Greenhouse Gas Emissions Assessment 5977 & 6001 Silver Creek Valley Road Project City of San José, California ## Prepared by: ## Kimley-Horn and Associates, Inc. 10 S. Almaden Boulevard, Suite 1250 San José, California 95113 Contact: Ms. Noemi Wyss 669.800.4152 ## **TABLE OF CONTENTS** | 1 | INTRODUCTION | | |----------|--|----| | 1.1 | Project Location | 1 | | 1.2 | Project Description | 1 | | 2 | ENVIRONMENTAL SETTING | | | 2.1 | Greenhouse Gases and Climate Change | 5 | | 3 | REGULATORY SETTING | | | 3.1 | Federal | | | 3.2 | State of California | 8 | | 3.3 | Regional | 14 | | 3.4 | Local | 16 | | 4 | SIGNIFICANCE CRITERIA AND METHODOLOGY | | | 4.1 | Thresholds and Significant Criteria | 20 | | 4.2 | Methodology | 20 | | 5 | POTENTIAL GREENHOUSE GAS IMPACTS AND MITIGATION | | | 5.1 | Greenhouse Gas Emissions | 23 | | 5.2 | Greenhouse Gas Reduction Plan Compliance | 24 | | 5.3 | Cumulative Setting, Impacts, and Mitigation Measures | 30 | | 6 | REFERENCES | | | | References | 32 | | TABLES | | | | Table 1: | : Description of Greenhouse Gases | 6 | | Table 2: | : Project Consistency with Applicable CARB Scoping Plan Measures | 26 | | EXHIBIT | | | | Figure 1 | 1: Regional Vicinity | | | Figure 2 | 2: Site Vicinity | 3 | | Figure 3 | 3. Project Site Plan | 1 | #### **APPENDIX** Appendix A: Greenhouse Gas Emissions Data Appendix B: 2030 Greenhouse Gas Reduction Strategy Checklist #### **LIST OF ABBREVIATED TERMS** AB Assembly Bill CARB California Air Resource Board CCR California Code of Regulations CalEEMod California Emissions Estimator Model CEQA California Environmental Quality Act CALGreen California Green Building Standards CPUC California Public Utilities Commission CO₂ carbon dioxide CO₂e carbon dioxide equivalent CFC Chlorofluorocarbon CPP Clean Power Plan CCSP Climate Change Scoping Plan cy cubic yard EPA Environmental Protection Agency FCAA Federal Clean Air Act FR Federal Register GHG greenhouse gas HCFC Hydrochlorofluorocarbon HFC Hydrofluorocarbon LCFS Low Carbon Fuel Standard CH₄ Methane MMTCO₂e million metric tons of carbon dioxide equivalent MTCO₂e million tons of carbon dioxide equivalent NHTSA National Highway Traffic Safety Administration ${\sf NF_3}$ nitrogen trifluoride ${\sf N_2O}$ nitrous oxide ${\sf PFC}$ Perfluorocarbon RTP/SCS Regional Transportation Plan/Sustainable Communities Strategy SB Senate Bill SCAQMD South Coast Air Quality Management District Sf square foot SF₆ sulfur hexafluoride TAC toxic air contaminants ## 1 INTRODUCTION This report describes effects of climate change and greenhouse gas (GHG) emissions that would be caused by implementation of the 5977 & 6001 Silver Creek Valley Road Project("project" or "proposed project"). The study area for climate change and the analysis of GHG emissions is broad because climate change is influenced by world-wide emissions and their global effects. However, the study area is also limited by the CEQA Guidelines [Section 15064(d)], which directs lead agencies to consider an "indirect physical change" only if that change is a reasonably foreseeable impact that may be caused by the project. This report limits discussion to those physical changes to the environment that are not speculative and are reasonably foreseeable. ## 1.1 PROJECT LOCATION The proposed project is located at 5977 & 6001 Silver Creek Valley Road in San José. Figure 1: Regional Vicinity and Figure 2: Site Vicinity, depict the project site in a regional and local context. The project site is located in an urban area with a mix of surrounding uses including commercial, office, residential and industrial uses. To the west of the project site is open space. The proposed project's existing land use designation is Combined Industrial/Commercial and existing zoning designation is Industrial Park District (IP). Currently, the project site is vacant with some existing vegetation. #### 1.2 PROJECT DESCRIPTION The proposed project would redevelop the vacant site located at 5977 Silver Creek Valley Road in San José with industrial uses consistent with the General Plan and zoning district regulations. The project proposes a 226,873 square foot industrial building, 45,000 square feet of manufacturing area, which includes up to 10,000 square feet of office space (including mezzanine), an outdoor employee amenity area, up to 40 loading dock doors, up to 54 truck trailer stalls, refer to Figure 3: Project Site Plan. The proposed building would be approximately 50 feet tall and could be split into 100,000 square foot interior areas to provide flexibility of uses for either a more intensive office or industrial occupants. The facility would have space for up to 56 on site workers. The project site would be accessible via two driveways on Silver Creek Valley Road and two driveways on Fontanosa Way. These access points would lead into a surface lot with 210 parking spaces. The proposed project would connect to existing utilities located in Silver Creek Valley Road and Fontanosa Way. The proposed project would be constructed over the course of approximately 13 months. The proposed project would not remove any trees from the project site and would not require soil import during grading or other phases of construction. Figure 2: Site Vicinity Not to scale Source: Duke Realty, 2021 ## 2 ENVIRONMENTAL SETTING #### 2.1 GREENHOUSE GASES AND CLIMATE CHANGE Certain gases in the earth's atmosphere classified as GHGs, play a critical role in determining the earth's surface temperature. Solar radiation enters the earth's atmosphere from space. A portion of the radiation is absorbed by the earth's surface and a smaller portion of this radiation is reflected toward space. This absorbed radiation is then emitted from the earth as low-frequency infrared radiation. The frequencies at which bodies emit radiation are proportional to temperature. Because the earth has a much lower temperature than the sun, it emits lower-frequency radiation. Most solar radiation passes through GHGs; however, infrared radiation is absorbed by these gases. As a result, radiation that otherwise would have escaped back into space is instead "trapped," resulting in a warming of the atmosphere. This phenomenon, known as the greenhouse effect, is responsible for maintaining a habitable climate on earth. The primary GHGs contributing to the greenhouse effect are carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O). Fluorinated gases also make up a small fraction of the GHGs that contribute to climate change. Examples of fluorinated gases include chlorofluorocarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF_6), and nitrogen trifluoride (NF_3); however, it is noted that these gases are not associated with typical land use development. Human-caused emissions of GHGs exceeding natural ambient concentrations are believed to be responsible for intensifying the greenhouse effect and leading to a trend of unnatural warming of the Earth's climate, known as global climate change or global warming. GHGs are global pollutants, unlike criteria air pollutants and toxic air contaminants (TACs), which are pollutants of regional and local concern. Whereas pollutants with localized air quality effects have relatively short atmospheric lifetimes (approximately one day), GHGs have long atmospheric lifetimes (one to several thousand years). GHGs persist in the atmosphere for long enough time periods to be dispersed around the globe. Although the exact lifetime of a GHG molecule is dependent on multiple variables and cannot be pinpointed, more CO₂ is emitted into the atmosphere than is sequestered by ocean uptake, vegetation, or other forms of carbon sequestration. Of the total annual human-caused CO₂ emissions, approximately 55 percent is sequestered through ocean and land uptakes every year, averaged over the last 50 years, whereas the remaining 45 percent of human-caused CO₂ emissions remains stored in the atmosphere (Intergovernmental Panel on Climate Change, 2013). Table 1: Description of Greenhouse Gases, describes the primary GHGs attributed to global climate change, including their physical properties. **Table 1: Description of Greenhouse Gases** | Greenhouse Gas | Description | | |--|---|--| | Carbon Dioxide (CO ₂) | CO_2 is a colorless, odorless gas that is emitted naturally and through human activities. Natural sources include decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungus; evaporation from oceans; and volcanic outgassing. Anthropogenic sources are from burning coal, oil, natural gas, and wood. The largest source of CO_2 emissions globally is the combustion of fossil fuels such as coal, oil, and gas in power plants, automobiles, and industrial facilities. The atmospheric lifetime of CO_2 is variable because it is readily exchanged in the atmosphere. CO_2 is the most widely emitted GHG and is the reference gas (Global Warming Potential of 1) for determining Global Warming Potentials for other GHGs. | | | Nitrous Oxide (N₂O) | N_2O is largely attributable to agricultural practices
and soil management. Primary human-related sources of N_2O include agricultural soil management, sewage treatment, combustion of fossil fuels, and adipic and nitric acid production. N_2O is produced from biological sources in soil and water, particularly microbial action in wet tropical forests. The atmospheric lifetime of N_2O is approximately 120 years. The Global Warming Potential of N_2O is 298. | | | Methane (CH ₄) | CH ₄ , a highly potent GHG, primarily results from off-gassing (the release of chemicals from nonmetallic substances under ambient or greater pressure conditions) and is largely associated with agricultural practices and landfills. Methane is the major component of natural gas, approximately 87 percent by volume. Human-related sources include fossil fuel production, animal husbandry, rice cultivation, biomass burning, and waste management. Natural sources of CH ₄ include wetlands, gas hydrates, termites, oceans, freshwater bodies, non-wetland soils, and wildfires. The atmospheric lifetime of CH ₄ is approximately 12 years and the Global Warming Potential is 25. | | | Hydrofluorocarbons
(HFCs) | HFCs are typically used as refrigerants for both stationary refrigeration and mobile air conditioning. The use of HFCs for cooling and foam blowing is increasing, as the continued phase out of CFCs and HCFCs gains momentum. The 100-year Global Warming Potential of HFCs range from 124 for HFC-152 to 14,800 for HFC-23. | | | Perfluorocarbons
(PFCs) | PFCs have stable molecular structures and only break down by ultraviolet rays approximately 60 kilometers above Earth's surface. Because of this, they have long lifetimes, between 10,000 and 50,000 years. Two main sources of PFCs are primary aluminum production and semiconductor manufacturing. Global Warming Potentials range from 6,500 to 9,200. | | | Chlorofluorocarbons
(CFCs) | CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane with chlorine and/or fluorine atoms. They are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the earth's surface). CFCs were synthesized in 1928 for use as refrigerants, aerosol propellants, and cleaning solvents. The Montreal Protocol on Substances that Deplete the Ozone Layer prohibited their production in 1987. Global Warming Potentials for CFCs range from 3,800 to 14,400. | | | Sulfur Hexafluoride
(SF ₆) | SF_6 is an inorganic, odorless, colorless, and nontoxic, nonflammable gas. It has a lifetime of 3,200 years. This gas is manmade and used for insulation in electric power transmission equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas. The Global Warming Potential of SF_6 is 23,900. | | | Hydrochlorofluoro-
carbons (HCFCs) | HCFCs are solvents, similar in use and chemical composition to CFCs. The main uses of HCFCs are for refrigerant products and air conditioning systems. As part of the Montreal Protocol, HCFCs are subject to a consumption cap and gradual phase out. The United States is scheduled to achieve a 100 percent reduction to the cap by 2030. The 100-year Global Warming Potentials of HCFCs range from 90 for HCFC-123 to 1,800 for HCFC-142b. | | | Nitrogen Trifluoride
(NF ₃) | NF_3 was added to Health and Safety Code section 38505(g)(7) as a GHG of concern. This gas is used in electronics manufacture for semiconductors and liquid crystal displays. It has a high global warming potential of 17,200. | | Source: Compiled from U.S. EPA, Overview of Greenhouse Gases, April 11, 2018 (https://www.epa.gov/ghgemissions/overview-greenhouse-gases); U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2016, 2018; Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis, 2007; National Research Council, Advancing the Science of Climate Change, 2010; U.S. EPA, Methane and Nitrous Oxide Emission from Natural Sources, April 2010. ## 3 REGULATORY SETTING #### 3.1 FEDERAL To date, national standards have not been established for nationwide GHG reduction targets, nor have any regulations or legislation been enacted specifically to address climate change and GHG emissions reduction at the project level. Various efforts have been promulgated at the federal level to improve fuel economy and energy efficiency to address climate change and its associated effects. **Energy Independence and Security Act of 2007**. The Energy Independence and Security Act of 2007 (December 2007), among other key measures, requires the following, which would aid in the reduction of national GHG emissions: - Increase the supply of alternative fuel sources by setting a mandatory Renewable Fuel Standard requiring fuel producers to use at least 36 billion gallons of biofuel in 2022. - Set a target of 35 miles per gallon for the combined fleet of cars and light trucks by model year 2020 and direct the National Highway Traffic Safety Administration (NHTSA) to establish a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for work trucks. - Prescribe or revise standards affecting regional efficiency for heating and cooling products and procedures for new or amended standards, energy conservation, energy efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances. **U.S. Environmental Protection Agency Endangerment Finding**. The U.S. Environmental Protection Agency's (EPA) authority to regulate GHG emissions stems from the U.S. Supreme Court decision in Massachusetts v. EPA (2007). The Supreme Court ruled that GHGs meet the definition of air pollutants under the existing Federal Clean Air Act (FCAA) and must be regulated if these gases could be reasonably anticipated to endanger public health or welfare. Responding to the Court's ruling, the EPA finalized an endangerment finding in December 2009. Based on scientific evidence, it found that six GHGs (CO₂, CH₄, N_2 O, HFCs, PFCs, and SF₆) constitute a threat to public health and welfare. Thus, it is the Supreme Court's interpretation of the existing FCAA and the EPA's assessment of the scientific evidence that form the basis for the EPA's regulatory actions. **Federal Vehicle Standards**. In response to the U.S. Supreme Court ruling discussed above, Executive Order 13432 was issued in 2007 directing the EPA, the Department of Transportation, and the Department of Energy to establish regulations that reduce GHG emissions from motor vehicles, non-road vehicles, and non-road engines by 2008. In 2009, the NHTSA issued a final rule regulating fuel efficiency and GHG emissions from cars and light-duty trucks for model year 2011, and in 2010, the EPA and NHTSA issued a final rule regulating cars and light-duty trucks for model years 2012–2016. In 2010, an Executive Memorandum was issued directing the Department of Transportation, Department of Energy, EPA, and NHTSA to establish additional standards regarding fuel efficiency and GHG reduction, clean fuels, and advanced vehicle infrastructure. In response to this directive, the EPA and NHTSA proposed stringent, coordinated federal GHG and fuel economy standards for model years 2017–2025 light-duty vehicles. The proposed standards projected to achieve 163 grams per mile of CO₂ in model year 2025, on an average industry fleet-wide basis, which is equivalent to 54.5 miles per gallon if this level were achieved solely through fuel efficiency. The final rule was adopted in 2012 for model years 2017–2021, and NHTSA intends to set standards for model years 2022–2025 in a future rulemaking. On January 12, 2017, the EPA finalized its decision to maintain the current GHG emissions standards for model years 2022–2025 cars and light trucks. It should be noted that the EPA is currently proposing to freeze the vehicle fuel efficiency standards at their planned 2020 level (37 mpg), canceling any future strengthening (currently 54.5 mpg by 2026). In addition to the regulations applicable to cars and light-duty trucks described above, in 2011, the EPA and NHTSA announced fuel economy and GHG standards for medium- and heavy-duty trucks for model years 2014–2018. The standards for CO_2 emissions and fuel consumption are tailored to three main vehicle categories: combination tractors, heavy-duty pickup trucks and vans, and vocational vehicles. According to the EPA, this regulatory program will reduce GHG emissions and fuel consumption for the affected vehicles by 6 to 23 percent over the 2010 baseline. In August 2016, the EPA and NHTSA announced the adoption of the phase two program related to the fuel economy and GHG standards for medium- and heavy-duty trucks. The phase two program will apply to vehicles with model year 2018 through 2027 for certain trailers, and model years 2021 through 2027 for semi-trucks, large pickup trucks, vans, and all types and sizes of buses and work trucks. The final standards are expected to lower CO₂ emissions by approximately 1.1 billion metric tons and reduce oil consumption by up to 2 billion barrels over the lifetime of the vehicles sold under the program. In 2018, the EPA stated their intent to halt various Federal regulatory activities to reduce GHG emissions, including the phase two program. California and other states have stated their intent to challenge federal actions that would delay or eliminate GHG reduction measures and have committed to cooperating with other countries to implement global climate change initiatives. On September 27, 2019, the EPA and the NHTSA published the "Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program." (84 Fed. Reg. 51,310 (Sept. 27, 2019.) The Part One Rule revokes California's authority to set its own GHG emissions standards and set zero-emission vehicle mandates in California. On March 31, 2020, the EPA and NHTSA finalized rulemaking for SAFE Part Two sets
CO₂ emissions standards and corporate average fuel economy (CAFE) standards for passenger vehicles and light duty trucks, covering model years 2021-2026. #### 3.2 STATE OF CALIFORNIA ## **California Air Resources Board** The California Air Resources Board (CARB) is responsible for the coordination and oversight of State and local air pollution control programs in California. Various statewide and local initiatives to reduce California's contribution to GHG emissions have raised awareness about climate change and its potential for severe long-term adverse environmental, social, and economic effects. California is a significant emitter of CO₂e in the world and produced 440 million gross metric tons of CO₂e in 2015. In the state, the transportation sector is the largest emitter of GHGs, followed by industrial operations such as manufacturing and oil and gas extraction. The State of California legislature has enacted a series of bills that constitute the most aggressive program to reduce GHGs of any state in the nation. Some legislation, such as the landmark AB 32 California Global Warming Solutions Act of 2006, was specifically enacted to address GHG emissions. Other legislation, such as Title 24 building efficiency standards and Title 20 appliance energy standards, were originally adopted for other purposes such as energy and water conservation, but also provide GHG reductions. This section describes the major legislation related to GHG emissions reduction. Assembly Bill 32 (California Global Warming Solutions Act of 2006). AB 32 instructs the CARB to develop and enforce regulations for the reporting and verification of statewide GHG emissions. AB 32 also directed CARB to set a GHG emissions limit based on 1990 levels, to be achieved by 2020. It set a timeline for adopting a scoping plan for achieving GHG reductions in a technologically and economically feasible manner. CARB Scoping Plan. CARB adopted the Scoping Plan to achieve the goals of AB 32. The Scoping Plan establishes an overall framework for the measures that would be adopted to reduce California's GHG emissions. CARB determined that achieving the 1990 emissions level would require a reduction of GHG emissions of approximately 29 percent below what would otherwise occur in 2020 in the absence of new laws and regulations (referred to as "business-as-usual"). The Scoping Plan evaluates opportunities for sector-specific reductions, integrates early actions and additional GHG reduction measures by both CARB and the state's Climate Action Team, identifies additional measures to be pursued as regulations, and outlines the adopted role of a cap-and-trade program. Additional development of these measures and adoption of the appropriate regulations occurred through the end of 2013. Key elements of the Scoping Plan include: - Expanding and strengthening existing energy efficiency programs, as well as building and appliance standards. - Achieving a statewide renewables energy mix of 33 percent by 2020. - Developing a California cap-and-trade program that links with other programs to create a regional market system and caps sources contributing 85 percent of California's GHG emissions (adopted in 2011). - Establishing targets for transportation-related GHG emissions for regions throughout California and pursuing policies and incentives to achieve those targets (several sustainable community strategies have been adopted). - Adopting and implementing measures pursuant to existing state laws and policies, including California's clean car standards, heavy-duty truck measures, the Low Carbon Fuel Standard (amendments to the Pavley Standard adopted 2009; Advanced Clean Car standard adopted 2012), goods movement measures, and the Low Carbon Fuel Standard (adopted 2009). - Creating targeted fees, including a public goods charge on water use, fees on gasses with high global warming potential, and a fee to fund the administrative costs of California's long-term commitment to AB 32 implementation. In 2012, CARB released revised estimates of the expected 2020 emissions reductions. The revised analysis relied on emissions projections updated considering current economic forecasts that accounted for the economic downturn since 2008, reduction measures already approved and put in place relating to future fuel and energy demand, and other factors. This update reduced the projected 2020 emissions from 596 million metric tons of CO₂e (MMTCO₂e) to 545 MMTCO₂e. The reduction in forecasted 2020 emissions means that the revised business-as-usual reduction necessary to achieve AB 32's goal of reaching 1990 levels by 2020 is now 21.7 percent, down from 29 percent. CARB also provided a lower 2020 inventory forecast that incorporated state-led GHG emissions reduction measures already in place. When this lower forecast is considered, the necessary reduction from business-as-usual needed to achieve the goals of AB 32 is approximately 16 percent. CARB adopted the first major update to the Scoping Plan on May 22, 2014. The updated Scoping Plan summarizes the most recent science related to climate change, including anticipated impacts to California and the levels of GHG emissions reductions necessary to likely avoid risking irreparable damage. It identifies the actions California has already taken to reduce GHG emissions and focuses on areas where further reductions could be achieved to help meet the 2020 target established by AB 32. By 2016, California had reduced GHG emissions below 1990 levels, achieving AB 32's 2020 goal four years ahead of schedule. In January 2017, CARB released the 2017 Climate Change Scoping Plan Update (Second Update) for public review and comment (CARB, 2017). The Second Update sets forth CARB's strategy for achieving the state's 2030 GHG target as established in Senate Bill (SB) 32 (discussed below). The Second Update was approved by CARB's Governing Board on December 14, 2017. Senate Bill 32 (California Global Warming Solutions Act of 2006: Emissions Limit. Signed into law in September 2016, SB 32 codifies the 2030 GHG reduction target in Executive Order B-30-15 (40 percent below 1990 levels by 2030). The bill authorizes CARB to adopt an interim GHG emissions level target to be achieved by 2030. CARB also must adopt rules and regulations in an open public process to achieve the maximum, technologically feasible, and cost-effective GHG reductions. With SB 32, the Legislature passed companion legislation, AB 197, which provides additional direction for developing the Scoping Plan. On December 14, 2017, CARB adopted a second update to the Scoping Plan (CARB, 2017b). The 2017 Scoping Plan details how the State will reduce GHG emissions to meet the 2030 target set by Executive Order B-30-15 and codified by SB 32. Other objectives listed in the 2017 Scoping Plan are to provide direct GHG emissions reductions; support climate investment in disadvantaged communities; and support the Clean Power Plan and other Federal actions. SB 375 (The Sustainable Communities and Climate Protection Act of 2008). Signed into law on September 30, 2008, SB 375 provides a process to coordinate land use planning, regional transportation plans, and funding priorities to help California meet the GHG reduction goals established by AB 32. SB 375 requires metropolitan planning organizations to include sustainable community strategies in their regional transportation plans for reducing GHG emissions, aligns planning for transportation and housing, and creates specified incentives for the implementation of the strategies. The applicable sustainable community strategy in the Bay Area is Plan Bay Area 2040. AB 1493 (Pavley Regulations and Fuel Efficiency Standards). AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Implementation of the regulation was delayed by lawsuits filed by automakers and by the EPA's denial of an implementation waiver. The EPA subsequently granted the requested waiver in 2009, which was upheld by the by the U.S. District Court for the District of Columbia in 2011. The regulations establish one set of emission standards for model years 2009–2016 and a second set of emissions standards for model years 2017 to 2025. By 2025, when all rules will be fully implemented, new automobiles will emit 34 percent fewer CO₂e emissions and 75 percent fewer smog-forming emissions. SB 1368 (Emission Performance Standards). SB 1368 is the companion bill of AB 32, which directs the California Public Utilities Commission (CPUC) to adopt a performance standard for GHG emissions for the future power purchases of California utilities. SB 1368 limits carbon emissions associated with electrical energy consumed in California by forbidding procurement arrangements for energy longer than 5 years from resources that exceed the emissions of a relatively clean, combined cycle natural gas power plant. The new law effectively prevents California's utilities from investing in, otherwise financially supporting, or purchasing power from new coal plants located in or out of the state. The CPUC adopted the regulations required by SB 1368 on August 29, 2007. The regulations implementing SB 1368 establish a standard for baseload generation owned by, or under long-term contract to publicly owned utilities, for 1,100 pounds of CO₂ per megawatt-hour. SB 1078 and SBX1-2 (Renewable Electricity Standards). SB 1078 required California to generate 20 percent of its electricity from renewable energy by 2017. This goal was accelerated with SB 107, which changed the due date to 2010 instead of 2017. On November 17, 2008, Executive Order S-14-08 established a Renewable Portfolio Standard target for California requiring that all retail sellers of electricity serve 33 percent of their load with renewable energy by 2020. Executive Order S-21-09 also directed CARB to adopt a regulation by July 31, 2010, requiring the state's load
serving entities to meet a 33 percent renewable energy target by 2020. CARB approved the Renewable Electricity Standard on September 23, 2010 by Resolution 10-23. SB X1-2 codified the 33 percent by 2020 goal. **SB 350 (Clean Energy and Pollution Reduction Act of 2015).** Signed into law on October 7, 2015, SB 350 implements the goals of Executive Order B-30-15. The objectives of SB 350 are to increase the procurement of electricity from renewable sources from 33 percent to 50 percent (with interim targets of 40 percent by 2024, and 45 percent by 2027) and to double the energy efficiency savings in electricity and natural gas end uses of retail customers through energy efficiency and conservation. SB 350 also reorganizes the Independent System Operator to develop more regional electricity transmission markets and improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States. AB 398 (Market-Based Compliance Mechanisms). Signed on July 25, 2017, AB 398 extended the duration of the Cap-and-Trade program from 2020 to 2030. AB 398 required CARB to update the Scoping Plan and for all GHG rules and regulations adopted by the State. It also designated CARB as the statewide regulatory body responsible for ensuring that California meets its statewide carbon pollution reduction targets, while retaining local air districts' responsibility and authority to curb toxic air contaminants and criteria pollutants from local sources that severely impact public health. AB 398 also decreased free carbon allowances over 40 percent by 2030 and prioritized Cap-and-Trade spending to various programs including reducing diesel emissions in impacted communities. **SB 150 (Regional Transportation Plans).** Signed on October 10, 2017, SB 150 aligns local and regional GHG reduction targets with State targets (i.e., 40 percent below their 1990 levels by 2030). SB 150 creates a process to include communities in discussions on how to monitor their regions' progress on meeting these goals. The bill also requires the CARB to regularly report on that progress, as well as on the successes and the challenges regions experience associated with achieving their targets. SB 150 provides for accounting of climate change efforts and GHG reductions and identify effective reduction strategies. **SB 100 (California Renewables Portfolio Standard Program: Emissions of Greenhouse Gases).** Signed into Law in September 2018, SB 100 increased California's renewable electricity portfolio from 50 to 60 percent by 2030. SB 100 also established a further goal to have an electric grid that is entirely powered by clean energy by 2045. #### AB 1346 (Air Pollution: Small Off-Road Engines) Signed into Law in October 2021, AB 1346 requires CARB, to adopt cost-effective and technologically feasible regulations to prohibit engine exhaust and evaporative emissions from new small off-road engines, consistent with federal law, by July 1, 2022. The bill requires CARB to identify and, to the extent feasible, make available funding for commercial rebates or similar incentive funding as part of any updates to existing applicable funding program guidelines to local air pollution control districts and air quality management districts to implement to support the transition to zero-emission small off-road equipment operations. #### **Executive Orders Related to GHG Emissions** California's Executive Branch has taken several actions to reduce GHGs using executive orders. Although not regulatory, they set the state's tone and guide the actions of state agencies. **Executive Order S-3-05**. Executive Order S-3-05 was issued on June 1, 2005, which established the following GHG emissions reduction targets: - By 2010, reduce greenhouse gas emissions to 2000 levels. - By 2020, reduce greenhouse gas emissions to 1990 levels. - By 2050, reduce greenhouse gas emissions to 80 percent below 1990 levels. The 2050 reduction goal represents what some scientists believe is necessary to reach levels that will stabilize the climate. The 2020 goal was established to be a mid-term target. Because this is an executive order, the goals are not legally enforceable for local governments or the private sector. **Executive Order S-01-07.** Issued on January 18, 2007, Executive Order S-01-07 mandates that a statewide goal shall be established to reduce the carbon intensity of California's transportation fuels by at least 10 percent by 2020. The executive order established a Low Carbon Fuel Standard (LCFS) and directed the Secretary for Environmental Protection to coordinate the actions of the California Energy Commission, CARB, the University of California, and other agencies to develop and propose protocols for measuring the "life-cycle carbon intensity" of transportation fuels. CARB adopted the LCFS on April 23, 2009. **Executive Order S-13-08**. Issued on November 14, 2008, Executive Order S-13-08 facilitated the California Natural Resources Agency development of the 2009 California Climate Adaptation Strategy. Objectives include analyzing risks of climate change in California, identifying and exploring strategies to adapt to climate change, and specifying a direction for future research. **Executive Order S-14-08**. Issued on November 17, 2008, Executive Order S-14-08 expands the state's Renewable Energy Standard to 33 percent renewable power by 2020. Additionally, Executive Order S-21-09 (signed on September 15, 2009) directs CARB to adopt regulations requiring 33 percent of electricity sold in the state come from renewable energy by 2020. CARB adopted the Renewable Electricity Standard on September 23, 2010, which requires 33 percent renewable energy by 2020 for most publicly owned electricity retailers. **Executive Order S-21-09**. Issued on July 17, 2009, Executive Order S-21-09 directs CARB to adopt regulations to increase California's Renewable Portfolio Standard (RPS) to 33 percent by 2020. This builds upon SB 1078 (2002), which established the California RPS program, requiring 20 percent renewable energy by 2017, and SB 107 (2006), which advanced the 20 percent deadline to 2010, a goal which was expanded to 33 percent by 2020 in the 2005 Energy Action Plan II. **Executive Order B-30-15**. Issued on April 29, 2015, Executive Order B-30-15 established a California GHG reduction target of 40 percent below 1990 levels by 2030 and directs CARB to update the Climate Change Scoping Plan to express the 2030 target in terms of million metric tons of CO₂e (MMTCO₂e). The 2030 target acts as an interim goal on the way to achieving reductions of 80 percent below 1990 levels by 2050, a goal set by Executive Order S-3-05. The executive order also requires the state's climate adaptation plan to be updated every three years and for the state to continue its climate change research program, among other provisions. With the enactment of SB 32 in 2016, the Legislature codified the goal of reducing GHG emissions by 2030 to 40 percent below 1990 levels. **Executive Order B-55-18**. Issued on September 10, 2018, Executive Order B-55-18 establishes a goal to achieve carbon neutrality as soon as possible, and no later than 2045, and achieve and maintain net negative emissions thereafter. This goal is in addition to the existing statewide targets of reducing GHG emissions. The executive order requires CARB to work with relevant state agencies to develop a framework for implementing this goal. It also requires CARB to update the Scoping Plan to identify and recommend measures to achieve carbon neutrality. The executive order also requires state agencies to develop sequestration targets in the Natural and Working Lands Climate Change Implementation Plan. ## **California Regulations and Building Codes** California has a long history of adopting regulations to improve energy efficiency in new and remodeled buildings. These regulations have kept California's energy consumption relatively flat, even with rapid population growth. **Title 20 Appliance Efficiency Regulations.** The appliance efficiency regulations (California Code of Regulations [CCR] Title 20, Sections 1601-1608) include standards for new appliances. Twenty-three categories of appliances are included in the scope of these regulations. These standards include minimum levels of operating efficiency, and other cost-effective measures, to promote the use of energy- and water-efficient appliances. Title 24 Building Energy Efficiency Standards. California's Energy Efficiency Standards for Residential and Nonresidential Buildings (CCR Title 24, Part 6), was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases GHG emissions. The 2016 Building Energy Efficiency Standards approved on January 19, 2016 went into effect on January 1, 2017. The 2019 Building Energy Efficiency Standards were adopted on May 9, 2018 and took effect on January 1, 2020. Under the 2019 standards, residential dwellings are required to use approximately 53 percent less energy and nonresidential buildings are required to use approximately 30 percent less energy than buildings under the 2016 standards. Title 24 California Green Building Standards Code. The California Green Building Standards Code (CCR Title 24, Part 11 code) commonly referred to as CALGreen, is a statewide mandatory construction code developed and adopted by the California Building Standards Commission and the Department of Housing and Community Development. The CALGreen standards require new residential and nonresidential buildings to comply with mandatory measures under the topics of planning and design, energy efficiency, water
efficiency/conservation, material conservation and resource efficiency, and environmental quality. CALGreen also provides voluntary tiers and measures that local governments may adopt that encourage or require additional measures in the five green building topics. The latest CALGreen Code took effect on January 1, 2020 (2019 CALGreen). The 2019 CALGreen standards will continue to improve upon the existing standards for new construction of, and additions and alterations to, residential and nonresidential buildings. The new 2019 CALGreen standards require residential buildings are required to be solar ready through solar panels (refer to Section 110.10 in the 2019 Building Energy Efficiency Standards for more details). CARB Advanced Clean Truck Regulation. CARB adopted the Advanced Clean Truck Regulation in June 2020 requiring truck manufacturers to transition from diesel trucks and vans to electric zero-emission trucks beginning in 2024. By 2045, every new truck sold in California is required to be zero-emission. This rule directly addresses disproportionate risks and health and pollution burdens and puts California on the path for an all zero-emission short-haul drayage fleet in ports and railyards by 2035, and zero-emission "last-mile" delivery trucks and vans by 2040. The Advanced Clean Truck Regulation accelerates the transition of zero-emission medium-and heavy-duty vehicles from Class 2b to Class 8. The regulation has two components including a manufacturer sales requirement, and a reporting requirement: - Zero-Emission Truck Sales: Manufacturers who certify Class 2b through 8 chassis or complete vehicles with combustion engines are required to sell zero-emission trucks as an increasing percentage of their annual California sales from 2024 to 2035. By 2035, zero-emission truck/chassis sales need to be 55 percent of Class 2b 3 truck sales, 75 percent of Class 4 8 straight truck sales, and 40 percent of truck tractor sales. - Company and Fleet Reporting: Large employers including retailers, manufacturers, brokers and others would be required to report information about shipments and shuttle services. Fleet owners, with 50 or more trucks, would be required to report about their existing fleet operations. This information would help identify future strategies to ensure that fleets purchase available zero-emission trucks and place them in service where suitable to meet their needs. #### 3.3 REGIONAL ## **Bay Area Air Quality Management District Thresholds** The BAAQMD is the regional agency with jurisdiction over the nine-county region located in the Basin. The Association of Bay Area Governments (ABAG), Metropolitan Transportation Commission (MTC), county transportation agencies, cities and counties, and various nongovernmental organizations also join in the efforts to improve air quality through a variety of programs. These programs include the adoption of regulations and policies, as well as implementation of extensive education and public outreach programs. Under CEQA, the BAAQMD is a commenting responsible agency on air quality within its jurisdiction or impacting its jurisdiction. The BAAQMD reviews projects to ensure that they would: (1) support the primary goals of the latest Air Quality Plan; (2) include applicable control measures from the Air Quality Plan; and (3) not disrupt or hinder implementation of any Air Quality Plan control measures. In May 2010, the BAAQMD adopted its updated California Environmental Quality Act (CEQA) Air Quality Guidelines as a guidance document to provide lead government agencies, consultants, and project proponents with uniform procedures for assessing air quality impacts and preparing the air quality sections of environmental documents for projects subject to CEQA. The BAAQMD CEQA Guidelines include methodologies and thresholds for addressing project and program level air quality and GHG emissions. The Guidelines were called into question by an order issued March 5, 2012, in California Building Industry Association (CBIA) v. BAAQMD (Alameda Superior Court Case No. RGI0548693). The Alameda County Superior Court issued a judgment finding that the BAAQMD had failed to comply with CEQA when it adopted the thresholds. The court also issued a writ of mandate ordering the BAAQMD to set aside the thresholds and cease dissemination of them until the BAAQMD had complied with CEQA. Notably, the court's ruling was based solely on BAAQMD's failure to comply with CEQA. The court did not reach any issues relating to the validity of the scientific reasoning underlying the recommended significance thresholds. In August 2013, the Appellate Court struck down the lower court's order to set aside the thresholds. CBIA sought review by the California Supreme Court on three issues, including the appellate court's decision to uphold the BAAQMD's adoption of the thresholds, and the Court granted review on just one: Under what circumstances, if any, does CEQA require an analysis of how existing environmental conditions will impact future residents or users of a proposed project? In December 2015, the California Supreme Court confirmed that CEQA, with several specific exceptions, is concerned with the impacts of a project on the environment, not the effects the existing environment may have on a project. The BAAQMD published a new version of the Guidelines dated May 2017, which includes revisions made to address the Supreme Court's opinion. The BAAQMD is currently working to revise any outdated information in the Guidelines as part of its update to the CEQA Guidelines and thresholds of significance. ## **Clean Air Plan** Air quality plans developed to meet federal requirements are referred to as State Implementation Plans. The federal and state Clean Air Acts require plans to be developed for areas designated as nonattainment (with the exception of areas designated as nonattainment for the state PM_{10} standard). The 2017 Clean Air Plan: Spare the Air, Cool the Climate was adopted on April 19, 2019, by the BAAQMD. The 2017 Clean Air Plan provides a regional strategy to protect public health and protect the climate. To protect public health, the plan describes how the BAAQMD will continue progress toward attaining all state and federal air quality standards and eliminating health risk disparities from exposure to air pollution among Bay Area communities. To protect the climate, the 2017 Clean Air Plan defines a vision for transitioning the region to a post-carbon economy needed to achieve ambitious greenhouse gas (GHG) reduction targets for 2030 and 2050, and provides a regional climate protection strategy that will put the Bay Area on a pathway to achieve those GHG reduction targets. The 2017 Clean Air Plan includes a wide range of control measures designed to decrease emissions of the air pollutants that are most harmful to Bay Area residents, such as particulate matter, ozone, and toxic air contaminants; to reduce emissions of methane and other "super-GHGs" that are potent climate pollutants in the near-term; and to decrease emissions of carbon dioxide by reducing fossil fuel combustion. #### 3.4 LOCAL #### Santa Clara County Climate Action Plan The Santa Clara County Climate Action Plan (CAP) approved in 2009 focuses on County operations, facilities and employee actions that will reduce not only GHG emissions but also energy and water consumption, solid waste and fuel consumption. The GHG emission reduction goals require a change from "business as usual" to attain them. The goals were to stop increasing the amount of emissions by 2010, decrease emissions by 10 percent every 5 years from 2010 – 2050, and reach an 80 percent reduction by 2050. The CAP is being issued in the context of legislative and regulatory action at the federal and state level. California's climate change goals are set forth in AB 32, the Global Warming Solutions Act of 2006. This legislation requires a reduction of California GHG emissions to 1990 levels by 2020. In December 2008, CARB approved the Climate Change Scoping Plan Document required by AB 32. The Scoping Plan Document, which provides a roadmap for California to reduce its GHG emissions, recognizes the importance of development and implementation of Climate Action Plans by California cities and counties. Executive Order S-03-05 goes even further by requiring statewide reductions in GHG emissions to 80 percent below 1990 by the year 2050. ## City of San José Municipal Code The City's Municipal Code includes the following regulations that would reduce GHG emissions from future development: - Green Building Regulations for Private Development (Chapter 17.84) - Water Efficient Landscape Standards for New and Rehabilitated Landscaping (Chapter 15.10) - Transportation Demand Programs for employers with more than 100 employees (Chapter 11.105) - Construction and Demolition Diversion Deposit Program (Chapter 9.10) - Wood Burning Ordinance (Chapter 9.10) ## City of San José General Plan The General Plan includes a GHG Reduction Strategy that is designed to help the City sustain its natural resources, grow efficiently, and meet California legal requirements for GHG emissions reduction. Multiple policies and actions in the General Plan have GHG implications including those targeting land use, housing, transportation, water usage, solid waste generation and recycling, and reuse of historic buildings. The policies also include a monitoring component that allows for adaptation and adjustment of City programs and initiatives related to sustainability and associated reductions in GHG emissions. The GHG Reduction Strategy is intended to meet the mandates as outlined in the CEQA Guidelines and the recent standards for "qualified plans" as set forth by BAAQMD. The GHG Reduction Strategy was re-adopted by the San José City Council in December 2015. The environmental impacts of the GHG Reduction Strategy were analyzed in the General Plan FPEIR and a 2015 Supplement to the
General Plan FPEIR. The City's projected emissions and the GHG Reduction Strategy are consistent with the measures necessary to meet state-wide 2020 goals established by AB 32 and addressed in the Climate Change Scoping Plan. Measures have not been identified that would ensure GHG emissions would be consistent with state-wide 2050 goals; however, the City adopted overriding considerations for identified future impacts associated with buildout of the City's General Plan. The General Plan includes the following GHG reduction policies, which are applicable to the project. These policies are also described within the City's GHG Reduction Strategy. #### Policy MS – 1.1 Demonstrate leadership in the development and implementation of green building policies and practices. Ensure that all projects are consistent with or exceed the City's Green Building Ordinance and City Council Policies as well as State and/or regional policies which require that projects incorporate various green building principles into their design and construction. #### **Policy MS – 1.4:** Foster awareness of San José's business and residential communities of the economic and environmental benefits of green building practices. Encourage design and construction of environmentally responsible commercial and residential buildings that are also operated and maintained to reduce waste, conserve water, and meet other environmental objectives. ## Policy MS-2.3: Encourage consideration of solar orientation, including building placement, landscaping, design, and construction techniques for new construction to minimize energy consumption. #### **Policy MS – 2.6:** Promote roofing design and surface treatments that reduce the heat island effect of new and existing development and support reduced energy use, reduced air pollution, and a healthy urban forest. Connect businesses and residents with cool roof rebate programs through City outreach efforts. ## Policy MS-2.11: Require new development to incorporate green building practices, including those required by the Green Building Ordinance. Specifically, target reduced energy use through construction techniques (e.g., design of building envelopes and systems to maximize energy performance), through architectural design (e.g. design to maximize cross ventilation and interior daylight) and through site design techniques (e.g. orienting buildings on sites to maximize the effectiveness of passive solar design). ## **Policy MS - 5.5:** Maximize recycling and composting from all residents, businesses, and institutions in the City. #### **Policy MS – 5.6:** Enhance the construction and demolition debris recycling program to increase diversion from the building sector. ## Policy MS-14.4: Implement the City's Green Building Policies so that new construction and rehabilitation of existing buildings fully implements industry best practices, including the use of optimized energy systems, selection of materials and resources, water efficiency, sustainable site selection, passive solar building design, and planting of trees and other landscape materials to reduce energy consumption. **Policy MS – 21.2:** Manage the Community Forest to achieve San José's environmental goals for water and energy conservation, wildlife habitat preservation, stormwater retention, heat reduction in urban areas, energy conservation, and the removal of carbon dioxide from the atmosphere. Policy CD-2.10: Recognize that finite land area exists for development and that density supports retail vitality and transit ridership. Use land regulations to require compact, low-impact development that efficiently uses land planned for growth, particularly for residential development which tends to have a long life-span. Strongly discourage small-lot and single-family detached residential product types in growth areas. Policy CD-2.11: Within the Downtown and Urban Village Overlay areas, consistent with the minimum density requirements of the pertaining Land Use/Transportation Diagram designation, avoid the construction of surface parking lots except as an interim use, so that long-term development of the site will result in a cohesive urban form. In these areas, whenever possible, use structured parking, rather than surface parking, to fulfill parking requirements. Encourage the incorporation of alternative uses, such as parks, above parking structures. Policy CD-3.2: Prioritize pedestrian and bicycle connections to transit, community facilities (including schools), commercial areas, and other areas serving daily needs. Ensure that the design of new facilities can accommodate significant anticipated future increases in bicycle and pedestrian activity. Policy CD-5.1: Design areas to promote pedestrian and bicycle movements and to facilitate interaction between community members and to strengthen the sense of community. Policy LU-5.4: Require new commercial development to facilitate pedestrian and bicycle access through techniques such as minimizing building separation from public sidewalks; providing safe, accessible, convenient, and pleasant pedestrian connections; and including secure and convenient bike storage. **Policy TR – 1.16:** Develop a strategy to construct a network of public and private alternative fuel vehicle charging/fueling stations city wide. Revise parking standards to require the installation of electric charging infrastructure at new large employment sites and large, multiple family residential developments. Policy TR-2.18: Provide bicycle storage facilities as identified in the Bicycle Master Plan. Policy TR-3.3: As part of the development review process, require that new development along existing and planned transit facilities consist of land use and development types and intensities that contribute toward transit ridership. In addition, require that new development is designed to accommodate and to provide direct access to transit facilities. ## City of San José Greenhouse Gas Reduction Strategy The City of San José updated its Greenhouse Gas Reduction Strategy, to the 2030 Greenhouse Gas Reduction Strategy (GHGRS), in August 2020, in alignment with SB 32. SB 23 has established an interim statewide greenhouse gas reduction goal for 2030 to meet the long-term target of carbon neutrality by 2045 (EO B-55-18). SB 32 expands upon AB 32, the Global Warming Solutions Act of 2006, and requires a reduction in greenhouse gas emissions of at least 40 percent below the 1990 levels by 2030. The 2030 GHGRS allows for tiering and streamlining of GHG analyses under CEQA because it serves as a qualified Climate Action Plan for the City of San José. The 2030 GHGRS identifies major General Plan strategies and polices to be implemented by development project such as green building practices, transportation strategies, energy use, water conservation, waste reduction and diversion, and other sectors that contribute to GHG reductions and advancements of the City's broad sustainability goals. The GHG Reduction Strategy identifies GHG emissions reduction measures to be implemented by development projects in three categories: built environment and energy, land use and transportation, and recycling and waste reduction. Some measures are mandatory for all proposed development projects and others are voluntary. Voluntary measures could be incorporated as mitigation measures for proposed projects, at the City's discretion. Compliance with the mandatory measures and voluntary measures required by the City would ensure an individual project's consistency with the 2030 GHGRS. Implementation of the proposed General Plan through 2030 would not constitute a cumulatively considerable contribution to global climate change. ## City of San José Private Sector Green Building Policy (6-32) In October 2008, the City adopted the Private Sector Green Building Policy (6-32) that establishes baseline green building standards for private sector new construction and provides framework for the implementation of these standards. This policy requires that applicable projects achieve minimum green building performance levels using the Council adopted standards. Future development under the proposed Downtown Strategy 2040 would be subject to this policy. ## **Climate Smart San José** Climate Smart San José was developed by the City to reduce air pollution, save water, and create a healthier community. The plan contains nine strategies to reduce carbon emissions consistent with the Paris Climate Agreement. These strategies include use of renewable energy, densification of neighborhoods, electrification and sharing of vehicle fleets, investments in public infrastructure, creating local jobs, and improving building energy-efficiency. #### **Reach Building Code** In 2019, the San José City Council approved Ordinance No. 30311 and adopted Reach Code Ordinance (Reach Code) to reduce energy-related GHG emissions consistent with the goals of Climate Smart San José. The Reach Code applies to new construction projects in San José. It requires new residential construction to be outfitted with entirely electric fixtures. Mixed-fuel buildings (i.e., use of natural gas) are required to demonstrate increased energy efficiency through a higher Energy Design Ratings and be electrification ready. In addition, the Reach Code requires EV charging infrastructure for all building types (above current CALGreen requirements), and solar readiness for non-residential buildings. ## 4 SIGNIFICANCE CRITERIA AND METHODOLOGY #### 4.1 THRESHOLDS AND SIGNIFICANCE CRITERIA Based upon the criteria derived from State CEQA Guidelines Appendix G, a project normally would have a significant effect on the environment if it would: GHG-1 Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment? GHG-2 Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases? The Bay Area Air Quality Management
District's (BAAQMD's) approach to developing a threshold of significance for GHG emissions is to identify the emissions level for which a project would not be expected to substantially conflict with existing California legislation adopted to reduce statewide GHG emissions needed to move towards climate stabilization. If a project would generate GHG emissions above the threshold level, it would be considered to contribute considerably to a significant cumulative impact. Stationary-source projects include land uses that would accommodate processes and equipment that emit GHG emissions and would require an Air District permit to operate. If annual emissions of operational-related GHGs exceed these levels, the proposed project would result in a cumulatively considerable contribution to a cumulatively significant impact to global climate change. BAAQMD is currently working to provide updated threshold guidance to address updated GHG regulations such as SB 32 and case law that has found efficiency metric thresholds based on state-wide data must be supported by substantial evidence that the threshold is appropriate for a specific location and specific project type. BAAQMD does not have an adopted threshold of significance for construction-related GHG emissions. However, the BAAQMD recommends quantification and disclosure of construction GHG emissions. The BAAQMD also recommends that the Lead Agency should make a determination on the significance of these construction generated GHG emission impacts in relation to meeting AB 32 GHG reduction goals, as required by the Public Resources Code, Section 21082.2. The Lead Agency is encouraged to incorporate best management practices to reduce GHG emissions during construction, as feasible and applicable. The City of San José has established consistency with their 2030 Greenhous Gas Reduction Strategy would result in a less than significant impact. The City of San José does not have construction-related GHG emission thresholds. #### 4.2 METHODOLOGY Global climate change is, by definition, a cumulative impact of GHG emissions. Therefore, there is no project-level analysis. The baseline against which to compare potential impacts of the project includes the natural and anthropogenic drivers of global climate change, including world-wide GHG emissions from human activities which almost doubled between 1970 and 2010 from approximately 27 gigatonnes (Gt) of CO₂/year to nearly 49 GtCO₂/year.¹ As such, the geographic extent of climate change and GHG emissions' cumulative impact discussion is worldwide. The project's construction and operational emissions were calculated using the California Emissions Estimator Model version 2020.4.0 (CalEEMod). Details of the modeling assumptions and emission factors are provided in <u>Appendix A: Greenhouse Gas Emissions Data</u>. For construction, CalEEMod calculates emissions from off-road equipment usage and on-road vehicle travel associated with haul, delivery, and construction worker trips. The project's construction-related GHG emissions were forecasted based on the proposed construction schedule and applying the mobile-source and fugitive dust emissions factors derived from CalEEMod. The project's construction-related GHG emissions would be generated from off-road construction equipment, on-road hauling and vendor (material delivery) trucks, and worker vehicles. The project's operations-related GHG emissions would be generated by vehicular traffic, area sources (e.g., landscaping maintenance, consumer products), electrical generation, natural gas consumption, water supply and wastewater treatment, and solid waste. Details of the modeling assumptions and emission factors are provided in Appendix A, and a summary of adjustments is provided below. CalEEMod default emission factors incorporate compliance with some, but not all, applicable rules and regulations regarding energy efficiency and vehicle fuel efficiency, and other GHG reduction policies, as described in the CalEEMod User's Guide (CAPCOA, 2016). The reductions obtained from each regulation and the source of the reduction amount used in the analysis are described below. The following regulations are incorporated into the CalEEMod emission factors: - Pavley I motor vehicle emission standards - Low Carbon Fuel Standard (LCFS) - 2016 title 24 Energy Efficiency Standards The following regulations have not been incorporated into the CalEEMod emission factors: - Pavley II (LEV III) Advanced Clean Cars Program (extends to model year 2025) - Renewable Portfolio Standards (RPS) - Green Building Code Standards (indoor water use) - California Model Water Efficient Landscape Ordinance (Outdoor Water) As RPS is not accounted for in the current version of CalEEMod. Reductions from RPS are addressed by revising the electricity emission intensity factor in CalEEMod to account for the utility complying with the 33 percent renewable mandate by 2020. As of 2018 (latest available), Pacific Gas and Electric's (PG&E) power mix was at 39 percent renewable energy and will be required to achieve the 60 percent renewable energy goal by 2030 established by SB 100. The CalEEMod carbon intensity factor was adjusted within the model to represent PG&E's current emissions rate. ¹ Intergovernmental Panel on Climate Change, Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014. Energy savings from water conservation resulting from the Green Building Code Standards for indoor water use and California Model Water Efficient Landscape Ordinance for outdoor water use are not included in CalEEMod. The Water Conservation Act of 2009 mandates a 20 percent reduction in urban water use that is implemented with these regulations. Benefits of the water conservation regulations are applied in the CalEEMod mitigation component. Adjustments were also made for project design features that would reduce GHG emissions. The proposed project would also be constructed in conformance with CALGreen, which requires high-efficiency water fixtures for indoor plumbing and water efficient irrigation systems. The mitigated outputs from CalEEMod show reductions from existing regulatory requirements and project design features that are termed "mitigation" within the model; however, those modeling components associated with locational measures and compliance with existing regulations are not considered mitigation under CEQA, but rather are treated as project design features. ## 5 POTENTIAL IMPACTS AND MITIGATION ## 5.1 GREENHOUSE GAS EMISSIONS Impact GHG-1 Would the Project generate greenhouse gas emissions, either directly or indirectly, that could have a significant impact on the environment? #### **Short-Term Construction Greenhouse Gas Emissions** Construction of the proposed project would result in minor increases in GHG emissions from on-site equipment and emissions from construction workers' personal vehicle travelling to and from the project construction site. Construction-related GHG emissions vary depending on the level of activity, length of the construction period, specific construction operations, types of equipment, and number of construction workers. Neither the City of San José nor BAAQMD have an adopted threshold of significance for construction-related GHG emissions; however, BAAQMD recommends quantifying emissions and disclosing that GHG emissions would occur during construction. The CalEEMod outputs prepared for the proposed project (refer to Appendix A) calculated emissions with project construction to be 730 MTCO₂e for the total construction period (12 months). Because project construction will be a temporary condition (a total of fifteen months) and would not result in a permanent increase in emissions that would interfere with the implementation of AB32, the temporary increase in emissions would be less than significant. ## **Long-Term Operational Greenhouse Gas Emissions** The proposed project would include the construction of a 226,873 square foot industrial building, 45,000 square feet of manufacturing area, which includes up to 10,000 square feet of office space (including mezzanine), outdoor employee amenity area, up to 40 loading dock doors, up to 54 truck trailer stalls. Operational or long-term emissions would occur over the project's life. GHG emissions would result from direct emissions such as project generated vehicular traffic, on-site combustion of natural gas, and operation of any landscaping equipment. Operational GHG emissions would also result from indirect sources, such as off-site generation of electrical power over the life of the project, the energy required to convey water to, and wastewater from the project site, the emissions associated with solid waste generated from the project site, and any fugitive refrigerants from air conditioning or refrigerators. It should be noted that the project would comply with the 2019 Title 24 Part 6 Building Energy Efficiency Standards. The standards require updated thermal envelope standards (preventing heat transfer from the interior to exterior and vice versa), residential and nonresidential ventilation requirements, and nonresidential lighting requirements that would cut residential energy use by more than 50 percent (with solar) and nonresidential energy use by 30 percent. The standards also encourage demand responsive technologies including battery storage and heat pump water heaters and improve the building's thermal envelope through high performance attics, walls and windows to improve comfort and energy savings (California Energy Commission, March 2018). The project would also comply with the appliance energy efficiency standards in Title 20 of the California Code of Regulations. The Title 20 standards include minimum levels of operating efficiency, and other cost-effective measures, to promote the use of energyand water-efficient appliances. The
project would be constructed according to the standards for highefficiency water fixtures for indoor plumbing and water efficient irrigation systems required in 2019 Title 24, Part 11 (CALGreen). At the State and global level, improvements in technology, policy, and social behavior can also influence and reduce operational emissions generated by a project. The state is currently on a pathway to achieving the Renewable Portfolio Standards goal of 33 percent renewables by 2020 and 60 percent renewables by 2030 per SB 100. The majority of project emissions would occur from mobile and energy sources. Energy and mobile sources are targeted by statewide measures such as low carbon fuels, cleaner vehicles, strategies to promote sustainable communities and improved transportation choices that result in reducing VMT, continued implementation of the Renewable Portfolio Standard (the target is now set at 60 percent renewables by 2030), and extension of the Cap and Trade program (requires reductions from industrial sources, energy generation, and fossil fuels). The Cap and Trade program covers approximately 85 percent of California's GHG emissions as of January 2015. The statewide cap for GHG emissions from the capped sectors (i.e., electricity generation, industrial sources, petroleum refining, and cement production) commenced in 2013 and will decline approximately three percent each year, achieving GHG emission reductions throughout the program's duration. The passage of AB 398 in July 2017 extended the duration of the Cap and Trade program from 2020 to 2030. With continued implementation of various statewide measures, the project's operational energy and mobile source emissions would continue to decline in the future. As discussed in Impact Statement GHG-2, below, the proposed development would be constructed in compliance with the City's Council Policy 6-32 and the City's Green Building Ordinance which will ensure operational emissions reductions consistent with the 2030 GHG Reduction Strategy. The proposed project, therefore, would be consistent with the City's GHG Reduction and General Plan and would have a less than significant GHG emissions impact. Mitigation Measures: No mitigation is required. Level of Significance: Less than significant impact. ## 5.2 GREENHOUSE GAS REDUCTION PLAN COMPLIANCE Impact GHG-2: Would the Project conflict with an applicable plan, policy, or regulation of an agency adopted for the purpose of reducing greenhouse gas emissions? ## City of San José Greenhouse Gas Reduction Strategy Compliance Checklist The City of San José 2030 Greenhouse Gas Reduction Strategy outlines the actions the City will undertake to achieve its proportional share of State GHG emission reductions for the interim target year 2030. For this purpose, the City has implemented a Greenhouse Gas Reduction Strategy (GHGRS) Compliance Checklist. Prior to project approval, the applicant is required to complete the GHGRS Compliance Checklist to demonstrate the project's compliance with the City of San José 2030 GHGRS, which is provided in Appendix B. Compliance with the checklist is demonstrated by completing Section A (General Plan Policy Conformance) and Section B (Greenhouse Gas Reduction Strategies). Projects that propose alternative GHG mitigation measures must also complete Section C (Alternative Project Measures and Additional GHG Reductions). As discussed above, the project would be constructed in accordance with the latest California Building Code, green building regulations/CalGreen, the City's Council Policy 6-32 and the City's Green Building Ordinance. Additionally, project construction and demolition waste would be diverted to exceed City requirements and least 75 percent of construction and demolition waste and 100 percent of metal would be recycled. The project would also be enrolled in the San José Clean Energy (SJCE) Total Green program which includes 100 percent renewable energy and would meet U.S. Green Building Council LEED Silver requirements through various credits related to optimized energy performance and other sustainable features. Additionally, the project would be solar-ready by including building roof space for a "Future PV Array" per California Code. As indicated in Appendix B, the proposed project would be consistent with the 2030 GHG Reduction Strategy and would include 32 bicycle parking spaces and would not alter the existing Class II bike lanes on both sides of Silver Creek Valley Road. Additionally, the project would include Tier 2 multi-modal infrastructure that would help reduce vehicle miles traveled (VMT) and mobile greenhouse gas emissions. The proposed project would also be consistent with the 2030 GHG Reduction Strategy through compliance with the State's Model Water Efficient Landscape Ordinance and the City's Water-Efficient Landscape Ordinance (Chapter 15.11 of the San José Municipal Code), and would include landscaping and landscaped shading of the parking areas and walkways. Additionally, the project would include low-flow fixtures and appliances and would utilize recycled water for the outdoor landscaping based on availability. Pursuant to CEQA Guidelines Sections 15064(h)(3), 15130(d), and 15183(b), a project's incremental contribution to a cumulative GHG emissions effect may be determined not to be cumulatively considerable if it complies with the requirements of the Greenhouse Gas Reduction Strategy. As described above, the project would not conflict with the 2030 GHG Reduction Strategy (refer to Appendix B for further detail). GHG emissions caused by long-term operation of the proposed would be less than significant. #### **CARB Scoping Plan** The California State Legislature adopted AB 32 in 2006. AB 32 focuses on reducing GHGs (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride) to 1990 levels by the year 2020. Pursuant to the requirements in AB 32, CARB adopted the Climate Change Scoping Plan (Scoping Plan) in 2008, which outlines actions recommended to obtain that goal. The Scoping Plan provides a range of GHG reduction actions that include direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, market-based mechanisms such as the cap-and-trade program, and an AB 32 implementation fee to fund the program. The latest CARB Climate Change Scoping Plan (2017) outlines the state's strategy to reduce state's GHG emissions to return to 40 percent below 1990 levels by 2030 pursuant to SB 32. The CARB Scoping Plan is applicable to state agencies and is not directly applicable to cities/counties and individual projects. Nonetheless, the Scoping Plan has been the primary tool that is used to develop performance-based and efficiency-based CEQA criteria and GHG reduction targets for climate action planning efforts. The 2017 Scoping Plan Update identifies additional GHG reduction measures necessary to achieve the 2030 target. These measures build upon those identified in the First Update to the Climate Change Scoping Plan (2013). Although a number of these measures are currently established as policies and measures, some measures have not yet been formally proposed or adopted. It is expected that these measures or similar actions to reduce GHG emissions would be adopted as required to achieve statewide GHG emissions targets. As shown in <u>Table 2: Project Consistency with Applicable CARB</u> Scoping Plan Measures the project is consistent with most of the strategies, while others are not applicable to the project. **Table 2: Project Consistency with Applicable CARB Scoping Plan Measures** | Scoping Plan
Sector | Scoping Plan
Measure | Implementing
Regulations | Project Consistency | |------------------------|---|--|---| | Transportation | California Cap-and-
Trade Program Linked
to Western Climate
Initiative | Regulation for the California Cap on Greenhouse Gas Emissions and Market-Based Compliance Mechanism October 20, 2015 (CCR 95800) | Consistent. The Cap-and-Trade Program applies to large industrial sources such as power plants, refineries, and cement manufacturers. However, the regulation indirectly affects people who use the products and services produced by these industrial sources when increased cost of products or services (such as electricity and fuel) are transferred to the consumers. The Cap-and-Trade Program covers the GHG emissions associated with electricity consumed in California, whether generated in-state or imported. Accordingly, GHG emissions associated with CEQA projects' electricity usage are covered by the Cap-and-Trade Program. The Cap-and-Trade Program also covers fuel suppliers (natural gas and propane fuel providers and transportation fuel providers) to address emissions from such fuels and from combustion of other fossil fuels not
directly covered at large sources in the Program's first compliance period. | | | California Light-Duty
Vehicle Greenhouse
Gas Standards | Pavley I 2005
Regulations to Control
GHG Emissions from
Motor Vehicles | Consistent. This measure applies to all new vehicles starting with model year 2012. The project would not conflict with its implementation as it would apply to all new passenger vehicles purchased in California. Passenger vehicles, model year 2012 and later, associated with construction and operation of the project would be required to comply with the Pavley emissions standards. | | Scoping Plan
Sector | Scoping Plan
Measure | Implementing
Regulations | Project Consistency | |------------------------|---|--|--| | | | 2012 LEV III Amendments to the California Greenhouse Gas and Criteria Pollutant Exhaust and Evaporative Emission Standards | Consistent. The LEV III amendments provide reductions from new vehicles sold in California between 2017 and 2025. Passenger vehicles associated with the site would comply with LEV III standards. | | | Low Carbon Fuel
Standard | 2009 readopted in
2015. Regulations to
Achieve Greenhouse
Gas Emission
Reductions Subarticle
7. Low Carbon Fuel
Standard CCR 95480 | Consistent. This measure applies to transportation fuels utilized by vehicles in California. The project would not conflict with implementation of this measure. Motor vehicles associated with construction and operation of the project would utilize low carbon transportation fuels as required under this measure. | | | Regional
Transportation-Related
Greenhouse Gas
Targets | SB 375. Cal. Public
Resources Code §§
21155, 21155.1,
21155.2, 21159.28 | Consistent. The project would be consistent with the land use designation for the project site and would therefore provide development in the region that is consistent with the growth projections in the Regional Transportation Plan/Sustainable Communities Strategy (SCS) (Plan Bay Area 2040). | | | Goods Movement | Goods Movement
Action Plan January
2007 | Not applicable. The project does not propose any changes to maritime, rail, or intermodal facilities or forms of transportation. | | | Medium/Heavy-Duty
Vehicle | 2010 Amendments to
the Truck and Bus
Regulation, the
Drayage Truck
Regulation and the
Tractor-Trailer
Greenhouse Gas
Regulation | Consistent. This measure applies to medium and heavy-duty vehicles that operate in the state. The project would not conflict with implementation of this measure. Medium and heavy-duty vehicles associated with construction and operation of the project would be required to comply with the requirements of this regulation. | | | High Speed Rail | Funded under SB
862 | Not applicable. This is a statewide measure that cannot be implemented by a project Applicant or Lead Agency. | | Scoping Plan
Sector | Scoping Plan
Measure | Implementing Regulations | Project Consistency | |--------------------------------|--|--|---| | | Energy Efficiency | Title 20 Appliance
Efficiency Regulation | Consistent. The project would not conflict with implementation of this measure. The project would comply with the latest energy efficiency standards. | | | | Title 24 Part 6 Energy
Efficiency Standards
for Residential and
Non-Residential
Building | | | | | Title 24 Part 11
California Green
Building Code
Standards | | | | Renewable Portfolio
Standard/Renewable
Electricity Standard. | 2010 Regulation to
Implement the
Renewable Electricity
Standard (33% 2020) | Consistent. The project would obtain electricity from the electric utility company, PG&E through SJCE. PG&E obtained 39 percent of its power supply from renewable sources in 2018. However, the project would obtain electricity through SJCE the Total Green program. Therefore, the utility would provide power when needed on site that is composed of a greater percentage of renewable sources. | | Electricity and
Natural Gas | I | SB 350 Clean Energy
and Pollution
Reduction Act of 2015
(50% 2030) | | | | Million Solar Roofs
Program | Tax incentive program | Consistent. This measure is to increase solar throughout California, which is being done by various electricity providers and existing solar programs. Future tenants within the project would be able to take advantage of incentives that are in place at the time of construction. The project would also be solar-ready and would ensure roof space and conduit infrastructure for "Future PV Array" per California Code. | | | Water | Title 24 Part 11
California Green
Building Code
Standards | Consistent. The project would comply with the California Green Building Standards Code, which requires a 20 percent reduction in indoor water use. The project would also comply with the City's Water-Efficient Landscape Ordinance (Chapter 15.11 of the San José Municipal Code). | | Water | | SBX 7-7—The Water
Conservation Act of
2009 | | | | | Model Water Efficient
Landscape Ordinance | | | Scoping Plan
Sector | Scoping Plan
Measure | Implementing
Regulations | Project Consistency | |--------------------------------------|--|--|---| | Green Buildings | Green Building
Strategy | Title 24 Part 11
California Green
Building Code
Standards | Consistent. The State goal is to increase the use of green building practices. The project would implement required green building strategies through existing regulation that requires the project to comply with various CalGreen requirements such as water conservation, energy efficiency, EV charging stations and light pollution reduction. | | Industry | Industrial Emissions | 2010 CARB Mandatory
Reporting Regulation | Consistent. The project includes light industrial uses such as a warehouse. However, the project would comply with CARB Mandatory Reporting Regulation. | | Recycling and
Waste
Management | Recycling and Waste | Title 24 Part 11
California Green
Building Code
Standards | Consistent. The project would not conflict with implementation of these measures. The project is required to achieve the recycling mandates via | | | | AB 341 Statewide 75
Percent Diversion Goal | compliance with the CALGreen code. The City has consistently achieved its state recycling mandates. | | Forests | Sustainable Forests | Cap and Trade Offset
Projects | Not applicable. The project site is an existing disturbed site located in an urban area. No forested lands exist onsite. | | High Global
Warming
Potential | High Global Warming
Potential Gases | CARB Refrigerant
Management Program
CCR 95380 | Not applicable. The regulations are applicable to refrigerants used by large air conditioning systems and large commercial and industrial refrigerators and cold storage system. The project is not expected to use large systems subject to the refrigerant management regulations adopted by CARB. | | Agriculture | Agriculture | Cap and Trade Offset
Projects for Livestock
and Rice Cultivation | Not applicable. The project site is an infill site. No grazing, feedlot or other agricultural activities that generate manure currently exist on-site or are proposed to be implemented by the project. | Source: California Air Resources Board (CARB), California's 2017 Climate Change Scoping Plan, 2017b and CARB, Climate Change Scoping Plan, December 2008. As discussed above, the Scoping Plan reflects the 2030 target of a 40 percent reduction below 1990 levels, set by Executive Order B-30-15 and codified by SB 32. Appendix B, Local Action, of the 2017 CARB Scoping Plan lists potential actions that support the State's climate goals. However, the Scoping Plan notes that the applicability and performance of the actions may vary across the regions. The document is organized into two categories (A) examples of plan-level GHG reduction actions that could be implemented by local governments and (B) examples of on-site project design features, mitigation measures, that could be required of individual projects under CEQA, if feasible, when the local jurisdiction is the lead agency. The project would implement a number of the Standard Permit Conditions during construction that would help reduce construction-related GHG emissions. For example, a few of the construction measures include enforcing idling time restrictions on construction vehicles,
use of added exhaust muffling and filtering devices, replant vegetation in disturbed areas as quickly as possible, and posting a publicly visible sign with the telephone number and person at the lead agency to contact regarding dust complaints. As indicated above, GHG reductions are also achieved as a result of State of California energy and water efficiency requirements for new non-residential developments. These efficiency improvements correspond to reductions in secondary GHG emissions. For example, in California, most of the electricity that powers homes is derived from natural gas combustion. Therefore, energy saving measures, such as Title 24, reduces GHG emissions from the power generation facilities by reducing load demand. The project would be required to comply with existing regulations, including applicable measures from the City's General Plan, or would be directly affected by the outcomes (vehicle trips and energy consumption would be less carbon intensive due to statewide compliance with future low carbon fuel standard amendments and increasingly stringent Renewable Portfolio Standards). As such, the project would not conflict with any other state-level regulations pertaining to GHGs. Regarding goals for 2050 under Executive Order S-3-05, at this time it is not possible to quantify the emissions savings from future regulatory measures, as they have not yet been developed; nevertheless, it can be anticipated that operation of the project would benefit from implementation of current and potential future regulations (e.g., improvements in vehicle emissions, SB 100/renewable electricity portfolio improvements, etc.) enacted to meet an 80 percent reduction below 1990 levels by 2050. #### **Plan Bay Area** The project would be consistent with the overall goals of Plan Bay Area 2040 to provide housing, healthy and safe communities, and climate protection with an overall goal to reduce VMT. As noted above, the project would develop the project site with light industrial uses consistent with the General Plan. The project would add some additional employment, trips related to employees that work directly at the project site. Thus, implementation of the project would not conflict with an applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of GHGs, and this impact would be less than significant. Mitigation Measures: No mitigation is required. Level of Significance: Less than significant impact. ## 5.3 CUMULATIVE SETTING, IMPACTS, AND MITIGATION MEASURES ## **Cumulative Setting** Climate change is a global problem. GHGs are global pollutants, unlike criteria air pollutants and toxic air contaminants, which are pollutants of regional and local concern. Whereas pollutants with localized air quality effects have relatively short atmospheric lifetimes (approximately one day), GHGs have much longer atmospheric lifetimes of one year to several thousand years that allow them to be dispersed around the globe. ## **Cumulative Impacts and Mitigation Measures** It is generally the case that an individual project of the project's size and nature is of insufficient magnitude by itself to influence climate change or result in a substantial contribution to the global GHG inventory. GHG impacts are recognized as exclusively cumulative impacts; there are no non-cumulative GHG emission impacts from a climate change perspective. The additive effect of project-related GHG emissions would not result in a reasonably foreseeable cumulatively considerable contribution to global climate change. In addition, the project as well as other cumulative related projects, would be subject to all applicable regulatory requirements, which would further reduce GHG emissions. As shown in Appendix B and discussed in GHG-2 discussion above, the project would be consistent with the 2030 GHG Reduction Strategy. Thus, the project would not conflict with any GHG reduction plan. Therefore, the project's cumulative contribution of GHG emissions would be less than significant and the project's cumulative GHG impacts would also be less than cumulatively considerable. **Mitigation Measures:** No mitigation is required. **Level of Significance:** Less than significant impact. ## 6 REFERENCES - 1. Bay Area Air Quality Management District, 2017 CEQA Air Quality Guidelines, 2017. - 2. Bay Area Air Quality Management District, Final 2017 Clean Air Plan, 2017. - 3. California Air Pollution Control Officers Association, CEQA & Climate Change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, 2008. - 4. California Air Pollution Control Officers Association (CAPCOA). 2016. CalEEMod User's Guide. - 5. California Air Resources Board, Climate Change Proposed Scoping Plan. 2008. - 6. California Air Resources Board, *California Greenhouse Gas Inventory for 2000-2010 by Category Defined in the Scoping Plan*, 2013. - 7. California Air Resources Board, *California Greenhouse Gas Emissions Inventory 2017 Edition*, 2017. - 8. California Air Resources Board, California's 2017 Climate Change Scoping Plan, 2017. - 9. City of San José, 2030 Greenhouse Gas Reduction Strategy, 2020. - 10. City of San José, General Plan, 2018. - 11. City of San José, Municipal Code, 2019. - 12. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis, 2007. - 13. Intergovernmental Panel on Climate Change, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013. - 14. Intergovernmental Panel on Climate Change (IPCC), Climate Change. 2014. Synthesis Report: Approved Summary for Policymakers. - 15. Kimley-Horn & Associates, 5977 & 6001 Silver Creek Valley Road Transportation Analysis, February 2022. - 16. National Research Council, Advancing the Science of Climate Change, 2010. - 17. U.S. EPA, Methane and Nitrous Oxide Emission from Natural Sources, 2010. - 18. U.S. EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2016, 2018. - 19. U.S. EPA, Overview of Greenhouse Gases, 2018. # Appendix A **Greenhouse Gas Emissions Data** #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # Silver Creek Santa Clara County, Annual #### 1.0 Project Characteristics #### 1.1 Land Usage | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |----------------------------------|--------|----------|-------------|--------------------|------------| | Manufacturing | 45.00 | 1000sqft | 1.03 | 45,000.00 | 0 | | Unrefrigerated Warehouse-No Rail | 236.87 | 1000sqft | 5.44 | 236,873.00 | 0 | | Parking Lot | 249.32 | 1000sqft | 5.72 | 249,322.00 | 0 | #### 1.2 Other Project Characteristics | Urbanization | Urban | Wind Speed (m/s) | 2.2 | Precipitation Freq (Days) | 58 | |--------------|-------|------------------|-----|---------------------------|------| | Climate Zone | 4 | | | Operational Year | 2024 | Utility Company Pacific Gas and Electric Company CO2 Intensity 203.98 CH4 Intensity 0.033 N20 Intensity 0.004 (lb/MWhr) (lb/MWhr) (lb/MWhr) (lb/MWhr) #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - Construction Phase - Per construction timeline Trips and VMT - CalEEMod error Grading - Vehicle Trips - Per TA Construction Off-road Equipment Mitigation - Per BAAQMD Rule Compliance Waste Mitigation - Per AB 939 Fleet Mix - Per fleet mix Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Table Name | Column Name | Default Value | New Value | |------------------------|---------------------------------|---------------|-----------| | tblConstDustMitigation | CleanPavedRoadPercentReduction | 0 | 6 | | tblConstDustMitigation | WaterUnpavedRoadMoistureContent | 0 | 12 | | tblConstDustMitigation | WaterUnpavedRoadVehicleSpeed | 0 | 15 | | tblConstructionPhase | NumDays | 20.00 | 88.00 | | tblConstructionPhase | NumDays | 300.00 | 235.00 | | tblConstructionPhase | NumDays | 30.00 | 20.00 | | tblConstructionPhase | NumDays | 10.00 | 5.00 | | tblFleetMix | HHD | 6.4040e-003 | 1.00 | | tblFleetMix | HHD | 6.4040e-003 | 0.00 | | tblFleetMix | LDA | 0.57 | 0.00 | | tblFleetMix | LDA | 0.57 | 1.00 | | tblFleetMix | LDT1 | 0.06 | 0.00 | | tblFleetMix | LDT1 | 0.06 | 0.00 | | tblFleetMix | LDT2 | 0.19 | 0.00 | | tblFleetMix | LDT2 | 0.19 | 0.00 | | tblFleetMix | LHD1 | 0.02 | 0.00 | | tblFleetMix | LHD1 | 0.02 | 0.00 | | tblFleetMix | LHD2 | 5.1020e-003 | 0.00 | | tblFleetMix | LHD2 | 5.1020e-003 | 0.00 | | tblFleetMix | MCY | 0.02 | 0.00 | | tblFleetMix | MCY | 0.02 | 0.00 | | tblFleetMix | MDV | 0.12 | 0.00 | | tblFleetMix | MDV | 0.12 | 0.00 | | tblFleetMix | MH | 2.7760e-003 | 0.00 | | tblFleetMix | МН | 2.7760e-003 | 0.00 | | tblFleetMix | MHD | 7.9340e-003 | 0.00 | | tblFleetMix | MHD | 7.9340e-003 | 0.00 | | tblFleetMix | OBUS | 9.0000e-004 | 0.00 | Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | tblFleetMix | OBUS | 9.0000e-004 | 0.00 | |-----------------|-------------------|-------------|------------| | tblFleetMix | SBUS | 9.1400e-004 | 0.00 | | tblFleetMix | SBUS | 9.1400e-004 | 0.00 | | tblFleetMix | UBUS | 3.8000e-004 | 0.00 | | tblFleetMix | UBUS | 3.8000e-004 | 0.00 | | tblLandUse | LandUseSquareFeet | 236,870.00 | 236,873.00 | | tblLandUse | LandUseSquareFeet | 249,320.00 | 249,322.00 | | tblTripsAndVMT | WorkerTripNumber | | 0.00 | | • | CC_TL | 7.30 | 0.00 | | tblVehicleTrips | CC_TTP | 28.00 | 0.00 | | tblVehicleTrips | CNW_TL | 7.30 | 50.00 | | tblVehicleTrips | CNW_TTP | 13.00 | 100.00 | | tblVehicleTrips | CNW_TTP | 41.00 | 0.00 | | tblVehicleTrips | CW_TL | 9.50 | 0.00 | |
tblVehicleTrips | CW_TTP | 59.00 | 0.00 | | tblVehicleTrips | CW_TTP | 59.00 | 100.00 | | tblVehicleTrips | DV_TP | 5.00 | 0.00 | | tblVehicleTrips | DV_TP | 5.00 | 0.00 | | tblVehicleTrips | PB_TP | 3.00 | 0.00 | | tblVehicleTrips | PB_TP | 3.00 | 0.00 | | tblVehicleTrips | PR_TP | 92.00 | 100.00 | | tblVehicleTrips | PR_TP | 92.00 | 100.00 | | tblVehicleTrips | ST_TR | 6.42 | 1.55 | | tblVehicleTrips | ST_TR | 1.74 | 2.17 | | tblVehicleTrips | SU_TR | 5.09 | 1.55 | | tblVehicleTrips | SU_TR | 1.74 | 2.17 | | tblVehicleTrips | WD_TR | 3.93 | 1.55 | | tblVehicleTrips | WD_TR | 1.74 | 2.17 | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 2.0 Emissions Summary ## 2.1 Overall Construction <u>Unmitigated Construction</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Year | | | | | tor | ns/yr | | | | | | | MT | /yr | | | | 2023 | 1.4359 | 2.6505 | 3.0618 | 7.9000e-003 | 0.4298 | 0.1057 | 0.5355 | 0.1401 | 0.0993 | 0.2394 | 0.0000 | 717.4509 | 717.4509 | 0.0948 | 0.0346 | 730.1169 | | 2024 | 0.4188 | 0.1103 | 0.1810 | 3.0000e-004 | 6.3200e-
003 | 5.4100e-
003 | 0.0117 | 1.6600e-
003 | 5.0300e-
003 | 6.6900e-003 | 0.0000 | 26.9446 | 26.9446 | 6.7500e-
003 | 1.0000e-
004 | 27.1445 | | Maximum | 1.4359 | 2.6505 | 3.0618 | 7.9000e-003 | 0.4298 | 0.1057 | 0.5355 | 0.1401 | 0.0993 | 0.2394 | 0.0000 | 717.4509 | 717.4509 | 0.0948 | 0.0346 | 730.1169 | #### **Mitigated Construction** | Maximum | 1.4359 | 2.6505 | 3.0618 | 7.9000e-003 | 0.3347 | 0.1057 | 0.4404 | 0.1012 | 0.0993 | 0.2005 | 0.0000 | 717.4505 | 717.4505 | 0.0948 | 0.0346 | 730.1165 | |---------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|----------|----------|---------|----------| | 2024 | 0.4100 | 0.1103 | 0.1810 | 3.00000-004 | 003 | 003 | 0.0114 | 003 | 003 | 0.01000-003 | 0.0000 | 20.9445 | 20.9445 | 003 | 004 | 21.1444 | | 2024 | 0.4188 | 0.1103 | 0.1910 | 3.0000e-004 | F 00000 | F 41000 | 0.0114 | 1.5800e- | 5.0300e- | 6.6100e-003 | 0.0000 | 26.9445 | 26.9445 | 6.7500e- | 1.00000 | 27.1444 | | 2023 | 1.4359 | 2.6505 | 3.0618 | 7.9000e-003 | 0.3347 | 0.1057 | 0.4404 | 0.1012 | 0.0993 | 0.2005 | 0.0000 | 717.4505 | 717.4505 | 0.0948 | 0.0346 | 730.1165 | | Year | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | | CH4 | N2O | CO2e | #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent
Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 21.89 | 0.00 | 17.45 | 27.49 | 0.00 | 15.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Quarter | Start Date | End Date | Maximum Unmitigated ROG + NOX (tons/quarter) | Maximum Mitigated ROG + NOX (tons/quarter) | |---------|------------|-----------|--|--| | 1 | 1-2-2023 | 4-1-2023 | 0.8194 | 0.8194 | | 2 | 4-2-2023 | 7-1-2023 | 0.6737 | 0.6737 | | 3 | 7-2-2023 | 10-1-2023 | 0.6813 | 0.6813 | | 4 | 10-2-2023 | 1-1-2024 | 1.8650 | 1.8650 | | 5 | 1-2-2024 | 4-1-2024 | 0.4887 | 0.4887 | | | | Highest | 1.8650 | 1.8650 | # 2.2 Overall Operational # **Unmitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-------------|-----------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|-------------|------------| | Category | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | | Area | 1.2696 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | | Energy | 0.0108 | 0.0977 | 0.0821 | 5.9000e-004 | | 7.4200e-
003 | 7.4200e-003 | | 7.4200e-
003 | 7.4200e-003 | 0.0000 | 224.8572 | 224.8572 | 0.0212 | 4.2700e-003 | 226.6610 | | Mobile | 0.1366 | 4.0615 | 2.1935 | 0.0230 | 1.1883 | 0.0378 | 1.2261 | 0.3207 | 0.0361 | 0.3568 | 0.0000 | 2,252.8620 | 2,252.8620 | 0.0742 | 0.2999 | 2,344.0774 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 56.5249 | 0.0000 | 56.5249 | 3.3405 | 0.0000 | 140.0380 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 20.6794 | 32.6333 | 53.3127 | 2.1293 | 0.0508 | 121.6798 | | Total | 1.4169 | 4.1592 | 2.2804 | 0.0236 | 1.1883 | 0.0452 | 1.2335 | 0.3207 | 0.0435 | 0.3642 | 77.2042 | 2,510.3620 | 2,587.5662 | 5.5652 | 0.3549 | 2,832.4663 | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|-------------|-----------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|-------------|------------| | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | | Area | 1.2696 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | | Energy | 0.0108 | 0.0977 | 0.0821 | 5.9000e-004 | | 7.4200e-
003 | 7.4200e-003 | | 7.4200e-
003 | 7.4200e-003 | 0.0000 | 224.8572 | 224.8572 | 0.0212 | 4.2700e-003 | 226.6610 | | Mobile | 0.1366 | 4.0615 | 2.1935 | 0.0230 | 1.1883 | 0.0378 | 1.2261 | 0.3207 | 0.0361 | 0.3568 | 0.0000 | 2,252.8620 | 2,252.8620 | 0.0742 | 0.2999 | 2,344.0774 | | Waste | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 28.2624 | 0.0000 | 28.2624 | 1.6703 | 0.0000 | 70.0190 | | Water | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 20.6794 | 32.6333 | 53.3127 | 2.1293 | 0.0508 | 121.6798 | | Total | 1.4169 | 4.1592 | 2.2804 | 0.0236 | 1.1883 | 0.0452 | 1.2335 | 0.3207 | 0.0435 | 0.3642 | 48.9418 | 2,510.3620 | 2,559.3038 | 3.8949 | 0.3549 | 2,762.4473 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|-------|------|------| | Percent
Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 36.61 | 0.00 | 1.09 | 30.01 | 0.00 | 2.47 | #### 3.0 Construction Detail #### **Construction Phase** | Phase
Number | Phase Name | Phase Type | Start Date | End Date | Num Days
Week | Num Days | Phase Description | |-----------------|-----------------------|------------------|------------|------------|------------------|----------|-------------------| | 1 | Site Preparation | Site Preparation | 1/2/2023 | 1/6/2023 | 5 | 5 | | | | Grading | Grading | 1/9/2023 | 2/3/2023 | 5 | 20 | | | | Building Construction | 3 | | 12/29/2023 | 5 | 235 | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | 4 | Architectural Coating | Architectural Coating | 10/2/2023 | 1/31/2024 | 5 | 88 | |---|-----------------------|-----------------------|-----------|-----------|-------|----| | 5 | Paving | Paving | 1/1/2024 | 1/26/2024 |
5 | 20 | Acres of Grading (Site Preparation Phase): 7.5 Acres of Grading (Grading Phase): 60 Acres of Paving: 5.72 Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 422,810; Non-Residential Outdoor: 140,937; Striped Parking Area: 14,959 #### **OffRoad Equipment** | Phase Name | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor | |-----------------------|---------------------------|--------|-------------|-------------|-------------| | Site Preparation | Rubber Tired Dozers | 3 | 8.00 | 247 | 0.40 | | Site Preparation | Tractors/Loaders/Backhoes | 4 | 8.00 | 97 | 0.37 | | Grading | Excavators | 2 | 8.00 | 158 | 0.38 | | Grading | Graders | 1 | 8.00 | 187 | 0.41 | | Grading | Rubber Tired Dozers | 1 | 8.00 | 247 | 0.40 | | Grading | Scrapers | 2 | 8.00 | 367 | 0.48 | | Grading | Tractors/Loaders/Backhoes | 2 | 8.00 | 97 | 0.37 | | Building Construction | Cranes | 1 | 7.00 | 231 | 0.29 | | 3 | Forklifts | 3 | 8.00 | 89 | 0.20 | | Building
Construction | Generator Sets | 1 | 8.00 | 84 | 0.74 | | Building Construction | Tractors/Loaders/Backhoes | 3 | 7.00 | 97 | 0.37 | | Building Construction | Welders | 1 | 8.00 | 46 | 0.45 | | Architectural Coating | Air Compressors | 1 | 6.00 | 78 | 0.48 | | ·g | Pavers | 2 | 8.00 | 130 | 0.42 | | Paving | Paving Equipment | 2 | 8.00 | 132 | 0.36 | | Paving | Rollers | 2 | 8.00 | 80 | 0.38 | **Trips and VMT** #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Phase Name | Offroad Equipment
Count | Worker Trip
Number | Vendor Trip
Number | Hauling Trip
Number | Worker Trip
Length | Vendor Trip
Length | Hauling Trip
Length | Worker Vehicle
Class | Vendor Vehicle
Class | Hauling Vehicle
Class | |-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------| | Site Preparation | 7 | 18.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Grading | 8 | 20.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Building Construction | 9 | 223.00 | 87.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Architectural Coating | 1 | 45.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Paving | 6 | 15.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Paving | 6 | 0.00 | 0.00 | 0.00 | 10.80 | 7.30 | 20.00 | LD_Mix | HDT_Mix | HHDT | #### **3.1 Mitigation Measures Construction** Replace Ground Cover Water Exposed Area Water Unpaved Roads Reduce Vehicle Speed on Unpaved Roads Clean Paved Roads #### 3.2 Site Preparation - 2023 **Unmitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | | Fugitive Dust | | | | | 0.0491 | 0.0000 | 0.0491 | 0.0253 | 0.0000 | 0.0253 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-004 | | 3.1700e-
003 | 3.1700e-003 | | 2.9100e-
003 | 2.9100e-003 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | | Total | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-004 | 0.0491 | 3.1700e-
003 | 0.0523 | 0.0253 | 2.9100e-
003 | 0.0282 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | tor | ıs/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.1000e-
004 | 8.0000e-
005 | 1.0100e-003 | 0.0000 | 3.6000e-
004 | 0.0000 | 3.6000e-004 | 9.0000e-
005 | 0.0000 | 1.0000e-004 | 0.0000 | 0.2751 | 0.2751 | 1.0000e-
005 | 1.0000e-
005 | 0.2776 | | Total | 1.1000e-
004 | 8.0000e-
005 | 1.0100e-003 | 0.0000 | 3.6000e-
004 | 0.0000 | 3.6000e-004 | 9.0000e-
005 | 0.0000 | 1.0000e-004 | 0.0000 | 0.2751 | 0.2751 | 1.0000e-
005 | 1.0000e-
005 | 0.2776 | #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | | Fugitive Dust | | | | | 0.0210 | 0.0000 | 0.0210 | 0.0108 | 0.0000 | 0.0108 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-004 | | 3.1700e-
003 | 3.1700e-003 | | 2.9100e-
003 | 2.9100e-003 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | | 8.4303 | | Total | 6.6500e-
003 | 0.0688 | 0.0456 | 1.0000e-004 | 0.0210 | 3.1700e-
003 | 0.0242 | 0.0108 | 2.9100e-
003 | 0.0137 | 0.0000 | 8.3627 | 8.3627 | 2.7000e-
003 | 0.0000 | 8.4303 | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | tor | is/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.1000e-
004 | 8.0000e-
005 | 1.0100e-003 | 0.0000 | 3.4000e-
004 | 0.0000 | 3.4000e-004 | 9.0000e-
005 | 0.0000 | 9.0000e-005 | 0.0000 | 0.2751 | 0.2751 | 1.0000e-
005 | 1.0000e-
005 | 0.2776 | | Total | 1.1000e-
004 | 8.0000e-
005 | 1.0100e-003 | 0.0000 | 3.4000e-
004 | 0.0000 | 3.4000e-004 | 9.0000e-
005 | 0.0000 | 9.0000e-005 | 0.0000 | 0.2751 | 0.2751 | 1.0000e-
005 | 1.0000e-
005 | 0.2776 | #### 3.3 Grading - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------| | Category | | | | | tor | ns/yr | | | | | | | MT. | /yr | | | | Fugitive Dust | | | | | 0.0920 | 0.0000 | 0.0920 | 0.0365 | 0.0000 | 0.0365 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.0332 | 0.3452 | 0.2805 | 6.2000e-004 | | 0.0142 | 0.0142 | | 0.0131 | 0.0131 | 0.0000 | 54.5352 | 54.5352 | 0.0176 | 0.0000 | 54.9762 | | Total | 0.0332 | 0.3452 | 0.2805 | 6.2000e-004 | 0.0920 | 0.0142 | 0.1063 | 0.0365 | 0.0131 | 0.0497 | 0.0000 | 54.5352 | 54.5352 | 0.0176 | 0.0000 | 54.9762 | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | ton | is/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 5.0000e-
004 | 3.5000e-
004 | 4.4800e-003 | 1.0000e-005 | 1.5900e-
003 | 1.0000e-
005 | 1.5900e-003 | 4.2000e-
004 | 1.0000e-
005 | 4.3000e-004 | 0.0000 | 1.2227 | 1.2227 | 3.0000e-
005 | 3.0000e-
005 | 1.2336 | | Total | 5.0000e-
004 | 3.5000e-
004 | 4.4800e-003 | 1.0000e-005 | 1.5900e-
003 | 1.0000e-
005 | 1.5900e-003 | 4.2000e-
004 | 1.0000e-
005 | 4.3000e-004 | 0.0000 | 1.2227 | 1.2227 | 3.0000e-
005 | 3.0000e-
005 | 1.2336 | #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------| | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | | Fugitive
Dust | | | | | 0.0394 | 0.0000 | 0.0394 | 0.0156 | 0.0000 | 0.0156 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | | Off-Road | 0.0332 | 0.3452 | 0.2805 | 6.2000e-004 | | 0.0142 | 0.0142 | | 0.0131 | 0.0131 | 0.0000 | | 54.5351 | 0.0176 | | 54.9761 | | Total | 0.0332 | 0.3452 | 0.2805 | 6.2000e-004 | 0.0394 | 0.0142 | 0.0536 | 0.0156 | 0.0131 | 0.0287 | 0.0000 | 54.5351 | 54.5351 | 0.0176 | 0.0000 | 54.9761 | #### **Mitigated Construction Off-Site** Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|-------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 5.0000e-
004 | 3.5000e-
004 | 4.4800e-003 | 1.0000e-005 | 1.5000e-
003 | 1.0000e-
005 | 1.5100e-003 | 4.0000e-
004 | 1.0000e-
005 | 4.1000e-004 | 0.0000 | 1.2227 | 1.2227 | 3.0000e-
005 | 3.0000e-
005 | 1.2336 | | Total | 5.0000e-
004 | 3.5000e-
004 | 4.4800e-003 | 1.0000e-005 | 1.5000e-
003 | 1.0000e-
005 | 1.5100e-003 | 4.0000e-
004 | 1.0000e-
005 | 4.1000e-004 | 0.0000 | 1.2227 | 1.2227 | 3.0000e-
005 | 3.0000e-
005 | 1.2336 | # 3.4 Building Construction - 2023 **Unmitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Off-Road | 0.1848 | 1.6902 | 1.9087 | 3.1700e-003 | | 0.0822 | 0.0822 | | 0.0774 | 0.0774 | 0.0000 | 272.3706 | 272.3706 | 0.0648 | 0.0000 | 273.9904 | | Total | 0.1848 | 1.6902 | 1.9087 | 3.1700e-003 | | 0.0822 | 0.0822 | | 0.0774 | 0.0774 | 0.0000 | 272.3706 | 272.3706 | 0.0648 | 0.0000 | 273.9904 | #### **Unmitigated Construction Off-Site** Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0112 | 0.4554 | 0.1435 | 2.0900e-003 | 0.0673 | 2.6700e-
003 | 0.0700 | 0.0195 | 2.5600e-
003 | 0.0220 | 0.0000 | 203.2544 | 203.2544 | 4.2800e-
003 | 0.0299 | 212.2596 | | Worker | 0.0655 | 0.0456 | 0.5864 | 1.7300e-003 | 0.2078 | 1.0300e-
003 | 0.2089 | 0.0553 | 9.5000e-
004 | 0.0562 | 0.0000 | 160.1910 | 160.1910 | 4.5600e-
003 | 4.4100e-
003 | 161.6180 | | Total | 0.0767 | 0.5010 | 0.7299 | 3.8200e-003 | 0.2751 | 3.7000e-
003 | 0.2788 | 0.0747 | 3.5100e-
003 | 0.0782 | 0.0000 | 363.4454 | 363.4454 | 8.8400e-
003 | 0.0343 | 373.8777 | #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Off-Road | 0.1848 | 1.6902 | 1.9087 | 3.1700e-003 | | 0.0822 | 0.0822 | | 0.0774 | 0.0774 | 0.0000 | 272.3703 | 272.3703 | 0.0648 | 0.0000 | 273.9901 | | Total | 0.1848 | 1.6902 | 1.9087 | 3.1700e-003 | | 0.0822 | 0.0822 | | 0.0774 | 0.0774 | 0.0000 | 272.3703 | 272.3703 | 0.0648 | 0.0000 | 273.9901 | #### **Mitigated Construction Off-Site** Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | |----------|--------|--------|--------|-------------|--------|-----------------|--------|--------|-----------------|--------|--------|----------|----------|-----------------|-----------------|----------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0112 | 0.4554 | 0.1435 | 2.0900e-003 | 0.0644 | 2.6700e-
003 | 0.0671 | 0.0188 | 2.5600e-
003 | 0.0213 | 0.0000 | 203.2544 | 203.2544 | 4.2800e-
003 | 0.0299 | 212.2596 | | Worker | 0.0655 | 0.0456 | 0.5864 | 1.7300e-003 | 0.1970 | 1.0300e-
003 | 0.1981 | 0.0526 | 9.5000e-
004 | 0.0536 | 0.0000 | 160.1910 | 160.1910 | 4.5600e-
003 | 4.4100e-
003 | 161.6180 | | Total | 0.0767 | 0.5010 | 0.7299 | 3.8200e-003 | 0.2615 | 3.7000e-
003 | 0.2652 | 0.0714 | 3.5100e-
003 | 0.0749 | 0.0000 | 363.4454 | 363.4454 | 8.8400e-
003 | 0.0343 | 373.8777 | ## 3.5 Architectural Coating - 2023 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Archit. Coating | 1.1241 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.2300e-
003 | 0.0424 | 0.0589 | 1.0000e-004 | | 2.3000e-
003 | 2.3000e-003 | | 2.3000e-
003 | 2.3000e-003 | 0.0000 | 8.2981 | 8.2981 | 5.0000e-
004 | 0.0000 | 8.3105 | | Total | 1.1303 | 0.0424 | 0.0589 | 1.0000e-004 | | 2.3000e-
003 | 2.3000e-003 | | 2.3000e-
003 | 2.3000e-003 | 0.0000 | 8.2981 | 8.2981 | 5.0000e-
004 | 0.0000 | 8.3105 | #### **Unmitigated Construction Off-Site** | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | | | | | 1 10110 | 1 11110 | | 1 1012.0 | 1 11/2.0 | | | | | | | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | |----------|-----------------|-----------------|--------|-------------|--------|-----------------|--------|-----------------|-----------------|-------------|--------|--------|--------|-----------------|-----------------|--------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 3.6600e-
003 | 2.5500e-
003 | 0.0327 | 1.0000e-004 | 0.0116 | 6.0000e-
005 | 0.0117 | 3.0800e-
003 | 5.0000e-
005 | 3.1400e-003 | 0.0000 | 8.9411 | 8.9411 | 2.5000e-
004 | 2.5000e-
004 | 9.0208 | | Total | 3.6600e-
003 | 2.5500e-
003 | 0.0327 | 1.0000e-004 | 0.0116 | 6.0000e-
005 | 0.0117 | 3.0800e-
003 | 5.0000e-
005 | 3.1400e-003 | 0.0000 | 8.9411 | 8.9411 | 2.5000e-
004 | 2.5000e-
004 | 9.0208 | #### **Mitigated Construction On-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | ns/yr | | | | | | | МТ | /yr | | | | Archit. Coating | 1.1241 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.2300e-
003 | 0.0424 | 0.0589 | 1.0000e-004 | | 2.3000e-
003 | 2.3000e-003 | | 2.3000e-
003 | 2.3000e-003 | 0.0000 | 8.2981 | 8.2981 | 5.0000e-
004 | 0.0000 | 8.3105 |
 Total | 1.1303 | 0.0424 | 0.0589 | 1.0000e-004 | - | 2.3000e-
003 | 2.3000e-003 | | 2.3000e-
003 | 2.3000e-003 | 0.0000 | 8.2981 | 8.2981 | 5.0000e-
004 | 0.0000 | 8.3105 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | | | | | | 1 10110 | 1 10110 | | 1 1012.5 | 1 1112.0 | | | | | | | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | |----------|-----------------|-----------------|--------|-------------|--------|-----------------|--------|-----------------|-----------------|-------------|--------|--------|--------|-----------------|-----------------|--------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 3.6600e-
003 | 2.5500e-
003 | 0.0327 | 1.0000e-004 | 0.0110 | 6.0000e-
005 | 0.0111 | 2.9400e-
003 | 5.0000e-
005 | 2.9900e-003 | 0.0000 | 8.9411 | 8.9411 | 2.5000e-
004 | 2.5000e-
004 | 9.0208 | | Total | 3.6600e-
003 | 2.5500e-
003 | 0.0327 | 1.0000e-004 | 0.0110 | 6.0000e-
005 | 0.0111 | 2.9400e-
003 | 5.0000e-
005 | 2.9900e-003 | 0.0000 | 8.9411 | 8.9411 | 2.5000e-
004 | 2.5000e-
004 | 9.0208 | #### 3.5 Architectural Coating - 2024 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Archit. Coating | 0.3977 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 2.0800e-
003 | 0.0140 | 0.0208 | 3.0000e-005 | | 7.0000e-
004 | 7.0000e-004 | | 7.0000e-
004 | 7.0000e-004 | 0.0000 | 2.9362 | 2.9362 | 1.7000e-
004 | 0.0000 | 2.9404 | | Total | 0.3998 | 0.0140 | 0.0208 | 3.0000e-005 | | 7.0000e-
004 | 7.0000e-004 | | 7.0000e-
004 | 7.0000e-004 | 0.0000 | 2.9362 | 2.9362 | 1.7000e-
004 | 0.0000 | 2.9404 | #### **Unmitigated Construction Off-Site** | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | | | | | FINITO | FIVITO | | FIVIZ.3 | FIVIZ.J | | | | | | | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | |----------|-----------------|-----------------|--------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|-------------|--------|--------|--------|-----------------|-----------------|--------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.2100e-
003 | 8.1000e-
004 | 0.0108 | 3.0000e-005 | 4.1000e-
003 | 2.0000e-
005 | 4.1200e-003 | 1.0900e-
003 | 2.0000e-
005 | 1.1100e-003 | 0.0000 | 3.0870 | 3.0870 | 8.0000e-
005 | 8.0000e-
005 | 3.1133 | | Total | 1.2100e-
003 | 8.1000e-
004 | 0.0108 | 3.0000e-005 | 4.1000e-
003 | 2.0000e-
005 | 4.1200e-003 | 1.0900e-
003 | 2.0000e-
005 | 1.1100e-003 | 0.0000 | 3.0870 | 3.0870 | 8.0000e-
005 | 8.0000e-
005 | 3.1133 | #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | | Archit. Coating | 0.3977 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 2.0800e-
003 | 0.0140 | 0.0208 | 3.0000e-005 | | 7.0000e-
004 | 7.0000e-004 | | 7.0000e-
004 | 7.0000e-004 | 0.0000 | 2.9362 | 2.9362 | 1.7000e-
004 | 0.0000 | 2.9404 | | Total | 0.3998 | 0.0140 | 0.0208 | 3.0000e-005 | | 7.0000e-
004 | 7.0000e-004 | | 7.0000e-
004 | 7.0000e-004 | 0.0000 | 2.9362 | 2.9362 | 1.7000e-
004 | 0.0000 | 2.9404 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | | | | | | 1 10110 | 1 10110 | | 1 1012.5 | 1 1112.0 | | | | | | | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ns/yr | | | | | | | MT | /yr | | | |----------|-----------------|-----------------|--------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|-------------|--------|--------|--------|-----------------|-----------------|--------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.2100e-
003 | 8.1000e-
004 | 0.0108 | 3.0000e-005 | 3.8900e-
003 | 2.0000e-
005 | 3.9100e-003 | 1.0400e-
003 | 2.0000e-
005 | 1.0600e-003 | 0.0000 | 3.0870 | 3.0870 | 8.0000e-
005 | 8.0000e-
005 | 3.1133 | | Total | 1.2100e-
003 | 8.1000e-
004 | 0.0108 | 3.0000e-005 | 3.8900e-
003 | 2.0000e-
005 | 3.9100e-003 | 1.0400e-
003 | 2.0000e-
005 | 1.0600e-003 | 0.0000 | 3.0870 | 3.0870 | 8.0000e-
005 | 8.0000e-
005 | 3.1133 | # 3.6 Paving - 2024 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Off-Road | 9.8800e-
003 | 0.0953 | 0.1463 | 2.3000e-004 | | 4.6900e-
003 | 4.6900e-003 | | 4.3100e-
003 | 4.3100e-003 | 0.0000 | 20.0265 | 20.0265 | 6.4800e-
003 | 0.0000 | 20.1885 | | Paving | 7.4900e-
003 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0174 | 0.0953 | 0.1463 | 2.3000e-004 | | 4.6900e-
003 | 4.6900e-003 | _ | 4.3100e-
003 | 4.3100e-003 | 0.0000 | 20.0265 | 20.0265 | 6.4800e-
003 | 0.0000 | 20.1885 | #### **Unmitigated Construction Off-Site** | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | | | | | 1 10110 | 1 11110 | | 1 1012.0 | 1 11/2.0 | | | | | | | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ıs/yr | | | | | | | MT | /yr | | | |----------|-----------------|-----------------|-------------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|-------------|--------|--------|--------|-----------------|-----------------|--------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 3.5000e-
004 | 2.3000e-
004 | 3.1400e-003 |
1.0000e-005 | 2.2200e-
003 | 1.0000e-
005 | 2.2200e-003 | 5.7000e-
004 | 1.0000e-
005 | 5.7000e-004 | 0.0000 | 0.8948 | 0.8948 | 2.0000e-
005 | 2.0000e-
005 | 0.9024 | | Total | 3.5000e-
004 | 2.3000e-
004 | 3.1400e-003 | 1.0000e-005 | 2.2200e-
003 | 1.0000e-
005 | 2.2200e-003 | 5.7000e-
004 | 1.0000e-
005 | 5.7000e-004 | 0.0000 | 0.8948 | 0.8948 | 2.0000e-
005 | 2.0000e-
005 | 0.9024 | #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Off-Road | 9.8800e-
003 | 0.0953 | 0.1463 | 2.3000e-004 | | 4.6900e-
003 | 4.6900e-003 | | 4.3100e-
003 | 4.3100e-003 | 0.0000 | 20.0265 | 20.0265 | 6.4800e-
003 | 0.0000 | 20.1884 | | Paving | 7.4900e-
003 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0174 | 0.0953 | 0.1463 | 2.3000e-004 | | 4.6900e-
003 | 4.6900e-003 | | 4.3100e-
003 | 4.3100e-003 | 0.0000 | 20.0265 | 20.0265 | 6.4800e-
003 | 0.0000 | 20.1884 | #### **Mitigated Construction Off-Site** | Ī | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | | | | | | 1 10110 | 1 10110 | | 1 11/2:0 | 1 1012.0 | | | | | | | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Category | | | | | tor | ns/yr | | | | | | | МТ | /yr | | | |----------|-----------------|-----------------|-------------|-------------|-----------------|-----------------|-------------|-----------------|-----------------|-------------|--------|--------|--------|-----------------|-----------------|--------| | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 3.5000e-
004 | 2.3000e-
004 | 3.1400e-003 | 1.0000e-005 | 2.0900e-
003 | 1.0000e-
005 | 2.1000e-003 | 5.4000e-
004 | 1.0000e-
005 | 5.4000e-004 | 0.0000 | 0.8948 | 0.8948 | 2.0000e-
005 | 2.0000e-
005 | 0.9024 | | Total | 3.5000e-
004 | 2.3000e-
004 | 3.1400e-003 | 1.0000e-005 | 2.0900e-
003 | 1.0000e-
005 | 2.1000e-003 | 5.4000e-
004 | 1.0000e-
005 | 5.4000e-004 | 0.0000 | 0.8948 | 0.8948 | 2.0000e-
005 | 2.0000e-
005 | 0.9024 | #### 4.0 Operational Detail - Mobile #### **4.1 Mitigation Measures Mobile** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|------------|------------|--------|--------|------------| | Category | | | | | toı | ns/yr | | | | | | | МТ | -/yr | | | | Mitigated | 0.1366 | 4.0615 | 2.1935 | 0.0230 | 1.1883 | 0.0378 | 1.2261 | 0.3207 | 0.0361 | 0.3568 | 0.0000 | 2,252.8620 | 2,252.8620 | 0.0742 | 0.2999 | 2,344.0774 | | Unmitigated | 0.1366 | 4.0615 | 2.1935 | 0.0230 | 1.1883 | 0.0378 | 1.2261 | 0.3207 | 0.0361 | 0.3568 | 0.0000 | 2,252.8620 | 2,252.8620 | 0.0742 | 0.2999 | 2,344.0774 | ## **4.2 Trip Summary Information** | | Ave | erage Daily Trip Ra | te | Unmitigated | Mitigated | |----------|---------|---------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Manufacturing | 69.75 | 69.75 | 69.75 | 1,269,450 | 1,269,450 | |----------------------------------|--------|--------|--------|-----------|-----------| | Parking Lot | 0.00 | 0.00 | 0.00 | : | | | Unrefrigerated Warehouse-No Rail | 512.82 | 512.82 | 512.82 | 1,773,344 | 1,773,344 | | Total | 582.57 | 582.57 | 582.57 | 3,042,794 | 3,042,794 | #### **4.3 Trip Type Information** | | | Miles | | | Trip % | | | Trip Purpos | e % | |---------------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | Manufacturing | 0.00 | 0.00 | 50.00 | 0.00 | 0.00 | 100.00 | 100 | 0 | 0 | | Parking Lot | 9.50 | 7.30 | 7.30 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Unrefrigerated Warehouse-No Rai | 9.50 | 7.30 | 7.30 | 100.00 | 0.00 | 0.00 | 100 | 0 | 0 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Manufacturing | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | | Parking Lot | 0.572464 | 0.055653 | 0.187060 | 0.115672 | 0.020329 | 0.005102 | 0.007934 | 0.006404 | 0.000900 | 0.000380 | 0.024412 | 0.000914 | 0.002776 | | Unrefrigerated Warehouse-No Rail | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | # 5.0 Energy Detail Historical Energy Use: N #### **5.1 Mitigation Measures Energy** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------------|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-------------|------| | Category | | | | | ton | s/yr | | | | MT. | /yr | | | | | | | Electricity Mitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | | 118.5061 | | 2.3200e-003 | | Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | ľ | Electricity
Unmitigated | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 118.5061 | 118.5061 | 0.0192 | 2.3200e-003 | 119.6780 | |---|----------------------------|--------|--------|---|-------------|---------------------|-------------|---------------------|-------------|--------|----------|----------|--------|-------------|----------| | ľ | NaturalGas
Mitigated | 0.0108 | 0.0977 | 0.0821 | 5.9000e-004 |
7.4200e-
003 | 7.4200e-003 |
7.4200e-
003 | 7.4200e-003 | | | | | 1.9500e-003 | | | ľ | NaturalGas
Unmitigated | 0.0108 | 0.0977 | 0.0821 | 5.9000e-004 |
7.4200e-
003 | 7.4200e-003 | | 7.4200e-003 | | | | | 1.9500e-003 | | #### **5.2 Energy by Land Use - NaturalGas** #### **Unmitigated** | | NaturalGa
s Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-------------|-----------------|----------| | Land Use | kBTU/yr | | | | | tor | ns/yr | | | | | | | M | /yr | | | | Manufacturing | 1.1781e+0
06 | 6.3500e-
003 | 0.0578 | 0.0485 | 3.5000e-
004 | | 4.3900e-003 | 4.3900e-
003 | | 4.3900e-
003 | 4.3900e-003 | 0.0000 | 62.8679 | 62.8679 | 1.2000e-003 | 1.1500e-
003 | 63.2415 | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Unrefrigerated
Warehouse-No | 814843 | 4.3900e-
003 | 0.0399 | 0.0336 | 2.4000e-
004 | | 3.0400e-003 | 3.0400e-
003 | | 3.0400e-
003 | 3.0400e-003 | 0.0000 | 43.4831 | 43.4831 | 8.3000e-004 | 8.0000e-
004 | 43.7415 | | Total | | 0.0107 | 0.0977 | 0.0821 | 5.9000e-
004 | | 7.4300e-003 | 7.4300e-
003 | | 7.4300e-
003 | 7.4300e-003 | 0.0000 | 106.3510 | 106.3510 | 2.0300e-003 | 1.9500e-
003 | 106.9830 | #### **Mitigated** | | NaturalGa
s Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------------------|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------| | Land Use | kBTU/yr | | | | | tor | ıs/yr | | | | | | | MT | /yr | | | #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty
Vehicle to Account for the SAFE Vehicle Rule Applied | Manufacturing | = : | 6.3500e-
003 | 0.0578 | 0.0485 | 3.5000e- |
4.3900e-003 | | 4.3900e-
003 | 4.3900e-003 | 0.0000 | 62.8679 | 62.8679 | 1.2000e-003 | | 63.2415 | |----------------|--------|-----------------|--------|--------|----------|-----------------|----------|-----------------|-------------|--------|----------|----------|-------------|----------|----------| | | 06 | 003 | | | 004 | | 003 | 003 | | | | | | 003 | | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | | | | | | | | | | | Unrefrigerated | 814843 | 4.3900e- | 0.0399 | 0.0336 | 2.4000e- | 3.0400e-003 | 3.0400e- | 3.0400e- | 3.0400e-003 | 0.0000 | 43.4831 | 43.4831 | 8.3000e-004 | 8.0000e- | 43.7415 | | Warehouse-No | | 003 | | | 004 | | 003 | 003 | | | | | | 004 | | | Total | | 0.0107 | 0.0977 | 0.0821 | 5.9000e- | 7.4300e-003 | 7.4300e- | 7.4300e- | 7.4300e-003 | 0.0000 | 106.3510 | 106.3510 | 2.0300e-003 | 1.9500e- | 106.9830 | | | | | | | 004 | | 003 | 003 | | | | | | 003 | | | | | | | | | | | | | | | | | | | ## 5.3 Energy by Land Use - Electricity <u>Unmitigated</u> | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|-----------|-------------|-------------|----------| | Land Use | kWh/yr | | МТ | -/yr | | | Manufacturing | 364500 | 33.7249 | 5.4600e-003 | 6.6000e-004 | 34.0584 | | Parking Lot | 87262.7 | 8.0739 | 1.3100e-003 | 1.6000e-004 | 8.1537 | | Unrefrigerated
Warehouse-No | 829056 | 76.7073 | 0.0124 | 1.5000e-003 | 77.4658 | | Total | | 118.5061 | 0.0192 | 2.3200e-003 | 119.6779 | #### **Mitigated** | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | |--------------------|-----------|-----|-----|------| | | | | | | #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Land Use | kWh/yr | | M | Г/уг | | |--------------------------------|---------|----------|-------------|-------------|----------| | Manufacturing | 364500 | 33.7249 | 5.4600e-003 | 6.6000e-004 | 34.0584 | | Parking Lot | 87262.7 | 8.0739 | 1.3100e-003 | 1.6000e-004 | 8.1537 | | Unrefrigerated
Warehouse-No | 829056 | 76.7073 | 0.0124 | 1.5000e-003 | 77.4658 | | Total | | 118.5061 | 0.0192 | 2.3200e-003 | 119.6779 | #### 6.0 Area Detail # **6.1 Mitigation Measures Area** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|-------------|-----------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|--------| | Category | | | | | tor | s/yr | | | | | | | MT | -/yr | | | | Mitigated | 1.2696 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | | Unmitigated | 1.2696 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | # 6.2 Area by SubCategory **Unmitigated** Page 1 of 1 Date: 2/16/2022 2:23 PM #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-------------|-----------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|--------| | SubCategory | ory tons/yr | | | | | MT/yr | | | | | | | | | | | | Architectural
Coating | 0.1522 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer
Products | 1.1170 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 4.5000e-
004 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | | Total | 1.2696 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | #### **Mitigated** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10 Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|---------------------|-------------|-----------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------------|-----------------|-----------------|--------|--------| | SubCategory | SubCategory tons/yr | | | | | | | MT | /yr | | | | | | | | | Architectural
Coating | 0.1522 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer
Products | 1.1170 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Landscaping | 4.5000e-
004 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | | Total | 1.2696 | 4.0000e-005 | 4.8700e-
003 | 0.0000 | | 2.0000e-
005 | 2.0000e-005 | | 2.0000e-
005 | 2.0000e-005 | 0.0000 | 9.4900e-
003 | 9.4900e-
003 | 2.0000e-
005 | 0.0000 | 0.0101 | #### 7.0 Water Detail #### 7.1 Mitigation Measures Water Page 1 of 1 Date: 2/16/2022 2:23 PM Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | Total CO2 | CH4 | N2O | CO2e | |-------------|-----------|--------|--------|----------| | Category | | M | Γ/yr | | | Mitigated | 53.3127 | 2.1293 | 0.0508 | 121.6798 | | Unmitigated | 53.3127 | 2.1293 | 0.0508 | 121.6798 | # 7.2 Water by Land Use <u>Unmitigated</u> | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|------------------------|-----------|--------|-------------|----------| | Land Use | Mgal | | М٦ | Γ/yr | | | Manufacturing | 10.4063 / 0 | 8.5113 | 0.3399 | 8.1100e-003 | 19.4260 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Unrefrigerated
Warehouse-No | 54.7762 / 0 | 44.8014 | 1.7893 | 0.0427 | 102.2539 | | Total | | 53.3127 | 2.1293 | 0.0508 | 121.6798 | Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|------------------------|-----------|--------|-------------|----------| | Land Use | Mgal | | М٦ | Γ/yr | | | Manufacturing | 10.4063 / 0 | 8.5113 | 0.3399 | 8.1100e-003 | 19.4260 | | Parking Lot | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Unrefrigerated
Warehouse-No | 54.7762 / 0 | 44.8014 | 1.7893 | 0.0427 | 102.2539 | | Total | | 53.3127 | 2.1293 | 0.0508 | 121.6798 | #### 8.0 Waste Detail #### **8.1 Mitigation Measures Waste** Institute Recycling and Composting Services #### Category/Year | | Total CO2 CH4 N2O | | N2O | CO2e | | | |-----------|-------------------|--------|--------|----------|--|--| | | MT/yr | | | | | | | Mitigated | 28.2624 | 1.6703 | 0.0000 | 70.0190 | | | | ŭ | 56.5249 | 3.3405 | 0.0000 | 140.0380 | | | Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 8.2 Waste by Land Use # <u>Unmitigated</u> | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | | |--------------------------------|-------------------|-----------|--------|--------|----------|--| | Land Use | tons | MT/yr | | | | | | Manufacturing | 55.8 | 11.3269 | 0.6694 | 0.0000 | 28.0619 | | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Unrefrigerated
Warehouse-No | 222.66 | 45.1980 | 2.6711 | 0.0000 | 111.9761 | | | Total | | 56.5249 | 3.3405 | 0.0000 | 140.0380 | | #### **Mitigated** | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | | | |--------------------------------|-------------------|-----------|--------|--------|---------|--|--| | Land Use | tons | MT/yr | | | | | | | Manufacturing | 27.9 | 5.6635 | 0.3347 | 0.0000 | 14.0310 | | | | Parking Lot | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Unrefrigerated
Warehouse-No | 111.33 | 22.5990 | 1.3356 | 0.0000 | 55.9880 | | | | Total | | 28.2624 | 1.6703 | 0.0000 | 70.0190 | | | #### Silver Creek - Santa Clara County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 9.0 Operational Offroad | For in const. To an | Newhor | III/D. | D M | II D. | Land France | E al E a | |------------------------------|----------|----------------|-----------------|---------------|-------------|-----------| | Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type | | | | | | | | | | 10.0 Stationary Equipment | | | | | | | | Fire Pumps and Emergency Gen | nerators | | | | | | | Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type | |
<u>Boilers</u> | _ | _ | | | | _ | | Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type | | | User Defined Equipment | | | | | • | | | Equipment Type | Number | |----------------|--------| #### 11.0 Vegetation # Appendix B 2030 Greenhouse Gas Reduction Strategy Checklist # DEPARTMENT OF PLANNING, BUILDING AND CODE ENFORCEMENT # **Purpose of the Compliance Checklist** In 2020, the City adopted a Greenhouse Gas Reduction Strategy (GHGRS) that outlines the actions the City will undertake to achieve its proportional share of State greenhouse gas (GHG) emission reductions for the interim target year 2030. The purpose of the Greenhouse Gas Reduction Strategy Compliance Checklist (Checklist) is to: - Implement GHG reduction strategies from the 2030 GHGRS to new development projects. - Provide a streamlined review process for proposed new development projects that are subject to discretionary review and trigger environmental review pursuant to the California Environmental Quality Act (CEQA). The 2030 GHGRS presents the City's comprehensive path to reduce GHG emissions to achieve the 2030 reduction target, based on SB 32, BAAQMD, and OPR. Additionally, the 2030 GHGRS leverages other important City plans and policies; including the General Plan, Climate Smart San José, and the City Municipal Code in identifying reductions strategies that achieve the City's target. CEQA Guidelines Section 15183.5 allows for public agencies to analyze and mitigate GHG emissions as part of a larger plan for the reduction of greenhouse gases. Accordingly, the City of San José's 2030 GHGRS represents San José's qualified climate action plan in compliance with CEQA. As described in the 2030 GHGRS, these GHG reductions will occur through a combination of City initiatives in various plans and policies and will provide reductions from both existing and new developments. This Compliance Checklist specifically applies to proposed discretionary projects that require environmental review pursuant to CEQA. Therefore, the Checklist is a critical implementation tool in the City's overall strategy to reduce GHG emissions. Implementation of applicable reduction actions in new development projects will help the City achieve incremental reductions toward its target. Per the 2030 GHGRS, the City will monitor strategy implementation and make updates, as necessary, to maintain an appropriate trajectory to the 2030 GHG target. Pursuant to CEQA Guidelines Sections 15064(h)(3), 15130(d), and 15183(b), a project's incremental contribution to a cumulative GHG emissions effect may be determined not to be cumulatively considerable if it complies with the requirements of the GHGRS. # **Instructions for Compliance Checklist** Applicants shall complete the following sections to demonstrate conformance with the City of San José 2030 Greenhouse Gas Reduction Strategy for the proposed project. All projects must complete Section A. General Plan Policy Conformance and Section B. Greenhouse Gas Reduction Strategies. Projects that propose alternative GHG mitigation measures must also complete Section C. Alternative Project Measures and Additional GHG Reductions. #### A. General Plan Policy Compliance Projects need to demonstrate consistency with the Envision San José 2040 General Plan's relevant policies for Land Use & Design, Transportation, Green Building, and Water Conservation, enumerated in Table A. All applicants shall complete the following steps. - 1. Complete Table A, Item #1 to demonstrate the project's consistency with the General Plan Land Use and Circulation Diagram. - 2. Complete Table A, Items #2 through #4 to demonstrate the project's consistency with General Plan policies.¹ related to green building; pedestrian, bicycle & transit site design; and water conservation and urban forestry, as applicable. For each policy listed, mark the relevant yes/no check boxes to indicate project consistency, and provide a qualitative description of how the policy is implemented in the proposed project or why the policy is not applicable to the proposed project. Qualitative descriptions can be included in Table A or provided as separate attachments. This explanation will provide the basis for analysis in the CEQA document. #### B. Greenhouse Gas Reduction Strategies Table B identifies the GHGRS strategies and recommended consistency options. Projects need to demonstrate consistency with the GHGRS reduction strategies listed in Table B or document why the strategies are not applicable or are infeasible. The corresponding GHGRS strategies are indicated in the table to provide additional context, with the full text of the strategies preceding Table B. Residential projects must complete Table B, Part 1 and 2; Non-residential projects must complete Table B, Part 2 only. All applicants shall complete the following steps for Table B. - 1. Review the project consistency options described in the column titled 'GHGRS Strategy and Consistency Options'. - 2. Use the check boxes in the column titled "Project Conformance" to indicate if the strategy is 'Proposed', 'Not Applicable', 'Not Feasible', or if there is an 'Alternative Measure Proposed'. 2 ¹The lists in items # 2-4 do not represent all General Plan policies but allow projects to demonstrate consistency and achievement of policies that are related to quantified reduction estimates in the 2030 GHGRS. - 3. Provide a qualitative analysis of the proposed project's compliance with the GHGRS strategies in the column titled "Description of Project Measure". This will be the basis for CEQA analysis to demonstrate compliance with the 2030 GHGRS and by extension, with SB 32. The qualitative analysis should provide: - a. A description of which consistency options are included as part of the proposed project, or - b. A description of why the strategy is not applicable to the proposed project, or - c. A description of why the consistency options are infeasible. If applicants select 'Not Feasible' or 'Alternative Measure Proposed', they must complete Table C to document what alternative project measures will be implemented to achieve a similar level of greenhouse gas reduction and how those reduction estimates were calculated. # C. Alternative Project Measures and Additional GHG Reductions Projects that propose alternative GHG mitigation measures to those identified in Table B or propose to include additional GHG mitigation measures beyond those described in Tables A and B, shall provide a summary explanation of the proposed measures and demonstrate efficiency or greenhouse gas reductions achievable though the proposed measures. Documentation for these alternative or additional project measures shall be documented in Table C. Any applicants who select 'Not Feasible' or 'Alternative Measure Proposed' in Table B must complete the following steps for Table C. - 1. In the column titled "Description of Proposed Measure" provide a qualitative description of what measure will be implemented, why it is proposed, and how it will reduce GHG emissions. - 2. In the column titled "Description of GHG Reduction Estimate" demonstrate how the alternative project measure would achieve the same or greater level of greenhouse gas reductions as the GHGRS strategy it replaces. Documentation or calculation files can be attached separately. - 3. In the column titled "Proposed Measure Implementation" identify how the measure will be implemented: incorporated as part of the project design or as an additional measure that is not part of the project (e.g., purchase of carbon offsets). # **Compliance Checklist** # **Evaluation of Project Conformance with the 2030 Greenhouse Gas Reduction Strategy** # **Table A: General Plan Consistency** | Development Type : ☐ Commercial ☐ Residential ☐ Office ☐ Other: [Specify here] | | | |--|-------------|----| | 1) Consistency with the Land Use/Transportation Diagram (Land Use and Density) | Yes | No | | Is the proposed Project consistent with the Land Use/Transportation Diagram? | \boxtimes | | | If not, and the proposed project includes a General Plan Amendment, does the proposed amendment decrease GHG emissions (in absolute terms or per capita, per employee, per service population) below the level assumed in the GHGRS based on the existing planned land use? (The project could have a higher density, mix of uses, or other features that would reduce GHG emissions compared to the planned land use). ² | | | | If not, would the proposed project and the General Plan Amendment increase GHG emissions (in absolute terms or per capita, per employee, per service population)? Project is not consistent with GHGRS and further modeling will be required to determine if additional mitigation measures are necessary. | | | #### Response documentation: The proposed project is consistent with the Land Use/Transportation Diagram. ² For example, a General Plan Amendment to change use from single-family residential to multi-family residential or a General Plan Amendment to change the use from regional-serving commercial to mixed-use urban in a transit-served area might reduce travel demand, and therefore GHG emissions from mobile sources. | 2) Implementation of Green Building Measures | Yes | No |
---|-----------------------------|---------------------| | MS-2.2 : Encourage maximized use of on-site generation of renewable energy for all new and existing buildings. | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. The project would be solar-ready by including building roof space and conduit infrastructure. Array" per California Code. The proposed project would be enrolled in San José Clean Energy program which includes 100 percent renewable energy. Additionally the project would meet Council LEED Silver requirements through various credits related to optimized energy perform sustainable features. MS-2.3: Encourage consideration of solar orientation, including building placement, landscaping, design and construction techniques for new construction to minimize energy consumption. Not applicable | (SJCE) Tota
U.S. Green | alGreen
Building | | Describe how the project is consistent or why the measure is not applicable. The project would comply with the latest energy efficiency standards. The State goal is to incomply building practices. The project would implement required green building strategies through a that requires the project to comply with various CalGreen requirements. Additionally, the properties of the project in San José Clean Energy (SJCE) Total Green program which includes 100 percent remeet LEED Silver requirements. | existing reg
oject would | ulation
lbe | | MS-2.7 : Encourage the installation of solar panels or other clean energy power generation sources over parking areas. | | | | Notapplicable | | | | Describe how the project is consistent or why the measure is not applicable. This measure is to increase solar throughout California, which is being done by various electric existing solar programs. Future tenants within the project would be able to take advantage of in place at the time of construction. MS-2.11: Require new development to incorporate green building practices, including those required by the Green Building Ordinance. Specifically, target reduced energy use through | | | | construction techniques (e.g., design of building envelopes and systems to maximize energy performance), through architectural design (e.g., design to maximize cross ventilation and interior daylight) and through site design techniques (e.g., orienting buildings on sites to maximize the effectiveness of passive solar design). | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. The State goal is to increase the use of green building practices. The project would implement building strategies through existing regulation that requires the project to comply with varior requirements to reduce energy use. The project would also meet the LEED Silver requirements | us CalGree | - | | MS-16.2 : Promote neighborhood-based distributed clean/renewable energy generation to improve local energy security and to reduce the amount of energy wasted in transmitting electricity over long distances. | | | | Notapplicable | | | | Describe how the project is consistent or why the measure is not applicable. The project would be solar-ready by ensuring roof space and conduit infrastructure for "Futu California Code. Additionally, the project would be enrolled in San José Clean Energy (SJCE) Twhich includes 100 percent renewable energy. | | | | Pedestria | ın, Bicycle & Transit Site Design Measures | Yes | No | |---|---|---------------------------|------------------------| | Plan. C | : Promote the Circulation Goals and Policies in the Envision San José 2040 General
freate streets that promote pedestrian and bicycle transportation by following
able goals and policies in the Circulation section of the Envision San José 2040
al Plan. | | | | a) | Design the street network for its safe shared use by pedestrians, bicyclists, and vehicles. Include elements that increase driver awareness. | \boxtimes | | | b) | Create a comfortable and safe pedestrian environment by implementing wider sidewalks, shade structures, attractive street furniture, street trees, reduced traffic speeds, pedestrian-oriented lighting, mid-block pedestrian crossings, pedestrian activated crossing lights, bulb-outs and curb extensions at intersections, and onstreet parking that buffers pedestrians from vehicles. | × | | | c) | Consider support for reduced parking requirements, alternative parking arrangements, and Transportation Demand Management strategies to reduce area dedicated to parking and increase area dedicated to employment, housing, parks, public art, or other amenities. Encourage de-coupled parking to ensure that the value and cost of parking are considered in real estate and business transactions. | | | | Notap | plicable | | | | Creek \ Howev on the | oposed project is in a heavy industrial area. There are existing Class II bike lanes on bot
If alley Road that will remain. The project would not alter existing street, pedestrian was
It is proposed project would include 32 bicycle parking spaces as well as bicycle and
If driveways. Additionally, the project would include TDM measures discussed below. | lkways or b
pedestrian | nike lanes
n access | | Plan in
parkin | : Integrate Green Building Goals and Policies of the Envision San José 2040 General to site design to create healthful environments. Consider factors such as shaded g areas, pedestrian connections, minimization of impervious surfaces, incorporation mwater treatment measures, appropriate building orientations, etc. | | | | Notap | plicable | | | | The pro | be how the project is consistent or why the measure is not applicable. Oposed project would include landscaping and shading of the parking areas and walkwokimately 18 percent of the site would be pervious. The project would comply with all applicance. | - | - | | CD-2.1
minime
design
long-te
whene
require | 1: Within the Downtown and Urban Village Overlay areas, consistent with the um density requirements of the pertaining Land Use/Transportation Diagram ation, avoid the construction of surface parking lots except as an interim use, so that erm development of the site will result in a cohesive urban form. In these areas, ver possible, use structured parking, rather than surface parking, to fulfill parking ements. Encourage the incorporation of alternative uses, such as parks, above g structures. | | | | Not Ap | plicable | \boxtimes | | | | be how the project is consistent or why the measure is not applicable. Sposed project is not located within the Downtown or Urban Village Overlay areas. | | | | (includ
design | 2: Prioritize pedestrian and bicycle connections to transit, community facilities ing schools), commercial areas, and other areas serving daily needs. Ensure that the of new facilities can accommodate significant anticipated future increases in bicyde destrian activity. | | | | | plicable | | | | Describe how the project is consistent or why the measure is not applicable. | | | |--|---|--------------------------------------| | The proposed project would include 32 bicycle parking spaces as well as bicycle and pedestria driveways. | n access or | n the | | CD-3.4: Encourage pedestrian cross-access connections between adjacent properties and require pedestrian and bicycle connections to streets and other public spaces, with particular attention and priority given to providing convenient access to transit facilities. Provide pedestrian and vehicular connections with cross-access easements within and between new and existing developments to encourage walking and minimize interruptions by parking areas and curb cuts. | X | | |
Notapplicable | | | | Describe how the project is consistent or why the measure is not applicable. | | | | As discussed above, the proposed project would include 32 bicycle parking spaces as well as a and pedestrian to access the site. This would promote safety and encourage employees to use of transportation. | -
| • | | LU-3.5 : Balance the need for parking to support a thriving Downtown with the need to minimize the impacts of parking upon a vibrant pedestrian and transit oriented urban environment. Provide for the needs of bicyclists and pedestrians, including adequate bicycle parking areas and design measures to promote bicyclist and pedestrian safety. | | | | Not applicable | \boxtimes | | | Describe how the project is consistent or why the measure is not applicable. The project is not located in the Downtown area. | | | | TR-2.8: Require new development to provide on-site facilities such as bicycle storage and showers, provide connections to existing and planned facilities, dedicate land to expand existing facilities or provide new facilities such as sidewalks and/or bicycle lanes/paths, or share in the cost of improvements. | | | |
Notapplicable | | | | Describe how the project is consistent or why the measure is not applicable. The project includes connections to existing bicycle lane facilities and bicycle parking. | | | | TR-7.1: Require large employers to develop TDM programs to reduce the vehicle trips and vehicle miles generated by their employees through the use of shuttles, provision for carsharing, bicycle sharing, carpool, parking strategies, transit incentives and other measures. | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. The project would include one of several City suggested Tier 2 multi-modal infrastructure imprimprovements could include constructing a crosswalk on the west leg of the Silver Creek Valley Fontanoso Way intersection, installaing a Class IV protected bike lanes along Silver Creek Valley project frontage westward connecting to the Coyote Creek Trail, or the removal of one (1) of the chop islands at the Hellyer Avenue and Silver Creek Valley Road intersection. Bicycle storage for visitors would be provided on site. Additionally, the Project is within 0.25-miles of VTA bus stop Avenue. | v Road and
ey Road be
he existing
or employe | d
eyond the
g port-
ees and | | TR-8.5: Promote participation in car share programs to minimize the need for parking spaces in new and existing development. | | | | Notapplicable | | | | Describe how the project is consistent or why the measure is not applicable. The project would be located near existing transit and bicycle facilities which would encourage transportation. Additionally, the project includes bike parking spaces. | e alternativ | ve | | 4) Water Conservation and Urban Forestry Measures | Yes | No | |--|----------------|----------| | MS-3.1 : Require water-efficient landscaping, which conforms to the State's Model Water Efficient Landscape Ordinance, for all new commercial, institutional, industrial and developer-installed residential development unless for recreation needs or other area functions. | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. The proposed Project would comply with the State's Model Water Efficient Landscape Ordina Water-Efficient Landscape Ordinance (Chapter 15.11 of the San José Municipal Code). Project include all water efficient landscaping. | nce and the | | | MS-3.2: Promote the use of green building technology or techniques that can help reduce the depletion of the City's potable water supply, as building codes permit. For example, promote the use of captured rainwater, graywater, or recycled water as the preferred source for non-potable water needs such as irrigation and building cooling, consistent with Building Codes or other regulations. | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. | | | | The project includes low-flow fixtures and appliances. These measures are required by City Co would comply with measures to increase water efficiency and green building techniques per b | | | | MS-19.4 : Require the use of recycled water wherever feasible and cost-effective to serve existing and new development. | | | | Not applicable | \boxtimes | | | Describe how the project is consistent or why the measure is not applicable. | | | | The City does not provide recycled water in the vicinity of the project site. The project would u for the outdoor landscaping based on availability. | tilize recycle | ed water | | MS-21.3: Ensure that San José's Community Forest is comprised of species that have low water requirements and are well adapted to its Mediterranean climate. Select and plant diverse species to prevent monocultures that are vulnerable to pest invasions. Furthermore, consider the appropriate placement of tree species and their lifespan to ensure the perpetuation of the Community Forest. | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. | | | | The project would comply with City landscaping requirements through plan check and design This would include water-efficient landscaping, pest resistance, and diversity requirements. | review proc | cesses. | | MS-26.1 : As a condition of new development, require the planting and maintenance of both street trees and trees on private property to achieve a level of tree coverage in compliance with and that implements City laws, policies or guidelines. | | | | Not applicable | | | | Describe how the project is consistent or why the measure is not applicable. The project would comply with City landscaping requirements and criteria to incorporate exist landscaping. | ting trees w | ith new | | ER-8.7 : Encourage stormwater reuse for beneficial uses in existing infrastructure and future development through the installation of rain barrels, cisterns, or other water storage and reuse facilities. | | | | Not applicable | | | #### Describe how the project is consistent or why the measure is not applicable. The Municipal Regional Permit (MRP) allows development projects to use infiltration, evapotranspiration, harvesting and use, or biotreatment to treat full water quality design flow or volume of stormwater runoff, as specified in MRP Provision C.3.d. Project applicants are no longer required to evaluate the feasibility of infiltration of rainwater harvesting and use before proceeding to biotreatment. If a project applicant desires to use rainwater harvesting systems to meet LID treatment requirements, there must be sufficient demand on the project site to use the water quality design volume, i.e., 80% of the average annual rainfall runoff, from the collection area. Appendix I from SCVURPPP provides guidance on how to estimate the required landscaping or toilet flushing demand to meet C.3.d requirements. If the project appears to have sufficient demand for captured rainwater, Appendix I provides guidance on sizing the cistern (or other storage facility) to achieve the appropriate combination of drawdown time and cistern volume. #### **GHGRS Strategies** **GHGRS #1**: The City will implement the San José Clean Energy program to provide residents and businesses access to cleaner energy at competitive rates. **GHGRS #2**: The City will implement its building reach code ordinance (adopted September 2019) and its prohibition of natural gas infrastructure ordinance (adopted October 2019) to guide the city's new construction toward zero net carbon (ZNC) buildings. **GHGRS #3**: The City will expand development of rooftop solar energy through the provision of technical assistance and supportive financial incentives to make progress toward the Climate Smart San José goal of becoming a one-gigawatt solar city. **GHGRS #4:** The City will support a transition to building decarbonization through increased efficiency improvements in the existing building stock and reduced use of natural gas appliances and equipment. **GHGRS #5**: As an expansion to Climate Smart San José, the City will update its Zero Waste Strategic Plan and reassess zero waste strategies. Throughout the development of the update, the City will continue to divert 90 percent of waste away from landfills through source reduction, recycling, food recovery and composting, and other strategies. **GHGRS #6:** The City will continue to be a partner in the Caltrain Modernization Project to enhance local transit opportunities while simultaneously improving the city's air quality. **GHGRS #7**: The City will expand its water conservation efforts to achieve and sustain long-term per capita reductions that ensure a reliable water supply with a changing climate, through regional partnerships, sustainable landscape designs, green infrastructure, and water-efficient technology and systems. **Table B: 2030 Greenhouse Gas Reduction Strategy Compliance** | GHGRS Strategy and Consistency | Description of Project Measure | Project Conformance | |---|---|--| | Options | ART 1: RESIDENTIAL PROJECTS ONLY | | | Zero Net Carbon Residential | Describe which, if any, project | □Proposed | | Construction | consistency options from the leftmost | □Not Applicable | | 1. Achieve/exceed the City's Reach | column you are implementing. | □Not Feasible* | | Code, | | ☐ Alternative Measure | | and | OR, | Proposed | | 2. Exclude natural gas infrastructure in | Describe why this strategy is not | | | new construction, | applicable to your project. | | | or | | | | | OR, | | | 3. Install on-site
renewable energy | | | | systems or participate in a | Describe why such measures are | | | community solar program to offset 100% of the project's estimated | infeasible. | | | energy demand, | | | | or | | | | 5 . | | | | 4. Participate in San José Clean Energy | | | | at the Total Green level (i.e., 100% | | | | carbon-free electricity) for electricity | | | | accounts associated with the project | | | | until which time SJCE achieves 100% | | | | carbon-free electricity for all accounts. | | *The 2030 GHGRS assumed | | accounts. | | this strategy would be | | Supports Strategies: | | feasible for 50% of residential | | GHGRS #1, GHGRS #2, GHGRS #3 | | units constructed between 2020 and 2030. | | | CIDENTIAL AND NON DECIDENTIAL DROJE | | | Renewable Energy Development | SIDENTIAL AND NON-RESIDENTIAL PROJE Consistent. The project would be | | | 1. Install solar panels, solar hot water, | enrolled in San José Clean Energy (SJCE) | ☐See Part 1 (Residential projects only) | | or other clean energy power | TotalGreen program which includes 100 | ⊠ Proposed | | generation sources on development | percent renewable energy. | □Not Applicable | | sites, | - | □Not Feasible | | or | | ☐ Alternative Measure | | 2. Participate in community solar | | Proposed | | programs to support development of | | | | renewable energy in the community, | | | | or | | | | 3. Participate in San José Clean Energy | | | | at the Total Green level (i.e., 100% | | | | carbon-free electricity) for electricity | | | | accounts associated with the project. | | | | Supports Strategies: | | | | GHGRS #1, GHGRS #3 | | | | Building Retrofits – Natural Gas ³ This strategy only applies to projects that include a retrofit of an existing building. If the proposed project does | Not Applicable. The project does not include a retrofit. Therefore, this strategy is not applicable to the project. | □ Proposed □ Not Applicable □ Not Feasible | |--|---|---| | not include a retrofit, select "Not
Applicable" in the Project Conformance
column. | | □Alternative Measure
Proposed | | Replace an existing natural gas appliance with an electricalternative (e.g., space heater, water heater, clothes dryer), or | | | | Replace an existing natural gas appliance with a high-efficiency model | | | | Supports Strategies:
GHGRS #4 | | | | Zero Waste Goal 1. Provide space for organic waste (e.g., food scraps, yard waste) collection containers, and/or | Consistent. The proposed development includes an exterior trash enclosure with space for recycling and organic waste collection. Additionally, construction and demolition waste would be diverted to meet City | ☑ Proposed☐ Not Applicable☐ Not Feasible☐ Alternative MeasureProposed | | Exceed the City's construction & demolition waste diversion requirement. | requirements. | | | Supports Strategies:
GHGRS #5 | | | | Caltrain Modernization 1. For projects located within ½ mile of a Caltrain station, establish a program through which to provide project tenants and/or residents with free or reduced Caltrain passes or | Not Applicable. The proposed project is not located within ½ mile of a Caltrain station. Therefore, this strategy is not applicable to the project. | □Proposed ☑ Not Applicable □Not Feasible □Alterative Measure Proposed | | 2. Develop a programthat provides project tenants and/or residents with options to reduce their vehicle miles traveled (e.g., a TDM program), which could include transit passes, bike lockers and showers, or other strategies to reduce project related VMT. | | | | Supports Strategies:
GHGRS #6 | | | 12 ³ GHGRS Strategy #4 applies to existing building retrofits and not to new construction; Strategy #2 applies to new construction to reduce natural gas related GHG emissions. #### **Water Conservation** - Install high-efficiency appliances/fixtures to reduce water use, and/or include water-sensitive landscape design, and/or - 2. Provide access to reclaimed water for outdoor water use on the project site. Supports Strategies: GHGRS#7 Proposed. The proposed project would comply with water conservation per the California Green Building Standards Code, which requires a 20 percent reduction in indoor water use. The project would include low flow appliances and fixtures. The project would also comply with the City's Water-Efficient Landscape Ordinance (Chapter 15.11 of the San José Municipal Code). | ⊠ Proposed | |-----------------------| | □Not Applicable | | □Not Feasible | | ☐ Alternative Measure | | Proposed | | | | | | | | | | |