

759 Eckhoff StreetAIR QUALITY IMPACT ANALYSIS CITY OF ORANGE

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Alyssa Barnett abarnett@urbanxroads.com

NOVEMBER 19, 2021

TABLE OF CONTENTS

		PECONTENTS	
		NCES	
		EXHIBITS	
		TABLESABBREVIATED TERMS	
		IVE SUMMARY	
	S.1	Summary of Findings	
	S.2	Regulatory Requirements	
ES	S.3	Project Mitigation Measures	3
1	INT	TRODUCTION	5
1.	.1	Site Location	5
1.	.2	Project Description	5
2	AIF	R QUALITY SETTING	9
2.	.1	South Coast Air Basin (SCAB)	9
2.	.2	Regional Climate	9
2.	.3	Wind Patterns and Project Location	10
2.	.4	Criteria Pollutants	11
2.	.5	Existing Air Quality	18
2.	.6	Regional Air Quality	21
2.	.7	Local Air Quality	21
2.	.8	Regulatory Background	22
2.	.9	Regional Air Quality Improvement	26
3	PR	OJECT AIR QUALITY IMPACT	37
3.	.1	Introduction	37
3.	.2	Standards of Significance	37
3.	.3	Models Employed To Analyze Air Quality	38
3.	.4	Construction Emissions	38
3.	.5	Operational Emissions	41
3.	.6	Localized Significance	46
3.	.7	Construction-Source Emissions LST Analysis	50
3.	.8	Operational-Source Emissions LST Analysis	51
3.	.9	CO "Hot Spot" Analysis	53
3.	.10	AQMP	
3.	.11	Potential Impacts to Sensitive Receptors	
3.	.12	Odors	
3.	.13	Cumulative Impacts	59
4	REI	FERENCES	62
5	CFI	RTIFICATIONS	66

APPENDICES

APPENDIX 2.1: STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS
APPENDIX 3.1: CALEEMOD PROJECT CONSTRUCTION (UNMITIGATED) EMISSIONS MODEL OUTPUTS
APPENDIX 3.2: CALEEMOD EXISTING OPERATIONAL EMISSIONS MODEL OUTPUTS
APPENDIX 3.3: CALEEMOD PROJECT OPERATIONAL EMISSIONS MODEL OUTPUTS
APPENDIX 3.4: SCAQMD AMICUS BRIEF
LIST OF EXHIBITS
EXHIBIT 1-A: LOCATION MAP
EXHIBIT 1-B: SITE PLAN
EXHIBIT 2-A: DPM AND DIESEL VEHICLE MILES TREND
EXHIBIT 3-A: RECEPTOR LOCATIONS
LIST OF TABLES
TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS
TABLE 2-1: CRITERIA POLLUTANTS
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)
TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE SCAB21
TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-202022
TABLE 2-5: SCAB O ₃ TREND
TABLE 2-6: SCAB AVERAGE 24-HOUR CONCENTRATION PM ₁₀ TREND (BASED ON FEDERAL STANDARD) ¹
TABLE 2-7: SCAB ANNUAL AVERAGE CONCENTRATION PM ₁₀ TREND (BASED ON STATE STANDARD) ¹ . 29
TABLE 2-8: SCAB 24-HOUR AVERAGE CONCENTRATION PM _{2.5} TREND (BASED ON FEDERAL STANDARD) ¹
TABLE 2-9: SCAB ANNUAL AVERAGE CONCENTRATION PM _{2.5} TREND (BASED ON STATE STANDARD) ¹ . 30
TABLE 2-10: SCAB 8-HOUR AVERAGE CONCENTRATION CO TREND¹
TABLE 2-11: SCAB 1-HOUR AVERAGE CONCENTRATION NO2 TREND (BASED ON FEDERAL STANDARD)32
TABLE 2-12: SCAB 1-HOUR AVERAGE CONCENTRATION NO2 TREND (BASED ON STATE STANDARD) 32
TABLE 3-1: MAXIMUM DAILY REGIONAL EMISSIONS THRESHOLDS
TABLE 3-2: CONSTRUCTION TRIP ASSUMPTIONS
TABLE 3-3: CONSTRUCTION DURATION
TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (1 OF 2)
TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (2 OF 2)
TABLE 3-5: OVERALL CONSTRUCTION EMISSIONS SUMMARY – WITHOUT MITIGATION 41
TABLE 3-6: PASSENGER CAR FLEET MIX
TABLE 3-7: TRUCK FLEET MIX
TABLE 3-8: EMISSIONS FROM EXISTING DEVELOPMENT
TABLE 3-9: SUMMARY OF PEAK OPERATIONAL EMISSIONS
TABLE 3-10: MAXIMUM DAILY LOCALIZED CONSTRUCTION EMISSIONS THRESHOLDS
TABLE 3-11: LOCALIZED CONSTRUCTION-SOURCE EMISSIONS – WITHOUT MITIGATION 51
TABLE 3-12: MAXIMUM DAILY LOCALIZED OPERATIONAL EMISSIONS THRESHOLDS

TABLE 3-13: LOCALIZED SIGNIFICANCE SUMMARY OF OPERATIONS	53
TABLE 3-14: CO MODEL RESULTS	53
TABLE 3-15: TRAFFIC VOLUMES	54

LIST OF ABBREVIATED TERMS

% Percent

°F Degrees Fahrenheit

(1) Reference

μg/m³ Microgram per Cubic Meter

1992 CO Plan 1992 Federal Attainment Plan for Carbon Monoxide

1993 CEQA Handbook SCAQMD's CEQA Air Quality Handbook (1993)

2016-2040 RTP/SCS 2016-2040 Regional Transportation Plan/Sustainable

Communities Strategy

AB 2595 California Clean Air Act

AQIA Air Quality Impact Analysis

AQMP Air Quality Management Plan

BAAQMD Bay Area Air Quality Management District

BC Black Carbon

Brief Brief of Amicus Curiae by the SCAQMD in the Friant Ranch

Case

C₂Cl₄ Perchloroethylene C₄H₆ 1,3-butadiene

C₆H₆ Benzene

 C_2H_3Cl Vinyl Chloride C_2H_4O Acetaldehyde

CAA Federal Clean Air Act

CAAQS California Ambient Air Quality Standards
CalEEMod California Emissions Estimator Model

CalEPA California Environmental Protection Agency
CALGreen California Green Building Standards Code

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board
CCR California Code of Regulations
CEC California Energy Commission

CEQA California Environmental Quality Act
CEQA Guidelines 2020 CEQA Statute and Guidelines

CFR Code of Federal Regulations

CH₂O Formaldehyde
City City of Orange
CO Carbon Monoxide
COH Coefficient of Haze

COHb Carboxyhemoglobin

Cr(VI) Chromium

CTP Clean Truck Program

DPM Diesel Particulate Matter

DRRP Diesel Risk Reduction Plan

EC Elemental Carbon

EIR Environmental Impact Reports

EMFAC EMissions FACtor Model

EPA Environmental Protection Agency

ETW Equivalent Test Weight

FHWA Federal Highway Administration FTA Federal Transit Administration

GHG Greenhouse Gas

GVWR Gross Vehicle Weight Rating

H₂S Hydrogen Sulfide HDT Heavy Duty Trucks

HI Hazard Index

HHDT Heavy-Heavy-Duty Trucks

hp Horsepower lbs Pounds

Ibs/day Pounds Per Day
LDA Light Duty Auto

LDR Low Density Residential

LDT1/LDT2 Light-Duty Trucks

LHDT1/LHDT2 Light-Heavy-Duty Trucks

LST Localized Significance Threshold

LST Methodology Final Localized Significance Threshold Methodology

MATES Multiple Air Toxics Exposure Study

MCY Motorcycles

MDV Medium-Duty Vehicles

MHDT Medium-Heavy-Duty Trucks

MICR Maximum Individual Cancer Risk

MM Mitigation Measures

mph Miles Per Hour

MWELO California Department of Water Resources' Model Water

Efficient

 N_2 Nitrogen N_2O Nitrous Oxide

NAAQS National Ambient Air Quality Standards

NO Nitric Oxide

NO₂ Nitrogen Dioxide NO_X Nitrogen Oxides

 O_2 Oxygen O_3 Ozone

O₂ Deficiency Chronic Hypoxemia OBD-II On-Board Diagnostic

OPR Office of Planning and Research

Pb Lead

PM₁₀ Particulate Matter 10 microns in diameter or less PM_{2.5} Particulate Matter 2.5 microns in diameter or less

POLA Port of Los Angeles
POLB Port of Long Beach
ppm Parts Per Million
Project 759 Eckhoff Street

RECLAIM Regional Clean Air Incentives Market RFG-2 Reformulated Gasoline Regulation

ROG Reactive Organic Gases

SB Senate Bill

SCAB South Coast Air Basin

SCAG Southern California Association of Governments

SCE Southern California Edison

SCAQMD South Coast Air Quality Management District

sf Square Foot or Square Feet SIPs State Implementation Plans

SO₂ Sulfur Dioxide

SO₄ Sulfates

SO_x Sulfur Oxides

SoCalGas The Southern California Gas Company

SR-57 State Route 57

SRA Source Receptor Area
TAC Toxic Air Contaminant

TDM Transportation Demand Management

Title 24 California Building Code
TITLE I Non-Attainment Provisions
TITLE II Mobile Sources Provisions

UFP Ultra Fine Particles

UP Union Pacific
UTRs Utility Tractors

VMT Vehicle Miles Traveled

VOC Volatile Organic Compounds

vph Vehicles Per Hour

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this 759 Eckhoff Street Air Quality Impact Analysis (AQIA) are summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the California Environmental Quality Act (CEQA) Guidelines (CEQA Guidelines) (1). Table ES-1 shows the findings of less than significant for each potential air quality impact under CEQA. As shown, no mitigation measures (MM) are required.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Analysis	Report	Significan	ce Findings
Allalysis	Section	Unmitigated	Mitigated
Regional Construction Emissions	3.4	Less Than Significant	n/a
Localized Construction Emissions	3.7	Less Than Significant	n/a
Regional Operational Emissions	3.5	Less Than Significant	n/a
Localized Operational Emissions	3.8	Less Than Significant	n/a
CO "Hot Spot" Analysis	3.9	Less Than Significant	n/a
Air Quality Management Plan	3.10	Less Than Significant	n/a
Sensitive Receptors	3.11	Less Than Significant	n/a
Odors	3.12	Less Than Significant	n/a
Cumulative Impacts	3.13	Less Than Significant	n/a

ES.2 REGULATORY REQUIREMENTS

There are numerous requirements that development projects must comply with by law, and that were put in place by federal, State, and local regulatory agencies for the improvement of air quality.

TITLE 24

The proposed project is required to comply with Title 24 of the California Code of Regulations (CCR) established by the California Energy Commission (CEC) regarding energy conservation standards.

GENERAL

Any operation or activity that might cause the emission of any smoke, fly ash, dust, fumes, vapors, gases, or other forms of air pollution, which can cause damage to human health, vegetation, or other forms of property, or can cause excessive soiling on any other parcel shall conform to the requirements of the SCAQMD.

SCAQMD RULES

South Coast Air Quality Management District (SCAQMD) Rules that are currently applicable during construction activity for this Project are described below.

SCAQMD RULE 402

A person shall not discharge from any source whatsoever such quantities of air contaminants or other material that cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or that endanger the comfort, repose, health, or safety of any such persons or the public, or that cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule do not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.

Odor Emissions. All uses shall be operated in a manner such that no offensive odor is perceptible at or beyond the property line of that use.

SCAQMD RULE 403

This rule is intended to reduce the amount of particulate matter entrained in the ambient air as a result of anthropogenic (human-made) fugitive dust sources by requiring actions to prevent and reduce fugitive dust emissions. Rule 403 applies to any activity or human-made condition capable of generating fugitive dust and requires best available control measures to be applied to earth moving and grading activities.

Dust Control, Operations. Any operation or activity that might cause the emission of any smoke, fly ash, dust, fumes, vapors, gases, or other forms of air pollution, which can cause damage to human health, vegetation, or other forms of property, or can cause excessive soiling on any other parcel, shall conform to the requirements of the SCAQMD.

SCAQMD RULE 1113

This rule serves to limit the volatile organic compounds (VOC) content of architectural coatings used on projects in the SCAQMD. Any person who supplies, sells, offers for sale, or manufactures any architectural coating for use on projects.

SCAQMD RULE 1301

This rule provides pre-construction review requirements to ensure that new or relocated facilities do not interfere with progress in attainment of the National Ambient Air Quality Standards (NAAQS), while future economic growth within the SCAQMD is not unnecessarily restricted. The specific air quality goal is to achieve no net increases from new or modified permitted sources of nonattainment air contaminants or their precursors. Rule 1301 also limits emission increases of ammonia, and Ozone Depleting Compounds (ODCs) from new, modified or relocated facilities by requiring the use of Best Available Control Technology (BACT).

Although the Project would comply with the above regulatory requirements, it should be noted that emission reductions associated with Rules 402 and 1301 cannot be quantified in the California Emissions Estimator Model (CalEEMod) and are therefore not reflected in the emissions presented herein. Conversely, Rule 403 (Fugitive Dust) (2) and Rule 1113 (Architectural Coatings) (3) can be modeled in CalEEMod. As such, credit for Rule 403 and Rule 1113 have been taken in the analysis.

ES.3 Project Mitigation Measures

The Project would not result in an exceedance of any regional or localized construction or operational-source emissions thresholds. As such, the Project would not result in any significant impacts and no MMs are required.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the AQIA prepared by Urban Crossroads, Inc., for the proposed 759 Eckhoff Street (Project). The purpose of this AQIA is to evaluate the potential impacts to air quality associated with construction and operation of the Project and recommend measures to mitigate impacts considered potentially significant in comparison to thresholds established by the SCAQMD.

1.1 SITE LOCATION

The proposed Project is located south of West Collins Avenue and east of North Eckhoff Street at 759 North Eckhoff Street in the City of Orange, as shown on Exhibit 1-A. The State Route 57 (SR-57) freeway is located approximately 0.50 mile west of the Project site boundary.

The Project is located adjacent to existing industrial uses to the north, south, and east, and the Orange County Department of Education/Foster building west of the Project site. The Orange County Children and Family Services to the west and the Orangeland RV Park to the north representing the nearest residential use to the Project site. Per the City of Orange General Plan, the Project site is designated for Light Industrial uses. Light Industrial designation is intended for uses that are compatible with nearby commercial and residential districts and that do not produce substantial environmental nuisances (noise, odor, dust, smoke, glare, etc.). This designation allows for manufacturing, processing, and distribution of goods (4).

1.2 PROJECT DESCRIPTION

Exhibit 1-B illustrates the preliminary Project site plan. The proposed Project is to consist of 51,598 square feet (sf) of general light industrial use and 241,164 sf of warehousing use within two buildings. The Project is anticipated to be open by the year 2023.

This analysis includes a conservative assumption of on-site Project-related emission sources for potential future tenants, including architectural coatings, consumer products, landscape maintenance equipment, emissions associated with natural gas and electricity, and mobile source emissions. This analysis is intended to describe air impacts associated with the expected operational activities at the Project site. This report assumes the Project will operate 24-hours daily for seven days per week.

EXHIBIT 1-A: LOCATION MAP

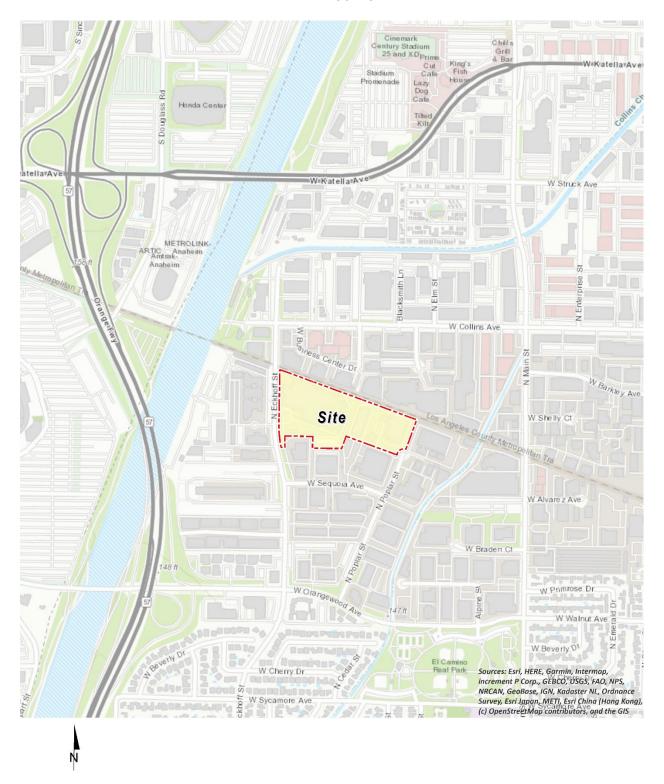
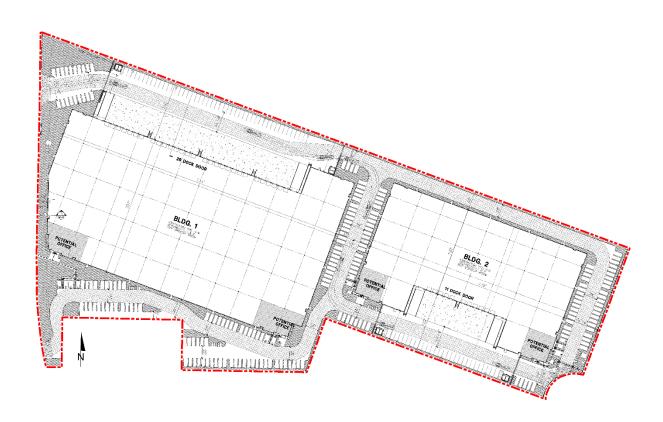



EXHIBIT 1-B: SITE PLAN

This page intentionally left blank

2 AIR QUALITY SETTING

This section provides an overview of the existing air quality conditions in the Project area and region.

2.1 SOUTH COAST AIR BASIN (SCAB)

The Project site is located in the SCAB within the jurisdiction of SCAQMD (5). The SCAQMD was created by the 1977 Lewis-Presley Air Quality Management Act, which merged four county air pollution control bodies into one regional district. Under the Act, the SCAQMD is responsible for bringing air quality in areas under its jurisdiction into conformity with federal and state air quality standards. As previously stated, the Project site is located within the SCAB, a 6,745-square mile subregion of the SCAQMD, which includes portions of Los Angeles, Riverside, and San Bernardino Counties, and all of Orange County.

The SCAB is bounded by the Pacific Ocean to the west and the San Gabriel, San Bernardino, and San Jacinto Mountains to the north and east. The Los Angeles County portion of the Mojave Desert Air Basin is bounded by the San Gabriel Mountains to the south and west, the Los Angeles / Kern County border to the north, and the Los Angeles / San Bernardino County border to the east. The Riverside County portion of the Salton Sea Air Basin is bounded by the San Jacinto Mountains in the west and spans eastward up to the Palo Verde Valley.

2.2 REGIONAL CLIMATE

The regional climate has a substantial influence on air quality in the SCAB. In addition, the temperature, wind, humidity, precipitation, and amount of sunshine influence the air quality.

The annual average temperatures throughout the SCAB vary from the low to middle 60s degrees Fahrenheit (°F). Due to a decreased marine influence, the eastern portion of the SCAB shows greater variability in average annual minimum and maximum temperatures. January is the coldest month throughout the SCAB, with average minimum temperatures of 47°F in downtown Los Angeles and 36°F in San Bernardino. All portions of the SCAB have recorded maximum temperatures above 100°F.

Although the climate of the SCAB can be characterized as semi-arid, the air near the land surface is quite moist on most days because of the presence of a marine layer. This shallow layer of sea air is an important modifier of SCAB climate. Humidity restricts visibility in the SCAB, and the conversion of sulfur dioxide (SO_2) to sulfates (SO_4) is heightened in air with high relative humidity. The marine layer provides an environment for that conversion process, especially during the spring and summer months. The annual average relative humidity within the SCAB is 71% along the coast and 59% inland. Since the ocean effect is dominant, periods of heavy early morning fog are frequent and low stratus clouds are a characteristic feature. These effects decrease with distance from the coast.

More than 90% of the SCAB's rainfall occurs from November through April. The annual average rainfall varies from approximately nine inches in Riverside to fourteen inches in downtown Los

Angeles. Monthly and yearly rainfall totals are extremely variable. Summer rainfall usually consists of widely scattered thunderstorms near the coast and slightly heavier shower activity in the eastern portion of the SCAB with frequency being higher near the coast.

Due to its generally clear weather, about three-quarters of available sunshine is received in the SCAB. The remaining one-quarter is absorbed by clouds. The ultraviolet portion of this abundant radiation is a key factor in photochemical reactions. On the shortest day of the year there are approximately 10 hours of possible sunshine, and on the longest day of the year there are approximately 14½ hours of possible sunshine.

The importance of wind to air pollution is considerable. The direction and speed of the wind determines the horizontal dispersion and transport of the air pollutants. During the late autumn to early spring rainy season, the SCAB is subjected to wind flows associated with the traveling storms moving through the region from the northwest. This period also brings five to ten periods of strong, dry offshore winds, locally termed "Santa Anas" each year. During the dry season, which coincides with the months of maximum photochemical smog concentrations, the wind flow is bimodal, typified by a daytime onshore sea breeze and a nighttime offshore drainage wind. Summer wind flows are created by the pressure differences between the relatively cold ocean and the unevenly heated and cooled land surfaces that modify the general northwesterly wind circulation over southern California. Nighttime drainage begins with the radiational cooling of the mountain slopes. Heavy, cool air descends the slopes and flows through the mountain passes and canyons as it follows the lowering terrain toward the ocean. Another characteristic wind regime in the SCAB is the "Catalina Eddy," a low level cyclonic (counterclockwise) flow centered over Santa Catalina Island which results in an offshore flow to the southwest. On most spring and summer days, some indication of an eddy is apparent in coastal sections.

In the SCAB, there are two distinct temperature inversion structures that control vertical mixing of air pollution. During the summer, warm high-pressure descending (subsiding) air is undercut by a shallow layer of cool marine air. The boundary between these two layers of air is a persistent marine subsidence/inversion. This boundary prevents vertical mixing which effectively acts as an impervious lid to pollutants over the entire SCAB. The mixing height for the inversion structure is normally situated 1,000 to 1,500 feet above mean sea level.

A second inversion-type forms in conjunction with the drainage of cool air off the surrounding mountains at night followed by the seaward drift of this pool of cool air. The top of this layer forms a sharp boundary with the warmer air aloft and creates nocturnal radiation inversions. These inversions occur primarily in the winter when nights are longer and onshore flow is weakest. They are typically only a few hundred feet above mean sea level. These inversions effectively trap pollutants, such as NO_X and CO from vehicles, as the pool of cool air drifts seaward. Winter is therefore a period of high levels of primary pollutants along the coastline.

2.3 WIND PATTERNS AND PROJECT LOCATION

The distinctive climate of the Project area and the SCAB is determined by its terrain and geographical location. The SCAB is located in a coastal plain with connecting broad valleys and

low hills, bounded by the Pacific Ocean in the southwest quadrant with high mountains forming the remainder of the perimeter.

Wind patterns across the south coastal region are characterized by westerly and southwesterly onshore winds during the day and easterly or northeasterly breezes at night. Winds are characteristically light although the speed is somewhat greater during the dry summer months than during the rainy winter season.

2.4 CRITERIA POLLUTANTS

Criteria pollutants are pollutants that are regulated through the development of human health based and/or environmentally based criteria for setting permissible levels. Criteria pollutants, their typical sources, and health effects are identified below (6):

TABLE 2-1: CRITERIA POLLUTANTS

Criteria Pollutant	Description	Sources	Health Effects
СО	CO is a colorless, odorless gas produced by the incomplete combustion of carbon-containing fuels, such as gasoline or wood. CO concentrations tend to be the highest during the winter morning, when little to no wind and surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines, unlike ozone (O ₃), motor vehicles operating at slow speeds are the primary source of CO in the SCAB. The highest ambient CO concentrations are generally found near congested transportation corridors and intersections.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Individuals with a deficient blood supply to the heart are the most susceptible to the adverse effects of CO exposure. The effects observed include earlier onset of chest pain with exercise, and electrocardiograph changes indicative of decreased oxygen (O ₂) supply to the heart. Inhaled CO has no direct toxic effect on the lungs but exerts its effect on tissues by interfering with O ₂ transport and competing with O ₂ to combine with hemoglobin present in the blood to form carboxyhemoglobin (COHb). Hence, conditions with an increased demand for O ₂ supply can be adversely affected by exposure to CO. Individuals most at risk include fetuses, patients with diseases involving heart and blood vessels, and patients with chronic hypoxemia (O ₂ deficiency) as seen at high altitudes.

Criteria Pollutant	Description	Sources	Health Effects
SO ₂	SO ₂ is a colorless, extremely irritating gas or liquid. It enters the atmosphere as a pollutant mainly as a result of burning high sulfur-content fuel oils and coal and from chemical processes occurring at chemical plants and refineries. When SO ₂ oxidizes in the atmosphere, it forms SO ₄ . Collectively, these pollutants are referred to as sulfur oxides (SO _x).	Coal or oil burning power plants and industries, refineries, diesel engines	A few minutes of exposure to low levels of SO ₂ can result in airway constriction in some asthmatics, all of whom are sensitive to its effects. In asthmatics, increase in resistance to air flow, as well as reduction in breathing capacity leading to severe breathing difficulties, are observed after acute exposure to SO ₂ . In contrast, healthy individuals do not exhibit similar acute responses even after exposure to higher concentrations of SO ₂ . Animal studies suggest that despite SO ₂ being a respiratory irritant, it does not cause substantial lung injury at ambient concentrations. However, very high levels of exposure can cause lung edema (fluid accumulation), lung tissue damage, and sloughing off of cells lining the respiratory tract. Some population-based studies indicate that the mortality and morbidity effects associated with fine particles show a similar association with ambient SO ₂ levels. In these studies, efforts to separate the effects of SO ₂ from those of fine particles have not been successful. It is not clear whether the two pollutants act synergistically, or one pollutant alone is the predominant factor.

Criteria Pollutant	Description	Sources	Health Effects
NOx	NO _x consist of nitric oxide (NO), nitrogen dioxide (NO ₂) and nitrous oxide (N ₂ O) and are formed when nitrogen (N ₂) combines with O ₂ . Their lifespan in the atmosphere ranges from one to seven days for nitric oxide and nitrogen dioxide, to 170 years for nitrous oxide. NO _x is typically created during combustion processes and are major contributors to smog formation and acid deposition. NO ₂ is a criteria air pollutant and may result in numerous adverse health effects; it absorbs blue light, resulting in a brownish-red cast to the atmosphere and reduced visibility. Of the seven types of nitrogen oxide compounds, NO ₂ is the most abundant in the atmosphere. As ambient concentrations of NO ₂ are related to traffic density, commuters in heavy traffic may be exposed to higher concentrations of NO ₂ than those indicated by regional monitoring station.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Population-based studies suggest that an increase in acute respiratory illness, including infections and respiratory symptoms in children (not infants), is associated with long-term exposure to NO ₂ at levels found in homes with gas stoves, which are higher than ambient levels found in Southern California. Increase in resistance to air flow and airway contraction is observed after short-term exposure to NO ₂ in healthy subjects. Larger decreases in lung functions are observed in individuals with asthma or chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) than in healthy individuals, indicating a greater susceptibility of these sub-groups. In animals, exposure to levels of NO ₂ considerably higher than ambient concentrations result in increased susceptibility to infections, possibly due to the observed changes in cells involved in maintaining immune functions. The severity of lung tissue damage associated with high levels of O ₃ exposure increases when animals are exposed to a combination of O ₃ and NO ₂ .
O ₃	O ₃ is a highly reactive and unstable gas that is formed when VOCs and NO _x , both byproducts of internal combustion engine exhaust, undergo slow photochemical reactions in the presence of sunlight. O ₃ concentrations are generally	Formed when reactive organic gases (ROG) and NO _X react in the presence of sunlight. ROG sources	Individuals exercising outdoors, children, and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the most susceptible subgroups for O ₃ effects. Short-

Criteria Pollutant	Description	Sources	Health Effects
	highest during the summer months when direct sunlight, light wind, and warm temperature conditions are favorable to the formation of this pollutant.	include any source that burns fuels, (e.g., gasoline, natural gas, wood, oil) solvents, petroleum processing and storage and pesticides.	term exposure (lasting for a few hours) to O ₃ at levels typically observed in Southern California can result in breathing pattern changes, reduction of breathing capacity, increased susceptibility to infections, inflammation of the lung tissue, and some immunological changes. Elevated O ₃ levels are associated with increased school absences. In recent years, a correlation between elevated ambient O ₃ levels and increases in daily hospital admission rates, as well as mortality, has also been reported. An increased risk for asthma has been found in children who participate in multiple outdoor sports and reside in communities with high O ₃ levels. O ₃ exposure under exercising conditions is known to increase the severity of the responses described above. Animal studies suggest that exposure to a combination of pollutants that includes O ₃ may be more toxic than exposure to O ₃ alone. Although lung volume and resistance changes observed after a single exposure diminish with repeated exposures, biochemical and cellular changes appear to persist, which can lead to subsequent lung structural changes.
Particulate Matter	PM ₁₀ : A major air pollutant consisting of tiny solid or liquid particles of soot, dust, smoke, fumes, and aerosols. Particulate matter pollution is a major cause of reduce visibility (haze) which is	Sources of PM ₁₀ include road dust, windblown dust and construction. Also formed from other pollutants (acid	A consistent correlation between elevated ambient fine particulate matter (PM ₁₀ and PM _{2.5}) levels and an increase in mortality rates, respiratory infections,

Criteria Pollutant	Description	Sources	Health Effects
	caused by the scattering of light and consequently the significant reduction air clarity. The size of the particles (10 microns or smaller, about 0.0004 inches or less) allows them to easily enter the lungs where they may be deposited, resulting in adverse health effects. Additionally, it should be noted that PM ₁₀ is considered a criteria air pollutant. PM _{2.5} : A similar air pollutant to PM ₁₀ consisting of tiny solid or liquid particles which are 2.5 microns or smaller (which is often referred to as fine particles). These particles are formed in the atmosphere from primary gaseous emissions that include SO ₄ formed from SO ₂ release from power plants and industrial facilities and nitrates that are formed from NO _x release from power plants, automobiles and other types of combustion sources. The chemical composition of fine particles highly depends on location, time of year, and weather conditions. PM _{2.5} is a criteria air pollutant.	rain, NO _x , SO _x , organics). Incomplete combustion of any fuel. PM _{2.5} comes from fuel combustion in motor vehicles, equipment and industrial sources, residential and agricultural burning. Also formed from reaction of other pollutants (acid rain, NO _x , SO _x , organics).	number and severity of asthma attacks and the number of hospital admissions has been observed in different parts of the United States and various areas around the world. In recent years, some studies have reported an association between long-term exposure to air pollution dominated by fine particles and increased mortality, reduction in lifespan, and an increased mortality from lung cancer. Daily fluctuations in PM _{2.5} concentration levels have also been related to hospital admissions for acute respiratory conditions in children, to school and kindergarten absences, to a decrease in respiratory lung volumes in normal children, and to increased medication use in children and adults with asthma. Recent studies show lung function growth in children is reduced with long term exposure to particulate matter. The elderly, people with preexisting respiratory or cardiovascular disease, and children appear to be more susceptible to the effects of high levels of PM ₁₀ and PM _{2.5} .
VOC	VOCs are hydrocarbon compounds (any compound containing various combinations of hydrogen and carbon atoms) that exist in the ambient air. VOCs contribute to the formation of smog through atmospheric photochemical reactions and/or may be toxic. Compounds of carbon (also known as organic compounds) have different levels	Organic chemicals are widely used as ingredients in household products. Paints, varnishes and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic,	Breathing VOCs can irritate the eyes, nose and throat, can cause difficulty breathing and nausea, and can damage the central nervous system as well as other organs. Some VOCs can cause cancer. Not all VOCs have all these health effects, though many have several.

Criteria Pollutant	Description	Sources	Health Effects
	of reactivity; that is, they do not react at the same speed or do not form O₃ to the same extent when exposed to photochemical processes. VOCs often have an odor, and some examples include gasoline, alcohol, and the solvents used in paints. Exceptions to the VOC designation include CO, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate. VOCs are a criteria pollutant since they are a precursor to O₃, which is a criteria pollutant. The terms VOC and ROG (see below) interchangeably.	degreasing and hobby products. Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.	
ROG	Similar to VOC, ROGs are also precursors in forming O ₃ and consist of compounds containing methane, ethane, propane, butane, and longer chain hydrocarbons, which are typically the result of some type of combustion/decomposition process. Smog is formed when ROG and NO _X react in the presence of sunlight. ROGs are a criteria pollutant since they are a precursor to O ₃ , which is a criteria pollutant. The terms ROG and VOC (see previous) interchangeably.	Sources similar to VOCs.	Health effects similar to VOCs.
Lead (Pb)	Pb is a heavy metal that is highly persistent in the environment and is considered a criteria pollutant. In the past, the primary source of Pb in the air was emissions from vehicles burning leaded gasoline. The major sources of Pb emissions are ore and metals processing, particularly Pb smelters, and piston-engine aircraft operating on leaded aviation gasoline. Other stationary sources include waste incinerators, utilities, and	Metal smelters, resource recovery, leaded gasoline, deterioration of Pb paint.	Fetuses, infants, and children are more sensitive than others to the adverse effects of Pb exposure. Exposure to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased Pb levels are

Criteria Pollutant	Description	Sources	Health Effects
	lead-acid battery manufacturers. It should be noted that the Project does not include operational activities such as metal processing or Pb acid battery manufacturing. As such, the Project is not anticipated to generate a quantifiable amount of Pb emissions.		associated with increased blood pressure. Pb poisoning can cause anemia, lethargy, seizures, and death; although it appears that there are no direct effects of Pb on the respiratory system. Pb can be stored in the bone from early age environmental exposure, and elevated blood Pb levels can occur due to breakdown of bone tissue during pregnancy, hyperthyroidism (increased secretion of hormones from the thyroid gland) and osteoporosis (breakdown of bony tissue). Fetuses and breast-fed babies can be exposed to higher levels of Pb because of previous environmental Pb exposure of their mothers.
Odor	Odor means the perception experienced by a person when one or more chemical substances in the air come into contact with the human olfactory nerves (7).	Odors can come from many sources including animals, human activities, industry, natures, and vehicles.	Offensive odors can potentially affect human health in several ways. First, odorant compounds can irritate the eye, nose, and throat, which can reduce respiratory volume. Second, studies have shown that the VOCs that cause odors can stimulate sensory nerves to cause neurochemical changes that might influence health, for instance, by compromising the immune system. Finally, unpleasant odors can trigger memories or attitudes linked to unpleasant odors, causing cognitive and emotional effects such as stress.

2.5 EXISTING AIR QUALITY

Existing air quality is measured at established SCAQMD air quality monitoring stations. Monitored air quality is evaluated in the context of ambient air quality standards. These standards are the levels of air quality that are considered safe, with an adequate margin of safety, to protect the public health and welfare. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) currently in effect are shown in Table 2-2 (8).

The determination of whether a region's air quality is healthful or unhealthful is determined by comparing contaminant levels in ambient air samples to the state and federal standards. At the time of this AQIA, the most recent state and federal standards were updated by CARB on May 4, 2016 and are presented in Table 2-2. The air quality in a region is considered to be in attainment by the state if the measured ambient air pollutant levels for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, PM₁₀, and PM_{2.5} do not exceed standards. All others are not to be equaled or exceeded. It should be noted that the three-year period is presented for informational purposes and is not the basis for how the State assigns attainment status. Attainment status for a pollutant means that the SCAQMD meets the standards set by the EPA or the California EPA (CalEPA). Conversely, nonattainment means that an area has monitored air quality that does not meet the NAAQS or CAAQS standards. In order to improve air quality in nonattainment areas, CARB has implemented a State Implementation Plan (SIP). The SIP outlines the measures that the state will take to improve air quality. Once nonattainment areas meet the standards and additional redesignation requirements, the EPA will designate the area as a maintenance area (9).

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)

		Ambient A	Air Qualit	y Standard	ds		
E THE STATE OF	Averaging California Standards ¹			Nat	ional Standards	2	
Pollutant	Time	Concentration 3	Method ⁴	Primary 3,5	Secondary 3,6	Method 7	
Ozone (O ₃) ⁸	1 Hour	0.09 ppm (180 μg/m³)	Ultraviolet	_	Same as	Ultraviolet	
O2011C (O3)	8 Hour	0.070 ppm (137 µg/m³)	Photometry	0.070 ppm (137 µg/m³)	Primary Standard	Photometry	
Respirable Particulate	24 Hour	50 μg/m ³	Gravimetric or	150 μg/m ³	Same as	Inertial Separation and Gravimetric	
Matter (PM10) ⁹	Annual Arithmetic Mean	20 μg/m ³	Beta Attenuation	2 <u>2—</u> 27	Primary Standard	Analysis	
Fine Particulate	24 Hour	-	_	35 μg/m ³	Same as Primary Standard	Inertial Separation	
Matter (PM2.5) ⁹	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12.0 µg/m³	15 μg/m ³	and Gravimetric Analysis	
Carbon	1 Hour	20 ppm (23 mg/m ³)	N. S.	35 ppm (40 mg/m ³)		N. P.	
Monoxide	8 Hour	9.0 ppm (10 mg/m ³)	Non-Dispersive Infrared Photometry (NDIR)	9 ppm (10 mg/m³)	5 77	Non-Dispersive Infrared Photometry (NDIR)	
(CO)	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)	(NDIR)	2 <u></u> 37	<u>8-0</u>		
Nitrogen Dioxide	1 Hour	0.18 ppm (339 μg/m³)	Gas Phase Chemiluminescence	100 ppb (188 μg/m³)	_	Gas Phase Chemiluminescence	
(NO ₂) ¹⁰	Annual Arithmetic Mean	0.030 ppm (57 μg/m³)		0.053 ppm (100 μg/m³)	Same as Primary Standard		
	1 Hour	0.25 ppm (655 μg/m³)	Ultraviolet Fluorescence	75 ppb (196 µg/m³)	_	Ultraviolet Flourescence; Spectrophotometry (Pararosaniline Method)	
Sulfur Dioxide	3 Hour	-		-	0.5 ppm (1300 μg/m³)		
(SO ₂) ¹¹	24 Hour	0.04 ppm (105 µg/m ³)		0.14 ppm (for certain areas) ¹¹	<u>(200</u> 2		
	Annual Arithmetic Mean	-		0.030 ppm (for certain areas) ¹¹	_		
	30 Day Average	1.5 μg/m ³		-	-	0	
Lead ^{12,13}	Calendar Quarter	-	Atomic Absorption	1.5 µg/m ³ (for certain areas) ¹²	Same as	High Volume Sampler and Atomic Absorption	
	Rolling 3-Month Average	-		0.15 µg/m³		, about paon	
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape	No National			
Sulfates	2 <mark>4</mark> Hour	25 μg/m³	Ion Chromatography				
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m³)	Ultraviolet Fluorescence				
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m³)	Gas Chromatography				

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and
 particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be
 equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the
 California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of
 the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
 - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 µg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

2.6 REGIONAL AIR QUALITY

Air pollution contributes to a wide variety of adverse health effects. The EPA has established NAAQS for six of the most common air pollutants: CO, Pb, O_3 , particulate matter (PM₁₀ and PM_{2.5}), NO₂, and SO₂ which are known as criteria pollutants. The SCAQMD monitors levels of various criteria pollutants at 37 permanent monitoring stations and 5 single-pollutant source Pb air monitoring sites throughout the air district (10). On February 21, 2019, CARB posted the 2018 amendments to the state and national area designations. See Table 2-3 for attainment designations for the SCAB (11). Appendix 2.1 provides geographic representation of the state and federal attainment status for applicable criteria pollutants within the SCAB.

TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE SCAB

Criteria Pollutant	State Designation	Federal Designation		
O ₃ – 1-hour standard	Nonattainment			
O ₃ – 8-hour standard	Nonattainment	Nonattainment		
PM ₁₀	Nonattainment	Attainment		
PM _{2.5}	Nonattainment	Nonattainment		
СО	Attainment	Unclassifiable/Attainment		
NO ₂	Attainment	Unclassifiable/Attainment		
SO ₂	Unclassifiable/Attainment	Unclassifiable/Attainment		
Pb ¹	Attainment	Unclassifiable/Attainment		

Note: See Appendix 2.1 for a detailed map of State/National Area Designations within the SCAB

2.7 LOCAL AIR QUALITY

The SCAQMD has designated general forecast areas and air monitoring areas (referred to as Source Receptor Areas [SRA]) throughout the district in order to provide Southern California residents about the air quality conditions. The Project site is located within SRA 17. Within SRA 17, the I-5 Near Road monitoring station, located 3.04 miles northwest, is the nearest station that provides air quality statistics for CO and NO₂. As the I-5 Near Road monitoring station does not provide information for O₃, PM₁₀, and PM_{2.5}, statistics from the Central Orange County monitoring station, 4.32 miles northwest of the Project site, will be reported. It should be noted that the Central Orange County monitoring stations were utilized in lieu of the I-15 Near Road monitoring station only in instances where data was not available.

The most recent three (3) years of data available is shown on Table 2-4 and identifies the number of days ambient air quality standards were exceeded for the study area, which is considered to be representative of the local air quality at the Development Site. Data for O_3 , CO, NO_2 , PM_{10} , and $PM_{2.5}$ for 2018 through 2020 was obtained from the SCAQMD Air Quality Data Tables (12).

[&]quot;-" = The national 1-hour O₃ standard was revoked effective June 15, 2005.

 $^{^{}m 1}$ The Federal nonattainment designation for lead is only applicable towards the Los Angeles County portion of the SCAB.

Additionally, data for SO₂ has been omitted as attainment is regularly met in the SCAB and few monitoring stations measure SO₂ concentrations.

TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020

Dallistant	Chandand	Year				
Pollutant	Standard	2018	2019	2020		
O ₃						
Maximum Federal 1-Hour Concentration (ppm)		0.112	0.096	0.142		
Maximum Federal 8-Hour Concentration (ppm)		0.071	0.082	0.097		
Number of Days Exceeding State 1-Hour Standard	> 0.09 ppm	1	1	6		
Number of Days Exceeding State/Federal 8-Hour Standard	> 0.070 ppm	1	1	15		
СО						
Maximum Federal 1-Hour Concentration	> 35 ppm	2.7	2.6	2.4		
Maximum Federal 8-Hour Concentration	> 20 ppm	2.2	1.6	2.0		
NO ₂						
Maximum Federal 1-Hour Concentration	> 0.100 ppm	0.062	0.059	0.070		
Annual Federal Standard Design Value		0.021	0.019	0.019		
PM ₁₀						
Maximum Federal 24-Hour Concentration (μg/m³)	> 150 μg/m ³	129	127	120		
Annual Federal Arithmetic Mean (μg/m³)		27.2	21.9	23.9		
Number of Days Exceeding Federal 24-Hour Standard	> 150 μg/m ³	0	0	0		
Number of Days Exceeding State 24-Hour Standard	> 50 μg/m ³	13	13	13		
PM _{2.5}	·					
Maximum Federal 24-Hour Concentration (μg/m³)	> 35 μg/m ³	54.10	36.10	41.40		
Annual Federal Arithmetic Mean (μg/m³)	> 12 μg/m ³	11.02	9.32	11.27		
Number of Days Exceeding Federal 24-Hour Standard	> 35 μg/m ³	3	3	1		

ppm = Parts Per Million

μg/m³ = Microgram per Cubic Meter

Source: Data for O₃, CO, NO₂, PM₁₀, and PM_{2.5} was obtained from SCAQMD Air Quality Data Tables.

2.8 REGULATORY BACKGROUND

2.8.1 FEDERAL REGULATIONS

The EPA is responsible for setting and enforcing the NAAQS for O₃, CO, NO_x, SO₂, PM₁₀, and Pb (13). The EPA has jurisdiction over emissions sources that are under the authority of the federal government including aircraft, locomotives, and emissions sources outside state waters (Outer Continental Shelf). The EPA also establishes emission standards for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission requirements of CARB.

The Federal Clean Air Act (CAA) was first enacted in 1955 and has been amended numerous times in subsequent years (1963, 1965, 1967, 1970, 1977, and 1990). The CAA establishes the federal air quality standards, the NAAQS, and specifies future dates for achieving compliance (14). The CAA also mandates that states submit and implement SIPs for local areas not meeting these standards. These plans must include pollution control measures that demonstrate how the standards would be met.

The 1990 amendments to the CAA that identify specific emission reduction goals for areas not meeting the NAAQS require a demonstration of reasonable further progress toward attainment and incorporate additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA most directly applicable to the development of the Project site include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions) (15) (16). Title I provisions were established with the goal of attaining the NAAQS for the following criteria pollutants O₃, NO₂, SO₂, PM₁₀, CO, PM_{2.5}, and Pb. The NAAQS were amended in July 1997 to include an additional standard for O₃ and to adopt a NAAQS for PM_{2.5}. Table 2-3 (previously presented) provides the NAAQS within the SCAB.

Mobile source emissions are regulated in accordance with Title II provisions. These provisions require the use of cleaner burning gasoline and other cleaner burning fuels such as methanol and natural gas. Automobile manufacturers are also required to reduce tailpipe emissions of hydrocarbons and NO_X . NO_X is a collective term that includes all forms of NO_X which are emitted as byproducts of the combustion process.

2.8.2 CALIFORNIA REGULATIONS

CARB

CARB, which became part of the CalEPA in 1991, is responsible for ensuring implementation of the California Clean Air Act (AB 2595), responding to the federal CAA, and for regulating emissions from consumer products and motor vehicles. AB 2595 mandates achievement of the maximum degree of emissions reductions possible from vehicular and other mobile sources in order to attain the state ambient air quality standards by the earliest practical date. CARB established the CAAQS for all pollutants for which the federal government has NAAQS and, in addition, establishes standards for SO₄, visibility, hydrogen sulfide (H₂S), and vinyl chloride (C₂H₃Cl). However, at this time, H₂S and C₂H₃Cl are not measured at any monitoring stations in the SCAB because they are not considered to be a regional air quality problem. Generally, the CAAQS are more stringent than the NAAQS (17) (13).

