HYDROLOGY REPORT For Pointe Common 1600 West Commonwealth Avenue, Fullerton, CA 92833

December 2022

Prepared for: **Meta Housing Corp.** 11150 W. Olympic Blvd., Suite 620 Los Angeles, CA 90064

Prepared by:

6420 Wilshire Blvd., Suite 1000 Los Angeles, CA 90048 Tel: (909) 559-7361 Contact: Matt Plourde

TABLE OF CONTENTS

A. INTRODUCTION

- 1. Purpose
- 2. Project Description
- 3. Basis of Design

B. PROJECT SITE CONDITIONS

- 1. Pre-Development Condition
- 2. Post-Development Condition

C. HYDROLOGIC ANALYSIS

- 1. Methodology
- 2. Results and Conclusions

D. HYDRAULIC ANALYSIS

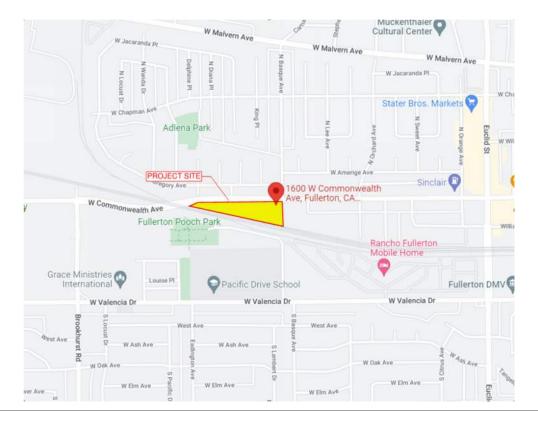
- 1. Scope
- 2. Methodology
- 3. Results and Conclusions

APPENDIX

- A: Hydrology Maps
- B: Hydrologic Calculations
- C: Supporting Documents
- D: FEMA Flood Map
- E: Hydraulic Calculations

A. INTRODUCTION

<u>Purpose</u>


The scope of this report is to present the existing and proposed drainage characteristics of the subject property. The proposed drainage facilities are evaluated for the 2-year and 100-year, 24-hour storm.

The purpose of this report is to show what the effect of the proposed project will be on the overall hydrologic condition of the subject property.

Project Description

The project is located at 1600 W Commonwealth Ave, Fullerton, CA 92833. See vicinity map below. The property is currently undeveloped and is being used as a public works laydown yard. There are no permanent structures onsite however there are several temporary storage containers scattered throughout the property.

The proposed project will involve the construction of a 65-unit affordable housing development. The project will construct a 3-story building for the housing units as well as build an on-grade parking lot for the residents. There will also be several landscape and hardscape improvements around the site including walkways, seating areas, and lawn and garden space.

Vicinity Map

Basis of Design

This report and calculations shown within will be based on the Orange County Hydrology Manual as well as the OC Local Drainage Manual.

B. Project Site Conditions

Existing On-Site Condition

Based on the topographic survey for the property the existing site is relatively flat. There is only about 3-4 feet of grade change over the entire site. The majority of the site slopes from south to north and from east to west. There is a smaller section of the site which appears to flow from north to south.

There are no distinguishable drainage measures onsite and the site appears to drain via sheet flow. Most of the site sheet flows over the sidewalk on Commonwealth Ave and into the gutter located on the south side of the street. A smaller portion of the site appears to sheet flow onto the railroad right of way located south of the property.

Per the FEMA Flood Map the site is located in a flood zone X with a 0.2% annual chance of flood. There is no base flood elevation associated with zone x so onsite flooding is not expected to be a concern. See Appendix D.

Existing Off-Site Condition

The site is bordered by Commonwealth Ave to the north, a fueling station to the east, and the railroad tracks to the south.

Commonwealth Ave is fully developed with curb and gutter and no runoff from Commonwealth appears to flow onto the property. The fueling station to the east is sloped towards Commonwealth Ave and Basque Ave. Runoff is expected to flow towards the public streets and not onto the subject property. The railroad tracks to the south a very flat and no distinguishing flow path can be made. This area appears to generally slope from east to west towards a retaining wall along Commonwealth Ave. Runoff from the railroad tracks is not expected to enter the subject property.

Proposed On-Site Condition

After construction the site will be broken up into several sub areas. For the purposes of this report the site was divided into 5 sub areas to be analyzed. See Appendix A for pre and post development site maps with sub areas delineated accordingly.

The site will no longer drain via sheet flow but will instead runoff will be collected using gutters, catch basins, area drains, and underground pipes. Additionally, the site will no longer sheet flow over the sidewalk on Commonwealth Ave. but will instead drain directly to the gutter via parkway drains and curb drains. The site will also no longer drain onto the railroad tracks to the north. This area will be redirected to Commonwealth Ave. via underground pipes.

In addition to the storm drain improvements the project will also install 2 infiltration trench systems as part of the WQMP for the project. These infiltration trenches will help mitigate the overall impact of the project on the site runoff.

Proposed Off-Site Condition

Offsite drainage characteristics will remain unchanged once the project is complete.

C. Hydrologic Analysis

Methodology

Due to the relatively small size of the project area (less than 640 acres), the rational method can be used to compute the peak runoff. The runoff analysis is based on the proposed land use, topographic features, and proposed grading for the site area. The average land slopes and runoff coefficients were used for computing runoff.

The runoff equation for the Rational Method is as follows:

Q = CIA Where: Q = Peak runoff rate (CFS) C = Runoff coefficient I = Average rainfall intensity (in/hr) A = Drainage area (acres)

<u>Results</u>

Hydrology Summary					
Design Frequency	2 Year				
Total Area	2.5 Acres				
Percent Impervious	1.0% Existing, 70.5% Proposed				
Time of Concentration	13.5 min (Pre) 10.5 min (Post)				
ISOHYET	See Hydrology Summary Tables				
Soil Group	B per OC Hydrology Map (See Appendix C)				
Runoff	Pre-Development – 2.44 CFS				
	Post-Development – 4.03 CFS				

Hydrology Summary				
Design Frequency	100 Year			
Total Area	2.5 Acres			
Percent Impervious	1.0% Existing, 70.5% Proposed			
Time of Concentration	13.5 min (Pre) 10.5 min (Post)			
ISOHYET	See Hydrology Summary Tables			
Soil Group	B per OC Hydrology Map (See Appendix C)			
Runoff	Pre-Development – 6.67 CFS			
	Post-Development – 11.03 CFS			

*See Appendix B for full Calculations

Conclusions

Based on the summary tables the proposed project will increase the overall runoff from the site. This is expected since the existing condition is undeveloped and the proposed project will increase the overall imperviousness of the site.

When the project moves into the design phase the storm drain system and the overflow drains will have to be designed the adequately convey flows from the site.

Per the WQMP report associated with this project there are no Hydrologic Conditions of Concern (HCOC) downstream of the subject property so hydromodification improvements are not anticipated to be required. The project will install infiltration BMPs which will help with reducing the overall runoff amount, especially from smaller storm events. If the project is conditioned to further mitigate runoff from the site then these infiltration systems can be used to lower the total runoff from the site.

D. Hydraulic Analysis

<u>Scope</u>

Since this is a preliminary study and a full storm drain system has not been developed for the onsite portion of this project yet, this section will focus on the impacts of the project on the hydraulics in public right of way. This section will cover the sizing for the parkway drain outlets along Commonwealth Ave., check the design capacity of Commonwealth Ave., and check the existing catch basin sizing.

<u>Methodology</u>

The Orange County Local Drainage Manual will be the basis for the hydraulic analysis. Section 3.2.1.1 will cover the design capacity of Commonwealth Ave. and Section 3.3.2.8.3.1 will cover the catch basin sizing.

Additionally, Bentley Flowmaster software will be used to help check the sizing of the parkway drains and the spread in Commonwealth Ave.

<u> Results – Parkway Drains</u>

Based on Section C of this report the project will have a post-development flow of 11.03 CFS. The site will be drained to the street via 2 parkway drains on Commonwealth Ave. For the purpose of this study, we have assumed that each drain will cover 50% of the site or 5.52 CFS per drain.

We are proposing each drain be sized with a width of 42". Per the Bentley Flowmaster calculation each drain will have a normal depth of 3.1". See Appendix E. Parkway drains have a total height of 4" therefore the parkway drains are adequately sized.

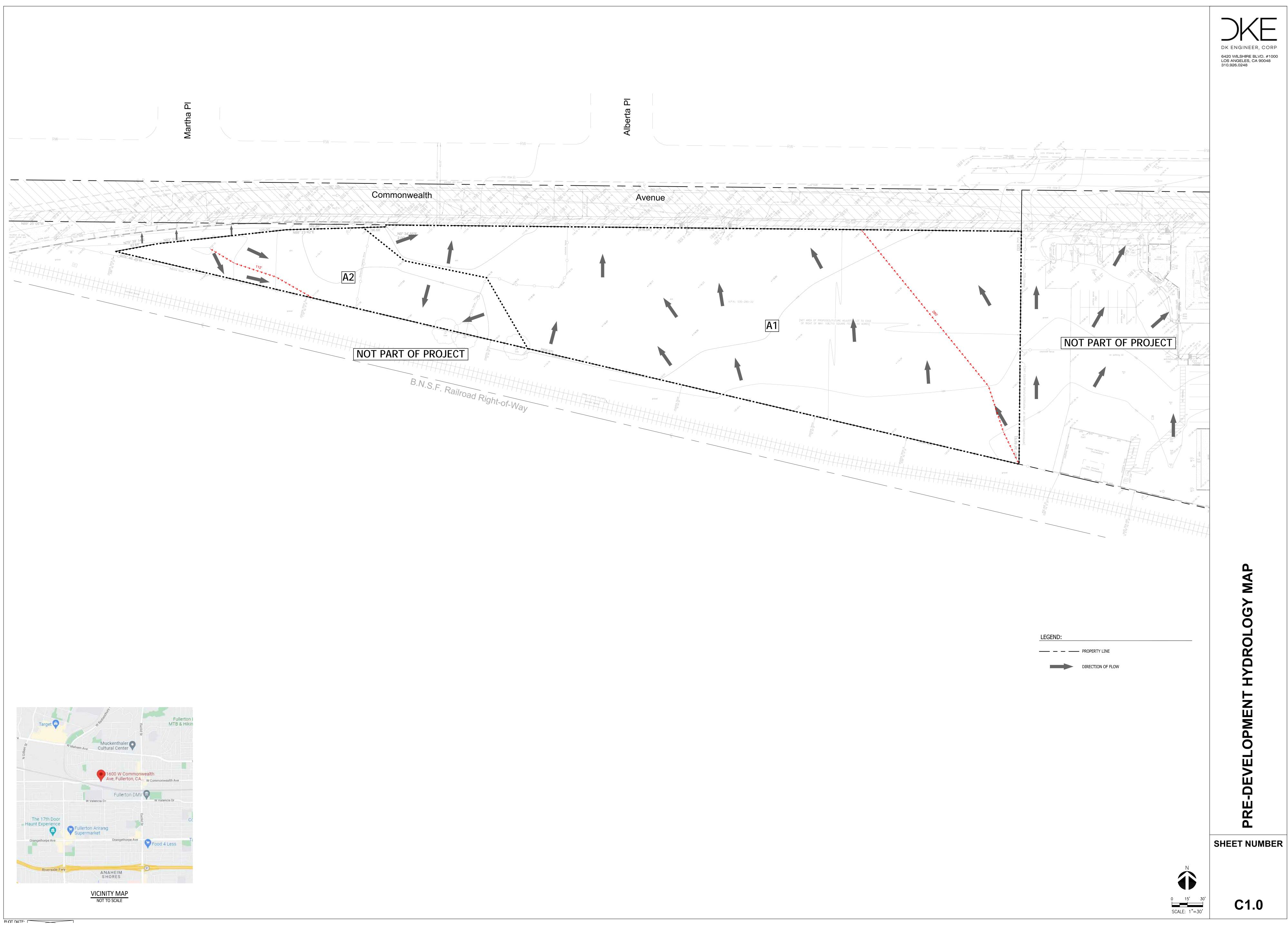
Results – Design Capacity for Commonwealth Ave

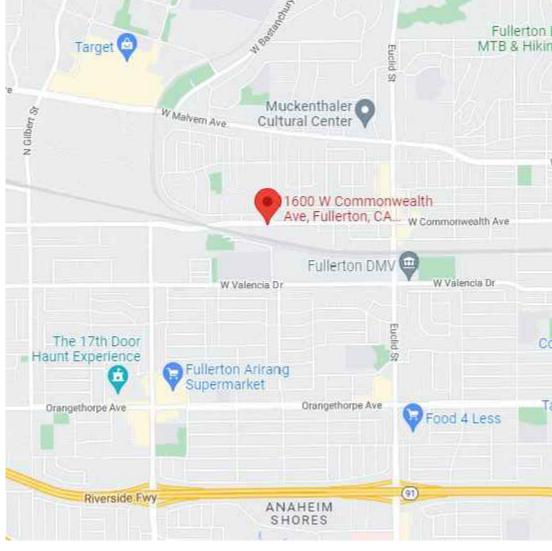
Commonwealth Ave is a multi-lane street with a speed limit of 40 mph. Per section 3.2.1.1 the 100-year flood must be contained within the street right of way. Using Bentley Flowmaster, the 100-year flow from section C was used to model the spread of the runoff in the street. This model was run using the lowest longitudinal slope along Commonwealth Ave in order to be conservative.

Based on the Flowmaster model the 100-year storm will have a spread of 16.4 ft. The south side of Commonwealth Ave has a width of 28.2 ft from median to curb therefore the full 100-year storm is contained. This also leaves a full lane of traffic unaffected by the 100-year storm. See results in Appendix E.

<u> Results – Catch Basin</u>

There are 2 existing City owned Catch Basins Commonwealth Ave. along the project frontage. Both these drains are 2' wide by 3' long. Using Chart 9B from the OC Local Drainage Manual we checked the drain capacity against the 100-year storm. In order to be conservative, we assumed the total runoff from the site is collected by just one of the catch basins.


Based on the sizing chart, and using a 50% clogging factor, the catch basin will have a depth of 0.43 ft (5.16") over the catch basin. Commonwealth has a typical curb height of 8" therefore the 100-year storm is contained. See chart in Appendix E.


Conclusion

.

Based on the results above the parkway drains are sized adequately for the 100year storm, Commonwealth Ave has capacity to convey the 100-year storm, and the existing catch basins are adequately sized for the 100-year storm. Therefore it is assumed that the existing street and storm drain infrastructure can support the proposed project.

APPENDIX A Hydrology Maps

APPENDIX B Hydrologic Calculations (Per Orange County Hydrology Manual)

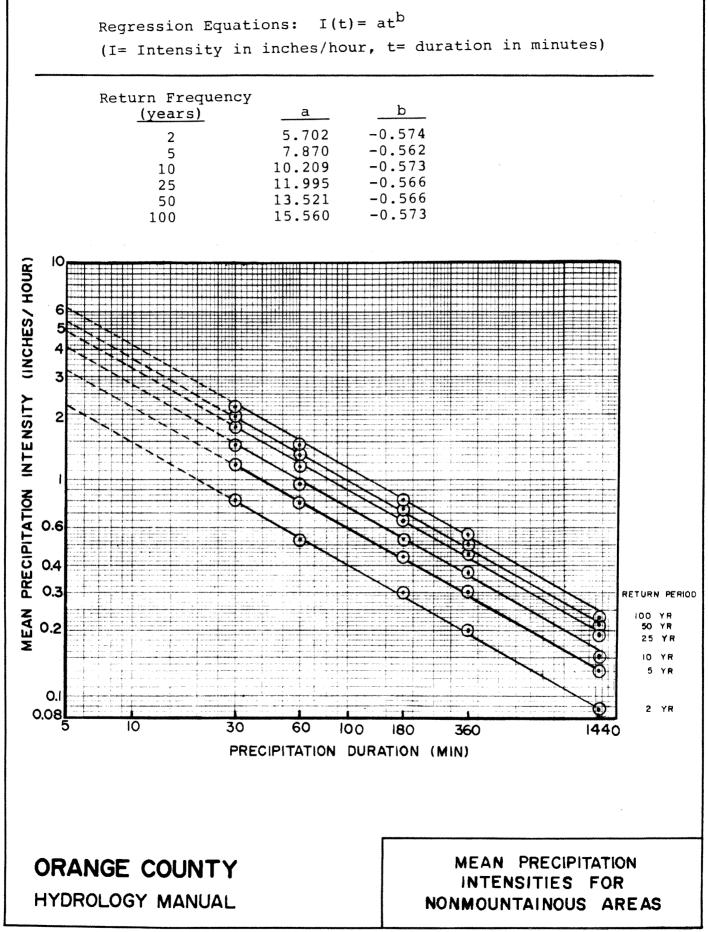


Table C.2 lists the maximum loss rates (inch/hour), F_p , for pervious area as a function of soil group.

TABLE C.2. MAXIMUM EFFECTIVE PERVIOUS AREA LOSS RATES (inch/hour), F_D

SOIL GROUP:	<u>A</u>	B	<u> </u>	<u>D</u>
(F _D :	0.40	0.30	0.25	0.20

Table C.2 reflects the model calibration assuming an F_p of 0.30 in/hr. for all the considered catchments and storm return frequencies. This mean value of F_p of 0.30 in/hr. was assigned to Hydrologic Soil Group B due to the actual average soil conditions in the reconstitution study areas. The F_p values for Hydrologic Soil Groups A, C, and D, were assigned to account for the different soil types that may be found in Orange County.

C.6.5. Estimation of Catchment Maximum Loss Rates, Fm

The maximum loss rate selected from Table C.2 applies to the pervious area fraction of the watershed. The loss rate assumed for an impervious surface is 0.0 inch/hour. The maximum loss rate, F_m , for a catchment is therefore given by

$$F_{m} = a_{p}F_{p} \tag{C.7}$$

where a_p is the pervious area fraction and F_p is the maximum loss rate for the pervious area (Section C.6.4).

Should a catchment contain several F_m values, the composite F_m value is determined as a simple area average of the several F_m values.

SECTION D

RATIONAL METHOD

D.1. RATIONAL METHOD EQUATION

The rational method was originally developed to estimate runoff from small (less then one square mile) urban and developed areas and its use shall be limited to those conditions. Basically, the rational method equation relates rainfall intensity, a runoff coefficient, and drainage area size to the direct peak runoff from the drainage area. This relationship is expressed by the equation:

$$Q = CIA \tag{D.1}$$

where

Q	14	the runoff in cubic feet per second (cfs) from a given area
С	Ξ	a runoff coefficient representing the ratio of runoff to rainfall
I	-	the time-averaged rainfall intensity in inches per hour corresponding to the time of concentration

A = drainage area (acres)

The values of the runoff coefficient (C) and the rainfall intensity (I) are based on a study of drainage area characteristics such as type and condition of the runoff surfaces and the time of concentration. These factors and the limitations of the rational method equation are discussed in the following sections. Drainage area (A) may be determined by planimetering a suitable topographic map of the project area.

Data required for the computation of peak discharge by the rational method are: (i) rainfall intensity (I) for a storm of specified duration and selected

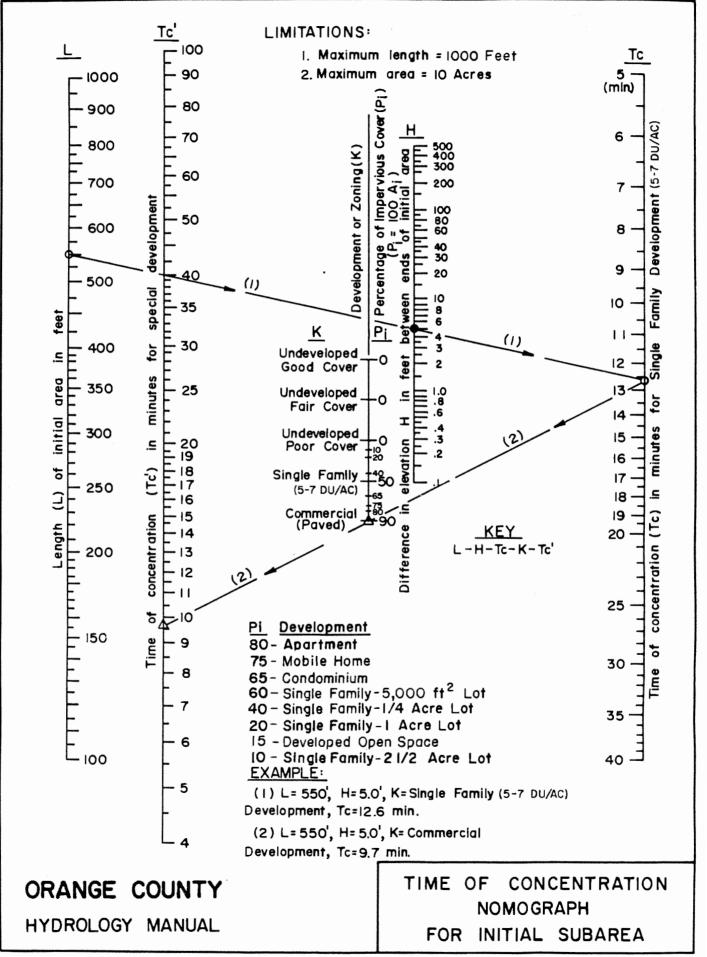
design frequency; (ii) drainage area characteristics of size (A), shape, slope; and (iii) a runoff coefficient (C).

D.2. LIMITATIONS OF THE RATIONAL METHOD

The validity of the relationship expressed by the rational method equation holds true only if certain assumptions are reasonably correct and limitations of the method are observed. Two basic assumptions are that (i) the frequency of a storm runoff is the same as the frequency of the rainfall producing this runoff; i.e., a 25-year recurrence interval rainfall will provide a 25-year recurrence interval storm runoff, and (ii) that the peak runoff occurs when all parts of the drainage area are contributing to the runoff. The use of the rational method equation is limited to watersheds of size less than 640 acres.

The rational method equation is only applicable where the rainfall intensity (I) can be assumed to be uniformly distributed over the drainage area at a uniform rate throughout the duration of the storm. This assumption applies fairly well to small areas of less than 640 acres. Beyond this limit, the rainfall distribution may vary considerably from the point values given in rainfall isohyetal maps and the rational method equation should not be used.

The selection of the runoff coefficient (C) is another major limitation for the rational method equation. For small urban and developed areas the runoff coefficient can be reasonably well estimated from field and aerial photo studies. For larger areas where the determination of the runoff coefficient is to be based on vegetation type, cover density, the infiltration capacity of the ground surface, and the slope of the drainage area, an estimate of the runoff coefficient may be subject to a much greater error due to the variability of the drainage area characteristics. Rainfall losses due to evaporation, transpiration, depression and channel storage are inadequately evaluated, and may appreciably affect the estimate of the watershed peak rate of runoff. The effects of depth-area-duration (or depth-area) factors are not accounted for in the simple intensity-duration curve used for rational method studies.


For large drainage areas, the absence of depth-area adjustments can result in significant differences in the estimate of the average depth of catchment point rainfalls.

The above limitations indicate that an estimate of the peak rate of runoff becomes less reliable as the drainage area becomes larger and the rational method equation should, therefore, not be used for drainage areas larger than 640 acres.

D.3. CRITICAL DURATION (TIME OF CONCENTRATION)

The critical duration of the storm rainfall required in the rational method equation is based on the time of concentration of the drainage area.

The time of concentration (Tc) is defined as the interval of time (in minutes) required for the flow at a given point to become a maximum under a uniform rainfall intensity. Generally, this occurs when all parts of the drainage area are contributing to the flow. Generally, the time of concentration is the interval of time from the beginning of rainfall for water from the hydraulically most remote portion of the drainage area to reach the point of concentration; e.g., the inlet of the drainage structure. The time of concentration is a function of many variables including the length of the flow path from the most remote point of an area to the concentration point, the slope and other characteristics of natural and improved channels in the area, the infiltration characteristics of the soil, and the extent and type of development. For rational method studies based on this manual, the time of concentration for an initial subarea may be estimated from the nomograph of Figure D-1. The time of concentration for the next downstream subarea is computed by adding to the initial Tc, the time required for the computed peak flow to travel to the next concentration point. Time of concentration is computed for each subsequent subarea by computing travel time between subareas and adding to the cumulative sum.

When the flow is concentrated in curb and gutters, drainage channels or conduits, the flow velocity may be estimated by the well-known Manning's equation

$$V = \frac{1.49}{n} R^{2/3} S^{1/2}$$
(D.2)

where

V	6.09 9907	mean velocity (fps)
n	=	Manning coefficient of roughness (see Design Manual)
R		hydraulic radius (feet)
S		energy slope which equals the conduit invert slope for uniform flow

The travel time will then be the flow distance divided by the velocity of flow.

Computations of travel time through subareas which continually add to the peak flow (e.g., streetflow) should be based on the average peak flow through the subarea. This average peak flow is generally a simple average of the peak flow rates estimated at the upstream and downstream points of the subarea.

The initial subarea Tc estimation often is the most significant factor leading to the Tc computation of a watershed. Small development studies typically utilize only initial subarea estimations due to the small subarea sizes. Larger study areas generally show high sensitivity to the initial subarea Tc. Consequently, judgment is needed when developing initial subarea Tc estimates. The nomograph of Figure D-1 is based on the Kirpich formula and relates an initial subarea Tc to subarea slope and development type. It is assumed in the nomograph that overland flow effects dominate the travel time hydraulics. It is noted that the Tc computation procedure is based upon the summation of an initial subarea time of concentration with the several travel times estimated by normal depth flow-velocities through subsequent subareas.

D.4. INTENSITY-DURATION CURVES

The precipitation intensity-duration curves presented in Section B.3 (Figures B-3 and B-4) are appropriate for the rational method.

D.5. RUNOFF COEFFICIENT

The runoff coefficient (C) is the ratio of rate of runoff to the rate of rainfall at an average intensity (I) when the total drainage area is contributing. The selection of the runoff coefficient depends on rainfall intensity, soil infiltration rate (F_p), and impervious and pervious area fractions (a_i and a_p).

Since one acre-inch/hour is equal to 1.008 cfs, the rational formula is generally assumed to estimate a peak flowrate in cfs. Runoff coefficient curves are developed using the relationship:

$$C = \begin{cases} 0.90 (a_i + \frac{(I - F_p)a_p}{I}), \text{ for I greater than } F_p; \\ 0.90 a_i, \text{ for I less than or equal to } F_p \end{cases}$$
(D.3)

where the proportion factor of 0.90 is a calibration constant determined by an average fit between the rational method and design storm unit hydrograph (see Section E) peak flow rate estimates, and where

С	â	runoff coefficient
I	Ξ	rainfall intensity (inches/hour)
Fp	=	infiltration rate for pervious areas (inches/hour)
		(see Section C.6.4)
ai	1000 1000	ratio of impervious area to total area (decimal
		fraction)
ap	-160 1860	ratio of pervious area to total area (decimal
L.		fraction), $(a_p = 1 - a_i)$

Combining Equations (D.1) and (D.3), the peak flow estimate for Q is written in simpler terms by

$$Q = .90 (I - F_m)A$$
 (D.4)

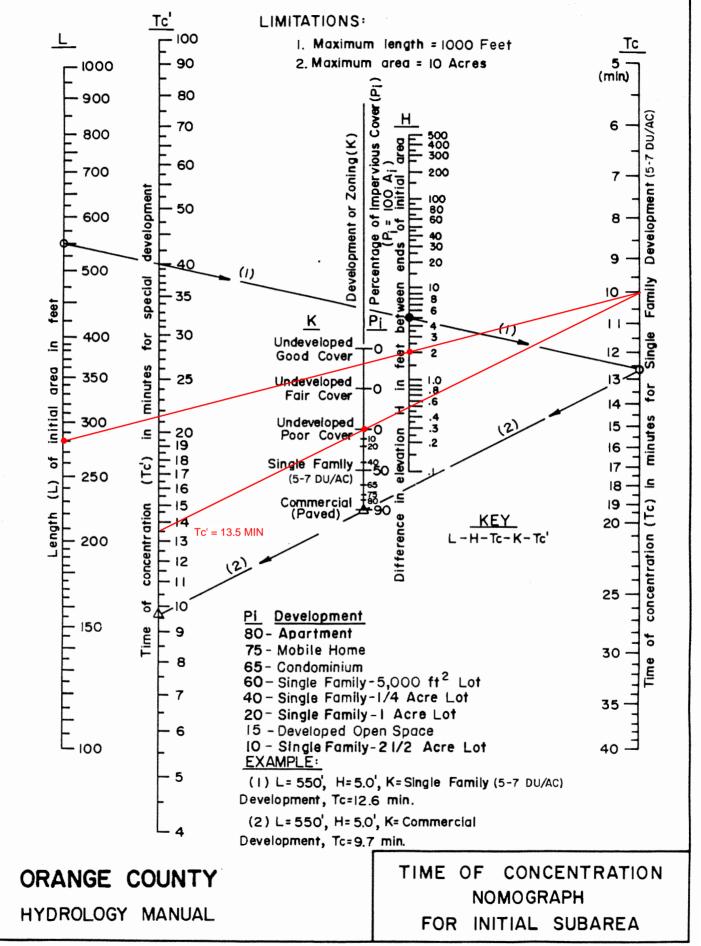
where $F_m = a_p F_p$ (see section C.6.5), and where in (D.4) it is understood that I is greater than F_p ; otherwise $Q = .90 a_i IA$.

In (D.4), F_m represents the loss rate for the total watershed tributary to the point of concentration. Should the tributary area contain several runoff surfaces, an area-averaged F_m is calculated. Table D.1 illustrates such an area-averaged F_m computation.

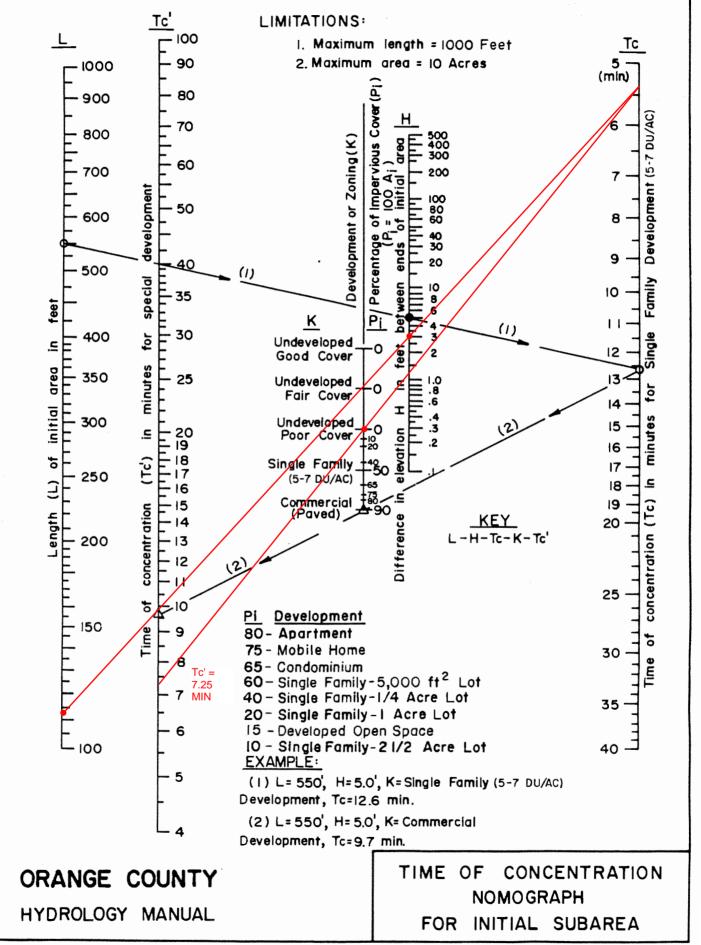
Subarea Number <u>(1)</u>	ap (2)	Soil Group <u>(3)</u>	F _D (inch/hour) (4)	Area (acres) <u>(5)</u>	Area Weighting <u>of (4)</u>
1 2 3 4 5	0.60 0.80 0.75 0.10 0.50	A B C D C	0.40 0.30 0.25 0.20 0.25	8 12 11 15 <u>16</u> 62	1.92 2.88 2.06 0.30 2.00 9.16

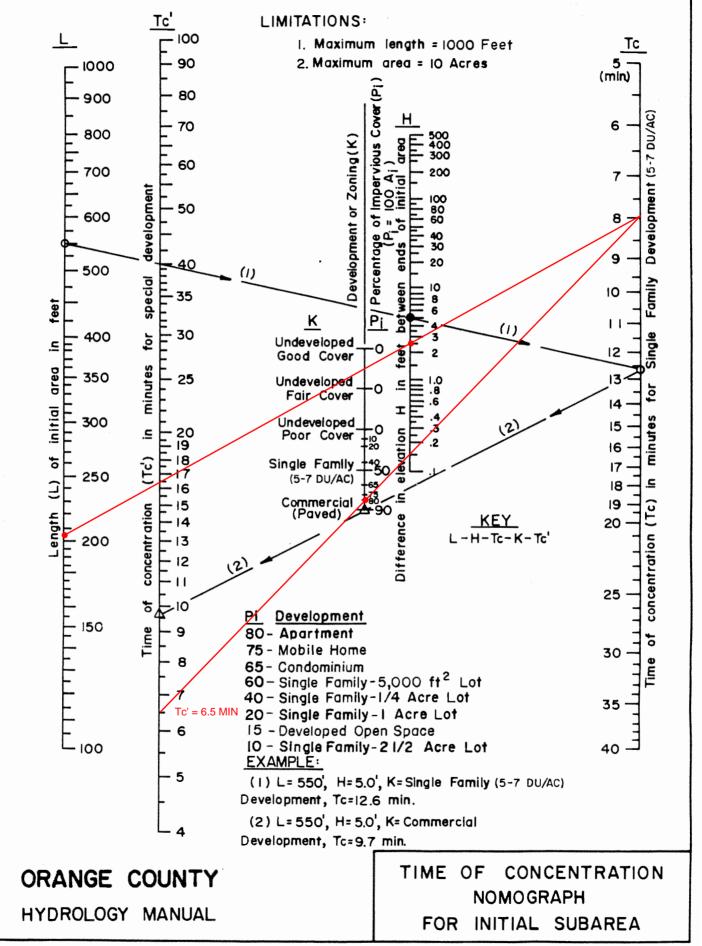
TABLE D.1. AREA-AVERAGED Fm COMPUTATION

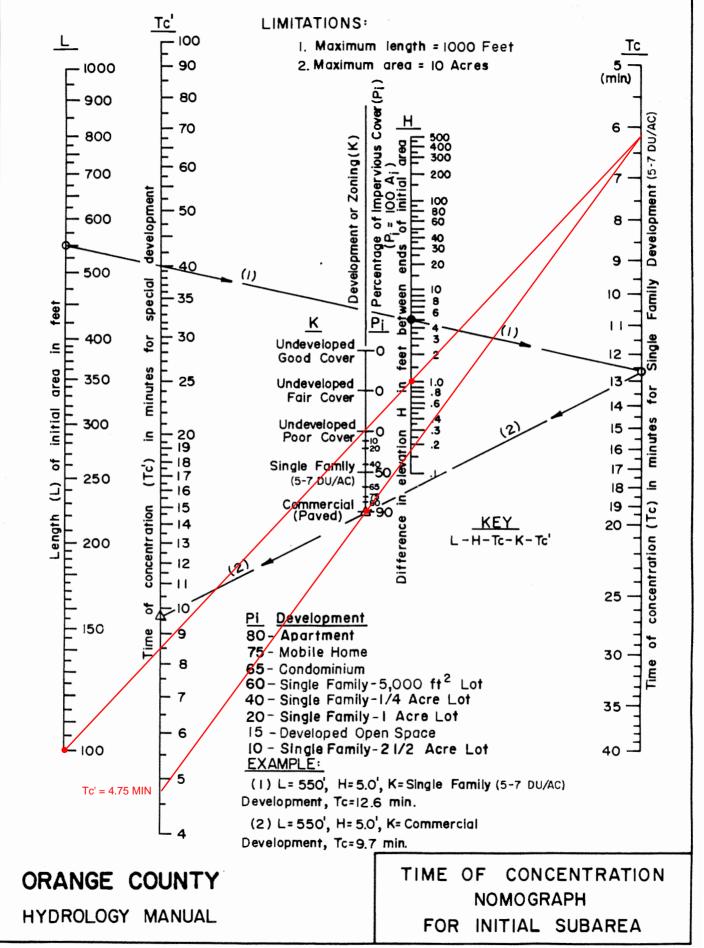
From Table D.1., the area-averaged maximum loss rate, F_m , is given by $F_m = (9.16)/(62) = 0.147$ inch/hour, say 0.15.

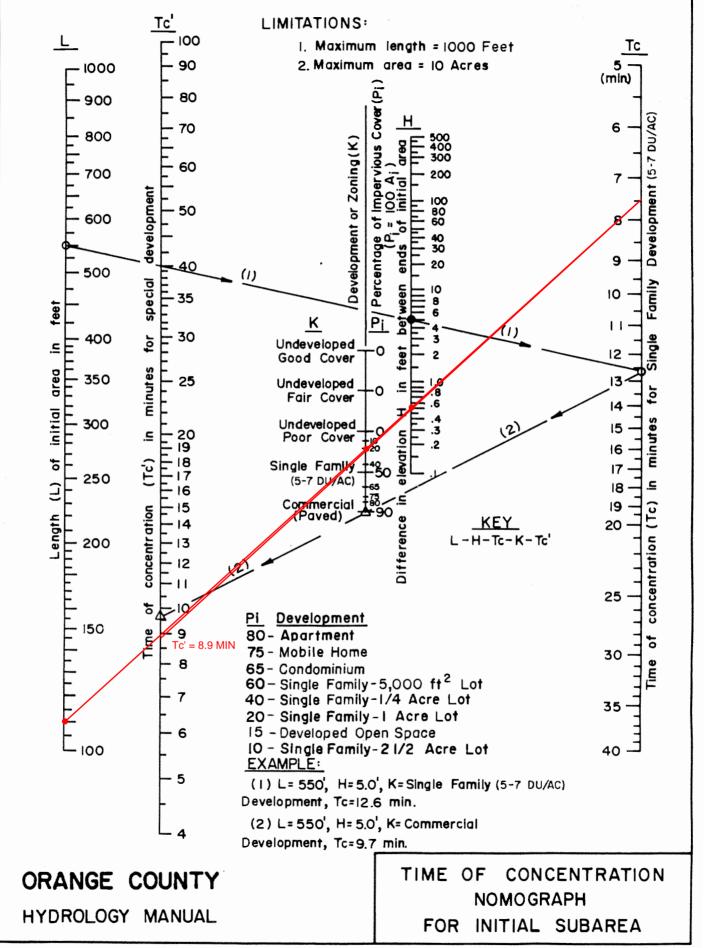

D.7. DRAINAGE AREA

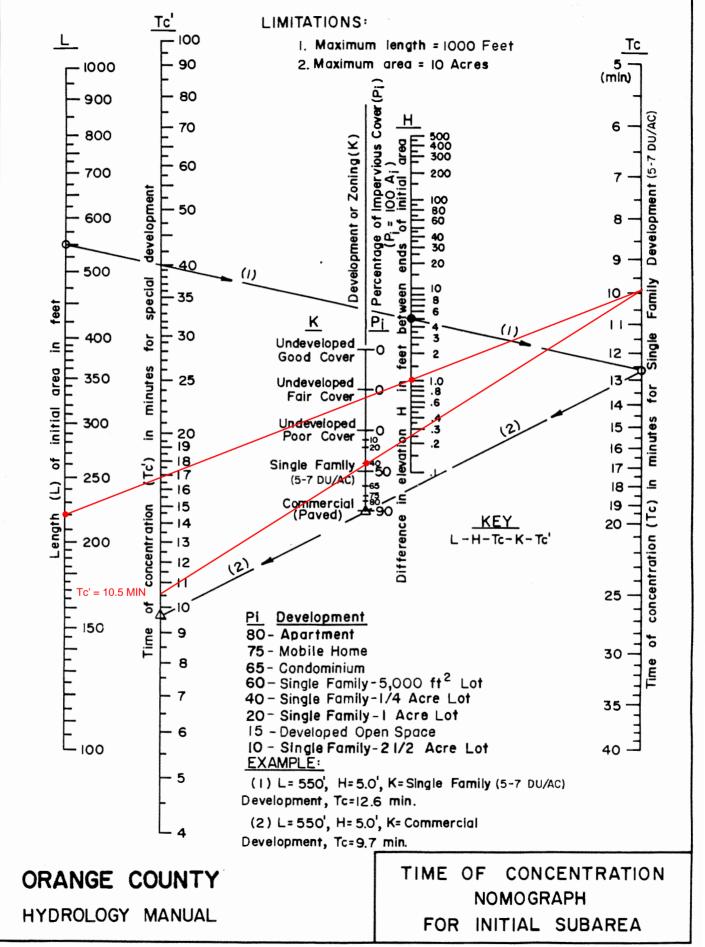
The contributing drainage area may be determined from topographic contour maps, aerial photos, and field surveys. Watershed divides are then drawn on a suitable topographic map and the enclosed drainage area is determined by planimeter or other methods. In areas where lateral and transverse slopes on the watershed are very mild, the nominal watershed area (or drainage subdivision) runoff may "cascade" under severe rainfall. That is,

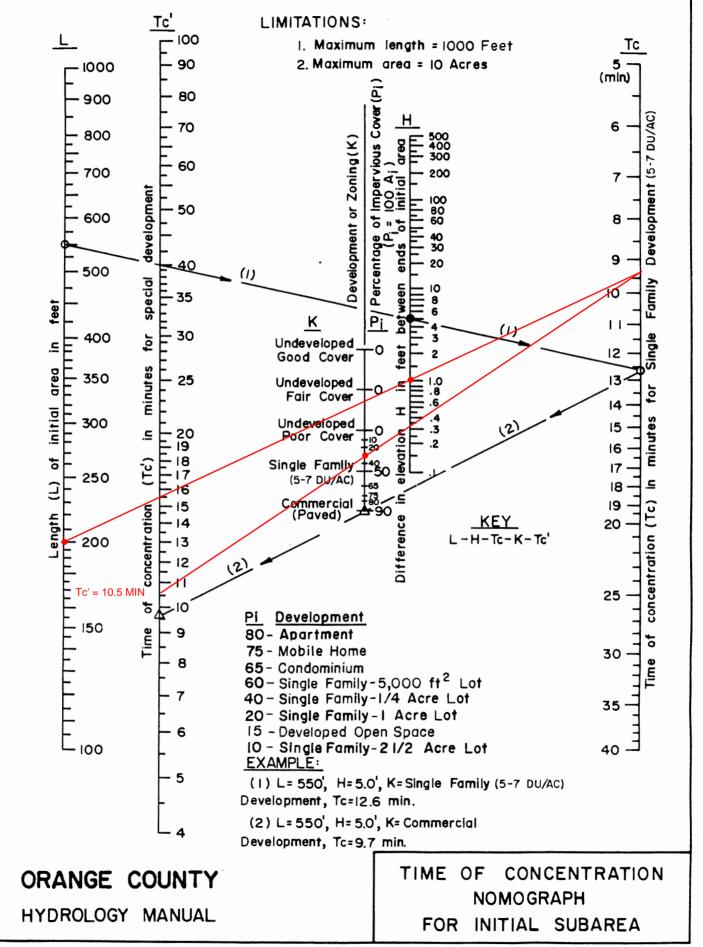

Pre-Development Hydrologic Summary Table										
			Length	Н	Тс	I (2-year)	l (100-year)	C	Q (2-year)	Q (100-year)
Sub-Area	Area	Imp	(Feet)	(Feet)	(Min)	(in/hr)	(in/hr)	C	(cfs)	(cfs)
A1	2.04	0.01	280	2	13.5	1.28	3.50	0.69	1.80	4.94
A2	0.46	0.01	112	3	7.25	1.83	5.00	0.75	0.63	1.73
								Total	2.44	6.67

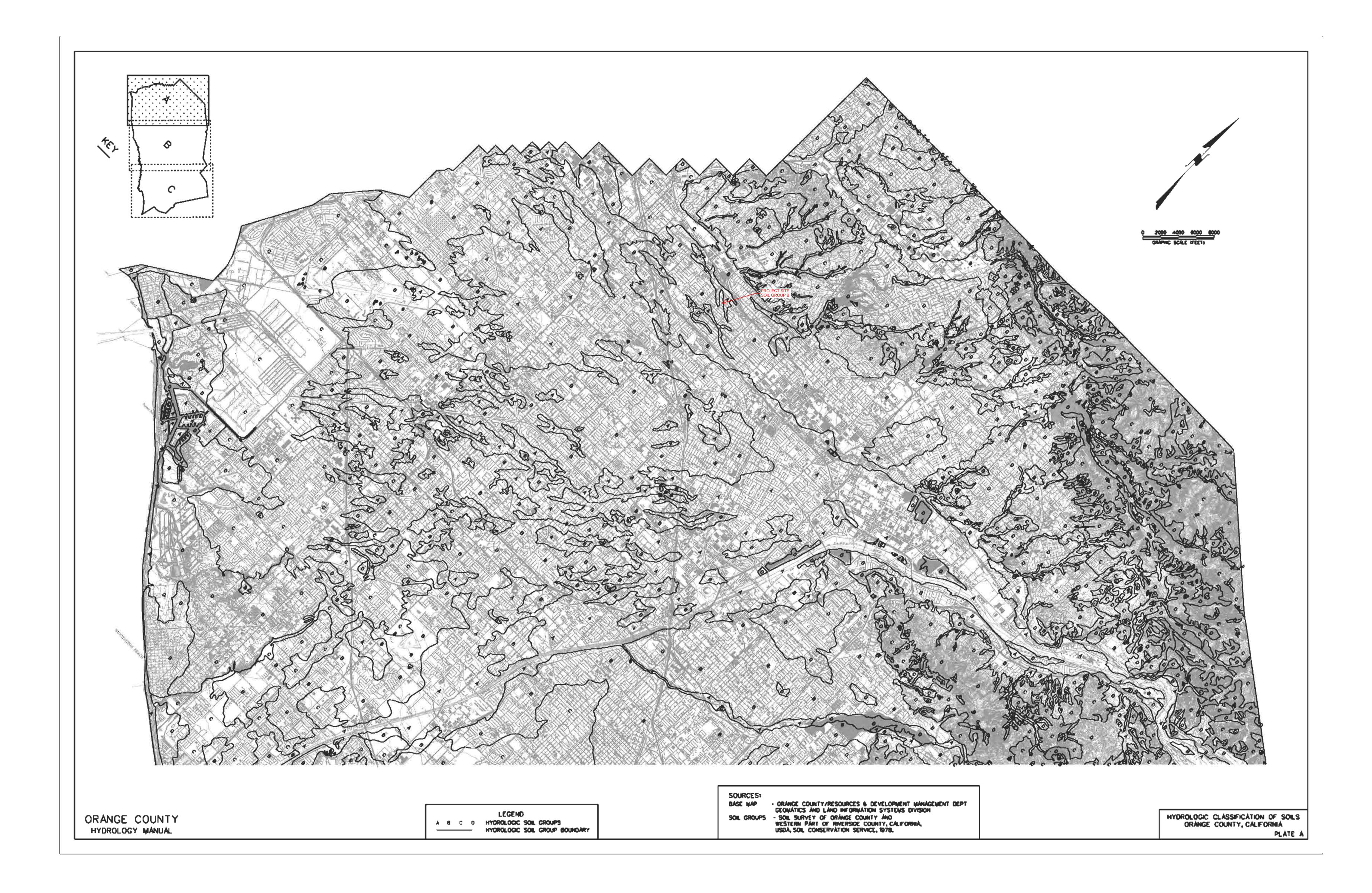

	Post-Development Hydrologic Summary Table									
			Length	Н	Тс	I (2-year)	l (100-year)	C	Q (2-year)	Q (100-year)
Sub-Area	Area	Imp	(Feet)	(Feet)	(Min)	(in/hr)	(in/hr)	С	(cfs)	(cfs)
A1	1.02	0.8	205	2.5	6.5	1.95	5.32	0.87	1.73	4.74
A2	0.58	1	50	1	4.75	2.33	6.37	0.90	1.22	3.33
A3	0.46	0.22	110	0.5	8.9	1.63	4.45	0.77	0.58	1.58
A4	0.22	0.41	220	1	10.5	1.48	4.04	0.79	0.26	0.70
A5	0.22	0.29	200	1	10.5	1.48	4.04	0.77	0.25	0.69
								Total	4.03	11.03

