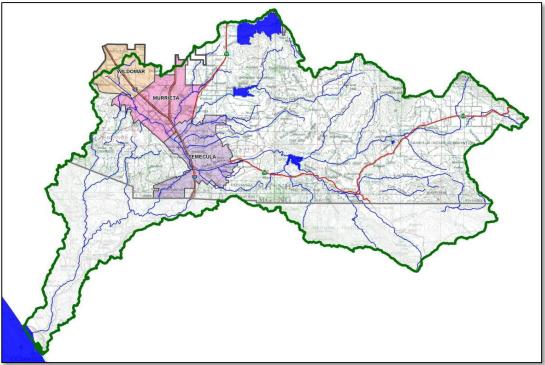
Project Specific Water Quality Management Plan

A Template for preparing Project Specific WQMPs for Priority Development Projects located within the Santa Margarita Region of Riverside County. This template does not apply to projects in other watersheds within Riverside County. It does not apply to projects in San Diego or Orange County.

Attention: This submittal package only applies to "Priority Development Projects" and does not apply to "Other Development Projects". Proceed only if the Applicability Checklist completed for your project categorizes project activities as a "Priority Development Project."


Project Title: Whitewood Apartments

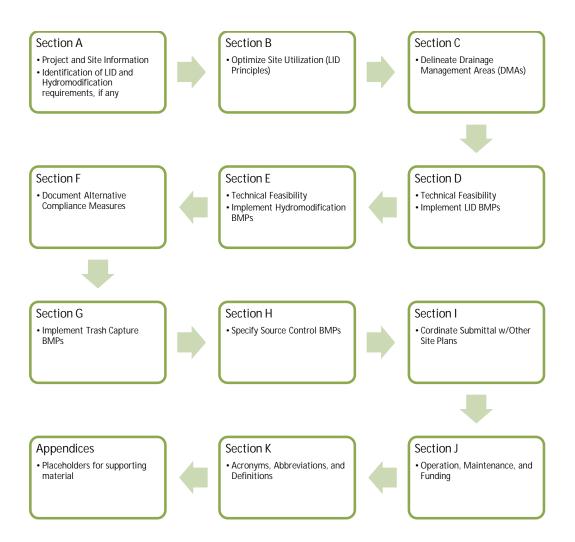
Development No: Insert text here

Design Review/Case No: Insert text here

Prepared for: Insert Developer Name, Address, and Phone Number

Prepared by: Alliance Land Planning and Engineering, 2248 Faraday Avenue, Carlsbad CA, 92008, (760) 431-9896

⊠ Preliminary □ Final


Original Date Prepared: 4/28/21

Revision Date(s): 11/8/21

Prepared for Compliance with Regional Board Order No. <u>R9-2013-0001</u> as amended by Order No. R9-2015-0001 and Order No. R9-2015-0100

A Brief Introduction

The Regional Municipal Separate Stormwater Sewer System (MS4) Permit¹ requires that a Project-Specific WQMP be prepared for all development projects within the Santa Margarita Region (SMR) that meet the 'Priority Development Project' categories and thresholds listed in the SMR Water Quality Management Plan (WQPM). This Project-Specific WQMP Template for Development Projects in the Santa Margarita Region has been prepared to help document compliance and prepare a WQMP submittal. Below is a flowchart for the layout of this Template that will provide the steps required to document compliance.

¹ Order No. R9-2013-0001 as amended by Order Nos. R9-2015-0001 and R9-2015-0100, NPDES No. CAS0109266, National Pollutant Discharge Elimination System (NPDES) Permit and Waste Discharge Requirements for Discharges from the MS4s Draining the Watersheds within the San Diego Region, California Regional Water Quality Control Board, May 8, 2013.

OWNER'S CERTIFICATION

This Project-Specific WQMP has been prepared for <Owner's Name> by Alliance for the Whitewood Apartments project.

This WQMP is intended to comply with the requirements of City of Murrieta Stormwater and Runoff Management and Discharge Controls Municipal Code Section 8.36.320, Water Quality Management Plan, which includes the requirement for the preparation and implementation of a Project-Specific WQMP.

The undersigned, while owning the property/project described in the preceding paragraph, shall be responsible for the implementation and funding of this WQMP and will ensure that this WQMP is amended as appropriate to reflect up-to-date conditions on the site. In addition, the property owner accepts responsibility for interim operation and maintenance of Stormwater Best Management Practices until such time as this responsibility is formally transferred to a subsequent owner. This WQMP will be reviewed with the facility operator, facility supervisors, employees, tenants, maintenance and service contractors, or any other party (or parties) having responsibility for implementing portions of this WQMP. At least one copy of this WQMP will be maintained at the project site or project office in perpetuity. The undersigned is authorized to certify and to approve implementation of this WQMP. The undersigned is aware that implementation of this WQMP is enforceable under the City of Murrieta Stormwater and Runoff Management and Discharge Controls (Municipal Code Section 8.36).

"I, the undersigned, certify under penalty of law that the provisions of this WQMP have been reviewed and accepted and that the WQMP will be transferred to future successors in interest."

Owner's Signature

Date

Owner's Printed Name

Owner's Title/Position

PREPARER'S CERTIFICATION

"The selection, sizing and design of stormwater treatment and other stormwater quality and quantity control Best Management Practices in this plan meet the requirements of Regional Water Quality Control Board Order No. R9-2013-0001 as amended by Order Nos. R9-2015-0001 and R9-2015-0100."

Preparer's Signature

Jason F. Vroom Preparer's Printed Name <u>4/28/21</u> Date

Principal

Preparer's Title/Position

Preparer's Licensure:

Table of Contents

Section A: Project and Site Information	7
 A.1 Maps and Site Plans A.2 Identify Receiving Waters A.3 Drainage System Susceptibility to Hydromodification A.4 Additional Permits/Approvals required for the Project: Section B: Optimize Site Utilization (LID Principles) 	
Section C: Delineate Drainage Management Areas (DMAs)	
Section D: Implement LID BMPs	20
D.1 Full Infiltration Applicability D.2 Biofiltration Applicability D.3 Feasibility Assessment Summaries D.4 LID BMP Sizing	22 24
Section E: Implement Hydrologic Control BMPs and Sediment Supply BMPs	
E.1 Hydrologic Control BMP Selection E.2 Hydrologic Control BMP Sizing E.3 Implement Sediment Supply BMPs. Section F: Alternative Compliance	29 29
 F.1 Identify Pollutants of Concern F.2 Treatment Control BMP Selection F.3 Sizing Criteria F.4 Hydrologic Performance Standard – Alternative Compliance Approach Section G: Implement Trash Capture BMPs 	
Section H: Source Control BMPs	42
Section I: Coordinate Submittal with Other Site Plans	
Section J: Operation, Maintenance and Funding	
Section K: Acronyms, Abbreviations and Definitions	45

List of Tables

Table A-1 Identification of Receiving Waters	8
Table A-2 Identification of Susceptibility to Hydromodification	9
Table A-3 Other Applicable Permits	9
Table C-1 DMA Identification	16
Table C-2 Type 'A', Self-Treating Areas	
Table C-3 Type 'B', Self-Retaining Areas	
Table C-4 Type 'C', Areas that Drain to Self-Retaining Areas	18
Table C-5 Type 'D', Areas Draining to BMPs	19
Table D-1 Infiltration Feasibility	
Table D-2 Geotechnical Concerns for Onsite Infiltration	22
Table D-3 Evaluation of Biofiltration BMP Feasibility	23
Table D-4 Proprietary BMP Approval Requirement Summary	23
Table D-5 LID Prioritization Summary Matrix	24
Table D-6 DCV Calculations for LID BMPs	26
Table D-7 LID BMP Sizing	27
Table E-1 Hydrologic Control BMP Sizing	29
Table E-2 Triad Assessment Summary	32
Table F-1 Summary of Approved 2010 303(d) listed waterbodies and associated pollutants of concer	n for
the Riverside County SMR Region and downstream waterbodies	35
Table F-2 Potential Pollutants by Land Use Type	36
Table F-3 Treatment Control BMP Selection	37
Table F-4 Treatment Control BMP Sizing	37
Table F-5 Offsite Hydrologic Control BMP Sizing	
Table G-1 Sizing Trash Capture BMPs	40
Table G-2 Approximate precipitation depth/intensity values for calculation of the Trash Capture Des	ign
Storm	40
Table G-3 Trash Capture BMPs	41
Table I-1 Construction Plan Cross-reference	
Table I-2 Other Applicable Permits	43

List of Appendices

Appendix 1: Maps and Site Plans	52
Appendix 2: Construction Plans	53
Appendix 3: Soils Information	55
Appendix 4: Historical Site Conditions	56
Appendix 5: LID Infeasibility	57

Appendix 6: BMP Design Details	58
Appendix 7: Hydromodification	59
Appendix 8: Source Control	60
Appendix 9: O&M	61
Appendix 10: Educational Materials	62

Section A: Project and Site Information

Use the table below to compile and summarize basic site information that will be important for completing subsequent steps. Subsections A.1 through A.4 provide additional detail on documentation of additional project and site information.

PROJECT INFORMATION			
Type of PDP:	New Development		
Type of Project:	Residential		
Planning Area:	Insert Planning Area if knov	wn	
Community Name:	Insert Community Name if	known	
Development Name:	Insert Development Name	if known	
PROJECT LOCATION			
Latitude & Longitude (DMS):		33°36'13.20"N, 117° 9'42.13"W	
Project Watershed and Sub-	Watershed:	Santa Margarita River, Insert HSA h	ere (see Section A.2)
24-Hour 85 th Percentile Storr	m Depth (inches):	0.60	
Is project subject to Hydrom	odification requirements?	X Y \square N (Select based on Sec	tion A.3)
APN(s):		392-320-014	
Map Book and Page No.:		Insert text here	
PROJECT CHARACTERISTICS			Incort tout have
Proposed or Potential Land L			Insert text here
Proposed or Potential SIC Co			Insert text here 29,739
Existing Impervious Area of F	•	cient Limite (SE) (or Doplacement	29,739 594,779
· · · · · ·		oject Limits (SF)/or Replacement	13.65
			$\square Y \square N$
Does the project propose to construct unpaved roads?		$\square Y \square N$	
		$\square Y \square N$	
	lydromodification Performan		Y N
	5	nce to satisfy BMP requirements?	
(note, alternative compliance is not allowed for coarse sediment performance standards)			
	pecific WQMP included coord	dination with other site plans?	□ Y 🛛 N
EXISTING SITE CHARACTERISTICS			
	in any Multi-Species Habita	t Conservation Plan area (MSHCP	
Criteria Cell?)			If "Y" insert Cell Number
Are there any natural hydrologic features on the project site?XNIs a Geotechnical Report attached?XN			
If no Geotech. Report, list the Natural Resources Conservation Service (NRCS) soils type(s) Insert text here.			Insert text here.
present on the site (A, B, C a	nd/or D)		

A.1 Maps and Site Plans

When completing your Project-Specific WQMP, include a map of the Project vicinity and existing site. In addition, include all grading, drainage, landscape/plant palette and other pertinent construction plans in Appendix 2. At a minimum, your WQMP Site Plan should include the following:

- Vicinity and location maps
- Parcel Boundary and Project Footprint
- Existing and Proposed Topography
- Drainage Management Areas (DMAs)
- Proposed Structural Best Management Practices (BMPs)
- Drainage Paths
- Drainage infrastructure, inlets, overflows

- Source Control BMPs
- Site Design BMPs
- Buildings, Roof Lines, Downspouts
- Impervious Surfaces
- Pervious Surfaces (i.e. Landscaping)
- Standard Labeling

Use your discretion on whether or not you may need to create multiple sheets or can appropriately accommodate these features on one or two sheets. Keep in mind that the Copermittee plan reviewer must be able to easily analyze your Project utilizing this template and its associated site plans and maps. Complete the checklists in Appendix 1 to verify that all exhibits and components are included.

A.2 Identify Receiving Waters

Using Table A-1 below, list in order of upstream to downstream, the Receiving Waters that the Project site is tributary to. Continue to fill each row with the Receiving Water's 303(d) listed impairments (if any), designated Beneficial Uses, and proximity, if any, to a RARE Beneficial Use. Include a map of the Receiving Waters in Appendix 1. This map should identify the path of the stormwater discharged from the site all the way to the outlet of the Santa Margarita River to the Pacific Ocean. Use the most recent 303(d) list available from the State Water Resources Control Board Website.

(http://www.waterboards.ca.gov/sandiego/water_issues/programs/basin_plan/)

able A-1 identification of	Receiving Waters		
Receiving Waters	USEPA Approved 303(d) List Impairments	Designated Beneficial Uses	Proximity to RARE Beneficial Use
Warm Springs Creek	Chlorpyrifos, Indicator Bacteria, Iron, Manganese, Nitrogen, Phosphorus	MUN, AGR, IND, PROC, REC1, REC2, WARM, WILD	Insert distance of project to RARE- designated waters (indicate whether feet, yards, or miles)
Murrieta Creek	Above plus Copper and Toxicity	MUN, AGR, IND, PROC, REC1, REC2, WARM, WILD	Insert distance of project to RARE- designated waters (indicate whether feet, yards, or miles)
Santa Margarita River (Upper)	Indicator Bacteria, Iron, Manganese, Nitrogen, Phosphorus	MUN, AGR, IND, REC1, REC2, WARM, COLD, WILD, RARE	9.2 miles from project site to Santa Margarita River (Upper)
Santa Margarita River (Lower)	Benthic Community Effects, Chlorpyrifos, Indicator Bacteria, Nitrogen, Phosphorus, Toxicity	MUN, AGR, IND, REC1, REC2, WARM, COLD, WILD, RARE	>9.2 miles
Santa Margarita Lagoon	Eutrophic	REC1, REC2, EST, WILD, RARE, MAR, MIGR, SPWN	>9.2 miles

Table A-1 Identification of Receiving Waters

A.3 Drainage System Susceptibility to Hydromodification

Using Table A-2 below, list in order of the point of discharge at the project site down to the Santa Margarita River², each drainage system or receiving water that the project site is tributary to. Continue to fill each row with the material of the drainage system, and any exemption (if applicable). Based on the results, summarize the applicable hydromodification performance standards that will be documented in Section E. Exempted categories of receiving waters include:

- Existing storm drains that discharge directly to water storage reservoirs, lakes, or enclosed embayments, or
- Conveyance channels whose bed and bank are concrete lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean.
- Other water bodies identified in an approved WMAA (See Exhibit G to the WQMP)

Include a map exhibiting each drainage system and the associated susceptibility in Appendix 1.

Drainage System	Drainage System Material	Hydromodification Exemption Exempt	
Warm Springs Creek (15 miles long total)	Natural Earth	NONE.	□Y ⊠N
Insert name and length (in miles) of 2nd drainage system	Identify either (1) the type of material of bed and bank for open channels; or (2) the material of storm drain pipes and conduits	Insert exemption justification for the 2 nd receiving water may qualify for. If none, insert NONE.	□Y □N
Insert name and length (in miles) of 3rd drainage system	Identify either (1) the type of material of bed and bank for open channels; or (2) the material of storm drain pipes and conduits	Insert exemption justification for the 3 rd receiving water may qualify for. If none, insert NONE.	□Y □N
Summary of Performance Standards			
 Hydromodification Exempt – Select if "Y" is selected in the Hydromodification Exempt column above, project is exempt from hydromodification requirements. Not Exempt-Select if "N" is selected in any row of the Hydromodification Exempt column above. Project is subject to hydrologic control requirements and may be subject to sediment supply requirements. 			

Table A-2 Identification of Susceptibility to Hydromodification

A.4 Additional Permits/Approvals required for the Project:

Table A-3 Other Applicable Permits

Agency		Permit Required	
State Department of Fish and Game, 1602 Streambed Alteration Agreement	Π Υ	🖂 N	
State Water Resources Control Board, Clean Water Act Section 401 Water Quality Certification	Π Υ	🖂 N	
US Army Corps of Engineers, Clean Water Act Section 404 Permit	Υ	N 🛛	
US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	Υ	🖂 N	

² Refer to Exhibit G of the WQMP for a map of exempt and potentially exempt areas. These maps are from the Draft SMR WMAA as of January 5, 2018 and will be replaced upon acceptance of the SMR WMAA.

Statewide Construction General Permit Coverage	×Υ	🗌 N
Statewide Industrial General Permit Coverage	□ Y	🖂 N
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	ΠΥ	🖂 N
Other (please list in the space below as required) TBD	×Υ	□ N

If yes is answered to any of the questions above, the Copermittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Section B: Optimize Site Utilization (LID Principles)

Review of the information collected in Section 'A' will aid in identifying the principal constraints on site design and selection of LID BMPs as well as opportunities to reduce imperviousness and incorporate LID Principles into the site and landscape design. For example, constraints might include impermeable soils, high groundwater, groundwater pollution or contaminated soils, steep slopes, geotechnical instability, high-intensity land use, heavy pedestrian or vehicular traffic, utility locations or safety concerns. Opportunities might include existing natural areas, low areas, oddly configured or otherwise unbuildable parcels, easements and landscape amenities including open space and buffers (which can double as locations for LID Bioretention BMPs), and differences in elevation (which can provide hydraulic head). Prepare a brief narrative for each of the site optimization strategies described below. This narrative will help you as you proceed with your Low Impact Development (LID) design and explain your design decisions to others.

Apply the following LID Principles to the layout of the PDP to the extent they are applicable and feasible. Putting thought upfront about how best to organize the various elements of a site can help to significantly reduce the PDP's potential impact on the environment and reduce the number and size of Structural LID BMPs that must be implemented. Integrate opportunities to accommodate the following LID Principles within the preliminary PDP site layout to maximize implementation of LID Principles.

Site Optimization

Complete checklist below to determine applicable Site Design BMPs for your site.

Project- Specific WQMP Site Design BMP Checklist

The following questions below are based upon Section 3.2 of the SMR WQMP will help you determine how to best optimize your site and subsequently identify opportunities and/or constraints, and document compliance.

SITE DESIGN REQUIREMENTS

Answer the following questions below by indicating "Yes," "No," or "N/A" (Not Applicable). Justify all "No" and "N/A" answers by inserting a narrative at the end of the section. The narrative should include identification and justification of any constraints that would prevent the use of those categories of LID BMPs. Upon identifying Site Design BMP opportunities, include these on your WQMP Site plan in Appendix 1.

Did you identify and preserve existing drainage patterns?

Integrating existing drainage patterns into the site plan helps to maintain the time of concentration and infiltration rates of runoff, decreasing peak flows, and may also help preserve the contribution of Critical Coarse Sediment (i.e., Bed Sediment Supply) from the PDP to the Receiving Water. Preserve existing drainage patterns by:

• Minimizing unnecessary site grading that would eliminate small depressions, where appropriate add additional "micro" storage throughout the site landscaping.

🛛 Yes 🗌 No 🗌 N/A

- Where possible conform the PDP site layout along natural landforms, avoid excessive grading and disturbance of vegetation and soils, preserve or replicate the sites natural drainage features and patterns.
- Set back PDP improvements from creeks, wetlands, riparian habitats and any other natural water bodies.
- Use existing and proposed site drainage patterns as a natural design element, rather than using expensive impervious conveyance systems. Use depressed landscaped areas, vegetated buffers, and bioretention areas as amenities and focal points within the site and landscape design.

Discuss how this was included or provide a discussion/justification for "No" or "N/A" answer. An existing drainage channel runs through the center of the project and will remain unchanged within the jurisdictional limits.

Did you identify and protect existing vegetation?

- Define the development envelope and protected areas, identifying areas that are most suitable for development and areas that should be left undisturbed.
- Establish setbacks and buffer zones surrounding sensitive areas.
- Preserve significant trees and other natural vegetation where possible.

Discuss how this was included or provide a discussion/justification for "No" or "N/A" answer. All wellestablished/dense native vegetation is within the drainage channels jurisdictional limits and will be protected.