Local air quality management districts, such as the SCAQMD, regulate air emissions from stationary sources such as commercial and industrial facilities. All air pollution control districts have been formally designated as attainment or non-attainment for each CAAQS.

Serious non-attainment areas are required to prepare Air Quality Management Plans (AQMP) that include specified emission reduction strategies in an effort to meet clean air goals. These plans are required to include:

Application of Best Available Retrofit Control Technology to existing sources;

- Developing control programs for area sources (e.g., architectural coatings and solvents) and indirect sources (e.g., motor vehicle use generated by residential and commercial development);
- A District permitting system designed to allow no net increase in emissions from any new or modified permitted sources of emissions;
- Implementing reasonably available transportation control measures and assuring a substantial reduction in growth rate of vehicle trips and miles traveled;
- Significant use of low emissions vehicles by fleet operators;
- Sufficient control strategies to achieve a 5% or more annual reduction in emissions or 15% or more in a period of three years for ROGs, NO_x, CO and PM₁₀. However, air basins may use alternative emission reduction strategy that achieves a reduction of less than 5% per year under certain circumstances.

TITLE 24 ENERGY EFFICIENCY STANDARDS AND CALIFORNIA GREEN BUILDING STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: The California Energy Code was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption.

The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on January 1, 2009, and is administered by the California Building Standards Commission.

CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2019 California Green Building Code Standards that became effective January 1, 2020.

Local jurisdictions are permitted to adopt more stringent requirements, as state law provides methods for local enhancements. CALGreen recognizes that many jurisdictions have developed existing construction waste and demolition ordinances and defers to them as the ruling guidance provided they establish a minimum 65% diversion requirement.

The code also provides exemptions for areas not served by construction waste and demolition recycling infrastructure. The State Building Code provides the minimum standard that buildings must meet in order to be certified for occupancy, which is generally enforced by the local building official.

Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas (GHG) emissions. The 2019 version of Title 24 was adopted by the CEC) and became effective on January 1, 2020.

The 2019 Title 24 standards would result in less energy use, thereby reducing air pollutant emissions associated with energy consumption in the SCAB and across the State of California. For example, the 2019 Title 24 standards require solar photovoltaic systems for new homes, establish requirements for newly constructed healthcare facilities, encourage demand responsive technologies for residential buildings, and update indoor and outdoor lighting requirements for nonresidential buildings.

The CEC anticipates that single-family homes built with the 2019 standards would use approximately 7% less energy compared to the residential homes built under the 2016 standards. Additionally, after implementation of solar photovoltaic systems, homes built under the 2019 standards would use about 53% less energy than homes built under the 2016 standards. Nonresidential buildings (such as the Project) would use approximately 30% less energy due to lighting upgrade requirements (18).

Because the Project would be constructed after January 1, 2019, the 2019 CALGreen standards are applicable to the Project and require, among other items (19):

- Short-term bicycle parking. If the new project or an additional alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5% of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1.1).
- Long-term bicycle parking. For new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5% of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility (5.106.4.1.2).
- Designated parking for clean air vehicles. In new projects or additions to alterations that add 10 or more vehicular parking spaces, provide designated parking for any combination of low-emitting, fuel-efficient and carpool/van pool vehicles as shown in Table 5.106.5.2 (5.106.5.2).
- Electric vehicle (EV) charging stations. New construction shall facilitate the future installation of EV supply equipment. The compliance requires empty raceways for future conduit and documentation that the electrical system has adequate capacity for the future load. The number of spaces to be provided for is contained in Table 5.106. 5.3.3 (5.106.5.3).
- Outdoor light pollution reduction. Outdoor lighting systems shall be designed to meet the backlight, uplight and glare ratings per Table 5.106.8 (5.106.8)
- Construction waste management. Recycle and/or salvage for reuse a minimum of 65% of the nonhazardous construction and demolition waste in accordance with Section
- 5.408.1.1. 5.405.1.2, or 5.408.1.3; or meet a local construction and demolition waste management ordinance, whichever is more stringent (5.408.1).
- Excavated soil and land clearing debris. 100% of trees, stumps, rocks and associated vegetation and soils resulting primarily from land clearing shall be reused or recycled. For a phased project, such material may be stockpiled on site until the storage site is developed (5.408.3).
- Recycling by Occupants. Provide readily accessible areas that serve the entire building and are
 identified for the depositing, storage, and collection of non-hazardous materials for recycling,
 including (at a minimum) paper, corrugated cardboard, glass, plastics, organic waste, and metals
 or meet a lawfully enacted local recycling ordinance, if more restrictive (5.410.1).
- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following:
 - Water Closets. The effective flush volume of all water closets shall not exceed 1.28 gallons per flush (5.303.3.1)
 - Urinals. The effective flush volume of wall-mounted urinals shall not exceed 0.125 gallons per flush (5.303.3.2.1). The effective flush volume of floor- mounted or other urinals shall not exceed 0.5 gallons per flush (5.303.3.2.2).

- Showerheads. Single showerheads shall have a minimum flow rate of not more than 1.8 gallons per minute and 80 psi (5.303.3.3.1). When a shower is served by more than one showerhead, the combine flow rate of all showerheads and/or other shower outlets controlled by a single valve shall not exceed 1.8 gallons per minute at 80 psi (5.303.3.3.2).
- Faucets and fountains. Nonresidential lavatory faucets shall have a maximum flow rate of not more than 0.5 gallons per minute at 60 psi (5.303.3.4.1). Kitchen faucets shall have a maximum flow rate of not more than 1.8 gallons per minute of 60 psi (5.303.3.4.2). Wash fountains shall have a maximum flow rate of not more than 1.8 gallons per minute (5.303.3.4.3). Metering faucets shall not deliver more than 0.20 gallons per cycle (5.303.3.4.4). Metering faucets for wash fountains shall have a maximum flow rate not more than 0.20 gallons per cycle (5.303.3.4.5).
- Outdoor potable water uses in landscaped areas. Nonresidential developments shall comply with
 a local water efficient landscape ordinance or the current California Department of Water
 Resources' Model Water Efficient (MWELO), whichever is more stringent (5.304.1).
- Water meters. Separate submeters or metering devices shall be installed for new buildings or additions in excess of 50,000 sf or for excess consumption where any tenant within a new building or within an addition that is project to consume more than 1,000 gallons per day (5.303.1.1 and 5.303.1.2).
- Outdoor water uses in rehabilitated landscape projects equal or greater than 2,500 sf. Rehabilitated landscape projects with an aggregate landscape area equal to or greater than 2,500 sf requiring a building or landscape permit (5.304.3).
- Commissioning. For new buildings 10,000 sf and over, building commissioning shall be included
 in the design and construction processes of the building project to verify that the building systems
 and components meet the owner's or owner representative's project requirements (5.410.2).

2.8.3 AQMP

Currently, the NAAQS and CAAQS are exceeded in most parts of the SCAB. In response, the SCAQMD has adopted a series of AQMP to meet the state and federal ambient air quality standards (18). AQMPs are updated regularly to ensure an effective reduction in emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy. A detailed discussion on the AQMP and Project consistency with the AQMP is provided in Section 3.10.

2.9 REGIONAL AIR QUALITY IMPROVEMENT

The Project is within the jurisdiction of the SCAQMD. In 1976, California adopted the Lewis Air Quality Management Act which created SCAQMD from a voluntary association of air pollution control districts in Los Angeles, Orange, Riverside, and San Bernardino counties. The geographic area of which SCAQMD consists of is known as the SCAB. SCAQMD develops comprehensive plans and regulatory programs for the region to attain federal standards by dates specified in federal law. The agency is also responsible for meeting state standards by the earliest date achievable, using reasonably available control measures.

SCAQMD rule development through the 1970s and 1980s resulted in dramatic improvement in SCAB air quality. Nearly all control programs developed through the early 1990s relied on (i) the

development and application of cleaner technology; (ii) add-on emission controls, and (iii) uniform CEQA review throughout the SCAB. Industrial emission sources have been significantly reduced by this approach and vehicular emissions have been reduced by technologies implemented at the state level by CARB.

As discussed above, the SCAQMD is the lead agency charged with regulating air quality emission reductions for the entire SCAB. SCAQMD created AQMPs which represent a regional blueprint for achieving healthful air on behalf of the 16 million residents of the SCAB. The 2012 AQMP states, "the remarkable historical improvement in air quality since the 1970's is the direct result of Southern California's comprehensive, multiyear strategy of reducing air pollution from all sources as outlined in its AQMPs," (19).

Emissions of O_3 , NO_X , VOC, and CO have been decreasing in the SCAB since 1975 and are projected to continue to decrease through 2020 (20). These decreases result primarily from motor vehicle controls and reductions in evaporative emissions. Although vehicle miles traveled (VMT) in the SCAB continue to increase, NO_X and VOC levels are decreasing because of the mandated controls on motor vehicles and the replacement of older polluting vehicles with lower-emitting vehicles. NO_X emissions from electric utilities have also decreased due to use of cleaner fuels and renewable energy. O_3 contour maps show that the number of days exceeding the 8-hour NAAQS has generally decreased between 1980 and 2020. For 2020, there was an overall decrease in exceedance days compared with the 1980 period. However, as shown on Table 2-5, O_3 levels have increased in the past three years due to higher temperatures and stagnant weather conditions. Notwithstanding, O_3 levels in the SCAB have decreased substantially over the last 30 years with the current maximum measured concentrations being approximately one-third of concentrations within the late 70's (21).

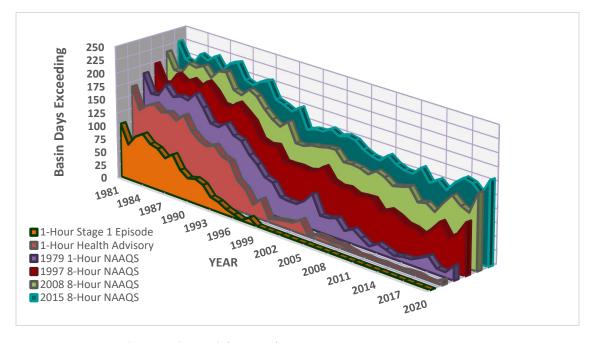


TABLE 2-5: SCAB O₃ TREND

Source: 2020 SCAQMD, Historical O_3 Air Quality Trends (1976-2019)

The overall trends of PM_{10} and $PM_{2.5}$ levels in the air (not emissions) show an overall improvement since 1975. Direct emissions of PM_{10} have remained somewhat constant in the SCAB and direct emissions of $PM_{2.5}$ have decreased slightly since 1975. Area wide sources (fugitive dust from roads, dust from construction, and other sources) contribute the greatest amount of direct particulate matter emissions.

As with other pollutants, the most recent PM_{10} statistics show an overall improvement as illustrated in Tables 2-6 and 2-7. During the period for which data are available, the 24-hour national annual average concentration for PM_{10} decreased by approximately 46%, from 103.7 microgram per cubic meter ($\mu g/m^3$) in 1988 to 55.5 $\mu g/m^3$ in 2020 (22). Although the values are below the federal standard, it should be noted that there are days within the year where the concentrations would exceed the threshold. The 24-hour state annual average for emissions for PM_{10} , have decreased by approximately 64%, from 93.9 $\mu g/m^3$ in 1989 to 33.9 $\mu g/m^3$ in 2020 (22). Although data in the late 1990's show some variability, this is probably due to the advances in meteorological science rather than a change in emissions. Similar to the ambient concentrations, the calculated number of days above the 24-hour PM_{10} standards has also shown an overall drop.

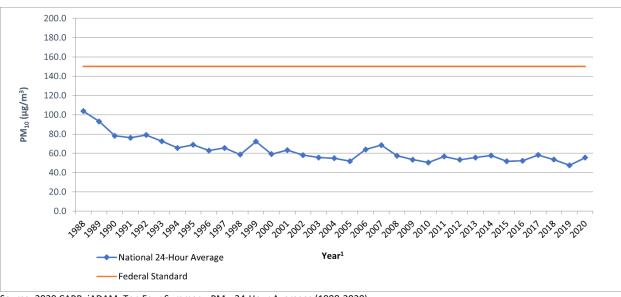


TABLE 2-6: SCAB AVERAGE 24-HOUR CONCENTRATION PM₁₀ TREND (BASED ON FEDERAL STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM₁₀ 24-Hour Averages (1988-2020)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

TABLE 2-7: SCAB ANNUAL AVERAGE CONCENTRATION PM₁₀ TREND (BASED ON STATE STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM₁₀ 24-Hour Averages (1988-2020)

Tables 2-8 and 2-9 shows the most recent 24-hour average PM_{2.5} concentrations in the SCAB from 1999 through 2020. Overall, the national and state annual average concentrations have decreased by almost 50% and 31% respectively (22). It should be noted that the SCAB is currently designated as nonattainment for the state and federal PM_{2.5} standards.

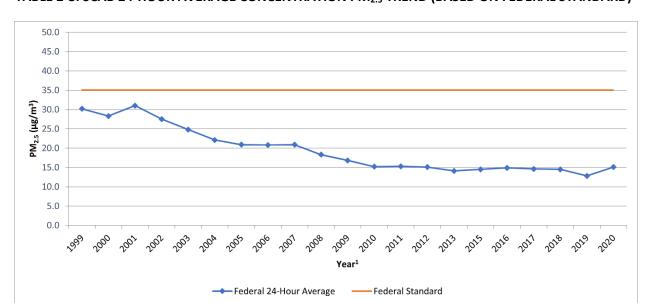


TABLE 2-8: SCAB 24-HOUR AVERAGE CONCENTRATION PM_{2.5} TREND (BASED ON FEDERAL STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM_{2.5} 24-Hour Averages (1999-2020)

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

¹ Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

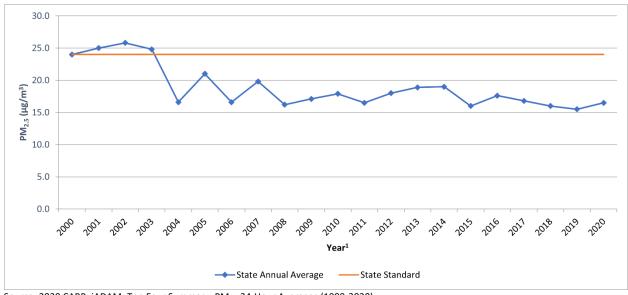


TABLE 2-9: SCAB ANNUAL AVERAGE CONCENTRATION PM_{2.5} TREND (BASED ON STATE STANDARD)¹

Source: 2020 CARB, iADAM: Top Four Summary: PM_{2.5} 24-Hour Averages (1999-2020)

While the 2012 AQMP PM_{10} attainment demonstration and the 2015 associated supplemental SIP submission indicated that attainment of the 24-hour standard was predicted to occur by the end of 2015, it could not anticipate the effect of the ongoing drought on the measured $PM_{2.5}$.

The 2006 to 2010 base period used for the 2012 attainment demonstration had near-normal rainfall. While the trend of PM_{2.5}-equivalent emission reductions continued through 2015, the severe drought conditions contributed to the PM_{2.5} increases observed after 2012. As a result of the disrupted progress toward attainment of the federal 24-hour PM_{2.5} standard, SCAQMD submitted a request and the EPA approved, in January 2016, a "bump up" to the nonattainment classification from "moderate" to "serious," with a new attainment deadline as soon as practicable, but not beyond December 31, 2019. As of March 14, 2019, the EPA approved portions of a SIP revision submitted by California to address CAA requirements for the 2006 24-hour PM_{2.5} NAAQS in the Los Angeles-SCAB Serious PM_{2.5} nonattainment area. The EPA also approved 2017 and 2019 motor vehicle emissions budgets for transportation conformity purposes and inter-pollutant trading ratios for use in transportation conformity analyses (23).

In March 2017, the SCAQMD released the Final 2016 AQMP. The 2016 AQMP continues to evaluate current integrated strategies and control measures to meet the NAAQS, as well as explore new and innovative methods to reach its goals. Some of these approaches include utilizing incentive programs, recognizing existing co-benefit programs from other sectors, and developing a strategy with fair-share reductions at the federal, state, and local levels (24). Similar to the 2012 AQMP, the 2016 AQMP incorporates scientific and technological information and planning assumptions, including the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (2016-2040 RTP/SCS) and updated emission inventory methodologies for various source categories (18).

¹Some years have been omitted from the table as insufficient data (or no) data has been reported. Years with reported value of "0" have also been omitted.

The 2022 AQMP is currently being developed by SCAQMD to address the EPA's strengthened ozone standard. Development of the 2022 AQMP is in its early stages and no formal timeline for completion and adoption is currently known.

The most recent CO concentrations in the SCAB are shown in Table 2-10 (22). CO concentrations in the SCAB have decreased markedly — a total decrease of more about 80% in the peak 8-hour concentration from 1986 to 2012. It should be noted 2012 is the most recent year where 8-hour CO averages and related statistics are available in the SCAB. The number of exceedance days has also declined. The entire SCAB is now designated as attainment for both the state and national CO standards. Ongoing reductions from motor vehicle control programs should continue the downward trend in ambient CO concentrations.

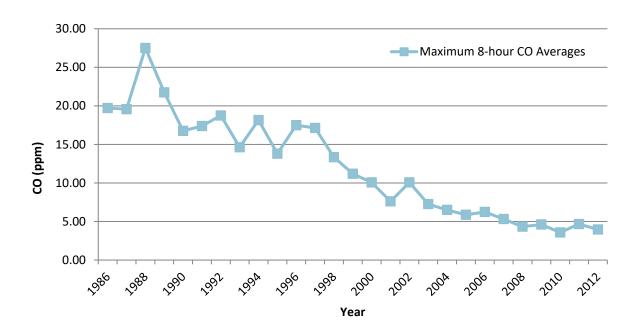


TABLE 2-10: SCAB 8-HOUR AVERAGE CONCENTRATION CO TREND1

Source: 2020 CARB, iADAM: Top Four Summary: CO 8-Hour Averages (1986-2012)

¹ The most recent year where 8-hour concentration data is available is 2012.

Part of the control process of the SCAQMD's duty to greatly improve the air quality in the SCAB is the uniform CEQA review procedures required by SCAQMD's CEQA Air Quality Handbook (1993) (1993 CEQA Handbook) (25). The single threshold of significance used to assess Project direct and cumulative impacts has in fact "worked" as evidenced by the track record of the air quality in the SCAB dramatically improving over the course of the past decades. As stated by the SCAQMD, the District's thresholds of significance are based on factual and scientific data and are therefore appropriate thresholds of significance to use for this Project.

The most recent NO_2 data for the SCAB is shown in Tables 2-11 and 2-12 (22). Over the last 50 years, NO_2 values have decreased significantly; the peak 1-hour national and state averages for 2020 is approximately 80% lower than what it was during 1963. The SCAB attained the State 1-hour NO_2 standard in 1994, bringing the entire state into attainment. A new state annual average

standard of 0.030 ppm was adopted by CARB in February 2007 (26). The new standard is just barely exceeded in the SCAQMD. NO_2 is formed from NO_X emissions, which also contribute to O_3 . As a result, the majority of the future emission control measures would be implemented as part of the overall O_3 control strategy. Many of these control measures would target mobile sources, which account for more than three-quarters of California's NO_X emissions. These measures are expected to bring the SCAQMD into attainment of the state annual average standard.

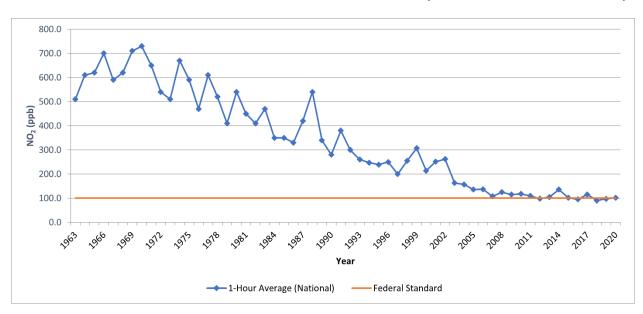


TABLE 2-11: SCAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON FEDERAL STANDARD)

Source: 2020 CARB, iADAM: Top Four Summary: CO 1-Hour Averages (1963-2020)

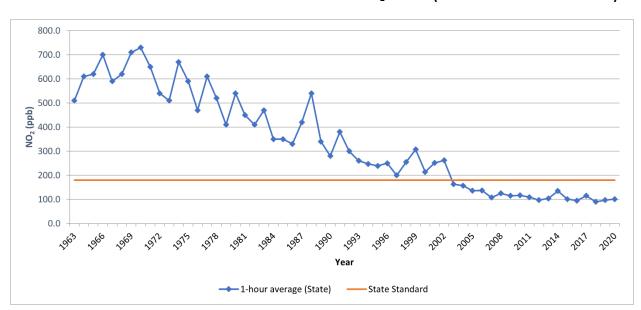


TABLE 2-12: SCAB 1-HOUR AVERAGE CONCENTRATION NO₂ TREND (BASED ON STATE STANDARD)

Source: 2020 CARB, iADAM: Top Four Summary: CO 1-Hour Averages (1963-2020)

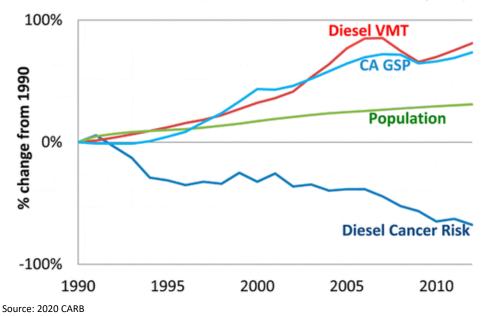
2.9.1 TOXIC AIR CONTAMINANTS (TAC) TRENDS

In 1984, as a result of public concern for exposure to airborne carcinogens, CARB adopted regulations to reduce the amount of TAC emissions resulting from mobile and area sources, such as cars, trucks, stationary sources, and consumer products. According to the *Ambient and Emission Trends of Toxic Air Contaminants in California* journal article (27) which was prepared for CARB, results show that between 1990-2012, ambient concentration and emission trends for the seven TACs responsible for most of the known cancer risk associated with airborne exposure in California have declined significantly (between 1990 and 2012). The seven TACs studied include those that are derived from mobile sources: diesel particulate matter (DPM), benzene (C_6H_6), and 1,3-butadiene (C_4H_6); those that are derived from stationary sources: perchloroethylene (C_2Cl_4) and hexavalent chromium (Cr(VI)); and those derived from photochemical reactions of emitted VOCs: formaldehyde (CH_2O) and acetaldehyde (C_2H_4O)². The decline in ambient concentration and emission trends of these TACs are a result of various regulations CARB has implemented to address cancer risk.

MOBILE SOURCE TACS

CARB introduced two programs that aimed at reducing mobile emissions for light and medium duty vehicles through vehicle emissions controls and cleaner fuel. In California, light-duty vehicles sold after 1996 are equipped with California's second-generation On-Board Diagnostic (OBD-II) system. The OBD-II system monitors virtually every component that can affect the emission performance of the vehicle to ensure that the vehicle remains as clean as possible over its entire life and assists repair technicians in diagnosing and fixing problems with the computerized engine controls. If a problem is detected, the OBD-II system illuminates a warning lamp on the vehicle instrument panel to alert the driver. This warning lamp typically contains the phrase "Check Engine" or "Service Engine Soon." The system would also store important information about the detected malfunction so that a repair technician can accurately find and fix the problem. CARB has recently developed similar OBD requirements for heavy-duty vehicles over 14,000 pounds (lbs). CARB's phase II Reformulated Gasoline Regulation (RFG-2), adopted in 1996, also led to a reduction of mobile source emissions. Through such regulations, benzene levels declined 88% from 1990-2012. 1,3-Butadiene concentrations also declined 85% from 1990-2012 as a result of the use of reformulated gasoline and motor vehicle regulations (27).

In 2000, CARB's Diesel Risk Reduction Plan (DRRP) recommended the replacement and retrofit of diesel-fueled engines and the use of ultra-low-sulfur (<15 ppm) diesel fuel. As a result of these measures, DPM concentrations have declined 68% since 2000, even though the state's population increased 31% and the amount of diesel vehicles miles traveled increased 81%, as shown on Exhibit 2-B. With the implementation of these diesel-related control regulations, CARB expects a DPM decline of 71% for 2000-2020.


_

² It should be noted that ambient DPM concentrations are not measured directly. Rather, a surrogate method using the coefficient of haze (COH) and elemental carbon (EC) is used to estimate DPM concentrations.

EXHIBIT 2-A: DPM AND DIESEL VEHICLE MILES TREND

California Population, Gross State Product (GSP), Diesel Cancer Risk, Diesel Vehicle-Miles-Traveled (VMT)

DIESEL REGULATIONS

CARB and the Ports of Los Angeles and Long Beach (POLA and POLB) have adopted several iterations of regulations for diesel trucks that are aimed at reducing DPM. More specifically, CARB Drayage Truck Regulation (28), CARB statewide On-road Truck and Bus Regulation (29), and the Ports of Los Angeles and Long Beach Clean Truck Program (CTP) require accelerated implementation of "clean trucks" into the statewide truck fleet (30). In other words, older more polluting trucks would be replaced with newer, cleaner trucks as a function of these regulatory requirements.

Moreover, the average statewide DPM emissions for Heavy Duty Trucks (HDT), in terms of grams of DPM generated per mile traveled, would dramatically be reduced due to the aforementioned regulatory requirements.

Diesel emissions identified in this analysis would therefore overstate future DPM emissions since not all the regulatory requirements are reflected in the modeling.

CANCER RISK TRENDS

Based on information available from CARB, overall cancer risk throughout the SCAB has had a declining trend since 1990. In 1998, following an exhaustive 10-year scientific assessment process, CARB identified particulate matter from diesel-fueled engines as a toxic air contaminant. The SCAQMD initiated a comprehensive urban toxic air pollution study called the Multiple Air Toxics Exposure Study (MATES). DPM accounts for more than 70% of the cancer risk.

In January 2018, as part of the overall effort to reduce air toxics exposure in the SCAB, SCAQMD began conducting the MATES V Program. MATES V field measurements were conducted at ten fixed sites (the same sites selected for MATES III and IV) to assess trends in air toxics levels. MATES V also included measurements of ultrafine particles (UFP) and black carbon (BC) concentrations, which can be compared to the UFP levels measured in MATES IV (31). The draft report for the MATES V study was published in late May and the comment submission deadline on June 7, 2021. In addition to new measurements and updated modeling results, several key updates were implemented in MATES V. First, MATES V estimates cancer risks by taking into account multiple exposure pathways, which includes inhalation and non-inhalation pathways. This approach is consistent with how cancer risks are estimated in South Coast AQMD's programs such as permitting, Air Toxics Hot Spots (AB2588), and CEQA. Previous MATES studies quantified the cancer risks based on the inhalation pathway only. Second, along with cancer risk estimates, MATES V includes information on the chronic non-cancer risks from inhalation and noninhalation pathways for the first time. Cancer risks and chronic non-cancer risks from MATES II through IV measurements have been re-examined using current Office of Environmental Health Hazard Assessment (OEHHA) and CalEPA risk assessment methodologies and modern statistical methods to examine the trends over time (32).

MATES-V calculated cancer risks based on monitoring data collected at ten fixed sites within the SCAB. None of the fixed monitoring sites are within the local area of the Project site. However, MATES-V has extrapolated the excess cancer risk levels throughout the SCAB by modeling the specific grids. The Project is located within a quadrant of the geographic grid of the MATES-V model which predicted a cancer risk of 473 in one million for the area containing the Project site. DPM is included in this cancer risk along with all other TAC sources. As in previous MATES iterations, diesel PM is the largest contributor to overall air toxics cancer risk. However, the average levels of diesel PM in MATES V are 53% lower at the 10 monitoring sites compared to MATES IV. Cumulative Project generated TACs are limited to DPM.

This page intentionally left blank

3 PROJECT AIR QUALITY IMPACT

3.1 Introduction

This study quantifies air quality emissions generated by construction and operation of the Project and addresses whether the Project conflicts with implementation of the SCAQMD's AQMP and Lead Agency planning regulations. The analysis of Project-generated air emissions determines whether the Project would result in a cumulatively considerable net increase of any criteria pollutant for which the SCAB is in non-attainment under an applicable NAAQS and CAAQS. Additionally, the Project has been evaluated to determine whether the Project would expose sensitive receptors to substantial pollutant concentrations and the impacts of odors. The significance of these potential impacts is described in the following sections.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the *CEQA Guidelines* (14 CCR §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to air quality if it would (1):

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard.
- Expose sensitive receptors to substantial pollutant concentrations.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

The SCAQMD has also developed regional significance thresholds for other regulated pollutants, as summarized at Table 3-1 (33). The SCAQMD's CEQA Air Quality Significance Thresholds (April 2019) indicate that any projects in the SCAB with daily emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact.

TABLE 3-1: MAXIMUM DAILY REGIONAL EMISSIONS THRESHOLDS

Pollutant	Regional Construction Threshold	Regional Operational Thresholds
NO _X	100 lbs/day	55 lbs/day
VOC	75 lbs/day	55 lbs/day
PM ₁₀	150 lbs/day	150 lbs/day
PM _{2.5}	55 lbs/day	55 lbs/day
SO _X	150 lbs/day	150 lbs/day
СО	550 lbs/day	550 lbs/day
Pb	3 lbs/day	3 lbs/day

lbs/day = Pounds Per Day

3.3 Models Employed To Analyze Air Quality

3.3.1 CALEEMOD

Land uses such as the Project affect air quality through construction-source and operational-source emissions.

In May 2021, the SCAQMD, in conjunction with the California Air Pollution Control Officers Association (CAPCOA) and other California air districts, released the latest version of the CalEEMod Version 2020.4.0. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NOx, SOx, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from MMs (34). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality emissions. Output from the model runs for both construction and operational activity are provided in Appendices 3.1 and 3.3.

3.4 Construction Emissions

3.4.1 CONSTRUCTION ACTIVITIES

Construction activities associated with the Project would result in emissions of VOCs, NO_X, SO_X, CO, PM₁₀, and PM_{2.5}. Construction related emissions are expected from the following construction activities:

- Demolition/Crushing
- Site Preparation
- Grading
- Building Construction
- Architectural Coating

DEMOLITION ACTIVITIES

Based on information provided by the Project Applicant, the Project would demolish 210,646 sf (1,875 tons) of existing building, 254,620 sf (15,100 tons) of concrete, and 65,705 sf (1,215 tons) of asphalt. Approximately 1,875 tons of mixed construction and demolition waste would be hauled off-site to California Waste Services (approximately 30 miles from the Project site) and would generate in 94 (one-way) hauling trips.

CRUSHING ACTIVITIES

The Project activities would include on-site crushing of concrete and asphalt pulverizing during demolition activity. Fugitive dust emissions would also be generated through the crushing debris on-site. The US EPA's AP-42 compilation of emission factors available in Chapter 11.19.2-2 were used to estimate fugitive dust from crushing activities. As noted above, it is estimated that approximately 17,000 tons of debris (154.55 tons per day) would be crushed on-site. It is estimated that crushing activities would result in 0.08 pounds per day of $PM_{2.5}$ emissions and 0.02 pounds of $PM_{2.5}$ emissions.

GRADING ACTIVITIES

Dust is typically a major concern during grading activities. Because such emissions are not amenable to collection and discharge through a controlled source, they are called "fugitive emissions". Fugitive dust emissions rates vary as a function of many parameters (soil silt, soil moisture, wind speed, area disturbed, number of vehicles, depth of disturbance or excavation, etc.). CalEEMod was utilized to calculate fugitive dust emissions resulting from this phase of activity. This analysis assumes that earthwork activities are expected to balance on site and no import or export of soils would be required.

ON-ROAD TRIPS

Construction generates on-road vehicle emissions from vehicle usage for workers, hauling, and vendors commuting to and from the site. The number of workers, hauling, and vendor trips are presented below in Table 3-2. It should be noted that for Vendor Trips, specifically, CalEEMod only assigns Vendor Trips to the Building Construction phase. Vendor trips would likely occur during all phases of construction. It should be noted that as paving and architectural coating activities overlap with building construction, the vendor trips assigned to building construction activities are assumed the same trips used to cover paving and architectural coating. As such, the CalEEMod defaults for Vendor Trips have been adjusted based on a ratio of the total vendor trips to the number of days of each subphase of activity.

Worker Trips Vendor Trips Total Hauling Phase Name Per Day Per Day **Trips** Demolition/Crushing 18 27 94 2 Site Preparation 18 0 7 20 Grading 0 **Building Construction** 232 53 0 15 0 Paving 0 **Architectural Coating** 46 0 0

TABLE 3-2: CONSTRUCTION TRIP ASSUMPTIONS

3.4.1 Construction Duration

For purposes of analysis, construction of Project is expected to commence in April 2022 and be completed in August 2023. The construction schedule utilized in the analysis, shown in Table 3-3, represents a "worst-case" analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent³. The duration of

_

³ As shown in the CalEEMod User's Guide Version 2020.4.0, Section 4.3 "OFFROAD Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (1).

TABLE 3-3: CONSTRUCTION DURATION

Phase Name	Start Date	End Date	Days
Demolition/Crushing	04/04/2022	09/02/2022	110
Site Preparation	09/03/2022	09/16/2022	10
Grading	09/17/2022	10/28/2022	30
Building Construction	10/29/2022	08/30/2023	218
Paving	08/03/2023	08/30/2023	20
Architectural Coating	07/06/2023	08/30/2023	40

3.4.2 Construction Equipment

A summary of construction equipment by phase is provided at Table 3-4. Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 3-4 will operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed pursuant to the City of Orange Municipal Code. It should be noted that most pieces of equipment would likely operate for fewer hours per day.

TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (1 OF 2)

Phase Name	Equipment ¹	Amount	Hours Per Day
	Concrete/Industrial Saws	1	8
Domalition / Cruching	Crushing/Proc. Equipment	1	8
Demolition/Crushing	Excavators	3	8
	Rubber Tired Dozers	2	8
Site Propagation	Crawler Tractors	4	8
Site Preparation	Rubber Tired Dozers	3	8
	Crawler Tractors	2	8
	Excavators	2	8
Grading	Graders	1	8
	Rubber Tired Dozers	1	8
	Scrapers	2	8
	Cranes	1	8
	Crawler Tractors	3	8
Building Construction	Forklifts	3	8
	Generator Sets	1	8
	Welders	1	8

TABLE 3-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (2 OF 2)

Phase Name	Equipment ¹	Amount	Hours Per Day
	Pavers	2	8
Paving	Paving Equipment		8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

¹ In order to account for fugitive dust emissions, Crawler Tractors were used in lieu of Tractors/Loaders/Backhoes.

3.4.3 CONSTRUCTION EMISSIONS SUMMARY

IMPACTS WITHOUT MITIGATION

The estimated maximum daily construction emissions without mitigation are summarized on Table 3-5. Detailed construction model outputs are presented in Appendix 3.1. Under the assumed scenarios, emissions resulting from the Project construction will not exceed thresholds established by the SCAQMD for emissions of any criteria pollutant.

TABLE 3-5: OVERALL CONSTRUCTION EMISSIONS SUMMARY – WITHOUT MITIGATION

Year	Emissions (lbs/day) ¹					
Tear	voc	NO _x	со	so _x	PM ₁₀	PM _{2.5}
Summer						
2022	4.53	50.47	29.97	0.08	14.67	6.48
2023	66.04	40.52	44.09	0.11	5.36	2.60
		Winter				
2022	4.54	50.48	29.92	0.07	14.67	6.48
2023	66.11	40.65	43.50	0.11	5.36	2.60
Maximum Daily Emissions	66.11	50.48	44.09	0.11	14.67	6.48
SCAQMD Regional Threshold	75	100	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

Source: CalEEMod construction-source (unmitigated) emissions are presented in Appendix 3.1.

3.5 OPERATIONAL EMISSIONS

Operational activities associated with the Project will result in emissions of VOCs, NO_X , SO_X , CO, PM_{10} , and $PM_{2.5}$. Operational emissions are expected from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions

 $^{^{\}rm 1}$ 2022 Emissions include dust (PM $_{\rm 10}$ and PM $_{\rm 2.5}$) from crushing activities

• On-Site Cargo Handling Equipment Emissions

3.5.1 AREA SOURCE EMISSIONS

ARCHITECTURAL COATINGS

Over a period of time the buildings that are part of this Project will require maintenance and will therefore produce emissions resulting from the evaporation of solvents contained in paints, varnishes, primers, and other surface coatings. The emissions associated with architectural coatings were calculated using CalEEMod.

CONSUMER PRODUCTS

Consumer products include, but are not limited to detergents, cleaning compounds, polishes, personal care products, and lawn and garden products. Many of these products contain organic compounds which when released in the atmosphere can react to form ozone and other photochemically reactive pollutants. The emissions associated with use of consumer products were calculated based on defaults provided within CalEEMod.

LANDSCAPE MAINTENANCE EQUIPMENT

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shedders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. The emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod.

3.5.2 ENERGY SOURCE EMISSIONS

COMBUSTION EMISSIONS ASSOCIATED WITH NATURAL GAS AND ELECTRICITY

Electricity and natural gas are used by almost every project. Criteria pollutant emissions are emitted through the generation of electricity and consumption of natural gas. However, because electrical generating facilities for the Project area are located either outside the region (state) or offset through the use of pollution credits (RECLAIM) for generation within the SCAB, criteria pollutant emissions from offsite generation of electricity are generally excluded from the evaluation of significance and only natural gas use is considered. The emissions associated with natural gas use were calculated using CalEEMod.

3.5.3 MOBILE SOURCE EMISSIONS

The Project related operational air quality emissions derive primarily from vehicle trips generated by the Project, including employee trips to and from the site and truck trips associated with the proposed uses. Trip characteristics available from the 759 Eckhoff Street Scoping Memorandum were utilized in this analysis (35). The Project is expected to generate a total of approximately 682 two-way vehicular trips per day (341 inbound and 341 outbound) which includes 544 two-way passenger car trips per day (272 inbound and 272 outbound) and 138 two-way truck trips per day (69 inbound and 69 outbound) (35).

APPROACH FOR ANALYSIS OF THE PROJECT

To determine emissions from passenger car vehicles, the CalEEMod defaults were utilized for trip length and trip purpose. It is important to note that although the 759 Eckhoff Street Scoping Memorandum does not break down passenger cars by type, this analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1⁴ & LDT2⁵), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. To account for emissions generated by passenger cars, the following fleet mix was utilized in this analysis:

TABLE 3-6: PASSENGER CAR FLEET MIX

l and Has	% Vehicle Type					
Land Use	LDA	LDT1	LDT2	MDV	MCY	
General Light Industrial	57.70 6.23	6.23	19.79	13.70	2 50	
Warehouse	57.70	0.23	19.79	13.70	2.58	

Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, MDV, MCY vehicle types.

To determine emissions from trucks, the analysis incorporated the SCAQMD recommended truck trip length of 40 miles⁶ and an assumption of 100% primary trips. In order to be consistent with the 759 Eckhoff Street Scoping Memorandum, trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided in the 759 Eckhoff Street Scoping Memorandum. Heavy trucks are broken down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT1⁷ & LHDT2 ⁸)/2-axle, Medium-Heavy-Duty Trucks (MHDT)/3-axle, and Heavy-Heavy-Duty Trucks (HHDT)/4+-axle. To account for emissions generated by trucks, the following fleet mix was utilized in this analysis:

TABLE 3-7: TRUCK FLEET MIX

l and Has	% Vehicle Type				
Land Use	LHDT1	LHDT2	MHDT	HHDT	
General Light Industrial	14.34	3.84	18.18	63.64	
Warehouse	13.60	3.64	20.69	62.07	

Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT1, LHDT2, MHDT, and HHDT) relative to the total number of truck trips.

⁴ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

⁵ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

⁶ The average trip length for heavy trucks were based on the SCAQMD documents for the implementation of the Facility-Based Mobile Source Measures (FBMSMs) adopted in the 2016 AQMP. SCAQMD's "Preliminary Warehouse Emission Calculations" cites 39.9-mile trip length for heavy-heavy trucks (41). As a conservative measure, a trip length of 40 miles has been utilized for all trucks for the purpose of this analysis (39)

⁷ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs.

⁸ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs.

FUGITIVE DUST RELATED TO VEHICULAR TRAVEL

Vehicles traveling on paved roads would be a source of fugitive emissions due to the generation of road dust inclusive of break and tire wear particulates. The emissions estimate for travel on paved roads were calculated using CalEEMod.

3.5.4 On-Site Cargo Handling Equipment Emissions

It is common for warehouse buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this particular Project, on-site modeled operational equipment includes up to one (1) 200 horsepower (hp), compressed natural gas or gasoline-powered tractors/loaders/backhoes operating at 4 hours a day⁹ for 365 days of the year.

3.5.5 OPERATIONAL EMISSIONS SUMMARY

EXISTING EMISSIONS

The site is currently occupied by an existing 210,646 sf warehouse building. The estimated operation-source emissions from the existing development are summarized on Table 3-8. Detailed operation model outputs are presented in Appendix 3.2.

TABLE 3-8: EMISSIONS FROM EXISTING DEVELOPMENT

Course	Emissions (lbs/day)					
Source	voc	NO _x	со	SO _x	PM ₁₀	PM _{2.5}
Summer						
Area Source	4.71	3.90E-04	0.04	0.00	1.50E-04	1.50E-04
Energy Source	0.02	0.22	0.18	1.32E-03	0.02	0.02
Mobile Source	0.56	2.15	6.23	0.02	1.98	0.55
Total Maximum Daily Emissions	5.29	2.37	6.46	0.03	2.00	0.57
		Winter				
Area Source	4.71	3.90E-04	0.04	0.00	1.50E-04	1.50E-04
Energy Source	0.02	0.22	0.18	1.32E-03	0.02	0.02
Mobile Source	0.56	2.26	6.11	0.02	1.98	0.55
Total Maximum Daily Emissions	5.29	2.48	6.34	0.03	2.00	0.57

Source: CalEEMod operational-source emissions for the existing development are presented in Appendix 3.2.

_

⁹ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

PROPOSED PROJECT EMISSIONS

The estimated operational-source emissions are summarized on Tables 3-9. It should be noted that the existing development emissions were subtracted from the Project operational emissions to determine the new emissions from the proposed Project. Detailed operation model outputs for the Project are presented in Appendix 3.3. As shown on Table 3-9, the Project's daily regional emissions from on-going operations will not exceed any of the thresholds of significance.

TABLE 3-9: SUMMARY OF PEAK OPERATIONAL EMISSIONS

Course	Emissions (lbs/day)					
Source	voc	NO _x	со	SO _x	PM ₁₀	PM _{2.5}
		Summer				
Area Source	6.64	9.60E-04	0.11	0.00E+00	3.80E-04	3.80E-04
Energy Source	0.06	0.54	0.45	3.24E-03	0.04	0.04
Mobile Source	2.20	23.80	27.08	0.17	10.02	2.86
On-Site Equipment Source	0.11	1.04	0.75	3.17E-03	0.04	0.03
Total Maximum Daily Emissions	9.01	25.38	28.39	0.18	10.10	2.94
Existing Emissions	5.29	2.37	6.46	0.03	2.00	0.57
Net Emissions (Project – Existing)	3.71	23.00	21.93	0.15	8.10	2.37
SCAQMD Regional Threshold	55	55	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO
		Winter				
Area Source	6.64	9.60E-04	0.11	0.00E+00	3.80E-04	3.80E-04
Energy Source	0.06	0.54	0.45	3.24E-03	0.04	0.04
Mobile Source	2.18	24.83	26.68	0.17	10.02	2.86
On-Site Equipment Source	0.11	1.04	0.75	3.17E-03	0.04	0.03
Total Maximum Daily Emissions	8.99	26.40	27.98	0.18	10.10	2.94
Existing Emissions	5.29	2.48	6.34	0.03	2.00	0.57
Net Emissions (Project – Existing)	3.70	23.93	21.65	0.15	8.10	2.37
SCAQMD Regional Threshold	55	55	550	150	150	55
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

Source: CalEEMod operational-source emissions for the proposed Project are presented in Appendix 3.3.

3.6 LOCALIZED SIGNIFICANCE

BACKGROUND ON LOCALIZED SIGNIFICANCE THRESHOLD (LST) DEVELOPMENT

The analysis makes use of methodology included in the SCAQMD Final Localized Significance Threshold Methodology (LST Methodology). The SCAQMD has established that impacts to air quality are significant if there is a potential to contribute or cause localized exceedances of the federal and/or state ambient air quality standards (NAAQS/CAAQS). Collectively, these are referred to as Localized Significance Thresholds (LSTs).

The SCAQMD established LSTs in response to the SCAQMD Governing Board's Environmental Justice Initiative I-4¹⁰. LSTs represent the maximum emissions from a project that would not cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard at the nearest residence or sensitive receptor. The SCAQMD states that lead agencies can use the LSTs as another indicator of significance in its air quality impact analyses.

LSTs were developed in response to environmental justice and health concerns raised by the public regarding exposure of individuals to criteria pollutants in local communities. To address the issue of localized significance, the SCAQMD adopted LSTs that show whether a project would cause or contribute to localized air quality impacts and thereby cause or contribute to potential localized adverse health effects. The analysis makes use of methodology included in the *LST Methodology* (36).

APPLICABILITY OF LSTS FOR THE PROJECT

For this Project, the appropriate SRA for the LST analysis is the SCAQMD I-5 Near Road (SRA 17). LSTs apply to CO, NO_2 , PM_{10} , and $PM_{2.5}$. The SCAQMD produced look-up tables for projects less than or equal to 5 acres in size.

In order to determine the appropriate methodology for determining localized impacts that could occur as a result of Project-related construction, the following process is undertaken:

- Identify the maximum daily on-site emissions that will occur during construction activity:
 - The maximum daily on-site emissions could be based on information provided by the Project Applicant; or
 - The SCAQMD's Fact Sheet for Applying CalEEMod to Localized Significance Thresholds and CalEEMod User's Guide Appendix A: Calculation Details for CalEEMod can be used to determine the maximum site acreage that is actively disturbed based on the construction equipment fleet and equipment hours as estimated in CalEEMod (37) (38).
- If the total acreage disturbed is less than or equal to 5 acres per day, then the SCAQMD's screening
 look-up tables are utilized to determine if a Project has the potential to result in a significant
 impact. The look-up tables establish a maximum daily emissions threshold in lbs/day that can be
 compared to CalEEMod outputs.

