	CLANCES STATISTICS	ALCHINGROUP DESIGN				Outsi	de Lab	:	400		1.1.2 1. 1. 1.			
Standard Report Level III		I INCLUSION CONTRACTORY	CIDE STRUCTURE STRUCT		Sample	er(s):		_	-				Rece	ipt Note	es/Track	ing #:					
Excel EDD Other EDD:	- (results	t, 70 days f	or final report	Signatu	ire: Mille		ifare	/												
CA Geotracker Global ID:		X Rush	(specify):	3- day TAT	Date:	11-1		IMATU										Lab	PM Initia		M
and the second se		M Kush	(Speenyr			11-1	1-01				nissi da	1.61						Lap			11
Additional Instructions to Labor	ratory:									+	a da e da e		nate				Sign		and a	a ^{ger}	
* Drafarrad V/OC units (places at									1	ct Lis	Many		E	tions	at .	JAN S	01945 2	n Sa jeji	113		
* Preferred VOC units (please ch µg/L 🏹 µg/m ³ □ ppbv	ppmv								II Lis	st / Projec	□ TO-15	T0-15	T0-15m	ic Fractic T0-15m	Dound He	015m	NN	in she	1971		
					CON	TAINER	CK		lard Full List	ist/				hatic	ck Comp	PA 8(by AS 02	Magazare Ali	e les		
	FIELD POINT			SAMPLE TYPE Indoor Air (IA), Ambient	SIZE	& TYPE	#	e only of Vac	tanda	hort L	ates)SV	siene SV	s Gas	matic/Alip 8260SVm	eck	e by E	ases		1		
CAMPLE NAME	NAME	DATE	TIME	Air (AA), Subslab (SS),	Summ	nL/1L/6L na, Tedlar,	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard Full List	VOCs Short List / Project List	Oxygenates	Naphthalene	TPHv as Gas	Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945 CO2 O2 N2				
SAMPLE NAME	(if applicable)	mm/dd/yy	24hr clock	Soil Vapor (SV)		be, etc.	Souther to a strategy		-	20	δ□	Na		Ar	-	Ŵ	iff 🗌				
SV3-3		11-11-21	1556	SV	450M1	Suma	776	-0.78	×						X						
SV3-3Dep			601		diale 1		774	-1.43	×						X						
SVZ-L			101			-	4800	-0.90	X		-				X						
SVICA		+	626	7		-	53%	-0.30	~							-					
															1						
																		10			
										-				-							
																				_	
Approved/Relinquished by:		Company	505	Date:	Time:		Received by:						Company	y:曲	0	Date	1-1)-1	21 1	Time: 1/	00	
Approved/Relinquished by.	U	Company	212	 Date:) Time;	450	Received by:	-20	12 0				Company	1-1	P	Date		and the second	Time:	62	
Approved/Relinquished by:		Company:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Date:	Time:		Received by:						Company	11/10		Date	:	1	Time:		
																					12.

HP Mobile Geochemistry Inc.

FMS005 Revision: 3 Revised: 1/15/16 Effective: 1/25/16 Page 1 of 1

Log Sheet: Soil Vapor Sampling with Summa

H&P Projec					C1	. 10	11. 1		in the second se					11-21		1				
Site Addres Consulta	ant: <u>5(5</u>		St		U	nula	Visto	<u> </u>		Н		Page: ep(s):		Herr	of			. F	Reviewed:	EC
Consultant Rep	(s): <u>Alliso</u>	n o'l	Jearl			_	i an							a de la					Scanned:	TI
Equipment nline Gauge ID#: 1 ⁻³ Pump ID#:	-		PV A	P mount:	urge V 3የ√			⊠ Tub ⊠ San	ing	%		conned	satura ctions a		.CC is p seal. T	laced ard	oound ound tubing ne for all sa		,⊠-1,1-D □ 1,1,1, □ IPA □ Other	2-TFA
Sam	ple and S	umma	Infor	matio	n		1.1		Prob	e Spe	cs				Pu	rge &	Collecti	on Infor	mation	
Point ID	Summa ID #	Sample Kit ID #	Start Time	Initial Vac (" Hg)	End / Sample Time	End Vac (" Hg)	Probe Depth (ft)	Tubing Length (ft)	Tubing OD (in.)	Sand Ht (in.)	Sand Dia (in.)	Dry Bent. Ht (in.)	Dry Bent. Dia (in.)	Shut In Test 60 sec (✓)	Leak Check (√)	Purge Vol (mL)	Purge Flow Rate (mL/min)	Pump Time (min:sec)	Sample Flow Rate (mL/min)	Probe F
603-3	778	300	1553	-29	1556	0	3	7	1/4	12	.75	6	,75	/	/	189	6200	-	200	0
513-3 Rep	774	300	1555	-28	1601	0	3	7	1/4	12	.75	6	.75		/	639	4200		6200	0
522-2	480	210	1409	-28	18 19	0	Z	7	1/4	12	.75	6	.75	V	1	189	<200	1	1200	0
51-4	538	154	K123	-36	1926	0	4	1	1/4	12	175	6	.75	>	V	180	<200	1	1200	-1
÷.					and a		The second	4		1	8					A				
					S.	1 - Carlor														
	-	-			and a	New		No. CA									1. S. S.			
			2					100								1.27				
					···))•((N.S.	E.											
												1999	1							

15 July 2021 Luke Montague SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego, CA 92123

Work Order #: 2107069 Project Name: 821 Main Street Project ID: 1221156.00 Site Address: 821 Main Street Chula Vista, Ca

Enclosed are the results of analyses for samples received by the laboratory on July 13, 2021. If you have any questions concerning this report, please feel free to contact us.

