

Appendix H-1

Focused Traffic Impact Analysis Report,
Abbey Lane Industrial Development
David Evans and Associates
March 17, 2022

FOCUSED TRAFFIC IMPACT ANALYSIS REPORT

LOS ANGELES

201 S. Figueroa St, Suite 240 Los Angeles, CA 90012 213.337.3680 Fax:213.337.3679

ONTARIO

4141 E. Inland Empire Blvd Suite 250 Ontario, CA 91764 909.481.5750 Fav:909.481.5757

SAN DIEGO

3530 Camino Del Rio North Suite 105 San Diego, CA 92108 619.400.0600

SANTA CLARITA

25152 Springfield Ct, Suite 350 Santa Clarita, CA 91355 661.284.7400 Fax 661.284.7401

TEMECULA

41951 Remington Ave, Suite 220 Temecula, CA 92590 951.294.9300 Fax: 951.294-9301

TUSTIN

17782 17th St, Suite 200 Tustin, CA 92780 714.665.4500 Fax: 714.665.4501

VICTORVILLE

18484 Outer Highway 18 North, Suite 225 Apple Valley, CA 92307 760.524.9100 Fax 760.524.9101

www.deainc

ABBEY LANE INDUSTRIAL DEVELOPMENT

VICTORVILLE, CALIFORNIA

Prepared by:

FINAL REPORT August 9, 2022 ADDENDUM April 25, 2022

August 9, 2022 Job No. MOAI0000-0001

Mr. Robert A. Martinez Architect, AIA, CASp, CASI Martinez + Okamoto Architects, Inc. 15487 Seneca Road, Suite 203 Victorville, CA. 92392

RE: FINAL FOCUSED TRAFFIC IMPACT ANALYSIS OF THE ABBEY LANE INDUSTRIAL DEVELOPMENT LOCATED AT STODDARD WELLS ROAD / ABBEY LANE IN VICTORVILLE, CALIFORNIA

Dear Mr. Martinez,

David Evans and Associates, Inc. is pleased to submit this Final Focused Traffic Impact Analysis Report (TIA) for your proposed Abbey Lane Industrial Development project in the City of Victorville. The project is located on the southwest corner of Stoddard Wells Road at Abbey Lane and consists of an industrial building.

This final report is comprised of two documents:

- 1) The **Draft Final Focused Traffic Impact Analysis Report (TIA)** dated August 9, 2022, incorporating the City of Victorville's comments received on the same day. Responses to the comments were integrated into the draft final report and consist of correcting typographic errors and summarizing the VMT screening analysis in the report's executive summary chapter.
- 2) An Addendum to the Draft Focused Traffic Impact Analysis Report (TIA) dated April 25, 2022. The addendum was prepared in response to a relatively small change to the project's site plan resulting in a 3,180 square foot increase in the size of the building. The addendum shows that the trips generated by the change in building size are negligible and would not change the findings and recommendations of the study if it were redone to incorporate the change.

Combined, these two documents represent the **Final Focused Traffic Impact Analysis Report (TIA)**. The documents are organized in a reverse chronological order with the addendum presented first, followed by the draft final report.

If you have any questions or comments, please feel free to contact me at 909-912-7304.

Respectfully submitted,

DAVID EVANS AND ASSOCIATES, INC.

James M. Daisa, P.E.

Senior Transportation Project Manager / Associate

Addendum to the Draft Focused Traffic Impact Analysis Report

April 25, 2022 Job No. MOAI0000-0001

Mr. Robert A. Martinez Architect, AIA, CASp, CASI Martinez + Okamoto Architects, Inc. 15487 Seneca Road, Suite 203 Victorville, CA. 92392

RE: ADDENDUM TO DRAFT FOCUSED TRAFFIC IMPACT ANALYSIS OF THE ABBEY LANE INDUSTRIAL

DEVELOPMENT LOCATED AT STODDARD WELLS ROAD / ABBEY LANE IN VICTORVILLE,

CALIFORNIA

Dear Mr. Martinez,

David Evans and Associates, Inc. (DEA) has prepared this addendum to the March 17, 2022, Draft Focused Traffic Impact Analysis Report (TIA) for your proposed Abbey Lane Industrial Development project in the City of Victorville. This addendum is in response to a site plan modification that occurred after the completion of the Draft TIA. While the site plan modification resulted in a small increase in the floor area of the proposed warehouse development, DEA does not believe the incremental increase would affect the findings and recommendations of the draft TIA and prepared this addendum to quantitatively address the increase in trip generation and qualitatively address its potential impacts.

Site Plan Modification Related to Trip Generation

The change to the site plan used in preparing the Draft TIA of interest to this addendum modifies the parking area located on the south side of the proposed warehouse building which allows an extension of the building to slightly increase the project's floor area. On a gross floor area (GSF) basis the modification increases the warehouse (and mezzanines) from the 823,980 square feet analyzed in the Draft TIA to 827,160 square feet, an increase of 3,180 square feet.

Increase in Trip Generation

Table 1 presents the trip generation and conversion to Passenger Car Equivalents (PCEs) consistent with the trip generation presented in the Draft TIA. The increase in 3,180 square feet of High-Cube Fulfillment Center Warehouse results in the addition of 20 daily trips, 3 AM peak hour trips, and 4 PM peak hour trips, the majority of which are passenger cars.

When converted to Passenger Car Equivalents (PCEs) the trip generation results in an additional 16 passenger cars and 11 trucks daily. In the AM peak hour, conversion to PCEs equals an additional 2 passenger cars, one 3-axle truck, and one 4-axle truck. In the PM peak hour, conversion to PCEs equals an additional 3 passenger cars, and one each of 2-axle, 3-axle, 4-axle trucks.

Effect of Additional Trips on Draft TIA Findings and Recommendations

In summary, the additional peak hour passenger cars and trucks generated by the increase in project floor area has a negligible impact of the study's findings and recommendations. Under the worst-case conditions (Future (Year 2034) + Project Conditions), the study intersections at Stoddard Wells Road / Abbey Lane and Stoddard Wells Road / Project Driveway "A" operate at LOS B or better in both peak hours with afternoon delays nearing the threshold of LOS C (an average of 15 seconds per vehicle). Even if the additional traffic from the 3,180 square foot increase did cause the level of service at the study intersections to exceed the LOS B/C threshold, both study intersections would operate more than one level of service grade below the City of Victorville's LOS D standard.

Table 1: Trip Generation Estimate of Incremental Increase in Project Floor Area

Use	Size/ Quantity	' Daily AM Peak Hour		PM Peak Hour		our			
High-Cube Fulfillment Center Warehouse - Sort Land Use Category (ITE 155)									
Per 1,000 Sq. Ft. GLA	2.400	6.44	0.17	0.87	0.47	0.73	1.20		
Trips	3,180	20	2	1	3	1	2	4	
	Mode Share	Total	Project	Trip Ge	neratio	n by Vel	nicle Typ	ре	
Passenger Cars (Percent of Total)	79.57%	16	2	0	2	1	2	3	
2-Axle Trucks (Percent of Total)	3.46%	1	0	0	0	0	0	0	
3-Axle Trucks (Percent of Total)	4.64%	1	0	0	0	0	0	0	
4-Axle Trucks (Percent of Total)	12.33%	3	0	0	0	0	0	0	
Total		20	2	1	3	1	2	4	
	PCE Factor	Total	Project	•	neratior Ients (P		enger C	ar	
Passenger Cars)	1	16	2	0	2	1	2	3	
2-Axle Trucks	1.5	1	0	0	0	0	0	0	
3-Axle Trucks (Percent of Total)	2	2	0	0	1	1	1	1	
4-Axle Trucks (Percent of Total)	3	8	1	0	1	1	1	1	
Total		27	3	1	4	2	3	6	

Notes:

Some totals may not equal the sum of the individual values due to rounding.

KSF = Thousands of Square Feet.

AM / PM Peak Hour of Adjacent Street Traffic = Trip generation coinciding with the highest hourly volumes of traffic on the adjacent streets during the AM (7:00 AM and 9:00 AM) and PM (4:00 PM and 6:00 PM) commuter peak periods.

Source of trip generation rates: Institute of Transportation Engineers (ITE) Trip Generation (11th Edition). Average rates for land use category 155 (High-Cube Fulfillment Center Warehouse - Sort).

Source of passenger car / truck mode share (percentage of total): Fontana Truck Trip Generation Study for Heavy Warehouse Uses (August 2003). Passenger Car Equivalents (PCE) factors: Industry standard values utilized in neighboring jurisdictions.

Further, since the Future + Project intersection queuing analysis in the Draft TIA indicates the project would utilize less than half of the proposed northbound left turn lane storage at both study intersections, the additional peak hour passenger cars and trucks generated by the increase in project floor area would have a negligible affect on the project's queuing and the proposed left turn storage.

Conclusion

DEA concludes that the additional traffic generated by the small increase in the project's floor area (3,180 square feet) does not change the findings or recommendations of the March 17, 2022, Draft Focused Traffic Impact Analysis Report prepared for the Abbey Lane Industrial Development.

If you have any questions or comments, please feel free to contact me at 909-912-7304.

Respectfully submitted,

DAVID EVANS AND ASSOCIATES, INC.

James M. Daisa, P.E.

Senior Transportation Project Manager / Associate

Draft Final Focused Traffic Impact Analysis Report

August 9, 2022 Job No. MOAl0000-0001

Mr. Robert A. Martinez Architect, AIA, CASp, CASI Martinez + Okamoto Architects, Inc. 15487 Seneca Road, Suite 203 Victorville, CA. 92392

RE: FOCUSED TRAFFIC IMPACT ANALYSIS OF THE ABBEY LANE INDUSTRIAL DEVELOPMENT LOCATED AT STODDARD WELLS ROAD / ABBEY LANE IN VICTORVILLE, CALIFORNIA

Dear Mr. Martinez,

David Evans and Associates, Inc. is pleased to submit this Focused Traffic Impact Analysis Report (TIA) for your proposed Abbey Lane Industrial Development project in the City of Victorville. The project is located on the southwest corner of Stoddard Wells Road at Abbey Lane and consists of an industrial building.

The study documented in this report evaluates the potential traffic impacts of the project and recommends roadway improvements to provide access to the project and to maintain the City's level of service policy. This study was prepared in accordance with the City of Victorville's Guidelines for Conducting Traffic Studies and Determination of Intersection Level of Service and Improvement Needs (January 2005) and Resolution No.20-031 adopting local guidelines for vehicle miles traveled (VMT) and thresholds of significance for purposes of analyzing transportation impacts under the California Environmental Quality Act (CEQA) (May 2020). The study's scope of work was approved by City staff as required in the referenced guidelines.

This study incorporated the City's Engineering Department comments on the Focused Traffic Study Scope and Vehicle Miles Traveled (VMT) Screening (December 29, 2021) received January 25, 2022.

If you have any questions or comments, please feel free to contact me at 909-912-7304.

Respectfully submitted,

David Evans and Associates, Inc.

James M. Daisa, P.E.

Senior Transportation Project Manager / Associate

TABLE OF CONTENTS

1	EXECUTIVE SUMMARY	6
	1.1 Project Description	6
	1.2 City of Victorville Level of Service Standard	6
	1.3 Proposed Project-Specific Access, Roadway, and Off-Site Intersection Improvements	6
	1.4 Level of Service Comparison With and Without the Proposed Project	7
	1.4.1 Determination of Project-Specific Impacts	7
	1.5 Vehicle Miles Traveled (VMT) Screening	8
2		
	2.1 Scenario Definitions	9
3		
	3.1 Existing Street System	
	3.2 Site Access and Study Intersections	
	3.3 Existing Traffic Volumes	
	3.4 Capacity Analysis Methodology	
	3.5 Current City Policy on Intersection Performance	
	3.6 Existing Traffic Analysis	
	3.6.1 Existing Traffic Signal Warrant Analysis	
	3.6.2 Existing Traffic Queuing Analysis	
4		
	4.1 Site Access and Project-Specific Roadway Improvements	
	4.2 Project Trip Generation	
	4.3 Project Trip Distribution and Assignment	
	4.4 Existing Plus Project Traffic Analysis	
	4.4.1 Existing Plus Project Traffic Signal Warrant Analysis	
	4.4.2 Existing Plus Project Traffic Queuing Analysis	
5	,	
	5.1 Ambient Growth Projections	
	5.2 Background Traffic Analysis	
	5.2.1 Background Traffic Signal Warrant Analysis	
	5.2.2 Background Traffic Queuing Analysis	
6		
	6.1 Project Traffic Analysis	
	6.1.1 Project Traffic Signal Warrant Analysis	
	6.1.2 Project Traffic Queuing Analysis	
7	,	
	7.1 Future Traffic Analysis	
	7.1.1 Future Traffic Signal Warrant Analysis	
_	7.1.2 Future Traffic Queuing Analysis	
8	,	
	8.1 Future Plus Project Traffic Analysis	
	8.1.1 Future Plus Project Conditions Traffic Signal Warrant Analysis	
_	8.1.2 Future Traffic Queuing Analysis	
q	APPENDICES	35

TABLE OF FIGURES

Figure 1: Vicinity Map	
Figure 2: Site Plan	10
Figure 3: Existing Traffic PCE Volumes	12
Figure 4: Existing Condition Intersection Geometrics	15
Figure 5: Auto Project Trip Distribution	20
Figure 6: Truck Project Trip Distribution	21
Figure 7: Auto Project Trips	22
Figure 8: Truck PCE Project Trips	23
Figure 9: Total PCE Project Trips	24
Figure 10: Existing plus Project Traffic PCE Volumes	25
Figure 11: Existing plus Project Intersection Geometrics	26
Figure 12: Background Traffic PCE Volumes	28
Figure 13: Project Traffic PCE Volumes	30
Figure 14: Future Traffic PCE Volumes	32
Figure 15: Future Plus Project Traffic PCE Volumes	35
TABLE OF TABLES	
Table 1-1: Comparison of Existing and Existing + Project Intersection Levels of Service	6
Table 1-2: Comparison of Background and Project Intersection Level of Service	7
Table 1-3: Comparison of Future and Future + Project Intersection Level of Service	
Table 3-1: HCM 6 – LOS Criteria for TWSC	13
Table 3-2: Intersection Capacity Analysis – Existing Conditions	14
Table 3-3: Queuing Analysis – Existing Conditions	14
Table 4-1: Project Trip Generation	17
Table 4-2: Intersection Capacity Analysis – Existing Plus Project Conditions	18
Table 4-3: Queuing Analysis – Existing Plus Project Conditions	19
Table 5-1: Intersection Capacity Analysis – Background Conditions	27
Table 5-2: Queuing Analysis – Background Conditions	27
Table 6-1: Intersection Capacity Analysis – Project Conditions	29
Table 6-2: Queuing Analysis – Project Conditions	29
Table 7-1: Intersection Capacity Analysis – Future Conditions (Year 2034)	31
Table 7-2: Queuing Analysis – Future Conditions	
Table 8-1: Intersection Capacity Analysis – Future Plus Project Conditions (Year 2034)	33
Table 8-2: Queuing Analysis – Future Plus Project Conditions	

APPENDICES

Appendix A: Turn Movement Count Volumes

Appendix B: Intersection Capacity Analysis Calculations

Appendix C: Traffic Signal Warrant Worksheet

Appendix D: Queuing Analysis

1 EXECUTIVE SUMMARY

This executive summary presents the findings and recommendations of this study.

1.1 Project Description

The proposed project is on a 39.83-acre site located in the southwest corner of southwest corner of Stoddard Wells Road at Abbey Lane in the City of Victorville. The site is zoned as Light Industrial (M1). The project proposes to construct an industrial building comprised of 823,980 gross square feet of floor area.

Access to the site is proposed via three driveways. On Stoddard Wells Road, a full access driveway is proposed approximately 950-feet south of Abbey Lane (measured from centerline to centerline), this Driveway "A" will be the only access point for truck traffic. On Abbey Lane, two full access driveways are proposed approximately 250-feet and 1,275-feet west of Stoddard Wells Road (measured from centerline to centerline).

1.2 City of Victorville Level of Service Standard

The city's peak hour level of service standard is LOS D. An intersection found to operate at a LOS E with an Intersection Capacity Utilization (ICU) value greater than 0.95 or Highway Capacity Manual (HCM) delay worse than LOS D (i.e., LOS E or F) is considered deficient.

If a development project would worsen the peak hour level of service to a LOS E or LOS F, it is considered an impact that requires improvement to return the level of service to pre-project conditions. If a development project would worsen the level of service at an already deficient intersection by two percent or more, it is considered a significant impact that requires improvement to return the level of service to pre-project conditions.