	Project- Specific WQMP Site Design BMP Checklist
	Did you identify and preserve natural infiltration capacity?
□Yes □No ⊠N/A	A key component of LID is taking advantage of a site's natural infiltration and storage capacity. A site survey and geotechnical investigation can help define areas with high potential for infiltration and surface storage.
	 Identify opportunities to locate LID Principles and Structural BMPs in highly pervious areas. Doing so will maximize infiltration and limit the amount of runoff generated. Concentrate development on portions of the site with less permeable soils, and preserve areas that can promote infiltration.
Discuss how this was	included or provide a discussion/justification for "No" or "N/A" answer. Geotech says
	depending on location across site.
	Did you minimize impervious area? Look for opportunities to limit impervious cover through identification of the smallest possible land area that can be practically impacted or disturbed during site development.
⊠ Yes □ No □ N/A	 Limit overall coverage of paving and roofs. This can be accomplished by designing compact, taller structures, narrower and shorter streets and sidewalks, clustering buildings and sharing driveways, smaller parking lots (fewer stalls, smaller stalls, and more efficient lanes), and indoor or underground parking. Inventory planned impervious areas on your preliminary site plan. Identify where permeable pavements, or other permeable materials, such as crushed aggregate, turf block, permeable modular blocks, pervious concrete or pervious asphalt could be substituted for impervious concrete or asphalt paving. This will help reduce the amount of Runoff that may need to be addressed through Structural BMPs. Examine site layout and circulation patterns and identify areas where landscaping can be substituted for pavement, such as for overflow parking. Consider green roofs. Green roofs are roofing systems that provide a layer of soil/vegetative cover over a waterproofing membrane. A green roof mimics predevelopment conditions by filtering, absorbing, and evapotranspiring precipitation to help manage the effects of an otherwise impervious rooftop.
	included or provide a discussion/justification for "No" or "N/A" answer. Street sections
have been limited to r	ninimum allowable widths. Landscaped area and public park area have been maximized.

	Project- Specific WQMP Site Design BMP Checklist
ן מ	Did you identify and disperse runoff to adjacent pervious areas or small collection areas? ook for opportunities to direct runoff from impervious areas to adjacent landscaping, other pervious areas, or small collection areas where such runoff may be retained. This is sometimes eferred to as reducing Directly Connected Impervious Areas.
	• Direct roof runoff into landscaped areas such as medians, parking islands, planter boxes, etc., and/or areas of pervious paving. Instead of having landscaped areas raised above the surrounding impervious areas, design them as depressed areas that can receive Runoff from adjacent impervious pavement. For example, a lawn or garden depressed 3"-4" below surrounding walkways or driveways provides a simple but quite functional landscape design element.
⊠ Yes □ No □ N/A	 Detain and retain runoff throughout the site. On flatter sites, smaller Structural BMPs may be interspersed in landscaped areas among the buildings and paving. On hillside sites, drainage from upper areas may be collected in conventional catch basins and piped to landscaped areas and LID BMPs and/or Hydrologic Control BMPs in lower areas. Low retaining walls may also be used to create terraces that can accommodate LID BMPs. Wherever possible, direct drainage from landscaped slopes offsite and not to impervious surfaces like parking lots. Reduce curb maintenance and provide for allowances for curb cuts.
	 Design landscaped areas or other pervious areas to receive and infiltrate runoff from nearby impervious areas. Use Tree Wells to intercept, infiltrate, and evapotranspire precipitation and runoff before it reaches structural BMPs. Tree wells can be used to limit the size of Drainage Management Areas that must be treated by structural BMPs. Guidelines for Tree Wells are included in the Tree Well Fact Sheet in the LID BMP Design Handbook.
Discuss how this was ir	ncluded or provide a discussion/justification for "No" or "N/A" answer. Runoff from
outlet to landscaping w	e routed through pervious landscaping as best as possible; 1. Rooftop downspouts will here conditions allow as opposed to directly outleting to paved areas. 2 Landscaped used to maximize pervious area on site.
)id you utilize native or drought tolerant species in site landscaping?
	Vherever possible, use native or drought tolerant species within site landscaping instead of lternatives. These plants are uniquely suited to local soils and climate and can reduce the overall demands for potable water use associated with irrigation.
	cluded or provide a discussion/justification for "No" or "N/A" answer. Project will be or drought tolerant species wherever possible.

	Project- Specific WQMP Site Design BMP Checklist
	Did implement harvest and use of runoff?
	Under the Regional MS4 Permit, Harvest and Use BMPs must be employed to reduce runoff on any site where they are applicable and feasible. However, Harvest and Use BMPs are effective for retention of stormwater runoff only when there is adequate demand for non-potable water during the wet season. If demand for non-potable water is not sufficiently large, the actual retention of stormwater runoff will be diminished during larger storms or during back-to-back storms.
	For the purposes of planning level Harvest and Use BMP feasibility screening, Harvest and Use is only considered to be a feasible if the total average wet season demand for non-potable water is sufficiently large to use the entire DCV within 72 hours. If the average wet season demand for non-potable water is not sufficiently large to use the entire DCV within 72 hours, then Harvest and Use is not considered to be feasible and need not be considered further.
☐ Yes ⊠ No □ N/A	The general feasibility and applicability of Harvest and Use BMPs should consider:
	 Any downstream impacts related to water rights that could arise from capturing stormwater (not common). Conflicts with recycled water used – where the project is conditioned to use recycled water for irrigation, this should be given priority over stormwater capture as it is a year-round supply of water. Code Compliance - If a particular use of captured stormwater, and/or available methods for storage of captured stormwater would be contrary to building codes in effect at the time of approval of the preliminary Project-Specific WQMP, then an evaluation of harvesting and use for that use would not be required. Wet season demand – the applicant shall demonstrate, to the acceptance of the [Insert Jurisdiction], that there is adequate demand for harvested water during the wet season to drain the system in a reasonable amount of time.
Discuss how this was included or provide a discussion/justification for "No" or "N/A" answer. Drought tolerant vegitation will be used and harvest is not feasible.	
	Did you keep the runoff from sediment producing pervious area hydrologically separate from developed areas that require treatment?
🛛 Yes 🗌 No 🗌 N/A	Pervious area that qualify as self-treating areas or off-site open space should be kept separate from drainage to structural BMPs whenever possible. This helps limit the required size of structural BMPs, helps avoid impacts to sediment supply, and helps reduce clogging risk to BMPs.
Discuss how this was kept separate where	included or provide a discussion/justification for "No" or "N/A" answer. Areas are to be possible.

Section C: Delineate Drainage Management Areas (DMAs)

This section provides streamlined guidance and documentation of the DMA delineation and categorization process, for additional information refer to the procedure in Section 3.3 of the SMR WQMP which discusses the methods of delineating and mapping your project site into individual DMAs. Complete Steps 1 to 4 to successfully delineate and categorize DMAs.

Step 1: Identify Surface Types and Drainage Pathways

Carefully delineate pervious areas and impervious areas (including roofs) throughout site and identify overland flow paths and above ground and below ground conveyances. Also identify common points (such as BMPs) that these areas drain to.

Step 2: DMA Delineation

Use the information in Step 1 to divide the entire PDP site into individual, discrete DMAs. Typically, lines delineating DMAs follow grade breaks and roof ridge lines. Where possible, establish separate DMAs for each surface type (e.g., landscaping, pervious paving, or roofs). Assign each DMA a unique code and determine its size in square feet. The total area of your site should total the sum of all of your DMAs (unless water from outside the project limits comingles with water from inside the project limits, i.e. run-on). Complete Table C-1

DMA Name or Identification	Surface Type(s) ¹	Area (Sq. Ft.)	DMA Type				
Basin A North	Mixed	105,963					
Basin A South	Mixed	280,169	To be				
Basin B	Mixed	203,387	Determined				
Basin E	Impervious	21,156					
Basin F	Impervious	16,064	in Step 3				
Enter Unique Code	Enter Pervious, Impervious, or Mixed	Enter Area in Square Feet					
Add Columno on Nondod							

Table C-1 DMA Identification

Add Columns as Needed

Step 3: DMA Classification

Determine how drainage from each DMA will be handled by using information from Steps 1 and 2 and by completing Steps 3.A to 3.C. Each DMA will be classified as one of the following four types:

- Type 'A': Self-Treating Areas:
 - Type 'B': Self-Retaining Areas
- Type 'C': Areas Draining to Self-Retaining Areas
- Type 'D': Areas Draining to BMPs

Step 3.A – Identify Type 'A' Self-Treating Area

Indicate if the DMAs meet the following criteria by answering "Yes" or "No".

🗌 Yes 🔀 No	Area is undisturbed from their natural condition OR restored with Native and/or California Friendly vegetative covers.
🗌 Yes 🔀 No	Area is irrigated, if at all, with appropriate low water use irrigation systems to prevent irrigation runoff.

🗌 Yes 🔀 No

Runoff from the area will not comingle with runoff from the developed portion of the site, or across other landscaped areas that do not meet the above criteria.

If all answers indicate "Yes," complete Table C-2 to document the DMAs that are classified as Self-Treating Areas.

Table C-2 Type 'A', Self-Treating Areas

DMA Name or Identification	Area (Sq. Ft.)	Stabilization Type	Irrigation Type (if any)

Step 3.B – Identify Type 'B' Self-Retaining Area and Type 'C' Areas Draining to Self-Retaining Areas

Type 'B' Self-Retaining Area: A Self-Retaining Area is shallowly depressed 'micro infiltration' areas designed to retain the Design Storm rainfall that reaches the area, without producing any Runoff.

Indicate if the DMAs meet the following criteria by answering "Yes," "No," or "N/A".

🗌 Yes 🗌 No 🖂 N/A	Slopes will be graded toward the center of the pervious area.
🗌 Yes 🗌 No 🖂 N/A	Soils will be freely draining to not create vector or nuisance conditions.
Yes No XI/A	Inlet elevations of area/overflow drains, if any, should be clearly specified to be three inches or more above the low point to promote ponding.
🗌 Yes 🗌 No 🔀 N/A	Pervious pavements (e.g., crushed stone, porous asphalt, pervious concrete, or permeable pavers) can be self-retaining when constructed with a gravel base course four or more inches deep below any underdrain discharge elevation.

If all answers indicate "Yes," DMAs may be categorized as Type 'B', proceed to identify Type 'C' Areas Draining to Self-Retaining Areas.

Type 'C' Areas Draining to Self-Retaining Areas: Runoff from impervious or partially pervious areas can be managed by routing it to Self-Retaining Areas consistent with the LID Principle discussed in SMR WQMP Section 3.2.5 for 'Dispersing Runoff to Adjacent Pervious Areas'.

Indicate if the DMAs meet the following criteria by answering "Yes" or "No".

☐ Yes ⊠ No The drainage from the tributary area must be directed to and dispersed within the Self-Retaining Area.

Yes No Area must be designed to retain the entire Design Storm runoff without flowing offsite.

If all answers indicate "Yes," DMAs may be categorized as Type 'C'.

Complete Table C-3 and Table C-4 to identify Type 'B' Self-Retaining Areas and Type 'C' Areas Draining to Self-Retaining Areas.

Table C-3 Type 'B', Self-Retaining Areas

Self-Retaining Area			Type 'C' DMAs that are draining to the Self-Retaining Area			
DMA Name/ ID	Post-project surface type	Area (square feet) [A]	Storm Depth (inches) [B]	DMA Name / ID	[C] from Table C-4= [C]	Required Retention Depth (inches) $[D] = [B] + \frac{[B] \cdot [C]}{[A]}$

Table C-4 Type 'C', Areas that Drain to Self-Retaining Areas

DMA				Receivir	ng Self-Retainin	g DMA	
DMA Name/ ID Area (square feet) Post-project surface type		Runoff factor	Product		Area (square feet)	Ratio	
ā	[A]	H S	[B]	[C] = [A] x [B]	DMA name /ID	[D]	[C]/[D]

<u>Note:</u> (See Section 3.3 of SMR WQMP) Ensure that partially pervious areas draining to a Self-Retaining area do not exceed the following ratio:

 $\left(\frac{2}{Impervious\ Fraction}
ight)$: 1

(Tributary Area: Self-Retaining Area)

Step 3.C – Identify Type 'D' Areas Draining to BMPs

Areas draining to BMPs are those that could not be fully managed through LID Principles (DMA Types A through C) and will instead drain to an LID BMP and/or a Conventional Treatment BMP designed to manage water quality impacts from that area, and Hydromodification where necessary.

Complete Table C-5 to document which DMAs are classified as Areas Draining to BMPs

DMA Name or IDBMP Name or ID Receiving Runoff from DMABasin A NorthBasin ABasin A SouthBasin ABasin BBasin BBasin EBioretention Vegetated Swale EBasin FBioretention Vegetated Swale F

Table C-5 Type 'D', Areas Draining to BMPs

<u>Note</u>: More than one DMA may drain to a single LID BMP; however, one DMA may not drain to more than one BMP.

Section D: Implement LID BMPs

The Regional MS4 Permit requires the use of LID BMPs to provide retention or treatment of the DCV and includes a BMP hierarchy which requires Full Retention BMPs (Priority 1) to be considered before Biofiltration BMPs (Priority 2) and Flow-Through Treatment BMPs and Alternative Compliance BMPs (Priority 3). LID BMP selection must be based on technical feasibility and should be considered early in the site planning and design process. Use this section to document the selection of LID BMPs for each DMA. Note that feasibility is based on the DMA scale and may vary between DMAs based on site conditions.

D.1 Full Infiltration Applicability

An assessment of the feasibility of utilizing full infiltration BMPs is required for all projects, except where it can be shown that site design LID principals fully retain the DCV (i.e., all DMAs are Type A, B, or C), or where Harvest and Use BMPs fully retain the DCV. Check the following box if applicable:

Site design LID principals fully retain the DCV (i.e., all DMAs are Type A, B, or C), (Proceed to Section E).

If the above box remains unchecked, perform a site-specific evaluation of the feasibility of Infiltration BMPs using each of the applicable criteria identified in Chapter 2.3.3 of the SMR WQMP and complete the remainder of Section D.1.

Geotechnical Report

A Geotechnical Report or Phase I Environmental Site Assessment may be required by the Copermittee to confirm present and past site characteristics that may affect the use of Infiltration BMPs. In addition, the Copermittee, at their discretion, may not require a geotechnical report for small projects as described in Chapter 2 of the SMR WQMP. If a geotechnical report has been prepared, include it in Appendix 3. In addition, if a Phase I Environmental Site Assessment has been prepared, include it in Appendix 4.

Infiltration Feasibility

Table D-1 below is meant to provide a simple means of assessing which DMAs on your site support Infiltration BMPs and is discussed in the SMR WQMP in Chapter 2.3.3. Check the appropriate box for each question and then list affected DMAs as applicable. If additional space is needed, add a row below the corresponding answer.

Table D-1 Infiltration Feasibility		
Downstream Impacts (SMR WQMP Section 2.3.3.a)		
Does the project site	YES	NO
have any DMAs where infiltration would negatively impact downstream water rights or other Beneficial Uses ³ ?		Х
If Yes, list affected DMAs:		
Groundwater Protection (SMR WQMP Section 2.3.3.b)		
Does the project site	YES	NO
have any DMAs with industrial, and other land uses that pose a high threat to water quality, which cannot be treated by Bioretention BMPs? Or have DMAs with active industrial process areas?		Х
If Yes, list affected DMAs:		<u> </u>
have any DMAs with a seasonal high groundwater mark shallower than 10 feet?		Х
If Yes, list affected DMAs:		
have any DMAs located within 100 feet horizontally of a water supply well?		Х
If Yes, list affected DMAs:		
have any DMAs that would restrict BMP locations to within a 2:1 (horizontal: vertical) influence line extending from any septic leach line?		Х
If Yes, list affected DMAs:		
have any DMAs been evaluated by a licensed Geotechnical Engineer, Hydrogeologist, or Environmental Engineer, who has concluded that the soils do not have adequate physical and chemical characteristics for the protection of groundwater, and has treatment provided by amended media layers in Bioretention BMPs been considered in evaluating this factor?	X	
If Yes, list affected DMAs:	All [to be with	DMAs e bio
	partia	al infil
Public Safety and Offsite Improvements (SMR WQMP Section 2.3.3.c)		
Does the project site	YES	NO
have any areas identified by the geotechnical report as posing a public safety risk where infiltration of stormwater could have a negative impact?		Х
If Yes, list affected DMAs:		
Infiltration Characteristics For LID BMPs (SMR WQMP Section 2.3.3.d)		
Does the project site	YES	NO
 have factored infiltration rates of less than 0.8 inches / hour? (Note: on a case-by-case basis, the Local Jurisdiction may allow a factor of safety as low as 1.0 to support selection of full infiltration BMPs. Therefore, measured infiltration rates could be as low as 0.8 in/hr to support full infiltration. A higher factor of safety would be required for design in accordance with the LID BMP Deign Handbook). If Yes, list affected DMAs: All DMAs 	X	
Cut/Fill Conditions (SMR WQMP Section 2.3.3.e)		
	YES	NO
Does the project site		NO
have significant cut and/or fill conditions that would preclude in-situ testing of infiltration rates at the final infiltration surface?	X	
If Yes, list affected DMAs: All DMAs		
Other Site-Specific Factors (SMR WQMP Section 2.3.3.f)		
Does the project site	YES	NO
have DMAs where the geotechnical investigation discovered other site-specific factors that would preclude effective and/or safe infiltration?	X	
Describe here: High ground water and thick layer of bedrock 5ft-11ft below surface.		

³ Such a condition must be substantiated by sufficient modeling to demonstrate an impact and would be subject to [Insert Jurisdiction] discretion. There is not a standardized method for assessing this criterion. Water rights evaluations should be site-specific.

If you answered "Yes" to any of the questions above for any DMA, Infiltration BMPs that rely solely on infiltration should not be used for those DMAs and you should proceed to the assessment for Biofiltration BMPs below. Biofiltration BMPs that provide partial infiltration may still be feasible and should be assessed in Section D.2. Summarize concerns identified in the Geotechnical Report, if any, that resulted in a "YES" response above in the table below.

able D-2 Geotechnical Concerns for Onsite Inflitration							
Type of Geotechnical Concern	DMAs Feasible (By Name or ID)	DMAs Infeasible (By Name or ID)					
Collapsible Soil							
Expansive Soil							
Slopes							
Liquefaction							
Other (Hit bedrock between	All DMAs						
5ft to 11ft down)							

Table D-2 Geotechnical Concerns for Onsite Infiltration

D.2 Biofiltration Applicability

This section should document the applicability of biofiltration BMPs for Type D DMAs that are not feasible for full infiltration BMPs. The key decisions to be documented in this section include:

- 1. Are biofiltration BMPs with partial infiltration feasible?
 - a. Biofiltration BMPs must be designed to maximize incidental infiltration via a partial infiltration design unless it is demonstrated that this design is not feasible.
 - b. These designs can be used at sites with low infiltration rates where other feasibility factors do not preclude incidental infiltration.

Document summary in Table D-3.

- 2. If not, what are the factors that require the use of biofiltration with no infiltration? This may include:
 - a. Geotechnical hazards
 - b. Water rights issues
 - c. Water balance issues
 - d. Soil contamination or groundwater quality issues
 - e. Very low infiltration rates (factored rates < 0.1 in/hr)
 - f. Other factors, demonstrated to the acceptance of the local jurisdiction

If this applies to any DMAs, then rationale must be documented in Table D-3.

- 3. Are biofiltration BMPs infeasible?
 - a. If yes, then provide a site-specific analysis demonstrating the technical infeasibility of all LID BMPs has been performed and is included in Appendix 5. If you plan to submit an analysis demonstrating the technical infeasibility of LID BMPs, request a pre-submittal meeting with the Copermittee with jurisdiction over the Project site to discuss this option. Proceed to Section F to document your alternative compliance measures.

	Is Partial/	
	Incidental	
	Infiltration	
	Allowable?	Basis for Infeasibility of Partial Infiltration (provide summary and
DMA ID	(Y/N)	include supporting basis if partial infiltration not feasible)
Basin A North	Y	
Basin A South	Y	
Basin B	Y	
Basin E	Y	
Basin F	Y	

Table D-3 Evaluation of Biofiltration BMP Feasibility

Proprietary Biofiltration BMP Approval Criteria

If the project will use proprietary BMPs as biofiltration BMPs, then this section is completed to document that the proprietary BMPs are selected in accordance with Section 2.3.7 of the SMR WQMP. Proprietary Biofiltration BMPs must meet both of the following approval criteria:

- 1. Approval Criteria for All Proprietary BMPs, and
- 2. Acceptance Criteria for Proprietary Biofiltration BMPs.

When the use of proprietary biofiltration BMPs is proposed to meet the Pollutant Control performance standards, use Table D-4 to document that appropriate approval criteria have been met for the proposed BMPs. Add additional rows to document approval criteria are met for each type of BMP proposed.

Proposed Proprietary Biofiltration BMP	Approval Criteria	Notes/Comments
	Proposed BMP has an active TAPE GULD Certification for the project pollutants of concern ⁴ or equivalent 3 rd party demonstrated performance.	Insert text here
All onsite Bio-basins and	The BMP is used in a manner consistent with manufacturer guidelines and conditions of its third-party certification.	Insert text here
Bioretention Vegetated Swales	The BMP includes biological features including vegetation supported by engineered or other growing media.	Basin with have vegetation supported by engineered/growing media
	The BMP is designed to maximize infiltration, or supplemental infiltration is provided to achieve retention equivalent to Biofiltration with Partial Infiltration BMPs if factored infiltration rate is between 0.1 and 0.8 inches/hour.	Describe supplemental retention practices if applicable.

Table D-4 Proprietary BMP Approval Requirement Summary

⁴ Use Table F-1 and F-2 to identify and document the pollutants of concern and include these tables in Appendix 5.

The BMP is sized using one of two Biofiltration LID sizing options in Section 2.3.2 of the SRM WQMP.	see Developed Condition WQMP Exhibit in appendix 1 for method used, resulting size (flow or volume), and
	provided sizes(of proposed units)

D.3 Feasibility Assessment Summaries

From the Infiltration, Biofiltration with Partial Infiltration and Biofiltration with No Infiltration Sections above, complete Table D-5 below to summarize which LID BMPs are technically feasible, and which are not, based upon the established hierarchy.

 -5 ElD Thornazation Summary Matrix							
		LID BMP Hierarchy					
		2. Biofiltration	3. Biofiltration	No LID (Alternative			
		with Partial	with No	Compliance)			
DMA Name/ID	1. Infiltration	Infiltration	Infiltration				
Basin A		\boxtimes					
Basin B		\boxtimes					
Basin E		\square					
Basin F		\square					
Insert text here							
Insert text here							

Table D-5 LID Prioritization Summary Matrix

For those DMAs where LID BMPs are not feasible, provide a narrative in Table D-6 below summarizing why they are not feasible, include your technical infeasibility criteria in Appendix 5, and proceed to Section F below to document Alternative Compliance measures for those DMAs. Recall that each proposed DMA must pass through the LID BMP hierarchy before alternative compliance measures may be considered.

This is based on the clarification letter titled "San Diego Water Board's Expectations of Documentation to Support a Determination of Priority Development Project Infiltration Infeasibility" (April 28, 2017, Via email from San Diego Regional Water Quality Control Board to San Diego County Municipal Storm Water Copermittees⁵).

Table D-6 Summary of Infeasibility Documentation

	Question	Narrative Summary (include reference to applicable appendix/attachment/report, as applicable)
a)	When in the entitlement	N/A
	process did a	
	geotechnical engineer	
	analyze the site for	
	infiltration feasibility?	
b)	When in the entitlement	N/A
	process were other	
	investigations conducted	
	(e.g., groundwater	

⁵ <u>http://www.projectcleanwater.org/download/pdp-infiltration-infeasibility/</u>

		1
	quality, water rights) to	
	evaluate infiltration feasibility?	
c)	What was the scope and	N/A
	results of testing, if	N/A
	conducted, or rationale	
	for why testing was not	
	needed to reach	
	findings?	
d)	What public health and	N/A
	safety requirements	
	affected infiltration	
	locations?	
e)	What were the	N/A
	conclusions and	
	recommendations of the	
	geotechnical engineer	
	and/or other professional	
	responsible for other	
~	investigations?	К1 / А
f)	What was the history of	N/A
	design discussions	
	between the permittee	
	and applicant for the	
	proposed project, resulting in the final	
	design determination	
	related locations feasible	
	for infiltration?	
g)	What site design	N/A
5/	alternatives were	
	considered to achieve	
	infiltration or partial	
	infiltration on site?	
h)	What physical	N/A
	impairments (i.e., fire	
	road egress, public safety	
	considerations, utilities)	
	and public safety	
	concerns influenced site	
	layout and infiltration	
	feasibility?	
i)	What LID Principles (site	N/A
	design BMPs) were	
	included in the project	
	site design?	

D.4 LID BMP Sizing

Each LID BMP must be designed to ensure that the DCV will be captured by the selected BMPs with no discharge to the storm drain or surface waters during the DCV size storm. Infiltration BMPs must at minimum be sized to capture the DCV to achieve pollutant control requirements.

Biofiltration BMPs must at a minimum be sized to:

- Treat 1.5 times the DCV not reliably retained on site using a volume-base or flow-based sizing method, or
- Include static storage volume, including pore spaces and pre-filter detention volume, at least 0.75 times the portion of the DCV not reliably retained on site.

First, calculate the DCV for each LID BMP using the V_{BMP} worksheet in Appendix F of the LID BMP Design Handbook. Second, design the LID BMP to meet the required V_{BMP} using the methods included in Section 3 of the LID BMP Design Handbook. Utilize the worksheets found in the LID BMP Design Handbook or consult with the Copermittee to assist you in correctly sizing your LID BMPs. Use Table D-7 below to document the DCV each LID BMP. Provide the completed design procedure sheets for each LID BMP in Appendix 6. You may add additional rows to the table below as needed.

DMA Type/ID	DMA (square feet)	Post- Project Surface Type	Effective Impervious Fraction, I _f	DMA Runoff Factor	DMA Areas x Runoff Factor		MP Name / Identifier Here ation Basin or Vegetated Swale				
	[A]		[B]	[C]	[A] x [C]						
Basin A North	105,963	Mixed	0.87	0.69	73,114						
Basin A South	280,169	Mixed	0.87	0.69	193,317						
Basin B	203,387	Mixed	0.87	0.69	140,337						
Basin E	21,156	Imper	1.00	0.69	14,598	Design		Proposed			
Basin F	16,064	Imper	1.00	0.69	11,084	Storm Donth	DCV, V _{BMP}	Volume on Plans			
						Depth (in)	(cubic feet)	(cubic feet)			
	$A_T = \Sigma[A]$				Σ= [D] = 432,450	[E] =0.6	$\frac{[F]}{\frac{[D]x[E]}{12}} = 21,623$	[G]=31,394			

Table D-7 DCV Calculations for LID BMPs

[B], [C] is obtained as described in Section 2.6.1.b of the SMR WQMP

[E] is obtained from Exhibit A in the SMR WQMP

[G] is obtained from a design procedure sheet, such as in LID BMP Design Handbook and placed in Appendix 6.

Complete Table D-8 below to document the Design Capture Volume and the Proposed Volume for each LID BMP. You can add rows to the table as needed. Alternatively, the Santa Margarita Hydrology Model (SMRHM) can be used to size LID BMPs to address the DCV and, if applicable, to size Hydrologic Control BMPs to meet the Hydrologic Performance Standard described in the SMR WQMP, as identified in Section E.

BMP Name / ID	DMA No.	BMP Type / Description	Design Capture Volume (ft³)	Proposed Volume (ft ³)
Basin A	Basin A (N&S)	Bio Basin (Partial Infil)	13,187	15,386
Basin B	Basin B	Bio Basin (Partial Infil)	6,950	14,100
Vegetated Swale E	Basin E	Bioretention (Partial Infil)	960	1,092
Vegetated Swale F	Basin F	Bioretention (Partial Infil)	725	816

Table D-8 LID BMP Sizing

If bioretention will include a capped underdrain, then include sizing calculations demonstrating that the BMP will meet infiltration sizing requirements with the underdrain capped and also meet biofiltration sizing requirements if the underdrain is uncapped.

Section E: Implement Hydrologic Control BMPs and Sediment Supply BMPs

If a completed Table 1.2 demonstrates that the project is exempt from Hydromodification Performance Standards, specify N/A and proceed to Section G.

N/A Project is Exempt from Hydromodification Performance Standards.

If a PDP is not exempt from hydromodification requirements than the PDP must satisfy the requirements of the performance standards for hydrologic control BMPs and Sediment Supply BMPs. The PDP may choose to satisfy hydrologic control requirements using onsite or offsite BMPs (i.e. Alternative Compliance). Sediment supply requirements cannot be met via alternative compliance. If N/A is not selected above, select one of the two options below and complete the applicable sections.

Project is Not Hydromodification Exempt and chooses to implement Hydrologic Control and Sediment Supply BMPs Onsite (complete Section E).

Project is Not Hydromodification Exempt and chooses to implement Hydrologic Control Requirements using Alternative Compliance (complete Section F). Selection of this option must be approved by the Copermittee.

E.1 Hydrologic Control BMP Selection

Capture of the DCV and achievement of the Hydrologic Performance Standard may be met by combined and/or separate structural BMPs. The user should consider the full suite of Hydrologic Control BMPs to manage runoff from the post-development condition and meet the Hydrologic Performance Standard identified in this section.

The Hydrologic Performance Standard consists of matching or reducing the flow duration curve of postdevelopment conditions to that of pre-existing, naturally occurring conditions, for the range of geomorphically significant flows (10% of the 2-year runoff event up to the 10-year runoff event). Select each of the hydrologic control BMP types that are applied to meet the above performance standard on the site.

- LID principles as defined in Section 3.2 of the SMR WQMP.
- Structural LID BMPs that may be modified or enlarged, if necessary, beyond the DCV.
- Structural Hydrologic Control BMPs that are distinct from the LID BMPs above. The LID BMP Design Handbook provides information not only on Hydrologic Control BMP design, but also on BMP design to meet the combined LID requirement and Hydrologic Performance Standard. The Handbook specifies the type of BMPs that can be used to meet the Hydrologic Performance Standard.

E.2 Hydrologic Control BMP Sizing

Hydrologic Control BMPs must be designed to ensure that the flow duration curve of the postdevelopment DMA will not exceed that of the pre-existing, naturally occurring, DMA for the range of geomorphically significant flows. Using SMRHM, (or another acceptable continuous simulation model if approved by the Copermittee) the applicant shall demonstrate that the performance of the Hydrologic Control BMPs complies with the Hydrologic Performance Standard. Complete Table E-1 below and identify, for each DMA, the type of Hydrologic Control BMP, if the SMRHM model confirmed the management (Identified as "passed" in SMRHM), the total volume capacity of the Hydrologic Control BMP, the Hydrologic Control BMP footprint at top floor elevation, and the drawdown time of the Hydrologic Control BMP. SMRHM summary reports should be documented in Appendix 7. Refer to the SMRHM Guidance Document for additional information on SMRHM. You can add rows to the table as needed.

BMP	DMA	BMP Type /	SMRHM	BMP Volume	BMP	Drawdown
Name / II	D No.	Description	Passed	(cf)	Footprint (sf)	time (hr)
Basin A	Basin A	Biofiltration and	\square	15,386	5,813	60.78
		Detention Basin				
Basin B	Basin B	Biofiltration and	\square	14,100	5,282	31.31
		Detention Basin				

Table E-1 Hydrologic Control BMP Sizing

If a bioretention BMP with capped underdrain is used and hydromodification requirements apply, then sizing calculations must demonstrate that the BMP meets flow duration control criteria with the underdrain capped and uncapped. Both calculations must be included.

E.3 Implement Sediment Supply BMPs

The sediment supply performance standard applies to PDPs for which hydromodification applied that have the potential to impact Potential Critical Coarse Sediment Yield Areas. Refer to Exhibit G of the WQMP to determine if there are onsite Potential Critical Coarse Sediment Yield Areas or Potential Sediment Source Areas. Select one of the two options below and include the Potential Critical Coarse Sediment Yield Area Exhibit showing your project location in Appendix 7.

- There are no mapped Potential Critical Coarse Sediment Yield Areas or Potential Sediment Source Areas on the site. The Sediment Supply Performance Standard is met with no further action.
- There are mapped Potential Critical Coarse Sediment Yield Areas or Potential Sediment Source Areas on the site, the Sediment Supply Performance Standard will be met through Option 1 or Option 2 below.

The applicant may refer to Section 3.6.4 of the SMR WQMP for a description of the methodology to meet the Sediment Supply Performance Standard. Select the applicable compliance pathway and complete the

appropriate sections to demonstrate compliance with the Sediment Supply Performance Standard if the second box is selected above:

Avoid impacts related to any PDP activities to Potential Critical Coarse Sediment Yield Areas. Proceed to Section E.3.1.

Complete a Site-Specific Critical Coarse Sediment Analysis. Proceed to Section E.3.2.

E.3.1 Option 1: Avoid Potential Critical Coarse Sediment Yield Areas and Potential Sediment Source Areas

The simplest approach for complying with the Sediment Supply Performance Standard is to avoid impacts to areas identified as Potential Critical Coarse Sediment Yield Areas or Potential Sediment Supply Areas. If a portion of PDP is identified as a Potential Critical Coarse Sediment Yield Area or a Potential Sediment Source Area, that PDP may still achieve compliance with the Sediment Supply Performance Standards if Potential Critical Coarse Sediment Yield Areas are avoided, i.e. areas are not developed and thereby delivery of Critical Coarse Sediment to the receiving waters is not impeded by site developments.

Provide a narrative describing how the PDP has avoided impacts to Potential Critical Coarse Sediment Yield Areas and/or Potential Sediment Source Areas below.

The site does not enter into the creeks jursidictional limits and will therefore not impact the Potential Critical Coarse Sediment Yield Areas and/or Potential Sediment Source Areas.

If it is not feasible to avoid these areas, proceed to Option 2 to complete a Site-Specific Critical Coarse Sediment Analysis.

E.3.2 Option 2: Site-Specific Critical Coarse Sediment Analysis

Perform a stepwise assessment to ensure the maintenance of the pre-project source(s) of Critical Coarse Sediment (i.e., Bed Sediment Supply):

- 1. Determine whether the site or a portion of the site is a Significant Source of Bed Sediment Supply to the Receiving Channel (i.e., an actual verified Critical Coarse Sediment Yield Area);
- 2. Avoid areas identified as actual verified Critical Coarse Sediment Yield Areas in the PDP design and maintain pathways for discharge of Bed Sediment Supply from these areas to receiving waters.

Step 1: Identify if the site is an actual verified Critical Coarse Sediment Yield Area supplying Bed Sediment Supply to the receiving channel

□ Step 1.A – Is the Bed Sediment of onsite streams similar to that of receiving streams?

Rate the similarity:	🗌 High
	Medium
	Low

Results from the geotechnical and sieve analysis to be performed both onsite and in the receiving channel should be documented in Appendix 7. Of particular interest, the results of the sieve

analysis, the soil erodibility factor, a description of the topographic relief of the project area, and the lithology of onsite soils should be reported in Appendix 7.

□ Step 1.B – Are onsite streams capable of delivering Bed Sediment Supply from the site, if any, to the receiving channel?

Rate the potential:	🗌 High
	Medium
	Low

Results from the analyses of the sediment delivery potential to the receiving channel should be documented in Appendix 7 and identify, at a minimum, the Sediment Source, the distance to the receiving channel, the onsite channel density, the project watershed area, the slope, length, land use, and rainfall intensity.

□ Step 1.C – Will the receiving channel adversely respond to a change in Bed Sediment Load?

Rate the need for bed sediment supply:

High
Medium
Low

Results from the in-stream analysis to be performed both onsite should be documented in Appendix 7. The analysis should, at a minimum, quantify the bank stability and the degree of incision, provide a gradation of the Bed Sediment within the receiving channel, and identify if the channel is sediment supply-limited.

□ Step 1.D – Summary of Step 1

Summarize in Table E.3 the findings of Step 1 and associate a score (in parenthesis) to each step. The sum of the three individual scores determines if a stream is a significant contributor to the receiving stream.

- Sum is equal to or greater than eight Site is a significant source of sediment bed material – all on-site streams must be preserved or by-passed within the site plan. The applicant shall proceed to Step 2 for all onsite streams.
- Sum is greater than five but lower than eight. Site is a source of sediment bed material some of the on-site streams must be preserved (with identified streams noted). The applicant shall proceed to Step 2 for the identified streams only.
- Sum is equal to or lower than five. Site is not a significant source of sediment bed material. The applicant may advance to Section F.

Table E-2 Triad Assessment Summary

Step	Rating	Rating						
1.A	🗌 High (3)	🗌 Medium (2)	🗌 Low (1)					
1.B	☐ High (3)	🗌 Medium (2)	🗌 Low (1)					
1.C	☐ High (3)	🗌 Medium (2)	🗌 Low (1)					
Significant Source								

Step 2: Avoid Development of Critical Coarse Sediment Yield Areas, Potential Sediment Sources Areas, and Preserve Pathways for Transport of Bed Sediment Supply to Receiving Waters

Onsite streams identified as an actual verified Critical Coarse Sediment Yield Areas should be avoided in the site design and transport pathways for Critical Coarse Sediment should be preserved

Check those that apply:

The site design does avoid all onsite channels identified as actual verified Critical Coarse Sediment Yield Areas

AND

The drainage design bypasses flow and sediment from onsite upstream drainages identified as actual verified Critical Coarse Sediment Yield Areas to maintain Critical Coarse Sediment supply to receiving waters

(If both are yes, the applicant may disregard subsequent steps of Section E.3 and directly advance directly to Section G).

Or -

The site design does NOT avoid all onsite channels identified as actual verified Critical Coarse Sediment Yield Areas

OR

The project impacts transport pathways of Critical Coarse Sediment from onsite upstream drainages.

(If either of these are the case, the applicant may proceed with the subsequent steps of Section E.3).

Provide in Appendix 7 a site map that identifies all onsite channels and highlights those onsite channels that were identified as a Significant Source of Bed Sediment. The site map shall demonstrate, if feasible, that the site design avoids those onsite channels identified as a Significant Source of Bed Sediment. In addition, the applicant shall describe the characteristics of each onsite channel identified as a Significant Source of Bed Sediment. If the design plan cannot avoid the onsite channels, please provide a rationale for each channel individually.

The site map shall demonstrate that the drainage design bypasses those onsite channels that supply Critical Coarse Sediment to the receiving channel(s). In addition, the applicant shall describe the characteristics of each onsite channel identified as an actual verified Critical Coarse Sediment Yield Area.

Identified Channel #1 - Insert narrative description here

Identified Channel #2 - Insert narrative description here

Identified Channel #3 - Insert narrative description here

E.3.3 Sediment Supply BMPs to Result in No Net Impact to Downstream Receiving Waters

If impacts to Critical Coarse Sediment Yield Areas cannot be avoided, sediment supply BMPs must be implemented such there is no net impact to receiving waters. Sediment supply BMPs may consist of approaches that permit flux of bed sediment supply from Critical Coarse Sediment Yield Areas within the project boundary. This approach is subject to acceptance by the [Insert Jurisdiction]. It may require extensive documentation and analysis by qualified professionals to support this demonstration.

Appendix H of the San Diego Model BMP Design Manual provides additional information on site-specific investigation of Critical Coarse Sediment Supply areas.

http://www.projectcleanwater.org/download/2018-model-bmp-design-manual/

If applicable, insert narrative description here

Documentation of sediment supply BMPs should be detailed in Appendix 7.

Section F: Alternative Compliance

Alternative Compliance may be used to achieve compliance with pollutant control and/or hydromodification requirements for a given PDP. Alternative Compliance may be used under two scenarios, check the applicable box if the PDP is proposing to use Alternative Compliance to satisfy all or a portion of the Pollutant Control and/or Hydrologic Control requirements (but not sediment supply requirements)

- ☐ If it is not feasible to fully implement Infiltration or Biofiltration BMPs at a PDP site, Flow-Through Treatment Control BMPs may be used to treat pollutants contained in the portion of DCV not reliably retained on site and Alternative Compliance measures must also be implemented to mitigate for those pollutants in the DCV that are not retained or removed on site prior to discharging to a receiving water.
- Alternative Compliance is selected to comply with either pollutant control or hydromodification flow control requirements even if complying with these requirements is potentially feasible on-site. If such voluntary Alternative Compliance is implemented, Flow-Through Treatment Control BMPs must still be used to treat those pollutants in the portion of the DCV not reliably retained on site prior to discharging to a receiving water.

Refer to Section 2.7 of the SMR WQMP and consult the Local Jurisdiction for currently available Alternative Compliance pathways. Coordinate with the Copermittee if electing to participate in Alternative Compliance and complete the sections below to document implementation of the Flow-Through BMP component of the program.

F.1 Identify Pollutants of Concern

The purpose of this section is to help you appropriately plan for mitigating your Pollutants of Concern in lieu of implementing LID BMPs and to document compliance and.

Utilize Table A-1 from Section A, which noted your project's Receiving Waters, to identify impairments for Receiving Waters (including downstream receiving waters) by completing Table F-1. Table F-1 includes the watersheds identified as impaired in the Approved 2010 303(d) list; check box corresponding with the PDP's receiving water. The most recent 303(d) lists are available from the State Water Resources Control Board website:

https://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml).https://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml.

	er Body	Nutrients ¹	Metals ²	Toxicity	Bacteria and Pathogens	Pesticides and Herbicides	Sulfate	Total Dissolved Solids
	De Luz Creek	Х	Х				Х	
	Long Canyon Creek		Х		Х	Х		
\square	Murrieta Creek	Х	Х	Х		Х		
	Redhawk Channel	Х	Х		Х	Х		Х
	Santa Gertudis Creek	Х	Х		Х	Х		
	Santa Margarita Estuary (Lagoon?)	х						
	Santa Margarita River (Lower)	Х			Х			
	Santa Margarita River (Upper)	Х		Х				
	Temecula Creek	Х	Х	Х		Х		Х
\square	Warm Springs Creek	Х	Х		Х	Х		

Table F-1 Summary of Approved 2010 303(d) listed waterbodies and associated pollutants of concern for the Riverside County SMR Region and downstream waterbodies.

¹Nutrients include nitrogen, phosphorus and eutrophic conditions caused by excess nutrients.

² Metals includes copper, iron, and manganese.

Use Table F-2 to identify the pollutants identified with the project site. Indicate the applicable PDP Categories and/or Project Features by checking the boxes that apply. If the identified General Pollutant Categories are the same as those listed for your Receiving Waters, then these will be your Pollutants of Concern; check the appropriate box or boxes in the last row.

	Table F-2 Potential Pollutants by Land Use Type										
	Priority Development	General Po	ollutant (Categories							
Project Categories and/or Project Features (check those that apply)		Bacterial Indicators	Metals	Nutrients	Pesticides	Toxic Organic Compounds	Sediments	Trash & Debris	Oil & Grease	Total Dissolved Solids	Sulfate
	Detached Residential Development	Ρ	N	Ρ	Ρ	Ν	Ρ	Ρ	Ρ	Ν	N
	Attached Residential Development	Ρ	N	Ρ	Ρ	Ν	Ρ	Ρ	P ⁽²⁾	Ν	N
	Commercial/Industrial Development	P ⁽³⁾	P ⁽⁷⁾	P ⁽¹⁾	P ⁽¹⁾	Р	P ⁽¹⁾	Ρ	Ρ	Ν	N
	Automotive Repair Shops	Ν	Р	N	Ν	P ^(4, 5)	N	Ρ	Ρ	N	N
	Restaurants (>5,000 ft ²)	Ρ	N	N	P ⁽¹⁾	Ν	Ν	Ρ	Ρ	N	N
	Hillside Development (>5,000 ft ²)	Ρ	N	Ρ	Ρ	Ν	Ρ	Ρ	Ρ	N	N
	Parking Lots (>5,000 ft ²)	P ⁽⁶⁾	P ⁽⁷⁾	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁴⁾	Ρ	Ρ	Ρ	Ν	N
	Streets, Highways, and Freeways	P ⁽⁶⁾	P ⁽⁷⁾	P ⁽¹⁾	P ⁽¹⁾	P ⁽⁴⁾	Ρ	Ρ	Ρ	N	N
	Retail Gasoline Outlets	Ν	P ⁽⁷⁾	Ν	Ν	P ⁽⁴⁾	Ν	Р	Р	Ν	Ν
Р	Project Priority ollutant(s) of Concern	\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		

Table F-2 Potential Pollutants by Land Use Type

P = Potential

N = Not Potential

⁽¹⁾ A potential Pollutant if non-native landscaping exists or is proposed onsite; otherwise not expected

(2) A potential Pollutant if the project includes uncovered parking areas; otherwise not expected

⁽³⁾ A potential Pollutant is land use involving animal waste products; otherwise not expected

(4) Including petroleum hydrocarbons

⁽⁵⁾ Including solvents

⁽⁶⁾ Bacterial indicators are routinely detected in pavement runoff

⁽⁷⁾ A potential source of metals, primarily copper and zinc. Iron, magnesium, and aluminum are commonly found in the environment and are commonly associated with soils, but are not primarily of anthropogenic stormwater origin in the municipal environment.

F.2 Treatment Control BMP Selection

Treatment Control BMPs typically provide proprietary treatment mechanisms to treat potential Pollutants in runoff, but do not sustain significant biological processes. Treatment Control BMPs must be selected to address the Project Priority Pollutants of Concern (identified above) and meet the acceptance criteria described in Section 2.3.7 of the SMR WQMP. Documentation of acceptance criteria must be included in Appendix 6. In addition, ensure that proposed Treatment Control BMPs are properly identified on the WQMP Site Plan in Appendix 1.

Selected Treatment Control BMP Name or ID ¹ Basin A	Priority Pollutant(s) of Concern to Mitigate ² Bacterial indicators, metals, nutrients, pesticides, toxic organic compounds, sediments, trash & debris, oil & grease.	Removal Efficiency Percentage3Medium to high efficiency for all pollutants per Appendix D of the Riverside County Santa Margarita River Watershed Region Design Handbook for Low Impact Development Best Management Practices (Revised June 2018)
Basin B	Same as above	Same as above
Vegetated Swale E	Same as above	Same as above
Vegetated Swale F	Same as above	Same as above

Table F-3 Treatment Control BMP Selection

¹ Treatment Control BMPs must not be constructed within Receiving Waters. In addition, a proposed Treatment Control BMP may be listed more than once if they possess more than one qualifying pollutant removal efficiency.

² Cross Reference Table E.1 above to populate this column.

³ As documented in a Copermittee Approved Study and provided in Appendix 6.

F.3 Sizing Criteria

Utilize Table F-4 below to appropriately size flow-through BMPs to the DCV, or Design Flow Rate, as applicable. Please reference Chapter 3.5.1 of the SMR WQMP for further information.

Table F-4 Treatment Control BMP Sizing

DMA Type/ID	DMA Area (square feet) [A]	Post- Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor [C]	DMA Areas x Runoff Factor [A] x [C]		BMP Name / ntifier Here
						Design	
						Storm (in)	Design Flow Rate (cfs)

$A_T = \Sigma[A]$		Σ= [D]	[E]	$[F] = \frac{[D]x[E]}{[G]}$

[B], [C] is obtained as described in Section 2.6.1.b from the SMR WQMP [E] either 0.2 inches or 2 times the 85th percentile hourly rainfall intensity [G] = 43,560.

F.4 Hydrologic Performance Standard – Alternative Compliance Approach

Alternative compliance options are only available if the governing Copermittee has acknowledged the infeasibility of onsite Hydrologic Control BMPs and approved an alternative compliance approach. See Section 3.5 and 3.6 of the SMR WQMP.

Select the pursued alternative and describe the specifics of the alternative:

□ Offsite Hydrologic Control Management within the same channel system

Insert narrative description here

□ In-Stream Restoration Project

Insert narrative description here

For Offsite Hydrologic Control BMP Option

Each Hydrologic Control BMP must be designed to ensure that the flow duration curve of the postdevelopment DMA will not exceed that of the pre-existing, naturally occurring, DMA by more than ten percent over a one-year period. Using SMRHM, the applicant shall demonstrate that the performance of each designed Hydrologic Control BMP is equivalent with the Hydrologic Performance Standard for onsite conditions. Complete Table F-5 below and identify, for each Hydrologic Control BMP, the equivalent DMA the Hydrologic Control BMP mitigates, that the SMRHM model passed, the total volume capacity of the BMP, the BMP footprint at top floor elevation, and the drawdown time of the BMP. SMRHM summary reports for the alternative approach should be documented in Appendix 7. Refer to the SMRHM Guidance Document for additional information on SMRHM. You can add rows to the table as needed.

BMP Name / Type	Equivalent DMA (ac)	SMRHM Passed	BMP Volume (ac-ft)	BMP Footprint (ac)	Drawdown time (hr)
N/A					

Table F-5 Offsite Hydrologic Control BMP Sizing

For Instream Restoration Option

Attach to Appendix 7 the technical report detailing the condition of the receiving channel subject to the proposed hydrologic and sediment regimes. Provide the full design plans for the in-stream restoration project that have been approved by the Copermittee. Utilize the San Diego Regional Water Quality Equivalency Guidance Document.

Section G: Implement Trash Capture BMPs

The Local Jurisdiction may require full trash capture BMPs to be installed as part of the project. Consult with the Local Jurisdiction to determine applicability.

Trash Capture BMPs may be applicable to Type 'D' DMAs, as defined in Section 2.3.4 of the SMR WQMP. Trash Capture BMPs are designed to treat Q_{TRASH}, the runoff flow rate generated during the 1-year 1hour precipitation depth. Utilize Table G-1 to size Trash Capture BMP. Refer to Table G-2 to determine the Trash Capture Design Storm Intensity (E).

DMA Type/ID	DMA Area (square feet) [A]	Post- Project Surface Type	Effective Impervious Fraction, I _f [B]	DMA Runoff Factor	DMA Areas x Runoff Factor [A] x [C]	Enter BMP N	ame / Identifier Here
N/A	[A]		[D]	[U]			
N/A							
						Trash Capture	
						Design Storm	Trash Capture Design Flow
						Intensity (in)	Rate (cubic feet or cfs)
	A _T = Σ[A]				Σ= [D]	[E] =.47	$[F] = \frac{[D]x[E]}{[G]} =$

Table G-1 Sizing Trash Capture BMPs

[B], [C] is obtained as described in Section 2.6.1.b from the SMR WQMP

[G] = 43,560

Table G-2 Approximate precipitation depth/intensity values for calculation of the Trash Capture Design Storm

City	1-year 1-hour Precipitation Depth/Intensity (inches/hr)
Murrieta	0.47
Temecula	0.50
Wildomar	0.37

Use Table G-3 to summarize and document the selection and sizing of Trash Capture BMPs.

(cfs)

Required Trash Capture Flowrate Provided Trash BMP Name / DMA Capture Flowrate No(s) BMP Type / Description (cfs) ID

Table G-3 Trash Capture BMPs

Section H: Source Control BMPs

Source Control BMPs include permanent, structural features that may be required in your Project plans, such as roofs over and berms around trash and recycling areas, and Operational BMPs, such as regular sweeping and "housekeeping," that must be implemented by the site's occupant or user. The Maximum Extent Practicable (MEP) standard typically requires both types of BMPs. In general, Operational Source Control BMPs cannot be substituted for a feasible and effective Structural Source Control BMP. Complete checklist below to determine applicable Source Control BMPs for your site.

Project-S	pecific V	VQMP	Source	Cont	rol Bl	MP Check	list

All development projects must implement Source Control BMPs. Source Control BMPs are used to minimize pollutants that may discharge to the MS4. Refer to Chapter 3 (Section 3.8) of the SMR WQMP for additional information. Complete Steps 1 and 2 below to identify Source Control BMPs for the project site.

STEP 1: IDENTIFY POLLUTANT SOURCES

Review project site plans and identify the applicable pollutant sources. "Yes" indicates that the pollutant source is applicable to project site. "No" indicates that the pollutant source is not applicable to project site.

🖂 Yes 🗌 No	Storm Drain Inlets	🗌 Yes 🗌 No	Outdoor storage areas
🗌 Yes 🗌 No	Floor Drains	🗌 Yes 🗌 No	Material storage areas
🗌 Yes 🗌 No	Sump Pumps	🗌 Yes 🗌 No	Fueling areas
🗌 Yes 🗌 No	Pets Control/Herbicide Application	🗌 Yes 🗌 No	Loading Docks
🗌 Yes 🗌 No	Food Service Areas	🗌 Yes 🗌 No	Fire Sprinkler Test/Maintenance water
🖂 Yes 🗌 No	Trash Storage Areas	🖂 Yes 🗌 No	Plazas, Sidewalks and Parking Lots
🗌 Yes 🗌 No	Industrial Processes	🛛 Yes 🗌 No	Pools, Spas, Fountains and other water features
🗌 Yes 🗌 No	Vehicle and Equipment Cleaning and Maintenance/Repair Areas		

STEP 2: REQUIRED SOURCE CONTROL BMPs

List each Pollutant source identified above in column 1 and fill in the corresponding Structural Source Control BMPs and Operational Control BMPs by referring to the Stormwater Pollutant Sources/Source Control Checklist included in Appendix 8. The resulting list of structural and operational source control BMPs must be implemented as long as the associated sources are present on the project site. Add additional rows as needed.

Pollutant Source	Structural Source Control BMP	Operational Source Control BMP
Storm Drain Inlets	No Dumping Drains to River signage required (see City of Murrieta Requirements)	inspect signage once per year. Repair or replace if unreadable.
Trash Storage Areas	Insert text here	Insert text here
Plazas, Sidewalks and Parking Lots	Insert text here	Insert text here
Pool	Insert text here	Insert text here
Insert text here	Insert text here	Insert text here
Insert text here	Insert text here	Insert text here
Insert text here	Insert text here	Insert text here

Section I: Coordinate Submittal with Other Site Plans

Populate Table I-1 below to assist the plan checker in an expeditious review of your project. During construction and at completion, [Insert Jurisdiction] inspectors will verify the installation of BMPs against the approved plans. The first two columns will contain information that was prepared in previous steps, while the last column will be populated with the corresponding plan sheets. This table is to be completed with the submittal of your final Project-Specific WQMP.

BMP No. or ID	BMP Identifier and Description	Corresponding Plan Sheet(s)
Basin A	Biofiltration Basin	Insert text here
Basin B	Biofiltration Basin	Insert text here
Vegetated Swale E	Bioretention Vegetated Swale	Insert text here
Vegetated Swale F	Bioretention Vegetated Swale	Insert text here
Insert text here	Insert text here	Insert text here

Table I-1 Construction Plan Cross-reference

Note that the updated table — or Construction Plan WQMP Checklist — is only a reference tool to facilitate an easy comparison of the construction plans to your Project-Specific WQMP. The Copermittee with jurisdiction over the Project site can advise you regarding the process required to propose changes to the approved Project-Specific WQMP.

Use Table I-2 to identify other applicable permits that may impact design of the site. If yes is answered to any of the items below, the Copermittee may require proof of approval/coverage from those agencies as applicable including documentation of any associated requirements that may affect this Project-Specific WQMP.

Agency	Permit Re	quired
State Department of Fish and Game, 1602 Streambed Alteration Agreement	□ Y	🖂 N
State Water Resources Control Board, Clean Water Act Section 401 Water Quality Certification	□ Y	🖂 N
US Army Corps of Engineers, Clean Water Act Section 404 Permit	Π Υ	🖂 N
US Fish and Wildlife, Endangered Species Act Section 7 Biological Opinion	ΠΥ	🖂 N
Statewide Construction General Permit Coverage	X	🗌 N
Statewide Industrial General Permit Coverage	□ Y	🖂 N
Western Riverside MSHCP Consistency Approval (e.g., JPR, DBESP)	□ Y	🖂 N
Other (please list in the space below as required) TBD	🛛 Ү	□ N

Table I-2 Other Applicable Permits

Section J: Operation, Maintenance and Funding

The Copermittee with jurisdiction over the Project site will periodically verify that BMPs on your Project are maintained and continue to operate as designed. To make this possible, the Copermittee will require that you include in Appendix 9 of this Project-Specific WQMP:

- 1. A means to finance and implement maintenance of BMPs in perpetuity, including replacement cost.
- 2. Acceptance of responsibility for maintenance from the time the BMPs are constructed until responsibility for operation and maintenance is legally transferred. A warranty covering a period following construction may also be required.
- 3. An outline of general maintenance requirements for the Stormwater BMPs you have selected.
- 4. Figures delineating and designating pervious and impervious areas, location, and type of Stormwater BMP, and tables of pervious and impervious areas served by each facility. Geolocating the BMPs using a coordinate system of latitude and longitude is recommended to help facilitate a future statewide database system.
- 5. A separate list and location of self-retaining areas or areas addressed by LID Principles that do not require specialized Operations and Maintenance or inspections but will require typical landscape maintenance as noted in Chapter 5, in the SMR WQMP. Include a brief description of typical landscape maintenance for these areas.

The Copermittee with jurisdiction over the Project site will also require that you prepare and submit a detailed BMP Operation and Maintenance Plan that sets forth a maintenance schedule for each of the BMPs built on your site. An agreement assigning responsibility for maintenance and providing for inspections and certification may also be required.

Details of these requirements and instructions for preparing a BMP Operation and Maintenance Plan are in Chapter 5 of the SMR WQMP.

Maintenance Mechanism: Insert text here.

Will the proposed BMPs be maintained by a Homeowners' Association (HOA) or Property Owners Association (POA)?

Include your Operation and Maintenance Plan and Maintenance Mechanism in Appendix 9. Additionally, include all pertinent forms of educational materials for those personnel that will be maintaining the proposed BMPs within this Project-Specific WQMP in Appendix 10.

Section K: Acronyms, Abbreviations and Definitions

Regional MS4 Permit	Order No. R9-2013-0001 as amended by Order No. R9-2015-0001 and Order No. R9-2015-0100 an NPDES Permit issued by the San Diego Regional Water Quality Control Board.
Applicant	Public or private entity seeking the discretionary approval of new or replaced improvements from the Copermittee with jurisdiction over the project site. The Applicant has overall responsibility for the implementation and the approval of a Priority Development Project. The WQMP uses consistently the term "user" to refer to the applicant such as developer or project proponent. The WQMP employs also the designation "user" to identify the Registered Professional Civil Engineer responsible for submitting the Project-Specific WQMP, and designing the required BMPs.
Best Management Practice (BMP)	Defined in 40 CFR 122.2 as schedules of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the pollution of waters of the United States. BMPs also include treatment requirements, operating procedures and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage. In the case of municipal storm water permits, BMPs are typically used in place of numeric effluent limits.
BMP Fact Sheets	BMP Fact Sheets are available in the LID BMP Design Handbook. Individual BMP Fact Sheets include sitting considerations, and design and sizing guidelines for seven types of structural BMPs (infiltration basin, infiltration trench, permeable pavement, harvest-and-use, bioretention, extended detention basin, and sand filter).
California Stormwater Quality Association (CASQA)	Publisher of the California Stormwater Best Management Practices Handbooks, available at <u>www.cabmphandbooks.com</u> .
Conventional Treatment Control BMP	A type of BMP that provides treatment of stormwater runoff. Conventional treatment control BMPs, while designed to treat particular Pollutants, typically do not provide the same level of volume reduction as LID BMPs, and commonly require more specialized maintenance than LID BMPs. As such, the Regional MS4 Permit and this WQMP require the use of LID BMPs wherever feasible, before Conventional Treatment BMPs can be considered or implemented.
Copermittees	The Regional MS4 Permit identifies the Cities of Murrieta, Temecula, and Wildomar, the County, and the District, as Copermittees for the SMR.

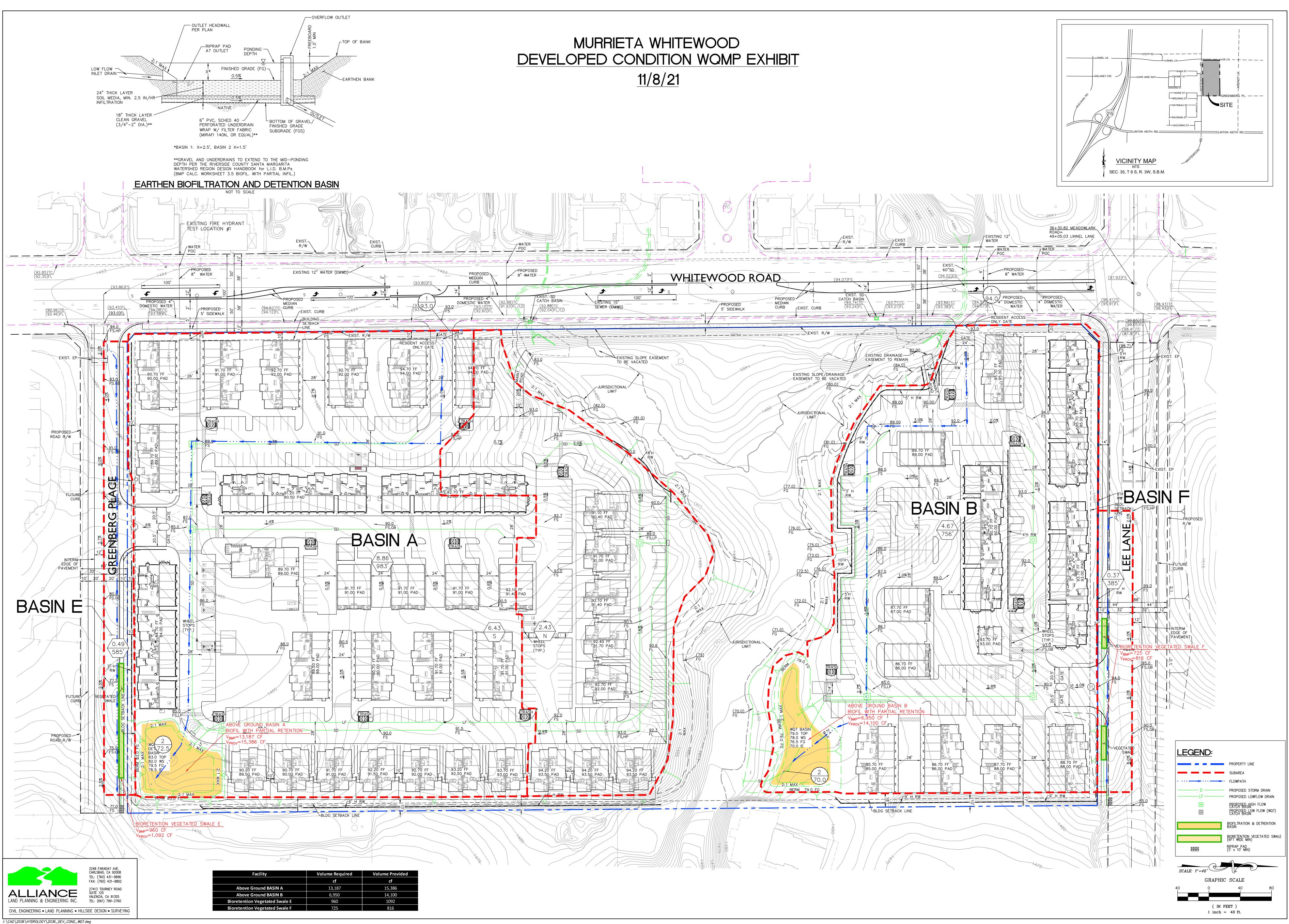
County	The abbreviation refers to the County of Riverside in this document.
CEQA	California Environmental Quality Act - a statute that requires state and local agencies to identify the significant environmental impacts of their actions and to avoid or mitigate those impacts, if feasible.
CIMIS	California Irrigation Management Information System - an integrated network of 118 automated active weather stations all over California managed by the California Department of Water Resources.
CWA	Clean Water Act - is the primary federal law governing water pollution. Passed in 1972, the CWA established the goals of eliminating releases of high amounts of toxic substances into water, eliminating additional water pollution by 1985, and ensuring that surface waters would meet standards necessary for human sports and recreation by 1983. CWA Section 402(p) is the federal statute requiring NPDES permits for discharges from MS4s.
CWA Section 303(d)	Impaired water in which water quality does not meet applicable
Waterbody	water quality standards and/or is not expected to meet water quality standards, even after the application of technology based pollution controls required by the CWA. The discharge of urban runoff to these water bodies by the Copermittees is significant because these discharges can cause or contribute to violations of applicable water quality standards.
Design Storm	The Regional MS4 Permit has established the 85th percentile, 24- hour storm event as the "Design Storm". The applicant may refer to Exhibit A to identify the applicable Design Storm Depth (D85) to the project.
DCV	Design Capture Volume (DCV) is the volume of runoff produced from the Design Storm to be mitigated through LID Retention BMPs, Other LID BMPs and Volume Based Conventional Treatment BMPs, as appropriate.
Design Flow Rate	The design flow rate represents the minimum flow rate capacity that flow-based conventional treatment control BMPs should treat to the MEP, when considered.
DCIA	Directly Connected Impervious Areas - those impervious areas that are hydraulically connected to the MS4 (i.e. street curbs, catch basins, storm drains, etc.) and thence to the structural BMP without flowing over pervious areas.
Discretionary Approval	A decision in which a Copermittee uses its judgment in deciding whether and how to carry out or approve a project.
District	Riverside County Flood Control and Water Conservation District.
DISTICT	

DMA	site that is hydraulically connected to a common structural BMP or conveyance point. The Applicant may refer to Section 3.3 for further guidelines on how to delineate DMAs.
Drawdown Time	Refers to the amount of time the design volume takes to pass through the BMP. The specified or incorporated drawdown times are to ensure that adequate contact or detention time has occurred for treatment, while not creating vector or other nuisance issues. It is important to abide by the drawdown time requirements stated in the fact sheet for each specific BMP.
Effective Area	Area which 1) is suitable for a BMP (for example, if infiltration is potentially feasible for the site based on infeasibility criteria, infiltration must be allowed over this area) and 2) receives runoff from impervious areas.
ESA	An Environmental Sensitive Area (ESA) designates an area "in which plants or animals life or their habitats are either rare or especially valuable because of their special nature or role in an ecosystem and which would be easily disturbed or degraded by human activities and developments". (Reference: California Public Resources Code § 30107.5).
ET	Evapotranspiration (ET) is the loss of water to the atmosphere by the combined processes of evaporation (from soil and plant surfaces) and transpiration (from plant tissues). It is also an indicator of how much water crops, lawn, garden, and trees need for healthy growth and productivity
FAR	The Floor Area Ratio (FAR) is the total square feet of a building divided by the total square feet of the lot the building is located on.
Flow-Based BMP	Flow-based BMPs are conventional treatment control BMPs that are sized to treat the design flow rate.
FPPP	Facility Pollution Prevention Plan
HCOC	Hydrologic Condition of Concern - Exists when the alteration of a site's hydrologic regime caused by development would cause significant impacts on downstream channels and aquatic habitats, alone or in conjunction with impacts of other projects.
HMP	Hydromodification Management Plan – Plan defining Performance Standards for PDPs to manage increases in runoff discharge rates and durations.
Hydrologic Control BMP	BMP to mitigate the increases in runoff discharge rates and durations and meet the Performance Standards set forth in the HMP.
HSG	Hydrologic Soil Groups – soil classification to indicate the minimum rate of infiltration obtained for bare soil after prolonged wetting. The HSGs are A (very low runoff potential/high infiltration rate), B, C, and D (high runoff potential/very low infiltration rate)

Hydromodification	The Regional MS4 Permit identifies that increased volume, velocity,
	frequency and discharge duration of storm water runoff from
	developed areas has the potential to greatly accelerate downstream
	erosion, impair stream habitat in natural drainages, and negatively
	impact beneficial uses. A separate Jurisdictional Runoff Management Plan (JRMP) has
JRMP	been developed by each Copermittee and identifies the local
	programs and activities that the Copermittee is implementing to
	meet the Regional MS4 Permit requirements.
LID	Low Impact Development (LID) is a site design strategy with a goal
	of maintaining or replicating the pre-development hydrologic
	regime through the use of design techniques. LID site design BMPs
	help preserve and restore the natural hydrologic cycle of the site, allowing for filtration and infiltration which can greatly reduce the
	volume, peak flow rate, velocity, and pollutant loads of storm water
	runoff.
LID BMP	
	Development concepts. LID BMPs not only provide highly effective
	treatment of stormwater runoff, but also yield potentially
	significant reductions in runoff volume – helping to mimic the pre- project hydrologic regime, and also require less ongoing
	maintenance than Treatment Control BMPs. The applicant may
	refer to Chapter 2.
LID BMP Design	The LID BMP Design Handbook was developed by the
Handbook	Copermittees to provide guidance for the planning, design and
	maintenance of LID BMPs which may be used to mitigate the water quality impacts of PDPs within the County.
LID Bioretention BMP	LID Bioretention BMPs are bioretention areas are vegetated (i.e.,
	landscaped) shallow depressions that provide storage, infiltration,
	and evapotranspiration, and provide for pollutant removal (e.g.,
	filtration, adsorption, nutrient uptake) by filtering stormwater
	through the vegetation and soils. In bioretention areas, pore spaces
	and organic material in the soils help to retain water in the form of
	soil moisture and to promote the adsorption of pollutants (e.g., dissolved metals and petroleum hydrocarbons) into the soil matrix.
	Plants use soil moisture and promote the drying of the soil through
	transpiration.
	The Regional MS4 Permit defines "retain" as to keep or hold in a
	particular place, condition, or position without discharge to surface
	Waters.
LID Biofiltration BMP	BMPs that reduce stormwater pollutant discharges by intercepting rainfall on vegetative canopy, and through incidental infiltration
	and/or evapotranspiration, and filtration, and other biological and
	chemical processes. As stormwater passes down through the
	planting soil, pollutants are filtered, adsorbed, biodegraded, and
	sequestered by the soil and plants, and collected through an
	underdrain.

LID Harvest and Reuse BMP	BMPs used to facilitate capturing Stormwater Runoff for later use without negatively impacting downstream water rights or other
Reuse Divir	Beneficial Uses.
LID Infiltration BMP	BMPs to reduce stormwater runoff by capturing and infiltrating the runoff into in-situ soils or amended onsite soils. Typical LID Infiltration BMPs include infiltration basins, infiltration trenches and pervious pavements.
LID Retention BMP	BMPs to ensure full onsite retention without runoff of the DCV such as infiltration basins, bioretention, chambers, trenches, permeable pavement and pavers, harvest and reuse.
LID Principles	Site design concepts that prevent or minimize the causes (or drivers) of post-construction impacts, and help mimic the pre- development hydrologic regime.
MEP	Maximum Extent Practicable - standard established by the 1987 amendments to the CWA for the reduction of Pollutant discharges from MS4s. Refer to Attachment C of the Regional MS4 Permit for a complete definition of MEP.
MF	Multi-family – zoning classification for parcels having 2 or more living residential units.
MS4	Municipal Separate Storm Sewer System (MS4) is a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains): (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, storm water, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or designated and approved management agency under section 208 of the CWA that discharges to waters of the United States; (ii) Designated or used for collecting or conveying storm water; (iii) Which is not a combined sewer; (iv) Which is not part of the Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.26.
New Development	Defined by the Regional MS4 Permit as 'Priority Development
Project	Projects' if the project, or a component of the project meets the categories and thresholds described in Section 1.1.1.
NPDES	National Pollution Discharge Elimination System - Federal program for issuing, modifying, revoking and reissuing, terminating, monitoring and enforcing permits, and imposing and enforcing pretreatment requirements, under Sections 307, 318, 402, and 405 of the CWA.
NRCS	Natural Resources Conservation Service

PDP	Priority Development Project - Includes New Development and Redevelopment project categories listed in Provision E.3.b of the
	Regional MS4 Permit.
Priority Pollutants of	Pollutants expected to be present on the project site and for which
Concern	a downstream water body is also listed as Impaired under the CWA Section 303(d) list or by a TMDL.
Project-Specific WQMP	A plan specifying and documenting permanent LID Principles and Stormwater BMPs to control post-construction Pollutants and stormwater runoff for the life of the PDP, and the plans for operation and maintenance of those BMPs for the life of the project.
Receiving Waters	Waters of the United States.
Redevelopment Project	The creation, addition, and or replacement of impervious surface on an already developed site. Examples include the expansion of a building footprint, road widening, the addition to or replacement of a structure, and creation or addition of impervious surfaces. Replacement of impervious surfaces includes any activity that is not part of a routine maintenance activity where impervious material(s) are removed, exposing underlying soil during construction. Redevelopment does not include trenching and resurfacing associated with utility work; resurfacing existing roadways; new sidewalk construction, pedestrian ramps, or bike lane on existing roads; and routine replacement of damaged pavement, such as pothole repair. Project that meets the criteria described in Section 1.
Runoff Fund	
San Diego Regional Board	San Diego Regional Water Quality Control Board - The term "Regional Board", as defined in Water Code section 13050(b), is intended to refer to the California Regional Water Quality Control Board for the San Diego Region as specified in Water Code Section 13200. State agency responsible for managing and regulating water quality in the SMR.
SCCWRP	Southern California Coastal Water Research Project
Site Design BMP	Site design BMPs prevent or minimize the causes (or drivers) of post-construction impacts, and help mimic the pre-development hydrologic regime.
SF	Parcels with a zoning classification for a single residential unit.
SMC	Southern California Stormwater Monitoring Coalition
SMR	The Santa Margarita Region (SMR) represents the portion of the Santa Margarita Watershed that is included within the County of Riverside.


Source Control BMP	Source Control BMPs land use or site planning practices, or
	structural or nonstructural measures that aim to prevent runoff
	pollution by reducing the potential for contamination at the source
	of pollution. Source control BMPs minimize the contact between
	Pollutants and runoff.
Structural BMP	Structures designed to remove pollutants from stormwater runoff
	and mitigate hydromodification impacts.
SWPPP	Storm Water Pollution Prevention Plan
Tentative Tract Map	Tentative Tract Maps are required for all subdivision creating five
	(5) or more parcels, five (5) or more condominiums as defined in
	Section 783 of the California Civil Code, a community apartment
	project containing five (5) or more parcels, or for the conversion of
	a dwelling to a stock cooperative containing five (5) or more
	dwelling units.
TMDL	Total Maximum Daily Load - the maximum amount of a Pollutant
	that can be discharged into a waterbody from all sources (point and
	non-point) and still maintain Water Quality Standards. Under
	CWA Section 303(d), TMDLs must be developed for all
	waterbodies that do not meet Water Quality Standards after
	application of technology-based controls.
USEPA	
Volume-Based BMP	Volume-Based BMPs applies to BMPs where the primary mode of
	pollutant removal depends upon the volumetric capacity such as
	detention, retention, and infiltration systems.
WQMP	Water Quality Management Plan
Wet Season	The Regional MS4 Permit defines the wet season from October 1
	through April 30.

Appendix 1: Maps and Site Plans

Location Map, WQMP Site Plan and Receiving Waters Map

Complete the checklist below to verify all exhibits and components are included in the Project-Specific WQMP. Refer Section 4 of the SMR WQMP and Section D of this Template.

	Map and Site Plan Checklist
Indicate all	Maps and Site Plans are included in your Project-Specific WQMP by checking the boxes below.
\square	Vicinity and Location Map
	Existing Site Map (unless exiting conditions are included in WQMP Site Plan)
\square	WQMP Site Plan
	Parcel Boundary and Project Footprint
	Existing and Proposed Topography
	🔀 Drainage Management Areas (DMAs)
	Proposed Structural Best Management Practices (BMPs)
	🖂 Drainage Paths
	Drainage infrastructure, inlets, overflows
	Source Control BMPs
	Site Design BMPs
	Buildings, Roof Lines, Downspouts
	Impervious Surfaces
	Pervious Surfaces (i.e. Landscaping)
	Standard Labeling

Appendix 2: Construction Plans

The latest set of Grading, Drainage and Street Improvement Plans shall be included.

For Bioretention and Biofiltration facilities, the following construction notes shall be shown on the Grading and/or Drainage plans.

- BSM and Aggregates should not be delivered or placed in frozen, wet or muddy conditions. The Contractor should protect materials from absorbing excess water and from erosion at all times. The Contractor shall not store materials unprotected during large rainfall events (>.25 inches). If water is introduced into material while it is stockpiled, the Contractor shall allow the material to drain to an acceptable level before it is placed.
- 2) The Engineer shall furnish to the City a copy of the source testing and a signed certification that the fully blended Bioretention/Biofiltration Soil Media (BSM) material meets all of the WQMP requirements before the material is imported or if the material is mixed onsite prior to installation. Onsite mixing may only occur if sand or topsoil components are sourced from the Project site. Onsite mixing may be conducted by using loaders.
- 3) BSM shall be lightly compacted and placed in loose lifts of 12 inches thick. Compaction should not exceed 75% standard procter. Machinery should not be used in the BSM area to place BSM. As BSM material is being installed, Quality Assurance (QA) tests shall be conducted or for every 1,200 tons or 800 cubic yards mixed on-site from a completely mixed stockpile or windrow, with a minimum of three tests. For imported material from a supplier with a quality control program the QA tests shall be conducted 2,400 tons or 1,600 cubic yards from the supplier.
- 4) The Engineer conducting the Quality Control testing shall furnish to the City a copy of the QA testing and a certification that the BSM for the project meets all of the following requirements.
 - a. BSM shall consist of 60-80% clean sand, up to 20% clean topsoil, and 20% of a nutrientstabilized organic amendment. The initial infiltration rate shall be greater than 8 inches per hour per laboratory test.
 - b. pH: 6.0 8.5; Salinity: 0.5 to 3.0 mmho/cm as electrical conductivity; sodium absorption ratio: < 6.0; Chloride: <800 ppm in saturated extract; Cation Exchange Capacity (CEC): > 10 meq/100 g; Organic Matter: 2 to 5 percent on a dry weight basis; Carbon: Nitrogen ratio: 12 to 40, preferably 15 to 40; Gravel larger than 2mm: 0 to 25-percent of the total sample; Clay smaller than 0.005 mm: 0 to 5 percent of the non-gravel fraction.
 - c. BSM shall be tested to limit the leaching of potential inherent pollutants. BSM used in Biofiltration BMPs shall conform to the following limits for pollutant concentrations in saturated extract: Phosphorous: < 1 mg/L; Nitrate < 3 mg/L, Copper <0.025 mg/L. These pollutant limits are for the amount that is leached from the sample, not from the soil sample itself. Testing may be performed after laboratory rinsing of media with up to 15 pore volumes of water. Equivalent test results will be accepted if certified by a laboratory or appropriate testing facility.

- d. Low nutrient compost used in BSM shall be sourced from a facility permitted through CalRecyle, preferably through USCC STA program. Compost shall conform to the following requirements: Physical contaminants <1% by dry weight; Carbon:Nitrogen ratio: 12:1 to 40:1, Maturity/Stability shall conform to either: Solvita Maturity Index: ≥ 5.5, CO2 Evolution: < 2.5 mg CO2-C per g compost organic matter per day, or < 5 mg CO2 shall be more than 6 months old and representative of current stockpiles.
- e. Coconut coir pith used in BSM shall be thoroughly rinsed with freshwater and screened to remove coarse fibers as part of production and aged > 6 months. Peat used in BSM shall be sphagnum peat.

Potential BSM sources may include (not part of construction note): Gail Materials (Temescal Valley), Agriservice (Oceanside), Greatsoils (Escondido), and Earthworks (Riverside).

Potential Laboratories may include (not part of construction note): Fruit Growers Laboratory, Inc. (Santa Paula, <u>http://www.fglinc.com/</u>), Wallace Laboratories (El Segundo, <u>http://us.wlabs.com/</u>), Control Labs (Watsonville, <u>http://controllabs.com</u>) and A&L Western Laboratories (Modesto, http://www.al-labs-west.com/)

Appendix 3: Soils Information

Geotechnical Study, Other Infiltration Testing Data, and/or Other Documentation

Appendix 4: Historical Site Conditions

Phase I Environmental Site Assessment or Other Information on Past Site Use

Appendix 5: LID Feasibility Supplemental Information

Information that supports or supplements the determination of LID technical feasibility documented in Section D

Appendix 6: LID BMP Design Details

BMP Sizing, Design Details and other Supporting Documentation to supplement Section D

	largarita W a Volume, V _{BMP}		Legend:			uired Entries ulated Cells
(Note this we	orksheet shall <u>only</u> b	e used in conjunction with	BMP designs fro	m the LID BM	P Design Handb	pook)
Company Name	Alliance Land P	lanning and Engineeri	I	Date 8	/10/2021	
Designed by	SRL		County/Ci	ty Case No		
Company Project Nu	mber/Name					
Drainage Area Numb	er/Name	BASIN A NORTH				
Enter the Area Tribut	ary to this Featur	e	$A_{\rm T} = 2$	43 acres		
85 th Per	centile, 24-hour l	Rainfall Depth, from th	ne Isohyetal Ma	ap in Handbo	ook Appendix	E
Site Location				Township	Murriaeta	
				Range		
				Section		
Enter the 85 th Pe	ercentile, 24-hour	Rainfall Depth		D ₈₅ =	0.60	
	De	etermine the Effective	Impervious Fra	action		
Type of post-development surface cover (use pull down menu) Mixed Surface Types						
Effective Impervious Fraction				$I_f =$	0.87	
	Calculate the con	posite Runoff Coeffic	ient, C for the	BMP Tributa	ary Area	
Use the followin	a equation based	on the WEF/ASCE M	ethod			
	$78I_{f}^{2} + 0.774I_{f} + 0$		ettiou	C =	0.69	
	Ι	Determine Design Stor	age Volume, V	/ _{BMP}		
Calculate V _U , the	e 85% Unit Stora	ge Volume $V_U = D_{85}$	x C	$V_u =$	0.41	(in*ac)/ac
Calculate the des	sign storage volu	ne of the BMP, V _{BMP} .				
V_{BMP} (ft ³)=	V _U (in-ac/ac)	$x A_{T}$ (ac) x 43,560 (ft 12 (in/ft)	² /ac)	$V_{BMP} =$	3,617	ft ³
Notes:						

	Iargarita W a Volume, V _{BMP}		Legend:		_ `	uired Entries ulated Cells
(Note this wo	orksheet shall <u>only</u> b	e used in conjunction with	BMP designs fro	m the LID BM	P Design Handb	oook)
Company Name	Alliance Land P	lanning and Engineeri	t	Date 8	/10/2021	
Designed by	SRL		County/Ci	ty Case No		
Company Project Nur	mber/Name		-			
Drainage Area Numb	er/Name	BASIN A SOUTH				
Enter the Area Tribut	•		_	.43 acres		
85 th Per	centile, 24-hour I	Rainfall Depth, from th	ne Isohyetal M	ap in Handbo	ook Appendix	Е
Site Location				Township	Murriaeta	
				Range		
				Section		
Enter the 85 th Pe	rcentile, 24-hour	Rainfall Depth		D ₈₅ =	0.60	
	De	etermine the Effective	Impervious Fr	action		
Type of post-development surface cover (use pull down menu) Mixed Surface Types						
Effective Impervious Fraction				$I_{\rm f}$ =	0.87	
	Calculate the com	posite Runoff Coeffic	ient, C for the	BMP Tributa	ary Area	
Use the followin	g equation based	on the WEF/ASCE M	ethod			
	$78I_{f}^{2} + 0.774I_{f} + 0$		eniou	C =	0.69	
	Ι	Determine Design Stor	age Volume, V	/ _{BMP}		
Calculate V _U , the	e 85% Unit Stora	ge Volume $V_U = D_{85}$	x C	$V_u =$	0.41	(in*ac)/ac
Calculate the des	sign storage volur	ne of the BMP, V _{BMP} .				
V_{BMP} (ft ³)=	V _U (in-ac/ac)	$x A_{T}$ (ac) x 43,560 (ft 12 (in/ft)	2/ac)	$V_{BMP} =$	9,570	ft ³
Notes:						

BMP Design	largarita Wa Volume, V _{BMP}	(Rev. 03-2012)	Legend:		Calc	uired Entries ulated Cells		
(Note this wo	orksheet shall <u>only</u> b	e used in conjunction with	BMP designs from	m the LID BM	P Design Handb	<u>oook</u>)		
Company Name	Alliance Land P	lanning and Engineeri	t	Date 8	/10/2021			
Designed by	SRL		County/Cit	ty Case No				
Company Project Nur	mber/Name							
Drainage Area Numb	er/Name	BASIN B						
Enter the Area Tribut				67 acres				
85 th Per	centile, 24-hour H	Rainfall Depth, from th	ne Isohyetal Ma	ap in Handbo	ok Appendix	E		
Site Location				Township	Murriaeta			
				Range				
				Section				
Enter the 85 th Pe	ercentile, 24-hour	Rainfall Depth		D ₈₅ =	0.60			
	De	etermine the Effective	Impervious Fra	action				
Type of post-development surface cover (use pull down menu) Mixed Surface Types								
Effective Impervious Fraction				$I_f =$	0.87			
	Calculate the com	posite Runoff Coeffic	ient, C for the	BMP Tributa	ary Area			
Use the followin	g equation based	on the WEF/ASCE M	ethod					
	$78I_{f}^{2} + 0.774I_{f} + 0$		emou	C =	0.69			
	Ι	Determine Design Stor	age Volume, V	UBMP				
Calculate V _U , the	e 85% Unit Stora	ge Volume $V_U = D_{85}$	x C	$V_u =$	0.41	(in*ac)/ac		
Calculate the des	Calculate the design storage volume of the BMP, V_{BMP} .							
V_{BMP} (ft ³)=	V _U (in-ac/ac)	$x A_{T}$ (ac) x 43,560 (ft 12 (in/ft)	2/ac)	$V_{BMP} =$	6,950	ft ³		
Notes:								

Sa	nta Margarita	a Watershed	Tanandi	Required Entries		
BMP	Design Flow Rate,	Q _{BMP} (Rev. 03-2012)		Legend:	Calculated Cells	
Company Name	Alliance Land Pla	nning and		Date		
Designed by	SRL		Cour	nty/City Case No		
Company Projec	t Number/Name	WHITEWOOD APAI	RTMEN	VTS		
Drainage Area N	lumber/Name	BASIN E				
Enter the Area T	ributary to this Fea	ture $A_T =$	0.49	acres		
		Determine the Effective	ve Impe	rvious Fraction		
	f post-developmen	t surface cover		Conc	crete or Asphalt	
	ıll down menu)					
Effecti	ve Impervious Frac	ction			$I_f = $ <u>1.00</u>	
	Calculate the	composite Runoff Coef	ficient,	C for the BMP T	ributary Area	
Use the	e following equation	on based on the WEF/A	SCE M	ethod		
	$858I_{\rm f}^3 - 0.78I_{\rm f}^2 + 0.7$				C = 0.89	
		BMP Desig	n Flow	Rate		
Q _{BMP} =	$= C \times I \times A_T$			$Q_{BMP} =$	0.1 ft ³ /s	
Notes:						

Santa Margarita Watershed				Lesende	Required Entries		
BMP	Design Flow Rate,	Q _{BMP} (Rev. 03-2012)		Legend:	Calculat	ted Cells	
Company Name	Alliance Land Pla	nning and		Date			
Designed by	SRL		Cour	nty/City Case No			
Company Projec	t Number/Name	WHITEWOOD APAI	RTMEN	ITS			
Drainage Area N	lumber/Name	BASIN F					
Enter the Area T	ributary to this Fea	ture $A_T =$	0.37	acres			
		Determine the Effective	ve Impe	rvious Fraction			
Туре о	f post-developmen	t surface cover		Conc	rete or Asphalt		
(use pi	ıll down menu)						
Effecti	ve Impervious Frac	ction			$I_f = 1.0$	00	
	Calculate the	composite Runoff Coef	ficient,	C for the BMP Tr	ributary Area		
Use the	e following equation	on based on the WEF/A	SCE M	ethod			
C = 0.8	$358I_{\rm f}^3 - 0.78I_{\rm f}^2 + 0.7$	$774I_{f} + 0.04$			C = 0.1	89	
		BMP Desig	n Flow	Rate			
Q _{BMP} =	= C x I x A _T			Q _{BMP} =	0.1 ft ³ /s		
Notes:							

Biofiltration with P	artial Infiltration Facility -	BMP ID	T d.	Required	Entries	
Desig	gn Procedure	BASIN A	Legend:	Calculate	d Cells	
Company Name:	Alliance Land Planning and	d Engineering, Inc.		Date:	########	÷
Designed by:			County/Cit	y Case No.:		
		Design Volume				
Enter the area	tributary to this feature			$A_T =$	8.86	acres
Enter V _{BMP} de	etermined from Section 2.1 of	of this Handbook		V _{BMP} =	13,187	ft ³
	stimate of footprint of BMP, tributary impervious area)	, Area _{BMP} (Guidance: A	A reasonable starting	Area _{BMP} =	6,383	ft ²
should be the componding elevation	shall be measured at the mid-pond ntour that is midway between the f n of the basin. The underlying gra tems with vertical walls, the effect	floor of the basin and th wel layer (infiltration st	e maximum water c orage layer) should	luality		
	Portion	of DCV Reliably Ro	etained			
Depth of Grave	el Infiltration Storage Layer (18	8" minimum; 30" ma	ximum)	dg =	18.0	inches
	P Reliably Retained via Infiltra	-	el Layer			c.3
$V_{retained} = d$	$l_g(in) \ge 0.4 \ge Area_{BMP}(ft^2) \ge 0.4 =$	1/12		$V_{\text{Retained}} =$	3829.8	ft^3
Portion of V _B	MP not Reliably Retained					
V _{Not Reliably}	$V_{\text{Retained}} = V_{\text{BMP}} - V_{\text{Retained}}$		$V_{ m Not Reli}$	ably Retained $=$	9357.2	ft^3
	Biofiltration with P	artial Retention Fac	cility Surface Are	ea		
Depth of Surf	ace Ponding Layer (6" minir	num, 12" maximun	ı)	$d_P =$	18.0	inches
Depth of Engi	ineered Soil Media (24" to 3	6"; 18" if vertically	constrained)	$d_{\rm S} =$	24.0	inches
Design Media	Filtration Rate (2.5 in/hr)			$I_{design} =$	2.5	in/hr
Allowable Ro	outing Period, T _{routing} (5 hrs)			$T_{routing} =$	5.0	hr
	filtration Depth, $d_{E_{bio}}$ = $(d_P + (0.3 \text{ x } d_S) + (I_{design} * $	T _{routing})) (ft)		$d_{E_{bio}} =$	3.1	ft
	ic Depth, $d_{E_bio_static}$ = (d_P + (0.3 * d_S)) (ft)			$d_{E_{bio_{static}}} =$	2.1	ft
V _{biofiltered} =	$d_{E_{bio}} * Area_{BMP}$			$V_{biofiltered} =$	20053.3	ft ³
V _{biofiltered_st}	$_{atic} = d_{E_{bio_{static}}} * Area_{BMP}$		V_{bic}	ofiltered_static =	13404.3	ft ³
	Siz	zing Option 1 Resul	lt			

Riverside County-SMR LID BMP Design Handbook February 2018

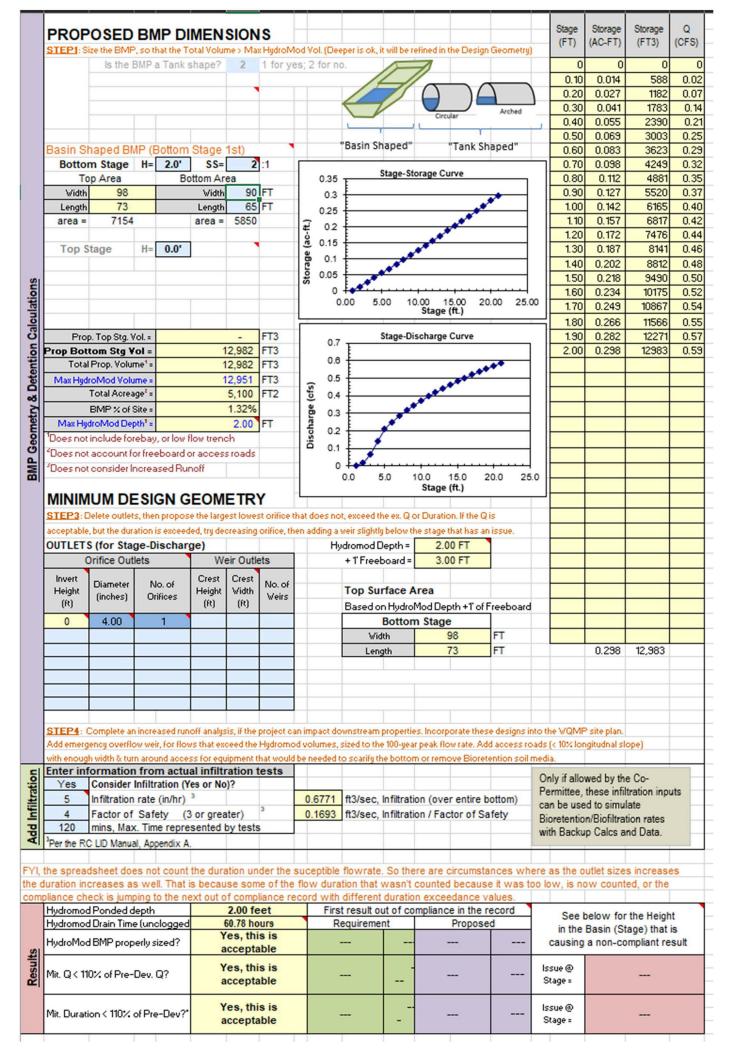
Cri	iteria 1:	$V_{biofiltered (with$	routing) > 150%	of $V_{not reliably}$	retained			Results:	PASS	
			S	Sizing Optio	n 2 Resul	t				
Cri	iteria 2:	$V_{biofiltered_stati}$	$_{\rm c} > 0.75 \ {\rm x} \ {\rm V}_{\rm Not}$	Reliably Retained				Results:	PASS	
				Not	te					
			are met, then i lculation is inl		-	th, increa	se footprin	nt, or both	n, and	
		Bi	ofiltration wit	h Partial Re	tention Fa	acility Pro	perties			
Sic	de Slopes in		ention with Bio			. f T	1:41:	z =	2	:1
Di	ameter of U		ge: ERROR,	side slopes	too steep	o for Faci	nty design	1	6	inches
Lo Ch	ngitudinal S neck Dam Sp	Slope of Site	(3% maximu	m)				l	2	%feet
De	escribe Vege	etation:								
Notes:										

Biofiltration with Pa	artial Infiltration Facility -	BMP ID	T 1	Required	Entries	
Desig	n Procedure	BASIN B	Legend:	Calculate	d Cells	
Company Name:	Alliance Land Planning and	d Engineering, Inc.		Date:		
Designed by:	SRL	Design Volume	County/Cit	y Case No.:		
		Design Volume				
Enter the area	tributary to this feature			$A_{T}=$	4.67	acres
Enter V _{BMP} de	termined from Section 2.1 o	of this Handbook		V _{BMP} =	6,950	ft ³
	stimate of footprint of BMP, ributary impervious area)	Area _{BMP} (Guidance: A	A reasonable starting	Area _{BMP} =	5,879	ft ²
should be the com ponding elevation	hall be measured at the mid-pondi atour that is midway between the f n of the basin. The underlying gra- ems with vertical walls, the effection	loor of the basin and the vel layer (infiltration st	e maximum water o orage layer) should	quality		
	Portion of	of DCV Reliably Re	etained			
Depth of Grave	l Infiltration Storage Layer (18	3" minimum; 30" ma	ximum)	dg=	18.0	inches
	Reliably Retained via Infiltra	-	el Layer			- 3
$V_{\text{retained}} = d_s$	$_{g}(in) \ge 0.4 \ge Area_{BMP}(ft^{2}) \ge$	1/12		$V_{Retained} =$	3527.4	ft^3
Portion of V _{BN}	MP not Reliably Retained					
V _{Not Reliably}	$_{Retained} = V_{BMP} - V_{Retained}$		$V_{ m Not \ Reli}$	ably Retained =	3422.6	ft ³
	Biofiltration with Pa	artial Retention Fac	cility Surface Are	ea		
Depth of Surfa	ace Ponding Layer (6" minin	num, 12" maximun	n)	$d_{\rm P} =$	18.0	inches
Depth of Engi	neered Soil Media (24" to 30	6"; 18" if vertically	constrained)	$d_s =$	24.0	inches
Design Media	Filtration Rate (2.5 in/hr)			$I_{design} =$	2.5	in/hr
Allowable Ro	uting Period, T _{routing} (5 hrs)			$T_{routing} =$	5.0	hr
	iltration Depth, d_{E_bio} (d_P + (0.3 x d_S) + (I_{design} * 7	T _{routing})) (ft)		$d_{E_{bio}} =$	3.1	ft
	c Depth, $d_{E_bio_static}$ = (d_P + (0.3 * d_S)) (ft)			$d_{E_{bio_{static}}} =$	2.1	ft
$V_{biofiltered} =$	$d_{E_{bio}} * Area_{BMP}$			$V_{biofiltered} =$	18469.9	ft ³
V _{biofiltered_sta}	$d_{\rm E_{bio_{static}}} * Area_{\rm BMP}$		V_{bio}	ofiltered_static =	12345.9	ft ³
	Siz	zing Option 1 Resul	lt			

Riverside County-SMR LID BMP Design Handbook February 2018

Cri	iteria 1:	$V_{biofiltered (with$	routing) > 150%	of $V_{not reliably}$	retained			Results:	PASS	
			S	Sizing Optio	n 2 Resul	t				
Cri	iteria 2:	$V_{biofiltered_stati}$	$_{\rm c} > 0.75 \ {\rm x} \ {\rm V}_{\rm Not}$	Reliably Retained				Results:	PASS	
				Not	te					
			are met, then i lculation is inl		-	th, increa	se footprin	nt, or both	n, and	
		Bi	ofiltration wit	h Partial Re	tention Fa	acility Pro	perties			
Sic	de Slopes in		ention with Bio			. f T	1:41:	z =	2	:1
Di	ameter of U		ge: ERROR,	side slopes	too steep	o for Faci	nty design	1	6	inches
Lo Ch	ngitudinal S neck Dam Sp	Slope of Site	(3% maximu	m)				l	2	%feet
De	escribe Vege	etation:								
Notes:										

Bioretention Each	ility - Design Procedure	BMP ID	Legend:	Required	Entries	
		SWALE E	Legend.	Calculate	ed Cells	
Company Name:	ALLIANO SRL	CE	Country/City	Date:		
Designed by:		Design Volume	County/City (
				•	0.40	
Enter the are	ea tributary to this feature			$A_{T}=$	0.49	acres
Enter V _{BMP}	determined from Section 2.	1 of this Handbook		V _{BMP} =	960	ft ³
	Type of Bi	ioretention Facility	Design			
Side slopes results	equired (parallel to parking spaces or	adjacent to walkways)				
○ No side slope	es required (perpendicular to parking	space or Planter Boxes)				
	Bioretent	ion Facility Surface	Area			
Depth of So	il Filter Media Layer			$d_s =$	1.5	ft
Top Width o	of Bioretention Facility, exc	luding curb		$w_T =$	6.0	ft
	ive Depth, d_E) x d _S + (0.4) x 1 - (0.7/w _T)	+ 0.5		d _E =	1.23	ft
Minimum S A_{M} (ft ²) =	urface Area, A_m $\frac{V_{BMP} (ft^3)}{d_E (ft)}$	_		A _M =	779	ft ⁻
Proposed Su				A=	888	ft^2
	Bioreter	ntion Facility Prope	rties			
Side Slopes	in Bioretention Facility			z =	4	:1
Diameter of	Underdrain				6	inches
Longitudina	l Slope of Site (3% maximu	ım)			1	%
6" Check Da	am Spacing				25	feet
Describe Ve	getation:					
Notes:						


Bioretention Facil	ity - Design Procedure	BMP ID	Legend:	Required Entries	
		SWALE F	C	Calculated Cells	
Company Name: Designed by:	ALLIANO SRL	LE	County/City C	Date: Case No :	
Besigned by:		Design Volume	county only c		
Enter the area	a tributary to this feature			$A_{\rm T} = 0.37$	acres
	etermined from Section 2.	1 of this Handbook		V _{BMP} = 725	ft ³
Enter v BMp d				• BMP- 723	II
	Type of B	oretention Facility l	Design		
Side slopes red	quired (parallel to parking spaces or	adjacent to walkways)			
○ No side slopes	required (perpendicular to parking	space or Planter Boxes)			
	Bioretent	ion Facility Surface	Area		
Depth of Soil	Filter Media Layer			$d_{\rm S} = 3.0$	ft
Top Width of	f Bioretention Facility, exc	luding curb		$w_{\rm T} = 6.0$	ft
Total Effectiv $d_E = (0.3)$	we Depth, d_E x d_S + (0.4) x 1 - (0.7/w _T)	+ 0.5		d _F = 1.68	ft
	rface Area, A_m $V_{BMP} (ft^3)$ $d_E (ft)$	_		A _M = 431	tt~
Proposed Sur				A= 486	ft^2
	Biorete	ntion Facility Proper	rties		
Side Slopes j	n Bioretention Facility	• •		z = 4	:1
Side Slopes I	in Dioretention Pacifity			Z –	.1
Diameter of U	Underdrain			6	inches
Longitudinal	Slope of Site (3% maximu	ım)		1	%
6" Check Dar	m Spacing			25	feet
Describe Veg	getation:				
Notes:					

Riverside County Best Management Practice Design Handbook JUNE 2010

Appendix 7: Hydromodification

Supporting Detail Relating to compliance with the Hydromodification Performance Standards

	Only	for use the uninc	rgarita Region corporated portion								tee	1			
	Developm	ent Project Number(s):						Rain Gauge		Temecula	Vallen				
	La	titude (decimal format):		33.6033				e (per WQMP):		Biofiltra	tion				
	Long	gitude (decimal format):		-117.1566			BMP Numb	er (Sequential):		Basin A1	& A2				
			-	Pre-Deve	lopment -	Hydrology In	formation								
	DRAINAGE ARE	A (ACRES) - 10 acre ma	501		.86			Y (IN/HR) - Plate	• D.4 3		0.53				
	LONGEST VATE	ERCOURSE (FT) - 1,000	'max'		85			Y (IN/HR) - Pla			1.66				
	UPSTREAM ELE	EVATION OF WATERCI	OURSE (FT)		504			DURATION - P			0.56				
ŝ		ELEV. OF WATERCOU		_	77	CLOSEST IM	PERVIOUS PE	RCENTAGE (>	()	0% Undevel	oped - Poor	Cover			
Li c-nevelopiliell		RVIOUS PERCENTAGE avoid Field Screening re		_	0 'es										
_															
				Pre-De	evelopmer	nt - <u>Soils Infor</u>	mation			Diladar	Diladau	Duada			
2	Cover Type #	Subarea Acreage	Cover Type	Vegetati	ive Cover	Soil A %	Soil B %	Soil C %	Soil 🛙	Ri Index		BI Index AMC II			
Lie-Developinent	1 8.86 Ac. Barren				Cover		50	50		76	89	96			
										0	0	0			
		0.02 4 -					Waisht	Average	Number	0	0	0			
	De Luie Descrit	8.86 Ac.	an the scied all	nabia - Litta	14 (100 10 1			d Average R			89.0	96.0			
		AMC condition is based " of rain the previous 5 (ire:				
_															
:1			elopment - Calculated	I Range of	Flow Rate	es analyzed for									
unanidana ana an			per Flow-rate limit					alculated Lov	er Flow-	rate limit					
		Ex. 10-year Flowrate ¹ =	12.712	cfs				Flowrate ¹ =	0.89	9 cfs	_				
	(Co-Permitte Approval is required) User-Defined Discharge Values with accompanying Hydrology Study ¹														
1	En 10-year Eld	owrate (Attach Study) =					oor Elowroto (/	Attach Study) =		cfs					
	Ex. Io-gear ric	smale (Allach olddy) -		013		Cn. C-9	earr iomate (r	kkach okadyj -		013					
		o determine the 10-year and to 20 acres) and longer													
5		`^		Post-Pr	roject - Hy	drograph Info	rmation								
nofor Lien I	DRAINAGE ARE	A (ACRES)		8	.86										
	LONGEST WATE				20					P, then check re:					
21		I ELEV (FT) - along wate PERVIOUS PERCENTA			14 32	Print both	h this "HydroM	lod" Sheet and t	he "BMP [Design" sheet fo	r your subr	nittal.			
_				_											
				Pos	t-Project -	Soils Informa	ation								
info										Ri Indea		RI Inde:			
	Cover Type # 22	Subarea Acreage 8.86 Ac.	Cover Type Urban Landscaping		ive Cover	Soil A %	Soil B %	Soil C % 50	Soil 🛛	1% AMCI 43	AMC II 63	AMCII 80			
5		0.00 MC.	orban canoscaping	Good	Cover		50	00		43	0	0			
•	1									Ő	0	Ő			
		8.86 Ac.					Weighte	d Average R	l Numbe		63.0	80.0			
		AMC condition is based " of rain the previous 5 o					ing conditions	in Riverside Co	unty the Al	MC conditions a	ire:				
_	Under a d Day of	ad dapth	0.00 /		-		an maliar and	No. eristallar		Orchal	(ach-1)	inkt			
	Hydromod Pond Hydromod Drain	ed depth Time (unclogged)	2.00 feet 60,78 hour		FI	rst result out of Requiremen		the rainfall reco Propos			v for the He in (Stage) t	-			
	Is the HydroMod	BMP properly sized?	Yes, this is acce								he Basin (Stage) that is ing a non-compliant res				
-		% of Pre-Dev. Q?	Yes, this is acceptable						Causing a no		n-compliant result				
=1	Mitigated Duratio	on < 110% of Pre-Dev?*	Yes, this is acceptable							bruo@Staqo-					
		Responsible-in-charge:							Date:						
		nesponsible-in-Charde:							Date:						
		Signature:							1	preadsheet Deve	loned by 5	aniis Ch			

	Only	Santa Mar for use the uninc	orporated portion	s of Riverside C	Journey, unite				e Co-P	ermitte	ee	
I			, ,									
+	Developer						Duit Course				- How	
ł		ent Project Number(s):		33.6033		DMD Tue	Rain Gauge			mecula V Biofiltratio		
		titude (decimal format): jitude (decimal format):		-117.1566			e (per WQMP): er (Sequential):			Basin B		
	cong	indae (aconnarionnai).				Dirit reality	er (orgaenna).			COSITE		
				Pre-Development	Hydrology In	formation						
		A (ACODO) 40						D 10			0.50	
		A (ACRES) - 10 acre ma RCOURSE (FT) - 1,000		4.81 435			Y (IN/HR) - Plati 'Y (IN/HR) - Plat				0.53	
		EVATION OF WATERCO		1505			DURATION - P				0.56	
		ELEV. OF WATERCOU		1475			RCENTAGE (>		0%	Undevelop	ped - Poor	Cover
		RVIOUS PERCENTAGE		0				· ·				
	Use 10% of Q2 to	avoid Field Screening re	quirements	Yes								
		[] [Pre-Developme	nt - <u>Soils Infor</u>	rmation				RI Index	BI Index	RI Inde
ĺ	Cover Type #	Subarea Acreage	Cover Type	Vegetative Cover	Soil A %	Soil B %	Soil C %	Soil D		AMCI	AMCI	AMCI
ļ	1	4.81 Ac.	Barren	- Cover		50	50			76	89	96
										0	0	0
										Ō	0	0
		4.81 Ac.				Weighte	d Average R	Numbe	rs =	76.0	89.0	96.0
ļ	r. Luis Parra, the A	AMC condition is based	on the rainfall record. A	pplying NEH-4 (1964) f	or the non-freez	ing conditions	in Riverside Co	unty the AN	MC cond	ditions ar	e:	
	-l for less than 0.5	" of rain the previous 5 o	days; AMC-II for betweer	n 0.5" to 1.1" of rain the	previous 5 days	s; or AMC-III fo	r more than 1.1"	for the prev	vious 5 d	lays.		
		Pre-Deve	elopment - <u>Calculated</u>	Range of Flow Rate	es analyzed fo	r Hydromod	(Suceptible Ra	inge of Flo	ows)			
		Calculated Up	per Flow-rate limit			C	alculated Lov	er Flow-i	rate lin	nit	_	
		Ex. 10-year Flowrate ¹ =	8.963	cfs Ex. 10		10% of the 2-year Flowrate ¹ =		0.552 cfs		ofs		
		(Co-Permitt	e Approval is requir	red) User-Defined				Hydrolog	gy Stud	ly'		
	Ex 10-near Flo		e Approval is requir		 Discharge ¥a	alues with ac	companying	Hydrolog				
	equations used to	wrate (Attach Study) = [e Approval is requir nd 10% of the 2-yr are lim watercourse lengths car	cfs ited to 10-acres and 1,0	Discharge ¥a Ex. 2-y	alues with ac ear Flowrate (/ irom a separate	companying Attach Study) = e study can be u	sed to over	r-ride the	cfs calculate		
	equations used to	wrate (Attach Study) = [nd 10% of the 2-yr are lim	CfS ited to 10-acres and 1,0 n be used. All values s	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill	alues with ac ear Flowrate (/ from a separate led out, even wi	companying Attach Study) = e study can be u	sed to over	r-ride the	cfs calculate		
	equations used to at larger areas (up	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer	nd 10% of the 2-yr are lim	cfs ited to 10-acres and 1,0 h be used. All values s <u>Post-Project - Hy</u>	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill	alues with ac ear Flowrate (/ from a separate led out, even wi	companying Attach Study) = e study can be u	sed to over	r-ride the	cfs calculate		
	equations used to at larger areas (up DRAINAGE ARE	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES)	nd 10% of the 2-yr are lim	cfs ited to 10-acres and 1,0 n be used. All values s <u>Post-Project - Hy</u> 4.81	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info	alues with ac ear Flowrate (<i>i</i> from a separate led out, even wi prmation	Attach Study) = Attach Study) = e study can be u hen there is a us	sed to over er-defined (r-ride the discharg	ofs e calculate ge value e	ntered.	
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (RCOURSE (FT)	nd 10% of the 2-yr are lim watercourse lengths car	Cfs ited to 10-acres and 1,0 n be used. All values s Post-Project - Hy 4.81 756	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info	alues with ac lear Flowrate (<i>i</i> irom a separate led out, even wi prmation	accompanying Attach Study) = e study can be u hen there is a us gn" tab to design	sed to over er-defined o	r-ride the discharg	ofs e calculate e value e heck resu	ntered. Jlts below.	
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES)	nd 10% of the 2-yr are lim watercourse lengths car	cfs ited to 10-acres and 1,0 n be used. All values s <u>Post-Project - Hy</u> 4.81	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info	alues with ac lear Flowrate (<i>i</i> irom a separate led out, even wi prmation	Attach Study) = Attach Study) = e study can be u hen there is a us	sed to over er-defined o	r-ride the discharg	ofs e calculate e value e heck resu	ntered. Jlts below.	
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (RCOURSE (FT) (ELEV (FT) - along wate)	nd 10% of the 2-yr are lim watercourse lengths car	cfs ited to 10-acres and 1,0 n be used. All values s Post-Project - Hy 4.81 756 24	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info	alues with ac lear Flowrate (<i>i</i> irom a separate led out, even wi prmation	accompanying Attach Study) = e study can be u hen there is a us gn" tab to design	sed to over er-defined o	r-ride the discharg	ofs e calculate e value e heck resu	ntered. Jlts below.	
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (RCOURSE (FT) (ELEV (FT) - along wate)	nd 10% of the 2-yr are lim watercourse lengths car	cfs ited to 10-acres and 1,0 n be used. All values s Post-Project - Hy 4.81 756 24	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info	alues with ac lear Flowrate (<i>i</i> irom a separate led out, even wi prmation	accompanying Attach Study) = e study can be u hen there is a us gn" tab to design	sed to over er-defined o	r-ride the discharg	ofs e calculate e value e heck resu	ntered. Jlts below.	
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (RCOURSE (FT) (ELEV (FT) - along wate)	nd 10% of the 2-yr are lim watercourse lengths car	cfs ited to 10-acres and 1,0 h be used. All values s Post-Project - Hy 4.81 756 24 83	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info	alues with ac lear Flowrate (<i>i</i> irom a separate led out, even wi prmation to "BMP Desig h this "HydroM	accompanying Attach Study) = e study can be u hen there is a us gn" tab to design	sed to over er-defined o	r-ride the discharg	ofs e calculate e value e heck resu	ntered. Jlts below.	
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) RCOURSE (FT) ELEV (FT) - along wate PERVIOUS PERCENTA	nd 10% of the 2-yr are lim watercourse lengths car rcourse uGE (%)	cfs ited to 10-acres and 1,0 ited to 10-acres and 1,0 ited to 10-acres and 1,0 Post-Project - Hy 4.81 756 24 83 Post-Project	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill vdrograph Info Go t Print both	alues with ac ear Flowrate (<i>i</i> from a separate led out, even with ormation to "BMP Desig h this "HydroM ation	accompanying Attach Study) = e study can be u hen there is a us on" tab to design od" Sheet and t	sed to over er-defined o h your BMP he "BMP D	P, then of Design" s	cfs e calculate ge value e heck resu sheet for Ri Index	ntered. ults below. your subm	nittal. Ri Inde
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMP Cover Type #	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (A (A (nd 10% of the 2-yr are lim watercourse lengths car rcourse GEE (%) Cover Type	Cfs ited to 10-acres and 1,0 be used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info Go t Print bott	alues with ac ear Flowrate (<i>i</i> from a separate led out, even with prmation to "BMP Design h this "HydroM ation Soil B %	Attach Study) = e study can be u: hen there is a us gn" tab to design od" Sheet and t	sed to over er-defined o	P, then of Design" s	cfs calculate ge value e heck resu sheet for Bi Index AMC I	ntered. Jits below. your subn Ri Index AMC II	Ri Inde AMC I
	DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMP	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) RCOURSE (FT) ELEV (FT) - along wate PERVIOUS PERCENTA	nd 10% of the 2-yr are lim watercourse lengths car rcourse uGE (%)	cfs ited to 10-acres and 1,0 ited to 10-acres and 1,0 ited to 10-acres and 1,0 Post-Project - Hy 4.81 756 24 83 Post-Project	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill vdrograph Info Go t Print both	alues with ac ear Flowrate (<i>i</i> from a separate led out, even with ormation to "BMP Desig h this "HydroM ation	accompanying Attach Study) = e study can be u hen there is a us on" tab to design od" Sheet and t	sed to over er-defined o h your BMP he "BMP D	P, then of Design" s	cfs calculate e calculate ge value e heck resu sheet for RI Index AMC I 43	Its below. your subm RI Index AMC II 63	Ri Inde AMC I 80
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMP Cover Type #	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (A (A (nd 10% of the 2-yr are lim watercourse lengths car rcourse GEE (%) Cover Type	Cfs ited to 10-acres and 1,0 be used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill vdrograph Info Go t Print both	alues with ac ear Flowrate (<i>i</i> from a separate led out, even with prmation to "BMP Design h this "HydroM ation Soil B %	Attach Study) = e study can be u: hen there is a us gn" tab to design od" Sheet and t	sed to over er-defined o h your BMP he "BMP D	P, then of Design" s	cfs calculate e calculate ge value e heck resu sheet for RI Index AMC I 43 0	lts below. your subm Bil Index AMC II 63 0	RI Inde AMC I 80 0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMP Cover Type #	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) RCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA Subarea Acreage 8.86 Ac.	nd 10% of the 2-yr are lim watercourse lengths car rcourse GEE (%) Cover Type	Cfs ited to 10-acres and 1,0 ited to 10-acres and 1,0 ited to 10-acres and 1,0 Post-Project - Hy 4,81 756 24 83 Post-Project Vegetative Cover	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill vdrograph Info Go t Print both	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % 50	acompanying Attach Study) = e study can be us hen there is a us on" tab to design od" Sheet and t	sed to over er-defined of hyour BMP he "BMP D	P, then of Design " s	cfs calculate e calculate ge value e heck resu sheet for RI Index AMC I 43 0 0	lts below. your subm AMC II 63 0	RI Inde AMC I 80 0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMP PROPOSED IMP	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (A (A (nd 10% of the 2-yr are lim watercourse lengths car rcourse GEE (%) Cover Type	Cfs ited to 10-acres and 1,0 ited to 10-acres and 1,0 ited to 10-acres and 1,0 Post-Project - Hy 4,81 756 24 83 Post-Project Vegetative Cover	Discharge ¥a Ex. 2-y 000'. Flowrates f till need to be fill vdrograph Info Go t Print both	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % 50	Attach Study) = e study can be u: hen there is a us gn" tab to design od" Sheet and t	sed to over er-defined of hyour BMP he "BMP D	P, then of Design " s	cfs calculate e calculate ge value e heck resu sheet for RI Index AMC I 43 0	lts below. your subm Bil Index AMC II 63 0	RI Inde AMC I 80 0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF Cover Type # 22	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) RCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. 8.86 Ac. MC condition is based	nd 10% of the 2-yr are lim watercourse lengths car rcourse GEE (%) Cover Type	cfs ited to 10-acres and 1,0 ited to 10-acres and 1,0 ited to 10-acres and 1,0 Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover Polying NEH-4 (1964) f	Discharge ¥3 Ex. 2-y 000'. Flowrates f till need to be fill rdrograph Info Go t Print both Soil A %	alues with ac ear Flowrate (<i>i</i> from a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % 50 Weighter ting conditions	Attach Study) = a study can be u: hen there is a us gn" tab to design od" Sheet and t Soil C % 50 d Average R in Riverside Co	sed to over er-defined o hyour BMP he "BMP D Soil D	P, then of Design" s	cifs e calculate pe value e heck resu sheet for RI Index AMC I 43 0 43.0 ditions ar	Its below. your subm AMC II 63 0 0 63.0	RI Inde AMC I 80 0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF Cover Type # 22 r. Luis Parra, the A -1 for less than 0.5	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) ERCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. 8.86 Ac. MC condition is based " of rain the previous 5 c	nd 10% of the 2-yr are lim watercourse lengths car roourse GE (%) Cover Type Urban Landscaping on the rainfall record. A days; AMC-II for between	Cfs ited to 10-acres and 1,0 ited to 10-acres and 1,0 ited to 10-acres and 1,0 Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) fn 0.5" to 1.1" of rain the	Discharge ¥3 Ex. 2-y 000°. Flowrates f till need to be fill rdrograph Info Go t Print both Soil A % Soil A %	alues with ac ear Flowrate (<i>i</i> from a separate led out, even with prmation to "BMP Design h this "HydroM ation Soil B % 50 Weighter s; or AMC-III fo	Attach Study) = e study can be u: hen there is a us an" tab to design od" Sheet and t Soil C % 50 d Average R in Riverside Co r more than 1.1"	sed to over er-defined o by your BMP he "BMP D Soil D Soil D I Numbe nunty the AN for the prev	P, then of Design " s	Cfs calculate e calculate ge value e heck resu sheet for RI Index AMC I 43 0 0 43.0 ditions an Jays.	Ri Index your subm AMC II 63 0 63.0 e:	RI Index AMC II 80 0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF Cover Type # 22 r. Luis Parra, the <i>i</i> -I for less than 0.5 Hydromod Ponde	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) ERCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. 8.86 Ac. MC condition is based " of rain the previous 5 of ed depth	nd 10% of the 2-yr are lim watercourse lengths car rcourse GE (%) Cover Type Urban Landscaping on the rainfall record. A days; AMC-II for between 1.40 feet	Cfs ited to 10-acres and 1,0 n be used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover pplying NEH-4 (1964) f n 0.5" to 1.1" of rain the	Discharge ¥3 Ex. 2-y 000'. Flowrates f till need to be fill drograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % 50 Weighter ing conditions s; or AMC-III fo	acompanying Attach Study) = a study can be us hen there is a us on" tab to design od" Sheet and t Soil C % 50 d Average R in Riverside Co r more than 1.1"	sed to over er-defined of he "BMP D Soil D Soil D I Numbe unty the AM for the prev	P, then cl Design" s P. then cl Design" s P. then cl Design s P. the cl Design s P. th	cifs calculate e calculate ge value e heck resu sheet for RI Index AMC I 43 0 0 43.0 ditions an days.	Its below. your subm AMC II 63 0 63.0 e:	BI Index AMC II 80 0 80.0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF Cover Type # 22 r. Luis Parra, the / -I for less than 0.5 Hydromod Ponde Hydromod Drain	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) FRCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. AMC condition is based " of rain the previous 5 of ed depth Time (unclogged)	nd 10% of the 2-yr are lim watercourse lengths car rcourse uGE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for betweet 1.40 feet 31.31 hours	cfs ited to 10-acres and 1,0 n be used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover pplying NEH-4 (1964) f n 0.5" to 1.1" of rain the F	Discharge ¥3 Ex. 2-y 000'. Flowrates F till need to be fill of the second secon	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	acompanying Attach Study) = e study can be u: hen there is a us gn" tab to design od" Sheet and t Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco	sed to over eer-defined of by your BMP he "BMP D Soil D Soil D I Numbe unty the AM for the prev	P, then of Design" s Prese Pres Pres	cifs e calculate pe value e heck resu sheet for BI Index AMC 1 43 0 0 43.0 ditions are lays. ee below the Basin	Its below. Juts below. your subm AMC II 63 0 63.0 e: for the He i (Stage) th	BI Index AMC II 80 0 80.0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF Cover Type # 22 r. Luis Parra, the / -I for less than 0.5 Hydromod Ponde Hydromod Drain	wrate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) ERCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. 8.86 Ac. MC condition is based " of rain the previous 5 of ed depth	nd 10% of the 2-yr are lim watercourse lengths car rcourse GE (%) Cover Type Urban Landscaping on the rainfall record. A days; AMC-II for betweet 1.40 feet	cfs ited to 10-acres and 1,0 n be used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover pplying NEH-4 (1964) f n 0.5" to 1.1" of rain the F	Discharge ¥3 Ex. 2-y 000'. Flowrates f till need to be fill drograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % 50 Weighter ing conditions s; or AMC-III fo	acompanying Attach Study) = a study can be us hen there is a us on" tab to design od" Sheet and t Soil C % 50 d Average R in Riverside Co r more than 1.1"	sed to over er-defined of he "BMP D Soil D Soil D I Numbe unty the AM for the prev	P, then of Design" s Prese Pres Pres	cifs e calculate pe value e heck resu sheet for BI Index AMC 1 43 0 0 43.0 ditions are lays. ee below the Basin	Its below. your subm AMC II 63 0 63.0 e:	BI Inde AMC I 80 0 80.0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF Cover Type # 22 r. Luis Parra, the / -I for less than 0.5 Hydromod Ponde Hydromod Drain	A (ACRES) A (ACRES)	nd 10% of the 2-yr are lim watercourse lengths car rcourse uGE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for betweet 1.40 feet 31.31 hours	cfs ited to 10-acres and 1(n be used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover pplying NEH-4 (1964) f n 0.5" to 1.1" of rain the F ptable	Discharge ¥3 Ex. 2-y 000'. Flowrates F till need to be fill of the second secon	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	acompanying Attach Study) = e study can be u: hen there is a us gn" tab to design od" Sheet and t Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco	sed to over eer-defined of by your BMP he "BMP D Soil D Soil D I Numbe unty the AM for the prev	P, then of Design" s	cifs e calculate pe value e heck resu sheet for BI Index AMC 1 43 0 0 43.0 ditions are lays. ee below the Basin	Its below. your subm AMC II 63.0 e: for the He s (Stage) ti -complian	BI Inde AMC I 80 0 80.0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF 22 r. Luis Parra, the <i>J</i> -I for less than 0.5 Hydromod Drain Is the HydroMod Mitigated Q < 110?	A (ACRES) A (ACRES)	nd 10% of the 2-yr are lim watercourse lengths car reourse UGE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for betweer 1.40 feet 31.31 hours Yes, this is acce	Cfs ited to 10-acres and 10 he used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) f h 0.5" to 1.1" of rain the F ptable ptable	Discharge ¥3 Ex. 2-y 000°. Flowrates F till need to be fill of the second secon	alues with ac ear Flowrate (<i>i</i> from a separate ed out, even with ormation to "BMP Design h this "HydroM ation ation Soil B % 50 Weighter s; or AMC-III fo	Attach Study) = a study can be u: hen there is a us of "sheet and t Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco Propos 	sed to over er-defined of hyour BMP he "BMP D Soil D Soil D Soil D I Numbe unty the AM for the prev	P, then cl Design" s P, then cl Design" s P, then cl Design" s P, then cl Design s S Course S Cours Cours S Cours S S C Cours S C Cours S C C Cours S C Cours S C Cour	cifs e calculate pe value e heck resu sheet for AMC 1 43 0 43.0 ditions ar- days. ee below the Basin ing a non	AMC II AMC II 63 0 63.0 e: for the He (Stage) ti -complian	BI Inde AMC I 0 0 80.0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF 22 r. Luis Parra, the <i>J</i> -I for less than 0.5 Hydromod Drain Is the HydroMod Mitigated Q < 110?	Averate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) ERCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. AMC condition is based " of rain the previous 5 of rain the previous 5 of ed depth Time (unclogged) BMP properly sized? % of Pre-Dev. Q?	nd 10% of the 2-yr are lim watercourse lengths can recourse GE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for between 1.40 feet 31.31 hours Yes, this is acce Yes, this is acce	Cfs ited to 10-acres and 10 he used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) f h 0.5" to 1.1" of rain the F ptable ptable	Discharge ¥3 Ex. 2-y 100°. Flowrates fill rdrograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	accompanying Attach Study) = e study can be us hen there is a us of " tab to design od " Sheet and to Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco Propos	sed to over er-defined of byour BMP he "BMP D Soil D Soil D Soil D I Numbe unty the AM for the prev	P, then cl Design" s P, then cl Design" s P, then cl Design" s P, then cl Design s S Course S Cours Cours S Cours S S C Cours S C Cours S C C Cours S C Cours S C Cour	cfs calculate e calculate ge value e heck resu sheet for AMC I 43 0 43.0 ditions an ditions an ditions an ays. ee below the Basin ing a non e Stege-	AMC II AMC II 63 0 63.0 e: for the He (Stage) ti -complian	BI Index AMC II 80 0 80.0 80.0 ight at is t result
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF 22 r. Luis Parra, the <i>J</i> -I for less than 0.5 Hydromod Drain Is the HydroMod Mitigated Q < 110?	Averate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) ERCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. AMC condition is based " of rain the previous 5 of rain the previous 5 of ed depth Time (unclogged) BMP properly sized? % of Pre-Dev. Q?	nd 10% of the 2-yr are lim watercourse lengths can recourse GE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for between 1.40 feet 31.31 hours Yes, this is acce Yes, this is acce	Cfs ited to 10-acres and 10 he used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) f h 0.5" to 1.1" of rain the F s ptable ptable	Discharge ¥3 Ex. 2-y 100°. Flowrates fill rdrograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	accompanying Attach Study) = e study can be us hen there is a us of " tab to design od " Sheet and to Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco Propos	sed to over er-defined of byour BMP he "BMP D Soil D Soil D Soil D I Numbe unty the AM for the prev	P, then cl Design" s P, then cl Design" s P, then cl Design" s P, then cl Design s S Course S Cours Cours S Cours S S C Cours S C Cours S C C Cours S C Cours S C Cour	cfs calculate e calculate ge value e heck resu sheet for AMC I 43 0 43.0 ditions an ditions an ditions an ays. ee below the Basin ing a non e Stege-	AMC II AMC II 63 0 63.0 e: for the He (Stage) ti -complian	BI Index AMC II 80 0 80.0 80.0 ight at is t result
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF EXPORES IMP Cover Type # 22 ir. Luis Parra, the / -1 for less than 0.5 Hydromod Pondd Hydromod Pondd Mitigated Q < 110: Mitigated Duratio	Averate (Attach Study) = determine the 10-year ar to 20 acres) and longer (A (ACRES) (RCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. AMC condition is based " of rain the previous 5 of ed depth Time (unclogged) BMP properly sized? % of Pre-Dev. Q? (A of Pre-Dev. Q?) (A of Pre-Dev. Q.) (A of Pre-D	nd 10% of the 2-yr are lim watercourse lengths can recourse GE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for between 1.40 feet 31.31 hours Yes, this is acce Yes, this is acce	Cfs ited to 10-acres and 10 he used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) f h 0.5" to 1.1" of rain the F s ptable ptable	Discharge ¥3 Ex. 2-y 100°. Flowrates fill rdrograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	accompanying Attach Study) = e study can be us hen there is a us of " tab to design od " Sheet and to Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco Propos	sed to over er-defined of byour BMP he "BMP D Soil D Soil D Soil D Soil D I Numbe unty the AN for the prev	P, then cl Design" s P, then cl Design" s P, then cl Design" s P, then cl Design s S Course S Cours Cours S Cours S S C Cours S C Cours S C C Cours S C Cours S C Cour	cfs calculate e calculate ge value e heck resu sheet for AMC I 43 0 43.0 ditions an ditions an ditions an ays. ee below the Basin ing a non e Stege-	AMC II AMC II 63 0 63.0 e: for the He (Stage) ti -complian	RI Index AMC I 80 0 80.0 80.0 ight at is t result
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF EXPORES IMP Cover Type # 22 ir. Luis Parra, the / -1 for less than 0.5 Hydromod Pondd Hydromod Pondd Mitigated Q < 110: Mitigated Duratio	A (ACRES) A (ACRES)	nd 10% of the 2-yr are lim watercourse lengths can recourse GE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for between 1.40 feet 31.31 hours Yes, this is acce Yes, this is acce	Cfs ited to 10-acres and 10 he used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) f h 0.5" to 1.1" of rain the F s ptable ptable	Discharge ¥3 Ex. 2-y 100°. Flowrates fill rdrograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	accompanying Attach Study) = e study can be us hen there is a us of " tab to design od " Sheet and to Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco Propos	sed to over er-defined of byour BMP he "BMP D Soil D Soil D Soil D I Numbe unty the AM for the prev	P, then cl Design" s P, then cl Design" s P, then cl Design" s P, then cl Design s S Course S Cours Cours S Cours S S C Cours S C Cours S C C Cours S C Cours S C Cour	cfs calculate e calculate ge value e heck resu sheet for AMC I 43 0 43.0 ditions an ditions an ditions an ays. ee below the Basin ing a non e Stege-	AMC II AMC II 63 0 63.0 e: for the He (Stage) ti -complian	RI Index AMC I 80 0 80.0 80.0 80.0
	equations used to at larger areas (up DRAINAGE ARE LONGEST WATE DIFFERENCE IN PROPOSED IMF EXPORES IMP Cover Type # 22 ir. Luis Parra, the / -1 for less than 0.5 Hydromod Pondd Hydromod Pondd Mitigated Q < 110: Mitigated Duratio	Averate (Attach Study) = determine the 10-year ar to 20 acres) and longer A (ACRES) RCOURSE (FT) ELEV (FT) - along water PERVIOUS PERCENTA Subarea Acreage 8.86 Ac. AMC condition is based " of rain the previous 5 of ad depth Time (unclogged) BMP properly sized? % of Pre-Dev. Q? In < 110% of Pre-Dev?"	nd 10% of the 2-yr are lim watercourse lengths can recourse GE (%) Cover Type Urban Landscaping I on the rainfall record. A days; AMC-II for between 1.40 feet 31.31 hours Yes, this is acce Yes, this is acce	Cfs ited to 10-acres and 10 he used. All values s Post-Project - Hy 4.81 756 24 83 Post-Project Vegetative Cover Good Cover polying NEH-4 (1964) f h 0.5" to 1.1" of rain the F s ptable ptable	Discharge ¥3 Ex. 2-y 100°. Flowrates fill rdrograph Info Go t Print both Soil A % Soil A %	alues with ac lear Flowrate (/ rom a separate led out, even with ormation to "BMP Design h this "HydroM ation Soil B % Soil Soil B % Soil Soil Soil Soil Soil Soil Soil Soil	accompanying Attach Study) = e study can be us hen there is a us of " tab to design od " Sheet and to Soil C % 50 d Average R in Riverside Co r more than 1.1" the rainfall reco Propos	sed to over er-defined of byour BMP he "BMP D Soil D Soil D Soil D Soil D I Numbe unty the AN for the prev	P, then cl Design" s P, then cl Design" s P, then cl Design" s P, then cl Design s S Course S Cours Cours S Cours S S C Cours S C Cours S C Cours S C Cours S C C Cour	cfs calculate e calculate ge value e heck resu sheet for AMC I 43 0 43.0 ditions an ditions an ditions an ays. ee below the Basin ing a non e Stege-	AMC II AMC II 63 0 63.0 e: for the He (Stage) ti -complian	RI Inde AMC I 80 0 80.0 80.0 ight at is t result

	0.	1	feet, Stage	Interv	ale			_	Lorgerinte		ay incr. the Q at the	hottom sta	S	tage-Sto	rane	Disch	arge*
	0.		icel, stage	e interv	ais				Largerino	ervais m	ayıncı, me Q acme	bottom stg.					
			BMP D										Sta (F			Storage (FT3)	Q (CFS)
	STEP1: S									t will be r	efined in the Desigr	n Geometry)					
		is the t	3MP a Tank	snape?	2	1 TOF YE	25, Z I	orno	o.	1	1			0	0	498	0.02
										71				.20 0.0	_	1002	0.02
									\leftarrow	/		Arched		.30 0.0		1513	0.14
											Circular	Archeo	-	.40 0.0		2030	0.21
									<u> </u>		· r		0	.50 0.0	59	2553	0.25
	Basin Sh	naped BN	IP (Bottom	Stage	1st)				"Basin Sh	aped"	"Tank Sł	naped"	0	.60 0.0)71	3083	0.29
	Bottor	n Stage	H= 1.5'	SS=	2	:1						1		.70 0.0	83	3619	0.32
	To	p Area	B	ottom Ar				0.2	, ``	stage-St	orage Curve			.80 0.0	96	4161	0.35
	Width	51		Width		FT			ŧ			- I		.90 0.1		4710	0.37
	Length	116		Length		FT		0.15	<u> </u>					.00 0.1		5265	0.40
	area =	5916		area =	4950		÷.		E					1.10 0.1	_	5827	0.42
	T			-			Storage (ac-ft.)	0.1	1		***			.20 0.1		6396	0.44
	Top S	tage	H= 0.0'	<u> </u>			Be	0.05	1					.30 0.1	_	6971	0.46
							E .	0.05		×				.40 0.1	_	7552	0.48
IIS							s	0	1					.50 0.1	87	8140	0.50
lio							-	-	.00	5.00	10.00 15.0	0 20.0					
²							-				Stage (ft.)			_	-		
Cal	Bree). Top Stg. V	iol -			FT3				Stage Di	scharge Curve						
Detention Calculations		tom Stor¥			8,139	FT3		0.6	E.	rage-Di	sounde onlive				-		
i		Prop. Volur			8,139	FT3	-	0.5	ŧ			•					
eter		roMod Volu			7.051	FT3			E					-	+		
		Total Acrea			5,100	FT2	Discharge (cfs)	0.4	1		AN						
ž		BMP % of S	Site =		2.43%		Je (0.3	ŧ								
BMP Geometry &		droMod Dep	and the second sec		1.40	FT	har	0.2	ŧ	1							
Bon	¹ Does not	include for	ebay, or low	flow tren	ch		isc			¥							
ŏ	² Does not	account fo	or freeboard	or acces	s roads			0.1							+		
R	³ Does not	consider Ir	noreased Ru	noff			-	0	F.*.	• • • •	· · · · · · · · ·				+		
B						1			0.0	5.0	10.0 15 Stage (ft.)	.0 20.	•	_	-		
	MINIM	UM DE	ESIGN G	EOM	ETR	Y	-L	-			ouge (n.)				+		
							hat doe	sno	t, exceed th	ne ex. Q d	or Duration. If the Q	is			-		
											he stage that has a				-		
			ge-Dischar						dromod D		1.40 FT						
	C	Drifice Out	lets	W	eir Outle	ets			+ 1'Freet	= breod	2.40 FT						
	Invert	_		Crest	Crest												
	Height	Diameter (inches)	No. of Orifices	Height	Width	No. of Weirs			Top Su	face A	rea						
	(8)	(incries)	Onnees	(ft)	(ft)	wens			Basedor	n Hydrol	Mod Depth +1' of	Freeboard					
	0	4.00	1							Botton	n Stage						
									Wid	th	51	FT					
									Leng	ith	116	FT		0.1	87	8,140	
	STEP4	Complete an	increased run	off an alw	tis, if the	project c	an ime a	ot do	wostream	propertie	s. Incorporate thes	se designs in	to the W	JMP site o	lan		
											r peak flow rate. Ad					e)	
											n or remove Biorel						
되			from actu										1	allaura d b		<u>.</u>	
Add Infiltration	Yes		Infiltration ()?									allowed b tee, these			ute
ii.	5	Infiltration	rate (in/hr)	3			0.57	729	ft3/sec,	Infiltrati	on (over entire b	oottom)		used to s			uts
2	4		Safety (3		and the second	3	0.14	132	ft3/sec,	Infiltrati	on / Factor of Sa	afety		ntion/Biof			
PP	120		. Time repre		by tests	\$								ackup Cal			
	'Per the RC	CLID Manua	al, Appendix A												-		
VI	the second	labert de		the due	ation	darit		426-1-	flauriant	C. H				a autor			
ΥI,	ine spread	ISNEET DOE	es not count	the dur	ation un	der the	flow	tiple	tion that i	So the	re are circumsta counted becaus	ances whe	ere as tr		sizes i	Increas	es
											n exceedance v		10 10 W, I	S HOW CL	Juneo	, or the	
		Ponded d			1.40 fe						mpliance in the r		-	aa halaw	forth		
			e (unclogged	ł	31.31 ho	ours			equireme	_	Propose			ee below the Basin		-	
	HydroMod	BMP prop	erly sized?		es, thi									sing a nor			
2	. iyaromide	and hop	iny sheed.	6	accepta	able							Jude	a nor		, and the second	
Results	Mit: C/ 11	0% of Pre-I	Dev O?		es, thi					-			Issue (
м,				8	accepta	able							Stage	-			
					es, thi	is je							Issue (0			
		4 1101 4	Pro-Dou?		es, un	313		1.1						-			
	Mit. Durati	on < 110%. (orrie-Dev:	5	ccepta	able				-			Stage	-			

Appendix 8: Source Control

Pollutant Sources/Source Control Checklist

Appendix 9: O&M

Operation and Maintenance Plan and Documentation of Finance, Maintenance and Recording Mechanisms

Appendix 10: Educational Materials

BMP Fact Sheets, Maintenance Guidelines and Other End-User BMP Information