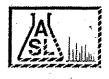
mb 15mm

Molky Brar Laboratory Director

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL, is complete and accurate. ASL accepts all samples subject to the following conditions:

1) ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

2) ASL is not responsible for any consequences resulting from any inaccuracies, omissions, or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.



AMERICAN SCIENTIFIC LABORATORIES, LLC Environmental Testing Services

Of

Page ____

0 Ľ Ľ C ш C Т A C S 0 > Z 0 LL. F Date 7/13/2/Time/:4/5 Date 7/13/2/Time/:4/5 Remarks EDD ASL JOB# 2107069 ANALYSIS REQUESTED 0101 > Hdl Hdl g × 00) EDF 08 Preservation 200 Condition of Sample. X PDF Relinquished By: 2520 N. San Fernando Road, LA, CA 90065 Tel: (323) 223-9700 • Fax: (323) 223-9500 Received For Laboratory Report To: Invoice To: E REPORT: Soil Matrix Address: Address. P.O.# 4025655 Date 112/ Time 1028 ISIDI Time IDIS Site Address: 821 Main Street Container(s) Project Name: 821 New Street Type) - enginees . Com Manager. Luke Mandague TAN Time Chula Vista, CA Frain 760. 535. 754 7 Chula Viste, CA Special Instruction: * Results by Special Instruction: * Results by Project ID: 15/20 Project ID: 15/20 DO Rush 2-day TAT 7/15/21 (PM) Project ID: 12/21/20 DO Rush 2-day TAT 7/15/21 (PM) Project ID: 12/20 DO Project ID: 12/20 DO Rush 2-day TAT 7/15/21 (PM) Project ID: 12/20 DO Rush 2-day TAT 7/15/21 (PM) Rush 2-day TAT 7/15/21 -> # 1015 1003 15.6 Time Date Date 7 13 2 SAMPLE DESCRIPTION Date 7 86337 GLOBAL ID Address: 8799 Balbog Are Company: SCS Engineurs White - Report, Yellow - Laboratory, Pink - Client San Diego (A 91123 n Sample ID SB2 SB S B 2107069-03 Aelinquished By: 2107069-02 2107069-01 LAB USE ONLY Lab ID COC# Nº Telephone: ШΣ 1

Job#_2197069

ASL Sample Receipt Form

client: <u>SCS Engineers</u>	
Date: <u>7-13-2021</u>	
Sample Information:	
Temperature: <u>5-3</u> °C	口Blank 又Sample
Custody Seal:	口 Yes 又No 口Not Available
Received Within Holding Time:	`X Yes □No
Container:	
Proper Containers and Sufficient Volume:	XYes □No
Soil: 3_24 4oz 8oz Sleeve VOA	
Water:500AG1AG125PB250PB	500PB] VOA]Other
Air: Tedlar®	
Sample Containers Intact:	X Yes □No
Trip Blank	□ Yes 🕅 No
Chain-of-Custody (COC):	
Received:	XYes □No
Samplers Name:	XYes □No
Container Labels match COC:	X Yes □No
COC documents received complete:	🗙 Yes 🗆 No
Proper Preservation Noted:	□Yes □No NA
•	•
	Completed By: Janet chin

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

ANALYTICAL SUMMARY REPORT

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB1	2107069-01	Solid	07/13/2021 10:15	07/13/2021 13:45
SB2	2107069-02	Solid	07/13/2021 10:03	07/13/2021 13:45
SB3	2107069-03	Solid	07/13/2021 09:51	07/13/2021 13:45

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Analytical Results

Client Sample ID: SB1

Laboratory Sample ID: 2107069-01 (Solid)

Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total Mercury (CVAA)				Batch ID:	BG10379		Prepared: 07/14/2021 1	1:08	
Mercury	ND		0.0500	mg/kg	1	7471A	07/14/2021 16:45	LVE	7471A
Total ICP Metals				Batch ID:	BG10378		Prepared: 07/14/2021 1	1:04	
Antimony	0.699		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Arsenic	5.10		0.250	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Barium	111		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Beryllium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Cadmium	1.43		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Chromium	16.9		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Cobalt	4.73		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Copper	22.5		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Lead	33.6		0.250	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Molybdenum	1.00		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Nickel	7.77		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Selenium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Silver	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Thallium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Vanadium	39.6		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Zinc	170		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Total Petroleum Hydrocarbons	(TPH-g)			Batch ID:	BG10371		Prepared: 07/14/2021 0	9:00	
Gasoline Range Organics	ND		500	ug/kg	1	5030A	07/14/2021 13:34	SA	8015B
Surrogate: Bromofluorobenzene			117 %	70-	120	5030A	07/14/2021 13:34	SA	8015B
Total Petroleum Hydrocarbons(TPH DROORO)				Batch ID:	BG10373		Prepared: 07/14/2021 0	9:00	
Diesel range organics	74.0		10.0	mg/kg	1	3550B	07/14/2021 16:11	SL	8015B
Oil Range Organics	210		50.0	mg/kg	1	3550B	07/14/2021 16:11	SL	8015B
Surrogate: Chlorobenzene			92.1 %	70-	120	3550B	07/14/2021 16:11	SL	8015B

