

INITIAL HYDROLOGY AND HYDRAULICS STUDY

JUNE 28, 2021

SHILOH CROSSING APN 163-171-039

295 SHILOH ROAD

WINDSOR, CA

Job Number: 2021017.00 PREPARED BY

15 Third Street, Santa Rosa, CA 95401 Tel: 707 542 6451 Fax: 707 542 5212

Table of Contents

1	Introdu	ction1	
2	Existing	g Conditions1	
3	Propose	ed Conditions1	
3	.1 De	tention Systems2	
	3.1.1	Contech Chambers2	
	3.1.2	Detention Pond	
4	Storm I	Orain Design Criteria3	
5	Hydrolo	ogy and Hydraulics Design Criteria3	
5	.1 Sta	rting Hydraulic Grade Line4	
	5.1.1	Detention Outfall Starting HGL4	
	5.1.2	Detention Inlet Starting HGL4	
5	.2 Hy	drologic Design Criteria5	
5	.3 Co	efficient of Runoff5	
5	.4 En	ergy Loss through Boxes5	
5	.5 De	sign Storm5	
6	Conclus	sion6	
Арр	oendix A	Hydrology Map	
App	endix B		
App	endix C	Detention Basin Calculations	
App	endix D	100-Year Hydrology and Hydraulics	
App	pendix E	Reference Information E	
		List of Tables	
Tab	le 4-1: [Design Criteria	3
Гab	ole 5-1: C	Outlet Starting HGL	4
Гab	le 5-2: I1	nlet Starting HGL	4
		lydrologic Design Criteria	
		unoff Coefficients	5

1 Introduction

The Shlioh Crossing (Project) located at 295 Shiloh Road will improve a six and one-tenth (6.10) acre vacant parcel into (i) a senior living facility, (ii) improve and dedicate the Project's frontage along Business Park Court and Shiloh Road to Town of Windsor Standards and, (iii) replace the northerly bordering parcel (Incubator) stormwater detention system with a new stormwater detention pond. Due to existing flooding issues within the public storm drain within Hembree Lane which serves this Project, the Project will be required to detain the difference between development and pre-development 100-year storm event for both the Project and Incubator site. The Project will also need to meter 100-year flow into the public storm drain to pre-developed conditions.

2 Existing Conditions

The Project site is bordered by Shiloh Road to the South, Hembree Lane to the southwest, Home Depot to the northwest, a commercial Incubator site to the north, and residential housing to the east. The private road Business Park Court, which connects the northerly commercial Incubator site to Shiloh Road, runs North-South along the Project's easterly border. The remaining Project site is undeveloped land with 340-ft of 36-inch storm drain extending into a storm water detention pond on the west side of the Project site. This existing storm drain and detention pond system on the Project site was designed to store the additional flows due to the development of the Incubator site within both the pond and 36-inch storm drain and release only predeveloped flow rates into the downstream public storm drain system on Hembree Lane. There is also existing storm drain and swales along the Project's Shiloh Road frontage, which carries the southerly half of the undeveloped Project to the public storm drain within Hembree Lane.

3 Proposed Conditions

The Project's drainage is divided into the tributary areas shown on the Proposed Hydrology Exhibit in Appendix A. These areas are designated based on the proposed grading and storm drain system. The Project will have three separate drainage tributaries. The northern and western tributaries will connect to the existing 30-inch public storm drain as it leaves the site on the west side of the property, and the eastern tributary will connect to the existing 36-inch public storm drain in Shiloh Road.

To satisfy the requirement of detaining the 100-year developed flows, there will be three separate detention systems. The detention for the existing Incubator site to the north of the Project will be achieved by a combination of a new detention pond along the northern boundary of the Project and a new 36-inch storm drain along the western boundary of the Project. Additionally, a

Contech ChamberMaxx detention chamber system will store the drainage from the westerly tributary, while a Contech Terrarch 26 detention chamber system will store the drainage from easterly tributary. Each Contech system will have a downstream manhole structure with an overflow weir set to the top of the Contech rock section to ensure full volume capture within the system. The weir will have a low flow orifice sized to release pre-development flow rates. The existing 36-inch storm drain and detention pond on site will be removed to increase developable area on site. The remaining portion of the existing 30-inch storm drain, leaving the site, will connect to the site drainage system downstream of the westerly Contech chamber system.

3.1 Detention Systems

In a rain event, runoff would be distributed to each of the two Contech chamber systems and collect until it would eventually overflow into the public storm drain. The analysis of this Project's drainage system was therefore divided into five pieces due to the function of the Contech systems. First, each of the existing storm drains which drain the detention systems were analyzed. Then, each of the three detention systems were analyzed individually. The hydraulic grade lines of the maximum storage water surface elevation of each Contech systems were also compared to the hydraulic grade line of the storm drain downstream of the overflow to ensure that the Contech chambers would sufficiently drain a 100-year rain event and avoid a backwater scenario.

3.1.1 Contech Chambers

Each of the two Contech Chamber systems were sized based on the difference between development and pre-development runoff, for a 100-year event with a fixed low flow outflow rate matching the undeveloped flow rate of the Project site. The westerly chambers were sized to handle the Project's north-westerly half of the Project's development. The easterly chambers were sized to handle the southeasterly half of the Project's development. The Contech sizing calculations have been included in Appendix C.

Each of the two Contech Chamber systems were analyzed separately starting at the individual system and working back up stream to verify the Project would not flood in the event of a 100-year rain event. To conservatively analyze the storm drain system, the low flow outflow orifice implemented due to hydromodification requirements was not included in analysis to simulate a situation where the low flow outflow structure had failed, and the hydraulic grade line was allowed to rise to the overflow elevation before being able to exit through the overflow. This scenario would set the starting HGL for each Contech Chamber system at the overflow elevation. The Terrarch 26 detention system is implemented on the eastern side of the Project's in order to provide sufficient cover for the chambers as the system is too shallow at this location to implement the ChamberMaxx system.

3.1.2 Detention Pond

The reference Hydrology report lacked sufficient supporting calculations for the sizing of the existing detention facilities, so the needed Incubator detention volume was sized conservatively by taking the difference between full impervious coverage (C=0.9) and zero impervious coverage (C=0.35) over the entire Incubator parcel which would be the maximum expected runoff.

A back check of the reference Hydrology report was completed by taking the volume of the detention pond and 36-inch Storm drain at the listed 120.35-foot water surface elevation, the volume of storage was determined to be 10,461 cubic feet, which is excessive. A headwater depth analysis was performed to determine a more reasonable water surface elevation for existing storage, which was determined to be 119.05-ft and equates to a detention volume of 5,840 cubic feet. The difference between the reference 5,840 cubic feet and the design 5,157 cubic feet can be attributed to the Project's northerly tributary, which is accounted for within the Project's westerly detention chamber calculations which adds 3,348 cubic feet of storage.

4 Storm Drain Design Criteria

The Shiloh Crossing Project will use the design criteria laid out in Table 4-1: Design Criteria is per the Sonoma County Water Agency's 2020 Flood Management Design Manual and the Town of Windsor's 2011 Design and Construction Standards. This criteria is for the 100-year storm.

Scenario	Design Criteria
Minimum Depth of Cover	2 ft
SD Pipe Type	Class III RCP
Minimum SD Size	18-inch
Manning's n-value	0.014 (RCP)
Minimum SD Flow Velocity	2.5 ft/s
Hydraulic Grade Line	1-ft below ground

Table 4-1: Design Criteria

5 Hydrology and Hydraulics Design Criteria

All hydrology and hydraulic calculations were performed in accordance with the Sonoma County Water Agency's (SCWA) Flood Control Design Criteria (FCDC) manual, and the City of Healdsburg's 2008 Storm Drain Collection System Standards. The rational method was used to calculate the hydraulics and hydrology for the storm drain system.

Storm drain system conduits were analyzed using Bentley's StormCAD.

5.1 Starting Hydraulic Grade Line

Separate starting HGLs were used to analyze the inlet and outlet of each of the three detention basins. Each detention basin has an outfall starting HGL, and an inlet starting HGL. The outfall HGLs were used at the detention basins outfall connection to the existing public storm drain system. While the inlet HGLs were used to analyze the private storm drains upstream of the detention basins.

5.1.1 Detention Outfall Starting HGL

Two separate staring 100-year Hydraulic Grade Lines (HGLs) were used to analyze the west and east detention basin outfalls. The starting HGL for the west detention basin was obtained from the *Shiloh Industrial Center Hydrology & Hydraulic Design* report, performed by Dale Roper & Associates, dated March 2001. While the starting HGL for the east detention basin was obtained from the *Drainage Analysis for the Windsor Redwoods*, performed by Adobe and Associates, dated July 2008. Both drainage reports can be found the Appendix E.

Detention 100 - Year HGL (ft) Basin Reference Location Adjusted West 117.45 120.35 Existing 30-in SD @ western boundary East 117.7 118.9 Ex MH-6 @ Intersection of Shiloh & Hembree 120.50 Pond Existing 30-in SD @ western boundary

Table 5-1: Outlet Starting HGL

The starting HGL for the detention pond and 36-inch storm drain along the western boundary of the Project was set such that the pond and basin achieve the needed volume to replace the existing 36-inch storm drain and detention pond.

5.1.2 Detention Inlet Starting HGL

The overflow weir exiting each of the two Contech Chambers is set equal to the water surface elevation at the top of the rock section of the Contech Chambers. The initial hydraulic grade line was set at the top of the overflow weir elevation.

 Detention Basin
 100 - Year HGL (ft)
 Location

 West
 119.44
 Upstream of west detention basin

 East
 120.50
 Upstream of east detention basin

 Pond
 120.50
 Upstream of northern detention pond

Table 5-2: Inlet Starting HGL

5.2 Hydrologic Design Criteria

The Shiloh Crossing Project will use the hydrologic design criteria laid out in Table 5-2: Hydrologic Design Criteria per the SCWA FCDC and the Town of Windsor's 2008 Storm Drain Collection System Standards. These criteria are for the 10- and 100-year storm.

 Scenario
 Design Criteria
 Source

 Starting
 7 minutes
 SCWA for commercial or similar areas

 Time of
 10 minutes
 SCWA for residential or similar areas

 Concentration
 15 minutes
 SCWA for undeveloped hillsides.

Table 5-3: Hydrologic Design Criteria

5.3 Coefficient of Runoff

The proposed composite runoff coefficients were calculated using the runoff coefficients in Table 5-3: Runoff Coefficients. The undeveloped or landscaped portions of the Project use the Parks and recreation runoff coefficients; while the proposed developed portions of the Project use a composite runoff coefficients calculated using the coefficients in Table 5-4.

Surface	Runoff Coefficient 'C-Value'
Hardscape	0.90
Parks & Rec 0-2%	0.35

Table 5-4: Runoff Coefficients

Composite runoff coefficient calculations for the proposed conditions can be found in Appendix B.

5.4 Energy Loss through Boxes

The HEC-22 Energy method was used to calculate the energy loss through boxes i.e. structures such as manholes and catch basins.

5.5 Design Storm

The design storm equations below were determined by fitting a power curve to the precipitation information from the Atlas 14 NOAA precipitation frequency data.

$$I_{10} = \frac{8.565}{(T_c)^{0.518}}$$

$$I_{100} = \frac{12.103}{(T_c)^{0.523}}$$

6 Conclusion

The proposed storm drain system is in conformance with the Sonoma County Water Agency's Flood Control Design Criteria. The underground storm drain system can convey the 100-year storm below ground, and an overflow route is available for runoff exceeding the 100-year storm. Any storm below a 100-year storm will be captured by one of the three proposed detention systems and metered to flows mimicking pre-existing site conditions.

Appendix A:

- Proposed Hydrology Map
 - Existing Hydrology Map
 - Location Map

Copyright © Carlile • Macy CIVIL ENGINEERS • URBAN PLANNERS • LAND SURVEYORS • LANDSCAPE ARCHITECTS

15 THIRD STREET, SANTA ROSA, CA 95401
Tel (707) 542-6451 Fax (707) 542-5212

JUNE, 2021 PROJECT NO. 2021017.00

Appendix B:

Composite C-Value Calculations

295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

Surface Type	Roof	Asphalt	Concrete	Landscape
C-Value	0.90	0.90	0.90	0.40

Drainage Area	Roof ft ²	Asphalt ft ²	Concrete ft ²	Landscape ft²	Total ft²	Area ac	Composite C-Value
West	37,439	34,867	5,401	29,670	107,377	2.47	0.76
East	38,322	61,943	31,713	36,826	168,805	3.88	0.79
Total Site	75,761	96,810	37,114	66,496	276,181	6.34	0.78

Appendix C: Detention Basin Calculations

295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

100-year Storm Detention Requirements: Proposed - Undeveloped Project West

100-year **Detention** Developed **Detention** Storm Intensity X Rate to **Design Release Peak Runoff Duration** Volume Storage Rate, Q_{pre} Rate, Q_{post} (ft^3) (in/hr) (cfs) (cfs) (cfs) (min) 3.0 6.64 5.74 12.50 10.05 1,808 3.5 6.12 5.29 11.52 9.07 1,904 4.0 5.70 4.93 10.73 8.28 1,988 2,061 4.5 5.36 4.63 10.08 7.63 4.38 5.0 5.07 9.54 7.09 2,126 5.5 9.07 4.82 4.17 6.62 2,184 4.09 8.90 5.7 4.73 6.45 2,205 6.0 4.60 3.98 8.66 6.21 2,236 6.5 4.41 3.81 8.30 5.85 2,282 7.0 4.24 3.67 7.98 5.53 2,324 7.5 4.09 3.54 5.25 2,361 7.70 8.0 3.95 3.42 7.44 4.99 2,394 8.5 3.83 3.31 7.20 4.75 2,424 9.0 3.21 4.54 2,451 3.71 6.99 9.5 3.12 6.79 4.34 2,475 3.61 10.0 3.51 3.04 6.61 4.16 2,496 2,514 10.5 3.42 2.96 6.44 3.99 3.34 6.29 2,531 11.0 2.89 3.83 3.26 11.5 2.82 6.14 3.69 2,545 2,557 12.0 3.19 2.76 6.00 3.55 12.5 3.12 2.70 5.87 3.42 2,568 5.75 3.30 2,576 13.0 3.06 2.64 13.5 3.00 2.59 5.64 3.19 2,583 14.0 2.94 2.54 5.53 3.08 2,589 14.5 2.49 2.98 2,593 2.89 5.43 2,595 15.0 2.83 2.45 5.33 2.88 15.5 2.79 5.24 2.79 2,596 2.41 16.0 2.74 2.37 5.16 2.70 2,596 16.5 2.70 2.33 5.07 2.62 2,595 17.0 2.65 2.29 4.99 2.54 2,593 17.5 4.92 2,589 2.61 2.26 2.47 18.0 2.57 2.23 4.84 2.39 2,585 18.5 2.54 2.19 4.77 2.32 2,579 4.71 19.0 2.50 2.26 2,572 2.16 19.5 2.47 2.13 4.64 2.19 2,565 2.10 20.0 2.43 4.58 2.13 2,557

Notes:

- 1) Q = C-Value x Intensity x Tributary Area
- 2) Use design release rate of 3.61 cfs in correspondance with existing flow at time of concentration of 15 minutes
- 3) "Detention Rate to Storage" = "Developed Peak Runoff Rate" "Design Release Rate"

Shiloh Crossing 295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

West

CONTECTI CHANDEL MAXX			
# columns	3		
# rows	6		
volume/chamber - middle	47.2	ft ³	
volume/chamber - start	50.2	ft ³	
volume/chamber - end	46.2	ft³	
in/outlet manifold volume		ft ³	
Total chamber volume	1,428	ft ³	
	,		
Detention Basin Dimensions			
Basin footprint area	1,333	ft ²	
Stone depth	3.53	ft	
Backfill volume	4,700	ft³	*40% porosity
Basin Storage Volume	1,309	ft³	=(Backfill volume - Chamber volume)*40%
Total Detention Volume		2	
Total Detention Volume	2,737	ft ³	=Total Chamber Volume + Basin storage volume
Required Detention Volume	2,596	ft ³	
·	•		
Design Elevations			
Finished grade above chamber	125.73	ft	
Inlet invert	117.32	ft	
Chana assum	C	:	All mainimanna
Stone cover Stone bedding depth	6 6	in in	4" minimum
Stone bedding depth	O	111	
Cover over top of stone	5.39	ft	8" Minimum
cover over top or storic	5.55	, ,	o riiiiiiidiii
Top of stone fill	120.35	ft	=Weir elevation
Top of chamber			
Bottom of chamber			
Bottom of stone bed			
Stone depth	3.53	ft	
Stone depth	3.33	1.0	

GENERAL NOTES

78.1 (2.211)

74.1 (2.098) 46.2 (1.307) 88.5 (2248) 92.0 (2337) 51.4 (1306)

POROUS STONE BELOW CHAMBER (IN OR mm)

POROUS STONE ABOVE CHAMBER (IN OR mm)

9.7 (0.905) 6.3 (0.582)

10.6 (0.981) 6.6 (0.616) 85.4 (2169) 91.0 (2311) 51.4 (1306) 30.3 (770)

10.0 (0.934) 6.3 (0.582)

83 (37.65)

73 (33.11) 75.1 (2.127)

76 (34.47)

MANIFOLD SYSTEM DIAMETER (IN OR mm) STONE POROSITY (0 TO 40%)

PER ENGINEER OF RECORD

50.2 (1.421) 96.2 (2443) 98.4 (2500) 51.4 (1306)

47.2 (1.336)

LIMITING LENGTH (FT OR m)

LIMITING WIDTH (FT OR m)

DEPTH TO INVERT BELOW ASPHALT (FT OR m)

TOTAL REQUIRED STORAGE VOLUME (CF OR m3)

MANHOLE

OPENING FOR

Ø24" (610 mm)

STUB AT

CONTAINMENT ROW

FEATURE

START CHAMBER

MIDDLE

END CHAMBER

FOR DETAILED DESIGN ASSISTANCE REFERENCE CHAMBERMAXX DYOOS (DESIGN YOUR OWN DETENTION SYSTEM) SOFTWAKE AND CHAMBERMAXX STAGE STORAGE CALCULATOR @ WWW.CONTECHSTORMMATER.COM

SITE SPECIFIC DATA REQUIREMENTS

30.3 (770)

30.3 (770)

CHAMBERMAXX DESIGN DETAILS

- 1. ALL ELEVATIONS, DIMENSIONS AND LOCATIONS OF RISERS AND INLETS SHALL BE VERIFIED BY THE ENGINEER OF RCORD.

 2. PRORT TO NISTALLATION OF THE CHAMBERMAXX SYSTEM A PRE-CONSTRUCTION MEETING SHALL BE CONDUCTED. THOSE REQUIRED TO ATTEND ARE THE SUPPLIER OF THE SYSTEM, THE GENERAL CONTRACTOR, SUB-CONTRACTORS, AND THE BYOLD AND THE SUB-CONTRACTOR SUB-CONTRACTORS.

 3. CHAMBERMAXX CHAMBERS ARE MANUFACTURED FROM POLYPROPYLINE DAYSTIC.

 4. CHAMBERMAXX SYSTEM TO MEET ASSITO HSZOHSZS LIVE LOADING, DER AASHTO LIFED SECTION 12.

 5. ACCESS COVERS TO MEET AASHTO HSZOHSZS LIVE LOADING.

 6. MINIMUM COVER IS 19-INCHES (437 mm) AND MAXIMUM COVER IS GHAVER (2438 mm) TO BOTTOM OF FLEXBLE PAVENIENT OR TO TOP OF RORD PACEMENT. FOR COVER HEIGHTS GREATER THAN SENCHES (2438 mm) CONTACT YOUR LOCAL REPRESENTATIVE.

 7. ALL PARTS ROYNDED BY CONTECH UNLESS OTHERWISE NOTED.

 8. FOR INFORMATION ON PRE-TREATMENT SYSTEMS REFERENCE CONTECH PRE-TREATMENT SYSTEM STANDARD DETAILS OR CONTACT YOUR LOCAL REPRESENTATIVE.

 9. CHAMBERMAXX BY CONTECH ENGINEERED SOLUTIONS, LLC

STUB / MANIFOLD INVERTS

INSTALLATION NOTES

- 96" (2438 mm) MAX.