URBANCROSSROADS

13996-06 AQ Report

¹⁰ The purpose of SCAQMD's Environmental Justice program is to ensure that everyone has the right to equal protection from air pollution and fair access to the decision-making process that works to improve the quality of air within their communities. Further, the SCAQMD defines Environmental Justice as "...equitable environmental policymaking and enforcement to protect the health of all residents, regardless of age, culture, ethnicity, gender, race, socioeconomic status, or geographic location, from the health effects of air pollution."

- If the total acreage disturbed is greater than 5 acres per day, then LST impacts may still be conservatively evaluated using the LST look-up tables for a 5-acre disturbance area. Use of the 5-acre disturbance area thresholds can be used to show that even if the daily emissions from all construction activity were emitted within a 5-acre area, and therefore concentrated over a smaller area which would result in greater site adjacent concentrations, the impacts would still be less than significant if the applicable 5-acre thresholds are utilized.
- The LST Methodology presents mass emission rates for each SRA, project sizes of 1, 2, and 5 acres, and nearest receptor distances of 25, 50, 100, 200, and 500 meters. For project sizes between the values given, or with receptors at distances between the given receptors, the methodology uses linear interpolation to determine the thresholds.

EMISSIONS CONSIDERED

Based on SCAQMD's LST Methodology, emissions for concern during construction activities are on-site NO_X, CO, PM_{2.5}, and PM₁₀. The LST Methodology clearly states that "off-site mobile emissions from the Project should not be included in the emissions compared to LSTs (39)." As such, for purposes of the construction LST analysis, only emissions included in the CalEEMod "onsite" emissions outputs were considered.

MAXIMUM DAILY DISTURBED-ACREAGE

As a conservative measure, it is assumed that the entire Project site (12.69 acres) can be actively disturbed during construction of the site. In CalEEMod, the Total Acres Graded (TAG) field represents the cumulative distance traversed on the property by the grading equipment. In order to properly grade a piece of land, multiple passes with grading equipment may be required. So even though the lot size is a fixed number of acres, the TAG could be an order of magnitude higher than the footprint of the lot (38). Total Acres Graded (TAG) is a function of the maximum acreage disturbed per day times the number of days of the subphase of construction. As such, the TAG field in CalEEMod has been revised to 127 acres (12.69 acres per day x 10 days) for site preparation and 381 acres (12.69 acres per day x 30 days) for grading 11.

RECEPTORS

As previously stated, LSTs represent the maximum emissions from a project that would not cause or contribute to an exceedance of the most stringent applicable NAAQS and CAAQS at the nearest residence or sensitive receptor. Receptor locations are off-site locations where individuals may be exposed to emissions from Project activities.

Some people are especially sensitive to air pollution and are given special consideration when evaluating air quality impacts from projects. These groups of people include children, the elderly and individuals with pre-existing respiratory or cardiovascular illness. Structures that house these persons or places where they gather are defined as "sensitive receptors". These structures typically include uses such as residences, hotels, and hospitals where an individual can remain for 24 hours. Consistent with the LST Methodology, the nearest land use where an individual

-

¹¹ CalEEMod does not provide a "Total Acres Graded" field for Demolition/Crushing, Building Construction, Paving, or Architectural Coating

could remain for 24 hours to the Project site will be used to determine construction and operational air quality impacts for emissions of PM_{10} and $PM_{2.5}$, since PM_{10} and $PM_{2.5}$ thresholds are based on a 24-hour averaging time.

LSTs apply, even for non-sensitive land uses, consistent with *LST Methodology* and SCAQMD guidance. Per the *LST Methodology*, commercial and industrial facilities are not included in the definition of sensitive receptor because employees and patrons do not typically remain onsite for a full 24 hours but are typically onsite for 8 hours or less. However, *LST Methodology* explicitly states that "*LSTs based on shorter averaging periods, such as the NO2 and CO LSTs, could also be applied to receptors such as industrial or commercial facilities since it is reasonable to assume that a worker at these sites could be present for periods of one to eight hours (39)." Therefore, any adjacent land use where an individual could remain for 1 or 8-hours, that is located at a closer distance to the Project site than the receptor used for PM₁₀ and PM_{2.5} analysis, must be considered to determine construction and operational LST air impacts for emissions of NO₂ and CO since these pollutants have an averaging time of 1 and 8-hours.*

PROJECT-RELATED RECEPTORS

Receptors in the Project study area are described below and shown on Exhibit 3-A. Localized air quality impacts were evaluated at sensitive receptor land uses nearest the Project site. All distances are measured from the Project site boundary to the outdoor living areas (e.g., backyards) or at the building façade, whichever is closer to the Project site. The selection of receptor locations is based on Federal Highway Administration (FHWA) guidelines and is consistent with additional guidance provided by Caltrans and the Federal Transit Administration (FTA).

- R1: Location R1 represents the Orangeland RV Park at 1600 West Struck Avenue, approximately 1,470 feet north of the Project site.
- R2: Location R2 represents the Praise Chapel at 1200 West Alvarez Avenue, approximately 1,374 feet east of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receptor R2 is placed at the residential building façade.
- R3: Location R3 represents Azusa Pacific University Orange County Campus at 1915 West Orangewood Avenue, approximately 969 feet south of the Project site. Since there are no private outdoor living areas (backyards) facing the Project site, receptor R3 is placed at the building façade.
- R4: Location R4 represents the Orange Coast Community Church located at 632 North Eckhoff Street, approximately 761 feet southwest of the Project site. Receptor R4 is placed at the building façade.
- R5: Location R5 represents the Orange County Department of Education/Foster at 800 North Eckhoff Street, located approximately 152 feet north of the Project site. Receptor R5 is placed at the approximate location of where the future building façade is anticipated.
- R6: Location R6 represents the National Oilwell Varco facility at 743 North Eckhoff Street, located approximately 46 feet south of the Project site. Receptor R5 is placed at the approximate location of where the future building façade is anticipated.

KATELLA COLLINS BUSINESS CENTER BARKLEY Site SHELLY CT R6 SEQUOIA BRADEN ORANGEWOOD

EXHIBIT 3-A: RECEPTOR LOCATIONS

Receptor Locations

■ Distance from receptor to Project site boundary (in feet)

The SCAQMD recommends that the nearest sensitive receptor be considered when determining the Project's potential to cause an individual a cumulatively significant impact. The nearest land use where an individual could remain for 24 hours to the Project site has been used to determine localized construction and operational air quality impacts for emissions of PM_{10} and $PM_{2.5}$ (since PM_{10} and $PM_{2.5}$ thresholds are based on a 24-hour averaging time). The nearest receptor used for evaluation of localized impacts of PM_{10} and $PM_{2.5}$ is represented by the Orangeland RV Park at 1600 West Struck Avenue, located approximately 1,470 feet (448 meters) north of the Project site.

As previously stated, and consistent with LST Methodology, the nearest industrial/commercial use to the Project site is used to determine construction and operational LST air impacts for emissions of NO_X and CO as the averaging periods for these pollutants are shorter (8 hours or less) and it is reasonable to assume that an individual could be present at these sites for periods of one to 8 hours. The nearest receptor used for evaluation of localized impacts of NO_X and CO is represented by the National Oilwell Varco facility at 743 North Eckhoff Street, located approximately 46 feet (14 meters) south of the Project site.

It should be noted that the LST Methodology explicitly states that "It is possible that a project may have receptors closer than 25 meters. Projects with boundaries located closer than 25 meters to the nearest receptor should use the LSTs for receptors located at 25 meters (40)." As such a 25-meter receptor distance will be used for evaluation of localized NO_X and CO.

3.7 Construction-Source Emissions LST Analysis

3.7.1 LOCALIZED THRESHOLDS FOR CONSTRUCTION ACTIVITY

Although the total acreage disturbed is more than 5 acres per day for construction activities, the LST Methodology provides look-up tables for sites with an area with daily disturbance of 5 acres or less. For projects that exceed 5 acres, the 5-acre LST look-up tables can be used as a screening tool to determine which pollutants require additional detailed analysis. This approach is conservative as it assumes that all on-site emissions associated with the Project would occur within a concentrated 5-acre area. This screening method would therefore over-predict potential localized impacts, because by assuming that on-site construction activities are occurring over a smaller area, the resulting concentrations of air pollutants are more highly concentrated once they reach the smaller site boundary than they would be for activities if they were spread out over a larger surface area. On a larger site, the same amount of air pollutants generated would disperse over a larger surface area and would result in a lower concentration once emissions reach the Project-site boundary. As such, LSTs for a 5-acre site during construction are used as a screening tool to determine if further detailed analysis is required. The thresholds used in for the construction-source LST analysis are presented below in Table 3-10.

TABLE 3-10: MAXIMUM DAILY LOCALIZED CONSTRUCTION EMISSIONS THRESHOLDS

Country of the Dhane		Construction Localized Thresholds			
Construction Phase	NO _x	со	PM ₁₀	PM ₁₀	
Demolition/Crushing					
Site Preparation	183 lbs/day	1,253 lbs/day	171 lbs/day	96 lbs/day	
Grading					

Source: Localized Thresholds presented in this table are based on the SCAQMD Final LST Methodology, July 2008

3.7.2 CONSTRUCTION-SOURCE LOCALIZED EMISSIONS

IMPACTS WITHOUT MITIGATION

Table 3-11 identifies the localized impacts at the nearest receptor location in the vicinity of the Project. For analytical purposes, emissions associated with peak demolition/crushing, site preparation, and grading activities are considered for purposes of LSTs since these phases represents the maximum localized emissions that would occur. Any other construction phases of development that overlap would result in lesser emissions and consequently lesser impacts than what is disclosed herein. Without mitigation, localized construction emissions would not exceed the applicable SCAQMD LSTs for emissions of any criteria pollutant.

TABLE 3-11: LOCALIZED CONSTRUCTION-SOURCE EMISSIONS – WITHOUT MITIGATION

Construction Phase	Year		Emissions	(lbs/day)	
Construction Phase	Teal	NO _x	со	PM ₁₀	PM _{2.5}
	2022	28.94	24.93	2.89	1.56
Domalition/Crushing	Maximum Daily Emissions	28.94	24.93	2.89	1.56
Demolition/Crushing	SCAQMD Localized Threshold	183	1,253	171	96
	Threshold Exceeded?	NO	NO	NO	NO
	2022	50.35	19.98	14.45	6.42
Cita Dranaration	Maximum Daily Emissions	50.35	19.98	14.45	6.42
Site Preparation	SCAQMD Localized Threshold	183	1,253	171	96
	Threshold Exceeded?	NO	NO	NO	NO
	2022	47.51	29.20	9.51	3.61
Grading	Maximum Daily Emissions	47.51	29.20	9.51	3.61
	SCAQMD Localized Threshold	183	1,253	171	96
	Threshold Exceeded?	NO	NO	NO	NO

3.8 OPERATIONAL-SOURCE EMISSIONS LST ANALYSIS

The Project site is located on an approximately 12.69-acre parcel. As noted previously, the *LST Methodology* provides look-up tables for sites with an area with daily disturbance of 5 acres or

less. For projects that exceed 5 acres, the 5-acre LST look-up tables can be used as a screening tool to determine whether pollutants require additional detailed analysis. This approach is conservative as it assumes that all on-site emissions associated with the project would occur within a concentrated 5-acre area. This screening method would therefore over-predict potential localized impacts, because by assuming that on-site operational activities are occurring over a smaller area, the resulting concentrations of air pollutants are more highly concentrated once they reach the smaller site boundary than they would be for activities if they were spread out over a larger surface area. On a larger site, the same amount of air pollutants generated would disperse over a larger surface area and would result in a lower concentration once emissions reach the project-site boundary. As such, LSTs for a 5-acre site during operations are used as a screening tool to determine if further detailed analysis is required.

The LST analysis generally includes on-site sources (area, energy, mobile, and on-site cargo handling equipment – are previously discussed in Section 3.5 of this report). However, it should be noted that the CalEEMod outputs do not separate on-site and off-site emissions from mobile sources. In an effort to establish a maximum potential impact scenario for analytic purposes, the emissions shown on Table 3-13 represent all on-site Project-related stationary sources and 5% of the Project-related mobile sources. Considering that the trip length used in CalEEMod for the Project is approximately 16.6 miles for passenger cars and 40.0 miles for all trucks, 5% of this total would represent an on-site travel distance of approximately 0.8 mile for passenger cars and 2 miles for trucks. It should be noted that the longest on-site distance is roughly 0.5 miles for passenger cars and trucks. As such, the 5% assumption is conservative and would tend to overstate the actual impact because it is not likely that a passenger car or truck would drive 0.8 mile or 2 miles on the site, respectively. Modeling based on these assumptions demonstrates that even within broad encompassing parameters, Project operational-source emissions would not exceed applicable LSTs.

3.8.1 LOCALIZED THRESHOLDS FOR OPERATIONAL ACTIVITY

As previously stated, LSTs for a 5-acre site during operations are used as a screening tool to determine if further detailed analysis is required.

TABLE 3-12: MAXIMUM DAILY LOCALIZED OPERATIONAL EMISSIONS THRESHOLDS

Operational Localized Thresholds					
NO _X	NO _X CO PM ₁₀				
183 lbs/day	1,253 lbs/day	41 lbs/day	35 lbs/day		

Source: Localized Thresholds presented in this table are based on the SCAQMD Final LST Methodology, July 2008

3.8.2 OPERATIONAL-SOURCE LOCALIZED EMISSIONS

As shown on Table 3-13 operational emissions would not exceed the LST thresholds for the nearest sensitive receptor. Therefore, the Project would have a less than significant localized impact during operational activity.

TABLE 3-13: LOCALIZED SIGNIFICANCE SUMMARY OF OPERATIONS

Scenario	Emissions (lbs/day)				
	NOx	со	PM ₁₀	PM _{2.5}	
Summer	2.77	2.66	0.58	0.22	
Winter	2.82	2.64	0.58	0.22	
Maximum Daily Emissions	2.82	2.66	0.58	0.22	
SCAQMD Localized Threshold	183	1,253	41	24	
Threshold Exceeded?	NO	NO	NO	NO	

3.9 CO "HOT SPOT" ANALYSIS

As discussed below, the Project would not result in potentially adverse CO concentrations or "hot spots." Further, detailed modeling of Project-specific CO "hot spots" is not needed to reach this conclusion. An adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 ppm or the eight-hour standard of 9 ppm were to occur.

It has long been recognized that CO hotspots are caused by vehicular emissions, primarily when idling at congested intersections. In response, vehicle emissions standards have become increasingly stringent in the last twenty years. Currently, the allowable CO emissions standard in California is a maximum of 3.4 grams/mile for passenger cars (there are requirements for certain vehicles that are more stringent). With the turnover of older vehicles, introduction of cleaner fuels, and implementation of increasingly sophisticated and efficient emissions control technologies, CO concentration in the SCAB is now designated as attainment.

To establish a more accurate record of baseline CO concentrations affecting the SCAB, a CO "hot spot" analysis was conducted in 2003 for four busy intersections in Los Angeles at the peak morning and afternoon time periods. This "hot spot" analysis did not predict any violation of CO standards, as shown on Table 3-14.

TABLE 3-14: CO MODEL RESULTS

Intersection Location	CO Concentrations (ppm)				
intersection Location	Morning 1-hour	Afternoon 1-hour	8-hour		
Wilshire Boulevard/Veteran Avenue	4.6	3.5	3.7		
Sunset Boulevard/Highland Avenue	4	4.5	3.5		
La Cienega Boulevard/Century Boulevard	3.7	3.1	5.2		
Long Beach Boulevard/Imperial Highway	3	3.1	8.4		

Notes: Federal 1-hour standard is 35 ppm and the deferral 8-hour standard is 9.0 ppm.

Based on the SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan), peak carbon monoxide concentrations in the SCAB were a result of unusual meteorological and topographical conditions and not a result of traffic volumes and congestion

at a particular intersection. As evidence of this, for example, 8.4 ppm 8-hr CO concentration measured at the Long Beach Blvd. and Imperial Hwy. intersection (highest CO generating intersection within the "hot spot" analysis), only 0.7 ppm was attributable to the traffic volumes and congestion at this intersection; the remaining 7.7 ppm were due to the ambient air measurements at the time the 2003 AQMP was prepared (41). In contrast, an adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 parts per million (ppm) or the eight-hour standard of 9 ppm were to occur.

The ambient 1-hr and 8-hr CO concentration within the Project study area is estimated to be 2.4 ppm and 2.0 ppm, respectively (data from I-5 Near Road station for 2020). Therefore, even if the traffic volumes for the proposed Project were double or even triple of the traffic volumes generated at the Long Beach Blvd. and Imperial Hwy. intersection, coupled with the on-going improvements in ambient air quality, the Project would not be capable of resulting in a CO "hot spot" at any study area intersections.

Similar considerations are also employed by other Air Districts when evaluating potential CO concentration impacts. More specifically, the Bay Area Air Quality Management District (BAAQMD) concludes that under existing and future vehicle emission rates, a given project would have to increase traffic volumes at a single intersection by more than 44,000 vehicles per hour (vph)—or 24,000 vph where vertical and/or horizontal air does not mix—in order to generate a significant CO impact (42). Traffic volumes generating the CO concentrations for the "hot spot" analysis is shown on Table 3-15. The busiest intersection evaluated was that at Wilshire Boulevard and Veteran Avenue, which has a daily traffic volume of approximately 100,000 vph and AM/PM traffic volumes of 8,062 vph and 7,719 vph respectively (41). The 2003 AQMP estimated that the 1-hour concentration for this intersection was 4.6 ppm; this indicates that, should the daily traffic volume increase four times to 400,000 vehicles per day, CO concentrations (4.6 ppm x 4= 18.4 ppm) would still not likely exceed the most stringent 1-hour CO standard (20.0 ppm) ¹².

TABLE 3-15: TRAFFIC VOLUMES

	Peak Traffic Volumes (vph)					
Intersection Location	Eastbound (AM/PM)	Westbound (AM/PM)	Southbound (AM/PM)	Northbound (AM/PM)	Total (AM/PM)	
Wilshire Boulevard/Veteran Avenue	4,954/2,069	1,830/3,317	721/1,400	560/933	8,062/7,719	
Sunset Boulevard/Highland Avenue	1,417/1,764	1,342/1,540	2,304/1,832	1,551/2,238	6,614/5,374	
La Cienega Boulevard/Century Boulevard	2,540/2,243	1,890/2,728	1,384/2,029	821/1,674	6,634/8,674	
Long Beach Boulevard/Imperial Highway	1,217/2,020	1,760/1,400	479/944	756/1,150	4,212/5,514	

 $^{^{12}}$ Based on the ratio of the CO standard (20.0 ppm) and the modeled value (4.6 ppm)

3.10 AQMP

The Project site is located within the SCAB, which is characterized by relatively poor air quality. The SCAQMD has jurisdiction over an approximately 10,743 square-mile area consisting of the four-county Basin and the Los Angeles County and Riverside County portions of what use to be referred to as the Southeast Desert Air Basin. In these areas, the SCAQMD is principally responsible for air pollution control, and works directly with the SCAG, county transportation commissions, local governments, as well as state and federal agencies to reduce emissions from stationary, mobile, and indirect sources to meet state and federal ambient air quality standards.

Currently, these state and federal air quality standards are exceeded in most parts of the SCAB. In response, the SCAQMD has adopted a series of AQMPs to meet the state and federal ambient air quality standards. AQMPs are updated regularly in order to more effectively reduce emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy.

In March 2017, the SCAQMD released the *Final 2016 AQMP* (2016 AQMP). The 2016 AQMP continues to evaluate current integrated strategies and control measures to meet the NAAQS, as well as explore new and innovative methods to reach its goals. Some of these approaches include utilizing incentive programs, recognizing existing co-benefit programs from other sectors, and developing a strategy with fair-share reductions at the federal, state, and local levels (43). Similar to the 2012 AQMP, the 2016 AQMP incorporates scientific and technological information and planning assumptions, including the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (2016-2040 RTP/SCS), a planning document that supports the integration of land use and transportation to help the region meet the federal CAA requirements (18). The Project's consistency with the AQMP will be determined using the 2016 AQMP as discussed below.

Criteria for determining consistency with the AQMP are defined in Chapter 12, Section 12.2 and Section 12.3 of the 1993 CEQA Handbook (44). These indicators are discussed below:

3.10.1 CONSISTENCY CRITERION NO. 1

The proposed Project will not result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations or delay the timely attainment of air quality standards or the interim emissions reductions specified in the AQMP.

The violations that Consistency Criterion No. 1 refer to are the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if regional or localized significance thresholds were exceeded.

Construction Impacts – Consistency Criterion 1

Consistency Criterion No. 1 refers to violations of the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if regional or localized significance thresholds were exceeded. As evaluated, the Project's regional and localized construction-source emissions would not exceed applicable regional significance thresholds. As such, a less than significant impact is expected.

Operational Impacts – Consistency Criterion 1

As evaluated, the Project would not exceed the applicable regional and localized significance thresholds for operational activity. Therefore, the Project would not conflict with the AQMP according to this criterion.

On the basis of the preceding discussion, the Project is determined to be consistent with the first criterion.

3.10.2 CONSISTENCY CRITERION NO. 2

The Project will not exceed the assumptions in the AQMP based on the years of Project buildout phase.

The 2016 AQMP demonstrates that the applicable ambient air quality standards can be achieved within the timeframes required under federal law. Growth projections from local general plans adopted by cities in the district are provided to the SCAG, which develops regional growth forecasts, which are then used to develop future air quality forecasts for the AQMP. Development consistent with the growth projections in City of Orange General Plan is considered to be consistent with the AQMP.

Construction Impacts – Consistency Criterion 2

Peak day emissions generated by construction activities are largely independent of land use assignments, but rather are a function of development scope and maximum area of disturbance. Irrespective of the site's land use designation, development of the site to its maximum potential would likely occur, with disturbance of the entire site occurring during construction activities. As such, when considering that no emissions thresholds will be exceeded, a less than significant impact would result.

Operational Impacts – Consistency Criterion 2

As previously stated, the Project site is designated for Light Industrial uses. Light Industrial designation is intended for uses that are compatible with nearby commercial and residential districts and that do not produce substantial environmental nuisances (noise, odor, dust, smoke, glare, etc.). This designation allows for manufacturing, processing, and distribution of goods (4). The Project is proposed to consist of 51,598 sf of general light industrial use and 241,164 sf of warehousing use within two buildings, which is consistent with the site's General Plan land use designation. Since the Project's proposed land uses are consistent with the General Plan and as the Project's construction and operational-source air pollutant emissions would not exceed the regional or localized significance thresholds, the Project is determined to be consistent with the second criterion.

AQMP CONSISTENCY CONCLUSION

The Project would not have the potential to result in or cause NAAQS or CAAQS violations. The Project is considered to be consistent with the AQMP because the Project's proposed uses are consistent with the General Plan land use designation, and the Project would not exceed the regional or localized construction and operational thresholds, and the Project's development

intensity is consistent with the development intensities allowed within the General Plan. As such, a less than significant impact would result.

3.11 POTENTIAL IMPACTS TO SENSITIVE RECEPTORS

The potential impact of Project-generated air pollutant emissions at sensitive receptors has also been considered. Results of the LST analysis indicate that the Project will not exceed the SCAQMD localized significance thresholds during construction. Therefore, sensitive receptors would not be exposed to substantial pollutant concentrations during Project construction.

Additionally, the Project will not exceed the SCAQMD localized significance thresholds during operational activity. Further Project traffic would not create or result in a CO "hotspot." Therefore, sensitive receptors would not be exposed to substantial pollutant concentrations as the result of Project operations.

3.11.1 FRIANT RANCH CASE

In December 2018, in the case of *Sierra Club v. County of Fresno* (2018) 6 Cal.5th 502, California Supreme Court held that an EIR's air quality analysis must meaningfully connect the identified air quality impacts to the human health consequences of those impacts, or meaningfully explain why that analysis cannot be provided. As noted in the *Brief* of Amicus Curiae by the SCAQMD in the Friant Ranch case (April 6, 2015, Appendix 3.5), SCAQMD has among the most sophisticated air quality modeling and health impact evaluation capability of any of the air districts in the State, and thus it is uniquely situated to express an opinion on how lead agencies should correlate air quality impacts with specific health outcomes (45).

The SCAQMD discusses that it may be infeasible to quantify health risks caused by projects similar to the proposed Project, due to many factors. It is necessary to have data regarding the sources and types of air toxic contaminants, location of emission points, velocity of emissions, the meteorology and topography of the area, and the location of receptors (worker and residence) (45). The Brief states that it may not be feasible to perform a health risk assessment for airborne toxics that will be emitted by a generic industrial building that was built on "speculation" (i.e., without knowing the future tenant(s))¹³ (45). Even where a health risk assessment can be prepared, however, the resulting maximum health risk value is only a calculation of risk--it does not necessarily mean anyone will contract cancer as a result of the Project (45). The Brief also cites the author of the CARB methodology, which reported that a PM_{2.5} methodology is not suited for small projects and may yield unreliable results (45). Similarly, SCAQMD staff does not currently know of a way to accurately quantify O₃-related health impacts caused by NO_X or VOC emissions from relatively small projects, due to photochemistry and regional model limitations (45). The Brief concludes, with respect to the Friant Ranch EIR, that although it may have been technically possible to plug the data into a methodology, the results would not have been reliable or meaningful (45).

_

¹³ It should also be noted that the actual occurrence of specific health conditions is based on numerous other factors that are infeasible to quantify, such as an individual's genetic predisposition, diet, exercise regiment, stress, and other behavioral characteristics.

On the other hand, for extremely large regional projects (unlike the proposed Project), the SCAQMD states that it has been able to correlate potential health outcomes for very large emissions sources — as part of their rulemaking activity, specifically 6,620 lbs./day of NO $_{\rm X}$ and 89,180 lbs./day of VOC were expected to result in approximately 20 premature deaths per year and 89,947 school absences due to O $_{\rm 3}$ (45).

The proposed Project does not generate anywhere near 6,620 lbs/day of NO_X or 89,190 lbs/day of VOC emissions. The proposed Project would generate up to 50.48 lbs/day of NO_X during construction and 26.40 lbs/day of NO_X during operations (0.76% and 0.40% of 6,620 lbs/day, respectively). Additionally, the proposed Project would also generate a maximum of 66.11 lbs/day of VOC emissions during construction and 8.99 lbs/day of VOC emissions during operations (0.07% and 0.01% of 89,190 lbs/day, respectively). Therefore, the proposed Project's emissions are not sufficiently high enough to use a regional modeling program to correlate health effects on a basin-wide level.

Notwithstanding, this AQIA does evaluate the proposed Project's localized impact to air quality for emissions of CO, NO_X, PM₁₀, and PM_{2.5} by comparing the Proposed Project's on-site emissions to the SCAQMD's applicable LST thresholds. As evaluated in this AQIA, the proposed Project would not result in emissions that exceeded the SCAQMD's LSTs. Therefore, the proposed Project would not be expected to exceed the most stringent applicable federal or state ambient air quality standards for emissions of CO, NO_X, PM₁₀, and PM_{2.5}.

3.12 ODORS

The potential for the Project to generate objectionable odors has also been considered. Land uses generally associated with odor complaints include:

- Agricultural uses (livestock and farming)
- Wastewater treatment plants
- Food processing plants
- Chemical plants
- Composting operations
- Refineries
- Landfills
- Dairies
- Fiberglass molding facilities

The Project does not contain land uses typically associated with emitting objectionable odors. Potential odor sources associated with the proposed Project may result from construction equipment exhaust and the application of asphalt and architectural coatings during construction activities and the temporary storage of typical solid waste (refuse) associated with the proposed Project's (long-term operational) uses. Standard construction requirements would minimize odor impacts from construction. The construction odor emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of

construction and is thus considered less than significant. It is expected that Project-generated refuse would be stored in covered containers and removed at regular intervals in compliance with the solid waste regulations. The proposed Project would also be required to comply with SCAQMD Rule 402 to prevent occurrences of public nuisances. Therefore, odors associated with the proposed Project construction and operations would be less than significant and no mitigation is required (46).

3.13 CUMULATIVE IMPACTS

As previously shown in Table 2-3, the CAAQS designate the Project site as nonattainment for O_3 PM₁₀, and PM_{2.5} while the NAAQS designates the Project site as nonattainment for O_3 and PM_{2.5}.

The SCAQMD has published a report on how to address cumulative impacts from air pollution: White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution (47). In this report the SCAQMD clearly states (Page D-3):

"...the SCAQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for TAC emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant."

Therefore, this analysis assumes that individual projects that do not generate operational or construction emissions that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would also not cause a cumulatively considerable increase in emissions for those pollutants for which SCAB is in nonattainment, and, therefore, would not be considered to have a significant, adverse air quality impact. Alternatively, individual project-related construction and operational emissions that exceed SCAQMD thresholds for project-specific impacts would be considered cumulatively considerable.

CONSTRUCTION IMPACTS

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that Project construction-source air pollutant emissions would not result in exceedances of

regional thresholds. Therefore, Project construction-source emissions would be considered less than significant on a project-specific and cumulative basis.

OPERATIONAL IMPACTS

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that Project operational-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, Project operational-source emissions would be considered less than significant on a project-specific and cumulative basis.

This page intentionally left blank

4 REFERENCES

- 1. **State of California.** *2020 CEQA California Environmental Quality Act.* 2020.
- 2. **South Coast Air Quality Management District.** RULE 403. FUGITIVE DUST. [Online] https://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-403.pdf?sfvrsn=4.
- 3. —. RULE 1113. Architectural Coatings. [Online] http://www.aqmd.gov/docs/default-source/rule-book/reg-xi/r1113.pdf.
- 4. City of Orange. City of Orange General Plan Land Use. 2015.
- 5. **South Coast Air Quality Management District.** Southern California Air Basins. [Online] https://www.arb.ca.gov/msprog/onroad/porttruck/maps/scabc7map.pdf.
- 6. —. Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. 2005.
- 7. **St. Croix Sensory, Inc.** The "Gray Line" Between Odor Nuisance and Health Effects. 2000.
- 8. **California Air Resources Board.** Ambient Air Quality Standards (AAQS). [Online] 2016. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf.
- 9. **United State Environmental Protection Agency.** Frequent Questions about General Conformity . *EPA.* [Online] https://www.epa.gov/general-conformity/frequent-questions-about-general-conformity#8.
- 10. **South Coast Air Quality Management District.** Annual Air Quality Monitoring Network Plan. [Online] July 2018. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-monitoring-network-plan/annual-air-quality-monitoring-network-plan-v2.pdf?sfvrsn=2.
- 11. **Air Resources Board.** State and National Ambient Air Quality Standards. [Online] https://www.arb.ca.gov/regact/2019/stateareadesignations/appc.pdf?_ga=2.169398369.15376157 02.1554741141-1192937971.1505156621.
- 12. **District, South Coast Air Quality Management.** Air Quality Data Tables. [Online] https://www.aqmd.gov/home/air-quality/air-quality-data-studies/historical-data-by-year.
- 13. **Environmental Protection Agency.** National Ambient Air Quality Standards (NAAQS). [Online] 1990. https://www.epa.gov/environmental-topics/air-topics.
- 14. —. Air Pollution and the Clean Air Act. [Online] http://www.epa.gov/air/caa/.
- 15. **United States Environmental Protection Agency.** 1990 Clean Air Act Amendment Summary: Title I. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-i.
- 16. —. 1990 Clean Air Act Amendment Summary: Title II. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-ii.
- 17. **Air Resources Board.** California Ambient Air Quality Standards (CAAQS). [Online] 2009. [Cited: April 16, 2018.] http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm.
- 18. **Southern California Association of Governments.** 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy. [Online] April 2016. http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS.pdf.
- 19. South Coast Air Quality Management District. Air Quality Management Plan. 2012.
- 20. California Air Resources Board. The California Almanac of Emissions and Air Quality. 2013.
- 21. **South Coast AQMD.** South Coast Air Basin Ozone Trend. [Online] https://www.aqmd.gov/home/air-quality/historical-air-quality-data/historic-ozone-air-quality-trends.

- 22. **California Air Resources Board.** iADAM: Air Quality Data Statistics. *California Air Resources Board.* [Online] https://arb.ca.gov/adam/topfour/topfour1.php.
- 23. **Environmental Protection Agency.** Approval and Promulgation of Implementation Plans; California; South Coast Serious Area Plan for the 2006 PM2.5. [Online] 2019. https://www.federalregister.gov/documents/2019/02/12/2019-01922/approval-and-promulgation-of-implementation-plans-california-south-coast-serious-area-plan-for-the.
- 24. **South Coast Air Quality Management District.** Final 2016 Air Quality Management Plan. *South Coast Air Quality Management District.* [Online] March 2017. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-aqmp/final2016aqmp.pdf.
- 25. South coast Air Quality Management District. CEQA Air Quality Handbook (1993). 1993.
- 26. **California Environmental Protection Agency Air Resources Board.** Nitrogen Dioxide- Overview. [Online] http://www.arb.ca.gov/research/aaqs/caaqs/no2-1/no2-1.htm.
- 27. Ralph Propper, Patrick Wong, Son Bui, Jeff Austin, William Vance, Alvaro Alvarado, Bart Croes, and Dongmin Luo. Ambient and Emission Trends of Toxic Air Contaminants in California. *American Chemical Society: Environmental Science & Technology*. 2015.
- 28. **Air Resources Board.** ARB's Drayage Truck Regulatory Activities. [Online] http://www.arb.ca.gov/msprog/onroad/porttruck/porttruck.htm.
- 29. —. Truck and Bus Regulation. *On-Road Heavy-Duty Diesel Vehicles (In-Use) Regulation*. [Online] http://www.arb.ca.gov/msprog/onrdiesel/onrdiesel.htm.
- 30. **The Port of Los Angeles.** Clean Truck Program. [Online] http://www.portoflosangeles.org/ctp/idx_ctp.asp.
- 31. **South Coast Air Quality Management District.** Transfer Funds, Appropriate Funding, Execute Purchase Orders, Execute Contrat and Authorize Release of RFQs for the Fifth Multiple Air Toxics Exposure Study. *South Coast Air Quality Management District.* [Online] 2017. http://www.aqmd.gov/docs/default-source/Agendas/Governing-Board/2017/2017-jul7-009.pdf?sfvrsn=7.
- 32. —. Executive Summary. *MATES V Draft Report*. [Online] 2021. http://www.aqmd.gov/docs/default-source/planning/mates-v/draft-mates-v-executive-summary_v2.pdf?sfvrsn=6.
- 33. **South Coast Air Quality Management District (SCAQMD).** SCAQMD Air Quality Significance Thresholds. [Online] http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2.
- 34. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] www.caleemod.com.
- 35. **Urban Crossroads, Inc.** 759 Eckhoff Street Scoping Memo. 2021.
- 36. **Lake Environmental.** US EPA Models. *Lake Environmental.* [Online] http://www.weblakes.com/download/us_epa.html.
- 37. **South Coast Air Quality Management District.** Fact Sheet for Applying CalEEMod to Localized Significance Thresholds. [Online] http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/caleemod-guidance.pdf.
- 38. California Air Pollution Control Officers Association (CAPCOA). Appendix A: Calculation Details for CalEEMod. [Online] October 2017. http://www.aqmd.gov/docs/default-source/caleemod/02 appendix-a2016-3-2.pdf?sfvrsn=6.

- 39. **South Coast Air Quality Management District.** *Localized Significance Thresholds Methodology.* s.l. : South Coast Air Quality Management District, 2008.
- 40. —. Localized Significance Thresholds Methodology. s.l.: South Coast Air Quality Managment District, 2003.
- 41. —. 2003 Air Quality Management Plan. [Online] 2003. https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/2003-aqmp.
- 42. Bay Area Air Quality Management District. [Online] http://www.baaqmd.gov/.
- 43. **South Coast Air Quality Management District.** Final 2016 Air Quality Management Plan (AQMP). [Online] March 2017. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-agmp/final2016agmp.pdf?sfvrsn=11.
- 44. South coast Air Quality Management District. CEQA Air Quality Handbook (1993). 1993.
- 45. **South Coast Air Quality Management District.** Sierra Club, Revive the San Joaquin and League of Women Voters of Fresno, Plaintiffs and Appellants, v. County of Fresno, Defendant and Respondent and, Friant Ranchm L.P. Real Party in Interest and Respondent. [Online] 2015. https://www.courts.ca.gov/documents/9-s219783-ac-south-coast-air-quality-mgt-dist-041315.pdf.
- 46. —. RULE 402 NUISANCE. [Online] http://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-402.pdf.
- 47. **Goss, Tracy A and Kroeger, Amy.** White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, 2003. http://www.aqmd.gov/rules/ciwg/final_white_paper.pdf.

This page intentionally left blank

5 CERTIFICATIONS

The contents of this air study report represent an accurate depiction of the environmental impacts associated with the proposed 759 Eckhoff Street. The information contained in this air quality impact assessment report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqureshi@urbanxroads.com

Haseeb Qureshi
Associate Principal
URBAN CROSSROADS, INC.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May, 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June, 2006

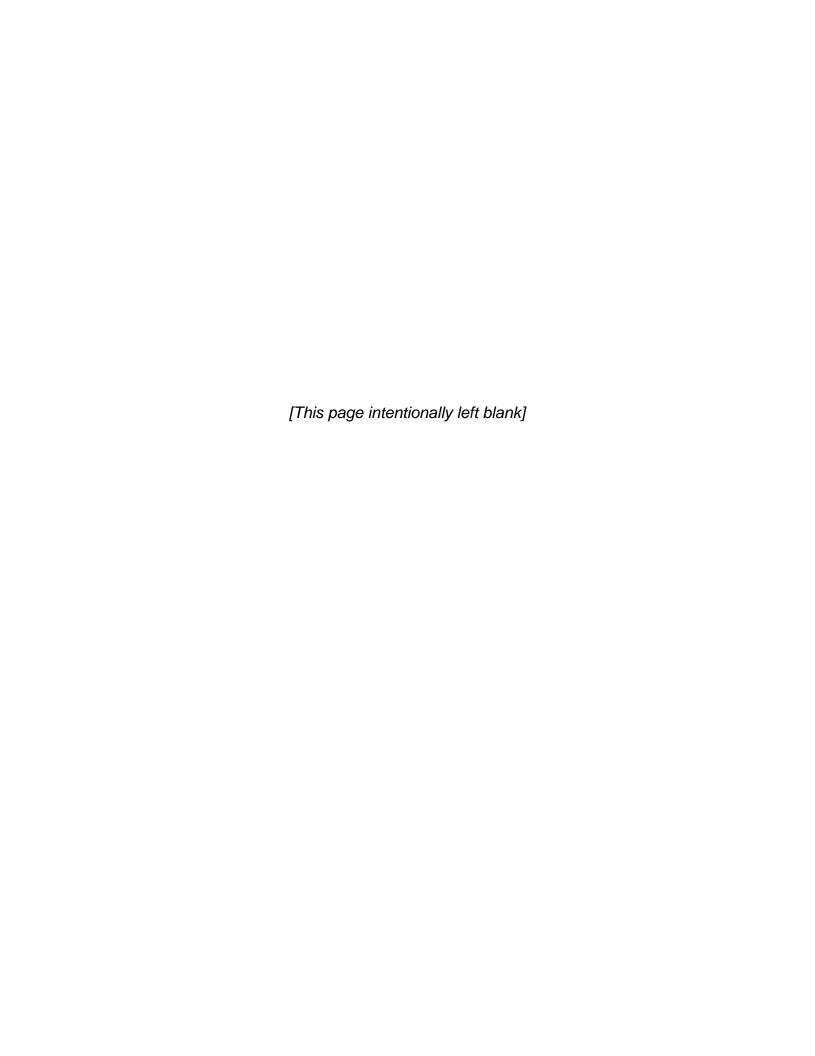
PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – CARB • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank


APPENDIX 2.1:

STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

APPENDIX C

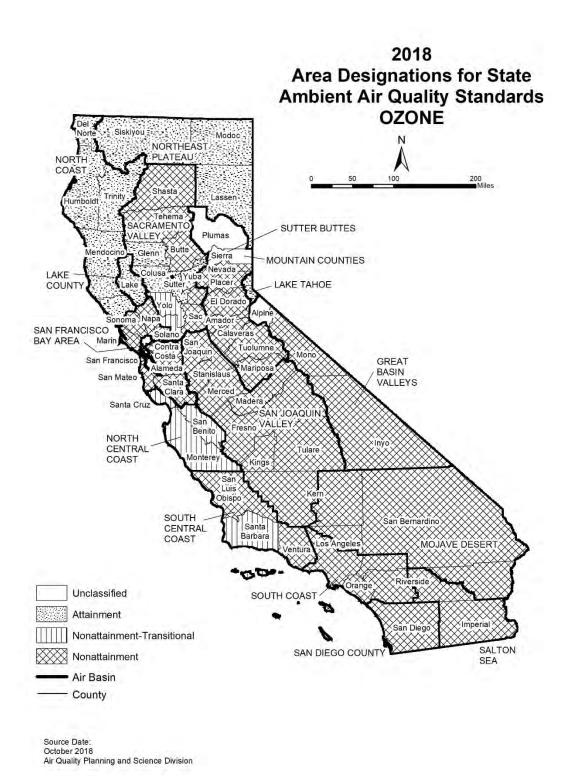
MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

This attachment fulfills the requirement of Health and Safety Code section 40718 for CARB to publish maps that identify areas where one or more violations of any State ambient air quality standard (State standard) or national ambient air quality standard (national standard) have been measured. The national standards are those promulgated under section 109 of the federal Clean Air Act (42 U.S.C. 7409).

This attachment is divided into three parts. The first part comprises a table showing the levels, averaging times, and measurement methods for each of the State and national standards. This is followed by a section containing maps and tables showing the area designations for each pollutant for which there is a State standard in the California Code of Regulations, title 17, section 70200. The last section contains maps and tables showing the most current area designations for the national standards.

		Ambient A	Air Quality	Standard:	S		
Dallaria ari	Averaging	California S	tandards	Na	tional Standards	3 ²	
Pollutant	Time	Concentration ³	Method ⁴	Primary 3.5	Secondary 3.6	Method 7	
Ozone (O₃)º	1 Hour	0.09 ppm (180 μg/m³)	Ultraviolet Photometry	I	Same as Primary	Ultraviolet	
Ozone (O ₃)	8 Hour	0.070 ppm (137 μg/m²)	Oliraviolet i notorietry	0.070 ppm (137 μg/m³)	Standard	Photometry	
Respirable Particulate	24 Hour	50 μg/m³	Gravimetric or Beta	150 μg/m³	Same as Primary	Inertial Separation and Gravimetric	
Matter (PM10)	Annual Arithmetic Mean	20 μg/m³	Attenuation	_	Standard	Analysis	
Fine Particulate	24 Hour	I	_	35 μg/m³	Same as Primary Standard	Inertial Separation and Gravimetric	
Matter (PM2.5) ⁹	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12.0 μg/m³	15 μg/m³	Analysis	
Carbon	1 Hour	20 ppm (23 mg/m³)	Non-Dispersive	35 ppm (40 mg/m³)	_	Non-Dispersive	
Monoxide	8 Hour	9.0 ppm (10 mg/m²)	Infrared Photometry (NDIR)	9 ppm (10 mg/m³)	_	Infrared Photometry (NDIR)	
(CO)	8 Hour (Lake Tahoe)	6 ppm (7 mg/m²)	(NDIIV)	1	_	(NDIN)	
Nitrogen Dioxide	1 Hour	0.18 ppm (339 μg/m³)	Gas Phase	100 ppb (188 µg/m³)	_	Gas Phase	
(NO ₂) ¹⁰	Annual Arithmetic Mean	0.030 ppm (57 μg/m²)	Chemiluminescence	0.053 ppm (100 μg/m²)	Same as Primary Standard	Chemiluminescence	
	1 Hour	0.25 ppm (655 μg/m³)		75 ppb (196 μg/m²)	_		
Sulfur Dioxide	3 Hour	1	Ultraviolet		0.5 ppm (1300 μg/m³)	Ultraviolet Flourescence; Spectrophotometry	
(SO₂)¹¹	24 Hour	0.04 ppm (105 μg/m³)	Fluorescence	0.14 ppm (for certain areas) ¹¹	_	(Pararosaniline Method)	
	Annual Arithmetic Mean	1		0.030 ppm (for certain areas)11	_	Modiody	
	30 Day Average	1.5 μg/m³		_	_		
Lead ^{12,13}	Calendar Quarter	_	Atomic Absorption	1.5 μg/m³ (for certain areas)¹²	Same as Primary	High Volume Sampler and Atomic Absorption	
	Rolling 3-Month Average	1		0.15 μg/m³	Standard	·	
Visibility Reducing Particles ⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape		No		
Sulfates	24 Hour	25 μg/m²	lon Chromatography		National		
Hydrogen Sulfide	1 Hour	0.03 ppm (42 μg/m²)	Ultraviolet Fluorescence	Standards			
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 μg/m²)	Gas Chromatography				
See footnotes	on next page						

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1- and 24-hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the CARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- 6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μ g/m³ to 12.0 μ g/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μ g/m³, as was the annual secondary standard of 15 μ g/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μ g/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.
 - Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.
- 12. The CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 μg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the CARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.