Bran h

SCS Engineers		Project:	821 Mai	n Street	Work Order No: 2107069							
8799 Balboa Avenue, Suite 290	1	Project N	umber:	1221156.00			Reported:					
San Diego CA, 92123]	Project M	lanager:	Luke Montag	ue			07/15/202	1 16:39			
			Anal	ytical Result	S							
			Clien	t Sample ID:	SB1							
		Labor	atory San	nple ID: 210	7069-01 (Se	olid)						
Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method			
Volatile Organic Compounds				Batch ID:	BG10372		Prepared: 07/14/2021 0	9:00				
Acetone	ND		50.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Benzene	ND		2.00	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Bromobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Bromochloromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Bromodichloromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Bromoform	ND		50.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Bromomethane	ND		30.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
2-Butanone	ND		50.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
n-Butylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
sec-Butylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
tert-Butylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Carbon disulfide	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Carbon tetrachloride	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Chlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Chloroethane	ND		30.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
2-Chloroethylvinyl Ether	ND		50.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Chloroform	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Chloromethane	ND		30.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
4-Chlorotoluene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
2-Chlorotoluene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,2-Dibromo-3-chloropropane	ND		50.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Dibromochloromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,2-Dibromoethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Dibromomethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,2-Dichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,3-Dichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,4-Dichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Dichlorodifluoromethane	ND		30.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,1-Dichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,2-Dichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,1-Dichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
cis-1,2-Dichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
trans-1,2-Dichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,1-Dichloropropene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,2-Dichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
1,3-Dichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
2,2-Dichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
cis-1,3-Dichloropropene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
trans-1,3-Dichloropropene	ND		10.0	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			
Ethylbenzene	ND		2.00	ug/kg	1	5030A	07/14/2021 15:41	SA	8260B			

Bran Jh

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SCS Engineers		Project: 821 N	lain Street		Work Order No: 2107069					
8799 Balboa Avenue, Suite 290		Project Number:	1221156.	00		Reported:				
San Diego CA, 92123		Project Manager:	Luke Mo	ontague			07/15/202	16:39		
		A	nalytical Re	esults						
			ent Sample							
		Laboratory S	-		(Solid)					
Analyte	Result	Notes PQI	Units	Dilution	Prep Method	Analyzed	Analyst	Method		
Volatile Organic Compounds			Batch	ID: BG103	72	Prepared: 07/14/2021 0	9:00			
Hexachlorobutadiene	ND	30.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
2-Hexanone	ND	50.0		1	5030A	07/14/2021 15:41	SA	8260B		
lsopropylbenzene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
p-Isopropyltoluene	ND	10.0		1	5030A	07/14/2021 15:41	SA	8260B		
Methyl tert-Butyl Ether (MTBE)	ND	5.00		1	5030A	07/14/2021 15:41	SA	8260B		
4-Methyl-2-pentanone (MIBK)	ND	50.0		1	5030A	07/14/2021 15:41	SA	8260B		
Methylene chloride	ND	50.0		1	5030A	07/14/2021 15:41	SA	8260B		
Naphthalene	ND	10.0		1	5030A	07/14/2021 15:41	SA	8260B		
n-Propylbenzene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Styrene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,1,1,2-Tetrachloroethane	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,1,2,2-Tetrachloroethane	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Fetrachloroethene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Foluene	ND	2.00) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,2,3-Trichlorobenzene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
,2,4-Trichlorobenzene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,1,1-Trichloroethane	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,1,2-Trichloroethane	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Trichloroethene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Frichlorofluoromethane	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,2,3-Trichloropropane	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,2,4-Trimethylbenzene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
1,3,5- Trimethylbenzene	ND	10.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Vinyl acetate	ND	50.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Vinyl chloride	ND	30.0) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
n,p-Xylenes	ND	4.00) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
p-Xylene	ND	2.00) ug/kg	1	5030A	07/14/2021 15:41	SA	8260B		
Surrogate: 4-Bromofluorobenzene		11	15 %	70-120	5030A	07/14/2021 15:41	SA	8260B		
Surrogate: Dibromofluoromethane		74	.6%	70-120	5030A	07/14/2021 15:41	SA	8260B		
Surrogate: Toluene-d8)5 %	70-120	5030A	07/14/2021 15:41	SA	8260B		
			nalytical Re							
			ent Sample							
		Laboratory S	-		(Solid)					
Analyte	Result	Notes PQI	Units	Dilution	Prep Method	Analyzed	Analyst	Method		

