1020 and 1040 Terra Bella Avenue Utility Impact Study

Prepared for David J. Powers and Associates

and

City of Mountain View 500 Castro Street Mountain View, CA 94041

DRAFT

Leif M. Coponen, California RCE No. 70139

October 21, 2022

Schaaf & Wheeler consulting civil engineers

4699 Old Ironsides Dr., Ste. 350 Santa Clara, CA 95054 (408) 246-4848 Icoponen@swsv.com

Table of Contents

Executiv	ve Sur	mmary	1
Chaptei	r 1.	Introduction	1-1
1.1.	Pro	ject Description	1-1
1.2.	Wa	ter System Analysis Approach	1-1
1.3.		ver System Analysis Approach	
1.4.		port Organization	
Chaptei		Water Demand Projections	
2.1.		ject Water Demand	
2.1	l.1.	Project Required Fire Flow	
2.2.	Exis	sting Condition (2010)	
2.2	2.1.	Pre-Project (Baseline) Land Use and Demand	
2.2	2.2.	Post-Project Incremental Demand	
2.3.	Fut	ure Cumulative Condition (2030)	
2.3	3.1.	Pre-Project (Baseline) Land Use and Demand	
2.3	3.2.	Post-Project Incremental Demand	
Chaptei	r 3.	Water System Impact	
3.1.		mand Scenarios and Performance Criteria	3-1
3.2.	Wa	ter Supply Analysis	3-1
3.3.	Wa	ter Storage Analysis	3-2
3.4.	Exis	sting Condition (2010) Results	3-3
3.4	1.1.	Hydraulic Model Information	
3.4	1.2.	Peak Hour Demand (PHD) – Pre and Post Project	
3.4	1.3.	Maximum Day Demand with Fire Flow (MDD+FF) – Pre and Post Project	
3.4	1.4.	Deficiencies – Pre and Post Project	
3.5.	Fut	ure Cumulative Condition (2030) Results	
3.5	5.1.	Hydraulic Model Information	
3.5	5.2.	Peak Hour Demand (PHD) – Pre and Post Project	3-5
3.5	5.3.	Maximum Day Demand with Fire Flow (MDD+FF) – Pre and Post Project	
3.5	5.4.	Deficiencies – Pre and Post Project	3-5
Chaptei	r 4.	Sewer Flow Projections	4-1
4.1.	Pro	ject Sewer Flow	4-1
4.2.	Exis	ting Condition (2010)	4-2
4.2	2.1.	Pre-Project (Baseline)	4-2
	2.2.	Post-Project Incremental Demand	
4.3.	Fut	ure Cumulative Condition (2030)	4-2
4.3	3.1.	Pre-Project (Baseline)	4-2
4.3	3.2.	Post-Project Incremental Demand	4-3
Chaptei	r 5.	Sewer System Impact	5-1
5.1.		narios and Performance Criteria	
5.2.	Sev	ver Treatment, Joint Interceptor, and San Antonio Interceptor Capacity	5-1
5.3.		sting Condition (2010) Results	
5.3	3.1.	Hydraulic Model Information	
5.3	3.2.	Peak Wet Weather Flow (PWWF) Scenario – Pre and Post Project	5-3

5.3.3.	Deficiencies – Pre and Post Project	5-3
	ture Cumulative Condition (2030) Results	
5.4.1.	Hydraulic Model Information	5-3
	Peak Wet Weather Flow (PWWF) Scenario – Pre and Post Project	
5.4.3.	Deficiencies – Pre and Post Project	5-4
	oject Contribution to Deficient Sewer Pipes	

List of Figures

Figure 1: Water System	n Model Simulations
------------------------	---------------------

- Figure 2: Sewer System Model Simulations
- Figure B-1: Project Location
- Figure B-2: Peak Hour Demand (PHD) Without Project Existing Condition
- Figure B-3: Peak Hour Demand (PHD) With Project Existing Condition
- Figure B-4: MDD with Fire Flow (MDD + FF) Without Project Existing Condition
- Figure B-5: MDD with Fire Flow (MDD + FF) With Project Existing Condition
- Figure B-6: Peak Hour Demand (PHD) Without Project Future Cumulative Condition
- Figure B-7: Peak Hour Demand (PHD) With Project Future Cumulative Condition
- Figure B-8: MDD with Fire Flow (MDD + FF) Without Project Future Cumulative Condition
- Figure B-9: MDD with Fire Flow (MDD + FF) With Project Future Cumulative Condition
- Figure B-10a: Peak Wet Weather Flow (PWWF) Without Project Existing Condition
- Figure B-10b: Peak Wet Weather Flow (PWWF) Without Project Existing Condition
- Figure B-11a: Peak Wet Weather Flow (PWWF) With Project Existing Condition
- Figure B-11b: Peak Wet Weather Flow (PWWF) With Project Existing Condition
- Figure B-12a: Peak Wet Weather Flow (PWWF) Without Project Future Cumulative Condition
- Figure B-12b: Peak Wet Weather Flow (PWWF) Without Project Future Cumulative Condition
- Figure B-13a: Peak Wet Weather Flow (PWWF) With Project Future Cumulative Condition
- Figure B-13b: Peak Wet Weather Flow (PWWF) With Project Future Cumulative Condition

List of Tables

Table 2-1: Project Estimated Water Demand	2-1
Table 2-2: Anticipated Project Fire Flow Requirement	2-2
Table 2-3: Baseline Demand for Existing Condition (Based on Model)	2-2
Table 2-4: Incremental Project Demand for Existing Condition	2-2
Table 2-5: Baseline Demand for Future Cumulative Condition (Based on Model)	2-3
Table 2-6: Incremental Project Demand for Future Cumulative Condition	2-3
Table 3-1: Peaking Factors	3-1

1020 and 1040 Terra Bella Avenue Utility Impact Study *Table of Contents*

Table 3-2: Water System Performance Criteria	3-1
Table 3-3: Future Cumulative Demand Versus Supply	
Table 3-4: DDW Storage Requirements	3-3
Table 3-5: Existing Condition Evaluated Project Fire Flow Nodes	3-4
Table 3-6: Selected Existing Condition Fire Flow Deficient Nodes Pre- and Post-Project	3-4
Table 3-7: Future Cumulative Condition Evaluated Project Fire Flow Nodes	3-5
Table 3-8: Selected Future Cumulative Condition Fire Flow Deficient Nodes Pre- and Post-Project	3-5
Table 4-1: Project Estimated Sewer Flow	4-1
Table 4-2: Baseline Flow for Existing Condition (Based on Model)	4-2
Table 4-3: Incremental Project Flow for Existing Condition	4-2
Table 4-4: Baseline Demand for Future Cumulative Condition	4-2
Table 4-5: Incremental Project Flow for Future Cumulative Condition	4-3
Table 5-1: Sewer System Performance Criteria	
Table 5-2: RWQCP Joint Facilities Capacity Rights	5-2
Table 5-3: Capacity Rights Comparison	5-2
Table 5-4: Existing Condition Model Results – Pre- and Post- Project	5-5
Table 5-5: Future Cumulative Condition Model Results – Pre- and Post- Project	5-8
Table A-1: Additional Considered Projects	A-2

Executive Summary

Schaaf & Wheeler has been retained by David J. Powers and Associates to determine impacts from the 1020 and 1040 Terra Bella Avenue Project (Project) on the City of Mountain View's (City) water and sanitary sewer systems. The Project site at 1040 Terra Bella Avenue is currently developed with 18 storage facilities and the project site at 1020 Terra Bella has an existing dilapidated uninhibited one single-family residential (SFR) home. The site encompasses three parcels, APN 153-15-030, 153-15-002 (1040 Terra Bella Avenue), and 153-15-021 (1020 Terra Bella Avenue). The Project proposes to demolish the existing storage buildings and SFR home and construct two new multi-story storage facility buildings totaling approximately 409,000 square feet and one residential building totaling 108 dwelling units. In order to do this, the two project site owners Alta Housing (1020 Terra Bella Avenue) and Public Storage (1040 Terra Bella Avenue) will process a lot line adjustment, to formalize a land transfer and land donation.

Project impacts are analyzed for both Existing (2010) and Future Cumulative (2030) Conditions for the water system. Hydraulic models simulating pre- and post-Project development scenarios are performed to examine hydraulic deficiencies. The Existing Condition is based on the 2010 Water Master Plan (WMP) and the Future Cumulative Condition model is created from the 2030 General Plan – Updated Water System Modeling Alternative 1 (GP-UWSM Alt 1; Schaaf & Wheeler, November 2014) model. The Existing Condition model includes recent City approved projects and projects under construction near the Project site. The Future Cumulative Condition model includes CIPs from the 2030 GPUUIS and recent City approved projects not accounted for or in exceedance of the 2030 GPUUIS projections. The Future Cumulative Condition model also includes other projects under review near the Project site.

Project impacts are analyzed for both Existing (2010) and Future Cumulative (2030) for the sewer system. Hydraulic models simulating pre- and post-Project development scenarios are performed to examine hydraulic deficiencies. The Existing Condition is based on the 2010 Sewer Master Plan (SMP). The Existing Condition model includes recent City approved projects and projects under construction near the Project site. The Future Cumulative Condition sewer model is created from the General Plan Update Utility Impact Study (GPUUIS; IEC, October 2013) model and includes all sewer system CIPs recommended in the GPUUIS. The Future Cumulative Condition model also includes other projects under review near the Project site.

The Water Master Plan and Sewer Master Plan Updates are in development and the reports are currently in DRAFT status. This UIS was underway prior to the final versions of each Master Plan and therefore will utilize the 2010 Water Master plan and 2010 Sewer Master Plan and all correlated specific plan model updates until the new models are available for use.

Water System Project Impacts

The Project development does not significantly impact the water system under peak hour demand (PHD) at Existing Condition. Under the Future Cumulative Condition assuming all of the recommended CIPs in the GPUUIS have been constructed, the system generally meets performance criteria under PHD. Pressures near Shoreline Golf Links fall just under PHD performance criteria of 40 psi; however no additional nodes outside of the Golf Links area fall below the PHD performance criteria. There are no new deficiencies resulting from the additional demands associated with the Project.

The Project specific fire flow requirement is based on the California Fire Code, 2019; the Project-specific fire flow ranges from 1,625 to 2,554 gpm and is met during Existing Condition and during Future Cumulative Condition. There are some deficient fire nodes within Pressure Zone 1; including one node, J-2873 at the project site. The node meets the Project specific fire flow, however the node is deficient pre- and post-project because the fire flows of 3,500 gpm adjacent to the project govern. No new deficiencies are created as a result of adding the incremental Project specific water demands.

The actual fire flow requirement may change as the planning process continues and Project specific requirements are determined by the City Fire Marshal. If Project conditions require higher fire flow than what is analyzed, revised modeling should be conducted.

Sewer System Project Impacts

The sewer system has existing deficiencies for both pre- and post-Project flows in the Existing Condition. The Project does not create any new deficiencies in the Existing Condition system. In the Future Cumulative Condition, the sewer system does have sufficient capacity for pre- and post-Project flows assuming all CIPs in the GPUUIS have been constructed, except for CIP #P-97.

Four recommended CIPs or portions thereof in the 2030 GPUUIS are downstream of the Project: CIPs # P-97, P-99, P-100 and P-108. The CIP-97 proposed to upsize a portion of the existing sewer main along Terra Bella Avenue from 15-inch diameter pipe to 18-inch diameter pipe. Since the development of GPUUIS CIPs, Leong Drive improvements were installed reducing sewer flows in Terra Bella Avenue. CIP #P-97 is no longer required in the Future Cumulative Condition. For this analysis, CIP #100 conforms to City-provided plans from January 2018 for crossing State Highway 101. No new CIPs are required to accommodate the Project incremental sewer flows. The Project contribution to the recommended CIPs along the flow path is determined and may be used to estimate developer impact fees for fair share impact to the system.

Chapter 1. Introduction

1.1. Project Description

The 1020 and 1040 Terra Bella Avenue Project (Project) is located on a 4.8-acre site on Terra Bella Avenue, between Linda Vista Avenue and San Rafael Avenue as shown on Figure B-1. The Project proposes to construct two new storage facilities, one 4-story and one 6-story building, totaling about 409,000 square feet and one new 6-story multifamily residential building with a total of 108 dwelling units. The Project also includes demolition of the 18 existing storage facilities totaling 77,418 square feet and demolition of the existing SFR home.

1.2. Water System Analysis Approach

Project impacts are analyzed using the City's water models for two conditions: Existing (2010) and Future Cumulative (2030). As a baseline for system performance, each condition is evaluated pre-Project for existing hydraulic deficiencies. The estimated incremental water demand resulting from Project development is added to the model and post-Project deficiencies are examined. In total, four model simulations of the water system are performed, as shown in Figure 1.

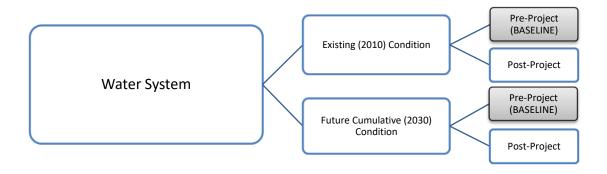
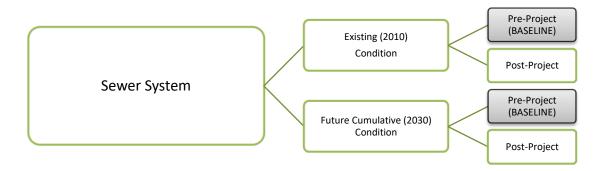


Figure 1. Water System Model Simulations


The Existing Condition model consists of the existing distribution system and operating parameters along with water demands based on existing land use from the 2010 Water Master Plan (WMP) and has since been revised to include recent City approved projects and projects currently under construction near the Project site. The Future Cumulative Condition water demand is based on the 2030 General Plan Update (GPU) land use and has since been revised to include recent City approved projects not accounted for or in exceedance of the 2030 GPU projections. The Future Cumulative Condition demands also include projects under review near the Project site. Table A-1 in Appendix A provides a list of all of the considered development projects. The Future Cumulative Condition model is based on the 2030 General Plan – Updated Water System Modeling Alternative 1 (GP-UWSM Alt 1) model and assumes all of the recommended CIPs in the North Bayshore Precise Plan Phase II Utility Impact Study (NBPPII UIS; Schaaf & Wheeler, October 2016) have been constructed. The GP-UWSM Alt 1 updates the General Plan Update Utility Impact Study (GPUUIS; IEC, October 2011) with revisions to demands, network components, boundary conditions, fire flow requirements, and recommended CIPs. The

NBPPII UIS updates some CIPs recommended in the GP-UWSM Alt 1 based on revised demand and fire flow requirements within the North Bayshore Precise Plan boundary. The Water Master Plan Update is in development and the report is currently in DRAFT status. This UIS was underway prior to the final version of the Water Master Plan and therefore will utilize the 2010 Water Master plan model and all correlated specific plan model updates until the new Master Plan models are available for use.

