- Hexagon Transportation (onsultants, Inc.

1050 St. Elizabeth Drive

Transportation Analysis

Prepared for:

David J. Powers \& Associates

January 27, 2023

Hexagon Transportation Consultants, Inc.
Hexagon Office: 100 Century Center Court, Suite 501
San Jose, CA 95112
Hexagon Job Number: 22DC04
Phone: 408.971.6100
Client Name: David J. Powers \& Associates

Areawide Circulation Plans Corridor Studies Pavement Delineation Plans Traffic Handling Plans Impact Fees Interchange Analysis Parking Transportation Planning Traffic Calming Traffic Control Plans Traffic Simulation Traffic Impact Analysis Traffic Signal Design Travel Demand Forecasting

Table of Contents

Appendices
Appendix A San Jose VMT Evaluation Tool Output Sheet
Appendix B Turning Movement Counts
Appendix C San Jose Approved Trip Inventory（ATI）
Appendix D Level of Service Calculations
Appendix E Signal Warrant Analysis Sheets
Appendix F Truck Turning Template
List of Tables
Executive Summary i
1．Introduction 1
2．Existing Transportation Setting 7
3．CEQA Transportation Analysis 13
4．Local Transportation Analysis． 23
5．Conclusions 49
Table 1 Existing Bus Service Near the Project Site 9
Table 2 CEQA VMT Analysis Screening Criteria for Development Projects 14
Table 3 CEQA VMT Analysis Significant Impact Criteria for Development Projects 21
Table 4 Project Trip Generation Estimates 25
Table 5 Signalized Intersection Level of Service Definitions Based on Control Delay 34
Table 6 Intersection Level of Service Results 35
Table 7 Queuing Analysis Summary 37
Table 8 St．Elizabeth Drive Speed and Volume Summary 39
List of Figures
Figure 1 Site Location and Study Intersections 2
Figure 2 Project Site Plan 3
Figure 3 Existing Bicycle Facilities． 10
Figure 4 Existing Transit Services 11
Figure 5 VMT Per Capita Heat Map in San Jose 16
Figure 6 VMT Per Employee Heat Map in San Jose 17
Figure 7 VMT Per Capita in Project Area Heat Map 19
Figure 8 VMT Evaluation Summary 19
Figure 9 Project Trip Distribution 26
Figure 10 Project Trip Assignment 27
Figure 11 Intersection Lane Configuration 29
Figure 12 Existing Traffic Volume 31
Figure 13 Background Traffic Volume 32
Figure 14 Background Plus Project Traffic Volume 33
Figure 15 Level 2 Site Plan 40
Figure 16 Basement Level Site Plan 41
Figure 17 Estimated Trip at Project Driveways． 43

Executive Summary

This report presents the results of a Transportation Analysis (TA) for the proposed residential development located at 1050 St. Elizabeth Drive in San Jose, California. The project site is located along the east side of St. Elizabeth Drive, approximately 500 feet south of McKinley Avenue.

The project, as proposed, would replace the existing vacated 28,223 square foot (sf) senior housing facility on-site with a seven-story apartment building with 206 multi-family residential units. The project proposes a total of 311 parking spaces in a three-level parking garage with one underground level and two above grade levels. The proposed project site will be accessed by a full access driveway and an exit-only driveway along St. Elizabeth Drive.

Transportation Analysis Scope

The transportation analysis of the project was evaluated following the standards and methodologies set forth in the City of San Jose's Transportation Analysis Policy (Council Policy 5-1), the City of San Jose's Transportation Analysis Handbook 2020, the Santa Clara Valley Transportation Authority (VTA) Congestion Management Program's Transportation Impact Guidelines (October 2014), and by the California Environmental Quality Act (CEQA). Per the requirements of the City of San Jose's Transportation Policy and Transportation Analysis Handbook 2020, the TA report for the project consists of a CEQA vehicle-miles-traveled (VMT) analysis and a supplemental Local Transportation Analysis (LTA).

CEQA Transportation Analysis Scope

The CEQA transportation analysis for the project consists of a project-level VMT impact analysis using the City's VMT tool and a cumulative impact analysis that demonstrates the project's consistency with the Envision San Jose 2040 General Plan.

Local Transportation Analysis Scope

The LTA includes the evaluation of weekday AM and PM peak hour operations at a limited number of intersections for the purpose of identifying operational issues (queuing, signal operations, and potential multi-modal issues) at intersections in the general vicinity of the project site. However, the determination of project impacts per CEQA requirements is based solely on the VMT analysis.

CEQA VMT Analysis

Project-Level VMT Impact Analysis

The results of the VMT evaluation, using the City's VMT Evaluation Tool, indicate that the proposed project is projected to generate 9.89 VMT per capita. The project does not exceed the thresholds of significance. Therefore, the proposed project would not have an impact on the transportation system based on the City's VMT impact criteria.

Cumulative (GP Consistency) Evaluation

Projects must demonstrate consistency with the Envision San José 2040 General Plan to address cumulative impacts. Consistency with the City's General Plan is based on the project's density, design, and conformance to the General Plan goals and policies. If a project is determined to be inconsistent with the General Plan, a cumulative impact analysis is required per the City's Transportation Analysis Handbook.

The project site is located within an Urban Residential Area. Urban Residential developments can develop at a density of 30-95 dwelling units/acre. Based on the total lot area of 2.22 acres, the project is allowed to develop up to 211 units. The project, as proposed, would construct 206 multi-family residential units, which is between the allowable density described in the Envision San José 2040 General Plan.

The project is consistent with the General Plan goals and policies for the following reasons:

- The project would develop a medium density multi-family residential building
- The project is located within walking distance to a Planned Urban Village (Southwest Expressway) and would support commercial uses within the Urban Village
- The project would provide bicycle storage on the ground level near the entrance to encourage resident use of alternative transportation modes.
- The proposed project would increase the intensity of residential units

Therefore, based on the project description, the proposed project would be consistent with the Envision San José 2040 General Plan. Thus, the project would be considered as part of the cumulative solution to meet the General Plan's long-range transportation goals and would result in a less-than-significant cumulative impact.

Local Transportation Analysis

The intersection operations analysis is intended to quantify the operations of intersections and to identify potential negative effects due to the addition of project traffic. However, a potential adverse effect on a study intersection operation is not considered a CEQA impact metric.

The LTA includes the analysis of AM and PM peak-hour traffic conditions for five signalized intersections and one unsignalized intersection, following the standards and methodology set forth by the City of San Jose.

Trip Generation

After applying the ITE trip rates and appropriate trip reductions it is estimated that the project would generate 804 daily vehicle trips, with 66 trips (15 inbound and 51 outbound) occurring during the AM peak hour and 68 trips (42 inbound and 26 outbound) occurring during the PM peak hour.

Future Intersection Operation Conditions

The intersection operations analysis shows that all of the study intersections are projected to operate at acceptable levels of service, based on the City of San Jose intersection operations standard of LOS D, under background conditions and background plus project conditions during both the AM and PM peak hours.

Intersection Queuing Analysis

Meridian Avenue \& Fruitdale Avenue

Under all scenarios, the Meridian Avenue \& Fruitdale Avenue intersection was calculated to have insufficient storage for the eastbound left-turn movement during the AM peak hour. It should be noted that the left-turning movement has a greater demand than the eastbound through movement, which would likely result in left-turning vehicles blocking the through lane queue. Since the eastbound left-turn movement exceeds the storage capacity during the heaviest cycles under existing conditions, the City of San Jose should consider changing the lane geometry and switching the signal control to split phasing in the east-west direction.

Under background conditions, the project would not lengthen maximum eastbound left-turn queue. The applicant should discuss with the City of San Jose whether changes to lane geometry and signal control are needed.

Site Access and On-Site Circulation

Site access was evaluated to determine the adequacy of the site's access points with regard to the following: traffic volume, delays, vehicle queues, geometric design, and corner sight distance. On-site vehicular circulation was reviewed in accordance with generally accepted traffic engineering standards and transportation planning principles.

Recommended Site Access and On-Site Circulation Improvements

- The proposed landscaping along St. Elizabeth should be maintained so that the vision of exiting drivers is not obstructed
- Red curb equal to a car length should be painted on both sides of project driveways
- The project applicant should discuss with city staff whether the proposed ramp is adequate, or if the project would be required to widen the ramp.
- Transition slopes should be provided if the ramp is greater than a 10% grade.
- Trash bins would need to be wheeled out to the trash pick-up area on trash pick-up days.

Parking Supply

Based on the City's parking requirements, the project would be required to provide a total of 294 parking spaces. The project site is within 2,000 feet of the Fruitdale Light Rail Station and the project proposes to provide bicycle parking that will exceed the City's bicycle parking requirements. Therefore, the vehicle parking requirement would be reduced by 20% to 235 vehicle parking spaces. The project proposes to provide a total of 311 parking spaces, meeting the requirements of the City's zoning code.

Bicycle Parking

The project proposes to provide 56 bicycle parking spaces. The site plan indicates that 52 long-term bicycle locker spaces are provided within a bicycle storage room on the ground level. The site plan indicates that 4 short-term bicycle parking spaces will be provided at the front of the building, near the lobby.

Pedestrian, Bicycle, and Transit Analysis

Pedestrian Facilities

Pedestrian generators in the project vicinity include commercial areas and transit along the Southwest Expressway and Meridian Avenue corridors. The project site is approximately $1 / 2$-mile from nearby Blackford Elementary School and Del Mar High School. Existing sidewalks along St. Elizabeth Drive, Curci Drive, and Fruitdale Avenue provide a pedestrian connection between the project site and pedestrian destinations in the project vicinity.

There are missing ADA-compliant ramps along the northwest and southwest corners of the St. Elizabeth Drive/McKinley Avenue intersection and the southwest and northeast corners of St. Elizabeth Drive/Curci Drive intersection. City staff have indicated that the project will be required to reconstruct ADA-compliant ramps within the project's sphere.

City staff have also indicated that the project will be required to contribute an in-lieu contribution of $\$ 40,000$ for the future bulbouts and enhanced crosswalk along St. Elizabeth Drive near the Los Gatos Creek Trail.

The project proposes to reconstruct a sidewalk along its frontage on St. Elizabeth Drive with a 10 -footwide sidewalk. Street trees would be planted along the project frontage between the sidewalk and roadway. Overall, the proposed sidewalks provide adequate space and circulation along the project frontages.

Recommendation: The project will be required to install new ADA curb ramps along the northwest and southwest corners of the St. Elizabeth Drive/McKinley Avenue intersection and the southwest and northeast corners of St. Elizabeth Drive/Curci Drive intersection.

Bicycle Facilities

The bikeways within the vicinity of the project site would remain unchanged under project conditions.
The project site is directly served by a Class III bike route along St. Elizabeth Drive/Stokes Street. The San Jose Better Bike Plan 2025 has identified an upgrade to St. Elizabeth Drive/Stokes Street to a bicycle boulevard. The project proposes bicycle storage lockers, which may encourage bicycle ownership by residents. There are no bicycle sharing stations located within walking distance of the project site. The nearest bicycle sharing station is located near the intersection of Race Street/Parkmoor Avenue, approximately 1.1 mile away.

As previously described, the City's General Plan identifies a bicycle commute mode split target of 15 percent or more by the year 2040. This calculates to approximately 10 new bicycle trips during each of the AM and PM peak hours. This level of bicycle mode share is a reasonable goal for the project.

The San Jose Bike Plan 2025 indicates that a variety of bicycle facilities are planned in the study area, some of which would benefit the project and adhere to the goals of the Envision 2040 General Plan. Of the planned facilities, the following are relevant to the project.
Class III, bicycle boulevards, are planned for:

- St. Elizabeth Drive/Stokes Street (existing Class III bike route)

Class IV, protected bike lanes, are planned for:

- Southwest Expressway, south of Fruitdale Avenue (existing Class II bike lanes)
- Fruitdale Avenue, between Meridian Avenue and Southwest Expressway
- Meridian Avenue, between Park Avenue and Willow Street
- Leigh Avenue, between Fruitdale Avenue and E Hamilton Avenue

Transit Services

The project site is primarily served by two VTA bus routes (Frequent Route 25 and Local Route 64B). The nearest bus stops to the project site serves both routes and are located along both sides of Meridian Avenue (near Cruci Drive), approximately 1,500 feet walking distance from the project site. Additionally, the Fruitdale Light Rail Station is located approximately $1 / 2$-mile north and west of the project site.

The new transit trips generated by the project are not expected to create demand in excess of the transit service that is currently provided.

1.

Introduction

This report presents the results of a Transportation Analysis (TA) for the proposed residential development located at 1050 St. Elizabeth Drive (APN 284-07-018) in San Jose, California. The project site is located along the east side of St. Elizabeth Drive, approximately 500 feet south of McKinley Avenue. The project site location and the surrounding study area are shown on Figure 1.

The project, as proposed, would replace the existing vacated 28,223 square foot (sf) senior housing facility on-site with a seven-story apartment building with 206 multi-family residential units. The project proposes a total of 311 parking spaces in a three-level parking garage with one underground level and two above grade levels. The proposed project site will be accessed by a full access driveway and an exit-only driveway along St. Elizabeth Drive. The project site plan is shown on Figure 2.

Scope of Work

The transportation analysis of the project was evaluated following the standards and methodologies set forth in the City of San Jose's Transportation Analysis Policy (Council Policy 5-1), the City of San Jose's Transportation Analysis Handbook 2020, the Santa Clara Valley Transportation Authority (VTA) Congestion Management Program's Transportation Impact Guidelines (October 2014), and by the California Environmental Quality Act (CEQA). Per the requirements of the City of San Jose's Transportation Policy and Transportation Analysis Handbook 2020, the TA report for the project consists of a CEQA vehicle-miles-traveled (VMT) analysis and a supplemental Local Transportation Analysis (LTA).

Transportation Policies

Council Policy 5-1

Historically, transportation analysis has utilized delay and congestion on the roadway system as the primary metric for the identification of traffic impacts and potential roadway improvements to relieve traffic congestion that may result due to proposed/planned growth. However, the State of California has recognized the limitations of measuring and mitigating only vehicle delay at intersections and in 2013 passed Senate Bill (SB) 743, which requires jurisdictions to stop using congestion and delay metrics, such as Level of Service (LOS), as the measurement for CEQA transportation analysis. With the adoption of SB 743 legislation, public agencies are now required to base the determination of transportation impacts on Vehicle Miles Traveled (VMT) rather than level of service.

Figure 1
Site Location and Study Intersections

Figure 2
Project Site Plan

In adherence to SB 743, the City of San Jose has adopted a new Transportation Analysis Policy, Council Policy 5-1. The policy replaces its predecessor (Policy 5-3) and establishes the thresholds for transportation impacts under the CEQA based on vehicle miles traveled (VMT) instead of levels of service (LOS). The intent of this change is to shift the focus of transportation analysis under CEQA from vehicle delay and roadway auto capacity to a reduction in vehicle emissions, and the creation of robust multimodal networks that support integrated land uses. All new development projects are required to analyze transportation impacts using the VMT metric and conform to Council Policy 5-1.

General Plan Goals \& Policies

The Circulation Element of the Envision San José 2040 General Plan includes a set of balanced, longrange, multi-modal transportation goals and policies that provide for a transportation network that is safe, efficient and sustainable (minimizes environmental, financial, and neighborhood impacts). These transportation goals and policies are intended to improve multi-modal accessibility to all land uses and create a city where people are less reliant on driving to meet their daily needs. The Envision San Jose 2040 General Plan contains the following policies to encourage the use of non-automobile transportation modes to minimize vehicle trip generation and reduce VMT:

- Consider impacts on overall mobility and all travel modes when evaluating transportation impacts of new developments or infrastructure projects (TR-1.2);
- Through the entitlement process for new development, projects shall be required to fund or construct needed transportation improvements for all transportation modes, giving first consideration to improvement of biking, walking and transit facilities and services that encourage reduced vehicle travel demand (TR-1.4);
- Require new development where feasible to provide on-site facilities such as bicycle storage and showers, provide connections to existing and planned facilities, dedicate land to expand existing facilities or provide new facilities such as sidewalks and/or bicycle lanes/paths, or share in the cost of improvements (TR-2.8);
- As part of the development review process, require that new development along existing and planned transit facilities consist of land use and development types and intensities that contribute towards transit ridership. In addition, require that new development is designed to accommodate and to provide direct access to transit facilities (TR-3.3);
- Discourage, as part of the entitlement process, the provision of parking spaces significantly above the number of spaces required by code for a given use (TR-8.4);
- Allow reduced parking requirements for mixed-use developments and for developments providing shared parking or a comprehensive transportation demand management (TDM) program, or developments located near major transit hubs or within Villages and Corridors and other growth areas (TR-8.6);
- Encourage private property owners to share their underutilized parking supplies with the general public and/or other adjacent private developments (TR-8.7);
- Within new development, create and maintain a pedestrian-friendly environment by connecting the internal components with safe, convenient, accessible, and pleasant pedestrian facilities and by requiring pedestrian connections between building entrances, other site features, and adjacent public streets (CD-3.3);
- Create a pedestrian-friendly environment by connecting new residential development with safe, convenient, accessible, and pleasant pedestrian facilities. Provide such connections between
new development, its adjoining neighborhood, transit access points, schools, parks, and nearby commercial areas (LU-9.1);
- Encourage all developers to install and maintain trails when new development occurs adjacent to a designated trail location. Use the City's Parkland Dedication Ordinance and Park Impact Ordinance to have residential developers build trails when new residential development occurs adjacent to a designated trail location, consistent with other parkland priorities. Encourage developers or property owners to enter into formal agreements with the City to maintain trails adjacent to their properties (PR-8.5).

CEQA Transportation Analysis Scope

The CEQA transportation analysis for the project consists of a project-level VMT impact analysis using the City's VMT tool and a cumulative impact analysis that demonstrates the project's consistency with the Envision San Jose 2040 General Plan.

The City of San Jose's Transportation Analysis Policy establishes procedures for determining project impacts on VMT based on project description, characteristics, and/or location. The City's VMT methodology also includes screening criteria that are used to identify types, characteristics, and/or locations of projects that would not exceed the CEQA thresholds of significance. If a project meets the screening criteria, it is then presumed that the project would result in a less-than-significant VMT impact and a VMT analysis is not required. Since the proposed project consists of more than the City's small infill project screening criteria of 25 multi-family units, a CEQA-level transportation analysis that evaluates the project's effects on VMT is required and is presented in Chapter 3.

To determine whether a project would result in CEQA transportation impacts related to VMT, the City has developed the San Jose VMT Evaluation Tool to streamline the analysis for development projects. The City's VMT tool was used to estimate VMT for the residential use proposed by the project.

Local Transportation Analysis Scope

A local transportation analysis (LTA) supplements the CEQA VMT analysis and identifies transportation and traffic operational issues that may arise due to a development project. The LTA includes an evaluation of the effects of the project on transportation, access, circulation, and related safety elements in the proximate area of the project.

The LTA includes the evaluation of weekday AM and PM peak hour operations at a limited number of intersections for the purpose of identifying operational issues (queuing, signal operations, and potential multi-modal issues) at intersections in the general vicinity of the project site. The LTA is required per the City of San Jose Transportation Policy, however, the operational deficiencies identified as part of the LTA are not considered impacts per CEQA guidelines.

Traffic conditions at the study intersections were analyzed for both the weekday AM and PM peak hours of adjacent street traffic. The AM peak hour typically occurs between 7:00 AM and 9:00 AM and the PM peak hour typically occurs between 4:00 PM and 6:00 PM on a regular weekday. These are the peak commute hours during which most weekday traffic congestion occurs on the roadways in the study area.

Intersection operations conditions were evaluated for the following scenarios:

- Existing Conditions. Existing AM and PM peak hour traffic volumes at all signalized study intersections were obtained from the City of San Jose. For intersections where count data was more than two years old, a compounded growth factor of 1% per year was applied. At
intersections where count data was not available, new counts were conducted and adjusted utilising count data at adjacent intersections where historical count data was available. The new turning movement counts were then compared to existing counts and factored to represent preCOVID traffic volumes.
- Background Conditions. Background traffic volumes were estimated by adding to existing peak hour volumes the projected volumes from approved but not yet completed developments. The approved project traffic was provided by the City of San Jose in the form of the Approved Trips Inventory (ATI).
- Background Plus Project Conditions. Background plus project conditions reflect projected traffic volumes on the planned roadway network with completion of the project and approved developments. Background traffic volumes with the project were estimated by adding to background traffic volumes the additional traffic generated by the project.
The LTA also includes a vehicle queuing analysis, an evaluation of potential project impacts on bicycle, pedestrian, and transit facilities, and a review of site access, on-site circulation, and parking demand.

Report Organization

The remainder of this report is divided into four chapters. Chapter 2 describes existing transportation system including the existing roadway network, transit service, bicycle and pedestrian facilities. Chapter 3 describes the CEQA transportation analysis, including VMT analysis methodology, baseline and potential project VMT impacts, and potential cumulative transportation impacts. Chapter 4 describes the LTA including the method by which project traffic is estimated, intersection operations analysis methodology, any adverse intersection traffic effects caused by the project, signal warrant analysis, intersection vehicle queuing analysis, a discussion on neighborhood interface, a site access and on-site circulation review, parking, and effects on bicycle, pedestrian, and transit facilities. Chapter 5 presents the conclusions of the transportation analysis.

2.
 Existing Transportation Setting

This chapter describes the existing conditions of the transportation system within the study area of the project. It describes transportation facilities in the vicinity of the project site, including the roadway network, transit services, and pedestrian and bicycle facilities.

Existing Roadway Network

Regional access to the project site is provided via I-280 and SR-17. These facilities are described below.
l-280 is an eight-lane freeway in the vicinity of the site. It extends northwest to San Francisco and east to King Road in San Jose, at which point it makes a transition into I-680 to Sacramento. North of I-880, $\mathrm{I}-280$ has high occupancy vehicle (HOV) lanes in both directions. Access to northbound I-280 from the site and from southbound I-280 to the site is provided via ramps at Meridian Avenue. Access to southbound I-280 and from northbound I-280 to the site is provided via ramps at Southwest Expressway and Meridian Avenue.

SR 17 is a six-lane freeway in the vicinity of the site. It extends from Santa Cruz to I-880 in San Jose, at which point it makes a transition to I-880 to Oakland. Access to the site is provided via its interchange with Hamilton Avenue and I-280.

Local access to the site is provided by Southwest Expressway, Meridian Avenue, Fruitdale Avenue, Curci Drive, and St. Elizabeth Drive. These roadways are described below.

Southwest Expressway is a divided four-lane north-south roadway in the vicinity of the project site. It extends from I-280 in the north to Bascom Avenue in the south. In the project vicinity, Southwest Expressway has a posted speed limit of 40 mph . The VTA LRT Green Line runs parallel and along the west side of Southwest Expressway between I-280 and Hamilton Avenue. Access to the project site from Southwest Expressway is provided via Fruitdale Avenue and Stokes Street.

Meridian Avenue is a four-to-five lane north-south roadway in the vicinity of the project site. South of Fruitdale Avenue, Meridian Avenue is two lanes in each direction with a two-way left-turn median. Meridian Avenue extends from Park Avenue in the north to Camden Avenue in the south, where it becomes Leyland Park Drive. In the project vicinity, Meridian Avenue has a posted speed limit of 35 mph . Access to the project site from Meridian Avenue is provided via Fruitdale Avenue and Curci Drive.

Fruitdale Avenue is a divided four-lane east-west roadway in the vicinity of the project site. It extends from its terminus at the Los Gatos Creek in the east to Bascom Avenue in the west, where it becomes Enborg Lane. In the project vicinity, Fruitdale Avenue has a posted speed limit of 35 mph . Access to the project site from Fruitdale Avenue is provided via St. Elizabeth Drive.

Curci Drive is a two-lane east-west roadway that connects Meridian Avenue to St. Elizabeth Avenue. In the project vicinity, Curci Drive has sidewalks and on-street parking on both sides of the street. Curci Drive has a posted speed limit of 25 mph . Access to the project site from Curci Drive is provided via St. Elizabeth Drive.

St. Elizabeth Drive is a two-lane north-south roadway in the vicinity of the project site. It extends from its northern terminus at Fruitdale Avenue to several hundred feet south of the project site, where it becomes Stokes Street. In the project vicinity, St. Elizabeth Drive has sidewalks and on-street parking on both sides of the street. St. Elizabeth Drive is a designated bike route and has "sharrow" pavement markings throughout. Along the project frontage, St. Elizabeth Drive has a posted speed limit of 30 mph . Access to the project site from St. Elizabeth Drive is provided via a full access driveway and an exit only driveway.

Existing Pedestrian, Bicycle and Transit Facilities

San Jose desires to provide a safe, efficient, fiscally, economically, and environmentally-sensitive transportation system that balances the need of bicyclists, pedestrians, and public transit riders with those of automobiles and trucks. The existing bicycle, pedestrian, and transit facilities in the study area are described below.

Existing Pedestrian Facilities

Pedestrian facilities in the study area consist of sidewalks along all the surrounding streets, including the project frontage along St. Elizabeth Drive. Crosswalks and pedestrian signal heads are present along the following legs at study intersections:

- North, east, and south legs of the Southwest Expressway/Fruitdale Avenue intersection
- West and south legs of the St. Elizabeth Drive/Fruitdale Avenue intersection
- West, south, and east legs of the Meridian Avenue/Fruitdale Avenue intersection
- West and south legs of the Meridian Avenue/Curci Drive intersection
- All legs of the Leigh Avenue/Stokes Street intersection

Additionally, crosswalks are provided at the east and south legs of the St. Elizabeth Drive/Curci Drive intersection. ADA-compliant curb ramps are located at most intersections within the project vicinity, with the exception of the southwest and northwest corners of the McKinley Avenue and St. Elizabeth Street intersection as well as the northwest corner of the Curci Drive and St. Elizabeth intersection.

Pedestrian generators in the project vicinity include commercial areas and Light-rail stations or bus stops along Southwest Expressway between Fruitdale Avenue and Stokes Street and Meridian Avenue between Fruitdale and Willow Street. Continuous sidewalks along St. Elizabeth Drive, Stokes Street, and Curci Drive are provided between the project site and Southwest Expressway and Meridian Avenue. A trailhead located along the east side of St. Elizabeth Drive just south of the project site provides access to the Los Gatos Creek Trail (discussed further below. The project site also is within the service boundary of Blackford Elementary School, which is located on Leigh Avenue approximately $1 / 2$-mile walking distance from the project site. However, as noted above, there are continuous sidewalks along St. Elizabeth Street/Stokes Street and Leigh Avenue between the project site and the school.

Existing Bicycle Facilities

There are several bicycle facilities in the vicinity of the project site. The existing bicycle facilities are shown in Figure 3.
Class II Bikeway (Bike Lane). Class II bikeways are striped bike lanes on roadways that are marked by signage and pavement markings. Within the vicinity of the project site, striped bike lanes are present on the following roadway segments.

- Southwest Expressway, south of Fruitdale Avenue
- Fruitdale Avenue, between Bascom Avenue and Southwest Expressway
- Bascom Avenue, between Fruitdale Avenue and Hamilton Avenue

Class III Bikeway (Bike Route). Class III bikeways are bike routes and only have signs to help guide bicyclists on recommended routes to certain locations. In the vicinity of the project site, the following roadway segments are designated as bike routes.

- St. Elizabeth Avenue, in its entirety
- Stokes Street, east of Spruance Street

Los Gatos Creek Trail

The Los Gatos Creek multi-use trail system runs through the Cites of San Jose and Campbell, and the Town of Los Gatos along the Los Gatos Creek and is shared between pedestrians and bicyclists and separated from motor vehicle traffic. The Los Gatos Creek trail is a 9.7-mile continuous Class I bikeway from Meridian Avenue in the north to the Lexington Reservoir County Park in the south. This trail system can be accessed via a trailhead on St. Elizabeth Drive, approximately 250 feet south of the project site.

Existing Transit Service

Existing transit services in the study area are provided by the Valley Transportation Authority VTA. The closest bus stops serviced by the VTA are located along Meridian Avenue at Curci Drive, approximately 1,500 feet walking distance from the project site. The project site is located less than $1 / 2$-mile from the Fruitdale Light Rail Station. Figure 4 shows the existing transit services.

Bus Service

The project area is served by two bus lines, Frequent Route 25 and Local Route 64B. The bus lines that operate along Meridian Avenue in the project vicinity are listed in Table 1, including their route descriptions and commute hour headways.

Table 1
Existing Bus Service Near the Project Site

Transit Route	Route Description	Hours of Operation	Headway ${ }^{1}$
Frequent Route 25	De Anza College to Alum Rock Transit Center via Valley Med	$5: 00 \mathrm{am}-12: 30 \mathrm{am}$	15 mins
Local Route 64B	Almaden Expressway \& Camden - McKee \& White	$5: 45 \mathrm{am}-9: 15 \mathrm{pm}$	30 mins
$\frac{\text { Notes: }}{}$ Approximate headways during peak commute periods.			

Figure 3
Existing Bicycle Facilities

Figure 4
Existing Transit Services

VTA Light Rail Transit (LRT) Service

The VTA currently operates the 42.2-mile VTA light rail line system extending from south San Jose/Campbell through downtown to the northern areas of San Jose, Santa Clara, Milpitas, Mountain View and Sunnyvale. The nearest LRT station is the Fruitdale Station, approximately $1 / 2$-mile from the project site, which is serviced by the Green Line. The Green Line operates between the Old Ironsides Station in Santa Clara and Downtown Campbell on 20-minute headways from 5:44 AM - 12:05 AM on weekdays.

3.
 CEQA Transportation Analysis

This chapter describes the CEQA transportation analysis, including the VMT analysis methodology and significance criteria, potential project impacts on VMT, mitigation measures recommended to reduce significant impacts, and an evaluation of consistency with the City of San Jose's General Plan.

CEQA Transportation Analysis Screening Criteria

The City of San Jose Transportation Analysis Handbook identifies screening criteria that determine whether a CEQA transportation analysis would be required for development projects. The criteria are based on the type of project, characteristics, and/or location. If a project meets the City's screening criteria, it is presumed that the project would result in a less-than-significant transportation impact and a detailed VMT analysis is not required. The type of development projects that may meet the screening criteria include the following:
(1) small infill projects
(2) local-serving retail
(3) local-serving public facilities
(4) projects located in Planned Growth Areas with low VMT and High-Quality Transit
(5) deed-restricted affordable housing located in Planned Growth Areas with High-Quality Transit

Table 2 summarizes the screening criteria for each type of development project as identified in the City of San Jose Transportation Analysis Handbook.

Evaluation of Screening Criteria

A CEQA-level transportation analysis that evaluates the project's effects on VMT is required for the proposed project since its proposed 306 multi-family units exceeds the City's small infill project screening criteria of 25 multi-family units.

VMT Evaluation Methodology and Criteria

Per Council Policy 5-1, the effects of the proposed project on VMT was evaluated using the methodology outlined in the City's Transportation Analysis Handbook. The City of San Jose defines VMT as the total miles of travel by personal motorized vehicles a project is expected to generate in a day. VMT is calculated using the Origin-Destination VMT method, which measures the full distance of

Table 2
CEQA VMT Analysis Screening Criteria for Development Projects

Type	Screening Criteria
Small Infill Projects	- Single-family detached housing of 15 units or less; OR - Single-family attached or multi-family housing of 25 units or less; OR - Office of 10,000 square feet of gross floor area or less; $\underline{O R}$ - Industrial of 30,000 square feet of gross floor area or less
Local-Serving Retail	- 100,000 square feet of total gross floor area or less without drive-through operations
Local-Serving Public Facilities	- Local-serving public facilities
Residential/Office Projects or Components	- Planned Growth Areas: Located within a Planned Growth Area as defined in the Envision San José 2040 General Plan; AND - High-Quality Transit: Located within $1 / 2$ a mile of an existing major transit stop or an existing stop along a high-quality transit corridor; AND - Low VMT: Located in an area in which the per capita VMT is less than or equal to the CEQA significance threshold for the land use; AND - Transit-Supporting Project Density: o Minimum Gross Floor Area Ratio (FAR) of 0.75 for office projects or components; o Minimum of 35 units per acre for residential projects or components; o If located in a Planned Growth Area that has a maximum density below 0.75 FAR or 35 units per acre, the maximum density allowed in the Planned Growth Area must be met; AND - Parking: o No more than the minimum number of parking spaces required; o If located in Urban Villages or Downtown, the number of parking spaces must be adjusted to the lowest amount allowed; however, if the parking is shared, publicly available, and/or "unbundled", the number of parking spaces can be up to the zoned minimum; AND - Active Transportation: Not negatively impact transit, bike or pedestrian infrastructure.
Restricted Affordable Residential Projects or Components	- Affordability: 100% restricted affordable units, excluding unrestricted manager units; affordability must extend for a minimum of 55 years for rental homes or 45 years for for-sale homes; AND - Planned Growth Areas: Located within a Planned Growth Area as defined in the Envision San José 2040 General Plan; AND - High Quality Transit: Located within $1 / 2$ a mile of an existing major transit stop or an existing stop along a high quality transit corridor; AND - Transit-Supportive Project Density: o Minimum of 35 units per acre for residential projects or components; o If located in a Planned Growth Area that has a maximum density below 35 units per acre, the maximum density allowed in the Planned Growth Area must be met; AND - Transportation Demand Management (TDM): If located in an area in which the per capita VMT is higher than the CEQA significance threshold, a robust TDM plan must be included; AND - Parking: o No more than the minimum number of parking spaces required; o If located in Urban Villages or Downtown, the number of parking spaces must be adjusted to the lowest amount allowed; however, if the parking is shared, publicly available, and/or "unbundled", the number of parking spaces can be up to the zoned minimum; AND - Active Transportation: Not negatively impact transit, bike or pedestrian infrastructure.

Source: City of San José Transportation Analysis Handbook, April 2018.
personal motorized vehicle-trips with one end within the project. A project's VMT is compared to established thresholds of significance based on the project location and type of development.

Typically, development projects that are farther from other, complementary land uses (such as a business park far from housing) and in areas without transit or active transportation infrastructure (bike lanes, sidewalks, etc.) generate more driving than development near complementary land uses with more robust transportation options. Therefore, developments located in a central business district with high density and diversity of complementary land uses and frequent transit services are expected to internalize trips and generate shorter and fewer vehicle trips than developments located in a suburban area with low density of residential developments and no transit serve in the project vicinity.

When assessing a residential project, the project's VMT is divided by the number of residents expected to occupy the project to determine the VMT per capita. When assessing an office or industrial project, the project's VMT is divided by the number of employees.

VMT Evaluation Tool

To determine whether a project would result in CEQA transportation impacts related to VMT, the City has developed the San Jose VMT Evaluation Tool to streamline the analysis for development projects. Based on the assessor's parcel number (APN) of a project, the VMT evaluation tool identifies the existing average VMT per capita and employee for the project area. Based on the project location, type of development, project description, and proposed trip reduction measures, the VMT evaluation tool calculates the project VMT.
Projects located in areas where the existing VMT is greater than the established threshold are referred to as being in "high-VMT areas". Projects in high-VMT areas are required to include a set of VMT reduction measures that would reduce the project VMT to the greatest extent possible. The VMT Evaluation tool evaluates a list of selected VMT reduction measures that can be applied to a project to reduce the project VMT. There are four strategy tiers whose effects on VMT can be calculated with the VMT Evaluation tool:

1. Project characteristics (e.g. density, diversity of uses, design, and affordability of housing) that encourage walking, biking and transit uses.
2. Multimodal network improvements that increase accessibility for transit users, bicyclists, and pedestrians,
3. Parking measures that discourage personal motorized vehicle-trips, and
4. Transportation demand management (TDM) measures that provide incentives and services to encourage alternatives to personal motorized vehicle-trips.

The first three strategies - land use characteristics, multimodal network improvements, and parking are physical design strategies that can be incorporated into the project design. TDM includes programmatic measures that aim to reduce VMT by decreasing personal motorized vehicle mode share and by encouraging more walking, biking, and riding transit. TDM measures should be enforced through annual trip monitoring to assess the project's status in meeting the VMT reduction goals.

Baseline VMT Estimates

The thresholds of significance for residential and employment development projects, as established in the Transportation Analysis Policy, are based on the existing citywide average VMT level for residential uses and the existing regional average VMT level for employment uses. Figures 5 and 6 show the current VMT levels estimated by the City for residents and workers, respectively.

Figure 5
VMT per Capita Heat Map in San Jose

Figure 6
VMT per Employee Heat Map in San Jose

NORTH

Areas are color-coded based on the level of existing VMT:

- Green-filled areas are parcels with existing VMT less than the City's residential and employee thresholds of 10.12 VMT per capita and 12.21 per employee. The thresholds are calculated by subtracting 15 percent from the citywide average of 11.91 VMT per capita and regional average of 14.37 per employee.
- Yellow-filled areas are parcels with existing VMT between the residential and employee thresholds and the city-wide average of 11.91 VMT per capita and regional average 14.37 VMT per employee.
- Orange-filled areas are parcels with existing VMT greater than the residential and employee thresholds. However, a project's VMT impact may be mitigated by implementing VMT-reducing measures.
- Red-filled areas are parcels with existing VMT greater than the residential and employee threshold. Implementing VMT-reducing measures will not be sufficient to reduce a project's VMT to less than the threshold of significance.

Average per-capita and per-employee VMT for all the existing developments within $1 / 2$ mile buffer of each parcel in the City serves as the baseline from which a project is evaluated. Figure 7 shows the current VMT levels estimated by the City for residents in the immediate project area.

Thresholds of Significance

If a project is found to have a significant impact on VMT, the impact must be reduced by modifying the project to reduce its VMT to an acceptable level (below the established thresholds of significance applicable to the project) and/or mitigating the impact through multimodal transportation improvements or establishing a Trip Cap. Table 3 shows the VMT thresholds of significance for development projects, as established in the Transportation Analysis Policy.

The proposed project consists of multi-family residential units. The applicable impact criteria for the project are as follows:

- Projects that include residential uses are said to create a significant adverse impact when the estimated project-generated VMT exceeds the existing citywide average VMT per capita minus 15 percent or existing regional average VMT per capita minus 15 percent, whichever is lower. Currently, the reported citywide average is 11.91 VMT per capita, which is less than the regional average. This equates to a significant impact threshold of 10.12 VMT per capita.

Projects that trigger a VMT impact can assess a variety of the four strategies described above to reduce impacts. A significant impact is said to be satisfactorily mitigated when the strategies and VMT reductions implemented render the VMT impact less than significant.

VMT Analysis

Figure 8 presents a summary of the VMT evaluation generated by the City of San Jose's VMT Evaluation Tool for the proposed residential development.

VMT of Existing Land Uses

The results of the VMT analysis using the VMT Evaluation Tool indicate that the existing VMT for residential uses in the project vicinity is 10.12 per capita. As shown in Table 3, the current citywide average VMT for residential uses is 11.91 per capita. Therefore, the existing VMT levels of residential uses in the project vicinity are currently less than the citywide average VMT levels. Appendix A presents the VMT Evaluation Tool summary report for the project.

Figure 7
VMT per Capita in Project Area Heat Map

CITY OF SAN JOSE VEHICLE MILES TRAVELED EVALUATION TOOL SUMMARY REPORT

RESIDENTIAL ONLY

The tool estimates that the project would generate per capita VMT below the City's threshold.

Figure 8

Table 3
CEQA VMT Analysis Significant Impact Criteria for Development Projects

Project Types	Significance Criteria	Current Level	Threshold
	Project VMT per capita exceeds existing citywide average VMT per capita minus 15 percent, or existing regional average VMT per capita minus 15 percent, whichever is lower.	VMT per capita (Citywide Average)	VMT per capita

Project-Level VMT Impact Analysis

The City's Transportation Policy identifies an impact threshold of 15% below the citywide average percapita VMT of 11.91. Thus, the proposed project would result in a significant impact if it results in a project VMT of 10.12 VMT per capita.

The results of the VMT evaluation, using the City's VMT Evaluation Tool, indicate that the proposed project is projected to generate VMT per capita (9.89) that is below the established impact threshold. Therefore, the proposed project would not have an impact on the transportation system based on the City's VMT impact criteria.

Cumulative (GP Consistency) Evaluation

Projects must demonstrate consistency with the Envision San José 2040 General Plan to address cumulative impacts. Consistency with the City's General Plan is based on the project's density, design, and conformance to the General Plan goals and policies. If a project is determined to be inconsistent

Page
with the General Plan, a cumulative impact analysis is required per the City's Transportation Analysis Handbook.

The project site is located within an Urban Residential Area. Urban Residential developments can develop at a density of 30-95 dwelling units/acre. Based on the total lot area of 2.22 acres, the project is allowed to develop up to 211 units. The project, as proposed, would construct 206 multi-family residential units, which is between the allowable density described in the Envision San José 2040 General Plan. The project is consistent with the General Plan goals and policies for the following reasons:

- The project would develop a medium density multi-family residential building
- The project is located within walking distance to a Planned Urban Village (Southwest Expressway) and would support commercial uses within the Urban Village
- The project would provide bicycle storage on the ground level near the entrance to encourage resident use of alternative transportation modes.
- The proposed project would increase the intensity of residential units

Therefore, based on the project description, the proposed project would be consistent with the Envision San José 2040 General Plan. Thus, the project would be considered as part of the cumulative solution to meet the General Plan's long-range transportation goals and would result in a less-than-significant cumulative impact.

4.
 Local Transportation Analysis

This chapter describes the local transportation analysis including the method by which project traffic is estimated, intersection operations analysis for existing, background, and background plus project scenarios, any adverse effects on study intersections caused by the project, intersection vehicle queuing analysis, site access and on-site circulation review, effects on bicycle, pedestrian, and transit facilities, and parking.

The LTA supplements the CEQA VMT analysis and identifies transportation and traffic operational issues that may arise due to a development project. The LTA is required per the City of San Jose Transportation Policy, however, the determination of project impacts per CEQA requirements is based solely on the VMT analysis presented in the previous chapter. The LTA provides supplemental analysis for use by the City of San Jose in identifying potential improvement of the transportation system with a focus on improving multi-modal travel.

Project Description

The project, as proposed, would replace the existing vacated 28,223 square foot (sf) senior housing facility on-site with a seven-story apartment building with 206 multi-family residential units. The project proposes a total of 314 parking spaces in a three-level parking garage with one underground level and two above grade levels. The proposed project site will be accessed by a full access driveway and an exit-only driveway along St. Elizabeth Drive

Project Trip Estimates

The magnitude of traffic produced by a new development and the locations where that traffic would appear are estimated using a three-step process: (1) trip generation, (2) trip distribution, and (3) trip assignment. In determining project trip generation, the magnitude of traffic entering and exiting the site is estimated for the AM and PM peak hours. As part of the project trip distribution, the directions to and from which the project trips would travel are estimated. In the project trip assignment, the project trips are assigned to specific streets and intersections. These procedures are described below.

Trip Generation

Proposed Project Trips

Through empirical research, data have been collected that indicate the amount of traffic that can be expected to be generated by common land uses. Project trip generation was estimated by applying to the size and uses of the development the appropriate trip generation rates. The average trip generation rates for Multi-Family Housing - Mid Rise (Land Use 221) as published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $11^{\text {th }}$ Edition (2021) were applied to the proposed number of residential units. Based on the trip generation rates and the project size, it is estimated that, prior to any trip reductions, the proposed development would generate 935 daily trips with 80 trips (49 inbound and 31 outbound) trip occurring during the AM peak-hour and 68 trips (42 inbound and 26 outbound) occurring during the PM peak-hour.

Trip Reductions

In accordance with San Jose's Transportation Analysis Handbook (April 2020, Section 4.8, "Intersection Operations Analysis"), the project is eligible for adjustments and reductions from the baseline (gross) trip generation described above.
Based on the 2020 San Jose guidelines, the project qualifies for a location-based adjustment. The location-based adjustment reflects the project's vehicle mode share based on the place type in which the project is located per the San Jose Travel Demand Model. The project's place type was obtained from the San Jose VMT Evaluation Tool. Based on the Tool, the project site is located within a suburban area with multi-family homes. Therefore, the baseline project trips were adjusted to reflect a suburban area with multi-family homes. Suburban with multi-family homes is characterized as an area with average accessibility, vacancy, and low single-family homes. Residential developments and retail uses within a suburban area with multi-family homes have a vehicle mode share of 88%. Thus, a 12% reduction was applied to the trips generated by the proposed project.

Additionally, based on the San Jose VMT Evaluation Tool, the project is anticipated to generate 9.89 VMT per-capita in an area that currently generates approximately 10.12 VMT per-capita. It is assumed that every percent reduction from the existing per-capita VMT is equivalent to one percent reduction in peak-hour vehicle trips. Thus, the project trip estimates were reduced by 2.3 percent to reflect the reduction in trips.

Net Project Trips

After applying the ITE trip rates and appropriate trip reductions it is estimated that the project would generate 804 daily vehicle trips, with 66 trips (15 inbound and 51 outbound) occurring during the AM peak hour and 68 trips (42 inbound and 26 outbound) occurring during the PM peak hour. The project trip generation estimates are presented in Table 4.

Trip Distribution and Trip Assignment

The trip distribution pattern for the project was developed based on existing travel patterns on the surrounding roadway system and the locations of complementary land uses. The peak-hour vehicle trips generated by the project were assigned to the roadway network in accordance with the trip distribution pattern. Figure 9 shows the trip distribution pattern, and Figure 10 shows the net trip assignment of project traffic on the local transportation network.

Table 4

Project Trip Generation Estimates

Figure 9
Project Trip Distribution

Nor to Scale

1050 St. Elizabeth Drive

Figure 10

Intersection Operations Methodology

This section presents the methods used to evaluate traffic operations at the study intersections. It includes descriptions of the data requirements, the analysis methodologies, the applicable level of service standards, and the criteria defining adverse effects at the study intersections.

The intersection operations analysis is intended to quantify the operations of intersections and to identify potential negative effects due to the addition of project traffic. However, a potential adverse effect on a study intersection is not considered a CEQA impact metric.

Study Intersections

The study includes an analysis of AM and PM peak-hour traffic conditions for five signalized intersections and one unsignalized intersection within the City of San Jose. Intersections were selected for study if the project is expected to add 10 vehicle trips per hour per lane to a signalized intersection that meets one of the following criteria as outlined in the Transportation Analysis Handbook.

- Within a $1 / 2$-mile buffer from the project's property line;
- Outside a $1 / 2$-mile buffer but within a one-mile buffer from the project AND currently operating at D or worse;
- Designated Congestion Management Program (CMP) facility outside of the City's Infill Opportunity Zones;
- Outside the City limits with the potential to be affected by the project, per the transportation standards of the corresponding external jurisdiction;
- With the potential to be affected by the project, per engineering judgement of Public Works.

Based on the above criteria, the following City of San Jose study intersections were selected:

1. Southwest Expressway and Fruitdale Avenue
2. St. Elizabeth Drive and Fruitdale Avenue
3. Meridian Avenue Fruitdale Avenue
4. Meridian Avenue and Curci Drive
5. Stokes Street and Leigh Avenue
6. St. Elizabeth Drive and Curci Drive (unsignalized)

Data Requirements

The data required for the analysis were obtained from new traffic counts, the City of San Jose, and field observations. The following data were collected from these sources:

- existing traffic volumes
- existing lane configurations
- signal timing and phasing
- approved and pending project trips

Lane Configurations

The existing lane configurations at the study intersections were determined by observations in the field and are shown on Figure 11. It is assumed in this analysis that the transportation network under background and background plus project conditions would be the same as the existing transportation network.

1050 St. Elizabeth Drive

Figure 11
Intersection Lane Configuration

Traffic Volumes

Existing Conditions

Existing peak hour traffic volumes at all signalized study intersections were obtained from the City of San Jose. For intersections where count data was more than two years old, a compounded growth factor of 1% per year was applied. At locations where count data was unavailable, counts were conducted at these locations and at adjacent intersections where count data is available. The new turning movement counts were then compared to existing counts and factored to represent pre-COVID traffic volumes. The existing peak-hour intersection volumes are shown on Figure 12. Intersection turning-movement counts conducted for this analysis are presented in Appendix B.

Future Conditions

Background peak hour traffic volumes were estimated by adding to existing volumes the estimated traffic from approved but not yet constructed developments. The added traffic from approved but not yet constructed developments was obtained from the City of San Jose's Approved Trips Inventory (ATI) database. The background traffic scenario predicts a realistic traffic condition that would occur as approved development is built. Background traffic volumes are shown on Figure 13. Project trips were added to background traffic volumes to obtain background plus project traffic volumes (see Figure 14).

The City of San Jose's Approved Trips Inventory list is included in Appendix C.

Level of Service Standards and Analysis Methodologies

Traffic conditions at the study intersections were evaluated using level of service (LOS). Level of Service is a qualitative description of operating conditions ranging from LOS A, or free-flow conditions with little or no delay, to LOS F, or jammed conditions with excessive delays. The analysis methods are described below.

Signalized Intersections

Signalized study intersections were evaluated based on the 2000 Highway Capacity Manual (HCM) level of service methodology using the TRAFFIX software. This method evaluates signalized intersection operations on the basis of average control delay time for all vehicles at the intersection. TRAFFIX is also the CMP-designated intersection level of service methodology, thus, the City of San Jose employs the CMP default values for the analysis parameters. The correlation between average control delay and level of service at signalized intersections is shown in Table 5.

Signalized study intersections are subject to the City of San Jose level of service standards. The City of San Jose has established LOS D as the minimum acceptable intersection operations standard for all signalized intersections unless superseded by an Area Development Policy.

City of San Jose Definition of Adverse Intersection Operations Effects

According to the City of San Jose's Transportation Analysis Handbook 2020, an adverse effect on intersection operations occurs if for either peak hour:

1. The level of service at the intersection degrades from an acceptable level (LOS D or better) under background conditions to an unacceptable level under background plus project conditions, or
2. The level of service at the intersection is an unacceptable level (LOS E or F) under background conditions and the addition of project trips cause both the critical-movement delay at the intersection to increase by four or more seconds and the volume-to-capacity ratio (V/C) to increase by one percent (.01) or more.

Figure 12
Existing Traffic Volumes

1050 St. Elizabeth Drive

Figure 13
Background Traffic Volumes

NORTH

1050 St. Elizabeth Drive

Figure 14
Background Plus Project Traffic Volumes

Table 5
Signalized Intersection Level of Service Definitions Based on Control Delay

Level of Service	Description	Average Control Delay Per Vehicle (sec.)
A	Signal progression is extremely favorable. Most vehicles arrive during the green phase and do not stop at all. Short cycle lengths may also contribute to the very low vehicle delay.	10.0 or less
B	Operations characterized by good signal progression and/or short cycle lengths. More vehicles stop than with LOS A, causing higher levels of average vehicle delay.	10.1 to 20.0
C	Higher delays may result from fair signal progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant, though some vehicles may still pass through the intersection without stopping.	20.1 to 35.0
D	The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable signal progression, long cycle lengths, or high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable.	35.1 to 55.0
E	This is considered to be the limit of acceptable delay. These high delay values generally indicate poor signal progression, long cycle lengths, and high volume-to-capacity (V/C) ratios. Individual cycle failures occur frequently.	55.1 to 80.0
F	This level of delay is considered unacceptable by most drivers. This condition often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection. Poor progression and long cycle lengths may also be major contributing causes of such delay levels.	greater than 80.0
Source: Transportation Research Board, 2000 Highway Capacity Manual (Washington, D.C., 2000), p.10-16.		

The exception to this threshold is when the addition of project traffic reduces the amount of average control delay for critical movements, i.e., the change in average control delay for critical movements are negative. In this case, the threshold is when the project increases the critical v/c value by 0.01 or more.
An adverse intersection operations effect by City of San Jose standards may be addressed by implementing measures that would restore intersection level of service to background conditions or better. The City recommends prioritizing improvements related to alternative transportation modes, parking measures, and/or TDM measures.

Improvements that increase vehicle capacity are secondary and must not have unacceptable effects on existing or planned transportation facilities. Unacceptable effects on existing or planned transportation facilities include the following:

- Inconsistent with the General Plan Transportation Network and Street Typologies;
- Reduction of any physical dimension of a transportation facility below the minimum design standards per the San José Complete Streets Design Standards and Guidelines; OR
- Substantial deterioration in the quality of existing or planned transportation facilities, including pedestrian, bicycle, and transit systems and facilities, as determined by the Director of Transportation.

Intersection Operations Analysis Results

The intersection level of service analysis is summarized in Table 6.

Existing Intersection Operation Conditions

Intersection levels of service were evaluated against applicable City of San Jose operations standards. The results of the level of service analysis show all study intersections currently operate at an acceptable LOS D or better during both the AM and PM peak hours, based on the City of San Jose intersection operations standard of LOS D. The level of service calculation sheets are included in Appendix D.
Table 6
Intersection Level of Service Results

\# Intersection	Peak Hour	$\begin{gathered} \text { Existing } \\ \hline \text { No Project } \\ \hline \end{gathered}$		Background					
				No Project		with Project			
		Avg. Delay (sec)	LOS	Avg. Delay (sec)	LOS	Avg. Delay (sec)	LOS	Incr. in Critical Incr. in Delay Critical (sec) V/C	
1 Southwest Expressway \& Fruitdale Avenue	AM	30.2	C	29.9	C	30.4	C	0.6	0.006
	PM	36.5	D	37.8	D	38.1	D	0.0	0.001
2 St. Elizabeth Drive \& Fruitdale Avenue	AM	17.5	B	17.5	B	18.0	B	0.5	0.011
	PM	17.5	B	17.9	B	18.4	B	0.4	0.014
3 Meridian Avenue \& Fruitdale Avenue	AM	43.2	D	46.6	D	47.5	D	1.3	0.009
	PM	48.6	D	51.9	D	52.0	D	0.1	0.002
4 Meridian Avenue \& Curci Drive	AM	10.4	B	13.3	B	14.3	B	1.1	0.009
	PM	13.0	B	15.6	B	16.4	B	1.0	0.010
5 Leigh Avenue \& Stokes Street	AM	26.6	C	26.6	C	26.9	C	0.4	0.008
	PM	27.5	C	27.5	C	27.6	C	0.2	0.003
Bold indicates a substandard level of service.									

Future Intersection Operation Conditions

The operations analysis shows that all of the study intersections are projected to operate at acceptable levels of service, based on the City of San Jose intersection operations standard of LOS D, under background conditions and background plus project conditions during both the AM and PM peak hours. The intersection level of service calculation sheets are included in Appendix D.

Signal Warrant Analysis

The need for signalization of an unsignalized intersection is assessed based on the Peak Hour Volume Warrant (Warrant 3) described in the California Manual on Uniform Traffic Control Devices for Streets and Highways (CA MUTCD), Part 4, Highway Traffic Signals, 2014. This method makes no evaluation of intersection level of service, but simply provides an indication whether vehicular peak hour traffic volumes are, or would be, sufficient to justify installation of a traffic signal. Intersections that meet the peak hour warrant are subject to further analysis before determining that a traffic signal is necessary. Additional analysis may include unsignalized level of service analysis and/or operational analysis such as evaluating vehicle queuing and delay. Other options such as traffic control devices, signage, or geometric changes may be preferable based on existing field conditions.

Peak-hour traffic signal warrant checks are conducted for unsignalized study intersections that meet the 100 vehicles per hour threshold for minor streets. A peak-hour traffic signal warrant check was
conducted for the unsignalized intersection of St. Elizabeth Drive and Curci Drive. The results indicate that the projected traffic volumes at the intersection will not meet the signal warrant check under either peak hour under any scenario with or without the project. The traffic signal warrant calculations are included in Appendix E .

Intersection Queuing Analysis

The analysis of intersection operations was supplemented with a vehicle queuing analysis at intersections where the project would add a substantial number of trips to left-turn movements. The queuing analysis is presented for informational purposes only, since the City of San Jose has not defined a policy related to queuing. Vehicle queues were estimated using a Poisson probability distribution, which estimates the probability of " n " vehicles for a vehicle movement using the following formula:

$$
P(x=n)=\frac{\lambda^{n} e^{-(\lambda)}}{n!}
$$

Where:
$P(x=n)=$ probability of " n " vehicles in queue per lane
$\mathrm{n}=$ number of vehicles in the queue per lane
$\lambda=$ average \# of vehicles in the queue per lane (vehicles per hr per lane/signal cycles per hr)
The basis of the analysis is as follows: (1) the Poisson probability distribution is used to estimate the $95^{\text {th }}$ percentile maximum number of queued vehicles for a particular left-turn movement; (2) the estimated maximum number of vehicles in the queue is translated into a queue length, assuming 25 feet per vehicle; and (3) the estimated maximum queue length is compared to the existing or planned available storage capacity for the left-turn movement. This analysis thus provides a basis for estimating future turn pocket storage requirements at intersections.
For signalized intersections, the $95^{\text {th }}$ percentile queue length value indicates that during the peak hour, a queue of this length or less would occur on 95 percent of the signal cycles, or, a queue length larger than the $95^{\text {th }}$ percentile queue would only occur on 5 percent of the signal cycles (about 3 cycles during the peak hour for a signal with a 60 -second cycle length). Thus, turn pocket storage designs based on the $95^{\text {th }}$ percentile queue length would ensure that storage space would be exceeded only 5 percent of the time for a signalized movement. Vehicle queuing at unsignalized intersections are evaluated based on the delay experienced at the specific study turn movement. The operations analysis is based on vehicle queuing for high-demand movements at intersections (see Table 7).

The proposed project would add a substantial number of trips (10 or more) to left-turn or right-turn movements at five intersections. As shown in Table 7, the queues at high-demand movements will be served by the existing queue storage space at most study intersections under existing, background conditions, and background plus project conditions. Locations where the vehicular queues would be deficient are discussed below.

Meridian Avenue \& Fruitdale Avenue

Under all scenarios, the Meridian Avenue \& Fruitdale Avenue intersection was calculated to have insufficient storage for the eastbound left-turn movement during the AM peak hour. It should be noted that the left-turning movement has a greater demand than the eastbound through movement, which would likely result in left-turning vehicles blocking the through lane queue. Since the eastbound left-turn movement exceeds the storage capacity during the heaviest cycles under existing conditions, the City of San Jose should consider changing the lane geometry and switching the signal control to split phasing in the east-west direction.

Under background conditions, the project would not lengthen maximum eastbound left-turn queue. The applicant should discuss with the City of San Jose whether changes to lane geometry and signal control are needed.

Table 7

Queuing Analysis Summary

Measurement	Southwest Expressway \& Fruitdale Avenue	St. Elizabeth Drive \& Fruitdale Avenue			Meridian Avenue \& Fruitdale Avenue	St. Elizabeth Drive \& Curci Drive	St. Elizabeth Drive \& Curci Drive	Meridian Avenue \& Curci Drive
	SBL	$E B R^{3}$	NBL	NBR	EBL	NBR	WBL	EBL ${ }^{4}$
	PM	PM	AM	AM	AM	AM	PM	AM
Existing								
Cycle/Delay ${ }^{1}$ (sec)	140	90	90	90	160	7.8	8.3	160
Volume (vphpl)	97	304	76	105	174	95	98	120
95th \%. Queue (veh/ln.)	7	12	4	6	13	1	1	9
95th \%. Queue (ft./In) ${ }^{2}$	175	300	100	150	325	25	25	225
Storage (ft./ In.)	275	400	125	275	150	150	150	300
Adequate (Y/N)	Y	Y	Y	Y	N	Y	Y	Y
Background								
Cycle/Delay ${ }^{1}$ (sec)	140	90	90	90	160	7.8	8.3	160
Volume (vphpl)	97	304	76	105	191	95	98	133
95th \%. Queue (veh/ln.)	7	12	4	6	14	1	1	10
95th \%. Queue (ft./ln) ${ }^{2}$	175	300	100	150	350	25	25	250
Storage (ft./ In.)	275	400	125	275	150	150	150	300
Adequate (Y/N)	Y	Y	Y	Y	N	Y	Y	Y
Background Plus Project								
Cycle/Delay ${ }^{1}$ (sec)	140	90	90	90	160	8.1	8.3	160
Volume (vphpl)	102	317	91	115	201	110	111	148
95th \%. Queue (veh/ln.)	7	13	5	6	14	1	1	11
95th \%. Queue (ft./ln) ${ }^{2}$	175	325	125	150	350	25	25	275
Storage (ft./ In.)	275	400	125	275	150	150	150	300
Adequate (Y/N)	Y	Y	Y	Y	N	Y	Y	Y
Notes:								
${ }^{3}$ Since the eastbound right movement is shared with the eastbound through movement. It is assumed half of the eastbound through movement vehicles would use the shared through-right curb lane. 4 Since the eastbound movement is one lane, the queuing analyses was conducted for the eastbound approach on Curci Drive. The volume at the eastbound approach represents left-turning and right-turning vehicles.								would us ound

Neighborhood Interface

The project does not propose to alter the existing roadway network in the vicinity of the project site. Therefore, there are no anticipated changes to existing vehicular travel patterns or usage of roadways. St. Elizabeth Drive provides access to not only the residential land uses that line the street but also provides a connection between to major arterials (Southwest Expressway and Meridian Avenue). Therefore, cut-through or commercial traffic is present along the street. Therefore, the city requested that volume and speed data be collected and reviewed along St. Elizabeth Drive.

For the evaluation, the existing and projected daily traffic volumes with the project along St. Elizabeth Drive were compared to acceptable volume thresholds for the roadway segment to determine if the projected change in traffic volume would be significant. Unlike the intersection level of service analysis methodology, which has established impact thresholds, the analyses contained in this section are

Page
based on professional judgment in accordance with the standards and methods employed by the traffic engineering community. Several studies have been made regarding the indirect impacts of traffic on residential neighborhoods. The variables affecting these impacts include traffic volumes, type, or makeup, of traffic (i.e. passenger cars, trucks, motorcycles, emergency vehicles, etc.), traffic speed, perception of through traffic as a percentage of total traffic, adequacy of street alignment (i.e., horizontal and vertical curvature), accident experience, on-street parking, residential dwelling setbacks from the street, pedestrian traffic, and street pavement conditions (which would add to traffic noise as the pavement deteriorates). Other factors that may be a contributor to neighborhood nuisance levels include socio-economic status of the neighborhood, and expectations of the residents regarding traffic volumes; however, these are beyond the purview of CEQA and are provided here for informational purposes only.

Existing Roadway Characteristics

St. Elizabeth Drive is classified as a residential street given that it serves residential land uses and is narrow with parking on both sides of the street. General guidelines regarding threshold volumes pertaining to residential streets have been recommended within several studies and reference material including the Highway Capacity Manual (HCM). There is variation in these accepted threshold volumes, but in general, residential streets have the primary function of providing access to immediately adjacent land, with the secondary function of traffic movement. One lane of traffic in each direction is the standard for residential streets. A residential (or local) street is defined by the City of San Jose as being less than 60 feet wide (48 and 56 ft . right-of-way) and average daily traffic (ADT) volumes typically ranging from 50 to 3,000 vehicles. The posted speed limit for St. Elizabeth Drive, south of McKinley Avenue is 30 miles per hour (mph). North of McKinley Avenue, St. Elizabeth Drive has a posted speed limit of 25 mph .

Roadway Volume and Speed

The effects of project traffic on the St. Elizabeth Drive was evaluated based on field observations, the collection of traffic volume and speed data collected in November 2022, and projections of the additional project generated traffic. Volume and speed counts were conducted at two locations along St. Elizabeth Drive: one just south of McKinley Avenue and one just south of Arbor Park Drive. Table 8 presents a summary of existing and projected traffic volumes and speed along St. Elizabeth Drive.

St. Elizabeth Drive, between McKinley Avenue and Arbor Drive

Twenty-four-hour tube counts indicate that St. Elizabeth Drive, between McKinley Avenue and Arbor Drive, currently carries approximately 1,732 daily vehicles. It is estimated that the proposed project will result in the addition of 644 daily trips, an increase of 37 percent, to this study roadway segment.

Speed surveys conducted along St. Elizabeth Drive, between McKinley Avenue and Arbor Drive, indicate the $85^{\text {th }}$ percentile speed along the roadway to be approximately 31 miles per hour (mph). The posted speed limit along the surveyed segment is 30 mph . Based on the collected data, the $85^{\text {th }}$ percentile speeds along this study roadway segment exceed the posted speed limit by 1 mph .

St. Elizabeth Drive, south of Arbor Drive

Twenty-four-hour tube counts indicate that St. Elizabeth Drive, south of Arbor Drive, currently carries approximately 1,682 daily vehicles. It is estimated that the proposed project will result in the addition of 161 daily trips, an increase of less than 10 percent, to this study segment.

Speed surveys conducted along St. Elizabeth Drive, south of Arbor Drive, revealed the 85th percentile speed along the roadway to be approximately 28 miles per hour (mph). The posted speed limit along
the surveyed segment is 30 mph . Based on the collected data, the $85^{\text {th }}$ percentile speed along this study roadway segment do not exceed the posted speed limit.

Table 8

St. Elizabeth Drive Speed and Volume Summary

Roadway Segment	Average Daily Traffic (vehicles)	Direction	Average Daily Traffic (vehicles)	Average Speed (mph)	85th Percentile Speed (mph)
St. Elizabeth Drive, between	1,732	NB	855	26 mph	31 mph
Park Drive		SB	877	26 mph	31 mph
St. Elizabeth Drive, south of Arbor Park Drive	1,682	NB	827	24 mph	28 mph
		SB	855	23 mph	28 mph

Recommendations

Based on the characteristics of St. Elizabeth Drive, the traffic count data, and the estimated project traffic, the following conclusions can be drawn:

- The added project trips to each of the studied street segments constitute a 37 percent or less increase from the existing volumes.
- Based on the typical traffic volume ranges associated with local residential streets, as defined by the City of San Jose, St. Elizabeth Drive currently serves traffic volumes that are within the capacities associated with its street classification.
- Speeds along St. Elizabeth Drive do not exceed the posted speed by more than 5 mph . Speeds within 5 mph of the posted speed limits are considered reasonable. Therefore, based on the speed surveys, it can be concluded that there is not an obvious speeding issue along the study segments on St. Elizabeth Drive, and the posted speed limits are adequate.

Site Access and On-Site Circulation

The evaluation of site access and circulation is based on the March 2022 site plan prepared by DNA Design and Architecture. Site access was evaluated to determine the adequacy of the site's access points with regard to the following: traffic volume, delays, vehicle queues, geometric design, and corner sight distance. On-site vehicular circulation was reviewed in accordance with generally accepted traffic engineering standards and transportation planning principles. The ground level site plan is shown on Figure 2. The above ground level 2 site plan is shown on Figure 15. The underground garage site plan is shown on Figure 16.

Project Driveway Design

Vehicular access to the underground parking garage would be provided via a full access driveway along St. Elizabeth Drive. The project also proposes an exit-only driveway along the southern boundary of the project site. According to the City of San Jose Department of Transportation (DOT) Geometric Design Guidelines, the minimum width for a driveway serving a multi-family development is 20 feet wide.

The project site plan shows a full-access driveway measuring 26 feet wide along the northern boundary of the project site. The exit-only southern driveway is proposed to be 20 -foot-wide. Both driveways meet the city's requirements for residential developments.

Land Use:
Residential
Neighborhood

Figure 15

Figure 16
Basement Level Site Plan

Sight Distance

Adequate sight distance will be required at the project driveways along St. Elizabeth Drive. The project access point should be free and clear of any obstructions to provide adequate sight distance, thereby ensuring that exiting vehicles can see pedestrians on the sidewalk and other vehicles traveling on the street. Any landscaping and signage should be located in such a way to ensure an unobstructed view for drivers exiting the site.

Adequate sight distance (sight distance triangles) should be provided at the project driveway in accordance with the American Association of State Highway Transportation Officials (AASHTO) standards. Sight distance triangles should be measured approximately 10 feet back from the traveled way. Providing the appropriate sight distance reduces the likelihood of a collision at a driveway or intersection and provides drivers with the ability to exit a driveway and locate sufficient gaps in traffic.

The minimum acceptable sight distance is often considered the AASHTO stopping sight distance. Sight distance requirements vary depending on the roadway speeds. St. Elizabeth Drive has a posted speed limit of 30 mph . The AASHTO stopping sight distance is 250 feet (based on a design speed of 35 mph). Thus, a driver must be able to see 250 feet in both directions to locate a sufficient gap to turn out of the driveway.

The site plan shows new street trees added along the project frontage on St. Elizabeth Drive. The trees should be maintained so that the vision of exiting drivers is not obstructed. Additionally, since on-street parking is permitted along St. Elizabeth Drive, red curb equal to one car length should be painted on both sides of each driveway to ensure exiting vehicles have proper sight distance of oncoming traffic.

Aside from the proposed landscaping, both driveways are free of obstructions. The roadway north of the project driveways have no curvature and drivers can see several hundred feet to the north. South of the southern driveway, St. Elizabeth Drive has some roadway curvature. Exiting drivers have a clear line of sight of up to 260 feet south of the southern project driveway, which is adequate for a roadway design speed of 30 mph . Based on the results of the speed survey described earlier, vehicles traveling northbound along St. Elizabeth Drive, south of Arbor Park Drive, showed an $85^{\text {th }}$ percentile speed of approximately 30 mph . Therefore, it can be concluded that the sight distance both project driveways are adequate.

Recommendation: The proposed landscaping along St. Elizabeth should be maintained so that the vision of exiting drivers is not obstructed

Recommendation: Red curb equal to a car length should be painted on both sides of project driveways

Project Driveway Operations

The estimated project trips at the project site driveway are shown on Figure 17. Based on the project trip generation and trip assignment, it is estimated that the project driveways accessing the project site will serve 15 inbound trips and 51 outbound trips during the AM peak hour and 42 inbound trips and 26 outbound trips during the PM peak hour. In a worst-case scenario where all trips utilize the full-access driveway, the maximum number of inbound and outbound trips (42 and 51, respectively) equates to approximately one vehicle entering the site every 85 seconds and one vehicle exiting the site every 70 seconds at the driveway. Therefore, it is unlikely any significant operational issues would occur due to vehicular queuing at the site driveways. The site plan shows two gates restricting access to resident parking areas. Although inbound queuing is not anticipated, these gates are located at least 100 feet from the project driveway, providing adequate space for four vehicles to queue in front of the gate.

LEGEND
 $X X(X X)=$ AM(PM) Peak-Hour Trips

Figure 17
Estimated Trips at Project Driveways

Some minor on-site vehicle queuing may occur due to the random occurrence of gaps in traffic along St. Elizabeth Drive. Similarly, traffic along southbound St. Elizabeth may be momentarily blocked due to a vehicle yielding to oncoming traffic while making the left-turn onto the project site.

On-Site Circulation

On-site vehicular circulation was reviewed in accordance with the City of San Jose Zoning Code and generally accepted traffic engineering standards. In general, the proposed site plan would provide vehicle traffic with adequate connectivity throughout the parking garage.

The garage site plan (see Figures 2, 15, and 16) shows most on-site drive aisles to measure approximately 26 feet wide. The site plan shows an approximate 24 -foot wide one-way drive aisle at the rear of the building. A 22 -foot-wide ramp is provided to both the second parking level and the underground parking level. City standards require 26 -foot wide minimum drive aisles for two-way access and 20 -foot-wide minimum drive aisles for one-way access. Since the project provides a 22 -foot wide ramp, the project applicant should discuss with city staff whether the proposed ramp is adequate, or if the project would be required to widen the ramp.

Typical engineering standards require garage ramps to have no greater than a 20 percent grade, and slopes over 10% requires transition slopes so that vehicles do not "bottom out". The project site plan shows an approximate 100 -foot ramp and a 12 -foot elevation between the first and second levels, indicating a $12-13 \%$ slope. It is assumed that the elevation between the ground level and basement level is smaller. The site plan does not indicate whether transition slopes are provided. Transition slopes should be provided if the ramp is greater than a 10% grade.

Recommendation: The project applicant should discuss with city staff whether the proposed ramp is adequate, or if the project would be required to widen the ramp.

Recommendation: Transition slopes should be provided if the ramp is greater than a 10\% grade.

Truck, Garbage, and Emergency Vehicle Access

Emergency vehicle access is provided along St. Elizabeth Drive. The site plan shows a loading zone along the rear drive aisle of the building. Large vehicles, such as delivery trucks and garbage trucks can access the rear uncovered drive aisle, but would not have access to the covered parking garage areas. The site plan indicates that the rear drive aisle would have an outer turning radius of 50 feet and an inner turning radius of 34 feet, which is adequate for a standard sized single-unit truck (SU-30). Truck-turning templates showing access for a standard sized single-unit truck (SU-30) accessing the ground level internal drive aisle can be found in Appendix F.

The site plan shows two trash rooms: one adjacent to the lobby and one located near the adjacent to the rear drive aisle. The site plan does not designate an area for trash pick-up operations. It is assumed pick-up operations will occur near the trash room at the rear of the building, where the loading space is provided. Therefore, trash bins from the trash room adjacent to the lobby would need to be wheeled out to the loading zone on trash pick-up days.

Recommendation: Trash bins would need to be wheeled out to the trash pick-up area on trash pick-up days.

Parking Supply

Vehicular Parking

The project as proposed would construct 206 multi-family residential units. Based on the City's parking requirements (Section 20.90.060, Table 20-210), the project would be required to provide a total of 295 parking spaces before any reductions. A 20 percent reduction in required off-street vehicle parking spaces is allowed with a development permit, or a development exception if no development permit is required, for developments that meet the following conditions (Section 20.90.220.A.1):

1. The structure or use is located within two thousand feet of a proposed or an existing rail station or bus rapid transit station, or an area designated as a neighborhood business district, or as an urban village, or as an area subject to an area development policy in the city's General Plan, or the use is listed in Section 20.90.220.G; and
2. The structure or use provides bicycle parking spaces in conformance with the City's Zoning Code requirements.

The project site is within 2,000 feet of the Fruitdale Light Rail Station and the project proposes to provide bicycle parking that will exceed the City's bicycle parking requirements. Therefore, the vehicle parking requirement would be reduced by 20% to 235 vehicle parking spaces. The project proposes to provide a total of 311 parking spaces, meeting the requirements of the City's zoning code.

Per the 2016 California Building Code (CBC) Table 11B-208.2, eight ADA accessible spaces are required for projects with 301 to 400 parking spaces. Of the required accessible parking spaces, two van accessible space are required. The site plans indicate eight accessible spaces within the parking area, all of which measure to be van accessible.

Bicycle Parking

According to the City's Bicycle Parking Standards (Chapter 20.90, Table 20-190 and 20-210), bicycle parking for the 206 residential units is required at a rate of one bicycle parking space per four residential units. Based on the City's bicycle parking requirements, the project would be required to provide a total of 52 bicycle parking spaces. Of the required residential bicycle parking, City standards require that at least 60 percent be secured long-term bicycle spaces and at most 40 percent be shortterm bicycle spaces. The City's definition of short-term and long-term bicycle parking is described below.

City of San Jose Long-Term and Short-Term Bicycle Parking

Long-term bicycle parking facilities are secure bicycle storage facilities for tenants of a building that fully enclose and protect bicycles and may include:

- A covered, access-controlled enclosure such as a fenced and gated area with long-term bicycle parking facilities,
- An access-controlled room with long-term bicycle parking facilities, and
- Individual bicycle lockers that securely enclose one bicycle per locker.

Short-term bicycle parking facilities are accessible and usable by visitors, guests, or business patrons and may include:

- Permanently anchored bicycle racks,
- Covered, lockable enclosures with permanently anchored racks for bicycles,
- Lockable bicycle rooms with permanently anchored racks, and
- Lockable, permanently anchored bicycle lockers.

The project proposes to provide 56 bicycle parking spaces. The site plan indicates that 52 long-term bicycle locker spaces are provided within a bicycle storage room on the ground level. The site plan indicates that 4 short-term bicycle parking spaces will be provided at the front of the building, near the lobby.

Pedestrian, Bicycle, and Transit Analysis

All new development projects in San Jose should encourage multi-modal travel, consistent with the goals of the City's General Plan. It is the goal of the General Plan that all development projects accommodate and encourage the use of non-automobile transportation modes to achieve San Jose's mobility goals and reduce vehicle trip generation and vehicle miles traveled. In addition, the adopted City Bike Master Plan establishes goals, policies and actions to make bicycling a daily part of life in San Jose. The Master Plan includes designated bike lanes along all City streets, as well as on designated bike corridors. In order to further the goals of the City, pedestrian and bicycle facilities should be encouraged with new development projects.

The Envision 2040 General Plan identifies goals and policies that are dedicated to the enhancement of the transportation infrastructure, including public transit and pedestrian/bike facilities. The Transportation Policies contained in the General Plan create incentives for non-auto modes of travel while reducing the use of single-occupant automobile travel as generally described below:

- Through the entitlement process for new development, fund needed transportation improvements for all transportation modes, giving first consideration to improvement of bicycling walking, and transit facilities.
- Give priority to the funding of multimodal projects to provide the most benefit to all users of the transportation system.
- Encourage the use of non-automobile travel modes to reduce vehicle miles traveled (VMT)
- Consider the impact on the overall transportation system when evaluating the impacts of new developments.
- Increase substantially the proportion of travel modes other than single-occupant vehicles.

The City's General Plan identifies both walk and bicycle commute mode split targets as 15 percent or more by the year 2040. This level of pedestrian and bicycle mode share is a reasonable goal for the project, particularly if bus services (including BRT) are utilized in combination with bicycle commuting.

Pedestrian Facilities

Pedestrian facilities in the study area consist of sidewalks, crosswalks, and pedestrian signals at signalized intersections (see Chapter 2 for details).

Pedestrian generators in the project vicinity include commercial areas and transit along the Southwest Expressway and Meridian Avenue corridors. The project site is approximately $1 / 2$-mile from nearby Blackford Elementary School and Del Mar High School. Existing sidewalks along St. Elizabeth Drive, Curci Drive, and Fruitdale Avenue provide a pedestrian connection between the project site and pedestrian destinations in the project vicinity.

There are missing ADA-compliant ramps along the northwest and southwest corners of the St. Elizabeth Drive/McKinley Avenue intersection and the southwest and northeast corners of St. Elizabeth Drive/Curci Drive intersection. City staff have indicated that the project will be required to reconstruct ADA-compliant ramps within the project's sphere.

City staff have also indicated that the project will be required to contribute an in-lieu contribution of $\$ 40,000$ for the future bulbouts and enhanced crosswalk along St. Elizabeth Drive near the Los Gatos Creek Trail.

The project proposes to reconstruct a sidewalk along its frontage on St. Elizabeth Drive with a 10 -footwide sidewalk. Street trees would be planted along the project frontage between the sidewalk and roadway. Overall, the proposed sidewalks provide adequate space and circulation along the project frontages.

Recommendation: The project will be required to install new ADA curb ramps along the northwest and southwest corners of the St. Elizabeth Drive/McKinley Avenue intersection and the southwest and northeast corners of St. Elizabeth Drive/Curci Drive intersection.

Bicycle Facilities

There are several bike facilities in the immediate vicinity of the project site (see Chapter 2 for details). The bikeways within the vicinity of the project site would remain unchanged under project conditions.

The project site is directly served by a Class III bike route along St. Elizabeth Drive/Stokes Street. The San Jose Better Bike Plan 2025 has identified an upgrade to St. Elizabeth Drive/Stokes Street to a bicycle boulevard. The project proposes bicycle storage lockers, which may encourage bicycle ownership by residents. There are no bicycle sharing stations located within walking distance of the project site. The nearest bicycle sharing station is located near the intersection of Race Street/Parkmoor Avenue, approximately 1.1 mile away.
As previously described, the City's General Plan identifies a bicycle commute mode split target of 15 percent or more by the year 2040. This calculates to approximately 10 new bicycle trips during each of the AM and PM peak hours. This level of bicycle mode share is a reasonable goal for the project.

Bicycle and Pedestrian Facility Improvements

The Envision 2040 General Plan identifies the following goals in regard to bicycling and pedestrians:

- Provide a continuous pedestrian and bicycle system to enhance connectivity throughout the City by completing missing segments.
- Build pedestrian and bicycle improvements at the same time as improvements for vehicular circulation.
- Give priority to pedestrian improvement projects that improve pedestrian safety, improve pedestrian access to and within the Urban Villages and other growth areas.

The planned improvements discussed below are intended to reduce the identified project impacts to the roadway system by providing the project site with viable connections to surrounding pedestrian/bike and transit facilities and provide for a balanced transportation system as outlined in the Envision 2040 General Plan goals and policies. However, the full implementation of the improvements are beyond the means of the proposed project given that they may require right-of-way from adjacent properties.

The San Jose Bike Plan 2025 indicates that a variety of bicycle facilities are planned in the study area, some of which would benefit the project and adhere to the goals of the Envision 2040 General Plan. Of the planned facilities, the following are relevant to the project.

Class III, bicycle boulevards, are planned for:

- St. Elizabeth Drive/Stokes Street (existing Class III bike route)

Class IV, protected bike lanes, are planned for:

- Southwest Expressway, south of Fruitdale Avenue (existing Class II bike lanes)
- Fruitdale Avenue, between Meridian Avenue and Southwest Expressway
- Meridian Avenue, between Park Avenue and Willow Street
- Leigh Avenue, between Fruitdale Avenue and E Hamilton Avenue

Transit Services

The project site is primarily served by two VTA bus routes (Frequent Route 25 and Local Route 64B). The nearest bus stops to the project site serves both routes and are located along both sides of Meridian Avenue (near Cruci Drive), approximately 1,500 feet walking distance from the project site. Additionally, the Fruitdale Light Rail Station is located approximately $1 / 2$-mile north and west of the project site.

The new transit trips generated by the project are not expected to create demand in excess of the transit service that is currently provided.

Transit Facility Improvements

The Envision 2040 General Plan identifies the following goals in regard to public transit:

- Pursue development of BRT, bus, shuttle, and fixed guideway services on designated streets and connections to major destinations.
- Ensure that roadways designated as Grand Boulevards adequately accommodate transit vehicle circulation and transit stops. Prioritize bus mobility along Meridian Avenue.

Meridian Avenue has been designated as a Grand Boulevard within the Envision 2040 General Plan. Grand Boulevards are intended to serve as major transportation corridors with priority given to public transit. Future residents would benefit from improved transit infrastructure along Meridian Avenue.

Construction Activities

Typical activities related to the construction of any development could include lane narrowing and/or lane closures and sidewalk closures. In the event of any type of street closure, clear signage (e.g., closure and detour signs) must be provided to ensure vehicles, pedestrians and bicyclists are able to adequately reach their intended destinations safely. The project would be required to submit a construction management plan for City approval that addresses schedule, closures/detours, staging, parking, and truck routes.

5.
 Conclusions

The transportation analysis of the project was evaluated following the standards and methodologies set forth in the City of San Jose's Transportation Analysis Policy (Council Policy 5-1), the City of San Jose's Transportation Analysis Handbook 2020, the Santa Clara Valley Transportation Authority (VTA) Congestion Management Program's Transportation Impact Guidelines (October 2014), and by the California Environmental Quality Act (CEQA).

CEQA VMT Analysis

Project-Level VMT Impact Analysis

The results of the VMT evaluation, using the City's VMT Evaluation Tool, indicate that the proposed project is projected to generate 9.89 VMT per capita. The project does not exceed the thresholds of significance. Therefore, the proposed project would not have an impact on the transportation system based on the City's VMT impact criteria.

Cumulative (GP Consistency) Evaluation

Projects must demonstrate consistency with the Envision San José 2040 General Plan to address cumulative impacts. Consistency with the City's General Plan is based on the project's density, design, and conformance to the General Plan goals and policies. If a project is determined to be inconsistent with the General Plan, a cumulative impact analysis is required per the City's Transportation Analysis Handbook.

The project site is located within an Urban Residential Area. Urban Residential developments can develop at a density of $30-95$ dwelling units/acre. Based on the total lot area of 2.22 acres, the project is allowed to develop up to 211 units. The project, as proposed, would construct 206 multi-family residential units, which is between the allowable density described in the Envision San José 2040 General Plan.

The project is consistent with the General Plan goals and policies for the following reasons:

- The project would develop a medium density multi-family residential building
- The project is located within walking distance to a Planned Urban Village (Southwest Expressway) and would support commercial uses within the Urban Village
- The project would provide bicycle storage on the ground level near the entrance to encourage resident use of alternative transportation modes.
- The proposed project would increase the intensity of residential units

Therefore, based on the project description, the proposed project would be consistent with the Envision San José 2040 General Plan. Thus, the project would be considered as part of the cumulative solution to meet the General Plan's long-range transportation goals and would result in a less-than-significant cumulative impact.

Local Transportation Analysis

The intersection operations analysis is intended to quantify the operations of intersections and to identify potential negative effects due to the addition of project traffic. However, a potential adverse effect on a study intersection operation is not considered a CEQA impact metric.

The LTA includes the analysis of AM and PM peak-hour traffic conditions for five signalized intersections and one unsignalized intersection, following the standards and methodology set forth by the City of San Jose.

Trip Generation

After applying the ITE trip rates and appropriate trip reductions it is estimated that the project would generate 804 daily vehicle trips, with 66 trips (15 inbound and 51 outbound) occurring during the AM peak hour and 68 trips (42 inbound and 26 outbound) occurring during the PM peak hour.

Future Intersection Operation Conditions

The intersection operations analysis shows that all of the study intersections are projected to operate at acceptable levels of service, based on the City of San Jose intersection operations standard of LOS D, under background conditions and background plus project conditions during both the AM and PM peak hours.

Intersection Queuing Analysis

Meridian Avenue \& Fruitdale Avenue

Under all scenarios, the Meridian Avenue \& Fruitdale Avenue intersection was calculated to have insufficient storage for the eastbound left-turn movement during the AM peak hour. It should be noted that the left-turning movement has a greater demand than the eastbound through movement, which would likely result in left-turning vehicles blocking the through lane queue. Since the eastbound left-turn movement exceeds the storage capacity during the heaviest cycles under existing conditions, the City of San Jose should consider changing the lane geometry and switching the signal control to split phasing in the east-west direction.

Under background conditions, the project would not lengthen maximum eastbound left-turn queue. The applicant should discuss with the City of San Jose whether changes to lane geometry and signal control are needed.

Site Access and On-Site Circulation

Site access was evaluated to determine the adequacy of the site's access points with regard to the following: traffic volume, delays, vehicle queues, geometric design, and corner sight distance. On-site vehicular circulation was reviewed in accordance with generally accepted traffic engineering standards and transportation planning principles.

Recommended Site Access and On-Site Circulation Improvements

- The proposed landscaping along St. Elizabeth should be maintained so that the vision of exiting drivers is not obstructed
- Red curb equal to a car length should be painted on both sides of project driveways
- The project applicant should discuss with city staff whether the proposed ramp is adequate, or if the project would be required to widen the ramp.
- Transition slopes should be provided if the ramp is greater than a 10% grade.
- Trash bins would need to be wheeled out to the trash pick-up area on trash pick-up days.

Parking Supply

Based on the City's parking requirements, the project would be required to provide a total of 294 parking spaces. The project site is within 2,000 feet of the Fruitdale Light Rail Station and the project proposes to provide bicycle parking that will exceed the City's bicycle parking requirements. Therefore, the vehicle parking requirement would be reduced by 20% to 235 vehicle parking spaces. The project proposes to provide a total of 311 parking spaces, meeting the requirements of the City's zoning code.

Bicycle Parking

The project proposes to provide 56 bicycle parking spaces. The site plan indicates that 52 long-term bicycle locker spaces are provided within a bicycle storage room on the ground level. The site plan indicates that 4 short-term bicycle parking spaces will be provided at the front of the building, near the lobby.

Pedestrian, Bicycle, and Transit Analysis

Pedestrian Facilities

Pedestrian generators in the project vicinity include commercial areas and transit along the Southwest Expressway and Meridian Avenue corridors. The project site is approximately $1 / 2$-mile from nearby Blackford Elementary School and Del Mar High School. Existing sidewalks along St. Elizabeth Drive, Curci Drive, and Fruitdale Avenue provide a pedestrian connection between the project site and pedestrian destinations in the project vicinity.

There are missing ADA-compliant ramps along the northwest and southwest corners of the St. Elizabeth Drive/McKinley Avenue intersection and the southwest and northeast corners of St. Elizabeth Drive/Curci Drive intersection. City staff have indicated that the project will be required to reconstruct ADA-compliant ramps within the project's sphere.

The project proposes to reconstruct a sidewalk along its frontage on St. Elizabeth Drive with a 10-footwide sidewalk. Street trees would be planted along the project frontage between the sidewalk and roadway. Overall, the proposed sidewalks provide adequate space and circulation along the project frontages.

City staff have also indicated that the project will be required to contribute an in-lieu contribution of $\$ 40,000$ for the future bulbouts and enhanced crosswalk along St. Elizabeth Drive near the Los Gatos Creek Trail.

Recommendation: The project will be required to install new ADA curb ramps along the northwest and southwest corners of the St. Elizabeth Drive/McKinley Avenue intersection and the southwest and northeast corners of St. Elizabeth Drive/Curci Drive intersection.

Bicycle Facilities

The bikeways within the vicinity of the project site would remain unchanged under project conditions.
The project site is directly served by a Class III bike route along St. Elizabeth Drive/Stokes Street. The San Jose Better Bike Plan 2025 has identified an upgrade to St. Elizabeth Drive/Stokes Street to a bicycle boulevard. The project proposes bicycle storage lockers, which may encourage bicycle ownership by residents. There are no bicycle sharing stations located within walking distance of the project site. The nearest bicycle sharing station is located near the intersection of Race Street/Parkmoor Avenue, approximately 1.1 mile away.

As previously described, the City's General Plan identifies a bicycle commute mode split target of 15 percent or more by the year 2040. This calculates to approximately 10 new bicycle trips during each of the AM and PM peak hours. This level of bicycle mode share is a reasonable goal for the project.

The San Jose Bike Plan 2025 indicates that a variety of bicycle facilities are planned in the study area, some of which would benefit the project and adhere to the goals of the Envision 2040 General Plan. Of the planned facilities, the following are relevant to the project.

Class III, bicycle boulevards, are planned for:

- St. Elizabeth Drive/Stokes Street (existing Class III bike route)

Class IV, protected bike lanes, are planned for:

- Southwest Expressway, south of Fruitdale Avenue (existing Class II bike lanes)
- Fruitdale Avenue, between Meridian Avenue and Southwest Expressway
- Meridian Avenue, between Park Avenue and Willow Street
- Leigh Avenue, between Fruitdale Avenue and E Hamilton Avenue

Transit Services

The project site is primarily served by two VTA bus routes (Frequent Route 25 and Local Route 64B). The nearest bus stops to the project site serves both routes and are located along both sides of Meridian Avenue (near Cruci Drive), approximately 1,500 feet walking distance from the project site. Additionally, the Fruitdale Light Rail Station is located approximately $1 / 2$-mile north and west of the project site.

The new transit trips generated by the project are not expected to create demand in excess of the transit service that is currently provided.

1050 St. Elizabeth Drive Transportation Analysis Technical Appendices

Appendix A

San Jose VMT Evaluation Tool Output Sheet

CITY OF SAN JOSE VEHICLE MILES TRAVELED EVALUATION TOOL SUMMARY REPORT
PROJECT:
Name: 1050 St Elizabeth Residential Development Tool Version: 2/29/2019
Location: 1050 St Elizabeth Drive, San Jose, CA Date: $\quad 1 / 27 / 2023$
Parcel: $28407018 \quad$ Parcel Type: Suburb with Multifamily Housing
Proposed Parking Spaces Vehicles: $314 \quad$ Bicycles: 60

LAND USE:

Residential:	Percent of All Residential Units		
Single Family	0 DU	Extremely Low Income ($\leq 30 \% \mathrm{MFI}$)	0 \% Affordable
Multi Family	206 DU	Very Low Income (> 30\% MFI, $\leq 50 \% \mathrm{MFI}$)	0 \% Affordable
Subtotal	206 DU	Low Income ($>50 \% \mathrm{MFI}$, $\leq 80 \% \mathrm{MFI}$)	0 \% Affordable
Office:	0 KSF		
Retail:	0 KSF		
Industrial:	0 KSF		

VMT REDUCTION STRATEGIES

Tier 1 - Project Characteristics

Increase Residential Density
Existing Density (DU/Residential Acres in half-mile buffer) . 9
With Project Density (DU/Residential Acres in half-mile buffer) 9
Increase Development Diversity
Existing Activity Mix Index . 0.49
With Project Activity Mix Index . 0.47
Integrate Affordable and Below Market Rate
Extremely Low Income BMR units . 0 \%

Low Income BMR units . 0 \%
Increase Employment Density
Existing Density (Jobs/Commercial Acres in half-mile buffer) . 25
With Project Density (Jobs/Commercial Acres in half-mile buffer) 25
Tier 2 - Multimodal Infrastructure
Tier 3 - Parking
Tier 4 - TDM Programs

RESIDENTIAL ONLY

The tool estimates that the project would generate per capita VMT below the City's threshold.

Appendix B

Turning Movement Counts

Location: 1 SOUTHWEST EXPY \& FRUITDALE AVE AM
Date: Wednesday, June 22, 2022
Peak Hour: 07:40 AM - 08:40 AM
Peak 15-Minutes: 07:40 AM - 07:55 AM
Peak Hour

Note: Total study counts contained in parentheses.

Heavy Vehicles

	HV\%	PHF
EB	5.4%	0.69
WB	5.4%	0.79
NB	1.8%	0.88
SB	1.8%	0.89
All	2.6%	0.94

Bicycles on Road

Interval	SOUTHWEST EXPY Northbound				FRUITDALE AVE Eastbound				SOUTHWEST EXPY Southbound				FRUITDALE AVE Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	1	40	1	0	9	4	2	0	5	15	36	0	1	9	2	125	1,498
7:05 AM	0	1	26	2	0	5	7	0	0	10	20	14	0	3	8	1	97	1,511
7:10 AM	0	0	32	1	0	6	5	1	0	5	25	10	0	1	6	4	96	1,575
7:15 AM	0	0	27	3	0	9	3	0	0	9	20	23	0	1	2	6	103	1,636
7:20 AM	0	0	26	1	0	11	3	0	0	7	24	20	0	2	8	3	105	1,681
7:25 AM	0	1	40	0	0	5	1	0	0	10	21	24	0	1	14	0	117	1,705
7:30 AM	0	0	41	2	0	8	6	0	0	9	21	18	0	3	8	4	120	1,724
7:35 AM	0	0	31	2	0	12	4	0	0	13	25	16	0	2	3	3	111	1,741
7:40 AM	0	3	50	2	0	8	3	0	0	13	32	39	0	1	6	2	159	1,795
7:45 AM	0	2	35	1	0	11	7	2	0	17	30	34	0	4	15	7	165	1,789
7:50 AM	0	0	43	3	0	17	10	1	0	13	31	23	0	3	5	3	152	1,763
7:55 AM	0	1	44	0	0	11	10	0	0	15	25	30	0	2	9	1	148	1,763
8:00 AM	0	1	52	4	0	0	0	0	1	20	28	22	0	1	5	4	138	1,772
8:05 AM	0	1	51	0	0	12	14	0	1	13	32	20	0	4	11	2	161	
8:10 AM	0	2	65	4	0	7	5	0	0	5	34	24	0	3	5	3	157	
8:15 AM	0	2	44	3	0	8	6	0	0	10	24	27	0	4	14	6	148	
8:20 AM	0	1	33	2	0	6	1	0	1	15	40	27	0	0	1	2	129	
8:25 AM	0	1	41	2	0	8	8	0	0	10	27	13	0	5	21	0	136	
8:30 AM	0	1	42	2	0	10	9	0	0	10	25	21	0	3	10	4	137	
8:35 AM	0	2	58	2	0	9	2	0	0	14	40	18	0	1	13	6	165	
8:40 AM	0	1	57	5	0	5	3	0	1	13	24	28	0	4	8	4	153	
8:45 AM	0	2	32	1	0	4	9	1	0	17	31	16	0	4	17	5	139	
8:50 AM	0	0	43	7	0	13	9	0	0	16	31	19	1	5	5	3	152	
8:55 AM	0	2	62	3	0	6	10	0	0	8	27	25	0	4	9	1	157	
Count Total	0	25	1,015	53	0	200	139	7	4	277	652	547	1	62	212	76	3,270	
Peak Hour	0	17	558	25	0	107	75	3	3	155	368	298	0	31	115	40	1,795	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles					Interval Start Time	Bicycles on Roadway							Interval Start Time	Pedestrians/Bicycles on Crosswalk				
Start Time	NB	EB	SB	WB	Total		NB		EB	SB		WB	Total		NB	EB	SB	WB	Total
7:00 AM	2	0	0	1	3	7:00 AM		0	0		0	0	0	7:00 AM	1	0	0	0	1
7:05 AM	0	1	2	1	4	7:05 AM		0	0		0	0	0	7:05 AM	0	0	0	0	0
7:10 AM	1	0	0	0	1	7:10 AM		0	0		0	0	0	7:10 AM	3	0	0	1	4
7:15 AM	0	1	1	0	2	7:15 AM		0	0		0	0	0	7:15 AM	1	0	0	0	1
7:20 AM	0	0	1	0	1	7:20 AM		0	0		0	1	1	7:20 AM	0	0	0	0	0
7:25 AM	0	0	2	1	3	7:25 AM		0	0		0	0	0	7:25 AM	1	0	0	0	1
7:30 AM	2	0	0	0	2	7:30 AM		0	0		0	0	0	7:30 AM	0	0	0	1	1
7:35 AM	0	0	3	0	3	7:35 AM		0	0		0	0	0	7:35 AM	1	0	0	1	2
7:40 AM	1	1	1	1	4	7:40 AM		0	0		0	0	0	7:40 AM	2	0	0	0	2
7:45 AM	1	0	2	2	5	7:45 AM		0	1		0	0	1	7:45 AM	1	0	0	0	1
7:50 AM	0	0	1	0	1	7:50 AM		0	0		0	0	0	7:50 AM	1	0	0	0	1
7:55 AM	2	3	2	1	8	7:55 AM		0	0		0	0	0	7:55 AM	1	0	1	2	4
8:00 AM	0	0	3	1	4	8:00 AM		0	0		0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	0	2	1	2	5	8:05 AM		0	0		0	0	0	8:05 AM	3	0	0	0	3
8:10 AM	0	0	1	0	1	8:10 AM		0	0		0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	1	1	1	2	5	8:15 AM		0	0		0	0	0	8:15 AM	2	0	0	0	2
8:20 AM	1	0	0	0	1	8:20 AM		0	0		0	0	0	8:20 AM	1	0	0	0	1
8:25 AM	2	2	1	0	5	8:25 AM		0	0		0	0	0	8:25 AM	1	0	0	0	1
8:30 AM	3	0	1	1	5	8:30 AM		0	0		0	0	0	8:30 AM	1	0	1	1	3
8:35 AM	0	1	1	0	2	8:35 AM		0	0		0	0	0	8:35 AM	0	0	0	1	1
8:40 AM	0	0	2	2	4	8:40 AM		0	0		0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	1	2	0	0	3	8:45 AM		0	0		0	0	0	8:45 AM	0	0	1	0	1
8:50 AM	3	2	0	1	6	8:50 AM		0	0		0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	3	1	0	3	7	8:55 AM		0	0		0	0	0	8:55 AM	0	0	0	0	0
Count Total	23	17	26	19	85	Count Total		0	1		0	1	2	Count Total	20	0	3	7	30
Peak Hour	11	10	15	10	46	Peak Hour		0	1		0	0	1	Peak Hour	13	0	2	4	19

Location: 2 ST ELIZABETH DR \& FRUITDALE AVE AM
Date: Wednesday, June 22, 2022
Peak Hour: 07:55 AM - 08:55 AM
Peak 15-Minutes: 08:40 AM - 08:55 AM
Peak Hour

Note: Total study counts contained in parentheses.
Pedestrians

Heavy Vehicles

	HV\%	PHF
EB	4.6%	0.80
WB	6.1%	0.78
NB	3.2%	0.72
SB	0.0%	0.60
All	4.7%	0.85

> Bicycles on Road

Interval	ST ELIZABETH DR Northbound				FRUITDALE AVE Eastbound				ST ELIZABETH DR Southbound				FRUITDALE AVE Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	4	0	4	0	0	10	1	0	0	0	0	0	1	6	0	26	473
7:05 AM	0	0	0	1	0	1	13	3	0	0	0	1	0	2	13	0	34	486
7:10 AM	0	2	0	4	0	0	15	1	0	0	0	2	0	1	7	0	32	504
7:15 AM	0	5	0	9	0	0	8	2	0	0	0	0	0	3	8	0	35	513
7:20 AM	0	2	0	6	0	0	13	4	0	0	0	1	0	3	7	1	37	528
7:25 AM	0	1	0	7	0	0	6	5	0	0	0	0	0	3	13	0	35	534
7:30 AM	0	4	0	8	0	0	17	0	0	1	0	1	0	3	11	0	45	544
7:35 AM	0	5	0	10	0	0	17	2	0	0	0	0	0	4	7	0	45	557
7:40 AM	0	2	0	6	0	0	15	3	0	0	0	0	0	5	13	0	44	553
7:45 AM	0	6	0	8	0	0	15	6	0	0	0	1	0	4	9	0	49	568
7:50 AM	0	4	0	7	1	0	22	5	0	0	0	1	0	5	6	0	51	572
7:55 AM	0	2	0	4	0	0	18	5	0	0	0	0	0	1	10	0	40	579
8:00 AM	0	3	0	3	0	0	16	3	0	0	0	2	0	1	11	0	39	579
8:05 AM	0	2	0	7	0	1	27	4	0	0	0	0	0	4	7	0	52	
8:10 AM	0	2	0	6	0	0	12	4	0	0	0	3	0	5	9	0	41	
8:15 AM	0	7	0	6	0	0	13	5	0	0	0	0	0	5	14	0	50	
8:20 AM	0	2	0	8	0	0	10	4	0	0	0	0	0	6	12	1	43	
8:25 AM	0	5	0	6	0	0	14	7	0	0	0	0	0	2	11	0	45	
8:30 AM	0	5	0	6	0	0	20	3	0	1	0	0	1	7	15	0	58	
8:35 AM	0	3	0	5	0	1	11	2	0	0	0	1	0	3	13	2	41	
8:40 AM	0	10	0	9	0	0	17	5	0	0	0	0	0	7	11	0	59	
8:45 AM	0	10	0	8	0	0	24	2	0	1	0	0	0	0	8	0	53	
8:50 AM	0	2	0	5	0	1	26	7	0	,	0	3	0	2	11	0	58	
8:55 AM	0	0	0	5	0	2	15	1	0	0	0	0	0	1	15	1	40	
Count Total	0	88	0	148	1	6	374	84	0	4	0	16	1	78	247	5	1,052	
Peak Hour	0	53	0	73	0	3	208	51	0	3	0	9	1	43	132	3	579	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles									Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk					
Start Time	NB		EB		SB		WB		Total		NB		EB		SB		WB	Total		NB		EB	SB	WB	Total
7:00 AM		0		0		0		0	0	7:00 AM		0	0	0		0	0	0	7:00 AM		2	0	0	0	2
7:05 AM		0		1		0		3	4	7:05 AM		1	0	0		0	0	1	7:05 AM		0	0	0	0	0
7:10 AM		0		1		0		1	2	7:10 AM		0	0	0		0	0	0	7:10 AM		2	0	0	0	2
7:15 AM		0		2		0		0	2	7:15 AM		0	0	0		0	0	0	7:15 AM		0	0	1	0	1
7:20 AM		2		1		0		1	4	7:20 AM		0		0		0	1	1	7:20 AM		0	0	0	0	0
7:25 AM		0		0		0		2	2	7:25 AM		0		0		1	2	3	7:25 AM		0	0	1	0	1
7:30 AM		0		0		0		1	1	7:30 AM		0		0		0	0	0	7:30 AM		1	0	0	0	1
7:35 AM		1		0		0		1	2	7:35 AM		0		0		0	0	0	7:35 AM		2	0	0	0	2
7:40 AM		0		2		0		3	5	7:40 AM		0		0		0	0	0	7:40 AM		1	0	0	0	1
7:45 AM		0		1		0		0	1	7:45 AM		0		1		0	0	1	7:45 AM		0	0	2	0	2
7:50 AM		0		1		0		0	1	7:50 AM		0		0		0	1	1	7:50 AM		0	0	1	0	1
7:55 AM		1		1		0		1	3	7:55 AM		0		0		0	0	0	7:55 AM		0	1	1	0	2
8:00 AM		0		1		0		1	2	8:00 AM		0		0		0	1	1	8:00 AM		0	0	0	0	0
8:05 AM		0		2		0		1	3	8:05 AM		0		0		0	0	0	8:05 AM		0	2	0	0	2
8:10 AM		0		0		0		0	0	8:10 AM		0		0		0	0	0	8:10 AM		0	1	1	0	2
8:15 AM		0		1		0		2	3	8:15 AM		0		0		0	0	0	8:15 AM		0	0	0	0	0
8:20 AM		0		0		0		1	1	8:20 AM		0	0	0		0	0	0	8:20 AM		0	0	0	0	0
8:25 AM		0		3		0		0	3	8:25 AM		0	2	2		0	0	2	8:25 AM		1	1	0	0	2
8:30 AM		0		0		0		3	3	8:30 AM		0	0	0		0	0	0	8:30 AM		1	0	0	0	1
8:35 AM		1		1		0		1	3	8:35 AM		0	0	0		0	0	0	8:35 AM		1	0	0	0	1
8:40 AM		1		1		0		1	3	8:40 AM		1	0	0		0	0	1	8:40 AM		1	0	0	0	1
8:45 AM		0		0		0		0	0	8:45 AM		0	0	0		0	1	1	8:45 AM		0	0	0	0	0
8:50 AM		1		2		0		0	3	8:50 AM		0	0	0		0	0	0	8:50 AM		1	1	1	0	3
8:55 AM		0		0		0		2	2	8:55 AM		0	0	0		0	0	0	8:55 AM		0	1	1	0	2
Count Total		7		21		0		25	53	Count Total		2		3		1	6	12	Count Total		13	7	9	0	29
Peak Hour		4		12		0		11	27	Peak Hour		1	2	2		0	2	5	Peak Hour		5	6	3	0	14

Location: 3 MERIDIAN AVE \& FRUITDALE AVE AM
Date: Wednesday, June 22, 2022
Peak Hour: 08:00 AM - 09:00 AM
Peak 15-Minutes: 08:40 AM - 08:55 AM
Peak Hour

Note: Total study counts contained in parentheses.

Pedestrians

Heavy Vehicles

Bicycles on Road

	HV\%	PHF
EB	3.5%	0.82
WB	1.3%	0.85
NB	1.1%	0.88
SB	2.8%	0.88
All	1.7%	0.91

Interval	MERIDIAN AVE Northbound				FRUITDALE AVE Eastbound				MERIDIAN AVE Southbound				FRUITDALE AVE Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	4	72	3	0	4	2	6	0	2	16	6	0	3	3	8	129	2,072
7:05 AM	0	5	68	1	0	4	4	9	0	1	21	1	0	10	7	12	143	2,142
7:10 AM	0	5	78	2	0	1	4	12	0	0	24	2	0	9	3	14	154	2,210
7:15 AM	0	5	55	4	0	6	1	11	0	0	15	9	0	11	3	16	136	2,243
7:20 AM	0	9	79	6	0	3	1	12	0	5	23	3	0	10	3	7	161	2,360
7:25 AM	0	4	94	1	0	4	2	8	0	5	24	3	0	10	5	12	172	2,437
7:30 AM	0	5	104	3	0	9	6	12	0	1	21	6	0	9	4	18	198	2,455
7:35 AM	1	2	72	1	0	6	3	14	1	3	18	6	0	10	2	15	154	2,472
7:40 AM	0	5	106	1	0	11	1	13	0	1	12	5	0	12	9	12	188	2,543
7:45 AM	1	8	112	4	0	6	3	15	0	4	39	1	0	16	0	6	215	2,603
7:50 AM	0	7	115	2	0	4	3	19	1	4	45	8	0	6	1	14	229	2,624
7:55 AM	0	3	102	6	0	3	3	17	0	3	34	1	0	10	3	8	193	2,633
8:00 AM	0	7	100	5	0	5	3	10	1	2	37	3	0	11	3	12	199	2,639
8:05 AM	0	6	96	2	0	6	5	24	0	1	39	8	0	9	1	14	211	
8:10 AM	1	9	89	4	1	5	7	9	0	7	25	5	0	9	4	12	187	
8:15 AM	1	6	142	4	0	4	2	10	0	4	47	11	0	5	1	16	253	
8:20 AM	0	5	121	6	1	10	2	12	0	5	37	8	0	14	4	13	238	
8:25 AM	0	4	87	0	0	6	5	7	0	3	46	4	0	15	4	9	190	
8:30 AM	0	9	99	1	0	4	5	17	1	6	44	6	0	8	7	8	215	
8:35 AM	0	9	126	4	0	11	1	6	0	5	23	8	0	15	1	16	225	
8:40 AM	0	11	128	3	1	9	2	18	0	7	46	8	0	4	3	8	248	
8:45 AM	1	6	118	5	0	6	5	18	0	3	43	3	0	15	1	12	236	
8:50 AM	0	1	103	6	0	12	1	16	0	2	59	3	0	23	4	8	238	
8:55 AM	0	9	78	6	0	9	5	9	0	6	39	7	0	12	5	14	199	
Count Total	5	144	2,344	80	3	148	76	304	4	80	777	125	0	256	81	284	4,711	
Peak Hour	3	82	1,287	46	3	87	43	156	2	51	485	74	0	140	38	142	2,639	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles					Interval Start Time	Bicycles on Roadway						Interval Start Time	Pedestrians/Bicycles on Crosswalk				
Start Time	NB	EB	SB	WB	Total		NB		EB	SB	WB	Total		NB	EB	SB	WB	Total
7:00 AM	0	0	2	0	2	7:00 AM		0	0	0	0	0	7:00 AM	2	0	0	0	2
7:05 AM	1	1	0	2	4	7:05 AM		0	0	0	0	0	7:05 AM	2	0	0	0	2
7:10 AM	1	1	0	1	3	7:10 AM		0	0	0	0	0	7:10 AM	1	0	0	0	1
7:15 AM	1	2	0	2	5	7:15 AM		0	0	0	0	0	7:15 AM	0	0	0	0	0
7:20 AM	1	2	0	2	5	7:20 AM		0	0	0	1	1	7:20 AM	1	0	0	0	1
7:25 AM	2	1	2	2	7	7:25 AM		1	0	0	0	1	7:25 AM	0	0	0	0	0
7:30 AM	2	0	1	1	4	7:30 AM		1	0	0	1	2	7:30 AM	1	0	0	0	1
7:35 AM	1	1	0	3	5	7:35 AM		0	0	0	0	0	7:35 AM	0	0	0	2	2
7:40 AM	1	4	2	3	10	7:40 AM		1	0	0	0	1	7:40 AM	0	0	0	0	0
7:45 AM	2	0	0	0	2	7:45 AM		0	1	0	0	1	7:45 AM	0	0	0	0	0
7:50 AM	2	0	1	0	3	7:50 AM		0	0	0	0	0	7:50 AM	0	0	0	0	0
7:55 AM	2	2	0	0	4	7:55 AM		1	0	0	0	1	7:55 AM	0	0	0	0	0
8:00 AM	2	1	2	1	6	8:00 AM		0	0	0	0	0	8:00 AM	0	0	0	0	0
8:05 AM	0	2	0	0	2	8:05 AM		0	0	0	0	0	8:05 AM	0	0	0	0	0
8:10 AM	0	0	0	0	0	8:10 AM		0	0	0	0	0	8:10 AM	0	0	0	0	0
8:15 AM	1	1	2	0	4	8:15 AM		1	0	0	0	1	8:15 AM	0	0	0	0	0
8:20 AM	3	0	1	1	5	8:20 AM		0	0	1	0	1	8:20 AM	1	0	0	1	2
8:25 AM	0	2	2	0	4	8:25 AM		0	1	0	0	1	8:25 AM	2	0	0	0	2
8:30 AM	1	0	1	0	2	8:30 AM		0	0	1	0	1	8:30 AM	0	0	0	0	0
8:35 AM	0	2	1	2	5	8:35 AM		0	0	0	0	0	8:35 AM	1	0	0	0	1
8:40 AM	3	1	3	0	7	8:40 AM		0	0	0	0	0	8:40 AM	0	0	0	0	0
8:45 AM	2	0	1	0	3	8:45 AM		0	0	0	2	2	8:45 AM	0	0	0	0	0
8:50 AM	1	1	2	0	4	8:50 AM		0	0	0	0	0	8:50 AM	0	0	0	0	0
8:55 AM	2	0	2	0	4	8:55 AM		0	0	0	0	0	8:55 AM	0	0	0	0	0
Count Total	31	24	25	20	100	Count Total		5	2	2	4	13	Count Total	11	0	0	3	14
Peak Hour	15	10	17	4	46	Peak Hour		1	1	2	2	6	Peak Hour	4	0	0	1	5

Location: 4 ST ELIZABETH DR \& CURCI DR AM
Date: Wednesday, June 22, 2022
Peak Hour: 08:00 AM - 09:00 AM
Peak 15-Minutes: 08:30 AM - 08:45 AM
Peak Hour

Note: Total study counts contained in parentheses.

Pedestrians

No. Total study counts contained in parentheses.

Heavy Vehicles

	HV\%	PHF
EB	0.0%	0.00
WB	3.9%	0.73
NB	1.7%	0.80
SB	2.8%	0.81
All	2.7%	0.81

Bicycles on Road

Interval	ST ELIZABETH DR Northbound				CURCIDR Eastbound				ST ELIZABETH DR Southbound				CURCI DR Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	0	1	2	0	0	0	0	0	0	2	0	0	1	0	1	7	155
7:05 AM	0	0	0	2	0	0	0	0	0	1	2	0	0	1	0	1	7	169
7:10 AM	0	0	4	3	0	0	0	0	0	0	0	0	0	2	0	1	10	182
7:15 AM	0	0	3	3	0	0	0	0	0	1	0	0	0	4	0	4	15	189
7:20 AM	0	0	3	3	0	0	0	0	0	1	2	0	0	5	0	1	15	197
7:25 AM	0	0	5	1	0	0	0	0	0	1	1	0	0	3	0	2	13	198
7:30 AM	0	0	3	3	0	0	0	0	0	1	3	0	0	2	0	1	13	216
7:35 AM	0	0	2	2	0	0	0	0	0	3	2	0	0	3	0	1	13	229
7:40 AM	0	0	1	6	0	0	0	0	0	3	2	0	0	4	0	2	18	237
7:45 AM	0	0	3	3	0	0	0	0	0	2	3	0	0	4	0	1	16	253
7:50 AM	0	0	3	4	0	0	0	0	0	1	2	0	0	5	0	0	15	250
7:55 AM	0	0	1	7	0	0	0	0	0	1	1	0	0	3	0	0	13	254
8:00 AM	0	0	1	10	0	0	0	0	0	4	2	0	0	4	0	0	21	262
8:05 AM	0	0	4	3	0	0	0	0	0	3	6	0	0	3	0	1	20	
8:10 AM	0	0	7	5	0	0	0	0	0	0	3	0	0	2	0	0	17	
8:15 AM	0	0	2	5	0	0	0	0	0	2	3	0	0	9	0	2	23	
8:20 AM	0	0	3	1	0	0	0	0	0	3	3	0	0	5	0	1	16	
8:25 AM	0	0	6	6	0	0	0	0	0	5	6	0	0	7	0	1	31	
8:30 AM	0	0	3	8	0	0	0	0	0	2	3	0	0	6	0	4	26	
8:35 AM	0	0	7	3	0	0	0	0	0	1	5	0	0	5	0	0	21	
8:40 AM	0	0	4	11	0	0	0	0	0	4	4	0	0	11	0	0	34	
8:45 AM	0	0	5	1	0	0	0	0	0	1	1	0	0	4	0	1	13	
8:50 AM	0	0	3	4	0	0	0	0	0	2	3	0	0	7	0	0	19	
8:55 AM	0	0	4	9	0	0	0	0	1	0	4	0	0	3	0	0	21	
Count Total	0	0	78	105	0	0	0	0	1	42	63	0	0	103	0	25	417	
Peak Hour	0	0	49	66	0	0	0	0	1	27	43	0	0	66	0	10	262	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles									Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk					
Start Time	NB		EB		SB		WB		Total		NB		EB		SB		WB	Total		NB		EB	SB	WB	Total
7:00 AM		0		0		0		0	0	7:00 AM		0		0		0	0	0	7:00 AM		0	1	2	0	3
7:05 AM		0		0		0		1	1	7:05 AM		0		0		0	0	0	7:05 AM		1	1	0	1	3
7:10 AM		0		0		0		0	0	7:10 AM		0		0		0	0	0	7:10 AM		0	0	1	1	2
7:15 AM		0		0		0		0	0	7:15 AM		0		0		0	0	0	7:15 AM		0	1	1	1	3
7:20 AM		0		0		2		0	2	7:20 AM		0		0		0	0	0	7:20 AM		0	1	0	0	1
7:25 AM		0		0		0		1	1	7:25 AM		0		0		1	0	1	7:25 AM		0	1	0	3	4
7:30 AM		0		0		1		0	1	7:30 AM		0		0		0	0	0	7:30 AM		0	1	0	0	1
7:35 AM		0		0		0		0	0	7:35 AM		0		0		0	0	0	7:35 AM		0	3	0	0	3
7:40 AM		0		0		0		0	0	7:40 AM		0		0		0	0	0	7:40 AM		1	1	0	2	4
7:45 AM		0		0		1		0	1	7:45 AM		1		0		0	0	1	7:45 AM		0	1	0	1	2
7:50 AM		0		0		0		0	0	7:50 AM		0		0		1	0	1	7:50 AM		0	0	0	1	1
7:55 AM		0		0		0		0	0	7:55 AM		1		0		0	0	1	7:55 AM		1	1	0	1	3
8:00 AM		0		0		0		0	0	8:00 AM		0		0		0	0	0	8:00 AM		0	3	0	0	3
8:05 AM		0		0		0		0	0	8:05 AM		0		0		0	0	0	8:05 AM		1	0	1	0	2
8:10 AM		0		0		0		0	0	8:10 AM		0		0		0	0	0	8:10 AM		1	0	0	2	3
8:15 AM		0		0		0		0	0	8:15 AM		1		0		0	0	1	8:15 AM		0	2	0	1	3
8:20 AM		0		0		0		0	0	8:20 AM		0		0		0	0	0	8:20 AM		0	3	2	1	6
8:25 AM		0		0		0		0	0	8:25 AM		0		0		0	0	0	8:25 AM		0	1	0	2	3
8:30 AM		0		0		0		0	0	8:30 AM		0		0		1	0	1	8:30 AM		1	1	0	0	2
8:35 AM		1		0		1		0	2	8:35 AM		0		0		0	0	0	8:35 AM		1	1	1	1	4
8:40 AM		0		0		1		2	3	8:40 AM		1		0		0	0	1	8:40 AM		0	1	0	0	1
8:45 AM		0		0		0		1	1	8:45 AM		0		0		1	1	2	8:45 AM		0	1	0	0	1
8:50 AM		0		0		0		0	0	8:50 AM		0		0		0	0	0	8:50 AM		1	0	0	0	1
8:55 AM		1		0		0		0	1	8:55 AM		0		0		1	0	1	8:55 AM		2	1	3	0	6
Count Total		2		0		6		5	13	Count Total		4		0		5	1	10	Count Total		10	26	11	18	65
Peak Hour		2		0		2		3	7	Peak Hour		2		0		3	1	6	Peak Hour		7	14	7	7	35

Location: 5 MERIDIAN AVE \& CURCI DR AM
Date: Wednesday, June 22, 2022
Peak Hour: 07:55 AM - 08:55 AM
Peak 15-Minutes: 08:40 AM - 08:55 AM
Peak Hour

Note: Total study counts contained in parentheses.

Pedestrians

Heavy Vehicles

Bicycles on Road

	HV\%	PHF
EB	0.0%	0.80
WB	0.0%	0.25
NB	1.1%	0.91
SB	2.5%	0.84
All	1.5%	0.91

Interval	MERIDIAN AVE Northbound				CURCI DR Eastbound				MERIDIAN AVE Southbound				CURCI DR Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
7:00 AM	0	0	73	0	0	1	0	2	0	0	24	1	0	0	0	0	101	1,719
7:05 AM	0	1	77	0	0	1	0	1	0	0	30	3	0	0	0	0	113	1,779
7:10 AM	0	4	73	0	0	2	0	3	0	0	36	1	0	0	0	0	119	1,840
7:15 AM	0	5	66	0	0	2	0	1	0	0	35	4	0	0	0	0	113	1,898
7:20 AM	0	2	93	0	0	0	0	3	0	0	37	4	0	0	0	0	139	2,000
7:25 AM	0	2	93	0	0	3	0	2	0	0	45	3	0	0	0	0	148	2,056
7:30 AM	0	2	100	0	0	2	0	2	0	0	29	1	0	0	0	0	136	2,064
7:35 AM	0	2	73	0	0	4	0	2	0	0	39	3	0	0	0	0	123	2,129
7:40 AM	0	5	107	0	0	2	0	5	0	0	43	1	0	0	0	0	163	2,191
7:45 AM	0	6	116	0	0	1	0	4	0	0	62	2	0	0	0	0	191	2,243
7:50 AM	0	0	114	0	0	3	0	2	0	0	68	5	0	0	0	0	192	2,252
7:55 AM	0	2	112	0	0	2	0	6	0	0	57	2	0	0	0	0	181	2,269
8:00 AM	0	5	96	0	0	5	0	8	0	0	44	3	0	0	0	0	161	2,258
8:05 AM	0	4	95	0	0	3	0	6	0	0	65	1	0	0	0	0	174	
8:10 AM	0	1	115	0	0	4	0	5	0	0	51	1	0	0	0	0	177	
8:15 AM	0	5	134	0	0	1	0	3	0	0	67	4	0	0	0	1	215	
8:20 AM	0	10	112	0	0	10	0	3	0	0	58	1	0	0	0	1	195	
8:25 AM	0	5	89	0	0	2	0	4	0	0	51	5	0	0	0	0	156	
8:30 AM	0	7	113	0	0	6	0	7	0	0	65	3	0	0	0	0	201	
8:35 AM	0	2	128	0	0	4	0	3	0	0	45	3	0	0	0	0	185	
8:40 AM	0	2	133	0	0	1	0	10	0	0	62	7	0	0	0	0	215	
8:45 AM	0	4	121	0	0	1	0	4	0	0	68	2	0	0	0	0	200	
8:50 AM	0	5	112	0	0	1	0	4	0	0	83	4	0	0	0	0	209	
8:55 AM	0	2	98	0	0	2	0	2	0	0	64	2	0	0	0	0	170	
Count Total	0	83	2,443	0	0	63	0	92	0	0	1,228	66	0	0	0	2	3,977	
Peak Hour	0	52	1,360	0	0	40	0	63	0	0	716	36	0	0	0	2	2,269	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles								Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk					
Start Time	NB	EB		SB		WB		Total		NB		EB		SB		WB	Total		NB		EB	SB	WB	Total
7:00 AM	0		0		1		0	1	7:00 AM		0	0	0		0	0	0	7:00 AM		3	0	0	0	3
7:05 AM	1		0		2		0	3	7:05 AM		0	0	0		0	0	0	7:05 AM		0	1	0	0	1
7:10 AM	1		0		0		0	1	7:10 AM		0	0	0		0	0	0	7:10 AM		1	0	0	0	1
7:15 AM	0		0		0		0	0	7:15 AM		0	0	0		0	0	0	7:15 AM		1	0	0	1	2
7:20 AM	2		0		4		0	6	7:20 AM		0	0	0		0	0	0	7:20 AM		1	0	0	1	2
7:25 AM	1		1		2		0	4	7:25 AM		1	0	0		0	0	1	7:25 AM		1	1	0	0	2
7:30 AM	2		0		1		0	3	7:30 AM		0	0	0		2	0	2	7:30 AM		0	0	0	3	3
7:35 AM	1		0		1		0	2	7:35 AM		0	0	0		0	0	0	7:35 AM		0	1	0	0	1
7:40 AM	1		0		2		0	3	7:40 AM		1	0	0		0	0	1	7:40 AM		0	0	0	0	0
7:45 AM	1		0		3		0	4	7:45 AM		1	0	0		0	0	1	7:45 AM		1	0	0	0	1
7:50 AM	2		0		1		0	3	7:50 AM		1	0	0		0	0	1	7:50 AM		1	0	0	0	1
7:55 AM	1		0		1		0	2	7:55 AM		1	0	0		0	0	1	7:55 AM		0	0	0	1	1
8:00 AM	1		0		3		0	4	8:00 AM		0	0	0		0	0	0	8:00 AM		2	0	0	2	4
8:05 AM	0		0		2		0	2	8:05 AM		0	0	0		0	0	0	8:05 AM		1	0	0	2	3
8:10 AM	0		0		0		0	0	8:10 AM		0	0	0		0	0	0	8:10 AM		0	0	0	1	1
8:15 AM	1		0		2		0	3	8:15 AM		1	0	0		0	0	1	8:15 AM		0	1	0	1	2
8:20 AM	2		0		1		0	3	8:20 AM		0	0	0		0	0	0	8:20 AM		0	0	0	0	0
8:25 AM	1		0		1		0	2	8:25 AM		1	0	0		2	0	3	8:25 AM		0	0	0	0	0
8:30 AM	0		0		2		0	2	8:30 AM		0	1	1		0	0	1	8:30 AM		1	0	0	0	1
8:35 AM	0		0		1		0	1	8:35 AM		0	0	0		1	0	1	8:35 AM		2	0	0	1	3
8:40 AM	4		0		4		0	8	8:40 AM		0	0	0		1	0	1	8:40 AM		0	0	0	1	1
8:45 AM	3		0		0		0	3	8:45 AM		1	1	1		1	0	3	8:45 AM		1	0	0	0	1
8:50 AM	2		0		2		0	4	8:50 AM		0	0	0		0	0	0	8:50 AM		0	0	0	0	0
8:55 AM	2		0		2		0	4	8:55 AM		0	0	0		0	0	0	8:55 AM		1	0	0	3	4
Count Total	29		1		38		0	68	Count Total		8	2	2		7	0	17	Count Total		17	4	0	17	38
Peak Hour	15		0		19		0	34	Peak Hour		4	2	2		5	0	11	Peak Hour		7	1	0	9	17

Location: 1 SOUTHWEST EXPY \& FRUITDALE AVE PM
Date: Wednesday, June 22, 2022
Peak Hour: 04:45 PM - 05:45 PM
Peak 15-Minutes: 05:05 PM - 05:20 PM
Peak Hour

Note: Total study counts contained in parentheses.

Heavy Vehicles

Bicycles on Road

	HV\%	PHF
EB	2.1%	0.83
WB	3.2%	0.82
NB	1.2%	0.87
SB	0.6%	0.89
All	1.3%	0.92

Interval Start Time	SOUTHWEST EXPY Northbound				FRUITDALE AVE Eastbound				SOUTHWEST EXPY Southbound				FRUITDALE AVE Westbound				Total	Rolling Hour
	U-Turn	Left	Thru	Right														
4:00 PM	0	0	36	2	0	15	13	1	0	13	48	12	0	2	7	1	150	1,860
4:05 PM	0	2	40	2	0	13	15	2	0	14	25	23	0	2	7	2	147	1,865
4:10 PM	0	1	41	5	0	4	2	0	0	14	37	10	0	3	19	2	138	1,905
4:15 PM	0	0	46	6	0	25	29	1	1	9	35	16	0	4	11	2	185	1,952
4:20 PM	0	0	55	12	0	12	12	1	0	8	47	19	0	1	7	4	178	1,952
4:25 PM	0	0	24	6	0	2	1	2	0	14	28	13	0	1	1	2	94	1,957
4:30 PM	0	0	28	2	0	21	21	1	1	13	29	18	0	4	9	2	149	2,014
4:35 PM	0	1	39	3	0	17	22	2	0	19	33	16	0	3	11	1	167	2,033
4:40 PM	1	2	44	4	0	6	8	1	0	25	41	15	0	1	15	5	168	2,032
4:45 PM	0	0	53	2	0	16	15	0	0	15	47	20	0	3	3	3	177	2,054
4:50 PM	0	0	44	7	0	18	27	1	0	6	32	23	0	7	9	4	178	2,010
4:55 PM	0	3	29	5	0	8	11	1	0	17	26	19	0	1	7	2	129	1,999
5:00 PM	0	1	27	2	0	23	21	2	0	3	33	23	0	6	11	3	155	2,023
5:05 PM	1	3	52	9	0	8	14	1	0	25	44	18	0	1	9	2	187	
5:10 PM	0	0	34	9	0	27	24	1	0	10	48	15	0	6	9	2	185	
5:15 PM	0	5	42	5	0	9	19	1	0	12	42	23	0	5	20	2	185	
5:20 PM	0	2	36	8	0	10	13	2	0	7	66	28	0	3	7	1	183	
5:25 PM	0	1	31	6	0	2	6	1	0	15	40	26	0	7	15	1	151	
5:30 PM	0	1	43	9	0	11	20	1	0	11	38	23	0	4	6	1	168	
5:35 PM	0	0	35	8	0	10	21	1	2	5	41	30	0	4	8	1	166	
5:40 PM	0	1	63	8	0	12	17	0	0	9	47	18	0	4	11	0	190	
5:45 PM	1	2	35	5	0	2	7	0	0	14	43	16	0	1	4	3	133	
5:50 PM	1	1	37	3	0	7	15	1	0	19	32	25	0	6	16	4	167	
5:55 PM	0	0	39	5	0	11	15	0	0	14	39	20	0	7	2	1	153	
Count Total	4	26	953	133	0	289	368	24	4	311	941	469	0	86	224	51	3,883	
Peak Hour	1	17	489	78	0	154	208	12	2	135	504	266	0	51	115	22	2,054	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles					Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk				
Start Time	NB	EB	SB	WB	Total		NB		EB		SB		WB	Total		NB	EB	SB	WB	Total
4:00 PM	0	2	0	0	2	4:00 PM		0	0	0		0	0	0	4:00 PM	3	0	0	0	3
4:05 PM	0	0	0	0	0	4:05 PM		0	0	0		0	0	0	4:05 PM	1	1	0	0	2
4:10 PM	0	0	1	1	2	4:10 PM		0	0	0		0	1	1	4:10 PM	0	0	0	0	0
4:15 PM	2	1	2	1	6	4:15 PM		0		0		0	0	0	4:15 PM	4	0	0	0	4
4:20 PM	2	1	2	0	5	4:20 PM		0		0		0	0	0	4:20 PM	1	0	0	0	1
4:25 PM	1	0	0	0	1	4:25 PM		0		0		0	0	0	4:25 PM	1	0	1	1	3
4:30 PM	1	1	0	1	3	4:30 PM		0		0		0	0	0	4:30 PM	5	1	2	1	9
4:35 PM	2	1	0	1	4	4:35 PM		0		0		0	0	0	4:35 PM	1	0	0	0	1
4:40 PM	0	1	1	1	3	4:40 PM		0		0		0	0	0	4:40 PM	0	0	0	0	0
4:45 PM	1	0	0	0	1	4:45 PM		0		0		0	0	0	4:45 PM	2	0	0	0	2
4:50 PM	1	1	1	0	3	4:50 PM		0		0		0	0	0	4:50 PM	2	0	0	0	2
4:55 PM	0	0	0	0	0	4:55 PM		0		0		0	0	0	4:55 PM	1	0	0	0	1
5:00 PM	1	1	0	1	3	5:00 PM		0		0		0	0	0	5:00 PM	3	0	2	1	6
5:05 PM	3	0	1	1	5	5:05 PM		0		0		0	0	0	5:05 PM	0	0	1	1	2
5:10 PM	1	1	0	0	2	5:10 PM		0		0		0	0	0	5:10 PM	1	0	0	1	2
5:15 PM	0	1	1	1	3	5:15 PM		0		0		0	0	0	5:15 PM	1	0	2	1	4
5:20 PM	0	0	0	0	0	5:20 PM		0	0	0		0	0	0	5:20 PM	1	0	0	0	1
5:25 PM	0	0	1	2	3	5:25 PM		0	0	0		0	0	0	5:25 PM	0	0	0	0	0
5:30 PM	0	2	0	0	2	5:30 PM		0	0	0		0	0	0	5:30 PM	2	0	0	0	2
5:35 PM	0	1	0	0	1	5:35 PM		0	0	0		0	0	0	5:35 PM	1	0	0	0	1
5:40 PM	0	1	1	1	3	5:40 PM		0	0	0		0	0	0	5:40 PM	2	0	1	1	4
5:45 PM	0	0	0	1	1	5:45 PM		0	0	0		0	0	0	5:45 PM	1	0	0	0	1
5:50 PM	1	1	1	0	3	5:50 PM		0	0	0		0	0	0	5:50 PM	4	1	0	0	5
5:55 PM	0	0	1	0	1	5:55 PM		0		0		0	0	0	5:55 PM	2	0	0	0	2
Count Total	16	16	13	12	57	Count Total		0		0		0	1	1	Count Total	39	3	9	7	58
Peak Hour	7	8	5	6	26	Peak Hour		0	0	0		0	0	0	Peak Hour	16	0	6	5	27

Location: 2 ST ELIZABETH DR \& FRUITDALE AVE PM
Date: Wednesday, June 22, 2022
Peak Hour: 04:35 PM - 05:35 PM
Peak 15-Minutes: 05:05 PM - 05:20 PM
Peak Hour

Note: Total study counts contained in parentheses.

Pedestrians

Heavy Vehicles

Bicycles on Road

Interval	ST ELIZABETH DR Northbound				FRUITDALE AVE Eastbound				ST ELIZABETH DR Southbound				FRUITDALE AVE Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
4:00 PM	0	2	0	8	0	0	20	2	0	0	0	0	0	4	9	1	46	736
4:05 PM	0	2	1	7	0	0	28	7	0	1	0	0	0	10	12	0	68	742
4:10 PM	0	4	0	10	0	0	17	4	0	0	0	0	0	12	15	1	63	741
4:15 PM	0	5	0	3	1	0	44	2	0	0	0	0	0	8	12	1	76	745
4:20 PM	0	3	0	7	0	0	30	3	0	1	0	0	0	7	10	0	61	749
4:25 PM	0	4	0	6	0	0	15	7	0	1	0	1	0	10	6	0	50	748
4:30 PM	0	0	0	5	0	1	27	5	0	0	0	2	0	6	6	3	55	761
4:35 PM	0	2	0	10	0	0	35	4	0	0	0	0	0	8	14	0	73	767
4:40 PM	0	2	0	2	0	1	37	2	0	0	0	0	0	6	15	0	65	759
4:45 PM	0	4	2	6	1	0	24	3	0	0	0	2	0	5	8	1	56	749
4:50 PM	0	2	0	8	1	0	36	7	0	0	0	0	0	5	11	1	71	749
4:55 PM	0	2	0	7	0	1	15	8	0	0	0	2	0	6	10	1	52	745
5:00 PM	0	3	0	6	0	1	13	2	0	0	0	2	1	9	13	2	52	745
5:05 PM	0	1	0	5	0	1	33	4	0	0	0	1	1	2	18	1	67	
5:10 PM	0	2	0	5	0	0	35	6	0	0	0	1	1	7	10	0	67	
5:15 PM	0	2	0	3	0	0	38	4	0	1	0	1	0	9	22	0	80	
5:20 PM	0	5	0	9	0	1	25	3	0	0	0	0	0	9	8	0	60	
5:25 PM	0	3	0	12	0	0	22	3	0	0	0	0	0	9	14	0	63	
5:30 PM	0	0	0	8	0	1	30	6	0	0	0	1	0	4	10	1	61	
5:35 PM	0	5	0	5	0	0	26	5	0	0	0	0	0	10	13	1	65	
5:40 PM	0	3	1	8	0	0	24	6	0	0	0	0	0	3	9	1	55	
5:45 PM	0	3	0	4	0	3	27	2	0	1	0	1	0	6	8	1	56	
5:50 PM	0	6	0	4	0	1	27	6	0	0	0	1	0	6	14	2	67	
5:55 PM	0	3	0	5	0	0	28	5	0	0	0	0	0	3	7	1	52	
Count Total	0	68	4	153	3	11	656	106	0	5	0	15	3	164	274	19	1,481	
Peak Hour	0	28	2	81	2	6	343	52	0	1	0	10	3	79	153	7	767	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles								Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk					
Start Time	NB		EB		SB		WB	Total		NB		EB		SB		WB	Total		NB		EB	SB	WB	Total
4:00 PM		0		0		0	0	0	4:00 PM		1		0		0	0	1	4:00 PM		0	1	1	0	2
4:05 PM		0		1		0	0	1	4:05 PM		0		0		0	0	0	4:05 PM		0	1	0	0	1
4:10 PM		0		0		0	1	1	4:10 PM		0		0		0	0	0	4:10 PM		0	1	0	0	1
4:15 PM		0		1		0	1	2	4:15 PM		1		0		0	0	1	4:15 PM		1	0	1	0	2
4:20 PM		0		0		0	0	0	4:20 PM		0		0		0	0	0	4:20 PM		1	0	0	0	1
4:25 PM		0		0		0	1	1	4:25 PM		0		1		0	0	1	4:25 PM		0	0	0	0	0
4:30 PM		0		1		0	0	1	4:30 PM		0		1		0	0	1	4:30 PM		1	1	1	0	3
4:35 PM		0		0		0	1	1	4:35 PM		1		0		0	0	1	4:35 PM		0	1	0	0	1
4:40 PM		0		1		0	1	2	4:40 PM		0		0		0	0	0	4:40 PM		0	0	0	0	0
4:45 PM		0		0		0	0	0	4:45 PM		0		0		0	0	0	4:45 PM		0	0	0	0	0
4:50 PM		0		1		0	0	1	4:50 PM		0		0		0	0	0	4:50 PM		3	0	0	0	3
4:55 PM		0		0		0	0	0	4:55 PM		0		0		0	0	0	4:55 PM		0	1	1	0	2
5:00 PM		0		0		0	1	1	5:00 PM		0		0		0	0	0	5:00 PM		0	4	4	0	8
5:05 PM		0		1		0	1	2	5:05 PM		0		0		0	0	0	5:05 PM		1	1	1	0	3
5:10 PM		0		1		0	0	1	5:10 PM		0		0		0	1	1	5:10 PM		1	1	1	0	3
5:15 PM		0		2		0	1	3	5:15 PM		2		0		0	0	2	5:15 PM		2	1	0	0	3
5:20 PM		0		0		0	0	0	5:20 PM		0		0		0	0	0	5:20 PM		0	0	0	0	0
5:25 PM		0		0		0	1	1	5:25 PM		0		0		0	0	0	5:25 PM		0	0	0	0	0
5:30 PM		0		1		0	0	1	5:30 PM		0		0		0	0	0	5:30 PM		0	0	0	0	0
5:35 PM		0		0		0	0	0	5:35 PM		0		1		0	0	1	5:35 PM		0	0	0	0	0
5:40 PM		0		2		0	1	3	5:40 PM		0		0		0	0	0	5:40 PM		0	0	0	0	0
5:45 PM		0		0		0	1	1	5:45 PM		0		0		0	0	0	5:45 PM		1	0	1	0	2
5:50 PM		0		1		0	0	1	5:50 PM		0		2		0	1	3	5:50 PM		0	0	0	0	0
5:55 PM		0		1		0	0	1	5:55 PM		0		0		0	0	0	5:55 PM		0	3	0	0	3
Count Total		0		14		0	11	25	Count Total		5		5		0	2	12	Count Total		11	16	11	0	38
Peak Hour		0		7		0	6	13	Peak Hour		3		0		0	1	4	Peak Hour		7	9	7	0	23

Location: 3 MERIDIAN AVE \& FRUITDALE AVE PM
Date: Wednesday, June 22, 2022
Peak Hour: 04:20 PM - 05:20 PM
Peak 15-Minutes: 05:05 PM - 05:20 PM
Peak Hour

Motorized Vehicles
Note: Total study counts contained in parentheses.

Heavy Vehicles

> Bicycles on Road

	HV\%	PHF
EB	1.7%	0.92
WB	0.6%	0.91
NB	1.3%	0.83
SB	0.5%	0.88
All	0.9%	0.86

Interval	MERIDIAN AVE Northbound				FRUITDALE AVE Eastbound				MERIDIAN AVE Southbound				FRUITDALE AVE Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
4:00 PM	0	1	50	2	0	8	1	19	3	14	80	12	0	7	3	9	209	2,725
4:05 PM	0	9	79	6	0	7	10	20	0	5	79	11	0	9	5	9	249	2,747
4:10 PM	0	10	74	1	0	14	1	15	1	8	68	9	0	17	1	3	222	2,740
4:15 PM	0	7	71	7	0	12	3	32	0	3	63	10	0	22	3	7	240	2,819
4:20 PM	0	3	57	0	0	10	10	17	0	10	66	7	0	18	6	10	214	2,865
4:25 PM	0	6	83	1	0	11	2	10	0	9	76	7	0	10	3	4	222	2,857
4:30 PM	0	3	65	4	0	4	5	20	0	7	54	10	0	14	6	10	202	2,837
4:35 PM	0	8	66	4	0	10	10	26	1	3	69	6	0	18	4	11	236	2,856
4:40 PM	1	9	81	3	0	9	4	27	0	3	74	8	0	19	4	11	253	2,853
4:45 PM	0	5	70	6	0	6	1	20	1	9	77	5	0	16	6	7	229	2,813
4:50 PM	0	5	76	0	0	11	13	25	0	7	70	4	0	18	3	8	240	2,819
4:55 PM	0	6	63	0	0	5	5	15	0	3	71	9	0	17	6	9	209	2,793
5:00 PM	0	10	62	3	0	7	2	15	3	11	77	8	0	18	8	7	231	2,766
5:05 PM	0	6	78	5	0	9	12	11	0	9	77	7	0	7	6	15	242	
5:10 PM	1	9	95	3	0	8	7	28	2	13	107	9	0	10	2	7	301	
5:15 PM	1	8	95	3	0	13	7	23	0	8	87	15	0	17	2	7	286	
5:20 PM	0	3	50	4	1	9	6	16	2	3	80	9	0	16	3	4	206	
5:25 PM	0	6	51	5	0	12	11	17	3	9	50	10	0	17	5	6	202	
5:30 PM	0	6	60	2	0	8	12	13	0	7	74	12	0	18	2	7	221	
5:35 PM	1	7	65	1	0	7	3	28	1	9	81	10	0	16	2	2	233	
5:40 PM	0	2	49	4	0	9	4	17	1	16	70	9	0	17	6	9	213	
5:45 PM	0	4	61	8	0	7	8	12	0	12	92	8	0	12	4	7	235	
5:50 PM	0	4	54	2	0	10	8	16	1	7	75	11	0	14	2	10	214	
5:55 PM	1	0	44	4	1	8	3	19	0	3	61	6	0	17	5	10	182	
Count Total	5	137	1,599	78	2	214	148	461	19	188	1,778	212	0	364	97	189	5,491	
Peak Hour	3	78	891	32	0	103	78	237	7	92	905	95	0	182	56	106	2,865	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Location: 4 ST ELIZABETH DR \& CURCI DR PM
Date: Wednesday, June 22, 2022
Peak Hour: 04:05 PM - 05:05 PM
Peak 15-Minutes: 04:40 PM - 04:55 PM
Peak Hour

Note: Total study counts contained in parentheses.
No. Total study counts contained in parentheses.
Pedestrians

Heavy Vehicles

	HV\%	PHF
EB	0.0%	0.00
WB	1.0%	0.89
NB	1.0%	0.65
SB	0.0%	0.75
All	0.7%	0.81

Bicycles on Road

Interval	ST ELIZABETH DR Northbound				CURCI DR Eastbound				ST ELIZABETH DR Southbound				CURCI DR Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
4:00 PM	0	0	3	7	0	0	0	0	0	1	2	0	0	3	0	4	20	293
4:05 PM	0	0	4	5	0	0	0	0	0	4	4	0	0	9	0	3	29	296
4:10 PM	0	0	3	3	0	0	0	0	0	2	4	0	0	7	0	3	22	281
4:15 PM	0	0	2	4	0	0	0	0	0	4	5	0	0	2	0	1	18	281
4:20 PM	0	0	3	1	0	0	0	0	0	4	7	0	0	6	0	5	26	286
4:25 PM	0	0	3	5	0	0	0	0	0	1	4	0	0	2	0	1	16	270
4:30 PM	0	0	5	3	0	0	0	0	0	1	4	0	0	4	0	3	20	274
4:35 PM	0	0	1	7	0	0	0	0	0	3	4	0	0	8	0	1	24	278
4:40 PM	0	0	5	11	0	0	0	0	0	1	4	0	0	5	0	2	28	281
4:45 PM	0	0	6	6	0	0	0	0	0	2	6	0	0	4	0	2	26	268
4:50 PM	0	0	5	9	0	0	0	0	0	5	8	0	0	8	0	2	37	263
4:55 PM	0	0	3	5	0	0	0	0	1	4	6	0	0	8	0	0	27	245
5:00 PM	0	0	3	2	0	0	0	0	1	4	3	0	0	9	0	1	23	236
5:05 PM	0	0	1	6	0	0	0	0	0	1	1	0	0	4	0	1	14	
5:10 PM	0	0	4	4	0	0	0	0	1	1	3	0	0	7	0	2	22	
5:15 PM	0	0	1	2	0	0	0	0	0	2	3	0	0	8	0	7	23	
5:20 PM	0	0	0	3	0	0	0	0	0	1	1	0	0	3	0	2	10	
5:25 PM	0	0	4	5	0	0	0	0	0	2	2	0	0	3	0	4	20	
5:30 PM	0	0	3	3	0	0	0	0	0	5	2	0	0	7	0	4	24	
5:35 PM	0	0	4	5	0	0	0	0	0	3	5	0	0	9	0	1	27	
5:40 PM	0	0	1	5	0	0	0	0	0	1	4	0	0	3	0	1	15	
5:45 PM	0	0	3	3	0	0	0	0	0	3	6	0	0	6	0	0	21	
5:50 PM	0	0	3	3	0	0	0	0	0	3	1	0	0	9	0	0	19	
5:55 PM	0	0	3	7	0	0	0	0	0	0	0	0	0	7	0	1	18	
Count Total	0	0	73	114	0	0	0	0	3	58	89	0	0	141	0	51	529	
Peak Hour	0	0	43	61	0	0	0	0	2	35	59	0	0	72	0	24	296	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

	Heavy Vehicles									Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk					
Start Time	NB		EB		SB		WB		Total		NB		EB		SB		WB	Total		NB		EB	SB	WB	Total
4:00 PM		0		0		0		0	0	4:00 PM		0	0	0		1	1	2	4:00 PM		0	4	0	1	5
4:05 PM		0		0		0		0	0	4:05 PM		0	0	0		0	0	0	4:05 PM		1	3	0	0	4
4:10 PM		0		0		0		0	0	4:10 PM		2	0	0		0	0	2	4:10 PM		1	1	0	0	2
4:15 PM		0		0		0		0	0	4:15 PM		0	0	0		0	0	0	4:15 PM		2	1	0	0	3
4:20 PM		0		0		0		0	0	4:20 PM		0	0	0		0	1	1	4:20 PM		2	4	0	0	6
4:25 PM		0		0		0		1	1	4:25 PM		0	0	0		0	0	0	4:25 PM		1	1	0	0	2
4:30 PM		0		0		0		0	0	4:30 PM		1	0	0		0	1	2	4:30 PM		0	0	0	0	0
4:35 PM		0		0		0		0	0	4:35 PM		0	0	0		0	0	0	4:35 PM		0	1	0	0	1
4:40 PM		0		0		0		0	0	4:40 PM		0	0	0		0	0	0	4:40 PM		0	3	0	0	3
4:45 PM		0		0		0		0	0	4:45 PM		0	0	0		0	0	0	4:45 PM		1	2	0	0	3
4:50 PM		1		0		0		0	1	4:50 PM		0	0	0		0	0	0	4:50 PM		0	0	0	0	0
4:55 PM		0		0		0		0	0	4:55 PM		1	0	0		0	0	1	4:55 PM		0	0	0	0	0
5:00 PM		0		0		0		0	0	5:00 PM		0	0	0		0	0	0	5:00 PM		0	0	0	0	0
5:05 PM		0		0		0		0	0	5:05 PM		0	0	0		1	0	1	5:05 PM		0	0	1	1	2
5:10 PM		0		0		0		0	0	5:10 PM		0	0	0		0	0	0	5:10 PM		1	2	0	0	3
5:15 PM		0		0		0		0	0	5:15 PM		0	0	0		0	1	1	5:15 PM		0	2	0	2	4
5:20 PM		0		0		0		0	0	5:20 PM		0	0	0		0	0	0	5:20 PM		0	2	0	0	2
5:25 PM		0		0		0		0	0	5:25 PM		0	0	0		0	0	0	5:25 PM		0	3	0	0	3
5:30 PM		0		0		0		0	0	5:30 PM		0	0	0		0	0	0	5:30 PM		0	4	0	0	4
5:35 PM		0		0		0		0	0	5:35 PM		0	0	0		1	0	1	5:35 PM		0	2	0	1	3
5:40 PM		0		0		0		0	0	5:40 PM		0	0	0		1	0	1	5:40 PM		1	2	0	0	3
5:45 PM		0		0		0		0	0	5:45 PM		0	0	0		0	0	0	5:45 PM		0	3	0	0	3
5:50 PM		0		0		0		0	0	5:50 PM		0	0	0		0	0	0	5:50 PM		0	2	0	0	2
5:55 PM		0		0		0		0	0	5:55 PM		2	0	0		0	0	2	5:55 PM		0	2	0	0	2
Count Total		1		0		0		1	2	Count Total		6	0	0		4	4	14	Count Total		10	44	1	5	60
Peak Hour		1		0		0		1	2	Peak Hour		4	0	0		0	2	6	Peak Hour		8	16	0	0	24

Location: 5 MERIDIAN AVE \& CURCI DR PM
Date: Wednesday, June 22, 2022
Peak Hour: 04:05 PM - 05:05 PM
Peak 15-Minutes: 04:05 PM - 04:20 PM
Peak Hour

Note: Total study counts contained in parentheses.

Pedestrians

Heavy Vehicles

Bicycles on Road

	HV\%	PHF
EB	0.9%	0.74
WB	0.0%	0.58
NB	1.4%	0.75
SB	0.7%	0.95
All	1.0%	0.87

Interval	MERIDIAN AVE Northbound				CURCI DR Eastbound				MERIDIAN AVE Southbound				CURCI DR Westbound				Total	Rolling Hour
Start Time	U-Turn	Left	Thru	Right														
4:00 PM	0	2	65	0	0	4	0	10	0	0	83	4	0	0	0	0	168	2,420
4:05 PM	0	13	156	0	0	3	0	6	0	0	98	2	0	0	0	0	278	2,452
4:10 PM	0	6	85	0	0	1	0	5	0	0	87	4	0	0	0	0	188	2,366
4:15 PM	0	3	90	0	0	4	0	2	0	0	141	2	0	0	0	0	242	2,393
4:20 PM	0	8	60	0	0	1	0	7	0	0	92	7	0	0	0	1	176	2,369
4:25 PM	0	0	78	0	0	3	0	7	0	0	92	3	0	0	0	0	183	2,394
4:30 PM	0	8	70	0	0	2	0	4	0	0	85	1	0	0	0	0	170	2,385
4:35 PM	0	3	65	0	0	6	0	4	0	0	91	4	0	0	0	0	173	2,412
4:40 PM	0	5	92	0	0	0	0	11	0	0	110	5	0	0	0	0	223	2,423
4:45 PM	0	2	83	0	0	4	0	9	0	0	121	5	0	0	0	0	224	2,374
4:50 PM	0	5	73	0	0	7	0	8	0	0	100	4	0	0	0	2	199	2,319
4:55 PM	0	5	66	0	0	2	0	5	0	0	111	7	0	0	0	0	196	2,293
5:00 PM	0	7	74	0	0	1	0	4	1	0	108	4	0	0	0	1	200	2,248
5:05 PM	0	3	87	0	0	4	0	5	0	0	90	3	0	0	0	0	192	
5:10 PM	0	6	81	0	0	8	0	3	0	0	111	6	0	0	0	0	215	
5:15 PM	0	10	96	0	0	1	0	2	0	0	104	4	0	0	0	1	218	
5:20 PM	0	4	58	0	0	2	0	7	0	0	129	1	0	0	0	0	201	
5:25 PM	0	4	61	0	0	0	0	5	0	0	101	3	0	0	0	0	174	
5:30 PM	0	7	71	0	0	2	0	8	0	0	102	7	0	0	0	0	197	
5:35 PM	0	3	60	0	0	1	0	6	0	0	103	11	0	0	0	0	184	
5:40 PM	0	0	64	0	0	2	0	7	0	0	97	3	0	0	0	1	174	
5:45 PM	0	2	50	0	0	2	0	6	0	0	102	5	0	0	0	2	169	
5:50 PM	0	7	66	0	0	4	0	2	0	0	92	2	0	0	0	0	173	
5:55 PM	0	4	48	0	0	2	0	4	0	0	90	3	0	0	0	0	151	
Count Total	0	117	1,799	0	0	66	0	137	1	0	2,440	100	0	0	0	8	4,668	
Peak Hour	0	65	992	0	0	34	0	72	1	0	1,236	48	0	0	0	4	2,452	

Traffic Counts - Heavy Vehicles, Bicycles on Road, and Pedestrians/Bicycles on Crosswalk

Interval	Heavy Vehicles								Interval Start Time	Bicycles on Roadway								Interval Start Time	Pedestrians/Bicycles on Crosswalk					
Start Time	NB	EB		SB		WB		Total		NB		EB		SB		WB	Total		NB		EB	SB	WB	Total
4:00 PM	0		0		1		0	1	4:00 PM		0	0	0		0	0	0	4:00 PM		0	0	0	0	0
4:05 PM	3		0		2		0	5	4:05 PM		0	0	0		0	0	0	4:05 PM		2	1	0	1	4
4:10 PM	2		0		0		0	2	4:10 PM		0		1		0	0	1	4:10 PM		2	1	0	0	3
4:15 PM	0		0		1		0	1	4:15 PM		0	0	0		0	0	0	4:15 PM		0	0	0	1	1
4:20 PM	1		0		0		0	1	4:20 PM		1	0	0		0	0	1	4:20 PM		1	2	0	0	3
4:25 PM	1		0		2		0	3	4:25 PM		0	0	0		0	0	0	4:25 PM		0	0	0	0	0
4:30 PM	2		0		1		0	3	4:30 PM		0	0	0		1	0	1	4:30 PM		0	0	0	1	1
4:35 PM	1		0		1		0	2	4:35 PM		0	0	0		1	0	1	4:35 PM		0	0	0	0	0
4:40 PM	1		0		1		0	2	4:40 PM		0	0	0		0	0	0	4:40 PM		0	0	0	1	1
4:45 PM	0		0		0		0	0	4:45 PM		0	0	0		0	0	0	4:45 PM		2	0	0	0	2
4:50 PM	1		1		0		0	2	4:50 PM		0	0	0		0	0	0	4:50 PM		0	4	0	0	4
4:55 PM	2		0		1		0	3	4:55 PM		0	0	0		0	0	0	4:55 PM		0	0	0	1	1
5:00 PM	1		0		0		0	1	5:00 PM		0	0	0		0	0	0	5:00 PM		0	0	0	0	0
5:05 PM	1		0		2		0	3	5:05 PM		0	0	0		0	0	0	5:05 PM		2	0	0	1	3
5:10 PM	2		0		2		0	4	5:10 PM		0	0	0		0	0	0	5:10 PM		0	0	0	0	0
5:15 PM	1		0		0		0	1	5:15 PM		0	0	0		0	0	0	5:15 PM		0	0	0	1	1
5:20 PM	0		0		2		0	2	5:20 PM		0	0	0		1	0	1	5:20 PM		0	1	0	0	1
5:25 PM	1		0		0		0	1	5:25 PM		0	0	0		0	0	0	5:25 PM		0	0	0	0	0
5:30 PM	1		0		1		0	2	5:30 PM		0	0	0		0	0	0	5:30 PM		0	1	0	0	1
5:35 PM	1		0		1		0	2	5:35 PM		0	1	1		1	0	2	5:35 PM		0	1	0	2	3
5:40 PM	1		0		2		0	3	5:40 PM		0	0	0		1	0	1	5:40 PM		0	1	0	0	1
5:45 PM	0		0		0		0	0	5:45 PM		1	0	0		0	0	1	5:45 PM		0	1	0	0	1
5:50 PM	1		0		1		0	2	5:50 PM		0	0	0		0	0	0	5:50 PM		1	0	0	0	1
5:55 PM	0		0		0		0	0	5:55 PM		0	1	1		0	0	1	5:55 PM		1	0	0	0	1
Count Total	24		1		21		0	46	Count Total		2	3	3		5	0	10	Count Total		11	13	0	9	33
Peak Hour	15		1		9		0	25	Peak Hour		1	1	1		2	0	4	Peak Hour		7	8	0	5	20

Appendix C

San Jose Approved Trip Inventory

Intersection of : Fruitdale Av \& Meridian Av Traffix Node Number : 3552													
Permit No./Proposed Land Use/Description/Location		M0 9 NBL	$\begin{aligned} & \text { M08 } \\ & \text { NBT } \end{aligned}$	$\begin{aligned} & \text { MO } 7 \\ & \text { NBR } \end{aligned}$	$\begin{aligned} & \text { MO } 3 \\ & \text { SBL } \end{aligned}$	$\begin{aligned} & \text { MO2 } \\ & \text { SBT } \end{aligned}$	$\begin{aligned} & \text { M01 } \\ & \text { SBR } \end{aligned}$		M11 EBT	$\begin{aligned} & \text { M10 } \\ & \text { EBR } \end{aligned}$		$\text { M0 } 5$ WBT	M0 4 WBR
DOWNTOWN LEGACY DOWNTOWN CORE DOWNTOWN STRATEGY PLAN 2000		3	39	1	0	8	0	3	1	3	2	1	2
```PDC89-09-121 (3-08149) Residential LABARBERA & SOUTHWEST EXP (SE/C) 95 SFA```		2	0	0	0	0	0	14	0	2	0	0	0
	TOTAL :	5	39	1	0	8	0	17	1	5	2	1	2
		LEFT	T	U	RIGHT								
	NORTH	0			0								
	EAST	2			2								
	SOUTH	5			1								
	WEST	17			5								









## Appendix D

## Level of Service Calculations

Existing AM	Mon Jul 18, 2022 14:07:25	Page 1-1
	Scenario Report	
Scenario:	Existing AM	
Command:	Default Command	
Volume:	Existing AM	
Geometry:	Existing AM	
Impact Fee:	Default Impact Fee	
Trip Generation:	No Trip Gen	
Trip Distribution:	Dist	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing AM
Mon Jul 18, 2022 14:07:26
Page 2-2
Note: Queue reported is the number of cars per lane.
```



Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing AM
Mon Jul 18, 2022 14:07:26
 Page 3-2
Note: Queue reported is the number of cars per lane.
**
```



Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing AM
 Mon Jul 18, 2022 14:07:26
 Page 4-2
--
Note: Queue reported is the number of cars per lane.
**
```

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Note: Queue reported is the number of cars per lane.
$\star \star \star * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0 .0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing AM
 Mon Jul 18, 2022 14:07:26
 Page 6-2
Note: Queue reported is the number of cars per lane.
**
```

Existing PM	Mon Jul 18, 2022 14:07:27
Scenario:	Scenario Report
	Existing PM
Command:	Default Command
Volume:	Existing PM
Geometry:	Existing PM
Impact Fee:	Default Impact Fee
Trip Generation:	No Trip Gen
Trip Distribution:	Dist
Paths:	Default Path
Routes:	Default Route
Configuration:	Default Configuration

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing PM Mon Jul 18, 2022 14:07:28
 Page 2-2
Note: Queue reported is the number of cars per lane.
**
```



Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing PM Mon Jul 18, 2022 14:07:28
 Page 3-2
Note: Queue reported is the number of cars per lane.
**
```

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing PM Mon Jul 18, 2022 14:07:28
 Page 4-2
--
Note: Queue reported is the number of cars per lane.
**
```

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing PM
Mon Jul 18, 2022 14:07:28
 Page 5-2

Note: Queue reported is the number of cars per lane.
**
```



Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Existing PM Mon Jul 18, 2022 14:07:28
 Page 6-2
Note: Queue reported is the number of cars per lane.
**
```

Background AM	Mon Jul 18, 2022 14:07:31
Scenario:	Scenario Report
Command:	Background AM
Volume:	Default Command
Geometry:	Background AM
Impact Fee:	Existing AM
Trip Generation:	Default Impact Fee
Trip Distribution:	No Trip Gen
Paths:	Dist
Routes:	Default Path
Configuration:	Default Route
	Default Configuration

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Background PM	Mon Jul 18, 2022 14:07:36	Page 1-1
	Scenario Report	
Scenario:	Background PM	
Command:	Default Command	
Volume:	Background PM	
Geometry:	Existing PM	
Impact Fee:	Default Impact Fee	
Trip Generation:	No Trip Gen	
Trip Distribution:	Dist	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background PM
 Mon Jul 18, 2022 14:07:36
 Page 2-2
```

Note: Queue reported is the number of cars per lane.



Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background PM
 Mon Jul 18, 2022 14:07:36
 Page 3-2
```

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background PM
 Mon Jul 18, 2022 14:07:36
 Page 4-2
```

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background PM
 Mon Jul 18, 2022 14:07:36
 Page 5-2
```

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background PM
 Mon Jul 18, 2022 14:07:36
 Page 6-2
```

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Background+P AM	Mon Jul 18, 2022 14:07:40	Page 1-1
	Scenario Report	
Scenario:	Background+P AM	
Command:	Default Command	
Volume:	Background AM	
Geometry:	Existing AM	
Impact Fee:	Default Impact Fee	
Trip Generation:	Trip Generation AM	
Trip Distribution:	Dist	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose
Background+P AM Mon Jul 18, 2022 14:07:41 Page 3-2

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose
Background+P AM Mon Jul 18, 2022 14:07:41 Page 4-2

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background+P AM
 Mon Jul 18, 2022 14:07:41
 Page 5-2
```

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

Background+P PM	Mon Jul 18, 2022 14:07:44	Page 1-1
	Scenario Report	
Scenario:	Background+P PM	
Command:	Default Command	
Volume:	Background PM	
Geometry:	Existing PM	
Impact Fee:	Default Impact Fee	
Trip Generation:	Trip Generation PM	
Trip Distribution:	Dist	
Paths:	Default Path	
Routes:	Default Route	
Configuration:	Default Configuration	

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

```
Background+P PM
 Mon Jul 18, 2022 14:07:45
 Page 3-2
```

Note: Queue reported is the number of cars per lane.


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose


Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to Hexagon Trans., San Jose

## Appendix E

## Signal Warrant Analysis Sheets

## St. Elizabeth Drive and Curci Drive



* NOTE: 150 vph applies as the lower threshold volume for a minor street approach with 2 or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with 1 lane.

Peak Hour Volume Warrant Per 2010 MUTCD- Under 40 MPH

		AM Peak Hour Volumes							
		Approach Lanes							
		One	$\begin{aligned} & 2 \text { or } \\ & \text { More } \end{aligned}$						
Major Street - Both Approaches	St. Elizabeth Drive	x		268	268	317	271	271	313
Minor Street - Highest Approach	Curci Drive	x		109	109	114	131	131	144
Warrant Met?				no	no	no	no	no	no