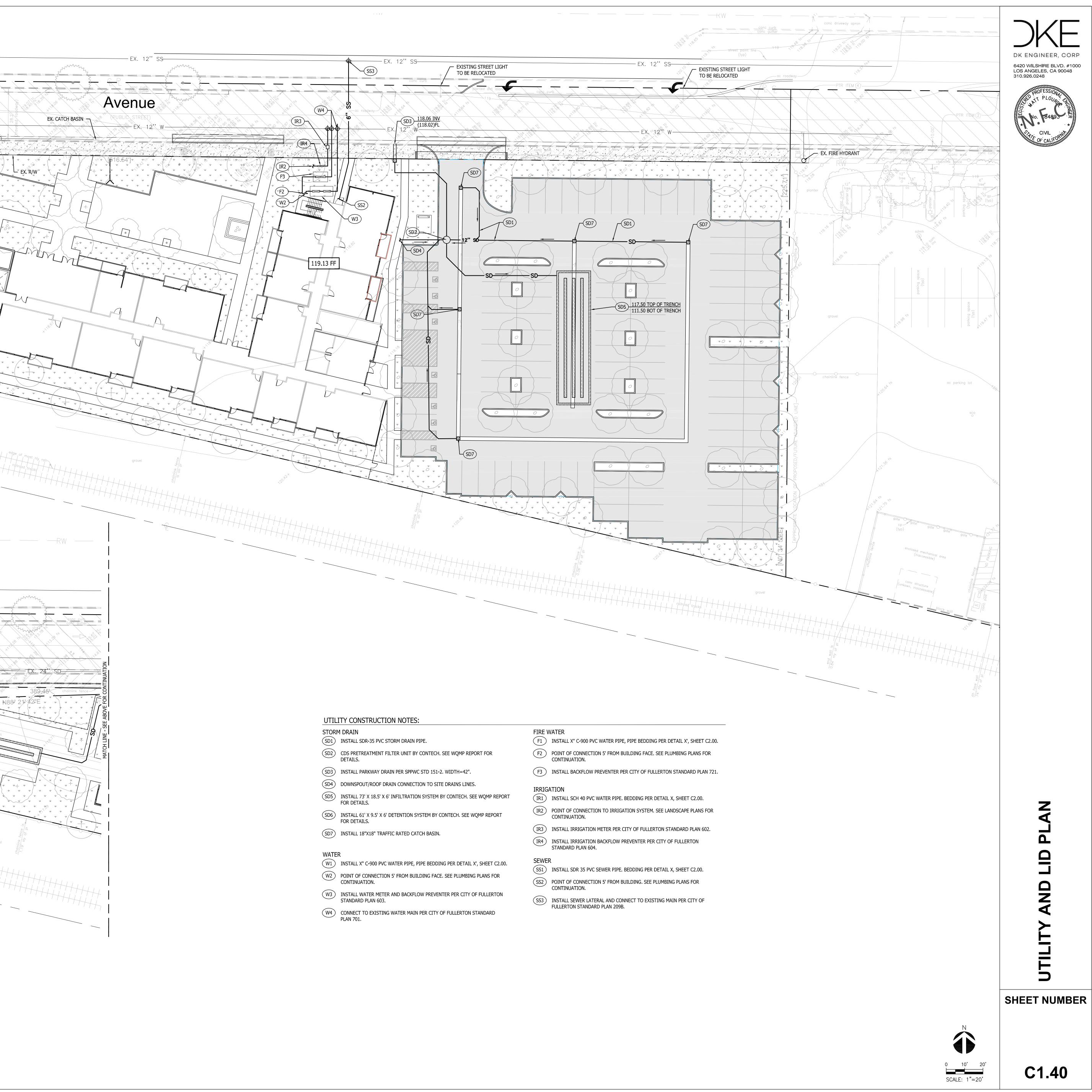

PRE-DEVELOPMENT AREA A1




PRE-DEVELOPMENT AREA A2



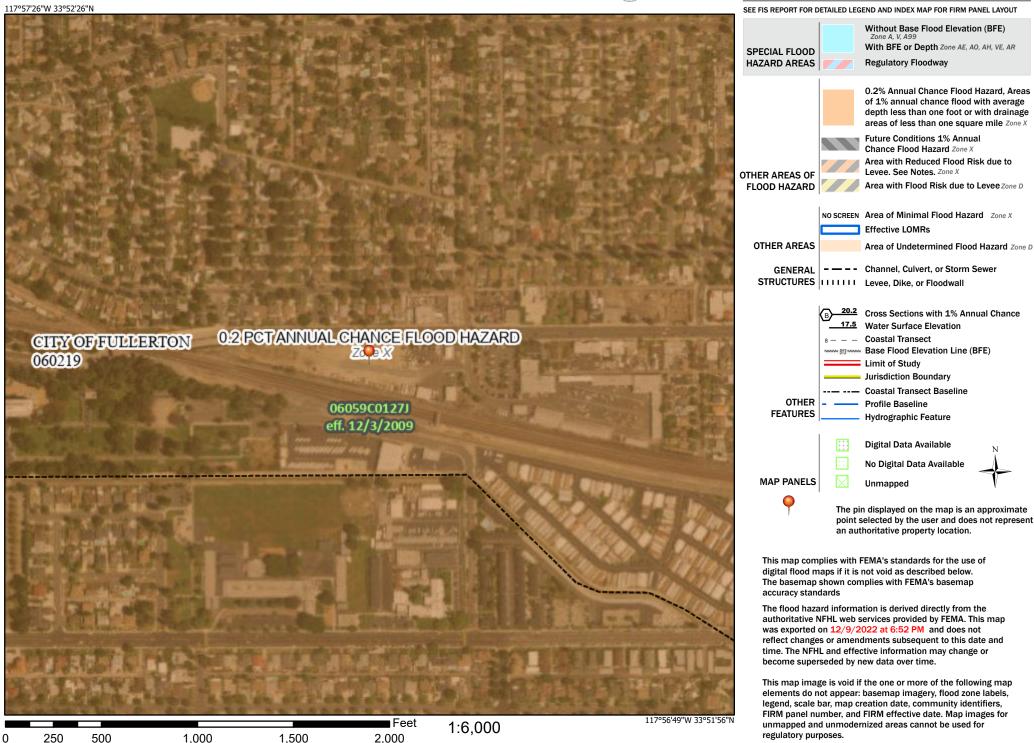




APPENDIX C Supporting Documents

CITY OF FULLERTON 12" SEWER MAIN -EX. 12'' SS Commonwealth CITY OF FULLERTON EX. CATCH BASIN - City of Fullerton 12" Water Main CITY OF FULLERTON 24" STORM DRAIN • EX. 12'' W-SD3 115.72 INV (115.68)FL ex. Fire Hydrant 119.13 FF B.N.S.F. Railroad Right-of-Way Š 117.00 TOP OF TRENCH 111.00 BOT OF TRENCH SD6

PLOT DATE:


	TIRE WATER
	F1 INSTALL X" C-900 PVC WATER PIPE, PIPE BEDDING PER DETAIL X', SHEET C2.00.
OR	F2 POINT OF CONNECTION 5' FROM BUILDING FACE. SEE PLUMBING PLANS FOR CONTINUATION.
	F3 INSTALL BACKFLOW PREVENTER PER CITY OF FULLERTON STANDARD PLAN 721.
	RRIGATION
MP REPORT	IR1 INSTALL SCH 40 PVC WATER PIPE. BEDDING PER DETAIL X, SHEET C2.00.
REPORT	IR2 POINT OF CONNECTION TO IRRIGATION SYSTEM. SEE LANDSCAPE PLANS FOR CONTINUATION.
	IR3 INSTALL IRRIGATION METER PER CITY OF FULLERTON STANDARD PLAN 602.
	IR4 INSTALL IRRIGATION BACKFLOW PREVENTER PER CITY OF FULLERTON STANDARD PLAN 604.
EET C2.00.	SEWER
	SS1 INSTALL SDR 35 PVC SEWER PIPE. BEDDING PER DETAIL X, SHEET C2.00.
NS FOR	SS2 POINT OF CONNECTION 5' FROM BUILDING. SEE PLUMBING PLANS FOR CONTINUATION.
LERTON	SS3 INSTALL SEWER LATERAL AND CONNECT TO EXISTING MAIN PER CITY OF

APPENDIX D FEMA Flood Map

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

APPENDIX E Hydraulic Calculations

Parkway Drain

Project Description		
Friction Method	Manning	
Solve For	Formula	
Solve Ful	Normal Depth	
Input Data		
Roughness Coefficient	0.013	
Channel Slope	2.0 %	
Height	4.0 in	
Bottom Width	42.00 in	
Discharge	5.52 cfs	
Results		
Normal Depth	3.1 in	
Flow Area	0.9 ft ²	
Wetted Perimeter	48.3 in	
Hydraulic Radius	2.7 in	
Top Width	42.00 in	
Critical Depth	4.0 in	
Percent Full	78.5 %	
Critical Slope	1.0 %	
Velocity	6.03 ft/s	
Velocity Head	0.56 ft	
Specific Energy	0.83 ft	
Froude Number	2.077	
Discharge Full	5.38 cfs	
Slope Full	2.0 %	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 in	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Average End Depth Over Rise	0.0 %	
Normal Depth Over Rise	78.5 %	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	3.1 in	
Critical Depth	4.0 in	
Channel Slope	2.0 %	
Critical Slope	1.0 %	

Untitled1.fm8 12/12/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

3.2.1.1 Arterial Highway

Arterial highway design criteria are listed below. Table 3-1 shows the basis of design for different types of roadways.

- One travel lane (use 12' if not determined) shall be free from inundation in each direction in a 10-year storm.
- In a sump condition, one travel lane (use 12' if not determined) shall be free from inundation in each direction in a 25-year storm.
- Median and left-turn pockets shall not be considered as travel lanes.
- In places where super-elevation occurs on arterial highways, an inlet shall be provided (upstream of the point water starts to move across the lanes) as necessary to preclude drainage across the travel lanes. The catch basin shall intercept a minimum of a 10-year storm. Local depressions are not to be used for inlets at medians; grate opening or side opening/grate combination (for which future paving overlap will not create a drop) are recommended. Flooding width from median curbs in super elevated sections shall not exceed 2 feet.
- Flooding must be contained to top of curb for 10-year storm.
- In sump condition, flooding must be contained to top of curb for 25-year storm.
- **100-year flooded width shall not exceed street R/W**, unless it can be demonstrated by the applicant that no adverse effect to adjacent low-lying structures is present.
- Cross street flow is not recommended

	Design	Storm	Design Water Spread		
Type/Category/Feature	25-year	10-year	Shoulder or Parking Lane	½ Outer Lane	Local Standard
Arterial-Primary, multilane Speeds over 45 mph	x		х		
Arterial-Secondary, multilane Speeds 45 mph and under		х		x	
Low Volume, rural Speeds over 45 mph	x		х		
Urban Speeds 45 mph and under		x			х

Notes:

See OCPW Standard Plans for street types.

Table 3-1: Roadway Design Storm Criteria

Project Description		
Solve For	Spread	
Input Data		
Channel Slope	0.2 %	
Discharge	4.03 cfs	
Gutter Width	2.0 ft	
Gutter Cross Slope	5.0 %	
Road Cross Slope	3.2 %	
Roughness Coefficient	0.013	
Results		
Spread	11.2 ft	
Flow Area	2.0 ft ²	
Depth	4.7 in	
Gutter Depression	0.4 in	
Velocity	1.98 ft/s	

Street Spread - 2yr

Untitled1.fm8 12/12/2022 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.03.00.03] Page 1 of 1

Project Description		
Solve For	Spread	
Input Data		
Channel Slope	0.2 %	
Discharge	11.03 cfs	
Gutter Width	2.0 ft	
Gutter Cross Slope	5.0 %	
Road Cross Slope	3.2 %	
Roughness Coefficient	0.013	
Results		
Spread	16.4 ft	
Flow Area	4.4 ft ²	
Depth	6.7 in	
Gutter Depression	0.4 in	
Velocity	2.53 ft/s	

Street Spread - 100 Yr

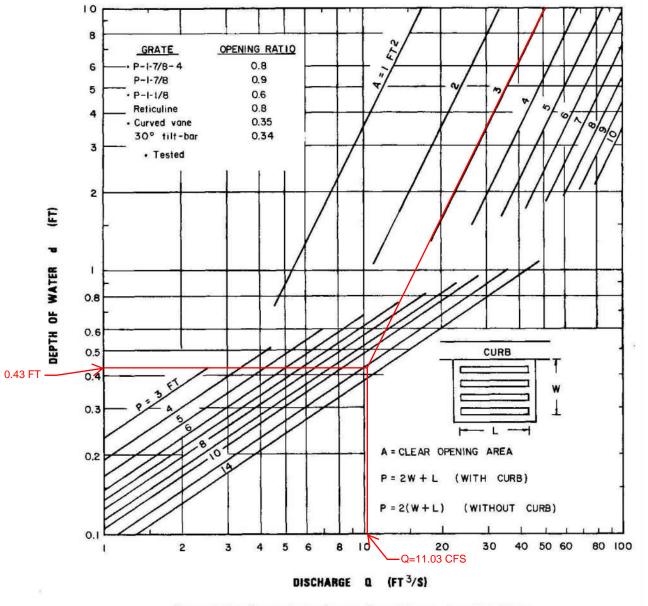



CHART 9B

W = 2' L = 3' $A = 6 \text{ ft}^2$ $A = 3 \text{ ft}^2 (50\% \text{ clogging})$

Preliminary Water Quality Management Plan (WQMP)

Project Name:

Pointe Common 1600 West Commonwealth Avenue, Fullerton, CA 92833

Prepared for: Meta Housing Corporation 11150 W. Olympic Blvd., Suite 620 Los Angeles, CA 90064 310-575-3543

> Prepared by: DK Engineer Corp (DKE)

Engineer <u>Matt Plourde</u> Registration No. <u>84893</u> 6420 Wilshire Blvd., Suite 1000 Los Angeles, CA 90048 (909) 559-7361 Prepared: December 2022

Project Owner's Certification			
Permit/Application No.	PRJ-2022-0121	Grading Permit No.	
Tract/Parcel Map No.		Building Permit No.	
CUP, SUP, and/or APN (Specify Lot Numbers if Portions of Tract)			APN 030-290-22

This Water Quality Management Plan (WQMP) has been prepared for Meta Housing Corporation by DK Engineer Corp (DKE). The WQMP is intended to comply with the requirements of the local NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the Fullerton Region. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

Owner:	
Title	Pointe Common
Company	Meta Housing Corp, Chris Maffris, SVP
Address	11150 W. Olympic Blvd, Suite 620 , Los Angeles, CA 90064
Email	
Telephone #	
Signature	Date 12/12/22

Contents

Page No.

Section I Discretionary Permit(s) and Water Quality Conditions	3
Section II Project Description	4
Section III Site Description	10
Section IV Best Management Practices (BMPs)	12
Section V Inspection/Maintenance Responsibility for BMPs	24
Section VI Site Plan and Drainage Plan	26
Section VII Educational Materials	27

Attachments

Attachment A	Educational Materials
Attachment B	Supporting Figures
Attachment C	Geotechnical Report
Attachment D	Design Plans and Details

Section IDiscretionary Permit(s) andWater Quality Conditions

Provide discretionary permit and water quality information. *Refer to Section 2.1 in the Technical Guidance Document (TGD) available from the Orange County Stormwater Program (ocwatersheds.com).*

Project Infomation			
Permit/Application No.	PRJ-2022-0121	Tract/Parcel Map No./APN	030-290-22
Additional Information/ Comments:			
	Water Quality	Conditions	
Water Quality Conditions	A Water Quality Managem	ent Plan is required for this pr	roject.
(list verbatim)			
Wa	tershed-Based	Plan Conditions	
Provide applicable conditions from watershed - based plans including WIHMPs and TMDLS.	d To be determined on Fi	inal WQMP.	

Section II Project Description

II.1 Project Description

Provide a detailed project description including:

- Project areas;
- Land uses;
- Land cover;
- Design elements;
- A general description not broken down by drainage management areas (DMAs).

Include attributes relevant to determining applicable source controls. *Refer to Section 2.2 in the TGD for information that must be included in the project description.*

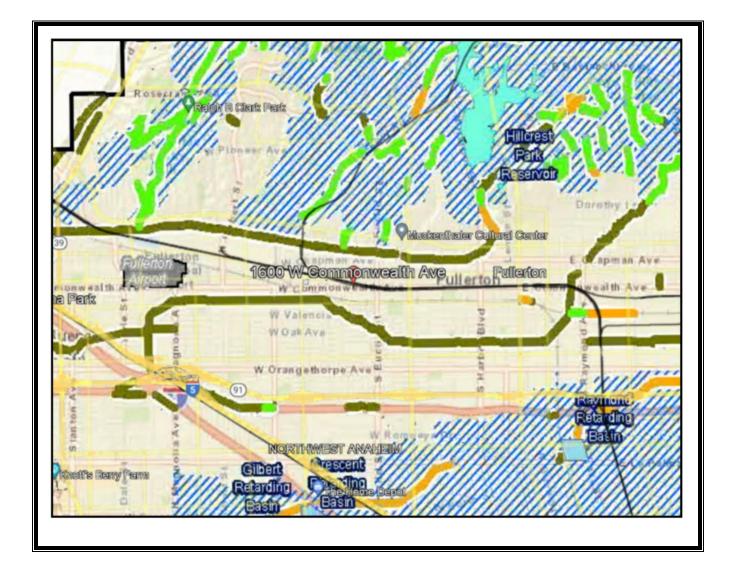
Description of Proposed Project				
Development Category (Verbatim from WQMP):				
Project Area (ft ²): 108,200 ft ²	Number of Dwe	lling Units: <u>65</u>	SIC Code:	
Narrative Project Description:	The project consists of the construction of three stories of residential units. The unit count includes 62 residential units. The site is 2.5 acres and located at 1600 West Commonwealth Avenue in the City of Fullerton.			
	Perv	ious	Imperv	vious
Project Area	Area (acres or sq ft)	Percentage	Area (acres or sq ft)	Percentage
Pre-Project Conditions	107,607 sq ft	99.0%	1,087 sq ft	1.0%
Post-Project Conditions	32,053 sq ft	29.5%	76,641 sq ft	70.5%
Drainage Patterns/Connections	All roof drainage will be collected using downspouts and will flow first into one of the two on-site CDS units. After being filtered by the CDS unit, water will flow into one of two infiltration trenches. Storm water will then be infiltrated into the surrounding soil. If needed, water will overflow through the CDS units			

into a catch basin, which will then discharge through a curb drain. No pump will be needed for overflow purposes.

This existing developed site slopes from the south to the north side of the site and the runoff sheet flows off the site towards Commonwealth Avenue.

II.2 Potential Stormwater Pollutants

Determine and list expected stormwater pollutants based on land uses and site activities. *Refer to Section 2.2.2 and Table 2.1 in the TGD for guidance.*


Pollutants of Concern				
Pollutant	Circle One: E=Expected to be of concern N=Not Expected to be of concern		Additional Information and Comments	
Suspended-Solid/ Sediment	Ē	N		
Nutrients	Ē	N		
Heavy Metals	Е	ľ		
Pathogens (Bacteria/Virus)	E	Ν		
Pesticides	Ē	Ν		
Oil and Grease	Ð	Ν		
Toxic Organic Compounds	Е	\mathbb{D}		
Trash and Debris	Ē	N		

II.3 Hydrologic Conditions of Concern

Determine if streams located downstream from the project area are determined to be potentially susceptible to hydromodification impacts. *Refer to Section 2.2.3.1 in the TGD for* NOC *or Section 2.2.3.2 for* **<SOC>**.

 \boxtimes No – Show map

Yes – Describe applicable hydrologic conditions of concern below. *Refer to Section 2.2.3 in the TGD.*

II.4 Post Development Drainage Characteristics

Describe post development drainage characteristics. Refer to Section 2.2.4 in the TGD.

All roof drainage will be collected using downspouts and will flow first into one of the two on-site CDS units. After being filtered by the CDS unit, water will flow into one of two infiltration trenches. Storm water will then be infiltrated into the surrounding soil. If needed, water will overflow through the CDS units into a catch basin, which will then discharge through a curb drain. No pump will be needed for overflow purposes.

Runoff from grade level courtyards will be captured by area drains and directed by storm-drain pipe to a pump located either at the basement or outside of the proposed building and pumped to the infiltration trench.

II.5 Property Ownership/Management

Describe property ownership/management. Refer to Section 2.2.5 in the TGD.

To be added in the Final WQMP

Section III Site Description

III.1 Physical Setting

Fill out table with relevant information. *Refer to Section 2.3.1 in the TGD.*

Planning Area/ Community Name	Manufacturing - General
Location/Address	1600 West Commonwealth Avenue Fullerton, CA 92833
Project Area Description	The project area is a mixed-use area. To the west and south of the site are railroad tracks. To the north and east of the site are residential and commercial buildings respectively.
Land Use	The project site is currently an undeveloped lot, approximately 2.5 acres.
Zoning	M-G (Manufacturing – General)
Acreage	2.5 acres
Predominant Soil Type	B Soils

III.2 Site Characteristics

Fill out table with relevant information and include information regarding BMP sizing, suitability, and feasibility, as applicable. Refer to Section 2.3.2 in the TGD.

Precipitation Zone	0.90", Per Rainfall Zone Map XVI-1
Topography	There is some sloping on-site, with approximately 2'-3' of difference in elevation across site.
Drainage Patterns/Connections	Site slopes from the south to north of the site and sheet flows off the site towards Commonwealth Avenue.
Soil Type, Geology, and Infiltration Properties	Infiltration is viable on-site. Testing was done using the County Method and gave a measured infiltration rate of 6 in/hr on the western area of the site and 1.5 in /hr on the eastern area of the site.

Site Characteristics (continued)		
Hydrogeologic (Groundwater) Conditions	Per Geotechnical Report by GeoConcepts. Inc., dated August 23, 2022, groundwater level is approximately 42' below the surface of site.	
<i>Geotechnical Conditions</i> (relevant to infiltration)	Soil suitable for infiltration per geotechnical report.	
Off-Site Drainage	The adjacent streets drain by non-erosive methods to City storm drain inlets.	
Utility and Infrastructure Information	There is an existing City storm drain line in West Commonwealth Avenue adjacent to the site.	

III.3 Watershed Description

Fill out table with relevant information and include information regarding BMP sizing, suitability, and feasibility, as applicable. *Refer to Section 2.3.3 in the TGD*.

Receiving Waters	Will be determined During the final WQMP preparation.		
303(d) Listed Impairments	Will be determined During the final WQMP preparation.		
Applicable TMDLs	Will be determined During the final WQMP preparation.		
Pollutants of Concern for the Project	Will be determined During the final WQMP preparation.		
Environmentally Sensitive and Special Biological Significant Areas	Will be determined During the final WQMP preparation.		

Section IV Best Management Practices (BMPs)

IV. 1 Project Performance Criteria

Describe project performance criteria. Several steps must be followed in order to determine what performance criteria will apply to a project. These steps include:

- If the project has an approved WIHMP or equivalent, then any watershed specific criteria must be used and the project can evaluate participation in the approved regional or sub-regional opportunities. The local Permittee planning or NPDES staff should be consulted regarding the existence of an approved WIHMP or equivalent.
- Determine applicable hydromodification control performance criteria. *Refer to Section 7.II-* 2.4.2.2 *of the Model WQMP.*
- Determine applicable LID performance criteria. *Refer to Section 7.II-2.4.3 of the Model WQMP*.
- Determine applicable treatment control BMP performance criteria. *Refer to Section 7.II-3.2.2 of the Model WQMP*.
- Calculate the LID design storm capture volume for the project. *Refer to Section 7.II-2.4.3 of the Model WQMP.*

(NOC Permit Area only) Is for the project area that incl criteria or if there are oppor on regional or sub-regional	YES 🗌	NO 🔀	
If yes, describe WIHMP feasibility criteria or regional/sub-regional LID opportunities.			

Project Performance Criteria (continued)			
If HCOC exists, list applicable hydromodification control performance criteria (Section 7.II-2.4.2.2 in MWQMP)	No HCOC		
List applicable LID performance criteria (Section 7.II-2.4.3 from MWQMP)	Priority Projects must infiltrate, harvest and use, evapotranspire, or biotreat/biofilter, the 85th percentile, 24-hour storm event (Design Capture Volume). • A properly designed biotreatment system may only be considered if infiltration, harvest and use, and evapotranspiration (ET) cannot be feasibly implemented for the full design capture volume. In this case, infiltration, harvest and use, and ET practices must be implemented to the greatest extent feasible and biotreatment may be provided for the remaining design capture volume.		
List applicable treatment control BMP performance criteria (Section 7.II-3.2.2 from MWQMP)	Infiltration will be utilized onsite to treat stormwater. Stormwater will be routed into two infiltration trenches.		
Calculate LID design storm capture volume for Project.	$\frac{\text{Total Site}}{\text{C}=\%\text{Imp}*.75+.15}$ Total Treatment Area = 108694 SF (2.5 Acres) C= .705 x .75 + .15 -= .68 DCV = C*d*A = 0.68*0.90in*1/12*108,694 = 5,543 ft ³		

IV.2. SITE DESIGN AND DRAINAGE PLAN

Describe site design and drainage plan including

- A narrative of site design practices utilized or rationale for not using practices;
- A narrative of how site is designed to allow BMPs to be incorporated to the MEP
- A table of DMA characteristics and list of LID BMPs proposed in each DMA.
- Reference to the WQMP plot plan.
- Calculation of Design Capture Volume (DCV) for each drainage area.
- A listing of GIS coordinates for LID and Treatment Control BMPs (unless not required by local jurisdiction).

Refer to Section 2.4.2 in the TGD.

All roof drainage will be collected using downspouts and will flow first into one of the two on-site CDS units. After being filtered by the CDS unit, water will flow into one of two infiltration trenches. Storm water will then be infiltrated into the surrounding soil. If needed, water will overflow through the CDS units into a catch basin, which will then discharge through a curb drain. No pump will be needed for overflow purposes.

IV.3 LID BMP SELECTION AND PROJECT CONFORMANCE ANALYSIS

Each sub-section below documents that the proposed design features conform to the applicable project performance criteria via check boxes, tables, calculations, narratives, and/or references to worksheets. *Refer to Section 2.4.2.3 in the TGD for selecting LID BMPs and Section 2.4.3 in the TGD for conducting conformance analysis with project performance criteria.*

IV.3.1 Hydrologic Source Controls

If required HSCs are included, fill out applicable check box forms. If the retention criteria are otherwise met with other LID BMPs, include a statement indicating HSCs not required.

Name	Included?
Localized on-lot infiltration	
Impervious area dispersion (e.g. roof top disconnection)	
Street trees (canopy interception)	
Residential rain barrels (not actively managed)	
Green roofs/Brown roofs	
Blue roofs	
Impervious area reduction (e.g. permeable pavers, site design)	
Other: HSC not required	
Other:	

IV.3.2 Infiltration BMPs

Identify infiltration BMPs to be used in project. If design volume cannot be met state why BMPs cannot be met

Name	Included?
Bioretention without underdrains	
Rain gardens	
Porous landscaping	
Infiltration planters	
Retention swales	
Infiltration trenches	\square
Infiltration basins	
Drywells	
Subsurface infiltration galleries	
French drains	
Permeable asphalt	
Permeable concrete	
Permeable concrete pavers	
Other:	
Other:	

Show calculations below to demonstrate if the LID Design Strom Capture Volume can be met with infiltration BMPs. If not document how much can be met with infiltration and document why it is not feasible to meet the full volume with infiltration BMPs.

```
DCV = 5,543 CF (per section IV.1)
East Parking Lot Trench (Treats 70% of Site)
DCV= 5,543 CF * 0.7 = 3,880 CF
Trench Volume = 3,944 CF (See Contech Detail)
Trench Footprint = 73 ft x 18.5 ft = 1,350.5 SF
Kobserved= 1.5 in/hr, FS= 2
Kdesign=.75 in/hr
Drawdown Time = 3,944 CF / (1,350.5 * 0.75/12) = 46.73 Hours
```

Western Lot Trench (Treats 30% of Site)DCV=5,543 CF * 0.3 = 1,663 CFTrench Volume = 1,672 CF (See Contech Detail)Trench Footprint = 61 ft x 9.5 ft = 579.5 SF $K_{observed}=6 \text{ in/hr}, FS=2$ $K_{design}=3 \text{ in/hr}$ Drawdown Time = 1,672 CF / (579.5 * 3/12) = 11.54 HoursSee Appendix C for Infiltration Report

IV.3.3 Evapotranspiration, Rainwater Harvesting BMPs

If the full Design Storm Capture Volume cannot be met with infiltration BMPs, describe any evapotranspiration, rainwater harvesting BMPs.

Name	Included?
All HSCs; See Section IV.3.1	
Surface-based infiltration BMPs	
Biotreatment BMPs	
Above-ground cisterns and basins	
Underground detention	
Other:	
Other:	
Other:	

Show calculations below to demonstrate if the LID Design Strom Capture Volume can be met with evapotranspiration, rainwater harvesting BMPs in combination with infiltration BMPs. If not document how much can be met with either infiltration BMPs, evapotranspiration, rainwater harvesting BMPs, or a combination, and document why it is not feasible to meet the full volume with either of these BMPs categories.

Due to not meeting minimum TUTIA requirements or minimum Irrigation Area Thresholds, rainwater harvesting is not feasible for this site. See below for calculations.

<u>TUTIA</u>

Design Capture Storm Depth = .9 in Project Type = Residential Minimum Required TUTIA Ratio = 110 Toilet Users/Impervious Acres = 109 users/ 1.95 ac =56 **Irrigation Area Thresholds** Design Capture Storm Depth = .9 in Min. Req. Irrigation Area per Tributary Impervious Acre =1.01 Ac/Ac Proposed Irrigation Area = .55 ac Proposed Impervious Area = 1.95 ac .55/1.95 = .282 < 1.01

IV.3.4 Biotreatment BMPs

If the full Design Storm Capture Volume cannot be met with infiltration BMPs, and/or evapotranspiration and rainwater harvesting BMPs, describe biotreatment BMPs. Include sections for selection, suitability, sizing, and infeasibility, as applicable.

Name	Included?
Bioretention with underdrains	
Stormwater planter boxes with underdrains	
Rain gardens with underdrains	
Constructed wetlands	
Vegetated swales	
Vegetated filter strips	

Proprietary vegetated biotreatment systems	
Wet extended detention basin	
Dry extended detention basins	
Other:	
Other:	

Show calculations below to demonstrate if the LID Design Strom Capture Volume can be met with infiltration, evapotranspiration, rainwater harvesting and/or biotreatment BMPs. If not document how much can be met with either infiltration BMPs, evapotranspiration, rainwater harvesting BMPs, or a combination, and document why it is not feasible to meet the full volume with either of these BMPs categories.

See section IV.3.2 for infiltation calculations

IV.3.5 Hydromodification Control BMPs

Describe hydromodification control BMPs. See Section 5 TGD. Include sections for selection, suitability, sizing, and infeasibility, as applicable. Detail compliance with Prior Conditions of Approval.

Hydromodification Control BMPs			
BMP Name	BMP Description		

IV.3.6 Regional/Sub-Regional LID BMPs

Describe regional/sub-regional LID BMPs in which the project will participate. *Refer to Section 7.II-* 2.4.3.2 *of the Model WQMP*.

Regional/Sub-Regional LID BMPs

None

IV.3.7 Treatment Control BMPs

Treatment control BMPs can only be considered if the project conformance analysis indicates that it is not feasible to retain the full design capture volume with LID BMPs. Describe treatment control BMPs including sections for selection, sizing, and infeasibility, as applicable.

Treatment Control BMPs			
BMP Name	BMP Description		

IV.3.8 Non-structural Source Control BMPs

Fill out non-structural source control check box forms or provide a brief narrative explaining if nonstructural source controls were not used.

Non-Structural Source Control BMPs				
	Name	Check One		If not applicable, state brief
Identifier		Included	Not Applicable	reason
N1	Education for Property Owners, Tenants and Occupants			
N2	Activity Restrictions			
N3	Common Area Landscape Management			
N4	BMP Maintenance			
N5	Title 22 CCR Compliance (How development will comply)			
N6	Local Industrial Permit Compliance			N/A
N7	Spill Contingency Plan			
N8	Underground Storage Tank Compliance			N/A
N9	Hazardous Materials Disclosure Compliance			N/A
N10	Uniform Fire Code Implementation			
N11	Common Area Litter Control			
N12	Employee Training			
N13	Housekeeping of Loading Docks			No loading docks on project
N14	Common Area Catch Basin Inspection			
N15	Street Sweeping Private Streets and Parking Lots			Not private street or parking lots on project.
N16	Retail Gasoline Outlets			N/A

IV.3.9 Structural Source Control BMPs

Fill out structural source control check box forms or provide a brief narrative explaining if Structural source controls were not used.

Structural Source Control BMPs						
		Chec	k One	If not applicable, state brief		
Identifier	Name	Included	Not Applicable	reason		
S1	Provide storm drain system stenciling and signage					
S2	Design and construct outdoor material storage areas to reduce pollution introduction					
S3	Design and construct trash and waste storage areas to reduce pollution introduction					
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control					
S5	Protect slopes and channels and provide energy dissipation					
	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)					
S6	Dock areas					
S7	Maintenance bays					
S8	Vehicle wash areas					
S9	Outdoor processing areas					
S10	Equipment wash areas					
S11	Fueling areas					
S12	Hillside landscaping			No hillside area on site		
S13	Wash water control for food preparation areas			N/A		
S14	Community car wash racks			Car wash on premises not permitted.		

IV.4 ALTERNATIVE COMPLIANCE PLAN (IF APPLICABLE)

IV.4.1 Water Quality Credits

Determine if water quality credits are applicable for the project. *Refer to Section 3.1 of the Model WQMP for description of credits and Appendix VI of the TGD for calculation methods for applying water quality credits.*

Description of Proposed Project						
Project Types that Qualify for Water Quality Credits (Select all that apply):						
Redevelopment projects that reduce the overall impervious footprint of the project site.		Brownfield redevelopment, meaning redevelopment, expansion, or reuse of real property which may be complicated by the presence or potential presence of hazardous substances, pollutants or contaminants, and which have the potential to contribute to adverse ground or surface WQ if not redeveloped.		of real by the zardous nts, and te to	☐ Higher density development projects which include two distinct categories (credits can only be taken for one category): those with more than seven units per acre of development (lower credit allowance); vertical density developments, for example, those with a Floor to Area Ratio (FAR) of 2 or those having more than 18 units per acre (greater credit allowance).	
Mixed use development, such as a combination of residential, commercial, industrial, office, institutional, or other land uses which incorporate design principles that can demonstrate environmental benefits that would not be realized through single use projects (e.g. reduced vehicle trip traffic with the potential to reduce sources of water or air pollution).		Transit-oriented developments, such as a mixed use residential or commercial area designed to maximize access to public transportation; similar to above criterion, but where the development center is within one half mile of a mass transit center (e.g. bus, rail, light rail or commuter train station). Such projects would not be able to take credit for both categories, but may have greater credit assigned		rea designed to portation; similar to levelopment center is ransit center (e.g. bus, n station). Such ke credit for both	☐ Redevelopment projects in an established historic district, historic preservation area, or similar significant city area including core City Center areas (to be defined through mapping).	
Developments with dedication of undeveloped portions to parks, preservation areas and other pervious uses.		Developments in historic districts or historic preservation areas.	Live-work developments, a variety of developments designed to support residential and vocational needs together – similar to criteria to mixed use development; would not be able to take credit for both categories.		In-fill projects, the conversion of empty lots and other underused spaces into more beneficially used spaces, such as residential or commercial areas.	
Calculation of Water Quality Credits (if applicable)	The	entire DCV is b	eing treated by I	.ID BMPs. V	Vater quality credits v	will not be used.

IV.4.2 Alternative Compliance Plan Information

Describe an alternative compliance plan (if applicable). Include alternative compliance obligations (i.e., gallons, pounds) and describe proposed alternative compliance measures. *Refer to Section 7.11 3.0 in the WQMP*.

N/A

Section V Inspection/Maintenance Responsibility for BMPs

Fill out information in table below. Prepare and attach an Operation and Maintenance Plan. Identify the mechanism through which BMPs will be maintained. Inspection and maintenance records must be kept for a minimum of five years for inspection by the regulatory agencies. *Refer to Section 7.II 4.0 in the Model WQMP*.

BMP Inspection/Maintenance					
ВМР	Reponsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities		
Infiltration Trench	To be determined	 Infiltration trench inspection/maintenance will consist of the following: 1. The condition of the unit will be checked after the first several runoff events after installation. The visual inspection will ascertain that the unit is functioning properly (no blockages or obstructions to inlet and/or separation screen), measuring the amount of solid materials that have accumulated in the sump, the amount of fine sediment accumulated behind the screen, and determining the amount of floating trash and debris in the separation chamber. 2. Floatables will be removed and the sump cleaned when the sump is above 75%-85% full of solids. At least once a year, the 	 Inspect before and after storm events. Inspect a minimum of two times a year. Check overflow and curb drains are free of debris and clogs. If standing water is observed 48 hours after a storm event, excavate and replace the top 12" of draining soil constituting the filtration area. 		

	 damage and to ensure that it is properly fastened. If the screen is damaged, it will be replaced or repaired. 3. Legibility of stencils and/or signs at all storm drain inlets and catch basins within the project area must be maintained at all time. 4. Maintain a log of all inspections and maintenance performed on the CDS unit.
--	---

BMP Inspection/Maintenance					
ВМР	Reponsible Party(s)	Inspection/ Maintenance Activities Required	Minimum Frequency of Activities		

Section VI Site Plan and Drainage Plan

See attached 30"x42" Grading Plan (site plan) C1.30

See attached 30"x42" Utility Plan C1.40

VI.1 SITE PLAN AND DRAINAGE PLAN

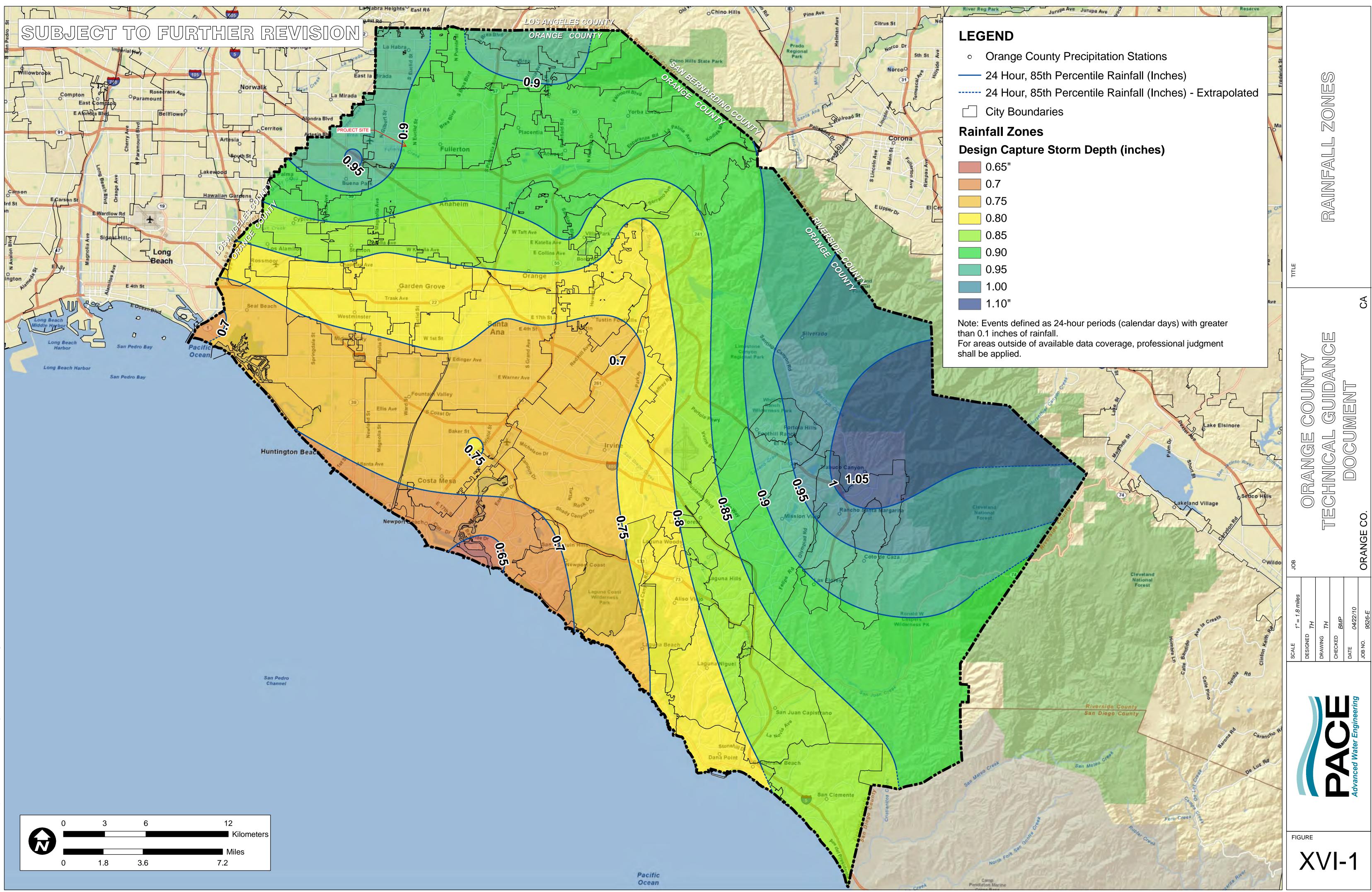
Include a site plan and drainage plan sheet set containing the following minimum information:

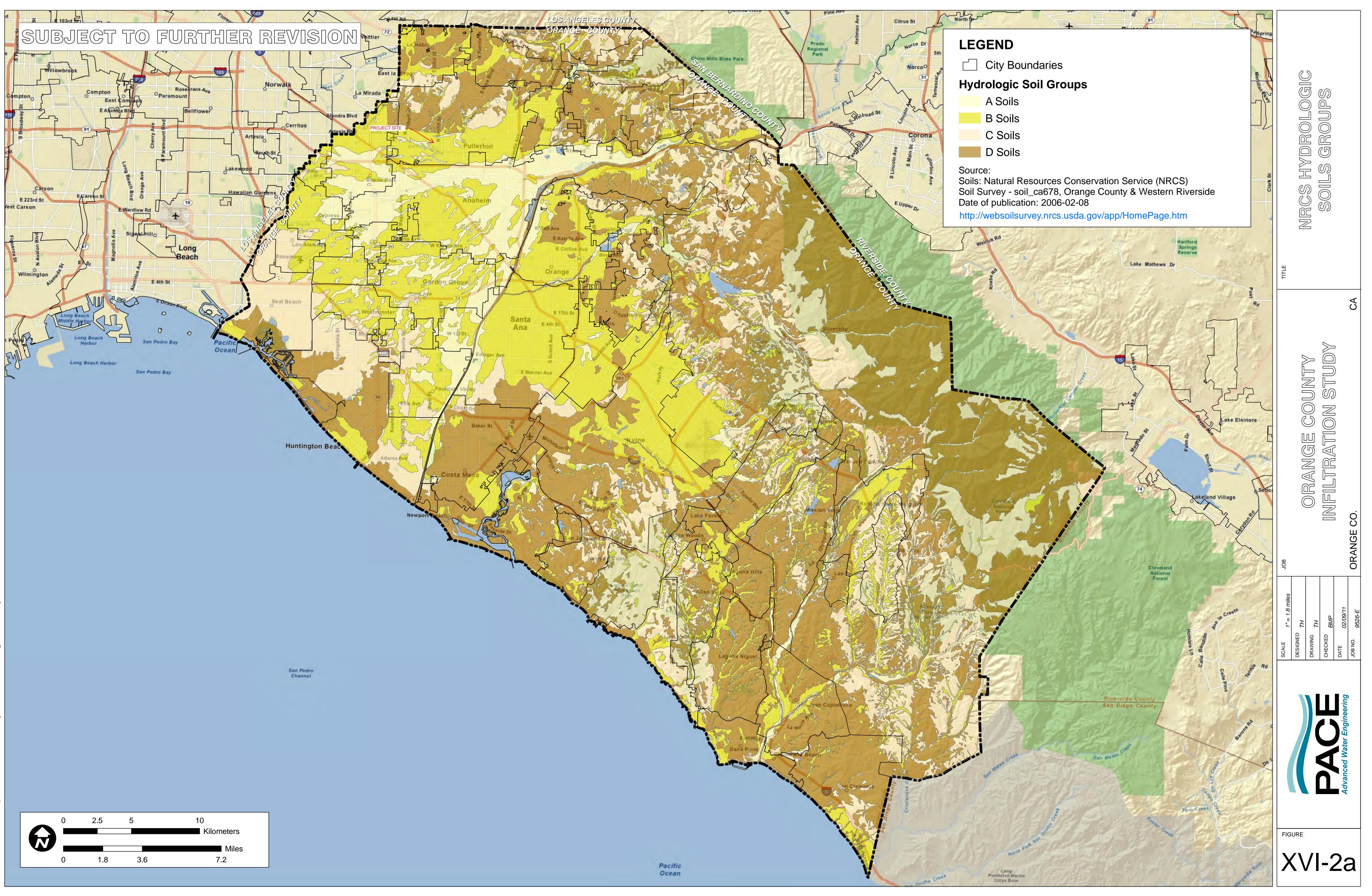
- Project location
- Site boundary
- Land uses and land covers, as applicable
- Suitability/feasibility constraints
- Structural BMP locations
- Drainage delineations and flow information
- Drainage connections
- BMP details

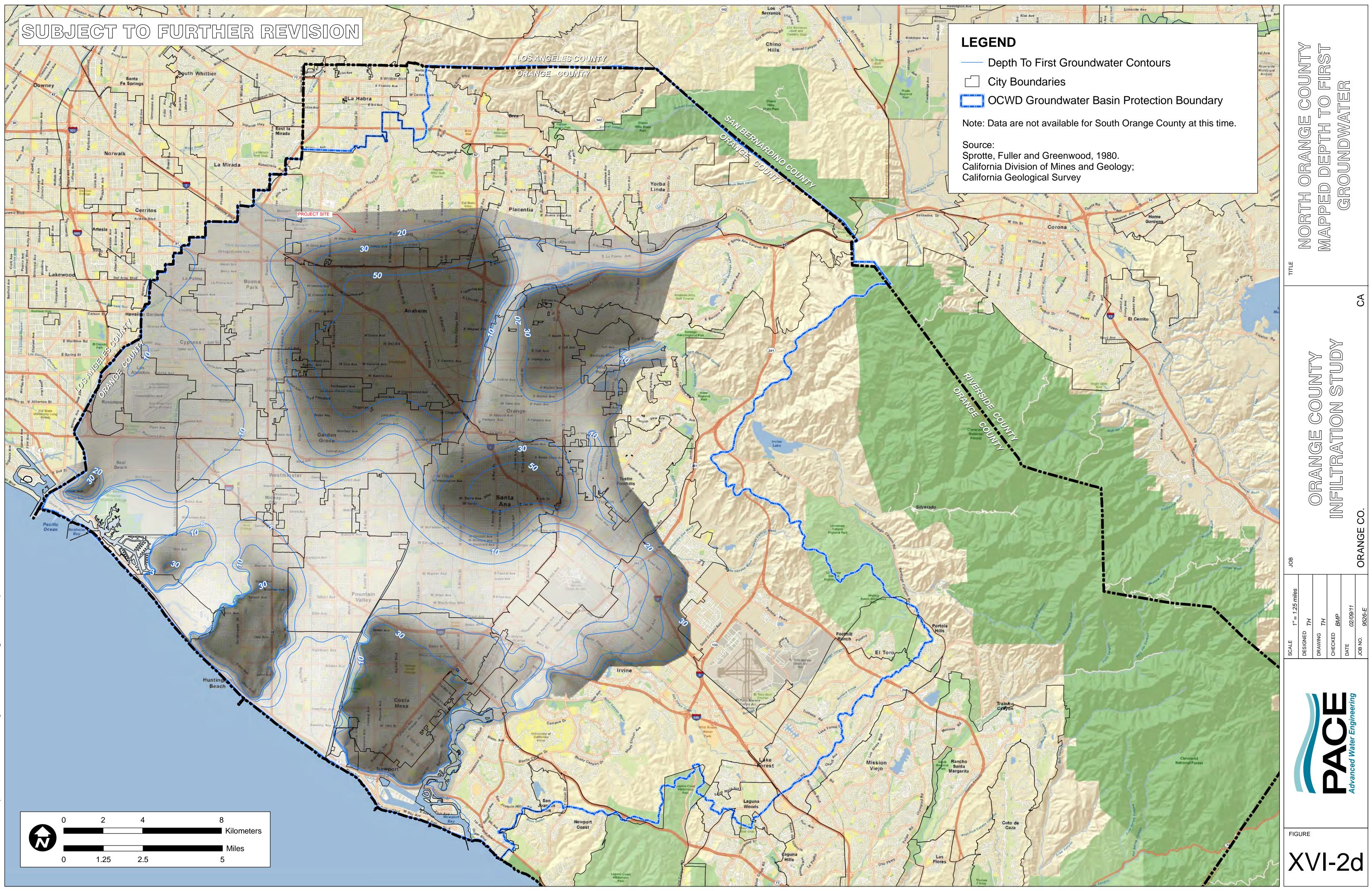
VI.2 ELECTRONIC DATA SUBMITTAL

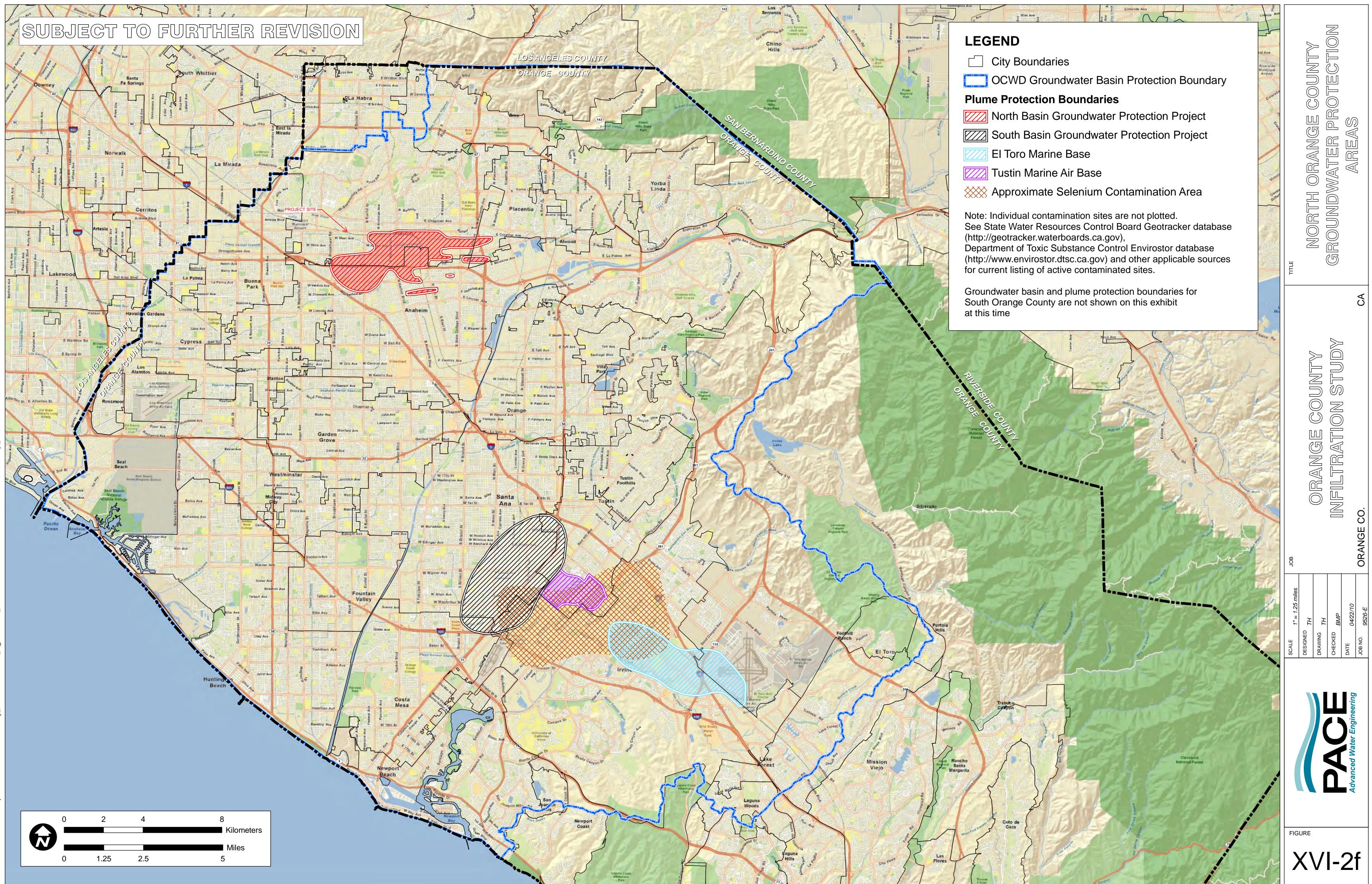
The minimum requirement is to provide submittal of PDF exhibits in addition to hard copies. Format must not require specialized software to open.

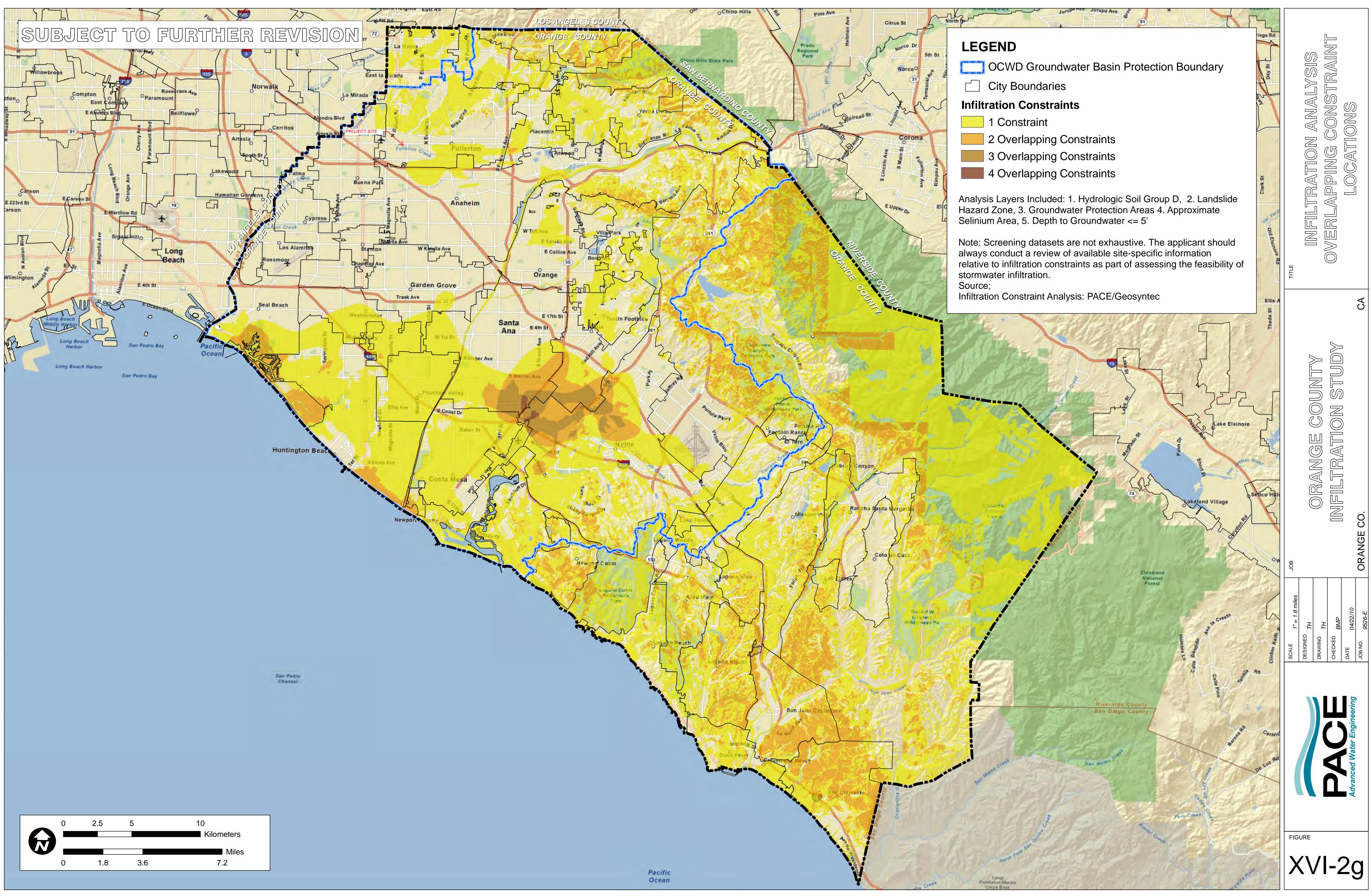
If the local jurisdiction requires specialized electronic document formats (CAD, GIS) to be submitted, this section will be used to describe the contents (e.g., layering, nomenclature, georeferencing, etc.) of these documents so that they may be interpreted efficiently and accurately

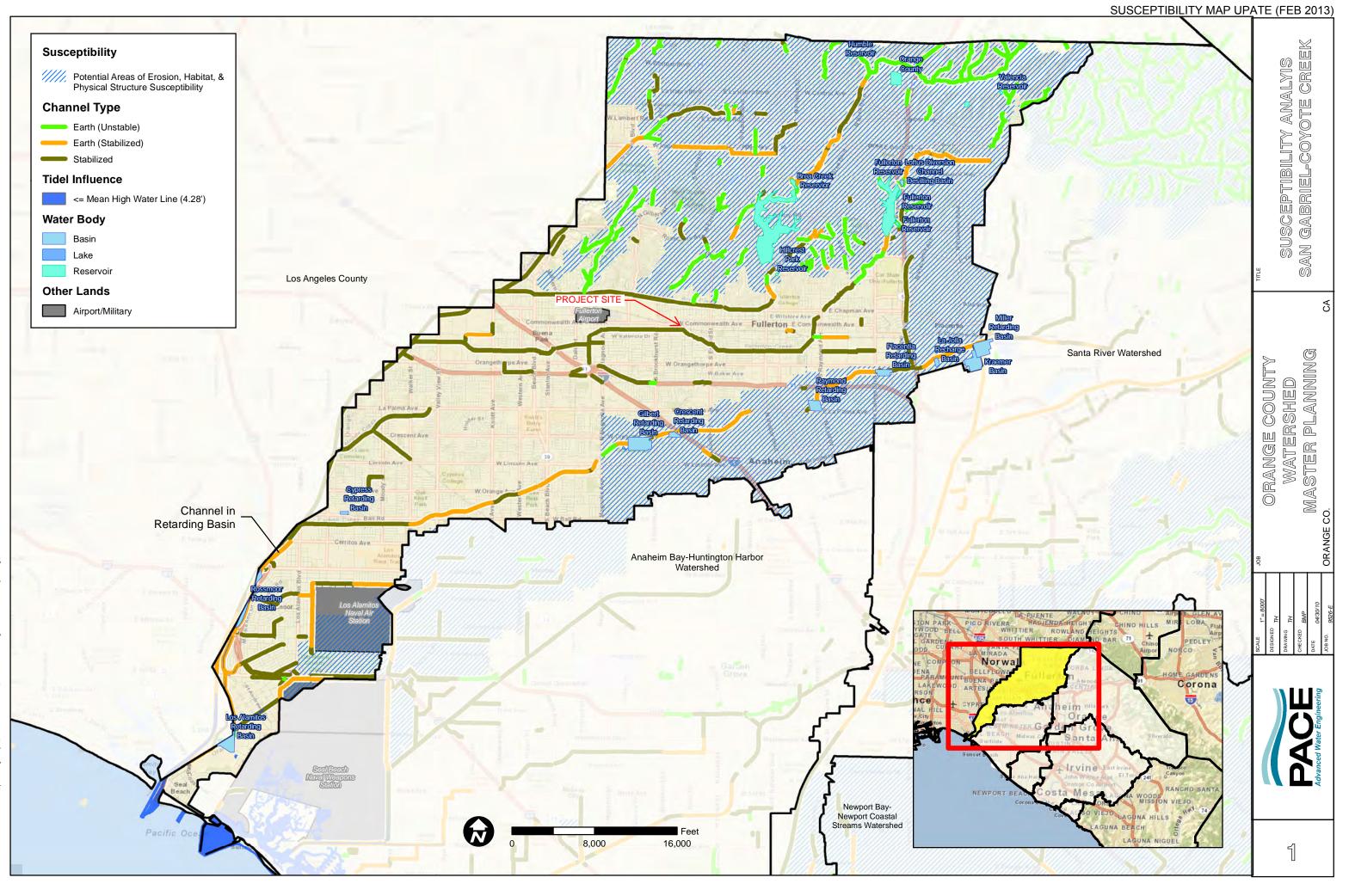

Section VII Educational Materials


Refer to the Orange County Stormwater Program (ocwatersheds.com) for a library of materials available. For the copy submitted to the Permittee, only attach the educational materials specifically applicable to the project. Other materials specific to the project may be included as well and must be attached.


Education Materials						
Residential Material (http://www.ocwatersheds.com)	Check If Applicable	Business Material (http://www.ocwatersheds.com)	Check If Applicable			
The Ocean Begins at Your Front Door		Tips for the Automotive Industry				
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar				
Tips for the Home Mechanic		Tips for the Food Service Industry				
Homeowners Guide for Sustainable Water Use		Proper Maintenance Practices for Your Business				
Household Tips			Check If			
Proper Disposal of Household Hazardous Waste		Other Material	Attached			
Recycle at Your Local Used Oil Collection Center (North County)						
Recycle at Your Local Used Oil Collection Center (Central County)						
Recycle at Your Local Used Oil Collection Center (South County)						
Tips for Maintaining a Septic Tank System						
Responsible Pest Control	\boxtimes					
Sewer Spill	\boxtimes					
Tips for the Home Improvement Projects						
Tips for Horse Care						
Tips for Landscaping and Gardening	\boxtimes					
Tips for Pet Care						
Tips for Pool Maintenance						
Tips for Residential Pool, Landscape and Hardscape Drains						
Tips for Projects Using Paint	\boxtimes					


ATTACHMENT A


ATTACHMENT B



ATTACHMENT C

November 7, 2022

Project 22-02182

Meta Housing Corporation Attn: Destiny Clara 11150 W. Olympic Blvd., Suite 620 Los Angeles, CA 90064

Subject:

INFILTRATION TEST REPORT

1600 W. Commonwealth Avenue Fullerton, California

References:

1) Preliminary Geologic and Soils Engineering report by GeoConcepts, Inc. covering the subject site, dated August 23, 2022.

Dear Ms. Clara:

Pursuant to your request, presented herein is a summary of the findings from logging and performing infiltration tests for the proposed subsurface infiltration system. It is our understanding that the proposed infiltration system will be designed to infiltrate first storm runoff into the ground as shown on the attached Plot Map. It is our understanding that the proposed infiltration trenches will be about seven feet below the existing grade. Three test pits were excavated to a depth of six feet on October 25, 2022. The test pit locations are plotted on the attached Plot Map.

The test pits encountered fill and alluvium to the depth of the test pit logging. Encountered fill had a thickness of 0.5 feet and consists predominantly of sand with minor gravels. Encountered alluvium deposits consist predominantly of silty sand to sandy silt with minor clay binder. These soils are considered relatively homogenous in that no discernible layering, structure, fabric, texture, or changes in the soil type was encountered that would affect the rate or direction of water movement.

There is no evidence of near-surface groundwater. Highest historic groundwater onsite obtained from the State of California Seismic Hazard Zone maps is about 20 feet deep. The subject site is located within a liquefaction zone on the State of California Seismic Hazard Zones Map of the Fullerton Quadrangle.

November 17, 2022 Project 22-02182

The infiltration testing was performed in the bottom of the test pit utilizing the County Method. The results of the testing are below.

Test Pit No.	Measured Infiltration Rate (in/hour)	Test Material	Tested Depth (ft)
1	1.5	Qal	7
2	6	Qal	7
3	6	Qal	7

This testing was performed using metropolitan water from a garden hose. Therefore, the rates will vary over time. It is recommended that conventional drainage systems be incorporated into the design of the project as a backup to ensure proper drainage of the site.

The proposed infiltration trenches shall be located a minimum of ten feet from adjacent private property lines as well as any existing or proposed structures and shall contain an overflow drain that conducts the overflow drainage to the street.

The following infiltration design guidelines are considered as minimums:

- 1. Water infiltration into the ground must be a minimum of 10 feet above the groundwater table.
- The distance between the infiltration facility and the adjacent private property line shall be a minimum of 10 feet. Note if any buildings, subterranean walls or deep basements exist on the adjacent property a greater distance may be required
- 3. Foundations shall be set back a minimum of 10 feet from the infiltration facility and the bottom of the footing shall be a minimum of 10 feet from expected zone of saturation.
- 4. No infiltration facility shall be placed to infiltrate into fill material.
- 5. The infiltration facility shall be designed to overflow to the street in the event that the drainage capacity is exceeded or in case of future failure to adequately infiltrate.

Findings

- 1. Based on the relatively homogeneous nature of the soils infiltration at the subject site has minimal potential for creating a perched water condition that may adversely affect structures.
- 2. Infiltration in the area depicted on the Plot Map will not saturate soils supported by retaining/basement walls.
- 3. Expansive soils are not present in the area of the proposed infiltration. Based on the distance between the proposed infiltration area and the structures the structures will not be adversely affected by the infiltration.
- 4. The soils encountered in the explorations are not anticipated to be subject to hydroconsolidation that may adversely affect structures.

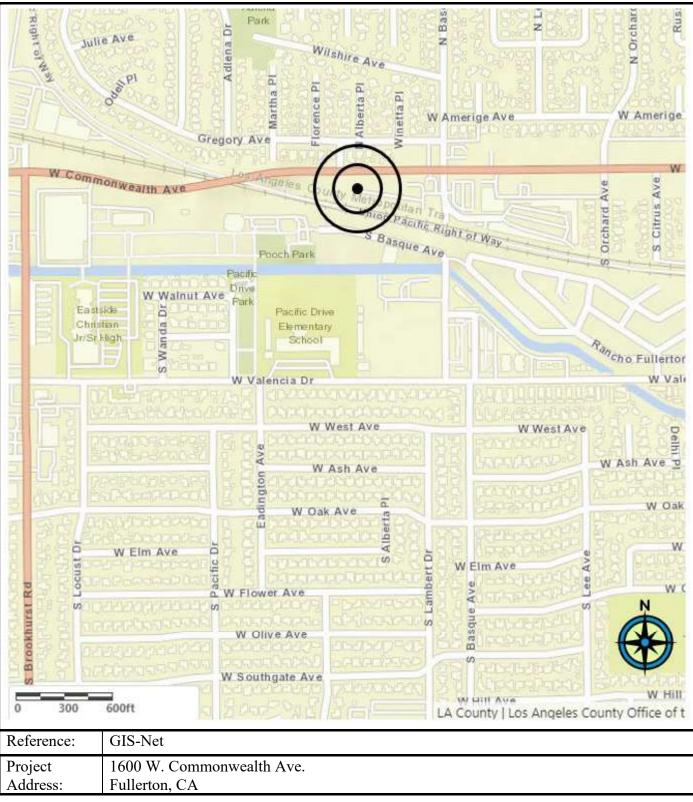
5. The soils encountered in the explorations are not anticipated to be subject to ground settlement due to saturation from infiltration, possibly resulting in distress to structures.

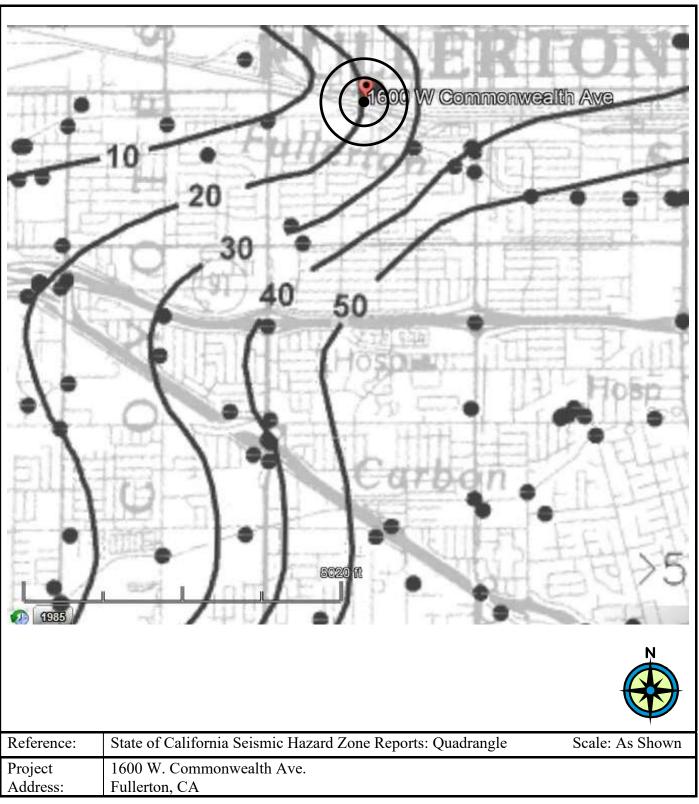
Conclusions

- 1. The proposed site is considered suitable for stormwater infiltration at or below a depth of seven feet.
- 2. The infiltration of stormwater will not result in ground settlement that could adversely affect structures, either on or adjacent to the site.
- 3. The infiltration of stormwater will not result in soil saturation that could affect retaining/basement structures.

Should you have any questions regarding this report, please do not hesitate to contact the undersigned at your convenience.

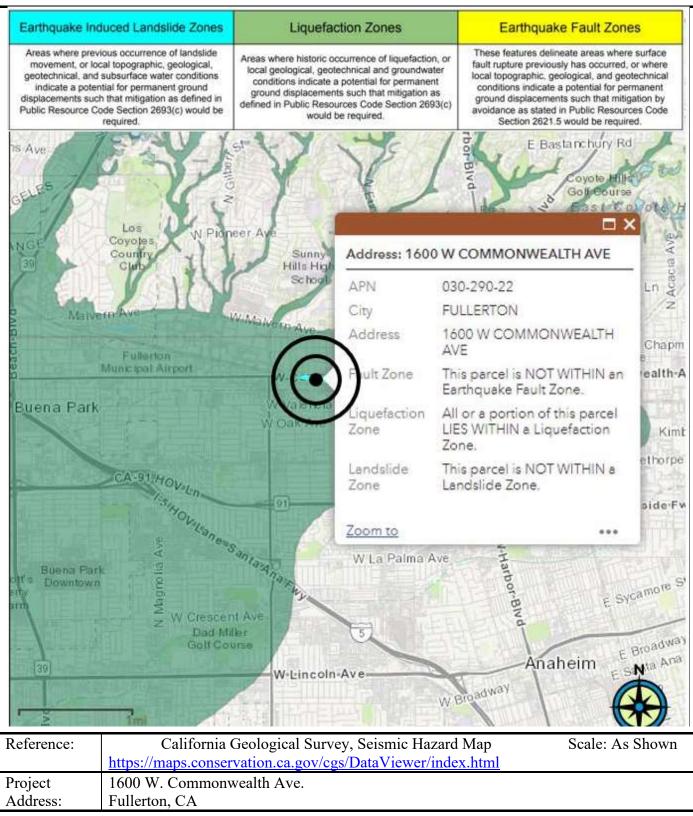
Respectfully submitted, GEOCONCEPTS, INC.



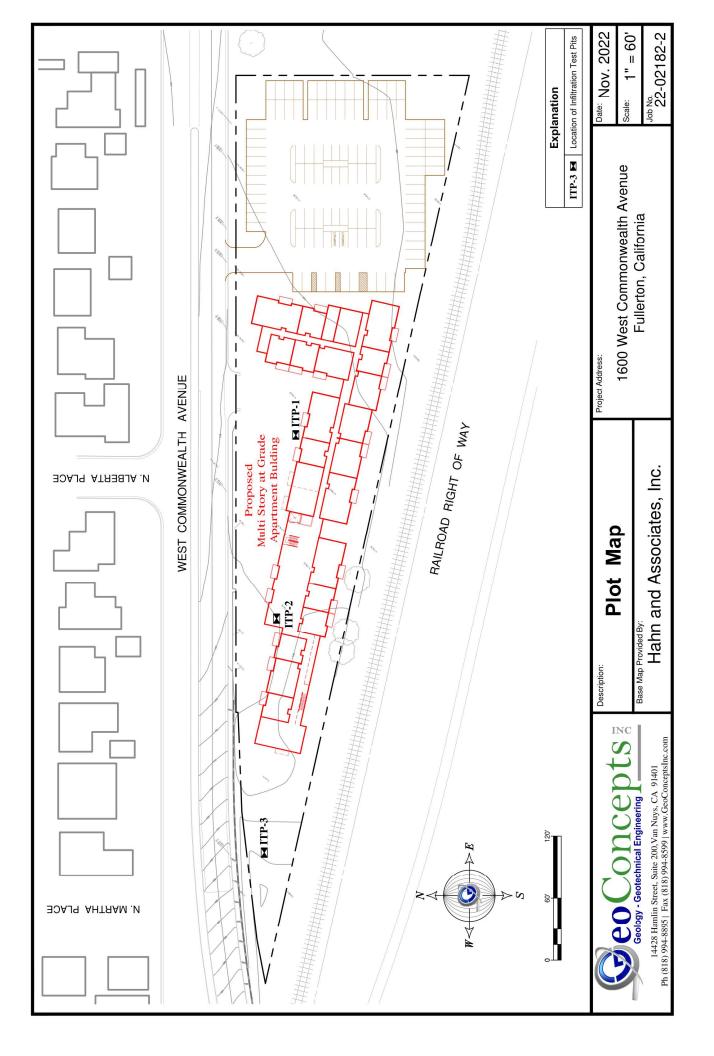

Raffi Dermendjian Project Engineer PE C. 88261 RD: 22-02182-2

Enclosures: Location Maps Test Pit Logs Plot Map

Distribution: (1) Addressee


LOCATION

GROUNDWATER LEVEL MAP


SEISMIC HAZARD MAP

· ·	EXPLORATION: I	
	0 W. Commonwealth Ave	PROJECT NO.: 22-02182
DATE: October	_25,_2022	LOGGED BY: VG
ATTITUDE	DESCRIPT	FION
2070)-22091-028-94	0.0' - 6.0" ARTIFICIAL FILL, Af, sand light brown, slightly moist to dry, hard/de	with minor gravels, gray white to ense, few cement fragments
	6.0" - 7.0' ALLUVIUM, Qal, sandy silt to dark brown, slightly moist, dense, fine gr	o sandy sand with minor clay binde rained
	· · · · · · · · · · · · · · · · ·	
fo - foliation		
s - shear		
	Total Depth 7.0 Feet, No Groundwater, No C	Caving
s - shear j - joint	Total Depth 7.0 Feet, No Groundwater, No C GENERALIZED F	
s - shear j - joint b - bedding		
s - shear j - joint b - bedding		
s - shear j - joint b - bedding		
s - shear j - joint b - bedding		
s - shear j - joint b - bedding		
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	
s - shear j - joint b - bedding	GENERALIZED F	

PROJECT: 1600 DATE: October ATTITUDE					JECT NO. GED BY:		182
	2 <u>5,</u> 2022						
ATTITUDE		1070-1271-1271-1271-1271-1271-1271-1271-	DATE: October_25, 2022				
		ATTITUDE DESCRIPTION					
	0.0' - 6.0" light brov	ARTIFICIAL F.	I LL, Af, sand wit to dry, hard/dense	h minor gr e, few cem	avels, gray ent fragme	v white ents	to
	6.0" - 7.0' dark brov	ALLUVIUM, Q even, slightly moist	al, sandy silt to sa dense, fine grain	ndy sand v ed	vith minor	clay bi	nder,
fo - foliation s - shear j - joint b - bedding	Total Depth		undwater, No Cavi	···			
SCALE 1"=4'		GEN	IERALIZED PRO				- 4 - 1
		AF -					
		Qui					
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						

	EXPLORATION: I	TP-3
PROJECT: 160	0 W. Commonwealth Ave	PROJECT NO.: 22-02182
_DATE:_October	25, 2022	LOGGED BY: VG
ATTITUDE	DESCRIP	TION
	0.0' - 6.0" ARTIFICIAL FILL, Af, sand light brown, slightly moist to dry, hard/c	
	6.0" - 7.0' ALLUVIUM, Qal, sandy silt t dark brown, slightly moist, dense, fine g	o sandy sand with minor clay binder, rained
fo - foliation s - shear		
j - joint b - bedding	Total Depth 7.0 Feet, No Groundwater, No (Caving
SCALE 1"=4'	GENERALIZED	PROFILE
	AC LEASE	
·····		

St	Step 1: Determine the design capture storm depth used for calculating volume						
01	ep 1. Determine the design capture storm depth used for ear		inic	1			
1	Enter design capture storm depth from Figure III.1, d (inches)	d=	0.90	inches			
2	Enter the effect of provided HSCs, <i>d</i> _{HSC} (inches) (Worksheet A)	d _{HSC} =	0	inches			
3	Calculate the remainder of the design capture storm depth, $d_{remainder}$ (inches) (Line 1 – Line 2)	d _{remainder} =	0.90	inches			
St	Step 2: Calculate the DCV						
1	Enter Project area tributary to BMP (s), A (acres)	A=	2.5	acres			
2	Enter Project Imperviousness, imp (unitless)	imp=	.705				
3	Calculate runoff coefficient, $C = (0.75 \times imp) + 0.15$	C=	.68				
4	Calculate runoff volume, $V_{design} = (C \times d_{remainder} \times A \times 43560 \times (1/12))$	V _{design} =	5,543	cu-ft			
St	ep 3: Design BMPs to ensure full retention of the DCV						
St	ep 3a: Determine design infiltration rate						
1	Enter measured infiltration rate, $K_{observed}^{\dagger}$ (in/hr) (Appendix VII)	K _{observed} =	1.5	In/hr			
2	Enter combined safety factor from Worksheet H, S _{total} (unitless)	S _{total} =	2				
3	Calculate design infiltration rate, $K_{design} = K_{observed} / S_{total}$	K _{design} =	.75	ln/hr			
St	ep 3b: Determine minimum BMP footprint						
4	Enter drawdown time, <i>T</i> (max 48 hours)	T=	48	Hours			
5	Calculate max retention depth that can be drawn down within the drawdown time (feet), $D_{max} = K_{design} \times T \times (1/12)$	D _{max} =	3	feet			
6	Calculate minimum area required for BMP (sq-ft), $A_{min} = V_{design}/d_{max}$	A _{min} =	1,848	sq-ft			

Worksheet B: Simple Design Capture Volume Sizing Method

¹K_{observed} is the vertical infiltration measured in the field, before applying a factor of safety. If field testing measures a rate that is different than the vertical infiltration rate (for example, three-dimensional borehole percolation rate), then this rate must be adjusted by an acceptable method (for example, Porchet method) to yield the field estimate of vertical infiltration rate, K_{observed}. See Appendix VII.

Fact	or Category	Factor Description	Assigned Weight (w)	Factor Value (v)	Product (p) p = w x v	
		Soil assessment methods 0.25		1	.25	
		Predominant soil texture 0.2		2	0.5	
A	Suitability	Site soil variability	0.25	2	0.5	
	Assessment	Depth to groundwater / impervious layer	0.25	1	0.25	
		Suitability Assessment Safety Facto	or, $S_A = \Sigma p$	1	1.50	
		Tributary area size	0.25	2	0.5	
В		Level of pretreatment/ expected sediment loads	0.25	1	.25	
	Design	Redundancy	0.25	1	.25	
		Compaction during construction	0.25	1	.25	
		Design Safety Factor, $S_B = \Sigma p$			1.25	
Com	bined Safety Fac	ctor, $S_{Total} = S_A x S_B$			1.875	
	erved Infiltration ected for test-sp	Rate, inch/hr, K _{observed} ecific bias)		1	.5	
Desi	gn Infiltration Ra	te, in/hr, K _{DESIGN} = K _{Observed} / S _{Total}		2		
Sup	porting Data					
Brief	ily describe infiltr	ation test and provide reference to te	st forms:			
Three test pits were excavated to a depth of six feet on October 25,2022. Infiltration testing was performed using the County Method in the bottom of the pits. See attached Geotechnical report for details.						
No	te: The minimum	n combined adjustment factor shall no	at he less than	2.0 and the	maximum	

Worksheet H: Factor of Safety and Design Infiltration Rate and Worksheet EAST INFILTRATION TRENCH

Note: The minimum combined adjustment factor shall not be less than 2.0 and the maximum combined adjustment factor shall not exceed 9.0.

Factor Category		Factor Description	Assigned Weight (w)	Factor Value (v)	Product (p) p = w x v
		Soil assessment methods	0.25	1	.25
		Predominant soil texture	0.25	2	0.5
Δ	Suitability	Site soil variability	0.25	2	0.5
A	Assessment	Depth to groundwater / impervious layer	0.25	1	0.25
		Suitability Assessment Safety Facto	or, $S_A = \Sigma p$	1	1.50
		Tributary area size	0.25	2	0.5
В		Level of pretreatment/ expected sediment loads	0.25	1	.25
	Design	Redundancy	0.25	1	.25
		Compaction during construction	0.25	1	.25
		Design Safety Factor, $S_B = \Sigma p$	1	1.25	
Con	hbined Safety Fac	ctor, $S_{Total} = S_A x S_B$			1.875
	served Infiltration rected for test-sp	Rate, inch/hr, K _{observed} ecific bias)		6	
Des	ign Infiltration Ra	te, in/hr, K _{DESIGN} = K _{Observed} / S _{Total}		3	
	porting Data	ation test and provide reference to te	st forms:		
	feet on Octo performed u	its were excavated to a depth of six ober 25,2022. Infiltration testing was using the County Method in the e pits. See attached Geotechnical etails.			

Worksheet H: Factor of Safety and Design Infiltration Rate and Worksheet

Note: The minimum combined adjustment factor shall not be less than 2.0 and the maximum combined adjustment factor shall not exceed 9.0.

	EAST INFILTRATION TRENCH							
1	Is project large or small? (as defined by Table VIII.2) circle one	Large		Small				
2	What is the tributary area to the BMP?	А	1.75	acres				
3	What type of BMP is proposed?	Infiltration Trench						
4	What is the infiltrating surface area of the proposed BMP?	nfiltrating surface area of the proposed BMP? A _{BMP} 1,350						
5	What land use activities are present in the tributary area (list all) RESIDENTIAL							
6	What land use-based risk category is applicable?	L	M	н				
7	If M or H, what pretreatment and source isolation BMPs have been considered and are proposed (describe all): A hydrodynamic separator is proposed to pretreat the stormwater runoff from							
8	What minimum separation to mounded seasonally high groundwater applies to the proposed BMP? See Section VIII.2 (circle one)	5 f	t (1	0 ft				
	Provide rationale for selection of applicable minimum separation groundwater:	n to seasonal	ly high mour	nded				
9	Infiltration Trench will be used as project BMP, therefused. Groundwater was found at 42' BGS. Infiltration separation of 35'.							
10	What is separation from the infiltrating surface to seasonally high groundwater?	SHGWT	35	ft				
11	What is separation from the infiltrating surface to mounded seasonally high groundwater?	Mounded SHGWT	32.37	ft				
12	Describe assumptions and methods used for mounding analysis: From USGS calculation sheet,							
13	Is the site within a plume protection boundary (See Figure	Y	N	N/A				

	VIII.2)?	
14	Is the site within a selenium source area or other natural plume area (See Figure VIII.2)?	Y N N/A
15	Is the site within 250 feet of a contaminated site?	Y N N/A
	If site-specific study has been prepared, provide citation and bri	efly summarize relevant findings:
	N/A	
16		
17	Is the site within 100 feet of a water supply well, spring, septic	
17	system?	Y N N/A
18	Is infiltration feasible on the site relative to groundwater- related criteria?	Y N
Prov	vide rationale for feasibility determination:	
	Sufficient distance from infiltration depth to ground	water.

Note: if a single criterion or group of criteria would render infiltration infeasible, it is not necessary to evaluate every question in this worksheet.

		۷	EST INFILTRA	TION TRENCH			
1	Is project large or small? (as defined by Table VIII.2) circle one	Large		Small			
2	What is the tributary area to the BMP?	А	0.75	acres			
3	What type of BMP is proposed?	Infiltration Trench					
4	What is the infiltrating surface area of the proposed BMP?	A _{BMP}	А _{вмР} 579.5				
5	What land use activities are present in the tributary area (list all) RESIDENTIAL						
6	What land use-based risk category is applicable?	L	M	н			
7	If M or H, what pretreatment and source isolation BMPs have been considered and are proposed (describe all): A hydrodynamic separator is proposed to pretreat the stormwater runoff from the site.						
8	What minimum separation to mounded seasonally high groundwater applies to the proposed BMP? See Section VIII.2 (circle one)	5 f	1	0 ft			
	Provide rationale for selection of applicable minimum separation groundwater:	n to seasonal	ly high mour	ded			
9	Infiltration Trench will be used as project BMP, therefore 10 ft Minimum shall be used. Groundwater was found at 42' BGS. Infiltration will occur 7' BGS, providing a separation of 35'.						
10	What is separation from the infiltrating surface to seasonally high groundwater?	SHGWT	35	ft			
11	What is separation from the infiltrating surface to mounded seasonally high groundwater?	Mounded SHGWT	25.07	ft			
12	Describe assumptions and methods used for mounding analysis: From USGS calculation sheet,						
13	Is the site within a plume protection boundary (See Figure	Y	N	N/A			

	VIII.2)?	
14	Is the site within a selenium source area or other natural plume area (See Figure VIII.2)?	Y N N/A
15	Is the site within 250 feet of a contaminated site?	Y N N/A
	If site-specific study has been prepared, provide citation and bri	efly summarize relevant findings:
	N/A	
16		
17	Is the site within 100 feet of a water supply well, spring, septic	
17	system?	Y N N/A
18	Is infiltration feasible on the site relative to groundwater- related criteria?	Y N
Prov	vide rationale for feasibility determination:	
	Sufficient distance from infiltration depth to ground	water.

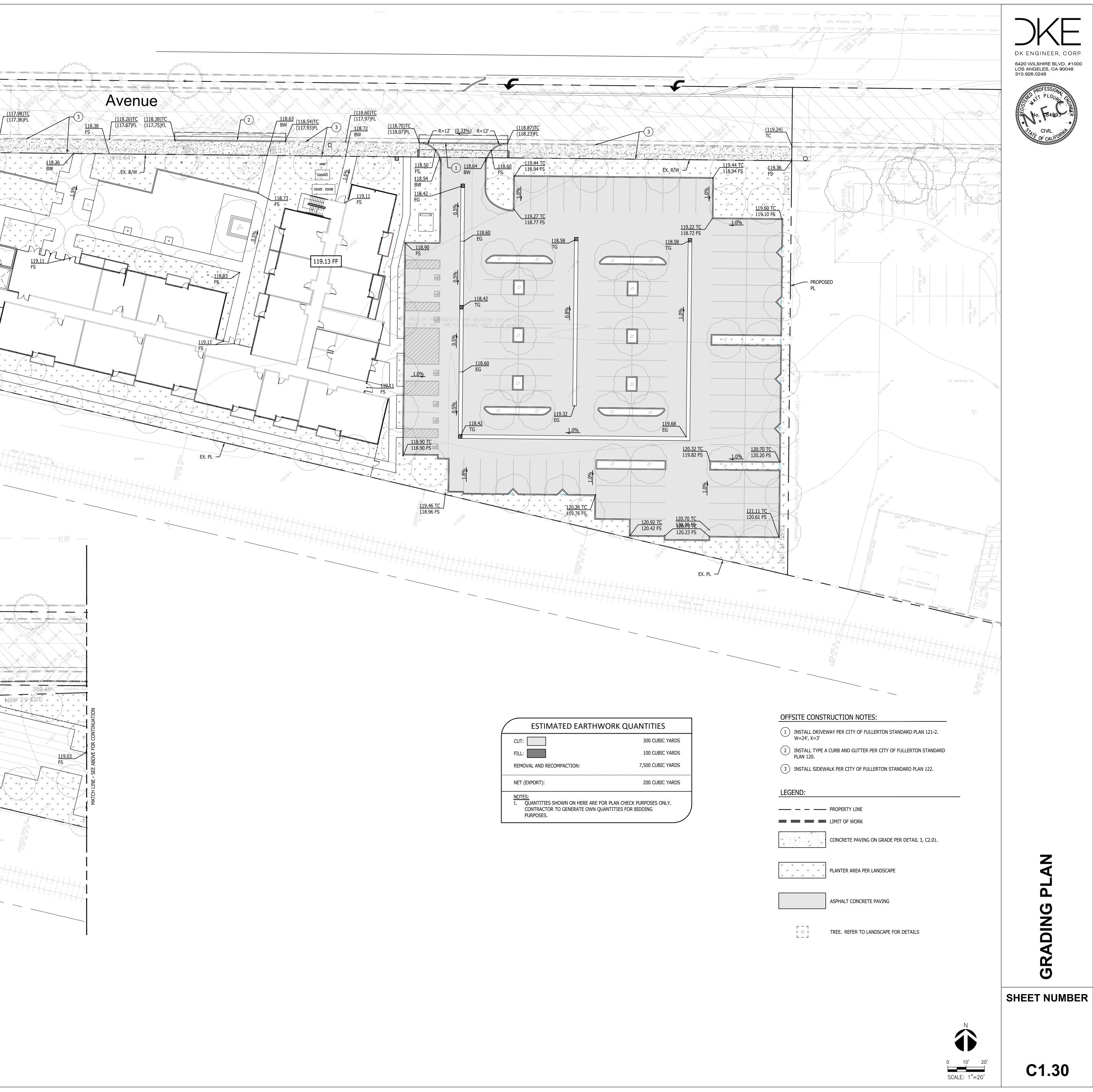
Note: if a single criterion or group of criteria would render infiltration infeasible, it is not necessary to evaluate every question in this worksheet.

General Landscape Type	Conservation Design: K _L = 0.35			Active	Turf Areas:	$K_{\rm L} = 0.7$
Closest ET Station	Irvine	Santa Ana	Laguna	Irvine	Santa Ana	Laguna
Design Capture Storm	Minimum	Required Irr	0 1		J 1	s Acre for
Depth, inches		Pote	ential Partial	Capture, ac	/ac	
0.60	0.66	0.68	0.72	0.33	0.34	0.36
0.65	0.72	0.73	0.78	0.36	0.37	0.39
0.70	0.77	0.79	0.84	0.39	0.39	0.42
0.75	0.83	0.84	0.90	0.41	0.42	0.45
0.80	0.88	0.90	0.96	0.44	0.45	0.48
0.85	0.93	0.95	1.02	0.47	0.48	0.51
0.90	0.99	1.01	1.08	0.49	0.51	0.54
0.95	1.04	1.07	1.14	0.52	0.53	0.57
1.00	1.10	1.12	1.20	0.55	0.56	0.60

Table X.8: Minimum Irrigated Area for Potential Partial Capture Feasibility

Worksheet J: Summary of Harvested Water Demand and Feasibility

1	What demands for harvested water exist in the tributary area (check all that apply):						
2	Toilet and urinal flushing						
3	Landscape irrigation						
4	Other:						
5	What is the design capture storm depth? (Figure III.1)	d	.90	inches			
6	What is the project size?	А	2.48	ac			
7	What is the acreage of impervious area?	1.95	ac				
	For projects with multiple types of demand (toilet flushing, indo	and/or other	demand)				
8	What is the minimum use required for partial capture? (Table X.6)		gpd				
9	What is the project estimated wet season total daily use?		gpd				
10	0 Is partial capture potentially feasible? (Line 9 > Line 8?)						
	For projects with only toilet flushing demand						
11	1What is the minimum TUTIA for partial capture? (Table X.7)110						
12	2 What is the project estimated TUTIA? 56						


Worksheet J: Summary of Harvested Water Demand and Feasibility

13	Is partial capture potentially feasible? (Line 12 > Line 11?)	No	
	For projects with only irrigation demand		
14	What is the minimum irrigation area required based on conservation landscape design? (Table X.8)	1.01	ac
15	What is the proposed project irrigated area? (multiply conservation landscaping by 1; multiply active turf by 2)	.282	ac
16	Is partial capture potentially feasible? (Line 15 > Line 14?)	No	
Prov	vide supporting assumptions and citations for controlling demand c	alculation:	
N	o partial capture and use being used on site.		

ATTACHMENT D

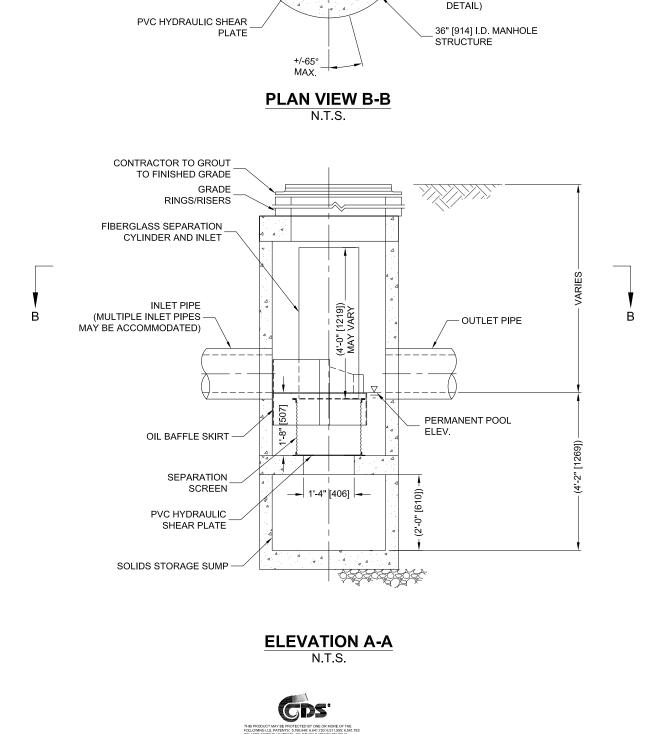
Commonwealth (117.52)TC (116.89)FL 117.64 BW (<u>116.33)</u> BW 116.38 FS _<u>117.19</u> / BW → 118.50 FS EX. R/W → <u>118.6</u> FS 119.13 FF EX. PL – B.N.S.F. Railroad Right-of-Way Š • $\psi \psi \psi \psi \psi$ EX.PL -


PLOT DATE: Dec 08, 2022 - 4:06pm

/	ESTIMATED EARTHWORK QUANTITIES						
	CUT:	300 CUBIC YARDS					
	FILL:	100 CUBIC YARDS					
	REMOVAL AND RECOMPACTION:	7,500 CUBIC YARDS					
•••••	NET (EXPORT):	200 CUBIC YARDS					
	NOTES: 1. QUANTITIES SHOWN ON HERE ARE FOR PLAN CONTRACTOR TO GENERATE OWN QUANTITY PURPOSES.						

CITY OF FULLERTON 12" SEWER MAIN -EX. 12'' SS Commonwealth CITY OF FULLERTON EX. CATCH BASIN - City of Fullerton 12" Water Main CITY OF FULLERTON 24" STORM DRAIN • EX. 12'' W-SD3 115.72 INV (115.68)FL ex. Fire Hydrant 119.13 FF B.N.S.F. Railroad Right-of-Way Š 117.00 TOP OF TRENCH 111.00 BOT OF TRENCH SD6

PLOT DATE:



	TIRE WATER
	F1 INSTALL X" C-900 PVC WATER PIPE, PIPE BEDDING PER DETAIL X', SHEET C2.00.
OR	F2 POINT OF CONNECTION 5' FROM BUILDING FACE. SEE PLUMBING PLANS FOR CONTINUATION.
	F3 INSTALL BACKFLOW PREVENTER PER CITY OF FULLERTON STANDARD PLAN 721.
	RRIGATION
MP REPORT	IR1 INSTALL SCH 40 PVC WATER PIPE. BEDDING PER DETAIL X, SHEET C2.00.
REPORT	IR2 POINT OF CONNECTION TO IRRIGATION SYSTEM. SEE LANDSCAPE PLANS FOR CONTINUATION.
	IR3 INSTALL IRRIGATION METER PER CITY OF FULLERTON STANDARD PLAN 602.
	IR4 INSTALL IRRIGATION BACKFLOW PREVENTER PER CITY OF FULLERTON STANDARD PLAN 604.
EET C2.00.	SEWER
	SS1 INSTALL SDR 35 PVC SEWER PIPE. BEDDING PER DETAIL X, SHEET C2.00.
NS FOR	SS2 POINT OF CONNECTION 5' FROM BUILDING. SEE PLUMBING PLANS FOR CONTINUATION.
LERTON	SS3 INSTALL SEWER LATERAL AND CONNECT TO EXISTING MAIN PER CITY OF

THE STANDARD CDS1515-3-C CONFIGURATION IS SHOWN.

FIBERGLASS SEPARATION

А

FLOW

CYLINDER AND INLET

CENTER OF CDS STRUCTURE, SCREEN AND

AX 35

TOP SLAB ACCESS (SEE FRAME AND COVER

Α

SUMP OPENING

FLOW

(DIAMETER VARIES) N.T.S.

GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- SOLUTIONS LLC REPRESENTATIVE. www.ContechES.com
- CONTRACTOR TO CONFIRM STRUCTURE MEETS REQUIREMENTS OF PROJECT.
- AASHTO M306 AND BE CAST WITH THE CONTECH LOGO ... 5. IF REQUIRED, PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS
- NECESSARY DURING MAINTENANCE CLEANING.

INSTALLATION NOTES

- ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE A. SPECIFIED BY ENGINEER OF RECORD.
- В.
- CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS AND ASSEMBLE STRUCTURE. C.
- CONTRACTOR TO PROVIDE, INSTALL, AND GROUT INLET AND OUTLET PIPE(S). MATCH PIPE INVERTS WITH ELEVATIONS SHOWN. ALL PIPE D. CENTERLINES TO MATCH PIPE OPENING CENTERLINES.
- E. SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.

CDS1515-3-C DESIGN NOTES

CDS1515-3-C RATED TREATMENT CAPACITY IS 0.50 [14.16 L/s] CFS, OR PER LOCAL REGULATIONS. MAXIMUM HYDRAULIC INTERNAL BYPASS CAPACITY IS 6.0 [170 L/s] CFS. IF THE SITE CONDITIONS EXCEED 6.0 [170 L/s] CFS, AN UPSTREAM BYPASS STRUCTURE IS REQUIRED.

SITE SPECIFIC **DATA REQUIREMENTS**

STRUCTURE ID							
WATER QUALITY	FLOW RAT	Е ((CFS OR L/s)		*		
PEAK FLOW RAT	E (CFS OR	L/s)			*		
RETURN PERIOD	OF PEAK F	LO	W (YRS)		*		
SCREEN APERTU	JRE (2400 C)R 4	700)		*		
PIPE DATA:	I.E.		MATERIAL	П	AMETER		
FIFE DATA.	1.⊏.			0	AWETER		
INLET PIPE 1	NLET PIPE 1 * * *						
INLET PIPE 2	*		*		*		
OUTLET PIPE	*		*		*		
RIM ELEVATION					*		
ANTI-FLOTATION	BALLAST		WIDTH		HEIGHT		
	* *						
NOTES/SPECIAL REQUIREMENTS:							

PER ENGINEER OF RECORD

2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHT, PLEASE CONTACT YOUR CONTECH ENGINEERED

3. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.

4. STRUCTURE SHALL MEET AASHTO HS20 LOAD RATING, ASSUMING EARTH COVER OF 0' - 2', AND GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION. CASTINGS SHALL MEET

6. CDS STRUCTURE SHALL BE PRECAST CONCRETE CONFORMING TO ASTM C-478 AND AASHTO LOAD FACTOR DESIGN METHOD.

CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE.

CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS

CDS1515-3-C **ONLINE CDS** STANDARD DETAIL

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25

• APPROX. LINEAR FOOTAGE = 293 LF

STORAGE SUMMARY

- STORAGE VOLUME REQUIRED = 3,900 CF
- PIPE STORAGE VOLUME = 2,071 CF
- BACKFILL STORAGE VOLUME = 1,873 CF
- TOTAL STORAGE PROVIDED = 3,944 CF

PIPE DETAILS

- DIAMETER = 36"
- CORRUGATION = 2 2/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 18"

BACKFILL DETAILS

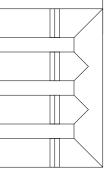
• WIDTH AT ENDS = 12"

- ABOVE PIPE = 12"
- WIDTH AT SIDES = 12"
- BELOW PIPE = 12"

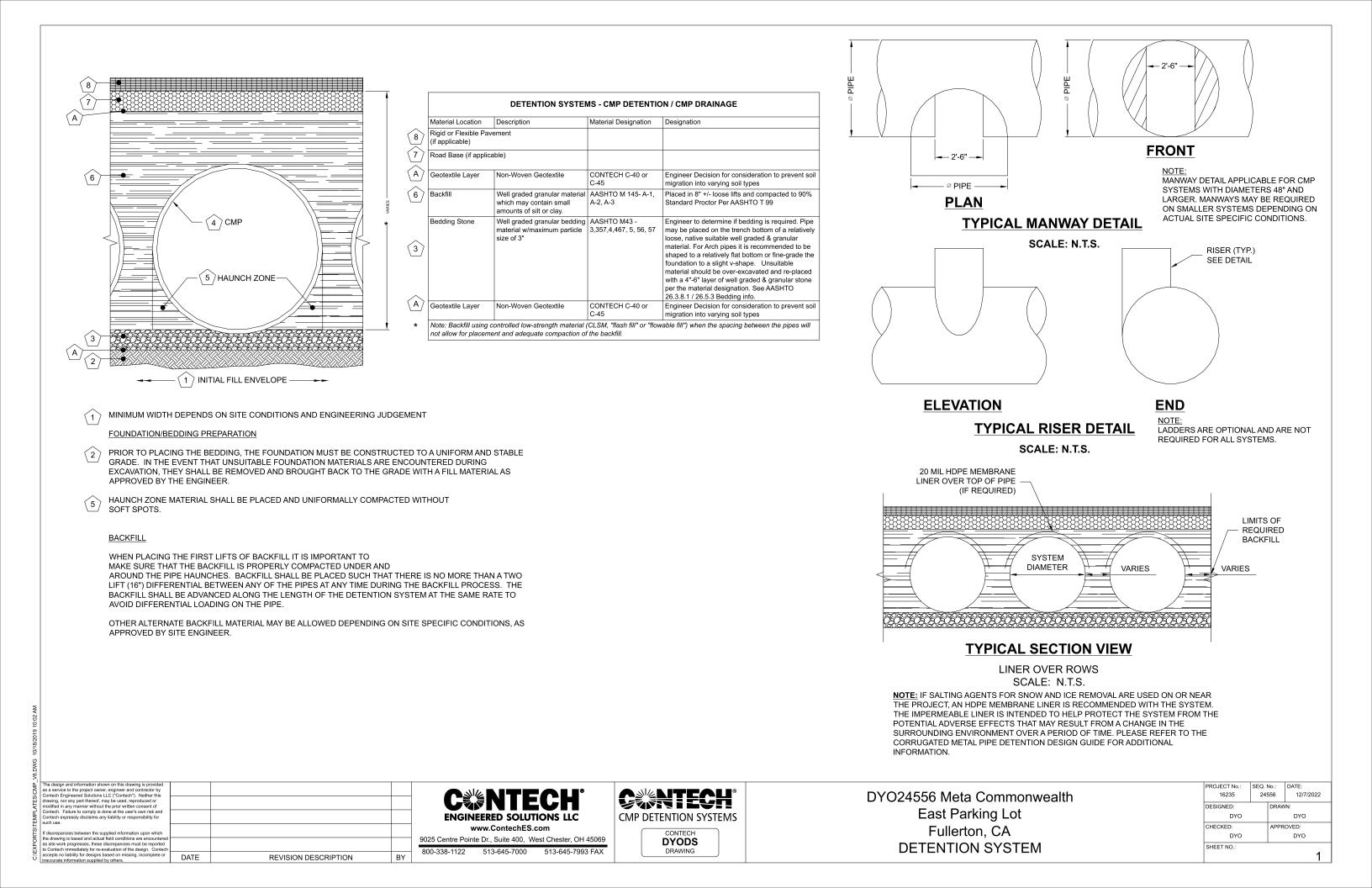
- ALL RISER AND STUB DIMENSIONS ARE TO CENTERLINE. ALL ELEVATIONS, DIMENSIONS, AND LOCATIONS OF RISERS AND INLETS, SHALL BE VERIFIED BY THE ENGINEER OF RECORD PRIOR TO RELEASING FOR FABRICATION.
- ALL FITTINGS AND REINFORCEMENT COMPLY WITH ASTM A998.
- ALL RISERS AND STUBS ARE $2\frac{2}{3}$ " x $\frac{1}{2}$ " Corrugation AND 16 GAGE UNLESS OTHERWISE NOTED.
- RISERS TO BE FIELD TRIMMED TO GRADE.
- QUANTITY OF PIPE SHOWN DOES NOT PROVIDE EXTRA PIPE FOR CONNECTING THE SYSTEM TO EXISTING PIPE OR DRAINAGE STRUCTURES. OUR SYSTEM AS DETAILED PROVIDES NOMINAL INLET AND/OR OUTLET PIPE STUB FOR CONNECTION TO EXISTING DRAINAGE FACILITIES. IF ADDITIONAL PIPE IS NEEDED IT IS THE RESPONSIBILITY OF THE CONTRACTOR.
- BAND TYPE TO BE DETERMINED UPON FINAL DESIGN. • THE PROJECT SUMMARY IS REFLECTIVE OF THE DYODS DESIGN, QUANTITIES ARE APPROX. AND SHOULD BE VERIFIED UPON FINAL DESIGN AND
- APPROVAL. FOR EXAMPLE, TOTAL EXCAVATION DOES NOT CONSIDER ALL VARIABLES SUCH AS SHORING AND ONLY ACCOUNTS FOR MATERIAL WITHIN THE ESTIMATED EXCAVATION FOOTPRINT.
- THESE DRAWINGS ARE FOR CONCEPTUAL PURPOSES AND DO NOT REFLECT ANY LOCAL PREFERENCES OR REGULATIONS. PLEASE CONTACT YOUR LOCAL CONTECH REP FOR MODIFICATIONS.

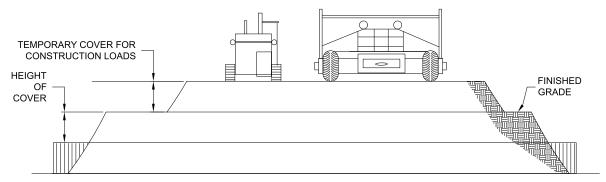
The design and information shown on this drawing is provided

=		
0		
*		


- 71'-0"

ASSEMBLY	
SCALE: 1" = 10'	


	as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this					
ATES	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of				C NTECH	
ž.	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS
TS/T	If discrepancies between the supplied information upon which				www.ContechES.com	CONTECH
POR	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS
1	to Contech immediately for re-evaluation of the design. Contech accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others	DATE	REVISION DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING


DYO24556 Meta Comm East Parking Lo Fullerton, CA **DETENTION SYS**

	PROJECT No.: SEQ. N		No.: DATE:		
nonwealth	16235	245	556	12/7/20	22
- 1	DESIGNED: [DRAWN:		
ot	DYO		DYO		
	CHECKED:		APPR	OVED:	
	DYO			DYO	
TEM	SHEET NO .:				
					1

EAST INFILTRATION TRENCH

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)					
INCHES	18-50	50-75	75-110	110-150		
	MI		OVER (F	-T)		
12-42	2.0	2.5	3.0	3.0		
48-72	3.0	3.0	3.5	4.0		
78-120	3.0	3.5	4.0	4.0		
126-144	3.5	4.0	4.5	4.5		

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCA
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.
The design and information above on this designs is provided

S/CM	as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this		
ATE	drawing, nor any part thereof, may be used, reproduced or modified in any manner without the prior written consent of		
S\TEMPL	Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use.		
RTS/T	If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered		
C:\EXPORT	as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
;;	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZATELE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

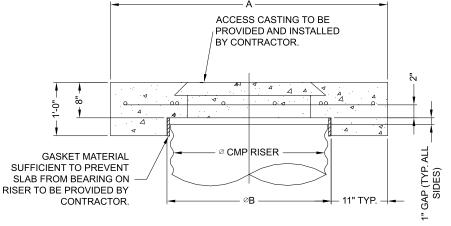
REQUIREMENTS

INSTALLATION

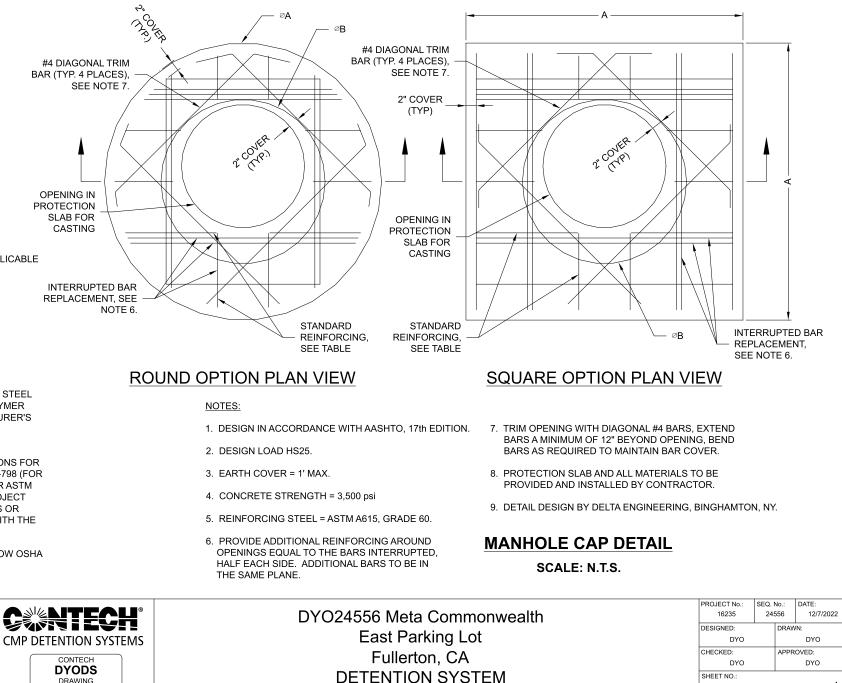
SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA **GUIDELINES FOR SAFE PRACTICES.**

> ENGINEERED SOLUTIONS LLC www.ContechES.com


9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX


513-645-7000

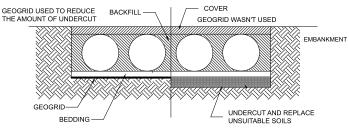
800-338-1122

BY

SECTION VIEW

	REINFORCING TABLE							
Ø CMP RISER	А	Ø₿	REINFORCING	**BEARING PRESSURE (PSF)				
24"	⊗ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780				
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530				
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350				
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210				
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100				

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

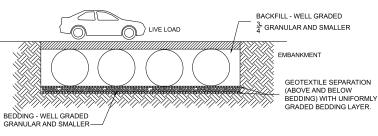
FOUNDATION

CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE FLEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

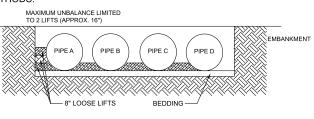
GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

GEOMEMBRANE BARRIER


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

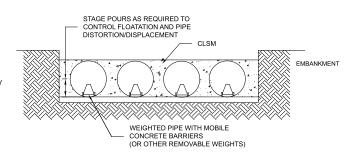
THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

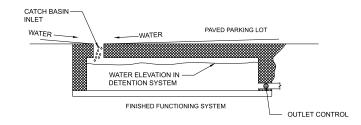
BACKFILL PLACEMENT

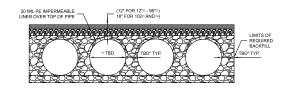

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

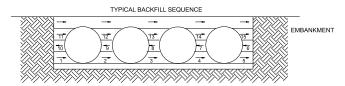
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED. UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS THE ENTIRE WIDTH OF THE SYSTEM IS REACHED. ADVANCE THE EQUIPMENT TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

						_
1				ANTEAH		
				C NTECH		
				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
				www.ContechES.com	CONTECH	
red d				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	DYODS	
or or	DATE	REVISION DESCRIPTION E	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	

DYO24556 Meta Com East Parking L Fullerton, CA DETENTION SYS

modified in any manner without the prior written consent of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for ancies between the supplied information upon which e drawing is based and actual field conditions are end the drawing is used and determined as site work progresses, these discrepancies must be rr to Contech immediately for re-evaluation of the design. accepts no liability for designs based on missing, incom inaccurate information supplied by others.

The design and information shown on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC ("Contech"). Neither this

rawing, nor any part thereof, may be used, repro

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.:	SEQ. I	No.:	DATE:	
monwealth	16235	24556		12/7/20	22
	DESIGNED:		DRAW	'N:	
.ot	DYO			DYO	
	CHECKED:		APPR	OVED:	
N I	DYO			DYO	
STEM	SHEET NO .:				
					1

PROJECT SUMMARY

CALCULATION DETAILS • LOADING = HS20/HS25 • APPROX. LINEAR FOOTAGE = 121 LF

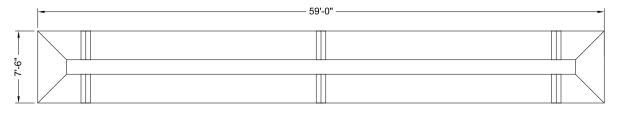
STORAGE SUMMARY

• STORAGE VOLUME REQUIRED = 1,663 CF

- PIPE STORAGE VOLUME = 855 CF
- BACKFILL STORAGE VOLUME = 817 CF
- TOTAL STORAGE PROVIDED = 1,672 CF

PIPE DETAILS

- DIAMETER = 36"
- CORRUGATION = 2 2/3x1/2
- GAGE = 16
- COATING = ALT2
- WALL TYPE = SOLID
- BARREL SPACING = 18"


BACKFILL DETAILS

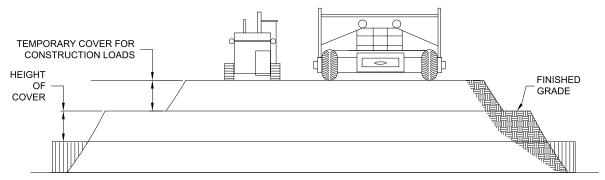
• WIDTH AT ENDS = 12"

• ABOVE PIPE = 12"

• WIDTH AT SIDES = 12"

• BELOW PIPE = 12"




<u>NOTES</u>

- -								
	ALL RISER AND STUB DIMENS		то					
	CENTERLINE. ALL ELEVATIONS	·	'					
	LOCATIONS OF RISERS AND IN	- / -						
	VERIFIED BY THE ENGINEER O		D PRIOR TO					
	RELEASING FOR FABRICATIO							
•	ALL FITTINGS AND REINFORCE	EMENT CC	MPLY WITH					
	ASTM A998.							
	ALL RISERS AND STUBS ARE 2	2 ² /3" x ¹ /3" C	ORRUGATION					
	AND 16 GAGE UNLESS OTHER							
	RISERS TO BE FIELD TRIMMED							
	QUANTITY OF PIPE SHOWN DO							
	EXTRA PIPE FOR CONNECTING							
	EXISTING PIPE OR DRAINAGE							
	SYSTEM AS DETAILED PROVID							
	AND/OR OUTLET PIPE STUB F							
	EXISTING DRAINAGE FACILITIE							
	IS NEEDED IT IS THE RESPONS	SIBILITYO	FIHE					
	CONTRACTOR.							
	BAND TYPE TO BE DETERMINE							
	THE PROJECT SUMMARY IS RI							
	DYODS DESIGN, QUANTITIES /							
	SHOULD BE VERIFIED UPON F	INAL DESI	GN AND					
Σ	APPROVAL. FOR EXAMPLE, TO	DTAL EXCA	VATION DOES					
12 A	NOT CONSIDER ALL VARIABLE	S SUCH A	S SHORING					
10:0	AND ONLY ACCOUNTS FOR MA	ATERIAL W	ITHIN THE					
10/18/2019 10:02 AM	ESTIMATED EXCAVATION FOO	TPRINT.						
8/2	THESE DRAWINGS ARE FOR C	ONCEPTU	AL PURPOSES					
10/1	AND DO NOT REFLECT ANY LC	DCAL PREF	ERENCES OR					
g	REGULATIONS. PLEASE CONT.	ACT YOUR	LOCAL					<u>ASSEMBLY</u>
V8.DWG	CONTECH REP FOR MODIFICA	TIONS.						SCALE: 1" = 10'
	esign and information shown on this drawing is provided						1	00/12211
E as as	service to the project owner, engineer and contractor by							
S Conte	ch Engineered Solutions LLC ("Contech"). Neither this ng, nor any part thereof, may be used, reproduced or					C NTECH		
TA modif	led in any manner without the prior written consent of the ch. Failure to comply is done at the user's own risk and							
Gente Conte	ch expressly disclaims any liability or responsibility for					ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS	
						www.ContechES.com		
	repancies between the supplied information upon which awing is based and actual field conditions are encountered					9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	CONTECH	
as sit	e work progresses, these discrepancies must be reported						DYODS	
accel	ntech immediately for re-evaluation of the design. Contech ts no liability for designs based on missing, incomplete or	DATE	DE//IGI	ON DESCRIPTION	BY	800-338-1122 513-645-7000 513-645-7993 FAX	DRAWING	
linacc	urate information supplied by others.	DATE	REVISI	ON DESCRIPTION	ы			

DYO24573 Meta Commo West Site Fullerton, CA DETENTION SYSTE

monwealth	PROJECT No.: 16235	SEQ. 1 24			
	DESIGNED:	24573 12/7/2022 DRAWN: DYO APPROVED:			
	DYO			DYO	
	CHECKED:		APPR	OVED:	
1 A A A A A A A A A A A A A A A A A A A	DYO			DYO	
STEM	SHEET NO .:				
				1	

CONSTRUCTION LOADS

FOR TEMPORARY CONSTRUCTION VEHICLE LOADS, AN EXTRA AMOUNT OF COMPACTED COVER MAY BE REQUIRED OVER THE TOP OF THE PIPE. THE HEIGHT-OF-COVER SHALL MEET THE MINIMUM REQUIREMENTS SHOWN IN THE TABLE BELOW. THE USE OF HEAVY CONSTRUCTION EQUIPMENT NECESSITATES GREATER PROTECTION FOR THE PIPE THAN FINISHED GRADE COVER MINIMUMS FOR NORMAL HIGHWAY TRAFFIC.

PIPE SPAN,	AXLE LOADS (kips)							
INCHES	18-50	50-75	75-110	110-150				
	MINIMUM COVER (FT)							
12-42	2.0	2.5	3.0	3.0				
48-72	3.0	3.0	3.5	4.0				
78-120	3.0	3.5	4.0	4.0				
126-144	3.5	4.0	4.5	4.5				

*MINIMUM COVER MAY VARY, DEPENDING ON LOCAL CONDITIONS. THE CONTRACTOR MUST PROVIDE THE ADDITIONAL COVER REQUIRED TO AVOID DAMAGE TO THE PIPE. MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE MAINTAINED CONSTRUCTION ROADWAY SURFACE.

CONSTRUCTION LOADING DIAGRAM

SCALE: N.T.S.

SPECIFICATION FOR DESIGNED DETENTION SYSTEM:

SCOPE

THIS SPECIFICATION COVERS THE MANUFACTURE AND INSTALLATION OF THE DESIGNED DETENTION SYSTEM DETAILED IN THE PROJECT PLANS.

MATERIAI

THE MATERIAL SHALL CONFORM TO THE APPLICABLE REQUIREMENTS LISTED BELOW

ALUMINIZED TYPE 2 STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-274 OR ASTM A-92.

THE GALVANIZED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-218 OR ASTM A-929.

THE POLYMER COATED STEEL COILS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M-246 OR ASTM A-742.

THE ALUMINUM COILS SHALL CONFORM TO THE APPLICABLE OF AASHTO M-197 OR ASTM B-744.

CONSTRUCTION LOADS

CONSTRUCTION LOADS MAY BE HIGHER THAN FINAL LOADS. FOLLOW THE MANUFACTURER'S OR NCSPA GUIDELINES.

NOTE:
THESE DRAWINGS ARE FOR CONCEPTUAL
PURPOSES AND DO NOT REFLECT ANY LOCAL
PREFERENCES OR REGULATIONS. PLEASE
CONTACT YOUR LOCAL CONTECH REP FOR
MODIFICATIONS.

	state and the second se		
5	accepts no liability for designs based on missing, incomplete or inaccurate information supplied by others.	DATE	REVISION DESCRIPTION
Š	the drawing is based and actual field conditions are encountered as site work progresses, these discrepancies must be reported to Contech immediately for re-evaluation of the design. Contech		
5	If discrepancies between the supplied information upon which		
	such use.		
	Contech expressly disclaims any liability or responsibility for	1	
1	Contech. Failure to comply is done at the user's own risk and		
2	modified in any manner without the prior written consent of	1	
í	drawing, nor any part thereof, may be used, reproduced or	1	
2	Contech Engineered Solutions LLC ("Contech"). Neither this		
	as a service to the project owner, engineer and contractor by	1	

THE PIPE SHALL BE MANUFACTURED IN ACCORDANCE TO THE APPLICABLE REQUIREMENTS LISTED BELOW:

ALUMINIZED TYPE 2: AASHTO M-36 OR ASTM A-760

GALVANIZED: AASHTO M-36 OR ASTM A-760

AFFOLIZATELE COATED: AASHTO M-245 OR ASTM A-762

ALUMINUM: AASHTO M-196 OR ASTM B-745

APPLICABLE HANDLING AND ASSEMBLY

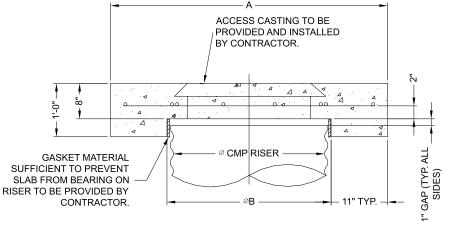
SHALL BE IN ACCORDANCE WITH NCSP'S (NATIONAL CORRUGATED STEEL AFPRECABSECIATION) FOR ALUMINIZED TYPE 2. GALVANIZED OR POLYMER COATED STEEL. SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS FOR ALUMINUM PIPE.

- REQUIREMENTS
- INSTALLATION

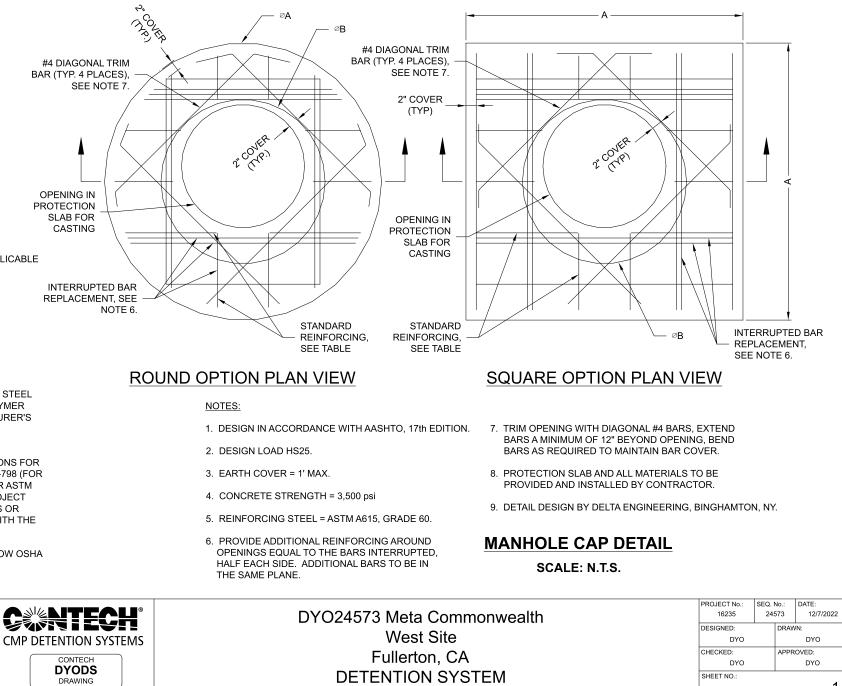
SHALL BE IN ACCORDANCE WITH AASHTO STANDARD SPECIFICATIONS FOR HIGHWAY BRIDGES, SECTION 26, DIVISION II DIVISION II OR ASTM A-798 (FOR ALUMINIZED TYPE 2, GALVANIZED OR POLYMER COATED STEEL) OR ASTM B-788 (FOR ALUMINUM PIPE) AND IN CONFORMANCE WITH THE PROJECT PLANS AND SPECIFICATIONS. IF THERE ARE ANY INCONSISTENCIES OR CONFLICTS THE CONTRACTOR SHOULD DISCUSS AND RESOLVE WITH THE SITE ENGINEER.

IT IS ALWAYS THE RESPONSIBILITY OF THE CONTRACTOR TO FOLLOW OSHA **GUIDELINES FOR SAFE PRACTICES.**

> ENGINEERED SOLUTIONS LLC www.ContechES.com


9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069

513-645-7993 FAX


513-645-7000

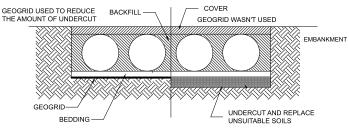
800-338-1122

BY

SECTION VIEW

REINFORCING TABLE								
Ø CMP RISER	A	ØB	REINFORCING	**BEARING PRESSURE (PSF)				
24"	⊗ 4' 4'X4'	26"	#5 @ 12" OCEW #5 @ 12" OCEW	2,410 1,780				
30"	∞ 4'-6" 4'-6" X 4'-6"	32"	#5 @ 12" OCEW #5 @ 12" OCEW	2,120 1,530				
36"	∞ 5' 5' X 5'	38"	#5 @ 10" OCEW #5 @ 10" OCEW	1,890 1,350				
42"	∞ 5'-6" 5'-6" X 5'-6"	44"	#5 @ 10" OCEW #5 @ 9" OCEW	1,720 1,210				
48"	∞ 6' 6' X 6'	50"	#5 @ 9" OCEW #5 @ 8" OCEW	1,600 1,100				

** ASSUMED SOIL BEARING CAPACITY


CMP DETENTION INSTALLATION GUIDE

PROPER INSTALLATION OF A FLEXIBLE UNDERGROUND DETENTION SYSTEM WILL ENSURE LONG-TERM PERFORMANCE. THE CONFIGURATION OF THESE SYSTEMS OFTEN REQUIRES SPECIAL CONSTRUCTION PRACTICES THAT DIFFER FROM CONVENTIONAL FLEXIBLE PIPE CONSTRUCTION. CONTECH ENGINEERED SOLUTIONS STRONGLY SUGGESTS SCHEDULING A PRE-CONSTRUCTION MEETING WITH YOUR LOCAL SALES ENGINEER TO DETERMINE IF ADDITIONAL MEASURES, NOT COVERED IN THIS GUIDE, ARE APPROPRIATE FOR YOUR SITE.

FOUNDATION

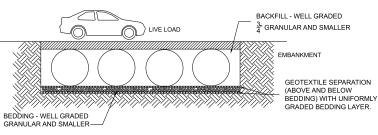
CONSTRUCT A FOUNDATION THAT CAN SUPPORT THE DESIGN LOADING APPLIED BY THE PIPE AND ADJACENT BACKFILL WEIGHT AS WELL AS MAINTAIN ITS INTEGRITY DURING CONSTRUCTION.

IF SOFT OR UNSUITABLE SOILS ARE ENCOUNTERED, REMOVE THE POOR SOILS DOWN TO A SUITABLE DEPTH AND THEN BUILD UP TO THE APPROPRIATE FLEVATION WITH A COMPETENT BACKEILL MATERIAL. THE STRUCTURAL FILL MATERIAL GRADATION SHOULD NOT ALLOW THE MIGRATION OF FINES, WHICH CAN CAUSE SETTLEMENT OF THE DETENTION SYSTEM OR PAVEMENT ABOVE. IF THE STRUCTURAL FILL MATERIAL IS NOT COMPATIBLE WITH THE UNDERLYING SOILS AN ENGINEERING FABRIC SHOULD BE USED AS A SEPARATOR IN SOME CASES, USING A STIFE REINFORCING GEOGRIF REDUCES OVER EXCAVATION AND REPLACEMENT FILL QUANTITIES.

GRADE THE FOUNDATION SUBGRADE TO A UNIFORM OR SLIGHTLY SLOPING GRADE. IF THE SUBGRADE IS CLAY OR RELATIVELY NON-POROUS AND THE CONSTRUCTION SEQUENCE WILL LAST FOR AN EXTENDED PERIOD OF TIME. IT IS BEST TO SLOPE THE GRADE TO ONE END OF THE SYSTEM. THIS WILL ALLOW EXCESS WATER TO DRAIN QUICKLY, PREVENTING SATURATION OF THE SUBGRADE

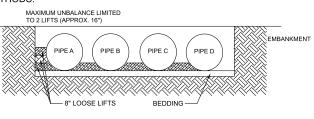
GEOMEMBRANE BARRIER

ancies between the supplied information upon which e drawing is based and actual field conditions are end the drawing is used and determined as site work progresses, these discrepancies must be rr to Contech immediately for re-evaluation of the design. accepts no liability for designs based on missing, incom inaccurate information supplied by others.


A SITE'S RESISTIVITY MAY CHANGE OVER TIME WHEN VARIOUS TYPES OF SALTING AGENTS ARE USED, SUCH AS ROAD SALTS FOR DEICING AGENTS. IF SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE, A GEOMEMBRANE THE ENTIRE WIDTH OF THE SYSTEM IS REACHED, ADVANCE THE EQUIPMENT BARRIER IS RECOMMENDED WITH THE SYSTEM. THE GEOMEMBRANE LINER IS INTENDED TO HELP PROTECT THE SYSTEM FROM THE POTENTIAL ADVERSE EFFECTS THAT MAY RESULT FROM THE USE OF SUCH AGENTS INCLUDING PREMATURE CORROSION AND REDUCED ACTUAL SERVICE LIFE.

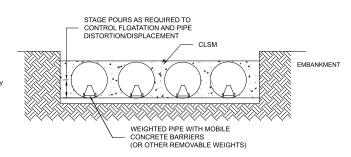
THE PROJECT'S ENGINEER OF RECORD IS TO EVALUATE WHETHER SALTING AGENTS WILL BE USED ON OR NEAR THE PROJECT SITE, AND USE HIS/HER BEST JUDGEMENT TO DETERMINE IF ANY ADDITIONAL PROTECTIVE MEASURES ARE REQUIRED. BELOW IS A TYPICAL DETAIL SHOWING THE PLACEMENT OF A GEOMEMBRANE BARRIER FOR PROJECTS WHERE SALTING AGENTS ARE USED ON OR NEAR THE PROJECT SITE

IN-SITU TRENCH WALL


IF EXCAVATION IS REQUIRED, THE TRENCH WALL NEEDS TO BE CAPABLE OF SUPPORTING THE LOAD THAT THE PIPE SHEDS AS THE SYSTEM IS LOADED. IF SOILS ARE NOT CAPABLE OF SUPPORTING THESE LOADS, THE PIPE CAN DEFLECT PERFORM A SIMPLE SOIL PRESSURE CHECK USING THE APPLIED LOADS TO DETERMINE THE LIMITS OF EXCAVATION BEYOND THE SPRING LINE OF THE OUTER MOST PIPES

IN MOST CASES THE REQUIREMENTS FOR A SAFE WORK ENVIRONMENT AND PROPER BACKFILL PLACEMENT AND COMPACTION TAKE CARE OF THIS CONCERN.

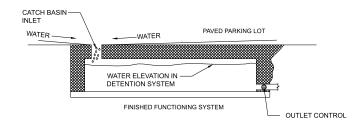
BACKFILL PLACEMENT

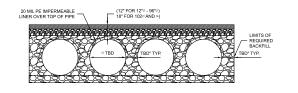

MATERIAL SHALL BE WORKED INTO THE PIPE HAUNCHES BY MEANS OF SHOVEL-SLICING, RODDING, AIR TAMPER, VIBRATORY ROD, OR OTHER EFFECTIVE METHODS

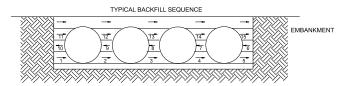
IF AASHTO T99 PROCEDURES ARE DETERMINED INFEASIBLE BY THE GEOTECHNICAL ENGINEER OF RECORD. COMPACTION IS CONSIDERED ADEQUATE WHEN NO FURTHER YIELDING OF THE MATERIAL IS OBSERVED UNDER THE COMPACTOR, OR UNDER FOOT, AND THE GEOTECHNICAL ENGINEER OF RECORD (OR REPRESENTATIVE THEREOF) IS SATISFIED WITH THE LEVEL OF COMPACTION.

FOR LARGE SYSTEMS, CONVEYOR SYSTEMS, BACKHOES WITH LONG REACHES OR DRAGLINES WITH STONE BUCKETS MAY BE USED TO PLACE BACKFILL, ONCE MINIMUM COVER FOR CONSTRUCTION LOADING ACROSS TO THE END OF THE RECENTLY PLACED FILL, AND BEGIN THE SEQUENCE AGAIN UNTIL THE SYSTEM IS COMPLETELY BACKFILLED. THIS TYPE OF CONSTRUCTION SEQUENCE PROVIDES ROOM FOR STOCKPILED BACKFILL DIRECTLY BEHIND THE BACKHOE AS WELL AS THE MOVEMENT OF CONSTRUCTION TRAFFIC, MATERIAL STOCKPILES ON TOP OF THE BACKFILLED DETENTION SYSTEM SHOULD BE LIMITED TO 8- TO 10-FEET HIGH AND MUST PROVIDE BALANCED LOADING ACROSS ALL BARRELS. TO DETERMINE THE PROPER COVER OVER THE PIPES TO ALLOW THE MOVEMENT OF CONSTRUCTION EQUIPMENT SEE TABLE 1, OR CONTACT YOUR LOCAL CONTECH SALES ENGINEER.

WHEN FLOWABLE FILL IS USED, YOU MUST PREVENT PIPE FLOATATION TYPICALLY, SMALL LIFTS ARE PLACED BETWEEN THE PIPES AND THEN ALLOWED TO SET-UP PRIOR TO THE PLACEMENT OF THE NEXT LIFT. THE ALLOWABLE THICKNESS OF THE CLSM LIFT IS A FUNCTION OF A PROPER BALANCE BETWEEN THE UPLIFT FORCE OF THE CLSM, THE OPPOSING WEIGHT OF THE PIPE, AND THE EFFECT OF OTHER RESTRAINING MEASURES. THE PIPE CAN CARRY LIMITED FLUID PRESSURE WITHOUT PIPE DISTORTION OR DISPLACEMENT, WHICH ALSO AFFECTS THE CLSM LIFT THICKNESS. YOUR LOCAL CONTECH SALES ENGINEER CAN HELP DETERMINE THE PROPER LIFT THICKNESS.




CONSTRUCTION LOADING


ACCUMULATED SEDIMENT AND TRASH CAN TYPICALLY BE EVACUATED TYPICALLY, THE MINIMUM COVER SPECIFIED FOR A PROJECT ASSUMES H-20 THROUGH THE MANHOLE OVER THE OUTLET ORIFICE. IF MAINTENANCE IS NOT LIVE LOAD. BECAUSE CONSTRUCTION LOADS OFTEN EXCEED DESIGN LIVE PERFORMED AS RECOMMENDED, SEDIMENT AND TRASH MAY ACCUMULATE IN LOADS, INCREASED TEMPORARY MINIMUM COVER REQUIREMENTS ARE FRONT OF THE OUTLET ORIFICE. MANHOLE COVERS SHOULD BE SECURELY SEATED FOLLOWING CLEANING ACTIVITIES. CONTECH SUGGESTS THAT ALL NECESSARY. SINCE CONSTRUCTION EQUIPMENT VARIES FROM JOB TO JOB, SYSTEMS BE DESIGNED WITH AN ACCESS/INSPECTION MANHOLE SITUATED AT IT IS BEST TO ADDRESS EQUIPMENT SPECIFIC MINIMUM COVER OR NEAR THE INLET AND THE OUTLET ORIFICE. SHOULD IT BE NECESSARY TO REQUIREMENTS WITH YOUR LOCAL CONTECH SALES ENGINEER DURING GET INSIDE THE SYSTEM TO PERFORM MAINTENANCE ACTIVITIES, ALL APPROPRIATE PRECAUTIONS REGARDING CONFINED SPACE ENTRY AND OSHA YOUR PRE-CONSTRUCTION MEETING. REGULATIONS SHOULD BE FOLLOWED.

ADDITIONAL CONSIDERATIONS

BECAUSE MOST SYSTEMS ARE CONSTRUCTED BELOW-GRADE, RAINFALL AS PART OF THE MAINTENANCE PROGRAM FOR THE SYSTEM CAN RAPIDLY FILL THE EXCAVATION; POTENTIALLY CAUSING FLOATATION MAINTAINING AN UNDERGROUND DETENTION OR INFILTRATION SYSTEM IS AND MOVEMENT OF THE PREVIOUSLY PLACED PIPES. TO HELP MITIGATE EASIEST WHEN THERE IS NO FLOW ENTERING THE SYSTEM. FOR THIS POTENTIAL PROBLEMS, IT IS BEST TO START THE INSTALLATION AT THE REASON. IT IS A GOOD IDEA TO SCHEDULE THE CLEANOUT DURING DRY DOWNSTREAM END WITH THE OUTLET ALREADY CONSTRUCTED TO ALLOW WEATHER A ROUTE FOR THE WATER TO ESCAPE. TEMPORARY DIVERSION MEASURES MAY BE REQUIRED FOR HIGH FLOWS DUE TO THE RESTRICTED NATURE OF THE OUTLET PIPE

2	1					
<u>-</u> '	The design and information shown on this drawing is provided					
≥	as a service to the project owner, engineer and contractor by					
2	Contech Engineered Solutions LLC ("Contech"). Neither this					Askiteali®
ш	drawing, nor any part thereof, may be used, reproduced or					
7	modified in any manner without the prior written consent of				C NTECH	
ן ב	Contech. Failure to comply is done at the user's own risk and					
έI	Contech expressly disclaims any liability or responsibility for				ENGINEERED SOLUTIONS LLC	CMP DETENTION SYSTEMS
	such use.					
2					www.ContechES.com	
20	If discrepancies between the supplied information upon which				WWW.ContechEd.com	CONTECH
Ϋ́	the drawing is based and actual field conditions are encountered				9025 Centre Pointe Dr., Suite 400, West Chester, OH 45069	
	as site work progresses, these discrepancies must be reported				5023 Centre Pointe DI., Suite 400, West Chestel, OH 45009	DYODS
	to Contech immediately for re-evaluation of the design. Contech					DRAWING
	accepts no liability for designs based on missing, incomplete or	DATE			800-338-1122 513-645-7000 513-645-7993 FAX	
	inaccurate information supplied by others.	DATE	REVISION DESCRIPTION	BY		

DYO24573 Meta Com West Site Fullerton, CA DETENTION SYS

CMP DETENTION SYSTEM INSPECTION AND MAINTENANCE

UNDERGROUND STORMWATER DETENTION AND INFILTRATION SYSTEMS MUST BE INSPECTED AND MAINTAINED AT REGULAR INTERVALS FOR PURPOSES OF PERFORMANCE AND LONGEVITY.

INSPECTION

INSPECTION IS THE KEY TO EFFECTIVE MAINTENANCE OF CMP DETENTION SYSTEMS AND IS EASILY PERFORMED. CONTECH RECOMMENDS ONGOING. ANNUAL INSPECTIONS. SITES WITH HIGH TRASH LOAD OR SMALL OUTLET CONTROL ORIFICES MAY NEED MORE FREQUENT INSPECTIONS. THE RATE AT WHICH THE SYSTEM COLLECTS POLLUTANTS WILL DEPEND MORE ON SITE SPECIFIC ACTIVITIES RATHER THAN THE SIZE OR CONFIGURATION OF THE SYSTEM.

INSPECTIONS SHOULD BE PERFORMED MORE OFTEN IN EQUIPMENT WASHDOWN AREAS. IN CLIMATES WHERE SANDING AND/OR SALTING OPERATIONS TAKE PLACE AND IN OTHER VARIOUS INSTANCES IN WHICH ONE WOULD EXPECT HIGHER ACCUMULATIONS OF SEDIMENT OR ABRASIVE/ CORROSIVE CONDITIONS. A RECORD OF EACH INSPECTION IS TO BE MAINTAINED FOR THE LIFE OF THE SYSTEM

MAINTENANCE

CMP DETENTION SYSTEMS SHOULD BE CLEANED WHEN AN INSPECTION REVEALS ACCUMULATED SEDIMENT OR TRASH IS CLOGGING THE DISCHARGE ORIFICE

ANNUAL INSPECTIONS ARE BEST PRACTICE FOR ALL UNDERGROUND SYSTEMS. DURING THIS INSPECTION, IF EVIDENCE OF SALTING/DE-ICING AGENTS IS OBSERVED WITHIN THE SYSTEM, IT IS BEST PRACTICE FOR THE SYSTEM TO BE RINSED, INCLUDING ABOVE THE SPRING LINE SOON AFTER THE SPRING THAW

THE FOREGOING INSPECTION AND MAINTENANCE EFFORTS HELP ENSURE UNDERGROUND PIPE SYSTEMS USED FOR STORMWATER STORAGE CONTINUE TO FUNCTION AS INTENDED BY IDENTIFYING RECOMMENDED REGULAR INSPECTION AND MAINTENANCE PRACTICES. INSPECTION AND MAINTENANCE RELATED TO THE STRUCTURAL INTEGRITY OF THE PIPE OR THE SOUNDNESS OF PIPE JOINT CONNECTIONS IS BEYOND THE SCOPE OF THIS GUIDE.

	PROJECT No.: SEQ.		No.:	DATE:	
onwealth ſEM	16235	24	573	12/7/20	22
	DESIGNED:				
	DYO			DYO	
	CHECKED:		APPR	OVED:	
n l	DYO			DYO	
STEM	SHEET NO .:				
					1