1.3. Sewer System Analysis Approach

Project impacts to the sewer system are analyzed using the City's sewer models for two conditions: Existing (2010) and Future Cumulative (2030). As a baseline for system performance, each condition is evaluated pre-Project for existing hydraulic deficiencies. The estimated sewer flow resulting from Project development is added to the model and post-Project deficiencies are examined. In total, four model simulations of the sewer system are performed, as shown in Figure 2.

Figure 2. Sewer System Model Simulations

The Existing Condition model consists of the existing collection system and operating parameters along with sewer flow based on existing land use from the *2010 Sewer Master Plan* (SMP) and has since been revised to include recent City approved projects and projects under construction near the Project site. The Future Cumulative Condition sewer flows are based on the 2030 General Plan Update (GPU) land use and have since been revised to include recent City approved projects not accounted for or in exceedance of the 2030 GPU projections. The Future Cumulative Condition sewer flows also include projects under review near the Project site. Table A-1 in Appendix A provides a list of all of the considered development projects. The Sewer Master Plan Update is in development and the report is currently in DRAFT status. This UIS was underway prior to the final version of the Sewer Master Plan and therefore will utilize the 2010 Sewer Master Plan model and all correlated specific plan model updates until the new Master Plan models are available for use.

1.4. Report Organization

This report is organized into four following sections. Chapter 2 discusses the water demand estimates for the Project and Chapter 3 covers the impacts and capital improvement recommendations for the water system. Chapter 4 discusses the sewer flow estimates and Chapter 5 covers the capital improvements recommendations for the sewer system.

Chapter 2. Water Demand Projections

This chapter discusses the estimated water demand and required fire flow for the Project development. Water demand in this section represents Average Daily Demand (ADD). The ADD is an estimated daily average of water use patterns that varies by season and customer type.

Project impact is evaluated by adding the incremental increase in water demand at the Project site post-Project and comparing to the pre-Project baseline demand. The pre-Project baseline demand in the Existing and Future Cumulative Condition follows the methodology described in the 2010 WMP and 2030 GPUUIS. The water unit duty factor for estimating total Project demand is taken from previous technical studies to remain consistent with the City-wide demand projections used in the hydraulic models.

2.1. Project Water Demand

Project water demand is estimated from square footage of the proposed storage buildings and multi-family residential dwelling units in the Project Plans and water unit duty factors developed for the City. Water unit duty factors used in this report were developed as part of the North Bayshore Precise Plan Phase II (Table 2-2, NBSPPII) from water meter records of recent developments throughout the City. The duty factors applied are representative of multi-family residential and industrial demands for the proposed Project. The City does not currently have a water demand factor for Storage Buildings, therefore as part of estimating project water demands, several methods of determining water demands are analyzed to compare to the City's standard Industrial water demand factor. Calculation methods include reviewing existing water use for similar land uses, calculating water demand based on project fixture unit counts and landscaping demands, as well as sub-dividing project use type within the buildings. This UIS relies on the City's closest water demand factor of Industrial for the non-residential buildings to remain consistent with previous studies, given the alternative water demand analyses resulted in similar overall project water demands. Table 2-1 provides the Project specific demand.

Proposed Water Duty Water **Proposed Area Land Use Project Building Dwelling Units** Factor (gpd/DU **Demand** (square feet) Type (DU) or gpd/1000 sf) (gpd) Storage 285,012 Industrial 60 17,101 Building 1 Public Storage 123,952 Industrial 60 7,437 Storage Building 2 MFR 100 100 MFR 1 Alta Housing MFR 108 **MFR** 100 10,800 Total 408,964 109 35,438

Table 2-1: Project Estimated Water Demand

2.1.1. Project Required Fire Flow

The anticipated Project-specific fire flow requirement at the site is based on the 2019 California Fire Code (CFC) Appendix B, which gives the minimum fire flow requirement based on fire-flow area and building construction

type. Construction type and estimated floor area for the Project and existing buildings are taken from the Project Plan Sets dated July 8, 2022 and May 5, 2022. The proposed storage buildings are identified as Construction Type IB, resulting in a fire flow of 4,000 gpm for Storage Building 1 and a fire flow of 3,250 gpm for Storage Building 2. The proposed apartment building is identified as mixed Construction Type IA and VA. Based on the California State Fire Marshal Code Interpretation 11-015 for mixed use construction, the fire flow requirement for the proposed buildings is estimated using a percentage approach between Type V-A construction proposed for the multi-family residential levels (Floors 3, 4, 5, and 6) and Type I-V for the first and second floor. Using this method, the MFR building fire-flow is 5,108 gpm.

Building-specific fire flow requirements based on the CFC are presented in Table 2-2. Because the proposed buildings will have fire sprinklers, a 50 percent reduction is applied to the required fire flow rates from the CFC. This is a conservative assumption since a 75 percent reduction is allowed upon approval on an approved automatic sprinkler system according to CFC Section B105.2.

Existing fire flow requirements for the adjacent properties in the Project area is 3,500 gpm and is higher than the project specific fire flows and therefor the existing 3,500 gpm required fire flow governs at the fire flow junctions and will remain in the hydraulic models.

Table 2-2 – Anticipated New Building Project Fire Flow (FF) Requirement

Building	FF Calculation Area (sq ft)	Construction Type	CFC Required FF (gpm)	FF with 50% Reduction (gpm)	FF with 75% Reduction (gpm)
Storage Building 1	285,012	IB	4,000	2,000	1,500*
Storage Building 2	123,952	IB	3,250	1,625	1,500*
MFR	144,873	IA & VA	5,108	2,554	1,500*

^{*}Based on 2019 CFC minimum reduced Fire Flow requirement

2.2. Existing Condition (2010)

2.2.1. Pre-Project (Baseline) Land Use and Demand

The pre-Project (baseline) condition includes parcel-level demand adopted from the City's InfoWater model, developed as part of the 2010 WMP. The demand in the model is calibrated against water billing records from 2005 and 2006, as further explained in the 2010 WMP. For some non-Project parcels, these WMP demands have since been updated to include recent City approved projects and projects under construction near the Project site outlined in Table A-1 in Appendix A. Table 2-3 details the model demand at the parcels, which were designated as Commercial/Retail.

Address	APN	2010 Master Plan Existing Land Use Designation	Acreage	Water Demand (gpd)
1040 Terra Bella Avenue	153-15-002	Industrial	1.7	293*
1020 Terra Bella Avenue	153-15-021	SFR	0.5	533*
1055 San Leandro Avenue	153-15-030	Industrial	3.2	3,154*
			TOTAL	3,980*

^{*}Water Demand allocated to the specific parcels in the Existing Condition hydraulic model

2.2.2. Post-Project Incremental Demand

For the Project impact analysis in the Existing Condition, total post-Project demand is added to the Existing Condition model as an incremental increase in water flow to the pre-Project demand. The incremental increase in demand in the Existing Condition is given in Table 2-4.

Table 2-4: Incremental Project Demand for Existing Condition

	Water Demand
	(gpd)
Pre-Project (Baseline) Demand	3,980
Total Post-Project Demand	35,438
Incremental Increase in Demand	+31,458

2.3. Future Cumulative Condition (2030)

2.3.1. Pre-Project (Baseline) Land Use and Demand

Future Cumulative (baseline) demand for the Project is adopted from the City's InfoWater model developed as part of the 2030 GPUUIS. In the 2030 GPUUIS model, water demands are based on the 2030 General Plan Update (GPU) land use; these demands have since been updated to include recent City approved projects and projects under review as outlined in Table A-1 in Appendix A. Table 2-5 presents the parcel level pre-project demand from the model. Whereas the Existing Condition model was populated with demand based on billing records, the Future Cumulative Condition model has a higher projected future demand for the parcel based on the water duty factors developed as part of the 2010 WMP.

Table 2-5 – Baseline Demand for Future Cumulative Condition (Based on Model)

Address	APN	2010 Master Plan Existing Land Use Designation	Acreage	Water Demand (gpd)
1040 Terra Bella Avenue	153-15-002	Industrial	1.7	1,668*
1020 Terra Bella Avenue	153-15-021	SFR	0.5	547*
1055 San Leandro Avenue	153-15-030	Industrial	3.2	3,154*
			TOTAL	5,370*

^{*}Water Demand allocated to the specific parcel in the Future Cumulative hydraulic model

2.3.2. Post-Project Incremental Demand

Total post-Project demand is added to the model as an additional increase in water demand to the pre-Project demand. The incremental increase in demand in the Future Cumulative Condition is given in Table 2-6.

Table 2-6: Incremental Project Demand for Future Cumulative Condition

	Water Demand
	(gpd)
Pre-Project (Baseline) Demand	5,370
Total Post-Project Demand	35,438
Incremental Increase in Demand	+30,068

Chapter 3. Water System Impact

Project impacts to water supply, water storage, hydraulic conveyance, and fire flow requirements are evaluated in this chapter to ensure the Project demand can be adequately met. Hydraulic conveyance and available fire flow are assessed for both Existing (2010) and Future Cumulative (2030) Condition. Water supply and water storage are evaluated for the Future Cumulative Condition.

3.1. Demand Scenarios and Performance Criteria

Hydraulic performance within the water system are evaluated under two demand scenarios: Peak Hour Demand (PHD) and Maximum Day Demand with Fire Flow (MDD + FF). The MDD and PHD peaking factors from the 2010 Water Mater Plan (WMP) are used for this analysis. As detailed in the 2010 WMP, MDD and PHD peaking factors are developed using SCADA data from peak usage months in 2006 and 2007. The peak hour occurred on the day with the largest daily demand, which was observed to be August 8, 2007. The calculated peaking factors, presented in Table 3-1, are applied to Average Day Demand (ADD). Established design criteria used to evaluate the Project impact for all scenarios are summarized in Table 3-2.

Table 3-1: Peaking Factors

Category	Peaking Factor
Maximum Day	1.71
Peak Hour	2.79

Table 3-2: Water System Performance Criteria

Criteria	PHD	MDD + FF
Minimum Allowable Pressure (psi)	40	20

3.2. Water Supply Analysis

The increased water demand from Project development in the Future Cumulative Condition is compared with the City's supply turnouts and groundwater well capacities to ensure demand can be met. The Mountain View water system is divided into three pressure zones to maintain reasonable pressures throughout the City's rising topography moving south, further from the Bay. The Project site is located in Pressure Zone 1, which is, at this time, supplied by only one San Francisco Public Utilities Commission (SFPUC) turnout (Turnout #5).

Water demand versus supply capacity by Pressure Zone is given in Table 3-3. Total capacity for Pressure Zone 1 includes peak hour turnout capacity from SFPUC Turnout #5 and additional supply supplemented from Wells #22 and #23. Demand in Pressure Zone 1 cannot be sufficiently supplied by the current supply operation; however, as discussed in the 2030 General Plan Update Utility Impact Study (IEC, 2011), surplus supply in Pressure Zone 2 could be routed to Pressure Zone 1 to make-up the supply deficiency in the Pressure Zone 1. A pressure reducing valve (PRV) moving water from Pressure Zone 2 to Pressure Zone 1 at North Whisman Road, between Walker Drive and Whisman Court, is included in the North Bayshore Precise Plan II Utility Impact Study (NBPPII UIS; Schaaf & Wheeler, October 2016). The ability of the system to meet Project demand and the fire

flow requirement at Future Cumulative Condition assumes this CIP has been constructed. The additional Project demand does not impact the City's ability to meet total system demand.

Table 3-3: Future Cumulative Condition Demand Versus Supply

2030 Future Cumulative Demand				
Pressure Zone		Pre-Project	Post- Project	Total Capacity
	ADD (mgd)	PHD (mgd)	PHD (mgd)	(mgd)*
1	7.98	22.26	22.26	16.56
2	8.41	23.46	23.46	30.53
3	1.62	4.52	4.52	5.1
Total	18.01	50.25	50.25	52.19

^{*} Total Capacity from Table 3-8 in the General Plan Update Utility Impact Study (IEC, 2011)

3.3. Water Storage Analysis

Project impact to water storage volume requirements is evaluated according to the State Water Resources Control Board Division of Drinking Water (DDW). DDW requires storage equal to 8 hours of Maximum Day Demand (MDD) plus fire flow storage in each pressure zone. The required storage versus active storage in the City is detailed in Table 3-4 pre- and post-Project. The maximum active storage in the City is 17 MG. However, the City currently operates with only the operational active storage of 14.3 MG.

The fire flow volume in Table 3-4 revises the requirement in the 2010 WMP and is estimated from the largest fire flow requirement in each pressure zone. Based on CFC requirements the fire flow volume is calculated as 5,000 gpm for 4 hours. Pressure Zone 3 has the potential for a reduction in required fire flow volume since the controlling fire flow requirement is the hospital along Grant Road, which has a planning-level fire flow requirement of 3,500 for 4 hours.

Since the City has the storage volume available to meet DDW requirements in the Future Cumulative Condition pre- and post-Project, no additional storage improvements are recommended. In the future, when City demand and storage requirements exceed the current operating storage, the City may need to alter reservoir operation schemes.

					Fut	ture Cumulative	Conditio	n Deman	i
	Maximum	Operational			Pre-Pr	oject		Post-Pro	oject
Pressure Zone	Active Storage* (MG)	Active Storage (MG)	Fire Flow (MG)	ADD (mgd)	8 Hours of MDD (MG)	DDW Requirement (MG)	ADD (mgd)	8 Hours of MDD (MG)	DDW Requirement (MG)
1	6.00	5.1	1.2	7.98	4.55	5.25	7.98	4.55	5.25
2	8.00	6.5	1.2	8.41	4.79	6.30	8.41	4.79	6.30
3	3.00	2.7	1.2	1.62	0.92	2.12	1.62	0.92	2.12
Total	17.00	14.3	3.6	18.01	10.27	13.67	18.01	10.27	13.67

Table 3-4: DDW Storage Requirements

3.4. Existing Condition (2010) Results

3.4.1. Hydraulic Model Information

Existing water system performance is analyzed with the demands and land use type in the City's InfoWater model developed for the City's 2010 WMP. The WMP and InfoWater model is currently being updated but a final report and model was not available for use at the beginning of this UIS; therefore, the 2010 WMP is used for the basis of this study. Domestic and fire services for the Project will connect to the existing 12-inch water mains in Terra Bella Avenue and San Rafael Avenue and the existing 8-inch water main in Linda Vista Avenue. For this analysis, only City-owned utilities are modeled; interior site piping is not evaluated.

The Existing Condition pre-Project fire flow requirement is based on the planning level fire flow of 3,500 gpm. The proposed fire flow requirements for new buildings are identified in Table 2-2, but the existing required fire flow, 3,500 gpm, is controlling as discussed in Section 2.1.1.

3.4.2. Peak Hour Demand (PHD) – Pre and Post Project

System pressures are evaluated under Peak Hour Demand (PHD) pre-Project (Figure B-2) and post-Project (Figure B-3). At Existing Condition the system meets performance criteria system-wide. The Project development does not impact the system hydraulic performance under PHD.

3.4.3. Maximum Day Demand with Fire Flow (MDD+FF) - Pre and Post Project

The pre-Project planning-level required fire flow of 3,500 gpm is met at the existing hydrant locations at the proposed Project site (Figure B-4).

After Project development, the anticipated project-specific fire flow requirements, outlined in Table 2-2, and the existing fire flow of the adjacent properties, 3,500 gpm, are met at the site as illustrated in Figure B-5 and detailed in Table 3-5. The other existing deficiencies in Pressure Zone 1 shown on Figures B-4 and B-5 are not near the Project site and are independent of the Project.

^{*} Maximum Active Storage from Table 4-2 in the General Plan Update Utility Impact Study (IEC, 2011)

Node ID	Location	Required Fire Flow Rate (gpm)	Available Flow Pre-Project (gpm)	Available Flow Post-Project (gpm)	
J-4191	Draiget Lagation Torra Balla Avanua	Pre-Project: 3,500	6.761	6.712	
J-4191	Project Location – Terra Bella Avenue	Post-Project: 3,500	6,761	6,712	
1.4402	Project Leasting Con Refuel Access	Pre-Project: 3,500	5.020	F 702	
J-4192	Project Location – San Rafael Avenue	Post-Project: 3,500	5,828	5,783	
J-2873	Project Location – Linda Vista Avenue	Pre-Project: 3,500	3,747	3,736	
J-2073	Froject Location – Linua vista Avenue	Post-Project: 3,500	3,747	3,730	

3.4.4. Deficiencies – Pre and Post Project

With Existing Condition demand, the water system meets system design criteria at PHD and is able to adequately supply the increased Project demand.

Existing fire flow nodes are evaluated within the Project Pressure Zone (Zone 1) for Project impact. There are several deficient fire nodes within Pressure Zone 1; however, none of the deficient nodes are near the Project site. The increase in water demand results in less than a 1% decrease in available fire flow at the nearest deficient nodes; therefore, the impact is not considered significant.

Table 3-6: Selected Existing Condition Fire Flow Deficient Nodes Pre- and Post-Project

Node ID	Location	Required Fire Flow Rate (gpm)	Available Flow Pre-Project (gpm)	Available Flow Post-Project (gpm)
J-4185	San Leandro Street	3,500	3,396	3,374
J-4216	Space Park Way	3,500	3,172	3,165
J-2882	Rock Street	2,500	2,267	2,263

Note: Red font indicates available fire flow that does not meet the required fire flow rate.

3.5. Future Cumulative Condition (2030) Results

3.5.1. Hydraulic Model Information

The Future Cumulative Condition model is created using water demand based on the 2030 General Plan Update (GPU) land use and includes the additional projects listed in Table A-1 in Appendix A. System performance is analyzed under the assumption that all recommended CIPs in the NBPPII UIS have been constructed. Domestic and fire services for the Project will connect to the existing 12-inch water mains in Terra Bella Avenue and San Rafael Avenue and the existing 8-inch water main in Linda Vista Avenue.

The Future Cumulative Condition pre-Project fire flow requirement is not changed from the updated Existing Condition pre-Project fire flow requirement. The pre-Project fire flow requirement of 3,500 gpm, based on planning level fire flow requirements. The proposed fire flow requirements for new buildings are identified in Table 2-2, but the existing required fire flow, 3,500 gpm, is controlling as discussed in Section 2.1.1.

3.5.2. Peak Hour Demand (PHD) - Pre and Post Project

The system has adequate pressures pre-Project (Figure B-6). Pressures pre and post-Project near Shoreline Golf Links are just under the performance criteria of 40 psi, however, none fall below 37 psi.

3.5.3. Maximum Day Demand with Fire Flow (MDD+FF) – Pre and Post Project

The pre-Project planning-level required fire flow of 3,500 gpm is met at the existing hydrant locations at the proposed Project site expect for one node, J-2873. The Project site and the adjacent properties have a fire flow of 3,500 gpm that is not met (Figure B-8).

In the Future Cumulative Condition, the system is able to meet the project-specific fire flow requirements at the site post-Project as shown on Figure B-9. One node does not meet the adjacent properties' fire flow, 3,500 gpm, which is governing, however, it does meet the Project specific fire flow of 2,000 gpm as outline in Table 2-2. Available Fire Flow pre and post Project are provided on Table 3-7 for three closest deficient nodes within Pressure Zone 1 for comparison of pre- and post-Project available flow.

Table 3-7: Future Cumulative Condition Evaluated Project Fire Flow Nodes

Node ID	Location	Required Fire Flow Rate (gpm)	Available Flow Pre-Project (gpm)	Available Flow Post-Project (gpm)	
1.4101	Draiget Legation Torre Belle Avenue	Pre-Project: 3,500	F 074	F 02F	
J-4191	-4191 Project Location – Terra Bella Avenue	Post-Project: 3,500	5,874	5,825	
1.4400	Discipat Location Con Defeat Avenue	Pre-Project: 3,500	F 02F	F 773	
J-4192	Project Location – San Rafael Avenue	Post-Project: 3,500	5,825	5,773	
J-2873	Project Location – Linda Vista Avenue	Pre-Project: 3,500	3,330	3,319	
J-20/3	Froject Location – Linua vista Avenue	Post-Project: 3,500	3,330	5,519	

3.5.4. Deficiencies – Pre and Post Project

With Future Cumulative Condition demand, all nodes within Pressure Zone 1, excluding the Golf Links golf course, meet the performance criteria of 40 psi during PHD.

The fire flow deficient nodes within Pressure Zone 1 are evaluated for Project impact. There are several deficient fire nodes within Pressure Zone 1; however, project specific fire flows are met. One node, J-2873 is deficient preand post- project, however, the project specific fire flow of 2,000 gpm is met. The increase in water demand results in less than a 1% decrease in available fire flow at the nearest deficient nodes; therefore, the impact is not considered significant. Fire flows pre- and post-Project are provided on Table 3-8 for three closest deficient nodes within Pressure Zone 1 for comparison of pre- and post-Project available flow.

Table 3-8: Selected Future Condition Fire Flow Deficient Nodes Pre- and Post-Project

Node ID	Location	Required Fire Flow Rate (gpm)	Available Flow Pre-Project (gpm)	Available Flow Post-Project (gpm)
J-4185	San Leandro Street	3,500	3,018	2,996
J-4216	Space Park Way	3,500	3,305	3,290
J-2974	Huff Avenue	3,500	3,430	3,418

Note: Red font indicates available fire flow that does not meet the required fire flow rate.

Chapter 4. Sewer Flow Projections

This chapter discusses the sewer flow estimate for Project development and provides a comparison to pre-Project baseline condition. The incremental Project flow is determined for both Existing (2010) and Future Cumulative (2030) Condition, as discussed in the following sections. The sewer generation factor for estimating Project sewer flow is taken from previous technical studies (2010 SMP, 2030 GPUUIS, and NBPPII) to remain consistent with the City-wide flow projections used in the hydraulic models.

Three types of sewer flow loading are used to model the sewer system: base wastewater flow, groundwater infiltration (GWI), and rainfall-dependent infiltration/inflow (RDI/I). GWI includes base infiltration (BI) and pumped groundwater discharged to the sewer system. RDI/I is stormwater that enters the sewer system. GWI and RDI/I values are modeled as constant flows.

Base wastewater flow (BWF) is from residential, commercial, institutional, office, and industrial sources. As described in the 2010 Sewer Master Plan (SMP), BWF is developed on an individual parcel level using the 2005 and 2006 water billing records and applying a return-to-sewer (RTS) ratio calculated for land use type. Change in BWF throughout the day due to daily use patterns is known as diurnal variation and is accounted for by applying residential and non-residential diurnal curves. BWF and diurnal curves used in this analysis are taken from the 2010 SMP to remain consistent with previous City-wide modeling. The sewer flows discussed in this section are the BWF values representing average flows and are not peaked.

4.1. Project Sewer Flow

Project generated sewer flow is estimated from the square footage of office space provided in the Project Plan Set. A return-to-sewer (RTS) ratio is applied to the water duty factor from Table 2-1 to estimate sewer flow. An RTS ratio of 0.75 was used for multi-family residential dwelling units and industrial square footage based on the NBPPII UIS water and sewer demand analysis. Table 4-1 provides the sewer flow estimation for each building.

Proposed Sewer Duty Sewer **Proposed Area Project Building Dwelling Units Land Use Type** Factor (gpd/DU **Demand** (square feet) (DU) or gpd/1000 sf) (gpd) Storage 285,012 Industrial 12,826 45 Building 1 Public Storage Industrial 123,952 45 5,578 Storage Building 2 MFR 1 MFR 75 75 Alta MFR 108 MFR 75 8,100 Housing Total 408,964 109 26,579

Table 4-1: Project Estimated Sewer Flow

4.2. Existing Condition (2010)

4.2.1. Pre-Project (Baseline)

The pre-Project (baseline) condition includes parcel-level sewer flow adopted from the City's InfoSWMM model, developed as part of the 2010 SMP. For some non-Project parcels, these SMP flows have since been updated to include recent City approved projects and projects under construction near the Project site outlined in Table A-1 in Appendix A. Table 4-2 details the parcel-level sewer flow in the model; the model sewer flows are based on the sewer generation rates used in the 2010 SMP. The parcel specific demand is based on the weighted contribution to a specific model node and may be lower than the actual parcel sewer generation rate.

Table 4-2: Baseline Flow for Existing Condition (Based on Model)

Address	APN	2010 Master Plan Existing Land Use Designation	Acreage	Sewer Demand (gpd)
1040 Terra Bella Avenue	153-15-002	Industrial	1.7	212*
1020 Terra Bella Avenue	153-15-021	SFR	0.5	368*
1055 San Leandro Avenue	153-15-030	Industrial	3.2	388*
			TOTAL	968*

^{*}Flow allocated to specific parcel within the Existing Condition hydraulic model

4.2.2. Post-Project Incremental Demand

For the Project impact analysis in the Existing Condition, total post-Project sewer flow is added to the Existing model pre-Project flow as an additional increase in sewer flow. The incremental increase in flow is given in Table 4-3.

Table 4-3: Incremental Project Flow for Existing Condition

	Sewer Flow (gpd)
Pre-Project (Baseline) Flow	968
Total Post-Project Flow	26,579
Incremental Increase in Flow	+ 25,611

4.3. Future Cumulative Condition (2030)

4.3.1. Pre-Project (Baseline)

Future Cumulative (baseline) flow for the Project is adopted from the City's InfoSWMM model developed as part of the 2030 GPUUIS. In the 2030 GPUUIS model, sewer flows are based on the 2030 General Plan Update (GPU) land use; these flows have since been updated to include recent City approved projects and projects under review as outlined in Table A-1 in Appendix A.

Table 4-4 presents the parcel-level pre-project flow from the Future Cumulative hydraulic model. The Future Cumulative Condition model has a higher projected future sewer flow based on the 2010 SMP generation

factors. The specific parcel demand is based on the weighted contribution to a specific model node in the hydraulic model.

Table 4-4: Baseline Flow for Future Cumulative Condition (Based on Model)

Address	APN	2010 Master Plan Existing Land Use Designation	Acreage	Sewer Demand (gpd)
1040 Terra Bella Avenue	153-15-002	Industrial	1.7	1,146*
1020 Terra Bella Avenue	153-15-021	SFR	0.5	339*
1055 San Leandro Avenue	153-15-030	Industrial	3.2	2,132*
			TOTAL	3,617*

^{*}Flow allocated to specific parcel within the Future Cumulative hydraulic model

4.3.2. Post-Project Incremental Demand

Total post-Project flow is added to the Future Cumulative Condition model as an additional increase in sewer flow from pre-Project flow. The incremental post-Project flow is given in Table 4-5.

Table 4-5: Incremental Project Flow for Future Cumulative Condition

	Sewer Flow (gpd)
Pre-Project (Baseline) Flow	3,617
Total Post-Project Flow	26,579
Incremental Increase in Flow	+ 22,962

Chapter 5. Sewer System Impact

The impact of Project development on the sewer system is analyzed under Existing (2010) and Future Cumulative (2030) conditions. The specific affected area of the gravity system evaluated for Project impact begins at the Project site on Terra Bella Avenue and flows west, then turns north into North Shoreline Blvd and continues north across Hwy 101. Sewer flows continue to the north to the Shoreline Sewer Pump Station via the Central Trunk.

5.1. Scenarios and Performance Criteria

Sewer capacity is analyzed under Peak Wet Weather Flow (PWWF) and Average Dry Weather Flow (ADWF). PWWF is used to determine hydraulic deficiencies according to the performance criteria in Table 5-1. ADWF is used to determine adequacy of treatment capacity.

The ADWF scenario is developed in the model by adding BWF and GWI. Since the ADWF scenario models average daily flows, BWF is not peaked. The PWWF scenario applies the diurnal peaking curves for residential and non-residential flows and simulates system response to rainfall dependent inflow and infiltration. The diurnal peaking curves are adopted from the City's 2010 SMP. Groundwater Infiltration (GWI) and rainfall-dependent infiltration/inflow (RDI/I) are included, but are not peaked.

Table 5-1: Sewer System Performance Criteria

Criteria	Pipe Diameter ≤ 12 inch	Pipe Diameter > 12 inch
Maximum Flow Depth/Pipe Diameter (d/D)	0.50	0.75

5.2. Sewer Treatment, Joint Interceptor, and San Antonio Interceptor Capacity

Sewage generated within the City is treated at the Regional Water Quality Control Plant (RWQCP) in Palo Alto. The sewer collection system is a gravity system with the majority of flow discharging into three main trunk lines that convey flow from the south to the north and terminate at the SPS located within the City's Shoreline Park. Flow is then pumped to the gravity Joint Interceptor Sewer that conveys flow to the RWQCP. The remaining flow not received at the SPS is discharged to the Los Altos' San Antonio Interceptor that also conveys flow into the Joint Interceptor.

The City entered into a joint agreement, referred to as the Basic Agreement, with the cities of Palo Alto and Los Altos in 1968 for the construction and maintenance of the joint sewer system addressing the need for conveyance, treatment, and disposal of wastewater to meet Regional Board requirements. In accordance with the Basic Agreement, Palo Alto owns the RWQCP and administers the Basic Agreement with the partnering agencies purchasing individual capacity rights in terms of an average annual flow that can be discharged to the RWQCP. Capacity rights of the three cities can be rented or purchased from other neighboring agencies and each partnering agency can sell their capacity to others. Contractual capacity is based upon the 1985 Addendum No. 3 of the 1968 Joint Sewer System agreement that revised capacity rates in relationship to facility expansion and is based upon Average Annual Flow (defined as 1.05 times Average Dry Weather Flow). Separate service

agreements with the RWQCP have since reallocated current capacity rights to include six partnering agencies. Table 5-2 presents the current capacity rights for each agency.

Table 5-2: RWQCP Joint Facilities Capacity Rights

Davidus ou Australia	Treatment Capacity	72-inch Joint Interceptor Capacity
Partner Agency	Average Annual Flow	Peak Wet Weather
	(MGD)	Flow (MGD)
Palo Alto	15.3	14.59
East Palo Alto Sanitary District	3.06	0
Los Altos Hills	0.63	3.41
Stanford University	2.11	0
Mountain View	15.1	50
Los Altos	3.8	12
Total	40	80

Source: Long Range Facilities Plan for the Regional Water Quality Control Plant (City of Palo Alto, May 2012)

The City's total capacity rights include flow leaving the City through the SPS and the amount of flow that the City discharges into the Los Altos' San Antonio Interceptor, per the 1970 Los Altos San Antonio Trunk Sewer Capacity Agreement between the two cities. The total system-wide contractual capacity for Mountain View is evaluated in the Existing and Future Cumulative Conditions with increased Project flow. Table 5-3 shows the City's projected flows compared to the RWQCP Joint Facilities capacity rights.

Per the Basic Agreement, the partnering agencies agree to conduct an engineering study when their respective service area reaches 80% of their contractual capacity rights. The Future Cumulative Condition estimates that the projected demand pre-Project and post-Project will exceed the 80% capacity threshold. The required engineering study when the City reaches 80% of their capacity shall redefine the anticipated future needs of the treatment plant.

Table 5-3: Capacity Rights Comparison

	Mountain	Pre-Proj	ject	Post-Project			
RWQCP Joint Facility	View Contractual Capacity (MGD)	2010 Existing (MGD)	2030 Future Cumulative (MGD)	2010 Existing (MGD)	2030 Future Cumulative (MGD)		
Treatment	15.1	10.16	14.15	10.19	14.17		
Joint	50	16.98	21.91	17.01	21.93		

^{*} Treatment = Average Annual Flow (AAF), Joint Interceptor = PWWF

5.3. Existing Condition (2010) Results

5.3.1. Hydraulic Model Information

The Existing Condition sewer system is modeled using the City's InfoSWMM model developed as part of the 2010 Sewer Master Plan (SMP). The SMP and InfoSWMM model is currently being updated but a final report and model was not available for use at the beginning of this UIS; therefore, the 2010 SMP is used for the basis of this study. The Project connects to an existing 15-inch VCP pipe within Terra Bella Avenue and an existing 8-inch VCP pipe within Linda Vista Avenue, the pipe drains west to North Shoreline Blvd. The MH at the intersection of Terra Bella and San Rafael Avenue and the manhole at the end of Linda Vista Avenue is the nearest upstream MH to the Project site, and sewer flows are assumed to discharge into those existing manholes in the hydraulic models.

5.3.2. Peak Wet Weather Flow (PWWF) Scenario - Pre and Post Project

The sewer system meets the City's d/D performance criteria along the Project flow path. There are no pipes along the flow path that are at risk of surcharging. Both pre-Project and post-Project pipes along the flow path in the for the Existing Condition are shown in Figures B-10a, B-10b, B-11a, and B-11b.

5.3.3. Deficiencies – Pre and Post Project

Existing Condition model results comparing pre- and post-Project d/D are presented in Table 5-4. The system meets d/D performance criteria in all pipes downstream of the Project.

5.4. Future Cumulative Condition (2030) Results

5.4.1. Hydraulic Model Information

The Future Cumulative Condition model is created using sewer flows based on the 2030 General Plan Update (GPU) land use and includes additional projects listed in Table A-1 in Appendix A. System performance is analyzed under the assumption that all recommended CIPs in the 2030 GPUUIS have been constructed. The Project connects to an existing 15-inch VCP pipe within Terra Bella Avenue and an existing 8-inch VCP pipe within Linda Vista Avenue, the pipe drains west to North Shoreline Blvd.

Four recommended CIPs or portions thereof in the 2030 GPUUIS are downstream of the Project: CIPs #P-97, P-99, P-100 and P-108. In the 2030 GPUUIS, CIP #P-97 includes upsizing several pipes, two of which are adjacent to the Project site on Terra Bella Avenue. The pipe segment extends from San Rafael Avenue to N. Shoreline Boulevard, along Terra Bella Avenue, this pipe is recommended to be upsized from 15-inch to 18-inch diameter, approximately 1,475-feet are downstream of the Project connection point to N. Shoreline Blvd. The City completed improvement projects along Leong Drive and removed the Stevens Creek sewer crossing. Following these improvements, previous studies determined CIP #P-97 is not required at this time. The existing 15-inch pipe within Terra Bella Avenue has adequate capacity and is below the d/D performance criteria for pipes over 12-inches in diameter and therefore CIP #P-97 is not included in the hydraulic model. CIP # P-99 includes upsizing several pipes, one of which is adjacent to the Project on Linda Vista Avenue and recommends to upsize 286 feet of 8-inch to 12-inch diameter. The existing 8-inch pipe within Linda Vista Avenue has adequate capacity and is below the d/D performance criteria for pipes under 12-inches in diameter.

CIP #P-100 includes upsizing 4,419 feet of existing 18-inch diameter pipe to a 21-inch diameter pipe along North Shoreline Boulevard between Terra Bella Avenue and Charleston Road. However, for this analysis, CIP #P-100 conforms to City-provided plans from January 2018 for crossing State Highway 101 such that approximately 5,792 feet of pipe is upsized to 21-inch diameter pipe. CIP #P-108 recommends upsizing 241 feet of existing 21-inch diameter pipe to 24-inch diameter pipe along North Shoreline Boulevard north of Crittenden Lane.

5.4.2. Peak Wet Weather Flow (PWWF) Scenario - Pre and Post Project

The system meets d/D performance criteria downstream of the Project in the Future Cumulative Condition pre-Project and post-Project as shown in Figures B-12a and B-12b, assuming recommended CIPs are constructed.

5.4.3. Deficiencies – Pre and Post Project

There are no new deficiencies due to the Project incremental increase in sewer flow under the Future Cumulative Condition. Results comparing the pre- and post-Project d/D and flows are presented in Table 5-5, the pipes downstream of the Project are shown on Figures B-12a through B-13b. Recommended CIP diameters from the 2030 GPUUIS are indicated by green font in Table 5-5.

5.5. Project Contribution to Deficient Sewer Pipes

Several projects are identified downstream of the Project site, including pipes recommended to be upsized as part of the 2030 GPUUIS. The UIS has determined the percentage of project contribution to the recommended CIPs, typically this is used to determine the development impact fees for fair share impact to the sewer system. The City has determined contributions of less than 1% fall within the City's error of margin for variability within the model. Several projects are identified downstream of the Project site, including pipes recommended to be upsized as part of the 2030 GPUUIS. The pipes identified to be upsized are identified in Table 5-5, and Table 5-6 provides a comparison of ADWF in order to determine the Project contribution for the recommended pipe improvement projects. Based on the results of this UIS, the project does not have a significant impact on CIP #P-108. CIP #P-97 and P-99 were not included as the existing pipes have adequate capacity and are below the d/D performance criteria. The Project does have project contribution to GPUUIS CIP #P-100 as shown in Table 5-6.

Table 5-4: Existing Condition Model Results – Pre and Post Project

			ADWF				PWWF							
						Pre-F	roject	Post-	Project	Pre-F	roject		Post-Proj	ect
Sewer Main Model ID	Upstream MH ID	Downstream MH ID	Existing Diameter (in)	Length (ft)	Slope (%)	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Pipe Capacity Remaining (% of Allowed d/D)
563	E4-035	E4-037	8	314	0.473	0.002	0.0463	0.021	0.1368	0.004	0.0662	0.035	0.1704	66
610	E4-037	F4-128	8	286	0.601	0.003	0.2661	0.022	0.3147	0.006	0.3316	0.036	0.3911	22
614	F5-002	F4-128	15	750	0.095	0.286	0.3091	0.291	0.3132	0.410	0.3733	0.419	0.3793	49
611	F4-128	F4-016	15	725	0.260	0.310	0.3547	0.335	0.3624	0.463	0.4606	0.501	0.4685	38
607	F4-016	E4-003	18	596	0.396	1.295	0.4945	1.320	0.4994	2.238	0.6612	2.267	0.6662	11
525	E4-003	E4-008	18	188	0.014	1.295	0.5092	1.321	0.5144	2.239	0.6849	2.268	0.6902	8
501	E4-008	E4-007	18	57	0.304	1.296	0.4134	1.321	0.4179	2.240	0.5666	2.270	0.5711	24
492	E4-007	E4-001	18	141	0.304	1.296	0.3710	1.322	0.3748	2.242	0.5021	2.271	0.5059	33
478	E4-001	E4-006	18	150	0.724	1.297	0.3221	1.322	0.3254	2.243	0.4327	2.272	0.4359	42
457	E4-006	E4-005	18	115	0.724	1.297	0.3222	1.323	0.3255	2.244	0.4328	2.274	0.4360	42
446	E4-005	E4-004	18	66	0.724	1.298	0.3222	1.323	0.3255	2.246	0.4330	2.275	0.4362	42
434	E4-004	E4-003	18	50	0.724	1.298	0.3223	1.324	0.3256	2.247	0.4331	2.276	0.4363	42
424	E4-003	E4-062	18	37	0.724	1.299	0.3380	1.324	0.3414	2.248	0.4560	2.278	0.4594	39
420	E4-062	E4-002	18	200	0.510	1.299	0.3536	1.325	0.3573	2.249	0.4789	2.279	0.4826	36
389	E4-002	E4-001	18	88	0.510	1.300	0.3537	1.325	0.3574	2.251	0.4954	2.280	0.4998	33
377	E4-001	E4-060	18	32	0.510	1.300	0.3950	1.326	0.3992	2.252	0.5555	2.282	0.5605	25
373	E4-060	E4-012	18	232	0.265	1.301	0.4028	1.326	0.4071	2.253	0.5507	2.283	0.5551	26
349	E4-012	E4-002	18	294	0.437	1.305	0.3860	1.330	0.3900	2.260	0.5268	2.290	0.5308	29

Table 5-4 (Continued): Existing Condition Model Results – Pre and Post Project

			122100 1 (ADWF					PWWF				
						Pre-P	roject	Post-l	Project	Pre-F	roject		Post-Proj	ect
Sewer Main Model ID	Upstream MH ID	Downstream MH ID	Existing Diameter (in)	Length (ft)	Slope (%)	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Pipe Capacity Remaining (% of Allowed d/D)
331	E4-002	D4-035	18	375	0.377	1.404	0.3962	1.429	0.4001	2.415	0.5409	2.445	0.5449	27
306	D4-035	D4-033	18	166	0.423	1.418	0.3899	1.444	0.3937	2.438	0.5311	2.468	0.5349	29
290	D4-033	SW-1	18	296	0.422	1.420	0.4185	1.446	0.4226	2.442	0.5698	2.471	0.5740	23
CDT-13	SW-1	D4-021	18	121	0.277	1.435	0.4189	1.460	0.4229	2.455	0.5695	2.484	0.5737	24
260	D4-021	D4-050	18	341	0.429	1.437	0.3908	1.462	0.3945	2.458	0.5308	2.488	0.5346	29
241	D4-050	D4-068	18	364	0.434	1.441	0.3899	1.467	0.3937	2.465	0.5295	2.495	0.5333	29
209	D4-068	SW-2	18	509	0.440	1.444	0.4129	1.469	0.4167	2.470	0.5518	2.499	0.5555	26
CDT-17	SW-2	SW-3	18	24	0.083	1.444	0.4062	1.469	0.4098	2.470	0.5364	2.499	0.5398	28
CDT-19	SW-3	D4-006	21	39	0.650	1.624	0.3872	1.649	0.3900	2.746	0.5200	2.775	0.5232	30
177	D4-006	C4-021	30	420	0.100	1.942	0.3172	1.968	0.3193	3.133	0.4071	3.163	0.4092	45
156	C4-021	C4-017	30	396	0.135	1.943	0.3102	1.968	0.3124	3.134	0.4023	3.163	0.4044	46
144	C4-017	C4-016	30	244	0.113	1.943	0.3200	1.969	0.3222	3.135	0.4221	3.164	0.4244	43
118	C4-016	C4-012	30	160	0.182	2.122	0.3620	2.147	0.3643	3.389	0.4686	3.418	0.4710	37
113	C4-012	C4-010	30	323	0.031	2.122	0.3566	2.148	0.3590	3.390	0.4661	3.419	0.4684	38
103	C4-010	C4-008	30	59	0.340	2.123	0.3491	2.148	0.3516	3.391	0.4617	3.420	0.4641	38
96	C4-008	C4-004	30	292	0.098	2.141	0.4197	2.166	0.4221	3.422	0.5273	3.452	0.5296	29
88	C4-004	B4-019	30	323	0.029	2.141	0.3659	2.167	0.3680	3.423	0.4600	3.453	0.4620	38
83	B4-019	B4-017	21	445	0.438	2.149	0.3673	2.174	0.3697	3.436	0.4768	3.465	0.4792	36

Table 5-4 (Continued): Existing Condition Model Results – Pre and Post Project

							AD	WF				PWW	F	
						Pre-P	roject	Post-l	Project	Pre-P	roject		Post-Proj	ect
Sewer Main Model ID	Upstream MH ID	Downstream MH ID	Existing Diameter (in)	Length (ft)	Slope (%)	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Pipe Capacity Remaining (% of Allowed d/D)
72	B4-017	B4-007	21	216	0.760	2.163	0.3344	2.189	0.3365	3.458	0.4311	3.488	0.4331	42
64	B4-007	B4-005	21	143	0.782	2.164	0.4408	2.190	0.4434	3.465	0.5617	3.494	0.5643	25
60	B4-005	B4-003	21	98	0.001	2.164	0.4093	2.190	0.4116	3.468	0.5181	3.498	0.5204	31
58	B4-003	B4-001	27	64	1.256	2.164	0.3088	2.190	0.3106	3.472	0.3907	3.501	0.3924	48
56	B4-001	B4-024	27	347	0.115	2.164	0.3140	2.190	0.3158	3.476	0.3976	3.505	0.3993	47
50	B4-024	B4-022	27	75	1.036	2.164	0.2670	2.190	0.2687	3.479	0.3471	3.509	0.3488	53
45	B4-022	B4-016	21	432	0.398	2.164	0.3917	2.190	0.3942	3.486	0.5103	3.516	0.5127	32
19	B4-016	B4-014	42	556	0.189	4.883	0.2726	4.909	0.2733	8.477	0.3623	8.507	0.3630	52
21	B4-014	B4-012	42	368	0.272	4.883	0.2719	4.909	0.2727	8.480	0.3616	8.510	0.3622	52
22	B4-012	B4-010	42	450	0.222	4.883	0.2293	4.909	0.2299	8.484	0.3035	8.513	0.3040	59
20	B4-010	B4-003	42	86	1.388	4.883	0.1956	4.909	0.1961	8.487	0.2579	8.517	0.2583	66
24	B4-003	B4-001	42	200	0.500	4.883	0.2310	4.909	0.2315	8.491	0.3017	8.521	0.3022	60
25	B4-001	B4-006	42	338	0.444	4.883	0.2089	4.909	0.2096	8.495	0.2867	8.524	0.2872	62

Table 5-5: Future Cumulative Condition Model Results – Pre and Post Project

						AD	WF		PWWF					
					Pre-Pr	oject	Post-P	roject	Pre-	Project		Post-Project		
Sewer Main Model ID	CIP ID	Model Diameter (in)	Length (ft)	Slope (%)	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D -	Pipe Capacity Remaining (% of Allowed d/D)	
563		8	314	0.47	0.0066	0.077	0.0283	0.159	0.0111	0.098	0.0390	0.174	65	
610	P-99	8/ 12	286	0.60	0.0086	0.230	0.0307	0.391	0.0141	0.421/0.277	0.0421	0.466/0.304	7/59	
614 ¹	P-97	15/ 18	750	0.09	0.4591	0.394	0.4636	0.398	0.6451	0.475	0.6570	0.481	36	
611 ¹	P-97	15/ 18	725	0.26	0.4975	0.435	0.5242	0.442	0.7200	0.565	0.7478	0.571	24	
SR_CIP-1	P-100	18/ <mark>21</mark>	389	0.30	1.7999	0.390	1.8280	0.394	3.0258	0.525	3.0529	0.528	30	
SR_CIP-2	P-100	18/ <mark>21</mark>	322	0.29	1.7999	0.395	1.8280	0.398	3.0253	0.531	3.0523	0.534	29	
CDT-29	P-100	18/ <mark>21</mark>	353	0.28	1.7999	0.396	1.8280	0.400	3.0250	0.533	3.0521	0.536	29	
CDT-31	P-100	18/ <mark>21</mark>	53	0.28	1.7999	0.396	1.8280	0.400	3.0247	0.534	3.0518	0.536	28	
CDT-33	P-100	18/ <mark>21</mark>	915	0.28	1.7999	0.396	1.8280	0.399	3.0248	0.533	3.0520	0.536	29	
CDT-35	P-100	18/ <mark>21</mark>	140	0.28	1.7999	0.396	1.8280	0.399	3.0240	0.533	3.0513	0.536	29	
CDT-23	P-100	18/ <mark>21</mark>	105	0.28	1.7999	0.397	1.8280	0.400	3.0240	0.534	3.0512	0.537	28	
363	P-100	18/ <mark>21</mark>	139	0.28	1.8092	0.397	1.8373	0.401	3.0331	0.534	3.0604	0.537	28	
SR_CIP-3	P-100	18/ <mark>21</mark>	763	0.28	1.8092	0.398	1.8373	0.401	3.0326	0.535	3.0599	0.538	28	
311	P-100	18/ <mark>21</mark>	53	0.28	1.8092	0.399	1.8373	0.403	3.0322	0.537	3.0594	0.540	28	
309	P-100	18/ <mark>21</mark>	26	0.28	1.8308	0.402	1.8589	0.405	3.0587	0.538	3.0860	0.541	28	
310	P-100	18/ <mark>21</mark>	325	0.28	1.8497	0.404	1.8777	0.408	3.0763	0.542	3.1036	0.545	27	
CDT-37	P-100	18/ <mark>21</mark>	265	0.28	1.8501	0.397	1.8782	0.400	3.0775	0.525	3.1048	0.528	30	
306	P-100	18/ <mark>21</mark>	166	0.42	2.1117	0.407	2.1397	0.410	3.3851	0.534	3.4123	0.536	28	

Note: Model Diameter in green text represents a 2030 GPUUIS CIP pipe diameter.

¹Hydraulic results are based on existing diameter.

Table 5-5 (Continued): Future Cumulative Condition Model Results – Pre and Post Project

						AD	WF		PWWF				
					Pre-Pr	oject	Post-P	roject	Pre-Pro	ject		Post-Proj	ect
Sewer Main Model ID	CIP ID	Model Diameter (in)	Length (ft)	Slope (%)	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Pipe Capacity Remaining (% of Allowed d/D)
290	P-100	18/ <mark>21</mark>	418	0.30	2.1293	0.434	2.1573	0.438	3.4016	0.569	3.4288	0.572	24
CDT-13	P-100	18/ <mark>21</mark>	121	0.28	2.1293	0.414	2.1573	0.417	3.4015	0.540	3.4287	0.542	28
260	P-100	18/ <mark>21</mark>	341	0.43	2.1297	0.390	2.1578	0.393	3.4026	0.508	3.4298	0.511	32
241	P-100	18/ <mark>21</mark>	364	0.43	2.2066	0.413	2.2347	0.416	3.5189	0.541	3.5462	0.543	28
209	P-100	18/ <mark>21</mark>	509	0.34	2.2104	0.408	2.2384	0.411	3.4999	0.529	3.5272	0.531	29
CDT-17	P-100	18/ <mark>21</mark>	24	0.25	2.2104	0.409	2.2384	0.411	3.4999	0.521	3.5272	0.523	30
CDT-19	P-100	18/ <mark>21</mark>	39	0.65	2.6075	0.405	2.6356	0.407	4.3201	0.559	4.3441	0.562	25
177		30	420	0.10	3.1189	0.406	3.1470	0.408	4.9459	0.526	4.9748	0.527	30
156		30	396	0.14	3.1194	0.403	3.1475	0.405	4.7867	0.518	4.8139	0.520	31
144		30	244	0.10	3.1199	0.417	3.1480	0.419	4.7766	0.541	4.8038	0.543	28
118		30	160	0.18	3.3228	0.464	3.3509	0.466	4.9724	0.591	4.9996	0.593	21
113		30	323	0.03	3.3233	0.462	3.3514	0.464	4.9725	0.589	4.9997	0.591	21
103		30	59	0.34	3.3238	0.458	3.3519	0.460	4.9730	0.585	5.0002	0.587	22
96		30	292	0.10	3.3773	0.524	3.4054	0.526	5.0262	0.644	5.0535	0.646	14
88		30	323	0.03	3.3778	0.456	3.4059	0.458	5.0272	0.566	5.0544	0.568	24
83		21	445	0.44	3.3936	0.478	3.4216	0.481	5.0516	0.614	5.0788	0.616	18
72		21	216	0.76	3.4693	0.424	3.4973	0.426	5.1681	0.533	5.1954	0.535	29
64	P-108	21/ <mark>24</mark>	143	0.78	3.4708	0.463	3.4989	0.465	5.1753	0.570	5.2025	0.572	24

Note: Model Diameter in green text represents a 2030 GPUUIS CIP pipe diameter.

Schaaf & Wheeler CONSULTING CIVIL ENGINEERS

Table 5-5 (Continued): Future Cumulative Condition Model Results – Pre and Post Project

					_	AD	WF				PWWF		
					Pre-Pr	oject	Post-P	roject	Pre-Pro	ject		Post-Proj	ect
Sewer Main Model ID	CIP ID	Model Diameter (in)	Length (ft)	Slope (%)	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Max Flow (MGD)	d/D	Pipe Capacity Remaining (% of Allowed d/D)
60	P-108	21/ <mark>24</mark>	98	0.00	3.4708	0.435	3.4989	0.437	5.1789	0.534	5.2062	0.536	29
58		27	64	1.26	3.4708	0.391	3.4989	0.392	5.1825	0.482	5.2098	0.484	36
56		27	347	0.11	3.4708	0.397	3.4989	0.399	5.1861	0.491	5.2134	0.492	34
50		27	75	1.04	3.4708	0.320	3.4989	0.321	5.1898	0.397	5.2170	0.399	47
45		27	432	0.40	3.4708	0.355	3.4989	0.357	5.1968	0.442	5.2241	0.443	41
19		42	556	0.19	7.4588	0.339	7.4869	0.339	11.6655	0.430	11.6929	0.431	43
21		42	368	0.27	7.459	0.338	7.4869	0.339	11.6686	0.429	11.6960	0.429	43
22		42	450	0.22	7.4588	0.284	7.4869	0.285	11.6719	0.359	11.6993	0.359	52
20		42	86	1.39	7.4588	0.242	7.4869	0.242	11.6755	0.304	11.7029	0.304	59
24		42	200	0.50	7.4588	0.283	7.4869	0.284	11.6791	0.353	11.7065	0.354	53
25		42	338	0.44	7.4588	0.266	7.4869	0.267	11.6828	0.345	11.7101	0.346	54

Note: Model Diameter in green text represents a 2030 GPUUIS CIP pipe diameter.

Schaaf & Wheeler CONSULTING CIVIL ENGINEERS

October 21, 2022 5-10

Table 5-6: Pipes Recommended for Upsizing and Percentage of Contributed Flows

Sewer Main	CIP#	Existing Proposed Diameter Diameter		Total Project Incremental Contribution		Public Storage Incremental Contribution		Alta Housing Incremental Contribution		City of Mountain View Contribution Percentage		
Model ID	CIF#	(in)	(in)	With Project (MGD)	ADWF Flow (MGD)	Percentage of Total Flow (%)	ADWF Flow (MGD)	Percentage of Total Flow (%)	ADWF Flow (MGD)	Percentage of Total Flow (%)	ADWF Flow (MGD)	Percentage of Total Flow (%)
SR_CIP-1	P-100	18	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
SR_CIP-2	P-100	-	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
CDT-29	P-100	-	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
CDT-31	P-100	-	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
CDT-33	P-100	-	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
CDT-35	P-100	-	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
CDT-23	P-100	-	21	1.8280	0.0281	1.54	0.0195	1.07	0.0085	0.47	1.800	98.46
363	P-100	18	21	1.8373	0.0281	1.53	0.0195	1.06	0.0085	0.47	1.809	98.47
SR_CIP-3	P-100	-	21	1.8373	0.0281	1.53	0.0195	1.06	0.0085	0.47	1.809	98.47
311	P-100	18	21	1.8373	0.0281	1.53	0.0195	1.06	0.0085	0.47	1.809	98.47
309	P-100	18	21	1.8589	0.0281	1.51	0.0195	1.05	0.0085	0.46	1.831	98.49
310	P-100	18	21	1.8777	0.0281	1.50	0.0195	1.04	0.0085	0.46	1.850	98.50
CDT-37	P-100	-	21	1.8782	0.0281	1.50	0.0195	1.04	0.0085	0.46	1.850	98.50
306	P-100	18	21	2.1397	0.0281	1.31	0.0195	0.91	0.0085	0.40	2.112	98.69
290	P-100	18	21	2.1573	0.0281	1.30	0.0195	0.90	0.0085	0.40	2.129	98.70
CDT-13	P-100	18	21	2.1573	0.0281	1.30	0.0195	0.90	0.0085	0.40	2.129	98.70
260	P-100	18	21	2.1578	0.0281	1.30	0.0195	0.90	0.0085	0.40	2.130	98.70
241	P-100	18	21	2.2347	0.0281	1.26	0.0195	0.87	0.0085	0.38	2.207	98.74
209	P-100	18	21	2.2384	0.0281	1.25	0.0195	0.87	0.0085	0.38	2.210	98.75
CDT-17	P-100	18	21	2.2384	0.0281	1.25	0.0195	0.87	0.0085	0.38	2.210	98.75
CDT-19	P-100	18	21	2.6356	0.0281	1.07	0.0195	0.74	0.0085	0.32	2.608	98.93

Note: CIP #P-100 conforms to City-provided plans for crossing State Highway 101. CIP does not directly replace existing pipes and therefor existing diameters may not be available for some sections of pipe.

October 21, 2022 5-11

APPENDIX A:

Additional Considered Projects

Table A-1: Additional Considered Projects

	Project	Change Area/Planning Area	Address	Status*
1	Mountain View Co-Housing Community	Central Neighborhood	445 Calderon Ave	Completed
2	Hope Street Investors	Downtown/Evelyn Corridor	231-235 Hope St	Under Construction
3	Downtown Mixed Use Building	Downtown/Evelyn Corridor	605 Castro St	Completed
4	Residential Condominium Project	Downtown/Evelyn Corridor	325, 333, 339 Franklin St	Approved
5	St Joseph's Church	Downtown/Evelyn Corridor	599 Castro St	Completed
6	Bryant/Dana Office	Downtown/Evelyn Corridor	250 Bryant St	Completed
7	Quad/Lovewell	East Whisman	369 N Whisman Rd	Approved but Inactive
8	Renault & Handley	East Whisman	625-685 Clyde Ave	Completed
9	LinkedIn	East Whisman	700 E Middlefield Rd	Completed
10	National Avenue Partners	East Whisman	600 National Ave	Completed
11	2700 West El Camino Real	El Camino Real	2700 El Camino Real W	Completed
12	SummerHill Apt	El Camino Real	2650 El Camino Real W	Completed
13	Alta Housing	El Camino Real	950 West El Camino Real	Completed
14	Lennar Multi-Family Communities	El Camino Real	2268 El Camino Real W	Completed
15	UDR	El Camino Real	1984 El Camino Real W	Completed
16	Residence Inn Gatehouse	El Camino Real	1854 El Camino Real W	Completed
17	Residence Inn	El Camino Real	1740 El Camino Real W	Completed
18	Tropicana Lodge - Prometheus	El Camino Real	1720 El Camino Real W	Completed
19	Austin's - Prometheus	El Camino Real	1616 El Camino Real W	Completed
20	1701 W El Camino Real	El Camino Real	1701 El Camino Real W	Completed
21	First Community Housing	El Camino Real	1585 El Camino Real W	Completed
22	Harv's Car Wash - Regis House	El Camino Real	1101 El Camino Real W	Completed
23	Greystar	El Camino Real	801 El Camino Real W	Completed
24	Medical Building	El Camino Real	412 El Camino Real W	Completed
25	Lennar Apartments	El Camino Real	865 El Camino Real E	Completed

*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

October 21, 2022 A-2

Table A-1: Additional Considered Projects (Continued)

	Project	Change Area/Planning Area	Address	Status*
26	Wonder Years Preschool	El Camino Real	86 El Camino Real	Completed
27	Evelyn Family Apartments	Grant/Sylvan	779 East Evelyn Ave	Completed
28	344 Bryant Ave	Grant/Sylvan	344 Bryant Ave	Under Construction
29	Adachi Project	Grant/Sylvan	1991 Sun Mor Ave	Completed
30	840 E El Camino Real	Grant/Sylvan	840 El Camino Real E	Approved
31	Loop Convenience Store	Grant/Sylvan	790 El Camino Real E	Completed
32	El Camino Real Hospital Campus	Miramonte/Springer	2500 Grant Ave	Completed
33	City Sports	Miramonte/Springer	1040 Grant Ave	Completed
34	Prometheus	Moffett/Whisman	100 Moffett Blvd	Completed
35	Hampton Inn Addition	Moffett/Whisman	390 Moffett Blvd	Completed
36	Calvano Development	Moffett/Whisman	1075 Terra Bella Avenue	Completed
37	Moffett Gateway	Moffett/Whisman	750 Moffett Blvd	Completed
38	Holiday Inn Express	Moffett/Whisman	870 Leong Dr	Approved
39	Warmington Residential	Moffett/Whisman	660 Tyrella Avenue	Completed
40	Dividend Homes	Moffett/Whisman	111 and 123 Fairchild Dr	Completed
41	133-149 Fairchild Dr	Moffett/Whisman	133-149 Fairchild Dr	Completed
42	Warmington Residential	Moffett/Whisman	277 Fairchild Dr	Completed
43	Hetch-Hetchy Property	Moffett/Whisman	450 N Whisman Dr	Completed
44	DeNardi Homes	Moffett/Whisman	186 East Middlefield Road	Under Construction
45	Tripointe Homes	Moffett/Whisman	135 Ada Ave	Completed
46	Tripointe Homes	Moffett/Whisman	129 Ada Ave	Completed
47	Robson Homes	Moffett/Whisman	137 Easy St	Completed
48	167 N Whisman Rd	Moffett/Whisman	167 N Whisman Rd	Completed
49	Antenna Farm (Pacific Dr)	Moffett/Whisman	Pacific Dr	Completed
50	Pulte Homes	Moffett/Whisman	100, 420-430 Ferguson Dr	Completed
51	EFL Development	Moffett/Whisman	500 Ferguson Dr	Completed
52	Shenandoah Square Precise Plan	Moffett/Whisman	500 Moffett Blvd	On Hold

*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

October 21, 2022 A-3

Table A-1: Additional Considered Projects (Continued)

	145	ic A 11 Additional considered i roj	ects (continued)	
	Project	Change Area/Planning Area	Address	Status*
53	1185 Terra Bella Ave	Moffett/Whisman	1185 Terra Bella Ave	Under Review
54	Linde Hydrogen Fueling Station	Moffett/Whisman	830 Leong Dr	Completed
55	Windsor Academy	Monta Loma/Farley/Rock	908 N Rengstorff Ave	Completed
56	D.R. Horton	Monta Loma/Farley/Rock	827 N Rengstorff Ave	Completed
57	ROEM/Eden	Monta Loma/Farley/Rock	819 N Rengstorff Ave	Completed
58	Paul Ryan	Monta Loma/Farley/Rock	858 Sierra Vista Ave	Completed
59	William Lyon Homes	Monta Loma/Farley/Rock	1951 Colony St	Completed
60	Dividend Homes	Monta Loma/Farley/Rock	1958 Rock St	Completed
61	Paul Ryan	Monta Loma/Farley/Rock	2392 Rock St	Completed
62	San Antonio Station	Monta Loma/Farley/Rock	100 & 250 Mayfield Ave	Completed
63	Northpark Apartments	Monta Loma/Farley/Rock	111 N Rengstorff Ave	Completed
64	333 N Rengstorff Ave	Monta Loma/Farley/Rock	333 N Rengstorff Ave	Completed
65	Classic Communities	Monta Loma/Farley/Rock	1946 San Luis Ave	Completed
66	1998-2024 Montecitio Ave	Monta Loma/Farley/Rock	1998-2024 Montecito Ave	Under Construction
67	Classic Communities	Monta Loma/Farley/Rock	647 Sierra Vista Ave	Completed
68	Dividend Homes	Monta Loma/Farley/Rock	1968 Hackett Ave & 208-210 Sierra Vista Ave	Completed
69	California Communities	Monta Loma/Farley/Rock	2025 & 2065 San Luis Ave	Completed
70	2044 and 2054 Montecito Ave	Monta Loma/Farley/Rock	2044 & 2054 Montecito Ave	Completed
71	Shorebreeze Apartments	Monta Loma/Farley/Rock	460 North Shoreline Blvd	Completed
72	Intuit	North Bayshore	2600 Marine Way	Completed
73	Sobrato Organization	North Bayshore	1255 Pear Ave	Approved
74	Charleston East	North Bayshore	2000 North Shoreline Blvd	Under Construction
75	Google and Sywest	North Bayshore	1400 North Shoreline Blvd	On Hold
76	Broadreach	North Bayshore	1625 Plymouth Street	Completed
77	Microsoft	North Bayshore	1045-1085 La Avenida St	Completed
78	Shashi Hotel	North Bayshore	1625 North Shoreline Blvd	Completed
			· · · · · · · · · · · · · · · · · · ·	

*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

Table A-1: Additional Considered Projects (Continued)

	Project	Change Area/Planning Area	Address	Status*
79	Community School of Music and Art	San Antonio	250 San Antonio Circle	Completed
80	Prometheus	San Antonio	400 San Antonio Rd	Completed
81	Octane Fayette	San Antonio	2645 & 2655 Fayette Dr	Approved
82	SA Center Phase III	San Antonio	405 San Antonio Rd	Completed
83	Anton Calega	San Antonio/Rengstorff/ Del Medio	394 Ortega Ave	Completed
84	Barry Swenson Builder	San Antonio/Rengstorff/ Del Medio	1958 Latham St	Approved
85	2296 Mora Drive	San Antonio/Rengstorff/ Del Medio	2296 Mora Dr	Completed
86	St Francis High School	Miramonte/Springer	1885 Miramonte Ave	Approved
87	Franklin	Central/Downtown	325 Franklin Street	Approved
88	756 California St	Central/Downtown	756 California Street	Approved
89	North Shoreline	Moffett/Whisman	1001 North Shorelin Boulevard	Under Construction
90	555 West Middlefield Road	Moffett/Whisman	555 West Middlefield Road	Approved
91	DeNardini	San Antonio	1919-1933 Gamel Way, 574 Escuela Ave	Approved
92	Tyrella	Moffett/Whisman	294-296 Tyrella Avenue	Approved
93	Logue	Moffett/Whisman	400 Logue Avenue	Approved
94	Google Landings	North Bayshore	1860-2159 Landings Dr., 1014-1058 Huff Ave, 900 Alta Avenue, 2000 North Shoreline	Under Construction
95	Phan	Moffett/Whisman	198 Easy Street	Approved

*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

Table A-1: Additional Considered Projects (Continued)

	Project	Change Area/Planning Area	Address	Status*
96	Dana Street	Downtown	676 West Dana Street	Approved
97	Summer Hill	Monta Loma/Farley/Rock	1555 West Middlefield Road	Under Construction
98	Ambrosio	El Camino Real	855-1023 West El Camino Real	Under Construction
99	BPR	El Camino Real	2300 West El Camino Real	Approved
100	Dutchints	San Antonio	570 South Rengstorff Avenue	Approved
101	Ambra	Monta Loma/Farley/Rock	901-987 N. Rengstorff Avenue	Under Review
102	Hylan	Monta Loma/Farley/Rock	410-414 Sierra Vista Avenue	Under Construction
103	Maston	Miramonte/Springer	982 Bonita Avenue	Under Construction
104	McKim	Monta Loma/Farley/Rock	2019 Leghorn Street	Under Construction
105	Sand Hill	Moffett/Whisman	189 North Bernardo Avenue	Under Review
106	Maston	El Camino Real	1313 and 1347 West El Camino Real	Approved
107	Anderson	El Camino Real	601 Escuela Ave and 1873 Latham Street	Approved
108	SummerHill	Moffett/Whisman	355-418 E Middlefield Road	Under Review
109	Prometheus	Monta Loma/Farley/Rock	1950 Montecito Avenue	Complete
110	Dividend Homes	Monta Loma/Farley/Rock	2310 Rock Street	Under Construction
111	Insight Realty	Downtown	701 W. Evelyn Avenue	Under Review
112	Prometheus	Downtown	1720 Villa Street	Under Construction
113	Fortbay	Moffett/Whisman	777 West Middlefield Road	Under Construction

*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

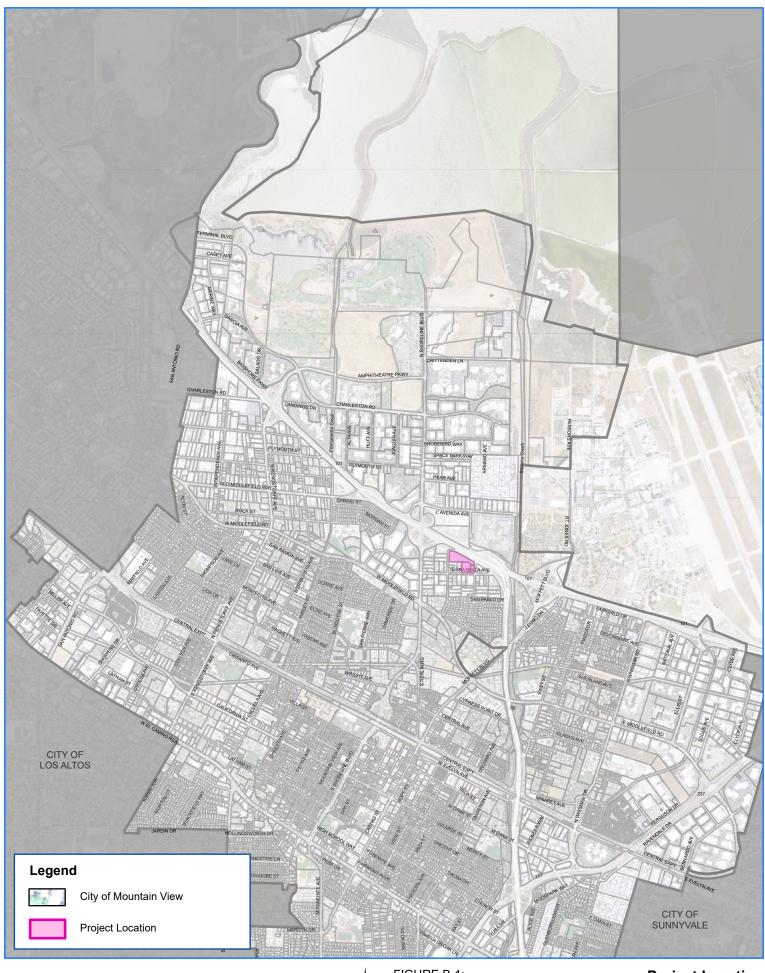
Table A-1: Additional Considered Projects (Continued)

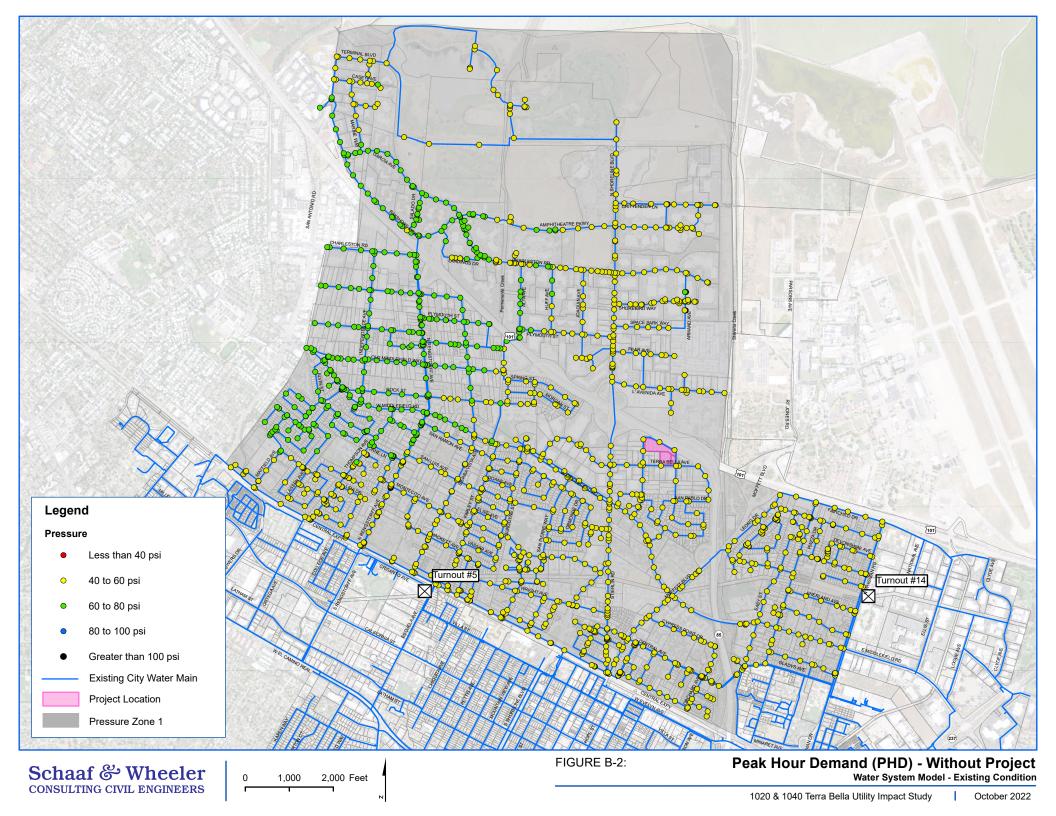
	Project	Change Area/Planning	Address	Status*
	<u> </u>	Area		
114	Prometheus Real estate	Moffett/Whisman	759 W. Middlefield Road	Completed
115	Green Company	Downtown	Hope Street Lots 4 & 8	Approved
116	Dividend Homes	Monta	2005 Rock Street	Completed
		Loma/Farley/Rock		
117	Classic Communities	Monta	315 & 319 Sierra Vista	Completed
		Loma/Farley/Rock		
118	SummerHill	Downtown	257-279 Calderon Ave	Completed
119	SummerHill	Moffett/Whisman	535 and 555 Walker Drive	Completed
120	Google	-	Nasa Research Park	Under Construction
121	Renault & Handly	Moffett/Whisman	580-620 Clyde Avenue	Completed
122	Flower Mart	Grant Sylvan Park	525 East Evelyn Ave	Under Construction
123	Greystar	San Antonio	2580 and 2590 California St /	Under Construction
	Greystar	Jan Antonio	201 San Antonia Circle	onder construction
124	Eden Housing	North Bayshore	1100 La Avenida St	Approved
125	DeNardi	Miramonte/Springer	773 Cuesta Dr	Approved
126	Legend Colony	Monta Loma/	828 & 836 Sierra Vista Avenue	Approved
	2585.10. 5515.11	Farley/Rock		7.66.01.00
127		•		
	Jason Kim Lee	San Antonio	1958 Latham St	Approved
128	Jason Kim Lee Colony Sierra Homes	•	1958 Latham St 851-853 Sierra Vista Ave	Approved Under Construction
128 129		San Antonio		• •
	Colony Sierra Homes	San Antonio Moffett/Whisman	851-853 Sierra Vista Ave	Under Construction
129	Colony Sierra Homes Lux Largo	San Antonio Moffett/Whisman El Camino Real	851-853 Sierra Vista Ave 1411-1495 West El Camino	Under Construction Approved
129 130	Colony Sierra Homes Lux Largo Sobrato	San Antonio Moffett/Whisman El Camino Real Moffett/Whisman	851-853 Sierra Vista Ave 1411-1495 West El Camino 600 Ellis St	Under Construction Approved Approved
129 130 131	Colony Sierra Homes Lux Largo Sobrato Zachary Trailer	San Antonio Moffett/Whisman El Camino Real Moffett/Whisman Moffett/Whisman	851-853 Sierra Vista Ave 1411-1495 West El Camino 600 Ellis St 730 Central Ave	Under Construction Approved Approved Under Review
129 130 131 132	Colony Sierra Homes Lux Largo Sobrato Zachary Trailer 870 E El Camino Real	San Antonio Moffett/Whisman El Camino Real Moffett/Whisman Moffett/Whisman El Camino Real	851-853 Sierra Vista Ave 1411-1495 West El Camino 600 Ellis St 730 Central Ave 870 E El Camino Real	Under Construction Approved Approved Under Review Under Review
129 130 131 132 133	Colony Sierra Homes Lux Largo Sobrato Zachary Trailer 870 E El Camino Real 590 Castro St	San Antonio Moffett/Whisman El Camino Real Moffett/Whisman Moffett/Whisman El Camino Real Central/Downtown	851-853 Sierra Vista Ave 1411-1495 West El Camino 600 Ellis St 730 Central Ave 870 E El Camino Real 590 Castro Street	Under Construction Approved Approved Under Review Under Review Under Review
129 130 131 132 133 134	Colony Sierra Homes Lux Largo Sobrato Zachary Trailer 870 E El Camino Real 590 Castro St 301 E Evelyn Ave	San Antonio Moffett/Whisman El Camino Real Moffett/Whisman Moffett/Whisman El Camino Real Central/Downtown Grant/Sylvan Park	851-853 Sierra Vista Ave 1411-1495 West El Camino 600 Ellis St 730 Central Ave 870 E El Camino Real 590 Castro Street 301 E Evelyn Ave	Under Construction Approved Approved Under Review Under Review Under Review Under Review Under Review Under Review

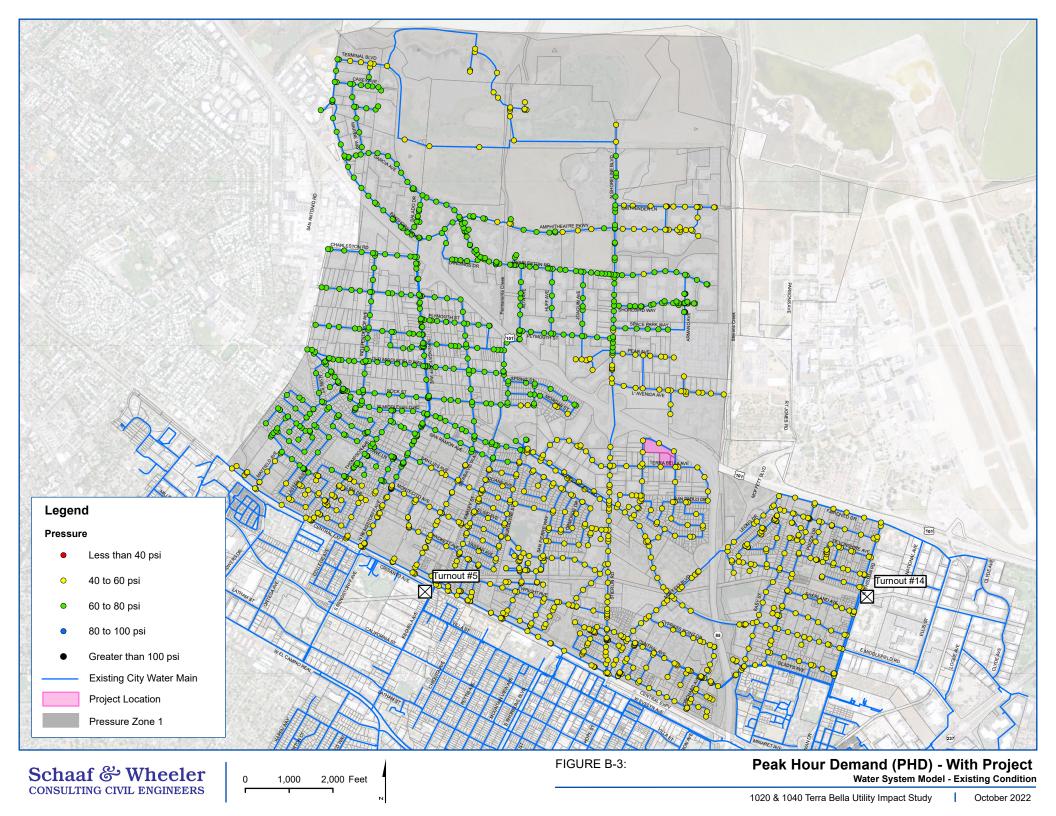
*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

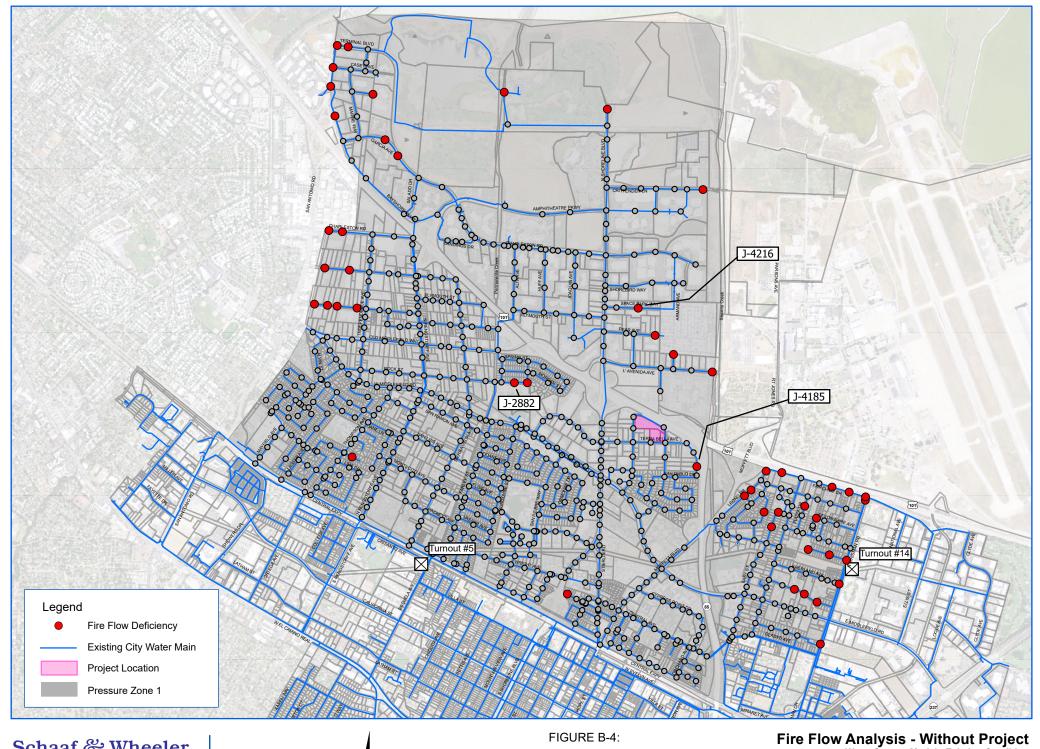
Schaaf & Wheeler CONSULTING CIVIL ENGINEERS

Table A-1: Additional Considered Projects (Continued)

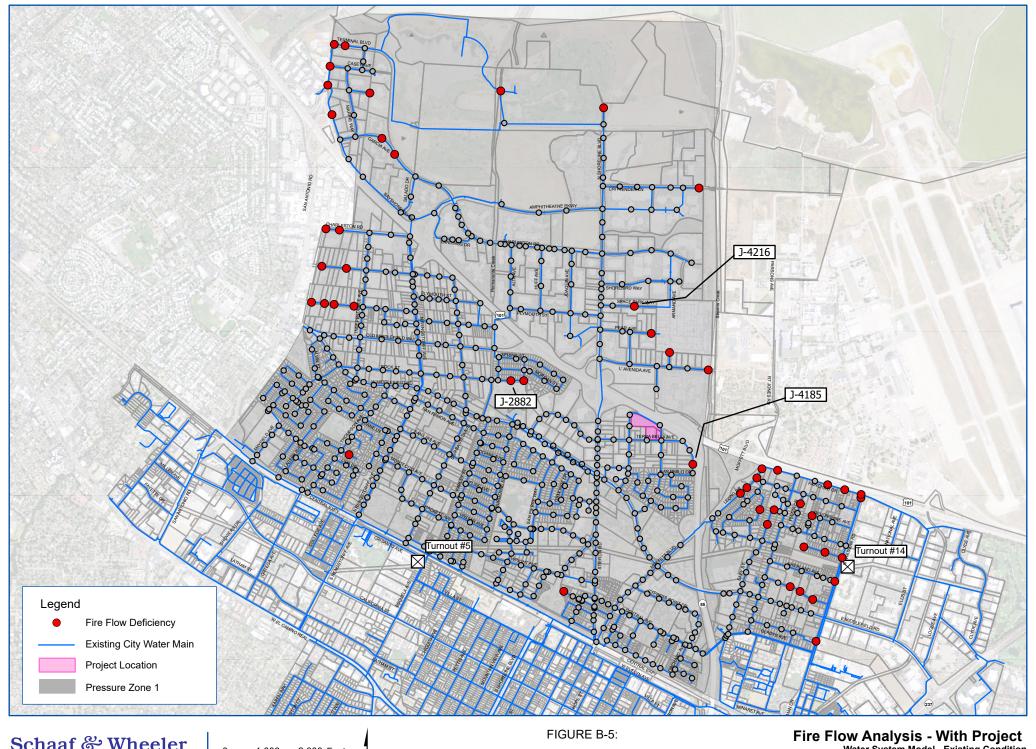

	Project	Change Area/Planning	Address	Status*
		Area		
138	1265 Montecito Ave	Monta Loma	1265 Montecito Ave	Under Review
139	Middlefield Park Master Plan	East Whisman	500 E Middlefield Rd	Under Review
140	North Bayshore Master Plan	North Bayshore	1393 Shorebird Way	Under Review
141	1265 Montecito Ave	Monta Loma/	1265 Montecito Ave	Under Review
		Farley/Rock		
142	747 West Dana Street	Central/Downtown	747 West Dana Street	Approved
143	705 West Dana Street	Central/Downtown	705 West Dana Street	Under Review
144	Senior Care Facility	Miramonte/Springer	1057, 1059, 1061 El Monte Ave	Approved
145	City Lot 12	Central/Downtown	City Lot 12	Approved
146	1020, 1040 Terra Bella Ave	Moffett/Whisman	1020, 1040 Terra Bella Ave	Under Review
147	918 Rich Ave	Miramonte / Sprinter	918 Rich Ave	Under Review
148	320 Logue Ave	Moffett/Whisman	320 Logue Ave	Under Review
149	500 & 550 Ellis Street	Moffett/Whisman	500 & 550 Ellis Street	Under Review

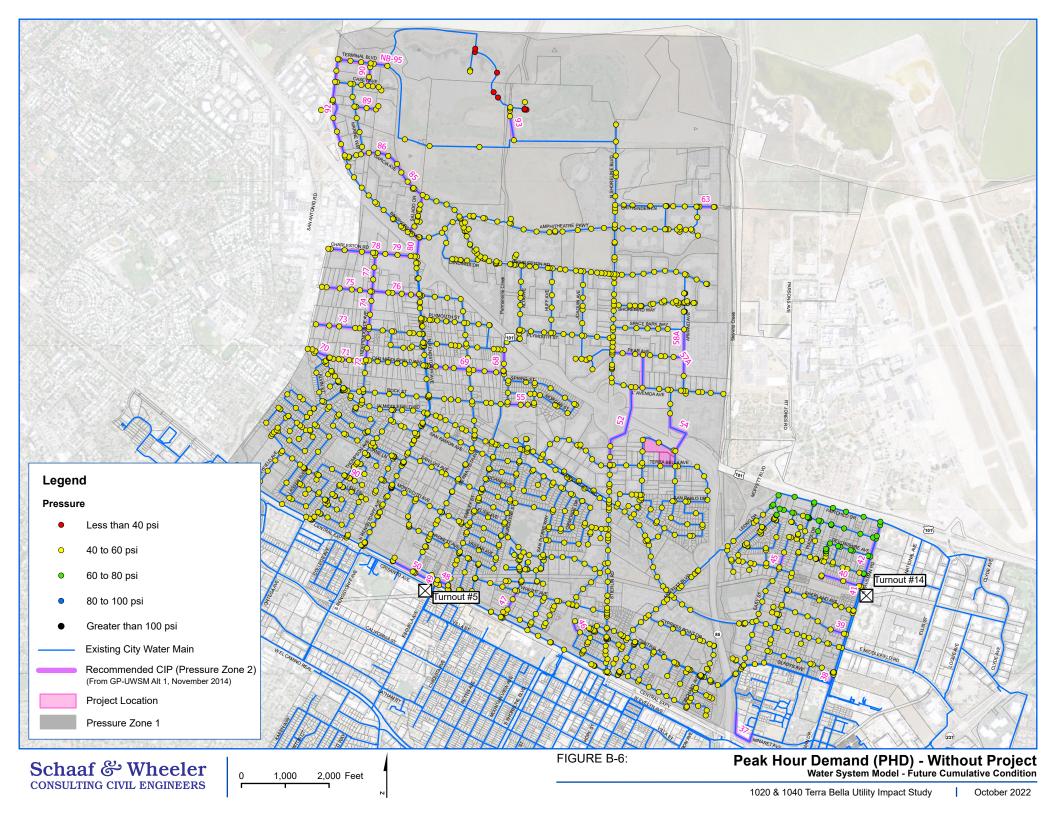

*Source: City of Mountain View Planning Division Current Project List (City of Mountain View, June 2022)

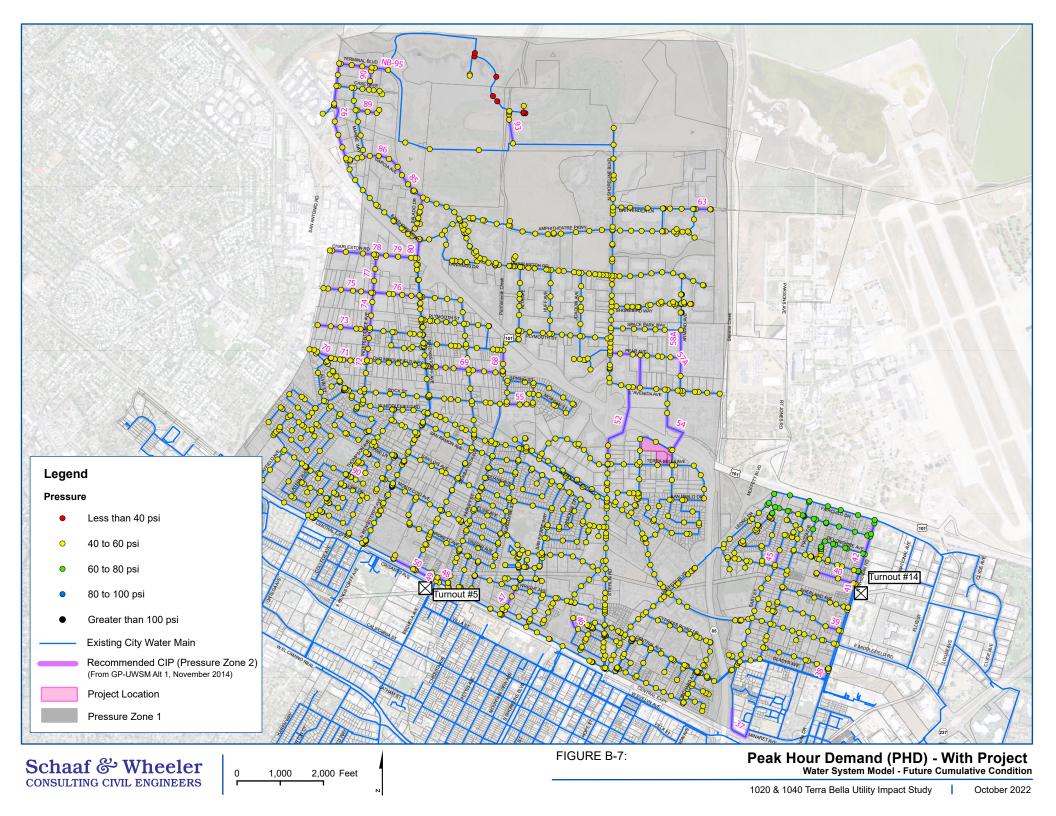


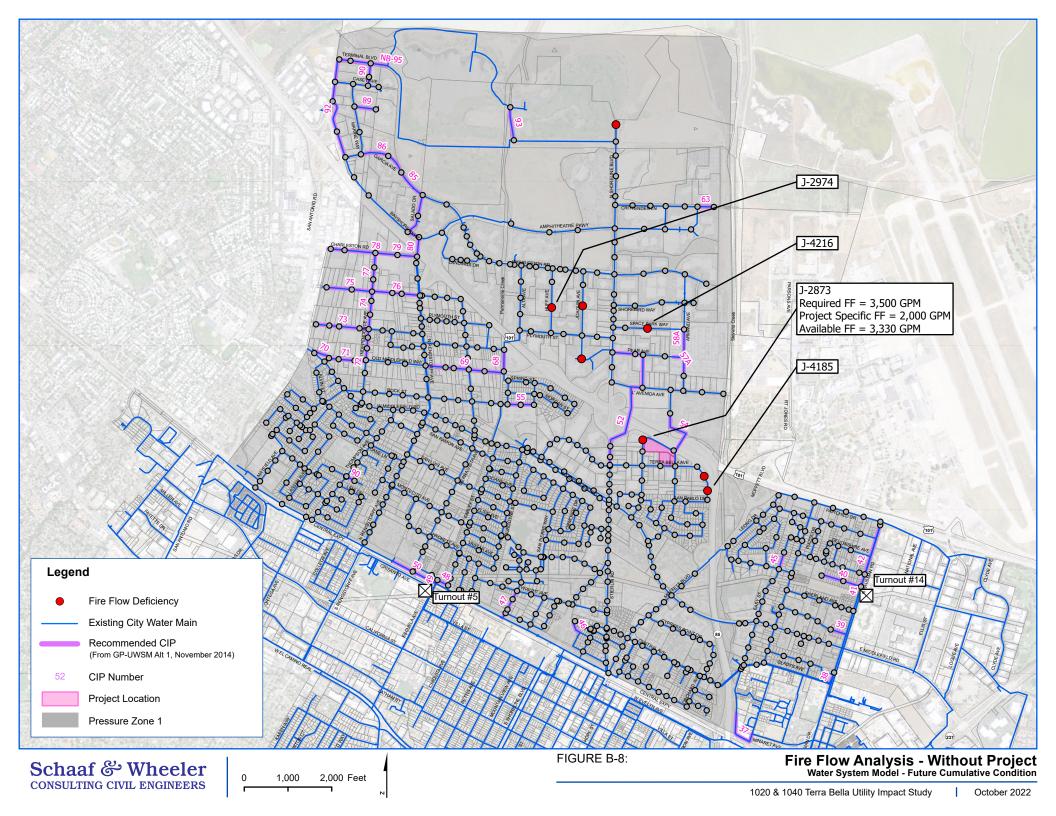

APPENDIX B:

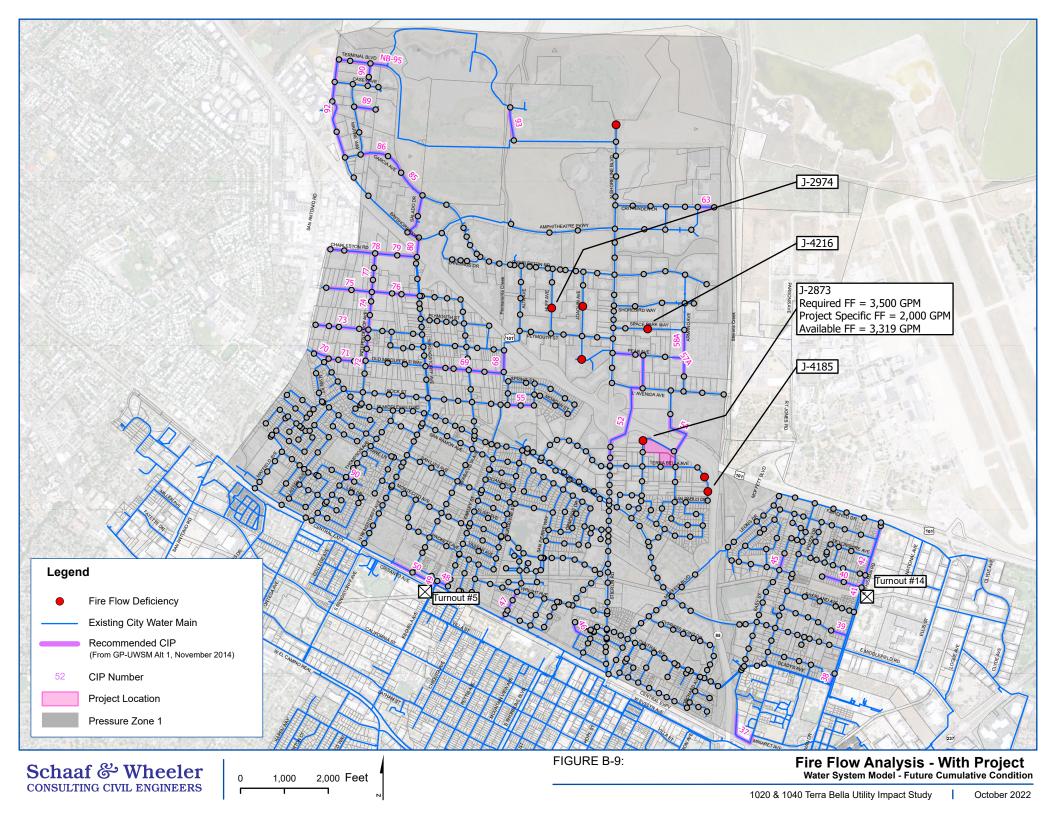
Figures










Fire Flow Analysis - Without Project
Water System Model - Existing Condition