[This page intentionally left blank]

Area Designations for the State Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a State standard set forth in the California Code of Regulations, title 17, section 60200. Each area is identified as attainment, nonattainment, nonattainment-transitional, or unclassified for each pollutant, as shown below:

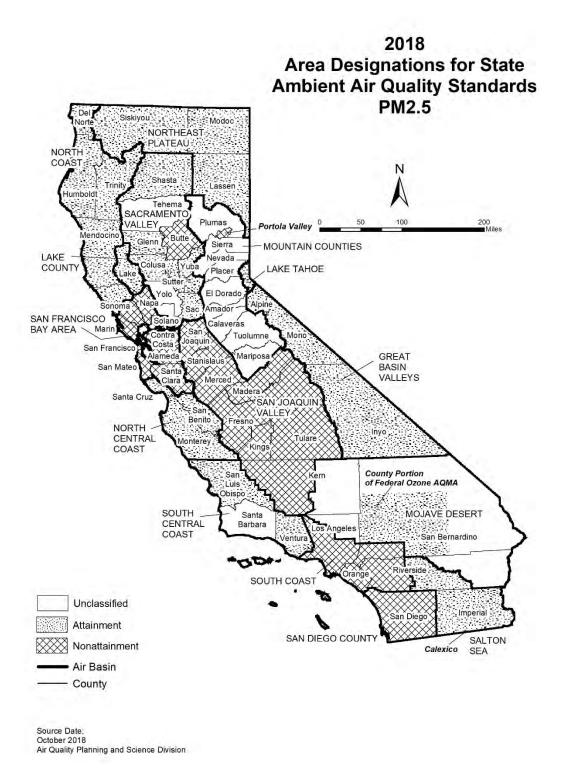
Attainment A
Nonattainment N
Nonattainment-Transitional NA-T
Unclassified U

In general, CARB designates areas by air basin for pollutants with a regional impact and by county for pollutants with a more local impact. However, when there are areas within an air basin or county with distinctly different air quality deriving from sources and conditions not affecting the entire air basin or county, CARB may designate a smaller area. Generally, when boundaries of the designated area differ from the air basin or county boundaries, the description of the specific area is referenced at the bottom of the summary table.

TABLE 1

California Ambient Air Quality Standards Area Designations for Ozone (1)

	N	NA-T	U	Α		N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN					NORTHEAST PLATEAU AIR BASIN				Χ
Alpine County			Х		SACRAMENTO VALLEY AIR BASIN				
Inyo County	Χ				Colusa and Glenn Counties				Χ
Mono County	Х				Sutter/Yuba Counties				
LAKE COUNTY AIR BASIN				Χ	Sutter Buttes	Χ			
LAKE TAHOE AIR BASIN				Χ	Remainder of Sutter County				Χ
MOJAVE DESERT AIR BASIN	Χ				Yuba County				Χ
MOUNTAIN COUNTIES AIR BASIN					Yolo/Solano Counties		Х		
Amador County	Χ				Remainder of Air Basin	Χ			
Calaveras County	Х				SALTON SEA AIR BASIN	Χ			
El Dorado County (portion)	Χ				SAN DIEGO AIR BASIN	Х			
Mariposa County	Χ				SAN FRANCISCO BAY AREA AIR BASIN	Χ			
Nevada County	Х				SAN JOAQUIN VALLEY AIR BASIN	Х			
Placer County (portion)	Χ				SOUTH CENTRAL COAST AIR BASIN				
Plumas County			Χ		San Luis Obispo County	Χ			
Sierra County			Χ		Santa Barbara County		Х		
Tuolumne County	Х				Ventura County	Х			
NORTH CENTRAL COAST AIR BASIN		Х			SOUTH COAST AIR BASIN	Х			
NORTH COAST AIR BASIN				Х					


⁽¹⁾ AB 3048 (Olberg) and AB 2525 (Miller) signed into law in 1996, made changes to Health and Safety Code, section 40925.5. One of the changes allows nonattainment districts to become nonattainment-transitional for ozone by operation of law.

2018
Area Designations for State
Ambient Air Quality Standards
PM10

California Ambient Air Quality Standards
Area Designation for Suspended Particulate Matter (PM10)

	N	U	Α		N	U	Α
GREAT BASIN VALLEYS AIR BASIN	Х			NORTH CENTRAL COAST AIR BASIN	Х		
LAKE COUNTY AIR BASIN			Χ	NORTH COAST AIR BASIN			
LAKE TAHOE AIR BASIN	Х			Del Norte, Sonoma (portion) and Trinity Counties			Х
MOJAVE DESERT AIR BASIN	Х			Remainder of Air Basin	Х		
MOUNTAIN COUNTIES AIR BASIN				NORTHEAST PLATEAU AIR BASIN			
Amador County		Х		Siskiyou County			Х
Calaveras County	Х			Remainder of Air Basin		Х	
El Dorado County (portion)	X			SACRAMENTO VALLEY AIR BASIN			
Mariposa County				Shasta County			Χ
- Yosemite National Park	X			Remainder of Air Basin	Х		
- Remainder of County		Χ		SALTON SEA AIR BASIN	Х		
Nevada County	X			SAN DIEGO AIR BASIN	Χ		
Placer County (portion)	X			SAN FRANCISCO BAY AREA AIR BASIN	Х		
Plumas County	Х			SAN JOAQUIN VALLEY AIR BASIN	Х		
Sierra County	Х			SOUTH CENTRAL COAST AIR BASIN	Х		
Tuolumne County		Х		SOUTH COAST AIR BASIN	Х		

California Ambient Air Quality Standards Area Designations for Fine Particulate Matter (PM2.5)

	N	U	Α		N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ	SALTON SEA AIR BASIN			
LAKE COUNTY AIR BASIN			Χ	Imperial County			
LAKE TAHOE AIR BASIN			Χ	- City of Calexico (3)	Χ		
MOJAVE DESERT AIR BASIN				Remainder of Air Basin			Χ
San Bernardino County				SAN DIEGO AIR BASIN	Χ		
- County portion of federal Southeast			x	SAN FRANCISCO BAY AREA AIR BASIN	Χ		
Desert Modified AQMA for Ozone (1)			^	SAN JOAQUIN VALLEY AIR BASIN	Χ		
Remainder of Air Basin		Х		SOUTH CENTRAL COAST AIR BASIN			
MOUNTAIN COUNTIES AIR BASIN				San Luis Obispo County			Χ
Plumas County				Santa Barbara County		Χ	
- Portola Valley (2)	Х			Ventura County			Χ
Remainder of Air Basin		Χ		SOUTH COAST AIR BASIN	Χ		
NORTH CENTRAL COAST AIR BASIN			Χ				
NORTH COAST AIR BASIN			Χ				
NORTHEAST PLATEAU AIR BASIN			Χ				
SACRAMENTO VALLEY AIR BASIN							
Butte County	Х						
Colusa County			Χ				
Glenn County			Χ				
Placer County (portion)			Χ				
Sacramento County			Χ				
Shasta County			Χ				
Sutter and Yuba Counties			Χ				
Remainder of Air Basin		Χ					

⁽¹⁾ California Code of Regulations, title 17, section 60200(b)

⁽²⁾ California Code of Regulations, title 17, section 60200(c)

⁽³⁾ California Code of Regulations, title 17, section 60200(a)

2018
Area Designations for State
Ambient Air Quality Standards
CARBON MONOXIDE

California Ambient Air Quality Standards Area Designation for Carbon Monoxide*

	N	NA-T	U	Α		N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN					SACRAMENTO VALLEY AIR BASIN				
Alpine County			Х		Butte County				Χ
Inyo County				Χ	Colusa County			Х	
Mono County				Χ	Glenn County			Х	
LAKE COUNTY AIR BASIN				Χ	Placer County (portion)				Χ
LAKE TAHOE AIR BASIN				Χ	Sacramento County				Χ
MOJAVE DESERT AIR BASIN					Shasta County			Χ	
Kern County (portion)			Χ		Solano County (portion)				Χ
Los Angeles County (portion)				Χ	Sutter County				Χ
Riverside County (portion)			Х		Tehama County			Χ	
San Bernardino County (portion)				Χ	Yolo County				Χ
MOUNTAIN COUNTIES AIR BASIN					Yuba County			Χ	
Amador County			Х		SALTON SEA AIR BASIN				Χ
Calaveras County			Χ		SAN DIEGO AIR BASIN				Χ
El Dorado County (portion)			Χ		SAN FRANCISCO BAY AREA AIR BASIN				Χ
Mariposa County			Χ		SAN JOAQUIN VALLEY AIR BASIN				
Nevada County			Х		Fresno County				Χ
Placer County (portion)			Χ		Kern County (portion)				Χ
Plumas County				Χ	Kings County			Х	
Sierra County			Χ		Madera County			Х	
Tuolumne County				Χ	Merced County			Х	
NORTH CENTRAL COAST AIR BASIN		,			San Joaquin County				Χ
Monterey County				Χ	Stanislaus County				Χ
San Benito County			Χ		Tulare County				Χ
Santa Cruz County			Χ		SOUTH CENTRAL COAST AIR BASIN				Χ
NORTH COAST AIR BASIN		,			SOUTH COAST AIR BASIN				Χ
Del Norte County			Χ						
Humboldt County				Χ					
Mendocino County				Χ					
Sonoma County (portion)			Х						
Trinity County			Х						
NORTHEAST PLATEAU AIR BASIN			Χ						

^{*} The area designated for carbon monoxide is a county or portion of a county

2018
Area Designations for State
Ambient Air Quality Standards
NITROGEN DIOXIDE

California Ambient Air Quality Standards Area Designation for Nitrogen Dioxide

	N	U	Α		N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ	SACRAMENTO VALLEY AIR BASIN			Χ
LAKE COUNTY AIR BASIN			Χ	SALTON SEA AIR BASIN			Х
LAKE TAHOE AIR BASIN			Χ	SAN DIEGO AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ	SAN FRANCISCO BAY AREA AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Χ	SAN JOAQUIN VALLEY AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ	SOUTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Χ	SOUTH COAST AIR BASIN			
NORTHEAST PLATEAU AIR BASIN			Х	CA 60 Near-road Portion of San Bernardino, Riverside, and Los Angeles Counties	Х		
				Remainder of Air Basin			Х

California Ambient Air Quality Standards Area Designation for Sulfur Dioxide*

	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SACRAMENTO VALLEY AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х	SALTON SEA AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х	SAN DIEGO AIR BASIN		Х
MOJAVE DESERT AIR BASIN		Х	SAN FRANCISCO BAY AREA AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х	SAN JOAQUIN VALLEY AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х	SOUTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х	SOUTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х			

^{*} The area designated for sulfur dioxide is a county or portion of a county

California Ambient Air Quality Standards Area Designation for Sulfates

	N	U	Α		N	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ	SACRAMENTO VALLEY AIR BASIN			Х
LAKE COUNTY AIR BASIN			Χ	SALTON SEA AIR BASIN			Х
LAKE TAHOE AIR BASIN			Χ	SAN DIEGO AIR BASIN			Χ
MOJAVE DESERT AIR BASIN			Χ	SAN FRANCISCO BAY AREA AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Χ	SAN JOAQUIN VALLEY AIR BASIN			Χ
NORTH CENTRAL COAST AIR BASIN			Χ	SOUTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Χ	SOUTH COAST AIR BASIN			Х
NORTHEAST PLATEAU AIR BASIN			Χ				

2018
Area Designations for State
Ambient Air Quality Standards
LEAD

TABLE 8

California Ambient Air Quality Standards Area Designations for Lead (particulate)*

	N	U	Α		N	υ	Α
GREAT BASIN VALLEYS AIR BASIN			Χ	SALTON SEA AIR BASIN			Х
LAKE COUNTY AIR BASIN			Χ	SAN DIEGO AIR BASIN			Х
LAKE TAHOE AIR BASIN			Χ	SAN FRANCISCO BAY AREA AIR BASIN			Х
MOJAVE DESERT AIR BASIN			Χ	SAN JOAQUIN VALLEY AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Χ	SOUTH CENTRAL COAST AIR BASIN			Х
NORTH CENTRAL COAST AIR BASIN			Χ	SOUTH COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Χ				
NORTHEAST PLATEAU AIR BASIN			Х				
SACRAMENTO VALLEY AIR BASIN			Х				

^{*} The area designated for lead is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

2018
Area Designations for State
Ambient Air Quality Standards
HYDROGEN SULFIDE

TABLE 9

California Ambient Air Quality Standards Area Designation for Hydrogen Sulfide*

	N	NA-T	U	Α		N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN					NORTH CENTRAL COAST AIR BASIN			Х	
Alpine County			Χ		NORTH COAST AIR BASIN				
Inyo County				Χ	Del Norte County			Х	
Mono County				Χ	Humboldt County				Х
LAKE COUNTY AIR BASIN				Χ	Mendocino County			Χ	
LAKE TAHOE AIR BASIN			Χ		Sonoma County (portion)				
MOJAVE DESERT AIR BASIN					- Geyser Geothermal Area (2)				Χ
Kern County (portion)			Χ		- Remainder of County			Χ	
Los Angeles County (portion)			Χ		Trinity County			Χ	
Riverside County (portion)			Χ		NORTHEAST PLATEAU AIR BASIN			Х	
San Bernardino County (portion)					SACRAMENTO VALLEY AIR BASIN			Х	
- Searles Valley Planning Area (1)	Х				SALTON SEA AIR BASIN			Х	
- Remainder of County			Χ		SAN DIEGO AIR BASIN			Х	
MOUNTAIN COUNTIES AIR BASIN					SAN FRANCISCO BAY AREA AIR BASIN			Х	
Amador County					SAN JOAQUIN VALLEY AIR BASIN			Х	
- City of Sutter Creek	Х				SOUTH CENTRAL COAST AIR BASIN				
- Remainder of County			Χ		San Luis Obispo County				Х
Calaveras County			Χ		Santa Barbara County				Х
El Dorado County (portion)			Χ		Ventura County			Х	
Mariposa County			Χ		SOUTH COAST AIR BASIN			Χ	
Nevada County			Χ						
Placer County (portion)			Χ						
Plumas County			Χ						
Sierra County			Χ						
Tuolumne County			Χ						

^{*} The area designated for hydrogen sulfide is a county or portion of a county

^{(1) 52} Federal Register 29384 (August 7, 1987)

⁽²⁾ California Code of Regulations, title 17, section 60200(d)

2018
Area Designations for State
Ambient Air Quality Standards
VISIBILITY REDUCING PARTICLES

California Ambient Air Quality Standards Area Designation for Visibility Reducing Particles

	N	NA-T	U	Α		N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN			Χ		SACRAMENTO VALLEY AIR BASIN			Х	
LAKE COUNTY AIR BASIN				Х	SALTON SEA AIR BASIN			Χ	
LAKE TAHOE AIR BASIN			Х		SAN DIEGO AIR BASIN			Х	
MOJAVE DESERT AIR BASIN			Х		SAN FRANCISCO BAY AREA AIR BASIN			Х	
MOUNTAIN COUNTIES AIR BASIN			Х		SAN JOAQUIN VALLEY AIR BASIN			Х	
NORTH CENTRAL COAST AIR BASIN			Х		SOUTH CENTRAL COAST AIR BASIN			Х	
NORTH COAST AIR BASIN			Х		SOUTH COAST AIR BASIN			Х	
NORTHEAST PLATEAU AIR BASIN			Х						

Area Designations for the National Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a national ambient air quality standard. Additional information about the federal area designations is available on the U.S. EPA website:

https://www.epa.gov/green-book

Over the last several years, U.S. EPA has been reviewing the levels of the various national standards. The agency has already promulgated new standard levels for some pollutants and is considering revising the levels for others. Information about the status of these reviews is available on the U.S. EPA website:

https://www.epa.gov/criteria-air-pollutants

Designation Categories

Suspended Particulate Matter (PM_{10}). The U.S. EPA uses three categories to designate areas with respect to PM_{10} :

- Attainment
- Nonattainment
- Unclassifiable

Ozone, Fine Suspended Particulate Matter ($PM_{2.5}$), Carbon Monoxide (CO), and Nitrogen Dioxide (NO_2). The U.S. EPA uses two categories to designate areas with respect to these standards:

- Nonattainment
- Unclassifiable/Attainment

The national 1-hour ozone standard was revoked effective June 15, 2005, and the area designations map reflects the 2015 national 8-hour ozone standard of 0.070 ppm. Original designations were finalized on August 3, 2018.

On December 14, 2012, the U.S. EPA established a new national annual primary PM_{2.5} standard of 12.0 μ g/m³. New area designations reflecting this revised standard became final in December 2014. The current designation map reflects the most recently revised (2012) annual average standard of 12.0 μ g/m³ as well as the 24-hour standard of 35 μ g/m³, revised in 2006.

On January 22, 2010, the U.S. EPA established a new national 1-hour NO₂ standard of 100 parts per billion (ppb) and retained the annual average standard of 53 ppb. Designations for the primary NO₂ standard became effective on February 29, 2012. All areas of California meet this standard.

Sulfur Dioxide (SO₂). The U.S. EPA uses three categories to designate areas with respect to the 24-hour and annual average sulfur dioxide standards. These designation categories are:

- Nonattainment,
- Unclassifiable, and
- Attainment/Unclassifiable.

On June 2, 2010, the U.S. EPA established a new primary 1-hour SO₂ standard of 75 parts per billion (ppb). At the same time, U.S. EPA revoked the 24-hour and annual

average standards. Area designations for the 1-hour SO₂ standard were finalized on December 21, 2017 and are reflected in the area designations map.

Lead (particulate). The U.S. EPA promulgated a new rolling 3-month average lead standard in October 2008 of 0.15 $\mu g/m^3$. Designations were made for this standard in November 2010.

Designation Areas

From time to time, the boundaries of the California air basins have been changed to facilitate the planning process. CARB generally initiates these changes, and they are not always reflected in the U.S. EPA's area designations. For purposes of consistency, the maps in this attachment reflect area designation boundaries and nomenclature as promulgated by the U.S. EPA. In some cases, these may not be the same as those adopted by CARB. For example, the national area designations reflect the former Southeast Desert Air Basin. In accordance with Health and Safety Code section 39606.1, CARB redefined this area in 1996 to be the Mojave Desert Air Basin and Salton Sea Air Basin. The definitions and boundaries for all areas designated for the national standards can be found in Title 40, Code of Federal Regulations (CFR), Chapter I, Subchapter C, Part 81.305. They are available on the web at:

https://ecfr.io/Title-40/se40.20.81_1305

TABLE 11

National Ambient Air Quality Standards Area Designations for 8-Hour Ozone*

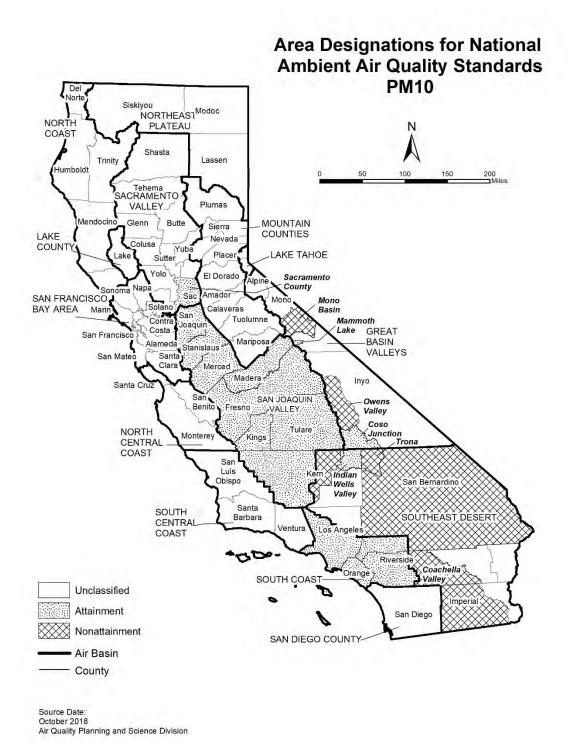
	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SACRAMENTO VALLEY AIR BASIN (cont.)		
LAKE COUNTY AIR BASIN		Х	Yolo County (2)	Х	
LAKE TAHOE AIR BASIN		Х	Yuba County		Х
MOUNTAIN COUNTIES AIR BASIN		'	SAN DIEGO COUNTY	Х	
Amador County	Х		SAN FRANCISCO BAY AREA AIR BASIN	Х	
Calaveras County	Х		SAN JOAQUIN VALLEY AIR BASIN	Χ	
El Dorado County (portion) (2)	Х		SOUTH CENTRAL COAST AIR BASIN (1)		
Mariposa County	Х		San Luis Obispo County		
Nevada County			- Eastern San Luis Obispo County	Х	
- Western Nevada County	Х		- Remainder of County		Х
- Remainder of County		Х	Santa Barbara County		Х
Placer County (portion) (2)	Х		Ventura County		
Plumas County		Х	- Area excluding Anacapa and San Nicolas Islands	Х	
Sierra County		Х	- Channel Islands (1)		Х
Tuolumne County	Х		SOUTH COAST AIR BASIN (1)	Х	
NORTH CENTRAL COAST AIR BASIN		Х	SOUTHEAST DESERT AIR BASIN		
NORTH COAST AIR BASIN		Х	Kern County (portion)	Χ	
NORTHEAST PLATEAU AIR BASIN		Х	- Indian Wells Valley		Х
SACRAMENTO VALLEY AIR BASIN			Imperial County	Χ	
Butte County	Х		Los Angeles County (portion)	Χ	
Colusa County		Х	Riverside County (portion)		
Glenn County		Х	- Coachella Valley	Х	
Sacramento Metro Area (2)	Х		- Non-AQMA portion		Х
Shasta County		Х	San Bernardino County		
Sutter County			- Western portion (AQMA)	Χ	
- Sutter Buttes	Х		- Eastern portion (non-AQMA)		Х
- Southern portion of Sutter County (2)	Х				
- Remainder of Sutter County		Х			
Tehama County					
- Tuscan Buttes	Х				
- Remainder of Tehama County		Х			

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

NOTE: This map and table reflect the 2015 8-hour ozone standard of 0.070 ppm.

(1) South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands.


Ventura County includes Anacapa and San Nicolas Islands.

South Coast Air Basin:

Los Angeles County includes San Clemente and Santa Catalina Islands.

(2) For this purpose, the Sacramento Metro Area comprises all of Sacramento and Yolo Counties, the Sacramento Valley Air Basin portion of Solano County, the southern portion of Sutter County, and the Sacramento Valley and Mountain Counties Air Basins portions of Placer and El Dorado counties.

FIGURE 12

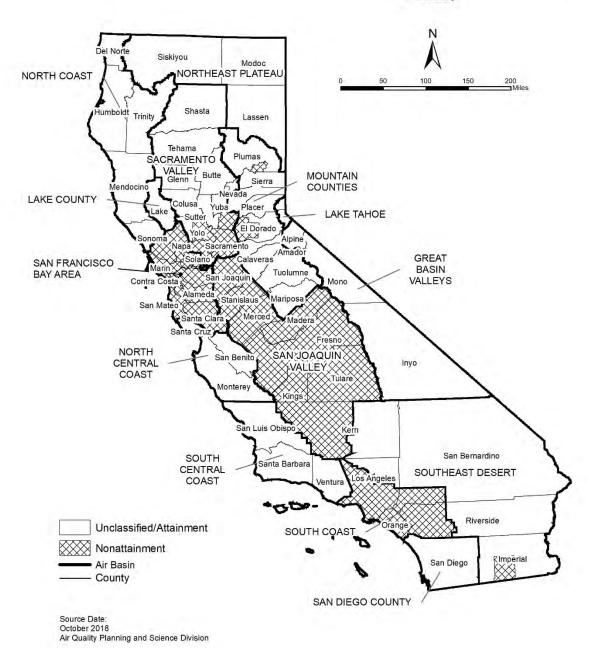
TABLE 12

National Ambient Air Quality Standards Area Designations for Suspended Particulate Matter (PM10)*

	N	U	Α		N	U	Α
GREAT BASIN VALLEYS AIR BASIN				SAN DIEGO COUNTY		Х	
Alpine County		Х		SAN FRANCISCO BAY AREA AIR BASIN		Х	
Inyo County				SAN JOAQUIN VALLEY AIR BASIN			Х
- Owens Valley Planning Area	Х			SOUTH CENTRAL COAST AIR BASIN		Х	
- Coso Junction			Х	SOUTH COAST AIR BASIN			Х
- Remainder of County		Х		SOUTHEAST DESERT AIR BASIN			
Mono County				Eastern Kern County			
- Mammoth Lake Planning Area			Х	- Indian Wells Valley			Х
- Mono Lake Basin	Х			- Portion within San Joaquin Valley Planning Area	Х		
- Remainder of County		Χ		- Remainder of County		Х	
LAKE COUNTY AIR BASIN		Х		Imperial County			
LAKE TAHOE AIR BASIN		Х		- Imperial Valley Planning Area	Х		
MOUNTAIN COUNTIES AIR BASIN				- Remainder of County		Х	
Placer County (portion) (2)		Х		Los Angeles County (portion)		Х	
Remainder of Air Basin		Х		Riverside County (portion)			
NORTH CENTRAL COAST AIR BASIN		Х		- Coachella Valley (3)	Х		
NORTH COAST AIR BASIN		Х		- Non-AQMA portion		Х	
NORTHEAST PLATEAU AIR BASIN		Х		San Bernardino County			
SACRAMENTO VALLEY AIR BASIN				- Trona	Х		
Butte County		Х		- Remainder of County	Х		
Colusa County		Х					
Glenn County		Х					
Placer County (portion) (2)		Х					
Sacramento County (1)			Х				
Shasta County		Х					
Solano County (portion)		Х					
Sutter County		Х					
Tehama County		Х					
Yolo County		Х					
Yuba County		Х					

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

(1) Air quality in Sacramento County meets the national PM10 standards. The request for redesignation to attainment was approved by U.S. EPA in September 2013.


(2) U.S. EPA designation puts the Sacramento Valley Air Basin portion of Placer County in the Mountain Counties

Air Basin.

⁽³⁾ Air quality in Coachella Valley meets the national PM10 standards. A request for redesignation to attainment has been submitted to U.S. EPA.

FIGURE 13

Area Designations for National Ambient Air Quality Standards PM2.5

TABLE 13

National Ambient Air Quality Standards Area Designations for Fine Particulate Matter (PM2.5)*

	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SAN DIEGO COUNTY		Х
LAKE COUNTY AIR BASIN		Х	SAN FRANCISCO BAY AREA AIR BASIN (2)	Х	
LAKE TAHOE AIR BASIN		Х	SAN JOAQUIN VALLEY AIR BASIN	Х	
MOUNTAIN COUNTIES AIR BASIN			SOUTH CENTRAL COAST AIR BASIN		Х
Plumas County			SOUTH COAST AIR BASIN (3)	Х	
- Portola Valley Portion of Plumas	Х		SOUTHEAST DESERT AIR BASIN		
- Remainder of Plumas County		Х	Imperial County (portion) (4)	Х	
Remainder of Air Basin		Х	Remainder of Air Basin		Х
NORTH CENTRAL COAST AIR BASIN		Х			
NORTH COAST AIR BASIN		Х			
NORTHEAST PLATEAU AIR BASIN		Х			
SACRAMENTO VALLEY AIR BASIN					
Sacramento Metro Area (1)	Х				
Sutter County		Х			
Yuba County (portion)		Х			
Remainder of Air Basin		Х			

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. This map reflects the 2006 24-hour PM2.5 standard as well as the 1997 and 2012 PM2.5 annual standards.

⁽¹⁾ For this purpose, Sacramento Metro Area comprises all of Sacramento and portions of El Dorado, Placer, Solano, and Yolo Counties. Air quality in this area meets the national PM2.5 standards. A Determination of Attainment for the 2006 24-hour PM2.5 standard was made by U.S. EPA in June 2017.

⁽²⁾ Air quality in this area meets the national PM2.5 standards. A Determination of Attainment for the 2006 24-hour PM2.5 standard was made by U.S. EPA in June 2017.

⁽³⁾ Those lands of the Santa Rosa Band of Cahulla Mission Indians in Riverside County are designated Unclassifiable/Attainment.

⁽⁴⁾ That portion of Imperial County encompassing the urban and surrounding areas of Brawley, Calexico, El Centro, Heber, Holtville, Imperial, Seeley, and Westmorland. Air quality in this area meets the national PM2.5 standards. A Determination of Attainment for the 2006 24-hour PM2.5 standard was made by U.S. EPA in June 2017.

FIGURE 14

TABLE 14

National Ambient Air Quality Standards Area Designations for Carbon Monoxide*

	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SACRAMENTO VALLEY AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х	SAN DIEGO COUNTY		Х
LAKE TAHOE AIR BASIN		Х	SAN FRANCISCO BAY AREA AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х	SAN JOAQUIN VALLEY AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х	SOUTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Χ	SOUTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х	SOUTHEAST DESERT AIR BASIN		Х

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.


TABLE 15

National Ambient Air Quality Standards Area Designations for Nitrogen Dioxide*

	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SACRAMENTO VALLEY AIR BASIN		Χ
LAKE COUNTY AIR BASIN		Х	SAN DIEGO COUNTY		Χ
LAKE TAHOE AIR BASIN		Х	SAN FRANCISCO BAY AREA AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х	SAN JOAQUIN VALLEY AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х	SOUTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х	SOUTH COAST AIR BASIN		Χ
NORTHEAST PLATEAU AIR BASIN		Х	SOUTHEAST DESERT AIR BASIN		Х

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

FIGURE 16

Source Date: October 2018 Air Quality Planning and Science Division

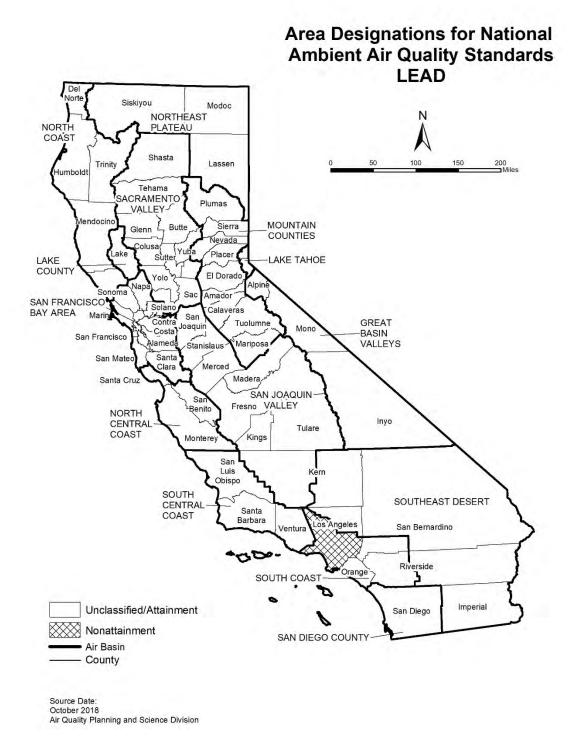
TABLE 16

National Ambient Air Quality Standards Area Designations for Sulfur Dioxide*

	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SOUTH CENTRAL COAST AIR BASIN		
LAKE COUNTY AIR BASIN		Х	San Luis Obispo County		Χ
LAKE TAHOE AIR BASIN		Х	Santa Barbara County		Х
MOUNTAIN COUNTIES AIR BASIN		Х	Ventura County		Х
NORTH CENTRAL COAST AIR BASIN		Х	Channel Islands (1)		Х
NORTH COAST AIR BASIN		Х	SOUTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х	SOUTHEAST DESERT AIR BASIN		
SACRAMENTO VALLEY AIR BASIN		Х	Imperial County		Х
SAN DIEGO COUNTY		Х	Remainder of Air Basin		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х			
SAN JOAQUIN VALLEY AIR BASIN					
Fresno County		Х			
Kern County (portion)		Х			
Kings County		Х			
Madera County		Х			
Merced County		Х			
San Joaquin County		Х			
Stanislaus County		Х			
Tulare County		Х			

^{*} Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

NOTE: This map and table reflect the 2010 1-hour SO_2 standard of 75 ppb.


Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands.

Ventura County includes Anacapa and San Nicolas Islands.

Note that the San Clemente and Santa Catalina Islands are considered part of Los Angeles County, and therefore, are included as part of the South Coast Air Basin.

⁽¹⁾ South Central Coast Air Basin Channel Islands:

FIGURE 17

TABLE 17

National Ambient Air Quality Standards Area Designations for Lead (particulate)

	N	U/A		N	U/A
GREAT BASIN VALLEYS AIR BASIN		Х	SAN DIEGO COUNTY		Х
LAKE COUNTY AIR BASIN		Χ	SAN FRANCISCO BAY AREA AIR BASIN		Х
LAKE TAHOE AIR BASIN		Χ	SAN JOAQUIN VALLEY AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Χ	SOUTH CENTRAL COAST AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Χ	SOUTH COAST AIR BASIN		
NORTH COAST AIR BASIN		Х	Los Angeles County (portion) (1)	Х	
NORTHEAST PLATEAU AIR BASIN		Х	Remainder of Air Basin		Х
SACRAMENTO VALLEY AIR BASIN		Χ	SOUTHEAST DESERT AIR BASIN		Х

⁽¹⁾ Portion of County in Air Basin, not including Channel Islands

This page intentionally left blank

APPENDIX 3.1:

CALEEMOD PROJECT CONSTRUCTION (UNMITIGATED) EMISSIONS MODEL
OUTPUTS

CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Construction - Unmitigated) Orange County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Heavy Industry	51.60	1000sqft	1.18	51,598.00	0
Unrefrigerated Warehouse-No Rail	241.16	1000sqft	5.54	241,164.00	0
Parking Lot	299.00	Space	1.05	45,706.00	0
City Park	1.48	Acre	1.48	63,324.00	0
Other Asphalt Surfaces	150.10	1000sqft	3.45	150,099.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Total Project area is +/- 12.7 acres.

Construction Phase - Construction anticipated to end in 2023

Off-road Equipment -

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment -

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Off-road Equipment - Hours are based on an 8-hour workday

Grading - For purposes of analysis, it is assumed that the entire Project site could be distrubed per day

Demolition -

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Demolition, Site Preparation, Grading, and Building Construction

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Construction Off-road Equipment Mitigation - Rule 403

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblConstructionPhase	NumDays	20.00	40.00
tblConstructionPhase	NumDays	300.00	218.00
tblConstructionPhase	NumDays	20.00	110.00
tblConstructionPhase	PhaseEndDate	10/13/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	8/18/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	4/29/2022	9/2/2022
tblConstructionPhase	PhaseEndDate	6/24/2022	10/28/2022
tblConstructionPhase	PhaseEndDate	9/15/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	5/13/2022	9/16/2022
tblConstructionPhase	PhaseStartDate	9/16/2023	7/6/2023
tblConstructionPhase	PhaseStartDate	6/25/2022	10/29/2022
tblConstructionPhase	PhaseStartDate	5/14/2022	9/17/2022
tblConstructionPhase	PhaseStartDate	8/19/2023	8/3/2023
tblConstructionPhase	PhaseStartDate	4/30/2022	9/3/2022
tblEnergyUse	LightingElect	2.99	0.00
tblEnergyUse	LightingElect	0.35	0.00

Page 3 of 39

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblEnergyUse	LightingElect	1.96	0.00
tblEnergyUse	NT24E	3.83	0.00
tblEnergyUse	NT24E	1.61	0.00
tblEnergyUse	NT24NG	6.86	0.00
tblEnergyUse	NT24NG	0.05	0.00
tblEnergyUse	T24E	1.45	0.00
tblEnergyUse	T24E	0.53	0.00
tblEnergyUse	T24NG	13.90	0.00
tblEnergyUse	T24NG	3.84	0.00
tblGrading	AcresOfGrading	120.00	381.00
tblGrading	AcresOfGrading	35.00	127.00
tblLandUse	LandUseSquareFeet	119,600.00	45,706.00
tblLandUse	LandUseSquareFeet	64,338.12	63,324.00
tblLandUse	LotAcreage	2.69	1.05
tblOffRoadEquipment	LoadFactor	0.43	0.43
tblOffRoadEquipment	OffRoadEquipmentType		Crushing/Proc. Equipment
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblSolidWaste	SolidWasteGenerationRate	0.13	0.00
tblSolidWaste	SolidWasteGenerationRate	63.98	0.00
tblSolidWaste	SolidWasteGenerationRate	226.69	0.00
tblTripsAndVMT	HaulingTripLength	20.00	30.00

Page 4 of 39

Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

BuTripsAndVMT				
IbTripsAndVMT	tblTripsAndVMT	HaulingTripNumber	1,799.00	94.00
IbTripsAndVMT	tblTripsAndVMT	VendorTripNumber	0.00	27.00
IbiTripsAnd/MT	tblTripsAndVMT	VendorTripNumber	0.00	2.00
tbl/ehicleTrips CC_TL 8.40 0.00 tbl/ehicleTrips CC_TTP 48.00 0.00 tbl/ehicleTrips CC_TTP 28.00 0.00 tbl/ehicleTrips CNW_TL 6.30 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 13.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00	tblTripsAndVMT	VendorTripNumber	0.00	7.00
tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TTP 48.00 0.00 tb/VehicleTrips CC_TTP 28.00 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TTL 6.90 0.00 tb/VehicleTrips CNW_TTP 19.00 0.00 tb/VehicleTrips CNW_TTP 13.00 0.00 tb/VehicleTrips CNW_TTP 41.00 0.00 tb/VehicleTrips CW_TL 16.60 0.00 tb/VehicleTrips CW_TL 16.60 0.00 tb/VehicleTrips CW_TT 16.60 0.00	tblTripsAndVMT	VendorTripNumber	90.00	53.00
tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TTP 48.00 0.00 tbVehicleTrips CC_TTP 28.00 0.00 tbVehicleTrips CNW_TL 6.90 0.00 tbVehicleTrips CNW_TTP 19.00 0.00 tbVehicleTrips CNW_TTP 13.00 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 <	tblVehicleTrips	CC_TL	8.40	0.00
tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TTP 48.00 0.00 tbVehicleTrips CC_TTP 28.00 0.00 tbVehicleTrips CNW_TL 6.90 0.00 tbVehicleTrips CNW_TTP 19.00 0.00 tbVehicleTrips CNW_TTP 13.00 0.00 tbVehicleTrips CNW_TTP 41.00 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TTP 33.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips CC_TL 8.40 0.00 tblVehicleTrips CC_TTP 48.00 0.00 tblVehicleTrips CC_TTP 28.00 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TT 16.60 0.00 tblVehicleTrips CW_TT 16.60 0.00 <td>tblVehicleTrips</td> <td>CC_TL</td> <td>8.40</td> <td>0.00</td>	tblVehicleTrips	CC_TL	8.40	0.00
tbiVehicleTrips CC_TTP 48.00 0.00 tblVehicleTrips CC_TTP 28.00 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tbIVehicleTrips CC_TTP 28.00 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TTP 19.00 0.00 tbIVehicleTrips CNW_TTP 13.00 0.00 tbIVehicleTrips CNW_TTP 41.00 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TTP 33.00 0.00 tbIVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TTP 19.00 0.00 tbl/VehicleTrips CNW_TTP 13.00 0.00 tbl/VehicleTrips CNW_TTP 41.00 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TTP 33.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TTP	48.00	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TTP	28.00	0.00
tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 13.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 13.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tbl/VehicleTrips CNW_TTP 41.00 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TTP 33.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TTP	19.00	0.00
tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TTP	13.00	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TTP	33.00	0.00
ļ	tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips DV_TP 28.00 0.00	tblVehicleTrips	CW_TTP	59.00	0.00
	tblVehicleTrips	DV_TP	28.00	0.00

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	6.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PR_TP	66.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	1.96	0.00
tblVehicleTrips	ST_TR	6.42	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.19	0.00
tblVehicleTrips	SU_TR	5.09	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	0.78	0.00
tblVehicleTrips	WD_TR	3.93	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	11,932,500.00	0.00
tblWater	IndoorWaterUseRate	55,768,250.00	0.00
tblWater	OutdoorWaterUseRate	1,763,392.40	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2022	0.3458	3.3833	2.5611	6.0400e- 003	0.7359	0.1480	0.8839	0.1825	0.1381	0.3206	0.0000	537.3213	537.3213	0.1208	9.6500e- 003	543.2175
2023	1.5209	2.6143	2.3789	6.7700e- 003	0.2609	0.1056	0.3666	0.0700	0.0986	0.1686	0.0000	610.0312	610.0312	0.1030	0.0161	617.3920
Maximum	1.5209	3.3833	2.5611	6.7700e- 003	0.7359	0.1480	0.8839	0.1825	0.1381	0.3206	0.0000	610.0312	610.0312	0.1208	0.0161	617.3920

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2022	0.3458	3.3833	2.5611	6.0400e- 003	0.3427	0.1480	0.4907	0.0862	0.1381	0.2243	0.0000	537.3208	537.3208	0.1208	9.6500e- 003	543.2170
2023	1.5209	2.6143	2.3789	6.7700e- 003	0.2609	0.1056	0.3666	0.0700	0.0986	0.1686	0.0000	610.0308	610.0308	0.1030	0.0161	617.3916
Maximum	1.5209	3.3833	2.5611	6.7700e- 003	0.3427	0.1480	0.4907	0.0862	0.1381	0.2243	0.0000	610.0308	610.0308	0.1208	0.0161	617.3916

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	39.45	0.00	31.45	38.14	0.00	19.68	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	4-4-2022	7-3-2022	1.0922	1.0922
2	7-4-2022	10-3-2022	1.3242	1.3242
3	10-4-2022	1-3-2023	1.3324	1.3324
4	1-4-2023	4-3-2023	1.0259	1.0259
5	4-4-2023	7-3-2023	1.0315	1.0315
6	7-4-2023	9-30-2023	2.0350	2.0350
		Highest	2.0350	2.0350

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Area	1.2104	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.2104	9.0000e- 005	9.4900e- 003	0.0000	0.0000	3.0000e- 005	3.0000e- 005	0.0000	3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Area	1.2104	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste		 				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water	1 1 1 1					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.2104	9.0000e- 005	9.4900e- 003	0.0000	0.0000	3.0000e- 005	3.0000e- 005	0.0000	3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	9/2/2022	5	110	
2	Site Preparation	Site Preparation	9/3/2022	9/16/2022	5	10	
3	Grading	Grading	9/17/2022	10/28/2022	5	30	

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4	Building Construction	Building Construction	10/29/2022	8/30/2023	5	218	
5	Paving	Paving	8/3/2023	8/30/2023	5	20	
6	Architectural Coating	Architectural Coating	7/6/2023	8/30/2023	5	40	

Acres of Grading (Site Preparation Phase): 127

Acres of Grading (Grading Phase): 381

Acres of Paving: 4.5

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 439,143; Non-Residential Outdoor: 146,381; Striped Parking Area: 11,748 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	8.00	78	0.48
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction	Cranes	1	8.00	231	0.29
Demolition	Excavators	3	8.00	158	0.38
Grading	Excavators	2	8.00	158	0.38
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Grading	Graders	1	8.00	187	0.41
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Demolition	Crushing/Proc. Equipment	1	8.00	85	0.78
Site Preparation	Crawler Tractors	4	8.00	212	0.43
Grading	Crawler Tractors	2	8.00	212	0.43
Building Construction	Crawler Tractors	3	8.00	212	0.43

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Domolition	7	18.00	27.00	94.00	14.70	6.00	20.00	LD Mix	HDT Mix	HHDT
Demolition	, !	16.00	27.00	94.00	14.70	6.90	30.00	LD_IVIIX	וחחו_ואווג	וטחחו
Site Preparation	7	18.00	2.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	7.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	232.00	53.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	46.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust	1 1 1 1 1				0.1946	0.0000	0.1946	0.0295	0.0000	0.0295	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1715	1.5919	1.3709	2.5200e- 003		0.0783	0.0783		0.0734	0.0734	0.0000	220.1031	220.1031	0.0547	0.0000	221.4698
Total	0.1715	1.5919	1.3709	2.5200e- 003	0.1946	0.0783	0.2729	0.0295	0.0734	0.1029	0.0000	220.1031	220.1031	0.0547	0.0000	221.4698

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
I riddining	2.6000e- 004	0.0111	2.8000e- 003	4.0000e- 005	1.2100e- 003	8.0000e- 005	1.2900e- 003	3.3000e- 004	8.0000e- 005	4.1000e- 004	0.0000	4.2672	4.2672	4.1000e- 004	6.8000e- 004	4.4812
	2.4500e- 003	0.0698	0.0240	2.8000e- 004	9.3600e- 003	6.5000e- 004	0.0100	2.7000e- 003	6.2000e- 004	3.3200e- 003	0.0000	27.9383	27.9383	1.6000e- 003	4.0100e- 003	29.1724
Worker	2.9800e- 003	2.2400e- 003	0.0310	9.0000e- 005	0.0109	6.0000e- 005	0.0109	2.8900e- 003	5.0000e- 005	2.9400e- 003	0.0000	8.5894	8.5894	2.1000e- 004	2.1000e- 004	8.6587
Total	5.6900e- 003	0.0832	0.0579	4.1000e- 004	0.0214	7.9000e- 004	0.0222	5.9200e- 003	7.5000e- 004	6.6700e- 003	0.0000	40.7950	40.7950	2.2200e- 003	4.9000e- 003	42.3122

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022 <u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust	1 1 1 1 1				0.0759	0.0000	0.0759	0.0115	0.0000	0.0115	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1715	1.5919	1.3709	2.5200e- 003		0.0783	0.0783		0.0734	0.0734	0.0000	220.1028	220.1028	0.0547	0.0000	221.4696
Total	0.1715	1.5919	1.3709	2.5200e- 003	0.0759	0.0783	0.1542	0.0115	0.0734	0.0849	0.0000	220.1028	220.1028	0.0547	0.0000	221.4696

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
ı	2.6000e- 004	0.0111	2.8000e- 003	4.0000e- 005	1.2100e- 003	8.0000e- 005	1.2900e- 003	3.3000e- 004	8.0000e- 005	4.1000e- 004	0.0000	4.2672	4.2672	4.1000e- 004	6.8000e- 004	4.4812
	2.4500e- 003	0.0698	0.0240	2.8000e- 004	9.3600e- 003	6.5000e- 004	0.0100	2.7000e- 003	6.2000e- 004	3.3200e- 003	0.0000	27.9383	27.9383	1.6000e- 003	4.0100e- 003	29.1724
Worker	2.9800e- 003	2.2400e- 003	0.0310	9.0000e- 005	0.0109	6.0000e- 005	0.0109	2.8900e- 003	5.0000e- 005	2.9400e- 003	0.0000	8.5894	8.5894	2.1000e- 004	2.1000e- 004	8.6587
Total	5.6900e- 003	0.0832	0.0579	4.1000e- 004	0.0214	7.9000e- 004	0.0222	5.9200e- 003	7.5000e- 004	6.6700e- 003	0.0000	40.7950	40.7950	2.2200e- 003	4.9000e- 003	42.3122

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Site Preparation - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	11 11 11				0.1577	0.0000	0.1577	0.0569	0.0000	0.0569	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0224	0.2517	0.0999	2.8000e- 004		0.0108	0.0108		9.9200e- 003	9.9200e- 003	0.0000	24.9873	24.9873	8.0800e- 003	0.0000	25.1894
Total	0.0224	0.2517	0.0999	2.8000e- 004	0.1577	0.0108	0.1685	0.0569	9.9200e- 003	0.0668	0.0000	24.9873	24.9873	8.0800e- 003	0.0000	25.1894

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	2.0000e- 005	4.7000e- 004	1.6000e- 004	0.0000	6.0000e- 005	0.0000	7.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.1881	0.1881	1.0000e- 005	3.0000e- 005	0.1965
Worker	2.7000e- 004	2.0000e- 004	2.8200e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	9.9000e- 004	2.6000e- 004	0.0000	2.7000e- 004	0.0000	0.7809	0.7809	2.0000e- 005	2.0000e- 005	0.7872
Total	2.9000e- 004	6.7000e- 004	2.9800e- 003	1.0000e- 005	1.0500e- 003	1.0000e- 005	1.0600e- 003	2.8000e- 004	0.0000	2.9000e- 004	0.0000	0.9690	0.9690	3.0000e- 005	5.0000e- 005	0.9836

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Site Preparation - 2022

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0615	0.0000	0.0615	0.0222	0.0000	0.0222	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0224	0.2517	0.0999	2.8000e- 004		0.0108	0.0108		9.9200e- 003	9.9200e- 003	0.0000	24.9873	24.9873	8.0800e- 003	0.0000	25.1893
Total	0.0224	0.2517	0.0999	2.8000e- 004	0.0615	0.0108	0.0723	0.0222	9.9200e- 003	0.0321	0.0000	24.9873	24.9873	8.0800e- 003	0.0000	25.1893

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	2.0000e- 005	4.7000e- 004	1.6000e- 004	0.0000	6.0000e- 005	0.0000	7.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.1881	0.1881	1.0000e- 005	3.0000e- 005	0.1965
	2.7000e- 004	2.0000e- 004	2.8200e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	9.9000e- 004	2.6000e- 004	0.0000	2.7000e- 004	0.0000	0.7809	0.7809	2.0000e- 005	2.0000e- 005	0.7872
Total	2.9000e- 004	6.7000e- 004	2.9800e- 003	1.0000e- 005	1.0500e- 003	1.0000e- 005	1.0600e- 003	2.8000e- 004	0.0000	2.9000e- 004	0.0000	0.9690	0.9690	3.0000e- 005	5.0000e- 005	0.9836

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Grading - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.2924	0.0000	0.2924	0.0715	0.0000	0.0715	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0642	0.7126	0.4379	1.0700e- 003		0.0286	0.0286		0.0263	0.0263	0.0000	94.2610	94.2610	0.0305	0.0000	95.0231
Total	0.0642	0.7126	0.4379	1.0700e- 003	0.2924	0.0286	0.3210	0.0715	0.0263	0.0978	0.0000	94.2610	94.2610	0.0305	0.0000	95.0231

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.7000e- 004	4.9400e- 003	1.7000e- 003	2.0000e- 005	6.6000e- 004	5.0000e- 005	7.1000e- 004	1.9000e- 004	4.0000e- 005	2.3000e- 004	0.0000	1.9754	1.9754	1.1000e- 004	2.8000e- 004	2.0627
Worker	9.0000e- 004	6.8000e- 004	9.4000e- 003	3.0000e- 005	3.2900e- 003	2.0000e- 005	3.3100e- 003	8.7000e- 004	2.0000e- 005	8.9000e- 004	0.0000	2.6029	2.6029	6.0000e- 005	7.0000e- 005	2.6238
Total	1.0700e- 003	5.6200e- 003	0.0111	5.0000e- 005	3.9500e- 003	7.0000e- 005	4.0200e- 003	1.0600e- 003	6.0000e- 005	1.1200e- 003	0.0000	4.5783	4.5783	1.7000e- 004	3.5000e- 004	4.6865

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Grading - 2022

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.1140	0.0000	0.1140	0.0279	0.0000	0.0279	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0642	0.7126	0.4379	1.0700e- 003		0.0286	0.0286		0.0263	0.0263	0.0000	94.2609	94.2609	0.0305	0.0000	95.0230
Total	0.0642	0.7126	0.4379	1.0700e- 003	0.1140	0.0286	0.1426	0.0279	0.0263	0.0542	0.0000	94.2609	94.2609	0.0305	0.0000	95.0230

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
V on lab.	1.7000e- 004	4.9400e- 003	1.7000e- 003	2.0000e- 005	6.6000e- 004	5.0000e- 005	7.1000e- 004	1.9000e- 004	4.0000e- 005	2.3000e- 004	0.0000	1.9754	1.9754	1.1000e- 004	2.8000e- 004	2.0627
Worker	9.0000e- 004	6.8000e- 004	9.4000e- 003	3.0000e- 005	3.2900e- 003	2.0000e- 005	3.3100e- 003	8.7000e- 004	2.0000e- 005	8.9000e- 004	0.0000	2.6029	2.6029	6.0000e- 005	7.0000e- 005	2.6238
Total	1.0700e- 003	5.6200e- 003	0.0111	5.0000e- 005	3.9500e- 003	7.0000e- 005	4.0200e- 003	1.0600e- 003	6.0000e- 005	1.1200e- 003	0.0000	4.5783	4.5783	1.7000e- 004	3.5000e- 004	4.6865

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0629	0.6697	0.3976	9.7000e- 004		0.0287	0.0287		0.0268	0.0268	0.0000	83.9028	83.9028	0.0228	0.0000	84.4719
Total	0.0629	0.6697	0.3976	9.7000e- 004		0.0287	0.0287		0.0268	0.0268	0.0000	83.9028	83.9028	0.0228	0.0000	84.4719

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr												MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.9700e- 003	0.0561	0.0193	2.3000e- 004	7.5100e- 003	5.2000e- 004	8.0300e- 003	2.1700e- 003	5.0000e- 004	2.6700e- 003	0.0000	22.4353	22.4353	1.2800e- 003	3.2200e- 003	23.4263
Worker	0.0157	0.0118	0.1635	4.9000e- 004	0.0573	3.1000e- 004	0.0576	0.0152	2.9000e- 004	0.0155	0.0000	45.2896	45.2896	1.1200e- 003	1.1300e- 003	45.6547
Total	0.0177	0.0679	0.1828	7.2000e- 004	0.0648	8.3000e- 004	0.0657	0.0174	7.9000e- 004	0.0182	0.0000	67.7249	67.7249	2.4000e- 003	4.3500e- 003	69.0810

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2022

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0629	0.6697	0.3976	9.7000e- 004		0.0287	0.0287	 	0.0268	0.0268	0.0000	83.9027	83.9027	0.0228	0.0000	84.4718
Total	0.0629	0.6697	0.3976	9.7000e- 004		0.0287	0.0287		0.0268	0.0268	0.0000	83.9027	83.9027	0.0228	0.0000	84.4718

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton				МТ	/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.9700e- 003	0.0561	0.0193	2.3000e- 004	7.5100e- 003	5.2000e- 004	8.0300e- 003	2.1700e- 003	5.0000e- 004	2.6700e- 003	0.0000	22.4353	22.4353	1.2800e- 003	3.2200e- 003	23.4263
Worker	0.0157	0.0118	0.1635	4.9000e- 004	0.0573	3.1000e- 004	0.0576	0.0152	2.9000e- 004	0.0155	0.0000	45.2896	45.2896	1.1200e- 003	1.1300e- 003	45.6547
Total	0.0177	0.0679	0.1828	7.2000e- 004	0.0648	8.3000e- 004	0.0657	0.0174	7.9000e- 004	0.0182	0.0000	67.7249	67.7249	2.4000e- 003	4.3500e- 003	69.0810

CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
	0.2207	2.2667	1.5005	3.7200e- 003		0.0966	0.0966		0.0902	0.0902	0.0000	322.3796	322.3796	0.0871	0.0000	324.5574
Total	0.2207	2.2667	1.5005	3.7200e- 003		0.0966	0.0966		0.0902	0.0902	0.0000	322.3796	322.3796	0.0871	0.0000	324.5574

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	4.5500e- 003	0.1683	0.0676	8.2000e- 004	0.0289	8.3000e- 004	0.0297	8.3300e- 003	7.9000e- 004	9.1200e- 003	0.0000	82.1699	82.1699	4.8800e- 003	0.0118	85.8081
Worker	0.0567	0.0405	0.5854	1.8300e- 003	0.2203	1.1500e- 003	0.2215	0.0585	1.0600e- 003	0.0596	0.0000	169.6032	169.6032	3.9000e- 003	4.0500e- 003	170.9063
Total	0.0613	0.2088	0.6530	2.6500e- 003	0.2492	1.9800e- 003	0.2512	0.0668	1.8500e- 003	0.0687	0.0000	251.7730	251.7730	8.7800e- 003	0.0159	256.7144

CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.2207	2.2667	1.5005	3.7200e- 003		0.0966	0.0966		0.0902	0.0902	0.0000	322.3792	322.3792	0.0871	0.0000	324.5571
Total	0.2207	2.2667	1.5005	3.7200e- 003		0.0966	0.0966		0.0902	0.0902	0.0000	322.3792	322.3792	0.0871	0.0000	324.5571

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton				MT	/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	4.5500e- 003	0.1683	0.0676	8.2000e- 004	0.0289	8.3000e- 004	0.0297	8.3300e- 003	7.9000e- 004	9.1200e- 003	0.0000	82.1699	82.1699	4.8800e- 003	0.0118	85.8081
Worker	0.0567	0.0405	0.5854	1.8300e- 003	0.2203	1.1500e- 003	0.2215	0.0585	1.0600e- 003	0.0596	0.0000	169.6032	169.6032	3.9000e- 003	4.0500e- 003	170.9063
Total	0.0613	0.2088	0.6530	2.6500e- 003	0.2492	1.9800e- 003	0.2512	0.0668	1.8500e- 003	0.0687	0.0000	251.7730	251.7730	8.7800e- 003	0.0159	256.7144

CalEEMod Version: CalEEMod.2020.4.0 Page 22 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2023
<u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Off-Road	0.0103	0.1019	0.1458	2.3000e- 004		5.1000e- 003	5.1000e- 003		4.6900e- 003	4.6900e- 003	0.0000	20.0269	20.0269	6.4800e- 003	0.0000	20.1888
1 .	5.9000e- 003					0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0162	0.1019	0.1458	2.3000e- 004		5.1000e- 003	5.1000e- 003		4.6900e- 003	4.6900e- 003	0.0000	20.0269	20.0269	6.4800e- 003	0.0000	20.1888

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.2000e- 004	3.0000e- 004	4.3800e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.2677	1.2677	3.0000e- 005	3.0000e- 005	1.2775
Total	4.2000e- 004	3.0000e- 004	4.3800e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.2677	1.2677	3.0000e- 005	3.0000e- 005	1.2775

CalEEMod Version: CalEEMod.2020.4.0 Page 23 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2023

<u>Mitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0103	0.1019	0.1458	2.3000e- 004		5.1000e- 003	5.1000e- 003		4.6900e- 003	4.6900e- 003	0.0000	20.0268	20.0268	6.4800e- 003	0.0000	20.1888
1 · '	5.9000e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0162	0.1019	0.1458	2.3000e- 004		5.1000e- 003	5.1000e- 003		4.6900e- 003	4.6900e- 003	0.0000	20.0268	20.0268	6.4800e- 003	0.0000	20.1888

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	4.2000e- 004	3.0000e- 004	4.3800e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.2677	1.2677	3.0000e- 005	3.0000e- 005	1.2775
Total	4.2000e- 004	3.0000e- 004	4.3800e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.2677	1.2677	3.0000e- 005	3.0000e- 005	1.2775

CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.7 Architectural Coating - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	1.2146					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	5.1100e- 003	0.0348	0.0483	8.0000e- 005		1.8900e- 003	1.8900e- 003		1.8900e- 003	1.8900e- 003	0.0000	6.8087	6.8087	4.1000e- 004	0.0000	6.8189
Total	1.2197	0.0348	0.0483	8.0000e- 005		1.8900e- 003	1.8900e- 003		1.8900e- 003	1.8900e- 003	0.0000	6.8087	6.8087	4.1000e- 004	0.0000	6.8189

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.6000e- 003	1.8600e- 003	0.0268	8.0000e- 005	0.0101	5.0000e- 005	0.0102	2.6800e- 003	5.0000e- 005	2.7300e- 003	0.0000	7.7753	7.7753	1.8000e- 004	1.9000e- 004	7.8351
Total	2.6000e- 003	1.8600e- 003	0.0268	8.0000e- 005	0.0101	5.0000e- 005	0.0102	2.6800e- 003	5.0000e- 005	2.7300e- 003	0.0000	7.7753	7.7753	1.8000e- 004	1.9000e- 004	7.8351

CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.7 Architectural Coating - 2023

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	1.2146		1 1 1			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
- Oil Houd	5.1100e- 003	0.0348	0.0483	8.0000e- 005		1.8900e- 003	1.8900e- 003		1.8900e- 003	1.8900e- 003	0.0000	6.8087	6.8087	4.1000e- 004	0.0000	6.8189
Total	1.2197	0.0348	0.0483	8.0000e- 005		1.8900e- 003	1.8900e- 003		1.8900e- 003	1.8900e- 003	0.0000	6.8087	6.8087	4.1000e- 004	0.0000	6.8189

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.6000e- 003	1.8600e- 003	0.0268	8.0000e- 005	0.0101	5.0000e- 005	0.0102	2.6800e- 003	5.0000e- 005	2.7300e- 003	0.0000	7.7753	7.7753	1.8000e- 004	1.9000e- 004	7.8351
Total	2.6000e- 003	1.8600e- 003	0.0268	8.0000e- 005	0.0101	5.0000e- 005	0.0102	2.6800e- 003	5.0000e- 005	2.7300e- 003	0.0000	7.7753	7.7753	1.8000e- 004	1.9000e- 004	7.8351

CalEEMod Version: CalEEMod.2020.4.0 Page 26 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
General Heavy Industry	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
General Heavy Industry	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

CalEEMod Version: CalEEMod.2020.4.0 Page 27 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
General Heavy Industry	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Other Asphalt Surfaces	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Parking Lot	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Unrefrigerated Warehouse-No Rail	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2020.4.0 Page 28 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr												MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated		 	 	, 	1 1 1	0.0000	0.0000	, 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000	,	0.0000	0.0000	,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000	, ,	0.0000	0.0000	,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000	1	0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	⁻ /yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	⁻ /yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 32 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 33 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr												MT	/yr		
Mitigated	1.2104	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197
Unmitigated	1.2104	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr												MT	/yr		
Architectural Coating	0.1384					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	1.0712					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	8.8000e- 004	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197
Total	1.2105	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197

CalEEMod Version: CalEEMod.2020.4.0 Page 34 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr											МТ	/yr			
Architectural Coating						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products					 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	8.8000e- 004	9.0000e- 005	9.4900e- 003	0.0000	 	3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197
Total	1.2105	9.0000e- 005	9.4900e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0185	0.0185	5.0000e- 005	0.0000	0.0197

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	Total CO2	CH4	N2O	CO2e
Category		МТ	-/yr	
ga.ca	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
City Park	0/0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0/0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 36 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
City Park	0/0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0/0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Category/Year

	Total CO2	CH4	N2O	CO2e	
	MT/yr				
Mitigated	. 0.0000	0.0000	0.0000	0.0000	
Unmitigated	. 0.0000	0.0000	0.0000	0.0000	

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

CalEEMod Version: CalEEMod.2020.4.0 Page 39 of 39 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

User Defined Equipment

Equipment Type Number

11.0 Vegetation

CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Construction - Unmitigated)

Orange County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Heavy Industry	51.60	1000sqft	1.18	51,598.00	0
Unrefrigerated Warehouse-No Rail	241.16	1000sqft	5.54	241,164.00	0
Parking Lot	299.00	Space	1.05	45,706.00	0
City Park	1.48	Acre	1.48	63,324.00	0
Other Asphalt Surfaces	150.10	1000sqft	3.45	150,099.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Total Project area is +/- 12.7 acres.

Construction Phase - Construction anticipated to end in 2023

Off-road Equipment -

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment -

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Off-road Equipment - Hours are based on an 8-hour workday

Grading - For purposes of analysis, it is assumed that the entire Project site could be distrubed per day

Demolition -

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Demolition, Site Preparation, Grading, and Building Construction

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Construction Off-road Equipment Mitigation - Rule 403

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblConstructionPhase	NumDays	20.00	40.00
tblConstructionPhase	NumDays	300.00	218.00
tblConstructionPhase	NumDays	20.00	110.00
tblConstructionPhase	PhaseEndDate	10/13/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	8/18/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	4/29/2022	9/2/2022
tblConstructionPhase	PhaseEndDate	6/24/2022	10/28/2022
tblConstructionPhase	PhaseEndDate	9/15/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	5/13/2022	9/16/2022
tblConstructionPhase	PhaseStartDate	9/16/2023	7/6/2023
tblConstructionPhase	PhaseStartDate	6/25/2022	10/29/2022
tblConstructionPhase	PhaseStartDate	5/14/2022	9/17/2022
tblConstructionPhase	PhaseStartDate	8/19/2023	8/3/2023
tblConstructionPhase	PhaseStartDate	4/30/2022	9/3/2022
tblEnergyUse	LightingElect	2.99	0.00
tblEnergyUse	LightingElect	0.35	0.00

Page 3 of 32

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblEnergyUse	LightingElect	1.96	0.00
tblEnergyUse	NT24E	3.83	0.00
tblEnergyUse	NT24E	1.61	0.00
tblEnergyUse	NT24NG	6.86	0.00
tblEnergyUse	NT24NG	0.05	0.00
tblEnergyUse	T24E	1.45	0.00
tblEnergyUse	T24E	0.53	0.00
tblEnergyUse	T24NG	13.90	0.00
tblEnergyUse	T24NG	3.84	0.00
tblGrading	AcresOfGrading	120.00	381.00
tblGrading	AcresOfGrading	35.00	127.00
tblLandUse	LandUseSquareFeet	119,600.00	45,706.00
tblLandUse	LandUseSquareFeet	64,338.12	63,324.00
tblLandUse	LotAcreage	2.69	1.05
tblOffRoadEquipment	LoadFactor	0.43	0.43
tblOffRoadEquipment	OffRoadEquipmentType		Crushing/Proc. Equipment
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblSolidWaste	SolidWasteGenerationRate	0.13	0.00
tblSolidWaste	SolidWasteGenerationRate	63.98	0.00
tblSolidWaste	SolidWasteGenerationRate	226.69	0.00
tblTripsAndVMT	HaulingTripLength	20.00	30.00

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblTripsAndVMT tblTripsAndVMT	HaulingTripNumber	1,799.00	94.00
tblTripsAndVMT			
· •	VendorTripNumber	0.00	27.00
tblTripsAndVMT	VendorTripNumber	0.00	2.00
tblTripsAndVMT	VendorTripNumber	0.00	7.00
tblTripsAndVMT	VendorTripNumber	90.00	53.00
tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips	CC_TTP	48.00	0.00
tblVehicleTrips	CC_TTP	28.00	0.00
tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips	CNW_TTP	19.00	0.00
tblVehicleTrips	CNW_TTP	13.00	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips	CW_TTP	33.00	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	DV_TP	28.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	6.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PR_TP	66.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	1.96	0.00
tblVehicleTrips	ST_TR	6.42	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.19	0.00
tblVehicleTrips	SU_TR	5.09	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	0.78	0.00
tblVehicleTrips	WD_TR	3.93	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	11,932,500.00	0.00
tblWater	IndoorWaterUseRate	55,768,250.00	0.00
tblWater	OutdoorWaterUseRate	1,763,392.40	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2022	4.5310	50.4714	29.9650	0.0756	31.7486	2.1584	33.9070	11.4420	1.9857	13.4277	0.0000	7,508.832 4	7,508.832 4	2.2533	0.2088	7,601.864 1
2023	66.0367	40.5190	44.0880	0.1069	3.6139	1.7478	5.3617	0.9661	1.6305	2.5966	0.0000	10,565.92 91	10,565.92 91	1.9702	0.2105	10,677.91 30
Maximum	66.0367	50.4714	44.0880	0.1069	31.7486	2.1584	33.9070	11.4420	1.9857	13.4277	0.0000	10,565.92 91	10,565.92 91	2.2533	0.2105	10,677.91 30

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
2022	4.5310	50.4714	29.9650	0.0756	12.5125	2.1584	14.6709	4.4972	1.9857	6.4829	0.0000	7,508.832 3	7,508.832 3	2.2533	0.2088	7,601.864 1
2023	66.0367	40.5190	44.0880	0.1069	3.6139	1.7478	5.3617	0.9661	1.6305	2.5966	0.0000	10,565.92 91	10,565.92 91	1.9702	0.2105	10,677.91 30
Maximum	66.0367	50.4714	44.0880	0.1069	12.5125	2.1584	14.6709	4.4972	1.9857	6.4829	0.0000	10,565.92 91	10,565.92 91	2.2533	0.2105	10,677.91 30

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.40	0.00	48.99	55.97	0.00	43.34	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Area	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005	0.0000	2.7000e- 004	2.7000e- 004	0.0000	2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004	0.0000	0.1734

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Area	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005	0.0000	2.7000e- 004	2.7000e- 004	0.0000	2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004	0.0000	0.1734

Date: 11/17/2021 12:23 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	9/2/2022	5	110	
2	Site Preparation	Site Preparation	9/3/2022	9/16/2022	5	10	
3	Grading	Grading	9/17/2022	10/28/2022	5	30	
4	Building Construction	Building Construction	10/29/2022	8/30/2023	5	218	
5	Paving	Paving	8/3/2023	8/30/2023	5	20	
6	Architectural Coating	Architectural Coating	7/6/2023	8/30/2023	5	40	

Acres of Grading (Site Preparation Phase): 127

Acres of Grading (Grading Phase): 381

Acres of Paving: 4.5

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 439,143; Non-Residential Outdoor: 146,381; Striped Parking Area: 11,748 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	8.00	78	0.48
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction	Cranes	1	8.00	231	0.29
Demolition	Excavators	3	8.00	158	0.38
Grading	Excavators	2	8.00	158	0.38

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	†1 1	8.00	84	0.74
Grading	Graders	- 1	8.00	187	0.41
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	! 2	8.00	80	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Demolition	Crushing/Proc. Equipment	1	8.00	85	0.78
Site Preparation	Crawler Tractors	4	8.00	212	0.43
Grading	Crawler Tractors	2	8.00	212	0.43
Building Construction	Crawler Tractors	3	8.00	212	0.43

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	7	18.00	27.00	94.00	14.70	6.90	30.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	2.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	7.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	232.00	53.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	46.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Fugitive Dust					3.5386	0.0000	3.5386	0.5358	0.0000	0.5358			0.0000			0.0000
Off-Road	3.1186	28.9444	24.9253	0.0458	 	1.4227	1.4227		1.3353	1.3353		4,411.311 3	4,411.311 3	1.0957		4,438.703 8
Total	3.1186	28.9444	24.9253	0.0458	3.5386	1.4227	4.9614	0.5358	1.3353	1.8711		4,411.311 3	4,411.311 3	1.0957		4,438.703 8

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	4.7800e- 003	0.1919	0.0508	7.5000e- 004	0.0224	1.5000e- 003	0.0239	6.1200e- 003	1.4400e- 003	7.5600e- 003		85.5182	85.5182	8.2200e- 003	0.0137	89.8058
Vendor	0.0449	1.2115	0.4302	5.1100e- 003	0.1727	0.0118	0.1844	0.0497	0.0113	0.0610		559.8655	559.8655	0.0321	0.0802	584.5771
Worker	0.0542	0.0364	0.5924	1.7500e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		178.3944	178.3944	4.1700e- 003	3.9800e- 003	179.6856
Total	0.1038	1.4398	1.0733	7.6100e- 003	0.3962	0.0144	0.4106	0.1092	0.0137	0.1229		823.7780	823.7780	0.0445	0.0979	854.0684

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.3801	0.0000	1.3801	0.2090	0.0000	0.2090			0.0000			0.0000
Off-Road	3.1186	28.9444	24.9253	0.0458		1.4227	1.4227		1.3353	1.3353	0.0000	4,411.311 3	4,411.311 3	1.0957	 	4,438.703 8
Total	3.1186	28.9444	24.9253	0.0458	1.3801	1.4227	2.8028	0.2090	1.3353	1.5443	0.0000	4,411.311 3	4,411.311 3	1.0957		4,438.703 8

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	4.7800e- 003	0.1919	0.0508	7.5000e- 004	0.0224	1.5000e- 003	0.0239	6.1200e- 003	1.4400e- 003	7.5600e- 003		85.5182	85.5182	8.2200e- 003	0.0137	89.8058
Vendor	0.0449	1.2115	0.4302	5.1100e- 003	0.1727	0.0118	0.1844	0.0497	0.0113	0.0610		559.8655	559.8655	0.0321	0.0802	584.5771
Worker	0.0542	0.0364	0.5924	1.7500e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		178.3944	178.3944	4.1700e- 003	3.9800e- 003	179.6856
Total	0.1038	1.4398	1.0733	7.6100e- 003	0.3962	0.0144	0.4106	0.1092	0.0137	0.1229		823.7780	823.7780	0.0445	0.0979	854.0684

3.3 Site Preparation - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					31.5346	0.0000	31.5346	11.3850	0.0000	11.3850			0.0000			0.0000
Off-Road	4.4735	50.3453	19.9794	0.0569		2.1564	2.1564		1.9839	1.9839		5,508.762 6	5,508.762 6	1.7817		5,553.303 7
Total	4.4735	50.3453	19.9794	0.0569	31.5346	2.1564	33.6910	11.3850	1.9839	13.3689		5,508.762 6	5,508.762 6	1.7817		5,553.303 7

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Site Preparation - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day				lb/d	day					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.3300e- 003	0.0897	0.0319	3.8000e- 004	0.0128	8.7000e- 004	0.0137	3.6800e- 003	8.4000e- 004	4.5200e- 003		41.4715	41.4715	2.3800e- 003	5.9400e- 003	43.3020
Worker	0.0542	0.0364	0.5924	1.7500e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		178.3944	178.3944	4.1700e- 003	3.9800e- 003	179.6856
Total	0.0575	0.1261	0.6242	2.1300e- 003	0.2140	1.9600e- 003	0.2159	0.0570	1.8400e- 003	0.0589		219.8659	219.8659	6.5500e- 003	9.9200e- 003	222.9876

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust					12.2985	0.0000	12.2985	4.4401	0.0000	4.4401			0.0000			0.0000
Off-Road	4.4735	50.3453	19.9794	0.0569		2.1564	2.1564		1.9839	1.9839	0.0000	5,508.762 6	5,508.762 6	1.7817		5,553.303 7
Total	4.4735	50.3453	19.9794	0.0569	12.2985	2.1564	14.4549	4.4401	1.9839	6.4240	0.0000	5,508.762 6	5,508.762 6	1.7817		5,553.303 7

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Site Preparation - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.3300e- 003	0.0897	0.0319	3.8000e- 004	0.0128	8.7000e- 004	0.0137	3.6800e- 003	8.4000e- 004	4.5200e- 003		41.4715	41.4715	2.3800e- 003	5.9400e- 003	43.3020
Worker	0.0542	0.0364	0.5924	1.7500e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		178.3944	178.3944	4.1700e- 003	3.9800e- 003	179.6856
Total	0.0575	0.1261	0.6242	2.1300e- 003	0.2140	1.9600e- 003	0.2159	0.0570	1.8400e- 003	0.0589		219.8659	219.8659	6.5500e- 003	9.9200e- 003	222.9876

3.4 Grading - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust					19.4904	0.0000	19.4904	4.7645	0.0000	4.7645			0.0000			0.0000
Off-Road	4.2792	47.5079	29.1953	0.0715		1.9081	1.9081		1.7554	1.7554		6,926.997 4	6,926.997 4	2.2403		6,983.005 6
Total	4.2792	47.5079	29.1953	0.0715	19.4904	1.9081	21.3985	4.7645	1.7554	6.5199		6,926.997 4	6,926.997 4	2.2403		6,983.005 6

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Grading - 2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0116	0.3141	0.1115	1.3300e- 003	0.0448	3.0600e- 003	0.0478	0.0129	2.9200e- 003	0.0158		145.1503	145.1503	8.3200e- 003	0.0208	151.5570
Worker	0.0602	0.0404	0.6582	1.9500e- 003	0.2236	1.2100e- 003	0.2248	0.0593	1.1100e- 003	0.0604		198.2160	198.2160	4.6300e- 003	4.4300e- 003	199.6506
Total	0.0718	0.3545	0.7697	3.2800e- 003	0.2683	4.2700e- 003	0.2726	0.0722	4.0300e- 003	0.0762		343.3663	343.3663	0.0130	0.0252	351.2077

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Fugitive Dust	: :				7.6013	0.0000	7.6013	1.8582	0.0000	1.8582			0.0000			0.0000
Off-Road	4.2792	47.5079	29.1953	0.0715		1.9081	1.9081		1.7554	1.7554	0.0000	6,926.997 4	6,926.997 4	2.2403		6,983.005 6
Total	4.2792	47.5079	29.1953	0.0715	7.6013	1.9081	9.5093	1.8582	1.7554	3.6136	0.0000	6,926.997 4	6,926.997 4	2.2403		6,983.005 6

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Grading - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0116	0.3141	0.1115	1.3300e- 003	0.0448	3.0600e- 003	0.0478	0.0129	2.9200e- 003	0.0158		145.1503	145.1503	8.3200e- 003	0.0208	151.5570
Worker	0.0602	0.0404	0.6582	1.9500e- 003	0.2236	1.2100e- 003	0.2248	0.0593	1.1100e- 003	0.0604		198.2160	198.2160	4.6300e- 003	4.4300e- 003	199.6506
Total	0.0718	0.3545	0.7697	3.2800e- 003	0.2683	4.2700e- 003	0.2726	0.0722	4.0300e- 003	0.0762		343.3663	343.3663	0.0130	0.0252	351.2077

3.5 Building Construction - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892		4,110.532 2	4,110.532 2	1.1153		4,138.413 5
Total	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892		4,110.532 2	4,110.532 2	1.1153		4,138.413 5

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0881	2.3781	0.8444	0.0100	0.3389	0.0231	0.3620	0.0975	0.0221	0.1197		1,098.995 2	1,098.995 2	0.0630	0.1575	1,147.503 2
Worker	0.6981	0.4690	7.6350	0.0226	2.5932	0.0140	2.6072	0.6877	0.0129	0.7006		2,299.305 0	2,299.305 0	0.0537	0.0513	2,315.947 5
Total	0.7862	2.8471	8.4794	0.0326	2.9321	0.0371	2.9692	0.7853	0.0350	0.8203		3,398.300 2	3,398.300 2	0.1167	0.2088	3,463.450 7

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Off-Road	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892	0.0000	4,110.532 2	4,110.532 2	1.1153		4,138.413 5
Total	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892	0.0000	4,110.532 2	4,110.532 2	1.1153		4,138.413 5

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0881	2.3781	0.8444	0.0100	0.3389	0.0231	0.3620	0.0975	0.0221	0.1197		1,098.995 2	1,098.995 2	0.0630	0.1575	1,147.503 2
Worker	0.6981	0.4690	7.6350	0.0226	2.5932	0.0140	2.6072	0.6877	0.0129	0.7006		2,299.305 0	2,299.305 0	0.0537	0.0513	2,315.947 5
Total	0.7862	2.8471	8.4794	0.0326	2.9321	0.0371	2.9692	0.7853	0.0350	0.8203		3,398.300 2	3,398.300	0.1167	0.2088	3,463.450 7

3.5 Building Construction - 2023

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422		4,108.239 2	4,108.239 2	1.1101		4,135.992 4
Total	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422		4,108.239 2	4,108.239 2	1.1101		4,135.992 4

CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0535	1.8575	0.7701	9.5300e- 003	0.3389	9.5300e- 003	0.3484	0.0975	9.1100e- 003	0.1067		1,046.481 7	1,046.481 7	0.0622	0.1502	1,092.784 0
Worker	0.6537	0.4182	7.1039	0.0219	2.5932	0.0133	2.6065	0.6877	0.0122	0.6999		2,239.520 5	2,239.520 5	0.0486	0.0478	2,254.974 8
Total	0.7072	2.2757	7.8740	0.0314	2.9321	0.0228	2.9549	0.7853	0.0213	0.8066		3,286.002 2	3,286.002	0.1108	0.1979	3,347.758 8

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169	1 1 1	1.0422	1.0422	0.0000	4,108.239 2	4,108.239 2	1.1101		4,135.992 4
Total	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422	0.0000	4,108.239 2	4,108.239 2	1.1101		4,135.992 4

CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0535	1.8575	0.7701	9.5300e- 003	0.3389	9.5300e- 003	0.3484	0.0975	9.1100e- 003	0.1067		1,046.481 7	1,046.481 7	0.0622	0.1502	1,092.784 0
Worker	0.6537	0.4182	7.1039	0.0219	2.5932	0.0133	2.6065	0.6877	0.0122	0.6999		2,239.520 5	2,239.520 5	0.0486	0.0478	2,254.974 8
Total	0.7072	2.2757	7.8740	0.0314	2.9321	0.0228	2.9549	0.7853	0.0213	0.8066		3,286.002 2	3,286.002	0.1108	0.1979	3,347.758 8

3.6 Paving - 2023

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Oii Nodu	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6
	0.5895	 				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.6222	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2020.4.0 Page 22 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2023
<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0423	0.0270	0.4593	1.4100e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		144.7966	144.7966	3.1400e- 003	3.0900e- 003	145.7958
Total	0.0423	0.0270	0.4593	1.4100e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		144.7966	144.7966	3.1400e- 003	3.0900e- 003	145.7958

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.5895					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.6222	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2020.4.0 Page 23 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2023

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0423	0.0270	0.4593	1.4100e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		144.7966	144.7966	3.1400e- 003	3.0900e- 003	145.7958
Total	0.0423	0.0270	0.4593	1.4100e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		144.7966	144.7966	3.1400e- 003	3.0900e- 003	145.7958

3.7 Architectural Coating - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	60.7279					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2556	1.7373	2.4148	3.9600e- 003	 	0.0944	0.0944		0.0944	0.0944		375.2641	375.2641	0.0225	,	375.8253
Total	60.9835	1.7373	2.4148	3.9600e- 003		0.0944	0.0944		0.0944	0.0944		375.2641	375.2641	0.0225		375.8253

CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.7 Architectural Coating - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1296	0.0829	1.4085	4.3400e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		444.0429	444.0429	9.6400e- 003	9.4700e- 003	447.1071
Total	0.1296	0.0829	1.4085	4.3400e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		444.0429	444.0429	9.6400e- 003	9.4700e- 003	447.1071

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Archit. Coating	60.7279					0.0000	0.0000		0.0000	0.0000		1	0.0000			0.0000
Off-Road	0.2556	1.7373	2.4148	3.9600e- 003		0.0944	0.0944		0.0944	0.0944	0.0000	375.2641	375.2641	0.0225		375.8253
Total	60.9835	1.7373	2.4148	3.9600e- 003		0.0944	0.0944		0.0944	0.0944	0.0000	375.2641	375.2641	0.0225		375.8253

CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.7 Architectural Coating - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1296	0.0829	1.4085	4.3400e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		444.0429	444.0429	9.6400e- 003	9.4700e- 003	447.1071
Total	0.1296	0.0829	1.4085	4.3400e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		444.0429	444.0429	9.6400e- 003	9.4700e- 003	447.1071

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2020.4.0 Page 26 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Ave	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
General Heavy Industry	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
General Heavy Industry	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	МН
City Park	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
General Heavy Industry	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Other Asphalt Surfaces	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Parking Lot	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Unrefrigerated Warehouse-No Rail	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	,	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	,	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 29 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	,	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 30 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Unmitigated	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.7585					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	5.8693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	7.0300e- 003	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734

CalEEMod Version: CalEEMod.2020.4.0 Page 31 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
	0.7585					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	5.8693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
· · · •	7.0300e- 003	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 32 of 32 Date: 11/17/2021 12:23 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Construction - Unmitigated) Orange County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Heavy Industry	51.60	1000sqft	1.18	51,598.00	0
Unrefrigerated Warehouse-No Rail	241.16	1000sqft	5.54	241,164.00	0
Parking Lot	299.00	Space	1.05	45,706.00	0
City Park	1.48	Acre	1.48	63,324.00	0
Other Asphalt Surfaces	150.10	1000sqft	3.45	150,099.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Total Project area is +/- 12.7 acres.

Construction Phase - Construction anticipated to end in 2023

Off-road Equipment -

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment -

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Off-road Equipment - Hours are based on an 8-hour workday

Grading - For purposes of analysis, it is assumed that the entire Project site could be distrubed per day

Demolition -

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Demolition, Site Preparation, Grading, and Building Construction

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Construction Off-road Equipment Mitigation - Rule 403

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00
tblConstructionPhase	NumDays	20.00	40.00
tblConstructionPhase	NumDays	300.00	218.00
tblConstructionPhase	NumDays	20.00	110.00
tblConstructionPhase	PhaseEndDate	10/13/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	8/18/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	4/29/2022	9/2/2022
tblConstructionPhase	PhaseEndDate	6/24/2022	10/28/2022
tblConstructionPhase	PhaseEndDate	9/15/2023	8/30/2023
tblConstructionPhase	PhaseEndDate	5/13/2022	9/16/2022
tblConstructionPhase	PhaseStartDate	9/16/2023	7/6/2023
tblConstructionPhase	PhaseStartDate	6/25/2022	10/29/2022
tblConstructionPhase	PhaseStartDate	5/14/2022	9/17/2022
tblConstructionPhase	PhaseStartDate	8/19/2023	8/3/2023
tblConstructionPhase	PhaseStartDate	4/30/2022	9/3/2022
tblEnergyUse	LightingElect	2.99	0.00
tblEnergyUse	LightingElect	0.35	0.00

Page 3 of 32

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

Date: 11/17/2021 12:20 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblEnergyUse	LightingElect	1.96	0.00
tblEnergyUse	NT24E	3.83	0.00
tblEnergyUse	NT24E	1.61	0.00
tblEnergyUse	NT24NG	6.86	0.00
tblEnergyUse	NT24NG	0.05	0.00
tblEnergyUse	T24E	1.45	0.00
tblEnergyUse	T24E	0.53	0.00
tblEnergyUse	T24NG	13.90	0.00
tblEnergyUse	T24NG	3.84	0.00
tblGrading	AcresOfGrading	120.00	381.00
tblGrading	AcresOfGrading	35.00	127.00
tblLandUse	LandUseSquareFeet	119,600.00	45,706.00
tblLandUse	LandUseSquareFeet	64,338.12	63,324.00
tblLandUse	LotAcreage	2.69	1.05
tblOffRoadEquipment	LoadFactor	0.43	0.43
tblOffRoadEquipment	OffRoadEquipmentType		Crushing/Proc. Equipment
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblSolidWaste	SolidWasteGenerationRate	0.13	0.00
tblSolidWaste	SolidWasteGenerationRate	63.98	0.00
tblSolidWaste	SolidWasteGenerationRate	226.69	0.00
tblTripsAndVMT	HaulingTripLength	20.00	30.00

Date: 11/17/2021 12:20 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

BuTripsAndVMT				
IbTripsAndVMT	tblTripsAndVMT	HaulingTripNumber	1,799.00	94.00
IbTripsAndVMT	tblTripsAndVMT	VendorTripNumber	0.00	27.00
IbiTripsAnd/MT	tblTripsAndVMT	VendorTripNumber	0.00	2.00
tbl/ehicleTrips CC_TL 8.40 0.00 tbl/ehicleTrips CC_TTP 48.00 0.00 tbl/ehicleTrips CC_TTP 28.00 0.00 tbl/ehicleTrips CNW_TL 6.30 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 13.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00	tblTripsAndVMT	VendorTripNumber	0.00	7.00
tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TL 8.40 0.00 tb/VehicleTrips CC_TTP 48.00 0.00 tb/VehicleTrips CC_TTP 28.00 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TL 6.90 0.00 tb/VehicleTrips CNW_TTL 6.90 0.00 tb/VehicleTrips CNW_TTP 19.00 0.00 tb/VehicleTrips CNW_TTP 13.00 0.00 tb/VehicleTrips CNW_TTP 41.00 0.00 tb/VehicleTrips CW_TL 16.60 0.00 tb/VehicleTrips CW_TL 16.60 0.00 tb/VehicleTrips CW_TT 16.60 0.00	tblTripsAndVMT	VendorTripNumber	90.00	53.00
tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TTP 48.00 0.00 tbVehicleTrips CC_TTP 28.00 0.00 tbVehicleTrips CNW_TL 6.90 0.00 tbVehicleTrips CNW_TTP 19.00 0.00 tbVehicleTrips CNW_TTP 13.00 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 <	tblVehicleTrips	CC_TL	8.40	0.00
tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TTP 48.00 0.00 tbVehicleTrips CC_TTP 28.00 0.00 tbVehicleTrips CNW_TL 6.90 0.00 tbVehicleTrips CNW_TTP 19.00 0.00 tbVehicleTrips CNW_TTP 13.00 0.00 tbVehicleTrips CNW_TTP 41.00 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TTP 33.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips CC_TL 8.40 0.00 tblVehicleTrips CC_TTP 48.00 0.00 tblVehicleTrips CC_TTP 28.00 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TT 16.60 0.00 tblVehicleTrips CW_TT 16.60 0.00 <td>tblVehicleTrips</td> <td>CC_TL</td> <td>8.40</td> <td>0.00</td>	tblVehicleTrips	CC_TL	8.40	0.00
tbiVehicleTrips CC_TTP 48.00 0.00 tblVehicleTrips CC_TTP 28.00 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tbIVehicleTrips CC_TTP 28.00 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TTP 19.00 0.00 tbIVehicleTrips CNW_TTP 13.00 0.00 tbIVehicleTrips CNW_TTP 41.00 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TTP 33.00 0.00 tbIVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TTP 19.00 0.00 tbl/VehicleTrips CNW_TTP 13.00 0.00 tbl/VehicleTrips CNW_TTP 41.00 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TTP 33.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TTP	48.00	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CC_TTP	28.00	0.00
tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 13.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 13.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TTP 13.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tbl/VehicleTrips CNW_TTP 41.00 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TTP 33.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TTP	19.00	0.00
tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TTP	13.00	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TTP 59.00 0.00	tblVehicleTrips	CW_TTP	33.00	0.00
ļ	tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips DV_TP 28.00 0.00	tblVehicleTrips	CW_TTP	59.00	0.00
	tblVehicleTrips	DV_TP	28.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	6.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PR_TP	66.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	1.96	0.00
tblVehicleTrips	ST_TR	6.42	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.19	0.00
tblVehicleTrips	SU_TR	5.09	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	0.78	0.00
tblVehicleTrips	WD_TR	3.93	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	11,932,500.00	0.00
tblWater	IndoorWaterUseRate	55,768,250.00	0.00
tblWater	OutdoorWaterUseRate	1,763,392.40	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day									lb/day						
2022	4.5358	50.4785	29.9233	0.0747	31.7486	2.1584	33.9070	11.4420	1.9857	13.4277	0.0000	7,398.936 7	7,398.936 7	2.2534	0.2123	7,493.026 8
2023	66.1115	40.6536	43.4986	0.1056	3.6139	1.7478	5.3618	0.9661	1.6306	2.5967	0.0000	10,432.23 67	10,432.23 67	1.9715	0.2147	10,545.50 48
Maximum	66.1115	50.4785	43.4986	0.1056	31.7486	2.1584	33.9070	11.4420	1.9857	13.4277	0.0000	10,432.23 67	10,432.23 67	2.2534	0.2147	10,545.50 48

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day									lb/day						
2022	4.5358	50.4785	29.9233	0.0747	12.5125	2.1584	14.6709	4.4972	1.9857	6.4829	0.0000	7,398.936 7	7,398.936 7	2.2534	0.2123	7,493.026 8
2023	66.1115	40.6536	43.4986	0.1056	3.6139	1.7478	5.3618	0.9661	1.6306	2.5967	0.0000	10,432.23 67	10,432.23 67	1.9715	0.2147	10,545.50 48
Maximum	66.1115	50.4785	43.4986	0.1056	12.5125	2.1584	14.6709	4.4972	1.9857	6.4829	0.0000	10,432.23 67	10,432.23 67	2.2534	0.2147	10,545.50 48

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.40	0.00	48.99	55.97	0.00	43.34	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Area	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005	0.0000	2.7000e- 004	2.7000e- 004	0.0000	2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004	0.0000	0.1734

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Area	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005	0.0000	2.7000e- 004	2.7000e- 004	0.0000	2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004	0.0000	0.1734

Date: 11/17/2021 12:20 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	9/2/2022	5	110	
2	Site Preparation	Site Preparation	9/3/2022	9/16/2022	5	10	
3	Grading	Grading	9/17/2022	10/28/2022	5	30	
4	Building Construction	Building Construction	10/29/2022	8/30/2023	5	218	
5	Paving	Paving	8/3/2023	8/30/2023	5	20	
6	Architectural Coating	Architectural Coating	7/6/2023	8/30/2023	5	40	

Acres of Grading (Site Preparation Phase): 127

Acres of Grading (Grading Phase): 381

Acres of Paving: 4.5

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 439,143; Non-Residential Outdoor: 146,381; Striped Parking Area: 11,748 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	8.00	78	0.48
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Building Construction	Cranes	1	8.00	231	0.29
Demolition	Excavators	3	8.00	158	0.38
Grading	Excavators	2	8.00	158	0.38

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	†1 1	8.00	84	0.74
Grading	Graders	- 1	8.00	187	0.41
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	! 2	8.00	80	0.38
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	2	8.00	367	0.48
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Demolition	Crushing/Proc. Equipment	1	8.00	85	0.78
Site Preparation	Crawler Tractors	4	8.00	212	0.43
Grading	Crawler Tractors	2	8.00	212	0.43
Building Construction	Crawler Tractors	3	8.00	212	0.43

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	7	18.00	27.00	94.00	14.70	6.90	30.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	2.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	8	20.00	7.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	232.00	53.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	46.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 **Demolition - 2022**

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust	: :				3.5386	0.0000	3.5386	0.5358	0.0000	0.5358			0.0000			0.0000
Off-Road	3.1186	28.9444	24.9253	0.0458		1.4227	1.4227		1.3353	1.3353		4,411.311 3	4,411.311 3	1.0957		4,438.703 8
Total	3.1186	28.9444	24.9253	0.0458	3.5386	1.4227	4.9614	0.5358	1.3353	1.8711		4,411.311 3	4,411.311 3	1.0957		4,438.703 8

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	4.7000e- 003	0.1993	0.0513	7.5000e- 004	0.0224	1.5100e- 003	0.0239	6.1200e- 003	1.4400e- 003	7.5600e- 003		85.5319	85.5319	8.2100e- 003	0.0137	89.8201
Vendor	0.0443	1.2590	0.4456	5.1100e- 003	0.1727	0.0118	0.1845	0.0497	0.0113	0.0610		560.0411	560.0411	0.0320	0.0803	584.7757
Worker	0.0590	0.0400	0.5512	1.6700e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		169.8412	169.8412	4.2600e- 003	4.2400e- 003	171.2111
Total	0.1080	1.4982	1.0481	7.5300e- 003	0.3962	0.0144	0.4106	0.1092	0.0138	0.1229		815.4142	815.4142	0.0445	0.0983	845.8069

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.3801	0.0000	1.3801	0.2090	0.0000	0.2090			0.0000			0.0000
Off-Road	3.1186	28.9444	24.9253	0.0458		1.4227	1.4227		1.3353	1.3353	0.0000	4,411.311 3	4,411.311 3	1.0957	 	4,438.703 8
Total	3.1186	28.9444	24.9253	0.0458	1.3801	1.4227	2.8028	0.2090	1.3353	1.5443	0.0000	4,411.311 3	4,411.311 3	1.0957		4,438.703 8

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	4.7000e- 003	0.1993	0.0513	7.5000e- 004	0.0224	1.5100e- 003	0.0239	6.1200e- 003	1.4400e- 003	7.5600e- 003		85.5319	85.5319	8.2100e- 003	0.0137	89.8201
Vendor	0.0443	1.2590	0.4456	5.1100e- 003	0.1727	0.0118	0.1845	0.0497	0.0113	0.0610		560.0411	560.0411	0.0320	0.0803	584.7757
Worker	0.0590	0.0400	0.5512	1.6700e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		169.8412	169.8412	4.2600e- 003	4.2400e- 003	171.2111
Total	0.1080	1.4982	1.0481	7.5300e- 003	0.3962	0.0144	0.4106	0.1092	0.0138	0.1229		815.4142	815.4142	0.0445	0.0983	845.8069

3.3 Site Preparation - 2022

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					31.5346	0.0000	31.5346	11.3850	0.0000	11.3850			0.0000			0.0000
Off-Road	4.4735	50.3453	19.9794	0.0569		2.1564	2.1564		1.9839	1.9839		5,508.762 6	5,508.762 6	1.7817		5,553.303 7
Total	4.4735	50.3453	19.9794	0.0569	31.5346	2.1564	33.6910	11.3850	1.9839	13.3689		5,508.762 6	5,508.762 6	1.7817		5,553.303 7

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Site Preparation - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	! !	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.2800e- 003	0.0933	0.0330	3.8000e- 004	0.0128	8.8000e- 004	0.0137	3.6800e- 003	8.4000e- 004	4.5200e- 003		41.4845	41.4845	2.3700e- 003	5.9500e- 003	43.3167
Worker	0.0590	0.0400	0.5512	1.6700e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		169.8412	169.8412	4.2600e- 003	4.2400e- 003	171.2111
Total	0.0623	0.1332	0.5842	2.0500e- 003	0.2140	1.9700e- 003	0.2159	0.0570	1.8400e- 003	0.0589		211.3258	211.3258	6.6300e- 003	0.0102	214.5278

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					12.2985	0.0000	12.2985	4.4401	0.0000	4.4401			0.0000			0.0000
Off-Road	4.4735	50.3453	19.9794	0.0569		2.1564	2.1564		1.9839	1.9839	0.0000	5,508.762 6	5,508.762 6	1.7817	 	5,553.303 7
Total	4.4735	50.3453	19.9794	0.0569	12.2985	2.1564	14.4549	4.4401	1.9839	6.4240	0.0000	5,508.762 6	5,508.762 6	1.7817		5,553.303 7

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Site Preparation - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day						lb/c	lay			
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.2800e- 003	0.0933	0.0330	3.8000e- 004	0.0128	8.8000e- 004	0.0137	3.6800e- 003	8.4000e- 004	4.5200e- 003		41.4845	41.4845	2.3700e- 003	5.9500e- 003	43.3167
Worker	0.0590	0.0400	0.5512	1.6700e- 003	0.2012	1.0900e- 003	0.2023	0.0534	1.0000e- 003	0.0544		169.8412	169.8412	4.2600e- 003	4.2400e- 003	171.2111
Total	0.0623	0.1332	0.5842	2.0500e- 003	0.2140	1.9700e- 003	0.2159	0.0570	1.8400e- 003	0.0589		211.3258	211.3258	6.6300e- 003	0.0102	214.5278

3.4 Grading - 2022

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					19.4904	0.0000	19.4904	4.7645	0.0000	4.7645			0.0000			0.0000
Off-Road	4.2792	47.5079	29.1953	0.0715		1.9081	1.9081		1.7554	1.7554		6,926.997 4	6,926.997 4	2.2403		6,983.005 6
Total	4.2792	47.5079	29.1953	0.0715	19.4904	1.9081	21.3985	4.7645	1.7554	6.5199		6,926.997 4	6,926.997 4	2.2403		6,983.005 6

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Grading - 2022
Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0115	0.3264	0.1155	1.3300e- 003	0.0448	3.0700e- 003	0.0478	0.0129	2.9300e- 003	0.0158		145.1958	145.1958	8.3000e- 003	0.0208	151.6085
Worker	0.0655	0.0444	0.6125	1.8600e- 003	0.2236	1.2100e- 003	0.2248	0.0593	1.1100e- 003	0.0604		188.7125	188.7125	4.7400e- 003	4.7100e- 003	190.2345
Total	0.0770	0.3708	0.7280	3.1900e- 003	0.2683	4.2800e- 003	0.2726	0.0722	4.0400e- 003	0.0762		333.9083	333.9083	0.0130	0.0255	341.8430

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Fugitive Dust					7.6013	0.0000	7.6013	1.8582	0.0000	1.8582			0.0000			0.0000
Off-Road	4.2792	47.5079	29.1953	0.0715	 	1.9081	1.9081		1.7554	1.7554	0.0000	6,926.997 4	6,926.997 4	2.2403	i i	6,983.005 6
Total	4.2792	47.5079	29.1953	0.0715	7.6013	1.9081	9.5093	1.8582	1.7554	3.6136	0.0000	6,926.997 4	6,926.997 4	2.2403		6,983.005 6

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Grading - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0115	0.3264	0.1155	1.3300e- 003	0.0448	3.0700e- 003	0.0478	0.0129	2.9300e- 003	0.0158		145.1958	145.1958	8.3000e- 003	0.0208	151.6085
Worker	0.0655	0.0444	0.6125	1.8600e- 003	0.2236	1.2100e- 003	0.2248	0.0593	1.1100e- 003	0.0604		188.7125	188.7125	4.7400e- 003	4.7100e- 003	190.2345
Total	0.0770	0.3708	0.7280	3.1900e- 003	0.2683	4.2800e- 003	0.2726	0.0722	4.0400e- 003	0.0762		333.9083	333.9083	0.0130	0.0255	341.8430

3.5 Building Construction - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892		4,110.532 2	4,110.532 2	1.1153		4,138.413 5
Total	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892		4,110.532 2	4,110.532 2	1.1153		4,138.413 5

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0869	2.4713	0.8746	0.0100	0.3389	0.0232	0.3621	0.0975	0.0222	0.1198		1,099.339 9	1,099.339 9	0.0629	0.1577	1,147.893 1
Worker	0.7603	0.5152	7.1048	0.0215	2.5932	0.0140	2.6072	0.6877	0.0129	0.7006		2,189.064 6	2,189.064 6	0.0549	0.0546	2,206.720 2
Total	0.8472	2.9864	7.9794	0.0316	2.9321	0.0372	2.9693	0.7853	0.0351	0.8204		3,288.404 5	3,288.404 5	0.1178	0.2123	3,354.613 3

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743	1 1	1.1892	1.1892	0.0000	4,110.532 2	4,110.532 2	1.1153		4,138.413 5
Total	2.7963	29.7637	17.6698	0.0430		1.2743	1.2743		1.1892	1.1892	0.0000	4,110.532 2	4,110.532 2	1.1153		4,138.413 5

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0869	2.4713	0.8746	0.0100	0.3389	0.0232	0.3621	0.0975	0.0222	0.1198		1,099.339 9	1,099.339 9	0.0629	0.1577	1,147.893 1
Worker	0.7603	0.5152	7.1048	0.0215	2.5932	0.0140	2.6072	0.6877	0.0129	0.7006		2,189.064 6	2,189.064 6	0.0549	0.0546	2,206.720 2
Total	0.8472	2.9864	7.9794	0.0316	2.9321	0.0372	2.9693	0.7853	0.0351	0.8204		3,288.404 5	3,288.404 5	0.1178	0.2123	3,354.613 3

3.5 Building Construction - 2023

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Off-Road	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422		4,108.239 2	4,108.239 2	1.1101		4,135.992 4
Total	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422		4,108.239 2	4,108.239 2	1.1101		4,135.992 4

CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0517	1.9403	0.7947	9.5400e- 003	0.3389	9.5900e- 003	0.3485	0.0975	9.1700e- 003	0.1067		1,048.020 9	1,048.020 9	0.0621	0.1505	1,094.420 6			
Worker	0.7144	0.4592	6.6177	0.0208	2.5932	0.0133	2.6065	0.6877	0.0122	0.6999		2,132.443 0	2,132.443 0	0.0498	0.0508	2,148.836 9			
Total	0.7661	2.3995	7.4124	0.0304	2.9321	0.0229	2.9550	0.7853	0.0214	0.8067		3,180.463 9	3,180.463 9	0.1119	0.2013	3,243.257 6			

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422	0.0000	4,108.239 2	4,108.239 2	1.1101		4,135.992 4
Total	2.5519	26.2044	17.3471	0.0430		1.1169	1.1169		1.0422	1.0422	0.0000	4,108.239 2	4,108.239 2	1.1101		4,135.992 4

CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Building Construction - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0517	1.9403	0.7947	9.5400e- 003	0.3389	9.5900e- 003	0.3485	0.0975	9.1700e- 003	0.1067		1,048.020 9	1,048.020 9	0.0621	0.1505	1,094.420 6			
Worker	0.7144	0.4592	6.6177	0.0208	2.5932	0.0133	2.6065	0.6877	0.0122	0.6999		2,132.443 0	2,132.443 0	0.0498	0.0508	2,148.836 9			
Total	0.7661	2.3995	7.4124	0.0304	2.9321	0.0229	2.9550	0.7853	0.0214	0.8067		3,180.463 9	3,180.463 9	0.1119	0.2013	3,243.257 6			

3.6 Paving - 2023

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.5895					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.6222	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694		2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2020.4.0 Page 22 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2023
<u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	0.0462	0.0297	0.4279	1.3500e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		137.8735	137.8735	3.2200e- 003	3.2900e- 003	138.9334			
Total	0.0462	0.0297	0.4279	1.3500e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		137.8735	137.8735	3.2200e- 003	3.2900e- 003	138.9334			

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.0327	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6
Paving	0.5895					0.0000	0.0000		0.0000	0.0000		 	0.0000			0.0000
Total	1.6222	10.1917	14.5842	0.0228		0.5102	0.5102		0.4694	0.4694	0.0000	2,207.584 1	2,207.584 1	0.7140		2,225.433 6

CalEEMod Version: CalEEMod.2020.4.0 Page 23 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2023

<u>Mitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0462	0.0297	0.4279	1.3500e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		137.8735	137.8735	3.2200e- 003	3.2900e- 003	138.9334
Total	0.0462	0.0297	0.4279	1.3500e- 003	0.1677	8.6000e- 004	0.1685	0.0445	7.9000e- 004	0.0453		137.8735	137.8735	3.2200e- 003	3.2900e- 003	138.9334

3.7 Architectural Coating - 2023 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Archit. Coating	60.7279					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.2556	1.7373	2.4148	3.9600e- 003		0.0944	0.0944	 	0.0944	0.0944		375.2641	375.2641	0.0225	 	375.8253
Total	60.9835	1.7373	2.4148	3.9600e- 003		0.0944	0.0944		0.0944	0.0944		375.2641	375.2641	0.0225		375.8253

CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.7 Architectural Coating - 2023 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1417	0.0911	1.3121	4.1300e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		422.8120	422.8120	9.8700e- 003	0.0101	426.0625
Total	0.1417	0.0911	1.3121	4.1300e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		422.8120	422.8120	9.8700e- 003	0.0101	426.0625

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Archit. Coating	60.7279					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2556	1.7373	2.4148	3.9600e- 003	 	0.0944	0.0944		0.0944	0.0944	0.0000	375.2641	375.2641	0.0225	1 1 1 1	375.8253
Total	60.9835	1.7373	2.4148	3.9600e- 003		0.0944	0.0944		0.0944	0.0944	0.0000	375.2641	375.2641	0.0225		375.8253

CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.7 Architectural Coating - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1417	0.0911	1.3121	4.1300e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		422.8120	422.8120	9.8700e- 003	0.0101	426.0625
Total	0.1417	0.0911	1.3121	4.1300e- 003	0.5142	2.6300e- 003	0.5168	0.1364	2.4200e- 003	0.1388		422.8120	422.8120	9.8700e- 003	0.0101	426.0625

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2020.4.0 Page 26 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
General Heavy Industry	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
General Heavy Industry	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

1 age 27 01 32

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

Date: 11/17/2021 12:20 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
General Heavy Industry	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Other Asphalt Surfaces	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Parking Lot	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Unrefrigerated Warehouse-No Rail	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 29 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 30 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Unmitigated	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
SubCategory		lb/day											lb/d	lb/day					
Architectural Coating	0.7585					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000			
Consumer Products	5.8693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000			
Landscaping	7.0300e- 003	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734			
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734			

CalEEMod Version: CalEEMod.2020.4.0 Page 31 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day									lb/day						
	0.7585					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	5.8693					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
, , , ,	7.0300e- 003	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734
Total	6.6348	6.9000e- 004	0.0759	1.0000e- 005		2.7000e- 004	2.7000e- 004		2.7000e- 004	2.7000e- 004		0.1627	0.1627	4.3000e- 004		0.1734

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 32 of 32 Date: 11/17/2021 12:20 PM

759 Eckhoff Street (Construction - Unmitigated) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD EXISTING OPERATIONAL EMISSIONS MODEL OUTPUTS

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Existing Operations)

Orange County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	210.65	1000sqft	4.84	210,646.00	0
User Defined Industrial	210.65	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)30Climate Zone8Operational Year2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022
tblFleetMix	HHD	4.8550e-003	0.00

Date: 11/17/2021 1:32 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	4.8550e-003	0.28
tblFleetMix	LDA	0.54	0.58
tblFleetMix	LDA	0.54	0.00
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.19	0.20
tblFleetMix	LDT2	0.19	0.00
tblFleetMix	LHD1	0.02	0.00
tblFleetMix	LHD1	0.02	0.57
tblFleetMix	LHD2	6.5220e-003	0.00
tblFleetMix	LHD2	6.5220e-003	0.15
tblFleetMix	MCY	0.02	0.03
tblFleetMix	MCY	0.02	0.00
tblFleetMix	MDV	0.13	0.14
tblFleetMix	MDV	0.13	0.00
tblFleetMix	MH	3.9420e-003	0.00
tblFleetMix	MH	3.9420e-003	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	OBUS	6.5600e-004	0.00
tblFleetMix	OBUS	6.5600e-004	0.00
tblFleetMix	SBUS	7.2300e-004	0.00
tblFleetMix	SBUS	7.2300e-004	0.00
tblFleetMix	UBUS	3.8500e-004	0.00
tblFleetMix	UBUS	3.8500e-004	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblVehicleTrips	CW_TL	16.60	40.00
	•	<u> </u>	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	0.06
tblVehicleTrips	ST_TR	0.00	7.3000e-003
tblVehicleTrips	SU_TR	1.74	0.02
tblVehicleTrips	SU_TR	0.00	2.9000e-003
tblVehicleTrips	WD_TR	1.74	0.71
tblVehicleTrips	WD_TR	0.00	0.09

2.0 Emissions Summary

Date: 11/17/2021 1:32 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr								MT/yr							
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr												MT	/yr		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter Start Date End Date Maximum Unmitigated ROG + NOX (tons/quarter) Maximum	imum Mitigated ROG + NOX (tons/quarter)
--	---

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	Highest	
	g	

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.8593	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111
Energy	4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	196.8912	196.8912	0.0138	2.3700e- 003	197.9412
Mobile	0.0731	0.3048	0.8198	3.1700e- 003	0.2563	3.0200e- 003	0.2593	0.0692	2.8500e- 003	0.0721	0.0000	302.5361	302.5361	0.0161	0.0220	309.5030
Waste	F) 					0.0000	0.0000		0.0000	0.0000	40.1942	0.0000	40.1942	2.3754	0.0000	99.5795
Water	 					0.0000	0.0000		0.0000	0.0000	15.4543	112.4884	127.9428	1.5968	0.0386	179.3747
Total	0.9368	0.3450	0.8589	3.4100e- 003	0.2563	6.0900e- 003	0.2624	0.0692	5.9200e- 003	0.0752	55.6486	611.9262	667.5748	4.0021	0.0630	786.4096

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.8593	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111
Energy	4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	196.8912	196.8912	0.0138	2.3700e- 003	197.9412
Mobile	0.0731	0.3048	0.8198	3.1700e- 003	0.2563	3.0200e- 003	0.2593	0.0692	2.8500e- 003	0.0721	0.0000	302.5361	302.5361	0.0161	0.0220	309.5030
Waste	, — — — — — — — — — — — — — — — — — — —					0.0000	0.0000		0.0000	0.0000	40.1942	0.0000	40.1942	2.3754	0.0000	99.5795
Water	,,	1				0.0000	0.0000		0.0000	0.0000	15.4543	112.4884	127.9428	1.5968	0.0386	179.3747
Total	0.9368	0.3450	0.8589	3.4100e- 003	0.2563	6.0900e- 003	0.2624	0.0692	5.9200e- 003	0.0752	55.6486	611.9262	667.5748	4.0021	0.0630	786.4096

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton			MT	/yr							
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0731	0.3048	0.8198	3.1700e- 003	0.2563	3.0200e- 003	0.2593	0.0692	2.8500e- 003	0.0721	0.0000	302.5361	302.5361	0.0161	0.0220	309.5030
Unmitigated	0.0731	0.3048	0.8198	3.1700e- 003	0.2563	3.0200e- 003	0.2593	0.0692	2.8500e- 003	0.0721	0.0000	302.5361	302.5361	0.0161	0.0220	309.5030

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	150.00	12.85	5.14	470,201	470,201
User Defined Industrial	18.01	1.54	0.61	191,775	191,775
Total	168.01	14.39	5.75	661,976	661,976

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000

Page 11 of 19

759 Eckhoff Street (Existing Operations) - Orange County, Annual

Date: 11/17/2021 1:32 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

User Defined Industrial 0.000000 0.000000 0.000000 0.569800 0.152400 0.000000 0.277800 0.000000 0.000000 0.000000 0.000000 0.000000	User Defined Industrial	\equiv	0.000000	0.000000	0.000000	0.000000	0.569800	0.152400	0.000000	0.277800	0.000000	0.000000	0.000000	0.000000	0.000000
---	-------------------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	153.1642	153.1642	0.0129	1.5700e- 003	153.9544
Electricity Unmitigated	;;		1 1 1 1	1 		0.0000	0.0000	 	0.0000	0.0000	0.0000	153.1642	153.1642	0.0129	1.5700e- 003	153.9544
NaturalGas Mitigated	4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003	 	3.0500e- 003	3.0500e- 003	0.0000	43.7270	43.7270	8.4000e- 004	8.0000e- 004	43.9868
Unmitigated	4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003	 : :	3.0500e- 003	3.0500e- 003	0.0000	43.7270	43.7270	8.4000e- 004	8.0000e- 004	43.9868

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	-/yr		
Unrefrigerated Warehouse-No Rail	819413	4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	43.7270	43.7270	8.4000e- 004	8.0000e- 004	43.9868
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	43.7270	43.7270	8.4000e- 004	8.0000e- 004	43.9868

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
Unrefrigerated Warehouse-No Rail	819413	4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	43.7270	43.7270	8.4000e- 004	8.0000e- 004	43.9868
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		4.4200e- 003	0.0402	0.0337	2.4000e- 004		3.0500e- 003	3.0500e- 003		3.0500e- 003	3.0500e- 003	0.0000	43.7270	43.7270	8.4000e- 004	8.0000e- 004	43.9868

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
Unrefrigerated Warehouse-No Rail	863649	153.1642	0.0129	1.5700e- 003	153.9544
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		153.1642	0.0129	1.5700e- 003	153.9544

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	√yr	
Unrefrigerated Warehouse-No Rail	863649	153.1642	0.0129	1.5700e- 003	153.9544
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		153.1642	0.0129	1.5700e- 003	153.9544

6.0 Area Detail

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.8593	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111
Unmitigated	0.8593	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0976					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7612					0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	5.0000e- 004	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111
Total	0.8593	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0976					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.7612				 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	5.0000e- 004	5.0000e- 005	5.3800e- 003	0.0000	 	2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111
Total	0.8593	5.0000e- 005	5.3800e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0105	0.0105	3.0000e- 005	0.0000	0.0111

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	Total CO2	CH4	N2O	CO2e
Category		МТ	-/yr	
	127.9428	1.5968	0.0386	179.3747
	127.9428	1.5968	0.0386	179.3747

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Unrefrigerated Warehouse-No Rail	48.7128 / 0	127.9428	1.5968	0.0386	179.3747
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000
Total		127.9428	1.5968	0.0386	179.3747

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
Unrefrigerated Warehouse-No Rail	48.7128 / 0	127.9428	1.5968	0.0386	179.3747
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000
Total		127.9428	1.5968	0.0386	179.3747

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	-/yr	
Willigatod	10.1342 11	2.3754	0.0000	99.5795
Unmitigated	40.1942	2.3754	0.0000	99.5795

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Unrefrigerated Warehouse-No Rail	198.01	• 10.1012	2.3754	0.0000	99.5795
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		40.1942	2.3754	0.0000	99.5795

<u>Mitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Unrefrigerated Warehouse-No Rail	198.01	40.1942	2.3754	0.0000	99.5795
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		40.1942	2.3754	0.0000	99.5795

9.0 Operational Offroad

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 19 Date: 11/17/2021 1:32 PM

759 Eckhoff Street (Existing Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Existing Operations)

Orange County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	210.65	1000sqft	4.84	210,646.00	0
User Defined Industrial	210.65	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)30Climate Zone8Operational Year2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022
tblFleetMix	HHD	4.8550e-003	0.00

Page 2 of 14

Date: 11/17/2021 1:31 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	4.8550e-003	0.28			
tblFleetMix	LDA	0.54	0.58			
tblFleetMix	LDA	0.54	0.00			
tblFleetMix	LDT1	0.06	0.06			
tblFleetMix	LDT1	0.06	0.00			
tblFleetMix	LDT2	0.19	0.20			
tblFleetMix	LDT2	0.19	0.00			
tblFleetMix	LHD1	0.02	0.00			
tblFleetMix	LHD1	0.02	0.57			
tblFleetMix	LHD2	6.5220e-003	0.00			
tblFleetMix	LHD2	6.5220e-003	0.15			
tblFleetMix	MCY	0.02	0.03			
tblFleetMix	MCY	0.02	0.00			
tblFleetMix	MDV	0.13	0.14			
tblFleetMix	MDV	0.13	0.00			
tblFleetMix	MH	3.9420e-003	0.00			
tblFleetMix	MH	3.9420e-003	0.00			
tblFleetMix	MHD	0.01	0.00			
tblFleetMix	MHD	0.01	0.00			
tblFleetMix	OBUS	6.5600e-004	0.00			
tblFleetMix	OBUS	6.5600e-004	0.00			
tblFleetMix	SBUS	7.2300e-004	0.00			
tblFleetMix	SBUS	7.2300e-004	0.00			
tblFleetMix	UBUS	3.8500e-004	0.00			
tblFleetMix	UBUS	3.8500e-004	0.00			
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00			
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00			
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00			
tblVehicleTrips	CW_TL	16.60	40.00			

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	0.06
tblVehicleTrips	ST_TR	0.00	7.3000e-003
tblVehicleTrips	SU_TR	1.74	0.02
tblVehicleTrips	SU_TR	0.00	2.9000e-003
tblVehicleTrips	WD_TR	1.74	0.71
tblVehicleTrips	WD_TR	0.00	0.09

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2020.4.0 Page 5 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e							
Category	lb/day											lb/day							lb/day				
Area	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983							
Energy	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833							
Mobile	0.5605	2.1508	6.2310	0.0242	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,547.282 5	2,547.282 5	0.1316	0.1796	2,604.104 4							
Total	5.2945	2.3712	6.4589	0.0256	1.9592	0.0396	1.9988	0.5284	0.0384	0.5667		2,811.488 5	2,811.488 5	0.1369	0.1845	2,869.885 9							

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day												lb/d	day		
Area	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Energy	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
Mobile	0.5605	2.1508	6.2310	0.0242	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,547.282 5	2,547.282 5	0.1316	0.1796	2,604.104 4
Total	5.2945	2.3712	6.4589	0.0256	1.9592	0.0396	1.9988	0.5284	0.0384	0.5667		2,811.488 5	2,811.488 5	0.1369	0.1845	2,869.885 9

759 Eckhoff Street (Existing Operations) - Orange County, Summer

Date: 11/17/2021 1:31 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day				lb/c	lay					
Mitigated	0.5605	2.1508	6.2310	0.0242	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,547.282 5	2,547.282 5	0.1316	0.1796	2,604.104 4
Unmitigated	0.5605	2.1508	6.2310	0.0242	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,547.282 5	2,547.282 5	0.1316	0.1796	2,604.104 4

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	150.00	12.85	5.14	470,201	470,201
User Defined Industrial	18.01	1.54	0.61	191,775	191,775
Total	168.01	14.39	5.75	661,976	661,976

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000

Page 10 of 14

759 Eckhoff Street (Existing Operations) - Orange County, Summer

Date: 11/17/2021 1:31 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

User Defined Industrial 0.000000 0.000000 0.000000 0.569800 0.152400 0.000000 0.277800 0.000000 0.000000 0.000000 0.000000 0.000000	User Defined Industrial	\equiv	0.000000	0.000000	0.000000	0.000000	0.569800	0.152400	0.000000	0.277800	0.000000	0.000000	0.000000	0.000000	0.000000
---	-------------------------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
NaturalGas Mitigated	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
NaturalGas Unmitigated	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Unrefrigerated Warehouse-No Rail	2244.97	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833

<u>Mitigated</u>

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		lb/day											lb/d	day		
Unrefrigerated Warehouse-No Rail	2.24497	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833

6.0 Area Detail

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Unmitigated	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day					lb/day					
Architectural Coating	0.5350					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.1708					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.9800e- 003	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Total	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		lb/day										lb/d	day			
Architectural Coating	0.5350					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	4.1708					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.9800e- 003	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Total	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 14 Date: 11/17/2021 1:31 PM

759 Eckhoff Street (Existing Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Existing Operations)

Orange County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	210.65	1000sqft	4.84	210,646.00	0
User Defined Industrial	210.65	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)30Climate Zone8Operational Year2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022
tblFleetMix	HHD	4.8550e-003	0.00

Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix tblFleetMix	HHD LDA LDA LDT1 LDT1 LDT2 LHD1 LHD1 LHD2 LHD2 MCY MCY MDV MDV	4.8550e-003 0.54 0.54 0.06 0.06 0.19 0.19 0.02 0.02 6.5220e-003 6.5220e-003 0.02 0.02 0.02 0.13	0.28 0.58 0.00 0.06 0.00 0.20 0.00 0.00 0.57 0.00 0.15 0.03 0.00		
tblFleetMix	LDA LDT1 LDT2 LDT2 LHD1 LHD1 LHD2 LHD2 MCY MCY MDV	0.54 0.06 0.06 0.19 0.19 0.02 0.02 6.5220e-003 6.5220e-003 0.02 0.02	0.00 0.06 0.00 0.20 0.00 0.00 0.57 0.00 0.15 0.03 0.00		
tblFleetMix	LDT1 LDT2 LDT2 LHD1 LHD1 LHD2 LHD2 MCY MCY MDV	0.06 0.06 0.19 0.19 0.02 0.02 6.5220e-003 6.5220e-003 0.02 0.02	0.06 0.00 0.20 0.00 0.00 0.57 0.00 0.15 0.03 0.00		
tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix ttblFleetMix	LDT1 LDT2 LHD1 LHD1 LHD2 LHD2 MCY MCY MDV	0.06 0.19 0.02 0.02 0.02 6.5220e-003 0.02 0.02	0.00 0.20 0.00 0.00 0.57 0.00 0.15 0.03		
tblFleetMix tblFleetMix tblFleetMix tblFleetMix ttblFleetMix	LDT2 LDT2 LHD1 LHD1 LHD2 LHD2 MCY MCY MDV	0.19 0.19 0.02 0.02 6.5220e-003 6.5220e-003 0.02 0.02	0.20 0.00 0.00 0.57 0.00 0.15 0.03 0.00		
tblFleetMix	LDT2 LHD1 LHD2 LHD2 MCY MCY MDV	0.19 0.02 0.02 6.5220e-003 6.5220e-003 0.02	0.00 0.00 0.57 0.00 0.15 0.03 0.00		
tblFleetMix	LHD1 LHD2 LHD2 MCY MCY MDV	0.02 0.02 6.5220e-003 6.5220e-003 0.02 0.02	0.00 0.57 0.00 0.15 0.03		
tblFleetMix	LHD1 LHD2 LHD2 MCY MCY MDV	0.02 6.5220e-003 6.5220e-003 0.02	0.57 0.00 0.15 0.03 0.00		
tblFleetMix	LHD2 LHD2 MCY MCY MDV	6.5220e-003 6.5220e-003 0.02 0.02	0.00 0.15 0.03 0.00		
tblFleetMix	LHD2 MCY MCY MDV	6.5220e-003 0.02 0.02	0.15 0.03 0.00		
tblFleetMix	MCY MCY MDV	0.02	0.03 0.00		
tblFleetMix	MCY MDV	0.02	0.00		
tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix	MDV				
tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix		0.13			
tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix	MDV		0.14		
tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix		0.13	0.00		
tblFleetMix tblFleetMix tblFleetMix tblFleetMix tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix tblFleetMix tblFleetMix tblFleetMix	МН	3.9420e-003	0.00		
tblFleetMix tblFleetMix tblFleetMix	MHD	0.01	0.00		
tblFleetMix tblFleetMix	MHD	0.01	0.00		
tblFleetMix	OBUS	6.5600e-004	0.00		
l	OBUS	6.5600e-004	0.00		
th I Clast Mix	SBUS	7.2300e-004	0.00		
IDIFIEELIVIIX	SBUS	7.2300e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblOffRoadEquipment OffR		1.00	0.00		
tblOffRoadEquipment OffR	oadEquipmentUnitAmount	ý	0.00		
tblOffRoadEquipment OffR	oadEquipmentUnitAmount oadEquipmentUnitAmount	3.00	0.00		
tblVehicleTrips		3.00 2.00	0.00		

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	0.06
tblVehicleTrips	ST_TR	0.00	7.3000e-003
tblVehicleTrips	SU_TR	1.74	0.02
tblVehicleTrips	SU_TR	0.00	2.9000e-003
tblVehicleTrips	WD_TR	1.74	0.71
tblVehicleTrips	WD_TR	0.00	0.09

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2020.4.0 Page 5 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Energy	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
Mobile	0.5586	2.2578	6.1108	0.0237	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,494.068 4	2,494.068 4	0.1335	0.1822	2,551.685 9
Total	5.2926	2.4783	6.3387	0.0250	1.9592	0.0396	1.9988	0.5284	0.0384	0.5667		2,758.274 3	2,758.274 3	0.1388	0.1870	2,817.467 4

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Area	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Energy	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
Mobile	0.5586	2.2578	6.1108	0.0237	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,494.068 4	2,494.068 4	0.1335	0.1822	2,551.685 9
Total	5.2926	2.4783	6.3387	0.0250	1.9592	0.0396	1.9988	0.5284	0.0384	0.5667		2,758.274 3	2,758.274 3	0.1388	0.1870	2,817.467 4

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Mitigated	0.5586	2.2578	6.1108	0.0237	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,494.068 4	2,494.068 4	0.1335	0.1822	2,551.685 9
Unmitigated	0.5586	2.2578	6.1108	0.0237	1.9592	0.0227	1.9819	0.5284	0.0215	0.5499		2,494.068 4	2,494.068 4	0.1335	0.1822	2,551.685 9

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	150.00	12.85	5.14	470,201	470,201
User Defined Industrial	18.01	1.54	0.61	191,775	191,775
Total	168.01	14.39	5.75	661,976	661,976

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000

759 Eckhoff Street (Existing Operations) - Orange County, Winter

Date: 11/17/2021 1:28 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

User Defined Industrial	:	0.000000	0.000000	0.000000	0.000000	0.569800	0.152400	0.000000	0.277800	0.000000	0.000000	0.000000	0.000000	0.000000
	•	-	•					•						

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167	 	0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
Unrefrigerated Warehouse-No Rail	2244.97	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Unrefrigerated Warehouse-No Rail	2.24497	0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0242	0.2201	0.1849	1.3200e- 003		0.0167	0.0167		0.0167	0.0167		264.1138	264.1138	5.0600e- 003	4.8400e- 003	265.6833

6.0 Area Detail

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Unmitigated	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		lb/day								lb/day						
Architectural Coating	0.5350					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.1708	 				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.9800e- 003	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Total	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day								lb/day							
Coating	0.5350					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Products	4.1708					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
'	3.9800e- 003	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983
Total	4.7098	3.9000e- 004	0.0430	0.0000		1.5000e- 004	1.5000e- 004		1.5000e- 004	1.5000e- 004		0.0922	0.0922	2.4000e- 004		0.0983

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 14 Date: 11/17/2021 1:28 PM

759 Eckhoff Street (Existing Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

This page intentionally left blank

APPENDIX 3.3:

CALEEMOD PROJECT OPERATIONAL EMISSIONS MODEL OUTPUTS

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (General Light Industrial Operations) Orange County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Heavy Industry	51.60	1000sqft	1.18	51,598.00	0
User Defined Industrial	51.60	User Defined Unit	0.00	0.00	0
Parking Lot	299.00	Space	1.05	45,706.00	0
City Park	1.48	Acre	1.48	64,324.00	0
Other Asphalt Surfaces	150.10	1000sqft	3.45	150,099.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days) 3	0
Climate Zone	8			Operational Year 2	023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Total Project area is 7.16 acres (without Warehouse use)

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information with the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Operational Off-Road Equipment - Based on SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results (2014)

Date: 11/17/2021 1:05 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022
tblFleetMix	HHD	4.8550e-003	0.00
tblFleetMix	HHD	4.8550e-003	0.64
tblFleetMix	LDA	0.54	0.58
tblFleetMix	LDA	0.54	0.00
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.19	0.20
tblFleetMix	LDT2	0.19	0.00
tblFleetMix	LHD1	0.02	0.00
tblFleetMix	LHD1	0.02	0.14
tblFleetMix	LHD2	6.5220e-003	0.00
tblFleetMix	LHD2	6.5220e-003	0.04
tblFleetMix	MCY	0.02	0.03
tblFleetMix	MCY	0.02	0.00
tblFleetMix	MDV	0.13	0.14
tblFleetMix	MDV	0.13	0.00
tblFleetMix	MH	3.9420e-003	0.00
tblFleetMix	MH	3.9420e-003	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	MHD	0.01	0.18
tblFleetMix	OBUS	6.5600e-004	0.00
tblFleetMix	OBUS	6.5600e-004	0.00
tblFleetMix	SBUS	7.2300e-004	0.00
tblFleetMix	SBUS	7.2300e-004	0.00
tblFleetMix	UBUS	3.8500e-004	0.00
tblFleetMix	UBUS	3.8500e-004	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land In a Causana Faint	440,000,00	45 700 00
	119,600.00	45,706.00
LandUseSquareFeet	64,338.12	64,324.00
LotAcreage	2.69	1.05
OffRoadEquipmentUnitAmount	1.00	0.00
OffRoadEquipmentUnitAmount	3.00	0.00
OffRoadEquipmentUnitAmount	2.00	0.00
OperDaysPerYear	260.00	365.00
OperFuelType	Diesel	CNG
OperHorsePower	97.00	200.00
OperHoursPerDay	8.00	4.00
OperOffRoadEquipmentNumber	0.00	1.00
CC_TTP	48.00	0.00
CNW_TTP	19.00	0.00
CW_TL	16.60	40.00
CW_TTP	33.00	0.00
CW_TTP	0.00	100.00
DV_TP	28.00	0.00
PB_TP	6.00	0.00
PR_TP	66.00	0.00
PR_TP	0.00	100.00
ST_TR	1.96	0.00
ST_TR	6.42	1.82
ST_TR	0.00	0.17
SU_TR	2.19	0.00
SU_TR	5.09	4.57
SU_TR	0.00	0.43
WD_TR	0.78	0.00
WD_TR	3.93	4.57
WD_TR	0.00	0.43
	LotAcreage OffRoadEquipmentUnitAmount OffRoadEquipmentUnitAmount OffRoadEquipmentUnitAmount OperDaysPerYear OperFuelType OperHorsePower OperHorsePower OperOffRoadEquipmentNumber CC_TTP CNW_TTP CW_TL CW_TTP CW_TTP DV_TP PB_TP PR_TP PR_TP PR_TP ST_TR ST_TR ST_TR SU_TR SU_TR SU_TR WD_TR WD_TR WD_TR	LandUseSquareFeet 64,338.12 LotAcreage 2.69 OffRoadEquipmentUnitAmount 1.00 OffRoadEquipmentUnitAmount 3.00 OffRoadEquipmentUnitAmount 2.00 OperDaysPerYear 260.00 OperHoerType Diesel OperHorsePower 97.00 OperHoursPerDay 8.00 OperOffRoadEquipmentNumber 0.00 CC_TTP 48.00 CNW_TTP 19.00 CW_TL 16.60 CW_TTP 33.00 CW_TTP 33.00 CW_TTP 0.00 DV_TP 28.00 PB_TP 6.00 PR_TP 6.00 PR_TP 0.00 ST_TR 1.96 ST_TR 0.00 SU_TR 5.09 SU_TR 5.09 SU_TR 0.00 WD_TR 0.78 WD_TR 3.93

CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 5 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/уг		
Area	0.2270	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146
Energy	5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	135.6751	135.6751	7.7200e- 003	1.8500e- 003	136.4198
Mobile	0.1385	0.7330	1.6221	6.5000e- 003	0.4835	6.1100e- 003	0.4896	0.1302	5.7800e- 003	0.1360	0.0000	631.7174	631.7174	0.0429	0.0593	650.4497
Offroad	0.0201	0.1891	0.1367	5.8000e- 004		6.8600e- 003	6.8600e- 003		6.3100e- 003	6.3100e- 003	0.0000	50.7519	50.7519	0.0164	0.0000	51.1623
Waste	n		,			0.0000	0.0000		0.0000	0.0000	13.0138	0.0000	13.0138	0.7691	0.0000	32.2410
Water			,			0.0000	0.0000		0.0000	0.0000	3.7856	31.0292	34.8148	0.3914	9.5000e- 003	47.4313
Total	0.3914	0.9746	1.8100	7.4000e- 003	0.4835	0.0170	0.5005	0.1302	0.0161	0.1463	16.7994	849.1873	865.9867	1.2276	0.0706	917.7186

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.2270	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146
Energy	5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	135.6751	135.6751	7.7200e- 003	1.8500e- 003	136.4198
Mobile	0.1385	0.7330	1.6221	6.5000e- 003	0.4835	6.1100e- 003	0.4896	0.1302	5.7800e- 003	0.1360	0.0000	631.7174	631.7174	0.0429	0.0593	650.4497
Offroad	0.0201	0.1891	0.1367	5.8000e- 004		6.8600e- 003	6.8600e- 003		6.3100e- 003	6.3100e- 003	0.0000	50.7519	50.7519	0.0164	0.0000	51.1623
Waste	,,					0.0000	0.0000		0.0000	0.0000	13.0138	0.0000	13.0138	0.7691	0.0000	32.2410
Water	, — — — — — — — — — — — — — — — — — — —					0.0000	0.0000		0.0000	0.0000	3.7856	31.0292	34.8148	0.3914	9.5000e- 003	47.4313
Total	0.3914	0.9746	1.8100	7.4000e- 003	0.4835	0.0170	0.5005	0.1302	0.0161	0.1463	16.7994	849.1873	865.9867	1.2276	0.0706	917.7186

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Numbe	Phase Name r	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 4.5

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	tons/yr										MT/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category	tons/yr										MT/yr						
Mitigated	0.1385	0.7330	1.6221	6.5000e- 003	0.4835	6.1100e- 003	0.4896	0.1302	5.7800e- 003	0.1360	0.0000	631.7174	631.7174	0.0429	0.0593	650.4497	
Unmitigated	0.1385	0.7330	1.6221	6.5000e- 003	0.4835	6.1100e- 003	0.4896	0.1302	5.7800e- 003	0.1360	0.0000	631.7174	631.7174	0.0429	0.0593	650.4497	

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday Saturday		Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
General Heavy Industry	236.00 93.92		235.99	955,184	955,184
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
User Defined Industrial	22.00	8.76	22.00	292,790	292,790
Total	258.00	102.68	257.99	1,247,974	1,247,974

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %					
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by			
City Park	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0			
General Heavy Industry	16.60	8.40	6.90	59.00	28.00	13.00	92	5	3			
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0			
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0			

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
General Heavy Industry	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000
Other Asphalt Surfaces	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Parking Lot	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.143400	0.038400	0.181800	0.636400	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated	 					0.0000	0.0000		0.0000	0.0000	0.0000	78.5131	78.5131	6.6300e- 003	8.0000e- 004	78.9181
Electricity Unmitigated	,,		,			0.0000	0.0000	, 	0.0000	0.0000	0.0000	78.5131	78.5131	6.6300e- 003	8.0000e- 004	78.9181
NaturalGas Mitigated	5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003	, 	3.9900e- 003	3.9900e- 003	0.0000	57.1620	57.1620	1.1000e- 003	1.0500e- 003	57.5016
NaturalGas Unmitigated	5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	57.1620	57.1620	1.1000e- 003	1.0500e- 003	57.5016

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	1.07117e +006	5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	57.1620	57.1620	1.1000e- 003	1.0500e- 003	57.5016
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	57.1620	57.1620	1.1000e- 003	1.0500e- 003	57.5016

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	1.07117e +006	5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	57.1620	57.1620	1.1000e- 003	1.0500e- 003	57.5016
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		5.7800e- 003	0.0525	0.0441	3.2000e- 004		3.9900e- 003	3.9900e- 003		3.9900e- 003	3.9900e- 003	0.0000	57.1620	57.1620	1.1000e- 003	1.0500e- 003	57.5016

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	426715	75.6761	6.3900e- 003	7.7000e- 004	76.0665
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	15997.1	2.8370	2.4000e- 004	3.0000e- 005	2.8517
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		78.5131	6.6300e- 003	8.0000e- 004	78.9181

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	426715	75.6761	6.3900e- 003	7.7000e- 004	76.0665
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	15997.1	2.8370	2.4000e- 004	3.0000e- 005	2.8517
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		78.5131	6.6300e- 003	8.0000e- 004	78.9181

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.2270	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146
Unmitigated	0.2270	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0266					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.1997					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	6.5000e- 004	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146
Total	0.2270	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.0266					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.1997				 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	6.5000e- 004	6.0000e- 005	7.0700e- 003	0.0000	 	3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146
Total	0.2270	6.0000e- 005	7.0700e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0137	0.0137	4.0000e- 005	0.0000	0.0146

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	Total CO2	CH4	N2O	CO2e
Category		МТ	-/yr	
ga.ou	34.8148	0.3914	9.5000e- 003	47.4313
- Orminingation	34.8148	0.3914	9.5000e- 003	47.4313

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
City Park	0 / 1.76339	3.4744	2.9000e- 004	4.0000e- 005	3.4924
General Heavy Industry	11.9325 / 0	31.3404	0.3912	9.4600e- 003	43.9389
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000
Total		34.8148	0.3914	9.5000e- 003	47.4313

CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
City Park	0 / 1.76339	3.4744	2.9000e- 004	4.0000e- 005	3.4924
General Heavy Industry	11.9325 / 0	31.3404	0.3912	9.4600e- 003	43.9389
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000
Total		34.8148	0.3914	9.5000e- 003	47.4313

8.0 Waste Detail

8.1 Mitigation Measures Waste

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	-/yr	
Mitigated	i 10.0100	0.7691	0.0000	32.2410
Unmitigated	i 10.0100	0.7691	0.0000	32.2410

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e				
Land Use	tons	MT/yr							
City Park	0.13	0.0264	1.5600e- 003	0.0000	0.0654				
General Heavy Industry	63.98	12.9874	0.7675	0.0000	32.1756				
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000				
Parking Lot	0	0.0000	0.0000	0.0000	0.0000				
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000				
Total		13.0138	0.7691	0.0000	32.2410				

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
City Park	0.13	0.0264	1.5600e- 003	0.0000	0.0654
General Heavy Industry	63.98	12.9874	0.7675	0.0000	32.1756
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		13.0138	0.7691	0.0000	32.2410

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Tractors/Loaders/Backhoes	1	4.00	365	200	0.37	CNG

CalEEMod Version: CalEEMod.2020.4.0 Page 23 of 23 Date: 11/17/2021 1:05 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

UnMitigated/Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type	tons/yr								MT	/yr						
Tractors/Loaders/ Backhoes		0.1891	0.1367	5.8000e- 004		6.8600e- 003	6.8600e- 003	1 1	6.3100e- 003	6.3100e- 003	0.0000	50.7519	50.7519	0.0164	0.0000	51.1623
Total	0.0201	0.1891	0.1367	5.8000e- 004		6.8600e- 003	6.8600e- 003		6.3100e- 003	6.3100e- 003	0.0000	50.7519	50.7519	0.0164	0.0000	51.1623

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type Num	nber
--------------------	------

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (General Light Industrial Operations)

Orange County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Heavy Industry	51.60	1000sqft	1.18	51,598.00	0
User Defined Industrial	51.60	User Defined Unit	0.00	0.00	0
Parking Lot	299.00	Space	1.05	45,706.00	0
City Park	1.48	Acre	1.48	64,324.00	0
Other Asphalt Surfaces	150.10	1000sqft	3.45	150,099.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Total Project area is 7.16 acres (without Warehouse use)

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information with the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Operational Off-Road Equipment - Based on SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results (2014)

Date: 11/17/2021 1:03 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Table Name	Column Name	Default Value	New Value		
tblConstructionPhase	NumDays	20.00	0.00		
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022		
tblFleetMix	HHD	4.8550e-003	0.00		
tblFleetMix	HHD	4.8550e-003	0.64		
tblFleetMix	LDA	0.54	0.58		
tblFleetMix	LDA	0.54	0.00		
tblFleetMix	LDT1	0.06	0.06		
tblFleetMix	LDT1	0.06	0.00		
tblFleetMix	LDT2	0.19	0.20		
tblFleetMix	LDT2	0.19	0.00		
tblFleetMix	LHD1	0.02	0.00		
tblFleetMix	LHD1	0.02	0.14		
tblFleetMix	LHD2	6.5220e-003	0.00		
tblFleetMix	LHD2	6.5220e-003	0.04		
tblFleetMix	MCY	0.02	0.03		
tblFleetMix	MCY	0.02	0.00		
tblFleetMix	MDV	0.13	0.14		
tblFleetMix	MDV	0.13	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MHD	0.01	0.00		
tblFleetMix	MHD	0.01	0.18		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land In a Causana Faint	440,000,00	45 700 00
	119,600.00	45,706.00
LandUseSquareFeet	64,338.12	64,324.00
LotAcreage	2.69	1.05
OffRoadEquipmentUnitAmount	1.00	0.00
OffRoadEquipmentUnitAmount	3.00	0.00
OffRoadEquipmentUnitAmount	2.00	0.00
OperDaysPerYear	260.00	365.00
OperFuelType	Diesel	CNG
OperHorsePower	97.00	200.00
OperHoursPerDay	8.00	4.00
OperOffRoadEquipmentNumber	0.00	1.00
CC_TTP	48.00	0.00
CNW_TTP	19.00	0.00
CW_TL	16.60	40.00
CW_TTP	33.00	0.00
CW_TTP	0.00	100.00
DV_TP	28.00	0.00
PB_TP	6.00	0.00
PR_TP	66.00	0.00
PR_TP	0.00	100.00
ST_TR	1.96	0.00
ST_TR	6.42	1.82
ST_TR	0.00	0.17
SU_TR	2.19	0.00
SU_TR	5.09	4.57
SU_TR	0.00	0.43
WD_TR	0.78	0.00
WD_TR	3.93	4.57
WD_TR	0.00	0.43
	LotAcreage OffRoadEquipmentUnitAmount OffRoadEquipmentUnitAmount OffRoadEquipmentUnitAmount OperDaysPerYear OperFuelType OperHorsePower OperHorsePower OperOffRoadEquipmentNumber CC_TTP CNW_TTP CW_TL CW_TTP CW_TTP DV_TP PB_TP PR_TP PR_TP PR_TP ST_TR ST_TR ST_TR SU_TR SU_TR SU_TR WD_TR WD_TR WD_TR	LandUseSquareFeet 64,338.12 LotAcreage 2.69 OffRoadEquipmentUnitAmount 1.00 OffRoadEquipmentUnitAmount 3.00 OffRoadEquipmentUnitAmount 2.00 OperDaysPerYear 260.00 OperHoerType Diesel OperHorsePower 97.00 OperHoursPerDay 8.00 OperOffRoadEquipmentNumber 0.00 CC_TTP 48.00 CNW_TTP 19.00 CW_TL 16.60 CW_TTP 33.00 CW_TTP 33.00 CW_TTP 0.00 DV_TP 28.00 PB_TP 6.00 PR_TP 6.00 PR_TP 0.00 ST_TR 1.96 ST_TR 0.00 SU_TR 5.09 SU_TR 5.09 SU_TR 0.00 WD_TR 0.78 WD_TR 3.93

CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day								lb/d	lay						
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Area	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Energy	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Mobile	0.8502	4.1510	9.8658	0.0397	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,254.234 0	4,254.234 0	0.2821	0.3888	4,377.160 8
Offroad	0.1103	1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237
Total	2.2377	5.4753	10.9132	0.0446	2.9574	0.0964	3.0538	0.7953	0.0914	0.8868	0.0000	4,906.162 0	4,906.162 0	0.3881	0.3952	5,033.627 1

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004	i ! !	0.1291
Energy	0.0317	0.2877	0.2417	1.7300e- 003	 	0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Mobile	0.8502	4.1510	9.8658	0.0397	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,254.234 0	4,254.234 0	0.2821	0.3888	4,377.160 8
Offroad	0.1103	1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237
Total	2.2377	5.4753	10.9132	0.0446	2.9574	0.0964	3.0538	0.7953	0.0914	0.8868	0.0000	4,906.162 0	4,906.162 0	0.3881	0.3952	5,033.627 1

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

	nase ımber	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1		Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Paving: 4.5

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 **Demolition - 2022**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Oii rioda	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.8502	4.1510	9.8658	0.0397	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,254.234 0	4,254.234 0	0.2821	0.3888	4,377.160 8
Unmitigated	0.8502	4.1510	9.8658	0.0397	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,254.234 0	4,254.234 0	0.2821	0.3888	4,377.160 8

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
General Heavy Industry	236.00	93.92	235.99	955,184	955,184
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
User Defined Industrial	22.00	8.76	22.00	292,790	292,790
Total	258.00	102.68	257.99	1,247,974	1,247,974

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
General Heavy Industry	16.60	8.40	6.90	59.00	28.00	13.00	92	5	3
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
General Heavy Industry	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000
Other Asphalt Surfaces	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Parking Lot	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.143400	0.038400	0.181800	0.636400	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
NaturalGas Mitigated	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
NaturalGas Unmitigated	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	2934.72	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219	 	0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	2.93472	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219	 	0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Unmitigated	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.1460					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	1.0943					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	5.2400e- 003	5.1000e- 004	0.0565	0.0000	 	2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Total	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Coating	0.1460					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Products	1.0943					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
' " '	5.2400e- 003	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Total	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Tractors/Loaders/Backhoes	1	4.00	365	200	0.37	CNG

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 16 Date: 11/17/2021 1:03 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

UnMitigated/Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/d	day							lb/c	lay		
Tractors/Loaders/ Backhoes		1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991	i i	309.0237
Total	0.1103	1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type Nu	ımber
-------------------	-------

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (General Light Industrial Operations) Orange County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Heavy Industry	51.60	1000sqft	1.18	51,598.00	0
User Defined Industrial	51.60	User Defined Unit	0.00	0.00	0
Parking Lot	299.00	Space	1.05	45,706.00	0
City Park	1.48	Acre	1.48	64,324.00	0
Other Asphalt Surfaces	150.10	1000sqft	3.45	150,099.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Total Project area is 7.16 acres (without Warehouse use)

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information with the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Operational Off-Road Equipment - Based on SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results (2014)

Date: 11/17/2021 1:01 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Table Name	Column Name	Default Value	New Value			
tblConstructionPhase	NumDays	20.00	0.00			
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022			
tblFleetMix	HHD	4.8550e-003	0.00			
tblFleetMix	HHD	4.8550e-003	0.64			
tblFleetMix	LDA	0.54	0.58			
tblFleetMix	LDA	0.54	0.00			
tblFleetMix	LDT1	0.06	0.06			
tblFleetMix	LDT1	0.06	0.00			
tblFleetMix	LDT2	0.19	0.20			
tblFleetMix	LDT2	0.19	0.00			
tblFleetMix	LHD1	0.02	0.00			
tblFleetMix	LHD1	0.02	0.14			
tblFleetMix	LHD2	6.5220e-003	0.00			
tblFleetMix	LHD2	6.5220e-003	0.04			
tblFleetMix	MCY	0.02	0.03			
tblFleetMix	MCY	0.02	0.00			
tblFleetMix	MDV	0.13	0.14			
tblFleetMix	MDV	0.13	0.00			
tblFleetMix	MH	3.9420e-003	0.00			
tblFleetMix	MH	3.9420e-003	0.00			
tblFleetMix	MHD	0.01	0.00			
tblFleetMix	MHD	0.01	0.18			
tblFleetMix	OBUS	6.5600e-004	0.00			
tblFleetMix	OBUS	6.5600e-004	0.00			
tblFleetMix	SBUS	7.2300e-004	0.00			
tblFleetMix	SBUS	7.2300e-004	0.00			
tblFleetMix	UBUS	3.8500e-004	0.00			
tblFleetMix	UBUS	3.8500e-004	0.00			

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblLandUse	LandUseSquareFeet	119,600.00	45,706.00			
tblLandUse	LandUseSquareFeet	64,338.12	64,324.00			
tblLandUse	LotAcreage	2.69	1.05			
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00			
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00			
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00			
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00			
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG			
tblOperationalOffRoadEquipment	OperHorsePower	97.00	200.00			
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	4.00			
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	1.00			
tblVehicleTrips	CC_TTP	48.00	0.00			
tblVehicleTrips	CNW_TTP	19.00	0.00			
tblVehicleTrips	CW_TL	16.60	40.00			
tblVehicleTrips	CW_TTP	33.00	0.00			
tblVehicleTrips	CW_TTP	0.00	100.00			
tblVehicleTrips	DV_TP	28.00	0.00			
tblVehicleTrips	PB_TP	6.00	0.00			
tblVehicleTrips	PR_TP	66.00	0.00			
tblVehicleTrips	PR_TP	0.00	100.00			
tblVehicleTrips	ST_TR	1.96	0.00			
tblVehicleTrips	ST_TR	6.42	1.82			
tblVehicleTrips	ST_TR	0.00	0.17			
tblVehicleTrips	SU_TR	2.19	0.00			
tblVehicleTrips	SU_TR	5.09	4.57			
tblVehicleTrips	SU_TR	0.00	0.43			
tblVehicleTrips	WD_TR	0.78	0.00			
tblVehicleTrips	WD_TR	3.93	4.57			
tblVehicleTrips	WD_TR	0.00	0.43			

CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/c	lay		
Area	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Energy	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Mobile	0.8464	4.3489	9.6766	0.0389	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,168.069 0	4,168.069 0	0.2851	0.3925	4,292.152 6
Offroad	0.1103	1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237
Total	2.2338	5.6732	10.7240	0.0438	2.9574	0.0965	3.0538	0.7953	0.0915	0.8868	0.0000	4,819.997 0	4,819.997 0	0.3911	0.3988	4,948.618 9

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category					lb/d	day					lb/day								
Area	1.2455	5.1000e- 004	0.0565	0.0000	 	2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291			
Energy	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134			
Mobile	0.8464	4.3489	9.6766	0.0389	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,168.069 0	4,168.069 0	0.2851	0.3925	4,292.152 6			
Offroad	0.1103	1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237			
Total	2.2338	5.6732	10.7240	0.0438	2.9574	0.0965	3.0538	0.7953	0.0915	0.8868	0.0000	4,819.997 0	4,819.997 0	0.3911	0.3988	4,948.618 9			

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Paving: 4.5

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 **Demolition - 2022**

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022 <u>Unmitigated Construction Off-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.8464	4.3489	9.6766	0.0389	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,168.069 0	4,168.069 0	0.2851	0.3925	4,292.152 6
Unmitigated	0.8464	4.3489	9.6766	0.0389	2.9574	0.0368	2.9942	0.7953	0.0348	0.8301		4,168.069 0	4,168.069 0	0.2851	0.3925	4,292.152 6

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
General Heavy Industry	236.00	93.92	235.99	955,184	955,184
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
User Defined Industrial	22.00	8.76	22.00	292,790	292,790
Total	258.00	102.68	257.99	1,247,974	1,247,974

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
General Heavy Industry	16.60	8.40	6.90	59.00	28.00	13.00	92	5	3
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
General Heavy Industry	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000
Other Asphalt Surfaces	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
Parking Lot	0.544795	0.058861	0.186903	0.129401	0.024381	0.006522	0.014242	0.004855	0.000656	0.000385	0.024332	0.000723	0.003942
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.143400	0.038400	0.181800	0.636400	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
NaturalGas Unmitigated	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	2934.72	0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219	 	0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
General Heavy Industry	2.93472	0.0317	0.2877	0.2417	1.7300e- 003	 	0.0219	0.0219	 	0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0317	0.2877	0.2417	1.7300e- 003		0.0219	0.0219		0.0219	0.0219		345.2617	345.2617	6.6200e- 003	6.3300e- 003	347.3134

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Unmitigated	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.1460					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Products	1.0943					0.0000	0.0000	 	0.0000	0.0000			0.0000			0.0000
,	5.2400e- 003	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004	 	2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Total	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Coating	0.1460					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Products	1.0943					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
' " '	5.2400e- 003	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291
Total	1.2455	5.1000e- 004	0.0565	0.0000		2.0000e- 004	2.0000e- 004		2.0000e- 004	2.0000e- 004		0.1212	0.1212	3.2000e- 004		0.1291

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Tractors/Loaders/Backhoes	1	4.00	365	200	0.37	CNG

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 16 Date: 11/17/2021 1:01 PM

759 Eckhoff Street (General Light Industrial Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/d	day							lb/c	day		
Tractors/Loaders/ Backhoes		1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237
Total	0.1103	1.0361	0.7492	3.1700e- 003		0.0376	0.0376		0.0346	0.0346	0.0000	306.5451	306.5451	0.0991		309.0237

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type N	lumber
------------------	--------

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Warehouse Operations)

Orange County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	241.16	1000sqft	5.54	241,164.00	0
User Defined Industrial	241.16	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)30Climate Zone8Operational Year2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information with the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Table Name	Column Name	Default Value	New Value		
tblConstructionPhase	NumDays	20.00	0.00		
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022		
tblFleetMix	HHD	4.8550e-003	0.00		

Page 2 of 19

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

Date: 11/17/2021 1:21 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	4.8550e-003	0.62		
tblFleetMix	LDA	0.54	0.58		
tblFleetMix	LDA	0.54	0.00		
tblFleetMix	LDT1	0.06	0.06		
tblFleetMix	LDT1	0.06	0.00		
tblFleetMix	LDT2	0.19	0.20		
tblFleetMix	LDT2	0.19	0.00		
tblFleetMix	LHD1	0.02	0.00		
tblFleetMix	LHD1	0.02	0.14		
tblFleetMix	LHD2	6.5220e-003	0.00		
tblFleetMix	LHD2	6.5220e-003	0.04		
tblFleetMix	MCY	0.02	0.03		
tblFleetMix	MCY	0.02	0.00		
tblFleetMix	MDV	0.13	0.14		
tblFleetMix	MDV	0.13	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MHD	0.01	0.00		
tblFleetMix	MHD	0.01	0.21		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00		
tblVehicleTrips	CW_TL	16.60	40.00		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	0.11
tblVehicleTrips	ST_TR	0.00	0.04
tblVehicleTrips	SU_TR	1.74	0.04
tblVehicleTrips	SU_TR	0.00	0.02
tblVehicleTrips	WD_TR	1.74	1.28
tblVehicleTrips	WD_TR	0.00	0.48

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2022	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

ſ		Highest	
- 1		J	

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Area	0.9838	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128
Energy	5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003		3.4900e- 003	3.4900e- 003	0.0000	225.4165	225.4165	0.0158	2.7100e- 003	226.6186
Mobile	0.1761	2.7602	2.2722	0.0177	0.9007	0.0197	0.9204	0.2477	0.0188	0.2665	0.0000	1,764.875 7	1,764.875 7	0.1282	0.2220	1,834.242 8
Waste	 					0.0000	0.0000		0.0000	0.0000	46.0160	0.0000	46.0160	2.7195	0.0000	114.0028
Water	r,					0.0000	0.0000		0.0000	0.0000	17.6927	128.7810	146.4737	1.8281	0.0442	205.3549
Total	1.1650	2.8063	2.3170	0.0180	0.9007	0.0232	0.9239	0.2477	0.0223	0.2701	63.7087	2,119.085 0	2,182.793 8	4.6916	0.2690	2,380.231 8

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	⁻ /yr		
Area	0.9838	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128
Energy	5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003		3.4900e- 003	3.4900e- 003	0.0000	225.4165	225.4165	0.0158	2.7100e- 003	226.6186
Mobile	0.1761	2.7602	2.2722	0.0177	0.9007	0.0197	0.9204	0.2477	0.0188	0.2665	0.0000	1,764.875 7	1,764.875 7	0.1282	0.2220	1,834.242 8
Waste			 			0.0000	0.0000		0.0000	0.0000	46.0160	0.0000	46.0160	2.7195	0.0000	114.0028
Water	n					0.0000	0.0000		0.0000	0.0000	17.6927	128.7810	146.4737	1.8281	0.0442	205.3549
Total	1.1650	2.8063	2.3170	0.0180	0.9007	0.0232	0.9239	0.2477	0.0223	0.2701	63.7087	2,119.085 0	2,182.793 8	4.6916	0.2690	2,380.231 8

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Numbe		Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.1761	2.7602	2.2722	0.0177	0.9007	0.0197	0.9204	0.2477	0.0188	0.2665	0.0000	1,764.875 7	1,764.875 7	0.1282	0.2220	1,834.242 8
Unmitigated	0.1761	2.7602	2.2722	0.0177	0.9007	0.0197	0.9204	0.2477	0.0188	0.2665	0.0000	1,764.875 7	1,764.875 7	0.1282	0.2220	1,834.242 8

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	307.99	26.29	10.51	965,360	965,360
User Defined Industrial	116.00	9.89	3.96	1,235,192	1,235,192
Total	423.99	36.17	14.47	2,200,552	2,200,552

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000

Page 11 of 19

Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	175.3544	175.3544	0.0148	1.7900e- 003	176.2590
Electricity Unmitigated	6:					0.0000	0.0000		0.0000	0.0000	0.0000	175.3544	175.3544	0.0148	1.7900e- 003	176.2590
Mitigated	5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003	, 	3.4900e- 003	3.4900e- 003	0.0000	50.0621	50.0621	9.6000e- 004	9.2000e- 004	50.3596
Unmitianted	5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003	,	3.4900e- 003	3.4900e- 003	0.0000	50.0621	50.0621	9.6000e- 004	9.2000e- 004	50.3596

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		tons/yr											MT	/yr		
Unrefrigerated Warehouse-No Rail	938128	5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003		3.4900e- 003	3.4900e- 003	0.0000	50.0621	50.0621	9.6000e- 004	9.2000e- 004	50.3596
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003		3.4900e- 003	3.4900e- 003	0.0000	50.0621	50.0621	9.6000e- 004	9.2000e- 004	50.3596

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use														MT	/yr		
Unrefrigerated Warehouse-No Rail	938128	5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003		3.4900e- 003	3.4900e- 003	0.0000	50.0621	50.0621	9.6000e- 004	9.2000e- 004	50.3596
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		5.0600e- 003	0.0460	0.0386	2.8000e- 004		3.4900e- 003	3.4900e- 003		3.4900e- 003	3.4900e- 003	0.0000	50.0621	50.0621	9.6000e- 004	9.2000e- 004	50.3596

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
Unrefrigerated Warehouse-No Rail	988772	175.3544	0.0148	1.7900e- 003	176.2590
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total	·	175.3544	0.0148	1.7900e- 003	176.2590

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	√yr	
Unrefrigerated Warehouse-No Rail	988772	175.3544	0.0148	1.7900e- 003	176.2590
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		175.3544	0.0148	1.7900e- 003	176.2590

6.0 Area Detail

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton			MT	/yr							
Mitigated	0.9838	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128
Unmitigated	0.9838	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.1118					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.8715		 			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	5.7000e- 004	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128
Total	0.9838	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Coating	0.1118					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.8715					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
'	5.7000e- 004	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128
Total	0.9838	6.0000e- 005	6.1500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0120	0.0120	3.0000e- 005	0.0000	0.0128

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	Total CO2	CH4	N2O	CO2e	
Category	MT/yr				
J	146.4737	1.8281	0.0442	205.3549	
Unmitigated	146.4737	1.8281	0.0442	205.3549	

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e	
Land Use	Mgal	MT/yr				
Unrefrigerated Warehouse-No Rail	55.7683 / 0	146.4737	1.8281	0.0442	205.3549	
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000	
Total		146.4737	1.8281	0.0442	205.3549	

Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
Unrefrigerated Warehouse-No Rail	55.7683 / 0	146.4737	1.8281	0.0442	205.3549
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000
Total		146.4737	1.8281	0.0442	205.3549

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e		
	MT/yr					
Miligatod		2.7195	0.0000	114.0028		
Unmitigated		2.7195	0.0000	114.0028		

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
Unrefrigerated Warehouse-No Rail	226.69	' '0.0100	2.7195	0.0000	114.0028
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		46.0160	2.7195	0.0000	114.0028

<u>Mitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
Unrefrigerated Warehouse-No Rail	226.69	46.0160	2.7195	0.0000	114.0028
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		46.0160	2.7195	0.0000	114.0028

9.0 Operational Offroad

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 19 Date: 11/17/2021 1:21 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
`						
10.0 Stationary Equipment						

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Warehouse Operations)

Orange County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	241.16	1000sqft	5.54	241,164.00	0
User Defined Industrial	241.16	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	30
Climate Zone	8			Operational Year	2023
Utility Company	Southern California Edisc	on			

CO2 Intensity 390.98 **CH4 Intensity** 0.033 **N2O Intensity** 0.004 (lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information with the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022
tblFleetMix	HHD	4.8550e-003	0.00

Date: 11/17/2021 1:20 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	4.8550e-003	0.62		
tblFleetMix	LDA	0.54	0.58		
tblFleetMix	LDA	0.54	0.00		
tblFleetMix	LDT1	0.06	0.06		
tblFleetMix	LDT1	0.06	0.00		
tblFleetMix	LDT2	0.19	0.20		
tblFleetMix	LDT2	0.19	0.00		
tblFleetMix	LHD1	0.02	0.00		
tblFleetMix	LHD1	0.02	0.14		
tblFleetMix	LHD2	6.5220e-003	0.00		
tblFleetMix	LHD2	6.5220e-003	0.04		
tblFleetMix	MCY	0.02	0.03		
tblFleetMix	MCY	0.02	0.00		
tblFleetMix	MDV	0.13	0.14		
tblFleetMix	MDV	0.13	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MHD	0.01	0.00		
tblFleetMix	MHD	0.01	0.21		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblFleetMix	tblFleetMix UBUS		0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00		
tblVehicleTrips	CW_TL	16.60	40.00		
	•	l			

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	0.11
tblVehicleTrips	ST_TR	0.00	0.04
tblVehicleTrips	SU_TR	1.74	0.04
tblVehicleTrips	SU_TR	0.00	0.02
tblVehicleTrips	WD_TR	1.74	1.28
tblVehicleTrips	WD_TR	0.00	0.48

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/d	lay		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	lay		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2020.4.0 Page 5 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Energy	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
Mobile	1.3494	19.6475	17.2116	0.1342	6.8790	0.1483	7.0273	1.8888	0.1413	2.0302		14,711.85 24	14,711.85 24	1.0600	1.8342	15,284.92 83
Total	6.7692	19.8999	17.4725	0.1358	6.8790	0.1676	7.0466	1.8888	0.1606	2.0495		15,014.33 61	15,014.33 61	1.0661	1.8397	15,589.21 57

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Area	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Energy	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
Mobile	1.3494	19.6475	17.2116	0.1342	6.8790	0.1483	7.0273	1.8888	0.1413	2.0302		14,711.85 24	14,711.85 24	1.0600	1.8342	15,284.92 83
Total	6.7692	19.8999	17.4725	0.1358	6.8790	0.1676	7.0466	1.8888	0.1606	2.0495		15,014.33 61	15,014.33 61	1.0661	1.8397	15,589.21 57

-

Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Numbe	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/day					
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	lb/day											lb/day						
Mitigated	1.3494	19.6475	17.2116	0.1342	6.8790	0.1483	7.0273	1.8888	0.1413	2.0302		14,711.85 24	14,711.85 24	1.0600	1.8342	15,284.92 83		
Unmitigated	1.3494	19.6475	17.2116	0.1342	6.8790	0.1483	7.0273	1.8888	0.1413	2.0302		14,711.85 24	14,711.85 24	1.0600	1.8342	15,284.92 83		

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	307.99	26.29	10.51	965,360	965,360
User Defined Industrial	116.00	9.89	3.96	1,235,192	1,235,192
Total	423.99	36.17	14.47	2,200,552	2,200,552

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3		
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0		

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

Date: 11/17/2021 1:20 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
NaturalGas Mitigated	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
NaturalGas Unmitigated	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Unrefrigerated Warehouse-No Rail	2570.21	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	day		
Unrefrigerated Warehouse-No Rail	2.57021	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750

6.0 Area Detail

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Mitigated	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Unmitigated	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.6125					0.0000	0.0000		0.0000	0.0000	1 1 1		0.0000			0.0000
	4.7751					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	4.5600e- 003	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Total	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Coating	0.6125					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Products	4.7751					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
'	4.5600e- 003	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Total	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 14 Date: 11/17/2021 1:20 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Summer

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

759 Eckhoff Street (Warehouse Operations)

Orange County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	241.16	1000sqft	5.54	241,164.00	0
User Defined Industrial	241.16	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)30Climate Zone8Operational Year2023

Utility Company Southern California Edison

 CO2 Intensity
 390.98
 CH4 Intensity
 0.033
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information with the Traffic analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	4/29/2022	4/3/2022
tblFleetMix	HHD	4.8550e-003	0.00

Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	4.8550e-003	0.62		
tblFleetMix	LDA	0.54	0.58		
tblFleetMix	LDA	0.54	0.00		
tblFleetMix	LDT1	0.06	0.06		
tblFleetMix	LDT1	0.06	0.00		
tblFleetMix	LDT2	0.19	0.20		
tblFleetMix	LDT2	0.19	0.00		
tblFleetMix	LHD1	0.02	0.00		
tblFleetMix	LHD1	0.02	0.14		
tblFleetMix	LHD2	6.5220e-003	0.00		
tblFleetMix	LHD2	6.5220e-003	0.04		
tblFleetMix	MCY	0.02	0.03		
tblFleetMix	MCY	0.02	0.00		
tblFleetMix	MDV	0.13	0.14		
tblFleetMix	MDV	0.13	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MH	3.9420e-003	0.00		
tblFleetMix	MHD	0.01	0.00		
tblFleetMix	MHD	0.01	0.21		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	OBUS	6.5600e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	SBUS	7.2300e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblFleetMix	UBUS	3.8500e-004	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00		
tblVehicleTrips	CW_TL	16.60	40.00		

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	0.11
tblVehicleTrips	ST_TR	0.00	0.04
tblVehicleTrips	SU_TR	1.74	0.04
tblVehicleTrips	SU_TR	0.00	0.02
tblVehicleTrips	WD_TR	1.74	1.28
tblVehicleTrips	WD_TR	0.00	0.48

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/d	day		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2020.4.0 Page 5 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Energy	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
Mobile	1.3379	20.4784	16.9996	0.1332	6.8790	0.1484	7.0274	1.8888	0.1415	2.0303		14,606.15 77	14,606.15 77	1.0634	1.8401	15,181.08 94
Total	6.7577	20.7308	17.2605	0.1347	6.8790	0.1678	7.0468	1.8888	0.1608	2.0496		14,908.64 13	14,908.64 13	1.0695	1.8456	15,485.37 69

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Area	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Energy	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
Mobile	1.3379	20.4784	16.9996	0.1332	6.8790	0.1484	7.0274	1.8888	0.1415	2.0303		14,606.15 77	14,606.15 77	1.0634	1.8401	15,181.08 94
Total	6.7577	20.7308	17.2605	0.1347	6.8790	0.1678	7.0468	1.8888	0.1608	2.0496		14,908.64 13	14,908.64 13	1.0695	1.8456	15,485.37 69

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

Date: 11/17/2021 1:19 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	4/4/2022	4/3/2022	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating - sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2022

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 **Demolition - 2022**

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day				lb/d	lay					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day				lb/c	lay					
Mitigated	1.3379	20.4784	16.9996	0.1332	6.8790	0.1484	7.0274	1.8888	0.1415	2.0303		14,606.15 77	14,606.15 77	1.0634	1.8401	15,181.08 94
Unmitigated	1.3379	20.4784	16.9996	0.1332	6.8790	0.1484	7.0274	1.8888	0.1415	2.0303		14,606.15 77	14,606.15 77	1.0634	1.8401	15,181.08 94

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	307.99	26.29	10.51	965,360	965,360
User Defined Industrial	116.00	9.89	3.96	1,235,192	1,235,192
Total	423.99	36.17	14.47	2,200,552	2,200,552

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.577000	0.062300	0.197900	0.137000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.025800	0.000000	0.000000

Page 10 of 14

Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
NaturalGas Mitigated	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
NaturalGas Unmitigated	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Unrefrigerated Warehouse-No Rail	2570.21	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	day		
Unrefrigerated Warehouse-No Rail	2.57021	0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0277	0.2520	0.2117	1.5100e- 003		0.0192	0.0192		0.0192	0.0192		302.3781	302.3781	5.8000e- 003	5.5400e- 003	304.1750

6.0 Area Detail

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day								lb/d	lay						
Mitigated	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Unmitigated	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day								lb/d	day						
	0.6125					0.0000	0.0000		0.0000	0.0000	1 1 1		0.0000			0.0000
	4.7751					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	4.5600e- 003	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Total	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day						lb/day									
Architectural Coating						0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.7751					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	4.5600e- 003	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125
Total	5.3921	4.5000e- 004	0.0492	0.0000		1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004		0.1056	0.1056	2.8000e- 004		0.1125

7.0 Water Detail

7.1 Mitigation Measures Water

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 14 Date: 11/17/2021 1:19 PM

759 Eckhoff Street (Warehouse Operations) - Orange County, Winter

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

This page intentionally left blank

APPENDIX 3.4:

SCAQMD Amicus Brief

IN THE SUPREME COURT OF C ALIFORNIA

SIERRA CLUB, REVIVE THE SAN JOAQUIN, and LEAGUE OF WOMEN VOTERS OF FRESNO,

Plaintiffs and Appellants,

v.

SUPREME COOK!

COUNTY OF FRESNO,

Defendant and Respondent,

and,

APR 1 3 2015

Frank A. McGure Clerk

Jeputy

FRIANT RANCH, L.P.,

Real Party in Interest and Respondent.

After a Published Decision by the Court of Appeal, filed May 27, 2014 Fifth Appellate District Case No. F066798

Appeal from the Superior Court of California, County of Fresno Case No. 11CECG00726 Honorable Rosendo A. Pena, Jr.

APPLICATION OF THE SOUTH COAST AIR QUALITY
MANAGEMENT DISTRICT FOR LEAVE TO FILE
BRIEF OF AMICUS CURIAE IN SUPPORT OF NEITHER PARTY
AND [PROPOSED] BRIEF OF AMICUS CURIAE

Kurt R. Wiese, General Counsel (SBN 127251)
*Barbara Baird, Chief Deputy Counsel (SBN 81507)
SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
21865 Copley Drive, Diamond Bar, CA 91765
Telephone: 909-396-2302; Facsimile: 909-396-2961
Email: bbaird@aqmd.gov

Counsel for [Proposed] Amicus Curiae,
SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

BECEIVED

APR = 0 2015

CLERK SUPREME COURT

TABLE OF CONTENTS

APPI	ICATI	ON FOR LEAVE TO FILE amicus curiae brief	. App-1
HOW	THIS	BRIEF WILL ASSIST THE COURT	. App-1
STAT	EMEN	TOF INTEREST OF AMICUS CURIAE	. App-3
CERT	ΓIFICA	TION REGARDING AUTHORSHIP & FUNDING	. App-4
BRIE	F OF A	MICUS CURIAE	1
SUM	MARY	OF ARGUMENT	1
ARG	UMEN'	Т	2
I.	RELE	EVANT FACTUAL AND LEGAL FRAMEWORK	2
	A.	Air Quality Regulatory Background	2
	B.	The SCAQMD's Role Under CEQA	6
II.	RULE MUS	COURT SHOULD NOT SET A HARD-AND-FAST E CONCERNING THE EXTENT TO WHICH AN EIR I CORRELATE A PROJECT'S EMISSION OF UTANTS WITH RESULTING HEALTH IMPACTS	8
III.	SUFF REQU AND	QUESTION OF WHETHER AN EIR CONTAINS ICIENT ANALYSIS TO MEET CEQA'S JIREMENTS IS A MIXED QUESTION OF FACT LAW GOVERNED BY TWO DIFFERENT JDARDS OF REVIEW	16
	A.	Standard of Review for Feasibility Determination and	
	B.	Sufficiency as an Informative Document Friant Ranch's Rationale for Rejecting the Independent Judgment Standard of Review is Unsupported by Case Law	
IV.	REQU WITH	RTS MUST SCRUPULOUSLY ENFORCE THE JIREMENTS THAT LEAD AGENCIES CONSULT I AND OBTAIN COMMENTS FROM AIR	
go:		RICTS	
CONC	CLUSIO	IN	20

TABLE OF AUTHORITIES

State Cases Association of Irritated Residents v. County of Madera (2003) Bakersfield Citizens for Local Control v. City of Bakersfield (2004) Berkeley Keep Jets Over the Bay v. Board of Port Commissioners (2007) 91 Cal.App.4th 1344......21, 28 Center for Biological Diversity v. County of San Bernardino (2010) Citizens of Goleta Valley v. Bd. of Supervisors (1990) County of Amador v. El Dorado County Water Agency (1999) 76 Cal.App.4th 93123 Crocker National Bank v. City and County of San Francisco (1989) Ebbetts Pass Forest Watch v. California Dept. of Forestry & Fire Protection (2008) 43 Cal.4th 936......21 Fall River Wild Trout Foundation v. County of Shasta, (1999) Gray v. County of Madera (2008) 167 Cal.App.4th 109925 Laurel Heights Improvement Assn. v. Regents of the Univ of Cal. ("Laurel Heights I") Natural Res. Def. Council v SCAOMD, Neighbors for Smart Rail v. Exposition Metro Line (2013)

State Cases (cont'd)

Orange County Air Pollution Control District v. Public Util. Com. (1971) 4 Cal.3d 9452'	7
Save Our Peninsula Comm. v. Monterey County Bd. of Supervisors (2001) 87 Cal.App.4th 9919	9
Schenck v. County of Sonoma (2011) 198 Cal.App.4th 949	7
Sierra Club v. County of Fresno (2014) 226 Cal.App.4th 704 (superseded by grant of review) 172 Cal.Rptr.3d 271	3
Sierra Club v. State Bd. Of Forestry (1994) 7 Cal.4th 121528	8
Uphold Our Heritage v. Town of Woodside (2007) 147 Cal.App.4th 58720	0
Vineyard Area Citizens for Responsible Growth, Inc. v. City of Rancho Cordova (2007) 40 Cal.4th 4121, 17, 19, 24, 25, 26	6
Western Oil & Gas Assn. v. Monterey Bay Unified APCD (1989) 49 Cal.3d 4085	
California Statutes	
Health & Saf. Code § 39666 5 Health & Saf. Code § 40000 3 Health & Saf. Code § 40001 3 Health & Saf. Code § 40410 3 Health & Saf. Code § 40460, et seq 4	
Health & Saf. Code § 41508 5 Health & Saf. Code § 42300, et seq 5 Health & Saf. Code § 44320 5 Health & Saf. Code § 44322 5 Health & Saf. Code § 44360 5	
Pub. Resources Code § 20180.3 27 Pub. Resources Code § 21061 19 Pub. Resources Code § 21061.1 16	

California Statutes (cont'd) California Regulations Cal. Code Regs., tit. 14, §§ 15000, et seq. ("CEQA Guidelines") CEQA Guidelines § 15050......6 CEQA Guidelines § 15381......6 **Federal Statutes**

Rules Other Association of Environmental Professionals, 2015 CEQA Statute and Guidelines (2015) (Appendix G, "Environmental Checklist CARB, Health Impacts Analysis: PM Premature Death Relationship......14 CARB, Health Impacts Analysis: CARB, Resolution 98-35, Aug. 27, 19988 SCAQMD, Final Subsequent Mitigated Negative Declaration for: Warren E&P, Inc. WTU Central Facility, New Equipment Project (certified July 19, 2011) 14-15 SCAQMD Governing Board Agenda, February 4, 2011, Agenda Item 26, Assessment for: Re-adoption of Proposed Rule 1315 – Federal New Source Review Tracking System, 12 SCAQMD Governing Board Agenda, April 3, 2015, SCAQMD, Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and U.S. EPA, Guideline on Ozone Monitoring Site Selection (Aug. 1998) EPA-454/R-98-002 § 5.1.211 U.S. EPA, Health Effects of Ozone in the General Population, Figure 9,11

U.S. EPA, National Ambient Air Quality Standards (NAAQS).......4

U.S. EPA, Particulate Matter (PM)......4

TO THE HONORABLE CHIEF JUSTICE AND JUSTICES OF THE SUPREME COURT:

APPLICATION FOR LEAVE TO FILE AMICUS CURIAE BRIEF

Pursuant to Rule 8.520(f) of the California Rules of Court, the South Coast Air Quality Management District (SCAQMD) respectfully requests leave to file the attached *amicus curiae* brief. Because SCAQMD's position differs from that of either party, we request leave to submit this amicus brief in support of neither party.

HOW THIS BRIEF WILL ASSIST THE COURT

SCAQMD's proposed amicus brief takes a position on two of the issues in this case. In both instances, its position differs from that of either party. The issues are:

- 1) Does the California Environmental Quality Act (CEQA) require an environmental impact report (EIR) to correlate a project's air pollution emissions with specific levels of health impacts?
- 2) What is the proper standard of review for determining whether an EIR provides sufficient information on the health impacts caused by a project's emission of air pollutants?

This brief will assist the Court by discussing the practical realities of correlating identified air quality impacts with specific health outcomes. In short, CEQA requires agencies to provide detailed information about a project's air quality impacts that is sufficient for the public and decisionmakers to adequately evaluate the project and meaningfully understand its impacts. However, the level of analysis is governed by a rule of reason; CEQA only requires agencies to conduct analysis if it is reasonably feasible to do so.

With regard to health-related air quality impacts, an analysis that correlates a project's air pollution emissions with specific levels of health impacts will be feasible in some cases but not others. Whether it is feasible depends on a variety of factors, including the nature of the project and the nature of the analysis under consideration. The feasibility of analysis may also change over time as air districts and others develop new tools for measuring projects' air quality related health impacts. Because SCAQMD has among the most sophisticated air quality modeling and health impact evaluation capability of any of the air districts in the State, it is uniquely situated to express an opinion on the extent to which the Court should hold that CEQA requires lead agencies to correlate air quality impacts with specific health outcomes.

SCAQMD can also offer a unique perspective on the question of the appropriate standard of review. SCAQMD submits that the proper standard of review for determining whether an EIR is sufficient as an informational document is more nuanced than argued by either party. In our view, this is a mixed question of fact and law. It includes determining whether additional analysis is feasible, which is primarily a factual question that should be reviewed under the substantial evidence standard. However, it also involves determining whether the omission of a particular analysis renders an EIR insufficient to serve CEQA's purpose as a meaningful, informational document. If a lead agency has not determined that a requested analysis is infeasible, it is the court's role to determine whether the EIR nevertheless meets CEQA's purposes, and courts should not defer to the lead agency's conclusions regarding the legal sufficiency of an EIR's analysis. The ultimate question of whether an EIR's analysis is "sufficient" to serve CEQA's informational purposes is predominately a question of law that courts should review de novo.

This brief will explain the rationale for these arguments and may assist the Court in reaching a conclusion that accords proper respect to a lead agency's factual conclusions while maintaining judicial authority over the ultimate question of what level of analysis CEQA requires.

STATEMENT OF INTEREST OF AMICUS CURIAE

The SCAQMD is the regional agency primarily responsible for air pollution control in the South Coast Air Basin, which consists of all of Orange County and the non-desert portions of the Los Angeles, Riverside, and San Bernardino Counties. (Health & Saf. Code § 40410; Cal. Code Regs., tit. 17, § 60104.) The SCAQMD participates in the CEQA process in several ways. Sometimes it acts as a lead agency that prepares CEQA documents for projects. Other times it acts as a responsible agency when it has permit authority over some part of a project that is undergoing CEQA review by a different lead agency. Finally, SCAQMD also acts as a commenting agency for CEQA documents that it receives because it is a public agency with jurisdiction by law over natural resources affected by the project.

In all of these capacities, SCAQMD will be affected by the decision in this case. SCAQMD sometimes submits comments requesting that a lead agency perform an additional type of air quality or health impacts analysis. On the other hand, SCAQMD sometimes determines that a particular type of health impact analysis is not feasible or would not produce reliable and informative results. Thus, SCAQMD will be affected by the Court's resolution of the extent to which CEQA requires EIRs to correlate emissions and health impacts, and its resolution of the proper standard of review.

CERTIFICATION REGARDING AUTHORSHIP AND FUNDING

No party or counsel in the pending case authored the proposed amicus curiae brief in whole or in part, or made any monetary contribution intended to fund the preparation or submission of the brief. No person or entity other than the proposed *Amicus Curiae* made any monetary contribution intended to fund the preparation or submission of the brief.

Respectfully submitted,

DATED: April 3, 2015

SOUTH COAST AIR QUALITY
MANAGEMENT DISTRICT
KURT R. WIESE, GENERAL COUNSEL
BARBARA BAIRD, CHIEF DEPUTY COUNSEL

Barbara Baird

Attorneys for [proposed] Amicus Curiae SOUTH COAST AIR QUALITY MANAGEMENT DISTICT

BRIEF OF AMICUS CURIAE

SUMMARY OF ARGUMENT

The South Coast Air Quality Management District (SCAOMD) submits that this Court should not try to establish a hard-and-fast rule concerning whether lead agencies are required to correlate emissions of air pollutants with specific health consequences in their environmental impact reports (EIR). The level of detail required in EIRs is governed by a few. core CEQA (California Environmental Quality Act) principles. As this Court has stated, "[a]n EIR must include detail sufficient to enable those who did not participate in its preparation to understand and to consider meaningfully the issues raised by the proposed project." (Laurel Heights Improvement Assn. v. Regents of the Univ of Cal. (1988) 47 Cal.3d 376, 405 ["Laurel Heights 1"]) Accordingly, "an agency must use its best efforts to find out and disclose all that it reasonably can." (Vineyard Area Citizens for Responsible Growth, Inc. v. City of Rancho Cordova (2007) 40 Cal.4th 412, 428 (quoting CEOA Guidelines § 15144)¹.). However, "[a]nalysis of environmental effects need not be exhaustive, but will be judged in light of what is reasonably feasible." (Association of Irritated Residents v. County of Madera (2003) 107 Cal. App. 4th 1383, 1390; CEQA Guidelines §§ 15151, 15204(a).)

With regard to analysis of air quality related health impacts, EIRs must generally quantify a project's pollutant emissions, but in some cases it is not feasible to correlate these emissions to specific, quantifiable health impacts (e.g., premature mortality; hospital admissions). In such cases, a general description of the adverse health impacts resulting from the pollutants at issue may be sufficient. In other cases, due to the magnitude

¹ The CEQA Guidelines are found at Cal. Code Regs., tit. 14 §§ 15000, et seq.

or nature of the pollution emissions, as well as the specificity of the project involved, it may be feasible to quantify health impacts. Or there may be a less exacting, but still meaningful analysis of health impacts that can feasibly be performed. In these instances, agencies should disclose those impacts.

SCAQMD also submits that whether or not an EIR complies with CEQA's informational mandates by providing sufficient, feasible analysis is a mixed question of fact and law. Pertinent here, the question of whether an EIR's discussion of health impacts from air pollution is sufficient to allow the public to understand and consider meaningfully the issues involves two inquiries: (1) Is it feasible to provide the information or analysis that a commenter is requesting or a petitioner is arguing should be required?; and (2) Even if it is feasible, is the agency relying on other policy or legal considerations to justify not preparing the requested analysis? The first question of whether an analysis is feasible is primarily a question of fact that should be judged by the substantial evidence standard. The second inquiry involves evaluating CEQA's information disclosure purposes against the asserted reasons to not perform the requested analysis. For example, an agency might believe that its EIR meets CEQA's informational disclosure standards even without a particular analysis, and therefore choose not to conduct that analysis. SCAQMD submits that this is more of a legal question, which should be reviewed de novo as a question of law.

ARGUMENT

I. RELEVANT FACTUAL AND LEGAL FRAMEWORK.

A. Air Quality Regulatory Background

The South Coast Air Quality Management District (SCAQMD) is one of the local and regional air pollution control districts and air quality management districts in California. The SCAQMD is the regional air pollution agency for the South Coast Air Basin, which consists of all of Orange County and the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. (Health & Saf. Code § 40410, 17 Cal. Code Reg. § 60104.) The SCAQMD also includes the Coachella Valley in Riverside County (Palm Springs area to the Salton Sea). (SCAQMD, *Final 2012 AQMP (Feb. 2013)*, http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan/final-2012-air-quality-management-plan; then follow "chapter 7" hyperlink; pp 7-1, 7-3 (last visited Apr. 1, 2015).) The SCAQMD's jurisdiction includes over 16 million residents and has the worst or nearly the worst air pollution levels in the country for ozone and fine particulate matter. (SCAQMD, *Final 2012 AQMP (Feb. 2013)*, http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan/final-2012-air-quality-management-plan; then follow "Executive Summary" hyperlink p. ES-1 (last visited Apr. 1, 2015).)

Under California law, the local and regional districts are primarily responsible for controlling air pollution from all sources except motor vehicles. (Health & Saf. Code § 40000.) The California Air Resources Board (CARB), part of the California Environmental Protection Agency, is primarily responsible for controlling pollution from motor vehicles. (*Id.*) The air districts must adopt rules to achieve and maintain the state and federal ambient air quality standards within their jurisdictions. (Health & Saf. Code § 40001.)

The federal Clean Air Act (CAA) requires the United States Environmental Protection Agency (EPA) to identify pollutants that are widely distributed and pose a threat to human health, developing a so-called "criteria" document. (42 U.S.C. § 7408; CAA § 108.) These pollutants are frequently called "criteria pollutants." EPA must then establish "national ambient air quality standards" at levels "requisite to protect public health",

allowing "an adequate margin of safety." (42 U.S.C. § 7409; CAA § 109.) EPA has set standards for six identified pollutants: ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, particulate matter (PM), and lead. (U.S. EPA, National Ambient Air Quality Standards (NAAQS), http://www.epa.gov/air/criteria.html (last updated Oct. 21, 2014).)²

Under the Clean Air Act, EPA sets emission standards for motor vehicles and "nonroad engines" (mobile farm and construction equipment, marine vessels, locomotives, aircraft, etc.). (42 U.S.C. §§ 7521, 7547; CAA §§ 202, 213.) California is the only state allowed to establish emission standards for motor vehicles and most nonroad sources; however, it may only do so with EPA's approval. (42 U.S.C. §§ 7543(b), 7543(e); CAA §§ 209(b), 209(c).) Sources such as manufacturing facilities, power plants and refineries that are not mobile are often referred to as "stationary sources." The Clean Air Act charges state and local agencies with the primary responsibility to attain the national ambient air quality standards. (42 U.S.C. § 7401(a)(3); CAA § 101(a)(3).) Each state must adopt and implement a plan including enforceable measures to achieve and maintain the national ambient air quality standards. (42 U.S.C. § 7410; CAA § 110.) The SCAQMD and CARB jointly prepare portion of the plan for the South Coast Air Basin and submit it for approval by EPA. (Health & Saf. Code §§ 40460, et seq.)

The Clean Air Act also requires state and local agencies to adopt a permit program requiring, among other things, that new or modified "major" stationary sources use technology to achieve the "lowest achievable emission rate," and to control minor stationary sources as

² Particulate matter (PM) is further divided into two categories: fine particulate or PM_{2.5} (particles with a diameter of less than or equal to 2.5 microns) and coarse particulate (PM₁₀) (particles with a diameter of 10 microns or less). (U.S. EPA, Particulate Matter (PM), http://www.epa.gov/airquality/particlepollution/ (last visited Apr. 1, 2015).)

needed to help attain the standards. (42 U.S.C. §§ 7502(c)(5), 7503(a)(2), 7410(a)(2)(C); CAA §§ 172(c)(5), 173(a)(2), 110(a)(2)(C).) The air districts implement these permit programs in California. (Health & Saf. Code §§ 42300, et seq.)

The Clean Air Act also sets out a regulatory structure for over 100 so-called "hazardous air pollutants" calling for EPA to establish "maximum achievable control technology" (MACT) for sources of these pollutants. (42 U.S.C. § 7412(d)(2); CAA § 112(d)(2).) California refers to these pollutants as "toxic air contaminants" (TACs) which are subject to two state-required programs. The first program requires "air toxics control measures" for specific categories of sources. (Health & Saf. Code § 39666.) The other program requires larger stationary sources and sources identified by air districts to prepare "health risk assessments" for impacts of toxic air contaminants. (Health & Saf. Code §§ 44320(b), 44322, 44360.) If the health risk exceeds levels identified by the district as "significant," the facility must implement a "risk reduction plan" to bring its risk levels below "significant" levels. Air districts may adopt additional more stringent requirements than those required by state law, including requirements for toxic air contaminants. (Health & Saf. Code § 41508; Western Oil & Gas Assn. v. Monterey Bay Unified APCD (1989) 49 Cal.3d 408, 414.) For example, SCAQMD has adopted a rule requiring new or modified sources to keep their risks below specified levels and use best available control technology (BACT) for toxics. (SCAQMD, Rule 1401-New Source Review of Toxic Air Contaminants, http://www.aqmd.gov/home/regulations/rules/scaqmd-rule-book/regulation-

xiv; then follow "Rule 1401" hyperlink (last visited Apr. 1, 2015).)

B. The SCAQMD's Role Under CEQA

The California Environmental Quality Act (CEQA) requires public agencies to perform an environmental review and appropriate analysis for projects that they implement or approve. (Pub. Resources Code § 21080(a).) The agency with primary approval authority for a particular project is generally the "lead agency" that prepares the appropriate CEQA document. (CEQA Guidelines §§ 15050, 15051.) Other agencies having a subsequent approval authority over all or part of a project are called "responsible" agencies that must determine whether the CEQA document is adequate for their use. (CEQA Guidelines §§ 15096(c), 15381.) Lead agencies must also consult with and circulate their environmental impact reports to "trustee agencies" and agencies "with jurisdiction by law" including "authority over resources which may be affected by the project." (Pub. Resources Code §§ 21104(a), 21153; CEQA Guidelines §§ 15086(a)(3), 15073(c).) The SCAQMD has a role in all these aspects of CEQA.

Fulfilling its responsibilities to implement its air quality plan and adopt rules to attain the national ambient air quality standards, SCAQMD adopts a dozen or more rules each year to require pollution reductions from a wide variety of sources. The SCAQMD staff evaluates each rule for any adverse environmental impact and prepares the appropriate CEQA document. Although most rules reduce air emissions, they may have secondary environmental impacts such as use of water or energy or disposal of waste—e.g., spent catalyst from control equipment.³

³ The SCAQMD's CEQA program for its rules is a "Certified Regulatory Program" under which it prepares a "functionally equivalent" document in lieu of a negative declaration or EIR. (Pub. Resources Code § 21080.5, CEQA Guidelines § 15251(l).)

The SCAQMD also approves a large number of permits every year to construct new, modified, or replacement facilities that emit regulated air pollutants. The majority of these air pollutant sources have already been included in an earlier CEQA evaluation for a larger project, are currently being evaluated by a local government as lead agency, or qualify for an exemption. However, the SCAQMD sometimes acts as lead agency for major projects where the local government does not have a discretionary approval. In such cases, SCAQMD prepares and certifies a negative declaration or environmental impact report (EIR) as appropriate.⁴ SCAQMD evaluates perhaps a dozen such permit projects under CEQA each year. SCAQMD is often also a "responsible agency" for many projects since it must issue a permit for part of the projects (e.g., a boiler used to provide heat in a commercial building). For permit projects evaluated by another lead agency under CEQA, SCAQMD has the right to determine that the CEQA document is inadequate for its purposes as a responsible agency, but it may not do so because its permit program already requires all permitted sources to use the best available air pollution control technology. (SCAQMD, Rule 1303(a)(1) – Requirements, http://www.aqmd.gov/home/regulations/rules/scaqmd-rule-book/regulationxiii; then follow "Rule 1303" hyperlink (last visited Apr. 1, 2015).)

Finally, SCAQMD receives as many as 60 or more CEQA documents each month (around 500 per year) in its role as commenting agency or an agency with "jurisdiction by law" over air quality—a natural resource affected by the project. (Pub. Resources Code §§ 21104(a), 21153; CEQA Guidelines § 15366(a)(3).) The SCAQMD staff provides comments on as many as 25 or 30 such documents each month.

⁴ The SCAQMD's permit projects are not included in its Certified Regulatory Program, and are evaluated under the traditional local government CEQA analysis. (Pub. Resources Code §§ 21150-21154.)

(SCAQMD Governing Board Agenda, Apr. 3, 2015, Agenda Item 16, Attachment A, http://www.aqmd.gov/home/library/meeting-agendas-minutes/agenda?title=governing-board-meeting-agenda-april-3-2015; then follow "16. Lead Agency Projects and Environmental Documents Received by SCAQMD" hyperlink (last visited Apr. 1, 2015).) Of course, SCAQMD focuses its commenting efforts on the more significant projects.

Typically, SCAQMD comments on the adequacy of air quality analysis, appropriateness of assumptions and methodology, and completeness of the recommended air quality mitigation measures. Staff may comment on the need to prepare a health risk assessment detailing the projected cancer and noncancer risks from toxic air contaminants resulting from the project, particularly the impacts of diesel particulate matter, which CARB has identified as a toxic air contaminant based on its carcinogenic effects. (California Air Resources Board, Resolution 98-35, Aug. 27, 1998, http://www.arb.ca.gov/regact/diesltac/diesltac.htm; then follow Resolution 98-35 hyperlink (last visited Apr. 1, 2015).) Because SCAQMD already requires new or modified stationary sources of toxic air contaminants to use the best available control technology for toxics and to keep their risks below specified levels, (SCAQMD Rule 1401, supra, note 15), the greatest opportunity to further mitigate toxic impacts through the CEQA process is by reducing emissions—particularly diesel emissions—from vehicles.

II. THIS COURT SHOULD NOT SET A HARD-AND-FAST RULE CONCERNING THE EXTENT TO WHICH AN EIR MUST CORRELATE A PROJECT'S EMISSION OF POLLUTANTS WITH RESULTING HEALTH IMPACTS.

Numerous cases hold that courts do not review the correctness of an EIR's conclusions but rather its sufficiency as an informative document. (Laurel Heights 1, supra, 47 Cal.3d at p. 392; Citizens of Goleta Valley v.

Bd. of Supervisors (1990) 52 Cal.3d 553, 569; Bakersfield Citizens for Local Control v. City of Bakersfield (2004) 124 Cal.App.4th 1184, 1197.)

As stated by the Court of Appeal in this case, where an EIR has addressed a topic, but the petitioner claims that the information provided about that topic is insufficient, courts must "draw[] a line that divides *sufficient* discussions from those that are *insufficient*." (*Sierra Club v. County of Fresno* (2014) 226 Cal.App.4th 704 (superseded by grant of review) 172 Cal.Rptr.3d 271, 290.) The Court of Appeal readily admitted that "[t]he terms themselves – sufficient and insufficient – provide little, if any, guidance as to where the line should be drawn. They are simply labels applied once the court has completed its analysis." (*Id.*)

The CEQA Guidelines, however, provide guidance regarding what constitutes a sufficient discussion of impacts. Section 15151 states that "the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible." Case law reflects this: "Analysis of environmental effects need not be exhaustive, but will be judged in light of what was reasonably feasible." (Association of Irritated Residents v. County of Madera, supra, 107 Cal.App.4th at p. 1390; see also CEQA Guidelines § 15204(a).)

Applying this test, this Court cannot realistically establish a hardand-fast rule that an analysis correlating air pollution impacts of a project to quantified resulting health impacts is always required, or indeed that it is never required. Simply put, in some cases such an analysis will be "feasible"; in some cases it will not.

For example, air pollution control districts often require a proposed new source of toxic air contaminants to prepare a "health risk assessment" before issuing a permit to construct. District rules often limit the allowable cancer risk the new source may cause to the "maximally exposed individual" (worker and residence exposures). (See, e.g., SCAQMD Rule 1401(c)(8); 1401(d)(1), supra note 15.) In order to perform this analysis, it

is necessary to have data regarding the sources and types of air toxic contaminants, location of emission points, velocity of emissions, the meteorology and topography of the area, and the location of receptors (worker and residence). (SCAQMD, Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics "Hot Spots" Information and Assessment Act (AB2588), pp. 11-16; (last visited Apr. 1, 2015) http://www.aqmd.gov/home/library/documents-support-material; "Guidelines" hyperlink; AB2588; then follow AB2588 Risk Assessment Guidelines hyperlink.)

Thus, it is feasible to determine the health risk posed by a new gas station locating at an intersection in a mixed use area, where receptor locations are known. On the other hand, it may not be feasible to perform a health risk assessment for airborne toxics that will be emitted by a generic industrial building that was built on "speculation" (i.e., without knowing the future tenant(s)). Even where a health risk assessment can be prepared, however, the resulting maximum health risk value is only a calculation of risk—it does not necessarily mean anyone will contract cancer as a result of the project.

In order to find the "cancer burden" or expected additional cases of cancer resulting from the project, it is also necessary to know the numbers and location of individuals living within the "zone of impact" of the project: i.e., those living in areas where the projected cancer risk from the project exceeds one in a million. (SCAQMD, Health Risk Assessment Summary form, http://www.aqmd.gov/home/forms; filter by "AB2588" category; then "Health Risk Assessment" hyperlink (last visited Apr. 1, 2015).) The affected population is divided into bands of those exposed to at least 1 in a million risk, those exposed to at least 10 in a million risk, etc. up to those exposed at the highest levels. (*Id.*) This data allows agencies to calculate an approximate number of additional cancer cases expected from

the project. However, it is not possible to predict which particular individuals will be affected.

For the so-called criteria pollutants⁵, such as ozone, it may be more difficult to quantify health impacts. Ozone is formed in the atmosphere from the chemical reaction of the nitrogen oxides (NO_x) and volatile organic compounds (VOC) in the presence of sunlight. (U.S. EPA, Ground Level Ozone, http://www.epa.gov/airquality/ozonepollution/ (last updated Mar. 25, 2015).) It takes time and the influence of meteorological conditions for these reactions to occur, so ozone may be formed at a distance downwind from the sources. (U.S. EPA, *Guideline on Ozone Monitoring Site Selection* (Aug. 1998) EPA-454/R-98-002 § 5.1.2, http://www.epa.gov/ttnamti1/archive/cpreldoc.html (last visited Apr. 1, 2015).) NO_x and VOC are known as "precursors" of ozone.

Scientifically, health effects from ozone are correlated with increases in the ambient level of ozone in the air a person breathes. (U.S. EPA, Health Effects of Ozone in the General Population, Figure 9, http://www.epa.gov/apti/ozonehealth/population.html#levels (last visited Apr. 1, 2015).) However, it takes a large amount of additional precursor emissions to cause a modeled increase in ambient ozone levels over an entire region. For example, the SCAQMD's 2012 AQMP showed that reducing NO_x by 432 tons per day (157,680 tons/year) and reducing VOC by 187 tons per day (68,255 tons/year) would reduce ozone levels at the SCAQMD's monitor site with the highest levels by only 9 parts per billion. (South Coast Air Quality Management District, Final 2012 AQMP (February 2013), http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan/final-2012-air-quality-management-plan; then follow "Appendix V: Modeling & Attainment Demonstrations" hyperlink,

⁵ See discussion of types of pollutants, supra, Part I.A.

pp. v-4-2, v-7-4, v-7-24.) SCAQMD staff does not currently know of a way to accurately quantify ozone-related health impacts caused by NO_x or VOC emissions from relatively small projects.

On the other hand, this type of analysis may be feasible for projects on a regional scale with very high emissions of NO_x and VOCs, where impacts are regional. For example, in 2011 the SCAQMD performed a health impact analysis in its CEQA document for proposed Rule 1315, which authorized various newly-permitted sources to use offsets from the districts "internal bank" of emission reductions. This CEQA analysis accounted for essentially all the increases in emissions due to new or modified sources in the District between 2010 and 2030.6 The SCAQMD was able to correlate this very large emissions increase (e.g., 6,620 pounds per day NO_x (1,208 tons per year), 89,180 pounds per day VOC (16,275 tons per year)) to expected health outcomes from ozone and particulate matter (e.g., 20 premature deaths per year and 89,947 school absences in the year 2030 due to ozone). (SCAQMD Governing Board Agenda, February 4, 2011, Agenda Item 26, Assessment for: Re-adoption of Proposed Rule 1315 – Federal New Source Review Tracking System (see hyperlink in fn 6) at p. 4.1-35, Table 4.1-29.)

⁶ (SCAQMD Governing Board Agenda, February 4, 2011, Agenda Item 26, Attachment G, Assessment for: Re-adoption of Proposed Rule 1315 – Federal New Source Review Tracking System, Vol. 1, p.4.0-6, http://www.aqmd.gov/home/library/meeting-agenda-february-4-2011; the follow "26. Adopt Proposed Rule 1315 – Federal New Source Review Tracking System" (last visited April 1, 2015).)

⁷ The SCAQMD was able to establish the location of future NO_x and VOC emissions by assuming that new projects would be built in the same locations and proportions as existing stationary sources. This CEQA document was upheld by the Los Angeles County Superior Court in *Natural Res. Def. Council v SCAQMD*, Los Angeles Superior Court No. BS110792).

However, a project emitting only 10 tons per year of NO_x or VOC is small enough that its regional impact on ambient ozone levels may not be detected in the regional air quality models that are currently used to determine ozone levels. Thus, in this case it would not be feasible to directly correlate project emissions of VOC or NO_x with specific health impacts from ozone. This is in part because ozone formation is not linearly related to emissions. Ozone impacts vary depending on the location of the emissions, the location of other precursor emissions, meteorology and seasonal impacts, and because ozone is formed some time later and downwind from the actual emission. (EPA Guideline on Ozone Monitoring Site Selection (Aug. 1998) EPA-454/R-98-002, § 5.1.2; https://www.epa.gov/ttnamti1/archive/cpreldoc.html; then search "Guideline on Ozone Monitoring Site Selection" click on pdf) (last viewed Apr. 1, 2015).)

SCAQMD has set its CEQA "significance" threshold for NO_x and VOC at 10 tons per year (expressed as 55 lb/day). (SCAQMD, *Air Quality Analysis Handbook*, http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook; then follow "SCAQMD Air Quality Significance Thresholds" hyperlink (last visited Apr. 1, 2015).) This is because the federal Clean Air Act defines a "major" stationary source for "extreme" ozone nonattainment areas such as SCAQMD as one emitting 10 tons/year. (42 U.S.C. §§ 7511a(e), 7511a(f); CAA §§ 182(e), 182(f).) Under the Clean Air Act, such sources are subject to enhanced control requirements (42 U.S.C. §§ 7502(c)(5), 7503; CAA §§ 172(c)(5), 173), so SCAQMD decided this was an appropriate threshold for making a CEQA "significance" finding and requiring feasible mitigation. Essentially, SCAQMD takes the position that a source that emits 10 tons/year of NO_x or VOC would contribute cumulatively to ozone formation. Therefore, lead agencies that use SCAQMD's thresholds of significance may determine

that many projects have "significant" air quality impacts and must apply all feasible mitigation measures, yet will not be able to precisely correlate the project to quantifiable health impacts, unless the emissions are sufficiently high to use a regional modeling program.

In the case of particulate matter $(PM_{2.5})^8$, another "criteria" pollutant, SCAQMD staff is aware of two possible methods of analysis. SCAQMD used regional modeling to predict expected health impacts from its proposed Rule 1315, as mentioned above. Also, the California Air Resources Board (CARB) has developed a methodology that can predict expected mortality (premature deaths) from large amounts of PM_{2.5} (California Air Resources Board, Health Impacts Analysis: PM Premature Death Relationship, http://www.arb.ca.gov/research/health/pm-mort/pmmort arch.htm (last reviewed Jan. 19, 2012).) SCAQMD used the CARB methodology to predict impacts from three very large power plants (e.g., 731-1837 lbs/day). (Final Environmental Assessment for Rule 1315, supra, pp 4.0-12, 4.1-13, 4.1-37 (e.g., 125 premature deaths in the entire SCAQMD in 2030), 4.1-39 (0.05 to 1.77 annual premature deaths from power plants.) Again, this project involved large amounts of additional PM_{2.5} in the District, up to 2.82 tons/day (5,650 lbs/day of PM_{2.5}, or, or 1029 tons/year. (*Id.* at table 4.1-4, p. 4.1-10.)

However, the primary author of the CARB methodology has reported that this PM_{2.5} health impact methodology is not suited for small projects and may yield unreliable results due to various uncertainties. ⁹ (SCAQMD, *Final Subsequent Mitigated Negative Declaration for:Warren*

⁸ SCAQMD has not attained the latest annual or 24-hour national ambient air quality standards for "PM_{2.5}" or particulate matter less than 2.5 microns in diameter.

⁹ Among these uncertainties are the representativeness of the population used in the methodology, and the specific source of PM and the corresponding health impacts. (*Id.* at p. 2-24.)

E&P, Inc. WTU Central Facility, New Equipment Project (certified July 19, 2011), http://www.aqmd.gov/home/library/documents---year-2011; then follow "Final Subsequent Mitigated Negative Declaration for Warren E&P Inc. WTU Central Facility, New Equipment Project" hyperlink, pp. 2-22, 2-23 (last visited Apr. 1, 2015).) Therefore, when SCAQMD prepared a CEQA document for the expansion of an existing oil production facility, with very small PM_{2.5} increases (3.8 lb/day) and a very small affected population, staff elected not to use the CARB methodology for using estimated PM_{2.5} emissions to derive a projected premature mortality number and explained why it would be inappropriate to do so. (Id. at pp 2-22 to 2-24.) SCAQMD staff concluded that use of this methodology for such a small source could result in unreliable findings and would not provide meaningful information. (Id. at pp. 2-23, 2-25.) This CEQA document was not challenged in court.

In the above case, while it may have been technically possible to plug the data into the methodology, the results would not have been reliable or meaningful. SCAQMD believes that an agency should not be required to perform analyses that do not produce reliable or meaningful results. This Court has already held that an agency may decline to use even the "normal" "existing conditions" CEQA baseline where to do so would be misleading or without informational value. (*Neighbors for Smart Rail v. Exposition Metro Line* (2013) 57 Cal.4th 439, 448, 457.) The same should be true for a decision that a particular study or analysis would not provide reliable or meaningful results.¹⁰

¹⁰ Whether a particular study would result in "informational value" is a part of deciding whether it is "feasible." CEQA defines "feasible" as "capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social, and

Therefore, it is not possible to set a hard-and-fast rule on whether a correlation of air quality impacts with specific quantifiable health impacts is required in all cases. Instead, the result turns on whether such an analysis is reasonably feasible in the particular case. Moreover, what is reasonably feasible may change over time as scientists and regulatory agencies continually seek to improve their ability to predict health impacts. For example, CARB staff has been directed by its Governing Board to reassess and improve the methodology for estimating premature deaths. (California Air Resources Board, *Health Impacts Analysis: PM Mortality Relationship*, http://www.arb.ca.gov/research/health/pm-mort/pm-mort.htm (last reviewed Dec. 29, 2010).) This factor also counsels against setting any hard-and-fast rule in this case.

III. THE QUESTION OF WHETHER AN EIR CONTAINS SUFFICIENT ANALYSIS TO MEET CEQA'S REQUIREMENTS IS A MIXED QUESTION OF FACT AND LAW GOVERNED BY TWO DIFFERENT STANDARDS OF REVIEW.

A. Standard of Review for Feasibility Determination and Sufficiency as an Informative Document

A second issue in this case is whether courts should review an EIR's informational sufficiency under the "substantial evidence" test as argued by Friant Ranch or the "independent judgment" test as argued by Sierra Club.

technological factors." (Pub. Resources Code § 21061.1.) A study cannot be "accomplished in a *successful* manner" if it produces unreliable or misleading results.

In this case, the lead agency did not have an opportunity to determine whether the requested analysis was feasible because the comment was non-specific. Therefore, SCAQMD suggests that this Court, after resolving the legal issues in the case, direct the Court of Appeal to remand the case to the lead agency for a determination of whether the requested analysis is feasible. Because Fresno County, the lead agency, did not seek review in this Court, it seems likely that the County has concluded that at least some level of correlation of air pollution with health impacts is feasible.

As this Court has explained, "a reviewing court must adjust its scrutiny to the nature of the alleged defect, depending on whether the claim is predominantly one of improper procedure or a dispute over the facts."

(Vineyard Area Citizens v. City of Rancho Cordova, supra, 40 Cal.4th at 435.) For questions regarding compliance with proper procedure or other legal questions, courts review an agency's action de novo under the "independent judgment" test. (Id.) On the other hand, courts review factual disputes only for substantial evidence, thereby "accord[ing] greater deference to the agency's substantive factual conclusions." (Id.)

Here, Friant Ranch and Sierra Club agree that the case involves the question of whether an EIR includes sufficient information regarding a project's impacts. However, they disagree on the proper standard of review for answering this question: Sierra Club contends that courts use the independent judgment standard to determine whether an EIR's analysis is sufficient to meet CEQA's informational purposes, ¹² while Friant Ranch contends that the substantial evidence standard applies to this question.

///

///

///

///

///

///

///

///

///

¹² Sierra Club acknowledges that courts use the substantial evidence standard when reviewing predicate factual issues, but argues that courts ultimately decide as a matter of law what CEQA requires. (Answering Brief, pp. 14, 23.)

SCAQMD submits that the issue is more nuanced than either party contends. We submit that, whether a CEQA document includes sufficient analysis to satisfy CEQA's informational mandates is a mixed question of fact and law, 13 containing two levels of inquiry that should be judged by different standards. 14

The state CEQA Guidelines set forth standards for the adequacy of environmental analysis. Guidelines Section 15151 states:

An EIR should be prepared with a sufficient degree of analysis to provide decision makers with information which enables them to make a decision which intelligently takes account of environmental consequences. An evaluation of the environmental effects of a proposed project need not be exhaustive, but the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible. Disagreement among experts does not make an EIR inadequate, but the EIR should summarize the main points of disagreement among the experts. The courts have looked not for perfection, but for adequacy, completeness, and a good-faith effort at full disclosure.

In this case, the basic question is whether the underlying analysis of air quality impacts made the EIR "sufficient" as an informative document. However, whether the EIR's analysis was sufficient is judged in light of what was reasonably feasible. This represents a mixed question of fact and law that is governed by two different standards of review.

¹³ Friant Ranch actually states that the claim that an EIR lacks sufficient relevant information is, "most properly thought of as raising mixed questions of fact and law." (Opening Brief, p. 27.) However, the remainder of its argument claims that the court should apply the substantial evidence standard of review to all aspects of the issue.

¹⁴ Mixed questions of fact and law issues may implicate predominantly factual subordinate questions that are reviewed under the substantial evidence test even though the ultimate question may be reviewed by the independent judgment test. *Crocker National Bank v. City and County of San Francisco* (1989) 49 Cal.3d 881, 888-889.

SCAQMD submits that an EIR's sufficiency as an informational document is ultimately a legal question that courts should determine using their independent judgment. This Court's language in Laurel Heights I supports this position. As this Court explained: "The court does not pass upon the correctness of the EIR's environmental conclusions, but only upon its sufficiency as an informative document." (Laurel Heights I, supra, 47 Cal.3d at 392-393) (emphasis added.) As described above, the Court in Vineyard Area Citizens v. City of Rancho Cordova, supra, 40 Cal.4th at 431, also used its independent judgment to determine what level of analysis CEQA requires for water supply impacts. The Court did not defer to the lead agency's opinion regarding the law's requirements; rather, it determined for itself what level of analysis was necessary to meet "[t]he law's informational demands." (Id. at p. 432.) Further, existing case law also holds that where an agency fails to comply with CEQA's information disclosure requirements, the agency has "failed to proceed in the manner required by law." (Save Our Peninsula Comm. v. Monterey County Bd. of Supervisors (2001) 87 Cal. App. 4th 99, 118.)

However, whether an EIR satisfies CEQA's requirements depends in part on whether it was reasonably feasible for an agency to conduct additional or more thorough analysis. EIRs must contain "a detailed statement" of a project's impacts (Pub. Res. Code § 21061), and an agency must "use its best efforts to find out and disclose all that it reasonably can." (CEQA Guidelines § 15144.) Nevertheless, "the sufficiency of an EIR is to be reviewed in light of what is reasonably feasible." (CEQA Guidelines § 15151.)

SCAQMD submits that the question of whether additional analysis or a particular study suggested by a commenter is "feasible" is generally a question of fact. Courts have already held that whether a particular alternative is "feasible" is reviewed by the substantial evidence test.

(Uphold Our Heritage v. Town of Woodside (2007) 147 Cal. App. 4th 587, 598-99; Center for Biological Diversity v. County of San Bernardino (2010) 185 Cal. App. 4th 866, 883.) Thus, if a lead agency determines that a particular study or analysis is infeasible, that decision should generally be judged by the substantial evidence standard. However, SCAQMD urges this Court to hold that lead agencies must explain the basis of any determination that a particular analysis is infeasible in the EIR itself. An EIR must discuss information, including issues related to the feasibility of particular analyses "in sufficient detail to enable meaningful participation and criticism by the public. '[W]hatever is required to be considered in an EIR must be in that formal report; what any official might have known from other writings or oral presentations cannot supply what is lacking in the report." (Laurel Heights I, supra, 47 Cal.3d at p. 405 (quoting Santiago County Water District v. County of Orange (1981) 118 Cal.App.3d 818, 831) (discussing analysis of alternatives).) The evidence on which the determination is based should also be summarized in the EIR itself, with appropriate citations to reference materials if necessary. Otherwise commenting agencies such as SCAQMD would be forced to guess where the lead agency's evidence might be located, thus thwarting effective public participation.

Moreover, if a lead agency determines that a particular study or analysis would not result in reliable or useful information and for that reason is not feasible, that determination should be judged by the substantial evidence test. (See *Neighbors for Smart Rail v. Exposition Metro Line Construction Authority, supra*, 57 Cal.4th 439, 448, 457:

whether "existing conditions" baseline would be misleading or uninformative judged by substantial evidence standard. ¹⁵)

If the lead agency's determination that a particular analysis or study is not feasible is supported by substantial evidence, then the agency has not violated CEQA's information disclosure provisions, since it would be infeasible to provide additional information. This Court's decisions provide precedent for such a result. For example, this Court determined that the issue of whether the EIR should have included a more detailed discussion of future herbicide use was resolved because substantial evidence supported the agency's finding that "the precise parameters of future herbicide use could not be predicted." *Ebbetts Pass Forest Watch v. California Dept. of Forestry & Fire Protection* (2008) 43 Cal.4th 936, 955.

Of course, SCAQMD expects that courts will continue to hold lead agencies to their obligations to consult with, and not to ignore or misrepresent, the views of sister agencies having special expertise in the area of air quality. (*Berkeley Keep Jets Over the Bay v. Board of Port Commissioners* (2007) 91 Cal.App.4th 1344, 1364 n.11.) In some cases, information provided by such expert agencies may establish that the purported evidence relied on by the lead agency is not in fact "substantial". (*Id.* at pp. 1369-1371.)

In sum, courts retain ultimate responsibility to determine what CEQA requires. However, the law does not require exhaustive analysis, but only what is reasonably feasible. Agencies deserve deference for their factual determinations regarding what type of analysis is reasonably feasible. On the other hand, if a commenter requests more information, and the lead agency declines to provide it but does *not* determine that the

¹⁵ The substantial evidence standard recognizes that the courts "have neither the resources nor the scientific expertise" to weigh conflicting evidence on technical issues. (*Laurel Heights I, supra,* 47 Cal.3d 376, 393.)

requested study or analysis would be infeasible, misleading or uninformative, the question becomes whether the omission of that analysis renders the EIR inadequate to satisfy CEQA's informational purposes. (*Id.* at pp. 1370-71.) Again, this is predominantly a question of law and should be judged by the de novo or independent judgment standard of review. Of course, this Court has recognized that a "project opponent or reviewing court can always imagine some additional study or analysis that might provide helpful information. It is not for them to design the EIR. That further study...might be helpful does not make it necessary." (*Laurel Heights I, supra, 47* Cal.3d 376, 415 – see also CEQA Guidelines § 15204(a) [CEQA "does not require a lead agency to conduct every test. . . recommended or demanded by commenters."].) Courts, then, must adjudicate whether an omission of particular information renders an EIR inadequate to serve CEQA's informational purposes. ¹⁶

¹⁶ We recognize that there is case law stating that the substantial evidence standard applies to "challenges to the scope of an EIR's analysis of a topic" as well as the methodology used and the accuracy of the data relied on in the document "because these types of challenges involve factual questions." (Bakersfield Citizens for Local Control v. City of Bakersfield, supra. 124 Cal.App.4th 1184, 1198, and cases relied on therein.) However, we interpret this language to refer to situations where the question of the scope of the analysis really is factual—that is, where it involves whether further analysis is feasible, as discussed above. This interpretation is supported by the fact that the Bakersfield court expressly rejected an argument that a claimed "omission of information from the EIR should be treated as inquiries whether there is substantial evidence supporting the decision approving the project." Bakersfield, supra, 124 Cal. App. 4th at p. 1208. And the Bakersfield court ultimately decided that the lead agency must analyze the connection between the identified air pollution impacts and resulting health impacts, even though the EIR already included some discussion of air-pollution-related respiratory illnesses. Bakersfield, supra, 124 Cal.App.4th at p. 1220. Therefore, the court must not have interpreted this question as one of the "scope of the analysis" to be judged by the substantial evidence standard.

B. Friant Ranch's Rationale for Rejecting the Independent Judgment Standard of Review is Unsupported by Case Law.

In its brief, Friant Ranch makes a distinction between cases where a required CEQA topic is not discussed at all (to be reviewed by independent judgment as a failure to proceed in the manner required by law) and cases where a topic is discussed, but the commenter claims the information provided is insufficient (to be judged by the substantial evidence test). (Opening Brief, pp. 13-17.) The Court of Appeal recognized these two types of cases, but concluded that both raised questions of law. (Sierra Club v. County of Fresno (2014) 226 Cal.App.4th 704 (superseded by grant of review) 172 Cal.Rptr.3d 271, 290.) We believe the distinction drawn by Friant Ranch is unduly narrow, and inconsistent with cases which have concluded that CEQA documents are insufficient. In many instances, CEQA's requirements are stated broadly, and the courts must interpret the law to determine what level of analysis satisfies CEQA's mandate for providing meaningful information, even though the EIR discusses the issue to some extent.

For example, the CEQA Guidelines require discussion of the existing environmental baseline. In *County of Amador v. El Dorado County Water Agency* (1999) 76 Cal.App.4th 931, 954-955, the lead agency had discussed the environmental baseline by describing historic month-end water levels in the affected lakes. However, the court held that this was not an adequate baseline discussion because it failed to discuss the timing and amounts of past actual water releases, to allow comparison with the proposed project. The court evidently applied the independent judgment test to its decision, even though the agency discussed the issue to some extent.

Likewise, in *Vineyard Area Citizens* (2007) 40 Cal.4th 412, this Court addressed the question of whether an EIR's analysis of water supply impacts complied with CEQA. The parties agreed that the EIR was required to analyze the effects of providing water to the development project, "and that in order to do so the EIR had, in some manner, to identify the planned sources of that water." (*Vineyard Area Citizens, supra*, at p. 428.) However, the parties disagreed as to the level of detail required for this analysis and "what level of uncertainty regarding the availability of water supplies can be tolerated in an EIR" (*Id.*) In other words, the EIR had analyzed water supply impacts for the project, but the petitioner claimed that the analysis was insufficient.

This Court noted that neither CEQA's statutory language or the CEQA Guidelines specifically addressed the question of how precisely an EIR must discuss water supply impacts. (Id.) However, it explained that CEQA "states that '[w]hile foreseeing the unforeseeable is not possible, an agency must use its best efforts to find out and disclose all that it reasonably can." (Id., [Guidelines § 15144].) The Court used this general principle, along with prior precedent, to elucidate four "principles for analytical adequacy" that are necessary in order to satisfy "CEQA's informational purposes." (Vineyard Area Citizens, supra, at p. 430.) The Court did not defer to the agency's determination that the EIR's analysis of water supply impacts was sufficient. Rather, this Court used its independent judgment to determine for itself the level of analysis required to satisfy CEQA's fundamental purposes. (Vineyard Area Citizens, supra, at p. 441: an EIR does not serve its purposes where it neglects to explain likely sources of water and "... leaves long term water supply considerations to later stages of the project.")

Similarly, the CEQA Guidelines require an analysis of noise impacts of the project. (Appendix G, "Environmental Checklist Form." In *Gray v. County of Madera* (2008) 167 Cal.App.4th 1099, 1123, the court held that the lead agency's noise impact analysis was inadequate even though it had addressed the issue and concluded that the increase would not be noticeable. If the court had been using the substantial evidence standard, it likely would have upheld this discussion.

Therefore, we do not agree that the issue can be resolved on the basis suggested by Friant Ranch, which would apply the substantial evidence standard to *every* challenge to an analysis that addresses a required CEQA topic. This interpretation would subvert the courts' proper role in interpreting CEQA and determining what the law requires.

Nor do we agree that the Court of Appeal in this case violated CEQA's prohibition on courts interpreting its provisions "in a manner which imposes procedural or substantive requirements beyond those explicitly stated in this division or in the state guidelines." (Pub. Resources Code § 21083.1.) CEQA requires an EIR to describe *all* significant impacts of the project on the environment. (Pub. Resources Code § 21100(b)(2); *Vineyard Area Citizens, supra,* at p. 428.) Human beings are part of the environment, so CEQA requires EIRs to discuss a project's significant impacts on human health. However, except in certain particular circumstances, ¹⁸ neither the CEQA statute nor Guidelines specify the precise level of analysis that agencies must undertake to satisfy the law's requirements. (see, e.g., CEQA Guidelines § 15126.2(a) [EIRs must describe "health and safety problems caused by {a project's} physical changes"].) Accordingly, courts must interpret CEQA as a whole to

¹⁷ Association of Environmental Professionals, 2015 CEQA Statute and Guidelines (2015) p.287.

¹⁸ E.g., Pub. Resources Code § 21151.8(C)(3)(B)(iii) (requiring specific type of health risk analysis for siting schools).

determine whether a particular EIR is sufficient as an informational document. A court determining whether an EIR's discussion of human health impacts is legally sufficient does not constitute imposing a new substantive requirement. Under Friant Ranch's theory, the above-referenced cases holding a CEQA analysis inadequate would have violated the law. This is not a reasonable interpretation.

IV. COURTS MUST SCRUPULOUSLY ENFORCE THE REQUIREMENTS THAT LEAD AGENCIES CONSULT WITH AND OBTAIN COMMENTS FROM AIR DISTRICTS

Courts must "scrupulously enforce" CEQA's legislatively mandated requirements. (*Vineyard Area Citizens, supra*, 40 Cal.4th 412, 435.) Case law has firmly established that lead agencies must consult with the relevant air pollution control district before conducting an initial study, and must provide the districts with notice of the intention to adopt a negative declaration (or EIR). (*Schenck v. County of Sonoma* (2011) 198 Cal.App.4th 949, 958.) As *Schenck* held, neither publishing the notice nor providing it to the State Clearinghouse was a sufficient substitute for sending notice directly to the air district. (*Id.*) Rather, courts "must be satisfied that [administrative] agencies have fully complied with the procedural requirements of CEQA, since only in this way can the important public purposes of CEQA be protected from subversion." *Schenck*, 198 Cal.App.4th at p. 959 (citations omitted).²⁰

¹⁹ We submit that Public Resources Code Section 21083.1 was intended to prevent courts from, for example, holding that an agency must analyze economic impacts of a project where there are no resulting environmental impacts (see CEQA Guidelines § 15131), or imposing new procedural requirements, such as imposing additional public notice requirements not set forth in CEQA or the Guidelines.

²⁰ Lead agencies must consult air districts, as public agencies with jurisdiction by law over resources affected by the project, *before* releasing an EIR. (Pub. Resources Code §§ 21104(a); 21153.) Moreover, air

Lead agencies should be aware, therefore, that failure to properly seek and consider input from the relevant air district constitutes legal error which may jeopardize their project approvals. For example, the court in *Fall River Wild Trout Foundation v. County of Shasta*, (1999) 70 Cal.App.4th 482, 492 held that the failure to give notice to a trustee agency (Department of Fish and Game) was prejudicial error requiring reversal. The court explained that the lack of notice prevented the Department from providing any response to the CEQA document. (*Id.* at p. 492.) It therefore prevented relevant information from being presented to the lead agency, which was prejudicial error because it precluded informed decision-making. (*Id.*)²¹

districts should be considered "state agencies" for purposes of the requirement to consult with "trustee agencies" as set forth in Public Resources Code § 20180.3(a). This Court has long ago held that the districts are not mere "local agencies" whose regulations are superseded by those of a state agency regarding matters of statewide concern, but rather have concurrent jurisdiction over such issues. (Orange County Air Pollution Control District v. Public Util. Com. (1971) 4 Cal.3d 945, 951, 954.) Since air pollution is a matter of statewide concern, *Id* at 952, air districts should be entitled to trustee agency status in order to ensure that this vital concern is adequately protected during the CEOA process. ²¹ In Schenck, the court concluded that failure to give notice to the air district was not prejudicial, but this was partly because the trial court had already corrected the error before the case arrived at the Court of Appeal. The trial court issued a writ of mandate requiring the lead agency to give notice to the air district. The air district responded by concurring with the lead agency that air impacts were not significant. (Schenck, 198 Cal. App. 4th 949, 960.) We disagree with the Schenck court that the failure to give notice to the air district would not have been prejudicial (even in the absence of the trial court writ) merely because the lead agency purported to follow the air district's published CEQA guidelines for significance. (Id., 198 Cal.App.4th at p. 960.) In the first place, absent notice to the air district, it is uncertain whether the lead agency properly followed those guidelines. Moreover, it is not realistic to expect that an air district's published guidelines would necessarily fully address all possible air-quality related issues that can arise with a CEQA project, or that those

Similarly, lead agencies must obtain additional information requested by expert agencies, including those with jurisdiction by law, if that information is necessary to determine a project's impacts. (Sierra Club v. State Bd. Of Forestry (1994) 7 Cal.4th 1215, 1236-37.) Approving a project without obtaining that information constitutes a failure to proceed in the manner prescribed by CEQA. (Id. at p. 1236.)

Moreover, a lead agency can save significant time and money by consulting with the air district early in the process. For example, the lead agency can learn what the air district recommends as an appropriate analysis on the facts of its case, including what kinds of health impacts analysis may be available, and what models are appropriate for use. This saves the lead agency from the need to do its analysis all over again and possibly needing to recirculate the document after errors are corrected, if new significant impacts are identified. (CEQA Guidelines § 15088.5(a).) At the same time, the air district's expert input can help the lead agency properly determine whether another commenter's request for additional analysis or studies is reasonable or feasible. Finally, the air district can provide input on what mitigation measures would be feasible and effective.

Therefore, we suggest that this Court provide guidance to lead agencies reminding them of the importance of consulting with the relevant air districts regarding these issues. Otherwise, their feasibility decisions may be vulnerable to air district evidence that establishes that there is no substantial evidence to support the lead agency decision not to provide specific analysis. (*See Berkeley Keep Jets Over the Bay, supra*, 91 Cal.App.4th 1344, 1369-1371.)

guidelines would necessarily be continually modified to reflect new developments. Therefore we believe that, had the trial court not already ordered the lead agency to obtain the air district's views, the failure to give notice would have been prejudicial, as in *Fall River*, *supra*, 70 Cal.App.4th 482, 492.

CONCLUSION

The SCAQMD respectfully requests this Court *not* to establish a hard-and-fast rule concerning whether CEQA requires a lead agency to correlate identified air quality impacts of a project with resulting health outcomes. Moreover, the question of whether an EIR is "sufficient as an informational document" is a mixed question of fact and law containing two levels of inquiry. Whether a particular proposed analysis is feasible is predominantly a question of fact to be judged by the substantial evidence standard of review. Where the requested analysis is feasible, but the lead agency relies on legal or policy reasons not to provide it, the question of whether the EIR is nevertheless sufficient as an informational document is predominantly a question of law to be judged by the independent judgment standard of review.

Respectfully submitted,

DATED: April 3, 2015

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT KURT R. WIESE, GENERAL COUNSEL BARBARA BAIRD, CHIEF DEPUTY COUNSEL

Ву: 🔟

Barbara Baird

Attorneys for Amicus Curiae

SOUTH COAST AIR QUALITY MANAGEMENT DISTICT

CERTIFICATE OF WORD COUNT

Pursuant to Rule 8.520(c)(1) of the California Rules of Court, I hereby certify that this brief contains 8,476 words, including footnotes, but excluding the Application, Table of Contents, Table of Authorities, Certificate of Service, this Certificate of Word Count, and signature blocks. I have relied on the word count of the Microsoft Word Vista program used to prepare this Certificate.

DATED: April 3, 2015

Respectfully submitted,

Barbara Baird

PROOF OF SERVICE

I am employed in the County of Los Angeles, California. I am over the age of 18 years and not a party to the within action. My business address is 21865 Copley Drive, Diamond Bar, California 91765.

On April 3, 2015 I served true copies of the following document(s) described as APPLICATION OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT FOR LEAVE TO FILE BRIEF OF AMICUS CURIAE IN SUPPORT OF NEITHER PARTY AND [PROPOSED] BRIEF OF AMICUS CURIAE by placing a true copy of the foregoing document(s) in a sealed envelope addressed as set forth on the attached service list as follows:

BY MAIL: I enclosed the document(s) in a sealed envelope or package addressed to the persons at the addresses listed in the Service List and placed the envelope for collection and mailing following our ordinary business practices. I am readily familiar with this District's practice for collection and processing of correspondence for mailing. Under that practice, the correspondence would be deposited with the United States Postal Service, with postage thereon fully prepaid at Diamond Bar, California, in the ordinary course of business. I am aware that on motion of the party served, service is presumed invalid if postal cancellation date or postage meter date is more than one day after date of deposit for mailing in affidavit.

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct.

Executed on April 3, 2015 at Diamond Bar, California.

Patricia Andersor

SERVICE LIST

James G. Moose, Tiffany K. Wright, Laura M. Harris REMY MOOSE MANLEY, LLP 555 Capitol Mall, Suite 800 Sacramento, CA 95814 Attorneys for Real Party in Interest and Respondent *Friant Ranch*, *L.P.*

Bryan N. Wagner WAGNER & WAGNER 7110 N. Fresno St, Suite 340 Fresno, CA 93720 Attorney for Real Party in Interest and Respondent *Friant Ranch*, *L.P.*

Sara Hedgpeth-Harris LAW OFFICE OF SARA HEDGPETH-HARRIS 5445 E. Lane Avenue Fresno, CA 93727 Attorney for Plaintiffs and Appellants Sierra Club, et al

Daniel C. Cederborg
Bruce B. Johnson, Jr.
Zachary Stephen Redmond
OFFICE OF THE FRESNO COUNTY
COUNSEL
2220 Tulare Street, Suite 500
Fresno, CA 93721

Attorneys for Respondents County of Fresno

Clerk of the Court
California Court of Appeal
Fifth Appellate District
2424 Ventura Street
Fresno, CA 93721
(via U.S. Mail & Electronic Transmission)

Clerk of the Court Superior Court of California County of Fresno 1130 O Street Fresno, CA 93721 This page intentionally left blank