Mercury

3mm

ND

0.0500

mg/kg

1

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7471A

7471A

LVE

07/14/2021 16:45

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39
	Analytical Results	

-----, -----

Client Sample ID: SB2

Laboratory	Sample	ID:	2107069-02	(Solid)
------------	--------	-----	------------	---------

Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total ICP Metals				Batch ID:	BG10378		Prepared: 07/14/2021 1	1:04	
Antimony	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Arsenic	3.73		0.250	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Barium	55.0		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Beryllium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Cadmium	1.13		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Chromium	12.7		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Cobalt	4.61		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Copper	25.3		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Lead	7.99		0.250	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Molybdenum	1.69		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Nickel	5.20		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Selenium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Silver	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Thallium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Vanadium	35.3		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Zinc	58.1		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Total Petroleum Hydrocarbons(TPH-g)			Batch ID:	BG10371		Prepared: 07/14/2021 0	9:00	
Gasoline Range Organics	ND		500	ug/kg	1	5030A	07/14/2021 14:03	SA	8015B
Surrogate: Bromofluorobenzene			117 %	70-	120	5030A	07/14/2021 14:03	SA	8015B
Fotal Petroleum Hydrocarbons(TPH DROORO)				Batch ID:	BG10373		Prepared: 07/14/2021 0	9:00	
Diesel range organics	74.0		10.0	mg/kg	1	3550B	07/14/2021 15:28	SL	8015B
Oil Range Organics	290		50.0	mg/kg	1	3550B	07/14/2021 15:28	SL	8015B
Surrogate: Chlorobenzene			91.6 %	70-	120	3550B	07/14/2021 15:28	SL	8015B

Bran L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amolk Brar, Lab Director

SCS Engineers		Project:	821 Mai	in Street				Work Order No	: 2107069
8799 Balboa Avenue, Suite 290		Project N	umber:	1221156.0	0			Report	ed:
San Diego CA, 92123		Project M	anager:	Luke Mon	tague			07/15/2021	16:39
			Ana	lytical Res	ults				
			Clien	t Sample I	D: SB2				
		Labora	atory Sai	mple ID: 2	107069-02 (Solid)			
Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method

Analyte	Result	Inotes	PQL	Units	Dilution	Method	Anaryzeu	Analyst	Method
Volatile Organic Compounds				Batch ID	: BG10372		Prepared: 07/14/2021 0	9:00	
Acetone	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Benzene	ND		2.00	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Bromobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Bromochloromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Bromodichloromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Bromoform	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Bromomethane	ND		30.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
2-Butanone	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
n-Butylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
sec-Butylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
tert-Butylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Carbon disulfide	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Carbon tetrachloride	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Chlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Chloroethane	ND		30.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
2-Chloroethylvinyl Ether	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Chloroform	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Chloromethane	ND		30.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
4-Chlorotoluene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
2-Chlorotoluene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2-Dibromo-3-chloropropane	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Dibromochloromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2-Dibromoethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Dibromomethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2-Dichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,3-Dichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,4-Dichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Dichlorodifluoromethane	ND		30.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1-Dichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2-Dichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1-Dichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
cis-1,2-Dichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
trans-1,2-Dichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1-Dichloropropene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2-Dichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,3-Dichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
2,2-Dichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
cis-1,3-Dichloropropene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
trans-1,3-Dichloropropene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Ethylbenzene	ND		2.00	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B

Bran h

SCS Engineers		Project:	821 Main	Street			We	ork Order No	: 2107069
8799 Balboa Avenue, Suite 290		Project Nu	mber: 1	221156.0	0			Report	ed:
San Diego CA, 92123		Project Ma	nager:]	Luke Mon	itague			07/15/202	16:39
			Analy	tical Res	ults				
			Client	Sample l	D: SB2				
		Laborat	tory Samj	ple ID: 2	107069-02 (Solid)			
Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch I	D: BG1037	2	Prepared: 07/14/2021 0	9:00	
Hexachlorobutadiene	ND		30.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
2-Hexanone	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Isopropylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
p-Isopropyltoluene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Methyl tert-Butyl Ether (MTBE)	ND		5.00	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
4-Methyl-2-pentanone (MIBK)	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Methylene chloride	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Naphthalene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
n-Propylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Styrene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1,1,2-Tetrachloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1,2,2-Tetrachloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Tetrachloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Toluene	ND		2.00	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2,3-Trichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2,4-Trichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1,1-Trichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,1,2-Trichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Trichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Trichlorofluoromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2,3-Trichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,2,4-Trimethylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
1,3,5- Trimethylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Vinyl acetate	ND		50.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Vinyl chloride	ND		30.0	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
m,p-Xylenes	ND		4.00	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
o-Xylene	ND		2.00	ug/kg	1	5030A	07/14/2021 16:10	SA	8260B
Surrogate: 4-Bromofluorobenzene			98.5 %		70-120	5030A	07/14/2021 16:10	SA	8260B
Surrogate: Dibromofluoromethane			90.5 % 100 %		70-120	5030A	07/14/2021 16:10	SA	8260B
Surrogate: Toluene-d8			100 %		70-120	5030A	07/14/2021 16:10	SA	
Surroguie. Ioruene-uo						5050A	5/11/2021 10:10	5/1	8260B
			•	tical Res					
		Laborat		Sample l ple ID: 2	ID: SB3 107069-03 ()	Solid)			
Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method

