San Bernardino

PROFESSIONAL ENGINEER'S AFFIRMATIVE STATEMENT
I have examined and am familiar with the information in this document and all appendices, and based on my inquiries of individuals immediately responsible for obtaining the information in this document, I believe that the information is true, accurate, and complete

Prepared by

REDBRICK SOLUTION, LLC

Consulting Engineers \& Architects
www.redbricksolution.com

```
Salt Lake City Office
331 South Rio Grande Street | Suite 203
Salt Lake City, Utah }8410
T: 801.244.5335
Apple Valley Office
19153 Town Center Dr. | Suite 101-A
Apple Valley, CA 92308
T: 661.816.5179
```


Table of Contents

I. Introduction
A. Location of Property 1
B. Purpose and Scope 1
C. Methodology 1
D. Compliance with Regulations 1
E. Floodplain Information 1
II. Off-site Hydrology 2
III. Onsite Hydrology
A. Pre-Developed Drainage Description 2
B. Pre-Developed Hydrology Analysis 2
C. Post-Developed Drainage Description 2
D. Post-Developed Hydrology Analysis 3
E. Retention Basin 3
IV. Conclusions 4
V. References 5

Appendix

APPENDIX A -Exhibits

A - Land Use / Location Map
B - Rational Method Pre-Developed
Subarea Map
C - Rational Method Post-Developed
Subarea Map
D-1-5-USGS Soil Type
E - NOAA 14 Precipitation
F - FEMA MAP

APPENDIX B - Rational Method Analysis
Pre-Developed - 25-Year 1-Hour
Developed -10-Year 1-Hour
Developed -100-Year 1-Hour
APPENDIX C -Unit Hydrograph Analysis
Developed -10-Year 24-Hour
Developed -100-Year 3-Hour
APPENDIX D -Hydraulic Analysis
Retention Basin Sizing
Street Capacity
Curb Opening Sump Inlet Sizing

I. INTRODUCTION

A. LOCATION OF PROPERTY

The 5 -acre parcel is zoned Single Family residential (R-1) (see appendix A Exhibit A) and is Located 300 feet North of the intersection of Hook Blvd and Verbana Rd, South of the City of Adelano, CA APN 3132-161-61.

B. PURPOSE AND SCOPE

The purpose of this study is to determine onsite 100-year storm flow before and after development and establish the difference between 90% of the predeveloped Q (CFS), and the developed Q which needs to be retained. This study also determines how to contain the increased flow and size the retention basin accordingly. Assuring that the downstream developments only receive their historic storm flows.

C. METHODOLOGY

This study is based on using the San Bernadino County Hydrology Manual, Addendum B, and CivilDesign Method to model the storm channel flows.

The following criteria was used for the off-site tributary flows (see appendix A Exhibit E):

1. Current land use:
2. Proportion Currently Impervious:
3. Proportion Impervious After Development:
4. Intended Use:
5. NOAA 14 Precipitation
6. Soil Type
7. San Bernardino County Hydrology Manual
8. San Bernardino County Hydrology Manual

Vacant Land

0.1 \%
60.0\% (5-7 Dwellings per acre)

Residential Tract
100-year 1-hour $=1.06$
105, Bryman Loamy Fine Sand, Group C (100\%)
Rational Method
Unit Hydrograph

D. COMPLIANCE WITH REGULATIONS

All calculations are based on generally accepted engineering practices in accordance with the San Bernardino County Hydrology Manual's Hydrologic Criteria and Drainage Design including the April 2010 Addendum that addresses the Antecedent Moisture Condition (AMC) for arid regions of the County, the Detention Basin Design Criteria handout, and the Memo dated September 4, 1987, addressing Detention Design Criteria and pre-developed storm years to be used.

E. FLOODPLAIN INFORMATION

The project is located outside of the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Panel 06071C5795H effective August 28, 2008, indicated that the site is in "Zone D" (see appendix A Exhibit F). Zone D is defined by FEMA as "areas in which flood hazards are undetermined, but possible" (see appendix A exhibit F) for the San Bernardino County.

II. OFF-SITE HYDROLOGY

Considering that this project is surrounded by other developments that direct off-site flows around this project, no offsite tributary area is considered as a part of this study.

III. ON-SITE HYDROLOGY:

A. PRE-DEVELOPED DRAINAGE DESCRIPTION

After removing street dedications on Verbena Rd, the remaining 4.75-acre site is currently undeveloped and consists of Bryman loamy fine sand (see appendix A Exhibit D) with sparse vegetation. The project consists of one (1) drainage area, which slopes and drives normally from south-west to north-east corner
of the property. As part of the analysis, the drainage area is divided into four (4) drainage management areas (DMA) (see Appendix A Exhibit B).
The Drainage management Area " A " consists of a 0.91 -acres initial Subarea 1 A that flows 240 ft . to the north-east with an elevation change of 4.7 ft . and a slope of 1.96%. Subarea 2 A transports these storm flows 591 ft to the north having an elevation change of 7.4 ft . at a slope of 1.25% over 1.27 acres. Then, this flow line will confluence with DMA B.

The Drainage management Area " B " consists of a 0.35 -acres initial Subarea 1 B that flows 190 ft . to the north-east having an elevation change of 4.7 ft ., and a slope of 2.47%. Subarea 2 B transports these storm flows 195 ft to the north-east at an elevation change of 3.2 ft ., slope of 1.64% over 0.56 acres. At the end of subarea 2 B , there is a local confluence with area 2 C , which will flow though area $3 B$ that consist of 0.52 -acres, a flow line of 190 ft , and elevation change of 4 ft at a 2.10% slope. The Drainage management Area "C" consists of a 0.55 -acres initial Subarea 1 C that flows 210 ft . to the north-east at an elevation change of 6.7 ft ., and a slope of 3.04%. Subarea 2 C consists of an area of 0.65 acres, elevation change of 0.8 ft , and a slope of 0.58% that transports the storm flow 137 ft north-west where its confluences with subarea 2B.
At this point, DMA A \& B confluences at the north-east corner of the property.

B. PRE-DEVELOPED HYDROLOGY ANALYSIS

Using CivilDesign Rational Method Software, each of the 3-Draiange Management Areas was analyzed to determine the 25 -year Pre-Developed 1-Hour Peak Storm flows (See appendix B). When combined, it gives a total Q of 7.86 cfs .

C. POST-DEVELOPED DRAINAGE DESCRIPTION

The site will be developed as a residential tract with an average of $20-8260 \mathrm{sq}$. ft. lots. Considering the accompanied streets and gutters, this will add a total impervious area of about 60%. The streets,
gutters and storm water pipes will direct flows to a retention basin that will contain the total retention volume required to release 90% of the Pre-Developed storm flows downstream. The 4.75-acre on-site developed site consists of one (1) Drainage Area subdivided into two (2) drainage management areas (DMA) (see Appendix A Exhibit C).
DMA-A has an Initial Area 1A consisting of 0.26 acres with a flow travel length of 155 ft ., an elevation difference of 4.16 ft . resulting in a slope of 0.06%. Which flows through subarea 2 A , that covers 0.68 acres and has a flow path of 228 ft ., an elevation change of 1.3 ft . and a slope of 0.57%. Then it flows through Subarea 3A that covers an area of 1.21 acres and has a flow path of 289 ft ., an elevation change of 1.4 ft . and a slope of 0.48%. At the end, this flow will be caught by a storm basin drain, that will direct the flow through a pipe, to another catch basin drain where it confluences with DMA-B flows.

DMA-B has mirrored areas of DMA-A, with an Initial Area 1B consisting of 0.26 acres with a flow travel length of 155 ft ., an elevation difference of 2.3 ft . resulting in a slope of 1.48%. Which flows through subarea 2 B , that covers 0.68 acres and has a flow path of 228 ft ., an elevation change of 1.3 ft . and a slope of 0.57%. Then, it flows through subarea $3 B$ that covers an area of 1.21 acres and has a flow path of 289 ft ., an elevation change of 1.4 ft . and slope of 0.48%. When the flow is caught by the storm drain basin near the east end of subarea 3B, it confluences with DMA-A flow, these flows combined then travel inside a pipe, that fills the retention/detention basin on-site.
When filled, the retention/detention basin will release the excess storm water at the local historic conveyance point at the north-east corner.

D. POST-DEVELOPED DRAINAGE ANALYSIS

Using CivilDesign Rational Method Software we determined that for the 100-year storm the total flow is equal to $Q=10.11$ cfs, and the total time of concentration is 11.62 min .
DMA-A storm flows through a gutter in subarea A1 followed by area A2 and A3(see Appendix A Exhibit C), with half street capacity of 4.42 CFS. Then, the water is captured by a curb opening to a storm drain where it will flow through an 18-in pipe to the other side of the street, where it confluences with DMA-B.

DMA-B storm flows similarly to DMA-A. Therefore, the storm water flows from B1, followed by $B 2$ and B3(see Appendix A Exhibit C) through the half street capacity $Q=6.18 \mathrm{cfs}$. Curb and gutter sizing have been adjusted accordingly to have a capacity of 16.73 cfs (see Appendix D). Near the end of subarea B3, the water flow is caught thought a curb opening to a retention drain, where it confluences with DMA-A, then it flows inside a pipe sized 24 -in (see Appendix D) to a retention/detention basin with the volume capacity of 0.61 Acre-ft. The basin when filled, will mitigate down the flow at the peak of the storm to a Q of maximum 7.046 through an 18 -in pipe near the historical site conveyance point.