1.3 Proposed Project-Specific Access, Roadway, and Off-Site Intersection Improvements

The project includes right-of-way dedication on its Stoddard Wells Road and Abbey Lane frontages to meet city cross-section standards for each road's functional classification and access driveways including turning lanes as needed to safely accommodate entering traffic.

The proposed improvements would be constructed concurrently with the project, and the analysis of project conditions assumes the improvements in place at off-site intersections and site access driveways.

The proposed project-specific access, roadway, and off-site intersection improvements are described below.

Project Access

Primary access to the site (for trucks) is proposed via a driveway along Stoddard Wells Road. The proposed Stoddard Wells Road driveway includes:

- A full access driveway is proposed at Project Driveway "A" on Stoddard Wells Road located about 950 feet south of Abbey Lane. This Driveway "A" will provide the only access point for truck traffic.
 - Proposed improvements to Stoddard Wells Road include striping a northbound left turn lane into the Project Driveway "A".

Secondary access to the site (for passenger cars) is proposed vis two driveways on Abbey Lane. These driveways are located approximately 250 feet, and 1,275 feet, west of Stoddard Wells Road respectively. These driveways are not included in the level of service analysis.

Project-Specific Roadway Improvements

 Frontage Improvements on Stoddard Wells Road. The project will be conditioned to improve its frontage along Stoddard Wells Road. The project proposes to dedicate the necessary right-of-way and construct the following improvements:

- a. Dedicate the right-of-way to accommodate the half-width of the 98-foot right-of-way for a designated arterial (49-feet) per the city's Standard Drawings for Public Improvements (Standard S-21 Street Geometric Cross-Sections).
- b. Construct curb/gutter, sidewalk, planting strips, and pavement along the project's frontage per city standards.
- c. Construct the Stoddard Wells Road driveway at the location specified on the site plan per the city's commercial/industrial driveway standards.
- d. Stripe a northbound left turn lane on Stoddard Wells Road to Project Driveway "A", approximately 200 feet in length plus a 120-foot-long transition.
- 2. Frontage Improvements on Abbey Lane. The project will be conditioned to improve its frontage along Abbey Lane. The project proposes to dedicate the necessary right-of-way and construct the following improvements:
 - Dedicate the right-of-way to accommodate the half-width of the 60-foot right-of-way for a local street (30-feet) per the city's Standard Drawings for Public Improvements (Standard S-21 Street Geometric Cross-Sections)
 - b. Construct curb/gutter, sidewalk, planting strips, and pavement along the project's frontage per city standards.
 - c. Construct both Abbey Lane driveways at locations specified on the site plan per the city's commercial driveway standards.

1.4 Level of Service Comparison With and Without the Proposed Project

1.4.1 Determination of Project-Specific Impacts

A comparison of level of service between existing and existing plus project conditions is used to identify impacts that are solely caused by the project and for which the project is responsible for mitigating. These two scenarios exclude any estimated traffic from planned and approved, but not yet built, developments allowing for an unadulterated assessment of project impacts.

Table 1-1 compares existing and existing plus project conditions (see Chapters 3 and 4) weekday peak hour level of service at the study intersections. The intersections operate at a LOS B or better for the worst movement from each stop-controlled intersection during the peak hours with the project.

Table 1-1: Comparison of Existing and Existing + Project Intersection Levels of Service

	Intersection	rsection Existing Conditions				Existing + Project Conditions				
Intersection	Control	AM P	AM Peak		PM Peak		AM Peak		eak	
	Type	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	
1. Stoddard Wells Road / Abbey	SSSC	8.9	Α	8.9	Α	11.4	В	14.2	В	
Lane	3330	0.5	^	0.5	^	11.4	В	14.2		
2. Stoddard Wells Road / Project	SSSC		N/A			9.4	Α	14.8	В	
Driveway "A"	3330					J. 4	_ ^	17.0		

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS - Level of Service

Table 1-2 compares the background and project conditions weekday peak hour background plus project level of service at the study intersections. Background conditions represent the project's opening year of 2024 and includes growth in ambient traffic from regional and local development equaling 3.5 percent

annually. In this year 2024 scenario, the intersections would operate at a LOS B or better during the peak hours with the project.

Table 1-2: Comparison of Background and Project Intersection Level of Service

	lusta va a ati a va	Back	ground	l Conditi	ons	Project Conditions			
Intersection	Intersection Control Type	AM Peak		PM Peak		AM Peak		PM P	eak
	Control Type	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey	SSSC	8.9	Α	8.9	Α	11.5	В	14.4	В
Lane	3330	0.5	A	6.5	А	11.5	Б	14.4	Ь
2. Stoddard Wells Road /	SSSC/Driveway	N/A				9.4	Α	14.9	В
Project Driveway "A"	555C/Dilveway		IN	^^		J. 4	_ ^	14.5	ם

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

Table 1-3 compares the future and future plus project conditions weekday peak hour level of service at the study intersections. Future conditions represent the horizon year of 2034 and includes growth in ambient traffic from regional and local development equaling 3.5 percent annually. In this year 2034 scenario, the intersections would operate at a LOS B or better during the peak hours with the project.

Table 1-3: Comparison of Future and Future + Project Intersection Level of Service

	Intersection	Future Conditions				Future + Project Conditions			
Intersection	Intersection Control Type	AM Peak		PM Peak		AM Peak		PM Peak	
	Control Type	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey Lane	SSSC	9.0	Α	9.1	Α	11.5	В	14.4	В
2. Stoddard Wells Road / Project Driveway "A"	SSSC/Driveway	N,		N/A		9.4	Α	14.9	В

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS - Level of Service

1.5 Vehicle Miles Traveled (VMT) Screening

The City of Victorville's Vehicle Miles Traveled (VMT) Analysis Guidelines adopted by the City in June of 2020 in conformance with SB 743 provides a list of specific land uses types and a maximum size threshold in terms of dwelling units for residential projects and floor area for non-residential projects. The listed types of land uses are deemed too small to cause a significant increase in VMT or they are considered "locally-serving" types of land uses that reduce VMT by providing nearby opportunities for employment, shopping, and services. Proposed projects matching the "project type" and falling within the size thresholds are exempt from a VMT analysis.

The proposed project is comprised of **High-Cube Fulfillment Center Warehouse** building square footage of approximately 827,160 (includes office mezzanine floor area) is below the City's warehousing size threshold of 829,000 square feet of floor area. Based on this criterion, the project <u>is screened</u> from being required to conduct a VMT analysis.

2 INTRODUCTION

This report identifies traffic impacts and recommends traffic improvements for the proposed development project located at the southwest corner of southwest corner of Stoddard Wells Road at Abbey Lane in the City of Victorville, California. The project consists of 823,980 gross square feet of Industrial building. **Figure 1** illustrates the vicinity map, and **Figure 2** illustrates the proposed project site plan.

The intent of this report is to evaluate potentially significant traffic impacts caused by the proposed development in accordance with the City of Victorville's traffic impact study requirements and under the following scenarios as outlined in the traffic scope approved by the City's Department of Public Works:

- Existing Conditions Chapter 3
- Existing Plus Project Conditions Chapter 4
- Background Conditions (Year 2024) Chapter 5
- Project Conditions- Chapter 6
- Future Conditions (Year 2034) Chapter 7
- Future Plus Project Conditions (Year 2034) Chapter 8

2.1 Scenario Definitions

Existing Conditions. This scenario represents existing transportation conditions at the time this report was prepared. Data includes traffic counts collected in February 2022. This scenario is used as the baseline condition from which to measure project-specific impacts.

Existing Plus Project Conditions. This scenario represents transportation conditions as if the project were built and occupied today. This scenario is intended to identify potentially significant impact (requiring improvements) when compared to Existing Conditions without any unrelated transportation system improvements or other development. Impacts identified in this scenario are considered "project-specific"—impacts that are the sole responsibility of the project to mitigate.

Background Conditions (Year 2024). This scenario represents conditions at the time the project is anticipated to be fully constructed and occupied (known as buildout year 2024) but without traffic generated by the project. This scenario is comprised of an ambient growth, a general rate of growth in traffic from overall regional growth but not specific to any nearby development (assumed to be 3.5% annually for this study).

Project Conditions (Year 2024). This scenario adds the project's estimated traffic generation at buildout (2024) to the Background Conditions scenario described above. Impacts identified in this near-term scenario are considered "cumulative" impacts—impacts that the project contributes to, but does not solely cause, and may be responsible for a fair-share of the cost to implement any improvement measures.

Future Conditions (Year 2034). This scenario represents conditions at the horizon year 2034 but without traffic generated by the project. This scenario is comprised of an ambient growth, a general rate of growth in traffic from overall regional growth but not specific to any nearby development (assumed to be 3.5% annually for this study).

Future Plus Project Conditions (Year 2034). This scenario adds the project's estimated traffic generation to the Future Conditions scenario described above. Impacts identified in this scenario are considered "cumulative" impacts—impacts that the project contributes to, but does not solely cause, and may be responsible for a fair-share of the cost to implement any improvement measures.

FIGURE 1: VICINITY MAP ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

3 EXISTING CONDITIONS

The proposed project is bounded to the north by Abbey Lane and an existing recycling facility, to the south by vacant and undeveloped properties and a motel 6, to the east by Stoddard Wells Rd and vacant/undeveloped properties and hotels, and to the west by vacant/undeveloped properties.

3.1 Existing Street System

The following roadways provide local and regional access to the project within the study area:

Stoddard Wells Rd is identified as an arterial street on the City of Victorville circulation map. It is a north-south five-lane road (two in each direction, a two-way-left-turn center lane, and turn pockets at key intersections) in the project area study area. Posted speed limit of 55 mph in the project area study area. Stoddard Wells Road will provide direct access to the project site.

Abbey Lane is a local east-west two-lane (one in each direction) street, which dead-ends about 2,200 feet west of Stoddard Wells Road, Abbey Lane will provide direct access to the project site.

3.2 Site Access and Study Intersections

Access to the site is proposed with three driveways. On Stoddard Wells Road, a full access driveway is proposed approximately 950-feet south of Abbey Lane (measured from centerline to centerline). On Abbey Lane, two full access driveways are proposed approximately 250-feet and 1,275-feet west of Stoddard Wells Road (measured from centerline to centerline).

The proposed Stoddard Wells Road driveway includes:

- A full access driveway is proposed at Project Driveway "A" on Stoddard Wells Road located about 950 feet south of Abbey Lane. This Driveway "A" will provide the only access point for truck traffic.
 - Proposed improvements to Stoddard Wells Road include frontage improvements and striping a northbound left turn lane into the Project Driveway "A".

The study area for determining level of service impacts includes one existing intersection and oner future project driveway intersection:

- 1. Stoddard Wells Road at Abbey Lane
- 2. Stoddard Wells Rd at Driveway "A" (future intersection)

The intersection of Stoddard Wells Road at Abbey Lane is a side-street-stop-controlled intersection, with Abbey Lane being stop-controlled.

3.3 Existing Traffic Volumes

Turn movement counts were conducted in February 2022 by Newport Traffic Studies, an independent traffic data collection company. Due to the industrial nature of the traffic within the study area the peak hours were extended. These counts were collected during the AM (6:00-9:00 AM) and PM (3:00-6:00 PM) peak periods. The raw turning movement counts are included in **Appendix A** of this study.

As requested by the City of Victorville staff, Passenger Car Equivalent (PCE) factors were applied to the truck traffic by vehicle type. The conversion of trucks to PCEs was utilized to capture the heavy truck usage on Abbey Lane and the capacity they use when converted to an equivalent number of passenger cars.

Figure 3 illustrates the rounded existing passenger car equivalent peak hour traffic volumes in the study area.

XX/XX - AM/PM PEAK HOUR PCE VOLUMES

■ - STOP CONTROLLED APPROACH

FIGURE 3: EXISTING TRAFFIC PCE VOLUMES ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

3.4 Capacity Analysis Methodology

Intersection capacity analyses were conducted using Synchro software¹, which implements the methods of the Highway Capacity Manual, 6th Edition (HCM 6)² used in this report. The intersection capacity analyses utilize existing intersection geometrics and existing and forecasted traffic volumes in analyzing AM and PM peak hour intersection operating conditions. The traffic analysis methodology concepts presented in Chapter 20 of the Highway Capacity Manual (HCM 6) were utilized to calculate intersection Level of Service (LOS) based on the average control delay (in seconds per vehicle) of vehicles utilizing the intersections.

The LOS for a Two-Way Stop Controlled (TWSC) intersection is determined by the computed or measured control delay. The LOS is determined for each minor street movement (or shared movement) by using the criteria provided in **Table 3-1** referenced from HCM 6 Chapter 20.

Table 3-1: HCM 6 – LOS Criteria for TWSC

Control Dolov	LOS by Volume-to-Capacity Ratio						
Control Delay (seconds/vehicle)	Volume / Capacity	Volume / Capacity					
(seconds) vehicle)	Ratio ≤ 0.99	Ratio < 1.0					
0 - 10	A	F					
> 10 -15	В	F					
> 15 - 25	С	F					
> 25 - 35	D	F					
> 35 - 50	E	F					
> 50	F	F					

Note: The LOS criteria apply to each lane on each approach of the stop-controlled minor street. LOS is not calculated for major-street approaches or for the intersection as a whole.

Source: Highway Capacity Manual 6th Edition, Exhibit 20-2.

3.5 Current City Policy on Intersection Performance

The City's peak hour level of service standard is LOS D. An intersection found to operate at a LOS E with an Intersection Capacity Utilization (ICU) value greater than 0.95 or Highway Capacity Manual (HCM) delay worse than LOS D (i.e., LOS E or F) is considered deficient.

If a development project would worsen an intersection peak hour LOS to E or worse, it is considered a significant impact that must be mitigated. If a development project would worsen an already deficient intersection by two percent or more, it is considered a significant impact that must be mitigated.

3.6 Existing Traffic Analysis

Existing intersection capacity and LOS analyses are based on the existing intersection geometrics and the AM and PM peak hour traffic volumes discussed earlier. The results of the analysis are shown in **Table 3-2** and provided in **Appendix B**.

¹ Trafficware Ltd, Version 10.

² Transportation Research Board, Washington D.C., 2010.

Table 3-2: Intersection Capacity Analysis – Existing Conditions

Intersection	Intersection	AM P	eak	PM Peak	
intersection	Control Type	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey Lane	SSSC	8.9	Α	8.9	Α
2. Stoddard Wells Road / Project Driveway "A"	SSSC/Driveway	N/A			

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

As shown in **Table 3-2** under existing conditions, the study intersections operates at LOS A during the AM and PM peak hours with the existing geometrics illustrated in **Figure 4**.

3.6.1 Existing Traffic Signal Warrant Analysis

A traffic signal warrant analysis was completed for the side street stop-controlled intersection of Stoddard Wells Road at Abbey Lane. This study reviewed Warrant 3 (Peak Hour) and Warrant 7 (Crash Experience Warrant) included in the most recent California Manual on Uniform Traffic Control Manual (CA MUTCD, 2014). The intersection of Stoddard Wells Road at Abbey Lane does not meet the peak hour warrant for the installation of a traffic signal. The traffic signal warrant analysis is provided in **Appendix C**.

3.6.2 Existing Traffic Queuing Analysis

A queuing analysis for the Existing Conditions was performed for the northbound left turn from Stoddard Wells Road to Abbey Lane. The queuing analysis was performed utilizing the Trafficware SimTraffic Version 11 software package. The 95th percentile maximum queue length results for the Existing Conditions are shown in **Table 3-3** and provided in **Appendix D**.

Table 3-3: Queuing Analysis – Existing Conditions

Intersection	Movement	Storago Longth (Foot)	Vehicle Queue (Feet)			
intersection	iviovement	Storage Length (Feet)	AM Peak	PM Peak		
1. Stoddard Wells Road / Abbey Lane	NBL	130	13	11		
Queue – In Feet						
95% - 95 Percentile Queue Length						

As presented in **Table 3-3**, under Existing Conditions the existing turn bay lengths can accommodate the AM or PM peak 95th percentile traffic flows.

3 - SIGNALIZED INTERSECTION

∮ - STOP CONTROLLED APPROACH

FIGURE 4: EXISTING INTERSECTION GEOMETRICS
ABBEY LANE INDUSTRIAL DEVELOPMENT
VICTORVILLE, CALIFORNIA

4 EXISTING PLUS PROJECT CONDITIONS

Existing Plus Project Conditions identifies impacts to the City's level of service standards when compared to Existing Conditions without any unrelated transportation system improvements or other development. Impacts identified in this scenario are considered "project-specific"—impacts that are the sole responsibility of the project to mitigate.

4.1 Site Access and Project-Specific Roadway Improvements

The analysis of intersection level of service in the future project scenarios includes site access and roadway and off-site intersection improvements as part of the project. These improvements are described in the following sections.

Project Access

Primary access to the site (for trucks) is proposed via a driveway along Stoddard Wells Road. The proposed Stoddard Wells Road driveway includes:

• A full access driveway is proposed at Project Driveway "A" on Stoddard Wells Road located about 950 feet south of Abbey Lane. This Driveway "A" will provide the only access point for truck traffic.

Proposed improvements to Stoddard Wells Road include striping a northbound left turn lane into the Project Driveway "A".

Secondary access to the site (for passenger cars) is proposed vis two driveways on Abbey Lane. These driveways are located approximately 250 feet, and 1,275 feet, west of Stoddard Wells Road respectively. These driveways are not included in the level of service analysis.

Project-Specific Roadway Improvements

- 3. <u>Frontage Improvements on Stoddard Wells Road</u>. The project will be conditioned to improve its frontage along Stoddard Wells Road. The project proposes to dedicate the necessary right-of-way and construct the following improvements:
 - a. Dedicate the right-of-way to accommodate the half-width of the 98-foot right-of-way for a designated arterial (49-feet) per the city's General Plan Circulation Map (September 2020).
 - Construct curb/gutter, sidewalk, planting strips, and pavement along the project's frontage per city standards.
 - c. Construct the Stoddard Wells Road driveway at the location specified on the site plan per the city's commercial/industrial driveway standards.
 - d. Stripe a northbound left turn lane on Stoddard Wells Road to Project Driveway "A", approximately 200 feet in length plus a 120-foot-long transition.
- 4. <u>Frontage Improvements on Abbey Lane</u>. The project will be conditioned to improve its frontage along Abbey Lane. The project proposes to dedicate the necessary right-of-way and construct the following improvements:
 - a. Dedicate the right-of-way to accommodate the half-width of the 60-foot right-of-way for a local street (30-feet) per the city's General Plan Street Cross-Sections (September 2020).
 - b. Construct curb/gutter, sidewalk, planting strips, and pavement along the project's frontage per city standards.
 - c. Construct both Abbey Lane driveways at locations specified on the site plan per the city's commercial driveway standards.

4.2 Project Trip Generation

The trip generation rates for the site were obtained from the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition. The rates selected for the proposed land use is a High-Cube Fulfillment Center Warehouse Building (ITE Land Use Category 155) subcategory Sort.

As noted in the ITE Trip Generation manual, 11th Edition, a high-cube warehouse (HCW) may contain a mezzanine. In a HCW setting, a mezzanine is a free-standing, semi-permanent structure that is commonly supported by structural steel columns and that is lined with racks or shelves. The gross floor area (GFA) utilized for the proposed project includes the floor area of the mezzanine.

The source of the mode share split between passenger cars and trucks is the Fontana Truck Trip Generation Study3. The mode share split is provided for Warehouse Uses (ITE Land Use Category 150).

The Passenger Car Equivalent (PCE) factors are from the City of Hesperia's (a neighboring City to Victorville) Traffic Impact Analysis Report Guidelines for Vehicle Miles Traveled (VMT) and Level of Service (LOS) Assessment dated July 2020. The Passenger Car Equivalents (PCE) factors are provided by vehicle type. The conversion of trucks to PCEs is required for the calculation of intersection level of service.

Table 4-1 summarizes the estimated trip generation for the project on an average weekday, and during the AM (7-9 AM) and PM (4-6 PM) peak hours.

Table 4-1: Project Trip Generation

Table 4-1: Project Trip Generation									
Haa	Size/	Daily		AM		PM			
Use	Quantity	Daily	In	Out	Total	In	Out	Total	
High-Cube Fulfillment Center Warehouse - Sort Land Use Category (ITE 155)									
Per 1,000 Sq. Ft. GLA	922.090	6.44	0.70	0.17	0.87	0.47	0.73	1.20	
Trips	823,980	5,307	581	136	717	386	604	990	
	Mode		Total Pro	ject Trip	Generatio	n by Veh	icle Type		
	Share								
Passenger Cars (Percent of Total)	79.57%	4,223	463	108	571	307	480	787	
2-Axle Trucks (Percent of Total)	3.46%	184	20	5	25	13	21	34	
3-Axle Trucks (Percent of Total)	4.64%	247	27	6	33	18	28	46	
4-Axle Trucks (Percent of Total)	12.33%	655	72	17	89	48	74	122	
Total		5,309	582	136	718	386	603	989	
		Total P	roject Tr	ip Genera	ation in Pa	ssenger	Car Equiv	alents	
	PCE Factor		•	•	(PCE)	J	·		
Passenger Cars)	1	4,223	463	108	571	307	480	787	
2-Axle Trucks	1.5	276	30	8	38	20	32	52	
3-Axle Trucks (Percent of Total)	2	494	54	12	66	36	56	92	
4-Axle Trucks (Percent of Total)	3	1,965	216	51	267	144	222	366	

³ Fontana Truck Trip Generation Study. City of Fontana, County of San Bernardino, and the State of California. August 2003. This study evaluated vehicle trip generation characteristics of several land use categories that typically generate significant volumes of truck traffic. The study collected data at numerous industrial facilities including mix of vehicles by axle. The data from this study has been integrated into ITE's Trip Generation manual.

Notes:

KSF = Thousands of Square Feet.

AM / PM Peak Hour of Adjacent Street Traffic = Trip generation coinciding with the highest hourly volumes of traffic on the adjacent streets during the AM (7:00 AM and 9:00 AM) and PM (4:00 PM and 6:00 PM) commuter peak periods.

Source of trip generation rates: Institute of Transportation Engineers (ITE) Trip Generation (11th Edition). Average rates for land use category 155 (High-Cube Fulfillment Center Warehouse - Sort).

Source of passenger car / truck mode share (percentage of total): Fontana Truck Trip Generation Study for Heavy Warehouse Uses (August 2003).

Passenger Car Equivalents (PCE) factors: Industry standard values utilized in neighboring jurisdictions

As presented in **Table 4-1**, the proposed project is estimated to generate 6,958 PCE daily trips, 942 PCE AM peak hour trips, and 1,297 PCE PM peak hour trips during the adjacent street peak hours. trips.

4.3 Project Trip Distribution and Assignment

To address the impacts of the estimated project traffic, the trips were distributed by direction towards` major commute routes and concentrations of residential and commercial / employment centers and access to the I-15 freeway. Once the distribution pattern was established, project trips were assigned to the streets that serve the project. **Figure 5** distribution of the auto project trips. **Figure 6** distribution of the auto project trips. **Figure 7** illustrates the assignment of the auto project trips to study intersections. **Figure 8** illustrates the assignment of the truck project trips to study intersections. **Figure 9** illustrates the assignment of total project trips to study intersections.

4.4 Existing Plus Project Traffic Analysis

The project trip generation, traffic distribution and assignment patterns were used in the intersection capacity analyses to assess potential project impacts to level of service. The total PCE project trips were added to existing traffic volumes to derive Existing Plus Project Conditions. This scenario's traffic volumes are illustrated in **Figure 10**. Intersection capacity analysis for the study intersections uses the existing lanes geometries and project access driveway improvements. The results of the analysis are shown in **Table 4-2** and provided in **Appendix B**.

Table 4-2: Intersection Capacity Analysis – Existing Plus Project Conditions

	Intersection	Exi	sting C	Condition	S	Existing + Project Conditions				
Intersection	Control	AM Peak		PM Peak		Peak AM P		PM Peak		
	Туре	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	
1. Stoddard Wells Road / Abbey	SSSC	8.9	A	8.9	Α	11.4	В	14.2	В	
Lane	3330	0.5	_ ^	0.5	^	11.4		14.2	ם	
2. Stoddard Wells Road / Project	ccc	SSSC N/A				9.4	A	14.8	В	
Driveway "A"	3330				/A		A	14.0	В	

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

As presented in **Table 4-2**, under existing plus project conditions, the study intersections would operate at LOS B or better during the AM and PM peak hours. The existing and project geometrics are illustrated in **Figure 11**.

4.4.1 Existing Plus Project Traffic Signal Warrant Analysis

A traffic signal warrant analysis (Warrant 3 - Peak Hour) was completed for the side street stop-controlled intersection of Stoddard Wells Road at Abbey Lane. The intersection does meet the peak hour warrant

under the Existing Plus Project Conditions scenario. The traffic signal warrant analyses are provided in Appendix C.

4.4.2 Existing Plus Project Traffic Queuing Analysis

A queuing analysis for the existing plus project conditions was performed for the northbound left turn from Stoddard Wells Road to Abbey Lane. The queuing analysis was performed utilizing the Trafficware SimTraffic Version 11 software package. The 95th percentile maximum queue length results for the Existing Plus Project Conditions are shown in **Table 4 3** and provided in **Appendix D**.

Table 4-3: Queuing Analysis – Existing Plus Project Conditions

Intersection	Intersection Control	Storage Length (Feet)	Veh. Queue (Ft)	
	Туре		AM	PM
1. Stoddard Wells Road / Abbey Lane	NBL	130	57	46
2. Stoddard Wells Road / Project Driveway "A"	NBL	(200)	80	75
(XXX) – Proposed Storage Length				
95% - 95 Percentile Queue Length				

As presented in **Table 4-3**, under existing plus project conditions the existing and proposed turn bay lengths will accommodate the AM or PM peak 95th percentile traffic flows.

XX% - GENERAL PROJECT TRIP DISTRIBUTION

XX% - SPECIFIC PROJECT TRIP PERCENTAGE

- STUDY INTERSECTIONS

- STOP CONTROLLED APPROACH

XX% GENERAL PROJECT TRIP DISTRIBUTION

XX% - SPECIFIC PROJECT TRIP PERCENTAGE

- STUDY INTERSECTIONS

- STOP CONTROLLED APPROACH

AUTO PROJECT TRIPS

AM PEAK HOUR - 453 IN / 106 OUT PM PEAK HOUR - 301 IN / 470 OUT LEGEND

XX/XX 🌙 - AM/PM PROJECT TRIP

- STUDY INTERSECTIONS

₫ - STOP CONTROLLED APPROACH

FIGURE 7: AUTO PROJECT TRIPS
ABBEY LANE INDUSTRIAL DEVELOPMENT
VICTORVILLE, CALIFORNIA

TRUCK PROJECT TRIPS

AM PEAK HOUR - 294 IN / 710UT PM PEAK HOUR - 197 IN / 305 OUT

LEGEND

XX/XX 🌙 - AM/PM PCE PROJECT TRIP

- STUDY INTERSECTIONS

□ - STOP CONTROLLED APPROACH

FIGURE 8: TRUCK PROJECT TRIPS ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

TOTAL PCE PROJECT TRIPS

AM PEAK HOUR - 747 IN / 177 OUT PM PEAK HOUR - 498 IN / 775 OUT LEGEND

XX/XX - AM/PM PCE PROJECT TRIP

- STUDY INTERSECTIONS

■ - STOP CONTROLLED APPROACH

FIGURE 9: TOTAL PCE PROJECT TRIPS ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

1 STODDARD WELLS RD/ ABBEY LN				
← 94/63				
23/97	61			
63/250	239/161			

STODDARD WELLS RD/ PROJECT DRIVEWAY "A"					
178/382					
104/454 - }	439/293 J 354/293 —				

XX/XX - AM/PM PEAK HOUR PCE VOLUMES

- STUDY INTERSECTIONS

🐉 - SIGNALIZED INTERSECTION

□ - STOP CONTROLLED APPROACH

FIGURE 10: EXISTING PLUS PROJECT TRAFFIC PCE VOLUMES ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

- EXISTING GEOMETRICS

- PROPOSED GEOMETRICS

3 - SIGNALIZED INTERSECTION

∮ - STOP CONTROLLED APPROACH

FIGURE 11: EXISTING PLUS PROJECT INTERSECTION GEOMETRICS ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

5 BACKGROUND CONDITIONS (YEAR 2024)

This scenario represents conditions at the time the project is anticipated to be fully constructed and occupied (known as buildout which is the year 2024 for this project) but without traffic generated by the project. This scenario is comprised of Ambient growth—a general rate of growth in traffic from overall regional growth but not specific to any nearby development.

5.1 Ambient Growth Projections

The proposed project is anticipated to be constructed and occupied in the year 2024. As stated earlier in this report near-term growth in traffic is comprised of regional ambient growth and other area projects expected to be completed within the same timeframe. Ambient growth is estimated as a 3.5% annual increase.

5.2 Background Traffic Analysis

The background condition traffic volumes are illustrated in **Figure 12.** Intersection capacity analysis for this scenario uses existing lanes geometries. The results of the analysis are shown in **Table 5-1** and provided in **Appendix B.**

Table 5-1: Intersection Capacity Analysis – Background Conditions

Interception	Intersection	AM Peak		PM Peak	
Intersection	Control Type	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey Lane	SSSC	8.9 A 8.9		Α	
2. Stoddard Wells Road / Project Driveway "A"	SSSC	N/A			

Abbreviations:

SSSC - Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

As presented in **Table 5-1**, under background conditions, the study intersection is anticipated to continue to operate at LOS A during the AM and PM peak hours with the existing geometrics.

5.2.1 Background Traffic Signal Warrant Analysis

A traffic signal warrant analysis (Warrant 3 - Peak Hour) was completed for the side street stop-controlled intersection of Stoddard Wells Road at Abbey Lane. The intersection does not meet the peak hour warrant under the under the background conditions scenario. The traffic signal warrant analyses are provided in **Appendix C**.

5.2.2 Background Traffic Queuing Analysis

A queuing analysis for the background conditions was performed for the northbound left turn from Stoddard Wells Road to Abbey Lane. The queuing analysis was performed utilizing the Trafficware SimTraffic Version 11 software package. The 95th percentile maximum queue length results for the Background Conditions are shown in **Table 5-2** and provided in **Appendix D**.

Table 5-2: Queuing Analysis – Background Conditions

Intersection	Movement	Storage Length	Vehicle Queue (Ft)		
Intersection		(Feet)	AM	PM	
1. Stoddard Wells Road / Abbey Lane	NBL	130	13	15	
Queue – In Feet					
95% - 95 Percentile Queue Length					

As presented in **Table 5-2**, under background conditions the existing turn bay length can accommodate the AM or PM peak 95th percentile traffic flows.

XX/XX - AM/PM PEAK HOUR PCE VOLUMES

- STUDY INTERSECTIONS

- SIGNALIZED INTERSECTION

■ - STOP CONTROLLED APPROACH

FIGURE 12: BACKGROUND TRAFFIC PCE VOLUMES ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

6 PROJECT TRAFFIC CONDITIONS

This scenario adds the project's estimated traffic generation at buildout (2024) to the background conditions scenario described above. Level of service impacts identified in this scenario are considered "cumulative" impacts—impacts that the project contributes to, but does not solely cause, and may be responsible for a fair-share of the cost to implement any improvement measures.

6.1 Project Traffic Analysis

The traffic volumes under this scenario are illustrated in **Figure 13**. Intersection capacity analysis for the study intersections uses existing lanes geometries and the proposed project-specific access, roadway, and off-site intersection improvements described earlier. The results of the analysis are shown in **Table 6-1** and provided in **Appendix B.**

Table 6-1: Intersection Capacity Analysis – Project Conditions

	Intersection Background Conditions				Project Conditions			S	
Intersection	Control	AM P	eak	PM P	eak	AM P	eak	PM P	eak
	Туре	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey	SSSC	8.9	Α	8.9	Α	11.5	В	14.4	В
Lane	3330	0.5	_ ^	0.5	_ ^	11.5	ь	14.4	ь
2. Stoddard Wells Road / Project	SSSC		N	/A		9.4	۸	14.9	В
Driveway "A"	3330		IN	/ A		9.4	A	14.9	D

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

As presented in **Table 6-1**, under the project conditions, the study intersections would operate at LOS B or better during the AM and PM peak hours.

6.1.1 Project Traffic Signal Warrant Analysis

A traffic signal warrant analysis (Warrant 3 - Peak Hour) was completed for the side street stop-controlled intersection of Stoddard Wells Road at Abbey Lane. The intersection does meet the peak hour warrant under the project conditions scenario. The traffic signal warrant analyses are provided in **Appendix C**.

6.1.2 Project Traffic Queuing Analysis

A queuing analysis for the project conditions was performed for the northbound left turn from Stoddard Wells Road to Abbey Lane. The queuing analysis was performed utilizing the Trafficware SimTraffic Version 11 software package. The 95th percentile maximum queue length results for the Project Conditions are shown in **Table 6-2** and provided in **Appendix D**.

Table 6-2: Queuing Analysis – Project Conditions

Intersection	Movement	Storage Length	Vehicle Queue (Ft)		
Intersection	iviovement	(Feet)	AM	PM	
1. Stoddard Wells Road / Abbey Lane	NBL	130	59	48	
2. Stoddard Wells Road / Project Driveway "A"	NBL	(200)	74	80	

Queue – In Feet

(XXX) - Proposed Storage Length

95% - 95 Percentile Queue Length

As presented in **Table 6-2**, under project conditions the existing and proposed turn bay lengths will accommodate the AM or PM peak 95th percentile traffic flows.

STODDARD WELLS RD/ ABBEY LN				
← 94/63				
23/97	الم 11 →			
64/251 ¬	239/161			

XX/XX 🌙 - AM/PM PEAK HOUR PCE VOLUMES

- STUDY INTERSECTIONS

■ - SIGNALIZED INTERSECTION

□ - STOP CONTROLLED APPROACH

FIGURE 13: PROJECT TRAFFIC PCE VOLUMES ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

7 FUTURE CONDITIONS (YEAR 2034)

The future conditions scenario represents conditions at the planning horizon year 2034 without traffic generated by the project. This scenario is comprised of an ambient growth—a general rate of growth in traffic reflecting regional growth but not specific to any nearby development (assumed to be 3.5% annually for this study).

7.1 Future Traffic Analysis

The future conditions (year 2034) forecasted traffic volumes are illustrated in **Figure 14.** Intersection capacity analysis for the study intersections uses existing lanes geometries. The results of the analysis are shown in **Table 7-1** and provided in **Appendix B.**

Table 7-1: Intersection Capacity Analysis – Future Conditions (Year 2034)

Intersection	Intersection	AM Peak		PM Peak	
	Control Type	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey Lane	SSSC	9.0 A 9		9.1	Α
2. Stoddard Wells Road / Project Driveway "A"	SSSC	N/A			

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

As presented in under the **Table 7-1**, under future conditions, the study intersections are anticipated to continue to operate at LOS A during the AM and PM peak hours with the existing geometrics

7.1.1 Future Traffic Signal Warrant Analysis

A traffic signal warrant analysis (Warrant 3 - Peak Hour) was completed for the side street stop-controlled intersection of Stoddard Wells Road at Abbey Lane. The intersection does not meet the peak hour warrant under the under the future condition scenario. The traffic signal warrant analyses are provided in **Appendix C**.

7.1.2 Future Traffic Queuing Analysis

A queuing analysis for future conditions was performed for the northbound left turn from Stoddard Wells Road to Abbey Lane. The queuing analysis was performed utilizing the Trafficware SimTraffic Version 11 software package. The 95th percentile maximum queue length results for the Future Conditions are shown in **Table 7-2** and provided in **Appendix D**.

Table 7-2: Queuing Analysis – Future Conditions

Intersection	Movement	Storage Length (Feet)	Vehicle Queue (Ft)		
		Storage Length (Feet)	AM	PM	
1. Stoddard Wells Road / Abbey Lane	NBL	130	11	15	
Queue – In Feet					
95% - 95 Percentile Queue Length					

As presented in **Table 7-2**, under future conditions the existing turn bay lengths can accommodate the AM or PM peak 95th percentile traffic flows.

XX/XX 🌙 - AM/PM PEAK HOUR PCE VOLUMES

- STUDY INTERSECTIONS

- SIGNALIZED INTERSECTION

■ - STOP CONTROLLED APPROACH

FIGURE 14: FUTURE TRAFFIC PCE VOLUMES ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

8 FUTURE PLUS PROJECT CONDITIONS (YEAR 2034)

The future plus project conditions scenario adds the project's estimated traffic generation to the future condition scenario described in **Chapter 7**. Impacts identified in this scenario are considered "cumulative" impacts—impacts that the project contributes to, but does not solely cause, and may be responsible for a fair-share of the cost to implement any improvement measures.

8.1 Future Plus Project Traffic Analysis

The forecasted volumes for this scenario are illustrated in **Figure 15**. Intersection capacity analysis for the study intersections uses the existing lanes geometries and the proposed project-specific access improvements described earlier. The results of the intersection capacity analysis are shown in **Table 8-1** and provided in **Appendix B.**

Table 8-1: Intersection Capacity Analysis – Future Plus Project Conditions (Year 2034)

	Intersection	Fu	iture C	ondition	S	Future + Project Conditions			
Intersection	Control AM P		eak	k PM Peak		AM Peak		PM Peak	
	Туре	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1. Stoddard Wells Road / Abbey	SSSC	9.0	Α	9.1	Α	11.5	В	14.4	В
Lane	3330	9.0	^	9.1	^	11.5	6	14.4	•
2. Stoddard Wells Road / Project	SSSC	N/A				9.4	_	14.9	В
Driveway "A"	3330				9.4	A	14.9	Ь	

Abbreviations:

SSSC – Side Street Stop Controlled Intersection

N/A – Not Applicable Future Intersection.

Delay – seconds per vehicle

LOS – Level of Service

As presented in **Table 8-1**, under future plus project conditions, the study intersections would operate at LOS B or better during the AM and PM peak hours.

8.1.1 Future Plus Project Conditions Traffic Signal Warrant Analysis

A traffic signal warrant analysis (Warrant 3 - Peak Hour) was completed for the side street stop-controlled intersection of Stoddard Wells Road at Abbey Lane. The intersection does not meet the peak hour warrant under the under the future plus project conditions scenario. The traffic signal warrant analyses are provided in **Appendix C**.

8.1.2 Future Traffic Queuing Analysis

A queuing analysis for the Future Plus Project Conditions was performed for the northbound left turn from Stoddard Wells Road to Abbey Lane. The queuing analysis was performed utilizing the Trafficware SimTraffic Version 11 software package. The 95th percentile maximum queue length results for the Future Plus Project Conditions are shown in **Table 8 2** and provided in **Appendix D**.

Table 8-2: Queuing Analysis – Future Plus Project Conditions

Intersection	Movement	Storage Length	Vehicle Queue (Ft)		
Intersection	iviovement	(Feet)	AM	PM	
1. Stoddard Wells Road / Abbey Lane	NBL	130	59	48	
2. Stoddard Wells Road / Project Driveway "A"	NBL	(200)	74	80	

Queue – In Feet

(XXX) – Proposed Storage Length

95% - 95 Percentile Queue Length

As presented in **Table 8-2**, under Future Plus Project Conditions the existing turn bay lengths can accommodate the AM or PM peak 95th percentile traffic flows.

17 1 3	STODDARD WELLS RD/ ABBEY LN						
← 94/63							
23/97	63 J						
67/254 7	241/163 159/183						

STODDARD WELLS RD/ PROJECT DRIVEWAY "A"							
226/437							
104/454 - 	439/293 —						

LEGEND

XX/XX - AM/PM PEAK HOUR PCE VOLUMES

🐉 - SIGNALIZED INTERSECTION

□ - STOP CONTROLLED APPROACH

FIGURE 15: FUTURE PLUS PROJECT TRAFFIC PCE VOLUMES ABBEY LANE INDUSTRIAL DEVELOPMENT VICTORVILLE, CALIFORNIA

9 APPENDICES

Appendix A: Turn Movement Count Volumes

Appendix B: Intersection Capacity Analysis Calculations

Appendix C: Traffic Signal Warrant Worksheets

Appendix D: Queuing Analysis

Appendix A: Turn Movement Count Volumes

SANBAG CLASSIFICATION SUMMARY

NORTH-SOUTH STREET : STODDARD WELLS RD EAST-WEST STREET : ABBEY

VICTORVILLE

02-24-22

BEGINNING TIME : 06:00AM

				Steph .		1110 111	ME :	00:0	JUAM			
RT	AUTOS	LT	LARG	E 2 A THRU	XLE LT	RT :	AXLE THRU	LT		+) AX THRU	LT	TOTALS
					a/ o	MODTI	H LEG	25				
0	11	0	0	0	0	0	1	0		_	2200	■
0	16	0	0	2	ō	0	Ō		0	2	0	14
0	21	0	0	ī	ŏ	0		0	0	1	0	19
0	16	0	o	Ť	ő	0	1	0	0	0	0	23
0	19	O	Ö	ā	Ö		3	0	0	0 0 1	0	20
0	16	ō	ő	3	o	0	3	0	0	1	0	23
0	22	0	0	2 1 0 3	0	0	2	0	0	1	0	22
0	18	0	ő	1	ő	0	3	0	0	3	0	31
	0.000000	50.00 A		() -4 -1	U	U	4	0	0	2	0	25
0	139	0	0	11	0	0	17	0	0	10	0	177
	10	4				SOUTH	LEG					
0	9	0	0	1	0	0	1	0	0	0	0] 11
0	19	0	0	2	0	0	0	0	O	ŏ	ŏ	21
0	14	0	0	0	0	0	0	0	ō	2	ō	16
	14	0	0	1	0	0	0	0	0	0	ō	15
0	14	0	0	0	0	0	0 3 3	0	0	3	ō	20
0	11	3	0	0	0	0	3	0	0	ī	Ö	19
0	17	1	0	0	0	0	3	0	0	0 3 1 3	0	24
177	16	0	0	2	0	0	1	0	0	ī	ŏ	20
0	114	4	0	7	0	0	11	0	0	10	0	146
0	0	• 1				EAST :	LEG			-		
ő	0	0	0	0	0	0	0	0	0	0	0	0
Ö	ŏ	0	0	0	0	0	0	0	0	0	0	Ŏ
ŏ	ő	0	0	0	0	0	0	0	0	0	0	0
Ö	ŏ	0		0	0	0	0	0	0	0	0	0
Ö	Ö	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
Ö	Ö	0	0	0	0	0	0	0	0	0	0	0 0 0
	65	12.8		U	0	0	0	0	0	0	0	0
0		0		0	0	0	0	0	0	0	0	0
5	0	0	0	•	0 1		LEG			-		
5 1	Ö	0	Ö	0	0	0	0	0	0	0	0	5
2	ŏ	o	1	0	0	2	0	0	0	0	0	3
2	ŏ	ĭ	ō	0	0	0	0	0	0	0	0	3
5	ŏ	ō	ő	0 0 0	0	1	0	0	0	0	0	3
2	ō	ŏ	ő	0	0	0 1 1	0	0	0	0	0	6
2 2 5 2	Ö	1	Ö	0	0		0	0	0	0	0	3
0	Õ	ō	ő	0	0	0	0	0	0	0	0	5 3 3 6 3 2
18	10 10 40		Fig.		U	U	0	0	0	0	0	0
70	0	2	1	0	0	4	0					

SANBAG CLASSIFICATION SUMMARY

NORTH-SOUTH STREET : STODDARD WELLS RD VICTORVILLE EAST-WEST STREET : ABBEY

Tano,	r-West	STR	EET :	ABBE		ING TI	ME :	08:0	0AM		JORV	02-24-22
RT	AUTOS THRU	LT	LARGI RT	Z 2 A THRU	XLE LT	3 RT	AXLE THRU	LT		+) AX	LE LT	TOTALS
-		Way 6		2 12	19 ab - 10	NORT	H LEG					
1	15	0	0	2	0	0	3	0	0	2	0	23
0	18	0	0	3	0	0	2	0	0	2	ő	
1	9	0	0	2 2	0	0	6	0	O	3	ő	25
0	13	0	0	2	0	0	3	ŏ	ŏ	3	0	21
2	55	0	0	9	0	0	14	0	0	9	0	20 89
					15:2	SOUTI	H LEG					10 Apr
0	14	2	0	2	0	0	3	0	0	2		72.3
0	14	2	0	2	0	ő	2	1	0	3	0	24
0	7	3	0	1	0	ő	4	ō	ő	2	0	23
0	12	1	0	1 2	0	Õ	3	0	0	3	0	18
0	47	8	0	7	0	0	12	1	0	10	0	20 85
== 33 NEW	8 A - A			Vr		EAST						
0	0	0	0	0	0	0			2		1000	
0	0	0	ō	Ö	ő	0	0	0	0	0	0	0
0	0	0	ŏ	Ö	ŏ	o		0	0	0	0	0
0	0	0	ő	Ö	ŏ	0	0	0	0	0	0	0
	0.000	- 1	•	U	١	U	U	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0
			E.		\$ 11 S	WEST	LEC			ACCE SHEET		1
3	0	0	0	0	0	0	0	0	0	0	ο Ι	12
1	0	0	1	0	0	1	ő	0	0	0	0	3 3 2 5
1	0	0	0	0	0	1	Ö	ŏ	Ö	0	7700	3
5	0	0	0	0	0	ō	ŏ	ŏ	0	0	0	2
10	_		14	550		1 55%	•		U	U	U	5
10	0	0	1	0	0	2	0	0	0	0	0	13

Prepared by Newport Traffic Studies

NORTH-SOUTH STREET: STODDARD WELLS RD

EAST-WEST STREET: ABBEY

TIME: 06:00AM-07:00AM DATE: 02-24-22

NORTH LEG

0	76	Total
0	14	1st
0	19	2nd
0	23	3rd
0	20	4th
7.4		 J

Rt Thru Lt

Total 1st 2nd 3rd 4th

Lt	1	0	0	0	1
Thru					
Rt	2	3	3	5	13

Rt Thru Lt

1st 2nd 3rd 4th Total

Lt Thru Rt 1st 11 2nd 0 21 3rd 0 16 4th 0 15 Total 0 63

NORTH-SOUTH STREET: STODDARD WELLS RD

EAST-WEST STREET: ABBEY

TIME: 07:00AM-08:00AM DATE: 02-24-22

Total

NORTH LEG

0	101	Tota
0	23	1st
0	22	2nd
0	31	3rd
0	25	4th

Rt Thru Lt

Rt Thru

Lt

2nd 3rd 4th Total 1st

Total 1st 2nd 3rd 4th

1	0	0	1	0
10	6	3	1	0

Lt Thru

Rt

Lt Thru Rt 1st 0 20 2nd 3 16 3rd 1 23 4th 0 20 Total 79

NORTH-SOUTH STREET: STODDARD WELLS RD

EAST-WEST STREET: ABBEY

TIME: 08:00AM-09:00AM DATE: 02-24-22

Total

1st

2nd

3rd

NORTH LEG

2	87	
1	22	
0	25	-
1	20	
0	20	

4th

Rt Thru Lt

Total 1st 2nd 3rd 4th

0	0	0	0	0
13	3	3	2	5

Lt

Thru

Rt

	3000	
	-	

1st 2nd 3rd 4th Total

_	Lt	Thru	Rt
1st	2	22	- 52/2 5 1975
2nd	3	20	
3rd	3	15	
4th	1	19	39
Total	9	76	

SANBAG CLASSIFICATION SUMMARY

NORTH-SOUTH STREET : STODDARD WELLS RD EAST-WEST STREET : ABBEY

VICTORVILLE

02-24-22

BEGINNING TIME : 03:00PM

						ING TI	ME :	03:0	OPM		_	
RT	AUTOS THRU	LT		E 2 A	LT		AXLE THRU	LT	4 (+) AX THRU	LE LT	TOTALS
				1.50	-50 A.G.	NORT	H LEG			30 700		
0	13	0	0	2	0	0	2	0	0	3	0	1 20
0	18	0	0	2 2 0	0	O	ĩ	Ö	ő	3	0	20
0	20	0	0	0	Ö	Ö	2	0	0	1 4	0	22
0	17	0	0	1	0	ō	ĩ	o	ő	*	0	26
0	20	0	0	1	0	o	ō	Ö	ő	1 1	0	20
0	21	0	0	2	0	0		0	ő	5	0	22 33
1	17	0	0	0	0	0	5 1 2	0	O	5 2	Ö	21
0	27	0	0	4	0	0	2	0	0	2	ŏ	35
1	153	0	0	12	0	0	14	0	0	19	0	199
96% B						SOUTH	J I DC			DAMES C	- ES	
0	19	1	0	2	0	0	1 LEG	0	1 0	7	^	1
0	15	-2	0	õ	ŏ	ő	2	2	0	1 2	0	24
0	9	0	0	3	0	ŏ	2	ō	0	1	0	19
0	21	1	0	1	Ō	ŏ	7	ő	0	2	0	15
0	10	0	0	3	0	0	4	1	ő	5	0	32 23
0	13	1	0	1	0	0	6	1	o	5	0	27
0	22	1	0	1	0	0	10	0	o	2	Ö	36
0	11	1	0	2	0	0	4	1	ō	2 1	ō	20
0	120	3	0	13	0	0	36	5	0	19	0	196
				MIRE-199		EAST	LEG	535	42-1-15			
0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	o	0	ő	ŏ	0	0
0	0	0	0	0	0	0	0	0	0	ō	ō	ŏ
0	0	0	0	0	0	0	0	0	0	0	0	ŏ
0	0	0	0	0	0	0	0	0	0	0	0	ō
0	0	0	0	0	0	0	0	0	0	0	0	0
Ö	0	0	0	0	0	0	0	0	0	0	0	0
•	U	0	U	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	o
_	_						LEG					Pri Pri
3 2	0	0	0	0	0	1	0	0	0	0	0	4
2	0	0	2	0	0	1	0	0	0	0	0	5
,	0	0	0	0	0	0	0	0	0	0	0	7
3	0	0	0	0	0	0	0	0	0	0	0	3
Ō	0	0	0	0	0	0	0	0	0	0	0	1
3	0	0	0	0	0	0	0	0	0	0	0	0
7 3 1 0 3 2	o	0	0	0	0	0	0	0	0	0	0	4 5 7 3 1 0 3 2
21	0	0	2	0	0	2			1376	0	0	
		-			_	4	0	0	0	0	0	25

SANBAG CLASSIFICATION SUMMARY NORTH-SOUTH STREET : STODDARD WELLS RD EAST-WEST STREET : ABBEY VICTORVILLE 02-24-22 BEGINNING TIME : 05:00PM AUTOS LARGE 2 AXLE 3 AXLE 4(+) AXLE RT THRU LT TOTALS RT THRU LT RT THRU LT RT THRU LT NORTH LEG SOUTH LEG EAST LEG WEST LEG

Prepared by Newport Traffic Studies

NORTH-SOUTH STREET: STODDARD WELLS RD

EAST-WEST STREET: ABBEY

TIME: 03:00PM-04:00PM DATE: 02-24-22

NORTH LEG

0	88	Total
0	20	1st
0	22	2nd
0	26	3rd
0	20	4th

Rt Thru Lt

Total 1st 2nd 3rd 4th

0	0	0	0	0
19	4	5	7	3

Lt Thru Rt

Rt				
Thru				
Lt				
Ĺ	1st	2nd	3 7 2	 <u> </u>

1st 2nd 3rd 4th Total

_	Lt_	Thru	Rt
1st	1	23	
2nd	0	19	
3rd	0	15	
4th	1	31	31 1100
Total	2	88	

NORTH-SOUTH STREET: STODDARD WELLS RD

EAST-WEST STREET: ABBEY

TIME: 04:00PM-05:00PM DATE: 02-24-22

NORTH LEG

1	110	Total
0	22	1st
0	33	2nd
1	20	3rd
0	35	4th

Rt Thru Lt

Total 1st 2nd 3rd 4th

0	0	0	0	0
6	1	0	3	2

Lt Thru Rt

Rt	X -5 - 86 - 86 - 86 - 86 - 86 - 86 - 86 -				
hru					
Lt					
	1st	2nd	3rd	4+h	Total

Lt Thru Rt 1st 22 2nd 2 25 3rd 1 35 4th 2 18 Total 100

NORTH-SOUTH STREET: STODDARD WELLS RD

EAST-WEST STREET: ABBEY

TIME: 05:00PM-06:00PM DATE: 02-24-22

NORTH LEG

1	119	Total
0	41	1st
0	37	2nd
0	30	3rd
1	11	4th

Rt Thru Lt

Total 1st 2nd 3rd 4th

2	0	1	0	1	Lt
		a (1)			Thru
9	5	3	0	1	Rt

Rt Thru Lt 2nd 3rd 4th Total 1st

Lt Thru Rt lst 0 14 2nd 14 3rd 0 15 4th 20 Total 63

Appendix B: Intersection Capacity Analysis Calculations

 SUBJECT
 BY
 DATE
 JOB NO.
 SHEET
 OF

 TURN MOVEMENTS
 TM
 10-Mar-22
 MOAI0000-0001
 1
 OF
 2

E/W STREET : ABBEY LN

N/S STREET : STODDARD WELLS RD PRO

CONDITION: AM PEAK HOUR

INTERSECTION: 1

PROJECTED GROWTH: 3.5%

PER YEAR:

CONDITION DIAGRAMS

EXISTING GEOMETRICS

TURN MOVEMENTS

			Existing +	Year 2024			Year 2033		Future +
	Existing	Project	Project	Ambient	Background	Project	Ambient	Future	Project
Condition	Condition	Trips	Condition	Growth	Condition	Condition	Growth	Condition	Condition
Scenario #	1		3		5	7		9	11
ABBEY LN									
EB LEFT	1	22	23	0	1	23	0	1	23
EB THRU	0	0	0	0	0	0	0	0	0
EB RIGHT	9	54	63	1	10	64	3	13	67
WB LEFT	0	0	0	0	0	0	0	0	0
WB THRU	0	0	0	0	0	0	0	0	0
WB RIGHT	0	0	0	0	0	0	0	0	0
STODDARD W	ELLS RD								
NB LEFT	7	232	239	0	7	239	2	9	241
NB THRU	115	0	115	8	123	123	36	159	159
NB RIGHT	0	0	0	0	0	0	0	0	0
SB LEFT	0	0	0	0	0	0	0	0	0
SB THRU	138	0	138	10	148	148	43	191	191
SB RIGHT	1	93	94	0	1	94	0	1	94
TOTALS	271	401	672	19	290	691	84	374	775

SUBJECT BY DATE JOB NO. SHEET OF

TURN VOLUME SUMMARY TM 10-Mar-22 MOAI0000-0001 2 OF 2

<u>E/W STREET</u> : <u>ABBEY LN</u> : <u>STODDARD WELLS RD</u>

<u>CONDITION</u>: <u>AM PEAK HOUR</u> <u>PHF</u> : <u>0.89</u>

					NORT	H LEG	ì				
	AUTO		LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0	22	0	0	3	0	0	3	0	0	3	0
0	18	0	0	1	0	0	4	0	0	2	0
1	15	0	0	2	0	0	3	0	0	2	0
0	18	0	0	3	0	0	2	0	0	2	0
PCI	E FAC	ΓOR		1.5			2			3	
1	73	0	0	14	0	0	24	0	0	27	0

					SOUT	H LEG	i				
	AUTO		LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0	17	1	0	0	0	0	3	0	0	3	0
0	16	0	0	2	0	0	1	0	0	1	0
0	14	2	0	2	0	0	3	0	0	3	0
0	14	2	0	2	0	0	2	1	0	2	0
PCI	E FAC1	ΓOR		1.5			2			3	
0	61	5	0	9	0	0	18	2	0	27	0

					EAST	LEG					
	AUTO		LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
PCI	E FAC	ΓOR		1.5			2			3	
0	0	0	0	0	0	0	0	0	0	0	0

1 0 1 0 0 0 0 0 0 0 0							WES	T LEG					
1 0 1 0 0 0 0 0 0 0 0		AUTO			LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
	RT	THRU	RT	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0 0 0 0 0 0 0 0 0 0 0	1	0	1	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0
3 0 0 0 0 0 0 0 0 0 0 0	3	0	3	0	0	0	0	0	0	0	0	0	0
1 0 0 1 0 0 1 0 0 0 0	1	0	1	0	1	0	0	1	0	0	0	0	0
PCE FACTOR 1.5 2 3	PCI	E FAC	PCE	TOR		1.5			2			3	
5 0 1 2 0 0 2 0 0 0 0	5	0	5	1	2	0	0	2	0	0	0	0	0

	Truck	Auto		PCE
	Volumes	Volumes	Totals	Totals
ABBEY	LN			
EB LEFT	0	1	1	1
EB THRU	0	0	0	0
EB RIGHT	2	5	7	9
WB LEFT	0	0	0	0
WB THRU	0	0	0	0
WB RIGH	0	0	0	0
STODD	ARD WEI	LS RD		
NB LEFT	1	5	6	7
NB THRU	24	61	85	115
NB RIGHT	0	0	0	0
SB LEFT	0	0	0	0

73

103

138

SB THRU

SB RIGHT

30

Intersection						
Int Delay, s/veh	0.5					
		EDD	NDI	NDT	CDT	CDD
	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	^	<u></u>	^	↑ }	4
Traffic Vol, veh/h	1	9	7	115	138	1
Future Vol, veh/h	1	9	7	115	138	1
Conflicting Peds, #/hr	0	0	_ 0	0	_ 0	_ 0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage, #		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	10	8	129	155	1
Major/Minor Mi	nor2		laior1		/aiar?	
			Major1		/lajor2	
Conflicting Flow All	237	78	156	0	-	0
Stage 1	156	-	-	-	-	-
Stage 2	81	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	736	973	1436	-	-	-
Stage 1	862	-	-	-	-	-
Stage 2	939	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	732	973	1436	-	-	-
Mov Cap-2 Maneuver	739	-	-	-	-	-
Stage 1	857	_	-	-	-	-
Stage 2	939	_	-	_	-	_
J G 2						
Approach	EB		NB		SB	
HCM Control Delay, s	8.9		0.4		0	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBL	MRT	EBLn1	SBT	SBR
						SDIX
Capacity (veh/h)		1436	-	0.0	-	-
HCM Lane V/C Ratio		0.005		0.012	-	-
HCM Control Delay (s)		7.5	-	0.0	-	-
HCM Lane LOS		A	-	A	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-

Intersection						
Int Delay, s/veh	4.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EBK				SBK
Lane Configurations	**	00	\	^	↑ }	0.4
Traffic Vol, veh/h	23	63	239	115	138	94
Future Vol, veh/h	23	63	239	115	138	94
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	26	71	269	129	155	106
NA : /NA:	<i>1</i> : 0				4 : 0	
	/linor2		//ajor1		/lajor2	_
Conflicting Flow All	811	131	261	0	-	0
Stage 1	208	-	-	-	-	-
Stage 2	603	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	321	901	1315	-	-	-
Stage 1	813	-	_	-	_	-
Stage 2	515	-	-	-	_	_
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	255	901	1315	_	_	_
Mov Cap-2 Maneuver	375	-	1010	_	_	_
Stage 1	646	_			_	
	515		_	-		_
Stage 2	סוס	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.4		5.7		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1315	-	655	-	-
HCM Lane V/C Ratio		0.204	-	0.148	-	-
HCM Control Delay (s)		8.4	_	11.4	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)		0.8	-	0.5	-	-
		0.0		0.5	_	

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	EDI				SDN
		10	_ ኝ	^	†	1
Traffic Vol, veh/h	•		7	123	148	1
Future Vol, veh/h	1	10	7	123	148	
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	11	8	138	166	1
Major/Minor M	linor2	N	//ajor1	N	/lajor2	
	252	84	167	0	//ajuiz -	0
Conflicting Flow All	167		107			
Stage 1		-	-	-	-	-
Stage 2	85	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	720	965	1423	-	-	-
Stage 1	851	-	-	-	-	-
Stage 2	935	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	716	965	1423	-	-	-
Mov Cap-2 Maneuver	728	-	-	-	-	-
Stage 1	846	-	-	-	-	-
Stage 2	935	_	-	_	-	_
					-	
Approach	EB		NB		SB	
HCM Control Delay, s	8.9		0.4		0	
HCM LOS	Α					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1423	-		051	אופט
HCM Lane V/C Ratio				0.013	-	-
		0.006			-	-
HCM Control Delay (s) HCM Lane LOS		7.5	-		-	-
HCM Lane LOS HCM 95th %tile Q(veh)		A 0	-	A 0	-	-
					_	_

Intersection						
Int Delay, s/veh	4.4					
		ED.2	NE	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		1	^	ħβ	
Traffic Vol, veh/h	23	64	239	123	148	94
Future Vol, veh/h	23	64	239	123	148	94
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage,		_	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	26	72	269	138	166	106
Major/Minor N	linor2		/lajor1		/aiar?	
					/lajor2	^
Conflicting Flow All	826	136	272	0	-	0
Stage 1	219	-	-	-	-	-
Stage 2	607	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	314	894	1303	-	-	-
Stage 1	802	-	-	-	-	-
Stage 2	512	-	-	-	-	-
Platoon blocked, %				_	-	-
Mov Cap-1 Maneuver	249	894	1303	-	-	-
Mov Cap-2 Maneuver	370	-	-	-	-	-
Stage 1	637	-	_	-	-	-
Stage 2	512	-	_	-	-	-
Ŭ						
			ND		0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	11.5		5.6		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1303	-		-	OBIT
HCM Lane V/C Ratio		0.206	-	0.15	-	<u>-</u>
HCM Control Delay (s)		8.5	_	11.5	-	<u>-</u>
HCM Lane LOS		6.5 A	-	11.5 B	-	-
HCM 95th %tile Q(veh)		0.8	-	0.5		
HOW Sour Wille Q(Ven)		U.ŏ	-	0.5	-	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDK				SDK
Lane Configurations	Y	12		^	↑ }	1
Traffic Vol, veh/h	1	13	9	159	191	1
Future Vol, veh/h	1	13	9	159	191	1
Conflicting Peds, #/hr	0	0		0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		420	None	-	None
Storage Length	<u>-</u>	-	130	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	15	10	179	215	1
Major/Minor M	inor2	N	/lajor1	ı	/lajor2	
Conflicting Flow All	326	108	216	0	<u>-</u>	0
Stage 1	216	-	-	_	_	-
Stage 2	110	<u>-</u>	_	_	_	_
Critical Hdwy	6.8	6.9	4.1	_	_	_
Critical Hdwy Stg 1	5.8	0.9	4.1	_	_	-
Critical Hdwy Stg 2	5.8	_	_	_	_	-
Follow-up Hdwy	3.5	3.3	2.2	_	_	
Pot Cap-1 Maneuver	648	932	1366		<u>-</u> -	-
•	805	932	1300	_	<u> </u>	_
Stage 1	908	-	-	<u>-</u>		-
Stage 2	900	-	_	-		
Platoon blocked, %	642	020	1266	-	-	-
Mov Cap-1 Maneuver	643	932	1366	-	-	-
Mov Cap-2 Maneuver	677	-	-	-	-	-
Stage 1	799	-	-	-	-	-
Stage 2	908	-	-	-	-	-
Approach	EB		NB		SB	
Approach HCM Control Delay s					SB 0	
HCM Control Delay, s	9		NB 0.4		SB 0	
HCM Control Delay, s HCM LOS	9	NDI	0.4	CDI =4	0	CDD
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	9	NBL	0.4	EBLn1		SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	9	1366	0.4 NBT	908	0 SBT	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	9	1366 0.007	0.4 NBT	908 0.017	0	SBR - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	9	1366 0.007 7.7	0.4 NBT	908 0.017 9	0 SBT	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	9	1366 0.007	0.4 NBT -	908 0.017	O SBT -	-

Intersection						
Int Delay, s/veh	4.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	↑ ⊅	
Traffic Vol, veh/h	23	64	239	123	148	94
Future Vol, veh/h	23	64	239	123	148	94
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	None
Storage Length	_	-	130	-	-	-
Veh in Median Storage,	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	26	72	269	138	166	106
N.A ' /N.A' N	1' 0		1.1.1		40	
	/linor2		Major1		//ajor2	
Conflicting Flow All	826	136	272	0	-	0
Stage 1	219	-	-	-	-	-
Stage 2	607	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	314	894	1303	-	-	-
Stage 1	802	-	-	-	-	-
Stage 2	512	_	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	249	894	1303	-	-	-
Mov Cap-2 Maneuver	370	-	-	-	-	-
Stage 1	637	-	-	-	-	-
Stage 2	512	-	-	-	-	-
Approach	EB		NB		SB	
	11.5		5.6			
HCM LOS			0.0		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1303	-	650	-	-
HCM Lane V/C Ratio		0.206	-	0.15	-	-
HCM Control Delay (s)		8.5	-	11.5	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)		0.8	-	0.5	-	-

 SUBJECT
 BY
 DATE
 JOB NO.
 SHEET
 OF

 TURN MOVEMENTS
 TM
 10-Mar-22
 MOAI0000-0001
 1
 0F
 2

<u>E/W STREET</u> : <u>ABBEY LN</u>

N/S STREET: STODDARD WELLS RD PROJECTED GROWTH:

<u>CONDITION</u>: <u>PM PEAK HOUR</u>

PER YEAR:

<u>INTERSECTION</u>:

1

3.5%

TURN MOVEMENTS

Condition	Existing Condition	Project Trips	Existing + Project Condition	Year 2023 Ambient Growth	Background Condition	Project Condition	Year 2033 Ambient Growth	Future Condition	Future + Project Condition
Scenario#	2		4		6	8		10	12
ABBEY LN									
EB LEFT	1	96	97	0	1	97	0	1	97
EB THRU	0	0	0	0	0	0	0	0	0
EB RIGHT	10	240	250	1	11	251	3	14	254
WB LEFT	0	0	0	0	0	0	0	0	0
WB THRU	0	0	0	0	0	0	0	0	0
WB RIGHT	0	0	0	0	0	0	0	0	0
STODDARD W	1								
NB LEFT	7	154	161	0	7	161	2	9	163
NB THRU	132	0	132	9	141	141	42	183	183
NB RIGHT	0	0	0	0	0	0	0	0	0
SB LEFT	0	0	0	0	0	0	0	0	0
SB THRU	167	0	167	12	179	179	53	232	232
SB RIGHT	1	62	63	0	1	63	0	1	63
TOTALS	318	552	870	22	340	892	100	440	992

Los Angeles Office: 213.337.3680 ~ Ontario Office: 909.481.5750 ~ San Diego Office: 619.400.0600 Santa Clarita Office: 661.284.7400 ~ Temecula Office: 951.294.9300 ~ Tustin Office: 714.665.4500

SUBJECT BY DATE JOB NO. SHEET OF

TURN VOLUME SUMMARY TM 10-Mar-22 MOAI0000-0001 2 OF 2

<u>E/W STREET</u> : <u>ABBEY LN</u> : <u>STODDARD WELLS RD</u>

<u>CONDITION</u>: <u>PM PEAK HOUR</u> : <u>0.99</u>

					NORT	H LEG	i				
	AUTO		LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0	21	0	0	2	0	0	5	0	0	5	0
1	17	0	0	0	0	0	1	0	0	2	0
0	27	0	0	4	0	0	2	0	0	2	0
0	35	0	0	1	0	0	2	0	0	3	0
PCI	E FACT	ΓOR		1.5			2			3	
1	100	0	0	11	0	0	20	0	0	36	0

					SOUT	H LEG	i				
	AUTO		LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0	13	1	0	1	0	0	6	1	0	5	0
0	22	1	0	1	0	0	10	0	0	2	0
0	11	1	0	2	0	0	4	1	0	1	0
0	12	0	0	1	0	0	1	0	0	0	0
PCI	E FACT	ΓOR		1.5			2			3	
0	58	3	0	8	0	0	42	4	0	24	0

					EAST	LEG					
	AUTO		LAF	RGE 2 A	XLE	LAF	RGE 3 A	XLE	LAR	GE 4(+)	AXLE
RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
PCI	E FAC	ΓOR		1.5			2			3	
0	0	0	0	0	0	0	0	0	0	0	0

AUTO LARGE 2 AXLE LARGE 3 AXLE LARGE 4(+) A RT THRU LT RT THRU RT	XLE LT
RT THRU LT RT THRU LT RT THRU LT RT THRU	ΙT
	<u> </u>
	0
3 0 0 0 0 0 0 0 0 0 0	0
2 0 0 0 0 0 0 0 0 0 0	0
5 0 0 0 0 0 0 0 0 0 0	0
PCE FACTOR 1.5 2 3	
10 0 0 0 0 0 0 0 0 0 0	0

	Truck	Auto		PCE
	Volumes	Volumes	Totals	Totals
ABBEY	LN			
EB LEFT	0	0	0	1
EB THRU	0	0	0	0
EB RIGHT	0	10	10	10
WB LEFT	0	0	0	0
WB THRU	0	0	0	0
WB RIGH	0	0	0	0
STODDA	ARD WEI	LS RD		
NB LEFT	2	3	5	7
NB THRU	34	58	92	132
NB RIGHT	0	0	0	0
SB LEFT	0	0	0	0
SB THRU	29	100	129	167

SB RIGHT

Los Angeles Office: 213.337.3680 ~ Ontario Office: 909.481.5750 ~ San Diego Office: 619.400.0600 Santa Clarita Office: 661.284.7400 ~ Temecula Office: 951.294.9300 ~ Tustin Office: 714.665.4500

Intersection						
Int Delay, s/veh	0.5					
		EDD	NDI	NDT	CDT	SBR
Movement	EBL	EBR	NBL	NBT	SBT	SBK
Lane Configurations	¥	40	<u>ች</u>	^	↑ }	
Traffic Vol, veh/h	1	10	7	132	167	1
Future Vol, veh/h	1	10	7	132	167	1
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage	,#0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	10	7	133	169	1
NA : /NA:	<i>t</i> : 0				4 : 0	
	Minor2		//ajor1		/lajor2	_
Conflicting Flow All	251	85	170	0	-	0
Stage 1	170	-	-	-	-	-
Stage 2	81	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	722	963	1420	-	-	-
Stage 1	849	-	_	-	_	-
Stage 2	939	_	-	-	_	_
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	718	963	1420	_	_	_
Mov Cap-1 Maneuver	729	-	1720		_	
	845		-	_		_
Stage 1		-	-	-	-	-
Stage 2	939	-	-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.9		0.4		0	
HCM LOS	Α		• • •			
110111 200	,,					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1420	-	936	-	-
HCM Lane V/C Ratio		0.005	-	0.012	-	-
HCM Control Delay (s)		7.5	-		-	-
HCM Lane LOS		A	-	Α	-	-
HCM 95th %tile Q(veh)		0	_	0	_	-
. Town Journ Journ Q(VEII)		U		U		

Intersection						
Int Delay, s/veh	7.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	↑ ↑	
Traffic Vol, veh/h	97	250	161	132	167	63
Future Vol, veh/h	97	250	161	132	167	63
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-		-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	98	253	163	133	169	64
Major/Minor N	/linor2	N	Major1	N	/lajor2	
Conflicting Flow All	594	117	233	0	- najoiz	0
Stage 1	201	- 117	233	-	-	-
Stage 2	393	<u>-</u>	_	_	<u> </u>	_
Critical Hdwy	6.8	6.9	4.1	_	-	-
Critical Hdwy Stg 1	5.8	0.9	4.1	_	_	_
Critical Hdwy Stg 2	5.8	<u>-</u>		_	_	-
Follow-up Hdwy	3.5	3.3	2.2	-	<u> </u>	-
Pot Cap-1 Maneuver	441	919	1346	_	-	-
Stage 1	819	313	1340	_	_	_
Stage 2	657	<u>-</u>	-	_	-	-
Platoon blocked, %	031	_	_	_	_	-
Mov Cap-1 Maneuver	388	919	1346	<u>-</u>	_	-
Mov Cap-2 Maneuver	490	313	1040	_	_	-
Stage 1	720	-	-	_	-	-
Stage 2	657	_	-	-	-	-
Staye 2	007	-	-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	14.2		4.4		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1346		738		ODIX
HCM Lane V/C Ratio		0.121		0.475	-	-
HCM Control Delay (s)		8		14.2	-	-
		A	-		- -	-
HCM Lang LOS						
HCM Lane LOS HCM 95th %tile Q(veh)		0.4	<u>-</u>		_	_

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDN				אמט
		11	<u>ኝ</u>	^	↑ ↑	1
Traffic Vol, veh/h	1	11	7 7	141 141	179	1
Future Vol, veh/h		0	0		179	0
Conflicting Peds, #/hr	0			0	0	
Sign Control RT Channelized	Stop	Stop	Free	Free	Free	Free
	-	None	120	None	-	None
Storage Length	<u>-</u>	-	130	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	11	7	142	181	1
Major/Minor N	1inor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	267	91	182	0	-	0
Stage 1	182	-	-	-	_	-
Stage 2	85	<u>-</u>	_	_	_	_
Critical Hdwy	6.8	6.9	4.1	_	_	_
Critical Hdwy Stg 1	5.8	0.5	-	_	_	_
Critical Hdwy Stg 2	5.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	705	955	1405		_	_
	837	900	1405	-	<u> </u>	-
Stage 1		-	-	-	-	_
Stage 2	935	-	-	-	-	-
Platoon blocked, %	704	٥٢٢	4405	-	-	-
Mov Cap-1 Maneuver	701	955	1405	-	-	-
Mov Cap-2 Maneuver	717	-	-	-	-	-
Stage 1	833	-	-	-	-	-
Stage 2	935	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.9		0.4		0	
HCM LOS	Α		0.4		U	
TIOWI LOO						
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1405	-	929	-	-
HCM Lane V/C Ratio		0.005	-	0.013	-	-
HCM Control Delay (s)		7.6	-	8.9	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh)		0	-	0	-	-

Intersection						
Int Delay, s/veh	7.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIN	NDL			JUIN
Traffic Vol, veh/h	97	251	161	↑↑ 141	↑ 179	63
Future Vol, veh/h	97	251	161	141	179	63
	0	251	0	0	0	03
Conflicting Peds, #/hr			Free	Free	Free	Free
Sign Control RT Channelized	Stop -	Stop None	riee -		riee -	None
Storage Length	-	NOTIE	130	None -	_	None
Veh in Median Storage			130	0	0	
	0			0	0	
Grade, %		-	-			99
Peak Hour Factor	99	99	99	99	99	
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	98	254	163	142	181	64
Major/Minor	Minor2	N	Major1	N	//ajor2	
Conflicting Flow All	610	123	245	0		0
Stage 1	213	-		_	_	-
Stage 2	397	_	_	_	_	_
Critical Hdwy	6.8	6.9	4.1	_	_	_
Critical Hdwy Stg 1	5.8	-	····	_	_	_
Critical Hdwy Stg 2	5.8	-	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	<u>_</u>	_	_
Pot Cap-1 Maneuver	431	911	1333	_	_	_
Stage 1	808	-	1000	_	_	_
Stage 2	654	_	_	-	_	
Platoon blocked, %	054	_	-	_	_	_
	270	911	1333	-	-	-
Mov Cap-1 Maneuver	378 482	911	1333	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	709	-	-	-	-	-
Stage 2	654	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	14.4		4.3		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1333	-		-	-
HCM Lane V/C Ratio		0.122		0.482	-	-
HCM Control Delay (s)		8.1	-	14.4	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh))	0.4	-	2.6	-	-

Intersection						
Int Delay, s/veh	0.5					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	4.4	^	^	↑ }	4
Traffic Vol, veh/h	1	14	9	183	232	1
Future Vol, veh/h	1	14	9	183	232	1
Conflicting Peds, #/hr	0	0	0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	130	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	1	14	9	185	234	1
Major/Minor M	inor2	N	/lajor1	ı	/lajor2	
Conflicting Flow All	346	118	235	0	-	0
Stage 1	235	-	200	-	_	-
Stage 2	111	_	_	_	_	_
Critical Hdwy	6.8	6.9	4.1	-	_	_
Critical Hdwy Stg 1	5.8	0.9	4.1	-	_	_
Critical Hdwy Stg 2	5.8	<u>-</u>	-	-		_
	3.5	3.3	2.2	-	-	-
Follow-up Hdwy Pot Cap-1 Maneuver	630	918	1344	-		-
•	788		1344	-	-	-
Stage 1		-	-	-	-	_
Stage 2	907	-	-	-	-	-
Platoon blocked, %	000	040	4044	-	-	-
Mov Cap-1 Maneuver	626	918	1344	-	-	-
Mov Cap-2 Maneuver	663	-	-	-	-	-
Stage 1	782	-	-	-	-	-
Stage 2	907	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.1		0.4		0	
HCM LOS	Α		0.4		U	
TICIVI LOS						
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1344	-	895	-	-
HCM Lane V/C Ratio		0.007	-	0.017	-	-
HCM Control Delay (s)		7.7	-	9.1	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh)		0	-	0.1	-	-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						

Intersection						
Int Delay, s/veh	7.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	↑ ↑	
Traffic Vol, veh/h	97	251	161	141	179	63
Future Vol, veh/h	97	251	161	141	179	63
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	None
Storage Length	_	-	130	-	_	-
Veh in Median Storage,	# 0	_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	98	254	163	142	181	64
IVIVIII(I IOW	30	204	100	172	101	0+
Major/Minor M	1inor2	N	Major1	١	/lajor2	
Conflicting Flow All	610	123	245	0	-	0
Stage 1	213	-	-	-	-	-
Stage 2	397	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	431	911	1333	-	-	-
Stage 1	808	_	-	_	_	_
Stage 2	654	-	-	-	-	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	378	911	1333	_	_	_
Mov Cap-2 Maneuver	482	-		_	_	_
Stage 1	709	_	_		_	
Stage 2	654	_	_	_	_	_
Glage Z	004	-	_	_	<u>-</u>	-
			NB		SB	
Approach	EB					
Approach HCM Control Delay, s	14.4		4.3		0	
					0	
HCM Control Delay, s	14.4				0	
HCM Control Delay, s HCM LOS	14.4 B	NDL	4.3	EDI n4		CDD
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	14.4 B	NBL 1222	4.3 NBT	EBLn1	0 SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	14.4 B	1333	4.3 NBT	730	SBT -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	14.4 B	1333 0.122	4.3 NBT -	730 0.482	SBT - -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	14.4 B	1333 0.122 8.1	4.3 NBT - -	730 0.482 14.4	SBT - -	- - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	14.4 B	1333 0.122	4.3 NBT -	730 0.482	SBT - -	-

 SUBJECT
 BY
 DATE
 JOB NO.
 SHEET
 OF

 TURN MOVEMENTS
 TM
 10-Mar-22
 MOAI0000-0001
 1
 OF
 1

E/W STREET : PROJECT DRIVEWAY
N/S STREET : STODDARD WELLS RD

CONDITION: AM PEAK HOUR

<u>INTERSECTION</u>: 2

PROJECTED GROWTH: 3.5%

PER YEAR:

CONDITION DIAGRAMS

TURN MOVEMENTS

			Existing +	Year 2023			Year 2033		Future +
	Existing	Project	Project	Ambient	Background	Project	Ambient	Future	Project
Condition	Condition	Trips	Condition	Growth	Condition	Condition	Growth	Condition	Condition
Scenario #	1		3		5	7		9	11

PROJECT DRIVEWAY

EB LEFT	0	0	0	0	0	0	0	0	0
EB THRU	0	0	0	0	0	0	0	0	0
EB RIGHT	0	104	104	0	0	104	0	0	104
WB LEFT	0	0	0	0	0	0	0	0	0
WB THRU	0	0	0	0	0	0	0	0	0
WB RIGHT	0	0	0	0	0	0	0	0	0

STODDARD WELLS RD

NB LEFT	0	439	439	0	0	439	0	0	439
NB THRU	122	232	354	8	130	362	38	168	400
NB RIGHT	0	0	0	0	0	0	0	0	0
SB LEFT	0	0	0	0	0	0	0	0	0
SB THRU	124	54	178	9	133	187	39	172	226
SB RIGHT	0	0	0	0	0	0	0	0	0
TOTALS	1575	206	1781	111	1686	1892	38	1724	1930

Los Angeles Office: 213.337.3680 ~ Ontario Office: 909.481.5750 ~ San Diego Office: 619.400.0600 Santa Clarita Office: 661.284.7400 ~ Temecula Office: 951.294.9300 ~ Tustin Office: 714.665.4500

L. C C						
Intersection	4.0					
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	ħβ	
Traffic Vol, veh/h	0	104	439	354	178	0
Future Vol, veh/h	0	104	439	354	178	0
Conflicting Peds, #/hr	0	0	0	0	0	0
•	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	0	-	-	-
Veh in Median Storage,		-	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mymt Flow	0	117	493	398	200	0
WWITCHIOW	U	117	700	000	200	U
	inor2		//ajor1	N	/lajor2	
Conflicting Flow All	1385	100	200	0	-	0
Stage 1	200	-	-	-	-	-
Stage 2	1185	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	_	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	_	-
Pot Cap-1 Maneuver	137	943	1384	-	_	-
Stage 1	820	_	-	_	_	-
Stage 2	257	_	_	_	_	_
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	88	943	1384	_	_	_
Mov Cap-2 Maneuver	192	J 1 0		_	<u>-</u>	_
Stage 1	528	_				
Stage 2	257	_	_	_	_	_
Slaye Z	201	-	-	-	<u>-</u>	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		5		0	
HCM LOS	Α					
Minor Long/Maior M		NDI	NDT	EDL 4	CDT	CDD
Minor Lane/Major Mvmt		NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1384	-		-	-
HCM Lane V/C Ratio		0.356	-	0.124	-	-
HCM Control Delay (s)		9	-	9.4	-	-
HCM Lane LOS		Α	-	Α	-	-
HCM 95th %tile Q(veh)		1.6	-	0.4	_	-

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDN	INDL			אמט
		104	4 39	^	↑ }	0
Traffic Vol, veh/h	0	104	439	362 362	187 187	0
Future Vol, veh/h	0	0	439	302		0
Conflicting Peds, #/hr					0	
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	150	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	117	493	407	210	0
Major/Minor N	/linor2	N	Major1	ı	/lajor2	
Conflicting Flow All	1400	105	210	0	-	0
Stage 1	210	-	210	-	_	-
Stage 2	1190	_	_	_	_	_
Critical Hdwy	6.8	6.9	4.1	-	_	_
Critical Hdwy Stg 1	5.8	0.9	4.1	_	_	_
Critical Hdwy Stg 2	5.8	<u>-</u>	-	-	-	_
, ,				-		-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	134	936	1373	-	-	-
Stage 1	811	-	-	-	-	-
Stage 2	255	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	86	936	1373	-	-	-
Mov Cap-2 Maneuver	190	-	-	-	-	-
Stage 1	520	-	-	-	-	-
Stage 2	255	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.4		5		0	
HCM LOS	Α					
Minor Lane/Major Mvm		NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		1373	_		_	_
HCM Lane V/C Ratio		0.359	_	0.125	_	_
HCM Control Delay (s)		9.1	_		_	_
HCM Lane LOS		A	_	Α	-	_
HCM 95th %tile Q(veh)		1.7	_		_	_
. Town oour found w(voir)		1.7		J.7		

Intersection						
Int Delay, s/veh	4.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	∱ }	
Traffic Vol, veh/h	0	104	439	362	187	0
Future Vol, veh/h	0	104	439	362	187	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	_	None
Storage Length	0	-	150	-	_	-
Veh in Median Storage,		_	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	89	89	89	89	89	89
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	117	493	407	210	0
manica low			100	101		Ū
	/linor2		Major1		/lajor2	_
Conflicting Flow All	1400	105	210	0	-	0
Stage 1	210	-	-	-	-	-
Stage 2	1190	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	134	936	1373	-	-	-
Stage 1	811	-	-	-	-	-
Stage 2	255	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	86	936	1373	-	-	-
Mov Cap-2 Maneuver	190	_	-	_	_	_
Stage 1	520	_	_	_	_	_
Stage 2	255	_	_	_	_	_
Olago Z	200					
Approach	EB		NB		SB	
Approach HCM Control Delay, s	9.4		NB 5		SB 0	
Approach						
Approach HCM Control Delay, s	9.4					
Approach HCM Control Delay, s HCM LOS	9.4 A	NRI	5	FRI n1	0	SBR
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt	9.4 A	NBL	5 NBT I	EBLn1	0 SBT	SBR
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h)	9.4 A	1373	5 NBT I	936	0 SBT	-
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	9.4 A	1373 0.359	5 NBT - -	936 0.125	SBT -	-
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	9.4 A	1373 0.359 9.1	5 NBT - - -	936 0.125 9.4	0 SBT - -	- - -
Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio	9.4 A	1373 0.359	5 NBT - -	936 0.125	SBT -	-

 SUBJECT
 BY
 DATE
 JOB NO.
 SHEET
 OF

 TURN MOVEMENTS
 TM
 10-Mar-22
 MOAI0000-0001
 1
 OF
 1

E/W STREET : PROJECT DRIVEWAY

N/S STREET : STODDARD WELLS RD

<u>CONDITION</u>: <u>PM PEAK HOUR</u>

<u>INTERSECTION</u>: 2

PROJECTED GROWTH: 3.5%

PER YEAR:

TURN MOVEMENTS

Condition Scenario #	Existing Condition	Project Trips	Existing + Project Condition	Year 2023 Ambient Growth	Background Condition 6	Project Condition 8	Year 2033 Ambient Growth	Future Condition	Future + Project Condition				
PROJECT DRIVEWAY													
EB LEFT	0	0	0	0	0	0	0	0	0				
EB THRU	0	0	0	0	0	0	0	0	0				
EB RIGHT	0	454	454	0	0	454	0	0	454				
WB LEFT	0	0	0	0	0	0	0	0	0				
WB THRU	0	0	0	0	0	0	0	0	0				
WB RIGHT	0	0	0	0	0	0	0	0	0				
STODDARD W	ELLS RD	293	293	0	0	293	0	0	293				
NB THRU	139	154	293	9	148	302	44	192	346				
NB RIGHT	0	0	0	0	0	0	0	0	0				
SB LEFT	0	0	0	0	0	0	0	0	0				
SB THRU	142	240	382	10	152	392	45	197	437				
SB RIGHT	0	0	0	0	0	0	0	0	0				
TOTALS	1575	206	1781	111	1686	1892	38	1724	1930				

Los Angeles Office: 213.337.3680 ~ Ontario Office: 909.481.5750 ~ San Diego Office: 619.400.0600 Santa Clarita Office: 661.284.7400 ~ Temecula Office: 951.294.9300 ~ Tustin Office: 714.665.4500

Intersection						
Int Delay, s/veh	6.6					
		EBR	NDI	NDT	CDT	CDD
Movement Configurations	EBL	EBK	NBL	NBT	SBT	SBR
Lane Configurations	Y	151	202	^	↑ [>	0
Traffic Vol, veh/h	0	454 454	293	293 293	382 382	0
Future Vol, veh/h	0	454	293			0
Conflicting Peds, #/hr			0 Eroo	0 Eroo	0 Free	0 Eroo
Sign Control RT Channelized	Stop	Stop	Free	Free		Free
	- 0	None	150	None	-	None
Storage Length				-	_	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	459	296	296	386	0
Major/Minor I	Minor2	N	//ajor1	N	/lajor2	
Conflicting Flow All	1126	193	386	0		0
Stage 1	386	-	-	-	_	-
Stage 2	740	_	_	_	_	_
Critical Hdwy	6.8	6.9	4.1	_	_	_
Critical Hdwy Stg 1	5.8	-		_	_	_
Critical Hdwy Stg 2	5.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	202	822	1184	_	_	_
Stage 1	662	-	- 107	_	<u>-</u>	_
Stage 2	438	_	_	_	_	_
Platoon blocked, %	700			_	_	_
Mov Cap-1 Maneuver	152	822	1184	_	-	-
Mov Cap-1 Maneuver	281	- 022	1104	_	_	-
Stage 1	497	-		-	_	-
_					=	
Stage 2	438	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	14.8		4.5		0	
HCM LOS	В					
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1184	-	822	-	-
HCM Lane V/C Ratio		0.25	_	0.558	_	_
HCM Control Delay (s)		9.1	_	14.8	_	_
HCM Lane LOS		A	_	В	-	_
HCM 95th %tile Q(veh)		1	-	3.5	_	_
TIOM Jour Julio Q(VOII)		-		0.0		

Intersection						
Int Delay, s/veh	6.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	LDIX	NDL	† †	†	אופט
Traffic Vol, veh/h	T	454	293	TT 302	T → 392	0
Future Vol, veh/h	0	454	293	302	392	0
Conflicting Peds, #/hr	0	454	293	0	0	0
				Free	Free	Free
Sign Control RT Channelized	Stop -	Stop None	Free -		Free -	None
Storage Length	0	None -	150	None -	-	None
Veh in Median Storage			150	0	0	-
Grade, %	0			0	0	
		-	-			99
Peak Hour Factor	99	99	99	99	99	
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	459	296	305	396	0
Major/Minor N	Minor2	N	Major1	N	//ajor2	
Conflicting Flow All	1141	198	396	0	-	0
Stage 1	396	-	-	-	-	-
Stage 2	745	_	-	_	_	-
Critical Hdwy	6.8	6.9	4.1	-	-	_
Critical Hdwy Stg 1	5.8	-	-	_	_	_
Critical Hdwy Stg 2	5.8	_	_	_	_	_
Follow-up Hdwy	3.5	3.3	2.2	_	_	_
Pot Cap-1 Maneuver	197	816	1174	_	_	_
Stage 1	655	-	- 117	_	_	_
Stage 2	435			_	_	_
Platoon blocked, %	400	_	-	_	_	_
Mov Cap-1 Maneuver	147	816	1174		-	-
		010	11/4	_	_	-
Mov Cap-2 Maneuver	277	-	-	-	-	-
Stage 1	490	-	-	-	-	-
Stage 2	435	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	14.9		4.5		0	
HCM LOS	В				*	
	_					
		ND	Not	EDI 1	057	000
Minor Lane/Major Mvm	t	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1174	-	• • •	-	-
HCM Lane V/C Ratio		0.252		0.562	-	-
HCM Control Delay (s)		9.1	-	14.9	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)		1	-	3.6	-	-

Intersection						
Int Delay, s/veh	6.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	^	↑ Ъ	USIN
Traffic Vol, veh/h	0	454	293	302	392	0
Future Vol, veh/h	0	454	293	302	392	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		_	None
Storage Length	0	-	150	-	_	-
Veh in Median Storage		_	-	0	0	_
Grade, %	0	_	-	0	0	-
Peak Hour Factor	99	99	99	99	99	99
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	0	459	296	305	396	0
	<u> </u>					
NA ' (NA)					4 : 0	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1141	198	396	0	-	0
Stage 1	396	-	-	-	-	-
Stage 2	745	-	-	-	-	-
Critical Hdwy	6.8	6.9	4.1	-	-	-
Critical Hdwy Stg 1	5.8	-	-	-	-	-
Critical Hdwy Stg 2	5.8	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.2	-	-	-
Pot Cap-1 Maneuver	197	816	1174	-	-	-
Stage 1	655	-	-	-	-	-
Stage 2	435	_	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	147	816	1174	-	-	-
Mov Cap-2 Maneuver	277	-	-	-	-	-
Stage 1	490	-	-	-	-	-
Stage 2	435	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	14.9		4.5		0	
	_		4.5		U	
HCM LOS	В					
Minor Lane/Major Mvm	ıt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1174	-	816	_	_
HCM Lane V/C Ratio		0.252	-	0.562	-	-
HCM Control Delay (s)		9.1	-		-	-
HCM Lane LOS		Α	-		-	-
HCM 95th %tile Q(veh))	1	-	3.6	-	-

Appendix C: Traffic Signal Warrant Worksheet

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 1 of 5)

						CLINT	DATE	2-2	4-22			
						ALC_	ΓŃΜ		_ D	ATE 3-2	2-22	
12.	RTE	PM			(CHK _				ATE		
ajor St: STODDA ABBEY L	RD W N	ELLS	RD				oach S					mph mph
Speed limit or critic	cal spee	d on ma	ior stree	t traffic > 4	0 mph		X	1)				
In built up area of							0			AL (R) AN (U)		
ARRANT 1 - Eig ondition A or C					of A and	B mu				YES [□ N	0 □1
ondition A - Min	imum	Vehicle	Volur	ne		100	% SA	TIS	FIED	YES [□ N	D □
		MUM RE				80	% SA	TIS	FIED	YES [□ N	0 🗆
	U	R	U	R								
APPROACH LANES		1	2 or	More		/	/	/	/	/		Hour
Both Approaches Major Street	500 (400)	350 (280)	600 (480)	420 (336)							1,0	
Highest Approach Minor Street	150 (120)	105 (84)	200 (160)	140 (112)								
ondition B - Inte	MINIM	on of C	QUIREN	MENTS	ffic		% SA 1% SA			YES [
	U	R	U	R								
APPROACH LANES		1	2 or	More	/	/	/	/	/	/	/	Hou
Both Approaches Major Street	750 (600)	525 (420)	900 (720)	630 (504)		3-3				1 = 1	\equiv	
Highest Approach Minor Street	75 (60)	53 (42)	100 (80)	70 (56)								
ombination of C	onditi	ons A &	& B		•		SA	TIS	FIED	YES [N	o 🗆
REQUIREMENT			- 0	CONDITIC	N			V	FU	LFILLED		
TWO COMPLETO	10 A.	MINIMU	JM VEH	CULAR V	OLUME					L/Jar		
TWO CONDITION SATISFIED 80%	AN	ID, INTERF	RUPTIO	N OF CON	ITINUOUS	TRAF	FIC		Yes	□ No		
AND, AN ADEQUACAUSE LESS DE TO SOLVE THE T	LAY AN	D INCOM	VENIE						Yes	□ No		

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

APPROACH LANES	One	2 or More	/	//	Hour			
Both Approaches - Major Street								
Higher Approach - Minor Street					6.1			
*All plotted points fall above the applic	able curve	e in Figu	ure 4C-	1. (URB	AN AREAS)	Yes	No	
OR, All plotted points fall above the ap	plicable c	urve in	Figure	4C-2. (F	RURAL AREAS)	Yes	No	
ARRANT 3 - Peak Hour	4)				SATISFIED	YES	NO	X
art A or Part B must be satisfie	u)							
RT A I parts 1, 2, and 3 below must be	satisfied			e	SATISFIED	YES	NO	
RT A I parts 1, 2, and 3 below must be a hour, for any four consecutive 1	satisfied	e perioninor str	reet app	oroach (o	one direction only)	YES	NO No	_
RT A I parts 1, 2, and 3 below must be a hour, for any four consecutive 1 The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a	satisfied 15-minut c on one n exceeds two-lane	ninor str four veh approach ch (one	reet app hicle-ho ch; ANI	oroach (ours for a	one direction only) one-lane equals or exceeds			X
approach, or five vehicle-hours for a The volume on the same minor street	satisfied 15-minut c on one n exceeds two-lane et approac c or 150 v	ninor str four veh approach ch (one ph for to	reet apphicle-hoch; ANE	oroach (o ours for a on only) e ring lane	one direction only) one-lane equals or exceeds s; AND	Yes	No	
RT A I parts 1, 2, and 3 below must be a hour, for any four consecutive 1. The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a 2. The volume on the same minor stree 100 vph for one moving lane of traffic 3. The total entering volume serviced of for intersections with four or more approach.	satisfied 15-minut c on one n exceeds two-lane et approac c or 150 v	ninor str four veh approach ch (one ph for to	reet apphicle-hoch; ANI direction wo move	oroach (cours for a 2) on only) eing lane: exceeds intersec	one direction only) one-lane equals or exceeds s; AND	Yes Yes	No No	
RT A I parts 1, 2, and 3 below must be a hour, for any four consecutive 1 I. The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a 2 The volume on the same minor street 100 vph for one moving lane of traffic for intersections with four or more against three approaches.	satisfied 15-minut c on one n exceeds two-lane et approac c or 150 v	ninor str four veh approach ch (one ph for to	reet apphicle-hoch; ANE	oroach (cours for a 2) on only) eing lane: exceeds intersec	one direction only) one-lane equals or exceeds s; AND s 800 vph etions with	Yes Yes Yes	No No No	
RT A I parts 1, 2, and 3 below must be a hour, for any four consecutive 1 The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a 2 The volume on the same minor stree 100 vph for one moving lane of traffic for intersections with four or more approaches. RT B	satisfied 15-minut c on one n exceeds two-lane et approac c or 150 v	e periodininor strategies of the control of the con	reet apphicle-hoch; ANI direction wo move	oroach (cours for a 2) on only) eing lane: exceeds intersec	one direction only) one-lane equals or exceeds s; AND s 800 vph etions with	Yes Yes Yes	No No No	

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 3 of 5)

ARRANT 5 - School Crossing arts A and B Must Be Satisfied) Part A Sap/Minutes and # of Children Gaps Winutes Children AND, Consideration has been given to less restrictive remedial measures. SATI SATI SATI SATI SATI SATI SATI SATI	SFIED	YES	NO [□ N/
ARRANT 5 - School Crossing arts A and B Must Be Satisfied) OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR. The proposed traffic signal wi				
Pedestrians per hour for any 4 hours Hours> Vehicles per hour for any 1 hour Pedestrians per hour for any 1 hour Part 2 AND, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft ARRANT 5 - School Crossing arts A and B Must Be Satisfied) art A ap/Minutes and # of Children Gaps Vs Minutes Children Using Crossing Number of Adequate Gaps School Age Pedestrians Crossing Street / hr AND Children > AND, Consideration has been given to less restrictive remedial measures.		or Figur		
Vehicles per hour for any 1 hour Pedestrians per hour for any 1 hour Part 2 AND, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed tra	0.120			
Vehicles per hour for any 1 hour Pedestrians per hour for any 1 hour Part 2 AND, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, T				
Pedestrians per hour for any 1 hour Part 2 AND, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal along the major street		or Figur		
AND, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater to the major street is greater to the major street is greater to the major street is greater than 300 ft OR, The proposed traffic signal along the major street is greater to the major street is greater than 300 ft SATION TO THE MAND SAT	SITED	120 🗖	NO L	-
AND, The distance to the nearest traffic signal along the major street is greater than 300 ft OR, The proposed traffic signal will not restrict progressive traffic flow along the major street is greater to the proposed traffic signal will not restrict progressive traffic flow along the major street is greater to the proposed traffic signal will not restrict progressive traffic flow along the major street is greater to along the major st	SFIED	YES 🗆	NO [1
RRANT 5 - School Crossing rts A and B Must Be Satisfied) Art A sp/Minutes and # of Children Gaps VS Number of Adequate Gaps School Age Pedestrians Crossing Street / hr AND, Consideration has been given to less restrictive remedial measures.		Yes 🗆	No [
RRANT 5 - School Crossing rts A and B Must Be Satisfied) art A SATION S		Yes 🗆	No [_
Art A Ap/Minutes and # of Children Gaps VS Minutes Number of Adequate Gaps School Age Pedestrians Crossing Street / hr AND Children > AND Children >	SFIED	YES 🗆	NO [J N
Minutes Number of Adequate Gaps School Age Pedestrians Crossing Street / hr AND Children > AND, Consideration has been given to less restrictive remedial measures.	SFIED	YES 🗆	NO [
School Age Pedestrians Crossing Street / hr AND Children > AND, Consideration has been given to less restrictive remedial measures.				
AND, Consideration has been given to less restrictive remedial measures.		YES 🗆	NO [
	20/hr	YES 🗆	NO [
and the same of th		Yes 🗆	No [
art B SATI	SFIED	YES 🗆	NO [
The distance to the nearest traffic signal along the major street is greater than 300 ft		Yes 🗆	No [
OR, The proposed signal will not restrict the progressive movement of traffic.		Yes 🗆	No [\exists

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 4 of 5)

NIMUM REQUIRE	MENTS		DIS	TANCE	TON	EARE	ST SIG	NAL				
≥ 1000 ft		N	ft,	s	ft	E_	ft,	W_		ft	Yes 🗌	No
on a one-way street affic control signals ehicular platooning.	are so far	t that has	traffic at they	predom do not p	ninantl	y in one e the n	e direc ecessa	tion, t	he adja gree of	cent	Yes 🗌	No□
<u>PR</u> , On a two-way stree egree of platooning rovide a progressive	and the p	roposed	c contro and adj	ol signa acent t	ils do raffic d	not pro control	vide th signals	e nec	essary	ely	ies []	МОП
ARRANT 7 - Cra	sh Exp	erience ed)	Warr	ant				SAT	ISFIE	D Y	ES 🗆	NO [
dequate trial of alter		ith satisfa	actory c	bserva	nce a	nd enfo	rceme	nt ha	s failed	to	Yes 🗌	NoX
REQUIREMENT	rs	Number of susceptible or damage	le to co	rrection	byat	raffic si	gnal, a	nd inv	olving in	njury ash.	Yes 🗌	No 🛛
5 OR MORE			Mean Area							1 /		
REQUIREMENT	rs	CONDIT			_							
		Warrant Minimum										
ONE CONDITION		OR, War	rant 1, 0 on of C	Condition	on B	- affic					Yes 🗌	NoX
O/MIGHED 00		OR, War Ped Vol	rant 4, 1 > 80% c	Pedest of Figur	rian V	olume (5 throu	Conditi gh Figu	on ure 40	C-8			
ARRANT 8 - Roall Parts Must Be II Parts Must Be IINIMUM VOLUME REQUIREMENTS	adway I Satisfi	Networl ed) ENTER	50.75	LUME	S - AL		.0235	10.0	ISFIE	D Y	ES FULFI	200
1000 Veh/Hr	and has	Typical Was 5-year pants 1, 2,	and 3	d traffic during : OR	volur an ave	nes tha erage w	t meet eekda	one o	or more		Yes 🗌	No□
CHARACT	ERISTICS	S OF MA	JOR RO	OUTES			MAJO		MAJO			
lwy. System Serving	as Princi	ipal Netw	ork for	Throug	h Traff	fic						
ural or									7	1		
uburban Highway C	outside Of	, Entering	, or tra	versing	y a Cil	.у						
				versing	y a Cil	y_		-				

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 5 of 5)

PART A		
A grade crossing exists on an approach controlled by a STOP or YIE center of the track nearest to the intersection is within 140 feet of the line on the approach. Track Center Line to Limit Line ft		Yes ☐ No ☐
PART B		
There is one minor street approach lane at the track crossing - It traffic volume hour during which rail traffic uses the crossing, the plot the applicable curve in Figure 4C-9.		
Major Street - Total of both approaches: VPH Minor Street - Crosses the track (one direction only, approaching the VPH X AF (Use Tables 4C-2, 3, & 4 below to calculate AF)		V El N-E
OR, There are two or more minor street approach lanes at the tr During the highest traffic volume hour during which rail traffic uses the the plotted point falls above the applicable curve in Figure 4C-10.		Yes ☐ No ☐
Major Street - Total of both approaches : VPH Minor Street - Crosses the track (one direction only, approaching the VPH X AF (Use Tables 4C-2, 3, & 4 below to calcualte AF)		
The minor street approach volume may be multiplied by up to three follows described in Section 4C.10.	wing adjustment factors	(AF)
- Number of Rail Traffic per Day	_ Adjustment factor from	m table 4C-2
2- Percentage of High-Occupancy Buses on Minor Street Approach	Adjustment factor from	m table 4C-3
- Percentage of Tractor-Trailer Trucks on Minor Street Approach	Adjustment factor from	m table 4C-4
NOTE: If no data is availale or known, then use AF = 1 (no adjustment)		

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

ARRANT 2 - Four Hour Vehicular V	olume			SATISFIED*	YES		NO	
Record hourly vehicular volumes for any four		/	day.	11				
APPROACH LANES	2 or One More		/	/ Hour				
Both Approaches - Major Street								
Higher Approach - Minor Street				5_1				
*All plotted points fall above the applicable	curve in Fi	gure 4C-1.	(URBAN	AREAS)	Yes		No	
OR, All plotted points fall above the applica	ble curve i	n Figure 4C	-2. (RU	RAL AREAS)	Yes		No	
ARRANT 3 - Peak Hour art A or Part B must be satisfied)			Ę.	SATISFIED	YES	×	NO	
RT A I parts 1, 2, and 3 below must be satise hour, for any four consecutive 15-m	sfied for t	the same		SATISFIED	YES		NO	
 The total delay experienced by traffic on controlled by a STOP sign equals or exc approach, or five vehicle-hours for a two- 	eeds four v	ehicle-hours			Yes		No	×
The volume on the same minor street ap 100 vph for one moving lane of traffic or					Yes	X	No	
 The total entering volume serviced during for intersections with four or more approaches. 					Yes	X	No	
RT B			AN CONTRACTOR	SATISFIED	YES	X	NO	
APPROACH LANES	2 or One More	× × × / 1	Hour					
Both Approaches - Major Street	Х	523						
Higher Approach - Minor Street	Х	347						
The plotted point falls above the applicable	curve in F	igure 4C-3.	(URBAI	N AREAS)	Yes		No	
OR, The plotted point falls above the applic	cable curve	in Figure 4	C-4. (RI	JRAL AREAS)	Yes	IXI	No	П

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

ARRANT 2 - Four Hour Vehicula	r Volum	ne		SA	TISFIED*	YES		NO	
Record hourly vehicular volumes for any APPROACH LANES	four hou	2 or	verage day	//	Hour				
Both Approaches - Major Street									
Higher Approach - Minor Street				- (5					
*All plotted points fall above the applica	able curve	in Figure	e 4C-1. (UI	RBAN ARI	EAS)	Yes		No	
OR, All plotted points fall above the app	plicable cu	urve in Fi	gure 4C-2.	(RURAL	AREAS)	Yes		No	
ARRANT 3 - Peak Hour art A or Part B must be satisfied	d)			SAT	ISFIED	YES		NO	X
RT A II parts 1, 2, and 3 below must be see hour, for any four consecutive 1	satisfied 5-minute	for the	same s)	SAT	ISFIED	YES		NO	
 The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a 	exceeds f	four vehic	le-hours fo			Yes		No	×
The volume on the same minor stree 100 vph for one moving lane of traffic	t approac or 150 vp	h (one di oh for two	rection only moving la	r) equals ones; <u>AND</u>	r exceeds	Yes		No	X
 The total entering volume serviced differ intersections with four or more ap three approaches. 						Yes	X	No	
RT B			Hou	SAT	ISFIED	YES		NO	
APPROACH LANES	One	2 or More	Hou	ır					
Both Approaches - Major Street		Х 3	28						
Higher Approach - Minor Street	X		12						
The plotted point falls above the applic	able curve	e in Figur	e 4C-3. (U	RBAN AR	EAS)	Yes		No	
OR, The plotted point falls above the a	pplicable	curve in I	Figure 4C-4	. (RURAI	AREAS)	Yes	П	No	N

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

ARRANT 2 - Four Hour Vehicula	r Volume	1		SATISFIED*	YES		NO	
Record hourly vehicular volumes for any APPROACH LANES		or	erage day.	///Hour				
Both Approaches - Major Street								
Higher Approach - Minor Street								
*All plotted points fall above the applica	able curve in	Figure	4C-1. (URE	BAN AREAS)	Yes		No	
OR, All plotted points fall above the app	olicable curv	/e in Figi	ure 4C-2. (I	RURAL AREAS)	Yes		No	
ARRANT 3 - Peak Hour art A or Part B must be satisfied	d)			SATISFIED	YES	X	NO	
NRT A II parts 1, 2, and 3 below must be see hour, for any four consecutive 1	satisfied fo 5-minute p	or the s	ame)	SATISFIED	YES		NO	
The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a	exceeds for	ur vehicle	e-hours for a		Yes		No	×
The volume on the same minor stree 100 vph for one moving lane of traffic					Yes		No	
The total entering volume serviced di for intersections with four or more ap three approaches.	uring the ho proaches or	ur equal 650 vph	s or exceed for interse	s 800 vph ctions with	Yes	X	No	
ART B			Hour	SATISFIED	YES		NO	
APPROACH LANES	One M	or ore	Hour					
Both Approaches - Major Street		X 54						
Higher Approach - Minor Street	X	348	3					
The plotted point falls above the applic	able curve i	n Figure	4C-3. (UR	BAN AREAS)	Yes		No	
OR, The plotted point falls above the a	pplicable cu	rve in Fi	gure 4C-4.	(RURAL AREAS)	Yes	IXI	No	П

California MUTCD 2014 Edition

(FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

FUTURE CONDITIONS

ARRANT 2 - Four Hour Vehicula	ar Volume	SATISFIED*	YES	NO 🗆
Record hourly vehicular volumes for an	y four hours of an average d	ay.		
APPROACH LANES	2 or One More	// Hour		
Both Approaches - Major Street				
Higher Approach - Minor Street		5 1		
*All plotted points fall above the applic	able curve in Figure 4C-1. (I	URBAN AREAS)	Yes 🗆	No 🗆
OR, All plotted points fall above the ap	plicable curve in Figure 4C-2	2. (RURAL AREAS)	Yes 🗆	No 🗆
ARRANT 3 - Peak Hour art A or Part B must be satisfie	d)	SATISFIED	YES 🗆	NO 🗵
RT A I parts 1, 2, and 3 below must be a hour, for any four consecutive 1	satisfied for the same 5-minute periods)	SATISFIED	YES 🗆	NO 🏻
The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a	exceeds four vehicle-hours		Yes 🗆	No 🛛
 The volume on the same minor stree 100 vph for one moving lane of traffic 			Yes 🗆	No 🛛
 The total entering volume serviced of for intersections with four or more ap three approaches. 	uring the hour equals or exc oproaches or 650 vph for inte	eeds 800 vph ersections with	Yes 🛚	No 🗆
RT B	2 or One More	SATISFIED	YES 🗆	NO 🏻
APPROACH LANES	2 or One More	our		
Both Approaches - Major Street	X 425			
Higher Approach - Minor Street	X 15			
The plotted point falls above the applic	cable curve in Figure 4C-3. (URBAN AREAS)	Yes 🗆	No 🗆
OR. The plotted point falls above the a	policable curve in Figure 4C	-4 (RURAL AREAS)	Yes Π	No 🏻

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET-TOTAL OF BOTH APPROACHES-VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

ARRANT 2 - Four Hour Vehicula	ar Volume	SATISFIED*	YES 🗆	NO 🗆 N
Record hourly vehicular volumes for any APPROACH LANES	y four hours of an average 2 or One More	day. / Hour		
Both Approaches - Major Street				
Higher Approach - Minor Street				
*All plotted points fall above the applica	able curve in Figure 4C-1.	(URBAN AREAS)	Yes 🗆	No 🗆
OR, All plotted points fall above the ap	plicable curve in Figure 4C	-2. (RURAL AREAS)	Yes 🗆	No 🗆
ARRANT 3 - Peak Hour art A or Part B must be satisfied	d)	SATISFIED	YES 🛚	№ □
RT A I parts 1, 2, and 3 below must be see hour, for any four consecutive 1	satisfied for the same 5-minute periods)	SATISFIED	YES	NO 🏻
The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a	exceeds four vehicle-hour		Yes 🗆	No 🛛
The volume on the same minor stree 100 vph for one moving lane of traffic			Yes 🛛	No 🗆
 The total entering volume serviced d for intersections with four or more ap three approaches. 			Yes 🛚	No 🗆
RT B	One More	SATISFIED	YES 🛚	NO 🗆
APPROACH LANES	2 or One More	Hour		
Both Approaches - Major Street	X 641			
Higher Approach - Minor Street	X 351			
The plotted point falls above the applic	able curve in Figure 4C-3.	(URBAN AREAS)	Yes 🗆	No 🗆
OR, The plotted point falls above the a	pplicable curve in Figure 4	C-4. (RURAL AREAS)	Yes X	№ П

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Appendix D: Queuing Analysis

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	23	8
Average Queue (ft)	8	2
95th Queue (ft)	26	13
Link Distance (ft)	369	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		130
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	39	49	15
Average Queue (ft)	26	29	3
95th Queue (ft)	43	57	15
Link Distance (ft)	369		329
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		130	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 2: Stoddard Wells Rd & Project Driveway "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	38	70
Average Queue (ft)	31	44
95th Queue (ft)	43	80
Link Distance (ft)	489	715
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	23	10
Average Queue (ft)	9	2
95th Queue (ft)	27	13
Link Distance (ft)	369	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		130
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	39	48	7
Average Queue (ft)	25	31	2
95th Queue (ft)	42	59	12
Link Distance (ft)	369		329
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		130	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 2: Stoddard Wells Rd & Project Driveway "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	40	64
Average Queue (ft)	32	39
95th Queue (ft)	45	74
Link Distance (ft)	489	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	21	7
Average Queue (ft)	10	1
95th Queue (ft)	29	11
Link Distance (ft)	369	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		130
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	39	48	7
Average Queue (ft)	25	31	2
95th Queue (ft)	42	59	12
Link Distance (ft)	369		329
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		130	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 2: Stoddard Wells Rd & Project Driveway "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	40	64
Average Queue (ft)	32	39
95th Queue (ft)	45	74
Link Distance (ft)	489	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	23	7
Average Queue (ft)	9	1
95th Queue (ft)	28	11
Link Distance (ft)	369	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		130
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	108	34	7
Average Queue (ft)	65	22	1
95th Queue (ft)	130	46	14
Link Distance (ft)	369		329
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		130	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 2: Stoddard Wells Rd & Project Driveway "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	134	64
Average Queue (ft)	92	42
95th Queue (ft)	156	75
Link Distance (ft)	489	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	23	10
Average Queue (ft)	10	2
95th Queue (ft)	28	15
Link Distance (ft)	369	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		130
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	108	39	2
Average Queue (ft)	66	22	1
95th Queue (ft)	126	48	8
Link Distance (ft)	369		329
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		130	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 2: Stoddard Wells Rd & Project Driveway "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	131	72
Average Queue (ft)	88	42
95th Queue (ft)	148	80
Link Distance (ft)	489	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	21	12
Average Queue (ft)	9	2
95th Queue (ft)	27	15
Link Distance (ft)	369	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		130
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Movement	EB	NB	SB
Directions Served	LR	L	TR
Maximum Queue (ft)	108	39	2
Average Queue (ft)	66	22	1
95th Queue (ft)	126	48	8
Link Distance (ft)	369		329
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		130	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 2: Stoddard Wells Rd & Project Driveway "A"

Movement	EB	NB
Directions Served	LR	L
Maximum Queue (ft)	131	72
Average Queue (ft)	88	42
95th Queue (ft)	148	80
Link Distance (ft)	489	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary