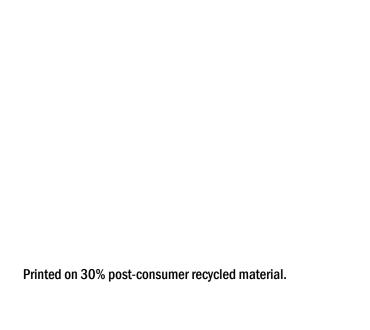
Initial Study/Mitigated Negative Declaration

Compton Boulevard Bridge Over Compton Creek Project County of Los Angeles Department of Public Works

SEPTEMBER 2022

Prepared for:


COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS

900 South Fremont Avenue Alhambra, California 91803-5100 Contact: Reyna Soriano

Prepared by:

38 North Marengo Avenue Pasadena, California 91101 Contact: Jason Reynolds

Table of Contents

SEC	TION		PAGE NO.
Acro	nyms and	I Abbreviations	iii
1	Introd	luction	1
	1.1	Project Overview	1
	1.2	California Environmental Quality Act Compliance	1
2	Projec	ct Description	3
	2.1	Project Background	3
	2.2	Project Location	3
	2.3	Surrounding Land Uses	3
	2.4	Project Design	4
	2.5	Project Construction	5
	2.6	Project Operation	9
	2.7	Approvals Required for the Proposed Project	9
3	Initial	Study Checklist	11
	3.1	Aesthetics	15
	3.2	Agriculture and Forestry Resources	17
	3.3	Air Quality	19
	3.4	Biological Resources	30
	3.5	Cultural Resources	36
	3.6	Energy	40
	3.7	Geology and Soils	42
	3.8	Greenhouse Gas Emissions	48
	3.9	Hazards and Hazardous Materials	53
	3.10	Hydrology and Water Quality	58
	3.11	Land Use and Planning	61
	3.12	Mineral Resources	62
	3.13	Noise	63
	3.14	Population and Housing	69
	3.15	Public Services	70
	3.16	Recreation	73
	3.17	Transportation	74
	3.18	Tribal Cultural Resources	80
	3.19	Utilities and Service Systems	83
	3.20	Wildfire	88
	3 21	Mandatory Findings of Significance	90

4	Refere	nces and Preparers	93
	4.1	References Cited	93
	4.2	List of Preparers	98
APPE	NDICE	es e	
Α	CalEEM	lod Outputs	
В	Natura	Environment Study (Minimal Impacts)	
С	Record	s Search Map and Finding of No Adverse Effect	
D	Geotec	hnical Memorandum	
Е	Water (Quality Assessment Report	
F	Field N	oise Measurement Data	
G	Traffic	Counts	
FIGU	RES		
1	Project	Location	101
2	Surrou	nding Land Uses	103
3	Propos	ed Project (90% Elevation View)	105
4	Propos	ed Project (90% Plan View)	107
5	Propos	ed Project Details	109
6	Vegeta	tion Types and Impact Areas	111
7	Area of	Potential Effects Map	113
8	Noise N	Neasurement Locations	115
TABL	ES		
1	Constru	uction Scenario Assumptions	23
2	Estima	ted Maximum Daily Construction Emissions	25
3	Constru	uction Localized Significance Thresholds Analysis	27
4	Estima	ted Annual Construction Greenhouse Gas Emissions	50
5	Noise L	evel Measurements	64
6	Typical	Construction Equipment Noise	64
7	Constru	uction Noise Levels at Nearby Noise-Sensitive Land Use	65
8	Summa	ary of Groundborne Vibration Levels and Potential Effects	68
9	Repres	entative Vibration Levels for Construction Equipment	68
10	City of	Compton Roadway Classification	75
11	Project	Trip Generation	78

Acronyms and Abbreviations

Acronym/Abbreviation	Definition
AB	Assembly Bill
APE	area of potential effects
AQMP	Air Quality Management Plan
bgs	below the ground surface
BMP	best management practice
BSA	biological survey area
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emissions Estimator Model
Caltrans	California Department of Transportation
CAMUTCD	Caltrans' Manual of Uniform Traffic Control Devices
CARB	California Air Resources Board
CEQA	California Environmental Quality Act
CFGC	California Fish and Game Code
CH ₄	methane
CHRIS	California Historic Resources Information System
CIDH	cast-in-drilled hole
CMTP	Construction Monitoring and Treatment Plan
CO ₂	carbon dioxide
CO ₂ e	carbon dioxide equivalent
County	Los Angeles County
EIR	Environmental Impact Report
GHG	greenhouse gas
GWP	global warming potential
in/sec	inches per second
IS	Initial Study
JWPCP	Joint Water Pollution Control Plant
LACM	Natural History Museum of Los Angeles County
LAFCD	Los Angeles Flood Control District
L _{max}	maximum noise level
LOS	level of service
LST	localized significance threshold
MBTA	Migratory Bird Treaty Act
mgd	million gallons per day
MLD	most likely descendant
MM	Mitigation Measure
MND	Mitigated Negative Declaration
MT	metric ton
N ₂ O	nitrous oxide
NAAQS	National Ambient Air Quality Standards
NF ₃	nitrogen trifluoride

Acronym/Abbreviation	Definition
NO ₂	nitrogen dioxide
NPDES	National Pollutant Discharge Elimination System
03	ozone
PCE	passenger car equivalent
PDF	Project Design Feature
PFC	perfluorocarbon
PM ₁₀	particulate matter with an aerodynamic diameter less than or equal to 10 microns
PM _{2.5}	particulate matter with an aerodynamic diameter less than or equal to 2.5 microns
ppv	peak particle velocity
PRC	California Public Resources Code
PRIMP	Paleontological Resources Impact Mitigation Program
Public Works	County of Los Angeles Department of Public Works
ROW	right-of-way
RTP	Regional Transportation Plan
RWQCB	Regional Water Quality Control Board
SB	Senate Bill
SCAB	South Coast Air Basin
SCAG	Southern California Association of Governments
SCAQMD	South Coast Air Quality Management District
SCE	Southern California Edison
SCS	Sustainable Communities Strategy
SF ₆	sulfur hexafluoride
SoCalGas	Southern California Gas Company
SOIS	Secretary of the Interior's Standards for the Treatment of Historic Properties
SWPPP	Stormwater Pollution Prevention Plan
TAC	toxic air contaminant
TCP	Traffic Control Plan
TCR	tribal cultural resource
USFWS	U.S. Fish and Wildlife Service
VHFHSZ	Very High Fire Hazard Severity Zone
VMT	vehicle miles traveled
VOC	volatile organic compound
WEAP	Workers Environmental Awareness Program

1 Introduction

1.1 Project Overview

The County of Los Angeles Department of Public Works (Public Works) proposes to replace the Compton Boulevard Bridge over Compton Creek (project or proposed project). The proposed project would involve the demolition of the existing two-span, steel-girder Compton Boulevard Bridge with a new two-span, precast concrete bridge. The proposed project would be located in southern Los Angeles County (County) in a northwest portion of the City of Compton (City) where the Compton Boulevard right-of-way (ROW) crosses Compton Creek, 400 feet east of the Compton Boulevard/Wilmington Avenue intersection. Public Works is the lead agency under the California Environmental Quality Act (CEQA).

The proposed project would address existing bridge deficiencies, enhance vehicular safety on the bridge and improve transportation efficiency by enabling larger trucks to use the bridge. The existing steel girder bridge has been determined to be structurally deficient due to extensive cracking and delamination of the bridge deck. The proposed project would demolish the existing bridge and construct a new bridge. The new bridge soffit (underside) would be raised approximately 1 foot higher than the existing bridge. The new bridge would include a new pier with a new precast, prestressed, concrete box beam structure supported by pile foundations, and new channel walls/abutments. The new bridge pier would be constructed in the Compton Creek channel, at the same location as the existing pier. The new abutments would be constructed approximately 15 feet behind the existing abutments that would be protected in place with minimal modifications to provide clearance for the new bridge structure. Modification to the existing abutments that act as the channel walls would include removal of existing backwall down to the seat elevation to allow new bridge superstructure to span over the existing abutments. The existing channel walls outside of this limit will not be modified. Additionally, a new, sloping concrete pier nose would be constructed upstream from the bridge as part of the proposed project. In addition to the proposed bridge replacement, the proposed project would include reconstruction of the existing bicycle path, which runs adjacent to the north of the Compton Creek channel, as well as reconstruction of several sidewalk and driveway locations and the reconstruction of a new access road as described in Section 2, Project Description, of this document.

1.2 California Environmental Quality Act Compliance

CEQA applies to proposed projects initiated by, funded by, or requiring discretionary approvals from state or local government agencies. The proposed project constitutes a project as defined by CEQA (PRC Section 21065). Public Works, as a municipal entity, would implement and operate the proposed project and will therefore act as the CEQA lead agency.

An Initial Study (IS) has been prepared by Public Works as the lead agency in accordance with the CEQA Guidelines to evaluate potential environmental effects and to determine whether an Environmental Impact Report (EIR) or a Negative Declaration or Mitigated Negative Declaration (MND) should be prepared for the proposed project. The IS has also been prepared to satisfy CEQA requirements of agencies that would provide sources of funding for the proposed project or that would otherwise have discretionary approval authority over the project. An MND is prepared for a project when an Initial Study has identified potentially significant effects on the environment, but (1) revisions in the project plans or proposals made by, or agreed to by, the applicant before the proposed Negative Declaration and Initial Study are released for public review would avoid the effects

or mitigate the effects to a point where clearly no significant effect on the environment would occur; and (2) there is no substantial evidence in light of the whole record before the public agency that the project, as revised, may have a significant effect on the environment.

The IS determined that the implementation of the proposed project could cause some potentially significant impacts on the environment but, as shown in the environmental analysis contained in this IS/MND, all of the project's potentially significant impacts would be reduced to less than significant levels through the implementation of mitigation measures. Consequently, the analysis contained herein concludes that an MND is the appropriate document for the proposed project.

This document consists of both the IS for the project and the MND (IS/MND). This IS/MND is composed of four sections. Section 1 introduces the proposed project, general information about the contents of the IS/MND and information about the lead agency. Section 2 provides a description of the proposed project background, the project location, and the environmental setting, as well as the proposed project components and information about their construction and operation. Section 3 consists of the CEQA Initial Study checklist, which provides the assessment of potential environmental impacts and the applicability of mitigation measures to reduce potentially significant impacts to a less-than-significant level. Section 4 provides references cited in this document and a list of the lead agency staff and consultants involved in preparing the environmental review documents for the proposed project. This document also includes several appendices that contain technical analyses related to air quality and greenhouse gas (GHG) emissions, biological resources, cultural resources, geology and soils, hydrology and water quality, noise, and traffic.

2 Project Description

2.1 Project Background

The proposed project would involve replacing the existing two-span, steel-girder Compton Boulevard Bridge with a new two-span, precast concrete bridge. The existing bridge was built in 1938, and is supported by abutments and a middle pier. Under existing conditions, the existing bridge includes two 12-foot-wide travel lanes and one left-turn lane in each direction, as well as an approximately 4.5-foot-wide sidewalk in each direction. The existing steel girder bridge has been determined to be structurally deficient per the California Department of Transportation (Caltrans) Bridge Design Specification and Caltrans Seismic Design Criteria due to extensive cracking and delamination of the bridge deck. Due to this, trucks weighing over 20 tons are prohibited from traveling on the bridge under existing conditions. The proposed project would address structural deficiencies and would improve vehicular safety and efficiency by enabling larger trucks to use the bridge.

2.2 Project Location

As shown on Figure 1, Project Location, the project site is located in the City of Compton in southern Los Angeles County, approximately 15 miles south of downtown Los Angeles. The project site is located in the northwest portion of the City where the Compton Boulevard ROW crosses Compton Creek, 400 feet east of the Compton Boulevard/Wilmington Avenue intersection. Compton Boulevard is a large, east-west running road with two lanes in either direction. The project site consists of 1.21 acres and includes the bridge and roadway approach. Within the project area, Compton Boulevard includes two 12-foot-wide travel lanes and one left-turn lane in each direction; 4.5-foot-wide public sidewalks extend on both sides of Compton Boulevard. Although there are no dedicated bikeways within the Compton Boulevard ROW, an existing bikeway extends parallel to the Compton Creek channel's northern bank on either side of Compton Boulevard.

The project site crosses Compton Creek, a major tributary of the Los Angeles River. Compton Creek drains a watershed area of approximately 42.1 square miles, and travels south for 8.5 miles from South Main Street in the City of Los Angeles until it meets the Los Angeles River south of Del Amo Boulevard in the City of Carson. Compton Creek is encased within a concrete flood control channel for most of its course, including where it runs underneath the project site.

Major roadways and arterials that provide local and regional access to the project site include Rosecrans Avenue, located approximately 0.5 miles north of the project site; and Wilmington Avenue, located approximately 400 feet west of the project site. The nearest highway is California State Route 91, located approximately 1.6 miles south of the project site. There are no state designated or eligible scenic highways in proximity to the project site.

2.3 Surrounding Land Uses

As shown on Figure 2, Surrounding Land Uses, surrounding land use designations include General Commercial, Low-Density Multi-Family Residential, and Single-Family Residential (City of Compton 2007). The project site is located in an urban, highly developed part of the City. Land uses in the immediate vicinity of the project site include single-family residential and general commercial to the north, an automobile parts store to the west, a strip mall to the southwest, single-family residential and a small parcel of vacant land to the south and east. The nearest public

park is Doctor Walter R. Tucker (Victory) Park, located approximately 0.2 miles south of the project site. The nearest schools are the General Benjamin O. Davis, Jr. Middle School (621 West Poplar Street), located approximately 0.3 miles north of the project site, and Dickison Elementary School (905 North Aranbe Street), located 0.4 miles north of the project site.

2.4 Project Design

As shown on Figure 3, Proposed Project (90% Elevation View), and Figure 4, Proposed Project (90% Plan View), the proposed project would include demolition of the existing steel girder bridge, concrete piers, and bridge deck and the construction of a new precast, prestressed, concrete box beam structure supported by pile foundations, as well as a new pier, abutments, and a new bridge deck. Minor modifications to the existing abutments and channel walls would also be required.

Proposed Bridge

The proposed bridge would be approximately 130 feet long and 76 feet wide. The new bridge pier would be constructed in the creek channel, at the same location as the existing pier. The new abutments would be constructed approximately 15 feet behind the existing abutments, which would be protected in place to provide clearance for the new bridge structure. Additionally, a new, sloping concrete pier nose would be constructed upstream from the bridge as part of the proposed project. The proposed design would remedy the existing bridge deficiencies, enhance vehicular safety on the bridge, and improve transportation efficiency by enabling larger trucks to use the bridge. The proposed design of the bridge would not change the number of lanes and striping as compared to existing conditions.

Reconstruction of Sidewalks and Driveways

As shown on Figure 5, Proposed Project Details, in addition to the construction of the proposed bridge, the proposed project would also include the reconstruction of sidewalks, driveways, and roadway approach in the immediate vicinity. Approximately 1,190 feet of sidewalk reconstruction would be required along Compton Boulevard and adjacent roadways, of which approximately 140 feet would require ROW acquisition. The driveways that would need to be reconstructed under the proposed project would occur at private residences located in the immediate area. Additionally, drainage improvements such as catch basins would be required on private properties at some driveway entrances.

Reconstruction of Bicycle Path and Access Road

The proposed project would include the reconstruction of approximately 370 feet of the existing bike path located along the north side of the channel. Reconstruction would include the construction of a concrete slab structure with cast-in-drilled hole (CIDH) piles intended for support. The proposed project would also include the reconstruction of an approximately 190-foot-long access road at the southwest corner, as well as the reconstruction of 210 feet of roadway approach on either side of the bridge to accommodate the raise in bridge elevation (see Figure 5). Furthermore, the proposed project would require the reconstruction of Paulsen Avenue from Compton Boulevard to 105 feet south. Reconstruction would include the construction of a concrete slab structure intended for support and repaving.

11125.04 SEPTEMBER 2022

Retaining Walls

The retaining walls are proposed to be approximately 25 feet long with an expected depth of disturbance of 3 feet. Permanent road ROW would be acquired for construction of a retaining wall at the northeast corner; a temporary construction easement behind the retaining walls will be acquired for construction.

Right-of-Way Acquisition

As shown on Figure 5, the proposed project would include several permanent and temporary ROW takes and/or permits. Specifically, the proposed project would include permanent ROW acquisitions to reconstruct the proposed access road, slope easements, drainage catch basins, and bike path; temporary ROW takes to establish construction staging areas during the proposed project's 280-day construction period; and, temporary permits to enter and reconstruct those private driveways impacted by construction. The majority of these ROW acquisitions and temporary takes would take place along Compton Boulevard; however, a majority of the temporary permits would be needed to perform driveway rehabilitation at the private residences both north and south of the proposed project along Compton Boulevard and Street.

Other Components

In addition to the items described above, the proposed project would include removal of a private tree and relocation of catch basins, driveways, and a streetlight in the Compton Boulevard median. Lastly, aesthetic elements may be incorporated upon the City of Compton's recommendation.

2.5 Project Construction

The proposed project would include demolition and construction activities. Generally, construction activities would include demolition, excavation, grading, pile drilling, installation of metal beam guardrail system, construction of bridge abutments, bridge pier reconstruction, installation of precast box beams and construction of concrete deck and barriers, reconstruction of sidewalks, drainage improvements (catch basins at driveway entrances) bicycle path reconstruction, roadway reconstruction, and full road closures within project limits.

For purposes of this analysis, project construction activities have been divided into the following stages:

- Site Preparation
- Existing Bridge Demolition
- Proposed Bridge Construction
- Reconstruction of Access Road, Sidewalks, Bicycle Path

Including bridge reconstruction, approximately 55,900 square feet of roadway would be reconstructed and repaved along the entirety of the alignment. During construction, approximately 870 cubic yards of excavated soils would be used as unclassified fill to reconstruct the existing bike paths and roadway, after which a total of approximately 1,091 cubic yards of excavated soils would be exported. Excavated materials would be disposed of at the Savage Canyon Landfill, located approximately 14 roadway miles northeast of the project site.

Site Preparation

Site preparation would involve clearance of the project area and preparation for demolition activities. Surrounding businesses and residents would be notified of upcoming construction activities. Construction equipment and materials would arrive at the site and detours would be set up to direct traffic. Site preparation activities would occur over a 16-week period.

Existing Bridge Demolition

Under the proposed project, the existing two-span Compton Boulevard Bridge over Compton Creek would be demolished. The existing pier timber piles would be removed 3 feet below the finished grade, followed by the removal of the existing steel girders, cross brace members, reinforced concrete, asphalt pavement (bridge deck), and any excavated soil within the project limits of work. Specifically, the concrete bridge deck would be demolished by saw cutting and the steel girders would be removed by torch cutting before the transporting the fragmented pieces to the dump trucks using a crane. Once the bridge deck has been removed, all existing bridge bearing components would also be removed, including portions of the concrete abutments and the entire middle concrete pier, which would be demolished using hoe rams and jackhammers, after which any gaps/voids would be patched with epoxy grout to obtain a smooth plane finish. The site of the new pile caps would be graded in preparation for the new bridge structure. Soils from the existing bridge and roadways would be reconstructed and used to fill bicycle path areas that would be reconstructed.

Proposed Bridge Construction

Once the existing structure has been demolished, a new two-span, precast, prestressed concrete box beam structure would be constructed in the same location. Bridge pier construction would involve the installation of CIDH concrete piles (reinforced concrete piles cast in holes that are drilled to predetermined elevations), construction of concrete pier footings and the stem wall. Specifically, a hydraulic crane and drill rig would be used to drill the holes and install the rebar cages, while a concrete truck, concrete pump, forklifts and loaders would be needed to fill the drilled holes and construct the footings and stem wall. This stage would require pile drilling, grading, construction of the new bridge abutments, and bridge pier reconstruction. Concrete barriers, per Caltrans' standards, with tubular hand railing would be installed along either side of the bridge and metal beam guardrails would be installed at the bridge approaches where conditions allow.

As shown on Figure 3, the new abutments would be constructed approximately 15 feet behind the existing abutments, which would be protected in place to accommodate clearance for the new bridge structure. The new bridge soffit (underside) would be raised approximately 1 foot higher than the existing bridge in order to meet the freeboard requirement. Similar to the construction of the bridge pier, the construction of the bridge abutments would involve the installation of CIDH concrete piles, pile caps, and backwalls, which would use a drill rig and hydraulic crane, while an excavator and crane would be used to install the formwork and the reinforcement for the pile caps. Additional equipment needed to install the pile caps and backwall includes forklifts, loaders, concrete pumps, and a concrete truck.

Additionally, as shown in Figure 4, a new, sloping concrete pier nose would be constructed upstream from the bridge as part of the proposed project. The construction of the bridge superstructure would involve the installation of precast/ prestressed adjacent concrete box beams, a cast-in-place reinforced concrete deck, sidewalks, and bridge barriers. Installation of these superstructure components would use a hydraulic crane, concrete slipform machine, concrete truck, and concrete pump. After the superstructure has been constructed, the bike paths, and access

ramp would be reconstructed and the roadway would be paved and restriped. The proposed project would remedy the existing bridge deficiencies, enhance vehicular safety on the bridge and improve transportation efficiency by enabling larger trucks to use the bridge.

Reconstruction of Access Road, Sidewalks, and Bicycle Path

As shown on Figure 5, project construction would also include the reconstruction of the sidewalks adjacent to the project limits. ROW acquisition would be required for the parcels located along the northern and southern extent and at the southwest and northeast corners of the Direct Area of Potential Effect (APE) where the adjacent properties would be affected by the raised roadway, sidewalks, and temporary construction easements. The project would include the removal of a private tree, relocation of catch basins, driveways, and a street lighting median located 80 feet west of the bridge, within the Compton Boulevard ROW.

As shown on Figure 5, project construction would also include the replacement of the bike paths along the Compton Creek channel. Specifically, reconstruction of the bike paths would include 380 feet (190 feet on either side) of bike path along the north side of the channel along Compton Boulevard, where the bike path would be supported on a concrete slab structure with CIDH piles. An access road, approximately 190 feet long, would be reconstructed along the channel at the southwest corner to accommodate the 1-foot change in bridge elevation. Reconstruction of the access road and bicycle path would take approximately 60 days. Proposed construction activities would include installing CIDH concrete piles using a drill rig, hydraulic crane, concrete truck, and concrete pump and installing a reinforced concrete slab using forklifts, loaders, concrete trucks, and a concrete pump.

Construction Workers and Equipment

Construction activities, durations, workers, and equipment would vary during each construction phase. In general, the proposed project would require an average of 10 to 15 workers per day throughout the construction period. Daily vehicular trips that are expected to occur throughout construction are as follows: a maximum of 10 round trips per day for transportation of construction equipment to and from the work areas when necessary; approximately 10 to 30 round trips per day for transportation of construction workers to and from the work areas; and 10 round trips per day for haul trucks (i.e., dump trucks).

Construction equipment for each construction sub-phase is shown in Table 1.

Construction Staging Locations

Given that full road closures would occur, the 200-foot approach roadways on either side of the bridge structure would likely be used as construction staging areas. As such, the proposed project would extend in an east-west direction for approximately 540 feet within the Compton Boulevard ROW. Temporary K-rails would be installed at each end of the project limits, including a 6-foot-high perimeter fence to block pedestrians from entering the work area.

Construction-Related Road Closures

During construction, full road closures over the Compton Boulevard Bridge would occur for approximately 280 days, and the proposed detour route would be through Rosecrans Avenue located approximately 0.5 miles north of Compton Boulevard. Specifically, eastbound traffic on Compton Boulevard would take Wilmington Avenue north, Rosecrans Avenue east, and Willowbrook Avenue south to connect back to Compton Boulevard. Similarly,

westbound traffic on Compton Boulevard would take Willowbrook Avenue north, Rosecrans Avenue west, and Wilmington Avenue south to connect back to Compton Boulevard.

Public Works construction projects, such as the proposed project, typically implement traffic control plans for work within road ROW (Project Design Feature [PDF-]TRAF-1). Therefore, PDF-TRAF-1, would be included as part of the proposed project.

PDF-TRAF-1 Traffic Control Plans (TCP) would be required for all construction work within the road right-of-way which modifies vehicular, bicycle, pedestrian and/or transit traffic patterns and are necessary to ensure the safe and efficient movement of traffic through construction work zones. The TCP would be prepared by the project's contractor and reviewed and managed by the Los Angeles County.

Elements of a TCP should include, but are not necessarily limited to, the following:

- a. Provision of public workshops and/or neighborhood meetings to notify and inform adjacent residents, impacted stakeholders and the general public regarding the schedule and duration of street closures, and implementation of detour routes and temporary traffic calming measures.
- b. Develop detour plans to minimize impacts to local or residential streets, especially minimize truck traffic on local roadways to the extent possible and ensure least interference to pedestrians, bicyclists, transit, and other vehicle users in the area. Develop traffic calming measures such as signage and speed radar warning signs needed to manage cut-through traffic along local residential streets adjacent to Compton Boulevard bridge.
- c. Install temporary traffic control devices as specified in Part 6 of Caltrans' Manual of Uniform Traffic Control Devices (CAMUTCD) to maintain safe and effective movement of all road users (including pedestrians and bicyclists) through or around temporary traffic control zones while reasonably protecting from traffic incidents and equipment.
 - Use flaggers, signage, traffic control barricades, channelizing devices, pavement markings and/or work vehicles to safely direct traffic through construction work zones.
 - Use warning signs and plaques as specified in CAMUTCD for detours and temporary traffic control zones.
- d. Coordinate with emergency service providers such as police, fire stations, hospitals as well as all stakeholders (i.e., abutting property owners, residents, and businesses), and schools to ensure adequate accessibility to all road users during the construction period. Provide advance notification of the timing, location, and duration of construction activities and detour routes to residents, business or facility owners and administrators.
- e. Coordinate with Caltrans, County and City officials, to obtain all necessary encroachment and trip permits.
- f. To the extent feasible, schedule truck trips (equipment delivery and haul) outside of AM and PM peak commute hours. Encourage carpooling among workers to reduce worker commute trips.

Construction Schedule

Project construction is anticipated to occur between January 2023 and May 2024, and would last for approximately 280 working days. ¹ Construction activities would involve clear and grub and AC removal, drainage and sub-grading, grading and excavation, construction of the retaining walls and access ramp, bridge demolition, augur drilling, bridge construction, sub-grading paving, and electrical striping. Construction equipment includes graders, tractors, loaders, backhoes, rollers, aerial lifts, cranes, pumps, forklifts, bore and drill rigs, concrete industrial saws, pumps, sweepers, scrubbers, and air compressors.

Construction would occur Monday through Friday from 7:00 a.m. to 3:30 p.m.

2.6 Project Operation

Public Works is solely responsible for the design and construction. Once project construction has been completed, operation and maintenance would be the responsibility of the City of Compton. Implementation of the proposed project would improve transportation efficiency by enabling larger trucks to use the bridge. Operational activities would be limited to scheduled inspections. The primary responsibilities would be the maintenance and upkeep of the bridge.

2.7 Approvals Required for the Proposed Project

The proposed project and environmental documentation would require approval by the Los Angeles County Department of Public Works. Additional anticipated approvals or permits for the proposed project include the following:

- Adoption of the anticipated Mitigated Negative Declaration by the Los Angeles County Board of Supervisors
- National Environmental Policy Act clearance by Caltrans
- A United States Army Corps of Engineers Section 404 Nationwide Permit
- Regional Water Quality Control Board Clean Water Act Section 401 Certification
- California Department of Fish and Wildlife Section 1602 Streambed Alteration Agreement

_

For the purposes of the air quality analysis, the construction schedule was assumed to be January 2023 to May 2024. During the preparation of the IS/MND, a January 2023 start date was analyzed to represent the earliest possible construction schedule. Assuming an earlier start date for project construction represents the worst-case scenario for criteria air pollutant emissions, because equipment and vehicle emission factors for later years would be less due to more stringent standards for off-road equipment and heavy-duty trucks, as well as fleet turnover replacing older equipment and vehicles. It should also be noted this construction schedule may change based on actual field conditions.

Compton Boulevard Bridge Over Compton Creek Project / Initial Study / Mitigated Negative Declaration

INTENTIONALLY LEFT BLANK

3 Initial Study Checklist

1. Project title:

Compton Boulevard Bridge over Compton Creek Project

2. Lead agency name and address:

Los Angeles County Department of Public Works 900 South Fremont Avenue Alhambra, California 91803-1331

3. Contact person and phone number:

Reyna Soriano Civil Engineer 626.458.5192

4. Project location:

City of Compton, Los Angeles County

5. Project sponsor's name and address:

Los Angeles County Department of Public Works 900 South Fremont Avenue Alhambra, California 91803-1331

6. General plan designation:

Surrounding properties are designated General Commercial, Low Density Multi-Family Residential, and Single Family Residential

7. Zoning:

Surrounding Properties are zoned Limited Commercial and Low Density Residential

8. Description of project. (Describe the whole action involved, including but not limited to later phases of the project, and any secondary, support, or off-site features necessary for its implementation. Attach additional sheets if necessary):

The proposed project would involve the demolition of the existing two-span Compton Boulevard Bridge and the construction of a new two-span, precast concrete bridge. The proposed project would be located in southern Los Angeles County in a northwest portion of the City of Compton where the Wilmington Avenue ROW crosses Compton Creek, 400 feet east of the Compton Boulevard/Wilmington Avenue intersection. Refer to Section 2, Project Description, for additional details.

Surrounding land uses and setting (Briefly describe the project's surroundings):

The project site is located in an urban, highly developed part of the City of Compton. Land uses in the immediate vicinity of the project site include single-family residential and general commercial to the north, an automobile parts store to the west, a strip mall to the southwest, single-family residential and a small parcel of vacant land to the south and east. The nearest public park is Doctor Walter R. Tucker (Victory) Park, located approximately 0.2 miles south of the project site. The nearest schools are the are the General Benjamin O. Davis, Jr. Middle School (621 West Poplar Street), located approximately 0.3 miles north of the project site, and Dickison Elementary School (905 North Aranbe Street), located 0.40 miles north of the project site.

10. Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement):

See Section 2.7, Approvals Required for the Proposed Project.

11. Have California Native American tribes traditionally and culturally affiliated with the project area requested consultation pursuant to Public Resources Code section 21080.3.1? If so, is there a plan for consultation that includes, for example, the determination of significance of impacts to tribal cultural resources, procedures regarding confidentiality, etc.?

Yes. See Section 3.18, Tribal Cultural Resources, of this IS/MND for details.

Environmental Factors Potentially Affected

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact," as indicated by the checklist on the following pages.

Aesthetics	Agriculture and Forestry Resources	Air Quality
Biological Resources	Cultural Resources	Energy
Geology and Soils	Greenhouse Gas Emissions	Hazards and Hazardous Materials
Hydrology and Water Quality	Land Use and Planning	Mineral Resources
Noise	Population and Housing	Public Services
Recreation	Transportation	Tribal Cultural Resources
Utilities and Service Systems	Wildfire	Mandatory Findings of Significance

Determination (To be completed by the Lead Agency)

On the	basis of this initial evaluation:	
		significant effect on the environment, and a NEGATIVE
	DECLARATION will be prepared.	
		e a significant effect on the environment, there will not is in the project have been made by or agreed to by the RATION will be prepared.
		ant effect on the environment, and an ENVIRONMENTAL
	mitigated" impact on the environment, but at least of document pursuant to applicable legal standards	ially significant impact" or "potentially significant unless one effect (1) has been adequately analyzed in an earlier , and (2) has been addressed by mitigation measures ached sheets. An ENVIRONMENTAL IMPACT REPORT is emain to be addressed.
	potentially significant effects (a) have been analy. REPORT or NEGATIVE DECLARATION pursuant to mitigated pursuant to that earlier ENVIRONMENTAL revisions or mitigation measures that are imposed	ve a significant effect on the environment, because all zed adequately in an earlier ENVIRONMENTAL IMPACT applicable standards, and (b) have been avoided or IMPACT REPORT or NEGATIVE DECLARATION, including upon the proposed project, nothing further is required.
	Lynfi	9/12/22
Signa		 Date

Evaluation of Environmental Impacts

- 1. A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2. All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3. Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an Environmental Impact Report (EIR) is required.
- 4. "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from "Earlier Analyses," as described in (5) below, may be cross-referenced).
- 5. Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
 - a. Earlier Analysis Used. Identify and state where they are available for review.
 - b. Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c. Mitigation Measures. For effects that are "Less Than Significant With Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6. Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7. Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8. This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9. The explanation of each issue should identify:
 - a. The significance criteria or threshold, if any, used to evaluate each question; and
 - b. The mitigation measure identified, if any, to reduce the impact to less than significance

3.1 Aesthetics

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
<u>l.</u>	AESTHETICS – Except as provided in Public Re	esources Code S	Section 21099, wo	ould the project:	-
a)	Have a substantial adverse effect on a scenic vista?				
b)	Substantially damage scenic resources including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				
c)	In non-urbanized areas, substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?				
d)	Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?				

a) Would the project have a substantial adverse effect on a scenic vista?

No Impact. Scenic vistas generally refer to views of expansive open space areas or other natural features, such as mountains, undeveloped hillsides, large natural water bodies, or coastlines. There are no views of scenic vistas from the project site, and the project site is located in an area that would not contribute to a view of a scenic vista. Rather, existing views from the project site are predominantly characterized by urban development, including single-family residential and strip commercial to the east and west, and views of the Compton Creek channel to the north and south. Views in every direction are low to moderate quality due to the prevailing hardscaping and urban streetscaping, which includes overhead utility poles and wires, streetlights, signage, and incongruent urban landscaping. Additionally, the proposed project would include the replacement of an existing bridge and which, upon operation, would be aesthetically similar when compared to existing conditions. During the construction phase, the visual character of the area would be temporarily affected. However, these impacts would be temporary and would not constitute a significant impact. As such, the project would have no impact to scenic vistas.

b) Would the project substantially damage scenic resources including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

No Impact. The proposed project would not be located within the vicinity of an eligible or designated state scenic highway. The nearest State Designated Scenic Highway is State Route 2, which traverses from

La Canada Flintridge through the San Gabriel Mountains to San Bernardino County, approximately 30 miles north of the project site (Caltrans 2011). No impact would occur.

c) In non-urbanized areas, would the project substantially degrade the existing visual character or quality of public views of the site and its surroundings? (Public views are those that are experienced from publicly accessible vantage point). If the project is in an urbanized area, would the project conflict with applicable zoning and other regulations governing scenic quality?

Less-Than-Significant Impact. As stated in Section 3.1(a), the project site is located in a developed, urban portion of the City of Compton. Views in every direction from the project site are low to moderate quality due to the prevailing hardscaping and urban streetscaping, which includes overhead utility poles and wires, streetlights, signage, and incongruent urban landscaping. Additionally, the proposed project is a bridge replacement project, that, upon operation, would be aesthetically similar when compared to existing conditions. During the construction phase, the visual character of the area would be temporarily affected. However, these impacts would be temporary and would not constitute a significant impact. As such, the proposed project would not substantially degrade the existing visual character or quality of public views of the site and its surroundings. Impacts would be less than significant.

d) Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

No Impact. As stated above, the proposed project would include the replacement of the existing Compton Boulevard Bridge over Compton Creek with a new two-span, concrete bridge. Neither the new precast, prestressed, concrete box beam structure supported by pile foundations, nor the new pier and new abutments would be constructed with materials commonly associated with producing day/nighttime light or glare. The project would not include the construction of any additional buildings or infrastructure that could potentially create a new source of substantial light or glare. Existing streetlights, present on the southern side of Compton Boulevard; would be protected in place during construction and would not be altered, relocated, or improved to the extent that new sources of light or glare would be created. No impact would occur.

3.2 Agriculture and Forestry Resources

		Potentially Significant Impact	Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
II.	AGRICULTURE AND FORESTRY RESOURCES – significant environmental effects, lead agenci-Site Assessment Model (1997) prepared by the model to use in assessing impacts on agricult resources, including timberland, are significant information compiled by the California Depart inventory of forest land, including the Forest at Assessment project; and forest carbon measure the California Air Resources Board. Would the	es may refer to a ne California Dep ure and farmlar nt environmenta ment of Forestry and Range Asses urement method	the California Agri partment of Conse nd. In determining I effects, lead age y and Fire Protecti ssment Project an	cultural Land Evervation as an opervation as an opervation whether impact encies may refer on regarding the different Leg	aluation and otional s to forest to estate's
a)	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				\boxtimes
b)	Conflict with existing zoning for agricultural use, or a Williamson Act contract?				\boxtimes
c)	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?				
d)	Result in the loss of forest land or conversion of forest land to non-forest use?				\boxtimes
e)	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?				

a) Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

No Impact. The project area includes, and is surrounded by, low density residential, mixed use, and general commercial land uses (City of Compton 2011). The project area is not mapped by the California Department of Conservation because of the developed nature of the area (DLRP 2018). The project site is occupied with an existing bridge. No farmland occurs on, or in the vicinity of, the project site (DLRP 2018). Therefore, the proposed project would not convert Farmland to non-agricultural uses, and no impact would occur.

b) Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?

No Impact. The project area includes, and is surrounded by low density residential, mixed use, and general commercial land uses (City of Compton 2011). The project area does not include land zoned or used for agricultural purposes (City of Compton 2011). Additionally, the project area is not included in any existing Williamson Act contracts (DLRP 2016). The project site is occupied with an existing bridge. Therefore, the project would not conflict with existing zoning for agricultural use or a Williamson Act contract. No impact would occur.

c) Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

No Impact. The project area includes, and is surrounded by low density residential, mixed use, and general commercial land uses (City of Compton 2011). The project area does not include land zoned or used as forest land or timberland (City of Compton 2011). The proposed project would include the replacement of an existing bridge. Therefore, the proposed project would not conflict with existing zoning for, or cause rezoning of, forestland, timberland, or timberland zoned Timberland Production. No impact would occur.

d) Would the project result in the loss of forest land or conversion of forest land to non-forest use?

No Impact. The project area includes, and is surrounded by low density residential, mixed use, and general commercial land uses (City of Compton 2011). As characterized above, no forest land is located within the project area or in the vicinity of the project. As such, no forest land would be converted or otherwise affected by the proposed project, and no impact would occur.

e) Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?

No Impact. As described above, the project area includes, and is surrounded by, low-density residential, mixed use, and general commercial land uses (City of Compton 2011). No farmland or forest land is located in the project area or within the vicinity. The proposed project would include the replacement of an existing bridge, which, upon operation would function the same as when compared to existing conditions. As such, the proposed project would not involve other changes in the existing environment, which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use. No impact would occur.

3.3 Air Quality

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
III. AIR QUALITY – Where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make the following determinations. Would the project:					
a)	Conflict with or obstruct implementation of the applicable air quality plan?			\boxtimes	
b)	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?				
c)	Expose sensitive receptors to substantial pollutant concentrations?			\boxtimes	
d)	Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?			\boxtimes	

a) Would the project conflict with or obstruct implementation of the applicable air quality plan?

Less-Than-Significant Impact. The project site is located within the South Coast Air Basin (SCAB), which includes the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties, and all of Orange County, and is within the jurisdictional boundaries of the South Coast Air Quality Management District (SCAQMD).

The SCAQMD administers the Air Quality Management Plan (AQMP) for the SCAB, which is a comprehensive document outlining an air pollution control program for attaining all California Ambient Air Quality Standards (CAAQS) and National Ambient Air Quality Standards (NAAQS). The most recent adopted AQMP is the 2016 AQMP (SCAQMD 2017), which was adopted by the SCAQMD Governing Board in March 2017.² The 2016 AQMP represents a new approach, focusing on available, proven, and cost-effective alternatives to traditional strategies while seeking to achieve multiple goals in partnership with other entities promoting reductions in GHGs and toxic risk, as well as efficiencies in energy use, transportation, and goods movement (SCAQMD 2017).

11125.04 SEPTEMBER 2022

SCAQMD is currently working on the next iteration of the AQMP, the 2022 Air Quality Management Plan. The 2022 AQMP will incorporate the recently adopted SCAG's 2020–2045 Regional Transportation Plan/Sustainable Communities Strategy (2020–2045 RTP/SCS). However, until the adoption of the 2022 AQMP, project AQMP consistency will be analyzed off the 2016 AQMP and the RTP/SCS that was adopted at the time, the 2016–2040 RTP/SCS.

The purpose of a consistency finding is to determine if a project is inconsistent with the assumptions and objectives of the regional air quality plans, and, thus, if it would interfere with the region's ability to comply with federal and state air quality standards. The SCAQMD has established criteria for determining consistency with the currently applicable AQMP in Chapter 12, Sections 12.2 and 12.3, in the SCAQMD CEQA Air Quality Handbook. The criteria are as follows (SCAQMD 1993):

- Whether the project would result in an increase in the frequency or severity of existing air quality violations, cause or contribute to new violations, or delay timely attainment of the ambient air quality standards or interim emission reductions in the AQMP.
- Whether the project would exceed the assumptions in the AQMP or increments based on the year of project buildout and phase.

To address the first criterion regarding the project's potential to result in an increase in the frequency or severity of existing air quality violations, cause or contribute to new violations, or delay timely attainment of the ambient air quality standards or interim emission reductions in the AQMP, project-generated criteria air pollutant emissions were estimated and analyzed for significance and are addressed under Section 3.3(b). Detailed results of this analysis are included in Appendix A, CalEEMod Outputs. As presented in Section 3.3(b), project construction would not generate criteria air pollutant emissions that would exceed the SCAQMD thresholds, and the project is not anticipated to generate operational criteria air pollutant emissions.

The second criterion regarding the project's potential to exceed the assumptions in the AQMP or increments based on the year of project buildout and phase is primarily assessed by determining consistency between the project's land use designations and potential to generate population growth. In general, projects are considered consistent with, and would not conflict with or obstruct implementation of, the AQMP if the growth in socioeconomic factors is consistent with the underlying regional plans used to develop the AQMP (per Consistency Criterion No. 2 of the SCAQMD CEQA Air Quality Handbook). The SCAQMD primarily uses demographic growth forecasts for various socioeconomic categories (e.g., population, housing, employment by industry) developed by the Southern California Association of Governments (SCAG) for its Regional Transportation Plan (RTP)/Sustainable Communities Strategy (SCS) (SCAG 2016), which is based on general plans for cities and counties in the SCAB, for the development of the AQMP emissions inventory (SCAQMD 2017).³ The SCAG 2016 RTP/SCS and associated Regional Growth Forecast are generally consistent with the local plans; therefore, the 2016 AQMP is generally consistent with local government plans.

As discussed in Section 2 of this IS/MND, the project would involve the replacement of the existing bridge. Construction of the new bridge would not change or affect the existing zoning or land use designations in the project area. Accordingly, the project is consistent with the SCAG RTP/SCS forecasts used in the SCAQMD AQMP development.

In summary, based on the considerations presented for the two criteria, impacts relating to the project's potential to conflict with or obstruct implementation of the applicable AQMP would be less than significant.

_

Information necessary to produce the emission inventory for the SCAB is obtained from the SCAQMD and other governmental agencies, including the California Air Resources Board (CARB), the California Department of Transportation, and SCAG. Each of these agencies is responsible for collecting data (e.g., industry growth factors, socioeconomic projections, travel activity levels, emission factors, emission speciation profile, and emissions) and developing methodologies (e.g., model and demographic forecast improvements) required to generate a comprehensive emissions inventory. SCAG incorporates these data into its Travel Demand Model for estimating/projecting vehicle miles traveled and driving speeds. SCAG's socioeconomic and transportation activities projections in their 2016 RTP/SCS are integrated in the 2016 AQMP (SCAQMD 2017).

b) Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard?

Less-Than-Significant Impact. Air pollution is largely a cumulative impact. The nonattainment status of regional pollutants is a result of past and present development, and the SCAQMD develops and implements plans for future attainment of ambient air quality standards. Based on these considerations, project-level thresholds of significance for criteria pollutants are used in the determination of whether a project's individual emissions would have a cumulatively considerable contribution on air quality. If a project's emissions would exceed the SCAQMD significance thresholds, it would be considered to have a cumulatively considerable contribution. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant (SCAQMD 2003).

A quantitative analysis was conducted to determine whether proposed construction activities would result in a cumulatively considerable net increase in emissions of criteria air pollutants for which the SCAB is designated as nonattainment under the NAAQS or CAAQS. Criteria air pollutants include ozone (O_3) , nitrogen dioxide (NO_2) , CO, sulfur dioxide, particulate matter with an aerodynamic diameter less than or equal to 10 microns (PM_{10}) , particulate matter with an aerodynamic diameter less than or equal to 2.5 microns $(PM_{2.5})$, and lead. Pollutants that are evaluated herein include volatile organic compounds (VOCs) and oxides of nitrogen (NO_x) , which are important because they are precursors to O_3 , as well as CO, sulfur oxides (SO_x) , PM_{10} , and $PM_{2.5}$.

Regarding NAAQS and CAAQS attainment status, 4 the SCAB is designated as a nonattainment area for national and California O_3 and $PM_{2.5}$ standards (CARB 2017a; EPA 2017a). The SCAB is designated as a nonattainment area for California PM_{10} standards; however, it is designated as an attainment area for national PM_{10} standards. The SCAB nonattainment status of O_3 , PM_{10} , and $PM_{2.5}$ standards is the result of cumulative emissions from various sources of air pollutants and their precursors within the SCAB, including motor vehicles, off-road equipment, and commercial and industrial facilities. The SCAB is designated as an attainment area for national and California NO_2 , CO, and sulfur dioxide standards. Although the SCAB has been designated as partial nonattainment (Los Angeles County) for the federal rolling 3-month average lead standard, it is designated attainment for the state lead standard.

Appendix G of the CEQA Guidelines indicates that, where available, the significance criteria established by the applicable air district may be relied upon to determine whether a project would have a significant impact on air quality. The SCAQMD has established Air Quality Significance Thresholds, as revised in March 2015, that set forth quantitative emissions significance thresholds below which a project would not have a significant impact on ambient air quality (SCAQMD 2015). The quantitative air quality analysis provided herein applies the SCAQMD thresholds to determine the potential for the project to result in a significant impact under CEQA. The SCAQMD mass daily construction thresholds are as follows: 75 pounds per day for VOC, 100 pounds per day for NO_x, 550 pounds per day for CO, 150 pounds per day for SO_x, 150 pounds per day for PM₁₀, and 55 pounds per day for PM_{2.5}.

An area is designated as in attainment when it is in compliance with the NAAQS and/or the CAAQS. The NAAQS and CAAQS are set by the Environmental Protection Agency and CARB, respectively, for the maximum level of a given air pollutant that can exist in the outdoor air without unacceptable effects on human health or the public welfare. Attainment = meets the standards; attainment/maintenance = achieve the standards after a nonattainment designation; nonattainment = does not meet the standards.

Re-designation of the lead NAAQS designation to attainment for the Los Angeles County portion of the SCAB is expected based on current monitoring data. The phase out of leaded gasoline started in 1976. Since gasoline no longer contains lead, the project is not anticipated to result in impacts related to lead; therefore, it is not discussed in this analysis.

The following discussion quantitatively evaluates project-generated construction impacts and qualitatively evaluates operational impacts that would result from implementation of the proposed project.

Construction Emissions

Proposed construction activities would result in the temporary addition of pollutants to the local airshed caused by on-site sources (i.e., off-road construction equipment and soil disturbance) and off-site sources (i.e., on-road haul trucks, delivery trucks, and worker vehicle trips). Construction emissions can vary substantially from day to day, depending on the level of activity; the specific type of operation; and, for dust, the prevailing weather conditions. Therefore, such emission levels can only be approximately estimated with a corresponding uncertainty in precise ambient air quality impacts.

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions for construction of the proposed project CalEEMod is a statewide computer model developed in cooperation with air districts throughout the state to quantify criteria air pollutant emissions associated with construction activities from a variety of land use projects, such as residential, commercial, and industrial facilities. CalEEMod input parameters, including the project size, construction schedule, number of worker/delivery/haul trips, and anticipated construction equipment utilization, were based on information provided by the Los Angeles County Department of Public Works and default model assumptions when project-specific data was not available.

For the purpose of conservatively estimating project emissions, it is assumed that construction of the project would start in January 2024 and would occur over approximately 280 days, finishing in May 2025. The construction phasing schedule and duration, vehicle trip assumptions and construction equipment mix used for estimating the project-generated emissions are shown in Table 1.

Table 1. Construction Scenario Assumptions

			One-Way V	ehicle Trips		Equipment		
Construction Phase	Start Date	Finish Date	Average Daily Workers	Average Daily Vendor Trucks	Total Haul Trucks	Туре	Quantity	Usage Hours
Clear and Grub and AC	01/01/2024	01/13/2024	6	2	100	Graders	1	8
Removal						Tractors/Loaders/Backhoes	2	8
Drainage/Sub-Grade	01/14/2024	02/10/2024	6	2	0	Graders	1	8
						Tractors/Loaders/Backhoes	1	8
Grading/Excavation	02/06/2024	02/17/2024	8	2	50	Graders	1	8
						Rollers	2	8
						Tractors/Loaders/Backhoes	3	8
Retaining Walls	02/18/2024	04/14/2024	8	2	0	Aerial Lifts	1	8
						Cranes	1	8
						Pumps	1	8
						Rough Terrain Forklifts	1	8
Access Ramp	03/13/2024	06/02/2024	10	2	0	Bore/ Drill Rigs	1	8
						Cranes	1	8
						Pumps	1	8
						Rough Terrain Forklifts	1	8
						Tractors/Loaders/ Backhoe	1	8
Diversion	04/17/2024	04/28/2024	8	2	0	Graders	1	8
Structure/Excavation						Tractors/Loaders/Backhoes	1	8
Bridge Demolition	05/01/2024	06/09/2024	6	0	300	Concrete Industrial Saws	1	8
						Tractors/Loaders/Backhoes	1	8
Augur Drilling	06/05/2024	08/25/2024	8	22	600	Bore/ Drill Rigs	1	8
Bridge Construction	07/24/2024	12/29/2024	30	20	0	Aerial Lifts	1	8
						Cranes	2	8
						Pumps	1	8
						Rough Terrain Forklifts	2	8

Table 1. Construction Scenario Assumptions

			One-Way Vehicle Trips			Equipment		
Construction Phase	Start Date	Finish Date	Average Daily Workers	Average Daily Vendor Trucks	Total Haul Trucks	Туре	Quantity	Usage Hours
Subgrade	01/01/2025	01/26/2025	6	2	0	Graders	1	8
						Tractors/Loaders/Backhoes	1	8
Paving	01/27/2025	04/26/2025	10	24	0	Graders	1	8
						Paving Equipment	1	8
						Pumps	1	8
						Rollers	3	8
						Sweepers/ Scrubbers	1	8
						Tractors/Loaders/Backhoes	2	8
Electrical/Striping	04/27/2025	05/24/2025	6	2	0	Air Compressors	1	8

Source: LADPW 2019a.

Notes: See Appendix A for details.

Equipment types provided by the applicant were matched with the construction equipment presented in CalEEMod.

Water trucks are included as vendor trips for construction modeling.

b Dump trucks are included as haul trips for construction modeling.

Internal combustion engines used by construction equipment, trucks, and worker vehicles would result in emissions of VOCs, NOx, CO, PM10, and PM2.5. PM10 and PM2.5 emissions would also be generated by entrained dust, which results from the exposure of earth surfaces to wind from the direct disturbance and movement of soil. It is anticipated that the project would require the export of approximately 1,091 cubic yards of soil. Excavated material would be transported to the Whittier or Puente Landfills, which are located approximately 30 miles from the project site. It was assumed that the project would require a maximum of 10 round trips per day for delivery of construction materials to and from the work areas; and approximately a maximum of 15 round trips per day for transportation of construction workers to and from the work areas; and a total of 525 round trips per day for haul trucks required for excavation and demolition over the entire construction period. Overall, the proposed project would result in a maximum daily vehicle miles traveled (VMT) of 1,384 miles, due to the augur drilling and bridge construction phases, and a total VMT of approximately 199,372 miles over the entire construction duration. In addition, the proposed project would be required to comply with SCAQMD Rule 403 to control dust emissions during any dust-generating activities. Standard construction practices that would be employed to reduce fugitive dust emissions include watering of the active grading areas two times per day, with additional watering depending on weather conditions.

Estimated maximum daily construction criteria air pollutant emissions from all on-site and off-site emission sources is provided in Table 2.

Table 2. Estimated Maximum Daily Construction Emissions

	voc	NO _x	СО	SO _x	PM10	PM _{2.5}			
Year	Pounds per Day								
2024	1.93	18.93	21.58	0.06	2.46	0.81			
2025	1.68	16.54	20.39	0.04	0.95	0.72			
Maximum daily emissions	1.93	18.93	21.58	0.06	2.46	0.81			
SCAQMD Threshold	75	100	550	150	150	55			
Threshold exceeded?	No	No	No	No	No	No			

Source: SCAOMD 2015.

Notes: VOC = volatile organic compound; NOx = oxides of nitrogen; CO = carbon monoxide; SOx = sulfur oxides; PM10 = coarse particulate matter; PM2.5 = fine particulate matter; SCAQMD = South Coast Air Quality Management District. See Appendix A for detailed results.

As shown in Table 2, daily construction emissions would not exceed the SCAQMD significance thresholds for VOC, NO_x, CO, SO_x, PM₁₀, or PM_{2.5} during project construction.

As previously discussed, the SCAB has been designated as a federal nonattainment area for O_3 and $PM_{2.5}$ and a state nonattainment area for O_3 , PM_{10} , and $PM_{2.5}$. Proposed construction activities would generate VOC and NO_x emissions (which are precursors to O_3) and emissions of PM_{10} and $PM_{2.5}$. However, as indicated in Table 2, project-generated construction emissions would not exceed the SCAQMD emission-based significance thresholds for VOC, NO_x , PM_{10} , or $PM_{2.5}$, and therefore the project would not cause a cumulatively significant impact.

Cumulative localized impacts would potentially occur if a construction project were to occur concurrently with another off-site project. One Public Works project, the Wilmington Avenue Bridge over Compton Creek Project, has been identified as a cumulative project located approximately 800 feet northwest of the project

site where the Wilmington Avenue ROW crosses Compton Creek. The construction of the Wilmington Boulevard Bridge over Compton Creek Project would not however, occur concurrently with the proposed project. Construction schedules for potential future projects near the project site are currently unknown; therefore, potential construction impacts associated with two or more simultaneous projects would be considered speculative.⁶ However, future projects would be subject to CEQA and would require air quality analysis and, where necessary, mitigation. Criteria air pollutant emissions associated with construction activity of future projects would be reduced through implementation of control measures required by the SCAQMD. Cumulative PM₁₀ and PM_{2.5} emissions would also be reduced because all future projects would be subject to SCAQMD Rule 403 (Fugitive Dust), which sets forth general and specific requirements for all construction sites in the SCAQMD (SCAQMD 2005). Based on the previous considerations, the project would not result in a cumulatively considerable increase in emissions of nonattainment pollutants, and impacts would be less than significant.

Operational Emissions

Once project construction is complete, minimal operational activities associated with the proposed project would occur (infrequent maintenance including use operation of equipment or vehicle trips). Because the proposed project would generate a minimal amount of vehicle trips, operational emissions would be less than significant.

c) Would the project expose sensitive receptors to substantial pollutant concentrations?

Less-Than-Significant Impact. Localized project impacts associated with construction criteria air pollutants emissions are assessed as follows.

Sensitive Receptors

Sensitive receptors are those individuals more susceptible to the effects of air pollution than the population at large. People most likely to be affected by air pollution include children, the elderly, and people with cardiovascular and chronic respiratory diseases. According to the SCAQMD, sensitive receptors include residences, schools, playgrounds, childcare centers, long-term healthcare facilities, rehabilitation centers, convalescent centers, and retirement homes (SCAQMD 1993). The closest sensitive receptor land uses are residences adjacent to the project site to the north.

Localized Significance Thresholds

The SCAQMD recommends a localized significance threshold (LST) analysis to evaluate localized air quality impacts to sensitive receptors in the immediate vicinity of the project site as a result of construction activities. The impacts were analyzed using methods consistent with those in the SCAQMD's Final Localized Significance Threshold Methodology (SCAQMD 2009). The project is located in Source Receptor Area 12 (South Central Los Angeles County). The project's construction activities would occur over a 1.21-acre work area; therefore, for the purposes of the LST analysis, emissions thresholds based on a 1-acre site were used. This is a conservative approach, as LSTs increase with the size of project site. As mentioned previously, the closest sensitive receptors are residences adjacent to the project site to the north. The

-

The CEQA Guidelines state that if a particular impact is too speculative for evaluation, the agency should note its conclusion and terminate discussion of the impact (14 CCR 15145). This discussion is nonetheless provided in an effort to show good-faith analysis and comply with CEQA's information disclosure requirements.

closest receptor distance available in the SCAQMD LST Methodology is 25 meters (82 feet), which was assumed for this analysis.

Project construction activities would result in temporary sources of on-site criteria air pollutant emissions associated with construction equipment exhaust and dust-generating activities. The maximum daily on-site construction emissions generated during construction of the proposed project is presented in Table 3, and compared to the SCAQMD localized significance criteria for Source Receptor Area 12 to determine whether project-generated on-site construction emissions would result in potential LST impacts.

Table 3. Construction Localized Significance Thresholds Analysis

	NO ₂	СО	PM ₁₀	PM _{2.5}				
Year	Pounds per Day (on site)							
2024	18.74	20.93	1.17	0.71				
2025	15.61	19.76	0.68	0.64				
Maximum Daily On-Site Construction Emissions	18.74	20.93	1.17	0.71				
SCAQMD LST Criteria	46	231	4	3				
Threshold Exceeded?	No	No	No	No				

Source: SCAQMD 2009.

Notes: NO_2 = nitrogen dioxide; CO = carbon monoxide; PM_{10} = particulate matter; $PM_{2.5}$ = fine particulate matter; $PM_{2.5}$ = fi

See Appendix A for detailed results.

Localized significance thresholds are shown for a 1-acre project site corresponding to a distance to a sensitive receptor of 25 meters.

As shown in Table 3, proposed construction activities would not generate emissions in excess of sitespecific LSTs; therefore, localized project construction impacts would be less than significant.

CO Hotspots

Traffic-congested roadways and intersections have the potential to generate localized high levels of CO. Localized areas where ambient concentrations exceed federal and/or state standards for CO are termed CO "hotspots." CO transport is extremely limited because CO disperses rapidly with distance from the source. Under certain extreme meteorological conditions, however, CO concentrations near a congested roadway or intersection may reach unhealthy levels, affecting sensitive receptors. Typically, high CO concentrations are associated with severely congested intersections. Projects contributing to adverse traffic impacts may result in the formation of a CO hotspot. Additional analysis of CO hotspot impacts would be conducted if a project would result in a significant impact or contribute to an adverse traffic impact at a signalized intersection that would potentially subject sensitive receptors to CO hotspots. During construction of the project, construction traffic would affect the intersections near the project site. However, the project would be temporary and would not be a source of daily, long-term mobile-source emissions. In addition, due to continued improvement in vehicular emissions at a rate faster than the rate of vehicle growth and/or congestion, the potential for CO hotspots in the SCAB is steadily decreasing. Finally, as discussed in Section 3.17, Transportation, of this IS/MND, transportation impacts would be less than significant. Therefore, the proposed project would not generate additional traffic volumes and impacts related to CO hot spots would be less than significant.

Toxic Air Contaminants

Toxic air contaminants (TACs) are defined as substances that may cause or contribute to an increase in deaths or in serious illness, or that may pose a present or potential hazard to human health. As discussed under the LST analysis, the nearest sensitive receptors are adjacent to the project site to the north.

Health effects from carcinogenic air toxics are usually described in terms of cancer risk. The SCAQMD recommends an incremental cancer risk threshold of 10 in 1 million. "Incremental cancer risk" is the net increased likelihood that a person continuously exposed to concentrations of TACs resulting from a project over a 9-, 30-, and 70-year exposure period will contract cancer based on the use of standard Office of Environmental Health Hazard Assessment risk-assessment methodology (OEHHA 2015). In addition, some TACs have non-carcinogenic effects. SCAQMD recommends a Hazard Index of 1 or more for acute (short-term) and chronic (long-term) non-carcinogenic effects.⁷ TACs that would potentially be emitted during construction activities associated with the proposed project would be diesel particulate matter.

Diesel particulate matter emissions would be emitted from heavy equipment operations and heavy-duty trucks. Heavy-duty construction equipment is subject to a California Air Resources Board (CARB) Airborne Toxics Control Measure for in-use diesel construction equipment to reduce diesel particulate emissions. As described for the LST analysis, PM_{10} and $PM_{2.5}$ (representative of diesel particulate matter) exposure would be minimal. According to the Office of Environmental Health Hazard Assessment, health risk assessments (which determine the exposure of sensitive receptors to toxic emissions) should be based on a 30-year exposure period for the maximally exposed individual resident; however, such assessments should also be limited to the period/duration of activities associated with the project. The duration of the proposed construction activities would constitute a small percentage of the total 30-year exposure period. The construction period for the project would be approximately 280 workdays, after which construction-related TAC emissions would cease. Due to this relatively short period of exposure and minimal particulate emissions on site, TACs generated during construction would not be expected to result in concentrations causing significant health risks.

Following completion of on-site construction activities, the project would not involve routine operational activities that would generate TAC emissions. Operation of the project would not result in any non-permitted direct emissions (e.g., those from a point source such as diesel generators). For the reasons previously described, the project would not result in substantial TAC exposure to sensitive receptors in the vicinity of the project, and impacts would be less than significant.

Asbestos

Demolition activities could result in airborne entrainment of asbestos, particularly where structures built prior to 1980 would be demolished. The regulation of asbestos is covered under the U.S. Environmental Protection Agency's National Emissions Standards for Hazardous Air Pollutants. In addition, these materials would be removed in accordance with regulatory requirements prior to demolition (pursuant to SCAQMD Rule 1403 [Asbestos Emissions]), which establishes survey, notification, and work practice requirements to prevent asbestos emissions during building demolition. Because adherence to this rule is mandatory, the potential for significant adverse health impacts would be reduced to a less-than-significant level.

11125.04 SEPTEMBER 2022

Non-cancer adverse health risks are measured against a hazard index, which is defined as the ratio of the predicted incremental exposure concentrations of the various non-carcinogens from the project to published reference exposure levels that can cause adverse health effects.

Health Effects of Criteria Air Pollutants

Construction emissions of the project would not exceed the SCAQMD thresholds for any criteria air pollutants, including VOC, NOx, CO, SOx, PM₁₀, and PM_{2.5}.

Health effects associated with O_3 include respiratory symptoms, worsening of lung disease leading to premature death, and damage to lung tissue (CARB 2019). VOCs and NO_x are precursors to O_3 , for which the SCAB is designated as nonattainment with respect to the NAAQS and CAAQS. The contribution of VOCs and NO_x to regional ambient O_3 concentrations is the result of complex photochemistry. The increases in O_3 concentrations in the SCAB due to O_3 precursor emissions tend to be found downwind of the source location because of the time required for the photochemical reactions to occur. Further, the potential for exacerbating excessive O_3 concentrations would also depend on the time of year that the VOC emissions would occur, because exceedances of the O_3 NAAQS and CAAQS tend to occur between April and October when solar radiation is highest. Due to the lack of quantitative methods to assess this complex photochemistry, the holistic effect of a single project's emissions of O_3 precursors is speculative. That being said, because the project would not exceed the SCAQMD thresholds, the project would not contribute to health effects associated with O_3 .

Health effects associated with NO_x include lung irritation and enhanced allergic responses (CARB 2019). Because project-related NO_x emissions would not exceed the SCAQMD mass daily thresholds, and because the SCAB is a designated attainment area for NO_2 and the existing NO_2 concentrations in the area are well below the NAAQS and CAAQS standards, it is not anticipated that the project would cause an exceedance of the NAAQS and CAAQS for NO_2 or result in potential health effects associated with NO_2 and NO_x .

Health effects associated with CO include chest pain in patients with heart disease, headache, light-headedness, and reduced mental alertness (CARB 2019). CO tends to be a localized impact associated with congested intersections. The associated potential for CO hotspots was discussed previously and determined to be less than significant. Thus, the project's CO emissions would not contribute to significant health effects associated with CO.

Health effects associated with PM_{10} include premature death and hospitalization, primarily for worsening of respiratory disease (CARB 2019). Construction of the project would not exceed thresholds for PM_{10} or $PM_{2.5}$, would not contribute to exceedances of the NAAQS and CAAQS for particulate matter, and would not obstruct the SCAB from coming into attainment for these pollutants. The project would also not result in substantial diesel particulate matter emissions during construction. Additionally, the project would be required to comply with SCAQMD Rule 403, which limits the amount of fugitive dust generated during construction. Due to the minimal contribution of particulate matter during construction, the project is not anticipated to result in health effects associated with PM_{10} or $PM_{2.5}$.

In summary, construction and operation of the proposed project would not result in exceedances of the SCAQMD significance thresholds for criteria pollutants, and potential health effects associated with criteria air pollutants would be less than significant.

d) Would the project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

Less-Than-Significant Impact. The occurrence and severity of potential odor impacts depend on numerous factors. The nature, frequency, and intensity of the source; wind speed and direction; and the sensitivity of

receiving location each contribute to the intensity of the impact. Although offensive odors seldom cause physical harm, they can be annoying, cause distress among the public, and generate citizen complaints.

During project construction, exhaust from equipment may produce discernible odors typical of most construction sites. Potential odors produced during construction would be attributable to concentrations of unburned hydrocarbons from tailpipes of construction equipment. However, such odors would disperse rapidly from the project site and generally occur at magnitudes that would not affect substantial numbers of people. Accordingly, impacts associated with odors during construction would be less than significant.

Land uses and industrial operations associated with odor complaints include agricultural uses, wastewater treatment plants, food-processing plants, chemical plants, composting, refineries, landfills, dairies, and fiberglass molding (SCAQMD 1993). Operation of the project would not entail any of these potentially odor-causing land uses. Therefore, the project would not create any new sources of odor during operation, and project operations would result in an odor impact that is less than significant.

3.4 Biological Resources

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact		
IV.	IV. BIOLOGICAL RESOURCES – Would the project:						
a)	Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?						
b)	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?						
c)	Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?						
d)	Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?						
e)	Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?						

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
f)	Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?				\boxtimes

The following analysis is based on a Natural Environmental Study (Minimal Impacts), which included a biological resource survey, conducted by Dudek biologist Tracy Park under the supervision of senior biologist Michael Cady on August 1, 2019, in the 46.36-acre biological survey area (BSA). The BSA was established around the project site and a 500-foot buffer to determine the biological resources within and near the proposed project that could potentially be affected by project implementation. The Natural Environment Study (Minimal Impacts) included a prefield review of the latest relevant literature and databases, maps, special-status species occurrence, and critical habitat designation (Appendix B).

A search of the California Natural Diversity Database, California Native Plant Society Online Electronic Inventory of Rare and Endangered Vascular Plants of California, and National Marine Fisheries Service Species List was conducted to identify sensitive biological flora and fauna potentially present in the BSA. In addition, the U.S. Fish and Wildlife Service (USFWS) Information Planning and Conservation System and USFWS Critical Habitat Mapper was reviewed for special-status species occurrence data and critical habitat designation within the BSA.

No special-status plant or wildlife species were detected within the BSA during the biological resource survey conducted on August 1, 2019. Based on the review of current state and federal databases, including the California Natural Diversity Database and USFWS Information Planning and Conservation System, no special-status plant or wildlife species have a moderate or higher potential to occur in the BSA. In addition, the BSA is not located within any USFWS-designated critical habitat or a designated wildlife movement corridor. The BSA also does not reside within any approved or proposed Habitat Conservation Plans or Natural Community Conservation Plans. The BSA does contain ornamental vegetation that could provide suitable nesting habitat for resident and migratory bird species protected under the Migratory Bird Treaty Act (MBTA) and California Fish and Game Code (CFGC).

a) Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Less-Than-Significant Impact With Mitigation Incorporated. No special-status plant species are expected to occur based on the lack of suitable habitat. However, nesting birds could be indirectly impacted from short-term construction-related noise. Based on compliance with the MBTA and CFGC, impacts would be less than significant.

Special-Status Plant Species

A total of 15 plant species were recorded during the field survey. A full list of plant species observed within the proposed project area is provided in Appendix B. No special-status plant species were detected during the biological reconnaissance survey. Due to the extent of developed lands and disturbed vegetation within the BSA, there are no special-status plant species with a moderate or high potential to occur within the BSA. Additionally, proposed project activities will primarily occur within existing paved areas (i.e., roadways, bridge decks, and concrete channel bottom). Therefore, no impacts to potentially occurring special-status plant species would occur.

Special-Status Wildlife Species

Eight wildlife species were recorded during the field survey. A full list of wildlife species observed within the proposed project area is provided in Appendix B. No special-status wildlife species were observed during the biological reconnaissance survey. Due to the extent of developed lands and disturbed vegetation within the BSA, there are no special-status wildlife species with a moderate or high potential to occur within the BSA.

No bats or signs of bats (i.e., urine staining and guano droppings) were visually observed at the time of the site visit; however, it should be noted that specific focused surveys for bats were not conducted. Common bat species that could roost in the bridge include Mexican free-tailed bat (*Tadarida brasiliensis*) and California myotis (*Myotis californicus*). Seven special-status bat species have recorded occurrences in the project vicinity (CDFW 2019): pallid bat (*Antrozous pallidus*), western mastiff bat (*Eumops perotis californicus*), silver-haired bat (*Lasionycteris noctivagans*), hoary bat (*Lasiurus cinereus*), western yellow bat (*Lasiurus xanthinus*), pocketed free-tailed bat (*Nyctinomops femorosaccus*), and big free-tailed bat (*Nyctinomops macrotis*). All of the species have potential to forage over the project site, but only pallid bat has a potential to roost within the bridge due to the lack of suitable roosting habitat for the other six species. Pallid bat is commonly found on bridges (Erickson 2002); however, the BSA lacks the habitat that the species is associated with and there are few modern records from the Los Angeles Basin (CDFW 2019; GBIF 2019). Additionally, the project is within a highly urbanized area, which is a deterrent to roosting (Erickson 2002).

Ornamental vegetation within the BSA provides suitable nesting habitat for a number of common resident and migratory bird species protected under the MBTA and CFGC Section 3500. Suitable nesting habitat for common, urban-adapted species such as house sparrow (*Passer domesticus*), house finch (*Haemorhous mexicanus*), and lesser goldfinch (*Spinus psaltria*) occurs within the BSA.

Common bat species could roost in the bridge, and there may be a potential direct impact to roosting non-special-status bats if project activities commence during the bat maternity roosting period of March through August. The potential impact would only occur during construction of the bridge, and potential roosting within it, would be available to bats following the completion of the project. Therefore, the project may directly or indirectly impact bat maternity roosts and impacts are potentially significant. As such, the proposed project would conduct a roosting bat survey in April or May to determine occupancy of the bridge by bats (Mitigation Measure [MM-]BIO-1).

Ornamental vegetation scattered throughout the BSA could provide suitable habitat for nesting birds protected under the MBTA and CFGC. The proposed project involves the removal of one tree located on private property immediately northeast of the project boundary and potentially several public trees. The trees proposed for removal are non-native species, commonly used for ornamental landscaping, thus not considered sensitive. However, these trees could provide nesting habitat for bird species protected under MBTA and CFGC. Additionally, ornamental vegetation scattered throughout the BSA could provide suitable

habitat for nesting birds. Nesting birds could be indirectly impacted from short-term construction-related noise, resulting in decreased reproductive success or nest abandonment. Therefore, if project activities were to occur during the general avian breeding season of February 1 through September 1, the project may indirectly impact nesting birds protected under the MBTA and CFGC (MM-BIO-2).

MM-BIO-1

To avoid potential direct and indirect impacts to bat maternity roosts, a qualified biologist will conduct a roosting bat survey in April or May to determine occupancy of the bridge by bats. These months are within the bat maternity season. The bat presence/absence survey will consist of a daytime roost assessment throughout the project site to identify any sign indicating presence (e.g., guano, staining). In order to observe if bats are actively roosting within the bridge and to gather additional information on the number of bats roosting, if any, one night of visual emergence observation will be conducted at dusk along with the use of an acoustic monitoring detector to determine what bat species are present.

If bats are found to be roosting in the bridge, then bat roost exclusion will be performed the following October or November, after maternity roosts are completed and bat activity is still high. This increases the potential to exclude all bats from the bridge and minimize the potential for a significant impact to occur by avoiding the maternity roosting season. The primary exit points for roosting bats will be identified, and all secondary ingress/egress locations on the bridge will be covered with a tarp or wood planks to prevent bats from leaving from other locations. The primary exit points will remain uncovered to allow exclusion devices to be installed. Exclusion devices will consist of a screen (poly netting, window screen, or fiberglass screening) with mesh 1/6 of an inch or smaller, installed at the exit point and passing two feet below the exit point. The exclusion devices will be installed at night to increase the potential that bats have already left the roost and are less likely to return. Exclusion devices will be left in place for a one-week period to ensure any remaining bats in the bridge are excluded. Periodic monitoring during the exclusion period should also be conducted to observe if any bats are still emerging from the bridge, and an active monitoring survey conducted on the final night of exclusion to ensure no bats are emerging from the bridge and to determine exclusion has been successful. Any continued presence of roosting bats would require an adjustment to the exclusion devices and schedule.

MM-BIO-2

To avoid potential direct and indirect impacts to nesting birds protected by the Migratory Bird Treaty Act and California Fish and Game Code, project activities should avoid the general nesting season of February 1 through September 1. If this season cannot be avoided, then a preconstruction clearance survey should be conducted 7 days prior to project activities to determine the presence/absence of any nesting bird species in vegetation within 300 feet (for non-raptor bird species) and 500 feet (for raptor species) of the proposed work area. If a nesting bird is found, an avoidance buffer will be established around the nest, based on the species sensitivity to disturbance and proximity to impact areas. The buffer will remain in place as long as the nest is considered active, as determined by an on-site monitor. No encroachment into the buffer may occur without the consent of the on-site monitor, as long as a nest is still active.

Upon implementation of MM-BIO-1 and MM-BIO-2, impacts to species identified as a candidate, sensitive, or special-status species would be less than significant.

b) Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

No Impact. As shown on Figure 6, Vegetation Types and Impact Areas, vegetation communities and land covers found within the BSA are entirely non-native and non-natural land covers composed of urban/developed land, disturbed habitat, ornamental vegetation, and concrete-lined channels associated with Compton Creek. None of the above identified vegetation communities are recognized by the Natural Communities List. Additionally, based on a review of the USFWS Critical Habitat viewer, there is no USFWS-designated critical habitat for listed wildlife species within the BSA (USFWS 2019). As a result, there would be no impact to riparian or sensitive vegetation communities.

c) Would the project have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

Less-Than-Significant Impact. The concrete channel contains the waters of Compton Creek that are likely to be determined waters of the United States, waters of the state, and a California Department of Fish and Wildlife-regulated stream. A formal jurisdictional waters delineation was not conducted; however, the limits of jurisdiction are expected to be delineated along the channel bottom for U.S. Army Corps of Engineers and the Regional Water Quality Control Board (RWQCB), and along the top of the vertical wall of the channel for the California Department of Fish and Wildlife, with the horizontal demarcation for each of these jurisdictions being concurrent. The channel is devoid of vegetation within the BSA.

As shown on Figure 6, temporary and permanent impacts to waters of the United States and waters of the state are anticipated to occur as a result of the proposed project. Construction of the proposed project would temporarily impact 0.48 acres of the concrete channel. The proposed new pier in the middle of the channel would be constructed where the existing bridge pier is located and the proposed footing (including the sloping pier nose) would result in very small increase over the existing footing (0.01 acres). Therefore, the proposed project would likely require a Section 404 Permit from U.S. Army Corps of Engineers, a Section 401 Water Quality Certification from RWQCB, and a 1600 Streambed Alteration Agreement from the California Department of Fish and Wildlife.

Potential temporary impacts to jurisdictional waters within the concrete channel would result from proposed construction activities. Temporary impacts would include vehicles and equipment within the channel, the generation of concrete debris and sediment due to the demolition of the existing bridge, and the potential introduction of chemical pollutants (fuel, oil, lubricants, paints, release agents, and other construction materials). The release of chemical pollutants can reduce the water quality downstream, especially if water is actively flowing through a project site. Work would be conducted during the dry season (April 15 to October 15); however, based on historical imagery, urban runoff is present in the Compton Creek channel throughout the year.

In order to reduce temporary impacts, work areas would be reduced to the maximum extent feasible, and staging areas would be along the roadways and outside of Compton Creek. During construction, erosion-control measures would be implemented by the contractor as part of their County-certified Stormwater Pollution Prevention Plan (SWPPP) for the proposed project. The SWPPP will identify the sources of pollutants that may affect the quality of stormwater and include best management practices (BMPs) to

control the pollutants. All work shall conform to the site specific surface water diversion plan prepared for the project that will comply with the conditions included in the Water Quality Certification from the RWQCB and also include pertinent BMPs from the Construction Site Best Management Practices (BMPs) Manual (LADPW 2010). These include, but are not limited to, temporary sediment control, temporary soil stabilization, waste management and materials pollution control, wind erosion control, and other non-stormwater BMPs.

For these reasons, impacts related to substantial adverse effects on state or federally protected wetlands would be less than significant.

d) Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Less-Than-Significant Impact. Wildlife corridors are linear features that connect large patches of natural open space and provide avenues for dispersal or migration of animals and dispersal of plants (e.g., through wildlife vectors). Wildlife corridors contribute to population viability by assuring continual exchange of genes between populations, which helps maintain genetic diversity; providing access to adjacent habitat areas representing additional territory for foraging and mating; allowing for a greater carrying capacity; and providing routes for colonization of habitat lands following local population extinctions or habitat recovery from ecological catastrophes (i.e., the rescue effect).

Habitat linkages are small patches that join larger blocks of habitat and help reduce the adverse effects of habitat fragmentation. They serve as connections between habitat patches and help reduce the adverse effects of habitat fragmentation. Although individual animals may not move through a habitat linkage, the linkage is a potential route for gene flow and long-term dispersal. Habitat linkages may serve as both habitat and avenues of gene flow for small animals such as reptiles, amphibians, and rodents. Habitat linkages may be represented by continuous patches of habitat or by nearby habitat "islands" that function as stepping-stones for dispersal and movement (especially for birds and flying insects). Wildlife corridors and habitat linkages provide avenues for dispersal or migration of animals that also contribute to population viability in several ways, including (1) ensuring continual exchange of genes between populations to aid in maintaining genetic diversity, (2) providing habitat for some species, (3) providing access to adjacent habitat areas representing additional territory for foraging and mating, (4) allowing for a greater carrying capacity, and (5) providing routes for colonization of habitat lands following local population extinctions or habitat recovery from ecological catastrophes.

The BSA is surrounded by urban, developed land uses, and does not contain any greenbelts for wildlife movement, or native vegetation and undeveloped land capable of facilitating the movement of species between large tracts of native habitat. The Compton Creek watershed is entirely urban, so the channel does not connect any large natural areas upstream with the Los Angeles River and Pacific Ocean downstream. As such, the proposed project would not interfere with the movement of any resident or migratory fish or wildlife species. Impacts would be less than significant.

e) Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

No Impact. The County implements an Oak Tree Ordinance that applies to all unincorporated areas of Los Angeles County. The ordinance prohibits cutting, destroying, removing, relocating, inflicting damage on, or encroaching into the protected zone of any tree of the oak tree genus (*Quercus*) without first obtaining a permit. Per Chapter 20-4 of the City's Municipal Code, the removal of any City trees requires the Director of Public Works to authorize such work. The immediate project area does not contain any trees; however, the adjacent streets do include existing street trees. The proposed project would include the removal of one tree and require City of Compton's approval prior to removal. Therefore, no impacts associated with local policies or ordinances protecting biological resources would occur.

f) Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

No Impact. The BSA does not reside within any approved or proposed Habitat Conservation Plans or Natural Community Conservation Plans. Therefore, the proposed project would not be in conflict with any such plans, and no impact would occur.

3.5 Cultural Resources

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
٧.	CULTURAL RESOURCES – Would the project:				
a)	Cause a substantial adverse change in the significance of a historical resource pursuant to §15064.5?				
b)	Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?				
c)	Disturb any human remains, including those interred outside of dedicated cemeteries?			\boxtimes	

a) Would the project cause a substantial adverse change in the significance of a historical resource pursuant to §15064.5?

Less-Than-Significant Impact With Mitigation Incorporated. An APE was established for the project and includes a Direct APE that encompasses all areas where ground disturbance is expected to occur as well as any areas to be used for staging and transportation of materials (Figure 7, Area of Potential Effects Map). An Indirect APE was also established and includes a one-parcel bump-out around all portions of the Direct APE where ground disturbing activities are expected to occur that could potentially result in indirect effects (e.g., noise, vibration, alteration of setting) to adjacent properties.

A California Historic Resources Information System (CHRIS) records search (Confidential Appendix C, Records Search Map and Finding of No Adverse Effect) was conducted at the South Central Coastal Information Center at California State University, Fullerton on October 2, 2019. The search included any previously recorded cultural resources (including archaeological and historic built environment resources) and previous investigations within the proposed project APE and a 0.5-mile radius. Results of the records search indicate that three cultural resource studies have been conducted within 0.5 miles of the proposed project APE between 2007 and 2009. None of these studies overlap or are adjacent to the proposed project APE. Results of the records search also indicate the no prehistoric or historic-era archaeological resources were identified within the proposed project's APE or the 0.5-mile search radius. The Compton Bridge (Bridge Number 53C0925) was constructed in 1938 and was individually evaluated as part of the California Historic Bridge Inventory (Hope 2005) and was assigned Category 5 (not eligible for listing in the National Register of Historic Places).

The project site was surveyed by qualified cultural resources specialists trained in archaeological and historic built environment fieldwork on October 22, 2019. The survey included examination and photodocumentation of the Compton Creek Channel, Compton Boulevard Bridge, and a windshield survey of properties within the Indirect APE. All privately owned residential and commercial properties within the Indirect APE were exempt from evaluation as part of the Programmatic Agreement used as part of the Section 106 of the National Historic Preservation Act process by Caltrans. Although this Programmatic Agreement does not apply to CEQA, these exempted properties also do not qualify as historical resources under CEQA because they were found to be unremarkable post-World War II builders' houses and housing tracts with no potential for historical significance; a heavily altered building; or an unremarkable building less than 50 years old. As such, none of these properties appear eligible for the National Register of Historic Places, California Register of Historical Resources, or local register.

Three historic properties were identified within the project APE as a result of the background research: the potentially Los Angeles Flood Control District (LAFCD) historic district, and two of its contributing resources, the Compton Creek Channel and the Compton Boulevard Bridge. Due to the large size of the resource and pursuant to Stipulation VIII.C.4 of the 2014 Programmatic Agreement.

The Compton Creek Channel has the potential to be adversely impacted by the demolition and construction of the new Compton Boulevard Bridge. However, with implementation of the project-specific Secretary of the Interior's Standards for the Treatment of Historic Properties (SOIS) Action Plan (being implemented as mitigation for part of the Caltrans Section 106 process; also included as Mitigation Measure CUL-1 in this document), the major character-defining features of the Compton Creek Channel would be retained and protected such that project impacts on the channel would be less than significant. As a result and with implementation of MM-CUL-1, the Compton Creek Channel will remain a contributing feature of the LAFCD upon completion of the project.

The Compton Boulevard Bridge would be directly impacted by the proposed project in that it would be demolished and replaced with a new bridge. The Compton Boulevard Bridge is not eligible at the individual level of significance and is a Caltrans Category 5 bridge (not eligible for the National Register of Historic Places). However, its potential eligibility as a contributor to an historic district was not considered. As such, the Compton Boulevard Bridge was assumed eligible for the National Register of Historic Places under Criterion A as a contributor to the larger LAFCD as it is still serving its intended function, in its original alignment and configuration within the larger LAFCD system. The Compton Boulevard Bridge would be replaced to address structural deficiencies and improve vehicular safety and efficiency. Replacement of

the Compton Boulevard Bridge would require removing one of the approximately 300 original bridges constructed by the Los Angeles County Drainage Area Project in the LACFCD. All other bridges in the district would remain in place, including two nearby original bridges at Alondra Boulevard and Alameda Street, which are similar in materials and design to the Compton Boulevard Bridge, and would remain as examples of these contributing resources and would not be diminished by the new bridge. No other bridges are affected by the project; therefore, the bridge features collectively would not be destroyed. In the context of the historic property as a whole, the essential form and integrity of the LAFCD historic district would be unimpaired by the addition of the proposed new construction or its removal in the future. Given that the Compton Boulevard Bridge is not eligible under Criterion C for its engineering merits, nor is it eligible at the individual level, only the most basic character-defining features that convey the bridge's historical associations with the LAFCD require consideration. These features include its function as a crossing, its location, alignment, approximate size, use of compatible replacement materials, and its relationship to the Compton Creek Channel Therefore, the overall impact on the larger resource is not significant. With replacement of the original bridge in the same location and alignment, the LAFCD will continue to convey its significance under Criterion A despite the loss of the Compton Boulevard Bridge as a contributor.

As a result of the Finding of No Adverse Effect document (Confidential Appendix C) prepared during the Caltrans Section 106 process and the associated SOIS Action Plan being implemented as mitigation to retain and protect the major character-defining features of the Compton Creek Channel as part of both the National Environmental Policy Act and CEQA process, the proposed project would have a less-than-significant impact on historical resources with mitigation incorporated.

MM-CUL-1

Public Works shall implement the Secretary of the Interior's Standards for the Treatment of Historic Properties Action Plan (SOIS Action Plan) prepared for the project as part of the Section 106 process to ensure that design documents and project construction comply with the Rehabilitation Standards throughout the design and construction process. The SOIS Action Plan is included in Confidential Appendix C to the Compton Boulevard Bridge Over Compton Creek Project Initial Study/Mitigated Negative Declaration, and details required tasks for responsible parties at each stage of project development and progress (i.e., plan development/construction documents, during construction, and post-construction).

b) Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?

Less-Than-Significant Impact With Mitigation Incorporated. The archaeological survey report prepared for the proposed project documents the results of an archaeological resources inventory and whether the implementation of the proposed project would have the potential to impact known or previously identified archaeological resources and discusses the likelihood of encountering previously unknown archaeological resources. No newly or previously recorded archaeological resources were identified within the project site during the CHRIS records search, Native American Heritage Commission Sacred Lands File search, or pedestrian survey. Furthermore, the potential for previously unknown, intact, buried archaeological deposits to be present within the previously disturbed soils is highly unlikely based on a review of as-built engineering drawings, a geotechnical report, historic maps and site records, and a review of aerial images. These documents demonstrate that the project site has been subject to significant ground disturbances (approximately 42 feet and 11 inches at the pier/abutments, 15 feet 10 inches in the conduit, and 24 inches from the ground surface within approach areas such as driveways, curbs and gutters, and roadways). However, previously undisturbed soils would be encountered during excavation activities for the

replacement of the existing Compton Boulevard Bridge. These activities include pile drilling associated with new abutments, which would extend approximately 48 feet deep, and cut/fill activity 15 feet behind the existing abutments that is anticipated to reach depths of 10 feet, and retaining walls in select areas that extend up to 25 feet into the hillside and outside the ROW resulting in cuts into the adjacent hillsides with an expected depth of 3 feet. Given the negative CHRIS and Native American Heritage Commission Sacred Lands File records search results and pedestrian survey; the review of as-built engineering drawings, historic aerials and topographic maps demonstrating significant disturbance within the project site; and the fact that some undisturbed soils would exist at depths too low for cultural deposits, potential impacts to unknown archaeological resources is considered low. However, it is possible that previously undiscovered intact archaeological deposits are present at subsurface levels in areas of previously undisturbed soils and could be uncovered during ground disturbing activities. As such, MM-CUL-2 is provided to address inadvertent discoveries during construction. Impacts related to archaeological resources would be less than significant with mitigation incorporated.

MM-CUL-2

In the event that archaeological resources (sites, features, or artifacts) are exposed during construction activities for the proposed project, all construction work occurring within 100 feet of the find shall immediately stop until a qualified archaeologist, meeting the Secretary of the Interior's Professional Qualification Standards, can evaluate the significance of the find and determine whether or not additional study is warranted. Depending on the significance of the find under the California Environmental Quality Act (CEQA) (14 CCR 15064.5[f]; PRC Section 21082), the archaeologist may simply record the find and allow work to continue. If the discovery proves significant under CEQA, additional work, such as preparation of an archaeological treatment plan, testing, data recovery, and/or monitoring may be warranted.

c) Would the project disturb any human remains, including those interred outside of dedicated cemeteries?

Less-Than-Significant Impact. There is no indication that human remains are present within the boundaries of the proposed project site. In the unexpected event that human remains are unearthed during construction activities, impacts would be potentially significant. However, the discovery of human remains would require handling in accordance with PRC 5097.98, which states that in the event that human remains are discovered during construction, construction activity shall be halted and the area shall be protected until consultation and treatment can occur as prescribed by law. In addition and in accordance with PRC, Section 5097.98, the Native American Heritage Commission must immediately notify those persons it believes to be the most likely descendant (MLD) from the deceased Native American. The MLD shall complete their inspection within 48 hours of being granted access to the site. The MLD would then determine, in consultation with the property owner, the disposition of the human remains. Upon discovery, a qualified archaeologist will be retained to ensure proper implementation of the treatment agreed upon by the MLD and property owner. Therefore, through compliance with Section 7050.5 of the California Health and Safety Code and PRC 5097.98, impacts associated with unexpected discovery of human remains unearthed during construction activities would be less than significant.

3.6 Energy

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
VI. Energy – Would the project:	1	T	T	_
Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?				
b) Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?			\boxtimes	

a) Would the project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

Less-Than-Significant Impact. The service providers, supply sources, and estimated consumption for electricity, natural gas, and petroleum are discussed as follows.

Energy Overview

Electricity

Southern California Edison (SCE) is the utility provider within the project area. SCE provides electric services to 15 million customers, located within a 50,000 square-mile area in central, coastal, and Southern California. According to SCE, customers consumed approximately 84 billion kilowatt-hours of electricity in 2017 (CEC 2018a). SCE receives electric power from a variety of sources. According to the SCE Sustainability Report, 32% of SCE's power came from renewable energy sources in 2017, including biomass/waste, geothermal, hydroelectric, solar, and wind sources (SCE 2018). Due to the state's energy efficiency building standards and efficiency and conservation programs, California's electricity use per capita has remained stable for more than 30 years, while the national average has steadily increased (CEC 2015).

Natural Gas

The Southern California Gas Company (SoCalGas) serves the project area. SoCalGas serves 21.6 million customers in a 20,000-square-mile service area that includes over 500 communities (SoCalGas 2018). In 2017 (the most recent year for which data is available), SoCalGas delivered 5,142 million therms of natural gas, with the majority going to residential uses (CEC 2018b). Demand for natural gas can vary depending on factors such as weather, price of electricity, the health of the economy, environmental regulations, energy-efficiency programs, and the availability of alternative renewable energy sources. Natural gas is available from a variety of in-state and out-of-state sources and is provided throughout the state in response to market supply and demand.

Petroleum

Transportation accounts for the majority of California's total energy consumption (CEC 2018b). According to the Energy Information Association, California used approximately 672 million barrels of petroleum in 2016 (EIA 2018). This equates to a daily use of approximately 1.8 million barrels of petroleum. There are 42 U.S. gallons in a barrel, so California consumes approximately 77 million gallons of petroleum per day, adding up to an annual consumption of 28 billion gallons of petroleum. However, technological advances, market trends, consumer behavior, and government policies could result in significant changes in fuel consumption by type and in total. At the federal and state levels, various policies, rules, and regulations have been enacted to improve vehicle fuel efficiency, promote the development and use of alternative fuels, reduce transportation-source air pollutants and GHG emissions, and reduce VMT.

Construction Energy Use

Electricity

Temporary electric power for as-necessary lighting and electronic equipment would be provided by SCE. The amount of electricity used during construction would be minimal because typical demand would stem from electrically powered hand tools. The electricity used for construction activities would be temporary and minimal; therefore, proposed project construction would not result in wasteful, inefficient, or unnecessary consumption of electricity. Impacts would be less than significant.

Natural Gas

Natural gas is not anticipated to be required during construction of the proposed project. Fuels used for construction would primarily consist of diesel and gasoline, which are discussed under the subsection "Petroleum." Any minor amounts of natural gas that may be consumed as a result of proposed project construction would be temporary and negligible and would not have an adverse effect; therefore, proposed project construction would not result in wasteful, inefficient, or unnecessary consumption of natural gas. Impacts would be less than significant.

Petroleum

Petroleum would be consumed throughout construction. Fuel consumed by construction equipment would be the primary energy resource expended over the course of construction. Transportation of construction materials and construction workers would also result in petroleum consumption. Heavy-duty construction equipment, vendor trucks, and haul trucks would use diesel fuel. Construction workers would likely travel to and from the project area in gasoline-powered vehicles. Construction is expected to take approximately 280 workdays, beginning construction in January 2023 and finishing in May 2024. Once construction activities cease, petroleum use from off-road equipment and transportation vehicles would end. Because of the short-term nature of construction and relevantly small scale of the project, impacts would be less than significant.

Operational Energy Use

As discussed in Section 2, the project would include the replacement of the existing Compton Boulevard Bridge with a new two-span, precast concrete bridge. Thus, there would minimal operational or maintenance activities associated with the proposed project. Therefore, there operational energy use associated with the proposed project would be less than significant.

b) Would the project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

Less-Than-Significant Impact. The proposed project would follow applicable energy standards and regulations during the construction phases. Worker vehicles would meet the applicable standards of Assembly Bill (AB) 1493 (vehicles manufactured 2009 or later) and, as a result, would likely consume less energy as fuel efficiency standards are increased and vehicles are replaced. As such, impacts related to the proposed project's potential to conflict with plans for renewable energy and energy efficiency would be less than significant.

3.7 Geology and Soils

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
VII.	GEOLOGY AND SOILS - Would the project:				
a)	Directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:				
	i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.				
	ii) Strong seismic ground shaking?			\boxtimes	
	iii) Seismic-related ground failure, including liquefaction?				
	iv) Landslides?				
b)	Result in substantial soil erosion or the loss of topsoil?				
c)	Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?				

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
d)	Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?				
e)	Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?				
f)	Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?				

- a) Would the project directly or indirectly cause potential substantial adverse effects, including the risk of loss, injury, or death involving:
 - i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

No Impact. The project site does not lie within an Alquist-Priolo Special Studies Zone. The closest such fault zone is located approximately 1.3 miles southwest of the project site, along the Newport-Inglewood Fault Zone (CGS 1986). No other Holocene-active or pre-Holocene (i.e., Quaternary) faults are located in the vicinity of the site (CGS 2010). In addition, the project would not exacerbate the potential for fault rupture to occur. Therefore, the project would not directly or indirectly cause potential substantial adverse effects involving rupture of a known earthquake fault. No impacts would occur.

ii) Strong seismic ground shaking?

Less-Than-Significant Impact. The project site is located in a seismically active region of Southern California, which is subject to substantial hazards as a result of strong seismically induced ground shaking. Ground shaking due to earthquakes on the nearby Newport-Inglewood Fault, or other regional faults, can be anticipated during the life of the structure. The maximum probable earthquake on the Newport-Inglewood Fault is moment magnitude 6.0 to 7.4 (SCEDC 2013). Design and construction of the project would comply with provisions of the California Building Code and Caltrans seismic design protocol, including Caltrans Memo to Designers 20-1, Seismic Design Methodology (Caltrans 2010) and Memo to Designers 20-4, Seismic Retrofit Guidelines for Bridges in California (Caltrans 2016). In addition, the project would not exacerbate the potential for seismic ground shaking to occur. Conversely, seismic upgrades included in the proposed project design would result in beneficial impacts with respect to ground shaking. Therefore, the proposed project would not directly or indirectly cause potential substantial adverse effects involving strong seismic ground shaking. Impacts would be less than significant.

iii) Seismic-related ground failure, including liquefaction?

Less-Than-Significant Impact. Liquefaction occurs when shallow, loose, unconsolidated, fine- to medium-grained sediments, saturated with groundwater, are subjected to strong seismically induced ground shaking. Lateral spreading is the lateral movement of gently to steeply sloping, saturated soils deposits caused by liquefaction. The possibility of liquefaction occurring at any specific site is dependent on the intensity of the earthquake, shallowness of groundwater, and on the grain size, plasticity, relative density, and confining pressure of the soils at the project site. Liquefaction typically occurs when groundwater is located at a depth of 50 feet or less. The project site is underlain primarily by stiff to very stiff clay and silt, with a layer of very dense, well-graded sand from a depth of 65 to 75 feet. Groundwater is present at a depth of 50 to 60 feet (Appendix D, Geotechnical Memorandum).

The project site is located in a potential liquefaction zone (CGS 1999). However, design and construction of the project would comply with provisions of the California Building Code and Caltrans seismic design protocol, as discussed for Section 3.7(a-ii). In addition, the project would not exacerbate the potential for seismically related ground failure, including liquefaction, to occur. Conversely, seismic upgrades included in the proposed project design would result in beneficial impacts with respect to seismic related ground shaking, including liquefaction. Therefore, the project would not directly or indirectly cause potential substantial adverse effects involving seismically related ground failure, including liquefaction. Impacts would be less than significant.

iv) Landslides?

Less-Than-Significant Impact. The topography of the site is relatively flat to gently sloping and therefore not conducive to slope instability. According to the Department of Conservation's Landslide Inventory mapping system, the project site is not located within a landslide area (DOC 2015). No hillsides that might be prone to landslides are located in the vicinity of the site. During construction, the existing bridge would be removed, including the existing pier and pier invert, the existing steel girder, and the existing superstructure as well as the reinforced concrete, asphalt pavement, and soils within the limits of the new work. All existing bridge bearing components would be removed, including bearings, anchor bolts and grout pads. Removal of the bridge and appurtenances would include preserving the existing abutments/channel walls, which would remain in place, thereby avoiding the need for any temporary steep creek banks. Prior to cutting the backwall across the existing abutments, the soil behind the wall would be removed. The new abutments would then be constructed behind the remaining channel walls, which would retain the soil at all times. The removal and reconstruction of the existing pier in the middle of the channel would include excavation of approximately 2 to 3 feet. Based on these methodologies the project would prevent caving and creek bank slope failure. All demolition and construction would be completed in accordance with provisions of the California Building Code, which includes measures for stabilization of temporary slopes during construction and long-term slope stability during operations. Therefore, impacts would be less than significant.

b) Would the project result in substantial soil erosion or the loss of topsoil?

Less-Than-Significant Impact. The project site is currently paved and therefore not susceptible to erosion. However, the proposed project would result in excavation and removal of approximately 47,080 square feet (1.1 acres) of roadway and removal of the existing bridge and underlying structural supports. Demolition and new construction would result in temporary exposure of soil, which could result in short-

term erosion and sedimentation of Compton Creek. Sedimentation of the creek can result in adverse biological impacts.

The proposed project would comply with the provisions of the Construction General Permit, which is National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Associated with Construction Activities (Order No. 2009-0009-DWQ, NPDES No. CASO00002). Because the proposed project is greater than 1 acre in size, the applicant would be required to submit a Notice of Intent to the Los Angeles RWQCB to obtain approval to complete construction activities under the Construction General Permit. This permit would include a number of design, management, and monitoring requirements for the protection of water quality and the reduction of construction phase impacts related to stormwater discharges. Permit requirements would include the preparation of a SWPPP, implementation and monitoring of BMPs, and periodic submittal of performance summaries and reports to the Los Angeles RWQCB. In addition, demolition and construction would be completed in compliance with the Los Angeles County Construction Site Best Management Practices (BMPs) Manual and the Stormwater Pollution Prevention Plan (SWPPP) and Water Pollution Control Program Preparation Manual.

Issues related to stream scour would be further evaluated and addressed during final design. All bridge components would be designed using the Memo to Designers 20-4, Seismic Retrofit Guidelines for Bridges in California (Caltrans 2016), which addresses stream scour in combination with seismic hazards on new bridges, in accordance with Caltrans Seismic Design Criteria Section 2.2.5. As a result, impacts related to soil erosion and loss of topsoil would be less than significant.

c) Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?

Less-Than-Significant Impact. As discussed under Section 3.7(a-i) through Section 3.7(a-iii), seismic upgrades included in the proposed project design would result in beneficial impacts with respect to seismic related ground failure. Therefore, the proposed project would result in less than significant impacts related to unstable soils.

d) Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial direct or indirect risks to life or property?

Less-Than-Significant Impact. Expansive soils generally have a high clay content that causes soil shrinkage when dry and swelling when wet. The change in volume exerts stress on buildings and other structural loads. The extent of shrink/swell is influenced by the amount and type of clay in the soil. Based on geotechnical borings drilled at the site, the project site is underlain by clay and sandy clay (Appendix D), which may be prone to soil expansion. However, design and construction of the project would comply with provisions of the California Building Code, which includes remedial measures to protect against risks to life or property associated with expansive soils. Therefore, impacts would be less than significant.

e) Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

No Impact. Neither septic tanks nor alternative wastewater disposal systems are part of the proposed project. Therefore, no impacts would occur.

f) Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

Less-Than-Significant Impact With Mitigation Incorporated. The project site is located in the City of Compton and lies within the northernmost Peninsular Ranges Geomorphic Province (CGS 2002; Norris and Webb 1990). Northwest trending mountain ranges and valleys that extend over 900 miles from the tip of the Baja Peninsula to the Transverse Ranges (i.e., the San Bernardino and San Gabriel Mountains in Southern California) characterize this geomorphic province. Regionally, the Peninsular Ranges are bounded to the east by the Colorado Desert and the west by the continental shelf and offshore islands (Santa Catalina, Santa Barbara, San Nicholas, and San Clemente) (CGS 2002; Norris and Webb 1990). Regional mountain ranges in the Peninsular Ranges geomorphic province include the Santa Ana, San Jacinto, and Santa Rosa Mountains. Geologically, these mountains are dominated by Mesozoic, plutonic igneous and metamorphic rocks that are part of the Peninsular Ranges batholith (Southern California batholith) (Jahns 1954).

More specifically, the project site lies within the central block of the Los Angeles Basin (Yerkes et al. 1965). The Los Angeles Basin (also called the coastal plain) extends from the Santa Monica Mountains in the north to the San Joaquin Hills of Orange County in the south and is a structural basin that in some areas has been subsiding and filling with sediments since the late Cretaceous (Yerkes et al. 1965). The Los Angeles Basin is characterized by alluvial coastal plains, underlain by older alluvial and marine sediments, and punctuated by uplifted highlands owing to the numerous faults underlying the Basin. These faults, which include the Newport-Inglewood fault zone (a strike-slip fault zone) in the south and the Sierra Madre fault zone in the north (a reverse fault), are part of the greater San Andreas fault system, characterized by numerous strike-slip faults. According to geological mapping by Jennings (1962) at a scale of 1:250,000, the project site is underlain by Holocene (<11,700 years ago) alluvium (map unit Qal) east of Compton Creek and Quaternary nonmarine terrace deposits (map unit Qt) west of Compton Creek. The Quaternary nonmarine terrace deposits are generally late Pleistocene age (approximately 126,000 years ago to 11,700 years ago). More recent and larger-scale (more detailed) mapping of Saucedo et al. (2003) at a scale of 1:62,500 mapped the entire project site as Holocene young alluvium (map unit Qya2).

Dudek requested a paleontological records search of the Natural History Museum of Los Angeles County (LACM) vertebrate paleontological collections for the proposed project site and a one-half mile radius buffer on June 21, 2019, and the results were received on July 15, 2019. Not citing specific geological mapping, the LACM indicated the project site is underlain by Holocene alluvium, which is in turn underlain by Pleistocene alluvium (McLeod 2019). LACM did not report any previously recorded vertebrate fossil localities within the proposed project site or within the 0.5-mile radius buffer; however, they did report fossil localities from Pleistocene alluvium near the proposed project site. The closest vertebrate fossil locality (LACM 4685), approximately 3 kilometers northwest of the proposed project near Avalon Boulevard between 135th and 136th Streets, yielded a fossil proboscidean at an unknown depth below the ground surface (bgs). A fossil mammoth (Mammuthus) locality (LACM 3382) was recovered east of Wilmington Boulevard and north of Artesia Boulevard from a depth of approximately 5 feet bgs (McLeod 2019). Vertebrate fossil localities LACM 1344, 3266, and 3365, located around the Harbor Freeway (Interstate 110) and Athens on the Hill, produced fossil specimens of mammoth (Mammuthus), squirrel (Sciuridae), horse (Equus), and pronghorn antelope (Breameryx) from between 15 and 20 feet bgs. Finally, the LACM reported a Pleistocene fauna (LACM 1295 and 4206) from the Harbor Freeway (Interstate 110) between 112th and 113th Streets and near Main Street and the Imperial Highway that included pond turtle (Clemmys), puffin (Mancalla), turkey (Paroparvo), ground sloth (Paralmylodon), mammoth (Mammuthus), dire wolf (*Canis dirus*), horse (*Equus*), deer (*Cervus*), pronghorn antelope (*Capromeryx*), bison (*Bison*), rabbit (*Sylvilagus*), squirrel (*Sciuridae*), deer mouse (*Microtus*), and pocket gopher (*Thomomys*) from relatively shallow depths bgs (McLeod 2019).

In addition to the vertebrate fossil localities reported by the LACM, Jefferson (1991) and Miller (1971) reported numerous Pleistocene fossil vertebrate localities in this portion of the Los Angeles Basin. Specimens include amphibians, reptiles, birds, and large and small mammals.

The institutional records search or desktop geological and paleontological review did not reveal any fossil localities within the proposed project site, and the proposed project is not anticipated to be underlain by unique geologic features. While this area is underlain by Holocene sediments that are generally too young to contain significant paleontological resources, intact paleontological resources may be present below the Holocene alluvial sediments where older, Pleistocene, sediments are anticipated. The LACM records search suggested Pleistocene sediments could be as shallow as 5 feet bgs. If intact paleontological resources are located on site, ground-disturbing activities associated with construction of the proposed project, such as grading during site preparation and trenching for utilities, have the potential to destroy a unique paleontological resource or site. As such, the proposed project site is considered to be potentially sensitive for paleontological resources and without mitigation, the potential damage to paleontological resources during construction associated with the project is considered a potentially significant impact. Given the proximity of past fossil discoveries in Pleistocene sediments within this part of the Los Angeles Basin and the potential for underlying, Pleistocene-age older alluvial deposits, the proposed project area is highly sensitive for supporting paleontological resources below the depth of fill and recent Quaternary alluvium. However, upon implementation of MM-GEO-1, impacts would be reduced to below a level of significance. Impacts of the project are considered less than significant with mitigation incorporated during construction.

MM-GEO-1

Prior to commencement of any grading activity on-site that is greater than 5 feet below ground surface, the applicant shall retain a qualified paleontologist per the Society of Vertebrate Paleontology's 2010 Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources. The paleontologist shall prepare a Paleontological Resources Impact Mitigation Program (PRIMP) for the proposed project. The PRIMP shall be consistent with the Society of Vertebrate Paleontology's guidelines and should outline requirements for preconstruction meeting attendance and worker environmental awareness training, where monitoring is required within the proposed project area based on construction plans and/or geotechnical reports, procedures for adequate paleontological monitoring and discoveries treatment, and paleontological methods (including sediment sampling for microvertebrate fossils), reporting, and collections management. The qualified paleontologist shall attend the preconstruction meeting and a paleontological monitor shall be on-site during all rough grading and other significant ground-disturbing activities in previously undisturbed, fine-grained older Quaternary alluvial deposits. These deposits may be encountered at depths as shallow as 5 feet below ground surface or below the depth of any artificial fill present on-site. In the event that paleontological resources (e.g., fossils) are unearthed during grading, the paleontological monitor will temporarily halt and/or divert grading activity to allow recovery of paleontological resources. The area of discovery will be roped off with a 50-foot radius buffer. Once documentation and collection of the find is completed, the monitor will remove the rope and allow grading to recommence in the area of the find.

3.8 Greenhouse Gas Emissions

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact	
VIII. GREENHOUSE GAS EMISSIONS - Would the project:					
a) Generate greenhouse gas emissions, eithe directly or indirectly, that may have a significant impact on the environment?					
b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?					

a) Would the project generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?

Less-Than-Significant Impact. Climate change refers to any significant change in measures of climate, such as temperature, precipitation, or wind patterns, lasting for an extended period of time (decades or longer). The Earth's temperature depends on the balance between energy entering and leaving the planet's system, and many factors (natural and human) can cause changes in Earth's energy balance. The greenhouse effect is the trapping and build-up of heat in the atmosphere (troposphere) near the Earth's surface. The greenhouse effect is a natural process that contributes to regulating the Earth's temperature, and it creates a livable environment on Earth. Human activities that emit additional GHGs to the atmosphere increase the amount of infrared radiation that gets absorbed before escaping into space, thus enhancing the greenhouse effect and causing the Earth's surface temperature to rise. Global climate change is a cumulative impact; a project contributes to this impact through its incremental contribution combined with the cumulative increase of all other sources of GHGs. Thus, GHG impacts are recognized exclusively as cumulative impacts (CAPCOA 2008).

A GHG is any gas that absorbs infrared radiation in the atmosphere; in other words, GHGs trap heat in the atmosphere. As defined in California Health and Safety Code Section 38505(g) for purposes of administering many of the state's primary GHG emissions reduction programs, GHGs include carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride (NF₃) (see also 14 CCR 15364.5). The three GHGs evaluated herein are CO₂, CH₄, and N₂O. Emissions of hydrofluorocarbons, PFCs, SF₆, and NF₃ are generally associated with industrial activities including the manufacturing of electrical components, heavy duty air conditioning units, and insulation of electrical transmission equipment (substations, power lines, and switch gears). Therefore, emissions of these GHGs were not evaluated or estimated in this analysis because the project would not include these activities or components and would not generate hydrofluorocarbons, PFCs, SF₆, and NF₃ in measurable quantities.

Gases in the atmosphere can contribute to climate change both directly and indirectly.⁸ The Intergovernmental Panel on Climate Change developed the global warming potential (GWP) concept to compare the ability of each GHG to trap heat in the atmosphere relative to another gas. The reference gas used is CO₂; therefore, GWP-weighted emissions are measured in metric tons (MT) of CO₂ equivalent (CO₂e). Consistent with CalEEMod, this GHG emissions analysis assumed the GWP for CH₄ is 25 (emissions of 1 MT of CH₄ are equivalent to emissions of 25 MT of CO₂), and the GWP for N₂O is 298, based on the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC 2007).

As discussed in Section 3.3, Air Quality, of this IS/MND, the project site is located within the jurisdictional boundaries of the SCAQMD. In October 2008, the SCAQMD proposed recommended numeric CEQA significance thresholds for GHG emissions for lead agencies to use in assessing GHG impacts of residential and commercial development projects as presented in its Draft Guidance Document–Interim CEQA Greenhouse Gas Significance Threshold (SCAQMD 2008). This document, which builds on the previous guidance prepared by the California Air Pollution Control Officers Association, explored various approaches for establishing a significance threshold for GHG emissions. The draft interim CEQA thresholds guidance document was not adopted or approved by the Governing Board. However, in December 2008, the SCAQMD adopted an interim 10,000 MT CO₂e per-year screening level threshold for stationary source/industrial projects for which the SCAQMD is the lead agency (see SCAQMD Resolution No. 08-35, December 5, 2008).

The SCAQMD formed a GHG CEQA Significance Threshold Working Group to work with SCAQMD staff on developing GHG CEQA significance thresholds until statewide significance thresholds or guidelines are established. From December 2008 to September 2010, the SCAQMD hosted working group meetings and revised the draft threshold proposal several times, although it did not officially provide these proposals in a subsequent document. The SCAQMD has continued to consider adoption of significance thresholds for residential and general land use development projects. The most recent proposal, issued in September 2010, uses the following tiered approach to evaluate potential GHG impacts from various uses (SCAQMD 2010):

- Tier 1. Determine if CEQA categorical exemptions are applicable. If not, move to Tier 2.
- Tier 2. Consider whether or not the proposed project is consistent with a locally adopted GHG reduction plan that has gone through public hearing and CEQA review, that has an approved inventory, includes monitoring, etc. If not, move to Tier 3.
- Tier 3. Consider whether the project generates GHG emissions in excess of screening thresholds for individual land uses. The 10,000 MT CO₂e per-year threshold for industrial uses would be recommended for use by all lead agencies. Under option 1, separate screening thresholds are proposed for residential projects (3,500 MT CO₂e per year), commercial projects (1,400 MT CO₂e per year), and mixed-use projects (3,000 MT CO₂e per year). Under option 2, a single numerical screening threshold of 3,000 MT CO₂e per year would be used for all non-industrial projects. If the project generates emissions in excess of the applicable screening threshold, move to Tier 4.
- Tier 4. Consider whether the project generates GHG emissions in excess of applicable performance standards for the project service population (population plus employment). The efficiency

-

Direct effects occur when the gas itself absorbs radiation. Indirect radiative forcing occurs when chemical transformations of the substance produce other GHGs, when a gas influences the atmospheric lifetimes of other gases, and/or when a gas affects atmospheric processes that alter the radiative balance of the Earth (e.g., affect cloud formation or albedo) (EPA 2017b).

targets were established based on the goal of AB 32 to reduce statewide GHG emissions to 1990 levels by 2020. The 2020 efficiency targets are 4.8 MT CO₂e per-service population for project-level analyses and 6.6 MT CO₂e per-service population for plan-level analyses. If the project generates emissions in excess of the applicable efficiency targets, move to Tier 5.

Tier 5. Consider the implementation of CEQA mitigation (including the purchase of GHG offsets) to reduce the project efficiency target to Tier 4 levels.

Section 15064.7(c) of the CEQA Guidelines specifies that "[w]hen adopting thresholds of significance, a lead agency may consider thresholds of significance previously adopted or recommended by other public agencies, or recommended by experts, provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence." The CEQA Guidelines do not prescribe specific methodologies for performing an assessment, establish specific thresholds of significance, or mandate specific mitigation measures. Rather, the CEQA Guidelines emphasize the lead agency's discretion to determine the appropriate methodologies and thresholds of significance that are consistent with the manner in which other impact areas are handled in CEQA (CNRA 2009).

To determine the project's potential to generate GHG emissions that would have a significant impact on the environment, the project's GHG emissions were compared to the non-industrial land project quantitative threshold of 3,000 MT CO₂e per year. Because the project does not include operational sources of emissions, and because the project does not conform to the standard land use types, the 3,000 MT CO₂e per year threshold, which was identified under Tier 3 Option 1, was applied herein. Per the SCAQMD guidance, construction emissions should be amortized over the operational life of the project, which is assumed to be 30 years (SCAQMD 2008). This impact analysis, therefore, compares amortized construction emissions to the proposed SCAQMD threshold of 3,000 MT CO₂e per year.

Construction Emissions

Construction of the proposed project would result in GHG emissions primarily associated with the use of off-road construction equipment, on-road trucks, and worker vehicles. A depiction of expected construction schedules (including information regarding phasing, equipment used during each phase, truck trips, and worker vehicle trips) assumed for the purposes of emissions estimation is provided in Table 1, Construction Scenario Assumptions, and in Appendix A. On-site sources of GHG emissions include off-road equipment; off-site sources include trucks and worker vehicles. Table 4 presents construction GHG emissions for the project from on-site and off-site emissions sources.

Table 4. Estimated Annual Construction Greenhouse Gas Emissions

Year		CO ₂	CH ₄	N ₂ O	CO ₂ e
		Metric Tons per Year			
2024		392.79	0.08	0.01	398.40
2025		125.13	0.03	<0.01	126.50
	Total	517.92	0.11	0.01	524.90
			Amortized Co	Amortized Construction Emissions	

Source: See Appendix A for complete results.

Notes: CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent.

Operational Emissions

Once project construction is complete, the project would result in minimal maintenance activities consisting of use of equipment and worker vehicles. Because the proposed project would generate a minimal amount of vehicle trips, operational emissions would be less than significant.

As shown in Table 4, amortized project-generated construction emissions would not exceed the 3,000 SCAQMD threshold. Therefore, GHG emissions impacts would be less than significant.

b) Would the project generate conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Less-Than-Significant Impact. The proposed project would result in less-than-significant impacts related to conflicts with GHG emission reduction plans, for the reasons described as follows.

Consistency with CARB's Scoping Plan

The CARB Scoping Plan, approved by CARB in 2008 and updated in 2014 and 2017 (CARB 2014, 2017b), provides a framework for actions to reduce California's GHG emissions and requires CARB and other state agencies to adopt regulations and other initiatives to reduce GHGs. The Scoping Plan is not directly applicable to specific projects, nor is it intended to be used for project-level evaluations. Under the Scoping Plan, however, there are several state regulatory measures aimed at the identification and reduction of GHG emissions. CARB and other state agencies have adopted many of the measures identified in the Scoping Plan. Most of these measures focus on area source emissions (e.g., energy usage, high-GWP GHGs in consumer products) and changes to the vehicle fleet (i.e., hybrid, electric, and more fuel-efficient vehicles) and associated fuels (e.g., Low Carbon Fuel Standard), among others.

Consistency with the Southern California Association of Governments 2020–2045 Regional Transportation Plan/Sustainable Communities Strategy

On September 3, 2020, the Regional Council of SCAG formally adopted the 2020–2045 RTP/SCS as a regional growth management strategy, which targets per capita GHG reduction from passenger vehicles and light-duty trucks in the Southern California Region pursuant Senate Bill (SB) 375. In addition to demonstrating the region's ability to attain the GHG emission-reduction targets set forth by CARB, the 2020–2045 RTP/SCS outlines a series of actions and strategies for integrating the transportation network with an overall land use pattern that responds to projected growth, housing needs, changing demographics, and transportation demands (SCAG 2020). Thus, successful implementation of the 2020–2045 RTP/SCS would result in more complete communities with various transportation and housing choices while reducing automobile use.

The 2020 RTP/SCS is not directly applicable to the project because the purpose of the 2020 RTP/SCS is to provide direction and guidance by making the best transportation and land use choices for future development. Therefore, the project would not conflict with implementation of the strategies identified in the 2020 RTP/SCS that would reduce GHG emissions.

The Final Statement of Reasons for the amendments to the CEQA Guidelines reiterates the statement in the Initial Statement of Reasons that "[t]he Scoping Plan may not be appropriate for use in determining the significance of individual projects because it is conceptual at this stage and relies on the future development of regulations to implement the strategies identified in the Scoping Plan" (CNRA 2009).

Consistency with Executive Order S-3-05 and Senate Bill 32

The proposed project would not impede the attainment of the GHG reduction goals for 2030 or 2050 identified in Executive Order S-3-05 and SB 32. Executive Order S-3-05 establishes the following goals: GHG emissions should be reduced to 2000 levels by 2010, to 1990 levels by 2020, and to 80% below 1990 levels by 2050. SB 32 establishes a statewide GHG emissions reduction target whereby CARB, in adopting rules and regulations to achieve the maximum technologically feasible and cost-effective GHG emissions reductions, shall ensure that statewide GHG emissions are reduced to at least 40% below 1990 levels by December 31, 2030. While there are no established protocols or thresholds of significance for that future year analysis, CARB forecasts that compliance with the current Scoping Plan puts the state on a trajectory of meeting these long-term GHG goals, although the specific path to compliance is unknown (CARB 2014).

CARB has expressed optimism with regard to both the 2030 and 2050 goals. It states in the First Update to the Climate Change Scoping Plan that "California is on track to meet the near-term 2020 GHG emissions limit and is well positioned to maintain and continue reductions beyond 2020 as required by AB 32" (CARB 2014). With regard to the 2050 target for reducing GHG emissions to 80% below 1990 levels, the First Update to the Climate Change Scoping Plan states that the level of reduction is achievable in California (CARB 2014). CARB believes that the state is on a trajectory to meet the 2030 and 2050 GHG reduction targets set forth in AB 32, SB 32, and Executive Order S-3-05. This is confirmed in the 2017 Scoping Plan, which states (CARB 2017b):

The Scoping Plan builds upon the successful framework established by the Initial Scoping Plan and First Update, while identifying new, technologically feasible and cost-effective strategies to ensure that California meets its GHG reduction targets in a way that promotes and rewards innovation, continues to foster economic growth, and delivers improvements to the environment and public health, including in disadvantaged communities.

The proposed project would not interfere with implementation of any of the previously described GHG reduction goals for 2030 or 2050 because the project would not exceed the SCAQMD's recommended threshold of 3,000 MT CO₂e per year (SCAQMD 2008). Because the proposed project would not exceed the threshold as presented in Table 4, Estimated Annual Construction Greenhouse Gas Emissions, this analysis provides support for the conclusion that the project would not impede the state's trajectory toward the previously described statewide GHG reduction goals for 2030 or 2050.

The project's consistency with the state's Scoping Plan would assist in meeting the City's contribution to GHG emission reduction targets in California. With respect to future GHG targets under SB 32 and Executive Order S-3-05, CARB has also made clear its legal interpretation that it has the requisite authority to adopt whatever regulations are necessary, beyond the AB 32 horizon year of 2020, to meet the SB 32 40% reduction target by 2030 and the Executive Order S-3-05 80% reduction target by 2050. This legal interpretation by an expert agency provides evidence that future regulations will be adopted to continue the trajectory toward meeting these future GHG targets.

Based on the considerations previously outlined, the proposed project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs. This impact would be less than significant.

3.9 Hazards and Hazardous Materials

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
IX.	HAZARDS AND HAZARDOUS MATERIALS - Wo	ould the project:			
a)	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			\boxtimes	
b)	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				
c)	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?				
d)	Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				
e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?				
f)	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				
g)	Expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires?				

a) Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Less-Than-Significant Impact. Relatively small amounts of commonly used hazardous substances such as gasoline, diesel fuel, lubricating oil, adhesive materials, grease, solvents, and architectural coatings would be used during construction. These materials are not considered acutely hazardous and are used routinely throughout urban environments for both construction projects and structural improvements.

Further, these materials would be transported and handled in accordance with all federal, state, and local laws regulating the management and use of hazardous materials, including requirements to protect the Compton Creek waterway, such as Spill Prevention, Control, and Countermeasure Plans, and/or an NPDES water discharge permit. The City's Public Safety Element of the General Plan (City of Compton 2011), identifies four Public Safety Policies that minimize risks to health and safety associated with handling, transporting, treating, generating, and storing hazardous materials. These policies require adherence to, and are in support of, existing state and federal hazardous material handling laws and regulations. Consequently, use of these materials for their intended purpose would not pose a significant risk to the public or environment. Once construction has been completed, fuels and other petroleum products would no longer remain within the work area. Operation of the proposed project would not require the use, storage, or disposal of hazardous substances. Impacts would be less than significant.

b) Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Less-Than-Significant Impact With Mitigation Incorporated. During project construction, potentially hazardous materials are likely to be handled on the project site. Improper handling and/or use of these materials during construction would represent a potential threat to the public and the environment. All contractors are required to comply with applicable laws and regulations regarding hazardous materials and hazardous waste management and disposal. Examples of hazardous materials management include preventing the disposal or release of hazardous materials onto the ground or into groundwater or surface water during construction and ensuring the proper use and disposal of these materials would not pose a significant risk to the public and the environment.

Asbestos was widely used in a variety of building materials up until the 1980s. This includes components used for bridge construction, such as caulking, cement, fireproofing materials, and tar. Additionally, yellow traffic paint and yellow thermoplastic striping contains lead chromate. The lead and chromium concentrations in older yellow paint and yellow thermoplastic stripes are high enough to make these materials hazardous wastes when they are removed (Caltrans 2015). Based on the age of the bridge (1938), there is a potential for the building materials to contain asbestos and/or lead-based paint. If removed, these materials could be classified as hazardous waste. Construction of the proposed project would include pavement and superstructure removal, grading, and excavation; bridge replacement; and repaving, electrical, and restriping. MM-HAZ-1 requires a hazardous material survey be conducted to determine if hazardous materials are present in the existing building materials on the project site.

MM-HAZ-1

Prior to construction, a hazardous material building survey will be conducted to determine if asbestos-containing materials and lead-based paints are present on the project site. The survey will be conducted by a licensed contractor in accordance with local, state, and federal requirements. A report documenting material types, conditions and general quantities will be provided, along with photos of positive materials and diagrams. Should these materials be present, demolition plans and contract specifications shall incorporate any abatement procedures for the removal of materials containing asbestos or lead-based paint. Materials will be abated in accordance with local, state, and federal requirements by a licensed abatement contractor, or construction would be conducted in such a manner as to eliminate the potential to disturb the identified materials. Applicable regulations include, but are not limited to, those of the Environmental Protection Agency (which regulates disposal), Occupational Safety and Health Administration, California

Occupational Safety and Health Administration (which regulates employee exposure), and the South Coast Air Quality Management District.

Construction of the proposed project would remove the existing structure, thereby likely removing potential asbestos-containing materials and/or paints that contain lead and chromium. In the event some of these materials remain, operation of the proposed project would not disturb existing building materials. Therefore, potential risks associated with the above-mentioned potentially hazardous materials is limited to the construction phase. With implementation of MM-HAZ-1, impacts would be less than significant.

c) Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

No Impact. There are no schools located within 0.25 miles of the project site (CSCD 2019). The nearest schools are General Benjamin O. Davis, Jr. Middle School, 621 West Poplar Street, 0.3 miles north of the project site; Dickison Elementary, 905 North Aranbe Street, 0.40 miles north of the project site; and Laurel Street Elementary School, 1321 West Laurel Street, 0.43 miles southwest of the project site. There are no proposed schools within 0.25 miles of the project site (CDE 2019). The proposed project would, therefore, not emit hazardous emissions or handle hazardous or acutely hazardous materials near a school, and no impact would occur.

d) Would the project be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

No Impact. Government Code Section 65962.5 requires the California Environmental Protection Agency to compile a list of hazardous waste and substances sites (Cortese List). While the Cortese List is no longer maintained as a single list, the following databases provide information that meet the Cortese List requirements:

- List of Hazardous Waste and Substances sites from Department of Toxic Substances Control Envirostor database (Health and Safety Codes 25220, 25242, 25356, and 116395)
- List of Open Active Leaking Underground Storage Tank Sites from the State Water Resources Control Board (Water Board) GeoTracker database (Health and Safety Code 25295)
- List of solid waste disposal sites identified by the Water Board with waste constituents above hazardous waste levels outside the waste management unit (Water Code Section 13273[e] and 14 CCR 18051)
- List of "active" Cease and Desist Orders and Cleanup and Abatement Orders from the Water Board (Water Code Sections 13301 and 13304)
- List of hazardous waste facilities subject to corrective action pursuant to Section 25187.5 of the Health and Safety Code, identified by the Department of Toxic Substances Control

No Cortese List sites were identified on or within 0.5 miles of, the project site. Additionally, no hazardous waste and substance sites, solid waste disposal sites, active Cease and Desist Order/Cleanup and Abatement Order sites, or hazardous waste facilities were identified within 1 mile of the project site. Leaking Underground Storage Tank sites were identified between 0.5 miles and 1 mile of the project site, but it is generally unlikely that impacts from Leaking Underground Storage Tank sites would extend beyond 0.5 miles.

Dudek also conducted a search of environmental regulatory databases to help identify potential hazardous materials on or near the project site. The project site was not identified in the California Environmental

Protection Agency's Regulated Site Portal. Five sites were identified within 0.25 miles of the project site. These listings are administrative in nature, identifying use, storage, and/or disposal of hazardous materials, and do not necessarily indicate a release to the environment. One site is located adjacent to the site. Details are as follows:

Autozone No. 2850, an automotive parts store, is located adjacent to the project site to the northwest. The site stores hazardous materials, and generates and stores hazardous wastes. The site received one violation, which was administrative in nature, and does not necessarily indicate a release of hazardous substances to the environment.

The National Pipeline Mapping System Public Map Viewer is a web-based application designed to assist the general public with displaying and querying data related to gas transmission and hazardous liquid pipelines, liquefied natural gas plants, and breakout tanks under Department of Transportation Pipeline and Hazardous Material Safety Administration jurisdiction. An active non-highly volatile liquid product (petroleum) pipeline runs north-south along Wilmington Avenue to the south of the project site, turns west on Compton Boulevard at the intersection of Wilmington Avenue and Compton Boulevard, then runs north-south along Kemp Avenue. The pipeline is owned by Shell Pipeline Co., L.P. The pipeline does not transect the project site, but transects the intersection of North Wilmington Avenue and West Compton Boulevard, which is approximately 190 feet west of the project site.

The project site is not located on, or within 0.5 miles of, a Cortese List site. Additionally, there are no sites with reported hazardous material contamination otherwise not listed on the Cortese List on or near the project site. Therefore, the proposed project would not be located on a site that is included in the list of hazardous materials sites under Government Code Section 65962.5, and no impact would occur.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard or excessive noise for people residing or working in the project area?

No Impact. The project site is located 0.34 miles from the Compton/Woodley Airport. It is not, however, located within the Compton/Woodley Airport Influence Area. Under 14 CFR 77.9, the Federal Aviation Administration requires notification of construction or alteration if the construction rises above ground level as described in Part 77.9. As the construction and operation of the proposed project would not substantially change the existing height of the bridge, this notification is not required. Therefore, the proposed project would not result in a safety hazard or excessive noise for people residing or working in the project area, and no impact would occur.

f) Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Less-Than-Significant Impact. The project site consists of 1.21 acres and includes the bridge and roadway approach. Within the project area, Compton Boulevard includes two 12-foot-wide travel lanes and one left-turn lane in each direction; 4.5-foot-wide public sidewalks extend on both sides of Compton Boulevard. The project site is within the jurisdiction of the City of Compton Fire Department, which includes the Compton Office of Emergency Management. The Office of Emergency Management is responsible for coordinating emergency mitigation, planning, response, and recovery efforts for all disasters or other major emergencies affecting the City. The nearest fire station is Compton Fire Station 1 (Headquarters), 201 South Acacia Avenue, located 0.64 miles east of the project site.

Emergency response procedures are discussed as part of the Public Safety Element of the City's General Plan 2030 (City of Compton 2011). The Public Safety Element supports emergency preparedness by documenting City policies for responding to major emergencies that threaten life, safety, and property. The plan establishes a chain of command and outlines the responsibilities of various City departments in the event of an emergency. According to the Public Safety Element, "the City of Compton is an urban environment with little danger of wildfires. There are only three properties in the City that have over twenty acres of grass that can burn, leaving the City a low risk for any wildfires beyond a minor brush fire" (City of Compton 2011). Compton Boulevard is designated as an evacuation route, as well as Wilmington Avenue to the west and Willowbrook Boulevard to the east. Alondra Boulevard to the south, and Rosecrans Avenue to the north are also designated evacuation routes. As Compton Boulevard would be closed during construction of the proposed project, this evacuation route would not be available. The City Public Safety Element, Emergency Preparedness section states "[d]efinition of evacuation routes is dependent on the nature and extent of the disaster. Not all routes are likely to be open or passable in the event of a major catastrophe. Residents and workers should proceed as directed by public officials" (City of Compton 2011).

During construction, complete road closures over the Compton Boulevard Bridge would occur and planned detour routes would be established via Wilmington Avenue, Rosecrans Avenue, and Willowbrook Avenue. Given that full road closures would occur, the 200-foot approach roadways on either side of the bridge structure would be used as construction staging areas. Per County staff, the following tentative planned detour routes would be established via Rosecrans Avenue, Compton Boulevard, and Willowbrook Avenue:

- Eastbound traffic will be directed to head north on Wilmington Avenue, east on Rosecrans Avenue, south on Willowbrook Avenue, and east back onto Compton Boulevard.
- Westbound traffic will be directed to head north on Willowbrook Avenue, west on Rosecrans Avenue, south on Wilmington Avenue, and west back onto Compton Boulevard.

Additionally, a Traffic Control Plan would be developed to identify the duration of road closures, appropriate detour routes, and required signage. As part of the Traffic Control Plan, emergency service providers that serve the area would be notified of the closure and detour route so that service would not be disrupted. Specifically, as explained in Section 3.17, incorporation of a Traffic Control Plan, as described in PDF-TRAF-1, would be required for all construction work within the road ROW that modifies vehicular, bicycle, pedestrian and/or transit traffic patterns and are necessary to ensure the safe and efficient movement of traffic through construction work zones. Implementation of PDF-TRAF-1 would reduce impacts to local emergency service providers to less-than-significant levels. Once construction is complete, operation of the proposed project would not change from the existing operations. Therefore, the proposed project would not significantly impair implementation of or physically interfere with adopted emergency response plans or emergency evacuation plans, and impacts would be less than significant.

g) Would the project expose people or structures, either directly or indirectly, to a significant risk of loss, injury, or death involving wildland fires?

No Impact. As described in City Public Safety Element, "the City of Compton is an urban environment with little danger of wildfires. There are only three properties in the City that have more than 20 acres of grass that can burn, making the City a low risk for any wildfires beyond a minor brush fire" (City of Compton 2011). As such, the construction and operation of the proposed project would not expose people or structures to a significant risk of wildland fires, and no impact would occur.

3.10 Hydrology and Water Quality

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
Χ.	HYDROLOGY AND WATER QUALITY - Would the	ne project:			
a)	Violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?				
b)	Substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?				
c)	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:				
	 result in substantial erosion or siltation on or off site; 			\boxtimes	
	ii) substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or off site;				
	iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or				
	iv) impede or redirect flood flows?			\boxtimes	
d)	In flood hazard, tsunami, or seiche zones, risk release of pollutants due to project inundation?				
e)	Conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?				

a) Would the project violate any water quality standards or waste discharge requirements or otherwise substantially degrade surface or ground water quality?

Less-Than-Significant Impact. Water quality standards in the project area are enforced by the RWQCB and are listed in the Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties (LARWQCB 2014). Demolition of the existing bridge and installation of the new bridge could require work within the creek, which could result in a temporary increase in turbidity. In addition, bridge demolition and replacement, vegetation removal, and equipment storage and fueling would generate construction

debris, wastes, loose soils, and fuels that could potentially enter the creek if not properly contained. If these pollutants were to enter the creek, they could impact water quality and violate existing standard discharge requirements.

During construction, erosion-control measures would be implemented by the contractor as part of their County-certified SWPPP for the proposed project. The SWPPP will identify the sources of pollutants that may affect the quality of stormwater and include BMPs to control the pollutants. All work shall conform to the site specific surface water diversion plan prepared for the project that will comply with the conditions included in the Water Quality Certification from the RWQCB and also include pertinent BMPs from the Construction Site Best Management Practices (BMPs) Manual (LADPW 2010). These include, but are not limited to, temporary sediment control, temporary soil stabilization, waste management and materials pollution control, wind erosion control, and other non-stormwater BMPs. Upon implementation of BMPs, water quality impacts associated with project construction would be less than significant (Appendix E, Water Quality Assessment Report).

Once operational, the proposed project could result in a slight increase in impervious surface area; however, the project would not result in direct permanent impacts to Compton Creek. Net impervious surface area increase would be minor and would not result in changes to water quality conditions. Impacts to drainage facilities would include the relocation of catch basins on private properties at some driveway entrances to accommodate the new geometry of the roadways. The new drainage inlets would be similar to existing facilities and would comply with community, regional, state, and federal objectives. Therefore, impacts would be less than significant.

b) Would the project substantially decrease groundwater supplies or interfere substantially with groundwater recharge such that the project may impede sustainable groundwater management of the basin?

Less-Than-Significant Impact. Project construction could require a temporary use of water supply. However, the required quantity of water would be negligible compared to the total water supply. Following project completion, the proposed project would no longer require a long-term water supply.

The proposed project would include removal and replacement of an existing bridge. No groundwater supplies are required for the operation of the bridge. However, the proposed project could result in a slight increase of impervious surfaces in the project area. Increases to impervious surface area would be minor and would not significantly impact groundwater recharge in the project area. Therefore, impacts would be less than significant.

- c) Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river or through the addition of impervious surfaces, in a manner which would:
 - i) result in substantial erosion or siltation on or off site;

Less-Than-Significant Impact. Project construction would require ground disturbance, which could temporarily alter the existing drainage pattern in the project area. However, standard BMPs and requirements of the SWPPP would be implemented during construction to minimize soil erosion and siltation of local drainages and receiving waterways. Additionally, drainage facilities could be relocated during construction if existing facilities are unable to be protected in place. Facilities would be reinstalled following project construction. Changes to facilities would not affect the existing drainage (Appendix E).

The addition of impervious surface area could result in changes to the drainage patterns of a watershed and receiving water bodies, including erosion and siltation of local waterways. The project includes removal and replacement of an existing bridge. The project could result in a minor increase of impervious surface. Increases to impervious surface would result in negligible increases in discharge to the City's storm drainage system and receiving waterways. Therefore, impacts would be less than significant.

substantially increase the rate or amount of surface runoff in a manner which would result in flooding on or off site;

Less-Than-Significant Impact. As discussed in Section 3.10(c)(i), the proposed project would require standard BMPs and requirements of the SWPPP would be implemented during construction to minimize surface runoff. Additionally, drainage facilities could be relocated during construction if existing facilities are unable to be protected in place. Facilities would be reinstalled following project construction. Changes to facilities would not affect the existing drainage (Appendix E).

The addition of impervious surface area could result in changes to the drainage patterns of a watershed and receiving water bodies, including erosion and siltation of local waterways. The project includes removal and replacement of an existing bridge. The project could result in a minor increase of impervious surface. Increases to impervious surface would result in negligible increases in discharge to the City's storm drainage system and receiving waterways. Therefore, impacts would be less than significant.

iii) create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff; or

Less-Than-Significant Impact. Oils and fluids deposited by vehicles and roadside trash are primary sources of pollution within the project area. Stormwater washes pollutants from the roadways into local drainages that discharge into receiving waters. Construction activities would include the use of construction vehicles and equipment, staging, and vegetation removal. Approximately 1.21 acres of land would be disturbed as a result of the project. There is potential that exposed soils, construction debris, and other pollutants could enter stormwater runoff that discharges into the catch basin and local sewers. Project construction would include standard BMPs, including implementation of soil binders, silt fencing, straw mulch, and other approved standard practices. A SWPPP would also be prepared for the project to outline how project construction would minimize stormwater pollution (Appendix E).

The proposed project would not be capacity increasing and would not influence growth in or around the project area. Therefore, traffic volume would not increase as a result of the project. Pollution sources during project operation would be consistent with existing conditions. Therefore, impacts would be less than significant.

iv) impede or redirect flood flows?

Less-Than-Significant Impact. The proposed project could result in a permanent minor increase in impervious surface area; however, potential minor impervious surface area increases would result in negligible impacts to drainage, stormwater runoff, and water quality conditions. In addition, the proposed bridge structure is similar to the existing structure. Because proposed drainage conditions would be similar to existing conditions, stormwater runoff and creek flows would remain similar to existing flow conditions. Therefore, impacts would be less than significant.

d) In flood hazard, tsunami, or seiche zones, would the project risk release of pollutants due to project inundation?

No Impact. The project area is included in Panel 1815F of the Federal Emergency Management Agency Flood Insurance Risk Map for Los Angeles County, California (FEMA 2008). The project area is identified as Zone X, which is defined as an area determined to be outside of the 0.2% annual chance floodplain. The Los Angeles River floodplain is located approximately 0.4 miles east of the project area. Therefore, the project would not result in flood hazard risk that could lead to the release of pollutants due to project inundation.

A seiche is a temporary disturbance or oscillation in the water level of a lake or partially enclosed body of water. A tsunami is a long, high ocean wave caused by an earthquake, submarine landslide, or other disturbance. A mudflow is a fluid or hardened stream or avalanche of mud. The project area is not near a lake or ocean and therefore, is not susceptible to seiche or tsunami hazards. Therefore, the proposed project would not result in seiche or tsunami risks that could lead to the release of pollutants due to project inundation.

e) Would the project conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan?

No Impact. The proposed project would include replacement of a structurally deficient bridge over Compton Creek. The proposed project would not result in significant impacts on water quality, groundwater recharge, or the capacity of existing stormwater systems. Therefore, the proposed project would be consistent with applicable water quality control plans and groundwater management.

3.11 Land Use and Planning

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact	
XI. LAND USE AND PLANNING - Would the project:					
 a) Physically divide an established community? 					
b) Cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?					

a) Would the project physically divide an established community?

No Impact. A significant impact would occur if the proposed project included the construction of buildings, roads, or other infrastructure that would physically divide an existing community. As stated in Section 2 of this IS/MND, the proposed project includes the replacement of the existing Compton Boulevard Bridge over Compton Creek with a new, two-span concrete bridge, concrete pier and abutments. While the project would require temporary easements and partial ROW acquisition from surrounding residential properties, proposed easements and ROW acquisition would not create a physical barrier in/to the community nor

would it physically divide the local neighborhood. Upon operation, the new bridge would function in much the same way than under existing conditions. Given this, the proposed project would not physically divide an established community, and no impact would occur.

b) Would the project cause a significant environmental impact due to a conflict with any land use plan, policy, or regulation adopted for the purpose of avoiding or mitigating an environmental effect?

No Impact. The project site is located in a highly developed portion of the City in southern Los Angeles County. The project site is within the Compton Boulevard ROW and is surrounded by residential and limited commercial land uses and City land use zones. The project would require temporary easements and partial ROW acquisition from surrounding residential properties; however, the proposed project's construction would not conflict with City zoning, land use plans, or regulations adopted for avoiding or mitigating an environmental effect. Upon operation, the proposed project would function in much the same way than under existing conditions. As such, no impact would occur.

3.12 Mineral Resources

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XII. MINERAL RESOURCES - Would the project:				
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
b) Result in the loss of availability of a locally- important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?				

a) Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

No Impact. According to the California Department of Conservation Division of Geologic Energy Management, there are no oil or natural gas wells on the project site or within the vicinity of the project site; the nearest well, which was abandoned in 1928 (CalGEM 2012), is located approximately 0.55 miles south of the project site (CalGEM 2019). The California Department of Conservation, Division of Mines classifies the project site as Mineral Resource Zone 1, which is considered an "area where adequate information indicates that no significant mineral deposits are present, or where it is judged that little likelihood exists for their presence" (CGS 1982). Additionally, low density residential, mixed use, general commercial, and medium density residential land uses surround the project area (City of Compton 2011). The project site is occupied with an existing bridge. As such, the project site and surrounding area do not currently support mineral resource extraction activities. Therefore, the proposed project would not result in temporary or permanent impacts to the availability of a known mineral resource. No impact would occur.

b) Would the project result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

No Impact. The City of Compton does not identify any important mineral resource recovery sites in its General Plan (City of Compton 2011). As described above, the proposed project would include the replacement of an existing bridge in an urban area that is fully developed under existing conditions. The project site is not used for mineral resource extraction purposes. Moreover, the project site is designated as Mineral Resource Zone 1, which is an area, "where adequate information indicates that no significant mineral deposits are present, or where it is judged that little likelihood exists for their presence" (CGS 1982). Therefore, the proposed project would not result in the loss of availability of a locally important mineral resource recovery site. No impact would occur.

3.13 Noise

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XIII. NOISE - Would the project result in:				
a) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?				
b) Generation of excessive groundborne vibration or groundborne noise levels?			\boxtimes	
c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				

a) Would the project result in generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Less-Than-Significant Impact With Mitigation Incorporated. Existing noise level measurements were taken from three locations in proximity to the project area (see Figure 8, Noise Measurement Locations) and are provided in Table 5. The project area is surrounded by residential and commercial land uses. The nearest noise-sensitive land uses are residences immediately adjacent to the project area to the west and east.

Table 5. Noise Level Measurements

Site Number	Monitoring Period	Primary Noise Source	L _{eq} (15 minutes [dBA])	L _{max} (15 minutes [dBA])
ST 1	9:25 a.m9:40 a.m.	Vehicle Traffic	73.9	83.3
ST 2	9:44 a.m9:59 a.m.	Vehicle Traffic	77.2	86.3
ST 3	10:04 a.m10:19 a.m.	Vehicle Traffic	65.5	86.2

Source: Appendix F

Notes: dBA = A-weighted decibels; $L_{eq} = E$ nergy-equivalent noise level; and $L_{max} = M$ aximum sound level during a measurement period or a noise event.

Noise measurements were conducted on May 14, 2019, using a Piccolo SLM-3 sound level meter.

Short-Term Construction Noise

The proposed project would include demolition and replacement of the Compton Boulevard Bridge over Compton Creek. As shown in Table 6, equipment noise levels associated with the project would range from 75 to 90.3 dBA maximum noise level (L_{max}) at 50 feet.

Table 6. Typical Construction Equipment Noise

Equipment	Actual Measured L _{max} at 50 feet from Source (dBA) 88.9 77.6 76.5 90.3 79.1 80.6 81.4	
Jackhammer	88.9	
Backhoe	77.6	
Dump Truck	76.5	
Hoe Ram	90.3	
Loader	79.1	
Crane	80.6	
Concrete Pump Truck	81.4	
Dump Truck	76.5	
Drill Rig Truck	79.1	
Grader	851	
Roller	80	
Paver	77.2	
Pickup Truck	75	
Sweeper	81.6	

Source: FHWA 2008.

Notes: Lmax based on noise levels stated in the CA/T Construction Noise Control Specification 721.560.

Noise levels associated with on-site construction activities at nearby noise-sensitive land uses were quantified based on the Federal Highway Administration's Roadway Construction Noise Model, version 1.1 (FHWA 2008) and are summarized in Table 7. It is important to note that the predicted noise levels identified in Table 7 reflect the highest predicted construction noise levels anticipated to occur during project construction. Actual noise levels will vary depending on various factors, including the activities conducted, the type and number of pieces of equipment used, and duration of use.

Actual noise levels not available

Table 7. Construction Noise Levels at Nearby Noise-Sensitive Land Use

Equipment	ST1			ST2			ST3					
	Calculated dBA		Noise Limit Exceedance (dBA) ¹		Calculated dBA		Noise Limit Exceedance (dBA) ¹		Calculated dBA		Noise Limit Exceedance (dBA) ¹	
	L _{max}	Leq	L _{max}	Leq	L _{max}	Leq	L _{max}	Leq	L _{max}	Leq	L _{max}	Leq
Jackhammer	92.9	85.9	4.6	7	71.7	64.7	None	None	70.9	63.9	None	None
Backhoe	81.5	77.6	None	None	60.3	56.3	None	None	59.6	55.6	None	None
Hoe Ram	94.3	87.3	6	8.4	73	66.1	None	None	72.3	65.3	None	None
Front End Loader	83.1	79.1	None	0.2	61.9	57.9	None	None	61.2	57.2	None	None
Crane	84.5	76.6	None	None	63.3	55.4	None	None	62.6	54.6	None	None
Concrete Pump Truck	85.4	78.4	None	None	64.2	57.2	None	None	63.4	56.5	None	None
Dump Truck	80.4	76.5	None	None	59.2	55.2	None	None	58.5	54.5	None	None
Drill Rig Truck	83.1	76.1	None	None	61.9	54.9	None	None	61.2	54.2	None	None
Grader	89	85	0.7	6.1	67.8	63.8	None	None	67	63.1	None	None
Roller	84	77	None	None	62.8	55.8	None	None	62	55.1	None	None
Paver	81.2	78.2	None	None	60	57	None	None	59.3	56.3	None	None
Pickup Truck	79	75	None	None	57.8	53.8	None	None	57	53.1	None	None
Sweeper	85.6	75.6	None	None	64.3	54.3	None	None	63.6	53.6	None	None
Total ²	94.3	92.5	6	13.6	73	71.2	None	None	72.3	70.5	None	None

Source: FHWA 2008.

Note: Construction noise levels were evaluated based on typical equipment noise levels derived from the Federal Highway Administration's Roadway Construction Noise Model, version 1.1 (2008). Includes up to 10 dB shielding provided by intervening structures (HUD 2009). Assumes the above listed equipment was operating between 10 and 125 feet from the nearest residential property.

The noise limit is equivalent to the baseline ambient noise levels at each receptor location plus 5 dBA (level at which a noticeable change in community response would be expected). An exceedance greater than 5 dBA would be considered adverse.

The total L_{max} is equivalent to the maximum among individual equipment L_{max} values. Because decibels are logarithmic units, the total L_{eq} is calculated on a logarithmic scale and assumes that multiple pieces of equipment would be operating simultaneously.

A 10 dB change can correlate with an adverse change in community response. For the purposes of this analysis, the noise limit is equivalent to the baseline ambient noise levels at each receptor location plus 5 dB (i.e., the level at which a noticeable change in community response would be expected). Therefore, an exceedance up to 5 dB would be noticeable to the public and an exceedance greater than 5 dB would be considered adverse. As shown in Table 7, project construction would result in noise levels that would exceed the noise limit at the nearest noise-sensitive land uses. Exceedances at ST 1 would be greater than 5 dB and could reach up to 13.6 dBA L_{eq} . Therefore, exceedances at ST 1 would be considered potentially adverse.

Construction activities would be limited to daytime hours, between 7:00 a.m. and 7:00 p.m. on Monday through Saturday, in compliance with the City's Municipal Code. In addition, Section 12.08.440 of the Los Angeles County Code governs construction noise. Operating or causing the operation of any tools or equipment used in construction, drilling, repair, alteration, or demolition work between weekday hours of 7:00 p.m. and 7:00 a.m., or at any time on Sundays or holidays, such that the sound creates a noise disturbance across a residential or commercial real-property line, except for emergency work of public service utilities or by variance issued by the health officer, is prohibited by the County. However, Section 12.08.570(H) states that public health and safety activities are exempt from the provisions of the County's Noise Control Ordinance. Specifically, all transportation, flood control, and utility company maintenance and construction operations occurring at any time within the public ROW (and those situations which may occur on private real property) deemed necessary to serve the best interest of the public and to protect the public's health and wellbeing are exempt. Exempt activities include (but are not limited to) street sweeping; debris and limb removal; removal of downed wires; restoring electrical service; repairing traffic signals; unplugging sewers; snow removal; house moving; vacuuming catch basins; removal of damaged poles and vehicles; and repair of water hydrants and mains, gas lines, oil lines, sewers, and other utilities. The proposed project would address existing bridge deficiencies, enhance vehicular safety on the bridge, and improve transportation efficiency by enabling larger trucks to use the bridge. As such, the proposed project would be considered exempt from the construction noise provisions of the County's Noise Control Ordinance. Nevertheless, Public Works and its construction contractor would reduce construction noise levels associated with the project to the extent practicable. To further minimize noise impacts, the public would be notified of potential noise and vibration impacts from construction activities, and would be provided procedures for registering complaints (MM-NOI-1).

Construction equipment would be equipped with mufflers in compliance with Section 14-8.02, Noise Control, of the Caltrans Standard Specifications. The project would also include implementation of abatement measures to reduce impacts on nearby noise-sensitive land uses (MM-NOI-2 and MM-NOI-3). Temporary sound barriers (e.g., plywood or vinyl "curtains") would be constructed between the project site and residences to the east (ST 1) and west (ST 2 and ST 3) to reduce noise impacts on sensitive receptors. Based on the Caltrans Technical Noise Supplement, temporary noise curtains have been shown to reduce noise levels up to 15 dB (Caltrans 2013). With implementation of abatement measures, noise limit exceedances at ST 1, ST 2, and ST 3 would be reduced to levels that would not be adverse. Therefore, the project would not generate a substantial temporary increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. Therefore, with implementation of MM-NOI-1 through MM-NOI-3, construction impacts would be less than significant.

MM-NOI-1 Nearby residents within 500 feet of construction activities will be notified about the project and the potential noise and vibration effects resulting from construction activities. Homeowners will be provided with procedures for registering complaints, including an appropriate contact person and phone number or email address, in the event that noise and vibration are found to be excessive by the public

- MM-NOI-2 Appropriate noise measures will be implemented by the contractor, including, but not limited to, siting stationary construction equipment away from sensitive noise receptors to the greatest extent feasible, turning off idling equipment after no more than five minutes of inactivity, equipping construction equipment with mufflers, and rescheduling construction activity to avoid noise-sensitive days (i.e., holidays) or times.
- MM-NOI-3 Temporary sound barriers (e.g., plywood or vinyl "curtains") will be placed between the project area and residences to the west and east (areas represented by ST 1, ST 2, and ST 3 on Figure 8).

Long-Term Operational Noise

Once operational, the proposed project would not result in increased roadway capacity, and it would not change bridge or roadway alignment. Traffic noise would not change as a result of the proposed project, and therefore, traffic noise levels would not be impacted. The proposed project would not introduce new permanent sources of noise to the project area. Following project implementation, the acoustic setting would be similar to existing conditions, and the project would not result in increased exposure of persons to noise levels. The proposed project would not generate a substantial permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. Therefore, no impacts would occur.

b) Would the project result in generation of excessive groundborne vibration or groundborne noise levels?

Less-Than-Significant Impact. The proposed project would include demolition and replacement of Compton Boulevard Bridge over Compton Creek. Project construction is anticipated to be completed between January 2023 and May 2024 and would last for approximately 280 working days. Project construction would include temporary construction activities that would generate groundborne vibration, such as auger drilling, excavation, and vibratory compaction. Project construction would use cast-in-place or auger cast piles instead of pile driving, which would limit vibration generation to the negligible amount generated by drilling (Caltrans 2013).

A summary of potential impacts from groundborne vibration levels are identified in Table 8. Based on Caltrans vibration criteria, construction-generated vibration levels would have a potentially significant impact if vibration levels at the nearest structures would exceed the minimum criteria of 0.2 inches per second (in/sec) peak particle velocity (ppv) at fragile structures, 0.3 in/sec ppv at residential dwellings, or 0.5 in/sec ppv at newer buildings, including non-residential structures (Caltrans 2013). This same level corresponds to the level at which vibrations typically become annoying to people in buildings.

Based on the typical construction equipment that would be used for this project, as shown in Table 9, the project could generate vibration levels up to 0.210 in/sec ppv at 25 feet. Therefore, the project could result in groundborne vibration levels that have potential to cause human annoyance and "architectural" damage.

Table 8. Summary of Groundborne Vibration Levels and Potential Effects

Vibration Level (in/sec ppv)	Human Reaction	Effect on Buildings
0.006-0.019	Threshold of perception; possibility of intrusion	Vibrations unlikely to cause damage of any type
0.08	Vibrations readily perceptible	Recommended upper level of the vibration to which ruins and ancient monuments should be subjected
0.10	Level at which continuous vibrations begin to annoy people	Virtually no risk of "architectural" damage to normal buildings
0.20	Vibrations annoying to people in buildings (this agrees with the levels established for people standing on bridges and subjected to relative short periods of vibrations)	Threshold at which there is a risk of "architectural" damage to normal dwelling - houses with plastered walls and ceilings. Special types of finish such as lining of walls, flexible ceiling treatment, etc., would minimize "architectural" damage
0.4-0.6	Vibrations considered unpleasant by people subjected to continuous vibrations and unacceptable to some people walking on bridges	Vibrations at a greater level than normally expected from traffic but would cause "architectural" damage and possibly minor structural damage.

Source: Caltrans 2013.

Notes: in/sec = inches per second; ppv = peak particle velocity.

The vibration levels are based on ppv in the vertical direction for continuous vibration sources, which includes most construction activities, except for transient or intermittent construction activities, such as pile driving. For pile driving, the minimum criterion level is typically considered to be 0.2 in/sec ppv

Table 9. Representative Vibration Levels for Construction Equipment

		Peak Particle Velocity at 25 Feet (inches per second)
Pile Driver (Impact) Upper Range		1.518
	Typical	0.644
Vibratory Roller		0.210
Hoe Ram		0.089
Large Bulldozers		0.089
Loaded Trucks		0.076
Jackhammer		0.035
Small Bulldozers		0.003

Source: FTA 2018

Construction activities would be limited to between 7:00 a.m. and 7:00 p.m. on Monday through Saturday in compliance with the City's Municipal Code. To minimize impacts from groundborne noise and vibration, the public would be notified of potential noise and vibration impacts from construction activities and would be provided procedures for registering complaints (MM-NOI-1). In addition, noise reduction measures listed in MM-NOI-2, would help reduce impacts from groundborne noise and vibration. Therefore, construction impacts would be less than significant.

Once operational, the project would not result in increased roadway capacity, and it would not change bridge or roadway alignment. Groundborne noise and vibration levels associated with the project would be similar to existing conditions. The proposed project would not introduce new permanent sources of groundborne noise or vibration to the project area. Therefore, there would be no impacts from project operation.

c) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. The project area is approximately 0.3 miles northeast of the Compton/Woodley Airport. The project area is outside of the 70 Community Noise Equivalent Level noise contour area identified for the airport (LADRP 2004). Additionally, the project area is outside of the Airport Influence Area/Planning Boundary for the Compton/Woodley Airport. The project would comply with the Los Angeles County Airport Land Use Plan. Therefore, the project would not result in temporary or permanent exposure of people residing or working in the project area to excessive noise levels.

3.14 Population and Housing

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XIV. POPULATION AND HOUSING - Would the project:				
a) Induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				
b) Displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?				

a) Would the project induce substantial unplanned population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

No Impact. The proposed project would include the replacement of an existing bridge. No new homes or businesses would be introduced to the project site under the proposed project. Construction workers would be hired from the local area and the greater Los Angeles metropolitan area and would commute to the job site, rather than relocate from more distant areas. As the proposed project would not result in the construction of new homes or businesses, the number of residents, employees, or visitors to the project area or surrounding community is not expected to increase. The project would not increase the capacity of existing roadways or extend existing roadways to undeveloped areas, such that indirect growth would be induced in the project area. Therefore, the project would not temporarily or permanently induce substantial population growth in the project area either directly or indirectly. No impact would occur.

b) Would the project displace substantial numbers of existing people or housing, necessitating the construction of replacement housing elsewhere?

No Impact. The project area is primarily located within existing Los Angeles County ROW. The proposed project would require temporary easements and partial ROW acquisition from surrounding residential properties. However, the ROW acquisitions would not result in displacement of any residential properties. Therefore, the project would not result in displacement of existing housing or necessitate housing elsewhere. No impact would occur.

3.15 Public Services

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact		
XV. PUBLIC SERVICES	'		•			
physically altered governmental facilities construction of which could cause signif	a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:					
i) Fire protection?			\boxtimes			
ii) Police protection?			\boxtimes			
iii) Schools?				\boxtimes		
iv) Parks?				\boxtimes		
v) Other public facilities?				\square		

a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the public services:

Fire protection?

Less-Than-Significant Impact. The Compton Fire Department provides fire protection services to the City through operation of four fire stations. The nearest fire station to the project area is Fire Station 1, located at 201 S. Acacia Avenue, approximately 0.50 miles to the southeast of the project area. In the unlikely event of a fire in the project area, Fire Station 1 would respond.

The need for new or altered fire facilities is typically associated with a substantial increase in population such that existing facilities cannot meet the associated increase in demand for services. As described under Section 3.14, Population and Housing, the proposed project would not alter population in the project area. The proposed project would include the replacement of an existing bridge and associated improvements; the proposed project would not include any habitable structures or businesses that could result in direct or indirect population growth.

Construction of the proposed project could have the potential to temporarily reduce access for emergency vehicles near work areas. However, all construction activities and associated traffic control measures would be carried out in accordance with applicable City of Compton Fire Department emergency access standards and detours would be established per City and County requirements so that emergency access is maintained during construction of the proposed project. Operation of the proposed project would not require additional fire services. As such, the proposed project would not be anticipated to alter service ratios, response times, or other performance objectives to the extent that new or expanded fire protection facilities, equipment, or staff would be required. Impacts would be less than significant.

Police protection?

Less-Than-Significant Impact. The City of Compton's police protection services are provided by the Los Angeles County Sheriff's Department. The nearest police station to the project area is located at 200 W. Compton Boulevard No. 404, approximately 0.6 miles to the southeast of the project area (LASD 2019).

The need for new or altered police facilities is typically associated with a substantial increase in population such that existing facilities cannot meet the associated increase in demand for services. As described under Section 3.14, the proposed project would not alter population in the project area. The proposed project would include the replacement of an existing bridge and associated improvements; the proposed project would not include any habitable structures or businesses that could result in direct or indirect population growth.

Construction of the proposed project could have the potential to temporarily reduce access for emergency vehicles near the work areas. However, all construction activities would be carried out in accordance with all applicable Los Angeles County Sheriff's Department emergency access standards and detours would be established per City and County requirements so that emergency access is maintained during construction of the proposed project. Operation of the proposed project would be passive and would not require additional police protection. As such, the proposed project would not alter service ratios, response times, or other performance objectives to the extent that new or expanded police protection facilities, equipment, or staff would be required. Impacts would be less than significant.

Schools?

No Impact. The Compton Unified School District includes four high schools, seven middle schools, and 21 elementary schools (CUSD 2019). Additionally, the school district offers adult and alternative schooling at four campuses in the city. The nearest schools to the project area include the General Benjamin O. Davis, Jr. Middle School, 621 West Poplar Street, approximately 0.3 miles to the north; Dickison Elementary, 905 North Aranbe Street, 0.40 miles north of the project site; and Laurel Street Elementary School, 1321 West Laurel Street, 0.43 miles southwest of the project site. There are no proposed schools within 0.25 miles of the project site (CDE 2019). The need for new or altered school facilities is typically associated with an increase in population. As described under Section 3.14, the proposed project would not alter population in the project area and, as such, would not result in increased student enrollment at local schools. The proposed project would include the replacement of an existing bridge and associated improvements; the proposed project would not include any habitable structures or businesses that could result in direct or indirect population growth.

Although construction of the proposed project could have the potential to cause nuisance due to temporary road closures, access to these schools would not be directly restricted during construction as none of the

planned detours would occur within the same block as any existing schools. Additionally, these effects would be temporary, and access to each school would be maintained throughout construction. Operation of the project would have no impact to local schools when compared to existing conditions. For these reasons, the proposed project would not alter the ability of existing schools to accommodate students to the extent that new or expanded school facilities, materials, or staff would be required. No impact would occur.

Parks?

No Impact. The City of Compton Parks and Recreation Department operates and maintains a total of sixteen parks, which encompass approximately 118 acres of total parkland (City of Compton 2019a). Facilities include six community centers, seven neighborhood parks, two walking parks, two community competition-size swimming pools, three regulation size gymnasiums, a skate park, Jackie Robinson Baseball Stadium, Par 3 Golf Course, newly constructed Douglas F. Dollarhide Community Center, and Alondra Regional Park. The nearest park to the project area is Walter R. Tucker Park, which encompasses approximately 4 acres and is 0.2 miles to the south of the project area.

The need for new or altered parks is typically associated with an increase in population. As described under Section 3.14, the proposed project would not alter population in the project area. The proposed project would include the replacement of an existing bridge and associated improvements; the proposed project would not include any habitable structures or businesses that could result in direct or indirect population growth. Furthermore, there are no parks adjacent to the project site. As stated above, the nearest park is Walter R. Tucker Park, which encompasses approximately 4 acres and is 0.2 miles to the south of the project area. As such, project construction would not create temporary effects to nearby parks. For these reasons, the proposed project would not alter the ability of parks to serve the region to the extent that new or expanded parks would be required. No impact would occur.

Other public facilities?

No Impact. Other public facilities include libraries and government administrative services. The need for new or altered libraries or administrative services is typically associated with an increase in population. As described under Section 3.14, the proposed project would not result in an increase in population and, as such, would not result in the need for libraries or other government administrative services. The proposed project would include the replacement of an existing bridge and associated improvements; the proposed project would not include any habitable structures or businesses that could result in direct or indirect population growth. No new or expanded facilities would be required. No impact would occur.

3.16 Recreation

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
ΧV	XVI. RECREATION				
a)	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				\boxtimes
b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

No Impact. The City of Compton Parks and Recreation Department operates and maintains a total of sixteen parks, which encompass approximately 118 acres of total parkland (City of Compton 2019a). Facilities include six community centers, seven neighborhood parks, two walking parks, two community competition-size swimming pools, three regulation size gymnasiums, a skate park, Jackie Robinson Baseball Stadium, Par 3 Golf Course, newly constructed Douglas F. Dollarhide Community Center, and Alondra Regional Park. The proposed project would include the replacement of an existing bridge and would not be located within the immediate vicinity of an existing neighborhood or regional park. The nearest park to the project area is Walter R. Tucker Park, which encompasses approximately 4 acres and is 0.2 miles to the south of the project area. Proposed bridge improvements would not result in the physical deterioration of recreational facilities or cause an acceleration of deterioration. Additionally, as discussed in Section 3.14, the proposed project would not result in population increases resulting in an increased need for park facilities. No impact would occur.

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities, which might have an adverse physical effect on the environment?

No Impact. The proposed project would not include recreational facilities. As discussed in Section 3.14, the proposed project would not result in population increases resulting in a need for construction or expansion of recreational facilities. No impact would occur.

3.17 Transportation

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XVII. TRANSPORTATION - Would the proje	ct:			
a) Conflict with a program, plan, ordinance, policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities?	or			
b) Conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?		\boxtimes	
c) Substantially increase hazards due to a geometric design feature (e.g., sharp cur or dangerous intersections) or incompatil uses (e.g., farm equipment)?				
d) Result in inadequate emergency access?			\boxtimes	

This section analyzes the potential impacts of the proposed project based on CEQA Guidelines Section 15064.3(b), which focuses on newly adopted criteria (VMT), pursuant to SB 743, for determining the significance of transportation impacts. Pursuant to SB 743, the focus of transportation analysis has changed from level of service or vehicle delay to VMT. The Los Angeles County Public Works Transportation Impact Analysis Guidelines (LADPW 2020) provide the new transportation analysis criteria and thresholds, which include VMT analysis requirements per CEQA Guidelines Section 15064.3(b). Additionally, guidance provided in the California Governor's Office of Planning and Research Technical Advisory on Evaluating Transportation Impacts in CEQA (OPR 2018) is used to determine a project's transportation impact.

The proposed project would include demolition and construction activities involving replacement of an existing steel girder bridge with a precast concrete bridge in the City of Compton, where the Compton Boulevard crosses Compton Creek, just east of the Compton Boulevard/Wilmington Avenue intersection. The following describes the existing transportation setting.

Existing Roadway Network and Traffic Volumes

The City of Compton has a well-established grid network of roadways, which follows the classification system as shown in Table 10.

Table 10. City of Compton Roadway Classification

Functional Classification	Right-of-Way (Feet)	Number of Travel Lanes
Major Highway	100-106	6 lanes; divided roadway with a median; 3 lanes in each direction
Major Highway	100-106	4 lanes; divided roadway with a median; 2 lanes in each direction
Major Highway	100-106	4 lanes; left turn lane in median; two travel lanes in each direction
Secondary Highway	80-88	4 lanes; left turn lane in median; two travel lanes in each direction
Secondary Highway	80-88	4 lanes; undivided roadway with 2 lanes in each direction
Collector (Industry)	80-82	4 lanes; undivided roadway with 2 lanes in each direction
Collector	60	2 lanes; undivided roadway with 1 travel lane in each direction
Local (Residential Street)	40-60	2 lanes; undivided roadway with 1 travel lane in each direction

Source: City of Compton 2011.

Wilmington Avenue is classified as a Major Highway in the City of Compton General Plan Circulation Element. It is north-south roadway and provides two travel lanes in each direction with a combination of central left-turn median, raised median and double yellow lines along its stretch in the City of Compton. Wilmington Avenue provides access to State Route 91 via on and off ramps, approximately 1.5 miles south of the Wilmington Avenue Bridge. The posted speed limit along Wilmington Avenue is 40 miles per hour. Parking is generally allowed along this roadway. The existing average daily traffic count along Wilmington Avenue between West School Street and West Magnolia Street was observed to be 22,607 vehicles during a typical non-holiday week in May 2019. The daily traffic volume, pedestrian and bike counts at this location are included in Appendix G, Traffic Counts.

Compton Boulevard is classified as a Secondary Highway in the City of Compton General Plan Circulation Element. It is an east-west roadway and provides two travel lanes in each direction with a combination of central left-turn median, and double yellow lines along its stretch in the City of Compton. Approximately 1.25 miles west of the Compton Boulevard Bridge, the Compton Boulevard transitions into Redondo Beach Boulevard and provides access to Interstate 110. The posted speed limit along Compton Boulevard is 35 miles per hour. Parking is generally allowed along this roadway. The existing average daily traffic count along Compton Boulevard between South Matthisen Avenue and North Paulsen Avenue was observed to be 23,877 vehicles during a typical non-holiday week in May 2019. The daily traffic volume, pedestrian and bike counts at this location are included in Appendix G.

Rosecrans Avenue is classified as a Major Highway in the City of Compton General Plan Circulation Element. It is an east-west roadway and provides two travel lanes in each direction with generally a divided median along most of its stretch in the City of Compton. It provides connections to Interstate 110 to the west and Interstate 710 to the east via on and off ramps. The posted speed limit along Rosecrans Avenue is 35 miles per hour and parking is generally allowed along this roadway.

Willowbrook Avenue is a north-south Collector roadway between Greenleaf Boulevard and the northern border of the City per Compton General Plan Circulation Element. Willowbrook Avenue is bisected by the tracks of the Metro Light Rail Transit Blue Line in the north-south direction, and provides two bi-directional roadways on each side of the tracks. Each two-way roadway provides two travel lanes with a posted speed limit of 25 or 35 miles per hour. Parking is allowed on the east side of this roadway, east of the tracks.

Local Residential Streets in Compton constitute the majority of the City's street network. These streets provide access to individual parcels and circulation within a neighborhood block. Per City's General Plan Circulation Element, although the standard for local streets is 60 feet (with a curb-to-curb pavement width of 36 feet, two lanes, and on-street parking on both sides), most local streets are generally 40 to 50 feet wide, with a pavement width between 24 to 30 feet.

In the vicinity of the project, there are local residential streets such as West Palmer Street, West School Street, West Magnolia Street, North Kemp Avenue, North Paulsen Avenue, and North Matthisen Avenue, generally in a grid layout.

Truck Routes

Wilmington Boulevard within the City boundary and Compton Boulevard west of Wilmington Avenue are designated truck routes.

Transit, Bike, and Pedestrian Facilities

Metro Blue Line Light Rail provides mass rail transit service near the project area. Compton Civic Center Station is located along Willowbrook Avenue. Martin Luther King Jr. Transit Center, in the vicinity, is a multimodal terminal that serves light rail, urban, and intercity buses, local Dial-A-Ride services, taxicabs and Greyhound buses.

The Compton Renaissance Transit System provides daily local transit services throughout the City. Metro Bus Lines operated by Metropolitan Transportation Authority, Long Beach transit and Gardena Municipal Bus Lines also serve the Compton area. Routes 3, 51, and 351 operate along Compton Boulevard and the closest bus stop is located approximately 700 feet east of the Compton Boulevard Bridge. Routes 3 and 205 operate along Wilmington Boulevard and the closest bus stop is located approximately 1,100 feet north of the Wilmington Avenue Bridge.

The following bicycle facilities are categorized per state-wide standards developed by Caltrans:

- Class I (Bicycle Path) provides a completely separated ROW for the exclusive use of bicycles and pedestrians with cross flow minimized
- Class II Bikeway (Bike Lane) provides a striped lane for one-way bike travel on a street or highway
- Class III Bikeway (Bike Route) provides for shared use with pedestrian or motor vehicle traffic

All bike facilities in the City of Compton are Class I or Class II bicycle routes. The City of Compton has a bikeway on the east side of Compton Creek and an equestrian trail on the west side of the Compton Creek.

Construction Detour Routes

Project construction is anticipated to occur January 2023 to May 2024 and would last for approximately 280 working days. Construction related traffic would be temporary, but it would require complete road closures over the Compton Boulevard Bridge. Per County staff, the following planned detour routes would be established via Rosecrans Avenue, Compton Boulevard, and Willowbrook Avenue:

- Eastbound traffic would be directed to head north on Wilmington Avenue, east on Rosecrans Avenue, south on Willowbrook Avenue, and east back onto Compton Boulevard.
- Westbound traffic would be directed to head north on Willowbrook Avenue, west on Rosecrans Avenue, south on Wilmington Avenue, and west back onto Compton Boulevard.

The approximately 200-foot approach roadways on either side of the bridge structure would be used as construction staging areas. In addition to the bridge replacement, construction would include tree removal; relocation of the existing catch basins, driveways, and street lighting; and reconstruction of the sidewalk, roadway, and bike paths along the channel.

The proposed project would temporarily decrease adjacent roadway capacities, generate additional traffic adjacent to roadways, and change traffic patterns that could cause an impact to the circulation system consisting of transit, roadway, bicycle, and pedestrian facilities. During construction and due to full closure of the bridge, some of the diverted traffic could potentially cut-through adjacent neighborhoods. This would temporarily increase traffic along local residential streets and thereby a need for temporary traffic-calming measures on those streets. Traffic-calming measures, such as signage and speed radar warning signs, would be needed to manage cut-through traffic along local residential streets adjacent to Compton Boulevard Bridge.

Public Works construction projects, such as the proposed project, implement traffic control plans for work within road ROWs (PDF-TRAF-1). With implementation of PDF-TRAF-1, the proposed project would not conflict with adopted policies, plans, or programs regarding transit, bicycle, or pedestrian facilities, and impacts would be less than significant.

a) Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadway, bicycle, and pedestrian facilities?

Less-Than-Significant Impact. Construction activities would include demolition, grading, pile drilling, installation of metal beam guardrail system, construction of bridge abutments, bridge pier reconstruction, reconstruction of sidewalks, drainage improvements (catch basins at driveway entrances) bicycle path reconstruction, roadway reconstruction to accommodate and full road closures within project limits.

Project Trip Generation

The Institute of Transportation Engineers' Trip Generation manual does not contain trip rates for construction-related activities associated with the proposed project. Trip generation for construction projects is based on average or peak number of workers and trucks that would be required for the proposed construction activities. Construction traffic includes the number of workers and the amount of delivery (vendor) and haul truck traffic that would be generated to and from the site daily and during the AM and PM peak hours.

Per construction phasing and schedule, approximately 19 workers, 21 delivery (vendor) trucks, and 10 haul trucks would be required per day during peak construction-related activities. The construction activities will occur between Monday through Friday from 7:00 a.m. to 3:30 p.m. Based on the bridge inspector's comments received from Public Works to date, no nighttime construction is anticipated. All workers and trucks were assumed to make two daily trips (one inbound and one outbound) to the project site. Based on the work schedule, workers would not be traveling during the AM or the PM peak periods, therefore approximately 20% workers were assumed to arrive during the AM peak hour and leave the site during the PM peak hour. All truck trips were averaged over the 8-hour workday to estimate peak hour trips with 50% inbound and 50% outbound. Passenger car equivalent (PCE) factors were used to account for the project's truck traffic and provide a more realistic measurement in terms of the impact of project-related truck traffic. All truck trips were converted to PCE trips using a factor of 2.0 or 3.0. Project trip generation estimates are shown in Table 11.

As shown in the Table 11, the project would generate 100 daily trips, 13 AM peak hour trips (8 inbound and 5 outbound), and 13 trips during the PM peak hour (5 inbound and 8 outbound). With the application of PCE factors to truck trips, the project would generate 182 total PCE daily trips, and 25 PCE trips during the AM peak hour (13 inbound and 12 outbound) and 25 PCE trips during the PM peak hour (12 inbound and 13 outbound).

Table 11. Project Trip Generation

	Daily	aily Daily AM Peak Hour		PM Peak Hour				
Vehicle Type	Quantity	Trips	In	Out	Total	In	Out	Total
Trip Generation								
Workers ¹	19 workers	38	4	0	4	0	4	4
Vendor Trucks ²	21 Trucks	42	3	3	6	3	3	6
Haul Trucks ³	10 Trucks	20	1	2	3	2	1	3
	Total Trips	100	8	5	13	5	8	13
Trip Generation w/PCE								
Workers ¹ (1.0 PCE)	19 workers	38	4	0	4	0	4	4
Vendor Trucks ² (2.0 PCE)	21 Trucks	84	6	6	12	6	6	12
Haul Trucks ³ (3.0 PCE)	10 Trucks	60	3	6	9	6	3	9
Total Tr	ips (with PCE)	182	13	12	25	12	13	25

Notes: PCE = passenger car equivalent.

The proposed project would not increase roadway capacity, generate a permanent increase in traffic or induce traffic, or change traffic patterns that could cause an impact to the circulation system, including transit, roadway, bicycle, and pedestrian facilities. Therefore, the proposed project would not conflict with adopted policies, plans, or programs addressing the circulation system, and impacts would be less than significant.

b) Would the project conflict or be inconsistent with CEQA Guidelines section 15064.3, subdivision (b)?

Less-Than-Significant Impact. CEQA Guidelines Section 15064.3(b), focuses on specific criteria (VMT), for determining the significance of transportation impacts. It is further divided into four subdivisions: (1) land use projects, (2) transportation projects, (3) qualitative analysis, and (4) methodology. The proposed project is a bridge replacement project that would generate temporary construction-related traffic and nominal operations and maintenance traffic. This project would be categorized under subdivision (b)(2), transportation projects. Subdivision (b)(2) recognizes that transportation projects that reduce, or have no impact on, VMT should be presumed to cause a less-than-significant transportation impact. The Los Angeles County Public Works Transportation Impact Analysis Guidelines (LADPW 2020) provide guidance for VMT screening and analysis of transportation projects. Transportation projects that increase vehicular capacity can lead to additional travel on the roadway network, which can include induced vehicle travel due to factors such as increased speeds and induced growth. Consistent with guidance from the California Governor's Office of Planning and Research, the Los Angeles County Public Works Transportation Impact Analysis Guidelines state that transportation projects including rehabilitation, maintenance, replacement,

Workers as assumed to use passenger cars and no carpooling is assumed. Approximately 20% of the workers are anticipated to arrive and depart during the AM and PM peak hour.

Vendor trucks are assumed to be distributed evenly across the 8-hour work shift to estimate AM and PM peak hour trips.

³ Haul truck trips are distributed evenly over the duration of construction phase to estimate daily haul truck trips and across the 8-hour work shift to estimate AM and PM peak hour trips.

safety, and repair projects designed to improve the condition of existing transportation assets (e.g., highways, roadways, bridges, culverts) that are not likely to lead to a substantial or measurable increase in vehicle travel would not be required to prepare an induced travel analysis.

The proposed project involves replacement of an existing bridge which would address existing bridge deficiencies, enhance vehicular safety on the bridge and improve transportation efficiency by enabling larger trucks to use the bridge. However, the proposed project would not cause a permanent increase of traffic, or induce traffic, as it is not increasing the capacity of the roadway segment of Wilmington Avenue or providing an alternative route to the existing traffic.

Potential increases in vehicle trip generation as a result of project construction would be as shown in Table 11. Based on an average one-way trip length of 20 miles per worker, 8 miles for delivery and vendor trucks, and 30 miles for haul trucks, the maximum daily VMT generated by construction of the project was estimated to be 1,384 miles and a total of approximately 199,372 miles (refer to Appendix A). However, once construction is completed, construction-related traffic would cease and VMT levels would return to pre-project conditions. Therefore, vehicle miles generated from construction traffic would be temporary and short term. Since the proposed project would not cause a permanent increase of traffic or induce traffic, the proposed project would not conflict or be inconsistent with CEQA Guidelines Section 15064.3(b). Impacts would be less than significant.

c) Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Less-Than-Significant Impact. The proposed replacement of the bridge would remediate an existing hazard and result in increased safety for all road users. At completion of the proposed project, no hazardous geometric design features; no sharp curves or dangerous roadway conditions would be introduced. Construction would occur within the existing ROW; and the travel lanes along Compton Boulevard would be closed in either direction during construction activities. As such, all road users would not be able to travel along Compton Boulevard Bridge and would need to follow the detour route. This could cause congestion and increase hazards due to a roadway design feature during the construction period. Further, some of the diverted traffic could potentially cut-through the adjacent neighborhoods and temporarily increase traffic along local residential streets. However, with the implementation of a PDF-TRAF-1 Traffic Control Plan, the proposed project impacts during construction would be less than significant.

d) Would the project result in inadequate emergency access?

Less-Than-Significant Impact. As discussed in Section 2.2, Project Location, complete road closures over the existing Compton Boulevard Bridge would occur during construction activities. Therefore, construction of the project would potentially obstruct access to emergency vehicles. Construction occurring within the ROW would be required to implement appropriate construction traffic management measures to facilitate detour of all road users during the closure of the bridge. With implementation of PDF-TRAF-1 Traffic Control Plan, the project would not result in inadequate emergency access and impact would be less than significant.

3.18 Tribal Cultural Resources

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XVI	II. TRIBAL CULTURAL RESOURCES				
Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:					
a)	Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or			\boxtimes	
b)	A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?				

Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

a) Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?

Less-Than-Significant Impact. As described in Section 3.5, Cultural Resources, of this IS/MND, a CHRIS records search and Sacred Lands File search was conducted for the project site. No tribal cultural resources (TCRs) were identified as a result of the records searches. Therefore, the proposed project would not adversely affect TCRs that are listed or eligible for listing in a state or local register. No mitigation is required.

b) A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying the criteria set forth in subdivision (c) of Public Resource Code Section 5024.1, the lead agency shall consider the significance of the resource to a California Native American tribe?

Less-Than-Significant Impact With Mitigation Incorporated. There are no resources in the project site that have been determined by the lead agency to be significant pursuant to te criteria set forth in PRC

Section 5024.1. Further, no specific TCRs were identified in the project site by the Native American Heritage Commission, by California Native American tribes, or by Public Works as part of the AB 52 notification and consultation process.

Pursuant to AB 52, Public Works initiated consultation on April 4, 2019, and mailed notification letters to all contacts who have previously requested project notification about Public Works projects. To date, Public Works received one request to consult under AB 52 from the Gabrieleño Band of Mission Indians–Kizh Nation (Tribe).

An AB 52 consultation meeting between Public Works and Kizh-Nation Tribal representatives, Chairman Andrew Salas and Tribal biologist Matthew Teutimez, was conducted on June 12, 2019. In summary, the Tribe informed Public Works that the project site is considered potentially sensitive due to its location adjacent to and near traditional trade routes and corridors as well as Compton Creek's prevalence for movement. Further, the Tribe stated that individuals who perished while traveling on the trade routes were buried along the route or near-by creek. The Tribe referred to a project conducted in 2004 that resulted in the unanticipated discovery of human remains near the concrete lined Compton Creek. This discovery was made outside of the current project site. Additionally, the Tribe suggested that the Tajauta village was possibly in the project site. Lastly, the Tribe was concerned that the fill used around new abutments may contain cultural resources.

In a follow-up email dated October 28, 2019, Public Works provided the Tribe with a newly acquired as-built engineering drawing for the Compton Boulevard Bridge to help inform the Tribe on the depth of previous disturbance within the project site. Chairman Salas replied via email on December 5, 2019, indicating that the as-builts did not provide information on the type of fill used near the abutments and that the Tribe was still concerned about the potential for the fill to contain cultural resources. The Tribe also provided mitigation measures in which tribal monitoring was requested for ground disturbing activities during project construction. Public Works responded via email on December 10, 2019, acknowledging receipt of the mitigation measures and requested clarification on the areas within the project site that the Tribe would like to monitor. Public Works sent an additional email to Chairman Salas on December 10, 2019, that included an excerpt of the geotechnical report summarized from the archaeological survey report prepared for the project (Confidential Appendix C). The geotechnical findings indicated that locations immediately abutting the bridge and creek are likely disturbed up to 75 feet below ground surface. In an email dated January 31, 2020, Chairman Salas reduced the scope of tribal monitoring from all ground-disturbing activities to monitoring within the abutments and in the creek at the center of the piers. No additional responses have been received by Public Works since.

Although the consultation did not result in the identification of any TCRs or other known cultural resources that could be directly impacted by the proposed project, Chairman Salas requested that monitoring be included for specific construction activities, provided mitigation measures to Public Works, and requested the mitigation measures be incorporated into the environmental document.

No TCRs have been identified as present within the project site as a result of the Native American Heritage Commission Sacred Lands File and a review of the California Register of Historical Resources and local register or through tribal consultation under AB 52. However, the AB 52 consultation between Public Works and Chairman Salas suggests that there is some potential for unknown subsurface TCRs to be impacted by the Project, which could result in a significant impact. Therefore, mitigation measures have been included to provide for the development of a Construction Monitoring and Treatment Plan (CMTP) (MM-TCR-1) and tribal monitoring of ground disturbing activities (MM-TCR-2). MM-TCR-1 incorporates requirements for addressing cultural resources that are included in MM-CUL-2 from Section 3.5, Cultural Resources, of this MND. As

stipulated within the analysis prepared for Section 3.5(c), appropriate handling of human remains will be completed in compliance with PRC 5097.98 and Health and Safety Code 7050.5. This includes establishing a process of respectful treatment through discussions with the identified MLD. Therefore, implementation of MM-TCR-1 and MM-TCR-2 would ensure that potential construction impacts related to an unknown site, feature, place, cultural landscape, sacred place, or object with cultural value to a California Native American tribe, would be reduced to a level less than significant.

MM-TCR-1

While no tribal cultural resources (TCRs) impacts have been identified, the following approach to address impacts based on the inadvertent discovery of TCRs has been prepared. Prior to commencement of earthmoving activities, Public Works shall prepare a Construction Monitoring and Treatment Plan (CMTP). This CMTP defines the process to be followed, upon discovery of archaeological resources or TCRs, to ensure the proper treatment, evaluation and management.

- 1. For purposes of CMTP implementation, the project area subject to monitoring is defined as the areas of the proposed new abutments and center piers within the creek bed.
- 2. The CMTP shall include a requirement for all construction personnel to complete a Workers Environmental Awareness Program (WEAP) training prior to commencement of construction activities. The WEAP training shall be conducted by a qualified archaeologist meeting the Secretary of the Interior's Professional Qualification Standards and provide the following: (1) explanation of types and characteristics of cultural materials that may be encountered during construction; (2) explanation of the importance of and legal basis for the protection of Tribal Cultural Resources; (3) proper procedures to follow in the event that cultural resources are uncovered during ground-disturbing activities, including procedures for work curtailment or redirection; and (4) protocols for contacting site supervisor and archaeological staff upon discovery of an archaeological or TCR.
- 3. The following protocols shall be included in the CMTP in addition to the measures provided in MM-CUL-2:
 - a. Should a potential TCR be encountered, construction activities near the discovery shall be temporarily halted within 100 feet of the discovery and Public Works shall be notified. If Public Works determines that the potential resource is a TCR (as defined by PRC Section 21074), Tribal representatives from the Gabrieleño Band of Mission Indians-Kizh Nation shall be provided a reasonable period of time, typically 5 days from the date that a new discovery is made, to conduct a site visit and make recommendations regarding future ground disturbance activities as well as the treatment and disposition of any discovered TCRs. Depending on the nature of the resource and Tribal recommendations, review by a qualified archaeologist may be required. Implementation of proposed recommendations shall be made based on the determination of Public Works that the approach is reasonable and feasible. All activities shall be conducted in accordance with regulatory requirements. If the potential resource is archaeological in nature, appropriate management requirements shall be implemented as outlined in Mitigation Measure for archaeological resources (see Section 3.5(b) for MM-CUL-2).

- b. During construction, all discovered TCRs shall be temporarily curated or at the offices of the Project archaeologist. Following the completion of the Project, all TCRs shall be catalogued before being relinquished to the Tribe during and/or at the completion of the Project.
- c. Regardless of discovery, at the completion of all ground-disturbing activities, An archaeologist meeting the Secretary of the Interior's Professional Qualification Standards shall prepare a report, according to California Office of Historic Preservation guidelines, documenting all monitoring efforts, cultural resource discoveries with associated analysis and interpretations, including all necessary site records as well as daily monitoring logs completed by the Tribal monitor. The report shall be completed within 60 days of conclusion of all ground disturbing activities and a copy shall be submitted to Public Works, the Gabrieleño Band of Mission Indians-Kizh Nation Tribal Government, and the South Central Coastal Information Center located at California State University, Fullerton.

MM-TCR-2

A tribal monitor who is culturally affiliated with the Project area and/or otherwise approved by the Gabrieleño Band of Mission Indians-Kizh Nation Tribal Government shall be retained by Public Works to conduct periodic monitoring of ground-disturbing activities within the areas of the proposed new abutments and center piers within the creek bed. The tribal monitor shall have the authority to temporarily halt work to inspect areas as needed for potential cultural material or deposits. The tribal monitor shall complete daily monitoring logs providing descriptions of the day's activities, including construction activities, locations, soil, and any cultural materials identified. The on-site tribal monitoring shall end when ground-disturbing activities within the areas of the proposed new abutments and center piers within the creek bed are completed, or when the Tribal Representatives and monitor have indicated that the site has a low potential for impacting TCRs. Should any TCRs be encountered, the tribal monitor(s) will have the authority to request construction to cease within 100 feet of the discovery to assess and document potential finds as outlined in mitigation measure MM-TCR-1(3)(a).

3.19 Utilities and Service Systems

	Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XIX. UTILITIES AND SERVICE SYSTEMS - Would th	e project:			
a) Require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?				

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
b)	Have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry, and multiple dry years?				
c)	Result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				
d)	Generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?				
e)	Comply with federal, state, and local management and reduction statutes and regulations related to solid waste?				

a) Would the project require or result in the relocation or construction of new or expanded water, wastewater treatment, or storm water drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects?

Less-Than-Significant Impact. While there are water/gas/telecommunication lines on the existing bridge that would need to be relocated to a utility corridor crossing adjacent to the new two-span, precast concrete bridge, the proposed project would not require or result in the relocation or construction of new or expanded water, wastewater treatment, or stormwater drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects for the following reasons:

Water

The City of Compton Water Utility Division is responsible for implementing the City's utility services and billing programs (City of Compton 2019b). The Water Utility Division constructs, inspects, maintains and repairs water mains, gate valves, fire hydrants, and water services to provide adequate potable water to the citizens and businesses of Compton. The City's water system serves water to approximately 80,000 people through 15,000 residential, commercial and industrial service connections, and 156 miles of pipe in length with includes pipe ranging in size from 2 inches to 24 inches (City of Compton 2019b). According to the City's Urban Water Management Plan, the City sources its water from groundwater purchased through the Metropolitan Water District of Southern California and from groundwater directly pumped from the Central Basin (City of Compton 2010).

During construction of the proposed project, small amounts of water would be required for activities such as cleaning surfaces, concrete (or other materials) mixing, and suppressing dust. However, water used during construction would be minimal and would represent a nominal proportion of the City's total annual water supply, which is projected to be approximately 9,484 acre-feet in 2020 (City of Compton 2010). The proposed project is a bridge reconstruction project, and would not include the construction of any water-intensive land uses (e.g., housing, industrial, retail). As such, operation of the proposed project would not result in an increased demand for water at the project site, and, therefore, would not require or result in the relocation or construction of new or expanded water facilities. Impacts would be less than significant.

Wastewater

The City's wastewater is largely treated by the Joint Water Pollution Control Plant (JWPCP). The JWPCP is located at 24501 South Figueroa Street in the City of Carson (LACSD 2019). The plant occupies approximately 420 acres to the east of the Harbor Freeway (Interstate 110). The JWPCP is one of the largest wastewater treatment plants in the world and is the largest of the Sanitation Districts' wastewater treatment plants. The facility provides both primary and secondary treatment for approximately 260 million gallons of wastewater per day (mgd) and has a total permitted capacity of 400 mgd (LACSD 2019).

The proposed project would include the reconstruction of an existing bridge and would not entail the construction of any habitable structures that would result in long-term sanitary sewer discharges. Non-stormwater discharges would be added to the local municipal sewer system during construction; however, such discharges would be nominal, temporary and periodic in nature, and would comingle with wastewater in the municipal sewer collection system prior to being treated at the JWPCP. Upon operation, the proposed project would not require wastewater treatment services. As such, the project would not require or result in the relocation or construction of new or expanded wastewater treatment facilities. Impacts would be less than significant.

Stormwater Drainage

Under existing conditions, stormwater runoff drains, via storm drain inlets on both sides on the existing Compton Boulevard over Compton Creek Bridge, into the Compton Creek where it enters the Los Angeles River System (City of Compton 2019c).

During construction of the proposed project, activities, such as grading, excavation, and vegetation removal, could result in temporary changes to on-site drainage patterns, as well as increased erosion and sedimentation. Specifically, construction activities could contribute to increased stormwater runoff and stormwater contamination. However, these changes to stormwater drainage patterns during construction would be temporary in nature, and with incorporation of a project-specific SWPPP per the requirements of the Construction General Permit, impacts would be less than significant. Additionally, the proposed project would reconstruct an existing bridge, which, upon operation, would not substantially alter existing drainage patterns, and, as such, would not result in substantial changes to the rate and volume of stormwater runoff that leaves the project site when compared to existing conditions. As such, the proposed project would not require or result in the relocation or construction of new or expanded stormwater infrastructure. Impacts would be less than significant.

Electric Power/Natural Gas

Temporary electric power for as-necessary lighting and electronic equipment would be provided by SCE. The amount of electricity used during construction would be minimal because typical demand would stem from electrically powered hand tools. The electricity used for construction activities would be temporary and minimal; therefore, proposed project construction would not result in significant consumption of electricity such that new electricity generation facilities would be warranted. Natural gas is not anticipated to be required during construction and operation of the proposed project. The proposed project would involve the reconstruction of an existing bridge and would not include any habitable structures that would require new or expanded electric power and/or natural gas facilities. Impacts would be less than significant.

Telecommunications

The proposed project includes the reconstruction of the existing Compton Boulevard Bridge over Compton Creek and would not involve the construction of any habitable structures that would require new or expanded telecommunications facilities. Furthermore, as explained in Section 3.14, the proposed project would not result in population growth. As such, the project would not require new or expanded telecommunications facilities. Therefore, no impacts related to the need for new or expanded telecommunication facilities would occur.

For the reasons described above, the proposed project would not require or result in the relocation or construction of new or expanded water, wastewater treatment, or stormwater drainage, electric power, natural gas, or telecommunications facilities, the construction or relocation of which could cause significant environmental effects. Impacts would be less than significant.

b) Would the project have sufficient water supplies available to serve the project and reasonably foreseeable future development during normal, dry, and multiple dry years?

Less-Than-Significant Impact. As stated in Section 3.19(a), the City sources its water from water purchased through the Metropolitan Water District of Southern California and from groundwater directly pumped from the Central Basin (City of Compton 2010).

During construction of the proposed project, small amounts of water would be required for activities such as cleaning surfaces, concrete (or other materials') mixing, and suppressing dust. However, water used during construction would be minimal and would represent a nominal proportion of the City's total annual water supply, which is projected to be approximately 9,484 acre-feet in 2020 (City of Compton 2010). The proposed project is a bridge reconstruction project, and would not include the construction of any water-intensive land uses (e.g., housing, industrial, retail). As such, long-term operation of the proposed project would not result in an increased demand for water at the project site and would not contribute to the City's water demand during normal, single-dry, and multiple-dry years; the City would have sufficient water supplies available to serve the minor water needs of the project during construction. As such, impacts would be less than significant.

c) Would the project result in a determination by the wastewater treatment provider, which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Less-Than-Significant Impact. As stated in Section 3.19(a), the City's wastewater is largely treated by the JWPCP. The JWPCP is located at 24501 South Figueroa Street in the City of Carson (LACSD 2019). The plant occupies approximately 420 acres to the east of the 110 Freeway. The JWPCP is one of the largest wastewater treatment plants in the world and is the largest of the Sanitation Districts' wastewater treatment plants. The facility provides both primary and secondary treatment for approximately 260 mgd of wastewater and has a total permitted capacity of 400 mgd (LACSD 2019).

The proposed project would include the reconstruction of an existing bridge and would not entail the construction of any habitable structures that would result in long-term sanitary sewer discharges. Non-stormwater discharges would be added to the local municipal sewer system during construction; however, such discharges would be nominal, temporary and periodic in nature, and would comingle with wastewater in the municipal sewer collection system prior to being treated at the JWPCP. Upon operation, the proposed project would not require wastewater treatment services. Given the above, the Los Angeles County Sanitation District's JWPCP facility would have adequate capacity to serve the project. Impacts would be less than significant.

d) Would the project generate solid waste in excess of State or local standards, or in excess of the capacity of local infrastructure, or otherwise impair the attainment of solid waste reduction goals?

Less-Than-Significant Impact. Waste that would be generated during construction activities would include pavement removed during demolition of the existing bridge, vegetation cleared under the proposed project, and other construction debris. Project construction would be short-term, and the disposal of solid waste would be minimized through the recycling and reuse of construction materials, as legislated by the Integrated Waste Management Act (SB 1374) and the County Construction and Demolition Debris Recycling and Reuse Program, both of which require that 50% to 75% of construction demolition debris be diverted from landfills (LADPW 2019b). Savage Canyon Landfill, located approximately 14 roadway miles northeast of the project site, would be used to dispose materials. According to the California Department of Resources Recycling and Recovery, Savage Canyon Landfill has a remaining capacity of 9,510,833 cubic yards and an anticipated closing date of 2055 (CalRecycle 2019). Project operation would not result in the production of waste and would not necessitate long-term solid waste disposal accommodations. Therefore, impacts would be less than significant.

e) Would the project comply with federal, state, and local management and reduction statutes and regulations related to solid waste?

Less-Than-Significant Impact. As discussed above, solid waste that would be generated during construction activities would include pavement removed during demolition of the existing bridge, vegetation cleared under the proposed project, and other construction debris. Project construction would require minimal, short-term solid waste disposal as a result of construction activities, which would be conducted in compliance with federal, state, and local statutes and regulations including the Integrated Waste Management Act (SB 1374) and the County Construction and Demolition Debris Recycling and Reuse Program, both of which require that 50% to 75% of construction demolition debris be diverted from landfills (LADPW 2019b). Project operation would not generate notable waste. Therefore, impacts would be less than significant.

3.20 Wildfire

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XX.	XX. WILDFIRE – If located in or near state responsibility areas or lands classified as very high fire hazard severity zones, would the project:				
a)	Substantially impair an adopted emergency response plan or emergency evacuation plan?			\boxtimes	
b)	Due to slope, prevailing winds, and other factors, exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?				\boxtimes
c)	Require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines, or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?				
d)	Expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?				

a) Would the project substantially impair an adopted emergency response plan or emergency evacuation plan?

Less-Than-Significant Impact. The proposed project would be located in an urbanized environment with little potential for wildland fires. The City of Compton is not mapped by the California Department of Forestry and Fire Protection as being within a Very High Fire Hazard Severity Zone (VHFHSZ) (CAL FIRE 2007). Compton Boulevard and Wilmington Avenue are both identified in the City's Evacuation Route Map that is provided in the City's General Plan (City of Compton 2011). The project would include demolition and replacement of an existing bridge. It is expected that the bridge would be closed for the duration of construction, and a detour would be provided to allow through traffic around the project site. The proposed detour route would be through Rosecrans Avenue located approximately 0.5 miles north of Compton Boulevard. Specifically, eastbound traffic on Compton Boulevard would take Wilmington Avenue north, Rosecrans Avenue east, and Willowbrook Avenue south to connect back to Compton Boulevard. Similarly, westbound traffic on Compton Boulevard would take Willowbrook Avenue north, Rosecrans Avenue west, and Wilmington Avenue south to connect back to Compton Boulevard.

A Traffic Control Plan would be developed to identify the duration of road closures, appropriate detour routes, and required signage. As part of the Traffic Control Plan, emergency service providers that serve the area would be notified of the closure and detour route so that service would not be disrupted. Specifically,

as explained in Section 3.17, incorporation of a Traffic Control Plan, as described in PDF-TRAF-1, would be required for all construction work within the road ROW which modifies vehicular, bicycle, pedestrian and/or transit traffic patterns and are necessary to ensure the safe and efficient movement of traffic through construction work zones. Implementation of PDF-TRAF-1 would reduce impacts to local emergency service providers to less than significant levels. As such, with implementation of PDF-TRAF-1, impacts to emergency response plans or emergency evacuation plans would be less than significant with. Following construction, the roadway would be restored to existing conditions, and emergency access would not be affected during project operation. Therefore, impacts would be less than significant upon operation.

b) Due to slope, prevailing winds, and other factors, would the project exacerbate wildfire risks, and thereby expose project occupants to, pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire?

No Impact. Project activities would be limited to replacement of an existing bridge, bridge pier, the reconstruction of an existing bicycle pathway, sidewalks, and driveways, and the construction of a new access road (see Section 2 for details). The project site is located in a developed, urban area on relatively flat terrain, and is not within a state-designated VHFHSZ (CAL FIRE 2007). Project construction and operation would not include any activities that would significantly exacerbate the risk of fire at the project site, thereby exposing people to pollutant concentrations from wildfire or the uncontrolled spread of wildfire. No impact would occur.

c) Would the project require the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines, or other utilities) that may exacerbate fire risk or that may result in temporary or ongoing impacts to the environment?

No Impact. The proposed project would include the replacement of an existing bridge, bridge pier, the reconstruction of an existing bicycle pathway, sidewalks, and driveways, and the construction of a new access road (see Section 2 for details). The project site is located in a developed, urban area on relatively flat terrain, and is not within a state-designated VHFHSZ (CAL FIRE 2007). Project construction and operation would not include the installation or maintenance of associated infrastructure that is likely to exacerbate fire risk or that may result in temporary or ongoing impacts to the environment. No impact would occur.

d) Would the project expose people or structures to significant risks, including downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes?

Less-Than-Significant Impact. The proposed project would include the replacement of an existing bridge and associated improvements. The proposed project would not involve construction or operation of occupiable structures, nor would it increase population such that the number of occupiable structures in the project area would increase. While additional workers would be temporarily present in the project area during construction, they would not be subject to undue risks associated with flooding or landslides, relative to other areas in the City or region. As explained in Section 3.7(a)(iv), the project is not located within a mapped landslide hazard zone and would not likely increase or exacerbate the potential for landslides to occur (DOC 2015). The nearest landslide area is located in the Whittier Hills approximately 14 miles northeast of the project site. As explained in Section 3.10, Hydrology and Water Quality, the proposed project would not result in permanent drainage changes or significant runoff with the potential to cause or exacerbate flooding or landslides. As explained in Section 3.20(b), the proposed project would not increase the risk of fire in the area. For these reasons, proposed project impacts involving exposure of people or

structures to significant risks from flooding or landslides resulting from runoff, post-fire slope instability, and/or drainage changes would be less than significant.

3.21 Mandatory Findings of Significance

		Potentially Significant Impact	Less Than Significant Impact With Mitigation Incorporated	Less Than Significant Impact	No Impact
XXI. MANDATORY FINDINGS OF SIGNIFICANCE					
a)	Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?				
b)	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?				
c)	Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				

a) Does the project have the potential to substantially degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below selfsustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?

Less-Than-Significant Impact With Mitigation Incorporated. As discussed in Section 3.4, Biological Resources, the project site is entirely developed and characterized by disturbed areas. No natural vegetation communities are present within the impact footprint. In regard to migratory bird species, the proposed project would implement MM-BIO-1 to avoid potential direct and indirect impacts to bat maternity roosts from construction-related activities would be less than significant. In addition, the proposed project would implement MM-BIO-2 to ensure the proposed project would avoid potential direct and indirect impacts to nesting birds protected by the MBTA and CFGC.

Regarding impacts related to important examples of the major periods of California history or prehistory, as further discussed in Section 3.5, no impacts to historical resources would occur as a result of the proposed project. There is the potential for the proposed project to encounter previously undisturbed soils, which could uncover previously undiscovered intact archaeological deposits; thus, MM-CUL-2 is provided to address inadvertent discoveries during construction. Impacts related to archaeological resources would be less than significant with mitigation incorporated. Additionally, in the unexpected event that human remains are unearthed during construction activities, impacts would be potentially significant. However, through compliance with Section 7050.5 of the California Health and Safety Code and PRC 5097.98, impacts would be less than significant.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

Less-Than-Significant Impact With Mitigation Incorporated. As analyzed in this IS/MND, project construction and operation could potentially result in individual-level environmental impacts that could be potentially significant without the incorporation of mitigation. Therefore, when coupled with impacts related to the implementation of other related projects throughout the broader geographic area, the project could potentially result in cumulative-level impacts if these significant impacts are left unmitigated. One Public Works project, the Wilmington Avenue Bridge over Compton Creek Project, has been identified as a cumulative project located approximately 800 feet northwest of the project site where the Wilmington Avenue ROW crosses Compton Creek. The construction of the Wilmington Boulevard Bridge over Compton Creek Project would not, however, occur concurrently with the proposed project, and similarly, would not change from existing conditions once completed.

However, with the incorporation of mitigation identified throughout this document, the project's potential impacts would be reduced to less than significant and would not considerably contribute to regional cumulative impacts in the greater project region. Additionally, these other related projects would presumably be required by the applicable lead agency to comply with all applicable federal, state, and local regulatory requirements, and incorporate all feasible mitigation measures to further ensure that their potentially cumulative impacts would be reduced to less than significant. Therefore, the project would not result in individually limited but cumulatively considerable impacts, and impacts would be less than significant with mitigation incorporated.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Less-Than-Significant Impact With Mitigation Incorporated. As evaluated throughout this document, with mitigation measures, environmental impacts associated with the proposed project would be reduced to less-than-significant levels. Thus, the proposed project would not directly or indirectly cause substantial adverse effects on human beings.

Compton Boulevard Bridge Over Compton Creek Project / Initial Study / Mitigated Negative Declaration

INTENTIONALLY LEFT BLANK

4 References and Preparers

4.1 References Cited

- CAL FIRE (California Department of Forestry and Fire Protection). 2007. Fire Hazard Severity Zones in State Responsibility Area [map]. Accessed November 4, 2019. https://osfm.fire.ca.gov/media/6705/fhszs_map19.pdf.
- CalGEM (California Department of Conservation, Division of Geologic Energy Management). 2012. Index of Public Well Records. Accessed November 1, 2019. http://ftp.consrv.ca.gov/pub/oil/WellRecord/037/03705359.
- CalGEM. 2019. Well Finder [GIS database]. Accessed November 1, 2019. https://maps.conservation.ca.gov/doggr/wellfinder/#openModal/-118.23626/33.89821/15.
- CalRecycle (California Department of Resources Recycling and Recovery). 2019. SWIS Facility Detail (Savage Canyon Landfill (19-AH-0001). Accessed November 4, 2019. https://www2.calrecycle.ca.gov/SWFacilities/Directory/19-AH-0001/Detail/.
- Caltrans (California Department of Transportation). 2010. Memo to Designers 20-1, Seismic Design Methodology.
- Caltrans. 2011. "California Scenic Highways Mapping System." Accessed May 7, 2019. http://www.dot.ca.gov/hq/LandArch/16_livability/scenic_highways/index.htm.
- Caltrans. 2013. *Technical Noise Supplement to the Caltrans Traffic Noise Analysis Protocol*. Division of Environmental Analysis, Environmental Engineering, Hazardous Waste, Air, Noise, Paleontology Office. September 2013.
- Caltrans. 2015. Standard Specifications, State of California, California State Transportation Agency, Department of Transportation.
- Caltrans. 2016. Memo to Designers 20-4, Seismic Retrofit Guidelines for Bridges in California.
- CAPCOA (California Air Pollution Control Officers Association). 2008. CEQA & Climate Change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act. January 2008.
- CARB (California Air Resources Board). 2014. First Update to the Climate Change Scoping Plan Building on the Framework Pursuant to AB 32 The California Global Warming Solutions Act of 2006. May 2014. http://www.arb.ca.gov/cc/scopingplan/2013_update/first_update_climate_change_scoping_plan.pdf.
- CARB. 2017a. "Area Designation Maps/State and National." Last updated October 18, 2017. https://www.arb.ca.gov/desig/adm/adm.htm.
- CARB. 2017b. *The 2017 Climate Change Scoping Plan Update*. Accessed January 2017. https://www.arb.ca.gov/cc/scopingplan/2030sp_pp_final.pdf.

- CARB. 2019. "Common Air Pollutants." https://ww2.arb.ca.gov/resources/common-air-pollutants.
- CDE (California Department of Education). 2019. Public Schools and Districts Data Files. Accessed December 2019. https://www.cde.ca.gov/ds/si/ds/pubschls.asp.
- CDFW (California Department of Fish and Wildlife). 2019. California Natural Diversity Database (CNDDB).

 RareFind 5.2.14 (Commercial Subscription). Sacramento, California: CDFW, Biogeographic Data Branch.

 Accessed September 2019. https://map.dfg.ca.gov/rarefind/view/RareFind.aspx.
- CEC (California Energy Commission). 2015. "2016 Building Energy Efficiency Standards Frequently Asked Questions." Accessed April 2018. https://www.energy.ca.gov/title24/2016standards/rulemaking/documents/2016_Building_Energy_Efficiency_Standards_FAQ.pdf.
- CEC. 2018a. "Electricity Consumption by Entity." Accessed May 2019. http://www.ecdms.energy.ca.gov/elecbyutil.aspx.
- CEC. 2018b. "Natural Gas Consumption by Entity." Accessed May 2019. http://ecdms.energy.ca.gov/gasbyutil.aspx.
- CGS (California Geological Survey). 1982. Generalized Aggregate Resource Classification Map (Plate 4-1) [map]. Accessed November 1, 2019. ftp://ftp.consrv.ca.gov/pub/dmg/pubs/sr/SR_143/PartIV/.
- CGS. 1986. Earthquake Zones of Required Investigation, Inglewood Quadrangle. Online edition. http://gmw.conservation.ca.gov/SHP/EZRIM/Maps/INGLEWOOD_EZRIM.pdf.
- CGS. 1999. Earthquake Zones of Required Investigation, South Gate Quadrangle. http://gmw.conservation.ca.gov/SHP/EZRIM/Maps/SOUTH_GATE_EZRIM.pdf.
- CGS. 2002. California Geomorphic Provinces: Note 36. 4 pp.
- CGS. 2010. "Fault Activity Map of California." Online edition. http://maps.conservation.ca.gov/cgs/fam/.
- City of Compton. 2007. *City of Compton General Plan, Land Use Map.* Accessed April 29, 2019. http://www.comptoncity.org/civicax/filebank/blobdload.aspx?blobid=24233.
- City of Compton. 2010. *Urban Water Management Plan*. Accessed November 1, 2019. http://www.comptoncity.org/civicax/filebank/blobdload.aspx?BlobID=25784.
- City of Compton. 2011. City of Compton 2030 General Plan. Accessed June 12, 2019. http://www.comptoncity.org/civicax/filebank/blobdload.aspx?BlobID=30775.
- City of Compton. 2019a. Parks and Recreation Department [webpage]. Accessed October 31, 2019. http://www.comptoncity.org/depts/parks/default.asp.
- City of Compton. 2019b. Water Utility Division Homepage [webpage]. Accessed July 30, 2019. http://www.comptoncity.org/depts/mu/waterutil/default.asp.

- City of Compton. 2019c. Drainage Areas and Hydrology [map]. Accessed November 1, 2019. http://www.comptoncity.org/civicax/filebank/blobdload.aspx?blobid=24343.
- CNRA (California Natural Resources Agency). 2009. "Final Statement of Reasons for Regulatory Action:
 Amendments to the State CEQA Guidelines Addressing Analysis and Mitigation of Greenhouse Gas
 Emissions Pursuant to SB97." Sacramento, California: CNRA. December 2009. http://resources.ca.gov/ceqa/docs/Final_Statement_of_Reasons.pdf.
- CSCD (California School Campus Database). 2019. "California School Campus Database." Accessed 2019. http://www.californiaschoolcampusdatabase.org/.
- CUSD (Compton Unified School District). 2019. Compton Unified School District [website]. Accessed October 31, 2019. https://www.compton.k12.ca.us/district/about-us/about-us.
- DOC (California Department of Conservation). 2015. Landslide Inventory [mapping database]. Accessed November 4, 2019. https://maps.conservation.ca.gov/cgs/lsi/.
- DLRP (California Department of Conservation, Division of Land and Resources Protection). 2016. Los Angeles County Williamson Act FY 2015/2016. [map] Accessed October 30, 2019. https://www.conservation.ca.gov/dlrp/fmmp/Pages/LosAngeles.aspx.
- DLRP. 2018. California Important Farmland [GIS database]. Accessed October 30, 2019. https://maps.conservation.ca.gov/dlrp/ciftimeseries/.
- EIA (Energy Information Association). 2018. "California State Profile and Energy Estimates Table F15: Total Petroleum Consumption Estimates, 2016." Accessed February 2019. http://www.eia.gov/state/seds/data.cfm?incfile=/state/seds/sep_fuel/html/fuel_use_pa.html&sid=US&sid=CA.
- EPA (U.S. Environmental Protection Agency). 2017a. *EPA Green Book*. Last updated September 2017. https://www.epa.gov/green-book.
- EPA. 2017b. "Causes of Climate Change." Last updated January 19, 2017.
- Erickson, G.A. 2002. Bat and Bridges Technical Bulletin (Hitchhiker Guide to Bat Roosts). Sacramento, California: Caltrans.
- FEMA (Federal Emergency Management Agency). 2008. "Flood Insurance Rate Map, Los Angeles County, California, Map Number 06037C1815F." September 26, 2008. https://msc.fema.gov/portal/home.
- FHWA (Federal Highway Administration). 2008. Roadway Construction Noise Model (RCNM), Software Version 1.1. Washington, D.C.: U.S. Department of Transportation, Research and Innovative Technology Administration, John A. Volpe National Transportation Systems Center, Environmental Measurement and Modeling Division. December 8, 2008.
- FTA (Federal Transit Administration) 2018. *Transit Noise and Vibration Impact Assessment Manual*. Federal Transit Administration. September 2018.

- GBIF (Global Biodiversity Information Facility). 2019. GBIF Occurrence Download for Antrozous pallidus. Accessed October 3, 2019. https://doi.org/10.15468/dl.bbvwh0.
- Hope, A. 2005. *Caltrans Statewide Historic Bridge Inventory Update, Bridges that were not Individually Surveyed and Evaluated*. Cleland, Robert Glass. Accessed October 4, 2019. https://dot.ca.gov/-/media/dot-media/programs/environmental-analysis/documents/f0003960-bridges-not-surveyed-2005-a11y.pdf.
- HUD (U.S. Department of Housing and Urban Development). 2009. *The Noise Guidebook*. Office of Environment and Energy, Environmental Planning Division. March 2009.
- IPCC (Intergovernmental Panel on Climate Change). 2007. IPCC Fourth Assessment Synthesis of Scientific-Technical Information Relevant to Interpreting Article 2 of the U.N. Framework Convention on Climate Change.
- Jahns, R.H. 1954. "Geology of the Peninsular Range Province, Southern California and Baja California." *California Division Mines Bull.* 170: 24 pp.
- Jefferson, G.T. 1991. "A Catalog of Late Quaternary Vertebrates from California." Natural History Museum of Los Angeles County, Technical Reports 7:1–174. Unpublished revision: May 18, 2012.
- Jennings, C.W. 1962. Geologic Map of California: Long Beach Sheet: California Division of Mines and Geology, scale 1:250,000.
- LACSD (Los Angeles County Sanitation District). 2019. LACSD Facilities [GIS database]. Accessed November 1, 2019. https://www.lacsd.org/facilities/?tab=2&number=1.
- LADPW (Los Angeles County Department of Public Works). 2010. *Construction Site Best Management Practices* (BMPs) Manual. Accessed September 2019. https://dpw.lacounty.gov/cons/specs/BMPManual.pdf.
- LADPW. 2019a. "Compton Boulevard Bridge Over Compton Creek Project Data Request." May 2019.
- LADPW. 2019b. "Construction and Demolition Debris Recycling and Reuse Program" [webpage]. Accessed November 4, 2019. https://pw.lacounty.gov/epd/cd/.
- LADPW. 2020. Los Angeles County Public Works Transportation Impact Analysis Guidelines. July 23, 2020. https://dpw.lacounty.gov/traffic/docs/Transportation-Impact-Analysis-Guidelines-July-2020-v1.1.pdf.
- LADRP (Los Angeles County Department of Regional Planning). 2004. Los Angeles County Airport Land Use Plan. Revised December 1, 2004.
- LARWQCB (Los Angeles Regional Water Quality Control Board). 2014. Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties. September 11, 2014. https://www.waterboards.ca.gov/losangeles/water_issues/programs/basin_plan/basin_plan_documentation.html.
- LASD (Los Angeles County Sheriff's Department). 2019. "Station Finder" [map]. Accessed October 31, 2019. https://lasd.org/stations/.

- McLeod, S.A. 2019. Vertebrate Paleontology Records Check for Paleontological Resources for the Proposed Compton Creek Bridges Project, Dudek Project # 11125.04, in the City of Compton, Los Angeles County, project area. Unpublished Records Search Results Letter from the Natural History Museum of Los Angeles County, Los Angeles, California.
- Miller, W.E., 1971. "Pleistocene Vertebrates of the Los Angeles Basin and Vicinity (exclusive of Rancho la Brea)." Los County Museum of Natural History Science Bulletin, 10:1–124.
- Norris, R.M., and R.W. Webb. 1990. Geology of California (2nd edition). New York, New York: John Wiley & Sons.
- OEHHA (Office of Environmental Health Hazard Assessment). 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessments. Accessed February 2015. https://oehha.ca.gov/air/crnr/notice-adoption-air-toxics-hot-spots-program-guidance-manual-preparation-health-risk-0.
- OPR (Governor's Office of Planning and Research). 2018. *Technical Advisory on Evaluating Transportation Impacts in CEQA*. April 2018.
- Saucedo, G.J., G.H. Greene, M.P. Kennedy, and S.P. Bezore. 2003. Geologic Map of the Long Beach 30' X 60' Quadrangle, California. California Geological Survey.
- SCAG (Southern California Association of Governments). 2016. 2016–2040 Regional Transportation Plan/Sustainable Communities Strategy. Adopted April 7, 2016. Accessed March 2017. http://scagrtpscs.net/Pages/FINAL2016RTPSCS.aspx.
- SCAG. 2020. Connect SoCal: 2020–2045 Regional Transportation Plan/Sustainable Communities Strategy. Adopted September 3, 2020. https://scag.ca.gov/sites/main/files/file-attachments/final-amendment-01-connect-socal-110421.pdf?1636060850.
- SCAQMD (South Coast Air Quality Management District). 1993. CEQA Air Quality Handbook.
- SCAQMD. 2003. White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. August 2003. http://www.aqmd.gov/docs/default-source/Agendas/ Environmental-Justice/cumulative-impacts-working-group/cumulative-impacts-white-paper.pdf?sfvrsn=2.
- SCAQMD. 2005. Rule 403: Fugitive Dust. Adopted May 7, 1976. Amended June 3, 2005.
- SCAQMD. 2008. Draft Guidance Document Interim CEQA Greenhouse Gas (GHG) Significance Threshold.

 October 2008.
- SCAQMD. 2009. Final Localized Significance Threshold Methodology. June 2003; revised July 2008; Appendix C "Mass Rate LST Look-up Tables" revised October 2009. http://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/final-lst-methodology-document.pdf?sfvrsn=2.
- SCAQMD. 2010. Greenhouse Gas CEQA Significance Threshold Stakeholder Working Group Meeting #15. September 28, 2010. http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-2008-2009/ghg-meeting-15/ghg-meeting-15-main-presentation.pdf?sfvrsn=2.

- SCAQMD. 2015. "SCAQMD Air Quality Significance Thresholds." Originally published in CEQA Air Quality Handbook, Table A9-11-A. Revised March 2015. http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2.
- SCAQMD. 2017. Final 2016 Air Quality Management Plan. March 16, 2017. Accessed October 2017. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality.
- SCE (Southern California Edison). 2018. 2017 Sustainability Report. Accessed May 2019. https://www.edison.com/content/dam/eix/documents/sustainability/eix-2017-sustainability-report.pdf.
- SCEDC (Southern California Earthquake Data Center). 2013. "Significant Earthquakes and Faults." http://scedc.caltech.edu/significant/newport.html.
- SoCalGas (Southern California Gas Company). 2018. "Company Profile." Accessed April 2018. https://www.socalgas.com/about-us/company-profile.
- SVP (Society of Vertebrate Paleontology). 2010. Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources. http://vertpaleo.org/Membership/Member-Ethics/SVP_Impact_Mitigation_Guidelines.aspx.
- USFWS (U.S. Fish and Wildlife Service). 2019. "Critical Habitat and Occurrence Data." Accessed August 2019. http://www.fws.gov/data.
- Yerkes, R.F., T.H. McCulloh, J.E. Schoellhamer, and J.G. Vedder, 1965. "Geology of the Los Angeles Basin California—An Introduction." Geological Survey Professional Paper 420-A. 57 pp.

4.2 List of Preparers

Lead Agency

Los Angeles County Department of Public Works 900 South Fremont Avenue Alhambra, California 91803-5100

Contributors

Reyna Soriano, Project Civil Engineer Belal Tabannaj, Senior Civil Engineer Assistant

Technical Assistance Provided By

Dudek

38 North Marengo Avenue Pasadena, California 91101

Eric Wilson, Project Director

Jason Reynolds, Transportation Practice Director

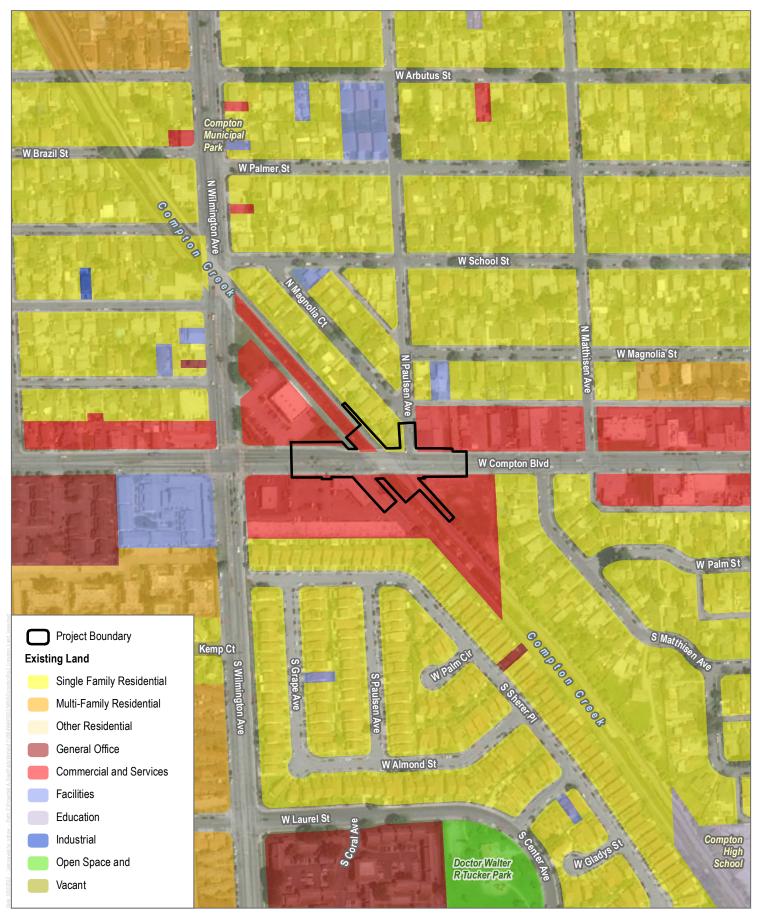

Josh Saunders, Environmental Planner
Ian McIntire, Environmental Technical Group Specialist
Mike Cady, Senior Biologist
Sarah Corder, Architectural Historian
Linda Kry, Archaeologist
Michael Williams, Senior Paleontologist
Perry Russell, Environmental Technical Group Specialist
Glenna McMahon, Hydrogeology Principal Engineer
Michael Green, Senior Noise Specialist
Dennis Pascua, Transportation Services Technical Specialist
Christopher Starbird, GIS Specialist
Daniela Yurovsky, Technical Editor
Darlene Alilain-Horn, Publications Specialist

GPA

201 Nevada Street, Suite B El Segundo, California 90245

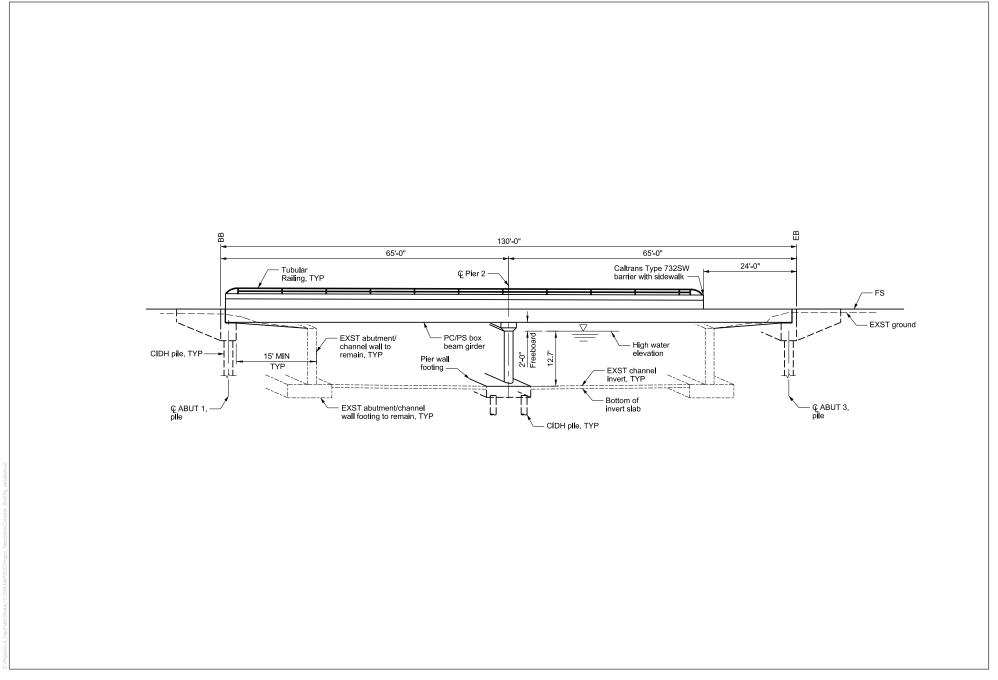
Jeanne Ogar, Senior Environmental Planner Danielle Thayer, Associate Environmental Planner Compton Boulevard Bridge Over Compton Creek Project / Initial Study / Mitigated Negative Declaration

INTENTIONALLY LEFT BLANK



SOURCE: Esri, Digital Globe 2017; Open Street Map 2019

FIGURE 1
Project Location


Compton Boulevard Bridge Over Compton Creek Project / Initial Study / Mitigated Negative Declaration

INTENTIONALLY LEFT BLANK

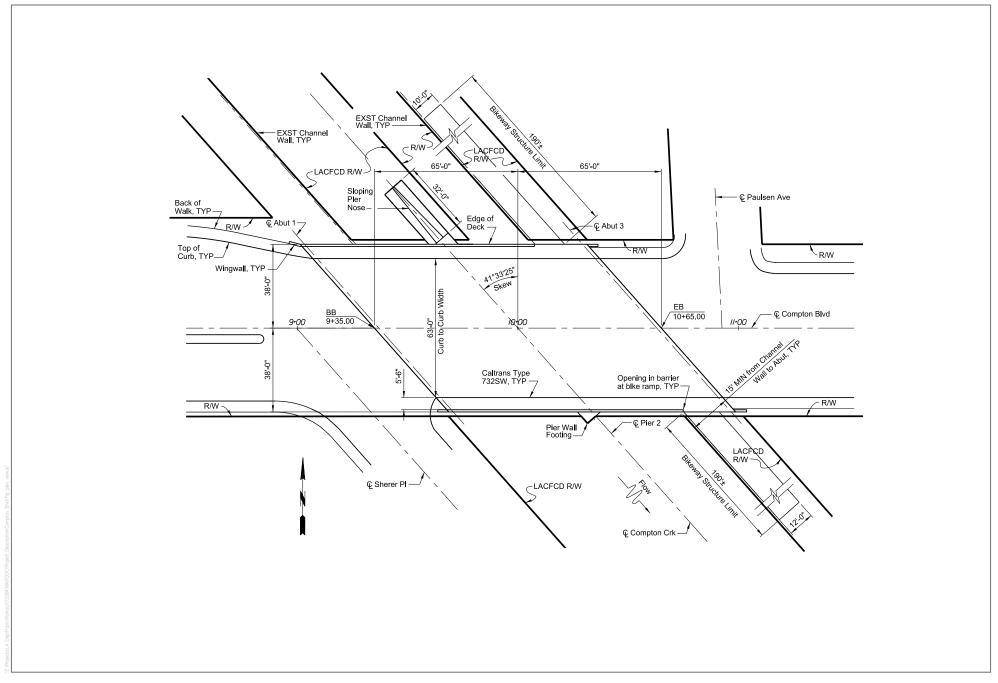
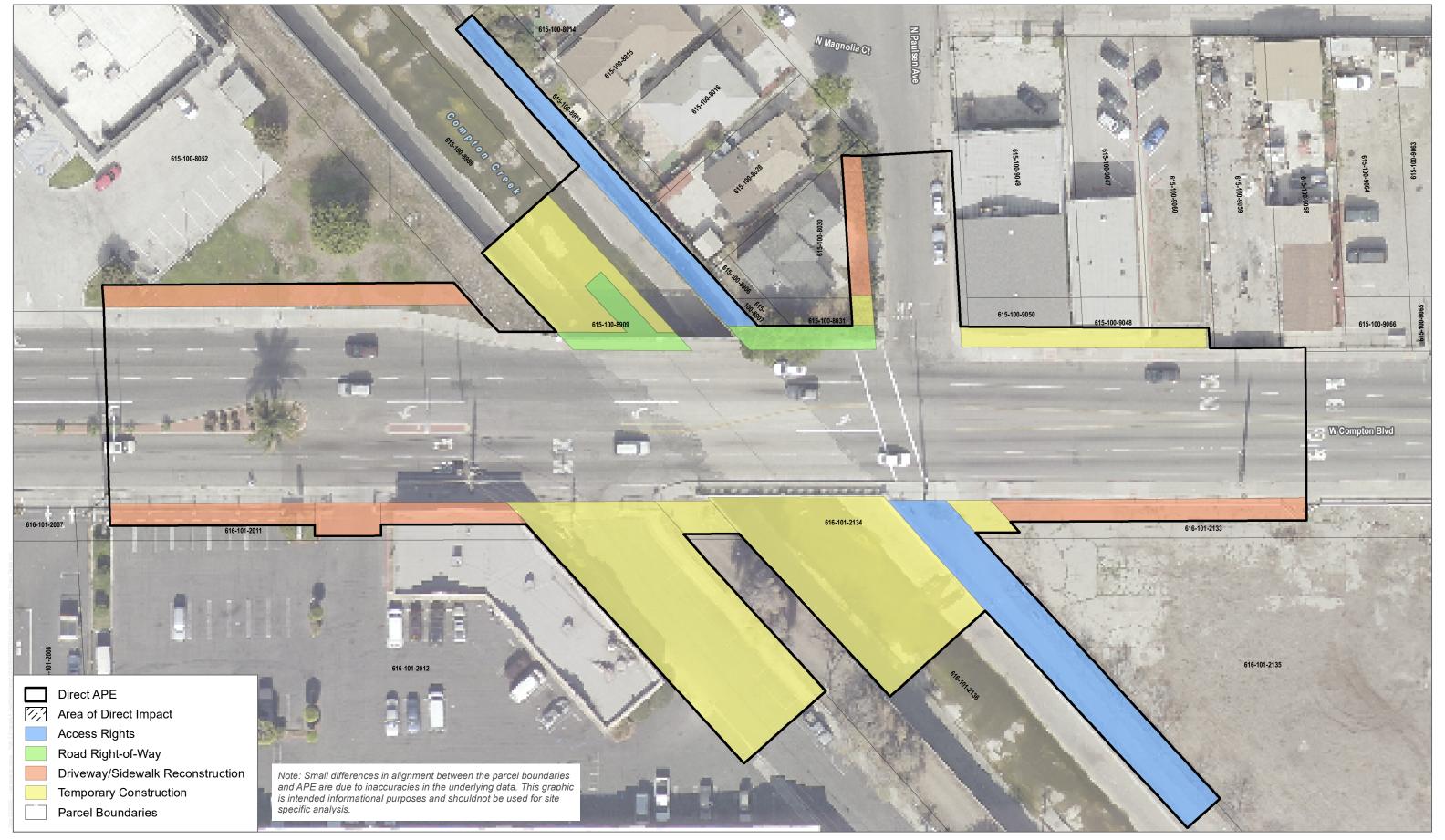

SOURCE: Esri, Digital Globe 2017; Open Street Map 2019; SCAG 2008

FIGURE 2
Surrounding Land Uses


SOURCE: County of Los Angeles Department of Public Works, July 2021

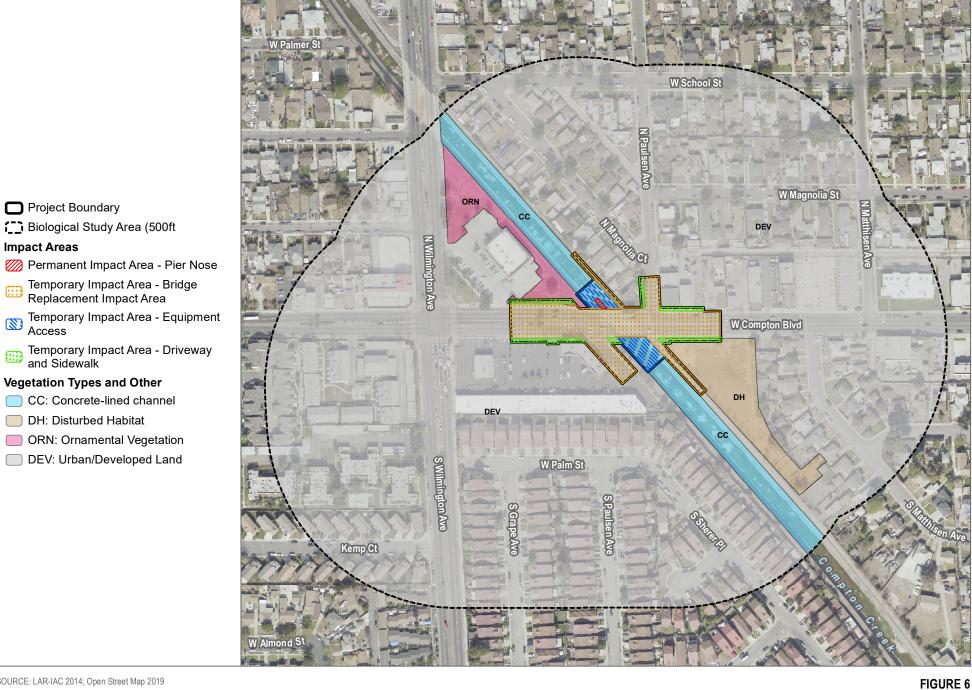
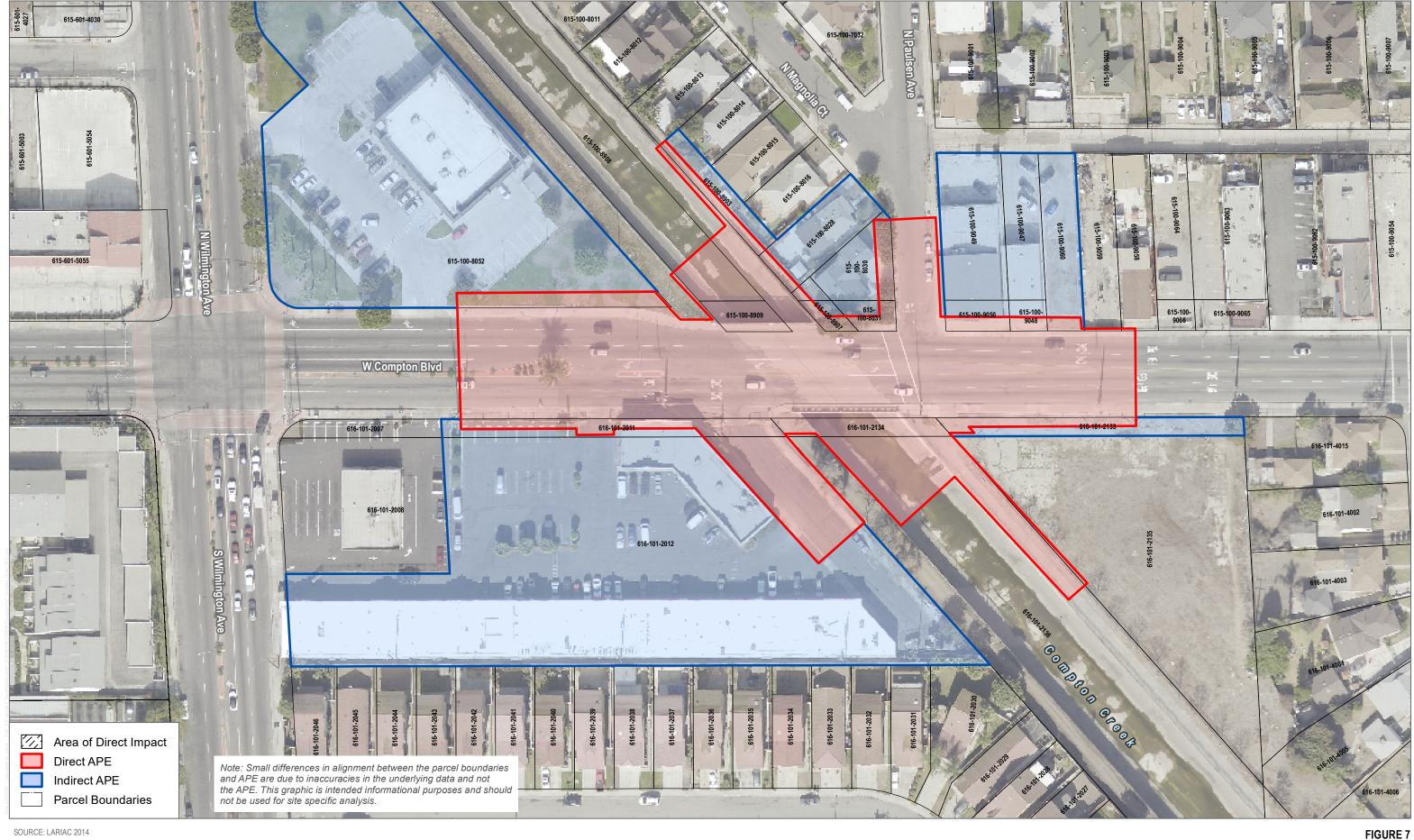

SOURCE: County of Los Angeles Department of Public Works, Aug. 2020

FIGURE 4
Proposed Project (90% Plan View)
Compton Boulevard Bridge Over Compton Creek


SOURCE: LARIAC 2014

DUDEK & 0 20 40 Feet

SOURCE: LAR-IAC 2014; Open Street Map 2019

Vegetation Types and Impact Areas

SOURCE: LARIAC 2014

■ Project Boundary

■ Noise Measurement Locations

SOURCE: LAR-IAC 2014; Open Street Map 2019

Noise Measurement Locations