E. RETENTION BASIN

Per September 4th, 1987, interoffice memo of the San Bernardino County detention basin design criteria, the 100-year on-site developed peak storm flow of 13.69 CFS (see appendix C) must be
mitigated by a retention/detention basin to a required $\left.Q_{(} Q_{R}\right)$ having a rate of 90% of the 25 -year storm or (7.862*0.9=)7.046 CFS as shown of Fig.1. In order to determine the volume, one must interpolate between the data presented in the unit hydrograph volume output shown on page $(x \times x)$ of this study. The required Q_{R} falls between upper $Q(Q u)$ and lower $Q\left(Q_{L}\right)$ on the legging leg of the hydrograph output. Vland Vu are the corresponded volumes for the respective Q's "Qu and QL". The interpolation equation 1 is shown below.

Figure 1: Total retention basing volume based on the flow according to the time on a 100 -year 3 -hour storm, developed condition.

$$
\begin{equation*}
V=V_{U}+\frac{\left(V_{L}-V_{U}\right) \cdot\left(Q_{U}-Q_{R}\right)}{Q_{U}-Q_{L}} \tag{1}
\end{equation*}
$$

The minimum volume (V) obtained through the equation 1 was $\mathrm{V}=0.4615 \mathrm{Ac}$. ft . Which is greater than the required volume of 0.6106 Acre-ft (see Appendix D).

IV. CONCLUSIONS and RECOMENDATIONS:

When improvements made, the sizing of the half street curb will be able to bear the storm flow of a 100-year storm. As well as the curb opening and catch basin design to work at the determined Q's. The pipes sized by the civil design software, also should meet the capabilities of the required flow for the peak of the 100-Year storm when installed and purchased with no abnormalities. Also, the retention/detention basin was design according to the interoffice memo of the San Bernardino County detention basin design criteria, therefore it retains a volume $0.61 \mathrm{Ac} . \mathrm{ft}, 0.15 \mathrm{Ac} . \mathrm{ft}$ more than the minimum required. Thus, after these improvements' completion, the project will be protected against flood.

V. REFERENCES:

County San Bernardino of Public Works Low Impact Development Standards Manual. Updated February 2014.
County of San Bernardino Public Works Hydrology Manual. Created in August 1986.
http://cms.sbcounty.gov/Portals/50/floodcontrol/HydrologyManual.pdf
Federal Emergency Management Agency website: https://msc.fema.gov/portal accessed August 2020.
NOAA Atlas 14, Volume 6, Version 2 POINT PRECIPITATION FREQUENCY (PF) ESTIMATES WITH 90\% CONFIDENCE INTERVALS AND SUPPLEMENTARY INFORMATION. Accessed August 2020.
NRCS Soils Data from Soil Map; San Bernardino County, California, Mojave River Area; Version 8, Jul 31, 2019 Accessed August 2020.

APPENDIX A Exhibits:

Land Use Map - A
FEMA MAP - B
NOAA 14 Precipitation - C
Soil Type - D

Rational Method Analysis Subarea Map - E Rational Method Analysis Data - F

Civil Cad Channel Analysis - G

LAND USE AND ZONING DISTRICTS

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
105	BRYMAN LOAMY FINE SAND, 0 TO 2 PERCENT SLOPES	100.7	Percent of AOI
112	CAJON SAND, 0 TO 2 PERCENT SLOPES	56.9%	
133	HELENDALE-BRYMAN LOAMY SANDS, 2 TO 5 PERCENT SLOPES*	$\mathbf{3 0 . 8}$	
Totals for Area of Interest		$\mathbf{4 5 . 6}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

EXHIBIT D3

San Bernardino County, California, Mojave River Area
 105-BRYMAN LOAMY FINE SAND, 0 TO 2 PERCENT SLOPES

Map Unit Setting

National map unit symbol: hkr9
Elevation: 2,800 to 3,200 feet
Mean annual precipitation: 3 to 6 inches
Mean annual air temperature: 59 to 63 degrees F
Frost-free period: 180 to 280 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Bryman and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Bryman

Setting

Landform: Fan remnants
Landform position (two-dimensional): Summit
Landform position (three-dimensional): Interfluve
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from granite sources

Typical profile

H1-0 to 9 inches: loamy fine sand
H2-9 to 12 inches: sandy loam
H3-12 to 32 inches: sandy clay loam
H4-32 to 46 inches: sandy loam
H5-46 to 99 inches: loamy sand
Properties and qualities
Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water
(Ksat): Moderately high (0.20 to $0.57 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.9 inches)

Interpretive groups

Land capability classification (irrigated): 2e
Land capability classification (nonirrigated): 7e
Hydrologic Soil Group: C
Ecological site: R030XF012CA - Sandy
Hydric soil rating: No

Minor Components

Cajon

Percent of map unit: 5 percent
Hydric soil rating: No

Helendale

Percent of map unit: 5 percent
Hydric soil rating: No
Mohave variant
Percent of map unit: 5 percent
Hydric soil rating: No

Bryman, gravelly surface

Percent of map unit: 5 percent
Hydric soil rating: No

Data Source Information

Soil Survey Area: San Bernardino County, California, Mojave River Area Survey Area Data: Version 13, Sep 13, 2021

NOAA Atlas 14, Volume 6, Version 2
Location name: Adelanto, California, USA*
Latitude: $\mathbf{3 4 . 5 2 2 6}^{\circ}$, Longitude: $\mathbf{- 1 1 7 . 4 2 7 1 ^ { \circ }}$
Elevation: $3092.86 \mathrm{ft}^{* *}$

* source: ESRI Maps
** source: USGS
POINT PRECIPITATION FREQUENCY ESTIMATES
Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{gathered} 0.079 \\ (0.065-0.096) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 1 1 1} \\ (0.092-0.136) \\ \hline \end{gathered}$	$\begin{gathered} 0.155 \\ (0.128-0.191) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 1 9 2} \\ (0.157-0.238) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 2 4 3} \\ (0.192-0.311) \\ \hline \end{array}$	$\begin{gathered} \mathbf{0 . 2 8 4} \\ (0.219-0.371) \\ \hline \end{gathered}$	$\begin{gathered} 0.326 \\ (0.246-0.436) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 3 7 0} \\ (0.271-0.509) \\ \hline \end{array}$	$\begin{gathered} \mathbf{0 . 4 3 1} \\ (0.304-0.619) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 8 0} \\ (0.326-0.712) \\ \hline \end{gathered}$
10-mi	$\begin{gathered} 0.113 \\ (0.093-0.138) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 1 6 0} \\ (0.132-0.196) \\ \hline \end{array}$	$\begin{gathered} 0.223 \\ (0.183-0.273) \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 7 5} \\ (0.225-0.341) \\ \hline \end{gathered}$	$\begin{gathered} 0.349 \\ (0.275-0.446) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 0 7} \\ (0.314-0.531) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 6 7} \\ (0.352-0.625) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 3 0} \\ (0.389-0.730) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 1 8} \\ (0.435-0.887) \\ \hline \end{gathered}$	$\begin{gathered} 0.687 \\ (0.468-1.02) \end{gathered}$
15-min	$\begin{gathered} \mathbf{0 . 1 3 7} \\ (0.113-0.167) \end{gathered}$	$\begin{array}{\|c} \mathbf{0 . 1 9 3} \\ (0.159-0.236) \\ \hline \end{array}$	$\begin{gathered} 0.269 \\ (0.222-0.331) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 3 3} \\ (0.272-0.412) \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 2 2} \\ (0.333-0.539) \end{gathered}$	$\begin{array}{c\|} \mathbf{0 . 4 9 2} \\ (0.380-0.642) \end{array}$	$\begin{gathered} \mathbf{0 . 5 6 5} \\ (0.426-0.756) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 4 1} \\ (0.470-0.882) \end{gathered}$	$\begin{gathered} 0.747 \\ (0.526-1.07) \end{gathered}$	$\begin{gathered} 0.831 \\ (0.566-1.23) \end{gathered}$
30-min	$\begin{gathered} \mathbf{0 . 1 9 6} \\ (0.162-0.240) \end{gathered}$	$\begin{array}{\|c} \mathbf{0 . 2 7 8} \\ (0.229-0.340) \\ \hline \end{array}$	$\begin{gathered} 0.387 \\ (0.319-0.476) \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 7 9} \\ (0.391-0.592) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 0 6} \\ (0.479-0.776) \end{gathered}$	$\begin{gathered} \mathbf{0 . 7 0 7} \\ (0.547-0.924) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 8 1 2} \\ (0.613-1.09) \end{gathered}$	$\begin{gathered} 0.922 \\ (0.677-1.27) \end{gathered}$	$\begin{gathered} \hline 1.08 \\ (0.757-1.54) \end{gathered}$	$\begin{gathered} 1.20 \\ (0.814-1.78) \end{gathered}$
60-r	$\begin{gathered} 0.255 \\ (0.211-0.312) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 6 1} \\ (0.298-0.442) \\ \hline \end{gathered}$	$\begin{gathered} 0.503 \\ (0.414-0.618) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 2 2} \\ (0.508-0.770) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \mathbf{0 . 7 8 8} \\ (0.622-1.01) \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathbf{0 . 9 1 9} \\ (0.710-1.20) \\ \hline \end{array}$	$\begin{gathered} 1.06 \\ (0.796-1.41) \\ \hline \end{gathered}$	$\begin{gathered} 1.20 \\ (0.879-1.65) \end{gathered}$	$\begin{gathered} 1.40 \\ (0.983-2.00) \\ \hline \end{gathered}$	$\begin{gathered} 1.55 \\ (1.06-2.31) \end{gathered}$
2-hr	$\begin{gathered} 0.358 \\ (0.296-0.437) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 8 5} \\ (0.400-0.594) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 5 9} \\ (0.542-0.809) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 8 0 6} \\ (0.658-0.998) \\ \hline \end{array}$	$\begin{gathered} \hline 1.02 \\ (0.802-1.30) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.18 \\ (0.915-1.55) \\ \hline \end{array}$	$\begin{gathered} 1.36 \\ (1.03-1.82) \\ \hline \end{gathered}$	$\begin{gathered} 1.55 \\ (1.13-2.13) \\ \hline \end{gathered}$	$\begin{gathered} 1.81 \\ (1.27-2.59) \\ \hline \end{gathered}$	$\begin{gathered} 2.02 \\ (1.37-2.99) \\ \hline \end{gathered}$
3-hr	$\begin{gathered} \mathbf{0 . 4 4 2} \\ (0.365-0.541) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 9 2} \\ (0.488-0.724) \\ \hline \end{gathered}$	$\begin{gathered} 0.797 \\ (0.656-0.979) \end{gathered}$	$\begin{gathered} \hline 0.973 \\ (0.794-1.20) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.22 \\ (0.966-1.57) \\ \hline \end{gathered}$	$\begin{gathered} 1.43 \\ (1.10-1.86) \end{gathered}$	$\begin{gathered} 1.64 \\ (1.24-2.19) \end{gathered}$	$\begin{gathered} 1.87 \\ (1.37-2.57) \end{gathered}$	$\begin{gathered} 2.19 \\ (1.54-3.14) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 5} \\ (1.67-3.63) \end{gathered}$
6-hr	$\begin{gathered} \mathbf{0 . 6 0 4} \\ (0.499-0.738) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 8 0 1} \\ (0.661-0.98 \end{gathered}$	$\begin{gathered} \hline 1.08 \\ (0.885-1.32) \\ \hline \end{gathered}$	$\begin{gathered} 1.31 \\ (1.07-1.62) \\ \hline \end{gathered}$	$\begin{gathered} 1.65 \\ (1.30-2.11) \\ \hline \end{gathered}$	$\begin{gathered} 1.92 \\ (1.49-2.51) \\ \hline \end{gathered}$	$\begin{gathered} 2.22 \\ (1.67-2.97) \\ \hline \end{gathered}$	$\begin{gathered} 2.53 \\ (1.86-3.49) \\ \hline \end{gathered}$	$\begin{gathered} 2.98 \\ (2.10-4.28) \\ \hline \end{gathered}$	$\begin{gathered} 3.35 \\ (2.28-4.97) \\ \hline \end{gathered}$
12-hr	$\mathbf{0 . 7 6 0}$ $(0.628-0.929)$	$\begin{gathered} \hline 1.04 \\ (0.855-1.27) \\ \hline \end{gathered}$	$\begin{gathered} 1.42 \\ (1.17-1.74) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.75 \\ (1.43-2.16) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 2 2} \\ (1.75-2.84) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 0} \\ (2.01-3.39) \\ \hline \end{gathered}$	$\begin{gathered} 3.00 \\ (2.26-4.01) \\ \hline \end{gathered}$	$\begin{gathered} 3.43 \\ (2.52-4.72) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.05 \\ (2.85-5.81) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.55 \\ (3.10-6.76) \\ \hline \end{gathered}$
24-hr	$\begin{gathered} \hline 1.02 \\ (0.907-1.18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.44 \\ (1.28-1.66) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 0 2} \\ (1.78-2.33) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 5 1} \\ (2.20-2.92) \\ \hline \end{gathered}$	$\begin{gathered} 3.21 \\ (2.72-3.86) \end{gathered}$	$\begin{gathered} \hline 3.77 \\ (3.13-4.64) \\ \hline \end{gathered}$	$\begin{gathered} 4.37 \\ (3.54-5.51) \end{gathered}$	$\begin{gathered} \hline 5.01 \\ (3.95-6.49) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.92 \\ (4.48-8.00) \\ \hline \end{gathered}$	$\begin{gathered} 6.67 \\ (4.87-9.31) \\ \hline \end{gathered}$
2-day	$\begin{gathered} 1.12 \\ (0.994-1.29) \\ \hline \end{gathered}$	$\begin{gathered} 1.59 \\ (1.41-1.83) \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 4} \\ (1.98-2.58) \end{gathered}$	$\begin{gathered} 2.79 \\ (2.44-3.25) \end{gathered}$	$\begin{gathered} 3.58 \\ (3.03-4.31) \end{gathered}$	$\begin{gathered} 4.21 \\ (3.50-5.18) \end{gathered}$	$\begin{gathered} 4.89 \\ (3.96-6.16) \end{gathered}$	$\begin{gathered} 5.62 \\ (4.43-7.28) \end{gathered}$	$\begin{gathered} \mathbf{6 . 6 6} \\ (5.03-8.99) \end{gathered}$	$\begin{gathered} 7.51 \\ (5.48-10.5) \end{gathered}$
3-day	$\begin{gathered} \hline 1.20 \\ (1.06-1.38) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.70 \\ (1.51-1.96) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 4 0} \\ (2.12-2.77) \\ \hline \end{gathered}$	$\begin{gathered} 2.99 \\ (2.62-3.49) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.84 \\ (3.26-4.63) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.53 \\ (3.76-5.57) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.26 \\ (4.26-6.63) \\ \hline \end{gathered}$	$\begin{gathered} 6.05 \\ (4.76-7.84) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.18 \\ (5.43-9.69) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.11 \\ (5.92-11.3) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 1.28 \\ (1.14-1.47) \end{gathered}$	$\begin{gathered} 1.82 \\ (1.61-2.09) \end{gathered}$	$\begin{gathered} \mathbf{2 . 5 6} \\ (2.26-2.96) \end{gathered}$	$\begin{gathered} 3.20 \\ (2.80-3.73) \end{gathered}$	$\begin{gathered} \hline 4.11 \\ (3.48-4.94) \end{gathered}$	$\begin{gathered} 4.84 \\ (4.02-5.95) \end{gathered}$	$\begin{gathered} 5.62 \\ (4.55-7.08) \end{gathered}$	$\begin{gathered} 6.46 \\ (5.09-8.37) \end{gathered}$	$\begin{gathered} 7.67 \\ (5.80-10.4) \end{gathered}$	$\begin{gathered} \mathbf{8 . 6 5} \\ (6.32-12.1) \end{gathered}$
7-day	$\begin{gathered} 1.37 \\ (1.22-1.58) \\ \hline \end{gathered}$	$\begin{gathered} 1.94 \\ (1.72-2.24) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 7 4} \\ (2.42-3.16) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.41 \\ (2.99-3.97) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.37 \\ (3.71-5.27) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 1 5} \\ (4.27-6.33) \\ \hline \end{gathered}$	$\begin{gathered} 5.96 \\ (4.83-7.51) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.84 \\ (5.39-8.86) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{8 . 0 8} \\ (6.11-10.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 9.08 \\ (6.63-12.7) \\ \hline \end{gathered}$
10-day	$\begin{gathered} 1.45 \\ (1.29-1.67) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 0 5} \\ (1.82-2.36) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 9} \\ (2.55-3.34) \\ \hline \end{gathered}$	$\begin{gathered} 3.60 \\ (3.16-4.20) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.62 \\ (3.92-5.57) \\ \hline \end{gathered}$	$\begin{gathered} 5.44 \\ (4.52-6.69) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 3 0} \\ (5.10-7.94) \\ \hline \end{gathered}$	$\begin{gathered} 7.22 \\ (5.69-9.35) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 5 2} \\ (6.44-11.5) \\ \hline \end{gathered}$	$\begin{gathered} 9.57 \\ (6.99-13.4) \\ \hline \end{gathered}$
20-day	$\begin{gathered} 1.71 \\ (1.51-1.97) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 2} \\ (2.15-2.79) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.43 \\ (3.03-3.97) \\ \hline \end{gathered}$	$\begin{gathered} 4.30 \\ (3.77-5.01) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 5 5} \\ (4.70-6.68) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 5 6} \\ (5.44-8.06) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.62 \\ (6.17-9.60) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 7 5} \\ (6.90-11.3) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (7.82-14.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.6 \\ (8.48-16.2) \\ \hline \end{gathered}$
30-day	$\begin{gathered} 1.95 \\ (1.73-2.25) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.77 \\ (2.45-3.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.94 \\ (3.48-4.55) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.95 \\ (4.34-5.77) \\ \hline \end{gathered}$	$\begin{gathered} 6.43 \\ (5.45-7.74) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.62 \\ (6.32-9.37) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.88 \\ (7.19-11.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.2 \\ (8.05-13.2) \\ \hline \end{gathered}$	$\begin{gathered} 12.1 \\ (9.15-16.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.6 \\ (9.93-19.0) \\ \hline \end{gathered}$
45-day	$\begin{gathered} \mathbf{2 . 2 8} \\ (2.02-2.62) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.22 \\ (2.85-3.71) \\ \hline \end{gathered}$	$\begin{gathered} 4.58 \\ (4.04-5.29) \end{gathered}$	$\begin{gathered} 5.77 \\ (5.05-6.72) \end{gathered}$	$\begin{gathered} \hline 7.53 \\ (6.38-9.06) \\ \hline \end{gathered}$	$\begin{gathered} 8.97 \\ (7.45-11.0) \end{gathered}$	$\begin{gathered} 10.5 \\ (8.50-13.2) \end{gathered}$	$\begin{gathered} 12.1 \\ (9.55-15.7) \end{gathered}$	$\begin{gathered} \hline 14.4 \\ (10.9-19.5) \end{gathered}$	$\begin{gathered} 16.2 \\ (11.9-22.7) \end{gathered}$
60-day	$\begin{gathered} \hline \mathbf{2 . 5 4} \\ (2.25-2.92) \\ \hline \end{gathered}$	$\begin{gathered} 3.56 \\ (3.15-4.10) \\ \hline \end{gathered}$	$\begin{gathered} 5.06 \\ (4.47-5.84) \\ \hline \end{gathered}$	$\begin{gathered} 6.38 \\ (5.59-7.43) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.34 \\ (7.07-10.0) \\ \hline \end{gathered}$	$\begin{gathered} 9.97 \\ (8.27-12.3) \\ \hline \end{gathered}$	$\begin{gathered} 11.7 \\ (9.48-14.8) \\ \hline \end{gathered}$	$\begin{gathered} 13.6 \\ (10.7-17.6) \\ \hline \end{gathered}$	$\begin{gathered} 16.2 \\ (12.2-21.9) \\ \hline \end{gathered}$	$\begin{gathered} 18.3 \\ (13.4-25.6) \\ \hline \end{gathered}$
${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.										

Back to Top

PF graphical

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

| SPECIAL FLOOD |
| :--- | :--- |
| HAZARD AREAS |

| Without Base Flood Elevation (BFE) |
| :--- | :--- |
| Zone A, V, A99 |
| With BFE or Depth Zone AE, AO, AH, VE, AR |

Regulatory Floodway

B 20.2 Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation
$\mathrm{mm}_{\text {sis }} \mathrm{mm}$ Base Flood Elevation Line (BFE)
Limit of Study
—— Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline Hydrographic Feature

MAP PANELS

\therefore Digital Data Available
 \square No Digital Data Available
 Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 1/4/2022 at 2:30 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, llood zone labels, legend, scale bar, map creation date, community identifiers, IRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

APPENDIX B:

Rational Method Analysis:

Pre-developed 25-Year 1-Hour
Developed 10-Year 1-Hour
Developed 100-Year 1-Hour

San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study

Date: 11/24/21

PRE-DEVELOPED

 25-YEAR AMCII\qquad

Program License Serial Number 6434
\qquad
********* Hydrology Study Control Information **********

Rational hydrology study storm event year is 25.0
Computed rainfall intensity:
Storm year $=25.00 \quad 1$ hour rainfall $=0.788$ (In.)
Slope used for rainfall intensity curve b $=0.7000$
Soil antecedent moisture condition (AMC) $=2$
$++$
Process from Point/Station 0.000 to Point/Station 1.000
**** INITIAL AREA EVALUATION ****

UNDEVELOPED (poor cover) subarea
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=86.00$
Pervious ratio(Ap) $=1.0000 \quad$ Max loss rate $(\mathrm{Fm})=0.265(\mathrm{In} / \mathrm{Hr})$
Initial subarea data:
Initial area flow distance $=240.000(\mathrm{Ft}$.
Top (of initial area) elevation $=95.000$ (Ft.)
Bottom (of initial area) elevation $=90.330$ (Ft.)
Difference in elevation = 4.670(Ft.)
Slope $=0.01946 \quad \mathrm{~s}(\%)=1.95$
$\mathrm{TC}=\mathrm{k}(0.525) *[($ length^3)/(elevation change)]^0.2
Initial area time of concentration $=10.338 \mathrm{~min}$.
Rainfall intensity $=\quad 2.699(\mathrm{In} / \mathrm{Hr})$ for a 25.0 year storm
Effective runoff coefficient used for area ($Q=K C I A$) is $C=0.812$
Subarea runoff $=1.993$ (CFS)
Total initial stream area $=0.910$ (Ac.)
Pervious area fraction $=1.000$
Initial area Fm value $=0.265($ In/Hr)

+++		
Process from Point/Station	1.000 to Point/Station	2.000
$* * * *$ IMPROVED CHANNEL TRAVEL TIME ****		

**** IMPROVED CHANNEL TRAVEL TIME ****

Pervious area fraction $=1.000$
Initial area Fm value $=0.265(\mathrm{In} / \mathrm{Hr})$

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 4.000 to Point/Station 5.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 90.150(Ft.)
Downstream point elevation = 86.900(Ft.)
Channel length thru subarea = 195.000(Ft.)
Channel base width = 60.000(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 25.000
Estimated mean flow rate at midpoint of channel = 1.244(CFS)
Manning's 'N' = 0.033
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 1.244(CFS)
Depth of flow = 0.034(Ft.), Average velocity = 0.600(Ft/s)
Channel flow top width = 62.538(Ft.)
Flow Velocity = 0.60(Ft/s)
Travel time = 5.42 min.
Time of concentration = 14.40 min.
Critical depth = 0.024(Ft.)
    Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 86.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.265(In/Hr)
Rainfall intensity = 2.140(In/Hr) for a 25.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method) (Q=KCIA) is C = 0.789
Subarea runoff = 0.681(CFS) for 0.560(Ac.)
Total runoff = 1.536(CFS)
Effective area this stream = 0.91(Ac.)
Total Study Area (Main Stream No. 2) = 3.09(Ac.)
Area averaged Fm value = 0.265(In/Hr)
Depth of flow = 0.038(Ft.), Average velocity = 0.651(Ft/s)
Critical depth = 0.027(Ft.)
```

++
Process from Point/Station 4.000 to Point/Station 5.000
$* * * *$ CONFLUENCE OF MINOR STREAMS ****
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area $=0.910($ Ac. $)$
Runoff from this stream $=1.536(\mathrm{CFS})$
Time of concentration $=14.40 \mathrm{~min}$.
Rainfall intensity $=\quad 2.140(\mathrm{In} / \mathrm{Hr})$
Area averaged loss rate (Fm) = 0.2651(In/Hr)
Area averaged Pervious ratio (Ap) $=1.0000$
$++$
Process from Point/Station $\quad 6.000$ to Point/Station 7.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=86.00$
Pervious ratio $(\mathrm{Ap})=1.0000 \quad$ Max loss rate $(\mathrm{Fm})=0.265(\mathrm{In} / \mathrm{Hr})$

Initial subarea data:
Initial area flow distance $=210.000(F t$.
Top (of initial area) elevation $=94.060$ (Ft.)
Bottom (of initial area) elevation = 87.750(Ft.)
Difference in elevation $=6.310(F t$.
Slope $=0.03005 \mathrm{~s}(\%)=3.00$
$T C=k(0.525) *[($ length^3)/(elevation change) $] \wedge 0.2$
Initial area time of concentration $=8.984 \mathrm{~min}$.
Rainfall intensity $=\quad 2.977(\mathrm{In} / \mathrm{Hr})$ for a 25.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C $=0.820$
Subarea runoff $=1.342(C F S)$
Total initial stream area $=0.550$ (Ac.)
Pervious area fraction $=1.000$
Initial area Fm value $=0.265(\mathrm{In} / \mathrm{Hr})$
++
Process from Point/Station $\quad 7.000$ to Point/Station

| $* * *$ IMPROVED CHANNEL TRAVEL TIME **** |
| :--- |$\quad 8.000$

Upstream point elevation $=87.750$ (Ft.)
Downstream point elevation $=86.900(\mathrm{Ft}$.
Channel length thru subarea $=137.000(\mathrm{Ft}$.
Channel base width $=60.000(F t$.
Slope or 'Z' of left channel bank $=50.000$
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel $=\quad 1.765(\mathrm{CFS})$
Manning's 'N' $=0.033$
Maximum depth of channel $=2.000$ (Ft.)
Flow (q) thru subarea $=1.765$ (CFS)
Depth of flow $=0.056(\mathrm{Ft}$.$) , Average velocity =0.503(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=$ 65.585(Ft.)
Flow Velocity $=0.50(\mathrm{Ft} / \mathrm{s})$
Travel time $=4.54 \mathrm{~min}$.
Time of concentration $=13.52 \mathrm{~min}$.
Critical depth $=0.030(\mathrm{Ft}$.
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=86.00$
Pervious ratio(Ap) $=1.0000 \quad$ Max loss rate $(\mathrm{Fm})=0.265(\mathrm{In} / \mathrm{Hr})$
Rainfall intensity $=\quad 2.236(\mathrm{In} / \mathrm{Hr})$ for a 25.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) ($Q=K C I A$) is $C=0.793$
Subarea runoff $=0.787$ (CFS) for $0.650(A c$.
Total runoff $=\quad 2.129(\mathrm{CFS})$
Effective area this stream = 1.20 (Ac.)
Total Study Area (Main Stream No. 2) = 4.29 (Ac.)
Area averaged Fm value $=0.265($ In $/ H r)$
Depth of flow $=0.062(\mathrm{Ft}$.$) , Average velocity =0.540(\mathrm{Ft} / \mathrm{s})$
Critical depth $=0.034(F t$.
++
Process from Point/Station $\quad 7.000$ to Point/Station
$\star * * *$ CONFLUENCE OF MINOR STREAMS ****

1	1.54	0.910		14.40	0.265		2.140
2	2.13	1.200		13.52	0.265		2.236
Qmax (1)							
	1.000	*	1.000	*	1.536)	+	
	0.951	*	1.000	*	2.129)	+ =	3.560
Qmax (2)							
	1.051	*	0.939	*	1.536)	+	
	1.000	*	1.000	*	2.129)	+ =	3.645

Total of 2 streams to confluence:
Flow rates before confluence point:
$1.536 \quad 2.129$
Maximum flow rates at confluence using above data: $3.560 \quad 3.645$
Area of streams before confluence:

$$
0.910 \quad 1.200
$$

Effective area values after confluence:
$2.110 \quad 2.054$

Results of confluence:
Total flow rate $=3.645(\mathrm{CFS})$
Time of concentration $=13.520 \mathrm{~min}$.
Effective stream area after confluence $=$ 2.054(Ac.)
Study area average Pervious fraction(Ap) $=1.000$
Study area average soil loss rate(Fm) $=0.265(\mathrm{In} / \mathrm{Hr})$
Study area total (this main stream) = 2.11 (Ac.)
$++$
Process from Point/Station 8.000 to Point/Station 9.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation $=87.750$ (Ft.)
Downstream point elevation $=82.980$ (Ft.)
Channel length thru subarea $=190.000(\mathrm{Ft}$.
Channel base width $=5.000(\mathrm{Ft}$.
Slope or 'Z' of left channel bank = 5.000
Slope or 'Z' of right channel bank = 5.000
Estimated mean flow rate at midpoint of channel $=3.989(\mathrm{CFS})$
Manning's 'N' $=0.033$
Maximum depth of channel $=2.000$ (Ft.)
Flow (q) thru subarea $=3.989(C F S)$
Depth of flow $=0.253(F t$.$) , Average velocity =2.515(\mathrm{Ft} / \mathrm{s})$
Channel flow top width $=7.532(F t$.
Flow Velocity $=2.51(\mathrm{Ft} / \mathrm{s})$
Travel time $=1.26 \mathrm{~min}$.
Time of concentration $=14.78 \mathrm{~min}$.
Critical depth $=0.248$ (Ft.)
Adding area flow to channel
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=86.00$
Pervious ratio $(\mathrm{Ap})=1.0000 \quad$ Max loss rate $(\mathrm{Fm})=0.265(\mathrm{In} / \mathrm{Hr})$
Rainfall intensity $=\quad 2.101(\mathrm{In} / \mathrm{Hr})$ for a 25.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.786$
Subarea runoff $=0.609(C F S)$ for 0.520 (Ac.)
Total runoff $=\quad 4.254$ (CFS)
Effective area this stream $=\quad 2.57$ (Ac.)
Total Study Area (Main Stream No. 2) $=4.81$ (Ac.)
Area averaged Fm value $=0.265$ (In/Hr)
Depth of flow $=0.263(\mathrm{Ft}$.$) , Average velocity =2.567(\mathrm{Ft} / \mathrm{s})$
Critical depth $=0.258$ (Ft.)
$++$
Process from Point/Station 8.000 to Point/Station 9.000

San Bernardino County Rational Hydrology Program
(Hydrology Manual Date - August 1986)
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study Date: 01/10/22

DEVELOPED
 10-YEAR 1-HOUR AMC II

Program License Serial Number 6434
********* Hydrology Study Control Information **********

Rational hydrology study storm event year is 10.0
Computed rainfall intensity:
Storm year $=10.00 \quad 1$ hour rainfall $=0.622$ (In.)
Slope used for rainfall intensity curve $b=0.7000$ Soil antecedent moisture condition (AMC) $=2$

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 0.000 to Point/Station 1.000
**** INITIAL AREA EVALUATION ****
```

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group C = 1.000
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=69.00$
Pervious ratio $(\mathrm{Ap})=0.6000 \quad$ Max loss rate $(\mathrm{Fm})=0.329(\mathrm{In} / \mathrm{Hr})$
Initial subarea data:
Initial area flow distance $=155.000(\mathrm{Ft}$.
Top (of initial area) elevation $=88.000$ (Ft.)
Bottom (of initial area) elevation = 87.900 (Ft.)
Difference in elevation $=0.100(F t$.
Slope $=0.00065 \mathrm{~s}(\%)=0.06$
$T C=k(0.412) *\left[\left(\right.\right.$ length^3)/(elevation change) ${ }^{\wedge} 0.2$
Initial area time of concentration $=13.462 \mathrm{~min}$.
Rainfall intensity $=\quad 1.771(\mathrm{In} / \mathrm{Hr})$ for a 10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.733
Subarea runoff $=\quad 0.344$ (CFS)
Total initial stream area $=0.265$ (Ac.)
Pervious area fraction $=0.600$
Initial area Fm value $=0.329(\mathrm{In} / \mathrm{Hr})$
++
Process from Point/Station $\quad 1.000$ to Point/Station
$* * * *$ STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation $=87.900$ (Ft.)

```
End of street segment elevation = 86.600(Ft.)
Length of street segment = 228.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0110
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 0.743(CFS)
Depth of flow = 0.248(Ft.), Average velocity = 1.498(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 6.075(Ft.)
Flow velocity = 1.50(Ft/s)
Travel time = 2.54 min. TC = 16.00 min.
    Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.329(In/Hr)
Rainfall intensity = 1.569(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.711
Subarea runoff = 0.711(CFS) for 0.680(Ac.)
Total runoff = 1.055(CFS)
Effective area this stream = 0.95(Ac.)
Total Study Area (Main Stream No. 1) = 0.95(Ac.)
Area averaged Fm value = 0.329(In/Hr)
Street flow at end of street = 1.055(CFS)
Half street flow at end of street = 1.055(CFS)
Depth of flow = 0.273(Ft.), Average velocity = 1.586(Ft/s)
Flow width (from curb towards crown)= 7.338(Ft.)
```

$++$
Process from Point/Station 2.000 to Point/Station
.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****


```
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.329(In/Hr)
Rainfall intensity = 1.392(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method) (Q=KCIA) is C = 0.687
Subarea runoff = 1.007(CFS) for 1.210(Ac.)
Total runoff = 2.061(CFS)
Effective area this stream = 2.16(Ac.)
Total Study Area (Main Stream No. 1) = 2.16(Ac.)
Area averaged Fm value = 0.329(In/Hr)
Street flow at end of street = 2.061(CFS)
Half street flow at end of street = 2.061(CFS)
Depth of flow = 0.335(Ft.), Average velocity = 1.697(Ft/s)
Flow width (from curb towards crown)= 10.432(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation = 85.200(Ft.)
Downstream point/station elevation = 84.800(Ft.)
Pipe length = 40.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 2.061(CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 2.061(CFS)
Normal flow depth in pipe = 5.41(In.)
Flow top width inside pipe = 16.50(In.)
Critical Depth = 6.50(In.)
Pipe flow velocity = 4.62(Ft/s)
Travel time through pipe = 0.14 min.
Time of concentration (TC) = 19.14 min.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 3.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 2.155(Ac.)
Runoff from this stream = 2.061(CFS)
Time of concentration = 19.14 min.
Rainfall intensity = 1.384(In/Hr)
Area averaged loss rate (Fm) = 0.3287(In/Hr)
Area averaged Pervious ratio (Ap) = 0.6000
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 5.000 to Point/Station 6.000
**** INITIAL AREA EVALUATION ****
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.329(In/Hr)
Initial subarea data:
Initial area flow distance = 155.000(Ft.)
Top (of initial area) elevation = 90.200(Ft.)
Bottom (of initial area) elevation = 87.900(Ft.)
Difference in elevation = 2.300(Ft.)
Slope = 0.01484 s(%)= 1.48
TC = k(0.412)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.190 min.
Rainfall intensity = 2.746(In/Hr) for a 10.0 year storm
```

Pervious area fraction $=0.600$
Initial area Fm value $=0.329(\mathrm{In} / \mathrm{Hr})$
++
Process from Point/Station $\quad 6.000$ to Point/Station
$\star * * *$ STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****

Top of street segment elevation $=87.900$ (Ft.)
End of street segment elevation $=86.600$ (Ft.)
Length of street segment $=228.000$ (Ft.)
Height of curb above gutter flowline $=6.0$ (In.)
Width of half street (curb to crown) = 20.000 (Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width $=2.000$ (Ft.)
Gutter hike from flowline $=2.000$ (In.)
Manning's N in gutter $=0.0110$
Manning's N from gutter to grade break $=0.0150$
Manning's N from grade break to crown $=0.0150$
Estimated mean flow rate at midpoint of street $=1.133$ (CFS)
Depth of flow = 0.279(Ft.), Average velocity = 1.607(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=7.608$ (Ft.)
Flow velocity $=1.61(\mathrm{Ft} / \mathrm{s})$
Travel time $=2.37 \mathrm{~min} . \quad T C=\quad 9.56 \mathrm{~min}$. Adding area flow to street
RESIDENTIAL (3-4 dwl/acre)
Decimal fraction soil group $\mathrm{A}=0.000$
Decimal fraction soil group $\mathrm{B}=0.000$
Decimal fraction soil group C = 1.000
Decimal fraction soil group $\mathrm{D}=0.000$
SCS curve number for soil(AMC 2) $=69.00$
Pervious ratio (Ap) = 0.6000 Max loss rate (Fm) $=0.329(\mathrm{In} / \mathrm{Hr})$
Rainfall intensity $=\quad 2.251(\mathrm{n} / \mathrm{Hr})$ for a 10.0 year storm
Effective runoff coefficient used for area, (total area with modified rational method) ($Q=$ KCIA) is $C=0.769$
Subarea runoff $=1.058(\mathrm{CFS})$ for 0.680 (Ac.)
Total runoff $=1.635$ (CFS)
Effective area this stream $=0.95$ (Ac.)
Total Study Area (Main Stream No. 1) = 3.10 (Ac.)
Area averaged Fm value $=0.329(\mathrm{In} / \mathrm{Hr})$
Street flow at end of street $=1.635(\mathrm{CFS})$
Half street flow at end of street $=1.635$ (CFS)
Depth of flow $=0.308(F t$.$) , Average velocity =1.724(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) = 9.062(Ft.)

++
Process from Point/Station 7.000 to Point/Station 8.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation $=86.600(\mathrm{Ft}$.
End of street segment elevation $=85.200$ (Ft.)
Length of street segment $=289.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0($ In. $)$
Width of half street (curb to crown) $=20.000$ (Ft.)
Distance from crown to crossfall grade break $=18.000$ (Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) $=0.020$
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000$ (Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width $=2.000$ (Ft.)

```
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0110
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 2.373(CFS)
Depth of flow = 0.349(Ft.), Average velocity = 1.749(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 11.092(Ft.)
Flow velocity = 1.75(Ft/s)
Travel time = 2.75 min. TC = 12.31 min.
    Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.329(In/Hr)
Rainfall intensity = 1.885(In/Hr) for a 10.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method) (Q=KCIA) is C = 0.743
Subarea runoff = 1.384(CFS) for 1.210(Ac.)
Total runoff = 3.018(CFS)
Effective area this stream = 2.16(Ac.)
Total Study Area (Main Stream No. 1) = 4.31(Ac.)
Area averaged Fm value = 0.329(In/Hr)
Street flow at end of street = 3.018(CFS)
Half street flow at end of street = 3.018(CFS)
Depth of flow = 0.372(Ft.), Average velocity = 1.844(Ft/s)
Flow width (from curb towards crown)= 12.289(Ft.)
```

$++$
Process from Point/Station 7.000 to Point/Station 8.000
**** CONFLUENCE OF MINOR STREAMS ****

Total of 2 streams to confluence:
Flow rates before confluence point:
2.0613 .018

Maximum flow rates at confluence using above data: $4.109 \quad 4.974$
Area of streams before confluence: $2.155 \quad 2.155$
Effective area values after confluence: $4.310 \quad 3.541$
Results of confluence:
Total flow rate $=\quad 4.974(\mathrm{CFS})$
Time of concentration $=12.310$ min.
Effective stream area after confluence $=3.541$ (Ac.)

```
Study area average Pervious fraction(Ap) = 0.600
Study area average soil loss rate(Fm) = 0.329(In/Hr)
Study area total (this main stream) = 4.31(Ac.)
End of computations, Total Study Area = 4.31 (Ac.)
The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) = 0.600
Area averaged SCS curve number = 69.0
```


CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2018 Version 9.0 Rational Hydrology Study Date: 01/10/22

DEVELOPED 100-YEAR AMC III
\qquad

Program License Serial Number 6434
\qquad
********* Hydrology Study Control Information **********
\qquad
Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year $=100.00 \quad 1$ hour rainfall $=1.060$ (In.)
Slope used for rainfall intensity curve $b=0.7000$ Soil antecedent moisture condition (AMC) $=3$

```
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 0.000 to Point/Station 1.000
**** INITIAL AREA EVALUATION ****
```

RESIDENTIAL (3 - 4 dwl/acre)
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=69.00$
Adjusted SCS curve number for AMC $3=86.20$
Pervious ratio $(\mathrm{Ap})=0.6000 \quad$ Max loss rate $(\mathrm{Fm})=0.157(\mathrm{In} / \mathrm{Hr})$
Initial subarea data:
Initial area flow distance $=155.000$ (Ft.)
Top (of initial area) elevation $=88.000$ (Ft.)
Bottom (of initial area) elevation $=87.900$ (Ft.)
Difference in elevation $=0.100(F t$.
Slope $=0.00065 \mathrm{~s}(\%)=\quad 0.06$
TC $=k(0.412) *[(l e n g t h \wedge 3) /(e l e v a t i o n ~ c h a n g e)] \wedge 0.2$
Initial area time of concentration $=13.462 \mathrm{~min}$.
Rainfall intensity $=\quad 3.017(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area ($Q=$ KCIA) is $C=0.853$
Subarea runoff $=0.682$ (CFS)
Total initial stream area $=0.265$ (Ac.)
Pervious area fraction $=0.600$
Initial area Fm value $=0.157($ In/Hr)

```
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 1.000 to Point/Station 2.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
```

```
Top of street segment elevation = 87.900(Ft.)
End of street segment elevation = 86.600(Ft.)
Length of street segment = 228.000(Ft.)
Height of curb above gutter flowline = 6.0(In.)
Width of half street (curb to crown) = 20.000(Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0110
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 1.459(CFS)
Depth of flow = 0.299(Ft.), Average velocity = 1.686(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 8.597(Ft.)
Flow velocity = 1.69(Ft/s)
Travel time = 2.25 min. TC = 15.72 min.
    Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.157(In/Hr)
Rainfall intensity = 2.708(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method) (Q=KCIA) is C = 0.848
Subarea runoff = 1.487(CFS) for 0.680(Ac.)
Total runoff = 2.169(CFS)
Effective area this stream = 0.95(Ac.)
Total Study Area (Main Stream No. 1) = 0.95(Ac.)
Area averaged Fm value = 0.157(In/Hr)
Street flow at end of street = 2.169(CFS)
Half street flow at end of street = 2.169(CFS)
Depth of flow = 0.333(Ft.), Average velocity = 1.829(Ft/s)
Flow width (from curb towards crown)= 10.293(Ft.)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 2.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
```



```
Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.157(In/Hr)
Rainfall intensity = 2.437(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method)(Q=KCIA) is C = 0.842
Subarea runoff = 2.252(CFS) for 1.210(Ac.)
Total runoff = 4.421(CFS)
Effective area this stream = 2.16(Ac.)
Total Study Area (Main Stream No. 1) = 2.16(Ac.)
Area averaged Fm value = 0.157(In/Hr)
Street flow at end of street = 4.421(CFS)
Half street flow at end of street = 4.421(CFS)
Depth of flow = 0.415(Ft.), Average velocity = 2.010(Ft/s)
Flow width (from curb towards crown)= 14.398(Ft.)
```

++
Process from Point/Station 3.000 to Point/Station 4.000
**** PIPEFLOW TRAVEL TIME (User specified size) ****
Upstream point/station elevation $=85.200$ (Ft.)
Downstream point/station elevation $=84.800(F t$.
Pipe length $=40.00(F t$.$) Manning's \mathrm{N}=0.013$
No. of pipes $=1$ Required pipe flow $=4.421$ (CFS)
Given pipe size = 18.00(In.)
Calculated individual pipe flow = 4.421(CFS)
Normal flow depth in pipe $=8.14($ In. $)$
Flow top width inside pipe $=17.92($ In. $)$
Critical Depth $=$ 9.69(In.)
Pipe flow velocity $=\quad 5.69(\mathrm{Ft} / \mathrm{s})$
Travel time through pipe $=0.12 \mathrm{~min}$.
Time of concentration $(T C)=18.39 \mathrm{~min}$.
$++$
Process from Point/Station 3.000 to Point/Station 4.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area $=\quad 2.155$ (Ac.)
Runoff from this stream = 4.421(CFS)
Time of concentration $=18.39 \mathrm{~min}$.
Rainfall intensity $=2.426(\mathrm{In} / \mathrm{Hr})$
Area averaged loss rate $(\mathrm{Fm})=0.1569(\mathrm{In} / \mathrm{Hr})$
Area averaged Pervious ratio (Ap) $=0.6000$

RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=69.00$
Adjusted SCS curve number for AMC $3=86.20$
Pervious ratio(Ap) $=0.6000 \quad$ Max loss rate $(\mathrm{Fm})=0.157(\mathrm{In} / \mathrm{Hr})$
Initial subarea data:
Initial area flow distance $=155.000(F t$.
Top (of initial area) elevation $=90.200$ (Ft.)
Bottom (of initial area) elevation = 87.900(Ft.)
Difference in elevation $=2.300(F t$.

```
Slope = 0.01484 s(%)= 1.48
TC = k(0.412)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.190 min.
Rainfall intensity = 4.680(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.870
Subarea runoff = 1.079(CFS)
Total initial stream area = 0.265(Ac.)
Pervious area fraction = 0.600
Initial area Fm value = 0.157(In/Hr)
```

$++$
Process from Point/Station $\quad 6.000$ to Point/Station
*** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION $* * * *$
Top of street segment elevation $=87.900$ (Ft.)
End of street segment elevation $=86.600$ (Ft.)
Length of street segment $=228.000$ (Ft.)
Height of curb above gutter flowline $=6.0(I n$.
Width of half street (curb to crown) $=20.000$ (Ft.)
Distance from crown to crossfall grade break $=18.000$ (Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line $=10.000(\mathrm{Ft}$.
Slope from curb to property line (v/hz) = 0.020
Gutter width $=2.000$ (Ft.)
Gutter hike from flowline $=2.000($ In. $)$
Manning's N in gutter $=0.0110$
Manning's N from gutter to grade break $=0.0150$
Manning's N from grade break to crown $=0.0150$
Estimated mean flow rate at midpoint of street $=\quad 2.182$ (CFS)
Depth of flow $=0.333(F t$.$) , Average velocity =1.831(\mathrm{Ft} / \mathrm{s})$
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width $=10.320(F t$.
Flow velocity $=1.83(\mathrm{Ft} / \mathrm{s})$
Travel time $=2.08 \mathrm{~min} . \quad T C=9.27 \mathrm{~min}$.
Adding area flow to street
RESIDENTIAL(3-4 dwl/acre)
Decimal fraction soil group $A=0.000$
Decimal fraction soil group $B=0.000$
Decimal fraction soil group $C=1.000$
Decimal fraction soil group $D=0.000$
SCS curve number for soil(AMC 2) $=69.00$
Adjusted SCS curve number for AMC $3=86.20$
Pervious ratio(Ap) $=0.6000 \quad$ Max loss rate $(\mathrm{Fm})=0.157(\mathrm{In} / \mathrm{Hr})$
Rainfall intensity $=\quad 3.919(\mathrm{In} / \mathrm{Hr})$ for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) ($\mathrm{Q}=\mathrm{KCIA}$) is $\mathrm{C}=0.864$
Subarea runoff $=\quad 2.121(C F S)$ for $0.680(A c$.
Total runoff $=3.200(\mathrm{CFS})$
Effective area this stream $=0.95$ (Ac.)
Total Study Area (Main Stream No. 1) = 3.10 (Ac.)
Area averaged Fm value $=0.157(\mathrm{In} / \mathrm{Hr})$
Street flow at end of street $=3.200(\mathrm{CFS})$
Half street flow at end of street $=3.200$ (CFS)
Depth of flow $=0.370(\mathrm{Ft}$.$) , Average velocity =1.990(\mathrm{Ft} / \mathrm{s})$
Flow width (from curb towards crown) $=12.170$ (Ft.)
$++$
Process from Point/Station 7.000 to Point/Station 8.000
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation $=86.600(F t$.
End of street segment elevation $=85.200$ (Ft.)
Length of street segment $=289.000(\mathrm{Ft}$.
Height of curb above gutter flowline $=6.0(I n$.
Width of half street (curb to crown) $=20.000$ (Ft.)
Distance from crown to crossfall grade break = 18.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020

```
Slope from grade break to crown (v/hz) = 0.020
Street flow is on [1] side(s) of the street
Distance from curb to property line = 10.000(Ft.)
Slope from curb to property line (v/hz) = 0.020
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
    Manning's N in gutter = 0.0110
    Manning's N from gutter to grade break = 0.0150
    Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street = 4.728(CFS)
Depth of flow = 0.423(Ft.), Average velocity = 2.041(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 14.796(Ft.)
Flow velocity = 2.04(Ft/s)
Travel time = 2.36 min. TC = 11.63 min.
    Adding area flow to street
RESIDENTIAL(3 - 4 dwl/acre)
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.6000 Max loss rate(Fm)= 0.157(In/Hr)
Rainfall intensity = 3.344(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area,(total area with modified
rational method) (Q=KCIA) is C = 0.858
Subarea runoff = 2.981(CFS) for 1.210(Ac.)
Total runoff = 6.181(CFS)
Effective area this stream = 2.16(Ac.)
Total Study Area (Main Stream No. 1) = 4.31(Ac.)
Area averaged Fm value = 0.157(In/Hr)
Street flow at end of street = 6.181(CFS)
Half street flow at end of street = 6.181(CFS)
Depth of flow = 0.456(Ft.), Average velocity = 2.172(Ft/s)
Flow width (from curb towards crown)= 16.489(Ft.)
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Process from Point/Station 7.000 to Point/Station 8.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.155(Ac.)
Runoff from this stream = 6.181(CFS)
Time of concentration = 11.63 min.
Rainfall intensity = 3.344(In/Hr)
Area averaged loss rate (Fm) = 0.1569(In/Hr)
Area averaged Pervious ratio (Ap) = 0.6000
Summary of stream data:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Stream No. & Flow rate (CFS) & \multicolumn{2}{|l|}{\[
{ }^{(\text {Ac. })^{\prime}}{ }^{\text {Area }}
\]} & TC (min) & \[
\begin{aligned}
& \text { Fm } \\
& (\mathrm{In} / \mathrm{Hr})
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Rainfall Intensity } \\
& \text { (In/Hr) }
\end{aligned}
\] \\
\hline 1 & 4.42 & 2.155 & & 18.39 & 0.157 & & 2.426 \\
\hline 2 & 6.18 & 2.155 & & 11.63 & 0.157 & & 3.344 \\
\hline \multicolumn{8}{|l|}{Qmax (1) =} \\
\hline & 1.000 & * & 1.000 & * & 4.421) & + & \\
\hline & 0.712 & * & 1.000 & * & 6.181) & + = & 8.822 \\
\hline \multicolumn{8}{|l|}{Qmax (2)} \\
\hline & 1.405 & * & 0.632 & * & 4.421) & + & \\
\hline & 1.000 & * & 1.000 & * & 6.181) & + = & 10.107 \\
\hline
\end{tabular}
Total of 2 streams to confluence:
Flow rates before confluence point: \(4.421 \quad 6.181\)
Maximum flow rates at confluence using above data: \(8.822 \quad 10.107\)
Area of streams before confluence:
\[
2.155 \quad 2.155
\]
```

Effective area values after confluence: $4.310 \quad 3.517$
Results of confluence:
Total flow rate $=10.107(C F S)$
Time of concentration $=\quad 11.625 \mathrm{~min}$.
Effective stream area after confluence $=3.517$ (Ac.)
Study area average Pervious fraction (Ap) $=0.600$
Study area average soil loss rate(Fm) = 0.157(In/Hr)
Study area total (this main stream) = 4.31 (Ac.)
End of computations, Total Study Area = 4.31 (Ac.)

The following figures may
be used for a unit hydrograph study of the same area.
Note: These figures do not consider reduced effective area
effects caused by confluences in the rational equation.
Area averaged pervious area fraction(Ap) $=0.600$
Area averaged SCS curve number $=69.0$

APPENDIX C:

Unit-Hydrograph Method Analysis:

Developed 10-Year 24-Hour
Developed 100-Year 3-Hour

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2018, Version 9.0
Study date 01/10/22

```



\section*{U n i t \(H\) y d r o g r a p h}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Hydrograph in} \\
\hline Time ( \(\mathrm{h}+\mathrm{m}\) ) & Volume Ac.Ft & Q (CFS) & 0 & 2.5 & 5.0 & 7.5 & 10.0 \\
\hline \(0+5\) & 0.0000 & 0.00 & Q & | & | & | & | \\
\hline \(0+10\) & 0.0002 & 0.03 & Q & | & | & | & | \\
\hline \(0+15\) & 0.0007 & 0.06 & Q & | & I & | & | \\
\hline \(0+20\) & 0.0012 & 0.07 & Q & | & I & I & | \\
\hline \(0+25\) & 0.0017 & 0.08 & Q & I & I & I & | \\
\hline \(0+30\) & 0.0023 & 0.09 & Q & | & I & । & | \\
\hline \(0+35\) & 0.0030 & 0.09 & Q & I & I & I & I \\
\hline \(0+40\) & 0.0036 & 0.09 & Q & | & I & I & I \\
\hline \(0+45\) & 0.0043 & 0.10 & Q & | & | & \| & 1 \\
\hline \(0+50\) & 0.0049 & 0.10 & Q & 1 & | & \| & | \\
\hline 0+55 & 0.0056 & 0.10 & Q & 1 & I & I & | \\
\hline \(1+0\) & 0.0063 & 0.10 & Q & | & I & I & | \\
\hline \(1+5\) & 0.0070 & 0.10 & Q & | & I & I & | \\
\hline 1+10 & 0.0077 & 0.10 & Q & | & | & | & | \\
\hline \(1+15\) & 0.0084 & 0.10 & Q & | & I & I & I \\
\hline \(1+20\) & 0.0091 & 0.10 & Q & | & I & I & I \\
\hline \(1+25\) & 0.0098 & 0.10 & Q & | & I & | & | \\
\hline \(1+30\) & 0.0105 & 0.10 & Q & | & | & | & 1 \\
\hline \(1+35\) & 0.0112 & 0.10 & Q & I & I & । & 1 \\
\hline \(1+40\) & 0.0119 & 0.10 & QV & I & I & I & I \\
\hline \(1+45\) & 0.0127 & 0.10 & QV & | & | & । & | \\
\hline \(1+50\) & 0.0134 & 0.10 & QV & | & | & । & I \\
\hline \(1+55\) & 0.0141 & 0.10 & QV & I & I & | & I \\
\hline \(2+0\) & 0.0148 & 0.11 & QV & | & I & I & | \\
\hline \(2+5\) & 0.0156 & 0.11 & QV & | & | & । & | \\
\hline \(2+10\) & 0.0163 & 0.11 & QV & | & | & I & | \\
\hline \(2+15\) & 0.0170 & 0.11 & QV & | & | & । & 1 \\
\hline \(2+20\) & 0.0177 & 0.11 & QV & | & | & | & I \\
\hline \(2+25\) & 0.0185 & 0.11 & QV & | & | & । & | \\
\hline \(2+30\) & 0.0192 & 0.11 & QV & | & I & I & | \\
\hline \(2+35\) & 0.0200 & 0.11 & QV & | & | & I & 1 \\
\hline \(2+40\) & 0.0207 & 0.11 & QV & | & | & | & I \\
\hline \(2+45\) & 0.0215 & 0.11 & QV & 1 & I & । & 1 \\
\hline \(2+50\) & 0.0222 & 0.11 & QV & I & | & I & | \\
\hline \(2+55\) & 0.0229 & 0.11 & QV & I & I & । & I \\
\hline \(3+0\) & 0.0237 & 0.11 & Q V & I & I & । & , \\
\hline \(3+5\) & 0.0245 & 0.11 & Q V & | & | & | & | \\
\hline \(3+10\) & 0.0252 & 0.11 & Q V & | & I & | & I \\
\hline \(3+15\) & 0.0260 & 0.11 & Q V & I & I & , & I \\
\hline \(3+20\) & 0.0267 & 0.11 & Q V & , & I & । & , \\
\hline \(3+25\) & 0.0275 & 0.11 & Q V & | & | & I & I \\
\hline \(3+30\) & 0.0283 & 0.11 & Q V & | & | & I & | \\
\hline \(3+35\) & 0.0290 & 0.11 & Q V & | & | & , & 1 \\
\hline \(3+40\) & 0.0298 & 0.11 & Q V & 1 & I & । & | \\
\hline \(3+45\) & 0.0306 & 0.11 & Q V & 1 & | & । & , \\
\hline \(3+50\) & 0.0314 & 0.11 & Q V & | & | & I & | \\
\hline \(3+55\) & 0.0322 & 0.11 & Q V & | & | & | & I \\
\hline \(4+0\) & 0.0329 & 0.11 & Q V & , & | & | & 1 \\
\hline \(4+5\) & 0.0337 & 0.11 & Q V & 1 & I & । & 1 \\
\hline 4+10 & 0.0345 & 0.11 & Q V & । & | & । & | \\
\hline \(4+15\) & 0.0353 & 0.12 & Q V & | & I & । & | \\
\hline \(4+20\) & 0.0361 & 0.12 & Q V & , & | & । & | \\
\hline \(4+25\) & 0.0369 & 0.12 & Q V & | & | & | & | \\
\hline \(4+30\) & 0.0377 & 0.12 & Q V & 1 & | & । & | \\
\hline \(4+35\) & 0.0385 & 0.12 & Q V & | & | & I & | \\
\hline \(4+40\) & 0.0393 & 0.12 & Q V & 1 & | & । & | \\
\hline \(4+45\) & 0.0401 & 0.12 & Q V & | & | & । & | \\
\hline \(4+50\) & 0.0409 & 0.12 & Q V & 1 & I & | & | \\
\hline 4+55 & 0.0418 & 0.12 & Q V & | & I & । & | \\
\hline \(5+0\) & 0.0426 & 0.12 & Q V & | & | & | & | \\
\hline \(5+5\) & 0.0434 & 0.12 & Q V & I & | & I & | \\
\hline \(5+10\) & 0.0442 & 0.12 & Q V & 1 & | & | & | \\
\hline \(5+15\) & 0.0451 & 0.12 & Q V & I & I & । & | \\
\hline \(5+20\) & 0.0459 & 0.12 & Q V & | & | & , & , \\
\hline \(5+25\) & 0.0467 & 0.12 & Q V & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(23+15\) & 0.4607 & 0.11 & Q & 1 & | & I & VI \\
\hline \(23+20\) & 0.4615 & 0.11 & Q & 1 & | & । & V 1 \\
\hline \(23+25\) & 0.4622 & 0.11 & Q & 1 & | & , & V 1 \\
\hline \(23+30\) & 0.4629 & 0.10 & Q & 1 & | & । & V 1 \\
\hline \(23+35\) & 0.4636 & 0.10 & Q & 1 & | & । & V 1 \\
\hline \(23+40\) & 0.4644 & 0.10 & Q & 1 & | & | & V 1 \\
\hline \(23+45\) & 0.4651 & 0.10 & Q & 1 & | & । & V 1 \\
\hline \(23+50\) & 0.4658 & 0.10 & Q & 1 & | & । & V 1 \\
\hline \(23+55\) & 0.4665 & 0.10 & Q & 1 & | & । & V 1 \\
\hline \(24+0\) & 0.4672 & 0.10 & Q & 1 & I & । & V I \\
\hline \(24+5\) & 0.4678 & 0.10 & Q & 1 & I & । & V I \\
\hline \(24+10\) & 0.4683 & 0.07 & Q & 1 & | & । & V 1 \\
\hline \(24+15\) & 0.4686 & 0.04 & Q & 1 & | & । & V I \\
\hline \(24+20\) & 0.4688 & 0.03 & Q & 1 & 1 & | & V I \\
\hline \(24+25\) & 0.4689 & 0.02 & Q & 1 & | & । & V I \\
\hline \(24+30\) & 0.4690 & 0.01 & Q & 1 & | & । & V 1 \\
\hline \(24+35\) & 0.4690 & 0.01 & Q & 1 & | & । & V 1 \\
\hline \(24+40\) & 0.4691 & 0.01 & Q & 1 & | & । & VI \\
\hline \(24+45\) & 0.4691 & 0.01 & Q & 1 & | & । & V 1 \\
\hline \(24+50\) & 0.4692 & 0.00 & Q & 1 & | & । & V 1 \\
\hline \(24+55\) & 0.4692 & 0.00 & Q & I & I & । & V 1 \\
\hline \(25+0\) & 0.4692 & 0.00 & Q & 1 & I & I & V I \\
\hline \(25+5\) & 0.4692 & 0.00 & Q & 1 & | & | & V 1 \\
\hline \(25+10\) & 0.4692 & 0.00 & Q & 1 & | & । & VI \\
\hline \(25+15\) & 0.4692 & 0.00 & Q & 1 & I & । & V \\
\hline
\end{tabular}




\section*{APPENDIX D:}

\section*{Hydraulic Analysis:}

Retention Basin Sizing
Street Capacity
Curb Opening Sump Inlet Sizing


RETENTION BASIN
DESIGN VOLUME
\begin{tabular}{|r|r|c|}
\hline \multicolumn{3}{|c|}{ BASIN CALC } \\
\hline Areas & Average Area & \(\mathrm{V}(\) Ac.ft \()\) \\
\hline 7475.36 & 6917.5 & 0.158803949 \\
\hline 6359.64 & 5833.225 & 0.13391242 \\
\hline 5306.81 & 4815.195 & 0.110541667 \\
\hline 4323.58 & 3866.675 & 0.088766644 \\
\hline 3409.77 & 2987.585 & 0.068585514 \\
\hline 2565.4 & 2177.93 & 0.049998393 \\
\hline 1790.46 & & \\
\hline TOTAL & & 0.610608586 \\
\hline
\end{tabular}


TOTAL RETENTION BASIN VOLUME

DATE: 01/10/2022
SCALE: 1 " = 30'

\section*{EXHIBIT G}

TTM 20162 RETENTION BASIN VOLUME CALCULATIONS


SUMP FORMULA -LOS ANGELES COUNTY FLOOD CONTROL DISTRICT PER CATCH BASIN CAPACITIES FOR SUMP CONDITION STD D-26

8-INCH CURB FACE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathrm{W}=\) & LENGTH (FEET) OFCATCH BASIN OPENING = & 3.50 & 7.00 & 14.00 & 21.00 \\
\hline A= & AREA OF OPENING (Wx0.656) = & 2.30 & 4.59 & 9.18 & 13.78 \\
\hline \(D=\) & DEPTH (FEET) OF FLOW ABOVE NORMAL GUTTER GRADE= & 0.67 & 0.67 & 0.67 & 0.67 \\
\hline \(Q=\) & 4.3*A* \({ }^{\wedge} 0.6\) (COMPLETE SUBMERGENCE) & 7.76 & 15.53 & 31.06 & 46.58 \\
\hline \multicolumn{6}{|l|}{6-INCH CURB FACE} \\
\hline \(\mathrm{W}=\) & LENGTH (FEET) OFCATCH BASIN OPENING = & 3.50 & 7.00 & 14.00 & 21.00 \\
\hline A= & AREA OF OPENING (Wx0.322) = & 1.13 & 2.25 & 4.51 & 6.76 \\
\hline \(D=\) & DEPTH (FEET) OF FLOW ABOVE NORMAL GUTTER GRADE= & 0.67 & 0.67 & 0.67 & 0.67 \\
\hline \(Q=\) & 4.3*A*D^0.6 (COMPLETE SUBMERGENCE) & 3.81 & 7.62 & 15.24 & 22.87 \\
\hline
\end{tabular}```