- 1. CHAMBERMAXX INSTALLATION GUIDE TO BE REVIEWED BY CONTRACTOR PRIOR TO INSTALLATION.
 2. PRIOR TO INJACING BEDDING, THE FOUNDATION MUST BE CONSTRUCTED TO A UNIFORM AND STRALE GRADE. IN THE EVENT THAT UNSUTTABLE FOUNDATION MATERIALS ARE ENCOUNTERED DURING ESCAVATION. A GEOGRID SHALL BE EVENT THAT UNSUTTABLE FOUNDATION MATERIALS ARE ENCOUNTERED DURING ESCAVATION. A GEOGRID SHALL BE LYBE THAT THAT UNSUTTABLE MATERIAL SHALL BE REMOYED AND BROUGHT BACK TO GRADE WITH FILL MATERIAL AS APPROVED BY THE GRANEER OF SHORE THE FOUNDATION PREPARATION IS COMPLETE, THE BEDDING MATERIAL CONCER PROTECTION WETTING TO EXTEND 1:0°, (905 mm.) BEYOND OUTSIDE EDGE OF INLET CHAMBERS.
 4. CONCER MAY OPEN (VOID SPACES GREATER THAN ½' (19 mm.) ON CHAMBERS WITH A NON-WOVEN GEOTEXTILE TO PREVENT INTERNAL SHALL BE INSTALLED TO 95% STANDARD PROCTOR DENSITY AND PLACED IN 6-MICH (122 mm.) TO SHACH (203 mm.) LET'S SUCH THAT THERE IS NO MORE THAN A TWO LET DIFFERENTIAL BETWEEN ARY OF THE CHAMBERS AND LOSS TO AND SHALL BE COMPACTED TO 95% STO BE DEACHLING SHALL BE ADVIANCED ALONG THE LENGTH OF THE CHAMBERS ROWS AT THE SAME TRAIL TO AVOID DIFFERENTIAL LOADING AND DISPLECEMENT OF THE CHAMBERS. THE MINIMUM CHAMBERS SHACH MUST BE MANTAWED.
 5. REFER TO CHAMBERS AND STANDALORS BOAD SHALL BE ADVIANCED ALONG THE LENGTH OF THE CHAMBERS. THE MINIMUM CHAMBERS SHACK MUST BE MANTAWED.
 6. REFER TO CHAMBERS AND STANDALORS BOAD SHALL BE ADVIANCED AND SHALL AND SHALL SHALL

6" (152 mm) MIN

ENGINEERED SOLUTIONS LC

est Chester, OH 45069 513-645-7993 FAX

6" (152 mm) M**IN.** 18" (305 mm) MIN.

295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

<u>100-year Storm Detention Requirements: Proposed - Undeveloped</u> **EAST**

<u>Existing Conditions</u> <u>Developed Conditions</u> Tributary Area: 3.88 acres

T_{C, pre}: 15 min T_{C, post}: 7 min

C_{pre}: 0.35 **Overall C_{post}: 0.79**

Storm Duration	100-year Intensity X K	Design Release Rate, Q _{pre}	Developed Peak Runoff Rate, Q _{post}	Detention Rate to Storage	Detention Volume
(min)	(in/hr)	(cfs)	(cfs)	(cfs)	(ft ³)
3.0	6.64	9.02	20.38	16.53	2,976
3.5	6.12	8.31	18.78	14.94	3,136
4.0	5.70	7.75	17.50	13.65	3,277
4.5	5.36	7.28	16.45	12.60	3,401
5.0	5.07	6.88	15.55	11.71	3,512
5.5	4.82	6.54	14.79	10.94	3,610
5.7	4.73	6.42	14.51	10.66	3,647
6.0	4.60	6.25	14.12	10.28	3,699
6.5	4.41	5.99	13.54	9.69	3,779
7.0	4.24	5.76	13.02	9.17	3,851
7.5	4.09	5.55	12.55	8.70	3,916
8.0	3.95	5.37	12.13	8.28	3,975
8.5	3.83	5.20	11.75	7.90	4,028
9.0	3.71	5.04	11.40	7.55	4,076
9.5	3.61	4.90	11.08	7.23	4,119
10.0	3.51	4.77	10.78	6.93	4,158
10.5	3.42	4.65	10.51	6.66	4,193
11.0	3.34	4.54	10.25	6.40	4,224
11.5	3.26	4.43	10.01	6.16	4,252
12.0	3.19	4.33	9.79	5.94	4,276
12.5	3.12	4.24	9.58	5.73	4,298
13.0	3.06	4.15	9.38	5.53	4,316
13.5	3.00	4.07	9.20	5.35	4,332
14.0	2.94	3.99	9.02	5.17	4,345
14.5	2.89	3.92	8.86	5.01	4,356
15.0	2.83	3.85	8.70	4.85	4,365
15.5	2.79	3.78	8.55	4.70	4,371
16.0	2.74	3.72	8.41	4.56	4,375
16.5	2.70	3.66	8.27	4.42	4,378
17.0	2.65	3.60	8.14	4.29	4,378
17.5	2.61	3.55	8.02	4.17	4,377
18.0	2.57	3.50	7.90	4.05	4,374
18.5	2.54	3.45	7.79	3.94	4,369
19.0	2.50	3.40	7.68	3.83	4,363
19.5	2.47	3.35	7.57	3.72	4,355
20.0	2.43	3.31	7.47	3.62	4,346

Notes:

- 1) Q = C-Value x Intensity x Tributary Area
- 2) Use design release rate of 2.96 cfs in correspondance with existing flow at time of concentration of 15 minutes
- 3) "Detention Rate to Storage" = "Developed Peak Runoff Rate" "Design Release Rate"

295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

East

Coi	nted	ch	Terre	Arch	26
-----	------	----	--------------	------	----

Contech Terre Arch 20			
# chambers	12		
volume/chamber	319.0	ft ³	
distribution manifold volume	93	ft ³	
Total chamber volume	4,200	ft³	
Stone Edge			
Footprint area	210	ft ²	
Stone depth	4.00	ft	
Edge volume	336	ft ³	*40% porosity
Total Detention Volume			
Total Detention Volume	4,536	ft ³	=Total Chamber Volume + Edge Volume
Required Detetnion Volume	4,378	3 ft ³	

Design Elevations

Sigii Elevations			
inished grade above chamber	123.00	ft	
Inlet invert	119.08	ft	
Stone cover Stone bedding depth		in in	4" minimum
Cover over top of stone	1.75	ft	8" Minimum
Min FG over chamber	121.58	ft	
Top of stone fill Top of chamber Bottom of chamber Bottom of stone bed	120.75 117.91	ft ft	=Weir elevation
Stone depth	4.00	ft	

NOTE: DOGHOUSE OPENINGS MAY BE LOCATED ON BOTH SIDES WHEN DISTRIBUTION MANIFOLD IS LOCATED BETWEEN TERRE ARCH UNITS

UNIT BEYOND

TERRE ARCH 26 DISTRIBUTION MANIFOLD

ELEVATION VIEW

- 2'**-**10" -2'-2

		TERRE	E ARCH 26 D	TERRE ARCH 26 DESIGN DETAILS		
GE FILL, TYP.	PART TYPE	*INSTALLED VOLUME	CHAMBER VOLUME	INFILTRATION AREA	WEIGHT	DIMENSIONS
A LWENT	DISTRIBUTION MANIFOLD	93 CF	78 CF	36 SF	11,500 LBS	3'-0" x 19'-0" x 2'-10"
	ARCH	319 CF	234.9 CF	152 SF	13,500 LBS	8'-0" x 19'-0" x 2'-10"
	CAPPING SLAB (2 REQUIRED PER ARCH)	0.6 CF	N/A	N/A	1,400 LBS	0'-4" x 9'-6" x 2'-10"

"INCLUDES VALLEYS BETWEEN ARCHES FILLED WITH STONE TO THE TOP OF THE PARAPET WALL, 6" COVER STONE ABOVE ARCH & 6" BASE STONE.
(40% VOID SPACE TYPICAL WITH STONE)

TERRE ARCH 26 MINIMUM STONE	26 N	MNIV	MU	STO		BEDDING	NG	DEP	ΡΤΗ	
COVER DEPTH (FT.)	1	2	3	4	5	6	7	8	9	10
MINIMUM BEDDING DEPTH (IN.)	6	7	9	10	11	12	13	14	15	16
COVER DEPTH BASED ON AN ALLOWABLE BEARING CAPACITY OF 3000 PSF.	LOWABL	E BEAR	NG CAF	ACITY (OF 3000	PSF.				

*PER ENGINEER OF RECORD

NOTES/SPECIAL REQUIREMENTS: SLAB THICKNESS BELOW ARCH (IN or mm) POROUS STONE BELOW ARCH (IN or mm) OR STONE POROSITY (0 to 40%) LIMITING LENGTH (FT or m³) LIMITING WIDTH (FT or m³) TOTAL REQUIRED STORAGE VOLUME (CF or m³)

SITE SPECIFIC DATA **REQUIREMENTS***

POROUS STONE ABOVE ARCH (IN or mm)

3'-0"

Ø24" OPENINGS TYPICAL DISTRIBUTION MANIFOLD TOP SLABS, IF REQUIRED

18'-0' 19'-0" (STONE BASE)

PIPE OR DOGHOUSE OPENING FOR CONVEYANCE TO DRAINAGE SYSTEM OR ADJACENT DISTRIBUTION MANIFOLD

PLAN VIEW

GRADE RING/RISER AND
CASTINGS TO BE PROVIDED
BY THE CONTRACTOR,
IF REQUIRED

DOGHOUSE OPENINGS, TYP. 4 PER SIDE, WHEN REQUIRED

_ DISTRIBUTION MANIFOLD

_ TERRE ARCH _UNITS

TERRE ARCH 26 STRUCTURE

ELEVATION VIEW

GENERAL NOTES 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE. 2. FOR SITE SPECIFIC DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.combedes.com 3. TERRE ARCH WATER OUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. 4. STRUCTURE SHALL MEET ANALTHE OUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING. 4. STRUCTURE SHALL MEET ANALTHE OUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS STONE IS POSSIBLE. 5. FILTER FABRIC ON GEOTETILE IS RECOMMENDED WHERE SILT MIGRATION FROM THE SIDES OR TOP INTO THE VOID SPACE OF THE STONE IS POSSIBLE.

NISTALLATION NOTES

A ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF A ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE TERRE ARCH AND ASSOCIATED STRUCTURES.

C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL TERRE ARCH STRUCTURES, DISTRIBUTION MANIFOLDS AND CAPPING SLAB SECTIONS
C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL TERRE ARCH STRUCTURES, DISTRIBUTION MANIFOLDS AND CAPPING SLAB SECTIONS
C. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ALL TERRE ARCH STRUCTURES, DISTRIBUTION MANIFOLDS AND CAPPING SLAB.
D. CONTRACTOR TO INSTALL JOINT SEALANT BETWEEN ANTICH ALL PIPE INVERTS WITH FINAL CONTECH CONTRACT DRAWINGS.
F. 1 MINIMUM EARTH COVER ABOVE TOP OF ARCH. CONTECH RECOMMENDS STONE FOR THE FIRST 8" OF COVER.

ENGINEERED SOLUTIONS LLC

Shiloh Crossing
295 Shiloh Road
Prepared by Carlile Macy
June 25, 2021

Incubator Pond Volume and Relocated Pond Volume

Storage Area	Bot	Bottom of Pond	100 Yea	100 Year Water Surface	Volume
	Elevation	Surface Area	Elevation	Surface Area	
Existing Incubator Pond	116.2	1515.0	120.5	2184.0	7860.4
Proposed Pond	118.0	472.0	121.5	4574.0	8830.5
				Net Volume change-	970.1
Existing and Dropped 26" Storm Drain Volume	Se" Storm Drain	Volumo			

	Existing
	and I
	Prop
	posed 3
	õ
	Storm Drain
	Drain \
ı	Volume

Storage Area	Length (ft)	Cross-section Area (ft^2) Volume (ft^3)	Volume (ft^3)
Existing 36" SD	507.0	7.1	3584.5
Proposed 36" SD	370.0	7.1	2615.9
		Net Volume change-	-969

Appendix D:

100-Year Storm Hydrology and Hydraulics

Scenario: 100 year Active Scenario: 100 year

West Detention Basin

Active Scenario: 100 year

Hydrology Report - Time: 0.00 hours

Label	Start Node	Stop Node	Diameter (in)	Length (ft)	Slope (ft/ft)	Elevation Ground	Elevation Ground	System Flow	ی ک	System Drainage		System Rational
			,		,	(Start)	(Stop)	Time	_	Area	(acres)	Flow
						(ft)	(ft)	(min)		(ft²)		(cfs)
CO-23	CB-13	CB-14	12.0	120.0	0.001	124.24	124.13	7.000	4.374	26,136.0		
CO-24	CB-14	MH-12	12.0	42.8	0.005	124.13	124.50	7.781	4.139	28,749.6		
CO-25	MH-12	MH-13	15.0	128.6	0.005	124.50	124.40	7.995	4.081	28,749.6		
CO-26	CB-15	MH-13	12.0	41.0	0.019	123.96	124.40	7.000	4.374	15,681.6	0.274	1.21
CO-27	MH-13	0-2	15.0	104.6	0.035	124.40	124.00	8.620	3.923	44,431.2		
CO-29	CB-18	CB-17	12.0	49.4	0.005	122.90	123.30	7.000	4.374	7,840.8		0.60
CO-30	CB-17	0-4	12.0	60.3	0.031	123.30	123.00	8.072	4.060	15,681.6		
CO-54	CB-16	0-2	12.0	54.8	0.054	123.96	124.00	7.000	4.374	14,374.8	0.251	

Hydraulic Report - Time: 0.00 hours

2	2	<u>ე</u>	<u>ი</u>	<u>ე</u>	<u>ი</u>	<u>ი</u>	<u>ე</u>				
)-54)-30)-29	CO-27)-26)-25)-24	0-23				Label
CB-16	CB-17	CB-18	MH-13	CB-15	MH-12	CB-14	CB-13				Start Node
120.29	119.18	119.43	121.00	121.76	121.64	121.85	122.00	(17)	€	(Start)	Invert
0-2	0-4	CB-17	0-2	MH-13	MH-13	MH-12	CB-14				Stop Node
117.32	117.32	119.18	117.32	121.00	121.00	121.64	121.85	(15)	(€	(Stop)	Invert
12.0	12.0	12.0	15.0	12.0	15.0	12.0	12.0			(Ē	Dia.
54.8	60.3	49.4	104.6	41.0	128.6	42.8	120.0			(†	Length
0.054	0.031	0.005	0.035	0.019	0.005	0.005	0.001			(#/ft)	Slope
1.11	1.12	0.60	3.07	1.21	2.06	2.09	2.01			(cfs)	Flow
6.97	1.43	0.77	7.81	4.86	3.43	3.34	2.56			(ft/s)	Velocity
0.38	0.07	0.02	1.35	0.47	0.52	0.24	0.44		,	(†	Hdloss
123.96	123.30	122.90	124.40	123.96	124.50	124.13	124.24	(ft)	(5424)	Ground	Elev.
120.73	120.42	120.51	121.70	122.22	122.26	122.59	123.17	(15)	€.	(In)	된
120.90	120.45	120.52	121.99	122.40	122.44	122.76	123.28	(1)	€.	(In)	딘
124.00	123.00	123.30	124.00	124.40	124.40	124.50	124.13	(ft)	(Ston)	Ground	Elev.
120.35	120.35	120.50	120.35	121.75	121.74	122.35	122.74	(14)	€	(Out)	HGL
120.38	120.38	120.51	120.45	121.81	121.86	122.54	122.85	(10)	€	(Out)	EGL

Manhole Report - Time: 0.00 hours

False	121.70 False	121.74	3.07	0.00	0.00	3.07	3.923	8.620	0.775	121.00	124.40	MH-13
False	122.26 False	122.35	2.06	0.00	0.00	2.06	4.081	7.995	0.502	121.64	124.50	MH-12
			(cfs)		(cfs)	(cfs)						
	(₹		Out)	(cfs)	Flow	Flow	(in/h)	(min)	(acres)	(†)	(†)	
Overflowing?	(Out)	(†	(Total	(Known)	Known	Rational	Intensity	Flow Time	Ç	(Invert)	(Rim)	
Is	HGL	HGL (In)	Flow	Flow	System	System	System	System	System	Elevation	Elevation	Label

Active Scenario: 100 year

Outfall Report - Time: 0.00 hours

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	(ft)	Depth (Node) (ft)	(ft)	System Flow Time (min)	System CA (acres)	System Rational Flow (cfs)	Flow (Total Out) (cfs)	Notes
0-2	124.00	117.32	120.35	3.03	120.35	8.843	1.026	3.02	4.12	NW Inflow
0-4	123.00	117.32	120.35	3.03	120.35	8.777	0.274	1.07	1.07	SW Inflow

Catch Basin Detailed Report - Time: 0.00 hours

CB-18	CB-17	CB-16	CB-14	CB-13		Label
<none></none>	<none></none>	<none></none>	<none></none>	<none></none>	THICE	Inlet
In Sag	Location	Inlet				
0.180	0.180	0.330	0.060	0.600	Drainage Area (acres)	Inlet
0.60	0.60	1.11	0.20	2.01	Rational Flow to Inlet (cfs)	
0.60	0.60	1.11	0.20	2.01	Rational Flow (cfs)	Intercepted
0.00	0.00	0.00	0.00	0.00	Rational Flow (cfs)	Rynassed
0.0	0.0	0.0	0.0	0.0	Top Width (ft)	Snread /
(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	(Gutter) (in)	Denth
0.0	0.0	0.0	0.0	0.0	Opening Length (ft)	<u></u>
100.0	100.0	100.0 False	100.0	100.0	Efficiency (Calculated) (%)	Capture
00.0 False	False	False	False	False	Overflowing?	Is

Active Scenario: 100 year

Hydrology Report - Time: 0.00 hours

0.153	2.05	0.693	86,248.8	2.936	15.000	121.50	123.80	0.006	46.1	24.0	FD-23-1	MH-14	CO-31
(min)	(cfs)		(ft²)		(min)	(ft)	(ft)						
Flow)	Flow	(acres)	Area	(in/h)	Time	(Stop)	(Start)						
(Pipe	Rational	S	Drainage	Intensity	Flow	Ground	Ground	(ft/ft)	(†	(in)			
Time	System	System	System	System	System	Elevation	Elevation	Slope	Length	Diameter	Stop Node	Start Node	Label

Hydraulic Report - Time: 0.00 hours

120.35	121.50	120.36	120.35	123.80	0.00	0.65	2.05	0.006	46.1	24.0	115.97	116.23 FD-23-1	116.23	MH-14	CO-31
	(f)			(†											
((Stop)	(†	(†	(Start)							((†		
(Out)	Ground	(In)	(In)	Ground	(₹	(ft/s)	(cfs)	(ft/ft)	(†	(in)	(Stop)		(Start)		
된	Elev.	EGL	된	Elev.	Hdloss	Velocity	Flow	Slope	Length	Dia.	Invert	Stop Node	Invert	Start Node	Label

Manhole Report - Time: 0.00 hours

			Ī									
120.35 120.35	120.35	_	2.05	0.00	0.00	2.05	2.936	15.000	0.693	116.23	123.80	MH-14
			(cfs)		(cfs)	(cfs)						
(ft)			Out)	(cfs)	Flow	Flow	(in/h)	(min)	(acres)	(†)	ŧ	
al (ft) (Out)	(†)	<u> </u>	(Tota	(Known)	Known	Rational	Intensity	Flow Time	CA	(Invert)	(Rim)	
/ HGL (In) HGL	/ HGL (In)		Flow	Flow	System	System	System	System	System	Elevation	Elevation	Label

Outfall Report - Time: 0.00 hours

	1.97	1.99	0.700	16.176	120.35	4.38	120.35	115.97	121.50	FD-23-1
		(cfs)		(min)						
	(cfs)	Flow	(acres)	Time		(₱		(†)	(†	
	Out)	Rational	S	Flow	(†)	(Node)	(†)	(Invert)	(Ground)	
Notes	Flow (Total	System	System	System	EGL	Depth	HGL	Elevation	Elevation	Label

Engineering Profile - West-South Detention (21017-Shiloh Crossing.stsw) **Profile Report**

Station (ft)

Engineering Profile - West-North Detention (21017-Shiloh Crossing.stsw) **Profile Report**

Active Scenario: 100 year

Station (ft)

East Detention Basin

Active Scenario: 100 year

Hydrology Report - Time: 0.00 hours

Stop	Stop Node	Diameter	Length	Slope	Elevation	Elevation	System	System	System	System	System	Time
	ت	(ii)	£)	(ft/ft)	Ground	Ground	Flow	Intensity	Drainage	5	Rational	(Pipe
					(Start)	(Stop)	Time	(in/h)	Area	(acres)	Flow	Flow)
					(ft)	(#)	(min)		(ft²)		(cts)	(min)
6-HW		12.0	43.4	600.0	122.92	123.65	7.000	4.374	25,264.8	0.458	2.02	0.179
		2.0	24.1	0.017	123.65	123.79	7.281	4.285	25,264.8	0.458	1.98	0.072
	7	4.0	16.5	0.044	122.80	123.79	7.000	4.374	17,859.6	0.324	1.43	0.043
		5.0	44.6	0.00	123.42	123.80	10.297	3.575	91,476.0	1.659	5.98	0.156
MH-10		15.0	49.5	0.005	123.00	123.42	10.000	3.630	51,400.8	0.932	3.41	0.238
MH-10		15.0	58.1	0.020	124.00	123.42	7.070	4.351	40,075.2	0.727	3.19	0.140
MH-11		12.0	17.3	0.005	124.41	124.00	7.000	4.374	40,075.2	0.727	3.20	0.100

Hydraulic Report - Time: 0.00 hours

Label Start Node Invert Stop Node Invert Chapel Flow Velocity Hdloss Elev. HGL EGL HGL EGL HGL EGL Co-16 (Start) (ft) (ft) (ft/ft)									
Start Node Invert Stop Node Invert Dia. Length (ft) (ft) (ft/s) (ft/s) <th< td=""><td>EGL (Out)</td><th>(ft)</th><td>121.53</td><td>121.35</td><td>121.25</td><td>121.62</td><td>122.00</td><td>121.90</td><td>122.30</td></th<>	EGL (Out)	(ft)	121.53	121.35	121.25	121.62	122.00	121.90	122.30
Start Node Invert Stop Node Invert Stop Node (in) (ft) (ft/ft) (cfs) (ft/s) (ft/	HGL (Out)	(ft)	121.43	121.25	121.25	121.25	121.88	121.79	122.04
Start Node Invert Stop Node Invert Dia. Length (ft) Slope Flow (ft/s) Holloss Elev. HGL (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) CB-8 119.50 MH-9 119.08 12.0 24.1 0.017 1.98 2.52 0.09 122.92 121.34 CB-6 119.50 0-6 119.08 12.0 24.1 0.017 1.98 2.52 0.09 122.02 121.34 MH-10 119.50 0-6 119.08 12.0 24.1 0.017 1.98 2.52 0.09 123.62 121.34 CB-6 119.50 0-6 119.08 15.0 44.6 0.009 5.98 4.87 0.44 123.42 121.69 CB-7 119.75 MH-10 119.50 15.0 49.5 0.005 3.41 2.78 0.16 122.00 121.96 CB-5 110.76 MH-11	Elev. Ground	(Stop) (ft)	123.65	123.79	123.79	123.80	123.42	123.42	124.00
Start Node Invert Stop Node Invert City	EGL (In)	(ft)	121.69	121.43	121.25	122.06	122.16	122.06	122.46
Start Node Invert Stop Node Invert Dia. Length Slope Flow Velocity Hdloss (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	HGL (In)	(ft)	121.59	121.34	121.25	121.69	122.04	121.96	122.20
Start Node Invert (Start) Stop Node (Start) Invert (Start) (in) (ft) (ft) (ft) (ft) (ft) (ft) (ft/ft) (ft/ft) House (ft/s) (ft/s) House (ft/s) (ft/s) House (ft/s) <	Elev. Ground	(Start) (ft)	122.92	123.65	122.80	123.42	123.00	124.00	124.41
Start Node Invert Stop Node Invert Dia. Length Slope Flow Vel (Start) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (f	Hdloss (ft)		0.16	0.09	0.00	0.44	0.16	0.16	0.16
Start Node Invert Stop Node (Stop) (in) (ft) (ft/ft) (Velocity (ft/s)		2.57	2.52	6.40	4.87	2.78	2.60	4.08
Start Node Invert Stop Node Invert Oia. Length S (Stor) (in) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft	Flow (cfs)	,	2.02	1.98	1.43	5.98	3.41	3.19	3.20
Start Node Invert Stop Node Invert Dia. Lel (Start) (ft) (in) (ft) (in) (in) (in) (in) (in) (in) (in) (in	Slope (ft/ft)		0.009	0.017	0.044	0.00	0.005	0.020	0.002
Start Node Invert Stop Node Invert (Start) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (f	Length (ft)		43.4	24.1	16.5	44.6	49.5	58.1	17.3
CB-8 (Start) (ft) (ft) (ft) (All 119.50 MH-9 MH-10 MH-10 MH-10 MH-10 MH-10 MH-10 MH-10 MH-11 MH-	Dia. (in)	,	12.0	12.0	24.0	15.0	15.0	15.0	12.0
CB-8 119.90 MH-10 119.50 OCB-7 119.75 MH-11 120.66 MH-11 CCB-5 120.74 MCB-5 120.74 MCB-7 120.66 MCB-7 120.74 MCB-5 120.74 MCB-7 120.66 MCB-7 120.74	Invert (Stop)	(ft)	119.50	119.08	119.08	119.08	119.50	119.50	120.66
CB-8 119.59 (R)	Stop Node		6-HW	9-0	9-0	0-5	MH-10	MH-10	MH-11
	Invert (Start)	(ft)	119.90	119.50	119.80	119.50	119.75	120.66	120.74
CO-16 CO-17 CO-18 CO-19 CO-20 CO-21 CO-22	Start Node		CB-8	MH-9	CB-6	MH-10	CB-7	MH-11	CB-5
	Label		CO-16	CO-17	CO-18	CO-19	CO-20	CO-21	CO-22

Manhole Report - Time: 0.00 hours

1-1-1	Planting.						t.			(*1)	-	F
Label	Elevation	Elevation	System	System	System	System	System	MOL	MOL	HGL (III)	널	IS
	(Rim)	(Invert)	S	Flow Time	Intensity	Rational	Known	(Known)	(Total	(£)	(Out)	Overflowing?
	(L)	(£)	(acres)	(min)	(in/h)	Flow	Flow	(cts)	Out)		(L)	
						(cts)	(cts)		(cts)			
6-HM	123.65	119.50	0.458	7.281	4.285	1.98	0.00	0.00	1.98	121.43	121.34	False
MH-10	123.42	119.50	1.659	10.297	3.575	5.98	0.00	0.00	5.98	121.79	121.69	False
MH-11	124.00	120.66	0.727	7.070	4.351	3.19	0.00	0.00	3.19	122.04	121.96	False

Active Scenario: 100 year

Outfall Report - Time: 0.00 hours

Notes	NE Inflow	3.38 SE Inflow
Flow (Total Out) (cfs)	5.93	3.38
System Rational Flow (cfs)	5.93	1.42
System CA (acres)	1.659	0.782
System Flow Time (min)	10.449	7.441
EGL (ft)	121.25	121.25
Depth (Node) (ft)	2.17	2.17
HGL (ft)	121.25	121.25
Elevation (Invert) (ft)	119.08	119.08
Elevation (Ground) (ft)	123.80	123.79
Label	0-5	9-0

Catch Basin Detailed Report - Time: 0.00 hours

Is Overflowing?	False	False	False	False
Capture Efficiency (Calculated) (%)	100.0	100.0	100.0	100.0
Curb Opening Length (ft)	0.0	0.0	0.0	0.0
Depth (Gutter) (in)	(N/A)	(N/A)	(N/A)	(N/A)
Spread / Top Width (ft)	0.0	0.0	0.0	0.0
Bypassed Rational Flow (cfs)	0.00	0.00	0.00	0.00
Intercepted Rational Flow (cfs)	3.20	1.43	3.41	2.02
Total Rational Flow to Inlet (cfs)	3.20	1.43	3.41	2.02
Inlet Drainage Area (acres)	0.920	0.410	1.180	0.580
Inlet Location	In Sag	In Sag	In Sag	In Sag
Inlet	<none></none>	<none></none>	<none> In Sag</none>	<none></none>
Label	CB-5	CB-6	CB-7	CB-8

21017-Shiloh Crossing.stsw 6/25/2021

Shiloh Crossing Active Scenario: 100 year

Hydrology Report - Time: 0.00 hours

21017-Shiloh Crossing.stsw 6/25/2021

Shiloh Crossing
Active Scenario: 100 year
Hydraulic Report - Time: 0.00 hours

EX CO-1	CO-55	CO-35	CO-15	CO-14	CO-13	CO-12	CO-11	CO-10	CO-9	CO-8	CO-7	CO-6	CO-5	CO-4	CO-3	CO-2	CO-1			Label
MH-8	MH-28	FD-2	MH-7	CB-12	MH-6	CB-11	MH-5	CB-10	CB-9	MH-4	MH-3	CB-3	CB-4	MH-2	MH-1	CB-1	CB-2			Start Node
115.56	119.50	118.99	116.15	116.75	116.95	117.50	117.31	118.00	117.42	117.64	117.79	118.15	117.85	118.08	118.37	118.95	118.74	(11)	(Start)	Invert
EX MH-6	MH-2	CB-1	MH-8	MH-7	MH-7	MH-6	MH-6	MH-5	MH-5	CB-9	MH-4	MH-3	MH-3	MH-3	MH-2	MH-1	MH-1			Stop Node
114.90	118.08	118.95	116.06	116.15	116.65	116.95	116.95	117.31	117.31	117.42	117.64	117.79	117.79	117.79	118.08	118.37	118.37	(11)	(Stop)	Invert
36.0	18.0	15.0	30.0	30.0	24.0	12.0	24.0	12.0	24.0	24.0	24.0	15.0	15.0	24.0	18.0	15.0	15.0		(in)	Dia.
80.4	63.4	7.0	32.1	9.7	99.2	10.0	120.1	7.9	39.3	72.2	50.0	14.9	24.7	96.8	96.8	15.1	25.6		ŧ	Length
0.008	0.022	0.006	0.003	0.062	0.003	0.055	0.003	0.088	0.003	0.003	0.003	0.024	0.002	0.003	0.003	0.038	0.014		(ft/ft)	Slope
42.23	2.36	3.02	11.35	0.40	11.26	0.99	10.84	0.60	10.53	10.25	10.33	3.60	0.73	6.61	4.41	3.74	1.02		(cfs)	Flow
5.97	1.34	2.46	2.31	0.08	3.58	1.26	3.45	0.76	3.35	3.26	3.29	2.93	0.59	2.10	2.50	3.05	0.83		(ft/s)	Velocity
0.37	0.04	0.02	0.03	0.00	0.29	0.01	0.32	0.00	0.10	0.17	0.12	0.05	0.00	0.10	0.20	0.06	0.01		(†	Hdloss
123.10	123.00	123.00	123.17	122.73	123.50	122.70	123.22	123.05	122.97	123.70	122.90	122.97	122.97	123.50	124.00	124.00	124.00	(Start) (ft)	Ground	Elev.
119.27	121.25	121.61	119.74	119.76	120.10	120.12	120.45	120.46	120.57	120.79	121.07	121.17	121.08	121.19	121.40	121.54	121.43	(11)	(Ē	HGL
119.83	121.27	121.70	119.83	119.76	120.30	120.15	120.64	120.47	120.75	120.95	121.24	121.30	121.09	121.26	121.49	121.69	121.44	(11)	(In)	EGL
122.00	123.50	124.00	123.10	123.17	123.17	123.50	123.50	123.22	123.22	122.97	123.70	122.90	122.90	122.90	123.50	124.00	124.00	(ft)	Ground	Elev.
118.90	121.21	121.59	119.71	119.76	119.81	120.11	120.13	120.46	120.47	120.62	120.95	121.12	121.08	121.09	121.20	121.48	121.42	(11)	(Out)	HGL
119.45	121.24	121.68	119.80	119.76	120.01	120.14	120.32	120.47	120.65	120.78	121.12	121.25	121.08	121.16	121.30	121.63	121.43	(11)	(Out)	EGL

21017-Shiloh Crossing.stsw 6/25/2021

Shiloh Crossing

Active Scenario: 100 year

Manhole Report - Time: 0.00 hours

1	1						1	1	· · · · · · · ·	<u>.</u>	
(Rim)	(Invert)	CA CA	System Flow Time	Intensity	Rational	Known	(Known)	(Total	(ft) Her (In)	(Out)	Overflowing?
(ft)	(ft)	(acres)	(min)	(in/h)	Flow (cfs)	Flow (cfs)	(cfs)	Out) (cfs)		(ft)	
124.00	118.37	1.497	15.130	2.923	4.41	0.00	0.00	4.41	121.42	121.40	False
123.50	118.08	2.295	15.791	2.858	6.61	0.00	0.00	6.61	121.20	121.19	False
122.90	117.79	3.676	16.558	2.788	10.33	0.00	0.00	10.33	121.08	121.07	False
123.70	117.64	3.676	16.811	2.766	10.25	0.00	0.00	10.25	120.95	120.79	False
123.22	117.31	3.955	17.375	2.719	10.84	0.00	0.00	10.84	120.46	120.45	False
123.50	116.95	4.180	17.955	2.673	11.26	0.00	0.00	11.26	120.11	120.10	False
123.17	116.15	4.270	18.416	2.637	11.35	0.00	0.00	11.35	119.76	119.74	False
123.10	115.56	4.270	18.648	2.620	11.28	0.00	0.00	42.23	119.71	119.27	False
123.00	119.50	0.798	15.000	2.936	2.36	0.00	0.00	2.36	121.25	121.25	False
	Elevation (Rim) (ft) (ft) (124.00 123.50 123.70 123.17 123.10	Elevation (Rim) (Invert) (R) (R) (Invert) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	(Ir (Ir (Ir (Ir (Ir (Ir (Ir (Ir (Ir (Ir	(Invert) (a (ft) (a (f	Mn Elevation System (Invert) CA Flow (Invert) (acres) (1 00 118.37 1.497 118.08 2.295 00 117.79 3.676 70 117.64 3.676 70 117.64 3.676 22 117.31 3.955 22 117.31 3.955 21 116.15 4.180 17 116.15 4.270 10 119.50 0.798	nn Elevation System System System (Invert) CA (Invert) (acres) (min) (in/h) 00 118.37 1.497 15.130 2.923 118.08 2.295 15.791 2.858 2.788 2.788 2.788 2.719 117.64 3.676 16.811 2.766 22 117.31 3.955 17.375 2.719 2.673 116.15 4.270 18.648 2.620 119.50 0.798 15.000 2.936	nn Elevation System System System (Invert) CA (Invert) (acres) (min) (in/h) Flow Time Intensity Rat	In Elevation System (Invert) System CA (Invert) System CA (Invert) System CA (Invert) System CA (Invert) System Intensity (Invert) System Intensity (Invert) System Intensity (Invert) System Intensity (Invert) System System (Invert) System System (Invert) System System (Invert) System System (Intensity (Invert) System (Invert) <th< td=""><td>In Elevation System (Invert) System (CA (Invert) System (CA (Invert) System (Invert) System (Invert) System (Intensity (Intensity) System (Intensity) System (Invert) Flow (Invert) Flow (Intensity) Rational (Invert) Known (Known) (Invert) Tour (Invert) Tour (Invert) Tour (Invert) Tour (Invert) Tour (Invert) Flow (Invert) <</td><td>In Elevation System (Invert) System (CA (Invert)) System (Invert) System (Invert) System (Invert) System (Intensity) System (Intensity) System (Intensity) System (Invert) Flow (In</td><td>In Elevation System (Invert) System (CA (Invert)) System (CA (Invert)) System (Invert) Flow (Invert) Flow (Invert) Flow (Invert) HGL (In) (Invert) HGL (In) (Out) HGL (In) (Out) HGL (In) (Invert) HGL (In) (Invert)</td></th<>	In Elevation System (Invert) System (CA (Invert) System (CA (Invert) System (Invert) System (Invert) System (Intensity (Intensity) System (Intensity) System (Invert) Flow (Invert) Flow (Intensity) Rational (Invert) Known (Known) (Invert) Tour (Invert) Tour (Invert) Tour (Invert) Tour (Invert) Tour (Invert) Flow (Invert) <	In Elevation System (Invert) System (CA (Invert)) System (Invert) System (Invert) System (Invert) System (Intensity) System (Intensity) System (Intensity) System (Invert) Flow (In	In Elevation System (Invert) System (CA (Invert)) System (CA (Invert)) System (Invert) Flow (Invert) Flow (Invert) Flow (Invert) HGL (In) (Invert) HGL (In) (Out) HGL (In) (Out) HGL (In) (Invert) HGL (In) (Invert)

Shiloh Crossing

Active Scenario: 100 year

Outfall Report - Time: 0.00 hours

	42.16	11.21	4.270	18.872	118.90	4.00	118.90	114.90	122.00	EX MH-6
		(cfs)		(min)						
	(cfs)	Flow	(acres)	Time		(1		(†)	(1	
	Out)	Rational	δ	Flow	(†	(Node)	(†)	(Invert)	(Ground)	
Notes	Flow (Total	System	System	System	EGL	Depth	HGL	Elevation	Elevation	Label

Catch Basin Detailed Report - Time: 0.00 hours

FD-2	CB-12	CB-11	CB-10	СВ-9	CB-4	CB-3	CB-2	CB-1	Label
<none></none>	Inlet								
In Sag	Inlet Location								
1.960	0.100	0.250	0.150	0.160	0.190	2.190	0.290	0.270	Inlet Drainage Area (acres)
3.02	0.40	0.99	0.60	0.63	0.73	3.60	1.02	1.07	Total Rational Flow to Inlet (cfs)
3.02	0.40	0.99	0.60	0.63	0.73	3.60	1.02	1.07	Intercepted Rational Flow (cfs)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Bypassed Rational Flow (cfs)
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Spread / Top Width (ft)
(N/A)	Depth (Gutter) (in)								
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Curb Opening Length (ft)
100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	Capture Efficiency (Calculated) (%)
False	Is Overflowing?								

Engineering Profile - East-North Detention (21017-Shiloh Crossing.stsw) Active Scenario: 100 year **Profile Report**

Engineering Profile - East-South Detention (21017-Shiloh Crossing.stsw) Active Scenario: 100 year **Profile Report**

Engineering Profile - East Outfall (21017-Shiloh Crossing.stsw) **Profile Report**

Elevation (ft)

North Detention Pond

Shiloh Crossing

Active Scenario: 100 year

Hydrology Report - Time: 0.00 hours

0.102	14.58	5.346	2.706 388,990.8	2.706	17.532	121.50	121.90		35.6	36.0	FD-23-2		CO-35
0.419	15.08	5.343	388,555.2	2.800	16.428	121.90	121.85		141.3	36.0	FD-22		CO-34
0.411	15.59		387,684.0	2.898	15.381	121.85	123.25	0.004	138.6	36.0	FD-21	CB-7	CO-33
0.148	15.78	5.332	2.936 387,248.4	2.936	15.000	123.25	121.50		51.0	36.0	CB-7		CO-32
(min)	(cfs)		(ft²)		(min)	(ft)	(ft)						
Flow)	Flow	(acres)	Area	(in/h)	Time	(Stop)	(Start)						
(Pipe	Rational	S	Drainage	Intensity	Flow	Ground	Ground	(ft/ft)	(†)	(in)			
Time	System	System	System	System	System	Elevation	Elevation	Slope	Length	Diameter	Stop Node	Start Node	Label

Hydraulic Report - Time: 0.00 hours

8	2	8	8		
CO-35	-34	CO-33	-32		Label
FD-22	FD-21	CB-7	CB-8		Start Node
116.13	116.71	117.28	117.50	(Start) (ft)	Invert
116.13 FD-23-2	FD-22	FD-21	CB-7	-	Stop Node
115.97	116.13	116.71	117.28	(Stop) (ft)	Invert
36.0	36.0	36.0	36.0	(in)	Dia.
35.6	141.3	138.6	51.0	(ft)	Lenath
	0.004			(ft/ft)	Slope
14.58	15.08	15.59	15.78	(cfs)	
2.06	2.13	2.21	2.23	(ft/s)	Velocity
0.02	0.08	0.09	0.03	(ft)	Hdloss
121.90	121.85	123.25	121.50	Ground (Start) (ft)	Elev.
120.52	120.61	120.70	120.77	(In) (ft)	표
120.59	120.68	120.78	120.85	(In) (ft)	EG.
121.50	121.90	121.85	123.25	Ground (Stop) (ft)	Elev.
120.50			120.74		
			120.81		EGL

Outfall Report - Time: 0.00 hours

	14.46	14.46	5.346	17.820	120.50	4.53	120.50	115.97	121.50	FD-23-2
		(cfs)		(min)						
	(cfs)	Flow	(acres)	Time		(†)		(†	(†	
	Out)	Rational	δ	Flow	(†)	(Node)	(†)	(Invert)	(Ground)	
Notes	Flow (Total	System	System	System	EGL	Depth	HGL	Elevation	Elevation	Label

21017-Shiloh Crossing.stsw 6/25/2021

Shiloh Crossing Active Scenario: 100 year

Catch Basin Detailed Report - Time: 0.00 hours

FD-22	FD-21	CB-8	CB-7	Label
<none></none>	<none></none>	<none></none>	<none></none>	Inlet
In Sag	In Sag	In Sag	In Sag	Inlet Location
0.010	0.020	8.890	0.010	Inlet Drainage Area (acres)
0.01	0.02	15.78	0.01	Total Rational Flow to Inlet (cfs)
0.01	0.02	15.78	0.01	Intercepted Rational Flow (cfs)
0.00	0.00	0.00	0.00	Bypassed Rational Flow (cfs)
0.0	0.0	0.0	0.0	Spread / Top Width (ft)
(N/A)	(N/A)	(N/A)	(N/A)	Depth (Gutter) (in)
0.0	0.0	0.0	0.0	Curb Opening Length (ft)
100.0	100.0	100.0 False	100.0	Capture Efficiency (Calculated) (%)
.00.0 False	False	False	False	Is Overflowing?

21017-Shiloh Crossing.stsw 6/25/2021

Engineering Profile - Pond Outfall (21017-Shiloh Crossing.stsw) Active Scenario: 100 year **Profile Report**

Appendix E:

Reference Information

- Soil Map
- NOAA Precipitation Frequency Table
- Shiloh Industrial Center Drainage Report
 - Windsor Redwoods Drainage Report

MAP LEGEND

Soils Area of Interest (AOI) Special Point Features Borrow Pit Mine or Quarry Marsh or swamp Lava Flow Landfill Gravelly Spot Gravel Pit Closed Depression Clay Spot Blowout Soil Map Unit Points Soil Map Unit Lines Soil Map Unit Polygons Area of Interest (AOI) Background Water Features Transportation ŧ W 4 Rails Stony Spot Other Aerial Photography Local Roads US Routes Interstate Highways Streams and Canals Special Line Features Wet Spot Very Stony Spot Spoil Area Major Roads

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Sonoma County, California Survey Area Data: Version 14, May 29, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 1, 2020—Oct 30 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Slide or Slip Sodic Spot Severely Eroded Spot

Miscellaneous Water
Perennial Water
Rock Outcrop
Saline Spot
Sandy Spot

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
CeA	Clear Lake clay, sandy substratum, drained, 0 to 2 percent slopes, MLRA 14	0.2	2.8%
HtA	Huichica loam, 0 to 2 percent slopes	6.9	79.8%
HwB	Huichica loam, shallow, ponded, 0 to 5 percent slopes	1.5	17.3%
Totals for Area of Interest		8.7	100.0%

Sonoma County, California

HtA—Huichica loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: hffk Elevation: 100 to 300 feet

Mean annual precipitation: 30 inches Mean annual air temperature: 61 degrees F

Frost-free period: 260 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Huichica and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Huichica

Setting

Landform: Terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Base slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Alluvium derived from igneous, metamorphic and

sedimentary rock

Typical profile

H1 - 0 to 14 inches: loam

H2 - 14 to 23 inches: sandy clay loam

H3 - 23 to 30 inches: clay
H4 - 30 to 57 inches: cemented

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches; 20 to 40 inches to

duripan

Drainage class: Moderately well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: C

Hydric soil rating: No

Minor Components

Unnamed

Percent of map unit: 5 percent Landform: Basin floors Hydric soil rating: Yes

Wright

Percent of map unit: 3 percent Hydric soil rating: No

Haire

Percent of map unit: 3 percent Hydric soil rating: No

Clear lake

Percent of map unit: 2 percent Landform: Depressions Hydric soil rating: Yes

Zamora

Percent of map unit: 2 percent Hydric soil rating: No

Data Source Information

Soil Survey Area: Sonoma County, California Survey Area Data: Version 14, May 29, 2020

NOAA Atlas 14, Volume 6, Version 2 Location name: Windsor, California, USA* Latitude: 38.5266°, Longitude: -122.7848° Elevation: 125 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	ased poin	t precipit	ation freq	uency est	timates w	ith 90% c	onfidence	intervals	(in inche	s/hour) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	1.98 (1.75-2.24)	2.41 (2.15-2.75)	2.98 (2.64-3.40)	3.42 (3.00-3.95)	4.02 (3.40-4.82)	4.48 (3.68-5.50)	4.93 (3.94-6.23)	5.39 (4.16-7.03)	5.99 (4.42-8.21)	6.46 (4.57-9.20)
10-min	1.42 (1.26-1.61)	1.73 (1.54-1.97)	2.13 (1.89-2.44)	2.45 (2.15-2.83)	2.89 (2.43-3.46)	3.21 (2.64-3.94)	3.53 (2.82-4.46)	3.86 (2.98-5.04)	4.30 (3.16-5.89)	4.63 (3.28-6.59)
15-min	1.14 (1.02-1.30)	1.40 (1.24-1.58)	1.72 (1.52-1.96)	1.98 (1.74-2.28)	2.32 (1.96-2.79)	2.59 (2.13-3.18)	2.85 (2.28-3.60)	3.11 (2.41-4.06)	3.46 (2.55-4.74)	3.73 (2.64-5.32)
30-min	0.800 (0.712-0.908)	0.978 (0.868-1.11)	1.21 (1.07-1.38)	1.39 (1.22-1.60)	1.63 (1.37-1.95)	1.81 (1.49-2.23)	2.00 (1.59-2.52)	2.18 (1.69-2.85)	2.43 (1.79-3.33)	2.61 (1.85-3.73)
60-min	0.562 (0.499-0.638)	0.686 (0.609-0.780)	0.846 (0.749-0.965)	0.973 (0.853-1.12)	1.14 (0.964-1.37)	1.27 (1.05-1.56)	1.40 (1.12-1.77)	1.53 (1.18-2.00)	1.70 (1.25-2.33)	1.83 (1.30-2.62)
2-hr	0.424 (0.378-0.482)	0.514 (0.456-0.585)	0.628 (0.556-0.716)	0.716 (0.628-0.825)	0.832 (0.701-0.997)	0.918 (0.754-1.13)	1.00 (0.800-1.27)	1.08 (0.838-1.42)	1.19 (0.878-1.63)	1.27 (0.900-1.81)
3-hr	0.361 (0.321-0.409)	0.436 (0.387-0.495)	0.529 (0.468-0.603)	0.602 (0.528-0.693)	0.696 (0.586-0.834)	0.765 (0.629-0.940)	0.832 (0.665-1.05)	0.898 (0.694-1.17)	0.982 (0.724-1.35)	1.04 (0.739-1.49)
6-hr	0.272 (0.242-0.309)	0.329 (0.292-0.374)	0.399 (0.353-0.455)	0.452 (0.397-0.521)	0.521 (0.439-0.624)	0.570 (0.469-0.701)	0.618 (0.493-0.781)	0.664 (0.513-0.867)	0.722 (0.532-0.990)	0.765 (0.541-1.09)
12-hr	0.192 (0.170-0.218)	0.235 (0.209-0.268)	0.288 (0.255-0.329)	0.329 (0.288-0.379)	0.380 (0.320-0.455)	0.416 (0.342-0.511)	0.451 (0.360-0.570)	0.484 (0.374-0.632)	0.526 (0.388-0.721)	0.556 (0.394-0.793)
24-hr	0.132 (0.119-0.150)	0.165 (0.148-0.188)	0.206 (0.184-0.234)	0.236 (0.210-0.271)	0.274 (0.237-0.324)	0.301 (0.256-0.363)	0.327 (0.271-0.402)	0.352 (0.285-0.443)	0.383 (0.299-0.500)	0.405 (0.306-0.545)
2-day	0.087 (0.078-0.099)	0.110 (0.099-0.125)	0.138 (0.123-0.157)	0.159 (0.141-0.182)	0.185 (0.160-0.218)	0.203 (0.172-0.245)	0.221 (0.183-0.271)	0.238 (0.192-0.299)	0.258 (0.202-0.338)	0.273 (0.207-0.369)
3-day	0.067 (0.060-0.076)	0.085 (0.076-0.097)	0.107 (0.096-0.122)	0.123 (0.110-0.141)	0.144 (0.124-0.170)	0.158 (0.134-0.190)	0.172 (0.143-0.211)	0.185 (0.150-0.233)	0.201 (0.157-0.263)	0.213 (0.161-0.287)
4-day	0.056 (0.050-0.063)	0.071 (0.064-0.081)	0.089 (0.080-0.102)	0.103 (0.092-0.118)	0.120 (0.104-0.142)	0.133 (0.112-0.159)	0.144 (0.120-0.177)	0.155 (0.126-0.195)	0.169 (0.132-0.221)	0.179 (0.135-0.241)
7-day	0.039 (0.035-0.045)	0.050 (0.045-0.057)	0.063 (0.057-0.072)	0.073 (0.065-0.084)	0.085 (0.074-0.101)	0.094 (0.080-0.113)	0.102 (0.085-0.125)	0.110 (0.089-0.138)	0.120 (0.093-0.156)	0.127 (0.096-0.171)
10-day	0.031 (0.028-0.036)	0.040 (0.036-0.046)	0.050 (0.045-0.057)	0.058 (0.052-0.067)	0.068 (0.059-0.080)	0.075 (0.063-0.090)	0.081 (0.067-0.100)	0.087 (0.071-0.110)	0.095 (0.074-0.124)	0.101 (0.076-0.136)
20-day	0.021 (0.019-0.024)	0.027 (0.024-0.030)	0.033 (0.030-0.038)	0.038 (0.034-0.044)	0.045 (0.039-0.053)	0.049 (0.042-0.059)	0.053 (0.044-0.066)	0.057 (0.046-0.072)	0.062 (0.048-0.081)	0.065 (0.050-0.088)
30-day	0.017 (0.015-0.019)	0.021 (0.019-0.024)	0.027 (0.024-0.030)	0.031 (0.027-0.035)	0.036 (0.031-0.042)	0.039 (0.033-0.047)	0.042 (0.035-0.052)	0.045 (0.037-0.057)	0.049 (0.038-0.064)	0.052 (0.039-0.070)
45-day	0.014 (0.012-0.015)	0.017 (0.016-0.020)	0.022 (0.019-0.025)	0.025 (0.022-0.029)	0.029 (0.025-0.034)	0.032 (0.027-0.038)	0.034 (0.028-0.042)	0.037 (0.030-0.046)	0.039 (0.031-0.051)	0.041 (0.031-0.056)
60-day	0.012 (0.011-0.014)	0.015 (0.014-0.017)	0.019 (0.017-0.022)	0.022 (0.020-0.025)	0.025 (0.022-0.030)	0.028 (0.024-0.033)	0.030 (0.025-0.037)	0.032 (0.026-0.040)	0.034 (0.027-0.045)	0.036 (0.027-0.048)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

1 of 4 6/17/2021, 8:39 AM

NOAA Atlas 14, Volume 6, Version 2

Created (GMT): Thu Jun 17 15:38:17 2021

Back to Top

Maps & aerials

Small scale terrain

2 of 4 6/17/2021, 8:39 AM

Large scale aerial

3 of 4 6/17/2021, 8:39 AM

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Water Center

1325 East West Highway

Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov

Disclaimer

4 of 4

SEP 2 7 2002

COASTLAND CIVIL ENGINEERING, INC.

SHILOH INDUSTRIAL CENTER

Project No. 99-13

295 Shiloh Road Windsor, California

A.P. No. 163-171-015,038

HYDROLOGY AND HYDRAULIC DESIGN

March 2001

\$ REUISIONS RECEIVED 16/14/02

Prepared by:

DALE ROPER & ASSOCIATES

P.O. Box 2009 Healdsburg, CA 95448 (707) 431-1417

Dale Allen Roper, R.C.E. No. 35,379

Expires: 9/30/03

SHILOH INDUSTRIAL CENTER

WINDSOR, CALIFORNIA

SEE PEVISIONS AS OF 10/14/02

INTRODUCTION:

The proposed project is a commercial incubator facility located on a 3.57 acre parcel of land located at 295 Shiloh Road, Windsor, California. The site is bordered on the east by rural residential properties, on the north by a residential subdivision, on the west by the Home Depot development that is currently under construction and on the south by Shiloh Road.

SHU

HYDROLOGY:

SHILDH INDUSTRUM CONTON The hydrology calculations for the Empire Car Wash Project have been performed in accordance with the Sonoma County Water Agency "Flood Control Design Criteria" and the charts and graphs contained therein.

Mean seasonal precipitation in the project area is 35 inches, resulting in a "K" factor of 1.17. Initial time of concentration was assumed to be 7 minutes. Runoff coefficients of 0.95 for the paved areas, 0.45 for the off-site areas to the east. (Plate B-1) CHECK MYSTER PLAN ZONING

HYDRAULIC DESIGN:

The on-site storm drainage system was designed in accordance with Sonoma County Water Agency standards. Initial energy/hydraulic grade line information from the Home Depot project was utilized in the backwater analysis of the on-site system. Analysis of the Home Depot data indicates that the "siltation" pond being built as part of that project probably will not perform that function, as the flow line of the outlet pipe from the pond has been placed at the same elevation as the bottom of the pond. (Eley. = 113.3+/-) This will not allow for a stilling of the water that would allow settling of the sediment load in the storm water. The 30" diameter outlet pipe from the pond is under-sized to convey the 10-year flow calculated to be 45.8 cfs. {Q(10)} This results in backwater situation until the water surface in the pond reaches an elevation of 117.45. This water surface elevation was utilized as the initial energy grade line for the backwater analysis.

RESULTS & CONCLUSIONS:

The storm drainage system as designed is adequate to convey the 10-year design storm. Due to the water surface elevation in the Home Depot pond, is was necessary to significantly over-design the size of the storm drain from the pond outlet to D.I.# 2. While a 24" diameter pipe would have been sufficient under normal conditions, it was necessary to increase the diameter to 36" in order to keep the hydraulic grade line below the ground surface in the upper reaches of the system.

BACKWAT EUE VATION INTTAL

100 Gropm Rowant

For storms in excess of the 10-year design storm, overflow outlets have been provided at several locations. For runoff entering the site from the east, excess stormwater can flow southerly along the roadside ditch to Shiloh Road, in accordance with the current drainage pattern. On-site overflows can release through the gap between Buildings A and B (See Site Plan, sheet C-4), out the emergency vehicle access between Buildings B and C, and through a path westerly from the northwest corner of the property at D.I.# 16.

Based on project review comments dated October 1, 2002 the following revisions were made to the drainage calculations prepared by Dale Roper & Associates:

- 1. Tributary Area 1 was increased in size from 4.5 acres to 7.39 acres. The area increase is based on a hydrology map used for the neighboring Wal-Mart development. See the attached portion of the revised Hydrology Map "A."
- 2. The runoff coefficient for tributary Area 1 has been revised from C=0.45 to C=0.70 to reflect the current zoning density for future development. The General Plan Map/zoning map indicates RV (Village Residential) and RH (High Density Residential) zoning for tributary Area 1. See the attached map and calculations for determining the revised runoff coefficient using a weighted average based on the area of each zoning category.

In addition, we analyzed the pre-development storm drainage run-off for this drainage system. It is our understanding that limiting the drainage system outlet to the predevelopment discharge may be required. In order to accomplish this, we designed a structure with an orifice opening (16" diameter) within DI #1 to control the discharge to the pre-development flow (Q=7.76 c.f.s.) When the drainage flow exceeds the predevelopment discharge rate, the water will overtop the structure within DI #1 and flow to the outlet of the structure. See the detail of DI #1 on revised sheet C-8, submitted on October 14, 2002.

PI#1

See the attached hydrology and hydraulic calculations for the revised drainage area and runoff coefficient for tributary Area 1.

	SAILOH INDUSTRIAL CRUTTER
10/14/02	DRAINING DISCHARGE CAC.
	PIZE - DENELOPANENT A, +Az +Az = 10.94
	C=0.45
	Q= 7.76 efs / I= 1.35
_	© Tc = 22 mi
	SUBMERGE ORIFICE OPENING 1, 40?
	TRY 12" DIA. ORIFICE.
	E = 0.60)
	A 2 7 (1) 2 6.786 1252
	4
_	h= 1' @ 12" f
	D= C d - 1 296
	1/3
	2 (0.6)(0.785)(64.4(1))
	= 3.78 ats < 7.76 No Good
	TOT 15" DIA.
	C= 0,40 h= 13
	A = TT (1.25)2 - 1 22 FT
	Q= (0.6/(1.22)(64.4 × 1.375)2
,	() = (0.6/5 1.66) (67.7 × 1.113)
-	Q-6.89 of, 27.16 No 61000.

Drainage Analysis
For the
Windsor Redwoods
6065 Old Redwood Highway
Windsor, California
JN 05274

July, 2008

David R. Brown, RCE 41833 My license expires 3/31/2010

Prepared by:

Adobe Associates, Inc. 1220 N Dutton Avenue Santa Rosa, CA 95401 Telephone: 707-541-2300

Fax: 707-541-2301

Windsor Redwoods Drainage Narrative

The Windsor Redwoods Project is a proposed multi-unit apartment complex located between Shiloh Road and Old Redwood Highway in Windsor, California. The project site is approximately 2.29 acres and includes the construction of six multi-unit buildings, parking lots, frontage improvements to Kendall Way and Old Redwood Highway, and off-site drainage improvements in adjacent properties, Shiloh Road, and Hembree Lane.

This drainage analysis has been separated into three models, which include Off-Site Analysis, On-Site Analysis, and Detention Analysis. The off-site analysis includes pre vs. post-construction calculations of areas within the Hembree Lane public storm drain system watershed. Detention analysis includes calculations for the required storage volume and outlet structure orifice sizing. On-Site Analysis includes backwater calculations of the on-site storm drainage system for the post-construction condition, along with capacity calculations of runoff conveyance features.

Off-Site Analysis-

Off-Site Analysis includes drainage calculations of the proposed public storm drainage system. The existing watershed for the Hembree Lane public storm drain system is approximately 33 acres, which includes portions of properties north of Shiloh Road, east of Highway 101, and west of Old Redwood Highway. The existing watershed consists of commercial developments, vacant land, and single family residential properties, and slopes approximately 1-percent from Old Redwood Highway west to Hembree Lane. The existing public storm drain system in Hembree Lane connects with other drainage infrastructure, crosses underneath Highway 101 and releases runoff into Faught Creek.

The proposed off-site storm drain will convey storm runoff from the project site and two northerly properties through an adjacent southerly property, Shiloh Road, and connect into the existing public storm drain system in Hembree Lane. The off-site storm drainage system varies between a 24-inch and 48-inch storm drain. A drainage requirement placed on this project is to avoid affecting the HGL of the storm drain system in Hembree Lane by more than one-tenth of a foot between pre and post-construction conditions. Pre and post-construction analysis was performed using StormCad, a program developed by Haested Methods. StormCad doesn't allow for a rainfall distribution factor (K-factor) for varying rainfall intensities. The K-factor was 1.18 according to Sonoma County Water Agency (SCWA) Design Criteria and determined by the Mean Seasonal Precipitation and K-factor vs. Precipitation charts. To compensate for the additional factor the rainfall intensity equation: $i = 5.12xY^{0.1469}(t^{-0.528})$ was multiplied by 1.18 giving the equation: $i = 6.04xY^{0.1469}(t^{-0.528})$.

Previous drainage studies of the same watershed were used as reference in comparing the pre-construction runoff values. The Wal-Mart Drainage Report calculated runoff values and sized the public storm drain system in Hembree Lane. The referenced drainage report was attained from the Sonoma County Water Agency.

Analysis of the pre and post-construction conditions revealed that the combination of the Windsor Redwoods site and two northerly adjacent properties can release 5.00 cfs for the 10-year storm event and 7.30 cfs for the 100-year storm event without affecting the downstream hydraulic grade line more than one-tenth of a foot.

Detention Analysis-

Detention analysis includes calculations of the required storage volume to detain the difference between post-construction runoff and the release flow determined by Off-Site Analysis. Detention analysis was performed using Pond Pack, a program developed by Haested Methods. Pond Pack compares inflow and outflow hydrographs calculated by user input data, to determine the required amount of storage. Input includes the rainfall intensity equation adapted to include the K-factor, required outflows for different storm events, coefficients of runoff, tributary areas, and the approximate time of concentration. Post-construction runoff exceeds the allowable release rate determined by Off-Site Analysis, so detention is necessary. The required storage volume determined by Pond Pack is 0.089 ac-ft. The detention report provided by Pond Pack is included in this drainage analysis.

Detention analysis also includes calculations for sizing the orifices in the outlet control structure. Pond Pack was used to determine the orifice size and location to release the pre-determined release rate of storm runoff. A detail of the Outlet Structure is included in this drainage analysis.

On-Site Analysis-

On-Site Analysis includes backwater calculations of the proposed on-site storm drain system, along with capacity calculations, and overland flood route directions. The existing use of the project site is commercial with the majority of the site remaining undeveloped. The project site currently slopes at approximately 1-percent from Old Redwood Highway to the west towards Highway 101. The proposed on-site storm drain system has been designed to accept storm runoff from the project site, Kendall Way, and the two adjacent properties to the north, and convey it to the off-site storm drain system.

StormCad was used to calculate the HGL of the on-site storm drain system, and was used to compare to the finish floor elevations of on-site buildings. HGL information of the outlet structure determined by the Detention Analysis was used as outfall information for the On-Site Analysis. The minimum difference between HGL and Finish Floor elevations is 5.15, which far exceeds local standards. The comparison of finish

floor elevations vs. the hydraulic grade line of nearby drainage structures is included in this drainage analysis.

Flowmaster, a program developed by Haested Methods, was used to check capacity of drainage swales and valley gutters for the 100-year storm event. The worst case scenario was used for on-site bio-swales, valley gutters, and the off-site drainage swale adjacent to Kendall Way. Worst case scenario criteria, includes tributary area, slope and flow characteristics. The proposed swales and valley gutters have been designed to provide capacity for the 100-year storm. Cross-sections and a detailed report of the swales and valley gutters have been included in this drainage analysis. Inlet capacity calculations were used to size the grate of each on-site inlet to limit the depth of storm runoff above the grate. On-site drainage inlets were sized for a maximum depth of two-tenths of a foot during a 100-year storm event. An Overland Flood Routing Map is included to demonstrate how storm runoff will traverse the project site if portions of the storm drainage system are blocked. On-site grading has been designed to convey overland runoff away from on-site buildings.

Summary-

The existing public storm drain system in Hembree Lane was designed to accept storm runoff from the Windsor Redwoods project site per previous drainage reports. The on-site storm drainage system has been designed to store the difference between post-construction runoff values and the release rate determined by the Off-Site Analysis, which will affect the hydraulic grade line of the downstream system by less than one-tenth of a foot. The proposed off-site storm drain system has been designed to provide enough capacity for the required release rate of the Windsor Redwoods project and the pre-construction runoff rates off all other properties within the watershed. It is important to note that future development within the watershed shall release runoff at pre-construction values to ensure the proposed storm drain system and existing system in Hembree Lane maintain capacity.

10 and 100-Year Calculations Post-Construction

FlexTable: Conduit Table (05274 offsite hydrology map postconstruction.stc)

Current Time: 0.000 min

Current time. 0.000 mm														
Label	Start	Node	Inver	t	Stop No	ode]	Invert	Mar	nning's n	Sec	tion Size	Upstream CA	į.
		(Upstream)				(Downstream)					(acres)			
	(ft)			(ft)						_				
CO-1	MH-1		1	08.19	OF-1			106.25		0.014 48			24.477	
CO-2	MH-2	1	10	09.82	MH-1			108.19		0.014 42	2" SD)	22.17	4
CO-3	MH-3		1	10.43	MH-2			109.82		0.014 42	2" SD)	21.243	3
CO-4	MH-4	- 1	1	12.09	MH-3			110.43		0.014 42	2" SD)	18.714	4
CO-5	MH-5		1	12.44	MH-4			112.09		0.014 42	2" SD)	15.792	
CO-6	CB-1			113.5	MH-5			112.54		0.014 42	2" SD)	5.814	
CO-7	CB-2			114.5	CB-1			113.5		0.014 3	5" SD)	5.814	1
CO-8	CB-3			115.8				114.5		0.014 36			3.626	
CO-9	MH-6			13.47				112.54		0.014 36			9.977	
CO-10	MH-7			114.4				113.57		0.014 36			9.977	1
CO-11	мн-8	. [15.38				114.5		0.014 36			9.977	
CO-12	MH-9			16.23				115.48		0.014 30			8.118	•
CO-13	MH-10			17.21				116.33		0.014 30			4.37	
CO-14	MH-11	0			MH-10			117.31		0.014 24			2.88	
CO-15	CB-4				MH-11									1
CO-15	MH-12			19.68				118.72		0.014 24			2.88	
CO-10 CO-17	CB-5				СБ- 4 МН-12			118.75		0.014 24			1.657	1
								119.78		0.014 24			0	1
System Flow	<i>i</i> Time	Syster		Flov			ngth	Slope		Capacity (F	ull	Elevation	Elevation	
(min)		Intensi		(ft³/	s)	(1	ft)	(Calculate	d)	Flow)		Ground	Ground	
		(in/hr)					(ft/ft)		(ft^3/s)		(Start)	(Stop)	
	27.312	2	.074		58.47		389		.005	94.	10	(ft) 113.52	(ft) 112.82	1
1	25.824		.136		55.04		511		.003					1
	25.273		.161		53.57					52.		116.35		
	23.855		.227				184		.003	53.		115.58		
1					49.32		436		.004	57.		117.41	115.58	1
	23.221		.259		43.26		171		.002	42.		118.85	117.41	1
	16.835		.678		15.69		36		.027	152.		188.81	118.85	1
	16.667		.692		15.78		80		.013	69.	- 1	122	188.81	
	15		.846		10.4		425		.003	34.		121.5	122	
	22.321		.307		30.5		233	0	.004	39.	13	120.02	118.85	
	21.533	2.	.351		30.95		207	0	.004	39.	22	120.61	120.02	
1	20.716		2.4		31.43		218	0	.004	39.	35	121.61	120.61	
	20.154	2.	435		27.22		187	0	.004	24.	12	122.84	121.61	
1	19.158		501		18.32		223	0	.004	23.	92	124.84	122.84	1
	18.229		567		14.75		262	0	.005	14.	85	126.97	124.84	
	18.204		569		14.76		7	0	.004	13.	75	127.21	126.97	
1	17.159	2.	651		11.73		234	0	.004	13.	24	131.1	127.21	l
	15	2.	846		7.3		301	0	.004	13.	26	131	131.1	L
Hydraulic G	irade	Hydraul	ic Grade	Ve	elocity	Des	ign Cor	iduit?	esian	Start	Des	sign Stop	Conduit ⁻	
Line (In)	Line	(Out)	(Av	erage)		5		Inve			Invert?	Conduc	7,50
(ft)			t)	(ft/s)									
1	113.48		112.73		4.65			FALSE		FALSE		FALSI	E Catalog Con	duit
1	115.25		113.48		5.72			FALSE		FALSE			E Catalog Con	
1	115.86		115.25		5.57			FALSE		FALSE			E Catalog Con	
	116.8		115.58		5.13		FALSE			FALSE			E Catalog Con	
1	117.16		116.8		4.5			FALSE		FALSE			E Catalog Con	
	117.17		117.16		1.63			FALSE		FALSE			E Catalog Con	
	117.22		117.17		7.93			FALSE		FALSE			E Catalog Con	
	117.33		117.17		4.25			FALSE		FALSE				
	/ 155		111.22		7.23			ALSE		TALSE		FALSI	E Catalog Con	uult

117.73	3	117.16	4.32	FALSE	FALSE	FALSE	Catalog Conduit
118.67	'	118.16	4.38	FALSE	FALSE		Catalog Conduit
119.24		118.67	4.45	FALSE	FALSE		Catalog Conduit
120.19		119.24	5.55	FALSE	FALSE	FALSE (Catalog Conduit
120.71		120.19	3.73	FALSE	FALSE	FALSE (Catalog Conduit
122		120.71	4.7	FALSE	FALSE	FALSE C	Catalog Conduit
122.51		122.48	4.7	FALSE	FALSE	FALSE C	Catalog Conduit
123.24		122.51	3.73	FALSE	FALSE	FALSE C	Catalog Conduit
123.61		123.24	2.32	FALSE	FALSE	FALSE C	Catalog Conduit

05274 offsite hydrology map post-construction.stc

7/7/2008

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley StormCAD V8 XW Edition 108 09,081,001 Page 1 of 1

10 and 100-Year HGL/EGL Profiles Post-Construction

Project Name:	Shiloh Crossing	
6/25/	2021	

Storm Water Low Impact Development Submittal Coversheet

To be submitted with all SW LID submittals

1. <u>Submittal Information:</u>
Submittal Date: June 25, 2021
Initial SW LIDS Final SW LIDS
Design Manual Used for design:
2005 Standard Urban Storm Water Mitigation Plan
2011 Storm Water Low Impact Development Technical Design Manual
2017 Storm Water Low Impact Development Technical Design Manual
2. Applicant Information:
Applicant Name (Owner or Developer): Integrated Community Development
Mailing Address: 20750 Ventura Boulevard., Suite 155
City/State/Zip: Windsor, CA 95492
Phone/Email/Fax: 818-974-2966

Project Name: Date: 6/25/		Shiloh Crossing	
		2021	
		2021	

Storm Water Low Impact Development Submittal Coversheet

To be submitted with all SW LID submittals

3. <u>Project Information:</u>	
Project Name: Shiloh Crossing	
Site Address: 295 Shiloh Road	
City/State/Zip: Windsor, CA 95492	
APN (s): 163-171-039	
Permit # (s):	
Subdivision Grading Permit	Building Permit Design Review
Use Permit Hillside Development	Encroachment Time Extension
Other:	

Project Name:	Shiloh Crossing	

Date: 6/25/2021

Storm Water Low Impact Development Submittal Coversheet
To be submitted with all SW LID submittals
4. Design Information:
Narrative:
Project Description
Description of proposed project type, size, location, and any specific uses or features.
Description of any sensitive features (creeks, wetlands, trees, etc.) and whether they are going to be preserved, removed or altered.
Description of the existing site.
Description of how this project triggers these requirements (impervious area, CALGreen, 401 Permit, etc.).
Describe any "on-site offset" used.
Pollution Prevention and Runoff Reduction Measures
Description of all proposed pollution prevention measures (street sweeping, covered trash enclosures, indoor uses, etc).
Description of all Runoff Reduction Measures (Interceptor Trees, Impervious Area Disconnection, and/or Alternative Driveway Design).
Type of BMPs Proposed
✓ Description of the types of BMPs selected including priority group that each is in.
Description of level of treatment and volume capture achieved for each BMP.
Maintence
Description of maintenance for each type of BMP.
Description of funding mechanism.
Designation of Responsible Party.

Project Nar	me: Shiloh Crossing	
Date: 6/	25/2021	Santa Rosa

Storm Water Low Impact Development Submittal Coversheet
To be submitted with all SW LID submittals
Exhibits:
Proposed SW LID Exhibit:
Exhibit should include: street names, property lines, strom drainage system, waterways, title block, scale and north arrow.
Tributary areas shown for all inlets (including off-site drainage areas).
✓ C value for each tributary area.
Soil Type of existing site.
New or replaced impervious area shown.
All inlets and BMP, shown (including unique identifier).
All interceptor trees shown.
All proposed BMPs shown including dimensions.
Existing Condition Exhibit
Exhibit should include: street names, property lines, proposed storm drainage system, waterways, title block, scale, and north arrow.
Soil Type of existing site.
Proposed tributary areas shown for all proposed inlets (including offsite drainage areas). Existing impervious areas.
Existing impervious area.
BMP Details:
Detail for each type of BMP selected- provide a preliminary 8.5"x11" detail for each BMP type or include on submitted drawings. These can be taken straight from the Fact Sheets if no significant changes are proposed.
On Plans:

Show all applicable elements of the selected BMPs on the appropriate plan sheets.

Calculations:

Calculations, for each inlet, and summary sheet using the Storm Water Calculator found at www.srcity.org/stormwaterLID

Supplemental or supporting calculation if applicable.

INITIAL STORM WATER LOW IMPACT DEVELOPMENT PLAN

JUNE 25, 2021

SHILOH CROSSING

APN 163-171-039 295 SHILOH ROAD WINDSOR, CA

PROJECT #: 2021017.00

15 Third Street, Santa Rosa, CA 95401 Tel: 707 542 6451 Fax: 707 542 5212

TABLE OF CONTENTS

Sections of Storm Water Low Impact Development (SWLID) Report:

- Project Description
 - Proposed Development
 - Existing Conditions
 - Project Triggers
- > Pollution Prevention and Runoff Reduction Measures
- > Types of BMP's
 - Level of Treatment
- ➤ Assigning Long Term BMP Maintenance

Attachments

- > Appendix A: Determination Worksheet
- ➤ Appendix B: BMP Selection Tables
- Appendix C: C-Value and Curve Numbers for Drainage Areas Worksheet
- Appendix D: Storm Water Calculator and Treatment Capacity for Drainage Areas
- > Appendix E: BMP Details
- Appendix F: BMP Inspection and Maintenance Checklists
- > Appendix G: SUSMP Exhibits
 - Existing Impervious Surfaces Exhibit
 - o Proposed Improvements, Drainage Areas, and BMP Exhibit
- Appendix H: 100 Year Stormwater Detention
 - o Calculations
 - o Detention Chamber Details
- ➤ Appendix I: Soil Type

PROJECT DESCRIPTION

Project Name:Shiloh CrossingAssessor's Parcel Number:163-171-039Total Area of Site:6.36 acres

Proposed Development:

The project located at 295 Shiloh Road will develop the existing property into affordable housing in the center of the property via 3 connected buildings which form a C shape, surrounded by parking. Two commercial buildings will be constructed along the Shiloh Road frontage. The northerly half of Shiloh Road and Business Park Court will be improved to Town of Windsor standards with curb gutter and sidewalk and be dedicated to the Town of Windsor.

The drainage of the project is divided into sub-drainage areas as shown on the Proposed Improvements, Drainage Sub-areas and BMP Exhibit. The areas are designated based on the proposed grading plan. The proposed storm drain system will tie into the existing system located at the west end of the property on the east side of Hembree Road and into the existing 36" storm drain within Shiloh Road.

Existing Conditions:

The project site is bordered by Shiloh Road to the South, Hembree Road to the southwest, Home Depot to the Northwest, a commercial Incubator site to the North, and residential housing to the east. The private road Business Park Court, which connects the northerly commercial incubator site to Shiloh Road, runs North-South within the projects easterly border. The remaining project site is undeveloped land with 340' of 36" storm drain extending into a storm water detention pond on the west side of the project site. This existing storm drain and detention pond system on the project site was designed to store the additional flows due to the development of the Incubator project within both the pond and storm drain and release only predeveloped flow rates into the downstream public storm drain system on Hembree Road. There are also existing storm drain and swales along the project frontage bordering Shiloh Road which carry the southerly half of the undeveloped property to the public storm drain within Hembree Road. The USGS soil map for the project indicates that the site is under laid with Hydrologic Soil Group C soils (see Appendix I). Group C soils have low infiltration rates ranging between 0.05 to 0.15 in/hr.

Water Bodies Receiving Storm Water from the Project site include, in order of reception: Public Storm Drain; Pool Creek; Windsor Creek; Mark West Creek; and Russian River.

Project Triggers:

The Project will create more than one (1) acre of impervious surface and will therefore be conditioned to meet treatment and hydromodification control requirements. The hydromodification control design goal requires the project to capture and/or infiltrate and/or reuse one hundred percent (100%) of the post project volume. This Project is designed to implement permanent water quality treatment and hydro-modification control BMPs set forth in the 2017 City of Santa Rosa's Storm Water Low Impact Development Technical Manual (SWLID); such Manual requires (i) treatment of all runoff generated by a one inch (1") rainfall

event in a twenty-four (24) hour time period falling on all impermeable surfaces, and (ii) the exit off the Project site of all such storm water at flow rates similar to pre-development conditions.

POLLUTION PREVENTION AND RUNOFF REDUCTION MEASURES

Within the Project, (i) interceptor trees will be planted along Business Park Court and within parking lots, and (ii) runoff from Project rooftops will be disconnected from storm drain inlets and directed to infiltration areas, and (iii) permeable pavements will be used within the westerly EVA to be built to allow emergency vehicles to access the project via Hembree Road. The total tributary area used for treatment calculations has been reduced by these measures. Runoff will be treated by bioretention measures and trash removed by trash baskets within each inlet structure to reduce pollution prior to being discharged from the Project.

TYPES OF BMPS

Storm water generated by the Project will be captured and treated in a treatment train installed in the following order. Storm water runoff on the streets will be treated using either roadside bioretention basins installed similar to detail P2 "Roadside Bioretention – Contiguous Sidewalk", basins in compliance with detail P2 "Roadside Bioretention – Flush Design." Storm water runoff collected in the communal areas between buildings will be treated with bioretention basins installed similar to P1 "Roadside Bioretention – No curb and gutter."

All bioretention areas are sized for one hundred percent (100%) treatment. This project will be required to detain the 100-year probability storm within Detention Chambers, this volume will satisfy the 2 year project volume capture goals for the project site. Stormwater leaving each detention chamber system will be metered to mimic pre-development flows off the site. Each BMP along Business Park Court and Shiloh Road will not distribute to a detention chamber and were therefore sized to retain the delta volume of development from a 1 in - 24 hr storm rate for the tributary areas shown in the Initial SW LID Exhibits per City of Santa Rosa Standard. In all cases, higher flows will bypass the permeable gutter and flow into the storm drain system. As it is infeasible to limit flows off the public streets of Business Park Circle and Shiloh Road, the onsite detention chambers were over-sized to compensate for these areas.

Level of Treatment:

The Project will achieve the Design Goal of one hundred percent (100%) volume capture and one hundred percent (100%) of the runoff generated by the developed Project will be treated. Flows leaving the project site will meet the Hydromodification requirement.

ASSIGNING LONG TERM BMPS MAINTENANCE

The long-term maintenance of the Roadside Bioretention, Vegetated Swales, and Impervious Area Disconnections will be the responsibility of the Property Owner. The required maintenance is described in detail in the BMP Inspection and Maintenance Checklists section of this report. Funding for this maintenance will be provided by the Property Owner.

.

APPENDIX A DETERMINATION WORKSHEET

Part 1: Project Information

Santa Rosa 2017 Storm Water LID Determination Worksheet

PURPOSE AND APPLICABILITY: This determination worksheet is intended to satisfy the specific requirements of "ORDER NO. R1-2015-0030, NPDES NO. CA0025054 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT AND WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM THE MUNICIPAL SEPARATE STORM SEWER SYSTEMS." Additional design requirements imposed by Governing Agencies, such as local grading ordinances, CAL Green, CEQA, 401 permitting, and hydraulic design for flood control still apply as appropriate. Additionally, coverage under another regulation may trigger the requirement to design in accordance with the Storm Water LID Technical Design Manual.

Shiloh Crossing	Integrated Community Development
Project Name	Applicant (owner or developer) Name
295 Shiloh Road	20750 Ventura Boulevard, Suite 155
Project Site Address	Applicant Mailing Address
Windsor, CA 95492	Woodland Hills, CA 91364
Project City/State/Zip	Applicant City/State/Zip
	jlingo@icdemail.com
Permit Number(s) - (if applicable)	Applicant Phone/Email/Fax
Carlile-Macy	15 3rd Street
Designer Name	Designer Mailing Address
Santa Rosa, CA 95401	707-542-6451
Designer City/State/Zip	Designer Phone/Email
Type of Application/Project:	
Subdivison Grading Permit Building Permit	Hillside Development
DesignReview Use Permit Encroachment	Time Extensions Other :
PART 2: Project Exemptions	
1. Is this a project that creates or replaces less than 10,000 squ	uare feet of impervious surface ¹ , including all project
phases and off-site improvements?	
Yes No	

1 Impervious surface replacement, such as the reconstruction of parking lots or excavation to roadway subgrades, is not a routine maintenance activity. Reconstruction is defined as work that replaces surfaces down to the subgrade. Overlays, resurfacing, trenching and patching are defined as maintenance activities per section VI.D.2.b.

2017 Storm Water LID Determination Worksheet

Project Name

Shiloh Crossing	
-----------------	--

hydraulic capacity, and original purpose of facility such as resurfacing existing roads and parking lots? Yes No
3. Is this project a stand alone pedestrian pathway, trail or off-street bike lane? Yes No
4. Did you answer "YES" to any of the questions in Part 2?
YES: This project will <i>not</i> need to incorporate permanent Storm Water BMP's as required by the NPDES MS4 Permit. Please complete the "Exemption Signature Section" on Page 4.
NO: Please complete the remainder of this worksheet.
Part 3: Project Triggers
Projects that Trigger Requirements: Please answer the following questions to determine whether this project requires permanent Storm Water BMP's and the submittal of a SW LIDs as required by the NPDES MS4 Permit order No. R1-2015-0030.
 Does this project create or replace a combined total of 10,000 square feet or more of impervious surface¹ including all project phases and off-site improvements? Yes No
2. Does this project create or replace a combined total or 10,000 square feet or more of impervious streets, roads, highways, or freeway construction or reconstruction ³ ? Yes No
3. Does this project create or replace a combined total of 1.0 acre or more of impervious surface ¹ including all project phases and off-site improvements? Yes No
4. Did you answer "YES" to any of the above questions in Part 3?
YES: This project will need to incorporate permanent Storm Water BMP's as required by the NPDES MS4 Permit. Please complete remainder of worksheet and sign the "Acknowledgement Signature Section" on Page 4.
NO: This project will <i>not</i> need to incorporate permanent Storm Water BMP's as required by the NPDES MS4 permit. Please complete the "Exemption Signature Section" on Page 4.

¹ Imprevious surface replacement, such as the reconstruction of parking lots or excavation to roadway subgrades, is not a routine maintence activity. Reconstruction is defined as work that replaces surfaces down to the subgrade. Overlays, resurfacint, trenching and patching are defined as maintenance activities per section VI.D.2.b.

^{2 &}quot;Rountine Maintenance Activity" includes activities such as overlays and/or resurfacing of existing roads or parking lots as well as trenching and patching activities and reroofing activities per section VI.D.2.b.

^{3 &}quot;Reconstruction" is defined as work that extends into the subgrade of a pavement per section VI.D.2.b.

Shiloh Crossing

Part 4: Project Description

1. Total Project area: 6.36 square feet acres
2. Existing land use(s): (check all that apply)
Commercial Industrial Residential Public Other Description of buildings, significant site features (creeks, wetlands, heritage trees), etc.:
Vacant undeveloped lot with private driveway along east side of lot, existing storm drain and detention pond on the west side of the property.
3. Existing impervious surface area: 0.64 square feet 4. Proposed Land Use(s): (check all that apply)
Commercial Industrial Residential Public Other Description of buildings, significant site features (creeks, wetlands, heritage trees), etc.:
Development of the vacant lot into affordable housing in the center of the property, improvement of the private driveway to Town standards and dedicated to the Town. Commercial buildings along Shiloh road frontage. Relocation of existing pond to north side of property.
Proposed 5. Existing impervious surface area: 4.93

Project Name

2017 Storm	Water.	LID Dete	rmination	Workshe	۵t
ZUI/ SLUIIII	vvalei	LID DELE	HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	I VV UI KSIIE	C.I.

Water BMP's.

Applicant Signature

Shiloh Crossing

Acknowledgment Signature Section:	
Management Practices and provide a Storm Water Lo National Pollutant Discharge Elimination System (NP	this project is required to implement permanent Storm Water Best we Impact Development Submittal (SW LIDS) as required by the City's DES) Municipal Separate Storm Sewer Systems (MS4) Permit Order be resolved to determine if the project is subject to these
	6/25/2021
Applicant Signature	Date
Exemption Signature Section:	
Storm Water BMP's nor the submittal of a Storm Water City's National Pollutant Discharge Elimination System	t this project as currently designed does not require permanent er Low Impact Development Submittal (SW LIDS) as required by the (NPDES) Municipal Separate Storm Sewer Systems (MS4) Permit*. new Determination Worksheet and may require permanent Storm

* This determination worksheet is intended to satisfy the specific requirements of "ORDER NO. R1-2015-0030, NPDES NO. CA0025054 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT AND WASTE DISCHARGE REQUIREMENTS FOR DISCHARGES FROM THE MUNICIPAL SEPARATE STORM SEWER SYSTEMS." Additional design requirements imposed by Governing Agencies, such as local grading ordinances, CAL Green, CEQA, 401 permitting, and hydraulic design for flood control still apply as appropriate. Additionally, coverage under another regulation may trigger the requirement to design in accordance with the Storm Water LID Technical Design Manual.

Date

Implementation Requirements: All calculations shall be completed using the "Storm Water Calculator" available at: www.srcity.org/stormwaterLID

Hydromodification Control/100% Volume Capture: Capture (infiltration and/or reuse) of 100% of the volume of runoff generated by a 1.0" 24-hour storm event, as calculated using the "Urban Hydrology for Small Watersheds" TR-55 Manual method. This is a retention requirement.

Treatment Requirement: Treatment of 100% of the flow calculated using the modified Rational Method and a known intensity of 0.20 inches per hour.

Delta Volume Capture Requirement: Capture (infiltration and/or reuse) of the increase in volume of storm water due to development generated by a 1.0" 24-hour storm event, as calculated using the "Urban Hydrology for Small Watersheds" TR-55 Manual method. This is a retention requirement.

APPENDIX B BMP SELECTION TABLES

ROADSIDE BIORETENTION

TOO CHART TO THE STREET OF CORDAPES CHOUCH AND Single a logicity of the light 20708 de la Collando × × × × × Detail Title N/A N/A Detail Sheet N/A N/A Best Management Practice (BMP) Living Roof Rainwater Harvesting Universal BMP- to be considered on all projects.

5.			
×	X	×	X
×	×	×	×
×			×
×			×
×	×		×
N/A	RRM-01 Bovine Terrace	Vegetated Buffer Strip	N/A
N/A	RRM-01	RRM-02	N/A
Interceptor Trees	Bovine Terrace	Vegetated Buffer Strip	Impervious Area Disconnection
-	Runoff Reduction	Measures	

- 1 - 1		-
i d		
×	×	X
×	×	×
×	×	×
Roadside Bioretention - no C & G	Swale with Bioretention	N/A
P1-02	P1-06	N/A
Bioretention	Vegetated Swale- with Bioretention	Constructed Wetlands
Priority 1- to be installed with no	. B	water within 72 hours.

			=		
		v			
	`				
		•			
				-	
	1				
		~	X	y	X
	×				
	×	×	×	×	×
ŀ	×	×	×	×	×
l					
	Roadside Bioretinton - Flush Design Roadside	Roadside Bioretenion- Contiguous SW	Roadside Bioretenion- Curb Opening	Roadside Bioretenion- No C& G	N/A
	P2-02	P2-03	P2-04	P2-05	N/A
		Bioretention	s		Constructed Wetlands
		Priority 2 BMPs- with subsurface drains	installed above the capture volume.		

Date: JUNE 2021

Page Of 2

			_	_	_		4			4			_	_				
													*					
<i>à</i>																		
\$\$104.10HO																		
181 alas 10 holietietas																		
1 1 8. %																		
10 8 10 10 10 10 10 10 10 10 10 10 10 10 10																		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	×	×	~	×		7		×	X		/	×	7	×				×
I Jaday					×											N/A N/A		
1 / 1/3/3/3/3	THE SECOND	×	×	×	×	×		×	×		×	×	×	×		N/A		
Stand of the state	×	×	×	×	×	×		×	×		×	×	×	×	-		ŀ	
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	× ×	× ×	× ×	× ×	× ×	×		×	×		× ×	× ×	× ×	× ×				×
Detail Title	Roadside Bioretinton - Flush Design Roadside	Roadside Bioretenion- Contiguous SW	Roadside Bioretenion- Curb Opening	Flow Through Planters	With Bioretention	Vegetated Swale												
Detail Sheet	P3-02	P3-03	P3-04	P3-05	P3-06	P3-07	(2)											
Best Management Practice (BMP)		Bioretention		Flow Through Planters		vegetated Swale		Tree Filter Unit	Modular Bioretention		Chambered Separator Units	Centrifugal Separator Units	Trash Excluders	Filter Inserts		Offset Program		Detention
		Priority 3 BMPs- installed with subdrains and/or	Does not achieve volume capture and	must be used as part of a treatment train.				Priority 4 BMPs- does not achieve volume	capture and must be used as part of a		Priority 5 BMPs- does.	not achieve volume	used as part of a	תפסחופוור חשווי		Priority 6 BMPs- see the "Offset Program" chapter for details.		Other

BMP Selection Table

Santa Rosa
Santa Rosa
SAILOH
CROSSING
Project Name:

CAG / VAIMEY GUTTER TREATMENT

**************************************	1 11 14	4
10013885 10 10181885 18 10 101818 18 18 18 18 18 18 18 18 18 18 18 18		
Strate Miliology St	X	X
	× ×	×
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	× × ×	× × ×
Detail Title	N/A	N/A
Detail Sheet	N/A	N/A
Best Management Practice (BMP)	Living Roof	Rainwater Harvesting
	Universal BMP- to be Living Roof	considered on all projects.

, .			
X	X	χ	×
×	×	×	×
×	×		× ×
N/A	RRM-01 Bovine Terrace	Vegetated Buffer Strip	N/A
N/A	RRM-01	RRM-02	N/A
Interceptor Trees	Bovine Terrace	Vegetated Buffer Strip	Impervious Area Disconnection
	Runoff Reduction	Measures	

× ×	× ×	× ×
Roadside 02 Bioretention - no C & G	о, м	A N/A
Bioretention P1-02	Vegetated Swale-P1-06 with Bioretention	
Priority 1- to be installed with no	Must drain all stading w	water within 72 hours.

				-
				_
×	y	X	X	7
× ×	*	×	* *	×
Roadside Bioretinton - Flush Design Roadside	Roadside Bioretenion- Contiguous SW	Roadside Bioretenion- Curb Opening	Roadside Bioretenion- No C & G	N/A
P2-02	P2-03	P2-04	P2-05	N/A
	Bioretention			Constructed
β	Priority 2 BMPs- with subsurface drains	installed above the capture volume.		I

Date: JUNE 2021

BMP Selection Table

								_	_										
į	John Jahr																		
	`																		
UO ID BIOS																			
10012875 10 10 10 10 10 10 10 10 10 10 10 10 10	Oleneld's																		
	DI SUP																		
2000 18 SA 10 10 10 10 10 10 10 10 10 10 10 10 10		1		×	×	1 ×	×		×	×		×	×	-7	. ~		×		
1 610/1	O LI OUR		×																×
	Soft AS											882	2 676				A/N/A		836
1 / 1/4	My of	-	×	×	×	× ×	×		×	×		×	×	×	×		N/A N/A		
1978 1978 1978 1978 1978 1978	TO POS	×	×	×	×	×	×		×	×		×	×	×	×				
12017	Maddle S	× ×	× ×	× ×	× ×	× ×	×	ı	× ×	×		× ×	× ×	×	×				×
			de ion- is SW	de ion-	ough rs	tion	pa												
	Detail Title	Roadside Bioretinton - Flush Design Roadside	Roadside Bioretenion- Contiguous SW	Roadside Bioretenion- Curb Opening	Flow Through Planters	With Bioretention	Vegetated Swale												
	Detail Sheet	P3-02	P3-03	P3-04	P3-05	P3-06	P3-07												
	Best Management Practice (BMP)		Bioretention		Flow Through Planters	s less of the state of the	vegetated swale		Tree Filter Unit	Modular Bioretention		Chambered Separator Units	Centrifugal Separator Units	Trash Excluders	Filter Inserts		Offset Program		Detention
			Priority 3 BMPs-installed with subdrains and/or	Does not achieve volume capture and	must be used as part of a treatment train.				Priority 4 BMPs- does not achieve volume	capture and must be used as part of a		Priority 5 BMPs- does	not achieve volume capture and must be	used as part of a			Priority 6 BMPs- see the "Offset Program" chapter for details.		Other
							_				_				_	_		-	_

BMP Selection Table

Santa Rosa
Santa Rosa

SHILOH
CROSSING

RAIN GARDEN

,		
**************************************	-	
Tolly	X	1
\		1
160,139,85,10,10,181,181,181,181,181,181,181,181,1		4
Segunda Continuent Con		
18 10 to 1 CURION		,==
1 1 00 00 1		-
1, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		
21/5/2/4/2/10/10/10/10/10/10/10/10/10/10/10/10/10/	Х	×
Sitolity dill a		0000000
1 1 61 6		
		10
1 / 1/8/ 3/ 3/	× ×	×
	^	
A STATE OF STATE OF	×	×
10 10 10 10 10 10 10 10 10 10 10 10 10 1	×	×
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×	×
`		
Detail Title	N/A	N/A
Detail Sheet	N/A	N/A
		H
est Managemen Practice (BMP)	g Roof	Rainwater Harvesting
est Mai	Livin	Rain Harv
ă	eq c	\parallel
	3MP-tc	projects.
	Universal BMP- to be	projects.
	Ü	o

X	Y	X	×
	(
×	×	×	×
×			×
×			×
×	×		×
N/A	RRM-01 Bovine Terrace	Vegetated Buffer Strip	N/A
N/A	RRM-01	RRM-02	N/A
	ø.	uffer	Area
Interceptor Trees	Bovine Terrace	Vegetated Buffer Strip	Impervious Area Disconnection

1 1		
×	X	X
×	×	×
Roadside Bioretention - no C & G	Swale with Bioretention	N/A
P1-02	P1-06	N/A
Bioretention	Vegetated Swale- with Bioretention	Constructed Wetlands
Priority 1- to be installed with no	. B	water within 7.2 hours.

	0			
1				
e				
		,		
		1		
		e		
	11			11
×	×	×	×	X
×	×	×	×	×
×	×	×	×	×
Roadside Bioretinton - Flush Design Roadside	Roadside Bioretenion- Contiguous SW	Roadside Bioretenion- Curb Opening	Roadside Bioretenion- No C & G	N/A
P2-02	P2-03	P2-04	P2-05	N/A
	Bioretention			Constructed Wetlands
	Priority 2 BMPs- with subsurface drains	installed above the capture volume.		

JUNE 2021

Page | of 2

				20													
*887011 1814C																	
`																	
(10/10) 105 to																	
100 10 10 10 10 10 10 10 10 10 10 10 10	,																
aplante of																	
		~	×	. >	-7	×	×	×		X	×	×	×		7		
2013/10 of 11/10	×																×
1 / / 3/1/3															N/N		
1 / 1/4 3/4	+	×	×	×	×	×	×	×	$\ $	×	×	×	×		N/A N/A		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															2		
A RANGE OF STATE OF S	× ×	× ×	× ×	×	×	×	×	×	$\ \ $	×	×	×	×			$\ \ $	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×	×	×	×	×	×	×	×		×	×	×	×				×
Detail Title	Roadside Bioretinton - Flush Design Roadside	Roadside Bioretenion- Contiguous SW	Roadside Bioretenion- Curb Opening	Flow Through Planters	With	Vegetated Swale											
	Roa Biore Flush Roa	Roa Biore Contig	Roa Biore	Flow Pla	N Biore	Vege											
Detail Sheet	P3-02	P3-03	P3-04	P3-05	P3-06	P3-07											
Best Management Practice (BMP)		Bioretention		Flow Through Planters	-	Vegetated Swale	Tree Filter Unit	Modular Bioretention		Chambered Separator Units	Centrifugal Separator Units	Trash Excluders	Filter Inserts		Offset Program		Detention
Best Mai		Biore			;	vegetat							Filter				Dete
		Priority 3 BMPs- installed with subdrains and/or	Impermeable liner. Does not achieve volume capture and	must be used as part of a treatment train.			Priority 4 BMPs- does not achieve volume	capture and must be used as part of a		Priority 5 BMPs- does	not achieve volume capture and must be	used as part of a	מוני מומווי	543	Priority 6 BMPs- see the "Offset Program" chapter for details.		Other
		Priority instal subdrai	Does no	must be t of a treat			Priority 4 not achie	capture a used as		Priority 5	not achie capture a	used as	מפח		Priority 6 the "Offse chapter		ò

Shiloh Crossing

295 Shiloh Road

Prepared by Carlile Macy

June 25, 2021

C-Values and Curve Numbers for Preliminary Drainage Areas

			Permeable			-		
Surface Type	Asphalt	It Concrete F	Pavement F	Rooftop Landsc:	Landscape	⊼ =	1.17	
C-Value	0.70	0.80	0.60	0.90	0.10	P=	1.00	⊒.
Curve Number	98	98	89	98	80	Intensity =	0.2	in/hr
						Average Rainfall =	35	⋽.
Proposed								

rioposed								i		,
Drainage Area	Treatment Type	Asphalt	Concrete	Pavers	Rooftop	Landscape	Area	l otal Area	Value	Curve Number
	,	ft ²	₹.	∓ 2	₹2	ft ²	Ħ2	acres		
1	Bioretention-Flush	9,023	2,454	0	0	99	11,576	0.27	0.72	97.8
2	Bioretention-Flush	4,351	830	0	0	0	5,181	0.12	0.72	98.0
3	Bioretention-Flush	8,930	3,009	0	0	2,274	14,213	0.33	0.63	95.1
4	Bioretention-Flush	3,751	1,588	0	0	625	5,964	0.14	0.66	96.1
បា	Bioretention-Flush	2,053	1,130	0	0	0	3,183	0.07	0.74	98.0
6	Bioretention-Flush	2,597	1,310	0	0	49	3,956	0.09	0.73	97.8
7	Bioretention-Flush	4,453	1,821	0	0	77	6,351	0.15	0.72	97.8
8	Bioretention-Flush	3,663	1,462	0	0	144	5,269	0.12	0.71	97.5
9	Bioretention Rain Garden	1,329	537	1,266	0	4,631	7,763	0.18	0.33	85.8
10	Detention Pond	0	0	0	0	19,364	19,364	0.44	0.10	80.0
1	Bioretention-Flush	11,247	1,742	0	9,779	2,551	25,319	0.58	0.72	96.2
12	Bioretention-Flush	1,175	119	0	1,071	469	2,834	0.07	0.68	95.0
13	Bioretention-Flush	6,787	1,558	0	5,843	2,330	16,518	0.38	0.70	95.5
14	Bioretention-Flush	5,898	1,298	0	5,828	2,409	15,433	0.35	0.69	95.2
15	Bioretention-Flush	9,756	2,467	425	14,660	3,269	30,577	0.70	0.74	96.0
16	Bioretention-Flush	6,507	2,216	0	16,219	2,654	27,596	0.63	0.77	96.3
17	Bioretention-Flush	9,430	1,220	0	4,829	2,640	18,119	0.42	0.67	95.4
18	Bioretention-Flush	9,219	1,298	0	3,854	2,640	17,011	0.39	0.66	95.2
19	Bioretention Rain Garden	0	12,351	0	12,943	15,592	40,886	0.94	0.56	91.1
Overall		100,169	38,410	1,691	75,026	61,817	277,113	6.36	0.63	93.9

APPENDIX D DRAINAGE AREA CALCULATIONS

LID BMP Summary Page & Site Global Values

פ	Project Information:	rmation:	,			Site Information:				Based upon the pre and post development	the ore and	nost develo	nment
	Pro	Project Name: Shiloh Crossing	Shiloh Cros	sing		Mean Seasonal Precipitation (MSP) of Project Site:	oject Site:	35.00	35.00 (inches)	impervious area, the post construction BMP	rea, the po	st constructi	on BMP
	Addres	Address/Location:	295 Shiloh F	295 Shiloh Road, Windsor, CA 95492		K=MSP/3(~ 주	1.17		requirement is:	ïS.		
			Carlile-Macy	Carlile-Macy - Alan Furste									
_		Date:	6/25/2021			Impervious area - pre development:		27,878.0 ft ²	ft ²	100% (Capture	100% Capture & Treatment	nent
Г						Impervious area - post development:		214,750.0 ft ²	ft2				
					Sui	Summary of Saved BMP Results:							
		7			j				BMP	BMP Design Results	ults		
		i ributary Area	Area		Requirements	ints		Hydromodification Control	lification rol	Flow Base Treatment		Delta Volume Capture	Capture
100			Runoff							Required	-		
775	BMP ID:		Measures					VHydromod	Achieved	nt	red .		Achieved
		7,520	(1/14)	Type of Kedmienient Met				(11)	(11)	(crs)	(11)	Aneira (it)	(11)
_	_	11,576	Yes	Hydromod Volume Capture	Priority 2: P2-02	Priority 2: P2-02 Roadside Bioretention - Flush Design	100.8	885.6216	892.8000			TO LO COMPANY DE CONTROL PAR C	The second secon
2	2	5,181	No	Hydromod Volume Capture	Priority 2: P2-02	Priority 2: P2-02 Roadside Bioretention - Flush Design	101.5	411.5268 417.6000	417.6000				
ω	ω	14,213	No	Hydromod Volume Capture	Priority 2: P2-02	P2-02 Roadside Bioretention - Flush Design	100.9	848.8004	856.8000				
4	4	5,964	No	Hydromod Volume Capture	Priority 2: P2-02	P2-02 Roadside Bioretention - Flush Design	100.6	392.6101	394.8000				
OI	ហ	3,183	No	Hydromod Volume Capture	Priority 2: P2-02	P2-02 Roadside Bioretention - Flush Design	101.9	252.8257	257.6000				
0	6	3,956	Yes	Hydromod Volume Capture	Priority 2: P2-02	Priority 2: P2-02 Roadside Bioretention - Flush Design	101.2	284.6196	288.0000				
7	7	6,351	Yes	Hydromod Volume Capture	Priority 2: P2-02	Priority 2: P2-02 Roadside Bioretention - Flush Design	100.3	471.0703	472.3200				
œ	00	5,269	Yes	Hydromod Volume Capture	Priority 2: P2-02	Priority 2: P2-02 Roadside Bioretention - Flush Design	107.0	394.6877	422.4000				
9	9	7,763	Yes	Hydromod Volume Capture	Priority 1: P1-02	Priority 1: P1-02 Roadside Bioretention - No Curb and Gutter	101.8	174.4103	177.6000				
10	10	19,364	No	Hydromod Volume Capture	Priority 1: P1-02	Priority 1: P1-02 Roadside Bioretention - No Curb and Gutter	696.1	226.5588 ########	#######################################				
1	11	25,319	No	100% Vertical Flow Treatment	Priority 3: P3-03	Roadside Bioretention - Contiguous Sidewalk	102.4			0.0976	0.1000		
12	12	2,834	No	100% Vertical Flow Treatment	Priority 3: P3-03	P3-03 Roadside Bioretention - Contiguous Sidewalk	107.6			0.0103	0.0111		
13	13	16,518	No	100% Vertical Flow Treatment	Priority 3: P3-03	P3-03 Roadside Bioretention - Contiguous Sidewalk	100.5			0.0619	0.0622		
14	14	15,433	No	100% Vertical Flow Treatment	Priority 3: P3-03	Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk	101.3			0.0570	0.0578		
15	15	30,577	No	100% Vertical Flow Treatment	Priority 3: P3-03	P3-03 Roadside Bioretention - Contiguous Sidewalk	100.0			0.1212	0.1212		
16	16	27,596	No.	100% Vertical Flow Treatment	Priority 3: P3-03	Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk	100.0			0.1138	0.1138		
17	17	18,119	No	100% Vertical Flow Treatment	Priority 3: P3-03	Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk	100.8			0.0650	0.0656		
18	18	17,011	No.	100% Vertical Flow Treatment	Priority 3: P3-03	Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk	100.0			0.0601	0.0601		
19	19	40,886	N _o	100% Vertical Flow Treatment	Priority 3: P3-03	P3-03 Roadside Bioretention - Contiguous Sidewalk	101.5			0.1226	0.1244		
20													
21													
22													
23					THE RESERVE AND A STREET OF THE PROPERTY OF TH								
24													
25													
26													
27													
28													
29													
30													

DIAD Tuiktom, Donomotoro	75:00+	
BMP ID: 1	1. 10 con realise.	ic. Union crossing
BMP Design Criteria	BMP Design Criteria: 100% Capture & Treatment	
Type of BMP Design	Type of BMP Design: Priority 2: P2-02 Roadside Bioretention - Flush Design	esign
BMP's Physical Tributary Area:	11,576.0 ft ²	*
Description/Notes:	**	
Runoff Reduction Measures	Resulting reduced Tributary Area used Total Runoff Redi	utary Area used for BMP sizing = 11,376.0 ft² Total Runoff Reduction Measures = 200.0 ft²
Interceptor Trees		
Number of new interceptor Evergreen Trees:	0	Total Number of New trees in BMP Tributary Area:
Number of new interceptor Deciduous Trees:	000 422	
Disconnected Roof Drains		
Select disconnection condition	Select disconnection condition: Select disconnection condition	
Disconnected Roof Drains Method 1 Roof area of disconnected downspouts:	Disconne	ected Roof Drains Method 2 Percent of rooftop area: Select Density: 1 Units per Acre
Paved Area Disconnection		
Paved Area Type	Select pav	
Alternatively designed paved area:	0.0 ft ²	
Buffer Strips & Bovine Terraces		
Area draining to a Buffer Strip or Bovine Terrace:	0.0 ft ²	
Hydromodification Requirement: 100% Volume Capture; VHYDROMOD	Volume Capture; V _{HYDROMOD}	$V_{\text{HYDROMOD}} = \frac{885.62}{\text{ft}^3}$
Post development hydrologic soil type within tributary area	Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate	
Post development ground cover description	Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	
User Composite post development CN:	98.0	
BMP Sizing Tool: Hydromodification Requirement	quirement	Percent of Goal Achieved = 100.81 %
	BMP Volume	Ponded
Porosity:	Below Ground	Water Above Ground
Depth below perforated pipe if present:	3.00	0.00
widii. Length:	62.00 ft	Length: 0.00 ft
Area:	0.00	0.00

BMP Volume Below Ground Porosity: Porosity: O.40 Depth below perforated pipe if present: Width: Length: Area: Depth Selow Ground 12.00 tt 12.00 tt 12.00 tt 12.00 tt 12.00 tt	BMP Sizing Tool: Hydromodification Requirement	CN _{POST:} 98 User Composite post development CN: 0.0	Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate	Hydromodification Requirement: 100% Volume Capture; VHYDROMOD	Description/Notes:	BMP's Physical Tributary Area: 5,181.0 ft ²	Type of BMP Design: Priority 2: P2-02 Roadside Bioretention - Flush Design	BMP Design Criteria: 100% Capture & Treatment	BMP ID: 2	BMP Tributary Parameters
Above Ground Depth: Width: Length: Area: O.00 ft 0.00 ft 0.00 ft	Percent of Goal Achieved = 101.48 %		, Rooftop, Driveways	on (transmission) rate	ROMOD $V_{HYDROMOD} = 411.53 \text{ ft}^3$			Bioretention - Flush Design			Project Name: Shiloh Crossing

i Abe of Divil. Design: I right & . I F-or I reading Dioletelling - I has besign	
BMP's Physical Tributary Area: 14,213.0 ft ²	
Description/Notes:	
Hydromodification Requirement: 100% Volume Capture; VHYDROMOD	$V_{\rm HYDROMOD} = 848.80 \text{ ft}^3$
Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate	
Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	
CN _{POST:} User Composite post development CN: 95.0	
BMP Sizing Tool: Hydromodification Requirement	Percent of Goal Achieved = 100.94 %
BMP Volume Below Ground	Ponded Water Above
	Grou
Width: 7.00 tt Length: 102.00 ft Area: 0.00 ft²	Vidth: 0.00 ft Length: 0.00 ft Area: 0.00 ft²

BMP Volume Below Ground Porosity: 0.40 Depth below perforated pipe if present: Width: 7.00 Length: Area: 0.00	BMP Sizing Tool: Hydromodification Requirement	User Composite post development CN:	Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate	Hydromodification Requirement: 100% Volume Capture; VHYDROMOD	BMP ID: 4 BMP Design Criteria: 100% Capture & Treatment Type of BMP Design: Priority 2: P2-02 Roadside BMP's Physical Tributary Area: 5,964.0 ft² Description/Notes:	BMP Tributary Parameters
o.40 0.40 1.00 ft 47.00 ft 0.00 ft²	nt	96.0	ıs - Paved Parking, Rooftop, Driveways	0.15 in/hr infiltration (transmission) rate	Capture; V _{HYDROMOD}	Bioretentio	Project Name: Shiloh Crossing
Ponded Water Above Ground Depth: 0.00 ft Width: 0.00 ft Length: 0.00 ft	Percent of Goal Achieved = 100.56 %				$V_{HYDROMOD} = 392.61 \text{ ft}^3$		hiloh Crossing

BMP Tributary Parameters Project Name:	Shiloh Crossing
BMP ID: 5	
BMP Design Criteria: 100% Capture & Treatment	
Type of BMP Design: Priority 2: P2-02 Roadside Bioretention - Flush Design	n
BMP's Physical Tributary Area: 3,183.0 ft ²	
Description/Notes:	
Hydromodification Requirement: 100% Volume Capture; VHYDROMOD	$V_{\text{HYDROMOD}} = \frac{252.83}{\text{ft}^3}$
Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate	
Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	
CNPOST: Ser Composite post development CN: 98.0	
BMP Sizing Tool: Hydromodification Requirement	Percent of Goal Achieved = 101.89 %
BMP Volume	Ponded Water
Porosity: 0.40	Ground
Depth below perforated pipe if present: 4.00 ft	
Length: 23.00 ft Area: 0.00 ft ²	Area: 0.00 ft ²

Area: 0.00 ft ²	Area: 0.00 ft ²	
Length: 0.00 ft	Length: 30.00 ft	
Width: 0.00 ft	Width: 6.00 ft	
Depth: 0.00 ft	4.00	Depth below perforated pipe if present:
Ground	Porosity: 0.40	
Water Above	Below Ground	
	BMP Volume	
Percent of Goal Achieved = 101.19 %	ation Requirement	BMP Sizing Tool: Hydromodification Requirement
	opment CN: 98.0	User Composite post development CN:
	CN _{POST} :	
rking, Rooftop, Driveways	Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	Post development ground cover
tration (transmission) rate	ributary area: C: 0.05 - 0.15 in/hr infile	Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate
$V_{\text{HYDROMOD}} = 284.62 \text{ ft}^3$	it: 100% Volume Capture; V	Hydromodification Requirement: 100% Volume Capture; VHYDROMOD
	ine Terrace: 0.0 ft ²	Area draining to a Buffer Strip or Bovine Terrace:
		Buffer Strips & Bovine Terraces
	paved area: 0.0 ft	Aiternatively designed paved area:
	Select pav	Vave
		Paved Area Disconnection
orient beliaty.		
Percent of rooftop area: Select Density: 1 Units per Acre	downspouts: 0 ft	Root area ot disconnected downspouts:
od 2		Disconnected Roof Drains Method 1
ondition	Select disconnection condition: Select disconnection condition	Select disconnecti
		Disconnected Roof Drains
	ree canopy: 0.0 ft ²	Square footage of qualifying existing tree canopy:
Town Name of Name (1993) II Divil Tilbatal y Alea.		Number of new interceptor Deciduous Trees:
The second	reen Trees:	Number of new interceptor Evergreen Trees :
	日本ののできないと言葉のでは、八十八万できておいて、日本のでき	Interceptor Trees
Resulting reduced Tributary Area used for BMP sizing = 3,656.0 ft ² Total Runoff Reduction Measures = 300.0 ft ²		Runoff Reduction Measures
	Description/Notes:	Descr
	butary Area: 3,956.0 ft ²	BMP's Physical Tributary Area:
Iside Bioretention - Flush Design	Type of BMP Design: Priority 2: P2-02 Roadside Bioretention - Flush Design	Type of l
ment	BMP Design Criteria: 100% Capture & Treatment	BMP De
	BMP ID: 6	
Project Name: Shiloh Crossing		BMP Tributary Parameters

Ponded Water Above Ground Depth: 0.00 ft Width: 0.00 ft Length: 0.00 ft²	BMP Volume Below Ground Porosity: 0.40 ft
Percent of Goal Achieved = 100.27 %	BMP Sizing Tool: Hydromodification Requirement
aming, roomap, priveways	User Composite post development CN: Section CN CN CN CN CN CN CN C
ritration (transmission) rate	Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate
$V_{\text{HYDROMOD}} = \frac{471.07}{\text{ft}^3}$	Hydromodification Requirement: 100% Volume Capture; VHYDROMOD
	Area draining to a Buffer Strip or Bovine Terrace: 0.0 ft²
	Buffer Strips & Bovine Terraces
0	Paved Area Type: Select paved area type Alternatively designed paved area: 0.0 ft²
	Paved Area Disconnection
Disconnected Roof Drains Method 2 Percent of rooftop area: 0 % Select Density: 1 Units per Acre	Disconnected Roof Drains Method 1 Roof area of disconnected downspouts: 0 ft²
condition	Select disconnection condition: Select disconnection condition
	Disconnected Roof Drains
Total Number of New trees in BMP Tributary Area: 3	Number of <i>new</i> interceptor <i>Evergreen Trees</i> : Number of <i>new</i> interceptor <i>Deciduous Trees</i> : Square footage of qualifying existing tree canopy: 0.0 ft ²
	Interceptor Trees
Resulting reduced Tributary Area used for BMP sizing = 6,051.0 ft ² Total Runoff Reduction Measures = 300.0 ft ²	Runoff Reduction Measures
	Description/Notes:
	BMP's Physical Tributary Area: 6,351.0 ft ²
dside Bioretention - Flush Design	Type of BMP Design: Priority 2: P2-02 Roadside Bioretention - Flush Design
Iment	BMP Design Criteria: 100% Capture & Treatment
	BMP ID: 7
Project Name: Shiloh Crossing	BMP Tributary Parameters

BMP Tributary Parameters	Project Name: Shiloh Crossing
BMP ID: 8	
BMP Design Criteria: 100% Capture & Treatment	ent
Priorit	ide Bioretention - Flush Design
Description/Notes:	
Runoff Reduction Measures	Resulting reduced Tributary Area used for BMP sizing = 4,969.0 ft ² Total Runoff Reduction Measures = 300.0 ft ²
Interceptor Trees	
Number of <i>new</i> interceptor <i>Evergreen Trees</i> : Number of <i>new</i> interceptor <i>Deciduous Trees</i> : Square footage of qualifying existing tree canopy: 0.0 ft ²	Total Number of New trees in BMP Tributary Area: 3
Disconnected Roof Drains	
Select disconnection condition: Select disconnection condition	ndition
Disconnected Roof Drains Method 1 Roof area of disconnected downspouts: 0 ft ²	Disconnected Roof Drains Method 2 Percent of rooftop area: 0 % Select Density: 1 Units per Acre
Paved Area Disconnection	
Paved Area Type: Select paved area type Alternatively designed paved area: 0.0 ft²	
Buffer Strips & Bovine Terraces	
Area draining to a Buffer Strip or Bovine Terrace: 0.0 ft ²	
Hydromodification Requirement: 100% Volume Capture; VHYDROMOD	$V_{\text{HYDROMOD}} = \frac{394.69}{100} \text{ ft}^3$
Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways	ation (transmission) rate
CN _{POST} : User Composite post development CN: 98.0	
BMP Sizing Tool: Hydromodification Requirement	Percent of Goal Achieved = 107.02 %
BMP Volume Below Ground	Ponded Water Above
Depth below perforated pipe if present: 4.00 ft Width: 6.00 ft	Depth: Ground the Width: 0.00 ft
Length: 44.00 ft Area: 0.00 ft ²	

Ponded Water Above Ground	BMP Volume Below Ground Porosity: Depth below perforated pipe if present: Width: Length: Area: BMP Volume Below Ground Porosity: Below Ground 1.00 ft Area: Area: BMP Volume Below Ground 1.00 ft Area: BMP Volume BMP Volume Below Ground 1.00 ft
Percent of Goal Achieved = 101.83 %	BMP Sizing Tool: Hydromodification Requirement
ng, κοσπορ, υπνεways	Post development ground cover description: Impervious - Paved Parking, Roomop, Univerways CN _{POST} : User Composite post development CN: 86.0
ation (transmission) rate	Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate
$V_{\text{HYDROMOD}} = \frac{174.41}{\text{ft}^3}$	Hydromodification Requirement: 100% Volume Capture; VHYDROMOD
	Area draining to a Buffer Strip or Bovine Terrace: 0.0 ft ²
	Buffer Strips & Bovine Terraces
	Paved Area Type: Select paved area type Alternatively designed paved area: 0.0 ft²
	Paved Area Disconnection
Disconnected Roof Drains Method 2 Percent of rooftop area: 0 % Select Density: 1 Units per Acre	Disconnected Roof Drains Method 1 Roof area of disconnected downspouts: 0 ft²
dition	Select disconnection condition: Select disconnection condition
	Disconnected Roof Drains
Total Number of New trees in BMP Tributary Area: 3	Number of <i>new</i> interceptor <i>Evergreen Trees</i> : Number of <i>new</i> interceptor <i>Deciduous Trees</i> : Square footage of qualifying existing tree canopy: 0.0 ft ²
	Interceptor Trees
Resulting reduced Tributary Area used for BMP sizing = 7,463.0 ft ² Total Runoff Reduction Measures = 300.0 ft ²	Runoff Reduction Measures
	Description/Notes:
	BMP's Physical Tributary Area: 7,763.0 ft ²
de Bioretention - No Curb and Gutter	Type of BMP Design: Priority 1: P1-02 Roadside Bioretention - No Curb and Gutter
nt	BMP Design Criteria: 100% Capture & Treatment
	BMP ID: 9
Project Name: Shiloh Crossing	BMP Tributary Parameters

BMP ID: 10 BMP Design Criteria: 100% Capture & Treatment Type of BMP Design: Priority 1: P1-02 Roadside Bioretention - No Curb and Gutter BMP's Physical Tributary Area: 19,364.0 ft²
BMP Design Criteria: 100% Capture & Treatment Type of BMP Design: Priority 1: P1-02 Roadside Bioretention - No Curb and Gutter BMP's Physical Tributary Area: 19,364.0 ft ²
Type of BMP Design: Priority 1: P1-02 Roadside Bioretention - No Curb and Gutter BMP's Physical Tributary Area: 19,364.0 ft ²
BMP's Physical Tributary Area: 19,364.0 ft ²
Description/Notes: Detention Pond for Incubator site to the North.
Hydromodification Requirement: 100% Volume Capture; V _{HYDROMOD}
Post development hydrologic soil type within tributary area: C: 0.05 - 0.15 in/hr infiltration (transmission) rate
Post development ground cover description: Impervious - Paved Parking, Rooftop, Driveways
CN _{POST:} User Composite post development CN: 80.0
BMP Sizing Tool: Hydromodification Requirement Percent of Goal Achieved =
BMP Volume Ponded Water
Porosity: 0.40 Ground
0.00 ft Depth:
0.00 ft Length:
Area: 0.00 ft* Area: 3,154.00 ft*

DMD Tributory Doromotors	ame: Shiloh Crossing
BMP ID: 11	
BMP Design Criteria: 100% Capture & Treatment	
Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk	iguous Sidewalk
BMP's Physical Tributary Area: 25,319.0 ft ²	
Description/Notes: Volume Capture achieved via detention chambers sized	sized for 100 year storm. See detention volume portion of
this report.	
100% Treatment	Q _{TREATMENT} = 0.0976 cfs
Post surface type: Concrete	
User Composite post development C _{POST} : User Composite post development C _{POST} : User Input I _{Historical} : 0.00 in./hr.	Treatment Factor (Tf): Calculated O.20 in./hr.
BMP Sizing 100% Treatment Vertical	Percent of Goal Achieved = 102.41 %
Infiltration rate of the specified BMP soil: 24.00 in./hr.	
Depth of drainage pipe: 1.50 ft BMP Length: 90.00 ft BMP Width: 2.00 ft	2

Depth of drainage pipe: 1.50 ft BMP Length: 10.00 ft BMP Width: 2.00 ft	BMP Sizing 100% Treatment Vertical Infiltration rate of the specified BMP soil: 24.00 in./hr.	Post surface type: Concrete CPOST: CPOST: CPOST: CPOST: CPOST: O.68 User Composite post development CPOST: User Input I _{Historical} : O.00 in./hr. Indexign Storm: O.20 in./hr.	Q _{TREATMENT} =	BMP ID: 12 AP Design Criteria: 100% Capture & Treatment Description/Notes: 2,834.0 ft² Description/Notes: Volume Capture achieved via detention of this report.	Linguist of all all all all all all all all all al
	eved = 107.64 %	lculated /hr.	TMENT = 0.0103 cfs	ntion volume portion of	

BMP Tributary Parameters	Project Name: Shiloh Crossing
BMP ID: 13	
BMP Design Criteria: 100% Capture & Treatment	
Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk	n - Contiguous Sidewalk
BMP's Physical Tributary Area: 16,518.0 ft²	
Description/Notes: Volume Capture achieved via detention chambers sized this report.	hambers sized for 100 year storm. See detention volume portion of
100% Treatment	Q _{TREATMENT} = 0.0619 cfs
Post surface type: Concrete	
C _{POST} : User Composite post development C _{POST} : 0.70	Treatment Factor (Tf): 1 Calculated
User Input Historical: 0.00 in./hr.	l Design Storm: 0.20 in./hr.
BMP Sizing 100% Treatment Vertical	Percent of Goal Achieved = 100.46 %
Infiltration rate of the specified BMP soil: 24.00 in./hr.	
Depth of drainage pipe: 1.50 ft	
BMP Length: 56.00 ft BMP Width: 2.00 ft	

Depth of drainage pipe: BMP Length: BMP Width: 2.00 ft	BMP Sizing 100% Treatment Vertical Infiltration rate of the specified BMP soil: 24.00 in./hr.	CPOST: User Composite post development CPOST: User Input I _{Historical} : 0.00 in./hr.	100% Treatment Post surface type: Concrete	BMP ID: 14 IP Design Criteria: 100% Capture & Treatment Design: Priority 3: P3-03 Roadside Bioretentio 15,433.0 tt² Description/Notes: Volume Capture achieved via detention of this report.	BMP Tributary Parameters Pr
	Percent of Goal Achieved = 101.29 %	Treatment Factor (Tf): 1 Calculated O.20 in./hr.	Q _{TREATMENT} = 0.0570 cfs	Contiguous Sidewalk bers sized for 100 year storm. See detention volume portion of	Project Name: Shiloh Crossing

Depth of drainage pipe: BMP Length: 1.50 ft BMP Length: 24.00 in./hr.	5
	BMP Sizing
Post surface type: Concrete Cpost: C	Us
Q _{TREATMENT} = 0.1212 cfs	100% Treatment
BMP ID: 15 BMP Design Criteria: 100% Capture & Treatment Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk BMP's Physical Tributary Area: 30,577.0 ft² Description/Notes: Volume Capture achieved via detention chambers sized for 100 year storm. See detention volume portion of this report.	
BMP Tributary Parameters Project Name: Shiloh Crossing	BMP Tributa

Depth of drainage pipe: 1.50 ft BMP Length: 102.40 ft BMP Width: 2.00 ft	BMP Sizing 100% Treatment Vertical Infiltration rate of the specified BMP soil: 24.00 in./hr.	Post surface type: Concrete CPOST: User Composite post development CPOST: User Input Historical: 0.00 in./hr.	100% Treatment	BMP ID: 16 BMP Design Criteria: 100% Capture & Treatment Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk BMP's Physical Tributary Area: 27,596.0 tt² Description/Notes: Volume Capture achieved via detention chambers sized for 100 year this report.	BMP Tributary Parameters
	Percent of Goal Achieved = 99.96 %	Treatment Factor (Tf): Calculated O.20 in./hr.	Q _{TREATMENT} = 0.1138 cfs	BMP ID: 16 MP Design Criteria: 100% Capture & Treatment pe of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk cal Tributary Area: 27,596.0 ft² Description/Notes: Volume Capture achieved via detention chambers sized for 100 year storm. See detention volume portion of this report.	Project Name: Shiloh Crossing

Depth of drainage pipe: 1.50 ft BMP Length: 59.00 ft BMP Width: 2.00 ft
BMP Sizing 100% Treatment Vertical Infiltration rate of the specified BMP soil: 24.00 in./hr.
User Composite post development C _{POST} : User Input I _{Historical} : Octoricate Concrete C _{POST} : Octoricate C _{POST} : Octoricate C _{POST} : C _{POST} : Octoricate Treatment Factor (Tf): I _{Design Storm} : Octoricate 1 Calculated Octoricate Octoricate
100% Treatment Q _{TREATMENT} = 0.0650 cfs
BMP ID: 17 BMP Design Criteria: 100% Capture & Treatment Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk BMP's Physical Tributary Area: Description/Notes: Volume Capture achieved via detention chambers sized for 100 year storm. See detention volume portion of this report.
BMP Tributary Parameters Project Name: Shiloh Crossing

BMP Tributary Parameters	Project Name: Shiloh Crossing
BMP ID: 18	
BMP Design Criteria:	BMP Design Criteria: 100% Capture & Treatment
Type of BMP Design:	Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk
BMP's Physical Tributary Area:	17,011.0 ft ²
Description/Notes:	Description/Notes: Volume Capture achieved via detention chambers sized for 100 year storm. See detention volume portion of
	ulis ieboi t.
100% Treatment	Q _{TREATMENT} = 0.0601 cfs
Post surface type: Concrete	Concrete
C _{POST} : User Composite post development C _{POST} :	0.66 Treatment Factor (Tf): 1 Calculated
User Input I _{Historica} :	0
BMP Sizing 100% Treatment Vertical	Percent of Goal Achieved = 99.95 %
Infiltration rate of the specified BMP soil:	24.00 in./hr.
Depth of drainage pipe: BMP Length:	1.50 ft 54.10 ft
BMP Width:	2.00 ft

	Depth of drainage pipe: 1.50 ft BMP Length: 28.00 ft BMP Width: 8.00 ft
5	Infiltration rate of the specified BMP soil: 24.00 in./hr.
Percent of Goal Achieved = 101.47 %	BMP Sizing 100% Treatment Vertical
Treatment Factor (Tf): Design Storm:	User Composite post development C _{POST} : User Composite post development C _{POST} : User Input I _{Historical} : 0.00 in /hr.
	Post surface type: Concrete
Q _{TREATMENT} = 0.1226 cfs	100% Treatment
rs sized for 100 year storm. See detention volume portion of	Description/Notes: Volume Capture achieved via detention chambers sized this report.
	BMP's Physical Tributary Area: 40,886.0 ft ²
ontiguous Sidewalk	Type of BMP Design: Priority 3: P3-03 Roadside Bioretention - Contiguous Sidewalk
	BMP Design Criteria: 100% Capture & Treatment
	BMP ID: 19
Project Name: Shiloh Crossing	BMP Tributary Parameters Project

APPENDIX E BMP DETAILS

APPENDIX F BMP Inspection And Maintenance Checklists

Form A Storm Water Quality Feature Maintenance Check List - Standard Conditions -

Г						ſΛ			$\overline{}$						
	(Sieis)	scials) S).			Crocial	Features	S	See Additional Special Conditions or Features Check List Requirement Form B							4
	B (Spe	(Note				oroper lage	G 4	Evidence of improper modifications or removal of BMP?							5
	des: * = Refer to Form B (Specials)	and/or Form C (Notes)			General	Trash and Debris - Improper Modifications - Damage	G2	Missing or damage structural features? (Grates, pipes, walls, curbs, etc.)							Q Q
	odes: * = Refe	and/				Trash ar Modii	G1	Is there debris/trash accumulation in the BMP or high flow by pass?							
	us C	<u>></u>				se -	۸4	Yegetation?							
	Inspection Status Codes: S = Satisfactory * =	= Satisiact = Deficient			ion	Excessive Mowing - Herbicide Overuse - Health of Desired Vegetation -	\ \ \	Are there dead or dry plants or excessive weeds? Is there an absence of correct							
	Inspect				Vegetation	ssive Mowing - Herbicide Ovel Health of Desired Vegetation	72	Evidence of Excessive Mowing and/or Herbicide Overuse?							
						Excessive N Health	V1	ls the vegetation clogging the inlet or flow path?							
ı	I	ı	(circle one)	ct.			E6	Is there evidence of animal activity?				Ī			<u>.</u>
			N (cir	for Project.				the BMP?							
			>	B for		gging	ES	Are there voids or holes present in							i.
			noted for BMP(s)?	attach Form E	u	Hydraulic Function - Failure - Sediment Clogging	E4	Observed or potential transport of mulch to drainage system?							Re-Inspection Required:
			oted for	s, attac	Erosion	ion - Failure	E3	Is there accumulation of sediment (sand, dirt, mud) in the planter area ?							
				If Yes,		Hydraulic Funct	E2	ls there channelization (gully) forming along the length of the planter area?							
			ance requir				E1	Is there under cutting or washouts along the sidewalks and/or curbs abutting the planter area?							series Corrective Action.
 .:	 	် (လ	ntena			÷		a low intensity storm?							d vivo
Inspector:	Project:	Address:	l/or mai			k - Pump Ou	D4	Has water been observed flowing in the pervious concrete section during							orre
			is and		lage	ector Ris age	D3	on ni noiharimation in or la there sediment acumination in or							o loo
			ondition		Drainage	Drainage - Vect Blockage	D2	ss noitonuf szaqyd wolf rigirl ərfs səoD Gbəngisəb							
			special co			Drawdown - Drainage - Vector Risk - Pump Out- Blockage	D1	Evidence of standing or ponding of water in the BMP area after 72 hours of dry weather?							
Date:	Start Time:	Stop Time:	Are there any special conditions and/or maintenance requirements	-			Reference code	BMP ID:							Office Use:

Storm Water Quality Special Feature Maintenence Check List

des: * - See Notes on Form C		\$10	Add special inspection requirements in addition to Form A here. Add special inspection requirements in Add special inspection requirements in Add special inspection requirements in addition to Form A here.							:pe
Inspection Status Codes: S = Satisfactory D = Deficient	tions	6S 8S	Add special inspection requirements in addition to Form A here. Addition to Form A here. Add special inspection requirements in addition to Form A here.							Re-Inspection Required:
	Special Feature or Conditions	2S 9S	ni sdaition to Form A here. addition to Form A here. Addition to Form A here. Addition to Form A here.							
Inspector:	Special	S4 S5	hdd special inspection requirements in addition to Form A here. Add special inspection requirements in addition to Form A here.							ctive Action:
		S2 S3	Add special inspection requirements in addition to Form A here. Add special inspection requirements in addition to Form A here.							Issues Corrective Actio
		ode S1	Add special inspection requirements in addition to Form A here.							··
Date: Start Time: Stop Time:		Reference code	Additional Special Maintenance Inspection Criterial							Office Use:

Page___of_

Form C Storm Water Quality Feature Maintenence Check List - Inspection Notes -

Inspector:	Notes						
	Reference Code						
Date:	BMP ID:						

Page ____ of __

APPENDIX G SUSMP EXHIBITS

APPENDIX H 100 YEAR STORMWATER DETENTION

Shiloh Crossing 295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

Surface Type	Roof	Asphalt	Concrete	Landscape
C-Value	0.90	0.90	0.90	0.40

Drainage Area	Roof ft ²	Asphalt ft ²	Concrete ft ²	Landscape ft ²	Total ft ²	Area ac	Composite C-Value
West	37,439	34,867	5,401	29,670	107,377	2.47	0.76
East	38,322	61,943	31,713	36,826	168,805	3.88	0.79
Total Site	75,761	96,810	37,114	66,496	276,181	6.34	0.78
	1.74	2.22	0.85	1.53	6.34		

Shiloh Crossing

295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

<u>100-year Storm Detention Requirements: Proposed - Undeveloped</u> Project West

Storm Duration	100-year Intensity X K	Design Release Rate, Q _{pre}	Developed Peak Runoff Rate, Q _{post}	Detention Rate to Storage	Detention Volume
(min)	(in/hr)	(cfs)	(cfs)	(cfs)	(ft ³)
3.0	6.64	5.74	12.50	10.05	1,808
3.5	6.12	5.29	11.52	9.07	1,904
4.0	5.70	4.93	10.73	8.28	1,988
4.5	5.36	4.63	10.08	7.63	2,061
5.0	5.07	4.38	9.54	7.09	2,126
5.5	4.82	4.17	9.07	6.62	2,184
5.7	4.73	4.09	8.90	6.45	2,205
6.0	4.60	3.98	8.66	6.21	2,236
6.5	4.41	3.81	8.30	5.85	2,282
7.0	4.24	3.67	7.98	5.53	2,324
7.5	4.09	3.54	7.70	5.25	2,361
8.0	3.95	3.42	7.44	4.99	2,394
8.5	3.83	3.31	7.20	4.75	2,424
9.0	3.71	3.21	6.99	4.54	2,451
9.5	3.61	3.12	6.79	4.34	2,475
10.0	3.51	3.04	6.61	4.16	2,496
10.5	3.42	2.96	6.44	3.99	2,514
11.0	3.34	2.89	6.29	3.83	2,531
11.5	3.26	2.82	6.14	3.69	2,545
12.0	3.19	2.76	6.00	3.55	2,557
12.5	3.12	2.70	5.87	3.42	2,568
13.0	3.06	2.64	5.75	3.30	2,576
13.5	3.00	2.59	5.64	3.19	2,583
14.0	2.94	2.54	5.53	3.08	2,589
14.5	2.89	2.49	5.43	2.98	2,593
15.0	2.83	2.45	5.33	2.88	2,595
15.5	2.79	2.41	5.24	2.79	2,596
16.0	2.74	2.37	5.16	2.70	2,596
16.5	2.70	2.33	5.07	2.62	2,595
17.0	2.65	2.29	4.99	2.54	2,593
17.5	2.61	2.26	4.92	2.47	2,589
18.0	2.57	2.23	4.84	2.39	2,585
18.5	2.54	2.19	4.77	2.32	2,579
19.0	2.50	2.16	4.71	2.26	2,572
19.5	2.47	2.13	4.64	2.19	2,565
20.0	2.43	2.10	4.58	2.13	2,557

Notes:

- 1) Q = C-Value x Intensity x Tributary Area
- 2) Use design release rate of 3.61 cfs in correspondance with existing flow at time of concentration of 15 minutes
- 3) "Detention Rate to Storage" = "Developed Peak Runoff Rate" "Design Release Rate"

Shiloh Crossing 295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

West

Contech Chamber Maxx			
# columns	3		
# rows	6		
volume/chamber - middle	47.2	ft ³	
volume/chamber - start	50.2	ft³	
volume/chamber - end	46.2	ft³	
in/outlet manifold volume		ft³	
Total chamber volume	1,428	ft ³	
Detention Basin Dimensions			
Basin footprint area	1,333	ft ²	
Stone depth	3.53	ft	
Backfill volume	4,700	ft ³	*40% porosity
Basin Storage Volume	1,309	ft ³	=(Backfill volume - Chamber volume)*40%
Total Detention Volume			
Total Detention Volume	2,737	ft ³	=Total Chamber Volume + Basin storage volume
Required Detention Volume	2,596	ft ³	
Design Elevations			
Finished grade above chamber	125.73	ft	
Inlet invert	116.41	ft	
Stone cover Stone bedding depth	6 6	in in	4" minimum
Cover over top of stone	6.30	ft	8" Minimum
Top of stone fill Top of chamber Bottom of chamber Bottom of stone bed	118.94 116.41 115.91	ft ft	=Weir elevation
Stone depth	3.53	ft	

Shiloh Crossing

295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

100-year Storm Detention Requirements: Proposed - Undeveloped EAST

<u>Existing Conditions</u> <u>Developed Conditions</u> Tributary Area: 3.88 acres

 $T_{C, pre}$: 15 min $T_{C, post}$: 7 min C_{pre} : 0.35 **Overall C**_{post}: **0.79**

100-year **Detention** Design **Developed Intensity X Detention** Storm Release **Peak Runoff** Rate to **Duration** Κ Rate, Q_{post} Volume Storage Rate, Qpre (ft^3) (min) (in/hr) (cfs) (cfs) (cfs) 3.0 6.64 9.02 20.38 16.53 2,976 3.5 6.12 8.31 18.78 14.94 3,136 4.0 5.70 7.75 17.50 13.65 3,277 3,401 4.5 5.36 7.28 16.45 12.60 5.0 5.07 6.88 15.55 11.71 3,512 5.5 4.82 6.54 14.79 10.94 3,610 4.73 5.7 6.42 14.51 10.66 3,647 6.0 4.60 6.25 14.12 10.28 3,699 6.5 4.41 5.99 13.54 9.69 3,779 7.0 4.24 5.76 13.02 9.17 3,851 7.5 4.09 5.55 12.55 8.70 3,916 3.95 8.28 3,975 8.0 5.37 12.13 8.5 3.83 5.20 7.90 4,028 11.75 9.0 3.71 5.04 11.40 7.55 4,076 4.90 9.5 3.61 11.08 7.23 4,119 10.0 3.51 4.77 4,158 10.78 6.93 3.42 4.65 4,193 10.5 10.51 6.66 11.0 3.34 4.54 10.25 6.40 4,224 11.5 3.26 4.43 10.01 6.16 4,252 12.0 3.19 4.33 9.79 5.94 4,276 5.73 4,298 12.5 3.12 4.24 9.58 13.0 3.06 4.15 9.38 5.53 4,316 13.5 3.00 4.07 9.20 5.35 4,332 14.0 2.94 3.99 9.02 5.17 4,345 5.01 4,356 14.5 2.89 3.92 8.86 15.0 2.83 8.70 4.85 4,365 3.85 15.5 2.79 3.78 8.55 4.70 4,371 4,375 16.0 2.74 3.72 8.41 4.56 16.5 2.70 3.66 8.27 4.42 4,378 17.0 2.65 3.60 8.14 4.29 4,378

Notes:

17.5

18.0

18.5

19.0

19.5

20.0

1) Q = C-Value x Intensity x Tributary Area

2.61

2.57

2.54

2.50

2.47

2.43

2) Use design release rate of 2.96 cfs in correspondance with existing flow at time of concentration of 15 minutes

8.02

7.90

7.79

7.68

7.57

7.47

4.17

4.05

3.94

3.83

3.72

3.62

4,377

4,374

4,369

4,363

4,355 4,346

3) "Detention Rate to Storage" = "Developed Peak Runoff Rate" - "Design Release Rate"

3.55

3.50

3.45

3.40

3.35

3.31

Shiloh Crossing 295 Shiloh Road, Windsor, CA 95492 APN: 163-171-039

East

Contech Terre Arch 26			
# chambers	12		
volume/chamber	319.0	ft³	
distribution manifold volume	93	ft³	
Total chamber volume	4,200	ft³	
Stone Edge			
Footprint area	210	ft ²	
Stone depth	4.00	ft	
Edge volume	336	ft ³	*40% porosity
Total Detention Volume			
Total Detention Volume	4,536	ft ³	=Total Chamber Volume + Edge Volume
Required Detetnion Volume	4,378	s ft³	
Design Elevations			
Finished grade above chamber	123.00	ft	
Inlet invert	118.33	ft	
Stone cover	4	in	4" minimum
Stone bedding depth	8	in	
Cover over top of stone	2.50	ft	8" Minimum
Min FG over chamber	120.83	ft	
Top of stone fill Top of chamber Bottom of chamber Bottom of stone bed	120.50 120.00 117.16 116.50	ft ft ft ft	=Weir elevation

Stone depth 4.00 ft

APPENDIX I

SOIL TYPE

Area of Interest (AOI) Soil Rating Polygons Soil Rating Lines Soil Rating Points O C B/D ω B/D ω Ą Not rated or not available C/D Ą Not rated or not available U B/D Φ C/D ₽ Area of Interest (AOI) MAP LEGEND Background Transportation Water Features ŧ Rails Aerial Photography O C/D Local Roads **US Routes** Interstate Highways Streams and Canals C Major Roads Not rated or not available The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background of the version date(s) listed below. Please rely on the bar scale on each map sheet for map Enlargement of maps beyond the scale of mapping can cause shifting of map unit boundaries may be evident. Date(s) aerial images were photographed: Jul 1, 2018—Jul 31, Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Soil Survey Area: Sonoma County, California Survey Area Data: Version 12, Sep 13, 2018 Maps from the Web Soil Survey are based on the Web Mercator Coordinate System: Web Mercator (EPSG:3857) Web Soil Survey URL: Source of Map: Natural Resources Conservation Service contrasting soils that could have been shown at a more detailed misunderstanding of the detail of mapping and accuracy of soil Warning: Soil Map may not be valid at this scale imagery displayed on these maps. As a result, some minor This product is generated from the USDA-NRCS certified data as accurate calculations of distance or area are required. Albers equal-area conic projection, should be used if more distance and area. A projection that preserves area, such as the projection, which preserves direction and shape but distorts measurements. line placement. The maps do not show the small areas of The soil surveys that comprise your AOI were mapped at 1:20,000. MAP INFORMATION

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
CeA	Clear Lake clay, sandy substratum, drained, 0 to 2 percent slopes, MLRA 14	D	0.7	6.8%			
HtA	Huichica loam, 0 to 2 percent slopes	С	7.8	76.1%			
HwB	Huichica loam, shallow, ponded, 0 to 5 percent slopes	D	1.8	17.1%			
Totals for Area of Interest			10.3	100.0%			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Navigation

Search

Languages

MSC Home (/portal/)

MSC Search by Address (/portal/search)

MSC Search All Products (/portal/advanceSearch)

 MSC Products and Tools (/portal/resources/productsandtools)

(/portal/resources/hazus)

LOMC Batch Files (/portal/resources/lomc)

Product Availability (/portal/productAvailability)

MSC Frequently Asked Questions (FAQs) (/portal/resources/faq)

MSC Email Subscriptions (/portal/subscriptionHome)

Contact MSC Help (/portal/resources/contact)

FEMA Flood Map Service Center: Search By Address

Enter an address, place, or coordinates: (2)

Windsor, CA

Search

Whether you are in a high risk zone or not, you may need flood insurance (https://www.fema.gov/nationalflood-insurance-program) because most homeowners insurance doesn't cover flood damage. If you live in an area with low or moderate flood risk, you are 5 times more likely to experience flood than a fire in your home over the next 30 years. For many, a National Flood Insurance Program's flood insurance policy could cost less than \$400 per year. Call your insurance agent today and protect what you've built.

Learn more about steps you can take (https://www.fema.gov/what-mitigation) to reduce flood risk damage.

Search Results—Products for WINDSOR, TOWN OF

Show ALL Products » (https://msc.fema.gov/portal/availabilitySearch?addcommunity=060761&communityName=WINI

The flood map for the selected area is number **06097C0568E**, effective on **12/02/2008** ?

DYNAMIC MAP

MAP IMAGE

(https://msc.fema.gov/portal/downloadProduct?

filepath=/06/P/Firm/06097C0568E.png&productTypeID=FINAL_PRODUCT&productSubTypeID=FIRM_PANEL{

Changes to this FIRM ?

Revisions (0)

Amendments (4)

Revalidations (2)

You can choose a new flood map or move the location pin by selecting a different location on the locator map below or by entering a new location in the search field above. It may take a minute or more during peak hours to generate a dynamic FIRMette.

Go To NFHL Viewer » (https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d

Home (//www.fema.gov/). Download Plug-ins (//www.fema.gov/download-plug-ins). About Us (//www.fema.gov/about-agency). Privacy Policy (//www.fema.gov/privacy-policy) FOIA (//www.fema.gov/foia). Office of the Inspector General (//www.oig.dhs.gov/) Strategic Plan (//www.fema.gov/fema-strategic-plan) Whitehouse.gov (//www.whitehouse.gov). DHS.gov (//www.dhs.gov) Ready.gov (//www.ready.gov). USA.gov (//www.usa.gov). DisasterAssistance.gov (//www.disasterassistance.gov/).

Share This Page.

Official website of the Department of Homeland Security