Mercury

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

07/14/2021 16:45

LVE

7471A

Span

ND

0.0500

mg/kg

1

Amolk Brar, Lab Director

7471A

SCS Engineers 8799 Balboa Avenue, Suite 290	Project: 821 Main Street Project Number: 1221156.00	Work Order No: 2107069 Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39
	Analytical Results	

1 mary ticar results

Client Sample ID: SB3

Laboratory Sample ID: 2107069-03 (Solid)

Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Total ICP Metals				Batch ID:	BG10378		Prepared: 07/14/2021 1	1:04	
Antimony	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Arsenic	3.70		0.250	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Barium	110		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Beryllium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Cadmium	0.863		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Chromium	5.79		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Cobalt	3.82		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Copper	5.87		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Lead	7.33		0.250	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Molybdenum	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Nickel	3.13		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Selenium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Silver	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Thallium	ND		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Vanadium	26.7		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Zinc	33.8		0.500	mg/kg	1	3050B	07/14/2021 16:15	LVE	SW846 6010B
Total Petroleum Hydrocarbons	(TPH-g)			Batch ID:	BG10371		Prepared: 07/14/2021 0	9:00	
Gasoline Range Organics	ND		500	ug/kg	1	5030A	07/14/2021 14:33	SA	8015B
Surrogate: Bromofluorobenzene			108 %	70-	120	5030A	07/14/2021 14:33	SA	8015B
Total Petroleum Hydrocarbons	(TPH DROORO)			Batch ID:	BG10373		Prepared: 07/14/2021 0	9:00	
Diesel range organics	ND		10.0	mg/kg	1	3550B	07/14/2021 14:45	SL	8015B
Oil Range Organics	ND		50.0	mg/kg	1	3550B	07/14/2021 14:45	SL	8015B
Surrogate: Chlorobenzene			90.7 %	70-	120	3550B	07/14/2021 14:45	SL	8015B

h Bran

Amolk Brar, Lab Director

SCS Engineers 8799 Balboa Avenue, Suite 290 San Diego CA, 92123	Project: 821 Main Street Work Order No: 21 Project Number: 1221156.00 Project Manager: Luke Montague 07/15/2021 16: Analytical Results							ed:	
			Ana	lytical Resu	lts				
			Clien	t Sample II): SB3				
		Laborat	ory Sar	nple ID: 21	07069-03 (8	Solid)			
Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch ID	e: BG1037	2	Prepared: 07/14/2021	09:00	
Acetone	ND		50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B

volatile Organic Compounds			Duten ID.	= = = = = = =		110pureu. 07/14/2021 09	00	
Acetone	ND	50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Benzene	ND	2.00	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Bromobenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Bromochloromethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Bromodichloromethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Bromoform	ND	50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Bromomethane	ND	30.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
2-Butanone	ND	50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
n-Butylbenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
sec-Butylbenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
tert-Butylbenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Carbon disulfide	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Carbon tetrachloride	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Chlorobenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Chloroethane	ND	30.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
2-Chloroethylvinyl Ether	ND	50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Chloroform	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Chloromethane	ND	30.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
4-Chlorotoluene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
2-Chlorotoluene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2-Dibromo-3-chloropropane	ND	50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Dibromochloromethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2-Dibromoethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Dibromomethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2-Dichlorobenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,3-Dichlorobenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,4-Dichlorobenzene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Dichlorodifluoromethane	ND	30.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1-Dichloroethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2-Dichloroethane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1-Dichloroethene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
cis-1,2-Dichloroethene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
trans-1,2-Dichloroethene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1-Dichloropropene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2-Dichloropropane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,3-Dichloropropane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
2,2-Dichloropropane	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
cis-1,3-Dichloropropene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
trans-1,3-Dichloropropene	ND	10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Ethylbenzene	ND	2.00	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B

mal Bran

SCS Engineers		Project:	821 Main	n Street			We	ork Order No	: 2107069
8799 Balboa Avenue, Suite 290		Project Nu	umber:	1221156.00				Report	ed:
San Diego CA, 92123		Project M	anager:	Luke Monta	gue			07/15/2021	16:39
			Anal	ytical Resul	te				
				•					
				t Sample ID					
		Labora	itory San	nple ID: 210	07069-03 (Se				
Analyte	Result	Notes	PQL	Units	Dilution	Prep Method	Analyzed	Analyst	Method
Volatile Organic Compounds				Batch ID:	BG10372		Prepared: 07/14/2021 0	9:00	
Hexachlorobutadiene	ND		30.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
2-Hexanone	ND		50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Isopropylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
p-Isopropyltoluene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Methyl tert-Butyl Ether (MTBE)	ND		5.00	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
4-Methyl-2-pentanone (MIBK)	ND		50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Methylene chloride	ND		50.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Naphthalene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
n-Propylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Styrene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1,1,2-Tetrachloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1,2,2-Tetrachloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Tetrachloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Toluene	ND		2.00	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2,3-Trichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2,4-Trichlorobenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1,1-Trichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,1,2-Trichloroethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Trichloroethene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
Trichlorofluoromethane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2,3-Trichloropropane	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B
1,2,4-Trimethylbenzene	ND		10.0	ug/kg	1	5030A	07/14/2021 16:38	SA	8260B

10.0

50.0

30.0

4.00

2.00

107 %

103 %

108 %

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

1

1

1

1

1

70-120

70-120

70-120

moh Bran

Amolk Brar, Lab Director

1,3,5- Trimethylbenzene

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Vinyl acetate

Vinyl chloride

m,p-Xylenes

o-Xylene

ND

ND

ND

ND

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5030A

5030A

5030A

5030A

5030A

5030A

5030A

5030A

SA

SA

SA

SA

SA

SA

SA

SA

07/14/2021 16:38

07/14/2021 16:38

07/14/2021 16:38

07/14/2021 16:38

07/14/2021 16:38 07/14/2021 16:38

07/14/2021 16:38

07/14/2021 16:38

8260B

8260B

8260B

8260B

8260B

8260B

8260B

8260B

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Total Mercury (CVAA) - Quality Control Report

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BG10379 - 7471A - 7471A										
Blank (BG10379-BLK1)				Prepared &	Analyzed:	07/14/202				
Mercury	ND	0.0500	mg/kg							
LCS (BG10379-BS1)				Prepared &	Analyzed:	07/14/202				
Mercury	0.108	0.0500	mg/kg	0.100		108	80-120			
LCS Dup (BG10379-BSD1)				Prepared &	Analyzed:	07/14/202				
Mercury	0.105	0.0500	mg/kg	0.100		105	80-120	2.81	20	

Bran h

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Ma	in Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number:	1221156.00	Reported:
San Diego CA, 92123	Project Manager:	Luke Montague	07/15/2021 16:39

Total ICP Metals - Quality Control Report

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BG10378 - 3050B - SW846 6010B										
Blank (BG10378-BLK1)				Prepared &	Analyzed:	07/14/202				
Antimony	ND	0.500	mg/kg							
Arsenic	ND	0.250	"							
Barium	ND	0.500	"							
Beryllium	ND	0.500	"							
Cadmium	ND	0.500	"							
Chromium	ND	0.500	"							
Cobalt	ND	0.500	"							
Copper	ND	0.500	"							
Lead	ND	0.250	"							
Molybdenum	ND	0.500	"							
Nickel	ND	0.500	"							
Selenium	ND	0.500	"							
Silver	ND	0.500	"							
Thallium	ND	0.500	"							
Vanadium	ND	0.500	"							
Zinc	ND	0.500	"							
LCS (BG10378-BS1)				Prepared &	Analyzed:	07/14/202				
Antimony	0.993	0.0100	mg/kg	1.00		99.3	80-120			
Arsenic	0.986	0.00500	"	1.00		98.6	80-120			
Barium	1.04	0.0100	"	1.00		104	80-120			
Beryllium	1.07	0.0100	"	1.00		107	80-120			
Cadmium	0.969	0.0100	"	1.00		96.9	80-120			
Chromium	1.05	0.0100	"	1.00		105	80-120			
Cobalt	1.00	0.0100	"	1.00		100	80-120			
Copper	1.07	0.0100	"	1.00		107	80-120			
Lead	1.00	0.00500	"	1.00		100	80-120			
Molybdenum	1.02	0.0100	"	1.00		102	80-120			
Nickel	1.01	0.0100	"	1.00		101	80-120			
Selenium	0.952	0.0100	"	1.00		95.2	80-120			
Silver	1.00	0.0100	"	1.00		100	80-120			
Thallium	0.975	0.0100	"	1.00		97.5	80-120			
Vanadium	1.02	0.0100	"	1.00		102	80-120			
Zinc	1.05	0.0100		1.00		105	80-120			

Bran L

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Total ICP Metals - Quality Control Report

		DOT		Spike	Source		%REC		RPD	
Analyte	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BG10378 - 3050B - SW846 6010B										
LCS Dup (BG10378-BSD1)				Prepared &	Analyzed:	07/14/202				
Antimony	0.853	0.0100	mg/kg	1.00		85.3	80-120	15.1	20	
Arsenic	0.944	0.00500	"	1.00		94.4	80-120	4.32	20	
Barium	0.983	0.0100	"	1.00		98.3	80-120	5.39	20	
Beryllium	1.01	0.0100	"	1.00		101	80-120	5.63	20	
Cadmium	0.940	0.0100	"	1.00		94.0	80-120	3.06	20	
Chromium	0.996	0.0100	"	1.00		99.6	80-120	5.69	20	
Cobalt	0.960	0.0100	"	1.00		96.0	80-120	4.26	20	
Copper	1.01	0.0100	"	1.00		101	80-120	6.01	20	
Lead	0.967	0.00500	"	1.00		96.7	80-120	3.40	20	
Molybdenum	0.960	0.0100	"	1.00		96.0	80-120	5.81	20	
Nickel	0.964	0.0100	"	1.00		96.4	80-120	4.26	20	
Selenium	0.919	0.0100	"	1.00		91.9	80-120	3.49	20	
Silver	0.966	0.0100	"	1.00		96.6	80-120	3.73	20	
Thallium	0.954	0.0100	"	1.00		95.4	80-120	2.09	20	
Vanadium	0.961	0.0100	"	1.00		96.1	80-120	5.56	20	
Zinc	1.02	0.0100	"	1.00		102	80-120	2.58	20	

Bran L

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Total Petroleum Hydrocarbons(TPH-g) - Quality Control Report

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BG10371 - 5030A - 8015B										
Blank (BG10371-BLK1)				Prepared &	Analyzed:	07/14/202				
Gasoline Range Organics	ND	500	ug/kg							
LCS (BG10371-BS1)				Prepared &	Analyzed:	07/14/202				
Gasoline Range Organics	490		ug/L	500		98.1	75-120			
LCS Dup (BG10371-BSD1)				Prepared &	Analyzed:	07/14/202				
Gasoline Range Organics	494		ug/L	500		98.9	75-120	0.823	15	
Matrix Spike (BG10371-MS1)	Sou	irce: 210706	9-01	Prepared &	07/14/202					
Gasoline Range Organics	502		ug/L	500	0.00	100	75-120			
Matrix Spike Dup (BG10371-MSD1)	Sou	rce: 210706	9-01	Prepared &	Analyzed:	07/14/202				
Gasoline Range Organics	459		ug/L	500	0.00	91.7	75-120	9.06	15	

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Total Petroleum Hydrocarbons(TPH DROORO) - Quality Control Report

				Spike	Source		%REC		RPD		
Analyte	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch BG10373 - 3550B - 8015B											
Blank (BG10373-BLK1)				Prepared &	Analyzed:	07/14/202					
Diesel range organics	ND	10.0	mg/kg								
Oil Range Organics	ND	50.0	"								
Surrogate: Chlorobenzene	89.3		mg/L	100		89.3	70-120				
LCS (BG10373-BS1)	Prepared & Analyzed: 07/14/202										
Diesel range organics	528		mg/L	500		106	75-120				
Surrogate: Chlorobenzene	114		"	100		114	70-120				
LCS Dup (BG10373-BSD1)				Prepared &	Analyzed:	07/14/202					
Diesel range organics	493		mg/L	500		98.6	75-120	6.98	20		
Surrogate: Chlorobenzene	111		"	100		111	70-120				
Matrix Spike (BG10373-MS1)	Sou	rce: 210706	69-01	Prepared &	Analyzed:	07/14/202					
Diesel range organics	529		mg/L	500	74.0	91.1	75-120				
Surrogate: Chlorobenzene	115		"	100		115	70-120				
Matrix Spike Dup (BG10373-MSD1)	Sou	rce: 210706	69-01	Prepared &	Analyzed:	07/14/202					
Diesel range organics	502		mg/L	500	74.0	85.7	75-120	5.23	20		
Surrogate: Chlorobenzene	112		"	100		112	70-120				

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Volatile Organic Compounds - Quality Control Report

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch BG10372 - 5030A - 8260B										
Blank (BG10372-BLK1)				Prepared &	analyzed:	07/14/202				
Acetone	ND	50.0	ug/kg							
Benzene	ND	2.00	"							
Bromobenzene	ND	10.0	"							
Bromochloromethane	ND	10.0	"							
Bromodichloromethane	ND	10.0	"							
Bromoform	ND	50.0	"							
Bromomethane	ND	30.0	"							
2-Butanone	ND	50.0	"							
n-Butylbenzene	ND	10.0	"							
sec-Butylbenzene	ND	10.0	"							
tert-Butylbenzene	ND	10.0	"							
Carbon disulfide	ND	10.0	"							
Carbon tetrachloride	ND	10.0	"							
Chlorobenzene	ND	10.0	"							
Chloroethane	ND	30.0	"							
2-Chloroethylvinyl Ether	ND	50.0	"							
Chloroform	ND	10.0	"							
Chloromethane	ND	30.0	"							
4-Chlorotoluene	ND	10.0	"							
2-Chlorotoluene	ND	10.0	"							
1,2-Dibromo-3-chloropropane	ND	50.0	"							
Dibromochloromethane	ND	10.0	"							
1,2-Dibromoethane	ND	10.0	"							
Dibromomethane	ND	10.0	"							
1,2-Dichlorobenzene	ND	10.0	"							
1,3-Dichlorobenzene	ND	10.0	"							
1,4-Dichlorobenzene	ND	10.0	"							
Dichlorodifluoromethane	ND	30.0	"							
1,1-Dichloroethane	ND	10.0	"							
1,2-Dichloroethane	ND	10.0	"							
1,1-Dichloroethene	ND	10.0	"							
cis-1,2-Dichloroethene	ND	10.0	"							
trans-1,2-Dichloroethene	ND	10.0	"							
1,1-Dichloropropene	ND	10.0	"							
1,2-Dichloropropane	ND	10.0	"							
1,3-Dichloropropane	ND	10.0	"							
2,2-Dichloropropane	ND	10.0	"							
cis-1,3-Dichloropropene	ND	10.0	"							
trans-1,3-Dichloropropene	ND	10.0	"							
Ethylbenzene	ND	2.00	"							
Hexachlorobutadiene	ND	30.0	"							

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Volatile Organic Compounds - Quality Control Report

				Spike	Source		%REC		RPD	
Analyte	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BG10372 - 5030A - 8260B										
Blank (BG10372-BLK1)				Prepared &	Analyzed:	07/14/202				
2-Hexanone	ND	50.0	ug/kg							
Isopropylbenzene	ND	10.0	"							
p-Isopropyltoluene	ND	10.0	"							
Methyl tert-Butyl Ether (MTBE)	ND	5.00	"							
4-Methyl-2-pentanone (MIBK)	ND	50.0	"							
Methylene chloride	ND	50.0	"							
Naphthalene	ND	10.0	"							
n-Propylbenzene	ND	10.0	"							
Styrene	ND	10.0	"							
1,1,1,2-Tetrachloroethane	ND	10.0	"							
1,1,2,2-Tetrachloroethane	ND	10.0	"							
Tetrachloroethene	ND	10.0	"							
Toluene	ND	2.00	"							
1,2,3-Trichlorobenzene	ND	10.0	"							
1,2,4-Trichlorobenzene	ND	10.0	"							
1,1,1-Trichloroethane	ND	10.0	"							
1,1,2-Trichloroethane	ND	10.0	"							
Trichloroethene	ND	10.0	"							
Trichlorofluoromethane	ND	10.0	"							
1,2,3-Trichloropropane	ND	10.0	"							
1,2,4-Trimethylbenzene	ND	10.0	"							
1,3,5- Trimethylbenzene	ND	10.0	"							
Vinyl acetate	ND	50.0	"							
Vinyl chloride	ND	30.0	"							
m,p-Xylenes	ND	4.00	"							
p-Xylene	ND	2.00	"							
LCS (BG10372-BS1)				Prepared &	Analyzed:	07/14/202				
Benzene	51.2		ug/L	50.0		102	75-120			
Chlorobenzene	54.1		"	50.0		108	80-120			
1,1-Dichloroethene	51.5			50.0		103	75-120			
Methyl tert-Butyl Ether (MTBE)	46.7		"	50.0		93.3	75-120			
Toluene	42.2			50.0		84.3	75-120			
Trichloroethene	47.4		"	50.0		94.7	75-120			

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Volatile Organic Compounds - Quality Control Report

		DOI		Spike	Source		%REC		RPD	
Analyte	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch BG10372 - 5030A - 8260B										
LCS Dup (BG10372-BSD1)				Prepared &	Analyzed:	07/14/202				
Benzene	51.1		ug/L	50.0		102	75-120	0.254	20	
Chlorobenzene	53.6		"	50.0		107	80-120	1.02	20	
1,1-Dichloroethene	52.9		"	50.0		106	75-120	2.62	15	
Methyl tert-Butyl Ether (MTBE)	46.5		"	50.0		93.0	75-120	0.365	15	
Toluene	42.4		"	50.0		84.8	75-120	0.615	15	
Trichloroethene	47.2		"	50.0		94.3	75-120	0.466	20	
Matrix Spike (BG10372-MS1)	Source: 2107056-01			Prepared & Analyzed: 07/14/202						
Benzene	52.4		ug/L	50.0	0.140	104	75-120			
Chlorobenzene	54.7		"	50.0	0.00	109	75-120			
1,1-Dichloroethene	55.0		"	50.0	0.00	110	75-120			
Methyl tert-Butyl Ether (MTBE)	54.7		"	50.0	0.00	109	75-120			
Toluene	42.8		"	50.0	0.00	85.7	75-120			
Trichloroethene	48.6		"	50.0	0.00	97.3	75-120			
Matrix Spike Dup (BG10372-MSD1)	Sou	rce: 210705	6-01	Prepared &	Analyzed:	07/14/202				
Benzene	53.0		ug/L	50.0	0.140	106	75-120	1.20	15	
Chlorobenzene	55.8		"	50.0	0.00	112	75-120	1.97	15	
1,1-Dichloroethene	59.4		"	50.0	0.00	119	75-120	7.66	15	
Methyl tert-Butyl Ether (MTBE)	60.2		"	50.0	0.00	120	75-120	9.54	15	
Toluene	43.4		"	50.0	0.00	86.8	75-120	1.25	15	
Trichloroethene	49.1		"	50.0	0.00	98.1	75-120	0.860	15	

Bran L

Amolk Brar, Lab Director

SCS Engineers	Project: 821 Main Street	Work Order No: 2107069
8799 Balboa Avenue, Suite 290	Project Number: 1221156.00	Reported:
San Diego CA, 92123	Project Manager: Luke Montague	07/15/2021 16:39

Notes and Definitions

- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the practical quantitation limit (PQL)
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference