Appendix

Appendix E Preliminary WQMP

Appendix

This page intentionally left blank.

Preliminary Water Quality Management Plan (PWQMP)

Project Name:

Oak Creek Community Park

Prepared for: City of Irvine Community Services Department One Civic Center Plaza Irvine, CA 92623

Prepared by: Adams Streeter Civil Engineers

Engineer: Mo Abadi Registration No. 42615 16755 Von Karman Ave. Suite 150 Irvine CA, 92606 949.474.2330

Prepared on:

April 8, 2022

Template Prepared:

July 15, 2011

Project Owner's Certification

Permit/Application No.	Grading Permit No.	
Tract/Parcel Map No.	Building Permit No.	
CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract)		APN 466-022-26

This Water Quality Management Plan (WQMP) has been prepared for City of Irvine by Adams Streeter Civil Engineers. The WQMP is intended to comply with the requirements of the local NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the Santa Ana Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

Owner:		
Title		
Company		
Address		
Email		
Telephone #		
Signature	Date	

Contents

Section I Discretionary Permit(s) and Water Quality Conditions	3
Section II Project Description	4
Section III Site Description	10
Section IV Best Management Practices (BMPs)	12
Section V Inspection/Maintenance Responsibility for BMPs	24
Section VI Site Plan and Drainage Plan	26
Section VII Educational Materials	27

Attachments

Attachment A	Educational Materials
Attachment B	BMP Calculations
Attachment C	BMP Site Plan
Attachment D	Hydromodification Calculations
Attachment E	Orange County Rainfall Zones Map

Section IDiscretionary Permit(s) andWater Quality Conditions

Project Infomation		
Permit/Application No.		Tract/Parcel Map No.
Additional Information/		
Comments:		
	V	Water Quality Conditions
Water Quality Conditions	N//	A
(list verbatim)		
Wa	ate	rshed-Based Plan Conditions
Provide applicable conditions from watershe - based plans including WIHMPs and TMDLS.	ed	N/A

Section II Project Description

II.1 Project Description

Description of Proposed Project				
Development Category (Verbatim from WQMP):	New development projects that create 10,000 square feet or more of impervious surface. This category includes commercial, industrial, residential housing subdivisions, mixed-use, and public projects on private or public property that falls under the planning and building authority or the Permittees. Parking lots 5,000 square feet or more including associated drive aisle, and potentially exposed to urban stormwater runoff. A parking lot is defined as a land area or facility for the temporary parking or storage of motor vehicles used personally, for business, or for commerce.			
Project Area (ft ²): 831,996	Number of Dwelli	ng UnitsN/A	SIC Code:	N/A
Narrative Project Description:	converting an exis the refurbishment dog parks and the	ting baseball field of an existing soc construction of a crete and decomp	novation project will l to a new synthetic t ccer field, the additio new 141 stall asphal posed granite walkwa ties.	urf soccer field, n of two new t parking lot. In
	Pervi	ous	Imperv	vious
Project Area	Area (acres)	Percentage	Area (acres)	Percentage
Pre-Project Conditions	17.10	89	2.00	11
Post-Project Conditions	15.13	79	3.97	21
Drainage Patterns/Connections	from northeast toy existing storm dra site drains southw 78-inch RCP locate existing communi	wards the southw in facility located rest at two location ed in Valley Oak I ty park and an 18	achieved via surface est direction to be pi- in Valley Oak Drive ns with connections Drive, a 36" RCP pip " RCP pipe drains th pipe is located along	cked-up in an . The existing to an existing e drains the e existing SCE

of the community park. Currently, the site is bermed along the perimeter with drainage surface-flowing towards the parkway.
The proposed drainage condition includes provisions to capture and treat runoff from the new parking lot that will be constructed on the SCE site. Storm drain improvements consisting of a trench drain and 18" RCP pipe conveys drainage from the proposed parking lot to a water quality unit. Treated and overflow runoff from the water quality unit drains towards the westerly corner of the site and is captured by the existing 24" CSP riser that conveys runoff to Valley Oak Drive.
The existing turf / green areas located on-site will largely remain as turf or synthetic turf. Existing drainage patterns will be held for the proposed improvements as the site is already tabled to drain toward the Existing 78-inch RCP located on Valley Oak Drive.

II.2 Potential Stormwater Pollutants

Pollutants of Concern			
	Circle One: E=E:	-	
Pollutant	conc	-	Additional Information and Comments
	N=Not Expected	to be of concern	
Suspended-Solid/ Sediment	E	Ν	
Nutrients	E	N	
Heavy Metals	E	Ν	
Pathogens (Bacteria/Virus)	Ē	Ν	
Pesticides	E	N	
Oil and Grease	E	N	
Toxic Organic Compounds	E	Ν	
Trash and Debris	E	N	

II.3 Hydrologic Conditions of Concern

No – Show map

Yes – Describe applicable hydrologic conditions of concern below. *Refer to Section 2.2.3 in the TGD.*

The project drains to Newport Bay that is potentially susceptible to hydromodification impacts. However, the proposed project is projected to mitigate any hydrologic conditions of concern and is not expected to cause an adverse impact on downstream receiving waters. The total increase in storm water runoff for the 2yr-24hr storm event is 3.15%. 2 year existing storm flow rate: 17.47 cfs 2 year proposed storm flow rate: 18.02 cfs Please see hydrologic calculations located in Attachment D for further details

II.4 Post Development Drainage Characteristics

Generally, the runoff from the new parking area will sheet flow to the southwest into a concrete curb and gutters. Drainage from the gutters will be diverted into a proposed Modular Wetlands Biofiltration System. A small portion of runoff will be diverted to the north where a trench drain spanning the width of the parking lot entrance will intercept the runoff and redirect the runoff to the MWS unit.

The MWS will be located in a landscape buffer on the southwest corner of the parking lot. Qdesign flows will be treated by the MWS unit and the remaining bypass flows drain towards the westerly corner of the site and are captured by the existing 24" CSP riser that conveys runoff to Valley Oak Drive.

Once the Qdesign flow cycles through the MWS unit, the treated runoff will be diverted back into the existing SD system terminating into the San Diego Creek and then into the Newport Bay.

In addition to the parking lot improvements, concrete walkways are proposed along the east perimeter of the new soccer field, south and west perimeter of the proposed dog parks as well as along the south side of the existing parking lot. The walkways are 5' wide paths designed to provide access to the new amenities and have landscaping on both sides. The minimal runoff generated from the walkways will discharge onto the adjacent landscaping where it will be absorbed by the soil.

II.5 Property Ownership/Management

The property will be owned and operated by The City of Irvine.

Section III Site Description

III.1 Physical Setting

Planning Area/ Community Name	Planning Area 12 – Oakcreek
Location/Address	15616 Valley Oak Drive, Irvine CA, 92606
Land Use	Recreation
Zoning	1.5
Acreage	19.10
Predominant Soil Type	Soil type B Per Figure XVI-2a of the North County TGD.

III.2 Site Characteristics

Precipitation Zone	<i>Design capture storm depth</i> = 0.75 <i>inches</i>
Topography	<i>The project has no large variations in grade and generally slopes to the southwest.</i>
Drainage Patterns/Connections	See section II.2 for details
Soil Type, Geology, and Infiltration Properties	Soil Type B Per Figure XVI-2a of the North County TGD.

Site Characteristics (continued)		
Hydrogeologic (Groundwater) Conditions		
Geotechnical Conditions (relevant to infiltration)	The percolation rate on this site is infeasible for infiltration	
Off-Site Drainage	No offsite drainage will be directed onto the site	
Utility and Infrastructure Information	The project site discharges into an existing 78" RCP located in Valley Oak Drive.	

III.3 Watershed Description

Receiving Waters	San Diego Creek Reach 1, Upper Newport Bay, and Lower Newport Bay
	San Diego Creek Reach 1 –Fecal Cloriform, Nutrients, Pesticides, Sedimentation/Siltation, Selenium, Toxaphene
303(d) Listed Impairments	Newport Bay (Upper) Chlordane, Copper, DDT, indicator Bacteria, metals, nutrients, PCBs, sediment toxicity, Sedimentation/Siltation
	Newport Bay (Lower) Chlordane, Copper, DDT, indicator Bacteria, nutrients, PCBs, pesticides, sediment toxicity
Applicable TMDLs	San Diego Creek Reach 1 –Metals, Nutrients, Pesticides, Siltation Newport Bay (Upper) Metals, Nutrients, Pathogens, Pesticides, Siltation Newport Bay (Lower) Metals, Nutrients, Pathogens, Pesticides, Priority Organics, Siltation
Pollutants of Concern for the Project	The pollutants of concern for this project are Suspended Solids/Sediments, Nutrients, Heavy Metals, Pathogens, Pesticides, Toxic Organic Compounds, and Trash.

Environmentally Sensitive and Special Biological Significant Areas	N/A
--	-----

Section IV Best Management Practices (BMPs)

IV. 1 Project Performance Criteria

(NOC Permit Area only) Is for the project area that incl- criteria or if there are oppor on regional or sub-regional	YES 🗌	NO 🔀	
If yes, describe WIHMP feasibility criteria or regional/sub-regional LID opportunities.			

Pro	Project Performance Criteria (continued)				
If HCOC exists, list applicable hydromodification control performance criteria (Section 7.II-2.4.2.2 in MWQMP)	N/A				
List applicable LID performance criteria (Section 7.II-2.4.3 from MWQMP)	The project will be designed to treat the 85th percentile, 24-hour storm event (Design Flow) of 0.31 cfs.				
List applicable treatment control BMP performance criteria (Section 7.II-3.2.2 from MWQMP)	Modular Wetlands Systems: The treatment capacity (cfs) for the single MWS unit that will treat the flow from drainage A is 0.34 CFS				
Calculate LID design storm capture volume for Project.	Capture Volume: 1,163.87 cf (Worksheet B) Treatment Capacity= 0.34 cfs > Design Flow = 0.31 cfs				

IV.2. SITE DESIGN AND DRAINAGE PLAN

The following section describes the site design BMPs used in this project and the methods used to incorporate them. Careful consideration of site design is a critical first step in storm water pollution prevention from new developments and redevelopments.

SITE DESIGN BMPs

Minimize Impervious Area

Impervious surfaces have been minimized by incorporating landscaped areas throughout the site surrounding the proposed hardscape areas.

Maximize Natural Infiltration Capacity

Under the existing conditions, infiltration capacity is low due to soils. Under the proposed condition, infiltration capacity will remain limited.

Disconnect Impervious Areas

Landscaping will be provided throughout the site, adjacent to walkways to disconnect impervious areas.

Protect Existing Vegetation and Sensitive Areas, and Revegetate Disturbed Areas

Landscaping will be replaced as appropriate in disturbed areas.

Xeriscape Landscaping

Proposed Landscaping will comprise of native draught tolerant material with efficient irrigation

DRAINAGE MANAGEMENT AREAS

In accordance with the MS4 permit and the Model WQMP, the project site has been divided into 1 Drainage Management Area (DMA) to be utilized for defining drainage areas and sizing LID and other treatment control BMPs. The DMA has been delineated based on the proposed site grading patterns, drainage patterns, storm drain and catch basin locations.

The design capture volume (DCV) and treatment flow rate (QDesign) for the DMA is summarized in the table below. It have been derived utilizing the "Simple Method" in accordance with the TGD Section III.1.1. Actual BMP sizing requirements, including 80 percent capture design volumes, flow rates, depths, and other design details for the specific BMPs proposed are provided in Section IV.3.4 below. Location of DMA and associated

LID and treatment BMP are identified on the exhibits in Section VI. Additional calculations and TGD Worksheets are provided in Attachment B.

DMA/ Drainage Area ID ⁽¹⁾	BMP	Drainage Area (ac)	% Imp.	Design Storm Depth ⁽²⁾ (in)	Estimated Tc (min.)	Rainfall Intensity ⁽³⁾ (in/hr)	Q _{Design} ⁽⁴⁾ (cfs)
A	Modular Wetlands System	1.71	90%	0.75	10	0.22	0.31

Notes:

- 1. Refer to exhibits in Section VI for location each DMA.
- 2. Per Figure XVI-1 of the Model WQMP Technical Guidance Document
- 3. Per Figure III.4 of the Model WQMP Technical Guidance Document
- 4. Per Section III.3.3 and Worksheet D of the Model WQMP Technical Guidance Document.

V.3 LID BMP SELECTION AND PROJECT CONFORMANCE ANALYSIS

IV.3.1 Hydrologic Source Controls

Name	Included?
Localized on-lot infiltration	
Impervious area dispersion (e.g. roof top disconnection)	
Street trees (canopy interception)	
Residential rain barrels (not actively managed)	
Green roofs/Brown roofs	
Blue roofs	
Impervious area reduction (e.g. permeable pavers, site design)	
Other:	
Other:	

IV.3.2 Infiltration BMPs

Name	Included?
Bioretention without underdrains	
Rain gardens	
Porous landscaping	
Infiltration planters	
Retention swales	
Infiltration trenches	
Infiltration basins	
Drywells	
Subsurface infiltration galleries	
French drains	
Permeable asphalt	
Permeable concrete	
Permeable concrete pavers	
Other:	
Other:	

Infiltration on the site is the most desirable BMP and must be used as much as possible however, is infeasible at this site due to existing soil conditions. In light of this, the next tier of the hierarchy was considered

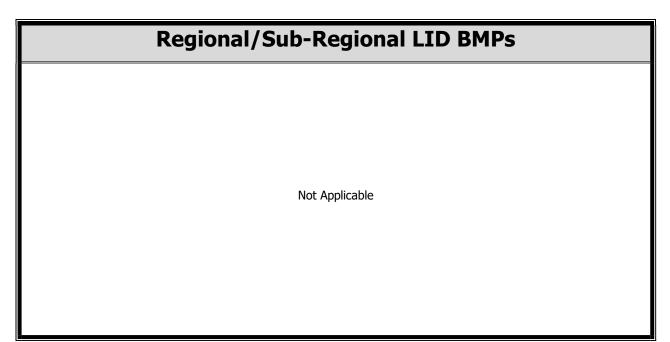
IV.3.3 Evapotranspiration, Rainwater Harvesting BMPs

Name	Included?
All HSCs; See Section IV.3.1	
Surface-based infiltration BMPs	
Biotreatment BMPs	
Above-ground cisterns and basins	
Underground detention	
Other:	
Other:	
Other:	

Rainwater harvesting was considered for this project. This involves capturing the initial storm water runoff in a tank either above ground or below ground and later reusing it for irrigation or toilet flushing. The goal with this method is to keep the initial runoff from entering the storm drain system. The major concern with this method is the situation in which there are two successive storms in a short amount of time. The first storm would fill the tank and then before there was sufficient time to empty the tank the second storm would hit. The initial runoff from the second storm would have to bypass the tank and would end up draining untreated to the storm drain. In light of this, the next tier of biotreatment was considered.

IV.3.4 Biotreatment BMPs

Name	Included?
Bioretention with underdrains	
Stormwater planter boxes with underdrains	
Rain gardens with underdrains	
Constructed wetlands	
Vegetated swales	
Vegetated filter strips	
Proprietary vegetated biotreatment systems	\square
Wet extended detention basin	
Dry extended detention basins	
Other:	
Other:	


Since both infiltration and harvest and reuse are considered infeasible, runoff from the project site will be treated through the use of a biofiltration BMP: a proprietary biotreatment system (Modular Wetlands) with downstream of the improvements. In accordance with the Model WQMP and TGD, the biofiltration BMPs will be sized to treat runoff from the Design Capture Storm (85th percentile, 24-hour). Location and tributary drainage area is shown on the WQMP Exhibit. Detailed calculations, associated TGD Worksheets and BMP details are included in Attachment B.

Modular Wetlands by Modular Wetlands Systems, Inc. are proprietary biotreatment systems that utilize multi-stage treatment processes including screening media filtration, settling, and biofiltration. The pre-treatment chamber contains the first three stages of treatment, and includes a catch basin inlet filter to capture trash, debris, gross solids and sediments, a settling chamber for separating out larger solids, and a media filter cartridge for capturing fine TSS, metals, nutrients, and bacteria. Runoff then flows through the wetland chamber where treatment is achieved through a variety of physical, chemical, and biological processes. As storm water passes down through the planting soil, pollutants are filtered, adsorbed, biodegraded and sequestered by the soil and plants, functioning similar to bioretention systems. The discharge chamber at the end of the unit collects treated flows and discharges back into the storm drain system.

IV.3.5 Hydromodification Control BMPs

BMP Name	BMP Description

IV.3.6 Regional/Sub-Regional LID BMPs

IV.3.7 Treatment Control BMPs

Treatment Control BMPs					
BMP Name	BMP Description				

IV.3.8 Non-structural Source Control BMPs

Non-Structural Source Control BMPs					
	Name	Che	ck One	If not applicable, state brief	
Identifier		Included	Not Applicable	reason	
N1	Education for Property Owners, Tenants and Occupants				
N2	Activity Restrictions				
N3	Common Area Landscape Management				
N4	BMP Maintenance				
N5	Title 22 CCR Compliance (How development will comply)			No hazardous material on site	
N6	Local Industrial Permit Compliance			No local industrial permits required	
N7	Spill Contingency Plan			There are no loading docks or vehicle maintenance areas	
N8	Underground Storage Tank Compliance			There are no underground storage tanks on site	
N9	Hazardous Materials Disclosure Compliance			No hazardous material on site	
N10	Uniform Fire Code Implementation			No hazardous material on site	
N11	Common Area Litter Control				
N12	Employee Training				
N13	Housekeeping of Loading Docks			No loading dock on site	
N14	Common Area Catch Basin Inspection				
N15	Street Sweeping Private Streets and Parking Lots				
N16	Retail Gasoline Outlets			No gas outlet onsite.	

N1. Education of Property Owners, Tenants and Occupants.

Proper education of onsite occupants will help to reduce all potential and anticipated pollutants from the site. Practical information shall be provided by the property owner to the employees on general good housekeeping BMP's and other practices that contribute to protection of storm water quality. This WQMP shall be provided with emphasis placed on the materials included in, but not limited to, Sections IV, V, VI, VII and Attachment A of this report. For additional information, see BMP SC-10, Non-Stormwater Discharges, included in Section Attachment A and the BMP Maintenance Responsibility/Frequency Matrix in Section V. Copies of The Ocean Begins at Your Front Door, Sewer Spill, Tips for Landscaping and Gardening, and Proper Maintenance Practices for Your Business are contained in Attachment A. Additional Education Materials to be used include, but are not limited to, SC-10, Non-Stormwater Discharges, SC-11, Spill Prevention, Control, and Cleanup, SC-34, Waste Handling and Disposal, and SC-41, Building & Grounds Maintenance. Also reference the Orange County Public Works website at http://www.ocwatersheds.com.

N2. Activity Restrictions.

Onsite activities shall be restricted to those currently granted by the City of Irvine and as outlined throughout this WQMP. Some general activity restrictions that shall be adhered to are:

 \cdot No discharges of fertilizer, pesticides, and wastes to streets or storm drains

- \cdot No blowing or sweeping of debris into streets or storm drains
- · No hosing down of paved surfaces
- · No vehicle fueling, washing, or maintenance

In addition, onsite activities shall be limited to the requirements of this WQMP as described herein. Adhering to appropriate activity restrictions will help to reduce all anticipated and potential pollutants from the site.

N3. Common Area Landscape Management.

All maintenance shall be consistent with City of Irvine guidelines. Proper landscape maintenance practices will help to reduce or eliminate pollution from pesticides, nutrients, trash/debris, and sediments. General guidelines include the following: Plant vegetation that reduces water, fertilizer, herbicide, and pesticide use. Waste shall be disposed of by composting or at a permitted landfill and shall not be raked or blown into the street, gutter, or storm drains. Irrigation systems shall be inspected monthly for poorly aligned sprinkler heads, broken sprinkler heads, and leaks. Detected problems shall be repaired as soon as they are observed. Avoid over-watering of vegetation. If excessive runoff is observed, automatic timers shall be adjusted. Note that the actual irrigation schedule and levels may vary based on soil type, maturity of vegetation, exposure, and seasonal conditions. If fertilizer is spilled on a paved surface it should be swept up immediately and placed in its container. Water shall not be used to clean fertilizer spills unless necessary and only after the area has been thoroughly cleaned using

dry cleaning methods. Pesticides, herbicides, and fertilizers shall not be applied within 48 hours prior to rain or if wind speeds exceed 5 mph. Pesticides shall be applied only as a last resort and after other pest mitigation efforts have been attempted. Non-pesticide mitigation measures include cultural tactics (modifying routine landscape activities, adjusting the amount of irrigation applied to the area, etc.), mechanical tactics (mulching and manual removal of weeds and larger pests such as snails), environmental/ physical tactics (netting, etc.), and biological tactics (using living organisms such as lady bugs and herbivores to control pests). Storage of pesticides shall be away from living areas and in a covered area that is not subject to temperature extremes. For additional information, see BMP SC-41, Building & Grounds Maintenance, SC-73, Landscape Maintenance, and BMP SD-10, Site Design and Landscape Planning, included in Attachment A and the BMP Maintenance Responsibility/Frequency Matrix in Section V.

N4. BMP Maintenance.

Selected BMP's will be maintained to ensure proper operation and that they are properly maintained. See the BMP Maintenance Responsibility/Frequency Matrix in Section V for details. Appropriate BMP Maintenance practices will help to reduce all pollutants from the site.

N11. Common Area Litter Control. (SC-60)

The owner shall implement trash management and litter control procedures aimed at reducing pollution of storm water runoff due to trash and debris. The owner will contract with a maintenance firm to provide regularly scheduled landscape maintenance and parking lot maintenance that will include litter removal, emptying of trash receptacles, and picking up of grass and plant clippings. For additional information, see BMP SC-41, Building & Grounds Maintenance, and SC-43, Parking/Storage Area Maintenance, included in Attachment A. Also see the BMP Maintenance Responsibility/Frequency Matrix in Section V.

N12. Employee Training.

Ensuring that employees are properly trained will help to reduce all anticipated and potential pollutants from the site. All new employees will be trained on how to minimize impacts to water quality. The educational materials provided in Attachment A will be reviewed including The Ocean Begins at Your Front Door, Sewer Spill, Tips for Landscaping and Gardening, and Proper Maintenance Practices for Your Business are contained in Attachment A. Additional Education Materials to be used are, but are not limited to, SC-10, Non-Stormwater Discharges, SC-11, Spill Prevention, Control, and Cleanup, SC-34, Waste Handling and Disposal, and SC-41, Building & Grounds Maintenance. Also reference the Orange County Public Works website at http://www.ocwatersheds.com. For additional information, see the BMP Maintenance Responsibility/Frequency Matrix in Section V.

N14. Common Area Catch Basin Inspection (SC-74).

Proper maintenance of the onsite catch basins will help to reduce the amount of trash/debris and silt/sediment in runoff. The onsite catch basins shall be inspected and cleaned of any trash or debris in or around the opening prior to the rainy season (by October 1st). Thereafter, inspections will be conducted every four months. See the Maintenance Responsibility/ Frequency Matrix in Section V.

N15 Street Sweeping Private Streets and Parking Lots (SC-43 & SC-70).

Access roads and drive aisles shall be swept twice a month to remove debris or more frequently as needed. Less traffic areas to be swept once a month minimum. For additional information, see BMP SC-43, Parking/Storage Area Maintenance and BMP SC-70, Road and Street Maintenance included in Attachment A. Also see the Maintenance Responsibility/ Frequency Matrix in Section V.

IV.3.9 Structural Source Control BMPs

Fill out structural source control check box forms or provide a brief narrative explaining if Structural source controls were not used.

	Structural Source Control BMPs					
		Chec	k One	If not applicable, state brief		
Identifier	Name	Included	Not Applicable	reason		
S1	Provide storm drain system stenciling and signage					
S2	Design and construct outdoor material storage areas to reduce pollution introduction			No outdoor material storage areas proposed.		
S3	Design and construct trash and waste storage areas to reduce pollution introduction			A trash enclosure already exists on the site		
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control					
S5	Protect slopes and channels and provide energy dissipation			No large slopes on site		
	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)			Requirements applicable to individual priority project categories listed below		
S6	Dock areas			No docks are proposed		
S7	Maintenance bays			No maintenance bays are proposed		
S8	Vehicle wash areas			No vehicle wash areas are proposed		
S 9	Outdoor processing areas			No outdoor processing areas are proposed		
S10	Equipment wash areas			No equipment wash areas are proposed		
S11	Fueling areas			No fueling areas are proposed		
S12	Hillside landscaping			No hillside landscaping areas are proposed		
S13	Wash water control for food preparation areas			No food prep areas are proposed		
S14	Community car wash racks			No community wash areas are proposed		

S1. Provide Storm Drain Stenciling and Signage.

The proposed drainage inlets will be stenciled with the phrase "No Dumping – Drains to Ocean". Storm drain signage will help to reduce all pollution. The storm drain signage shall be inspected once per year for legibility and re-stenciled as necessary. Stenciling should be done at minimum once every five years. See BMP SD-13, Storm Drain Signage, in Attachment A and the BMP Maintenance Responsibility/Frequency Matrix in Section V.

S4. Use Efficient Irrigation Systems & Landscape Design, Water Conservation, Smart Controllers, and Source Control.

All landscape maintenance shall be consistent with City of Irvine guidelines. Efficient irrigation practices will help to reduce pollution due to pesticides, nutrients, and sediments. General guidelines include the following: Plant vegetation that reduces water, fertilizer, herbicide, and pesticide use. Group plants with similar water requirements in order to reduce excess irrigation runoff and promote surface filtration.

IV.4 ALTERNATIVE COMPLIANCE PLAN (IF APPLICABLE)

IV.4.1 Water Quality Credits

Description of Proposed Project					
Project Types that Qualify for Water Quality Credits (Select all that apply):					
Redevelopment projects that reduce the overall impervious footprint of the project site.	redevelopment, e property which r presence or poter substances, pollu which have the p	development, meaning expansion, or reuse of real nay be complicated by the ntial presence of hazardous itants or contaminants, and potential to contribute to or surface WQ if not	Higher density development projects which include two distinct categories (credits can only be taken for one category): those with more than seven units per acre of development (lower credit allowance); vertical density developments, for example, those with a Floor to Area Ratio (FAR) of 2 or those having more than 18 units per acre (greater credit allowance).		
Mixed use development, such as a combination of residential, commercial, industrial, office, institutional, or other land uses which incorporate design principles that can demonstrate environmental benefits that would not be realized through single use projects (e.g. reduced vehicle trip traffic with the potential to reduce sources of water or air pollution).		Transit-oriented developments, such as a mixed use residential or commercial area designed to maximize access to public transportation; similar to above criterion, but where the development center is within one half mile of a mass transit center (e.g. bus, rail, light rail or commuter train station). Such projects would not be able to take credit for both categories, but may have greater credit assigned		Redevelopment projects in an established historic district, historic preservation area, or similar significant city area including core City Center areas (to be defined through mapping).	

Preliminary Water Quality Management Plan (PWQMP) Oak Creek Community Park

Developments with dedication of undeveloped	l Developments	Developments in historic	Live-work developments, a variety of developments designed to support residential and	In-fill projects, the conversion of empty lots and other underused
portions to parks, preservation areas and other pervious uses.	in a city center area.	districts or historic preservation areas.	vocational needs together – similar to criteria to mixed use development; would not be able to take credit for both categories.	spaces into more beneficially used spaces, such as residential or commercial areas.
Calculation of Water Quality Credits (if applicable)				

IV.4.2 Alternative Compliance Plan Information

Not applicable. Water quality credits will not be applied for the project. LID BMPs will be utilized for water quality treatment on-site in accordance with the MS4 Permit hierarchy identified at the beginning of this Section.

Section V Inspection/Maintenance Responsibility for BMPs

BMP Inspection/Maintenance					
BMP	Reponsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities		
N1 – Education of property owners, tenants, occupants	City of Irvine	Education of employees /owners shall be done within 4 weeks of start-up and continue on an annual refreshing basis with each new on-site employee/owner being given a Water Quality orientation using this WQMP as reference within two weeks of hire date.	Ongoing. Ensure all employees are adhering to the activity restrictions and are not engaged in activities that can have a negative impact on storm water.		
N2 – Activity Restrictions	City of Irvine	There shall be no discharges of fertilizer, pesticides, or wastes to streets or storm drains. There shall be no blowing or sweeping of debris into storm drain. All debris shall be collected and relocated to an approved landfill.	Ongoing. Ensure all employees are adhering to the activity restrictions and are not engaged in activities that can have a negative impact on storm water.		
N3 – Common area landscape management	City of Irvine	Landscape maintenance will consist of trimming and replanting of vegetation, repair and maintenance of irrigation systems, and appropriate use of fertilizers and pesticides.	Landscape maintenance shall be performed on a weekly basis. Irrigation systems shall be inspected monthly for leaks. Leaks shall be		

			repaired as soon as they are observed.
N4 – BMP Maintenance	City of Irvine	The proposed treatment BMPs will be maintained as outlined in Attachment F of this report.	As outlined in Attachment F of this report.
N11 – Common area litter control	City of Irvine	The Owner will contract with a maintenance firm to provide weekly landscape maintenance and parking lot maintenance that will include litter removal and picking up grass and plant clippings. During routine maintenance, all trash and debris will be picked up and placed in waste receptacles.	Weekly

BMP Inspection/Maintenance				
BMP Reponsible Party(s)		Inspection/ Maintenance Activities Required	Minimum Frequency of Activities	
N12 – Employee training	City of Irvine	Education of employees /owner(s) shall be done within 4 weeks of startup and continue on an annual refreshing basis with each new onsite	Ongoing. Ensure all employees are adhering to the activity restrictions and are not engaged	

l		amplayed (average) have	in activities that
		employee/owner(s) being given a water quality orientation using this WQMP as reference within two weeks of hire date.	negative impact on storm water.
N14 – Common area catch basin inspection	City of Irvine	Inspect area in around catch basins for trash/debris and clean as necessary but at a minimum once prior to the rainy season (by Oct. 1st)	Once prior to the rainy season (by Oct. 1st) and every four months thereafter
N15 – Street sweeping private streets and parking lots	City of Irvine	The access roads and drive aisles shall be swept on a regular basis to remove debris. (See BMP SC-43 and BMP SC-70)	Twice a month to remove debris in drive aisles/access roads or more frequently as needed. Areas with less traffic to be done a minimum of once a month
Efficient Irrigation	City of Irvine	Inspect irrigation equipment. Check water sensors and adjust irrigation heads and timing.	Monthly
Modular Wetlands Biofilters	City of Irvine	 Remove trash from screening device. Remove sediment from separation chamber. Replace cartridge filter media. Replace drain down filter media. Trim vegetation. 	Annually
Storm drain stencilling	Owner	The storm drain signage shall be inspected once per year for legibility and re-stencilled as necessary	Once every year, repaint every five years at minimum

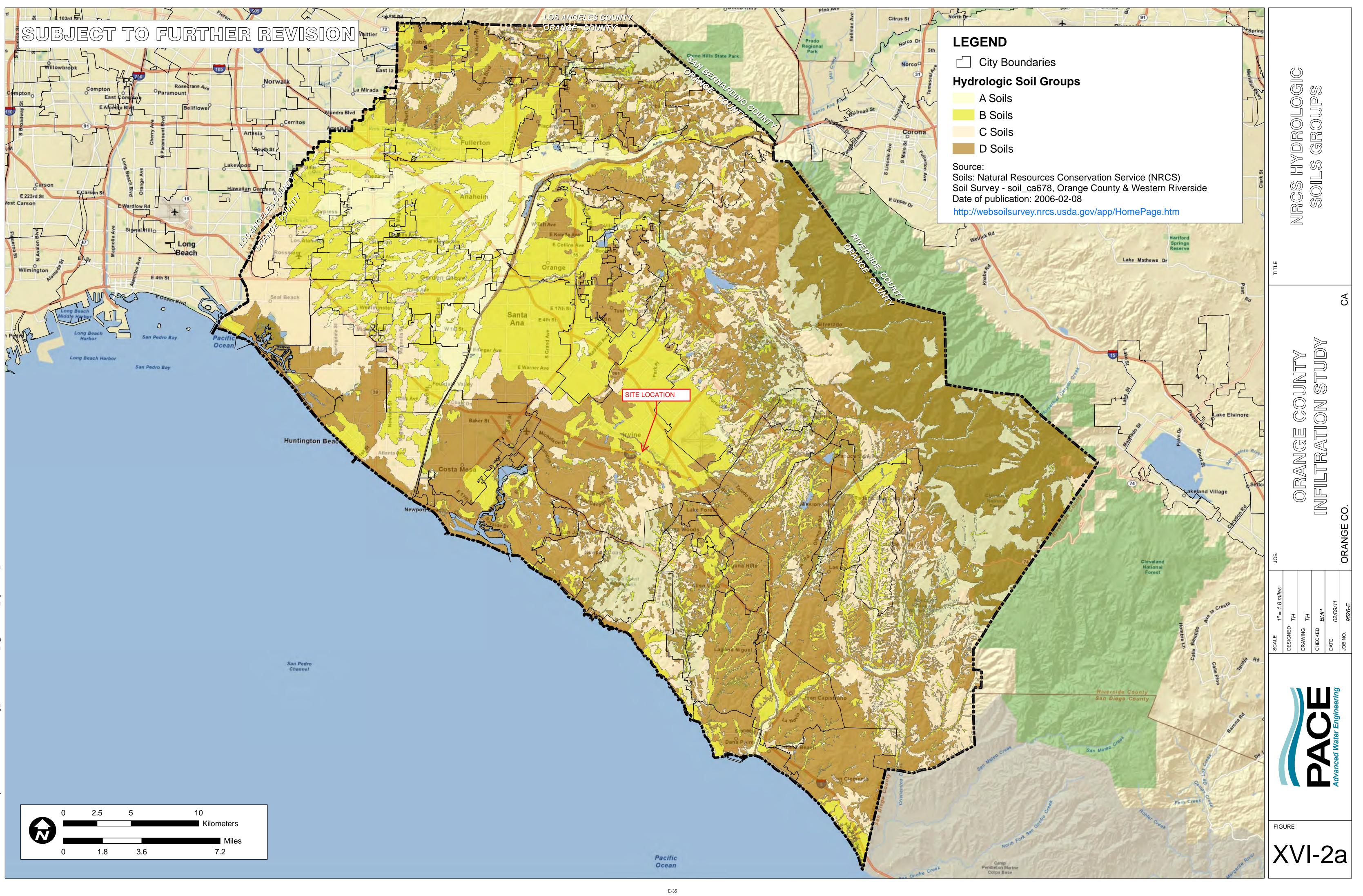
Section VI Site Plan and Drainage Plan

VI.1 SITE PLAN AND DRAINAGE PLAN

Section VII Educational Materials

Refer to the Orange County Stormwater Program (ocwatersheds.com) for a library of materials available. For the copy submitted to the Permittee, only attach the educational materials specifically applicable to the project. Other materials specific to the project may be included as well and must be attached.

Education Materials				
Residential Material (http://www.ocwatersheds.com)	Check If Applicable	Business Material (http://www.ocwatersheds.com)	Check If Applicable	
The Ocean Begins at Your Front Door		Tips for the Automotive Industry		
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar		
Tips for the Home Mechanic		Tips for the Food Service Industry		
Homeowners Guide for Sustainable Water Use		Proper Maintenance Practices for Your Business		
Household Tips			Check If	
Proper Disposal of Household Hazardous Waste		Other Material	Attached	
Recycle at Your Local Used Oil Collection Center (North County)		SC-10 Non-Stormwater Discharges		
Recycle at Your Local Used Oil Collection Center (Central County)		SC-11 Spill Prevention, Control and Clean-up		
Recycle at Your Local Used Oil Collection Center (South County)		SC-34 Waste Handling and Disposal		
Tips for Maintaining a Septic Tank System		SC-41 Building and Grounds Maintenance		
Responsible Pest Control				
Sewer Spill				
Tips for the Home Improvement Projects				
Tips for Horse Care				
Tips for Landscaping and Gardening				
Tips for Pet Care				
Tips for Pool Maintenance				
Tips for Residential Pool, Landscape and Hardscape Drains				
Tips for Projects Using Paint				

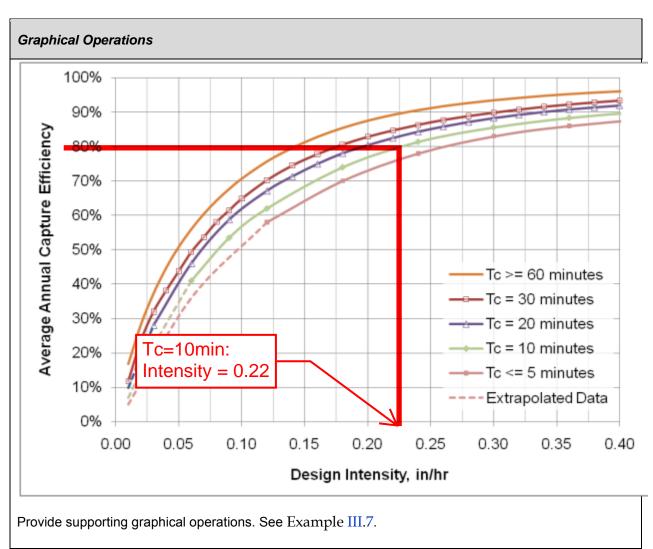

ATTACHMENT A

EDUCATIONAL MATERIALS

http://www.ocwatersheds.com

ATTACHMENT B

BMP CALCULATIONS



3526E\6-GIS\Mxds\Reports\InfiltrationFeasability_20110215\9526E_FigureXVI-2a_HydroSoils_20110215.

DMA -A TECHNICAL GUIDANCE DOCUMENT APPENDICES

Worksheet D: Capture Efficiency Method for Flow-Based BMPs

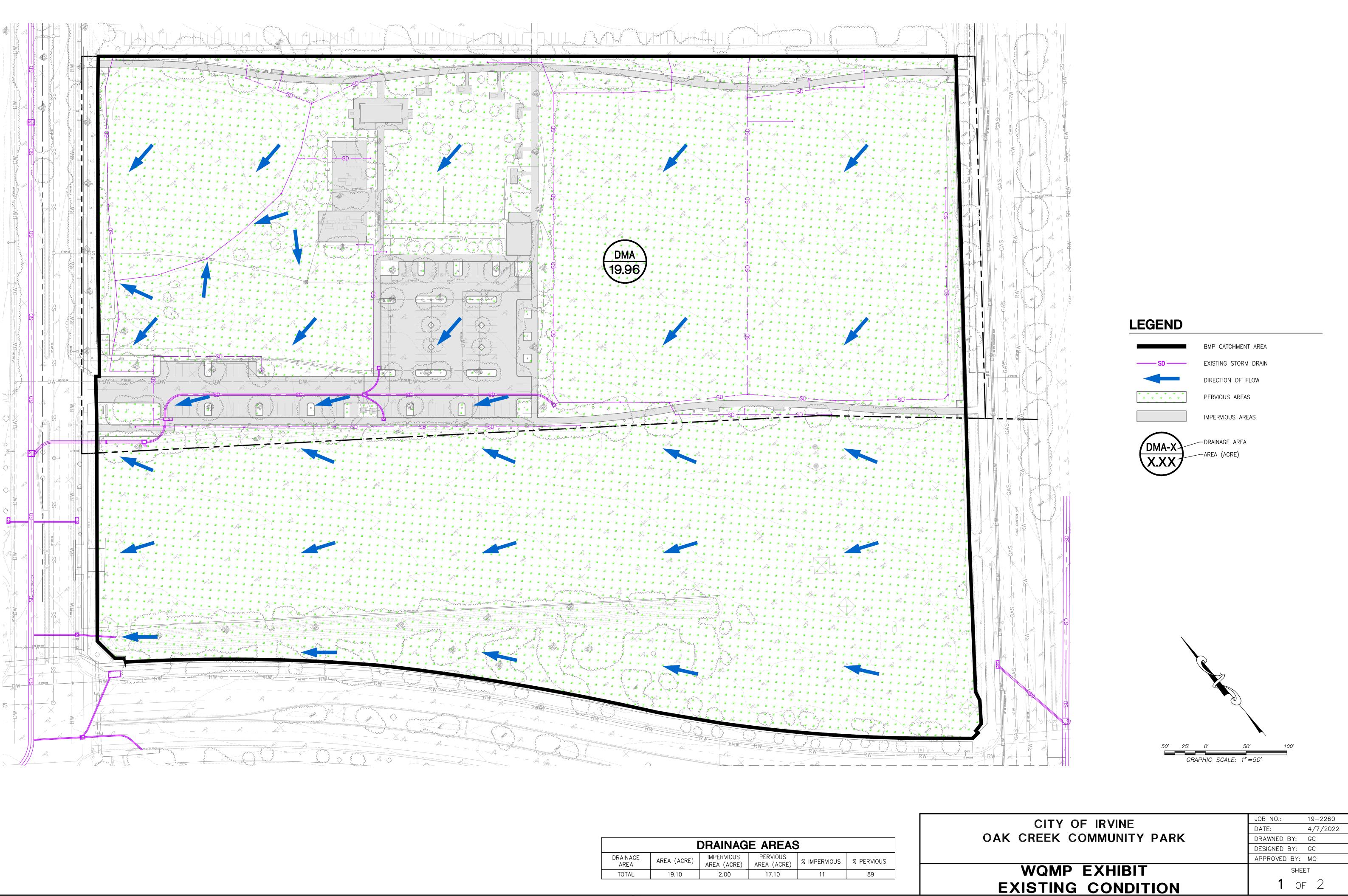
St	ep 1: Determine the design capture storm depth used for calc	culating volu	ume	
1	Enter the time of concentration, T_c (min) (See Appendix IV.2)	T _c =	10	
2	Using Figure III.4, determine the design intensity at which the estimated time of concentration (T_c) achieves 80% capture efficiency, I_1	I ₁ =	.22	in/hr
3	Enter the effect depth of provided HSCs upstream, d_{HSC} (inches) (Worksheet A)	d _{HSC} =	0	inches
4	Enter capture efficiency corresponding to d _{HSC} , Y ₂ (Worksheet A)	Y ₂ =	0	%
5	Using Figure III.4 , determine the design intensity at which the time of concentration (T_c) achieves the upstream capture efficiency(Y_2), I_2	l ₂ =	0	
6	Determine the design intensity that must be provided by BMP, $I_{design} = I_1 - I_2$	I _{design} =	.22	
St	ep 2: Calculate the design flowrate			
1	Enter Project area tributary to BMP (s), A (acres)	A=	1.71	acres
2	Enter Project Imperviousness, imp (unitless)	imp=	.9	
3	Calculate runoff coefficient, $C = (0.75 \text{ x imp}) + 0.15$	C=	.825	
4	Calculate design flowrate, $Q_{design} = (C \times i_{design} \times A)$	Q _{design} =	0.31	cfs
Su	pporting Calculations			
De	scribe system:			
-	The Qdesign for DMA-A is 0.31.			
-	The total treatment capacity of a 8'x12' MWS unit is 0.34 CFS			
Pro	ovide time of concentration assumptions:			

Worksheet D: Capture Efficiency Method for Flow-Based BMPs

St	ep 1: Determine the design capture storm depth used for cald	culating volu	ıme	
1	Enter design capture storm depth from Figure III.1, <i>d</i> (inches)	d=	.75	inches
2	Enter the effect of provided HSCs, d_{HSC} (inches) (Worksheet A)	d _{HSC} =		inches
3	Calculate the remainder of the design capture storm depth, <i>d_{remainder}</i> (inches) (Line 1 – Line 2)	d _{remainder} =	.75	inches
St	ep 2: Calculate the DCV			
1	Enter Project area tributary to BMP (s), A (acres)	A=	1.71	acres
2	Enter Project Imperviousness, <i>imp</i> (unitless)	imp=	.9	
3	Calculate runoff coefficient, $C = (0.75 \times imp) + 0.15$	C=	.25	
4	Calculate runoff volume, $V_{design} = (C \times d_{remainder} \times A \times 43560 \times (1/12))$	V _{design} =	1163.87	cu-ft
St	ep 3: Design BMPs to ensure full retention of the DCV			
St	ep 3a: Determine design infiltration rate			
1	Enter measured infiltration rate, $K_{observed}^{\dagger}$ (in/hr) (Appendix VII)	K _{observed} =		In/hr
2	Enter combined safety factor from Worksheet H, S _{total} (unitless)	S _{total} =		
3	Calculate design infiltration rate, $K_{design} = K_{observed} / S_{total}$	K _{design} =		ln/hr
St	ep 3b: Determine minimum BMP footprint			
4	Enter drawdown time, <i>T</i> (max 48 hours)	T=		Hours
5	Calculate max retention depth that can be drawn down within the drawdown time (feet), $D_{max} = K_{design} \times T \times (1/12)$	D _{max} =		feet
6	Calculate minimum area required for BMP (sq-ft), $A_{min} = V_{design}/d_{max}$	A _{min} =		sq-ft

Worksheet B: Simple Design Capture Volume Sizing Method

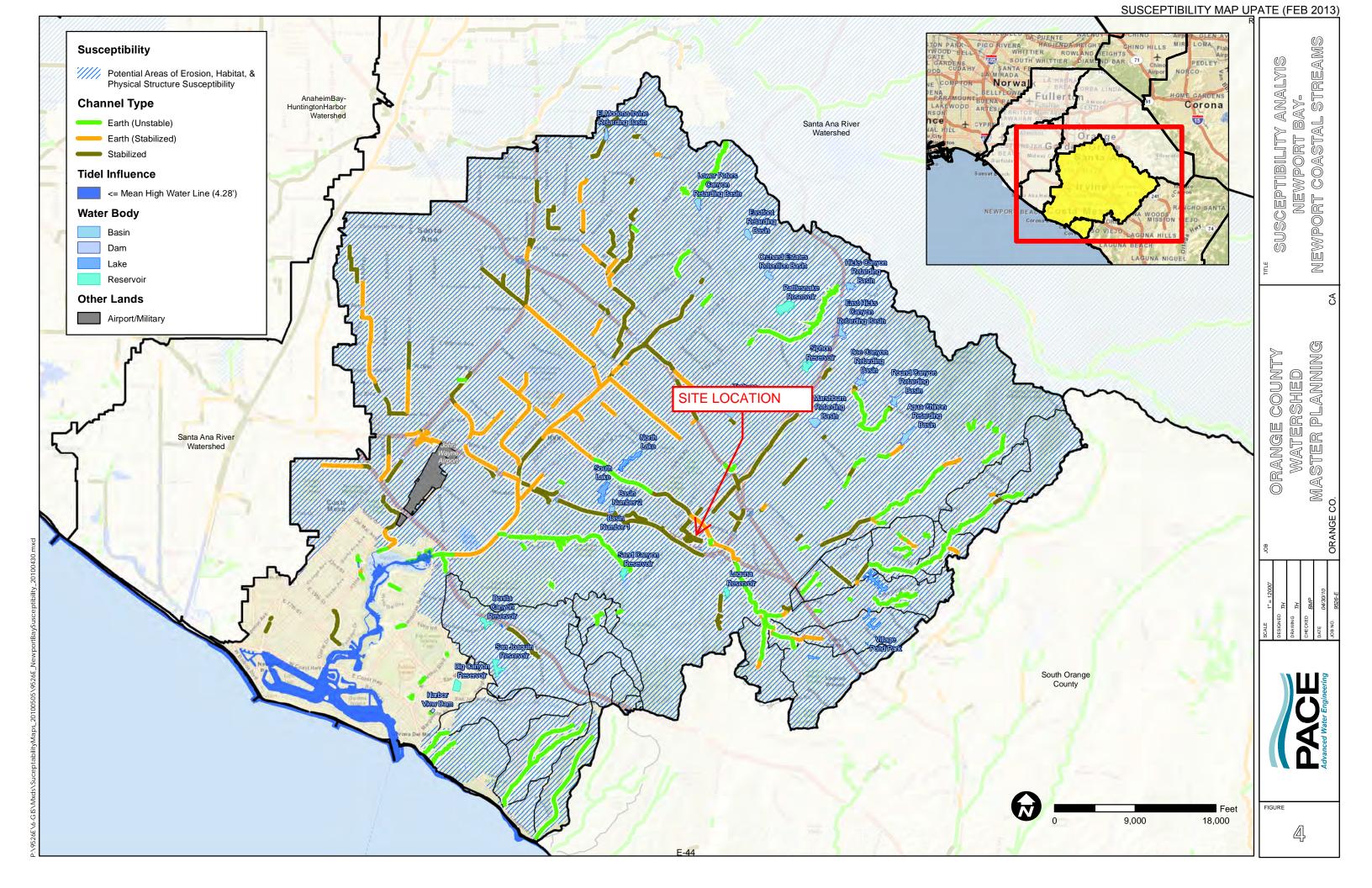
¹K_{observed} is the vertical infiltration measured in the field, before applying a factor of safety. If field testing measures a rate that is different than the vertical infiltration rate (for example, three-dimensional borehole percolation rate), then this rate must be adjusted by an acceptable method (for example, Porchet method) to yield the field estimate of vertical infiltration rate, K_{observed}. See Appendix VII.


MWS LINEAR 2.0 HGL SIZING CALCULATIONS

	HGL HEIGHT																															
								SHALLOW MODELS									STANDARD HEIGHT MODEL HIGH CAPACITY MODELS			LS												
MWS MODEL SIZE	WETLAND PERMITER LENGTH	LOADING RATE GPM/SF	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3	3.4	3.5	3.6	3.65	3.70	3.75	3.80	3.85	3.90	3.95
MWS-L-4-4	6.70	1.0	0.022	0.023	0.025	0.026	0.028	0.029	0.031	0.032	0.034	0.035	0.037	0.038	0.040	0.042	0.043	0.045	0.046	0.048	0.049	0.051	0.052	0.054	0.055	0.056	0.057	0.058	0.058	0.059	0.060	0.061
MWS-L-3-6	10.06	1.0	0.032	0.035	0.037	0.039	0.042	0.044	0.046	0.048	0.051	0.053	0.055	0.058	0.060	0.062	0.065	0.067	0.069	0.072	0.074	0.076	0.078	0.081	0.083	0.084	0.085	0.087	0.088	0.089	0.090	0.091
MWS-L-4-6	9.30	1.0	0.030	0.032	0.034	0.036	0.038	0.041	0.043	0.045	0.047	0.049	0.051	0.053	0.055	0.058	0.060	0.062	0.064	0.066	0.068	0.070	0.073	0.075	0.077	0.078	0.079	0.080	0.081	0.082	0.083	0.084
MWS-L-4-8	14.80	1.0	0.048	0.051	0.054	0.058	0.061	0.065	0.068	0.071	0.075	0.078	0.082	0.085	0.088	0.092	0.095	0.099	0.102	0.105	0.109	0.112	0.115	0.119	0.122	0.124	0.126	0.127	0.129	0.131	0.132	0.134
MWS-L-4-13	18.40	1.0	0.059	0.063	0.068	0.072	0.076	0.080	0.084	0.089	0.093	0.097	0.101	0.106	0.110	0.114	0.118	0.122	0.127	0.131	0.135	0.139	0.144	0.148	0.152	0.154	0.156	0.158	0.160	0.163	0.165	0.167
MWS-L-4-15	22.40	1.0	0.072	0.077	0.082	0.087	0.093	0.098	0.103	0.108	0.113	0.118	0.123	0.129	0.134	0.139	0.144	0.149	0.154	0.159	0.165	0.170	0.175	0.180	0.185	0.188	0.190	0.193	0.195	0.198	0.200	0.203
MWS-L-4-17	26.40	1.0	0.085	0.091	0.097	0.103	0.109	0.115	0.121	0.127	0.133	0.139	0.145	0.151	0.158	0.164	0.170	0.176	0.182	0.188	0.194	0.200	0.206	0.212	0.218	0.221	0.224	0.227	0.230	0.233	0.236	0.239
MWS-L-4-19	30.40	1.0	0.098	0.105	0.112	0.119	0.126	0.133	0.140	0.147	0.153	0.160	0.167	0.174	0.181	0.188	0.195	0.202	0.209	0.216	0.223	0.230	0.237	0.244	0.251	0.255	0.258	0.262	0.265	0.269	0.272	0.276
MWS-L-4-21	34.40	1.0	0.111	0.118	0.126	0.134	0.142	0.150	0.158	0.166	0.174	0.182	0.189	0.197	0.205	0.213	0.221	0.229	0.237	0.245	0.253	0.261	0.268	0.276	0.284	0.288	0.292	0.296	0.300	0.304	0.308	0.312
MWS-L-6-8	18.80	1.0	0.060	0.065	0.069	0.073	0.078	0.082	0.086	0.091	0.095	0.099	0.104	0.108	0.112	0.116	0.121	0.125	0.129	0.134	0.138	0.142	0.147	0.151	0.155	0.157	0.160	0.162	0.164	0.166	0.168	0.170
MWS-L-8-8	29.60	1.0	0.095	0.102	0.109	0.115	0.122	0.129	0.136	0.143	0.149	0.156	0.163	0.170	0.177	0.183	0.190	0.197	0.204	0.211	0.217	0.224	0.231	0.238	0.245	0.248	0.251	0.255	0.258	0.262	0.265	0.268
MWS-L-8-12	44.40	1.0	0.143	0.153	0.163	0.173	0.183	0.194	0.204	0.214	0.224	0.234	0.245	0.255	0.265	0.275	0.285	0.296	0.306	0.316	0.326	0.336	0.346	0.357	0.367	0.372	0.377	0.382	0.387	0.392	0.397	0.402
MWS-L-8-16	59.20	1.0	0.190	0.204	0.217	0.231	0.245	0.258	0.272	0.285	0.299	0.312	0.326	0.340	0.353	0.367	0.380	0.394	0.408	0.421	0.435	0.448	0.462	0.476	0.489	0.496	0.503	0.509	0.516	0.523	0.530	0.537
MWS-L-8-20	74.00	1.0	0.238	0.255	0.272	0.289	0.306	0.323	0.340	0.357	0.374	0.391	0.408	0.425	0.442	0.459	0.476	0.493	0.509	0.526	0.543	0.560	0.577	0.594	0.611	0.620	0.628	0.637	0.645	0.654	0.662	0.671
MWS-L-10-20 or MWS-L-8-24	88.80	1.0	0.285	0.306	0.326	0.346	0.367	0.387	0.408	0.428	0.448	0.469	0.489	0.509	0.530	0.550	0.571	0.591	0.611	0.632	0.652	0.673	0.693	0.713	0.734	0.744	0.754	0.764	0.774	0.785	0.795	0.805
4'x'4 media cage	14.80	1.0	0.048	0.051	0.054	0.058	0.061	0.065	0.068	0.071	0.075	0.078	0.082	0.085	0.088	0.092	0.095	0.099	0.102	0.105	0.109	0.112	0.115	0.119	0.122	0.124						

ATTACHMENT C

BMP SITE PLAN


DRAINAGE AREAS										
DRAINAGE AREA	AREA (ACRE)	IMPERVIOUS AREA (ACRE)	PERVIOUS AREA (ACRE)	% IMPERVIOUS	% PERVIOUS					
TOTAL	19.10	2.00	17.10	11	89					

DRAINAGE AREAS											
DRAINAGE AREA	AREA (ACRE)	IMPERVIOUS AREA (ACRE)	PERVIOUS AREA (ACRE)	% IMPERVIOUS	% PERVIOUS						
TOTAL	19.10	3.97	15.13	21	79						

ATTACHMENT D

HYDROMODIFICATION CALCULATIONS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204 Analysis prepared by: ADAMS STREETER CIVIL ENGINEERS 16755 VON KARMAN AVENUE, SUITE 150 IRVINE, CA 92606 (949) 474-2330 **************************** DESCRIPTION OF STUDY ******************************* * 2-YEAR STORM EVENT HYDROLOGY ANALYSIS * * * OAKCREEK COMMUNITY PARK, IRVINE CALIFORNIA EXISTING CONDITION ***** FILE NAME: OAK02EXA.DAT TIME/DATE OF STUDY: 15:59 04/04/2022 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ _____ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY NO. (FT) (FT) (FT) (FT) (FT) (FT) (n) ===== ========== 1 30.0 20.0 0.018/0.020 0.50 2.00 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21_____ _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 251.00 ELEVATION DATA: UPSTREAM(FEET) = 157.60 DOWNSTREAM(FEET) = 151.80

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.355 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.580 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Ар SCS Fp TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.07 0.30 0.850 36 9.36 PUBLIC PARK В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 0.08TOTAL AREA(ACRES) = 0.07 PEAK FLOW RATE (CFS) = 0.08FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 41 _____ ** WARNING: Computed Flowrate is less than 0.1 cfs, Routing Algorithm is UNAVAILABLE. FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc (MIN.) = 9.36* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.580 SUBAREA LOSS RATE DATA (AMC I): Fp Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.24 0.30 PUBLIC PARK В 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.24 SUBAREA RUNOFF (CFS) = 0.29 EFFECTIVE AREA(ACRES) = 0.31 AREA-AVERAGED Fm(INCH/HR) = 0.26AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA (ACRES) = 0.3 PEAK FLOW RATE (CFS) = 0.37 3.00 TO NODE FLOW PROCESS FROM NODE 4.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 363.00 MANNING'S N = 0.010DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.12 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.37PIPE TRAVEL TIME (MIN.) = 1.47 Tc (MIN.) = 10.82 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 614.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 10.82

* 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.453 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.46 0.30 0.850 36 PUBLIC PARK В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.46 SUBAREA RUNOFF(CFS) = 0.50 EFFECTIVE AREA(ACRES) = 0.77 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 0.8 PEAK FLOW RATE(CFS) = 0.83 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 97.00 MANNING'S N = 0.010DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.11 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.83PIPE TRAVEL TIME (MIN.) = 0.32 Tc (MIN.) = 11.14 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 711.00 FEET. FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.14 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.429 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE PUBLIC PARK В 0.11 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) =0.11SUBAREA RUNOFF(CFS) =0.12EFFECTIVE AREA(ACRES) =0.88AREA-AVERAGED Fm(INCH/HR) =0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 0.93 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 135.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 8.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.25 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.93

PIPE TRAVEL TIME(MIN.) = 0.43 Tc(MIN.) = 11.57 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 846.00 FEET. FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE Tc(MIN.) = 11.57 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.399* SUBAREA LOSS RATE DATA (AMC I): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.77 0.30 0.850 PUBLIC PARK В 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA (ACRES) = 0.77 SUBAREA RUNOFF (CFS) = 0.79 EFFECTIVE AREA(ACRES) = 1.65 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 1.6 PEAK FLOW RATE(CFS) = 1.70 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150FLOW LENGTH (FEET) = 5.00 MANNING'S N = 0.010DEPTH OF FLOW IN 12.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.08 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.70PIPE TRAVEL TIME (MIN.) = 0.01 Tc (MIN.) = 11.58 7.00 = LONGEST FLOWPATH FROM NODE 1.00 TO NODE 851.00 FEET. 7.00 TO NODE FLOW PROCESS FROM NODE 7.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.58 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.398 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 3.91 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 3.91 SUBAREA RUNOFF(CFS) = 4.02 EFFECTIVE AREA(ACRES) = 5.56 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 5.6 PEAK FLOW RATE(CFS) = 5.72 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 41_____

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0111 FLOW LENGTH (FEET) = 231.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.00 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.72PIPE TRAVEL TIME (MIN.) = 0.64 Tc (MIN.) = 12.22LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1082.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.22 RAINFALL INTENSITY(INCH/HR) = 1.36 AREA-AVERAGED Fm(INCH/HR) = 0.26AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.85EFFECTIVE STREAM AREA(ACRES) = 5.56 TOTAL STREAM AREA (ACRES) = 5.56 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.72 FLOW PROCESS FROM NODE 8.10 TO NODE 8.20 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 150.00 DOWNSTREAM(FEET) = 144.55 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.542 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.475 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE B 0.76 0.30 0.850 36 10.54 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 0.83TOTAL AREA (ACRES) = 0.76 PEAK FLOW RATE (CFS) = 0.83FLOW PROCESS FROM NODE 8.20 TO NODE 8.30 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 167.00 MANNING'S N = 0.010

```
DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.10
 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 0.83
 PIPE TRAVEL TIME (MIN.) = 0.55 Tc (MIN.) = 11.09
 LONGEST FLOWPATH FROM NODE 8.10 TO NODE
                                8.30 =
                                         467.00 FEET.
FLOW PROCESS FROM NODE 8.30 TO NODE 8.30 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
 MAINLINE Tc(MIN.) = 11.09
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.433
 SUBAREA LOSS RATE DATA (AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                           SCS
                             Fρ
                                     Ap
                 GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                 в 0.60 0.30 0.100
 COMMERCIAL
                                           36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.60 SUBAREA RUNOFF(CFS) = 0.76
 EFFECTIVE AREA(ACRES) = 1.36 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.52
 TOTAL AREA(ACRES) = 1.4
                        PEAK FLOW RATE(CFS) =
                                            1.56
FLOW PROCESS FROM NODE 8.30 TO NODE 8.00 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
REPRESENTATIVE SLOPE = 0.0077
 FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.74
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.56
 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 11.25
 LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.00 =
                                         504.00 FEET.
8.00 TO NODE
                               8.00 IS CODE =
 FLOW PROCESS FROM NODE
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION (MIN.) = 11.25
 RAINFALL INTENSITY (INCH/HR) = 1.42
 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.52
 EFFECTIVE STREAM AREA(ACRES) = 1.36
 TOTAL STREAM AREA(ACRES) = 1.36
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                            1.56
```

FLOW PROCESS FROM NODE 8.40 TO NODE 8.50 IS CODE = 21 _____ _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 252.00 ELEVATION DATA: UPSTREAM(FEET) = 147.00 DOWNSTREAM(FEET) = 142.68 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.261 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.990 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Ар Fp SCS Τс LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.44 0.30 0.100 36 6.26 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 0.78TOTAL AREA(ACRES) = 0.44 PEAK FLOW RATE(CFS) = 0.78 FLOW PROCESS FROM NODE 8.50 TO NODE 8.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0557 FLOW LENGTH (FEET) = 37.70 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.13 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.78PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 6.36 LONGEST FLOWPATH FROM NODE 8.40 TO NODE 8.00 = 289.70 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION (MIN.) = 6.36 RAINFALL INTENSITY(INCH/HR) = 1.97 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 0.44 TOTAL STREAM AREA (ACRES) = 0.44PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.78 ** CONFLUENCE DATA ** Q TC Intensity Fp(Fm) Ap Ae HEADWAT (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE STREAM Q Ae HEADWATER NUMBER 5.7212.221.3550.30(0.26)0.855.61.5611.251.4210.30(0.16)0.521.4 1.00 1 2 8.10

3 0.78 6.36 1.971 0.30(0.03) 0.10 0.4 8.40

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS.

** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE NUMBER 6.696.361.9710.30(0.21)0.714.18.407.7011.251.4210.30(0.22)0.746.98.107.7312.221.3550.30(0.22)0.747.41.00 1 2 3 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =7.73Tc(MIN.) =12.22EFFECTIVE AREA(ACRES) =7.36AREA-AVERAGED Fm(INCH/HR) =0.22AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA (ACRES) = 7.4LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1082.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0050 FLOW LENGTH (FEET) = 261.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.1 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.85 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.73PIPE TRAVEL TIME(MIN.) = 0.90 Tc(MIN.) = 13.12 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1343.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc (MIN.) = 13.12* 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.301 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE B0.520.300.10036B3.040.300.85036 COMMERCIAL PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.740 SUBAREA AREA (ACRES) =3.56SUBAREA RUNOFF (CFS) =3.46EFFECTIVE AREA (ACRES) =10.92AREA-AVERAGED Fm (INCH/HR) =0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74 TOTAL AREA(ACRES) = 10.9 PEAK FLOW RATE(CFS) = 10.60 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
 MBER
 (CFS)
 (MIN.)
 (INCH/HR)
 (INCH/HR)
 (ACRES)
 NODE

 1
 11.08
 7.29
 1.823
 0.30(
 0.22)
 0.72
 7.7
 8.40
 NUMBER

10.7412.151.3600.30(0.22)0.7410.510.6013.121.3010.30(0.22)0.7410.9 2 8.10 3 1.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 11.08 Tc(MIN.) = 7.29 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.72 EFFECTIVE AREA(ACRES) = 7.66 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc (MIN.) = 7.29* 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.823 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE в 0.31 0.30 0.850 36 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA (ACRES) = 0.31 SUBAREA RUNOFF (CFS) = 0.44 EFFECTIVE AREA(ACRES) = 7.97 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.73TOTAL AREA (ACRES) = 11.2 PEAK FLOW RATE(CFS) = 11.51 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0050 FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.31 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.51PIPE TRAVEL TIME (MIN.) = 0.14 Tc (MIN.) = 7.43 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 = 1388.00 FEET. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 43.70 MANNING'S N = 0.013DEPTH OF FLOW IN 36.0 INCH PIPE IS 10.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.80 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.51PIPE TRAVEL TIME (MIN.) = 0.11Tc (MIN.) = 7.54IONGEST FLOWPATH FROM NODE1.00 TO NODE11.00 = 1431.70 FEET. FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 41

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 93.90MANNING'S N = 0.013DEPTH OF FLOW IN 36.0 INCH PIPE IS 10.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.80 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.51 PIPE TRAVEL TIME (MIN.) = 0.23 Tc(MIN.) =7.77 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 =1525.60 FEET. _____

END OF RATIONAL METHOD ANALYSIS

FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 2.35 ELEVATION DATA: UPSTREAM(FEET) = 154.00 DOWNSTREAM(FEET) = 149.00 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.000 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 2.264 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.63 0.30 1.000 72 5.00 "BARREN" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 1.11TOTAL AREA(ACRES) = 0.63 PEAK FLOW RATE(CFS) = 1.11 22.00 TO NODE 23.00 IS CODE = 52FLOW PROCESS FROM NODE _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 149.00 DOWNSTREAM(FEET) = 139.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 858.00 CHANNEL SLOPE = 0.0106 CHANNEL FLOW THRU SUBAREA(CFS) = 1.11 FLOW VELOCITY (FEET/SEC) = 1.58 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 9.07 Tc (MIN.) = 14.07LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 860.35 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc (MIN.) = 14.072 YEAR RAINFALL INTENSITY (INCH/HR) = 1.250 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" В 4.59 0.30 1.000 72 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) = 4.59 SUBAREA RUNOFF(CFS) = 3.92 EFFECTIVE AREA(ACRES) = 5.22 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 5.2 PEAK FLOW RATE(CFS) = 4.46 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1_____

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<

TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 14.07 RAINFALL INTENSITY (INCH/HR) = 1.25 AREA-AVERAGED Fm(INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 5 TOTAL STREAM AREA(ACRES) = 5.22 5.22 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.46 FLOW PROCESS FROM NODE 23.10 TO NODE 23.20 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 285.00 150.80 DOWNSTREAM(FEET) = ELEVATION DATA: UPSTREAM(FEET) = 147.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.521 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.337 * SUBAREA TC AND LOSS RATE DATA(AMC I): Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp Tc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER В 0.84 0.30 1.000 72 12.52 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 0.780.84 PEAK FLOW RATE(CFS) = 0.78TOTAL AREA(ACRES) = ***** FLOW PROCESS FROM NODE 23.20 TO NODE 23.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 147.80 DOWNSTREAM(FEET) = 139.90 CHANNEL LENGTH THRU SUBAREA (FEET) = 791.00 CHANNEL SLOPE = 0.0100 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.78 FLOW VELOCITY (FEET/SEC) = 1.50 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 8.79 Tc (MIN.) = 21.32LONGEST FLOWPATH FROM NODE 23.10 TO NODE 23.00 = 1076.00 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE TC(MIN.) = 21.32 2 YEAR RAINFALL INTENSITY (INCH/HR) = 0.985 SUBAREA LOSS RATE DATA (AMC I):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER B 1.81 0.30 1.000 72 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) = 1.81 SUBAREA RUNOFF(CFS) = 1.12 EFFECTIVE AREA(ACRES) = 2.65 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA (ACRES) = 2.6 PEAK FLOW RATE (CFS) = 1.63 ***** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.32 RAINFALL INTENSITY(INCH/HR) = 0.98 AREA-AVERAGED Fm(INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.65 TOTAL STREAM AREA (ACRES) = 2.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.63 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 4.46 14.07 1.250 0.30(0.30) 1.00 5.2 21.00 1 1.63 21.32 0.985 0.30(0.30) 1.00 2.6 23.10 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 5.9614.071.2500.30(0.30)1.007.04.8521.320.9850.30(0.30)1.007.9 1 21.00 2 23.10 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =5.96Tc(MIN.) =14.07EFFECTIVE AREA(ACRES) =6.97AREA-AVERAGED Fm(INCH/HR) =0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 7.9LONGEST FLOWPATH FROM NODE 23.10 TO NODE 23.00 = 1076.00 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100

DEPTH OF E PIPE-FLOW GIVEN PIPE PIPE-FLOW PIPE TRAVE	FLOW IN VELOCITY E DIAMETED (CFS) = EL TIME (M	18.0 INC (FEET/SE R(INCH) 5.9 IN.) =	CH PIPE IS EC.) = 5 = 18.00 06 0.13	ING'S N = 0 10.0 INCHE .89 NUMBER OF Ic(MIN.) = 0 TO NODE	S PIPES 14.20		21.70 FEET.
EFFECTIVE	A(ACRES) AREA(ACRI AGED Fp(II	= ES) = NCH/HR)	6.97 z = 0.30 z	TC (MIN.) = AREA-AVERAGE AREA-AVERAGE	D Fm(I	NCH/HR) =	0.30
** PEAK FI	LOW RATE '	TABLE **	٢				
STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER
				(INCH/HR)			
1	5,96	14.20	1.243	0.30(0.30)	1.00	7.0	21.00
T	0.50			0.30(0.30)			

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204 Analysis prepared by: ADAMS STREETER CIVIL ENGINEERS 16755 VON KARMAN AVENUE, SUITE 150 IRVINE, CA 92606 (949) 474-2330 ************************* DESCRIPTION OF STUDY ********************************** 2-YEAR STORM EVENT HYDROLOGY ANYLYSIS OAKCREEK COMMUNITY PARK, IRVINE CALIFORNIA PROPOSED CONDITION FILE NAME: OAK02PRA.DAT TIME/DATE OF STUDY: 16:01 04/04/2022 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ _____ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) I ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR SIDE / SIDE/ WAY NO. (FT) (FT) (FT) (FT) (FT) (FT) (n) _____ _____ 1 30.0 20.0 0.018/0.020 0.50 2.00 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21_____ _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 251.00 ELEVATION DATA: UPSTREAM(FEET) = 157.00 DOWNSTREAM(FEET) = 151.80

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.562 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.560 SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Ар SCS Fp TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.07 0.30 0.850 36 9.56 PUBLIC PARK В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 0.08TOTAL AREA(ACRES) = 0.07 PEAK FLOW RATE (CFS) = 0.08FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 41 _____ ** WARNING: Computed Flowrate is less than 0.1 cfs, Routing Algorithm is UNAVAILABLE. FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 9.56 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.560 SUBAREA LOSS RATE DATA (AMC I): Fp Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.24 0.30 PUBLIC PARK В 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.24 SUBAREA RUNOFF (CFS) = 0.28 EFFECTIVE AREA(ACRES) = 0.31 AREA-AVERAGED Fm(INCH/HR) = 0.26AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA (ACRES) = 0.3 PEAK FLOW RATE (CFS) = 0.36 3.00 TO NODE FLOW PROCESS FROM NODE 4.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 363.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 8.0 INCH PIPE IS 2.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.06 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.36PIPE TRAVEL TIME (MIN.) = 1.49 Tc (MIN.) = 11.05 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 614.00 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.05

* 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.436 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK в 2.53 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 2.53 SUBAREA RUNOFF(CFS) = 2.69 EFFECTIVE AREA(ACRES) = 2.84 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85 TOTAL AREA (ACRES) = 2.8 PEAK FLOW RATE (CFS) = 3.02 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 97.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 8.65 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.02PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 11.24 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 711.00 FEET. FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.24 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.422 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USEGROUP (ACRES) (INCH/HR) (DECIMAL) CNIC PARKB0.250.300.85036 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.25 SUBAREA RUNOFF (CFS) = 0.26EFFECTIVE AREA(ACRES) = 3.09 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED $F_{p}(INCH/HR) = 0.30$ AREA-AVERAGED $A_{p} = 0.85$ 3.1 PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 3.25 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 135.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 9.30 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA)

GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.25PIPE TRAVEL TIME (MIN.) = 0.24 Tc (MIN.) = 11.48 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 846.00 FEET. FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.48 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.405 SUBAREA LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS LAND USEGROUP(ACRES)(INCH/HR)(DECIMAL)CNIC PARKB0.710.300.85036 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.71 SUBAREA RUNOFF(CFS) = 0.73 EFFECTIVE AREA(ACRES) = 3.80 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85 TOTAL AREA (ACRES) = 3.8 PEAK FLOW RATE (CFS) = 3.93 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 5.00 MANNING'S N = 0.010DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.48 GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.93PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 11.49 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 851.00 FEET. FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.49 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.404 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 2.01 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 2.01 SUBAREA RUNOFF (CFS) = 2.08 EFFECTIVE AREA(ACRES) = 5.81 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 5.8 PEAK FLOW RATE(CFS) = 6.01

FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 41 -------_____ _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0111 FLOW LENGTH (FEET) = 231.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.08 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.01PIPE TRAVEL TIME (MIN.) = 0.63 Tc (MIN.) = 12.12 8.00 = 1082.00 FEET. LONGEST FLOWPATH FROM NODE 1.00 TO NODE FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 _____ _____ _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.12 RAINFALL INTENSITY (INCH/HR) = 1.36 AREA-AVERAGED Fm(INCH/HR) = 0.26AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.85EFFECTIVE STREAM AREA (ACRES) = 5.81 TOTAL STREAM AREA (ACRES) = 5.81 PEAK FLOW RATE (CFS) AT CONFLUENCE = 6.01 FLOW PROCESS FROM NODE 8.10 TO NODE 8.20 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 150.00 DOWNSTREAM(FEET) = 144.55 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.542 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.475 SUBAREA TC AND LOSS RATE DATA(AMC I): Ap SCS DEVELOPMENT TYPE/ SCS SOIL AREA Fp Τc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE В PUBLIC PARK 0.76 0.30 0.850 36 10.54 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 0.83TOTAL AREA (ACRES) = 0.76 PEAK FLOW RATE (CFS) = 0.83FLOW PROCESS FROM NODE 8.20 TO NODE 8.30 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<

```
REPRESENTATIVE SLOPE = 0.0150
 FLOW LENGTH (FEET) = 167.00 MANNING'S N = 0.010
 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.8 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 5.10
                          NUMBER OF PIPES = 1
 GIVEN PIPE DIAMETER(INCH) = 8.00
 PIPE-FLOW(CFS) = 0.83
 PIPE TRAVEL TIME (MIN.) = 0.55 Tc (MIN.) = 11.09
 LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.30 =
                                          467.00 FEET.
FLOW PROCESS FROM NODE 8.30 TO NODE 8.30 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
_____
 MAINLINE Tc(MIN.) = 11.09
 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.433
 SUBAREA LOSS RATE DATA (AMC I ):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                              Fp Ap SCS
    LAND USE
                 GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                  В
                        0.51 0.30 0.100 36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.51 SUBAREA RUNOFF(CFS) = 0.64
 EFFECTIVE AREA(ACRES) = 1.27 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55
                1.3 PEAK FLOW RATE(CFS) =
 TOTAL AREA (ACRES) =
                                              1.45
FLOW PROCESS FROM NODE 8.30 TO NODE 8.00 IS CODE = 41
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<<
_____
 REPRESENTATIVE SLOPE = 0.0077
 FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 3.66
 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 1.45
 PIPE TRAVEL TIME (MIN.) = 0.17 Tc (MIN.) = 11.26
 LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.00 = 504.00 FEET.
FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
_____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
TOTAL NUMBER OF STREAMS = 3
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 11.26
 RAINFALL INTENSITY (INCH/HR) = 1.42
 AREA-AVERAGED Fm(INCH/HR) = 0.16
 AREA-AVERAGED Fp(INCH/HR) = 0.30
 AREA-AVERAGED Ap = 0.55
 EFFECTIVE STREAM AREA(ACRES) = 1.27
 TOTAL STREAM AREA(ACRES) = 1.27
 PEAK FLOW RATE (CFS) AT CONFLUENCE =
                             1.45
```

```
E-64
```

FLOW PROCESS FROM NODE 8.40 TO NODE 8.50 IS CODE = 21_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 255.00 ELEVATION DATA: UPSTREAM(FEET) = 147.00 DOWNSTREAM(FEET) = 142.68 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.305 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.982 * SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) В 0.45 0.30 0.100 36 6.31 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 0.79TOTAL AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) = 0.79 FLOW PROCESS FROM NODE 8.50 TO NODE 8.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0557FLOW LENGTH (FEET) = 37.70 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.14 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.79PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 6.41 LONGEST FLOWPATH FROM NODE 8.40 TO NODE 8.00 = 292.70 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.41 RAINFALL INTENSITY (INCH/HR) = 1.96 AREA-AVERAGED Fm(INCH/HR) = 0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 0.45 TOTAL STREAM AREA(ACRES) = 0.45PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.79 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR) Ae HEADWATER (ACRES) NODE

1.00 6.0112.121.3610.30(0.26)0.855.81.4511.261.4210.30(0.16)0.551.30.796.411.9630.30(0.03)0.100.4 1 2 8.10 3 8.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 6.87 6.41 1.963 0.30(0.22) 0.72 4.2 1 8.40 7.1 7.90 11.26 1.421 0.30(0.22) 0.75 2 8.10 7.93 12.12 1.361 0.30(0.23) 0.75 7.5 3 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 7.93 Tc (MIN.) = 12.12EFFECTIVE AREA(ACRES) =7.53AREA-AVERAGED Fm(INCH/HR) =0.23AREA-AVERAGED Fp(INCH/HR) =0.30AREA-AVERAGED Ap =0.75 TOTAL AREA(ACRES) = 7.5LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1082.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 261.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.88 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.93PIPE TRAVEL TIME(MIN.) = 0.89 Tc(MIN.) = 13.01 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1343.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 13.01 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.307 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE B B 0.50 0.30 0.100 36 3.13 0.30 0.850 36 COMMERCIAL PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.747SUBAREA AREA (ACRES) = 3.63 SUBAREA RUNOFF (CFS) = 3.54 EFFECTIVE AREA(ACRES) = 11.16 AREA-AVERAGED Fm(INCH/HR) = 0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 11.2 PEAK FLOW RATE(CFS) = 10.86 ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER

(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE11.327.331.8170.30(0.22)0.737.9810.9812.151.3600.30(0.22)0.7510.78 NUMBER 8.40 1 2 8.10 10.86 13.01 1.307 0.30(0.23) 0.75 3 11.2 1.00 NEW PEAK FLOW DATA ARE: 11.32 Tc(MIN.) = 7.33 PEAK FLOW RATE(CFS) = AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.73 EFFECTIVE AREA(ACRES) = 7.87 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE TC(MIN.) = 7.33 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.817 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE PUBLIC PARK в 0.33 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.46 EFFECTIVE AREA(ACRES) = 8.20 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.7411.5 PEAK FLOW RATE(CFS) = TOTAL AREA (ACRES) = 11.79 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 7.33 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.817 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE PUBLIC PARK 0.22 0.30 0.850 36 В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) =0.22SUBAREA RUNOFF(CFS) =0.31EFFECTIVE AREA(ACRES) =8.42AREA-AVERAGED Fm(INCH/HR) =0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA(ACRES) = 11.7 PEAK FLOW RATE(CFS) = 12.10 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0050 FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.36 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.10

PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 7.47 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 = 1388.00 FEET. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 43.70 MANNING'S N = 0.013DEPTH OF FLOW IN 36.0 INCH PIPE IS 10.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.90 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.10PIPE TRAVEL TIME (MIN.) = 0.11 Tc (MIN.) = 7.58 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 11.00 = 1431.70 FEET. FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 93.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 10.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 6.90 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.10PIPE TRAVEL TIME (MIN.) = 0.23 Tc(MIN.) = 7.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1525.60 FEET. _____

END OF RATIONAL METHOD ANALYSIS

FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 314.00 ELEVATION DATA: UPSTREAM(FEET) = 154.00 DOWNSTREAM(FEET) = 148.60 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.799 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.383 SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Тc GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.88 0.30 1.000 72 11.80 "BARREN" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 0.86TOTAL AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) = 0.86 22.00 TO NODE FLOW PROCESS FROM NODE 22.50 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 148.60 DOWNSTREAM(FEET) = 143.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 472.00 CHANNEL SLOPE = 0.0100 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.86 FLOW VELOCITY (FEET/SEC) = 1.50 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 5.26Tc(MIN.) = 17.05LONGEST FLOWPATH FROM NODE 21.00 TO NODE 22.50 = 786.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 17.05 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.119 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 0.48 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.48 SUBAREA RUNOFF (CFS) = 0.37EFFECTIVE AREA(ACRES) = 1.36 AREA-AVERAGED Fm(INCH/HR) = 0.28 AREA-AVERAGED $F_{p}(INCH/HR) = 0.30$ AREA-AVERAGED $A_{p} = 0.95$ TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 1.02 FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 1 _____

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.05 RAINFALL INTENSITY (INCH/HR) = 1.12 AREA-AVERAGED Fm(INCH/HR) = 0.28AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.95EFFECTIVE STREAM AREA(ACRES) = 1. TOTAL STREAM AREA(ACRES) = 1.36 1.36 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.02 FLOW PROCESS FROM NODE 22.51 TO NODE 22.52 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH (FEET) = 283.30 150.40 DOWNSTREAM(FEET) = 147.40ELEVATION DATA: UPSTREAM(FEET) = Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.224 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.833 * SUBAREA TC AND LOSS RATE DATA(AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Tc Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE 0.71 0.30 0.100 36 7.22 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 1.15 TOTAL AREA(ACRES) = 0.71 PEAK FLOW RATE (CFS) = 1.15FLOW PROCESS FROM NODE 22.52 TO NODE 22.53 IS CODE = 61 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STANDARD CURB SECTION USED) <<<<< _____ REPRESENTATIVE SLOPE = 0.0050 STREET LENGTH (FEET) = 220.70 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH (FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.73 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.32HALFSTREET FLOOD WIDTH (FEET) = 9.90

```
AVERAGE FLOW VELOCITY (FEET/SEC.) = 1.58
  PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.51
 STREET FLOW TRAVEL TIME (MIN.) = 2.33 Tc (MIN.) = 9.56
 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.561
 SUBAREA LOSS RATE DATA(AMC I ):
                                              SCS
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fp
                                         Ap
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
 COMMERCIAL
                   в 0.84 0.30 0.100 36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.84 SUBAREA RUNOFF(CFS) = 1.16
 EFFECTIVE AREA(ACRES) = 1.55 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) =
                                                2.14
 END OF SUBAREA STREET FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 10.82
 FLOW VELOCITY (FEET/SEC.) = 1.66 DEPTH*VELOCITY (FT*FT/SEC.) = 0.57
 LONGEST FLOWPATH FROM NODE 22.51 TO NODE 22.53 = 504.00 FEET.
FLOW PROCESS FROM NODE 22.53 TO NODE 22.53 IS CODE = 81
 _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
MAINLINE Tc(MIN.) = 9.56
 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.561
 SUBAREA LOSS RATE DATA (AMC I ):
                                Fp
                                         Ар
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                              SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                   В
 COMMERCIAL
                         0.15 0.30 0.100 36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA (ACRES) = 0.15 SUBAREA RUNOFF (CFS) = 0.21
 EFFECTIVE AREA(ACRES) = 1.70 AREA-AVERAGED Fm(INCH/HR) = 0.03
 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10
 TOTAL AREA (ACRES) = 1.7 PEAK FLOW RATE (CFS) =
                                                2.34
22.53 TO NODE
 FLOW PROCESS FROM NODE
                                22.50 IS CODE = 31
   _____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<<
_____
 REPRESENTATIVE SLOPE = 0.0100
 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.4 INCHES
 PIPE-FLOW VELOCITY (FEET/SEC.) = 4.64
 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.34
 PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 9.74
 LONGEST FLOWPATH FROM NODE 22.51 TO NODE
                                    22.50 =
                                             554.00 FEET.
FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 1
    _____
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
```

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<

TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.74 RAINFALL INTENSITY (INCH/HR) = 1.54 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 1.70 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.34 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE Ae HEADWATER 1.0217.051.1190.30(0.28)0.951.42.349.741.5440.30(0.03)0.101.7 1 21.00 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 3.229.741.5440.30(0.11)0.372.52.7117.051.1190.30(0.14)0.483.1 1 22.51 2 3.1 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.22 Tc(MIN.) = 9.74EFFECTIVE AREA(ACRES) = 2.48 AREA-AVERAGED Fm(INCH/HR) = 0.11AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.37

22.51

21.00

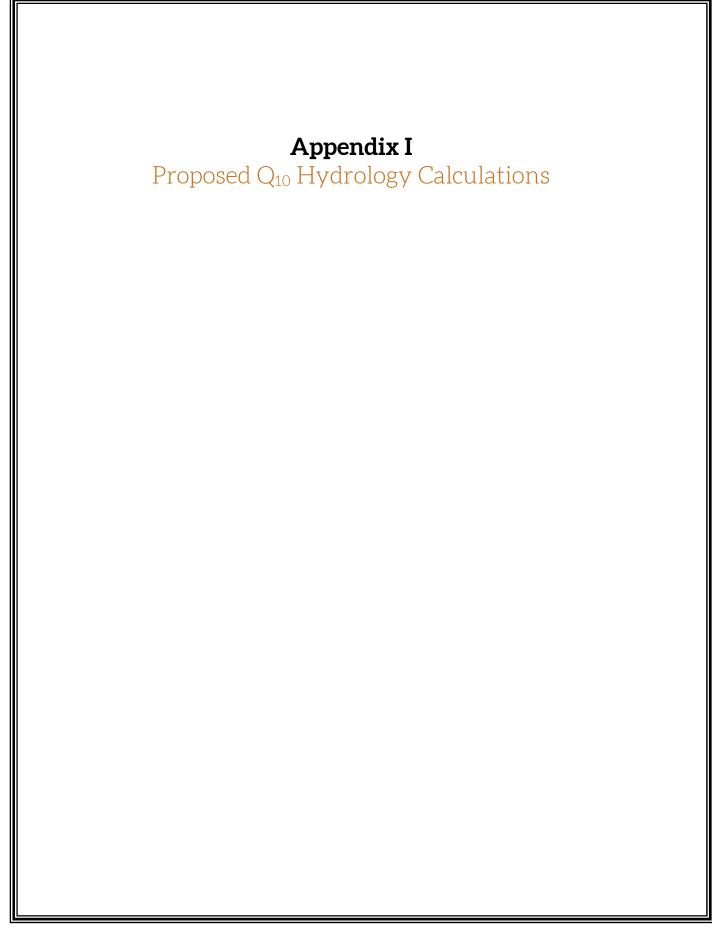
TOTAL AREA(ACRES) = 3.1 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 22.50 = 786.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 23.00 IS CODE = 52

_____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<<<<< >>>>TRAVELTIME THRU SUBAREA<<<<<

ELEVATION DATA: UPSTREAM(FEET) = 143.90 DOWNSTREAM(FEET) = 139.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 325.40 CHANNEL SLOPE = 0.0126 CHANNEL FLOW THRU SUBAREA(CFS) = 3.22 FLOW VELOCITY (FEET/SEC) = 2.14 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 2.53 Tc (MIN.) = 12.27LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 1111.40 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<

MAINLINE Tc(MIN.) = 12.27 * 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.352 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS


LAND USEGROUP (ACRES) (INCH/HR) (DECIMAL) CNIC PARKB0.250.300.85036 в 0.25 0.30 0.850 PUBLIC PARK 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.25 EFFECTIVE AREA(ACRES) = 2.73 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41 TOTAL AREA(ACRES) = 3.3 PEAK FLOW RATE(CFS) = 3.22 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.27 RAINFALL INTENSITY (INCH/HR) = 1.35 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41EFFECTIVE STREAM AREA(ACRES) = 2.73 TOTAL STREAM AREA(ACRES) = 3.31 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.22 23.10 TO NODE 23.20 IS CODE = 21 FLOW PROCESS FROM NODE _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 285.00 ELEVATION DATA: UPSTREAM(FEET) = 150.80 DOWNSTREAM(FEET) = 147.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.521 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.337 * SUBAREA TC AND LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.84 0.30 1.000 72 12.52 "BARREN" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 0.78TOTAL AREA(ACRES) = 0.84 PEAK FLOW RATE(CFS) = 0.78 FLOW PROCESS FROM NODE 23.20 TO NODE 23.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 147.80 DOWNSTREAM(FEET) = 139.60 CHANNEL LENGTH THRU SUBAREA(FEET) = 815.80 CHANNEL SLOPE = 0.0101 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION

CHANNEL FLOW THRU SUBAREA(CFS) = 0.78 FLOW VELOCITY (FEET/SEC) = 1.50 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 9.04 Tc (MIN.) = 21.56 LONGEST FLOWPATH FROM NODE 23.10 TO NODE 23.00 = 1100.80 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 21.56 * 2 YEAR RAINFALL INTENSITY (INCH/HR) = 0.978 SUBAREA LOSS RATE DATA (AMC I): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER В 1.81 0.30 1.000 72 "BARREN" SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA (ACRES) = 1.81 SUBAREA RUNOFF (CFS) = 1.11 EFFECTIVE AREA(ACRES) = 2.65 AREA-AVERAGED Fm(INCH/HR) = 0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 1.62 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.56 RAINFALL INTENSITY(INCH/HR) = 0.98 AREA-AVERAGED Fm(INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.65 TOTAL STREAM AREA(ACRES) = 2.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.62 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 3.2212.271.3520.30(0.12)0.412.72.7119.691.0310.30(0.15)0.503.31.6221.560.9780.30(0.30)1.002.6 1 22.51 1 21.00 2 23.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE14.6512.271.3520.20(10.10)0.62 Ae HEADWATER 1 4.65 12.27 1.352 0.30(0.19) 0.62 4.2 22.51 4.3019.691.0310.30(0.21)0.715.721.004.1621.560.9780.30(0.22)0.726.023.10 2

3

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.65 Tc(MIN.) = 12.27 EFFECTIVE AREA(ACRES) = 4.23 AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.62TOTAL AREA (ACRES) = 6.0LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 1111.40 FEET. 23.00 TO NODE FLOW PROCESS FROM NODE 23.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc (MIN.) = 12.27* 2 YEAR RAINFALL INTENSITY (INCH/HR) = 1.352 SUBAREA LOSS RATE DATA (AMC I): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 1.49 0.30 0.850 36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) = 1.49 SUBAREA RUNOFF(CFS) = 1.47 EFFECTIVE AREA(ACRES) = 5.72 AREA-AVERAGED Fm(INCH/HR) = 0.20 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.68 TOTAL AREA (ACRES) = 7.4 PEAK FLOW RATE (CFS) = 5.92 23.00 TO NODE 24.00 IS CODE = 41FLOW PROCESS FROM NODE _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 45.70 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.88 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.92PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 12.40 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 24.00 = 1157.10 FEET. _____ END OF STUDY SUMMARY: 7.4 TC(MIN.) = 12.40 TOTAL AREA(ACRES) = 7.4 TC(MIN.) = 12.40EFFECTIVE AREA(ACRES) = 5.72 AREA-AVERAGED Fm(INCH/HR) = 0.20AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.680 PEAK FLOW RATE(CFS) = 5.92 ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR) Ae HEADWATER (ACRES) NODE 5.92 12.40 1.344 0.30(0.20) 0.68 5.7 1 22.51 5.25 19.82 1.027 0.30(0.22) 0.74 2 7.2 21.00 5.05 21.70 0.975 0.30(0.22) 0.75 7.4 3 23.10 _____ _____

END OF RATIONAL METHOD ANALYSIS

***** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204 Analysis prepared by: ADAMS STREETER CIVIL ENGINEERS 16755 VON KARMAN AVENUE, SUITE 150 IRVINE, CA 92606 (949) 474-2330 * 10-YEAR STORM EVENT HYDROLOGY ANALYSIS * * OAKCREEK COMMUNITY PARK, IRVINE CALIFORNIA * PROPOSED CONDITION FILE NAME: OAK10PRA.DAT TIME/DATE OF STUDY: 16:13 04/04/2022 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ _____ _____ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) NO. (FT) (FT) (n) _____ _____ 1 30.0 20.0 0.018/0.020 0.50 2.00 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED 1.00 TO NODE FLOW PROCESS FROM NODE 2.00 IS CODE = 21_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 251.00 ELEVATION DATA: UPSTREAM(FEET) = 157.00 DOWNSTREAM(FEET) = 151.80

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.562 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.800 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ар SCS Fp TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) в 0.07 0.30 0.850 56 9.56 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 0.16TOTAL AREA (ACRES) = 0.07 PEAK FLOW RATE(CFS) = 0.16FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 49.40 MANNING'S N = 0.010DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 3.30 GIVEN PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.16PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 9.81 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 300.40 FEET. FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 9.81 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.759 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ар SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE PUBLIC PARK 0.24 0.30 0.850 56 В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) =0.24SUBAREA RUNOFF(CFS) =0.54EFFECTIVE AREA(ACRES) =0.31AREA-AVERAGED Fm(INCH/HR) =0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 0.70 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 363.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.88 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.70

PIPE TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 11.05 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 663.40 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 11.05 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.577 SUBAREA LOSS RATE DATA (AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 2.53 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) =2.53SUBAREA RUNOFF(CFS) =5.29EFFECTIVE AREA(ACRES) =2.84AREA-AVERAGED Fm(INCH/HR) =0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 5.94 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150FLOW LENGTH (FEET) = 97.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 17.00 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.94PIPE TRAVEL TIME (MIN.) = 0.10 Tc (MIN.) = 11.15 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 760.40 FEET. FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.15 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.564 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 0.25 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 0.25 SUBAREA RUNOFF(CFS) = 0.52 EFFECTIVE AREA(ACRES) = 3.09 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 3.1 PEAK FLOW RATE(CFS) = 6.42 5.00 TO NODE 6.00 IS CODE = 41 FLOW PROCESS FROM NODE

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 135.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 18.40 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.42PIPE TRAVEL TIME (MIN.) = 0.12 Tc (MIN.) = 11.27 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 895.40 FEET. FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 81 _____ _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc (MIN.) = 11.27* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.548 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE в 0.71 0.30 0.850 PUBLIC PARK 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA (ACRES) = 0.71 SUBAREA RUNOFF (CFS) = 1.47 EFFECTIVE AREA(ACRES) = 3.80 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 3.8 PEAK FLOW RATE(CFS) = 7.84 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150FLOW LENGTH (FEET) = 5.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 9.99 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.84PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 11.28 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 900.40 FEET. 7.00 TO NODE 7.00 IS CODE = 81 FLOW PROCESS FROM NODE _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE TC(MIN.) = 11.28 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.547 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 2.01 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 2.01 SUBAREA RUNOFF(CFS) = 4.15 EFFECTIVE AREA(ACRES) = 5.81 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 5.8 PEAK FLOW RATE(CFS) = 11.99 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0111 FLOW LENGTH (FEET) = 231.00MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 12.4 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.30 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.99PIPE TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) = 11.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1131.40 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 11.80 RAINFALL INTENSITY(INCH/HR) = 2.48 AREA-AVERAGED Fm(INCH/HR) = 0.26AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.85EFFECTIVE STREAM AREA(ACRES) = 5.81 TOTAL STREAM AREA(ACRES) = 5.81 PEAK FLOW RATE (CFS) AT CONFLUENCE = 11.99 8.10 TO NODE 8.20 IS CODE = 21FLOW PROCESS FROM NODE _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 150.00 DOWNSTREAM(FEET) = 144.55 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.542 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.648 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Тc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) PUBLIC PARK В 0.76 0.30 0.850 56 10.54 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 1.640.76 PEAK FLOW RATE(CFS) = 1.64TOTAL AREA(ACRES) = FLOW PROCESS FROM NODE 8.20 TO NODE 8.30 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 167.00 MANNING'S N = 0.010DEPTH OF FLOW IN 8.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.92 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.64PIPE TRAVEL TIME (MIN.) = 0.47 Tc (MIN.) = 11.01LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.30 = 467.00 FEET. FLOW PROCESS FROM NODE 8.30 TO NODE 8.30 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.01 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.582 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fρ SCS Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.51 0.30 COMMERCIAL В 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.51 SUBAREA RUNOFF(CFS) = 1.17 EFFECTIVE AREA(ACRES) = 1.27 AREA-AVERAGED Fm(INCH/HR) = 0.16AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.55TOTAL AREA(ACRES) = 1.3PEAK FLOW RATE(CFS) = 2.76 FLOW PROCESS FROM NODE 8.30 TO NODE 8.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0077FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.39 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 2.76 PIPE-FLOW(CFS) = PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 11.15 LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.00 = 504.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____

TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.15 RAINFALL INTENSITY (INCH/HR) = 2.56AREA-AVERAGED Fm(INCH/HR) = 0.16AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.55EFFECTIVE STREAM AREA(ACRES) = 1.27 TOTAL STREAM AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.76 ***** FLOW PROCESS FROM NODE 8.40 TO NODE 8.50 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH (FEET) = 255.00 ELEVATION DATA: UPSTREAM(FEET) = 147.00 DOWNSTREAM(FEET) = 142.68 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.305 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.554 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.45 0.30 0.100 56 6.31 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 1.43TOTAL AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) = 1.43 FLOW PROCESS FROM NODE 8.50 TO NODE 8.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0557FLOW LENGTH (FEET) = 37.70 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.34 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.43PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 6.39 LONGEST FLOWPATH FROM NODE 8.40 TO NODE 8.00 = 292.70 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION (MIN.) = 6.39 RAINFALL INTENSITY (INCH/HR) = 3.53

AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 0.45 TOTAL STREAM AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.43 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 11.99 11.80 2.482 0.30(0.26) 0.85 5.8 1 1.00 2.76 11.15 2.563 0.30(0.16) 0.55 1.3 2 8.10 1.43 6.39 3.527 0.30(0.03) 0.10 0.4 8.40 3 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 13.18 6.39 3.527 0.30(0.22) 0.72 4.3 1 8.40 15.5411.152.5630.30(0.23)0.757.215.6611.802.4820.30(0.23)0.757.5 8.10 2 3 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 15.66 Tc(MIN.) = 11.80 EFFECTIVE AREA(ACRES) = 7.53 AREA-AVERAGED Fm(INCH/HR) = 0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 7.5LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1131.40 FEET. 9.00 IS CODE = 41FLOW PROCESS FROM NODE 8.00 TO NODE _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0050 FLOW LENGTH (FEET) = 261.00 MANNING'S N = 0.013ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 4.98 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.66PIPE TRAVEL TIME(MIN.) = 0.87 Tc(MIN.) = 12.68 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1392.40 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 12.68 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.382 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/SCS SOILAREAFpApSCSLAND USEGROUP(ACRES)(INCH/HR)(DECIMAL)CN

B0.500.300.100B3.130.300.850 COMMERCIAL 56 PUBLIC PARK 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.747SUBAREA AREA(ACRES) = 3.63 SUBAREA RUNOFF(CFS) = 7.05 EFFECTIVE AREA(ACRES) = 11.16 AREA-AVERAGED Fm(INCH/HR) = 0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75TOTAL AREA(ACRES) = 11.2 PEAK FLOW RATE(CFS) = 21.66 ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 22.027.193.2970.30(0.22)0.738.021.7512.032.4540.30(0.22)0.7510.821.6612.682.3820.30(0.23)0.7511.2 1 8.40 2 8.10 3 1.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE (CFS) = 22.02 Tc (MIN.) = 7.19 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.73 EFFECTIVE AREA(ACRES) = 7.95 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 7.19* 10 YEAR RAINFALL INTENSITY (INCH/HR) = 3.297 SUBAREA LOSS RATE DATA (AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 0.33 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.33 SUBAREA RUNOFF (CFS) = 0.90EFFECTIVE AREA(ACRES) = 8.28 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA(ACRES) = 11.5 PEAK FLOW RATE(CFS) = 22.93 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 7.19 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.297 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 0.22 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.22 SUBAREA RUNOFF (CFS) = 0.60EFFECTIVE AREA(ACRES) = 8.50 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.74TOTAL AREA (ACRES) = 11.7 PEAK FLOW RATE (CFS) = 23.53

FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 41 _____ _____ _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.013ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 7.49 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.53 PIPE TRAVEL TIME (MIN.) = 0.10 Tc(MIN.) = 7.29 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 = 1437.40 FEET. FLOW PROCESS FROM NODE 11.00 IS CODE = 4110.00 TO NODE _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 43.70 MANNING'S N = 0.013DEPTH OF FLOW IN 36.0 INCH PIPE IS 15.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.29 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.53PIPE TRAVEL TIME (MIN.) = 0.09 Tc (MIN.) = 7.38 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 11.00 = 1481.10 FEET. ***** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 93.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 15.2 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.29 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23.53 PIPE TRAVEL TIME (MIN.) = 0.19 Tc (MIN.) = 7.57 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1575.00 FEET. _____

END OF RATIONAL METHOD ANALYSIS

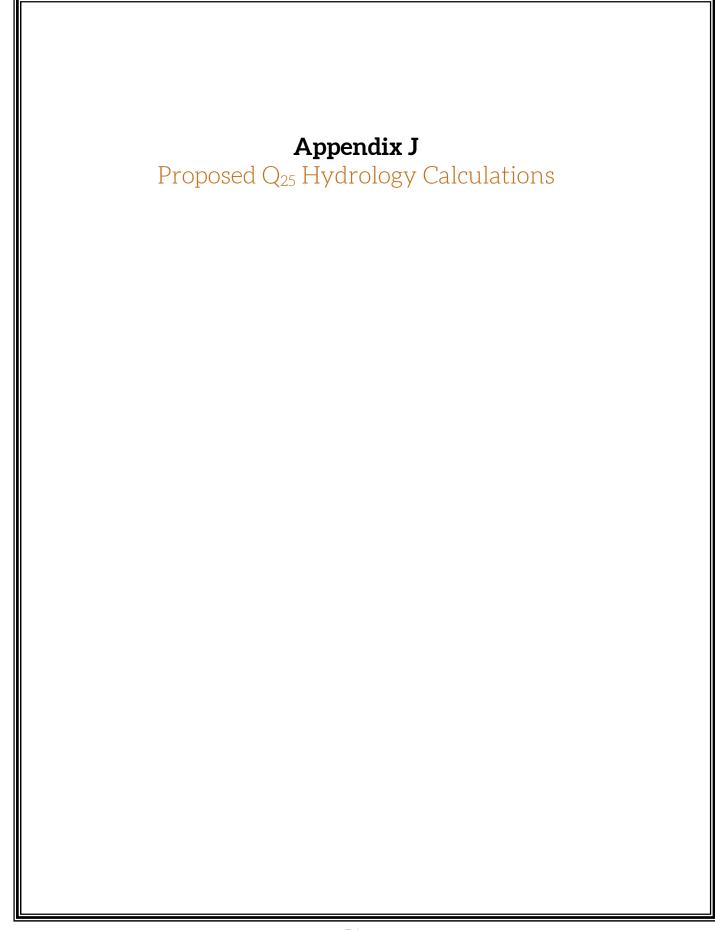
FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 314.00 ELEVATION DATA: UPSTREAM(FEET) = 154.00 DOWNSTREAM(FEET) = 148.60 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.799 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.482 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS Fp Тс GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.88 0.30 1.000 86 11.80 "BARREN" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 1.73TOTAL AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) = 1.73 22.00 TO NODE 22.50 IS CODE = 52 FLOW PROCESS FROM NODE _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 148.60 DOWNSTREAM(FEET) = 143.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 472.00 CHANNEL SLOPE = 0.0100 CHANNEL FLOW THRU SUBAREA(CFS) = 1.73 FLOW VELOCITY (FEET/SEC) = 1.67 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 4.72 Tc (MIN.) = 16.52LONGEST FLOWPATH FROM NODE 21.00 TO NODE 22.50 = 786.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 16.52* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.047 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE PUBLIC PARK В 0.48 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) =0.48SUBAREA RUNOFF(CFS) =0.77EFFECTIVE AREA(ACRES) =1.36AREA-AVERAGED Fm(INCH/HR) =0.28 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.95 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 2.16 FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

_____ _______ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 16.52 RAINFALL INTENSITY(INCH/HR) = 2.05 AREA-AVERAGED Fm(INCH/HR) = 0.28AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.95EFFECTIVE STREAM AREA(ACRES) = 1.36 TOTAL STREAM AREA(ACRES) = 1.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.16 FLOW PROCESS FROM NODE 22.51 TO NODE 22.52 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 283.30 ELEVATION DATA: UPSTREAM(FEET) = 150.40 DOWNSTREAM(FEET) = 147.40 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.224 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 3.288 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS Fp Тс LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.71 0.30 0.100 56 7.22 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 2.08TOTAL AREA (ACRES) = 0.71 PEAK FLOW RATE (CFS) = 2.08 22.52 TO NODE FLOW PROCESS FROM NODE 22.53 IS CODE = 61 _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STANDARD CURB SECTION USED) <<<<< ______ REPRESENTATIVE SLOPE = 0.0050STREET LENGTH (FEET) = 220.70 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH (FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.15 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.38HALFSTREET FLOOD WIDTH (FEET) = 12.70 AVERAGE FLOW VELOCITY (FEET/SEC.) = 1.82

PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.69 STREET FLOW TRAVEL TIME(MIN.) = 2.02 Tc(MIN.) = 9.24 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.855 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ар LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 0.84 0.30 0.100 COMMERCIAL В 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) =0.84SUBAREA RUNOFF(CFS) =2.14EFFECTIVE AREA(ACRES) =1.55AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) = 3.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.41 HALFSTREET FLOOD WIDTH (FEET) = 13.95 FLOW VELOCITY (FEET/SEC.) = 1.91 DEPTH*VELOCITY (FT*FT/SEC.) = 0.77 LONGEST FLOWPATH FROM NODE 22.51 TO NODE 22.53 = 504.00 FEET. FLOW PROCESS FROM NODE 22.53 TO NODE 22.53 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 9.24 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.855 SUBAREA LOSS RATE DATA (AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN В 0.15 0.30 0.100 56 COMMERCIAL SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) =0.15SUBAREA RUNOFF(CFS) =0.38EFFECTIVE AREA(ACRES) =1.70AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED $F_{p}(INCH/HR) = 0.30$ AREA-AVERAGED $A_{p} = 0.10$ TOTAL AREA (ACRES) = 1.7 PEAK FLOW RATE (CFS) = 4.32 FLOW PROCESS FROM NODE 22.53 TO NODE 22.50 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.41 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.32PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 9.40 LONGEST FLOWPATH FROM NODE 22.51 TO NODE 22.50 = 554.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<

_____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.40 RAINFALL INTENSITY (INCH/HR) = 2.83 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 1.70 TOTAL STREAM AREA(ACRES) = 1.70 4.32 PEAK FLOW RATE (CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 2.16 16.52 2.047 0.30(0.28) 0.95 1.4 1 21.00 4.32 9.40 2.828 0.30(0.03) 0.10 1.7 2 22.51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 6.099.402.8280.30(0.11)0.362.55.2716.522.0470.30(0.14)0.483.1 1 22.51 21.00 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =6.09Tc(MIN.) =9.40EFFECTIVE AREA(ACRES) =2.47AREA-AVERAGED Fm(INCH/HR) =0.11 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.36TOTAL AREA(ACRES) = 3.1 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 22.50 = 786.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 23.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 143.90 DOWNSTREAM(FEET) = 139.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 325.40 CHANNEL SLOPE = 0.0126 CHANNEL FLOW THRU SUBAREA(CFS) = 6.09 FLOW VELOCITY (FEET/SEC) = 2.48 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 2.18 Tc (MIN.) = 11.58 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 1111.40 FEET. ***** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.58 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.508 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/SCS SOILAREAFpApSCSLAND USEGROUP(ACRES)(INCH/HR)(DECIMAL)CN


0.25 0.30 0.850 56 PUBLIC PARK В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.25 SUBAREA RUNOFF (CFS) = 0.51EFFECTIVE AREA(ACRES) = 2.72 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41 TOTAL AREA (ACRES) = 3.3 PEAK FLOW RATE (CFS) = 6.09 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 11.58 RAINFALL INTENSITY(INCH/HR) = 2.51 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.41EFFECTIVE STREAM AREA(ACRES) = 2.72 TOTAL STREAM AREA(ACRES) = 3.31 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.09 FLOW PROCESS FROM NODE 23.10 TO NODE 23.20 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH (FEET) = 285.00 ELEVATION DATA: UPSTREAM(FEET) = 150.80 DOWNSTREAM(FEET) = 147.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.521 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 2.399 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Tc Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.84 0.30 "BARREN" В 1.000 86 12.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 1.590.84 PEAK FLOW RATE (CFS) = 1.59TOTAL AREA(ACRES) = FLOW PROCESS FROM NODE 23.20 TO NODE 23.00 IS CODE = 52_____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 147.80 DOWNSTREAM(FEET) = 139.60 CHANNEL LENGTH THRU SUBAREA (FEET) = 815.80 CHANNEL SLOPE = 0.0101 CHANNEL FLOW THRU SUBAREA(CFS) = 1.59 FLOW VELOCITY (FEET/SEC) = 1.65 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)

TRAVEL TIME (MIN.) = 8.26 Tc (MIN.) = 20.78 LONGEST FLOWPATH FROM NODE 23.10 TO NODE 23.00 = 1100.80 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE Tc(MIN.) = 20.78 * 10 YEAR RAINFALL INTENSITY (INCH/HR) = 1.794 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER "BARREN" В 1.81 0.30 1.000 86 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) =1.81SUBAREA RUNOFF(CFS) =2.43EFFECTIVE AREA(ACRES) =2.65AREA-AVERAGED Fm(INCH/HR) =0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 3.56 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1_____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.78 RAINFALL INTENSITY (INCH/HR) = 1.79AREA-AVERAGED Fm(INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.65 TOTAL STREAM AREA(ACRES) = 2.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 3.56 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 6.09 11.58 2.508 0.30(0.12) 0.41 2.7 22.51 1 5.27 18.78 1.902 0.30(0.15) 0.50 3.3 1 21.00 3.56 20.78 1.794 0.30(0.30) 1.00 2.6 23.10 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 9.0311.582.5080.30(0.19)0.624.222.518.7218.781.9020.30(0.21)0.715.721.008.5120.781.7940.30(0.22)0.726.023.10 1 2 3

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 9.03 Tc(MIN.) = 11.58 EFFECTIVE AREA(ACRES) = 4.20 AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.62TOTAL AREA (ACRES) = 6.0LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 1111.40 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.58 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.508 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN В 1.49 0.30 PUBLIC PARK 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 1.49 SUBAREA RUNOFF (CFS) = 3.02EFFECTIVE AREA(ACRES) = 5.69 AREA-AVERAGED Fm(INCH/HR) = 0.20 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.68TOTAL AREA(ACRES) = 7.4 PEAK FLOW RATE (CFS) = 11.81 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 45.70 MANNING'S N = 0.013ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 6.68 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.81PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 11.70 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 24.00 = 1157.10 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.4 TC(MIN.) = 11.70EFFECTIVE AREA(ACRES) = 5.69 AREA-AVERAGED Fm(INCH/HR) = 0.20AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.67811.81 PEAK FLOW RATE(CFS) = ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ар Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE 11.81 11.70 2.494 0.30(0.20) 0.68 5.7 1 22.51 2 10.87 18.91 1.895 0.30(0.22) 0.74 7.2 21.00 3 10.52 20.91 1.788 0.30(0.22) 0.75 7.4 23.10 _____

END OF RATIONAL METHOD ANALYSIS

***** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 ORANGE COUNTY HYDROLOGY CRITERION) (c) Copyright 1983-2008 Advanced Engineering Software (aes) Ver. 15.0 Release Date: 04/01/2008 License ID 1204 Analysis prepared by: ADAMS STREETER CIVIL ENGINEERS 16755 VON KARMAN AVENUE, SUITE 150 IRVINE, CA 92606 (949) 474-2330 * 25-YEAR STORM EVENT HYDROLOGY ANALYSIS * * OAKCREEK COMMUNITY PARK, IRVINE CALIFORNIA * PROPOSED CONDITION FILE NAME: OAK25PRA.DAT TIME/DATE OF STUDY: 16:23 04/04/2022 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: _____ _____ _____ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT (YEAR) = 25.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 *DATA BANK RAINFALL USED* *ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD* *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR (FT) SIDE / SIDE/ WAY NO. (FT) (FT) (FT) (FT) (FT) (n) _____ _____ 1 30.0 20.0 0.018/0.020 0.50 2.00 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED 1.00 TO NODE FLOW PROCESS FROM NODE 2.00 IS CODE = 21_____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 251.00 ELEVATION DATA: UPSTREAM(FEET) = 157.00 DOWNSTREAM(FEET) = 151.80

Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.562 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.342 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ар SCS Fp TC LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) в 0.07 0.30 0.850 56 9.56 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 0.19TOTAL AREA (ACRES) = 0.07 PEAK FLOW RATE (CFS) = 0.19FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 49.40 MANNING'S N = 0.010DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.0 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 3.46 GIVEN PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.19PIPE TRAVEL TIME (MIN.) = 0.24 Tc (MIN.) = 9.80 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 300.40 FEET. FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 9.80 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.296 SUBAREA LOSS RATE DATA (AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ар SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE PUBLIC PARK 0.24 0.30 0.850 56 В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) =0.24SUBAREA RUNOFF(CFS) =0.66EFFECTIVE AREA(ACRES) =0.31AREA-AVERAGED Fm(INCH/HR) =0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 0.85 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 363.00 MANNING'S N = 0.010 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.13 GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.85

PIPE TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 10.98 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 663.40 FEET. FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE Tc(MIN.) = 10.98 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.090 SUBAREA LOSS RATE DATA (AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 2.53 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) =2.53SUBAREA RUNOFF(CFS) =6.46EFFECTIVE AREA(ACRES) =2.84AREA-AVERAGED Fm(INCH/HR) =0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 7.25 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150FLOW LENGTH (FEET) = 97.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 20.76 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.25PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) = 11.06 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 760.40 FEET. FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.06 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.078 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 0.25 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.25 SUBAREA RUNOFF (CFS) = 0.64EFFECTIVE AREA(ACRES) = 3.09 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 3.1PEAK FLOW RATE(CFS) = 7.85 5.00 TO NODE 6.00 IS CODE = 41 FLOW PROCESS FROM NODE

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< ______ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 135.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 22.49 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.85PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 11.16 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 895.40 FEET. FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 81 _____ _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE TC(MIN.) = 11.16 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.062 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE в 0.71 0.30 0.850 PUBLIC PARK 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA (ACRES) = 0.71 SUBAREA RUNOFF (CFS) = 1.79 EFFECTIVE AREA(ACRES) = 3.80 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 3.8 PEAK FLOW RATE(CFS) = 9.60 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 5.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 12.22 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.60PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 11.16 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 900.40 FEET. 7.00 TO NODE 7.00 IS CODE = 81 FLOW PROCESS FROM NODE _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE TC(MIN.) = 11.16 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.061 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN PUBLIC PARK В 2.01 0.30 0.850 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) = 2.01 SUBAREA RUNOFF(CFS) = 5.08 EFFECTIVE AREA(ACRES) = 5.81 AREA-AVERAGED Fm(INCH/HR) = 0.26 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.85TOTAL AREA(ACRES) = 5.8 PEAK FLOW RATE(CFS) = 14.67 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0111 FLOW LENGTH (FEET) = 231.00MANNING'S N = 0.013DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.1 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.66 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.67PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 11.67 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1131.40 FEET. 8.00 TO NODE FLOW PROCESS FROM NODE 8.00 IS CODE = _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 11.67 RAINFALL INTENSITY(INCH/HR) = 2.99 AREA-AVERAGED Fm(INCH/HR) = 0.26AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.85EFFECTIVE STREAM AREA(ACRES) = 5.81 TOTAL STREAM AREA(ACRES) = 5.81 PEAK FLOW RATE (CFS) AT CONFLUENCE = 14.67 8.10 TO NODE 8.20 IS CODE = 21FLOW PROCESS FROM NODE _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH(FEET) = 300.00 ELEVATION DATA: UPSTREAM(FEET) = 150.00 DOWNSTREAM(FEET) = 144.55 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.542 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.162 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Тc LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) PUBLIC PARK В 0.76 0.30 0.850 56 10.54 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30

SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA RUNOFF (CFS) = 1.99TOTAL AREA(ACRES) = 0.76 PEAK FLOW RATE (CFS) = 1.99FLOW PROCESS FROM NODE 8.20 TO NODE 8.30 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0150 FLOW LENGTH (FEET) = 167.00 MANNING'S N = 0.010ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 5.70 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.99PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 11.03 LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.30 = 467.00 FEET. FLOW PROCESS FROM NODE 8.30 TO NODE 8.30 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE Tc(MIN.) = 11.03 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.082 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ap Fp SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE COMMERCIAL В 0.51 0.30 0.100 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100SUBAREA AREA(ACRES) = 0.51 SUBAREA RUNOFF(CFS) = 1.40 EFFECTIVE AREA(ACRES) = 1.27 AREA-AVERAGED Fm(INCH/HR) = 0.16 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.551.3 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) = 3.33 FLOW PROCESS FROM NODE 8.30 TO NODE 8.00 IS CODE = 41_____ _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0077FLOW LENGTH (FEET) = 37.00 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.7 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 4.62 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.33 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 11.16 LONGEST FLOWPATH FROM NODE 8.10 TO NODE 8.00 =504.00 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

______ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 11.16 RAINFALL INTENSITY(INCH/HR) = 3.06 AREA-AVERAGED Fm(INCH/HR) = 0.16AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.55EFFECTIVE STREAM AREA(ACRES) = 1.27 TOTAL STREAM AREA(ACRES) = 1.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.33 FLOW PROCESS FROM NODE 8.40 TO NODE 8.50 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 255.00 ELEVATION DATA: UPSTREAM(FEET) = 147.00 DOWNSTREAM(FEET) = 142.68 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.305 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 4.230 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ Ap SCS SCS SOIL AREA Тс Fp LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.45 0.30 0.100 56 6.31 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 1.70TOTAL AREA (ACRES) = 0.45 PEAK FLOW RATE (CFS) = 1.708.50 TO NODE 8.00 IS CODE = 41FLOW PROCESS FROM NODE _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0557FLOW LENGTH (FEET) = 37.70 MANNING'S N = 0.013DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 7.75 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.70PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 6.39 LONGEST FLOWPATH FROM NODE 8.40 TO NODE 8.00 = 292.70 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 3CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.39

RAINFALL INTENSITY (INCH/HR) = 4.20 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 0.45 TOTAL STREAM AREA(ACRES) = 0.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.70 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 14.67 11.67 2.986 0.30(0.26) 0.85 5.8 1.00 1 3.3311.163.0610.30(0.16)0.551.31.706.394.2000.30(0.03)0.100.4 3.33 11.16 8.10 2 3 8.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE **

 STREAM
 Q
 Tc
 Intensity
 Fp(Fm)
 Ap
 Ae
 HEADWATER

 NUMBER
 (CFS)
 (MIN.)
 (INCH/HR)
 (INCH/HR)
 (ACRES)
 NODE

 1
 15.96
 6.39
 4.200
 0.30(0.22)
 0.72
 4.4
 8.40

 2
 19.00
 11.16
 3.061
 0.30(0.23)
 0.75
 7.3
 8.10

 3
 19.13
 11.67
 2.986
 0.30(0.23)
 0.75
 7.5
 1.00

 8.40 8.10 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.13 Tc(MIN.) = 11.67 EFFECTIVE AREA(ACRES) = 7.53 AREA-AVERAGED Fm(INCH/HR) = 0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75TOTAL AREA(ACRES) = 7.5LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1131.40 FEET. FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 261.00 MANNING'S N = 0.013ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 6.09 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 19.13PIPE TRAVEL TIME (MIN.) = 0.71 Tc (MIN.) = 12.38 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 1392.40 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE TC(MIN.) = 12.38 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.887 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS

LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN B0.500.300.10056B3.130.300.85056 COMMERCIAL PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.747 SUBAREA AREA (ACRES) =3.63SUBAREA RUNOFF (CFS) =8.70EFFECTIVE AREA (ACRES) =11.16AREA-AVERAGED Fm (INCH/HR) =0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 11.2 PEAK FLOW RATE(CFS) = 26.73 ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 26.537.243.9110.30(0.22)0.738.026.8111.882.9550.30(0.22)0.7510.926.7312.382.8870.30(0.23)0.7511.2 1 8.40 2 8.10 3 1.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 26.81 Tc(MIN.) = 11.88 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75 EFFECTIVE AREA(ACRES) = 10.91 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.88 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.955 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN IC PARK B 0.33 0.30 0.850 56 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850SUBAREA AREA(ACRES) = 0.33 SUBAREA RUNOFF(CFS) = 0.80 EFFECTIVE AREA(ACRES) = 11.24 AREA-AVERAGED Fm(INCH/HR) = 0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 11.5 PEAK FLOW RATE(CFS) = 27.61 FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.88 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.955 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USEGROUP (ACRES) (INCH/HR) (DECIMAL) CNIC PARKB0.220.300.85056 PUBLIC PARK SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) =0.22SUBAREA RUNOFF(CFS) =0.53EFFECTIVE AREA(ACRES) =11.46AREA-AVERAGED Fm(INCH/HR) =0.23 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.75 TOTAL AREA(ACRES) = 11.7 PEAK FLOW RATE(CFS) = 28.14

** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 28.34 7.24 3.911 0.30(0.22) 0.74 8.5 8.40 1 28.14 11.88 2.955 0.30(0.23) 0.75 8.10 2 11.5 28.04 12.38 2.887 0.30(0.23) 0.76 11.7 3 1.00 NEW PEAK FLOW DATA ARE: PEAK FLOW RATE(CFS) = 28.34 Tc(MIN.) = 7.24 AREA-AVERAGED Fm(INCH/HR) = 0.22 AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.74 EFFECTIVE AREA(ACRES) = 8.54 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< REPRESENTATIVE SLOPE = 0.0050FLOW LENGTH (FEET) = 45.00 MANNING'S N = 0.013ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 9.02 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.34 PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) = 7.33 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 10.00 = 1437.40 FEET. FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100FLOW LENGTH (FEET) = 43.70 MANNING'S N = 0.013DEPTH OF FLOW IN 36.0 INCH PIPE IS 16.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.71 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.34PIPE TRAVEL TIME (MIN.) = 0.08 Tc (MIN.) = 7.41 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 11.00 = 1481.10 FEET. FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 41 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 93.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 36.0 INCH PIPE IS 16.9 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 8.71 GIVEN PIPE DIAMETER(INCH) = 36.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 28.34PIPE TRAVEL TIME(MIN.) = 0.18 Tc(MIN.) = 7.59 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1575.00 FEET. _____

END OF RATIONAL METHOD ANALYSIS

FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 314.00 ELEVATION DATA: UPSTREAM(FEET) = 154.00 DOWNSTREAM(FEET) = 148.60 $T_{C} = K^{*}[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{*0.20}$ SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.799 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.967 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS TC GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.88 0.30 1.000 86 11.80 "BARREN" В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 2.11 TOTAL AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) = 2.11 22.00 TO NODE 22.50 IS CODE = 52 FLOW PROCESS FROM NODE _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 148.60 DOWNSTREAM(FEET) = 143.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 472.00 CHANNEL SLOPE = 0.0100 CHANNEL FLOW THRU SUBAREA(CFS) = 2.11 FLOW VELOCITY (FEET/SEC) = 1.74 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 4.53 Tc (MIN.) = 16.33LONGEST FLOWPATH FROM NODE 21.00 TO NODE 22.50 = 786.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< MAINLINE TC(MIN.) = 16.33 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.469 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE 0.48 0.30 0.850 56 PUBLIC PARK В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA(ACRES) =0.48SUBAREA RUNOFF(CFS) =0.96EFFECTIVE AREA(ACRES) =1.36AREA-AVERAGED Fm(INCH/HR) =0.28 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.95 TOTAL AREA(ACRES) = 1.4 PEAK FLOW RATE(CFS) = 2.67 FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

_____ _______ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 16.33 RAINFALL INTENSITY(INCH/HR) = 2.47 AREA-AVERAGED Fm(INCH/HR) = 0.28AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.95EFFECTIVE STREAM AREA(ACRES) = 1.36 TOTAL STREAM AREA (ACRES) = 1.36 PEAK FLOW RATE (CFS) AT CONFLUENCE = 2.67 FLOW PROCESS FROM NODE 22.51 TO NODE 22.52 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< _____ INITIAL SUBAREA FLOW-LENGTH(FEET) = 283.30 ELEVATION DATA: UPSTREAM(FEET) = 150.40 DOWNSTREAM(FEET) = 147.40 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 7.224 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.917 SUBAREA TC AND LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS Fp Тс LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) 0.71 0.30 0.100 56 7.22 COMMERCIAL В SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA RUNOFF (CFS) = 2.48 TOTAL AREA (ACRES) = 0.71 PEAK FLOW RATE (CFS) = 2.48 22.52 TO NODE 22.53 IS CODE = 61 FLOW PROCESS FROM NODE _____ >>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>> (STANDARD CURB SECTION USED) <<<<< ______ REPRESENTATIVE SLOPE = 0.0050STREET LENGTH (FEET) = 220.70 CURB HEIGHT (INCHES) = 6.0 STREET HALFWIDTH (FEET) = 20.00DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK (FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL (DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.77 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.40HALFSTREET FLOOD WIDTH (FEET) = 13.63 AVERAGE FLOW VELOCITY (FEET/SEC.) = 1.91

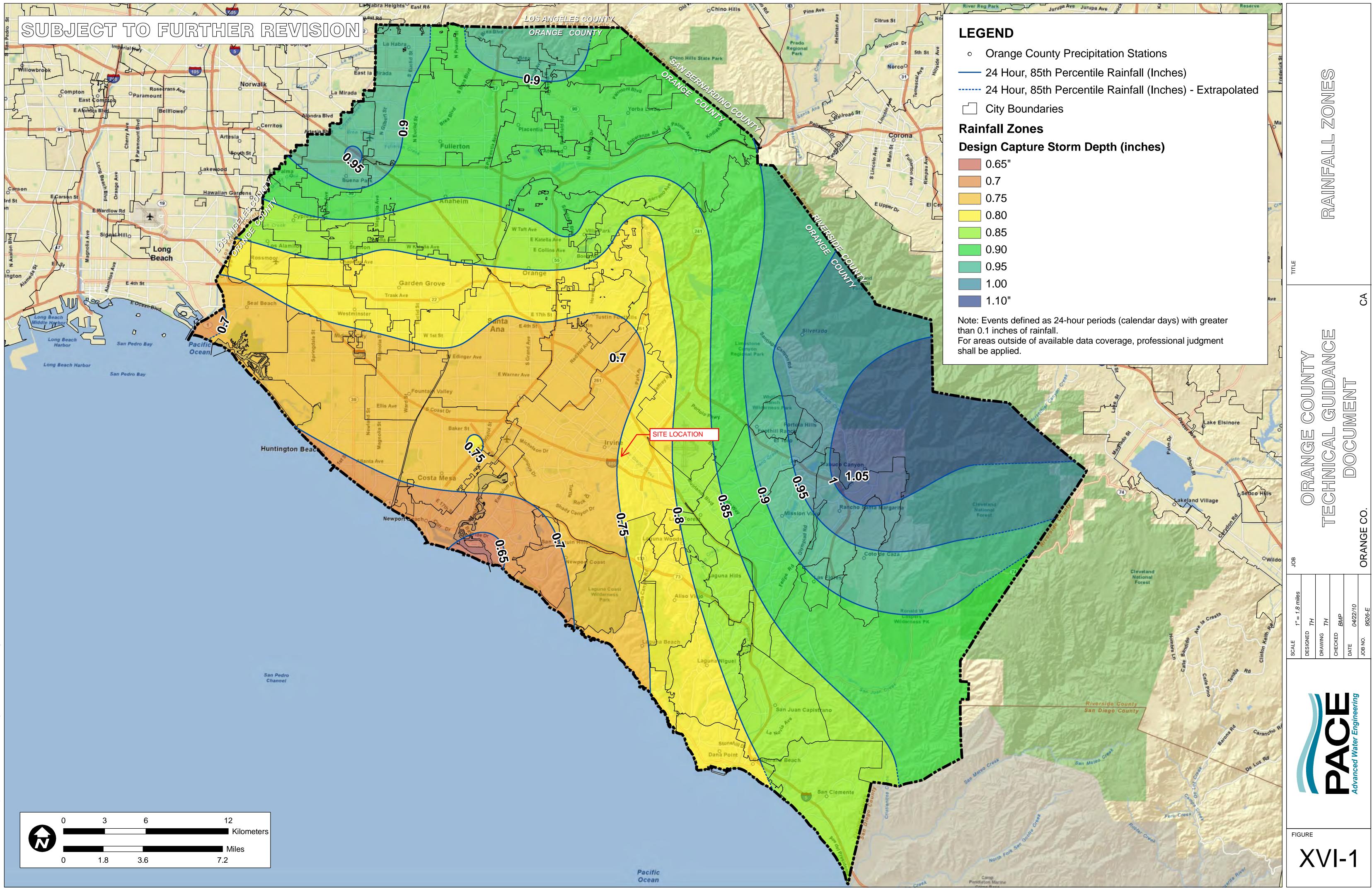
PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.76 STREET FLOW TRAVEL TIME(MIN.) = 1.93 Tc(MIN.) = 9.15 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.426 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS Ap LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 0.84 0.30 0.100 COMMERCIAL В 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) =0.84SUBAREA RUNOFF(CFS) =2.57EFFECTIVE AREA(ACRES) =1.55AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.10 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) = 4.74 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH (FEET) = 0.43 HALFSTREET FLOOD WIDTH (FEET) = 14.96 FLOW VELOCITY (FEET/SEC.) = 2.01 DEPTH*VELOCITY (FT*FT/SEC.) = 0.86 LONGEST FLOWPATH FROM NODE 22.51 TO NODE 22.53 = 504.00 FEET. FLOW PROCESS FROM NODE 22.53 TO NODE 22.53 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 9.15 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.426 SUBAREA LOSS RATE DATA (AMC II): Fp DEVELOPMENT TYPE/ SCS SOIL AREA Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN 0.15 0.30 0.100 COMMERCIAL В 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) =0.15SUBAREA RUNOFF(CFS) =0.46EFFECTIVE AREA(ACRES) =1.70AREA-AVERAGED Fm(INCH/HR) =0.03 AREA-AVERAGED $F_{p}(INCH/HR) = 0.30$ AREA-AVERAGED $A_{p} = 0.10$ TOTAL AREA (ACRES) = 1.7 PEAK FLOW RATE (CFS) = 5.20 FLOW PROCESS FROM NODE 22.53 TO NODE 22.50 IS CODE = 31 _____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 50.00 MANNING'S N = 0.013DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.6 INCHES PIPE-FLOW VELOCITY (FEET/SEC.) = 5.60 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.20PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 9.30 LONGEST FLOWPATH FROM NODE 22.51 TO NODE 22.50 = 554.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 22.50 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<

>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<

_____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 9.30 RAINFALL INTENSITY (INCH/HR) = 3.39 AREA-AVERAGED Fm(INCH/HR) = 0.03AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.10EFFECTIVE STREAM AREA(ACRES) = 1.70 TOTAL STREAM AREA(ACRES) = 1.70 5.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = ** CONFLUENCE DATA ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 2.67 16.33 2.469 0.30(0.28) 0.95 1.4 21.00 1 5.20 9.30 3.394 0.30(0.03) 0.10 1.7 2 22.51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 7.369.303.3940.30(0.11)0.372.56.4416.332.4690.30(0.14)0.483.1 1 22.51 21.00 2 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) =7.36Tc(MIN.) =9.30EFFECTIVE AREA(ACRES) =2.47AREA-AVERAGED Fm(INCH/HR) =0.11AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.37TOTAL AREA(ACRES) = 3.1 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 22.50 = 786.00 FEET. FLOW PROCESS FROM NODE 22.50 TO NODE 23.00 IS CODE = 52 _____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< _____ ELEVATION DATA: UPSTREAM(FEET) = 143.90 DOWNSTREAM(FEET) = 139.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 325.40 CHANNEL SLOPE = 0.0126 CHANNEL FLOW THRU SUBAREA(CFS) = 7.36 FLOW VELOCITY (FEET/SEC) = 2.60 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL) TRAVEL TIME (MIN.) = 2.09 Tc (MIN.) = 11.39 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 1111.40 FEET. ***** FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.39 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 3.027 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/SCS SOILAREAFpApSCSLAND USEGROUP(ACRES)(INCH/HR)(DECIMAL)CN

0.25 0.30 0.850 PUBLIC PARK В 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 0.25 SUBAREA RUNOFF (CFS) = 0.62EFFECTIVE AREA(ACRES) = 2.72 AREA-AVERAGED Fm(INCH/HR) = 0.12 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.41 TOTAL AREA(ACRES) = 3.3 PEAK FLOW RATE(CFS) = 7.36 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1 _____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< _____ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 11.39 RAINFALL INTENSITY(INCH/HR) = 3.03 AREA-AVERAGED Fm(INCH/HR) = 0.12AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 0.41EFFECTIVE STREAM AREA(ACRES) = 2.72 TOTAL STREAM AREA(ACRES) = 3.31 PEAK FLOW RATE (CFS) AT CONFLUENCE = 7.36 FLOW PROCESS FROM NODE 23.10 TO NODE 23.20 IS CODE = 21 _____ >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< INITIAL SUBAREA FLOW-LENGTH (FEET) = 285.00 ELEVATION DATA: UPSTREAM(FEET) = 150.80 DOWNSTREAM(FEET) = 147.80 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.521 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 2.869 SUBAREA TC AND LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA SCS Tc Fp Ap GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) LAND USE NATURAL POOR COVER 0.84 0.30 "BARREN" В 1.000 86 12.52 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA RUNOFF (CFS) = 1.94TOTAL AREA (ACRES) = 0.84 PEAK FLOW RATE (CFS) = 1.94FLOW PROCESS FROM NODE 23.20 TO NODE 23.00 IS CODE = 52_____ >>>>COMPUTE NATURAL VALLEY CHANNEL FLOW< >>>>TRAVELTIME THRU SUBAREA<<<<< ELEVATION DATA: UPSTREAM(FEET) = 147.80 DOWNSTREAM(FEET) = 139.60 CHANNEL LENGTH THRU SUBAREA (FEET) = 815.80 CHANNEL SLOPE = 0.0101 CHANNEL FLOW THRU SUBAREA(CFS) = 1.94 FLOW VELOCITY (FEET/SEC) = 1.71 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)

TRAVEL TIME (MIN.) = 7.93 Tc (MIN.) = 20.45 LONGEST FLOWPATH FROM NODE 23.10 TO NODE 23.00 = 1100.80 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81 _____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ______ MAINLINE Tc(MIN.) = 20.45 * 25 YEAR RAINFALL INTENSITY (INCH/HR) = 2.173 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE NATURAL POOR COVER 1.81 0.30 "BARREN" В 1.000 86 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000 SUBAREA AREA(ACRES) =1.81SUBAREA RUNOFF(CFS) =3.05EFFECTIVE AREA(ACRES) =2.65AREA-AVERAGED Fm(INCH/HR) =0.30 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 1.00 TOTAL AREA(ACRES) = 2.6 PEAK FLOW RATE(CFS) = 4.47 FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 1_____ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< _____ TOTAL NUMBER OF STREAMS = 2CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.45 RAINFALL INTENSITY (INCH/HR) = 2.17AREA-AVERAGED Fm(INCH/HR) = 0.30AREA-AVERAGED Fp(INCH/HR) = 0.30AREA-AVERAGED Ap = 1.00EFFECTIVE STREAM AREA(ACRES) = 2.65 TOTAL STREAM AREA(ACRES) = 2.65 PEAK FLOW RATE (CFS) AT CONFLUENCE = 4.47 ** CONFLUENCE DATA ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 7.36 11.39 3.027 0.30(0.12) 0.41 2.7 22.51 1 6.44 18.48 2.301 0.30(0.15) 0.50 3.3 1 21.00 4.47 20.45 2.173 0.30(0.30) 1.00 2.6 23.10 2 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAMQTcIntensityFp(Fm)ApAeHEADWATERNUMBER(CFS)(MIN.)(INCH/HR)(INCH/HR)(ACRES)NODE 10.9911.393.0270.30(0.19)0.624.222.5110.7518.482.3010.30(0.21)0.715.721.0010.5220.452.1730.30(0.22)0.726.023.10 1 2 3


COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 10.99 Tc(MIN.) = 11.39 EFFECTIVE AREA(ACRES) = 4.20 AREA-AVERAGED Fm(INCH/HR) = 0.19 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.62TOTAL AREA (ACRES) = 6.0LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 = 1111.40 FEET. FLOW PROCESS FROM NODE 23.00 TO NODE 23.00 IS CODE = 81_____ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< _____ MAINLINE Tc(MIN.) = 11.39 * 25 YEAR RAINFALL INTENSITY(INCH/HR) = 3.027 SUBAREA LOSS RATE DATA (AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN В 1.49 0.30 0.850 PUBLIC PARK 56 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.30 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850 SUBAREA AREA (ACRES) = 1.49 SUBAREA RUNOFF (CFS) = 3.72EFFECTIVE AREA(ACRES) = 5.69 AREA-AVERAGED Fm(INCH/HR) = 0.20 AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.68TOTAL AREA(ACRES) = 7.4 PEAK FLOW RATE (CFS) = 14.46FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 41_____ >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT) <<<<< _____ REPRESENTATIVE SLOPE = 0.0100 FLOW LENGTH (FEET) = 45.70 MANNING'S N = 0.013ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY (FEET/SEC.) = 8.18 PIPE FLOW VELOCITY = (TOTAL FLOW) / (PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.46PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 11.48 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 24.00 = 1157.10 FEET. _____ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 7.4 TC(MIN.) = 11.48EFFECTIVE AREA(ACRES) = 5.69 AREA-AVERAGED Fm(INCH/HR) = 0.20AREA-AVERAGED Fp(INCH/HR) = 0.30 AREA-AVERAGED Ap = 0.67814.46 PEAK FLOW RATE(CFS) = ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ар Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) NUMBER (ACRES) NODE 14.46 11.48 3.013 0.30(0.20) 0.68 5.7 1 22.51 2 13.46 18.58 2.294 0.30(0.22) 0.74 7.2 21.00 3 13.06 20.55 2.167 0.30(0.22) 0.75 7.4 23.10 _____

END OF RATIONAL METHOD ANALYSIS

ATTACHMENT E

ORANGE COUNTY RAINFALL ZONES MAP

