Preliminary Water Quality Management Plan (WQMP)

Project Name:
Paseo De Colinas

CITY OF LAGUNA NIGUEL
GRADING \# / PLANNING APPLICATION \# 29001 PASEO DE COLINAS
APN 637-181-01, 637-392-02, 637-412-02

Prepared for:
PROJECT DIMENSIONS
4 Park Plaza, Suite 700
Irvine, CA 92614
949.476.2246

Prepared by:
FUSCOE ENGINEERING, INC.

Prepared on:
May 25, 2021

PROJECT OWNER'S CERTIFICATION

Permit/Application No.	Pending	Grading Permit No.	Pending
Tract/Parcel Map No.	N/A	Building Permit No.	Pending
Address of Project Site and/or APN (Specify Lot Numbers if Portions of Tract)	29001 Paseo De Colinas APN 637-181-01, 637-392-02, 637-412-02		

This Water Quality Management Plan (WQMP) has been prepared for PROJECT DIMENSIONS by Fuscoe Engineering, Inc. The WQMP is intended to comply with the requirements of the local NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the San Diego Region (South Orange County).. Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

OWNER: Project Dimensions

Title:	Jon Conk	
Company:	Project Dimensions	
Address:	4 Park Plaza, Suite 700	
Email:	iconk@projectdimensions.com	
Telephone \#	949.476 .2246	
Owner Signature:	Date:	

CONTENTS

SECTION 1 DISCRETIONARY PERMIT(S) AND WATER QUALITY CONDITIONS 1
SECTION 2 PROJECT DESCRIPTION 2
2.1 Project Description 2
2.2 Post-Development Drainage Characteristics 3
2.3 Property Ownership/Management 3
SECTION 3 SITE \& WATERSHED CHARACTERIZATION 4
3.1 Site Conditions 4
3.1.1 Existing Site Conditions 4
3.1.2 Infiltration-Related Characteristics 4
3.2 Proposed Site Development Activities 6
3.2.1 Overview of Site Development Activities 6
3.2.2. Project Attributes Influencing Stormwater Management 6
3.2.3 Effects on Infiltration and Harvest and Use Feasibility 6
3.3 Receiving Waterbodies 7
3.4 Stormwater Pollutants or Conditions of Concern 8
3.5 Hydrologic Conditions of Concern 8
3.6 Critical Course Sediment Yield Areas 9
SECTION 4 SITE PLAN AND DRAINAGE PLAN 10
4.1 Drainage Management Area Delineation 10
4.2 Overall Site Design BMPs 10
4.3 DMA Characteristics and Site Design BMPs 11
4.3.1 DMA 1 \& 2 11
4.3.2 DMA 3 11
4.3.3 DMA Summary 11
4.4 Source Control BMPs 12
SECTION 5 LOW IMPACT DEVELOPMENT BMPS 16
5.1 LID BMPs in DMA 1 16
5.1.1 Hydrologic Source Controls for DMA 1 \& DMA 2 16
5.1.2 Structural LID BMP for DMA $1 \&$ DMA 2 16
5.2 Summary of LID BMPs 19
SECTION 6 HYDROMODIFICATION BMPS 20
6.1 Points of Compliance 20
6.2 Pre-Development (Natural) Conditions 20
6.3 Post-Development Conditions and Hydromodification BMPs 20
6.4 Measures for Avoidance of Critical Coarse Sediment Yield Areas 21
6.5 Hydrologic Modeling and Hydromodification Compliance 21
SECTION 7 EDUCATIONAL MATERIALS INDEX 22
ATTACHMENTS 23
LIST OF ATTACHMENTS
Attachment A. Educational Materials
Attachment B Operation \& Maintenance (O\&M) Plan
Attachment C Exhibit
Attachment D BMP Design Calculations \& Details
Attachment E Hydromodification Control Calculations
Attachment F
\qquad
Attachment G Geotechnical Feasibility Report
LIST OF EXHIBITS (INCLUDED IN ATTACHMENT C)

- Vicinity Map
- WQMP Exhibit
- Typical Cross Sections

SECTION 1 DISCRETIONARY PERMIT(S) AND WATER QUALITY CONDITIONS

PROJECT INFORMATION			
Permit/Application No.	PENDING	Site Address Tract/Parcel Map No.	29001 Paseo De Colinas Laguna Niguel, CA
Additional Information/ Comments	APN 637-181-01, 637-392-02, 637-412-02		
WATER QUALITY CONDITIONS OF APPROVAL OR ISSUANCE			
Water Quality Conditions from prior approvals or applicable watershed-based plans	PENDING		

SECTION 2 PROJECT DESCRIPTION

2.1 PROJECT DESCRIPTION

DESCRIPTION OF PROPOSED PROJECT				
Site Location:	29001 Paseo De Colinas, Laguna Niguel CA 92677 The project is located within "South" Orange County and under the iurisdiction of the San Diego Regional Water Quality Control Board. A vicinity map is included in Attachment C.			
Project Area (ft^{2}): 107,630 ft ${ }^{2}$	Number of Dwelling Units: 38			SIC Code: N/A
Narrative Project Description:	The proposed development consists of 38 residential town-home style units. Each proposed unit will be three stories and will be arranged around central courtyard areas. Surface-level parking will be provided throughout the Project Site. On-site activities are anticipated to be passive land uses associated with residential developments. The Project will redevelop an existing lot used for overflow parking for the adjacent middle school. While impervious surfaces are anticipated to decrease, the change in land uses across the site results in the requirement for a Priority WQMP.			
Project Area	Pervious		Impervious	
	Area (acres or sq ft)	Percentage	Area (acres or sq ft)	Percentage
Pre-Project Conditions	0.346 ac	14\%	2.124 ac	86\%
Post-Project Conditions	0.716 ac	29\%	1.754 ac	71\%

2.2 POST-DEVELOPMENT DRAINAGE CHARACTERISTICS

Runoff from the proposed project will follow existing drainage patterns. Low flows will be picked up in the onsite area drain system and conveyed to the BMP system, while high flows will sheet flow offsite to Paseo De Colinas as in the existing condition. Treated water will be pumped up to the surface before exiting the site in the northeast corner via parkway culvert. WQMP Exhibit is included in Attachment C.

2.3 PROPERTY OWNERSHIP/MANAGEMENT

PROPERTY OWNERSHIP/MANAGEMENT	
Private Streets	Project Dimensions
Landscaped Areas	Project Dimensions
Open Space	Capistrano Unified School District
Buildings	Project Dimensions
Storm Drain	Project Dimensions
Structural BMPs	Project Dimensions

All portions of the project disturbed area including BMPs will be the responsibility of the Owner/Developer. The two adjacent portions of the total parcel will be dedicated to the City of Laguna Niguel as parks. This is outlined on the site plan included in Attachment C.

SECTION 3 SITE \& WATERSHED CHARACTERIZATION

3.1 SITE CONDITIONS

3.1.1 Existing Site Conditions

The proposed project site is located in the City of Laguna Niguel, with Paseo De Colinas bordering to the east, residential to the north, and Niguel Hills Middle School along the west/southwest. Currently, the project site is developed as a paved parking lot with minimal landscape and a dirt lot. Site typography is relatively flat with slopes between 1.5 and 3 percent. The site generally drains northerly and leaves the site via surface flow to Paseo De Colinas, or down the 1.5:1 and 2:1 slopes on the northern and western outer edges of the property. The site contains drop inlets and sewer cleanouts that will be removed during construction of new utilities.

EXISTING LAND USES					
Land Use Description	Total Area (acres)	Impervious Area (acres)	Pervious Area (acres)	Imperviousness (\%)	
Parking Lot	2.15	1.85	0.30	86	
Dirt Lot	0.32	0.01	0.31	3	
Total	2.47	1.75	0.219	71	

3.1.2 Infiltration-Related Characteristics

3.1.2.1 Hydrogeologic Conditions

Based on the Geotechnical Feasibility Report by LGC Geotechnical, Inc. dated May 15, 2018, "Groundwater was not encountered to maximum explored depth of approximately 90 feet below ground existing grade. Historic high groundwater is not mapped on the site (CGS, 2001a)." According to the SWRCB Geotracker database, there are no LUST cleanup sites within 250 feet of the project. See screen clip below. County GIS maps also indicated that the site is not within any major Groundwater Management Agency plumes. See supporting maps in Attachment D.

3.1.2.2 Soil and Geologic Infiltration Characteristics

According to Orange County GIS maps, the site is underlain by Type D soils (TGD map in Attachment D). Infiltration testing was not conducted at this preliminary stage of the project.

3.1.2.3 Geotechnical Conditions

Based on the Geotechnical Feasibility Report by LGC Geotechnical, Inc. dated May 15, 2018, "the site is underlain by Capistrano Formation bedrock material. Generally, the Capistrano Formation consists of a weak, clayey siltstone with some interbedded silty sandstone. Bedding within the boring was found to be nearly flat to gently dipping into the slope. Capistrano Formation material and fill derived from it typically has a high potential for expansion and considered to be severely corrosive to concrete."

Slope stability analysis indicated that a 60 -foot horizontal setback is required from the top of slope in order to provide the required factor of safety for static loading conditions. This would apply to the northern and southwestern edges of the project site. Geotechnical Feasibility Report is included in Attachment G.

3.1.2.4 Summary of Infiltration Opportunities and Constraints of Existing Site

Due to soil type D and slope stability constraints at the site, infiltration is considered to be infeasible at this time.

3.2 PROPOSED SITE DEVELOPMENT ACTIVITIES

3.2.1 Overview of Site Development Activities

The proposed project will redevelop an existing parking lot into 38 residential townhome style units. Each proposed unit will be three stories and will be arranged around central courtyard areas. Surfacelevel parking will be provided throughout the site. On-site activities are anticipated to be passive land uses associated with residential developments.

3.2.2. Project Attributes Influencing Stormwater Management

Existing drainage patterns will remain the same in the proposed condition. Low flows will be captured by an onsite area drain system for treatment, while high flows exit the site via surface flow. On-site activities are anticipated to be passive land uses associated with residential developments. The below table shows proposed land use and imperviousness.

PROPOSED LAND USES					
Land Use Description	Total Area (acres)	Impervious Area (acres)	Pervious Area (acres)	Imperviousness $(\%)$	
Residential	2.15	1.69	0.46	79	
Park	0.32	0.07	0.25	22	
Total	2.47	1.75	0.72	71	

3.2.3 Effects on Infiltration and Harvest and Use Feasibility

Harvest and use (aka. Rainwater Harvesting) BMPs are LID BMPs that capture and store storm water runoff for later use. Per Section 4.2.3 of the South OC TGD, Projects are required to consider harvest and use if the reliable wet season demand for harvest water is adequate to use the DCV (Design Capture Volume) within 48 hours.

In order to quantify harvested water demand for the common areas of the project, the Modified Estimated Applied Water Use (EAWU) method was used, consistent with Appendix F of the South OC TGD (dated September 28, 2017).

The Modified EAWU method is modified from the OC Irrigation Code (County Ordinance No. 09-010) to account for the wet season demand and storm events (assuming that no irrigation would be applied for approximately 30% of the days in the wet season).

The equation used to calculate the Modified EAWU is:

$$
\text { Modified EAWU }=\frac{\left(E T o_{\text {wet }} \times K_{L} \times L A \times 0.015\right)}{I E}
$$

Where:
Modified $E A W U=$ estimated daily average water use during wet season
$E T o_{\text {wet }}=$ average reference ET from November through April (inches per month) per Table F-2 of the TGD
$K_{L}=$ landscape coefficient (Table -F-4 of the TGD)
$L A=$ landscape area irrigated with harvested water (square feet)
$I E=$ irrigation efficiency (assumed at 90\%)
Note: In the equation, the coefficient (0.015) accounts for unit conversions and shut down of irrigation during and for three days following a significant precipitation event.

For a system to be considered "feasible", the reliable wet season demand for harvested water must be adequate to use the DCV within 48 hours.

The project site was evaluated using planned impervious/pervious land area ratios and planting types to estimate the feasibility for harvest and reuse systems on-site. The following table summarizes the estimated applied water use for these areas of the project.

ESTIMATED APPLIED WATER USE (EAWU) FOR COMMON AREA LANDSCAPING									
Drainage Area \& Landscape Type	Total Area (ac)	$\begin{gathered} \% \\ \text { imp. } \end{gathered}$	Impervious Tributary (ac)	Irrigated LS Area (ac)	ETowef ${ }^{(1)}$ (in/mo)	$\mathrm{K}_{\mathrm{L}}{ }^{(2)}$	Modified EAWU (gpd)	Drawdown of DCV (days)	Is Drawdown of DCV <48 hours?
Project Site Mixed Landscaping	2.47	71\%	1.75	0.72	2.75	0.55	786.6	49.5	No
Notes: 1 Per Table F-2 for Invine Region (similar climate type), South OC Technical Guidance Document, September 28, 2017. 2 Per Table F-4 of the South OC Technical Guidance Document, September 28, 2017.									

As shown above, the project site does not have sufficient water demand during the wet season to support harvest and reuse. There is insufficient irrigation demand to drawdown the DCV in 48 hours.

3.3 RECEIVING WATERBODIES

The project is located within the Aliso Creek watershed. Surface flows enter the City storm drain system that outlets to Aliso Creek, which flows southwesterly to the Pacific Ocean. According to the 2014-2016 303(d) list, Aliso Creek is impaired for benthic community effects, malathion, nitrogen, phosphorus, selenium, toxicity, and indicator bacteria. Aliso Creek has a TMDL for indicator bacteria. The project does not discharge to ESA or ASBS areas.

3.4 STORMWATER POLLUTANTS OR CONDITIONS OF CONCERN

POLLUTANTS OR CONDITIONS OF CONCERN				
Pollutant	Expected from Proposed Land Uses/ Activities (Yes or No)	Priority Receiving Waterbody Impaired? (Yes or No)	Pollutant from WQIP or other Water Quality Condition? (Yes or No)	Pollutant of Concern
(Primary,				
Other or No)				

3.5 HYDROLOGIC CONDITIONS OF CONCERN

Does a hydrologic condition of concern exist for this project?
No - An HCOC does not exist for this receiving water because (select one):

\square
Project discharges directly to a protected conveyance (bed and bank are concrete lined the entire way from the point(s) of discharge to a receiving lake, reservoir, embayment, or the Ocean
\square Project discharges directly to storm drains which discharge directly to a reservoir, lake, embayment, ocean or protected conveyance (as described above)The project discharges to an area identified in the WMAA as exempt from hydromodification concerns
\boxtimes Yes - An HCOC does exist for this receiving water because none of the above are applicable.
Although the project discharges to the storm drain, the storm drain outlets to Aliso Creek. See Attachment E for hydromodification exemption exhibit from the South Orange County TGD.

3.6 CRITICAL COURSE SEDIMENT YIELD AREAS

According to the County GIS database, the project site is not within a potential critical course sediment yield area. See screen clip below. This section is not applicable to the project.

SECTION 4 SITE PLAN AND DRAINAGE PLAN

4.1 DRAINAGE MANAGEMENT AREA DELINEATION

The proposed project site is split into three DMAs. DMAs 1 and 2 that include all of the residential development will be routed to biotreatment BMPs and a detention system to meet hydromodification requirements. DMA 3 consists of a park with very little impervious area which will be considered self treating. WQMP Exhibit is included in Attachment C.

4.2 OVERALL SITE DESIGN BMPS

Minimize Impervious Area

Impervious surfaces have been minimized by incorporating landscaped areas throughout the site.

Maximize Natural Infiltration Capacity

Infiltration is not considered feasible for the project site due to low permeability of soils, and the potential for causing adverse geotechnical conditions. Refer to Section 3.1.2 for details.

Preserve Existing Drainage Patterns and Time of Concentration

Runoff from the site will continue to flow similar to existing conditions. Low flows will be routed to LID and hydromodification BMPs, while high flows will exit the site.

Disconnect Impervious Areas

Landscaping will be provided adjacent to sidewalks and buildings. Low flows will be routed to LID and hydromodification BMPs for treatment before exiting the site.

Protect Existing Vegetation and Sensitive Areas

Not applicable. The existing site contains little to no vegetation.

Revegetate Disturbed Areas

Not applicable. The proposed project will have larger pervious footprint than existing condition.

Soil Stockpiling and Site Generated Organics

As part of the grading and stockpiling activities on the site, organic materials that are suitable for assisting with the re-vegetation of the site will be collected, stored and then reused during planting of the site.

Firescaping

The proposed project will be designed to meet the Orange County Fire Authority's fuel modification standards.

Water Efficient Landscaping

Xeriscape landscaping is not proposed for the project. However, native landscaping with lower water demands will be incorporated into the site design.

Slopes and Channel Buffers

Not applicable. Vegetated slopes are not included in the project footprint.

4.3 DMA CHARACTERISTICS AND SITE DESIGN BMPS

Following is a detailed description of each Drainage Management Area as delineated on the WQMP Exhibit in Attachment C.

4.3.1 DMA 1 \& 2

DMAs 1 \& 2 include 38 residential townhome units with surrounding landscape and surface level parking. As discussed in Section II and III, infiltration and harvest \& reuse were both ruled as infeasible for the project given geotechnical and drawdown constraints. Runoff from DMAs $1 \& 2$ will be routed to biotreatment units, before entering the hydromodification BMP before exiting the site.

The Project will redevelop an existing lot used for overflow parking for the adjacent middle school. While impervious surfaces are anticipated to decrease, the change in land uses across the site results in the requirement for a Priority WQMP.

4.3.2 DMA 3

DMA 3 is comprised of a park amenity for the residential units and includes grass, turf, benches, hardscape walkways, and cobble walkways. DMA 3 is approximately 22% impervious with walkways draining to adjacent pervious or landscaped areas. Therefore, this area will be considered self treating.

4.3.3 DMA Summary

DRAINAGE MANAGEMENT AREAS					
DMA	Total (Number/Description) Area (acres)	Imperviousness (\%)	Infiltration Feasibility Category (Full, Partial or No Infiltration)	Hydrologic Source Controls Used	
DMA 1	1.73	83	No Infiltration	Site Design	
DMA 2	0.42	62	No Infiltration	Site Design	
DMA 3	0.32	22	No Infiltration	Impervious Area Dispersion	

4．4 SOURCE CONTROL BMPS

The table below indicates all BMPs to be incorporated in the project．For those designated as not applicable（N／A），a brief explanation why is provided．

NON－STRUCTURAL SOURCE CONTROL BMPs				
ID	Name	Check One		Reason Source Control is Not Applicable
		Included	Not Applicable	
N1	Education for Property Owners， Tenants \＆Occupants	】	\square	
N2	Activity Restrictions	区	\square	
N3	Common Area Landscape Management	】	\square	
N4	BMP Maintenance	】	\square	
N5	Title 22 CCR Compliance（How development will comply）	\square	】	No hazardous materials storage proposed．
N6	Local Water Quality Permit Compliance	\square	】	
N7	Spill Contingency Plan	\square	】	No hazardous materials storage proposed．
N8	Underground Storage Tank Compliance	\square	】	Not proposed．
N9	Hazardous Materials Disclosure Compliance	\square	】	No hazardous materials storage proposed．
N10	Uniform Fire Code Implementation	\square	】	No hazardous materials storage proposed．
N11	Common Area Litter Control	区	\square	
N12	Employee Training	区	\square	
N13	Housekeeping of Loading Docks	\square	】	Not proposed．
N14	Common Area Catch Basin Inspection	】	\square	
N15	Street Sweeping Private Streets and Parking Lots	区	\square	
N16	Retail Gasoline Outlets	\square	区	Not proposed．

NI, Education for Property Owners, Tenants and Occupants

Educational materials will be provided to tenants, including brochures and restrictions to reduce pollutants from reaching the storm drain system. Examples include tips for pet care, household tips, and proper household hazardous waste disposal. Tenants will be provided with these materials by the property management prior to occupancy, and periodically thereafter. Refer to Section 7 for a list of materials available and attached to this WQMP. Additional materials are available through the County of Orange Stormwater Program website (http://ocwatersheds.com/PublicEd//) and the California Stormwater Quality Association's (CASQA) BMP Handbooks (http://www.casqa.org/resources/bmphandbooks).

N2, Activity Restrictions

The Owner/Developer shall develop ongoing activity restrictions that include those that have the potential to create adverse impacts on water quality. Activities include but are not limited to: handling and disposal of contaminants, fertilizer and pesticide application restrictions, litter control and pick-up, and vehicle or equipment repair and maintenance in non-designated areas, as well as any other activities that may potentially contribute to water pollution.

N3, Common Area Landscape Management

Management programs will be designed and implemented by the Owner/Developer to maintain all the common areas within the project site. These programs will cover how to reduce the potential pollutant sources of fertilizer and pesticide uses, utilization of water-efficient landscaping practices and proper disposal of landscape wastes by the owner/developer and/or contractors.

N4, BMP Maintenance

The Owner/Developer will be responsible for the implementation and maintenance of each applicable non-structural BMP, as well as scheduling inspections and maintenance of all applicable structural BMP facilities through its staff, landscape contractor, and/or any other necessary maintenance contractors. Details on BMP maintenance can be found in the O\&M Plan, Attachment B of this WQMP.

N11, Common Area Litter Control

The Owner/Developer will be responsible for performing trash pickup and sweeping of littered common areas on a weekly basis or whenever necessary. Responsibilities will also include noting improper disposal materials by the public and reporting such violations for investigation.

N12, Employee Training

All employees of the Owner/Developer and any contractors will require training to ensure that employees are aware of maintenance activities that may result in pollutants reaching the storm drain. Training will include, but not be limited to, spill cleanup procedures, proper waste disposal, housekeeping practices, etc.

N14, Common Area Catch Basin Inspection

All on-site catch basin inlets and drainage facilities shall be inspected and maintained by the Owner/Developer at least once a year, prior to the rainy season, no later than October 1st of each year.

N15，Street Sweeping Private Streets and Parking Lots

The Owner／Developer shall be responsible for sweeping all on－site streets，drive aisles，and uncovered parking areas within the project on a weekly basis．

The table below indicates all structural source control BMPs to be incorporated in the project．For those designated as not applicable（N／A），a brief explanation why is provided．

STRUCTURAL SOURCE CONTROL BMPs				
ID	Name	Check One		Reason Source Control is Not Applicable
		Included	Not Applicable	
S1	Provide storm drain system stenciling and signage	】	\square	
S2	Design and construct outdoor material storage areas to reduce pollution introduction	\square	】	None proposed．
S3	Design and construct trash and waste storage areas to reduce pollution introduction	\square	】	None proposed．All units will have separate trash bins．
S4	Use efficient irrigation systems \＆landscape design，water conservation，smart controllers， and source control	】	\square	
S5	Protect slopes and channels and provide energy dissipation	\square	】	None proposed．
Incorporate requirements applicable to individual priority project categories （from SDRWQCB NPDES Permit）		\square	】	None proposed．
S6	Dock areas	\square	区	None proposed．
S7	Maintenance bays	\square	区	None proposed．
S8	Vehicle wash areas	\square	区	None proposed．
S9	Outdoor processing areas	\square	区	None proposed．
S10	Equipment wash areas	\square	区	None proposed．
S11	Fueling areas	\square	区	None proposed．
S12	Hillsidendscaping	\square	区	None proposed．
S13	Wash water control for food preparation areas	\square	】	None proposed．
S14	Community car wash racks	\square	】	None proposed．

S1, Provide storm drain system stenciling and signage

The phrase "NO DUMPING! DRAINS TO OCEAN", or an equally effective phrase approved by the City, will be stenciled on all major storm drain inlets within the project site to alert the public to the destination of pollutants discharged into storm water. Stencils shall be in place prior to release of certificate of occupancy. Stencils shall be inspected for legibility on an annual basis and re-stenciled as necessary.

S4, Use efficient irrigation systems \& landscape design, water conservation, smart controllers, and source control

The Owner will be responsible for the installation and maintenance of all common landscape areas utilizing similar planting materials with similar water requirements to reduce excess irrigation runoff. The Owner will be responsible for implementing all efficient irrigation systems for common area landscaping including, but not limited to, provisions for water sensors and programmable irrigation cycles. This includes smart timers, rain sensors, and moisture shut-off valves. The irrigation systems shall be in conformance with water efficiency guidelines. Systems shall be tested twice per year, and water used during testing/flushing shall not be discharged to the storm drain system.

SECTION 5 LOW IMPACT DEVELOPMENT BMPS

5.1 LID BMPS IN DMA 1

5.1.1 Hydrologic Source Controls for DMA 1 \& DMA 2

Impervious area dispersion and reduction will be incorporated into the site design for the project. Worksheet 4 was not used for these DMA's.

5.1.2 Structural LID BMP for DMA $1 \&$ DMA 2

STRUCTURAL LID BMP FOR DMA 1 \& DMA 2	
Infiltration Feasibility	Not feasible. See Section 3.1.2
Harvest and Use Feasibility	Not feasible. See Section 3.2.3
Selected BMP	BIO-5: Proprietary Biotreatment (Modular Wetland System) HSC-2: Impervious Area Dispersion
Selected BMP Sizing Method	Worksheet 4: Hydrologic Source Control Calculation Form Worksheet 9: Flow-Based Compact Biofiltration Method
Selected BMP Description	See Section 4.3.3

STRUCTURAL LID BMP FOR DMA 1 \& DMA 2

DMA 1

$Q_{\text {design }}=1.5 \times Q_{80 \%}$
Where:
$Q_{\text {design }}=$ design flow rate
$Q_{80 \%}=c \times I_{\text {design }} \times A$
$\mathrm{c}=$ runoff coefficient $=(0.75 \times \mathrm{imp}+0.15)$
$\left.\right|_{\text {design }}=$ design intensity
A = tributary area (acres)
Imp $=83 \%$
$I_{\text {design }}=0.26 \mathrm{in} / \mathrm{hr}$
$\mathrm{A}=1.73$ acres
$Q_{\text {design }}=1.5 \times(0.75 \times 0.83+0.15) \times 0.26 \mathrm{in} / \mathrm{hr} \times 1.73$ ac
$=0.521 \mathrm{cfs}$

DMA 2
LID Design Flow Rate ${ }^{(1)}$
$Q_{\text {design }}=1.5 \times Q_{80 \%}$
Where:
$Q_{\text {design }}=$ design flow rate
$Q_{80 \%}=c \times I_{\text {design }} \times A$
$c=$ runoff coefficient $=(0.75 \times \mathrm{imp}+0.15)$
$\left.\right|_{\text {design }}=$ design intensity
A = tributary area (acres)
Imp $=62 \%$
$I_{\text {design }}=0.26 \mathrm{in} / \mathrm{hr}$
$\mathrm{A}=0.42$ acres
$Q_{\text {design }}=1.5 \times(0.75 \times 0.62+0.15) \times 0.26 \mathrm{in} / \mathrm{hr} \times 0.42 \mathrm{ac}$
$=0.101 \mathrm{cfs}$
DMA 3
Simple Method DCV : 311 cf (see Attachment D)
DMA 1: MWS-L-8-20
DMA 2: MWS-L-4-8
Unit Treatment Capacity ${ }^{(1)}$
($Q_{\text {unit }}$)
MWS-L-8-20 capacity of 0.577 cfs
MWS-L-4-8 capacity of 0.115 cfs
Total Treatment Capacity ${ }^{(1)}$
($Q_{\text {вмр }}$)
0.692 cfs

STRUCTURAL LID BMP FOR DMA 1 \& DMA 2

Hydromodification
Requirements

Hydromodification requirements were met using an underground storage vault. SOHM routing calculations provided in Attachment E.

Notes:

${ }^{1}$ Refer to Worksheet 9 in Attachment D for further calculation details
${ }^{2}$ Refer to WQMP exhibit and cross sections in Attachment C for BMP details

5.2 SUMMARY OF LID BMPS

FLOW-BASED LID BMP SUMMARY TABLE							
DMA	Selecte d BMP	BMP Sizing Method	DMA Qdesign (cfs)	BMP Unit / Model	\# of Units	Unit Treatment Capacity (cfs)	Total Treatment Capacity (cfs)
1	BIO-5	Worksheet 9	0.521	MWS-L-8-20	1	0.577	0.577
2	BIO-5	Worksheet 9	0.101	MWS-L-4-8	1	0.115	0.115

HSC BMP SUMMARY TABLE								
DMA	Selected BMP	BMP Sizing Method	Impervious Area (ac)	Pervious Area (ac)	Ratio of Pervious to Impervious	$\mathbf{d}_{\text {hsc }}$	Percent Capture Provided by HSCs	
3	HSC-2	Worksheet 4	0.07	0.25	3.57	0.85	80%	

${ }^{1}$ Pervious area used in calculation should only include the pervious area receiving flow, not pervious area receiving only direct rainfall or upslope pervious drainage.

Chart extends to 0.25 , but designs should not go below a minimum value of 0.5 (2 parts impervious to 1 part pervious).

SECTION 6 HYDROMODIFICATION BMPS

6.1 POINTS OF COMPLIANCE

To meet hydromodification requirements, an analysis was prepared using the South Orange County Hydrology Model (SOHM) for the pre- and post-developed conditions at the site in order to determine the detention volume required within the water quality basins to meet the required flow duration requirements.

For both the existing and proposed conditions, there is one (1) main Point of Compliance (POC) based on the existing and proposed drainage patterns. POC " 1 " drains to Paseo De Colinas. The SOHM analysis compared the existing and proposed flow duration, and an underground tank was sized to appropriately mitigate the hydromodification flow from the project.

6.2 PRE-DEVELOPMENT (NATURAL) CONDITIONS

Surrounding land was used as a reference when identifying the pre-developed land use for the project site, since it is currently a paved parking lot. Slopes, drainage patters, soil types, and critical course sediment yield areas are discussed and identified in Section 3. A brief summary of the existing conditions SOHM modeling results are provided below. Refer to Attachment E for more details.

PRE-DEVELOPMENT FLOW CONDITIONS		
Return Period	Point of Compliance	Pre-Development Flow (cfs)
2-year	POC "1"	0.77
5 -year	POC "1"	0.96
10 -year	POC "1"	1.15

6.3 POST-DEVELOPMENT CONDITIONS AND HYDROMODIFICATION BMPS

As described above, first flush runoff from DMA 1 and DMA 2 will be treated by a proprietary biofiltration system (MWS or equivalent) before entering the underground storage tank for hydromodification mitigation. Flows above the first flush will enter the area drain system and bypass the MWS unit and enter the underground tank. Treated flows will exit the tank and be pumped up to grade before exiting the site via parkway culvert to Paseo De Colinas. DMA 3 currently sheet flows to Paseo de Colinas in the existing condition. The proposed condition runoff within the park will mimic existing sheet flow drainage. As the perviousness between the existing and proposed condition is similar, it is anticipated hydromodification controls will not be required for this DMA 3.

A summary of the proposed hydromodification BMPs, details and detention capacity are provided below.

HYDROMODIFICATION BMP's \& VOLUME SUMMARY				
Pont of Compliance (POC)	Hydromod Facility	Details	$\begin{aligned} & \text { Detention } \\ & \text { Volume } \\ & \text { Provided }\left(\mathrm{ft}^{3}\right) \end{aligned}$	Detention Volume Provided (ac-ft
POC "1"	Underground storage system	350^{\prime} of 5^{\prime} diameter pipe	6,873	0.158
Total			6,873	0.158

6.4 MEASURES FOR AVOIDANCE OF CRITICAL COARSE SEDIMENT YIELD AREAS

Not applicable. The project is not within a potential critical coarse sediment yield area.

6.5 HYDROLOGIC MODELING AND HYDROMODIFICATION COMPLIANCE

Based on the results of the proposed hydromodification BMPs, the post-development discharges will be reduced to less than the existing pre-development discharges. The table below provides a summary of the results from the SOHM analysis based on the proposed BMP volume at this preliminary stage of design. Additional detail will be provided during final design. Post-development flows are less than existing conditions and meet the flow duration criteria for POC " 1. ."

HYDROMODIFICATION CONTROL BMP SUMMARY PER POINT OF COMPLIANCE				
Return Period	Point of Compliance	Pre-Development Flow (cfs)	Post-Development (Mitigated) Flow (cfs)	Reduction, Existing - Mitigated (cfs)_
2-year	POC "1"	0.77	0.65	0.12
5-year	POC "1"	0.95	0.83	0.12
10 -year	POC "1"	1.15	1.04	0.11

SECTION 7 EDUCATIONAL MATERIALS INDEX

EDUCATION MATERIALS			
Residential Materials （http：／／www．ocwatersheds．com）	Check if Applicable	Business Materials （http：／／www．ocwatersheds．com）	Check if Applicable
The Ocean Begins at Your Front Door	区	Tips for the Automotive Industry	\square
Tips for Car Wash Fund－raisers	\square	Tips for Using Concrete and Mortar	\square
Tips for the Home Mechanic	\square	Tips for the Food Service Industry	\square
Household Tips	】	Proper Maintenance Practices for Your Business	\square
Homeowners Guide for Sustainable Water Use	区	Compliance BMPs for Mobile Businesses	\square
Proper Disposal of Household Hazardous Waste	\square	Other Materials	Check if Attached
Recycle at Your Local Used Oil Collection Center（North County）	\square		\square
Recycle at Your Local Used Oil Collection Center（Central County）	\square		\square
Recycle at Your Local Used Oil Collection Center（South County）	\square		\square
Tips for Maintaining a Septic Tank System	\square		\square
Responsible Pest Control	区		\square
Sewer Spill	\square		\square
Tips for the Home Improvement Projects	\square		\square
Tips for Horse Care	\square		\square
Tips for Landscaping and Gardening	区		\square
Tips for Pet Care	区		\square
Tips for Pool Maintenance	\square		\square
Tips for Residential Pool，Landscape and Hardscape Drains	】		\square
Tips for Projects Using Paint	\square		\square
Other：	\square		\square

ATTACHMENTS

Attachment A. Educational Materials
Attachment B Operation \& Maintenance (O\&M) Plan
Attachment C Exhibits
Attachment D BMP Design Calculations \& Details
Attachment E Hydromodification Control Calculations
Attachment F Conditions of Approval (PENDING)
Attachment G Geotechnical Feasibility Report

Attachment A
EdUCATION MATERIALS

－sfeq pue sıoqiey

 әЈ！І әи！меш шиеч иед

ирәэо эчд ио роэля曰 эчL

 ＇suxfy

 －spı̣и

uounllod วэınos भuıod－uon fo sวэınos

 Клеұ！ues ano wory əұеıе

 su！̣⿺𠃊 wiols oqu！

OD HI sวoด วлวบМ
suicip wions oquị squęn

 јо әш！̣ Кие иәddеч иеว ђоипл иеqл п

 －uoụn

¿mouy nox pla
：әррм fo suopp．s

For More Information

Orange County Stormwater Program

California Environmental Protection Agency
www．calepa．ca．gov
－Air Resources Board
www．arb．ca．gov
－Department of Pesticide Regulation www．cdpr．ca．gov
－Department of Toxic Substances Control www．dtsc．ca．gov
－Integrated Waste Management Board www．ciwmb．ca．gov
－Office of Environmental Health Hazard Assessment
www．oehha．ca．gov
－State Water Resources Control Board www．waterboards．ca．gov

Earth 911 －Community－Specific Environmental Information 1－800－cleanup or visit www．1800cleanup． org

Health Care Agency＇s Ocean and Bay Water Closure and Posting Hotline
（714）433－6400 or visit www．ocbeachinfo．com
Integrated Waste Management Dept．of Orange County（714）834－6752 or visit www．oclandfills．com for information on household hazardous waste collection centers，recycling centers and solid waste collection

O．C．Agriculture Commissioner
（714）447－7100 or visit www．ocagcomm．com
Stormwater Best Management Practice Handbook Visit www．cabmphandbooks．com

UC Master Gardener Hotline
（714）708－1646 or visit www．uccemg．com

The Orange County Stormwater Program has created and moderates an electronic mailing list to facilitate communications，take questions and exchange ideas among its users about issues and topics related to stormwater and urban runoff and the implementation of program elements． To join the list，please send an email to ocstormwaterinfo－join＠list．ocwatersheds．com

Aliso Viejo．	（949）	425－2535
Anaheim Public Works Operations	（714）	765－6860
Brea Engineering．	（714）	990－7666
Buena Park Public Works	（714）	562－3655
Costa Mesa Public Services．	（714）	754－5323
Cypress Public Works．	（714）	229－6740
Dana Point Public Works．	（949）	248－3584
Fountain Valley Public Works	（714）	593－4441
Fullerton Engineering Dept．．	（714）	738－6853
Garden Grove Public Works	（714）	741－5956
Huntington Beach Public Works	（714）	536－5431
Irvine Public Works．	（949）	724－6315
La Habra Public Services．	（562）	905－9792
La Palma Public Works．	（714）	690－3310
Laguna Beach Water Quality．	（949）	497－0378
Laguna Hills Public Services．	．（949）	707－2650
Laguna Niguel Public Works	（949）	362－4337
Laguna Woods Public Works．	（949）	639－0500
Lake Forest Public Works	（949）	461－3480
Los Alamitos Community Dev．	（562）	431－3538
Mission Viejo Public Works	（949）	470－3056
Newport Beach，Code \＆Water		
Quality Enforcement．	（949）	644－3215
Orange Public Works．	（714）	532－6480
Placentia Public Works	（714）	993－8245
Rancho Santa Margarita	（949）	635－1800
San Clemente Environmental Programs	（949）	361－6143
San Juan Capistrano Engineering	（949）	234－4413
Santa Ana Public Works	（714）	647－3380
Seal Beach Engineering	（562） 4	2527×317
Stanton Public Works．	（714） 3	9222×204
Tustin Public Works／Engineering	（714）	573－3150
Villa Park Engineering	．（714）	998－1500
Westminster Public Works／Engineering	（714） 8	3311×446
Yorba Linda Engineering	（714）	961－7138
Orange County Stormwater Program	．（877）	897－7455
Orange County 24－Hour		
Water Pollution Problem Reporting Hot		
1－877－89－SPILL（1－877－897－7455）		
On－line Water Pollution Problem Reporting Form		
W W W．o c wat ers	d S	c O m

Mou，

The Ocean Begins at Your Front Door

The Ocean Begins at Your Front Door

Never allow pollutants to enter the street, gutter or storm drain!

Follow these simple steps to help reduce water pollution:

Household Activities

■ Do not rinse spills with water. Use dry cleanup methods such as applying cat litter or another absorbent material, sweep and dispose of in the trash. Take items such as used or excess batteries, oven cleaners, automotive fluids, painting products and cathode ray tubes, like TVs and computer monitors, to a Household Hazardous Waste Collection Center (HHWCC)
■ For a HHWCC near you call (714) 834-6752 or visit www.oclandfills.com.
Do not hose down your driveway, sidewalk or patio to the street, gutter or storm drain. Sweep up debris and dispose of it in the trash.

Automotive

Take your vehicle to a commercial car wash whenever possible. If you wash your vehicle at home, choose soaps, cleaners, or detergents labeled non-toxic, phosphate- free or biodegradable. Vegetable and citrus-based products are typically safest for the environment. Do not allow washwater from vehicle washing to drain into the street, gutter or storm drain. Excess washwater should be disposed of in the sanitary sewer (through a sink or toilet) or onto an absorbent surface like your lawn.
Monitor your vehicles for leaks and place a pan under leaks. Keep your vehicles well maintained to stop and prevent leaks.
Never pour oil or antifreeze in the street, gutter or storm drain. Recycle these substances at a service station, a waste oil collection center or used oil recycling center. For the nearest Used Oil Collection Center call 1-800-CLEANUP or visit www.1800cleanup.org.

Pool Maintenance

\square Pool and spa water must be dechlorinated and free of excess acid, alkali or color to be allowed in the street, gutter or storm drain.
When it is not raining, drain dechlorinated pool and spa water directly into the sanitary sewer.
\square Some cities may have ordinances that do not allow pool water to be disposed of in the storm drain. Check with your city.

Landscape and Gardening

Do not over-water. Water your lawn and garden by hand to control the amount of water you use or set irrigation systems to reflect seasonal water needs. If water flows off your yard onto your driveway or sidewalk, your system is over-watering. Periodically inspect and fix leaks and misdirected sprinklers.
Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain. Instead, dispose of waste by composting, hauling it to a permitted landfill, or as green waste through your city's recycling program.
\square Follow directions on pesticides and fertilizer, (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
Take unwanted pesticides to a HHWCC to be recycled. For locations and hours of HHWCC, call (714) 834-6752 or visit www.oclandfills.com.

Trash

Place trash and litter that cannot be recycled in securely covered trash cans.
Whenever possible, buy recycled products.
■emember: Reduce, Reuse, Recycle.

Pet Care

- Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash. Pet waste, if left outdoors, can wash into the street, gutter or storm drain.
■If possible, bathe your pets indoors. If you must bathe your pet outside, wash it on your lawn or another absorbent/permeable surface to keep the washwater from entering the street, gutter or storm drain.
■ Follow directions for use of pet care products and dispose of any unused products at a HHWCC.

Common Pollutants

Home Maintenance

- Detergents, cleaners and solvents
- Oil and latex paint
- Swimming pool chemicals
- Outdoor trash and litter

Lawn and Garden

- Pet and animal waste
- Pesticides
- Clippings, leaves and soil
- Fertilizer

Automobile

- Oil and grease
- Radiator fluids and antifreeze
- Cleaning chemicals
- Brake pad dust

Clean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities can lead to water pollution if you're not careful. Home improvement projects and work sites must be maintained to ensure that building materials do not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump building materials into the ocean, so don't let them enter the storm drains. Follow these tips to help prevent water pollution.

Tips for Home Improvement Projects
For more information, please call the
Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit
www.ocwatersheds.com

To report a spill, call the
Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while performing home improvement projects. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Printed on Recycled Paper

Tips for Home Improvement Projects

Home improvement projects can cause significant damage to the environment. Whether you hire a contractor or work on the house yourself, it is important to follow these simple tips while renovating, remodeling or improving your home:

General Construction

- Schedule projects for dry weather.
- Keep all construction debris away from the street, gutter and storm drain.
- Store materials under cover with temporary roofs or plastic sheets to eliminate or reduce the possibility that rainfall, runoff or wind will carry materials from the project site to the street, storm drain or
 adjacent properties.

Building Materials

Never hose materials into a street, gutter or storm drain.

- Exposed piles of construction material should not be stored on the street or sidewalk.
- Minimize waste by ordering only the amount of materials needed to complete the job.
- Do not mix more fresh concrete than is needed for each project.
- Wash concrete mixers and equipment in a designated washout area where the water can flow into a containment area or onto dirt.
- Dispose of small amounts of dry excess materials in the trash. Powdery waste, such as dry concrete, must be properly contained within a box or bag prior to disposal. Call your local trash hauler for weight and size limits.

Paint

- Measure the room or object to be painted, then buy only the amount needed.
- Place the lid on firmly and store the paint can upsidedown in a dry location away from the elements
- Tools such as brushes, buckets and rags should never be washed where excess water can drain into the street, gutter or storm drain. All tools should be rinsed in a sink connected to the sanitary sewer.
- When disposing of paint, never put wet paint in the trash.
- Dispose of water-based paint by removing the lid and letting it dry in the can. Large amounts must be taken to a Household Hazardous Waste Collection Center (HHWCC).
- Oil-based paint is a household hazardous waste. All leftover paint should be taken to a HHWCC.

- For HHWCC locations and hours, call (714) 834-6752 or visit www.oclandfills.com.

Erosion Control

- Schedule grading and excavation projects for dry weather.
- When temporarily removing soil, pile it in a contained, covered area where it cannot spill into the street, or obtain the required temporary encroachment or street closure permit and follow the conditions instructed by the permit.

When permanently removing large quantities of soil, a disposal location must be found prior to excavation. Numerous businesses are available to handle disposal needs. For disposal options, visit www.ciwmb.ca.gov/SWIS.

- Prevent erosion by planting fast-growing annual and perennial grasses. They will shield and bind the soil.

Recycle

- Use a construction and demolition recycling company to recycle lumber, paper, cardboard, metals, masonry (bricks, concrete, etc.), carpet, plastic, pipes (plastic, metal and clay), drywall, rocks, dirt and green waste.

- For a listing of construction and demolition recycling locations in your area, visit
www.ciwmb.ca.gov/recycle.

Spills

- Clean up spills immediately by using an absorbent material such as cat litter, then sweep it up and dispose of it in the trash.
- Immediately report spills that have entered the street, gutter or storm drain to the County's 24 -Hour Water Pollution Problem Reporting Hotline at (714) 567-6363 or visit www.ocwatersheds.com to fill out an incident reporting form.

Do your part to prevent water pollution in our creeks, rivers, bays and ocean.

Clean beaches and healthy creeks, rivers, bays, and ocean are important to Orange County. However, many common household activities can lead to

Remember the

Water in Your Storm Drain
is Not Treated BEFORE
It Enters Our Waterways

For more information, please call the
Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit
www.ocwatersheds.com

To report a spill, call the
Orange County 24-Hour
Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while performing everyday household activities. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Household Tips

Pollution Prevention

Household Activities

■ Do not rinse spills with water! Sweep outdoor spills and dispose of in the trash. For wet spills like oil, apply cat litter or another absorbent material, then sweep and bring to a household hazardous waste collection center (HHWCC).

- Securely cover trash cans.
- Take household hazardous waste to a household hazardous waste collection center.
- Store household hazardous waste in closed, labeled containers inside or under a cover.
- Do not hose down your driveway, sidewalk or patio. Sweep up debris and dispose of in trash.
■ Always pick up after your pet. Flush waste down the toilet or dispose of in the trash.
- Bathe pets indoors or have them professionally groomed.

Household Hazardous Wastes include:

© Batteries
\triangle Paint thinners, paint strippers and removers
\triangle Adhesives
\triangle Drain openers
\triangle Oven cleaners
Δ Wood and metal cleaners and polishes
\triangle Herbicides and pesticides

- Fungicides/wood preservatives

A Automotive fluids and products
\triangle Grease and rust solvents
Δ Thermometers and other products containing mercury
\triangle Fluorescent lamps
\triangle Cathode ray tubes, e.g. TVs, computer monitors
A Pool and spa chemicals

Gardening Activities

- Follow directions on pesticides and fertilizers, (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Water your lawn and garden by hand to control the amount of water you use. Set irrigation systems to reflect seasonal water needs. If water flows off your yard and onto your driveway or sidewalk, your system is over-watering.
- Mulch clippings or leave them on the lawn. If necessary, dispose in a green waste container.
- Cultivate your garden often to control weeds.

Washing and Maintaining Your Car

- Take your car to a commercial car wash whenever possible.
- Choose soaps, cleaners, or detergents labeled "non-toxic," "phosphate free" or "biodegradable." Vegetable and citrusbased products are typically safest for the environment, but even these should not be allowed into the storm drain.
- Shake floor mats into a trash can or vacuum to clean.
- Do not use acid-based wheel cleaners and "hose off" engine degreasers at home. They can be used at a commercial facility, which can properly process the washwater.
- Do not dump washwater onto your driveway, sidewalk, street, gutter or storm drain. Excess washwater should be disposed of in the sanitary sewers (through a sink, or toilet) or onto an absorbent surface like your lawn.
- Use a nozzle to turn off water when not actively washing down automobile.
- Monitor vehicles for leaks and place pans under leaks. Keep your car well maintained to stop and prevent leaks.
- Use cat litter or other absorbents and sweep to remove any materials deposited by vehicles. Contain sweepings and dispose of at a HHWCC.
- Perform automobile repair and maintenance under a covered area and use drip pans or plastic sheeting to keep spills and waste material from reaching storm drains.
- Never pour oil or antifreeze in the street, gutter or storm drains.
Recycle these substances at a service station, HHWCC, or used oil recycling center. For the nearest Used Oil Collection Center call 1-800-CLEANUP or visit www.ciwmb.ca.gov/UsedOil.

[^0]Clean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities can lead to water pollution if you're not careful. Fertilizers, pesticides and other chemicals that are left on yards or driveways can be blown or washed into storm drains that flow to the ocean. Overwatering lawns can also send materials into storm drains. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never pour gardening products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution.

For more information, please call the
Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit
www.ocwatersheds.com

UCCE Master Gardener Hotline: (714) 708-1646

To report a spill, call the
Orange County 24-Hour Water Pollution Problem

Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while landscaping or gardening. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:
Tips for

Landscape \& Gardening

Tips for Landscape \& Gardening

Never allow gardening products or polluted water to enter the street, gutter or storm drain.

General Landscaping Tips

\square Protect stockpiles and materials from wind and rain by storing them under tarps or secured plastic sheeting.

■Prevent erosion of slopes by planting fast-growing, dense ground covering plants. These will shield and bind the soil.
\square Plant native vegetation to reduce the amount of water, fertilizers, and pesticide applied to the landscape.

■ Never apply pesticides
 or fertilizers when rain is predicted within the next 48 hours.

Garden $\mathcal{E} \mathcal{T}$ Lawn Maintenance

■Do not overwater. Use irrigation practices such as drip irrigation, soaker hoses or micro spray systems. Periodically inspect and fix leaks and misdirected sprinklers.

■ Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain. Instead, dispose of green waste by composting, hauling
 it to a permitted landfill, or recycling it through your city's program.

■ Use slow-release fertilizers to minimize leaching, and use organic fertilizers.

Read labels and use only as directed. Do not over-apply pesticides or fertilizers. Apply to spots as needed, rather than blanketing an entire area.

Store pesticides, fertilizers and other chemicals in a dry covered area to prevent exposure that may result
 in the deterioration of containers and packaging.

Rinse empty pesticide containers and re-use rinse water as you would use the
product. Do not dump rinse water down storm drains. Dispose of empty containers in the trash.
\square When available, use non-toxic alternatives to traditional pesticides, and use pesticides specifically designed to control the pest you are targeting. For more information, visit www.ipm.ucdavis.edu.

■ If fertilizer is spilled, sweep up the spill before irrigating. If the spill is liquid, apply an absorbent material such as cat litter, and then sweep it up and dispose of it in the trash.

- Take unwanted pesticides to a Household Hazardous Waste Collection Center to be recycled. Locations are provided below.

Household Hazardous Waste Collection Centers

Anaheim: 1071 N. Blue Gum St.	
Huntington Beach:	17121 Nichols St.
Irvine:	6411 Oak Canyon
San Juan Capistrano:	32250 La Pata Ave.

For more information, call (714) 834-6752
or visit www.oclandfills.com

clean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities such as pest control can lead to water pollution if you're not careful. Pesticide treatments must be planned and applied properly to ensure that pesticides do not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump pesticides into the ocean, so don't let it enter the storm drains. Pesticides can cause significant damage to our environment if used improperly. If you are thinking of using a pesticide to control a pest, there are some important things to consider.

Help Prevent Ocean Pollution:
Responsible
Pest Control

For instructions on collecting a specimen sample visit the Orange County Agriculture Commissioner's website at: http://www.ocagcomm.com/ser_lab.asp

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

Cheryl Wilen, Area IPM Advisor; Darren Haver,
Watershed Management Advisor; Mary Louise Flint, IPM Education and Publication Director; Pamela M. Geisel, Environmental Horticulture Advisor; Carolyn L. Unruh, University of California Cooperative Extension staff writer. Photos courtesy of the UC Statewide IPM Program and Darren Haver.

Funding for this brochure has been provided in full or in part through an agreement with the State Water Resources Control Board (SWRCB) pursuant to the Costa-Machado Water Act of 2000 (Prop. 13).

Tips for Pest Control

Key Steps to Follow:

Step 1: Correctly identify the pest (insect, weed, rodent, or disease) and verify that it is actually causing the problem.

This is important because beneficial insects are often mistaken for pests and sprayed with pesticides needlessly.

Three life stages of the commo lady Three life stages of the com
beetle, a beneficial insect.

Consult with a Certified Nursery
Professional at a local nursery or garden center or send a sample of the pest to the Orange County Agricultural Commissioner's Office.

Determine if the pest is still present - even though you see damage, the pest may have left.

Step 2: Determine how many pests are present and causing

 damage.Small pest populations may be controlled more safely using nonpesticide techniques. These include removing food sources, washing off leaves with a strong stream of water, blocking entry into the home using caulking and replacing problem plants with ones less susceptible to pests.

Integrated Pest Management (IPM) usually combines several least toxic pest control methods for long-term prevention and management of pest problems without harming you, your family, or the environment.

Step 3: If a pesticide must be used, choose the least toxic chemical.

Obtain information on the least toxic pesticides that are effective at controlling the target pest from the UC Statewide Integrated Pest Management (IPM) Program's Web site at www.ipm.ucdavis.edu.

Seek out the assistance of a Certified Nursery Professional at a local nursery or garden center when selecting a pesticide. Purchase the smallest amount of pesticide available.

Apply the pesticide to the pest during its most vulnerable life stage. This information can be found on the pesticide label.

Step 4: Wear appropriate protective clothing.

Follow pesticide labels regarding specific types of protective equipment you should wear.
Protective clothing should always be washed separately from other clothing.
Step 5: Continuously monitor external conditions when applying pesticides such as weather, irrigation, and the presence of children and animals.

Never apply pesticides when rain is predicted within the next 48 hours. Also, do not water after applying pesticides unless the directions say it is necessary.

Apply pesticides when the air is still; breezy conditions may cause the spray or dust to drift away from your targeted area.

In case of an emergency call 911 and/or the regional poison control number at (714) 634-5988 or (800) 544-4404 (CA only).

For general questions you may also visit www.calpoison.org.
Step 6: In the event of accidental spills, sweep up or use an absorbent agent to remove any excess pesticides. Avoid the use of water.

Be prepared. Have a broom, dust pan, or dry absorbent material, such as cat litter, newspapers or paper towels, ready to assist in cleaning up spills.

Contain and clean up the spill right away. Place contaminated materials in a doubled plastic bag. All materials used to clean up the spill should be properly disposed of according to your local Household Hazardous Waste Disposal site.

Step 7: Properly store and dispose of unused pesticides.

Purchase Ready-ToUse (RTU) products to avoid storing large concentrated quantities of pesticides.

Store unused chemicals in a locked cabinet.
Unused pesticide chemicals may be disposed of at a Household Hazardous Waste Collection Center.

Empty pesticide containers should be triple rinsed prior to disposing of them in the trash.

Household Hazardous Waste

Collection Center

(714) 834-6752
www.oclandfills.com

R O J E c
Polsution
Posunion

Clean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities can lead to water pollution if you're not careful. Pet waste and pet care products can be washed into the storm drains that flow to the ocean. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never put pet waste or pet care products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution.

For more information, please call the
Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455)
or visit
www.ocwatersheds.com

To report a spill, call the
Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while caring for your pet. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Tips for Pet Care

Never let any pet care products or washwater run off your yard and into the street, gutter or storm drain.

Washing Your Pets

Even biodegradable soaps and shampoos can be harmful to marine life and the environment.

■If possible, bathe your pets indoors using less-toxic shampoos or have your pet professionally groomed. Follow instructions on the products and clean up spills.

■If you bathe your pet outside, wash it on your lawn or another absorbent/ permeable surface to keep the washwater from running into the street, gutter or storm drain.

Flea Control

■ Consider using oral or topical flea control products.

If you use flea control products such as shampoos, sprays or collars, make sure to dispose of any unused products at a Household Hazardous Waste Collection Center. For location information, call (714) 834-6752.

Why You Should Pick Up After Your Pet

It's the law!
Every city has an ordinance requiring you to pick up after your pet. Besides being a nuisance, pet
waste can lead to water pollution, even if you live inland. During rainfall, pet waste left outdoors can wash into storm drains. This waste flows directly into our waterways and the ocean where it can harm human health, marine life and the environment.

As it decomposes, pet waste demands a high level of oxygen from water. This decomposition can contribute to killing marine life by reducing the amount of dissolved oxygen available to them.

Have fun with your pets, but please be a responsible pet owner by taking
 care of them and the environment.

Take a bag with you on walks to pick up after your pet.
\square Dispose of the waste in the trash or in a toilet.

For more information, please call the
Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit
www.ocwatersheds.com

To report a spill, call the
Orange County 24-Hour
Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Tips for Residential
 Pool, Landscape and Hardscape Drains

Tips for Residential Pool, Landscape and Hardscape Drains

Pool Maintenance

All pool water discharged to the curb, gutter or permitted pool drain from your property must meet the following water quality criteria:

- The residual chlorine does not exceed $0.1 \mathrm{mg} / \mathrm{L}$ (parts per million).
- The pH is between 6.5 and 8.5 .
\square The water is free of any unusual coloration.
- There is no discharge of filter media or acid
 cleaning wastes.

Some cities have ordinances that do not allow pool water to be discharged to the storm drain. Check with your city.

Landscape and Hardscape Drains

The following recommendations will help reduce or prevent pollutants from your landscape and hardscape drains from entering the street, gutter or storm drain. Unlike water that enters the sewer (from sinks and toilets), water that enters a landscape or hardscape drain is not treated before entering our creeks, rivers, bays and ocean.

Household Activities

- Do not rinse spills of materials or chemicals to any drain.
- Use dry cleanup methods such as applying cat litter or another absorbent material, then sweep it up and dispose of it in the trash. If the material is hazardous, dispose of it at a Household Hazardous Waste Collection Center (HHWCC). For locations, call (714) 834-6752 or visit www.oclandfills.com.
- Do not hose down your driveways, sidewalks or patios to your landscape or hardscape drain. Sweep up debris and dispose of it in the trash.
\square Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash.
- Do not store items such as cleaners, batteries, automotive fluids, paint products, TVs, or computer monitors uncovered outdoors. Take them to a HHWCC for disposal.

Yard Maintenance

Do not overwater. Water by hand or set automated irrigation systems to reflect seasonal water needs.

- Follow directions on pesticides and fertilizers (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Cultivate your garden often to control weeds and reduce the need to use chemicals.

Vehicle Maintenance

Never pour oil or antifreeze down your landscape or hardscape drain. Recycle these substances at a service station, a waste collection center or used oil recycling center. For locations, contact the Used Oil Program at 1-800-
CLEANUP or visit www.CLEANUP.org.

- Whenever possible, take your vehicle to a commercial car wash.
- If you do wash your vehicle at home, do not allow the washwater to go down your landscape or hardscape drain. Instead, dispose of it in the sanitary sewer (a sink or toilet) or onto an absorbent surface such as your lawn.
- Use a spray nozzle that will shut off the water when not in use.

ATTACHMENT B
 Operations and Maintenance (O\&M) Plan

OPERATION \& MAINTENANCE (O\&M) PLAN FOR WQMP TBD

Project Name:
 Paseo De Colinas

Prepared for:
PROJECT DIMENSIONS
4 Park Plaza, Suite 700
Irvine, CA 92614
949.476.1960

Prepared on:
May 25, 2021

CONTENTS

SECTION 1 PROJECT DESCRIPTION AND BMP OVERVIEW 1
SECTION 2 PERSONNEL, DOCUMENTATION, AND REPORTING 3
2.1 Maintenance Roles and Responsibilities 3
2.2 Qualification and Training Requirements for Personnel 4
2.3 Maintenance Agreements and Funding Mechanisms 5
2.4 Record Keeping Requirements 5
2.5 Required Permits Associated with Maintenance Activities 6
2.6 Self-Reporting Requirements 6
2.7 City Inspections 6
2.8 Electronic Data Submittal 6
SECTION 3 INSPECTION AND MAINTENANCE ACTIVITIES 7
3.1 Inspection and Maintenance of Source Control BMPs 7
3.2 Inspection and Maintenance of Hydrologic Source Controls 9
3.3 Inspection and Maintenance of Structural LID and Hydromodification BMPs 9
3.4 Emergency Response Plan 12
3.5 Vector Control 13
ATTACHMENT 1 PHOTOS AND EXHIBITS 14
ATTACHMENT 2 MAINTENANCE AGREEMENT AND FUNDING MECHANISM DOCUMENTATION 18
ATTACHMENT 3 TRAINING LOG FORM 20
ATTACHMENT 4 INSPECTION AND MAINTENANCE LOG FORM 22
ATTACHMENT 5 INSPECTION AND O\&M CHECKLIST (OPTIONAL) 24
ATTACHMENT 6 VENDOR O\&M INFORMATION 25

SECTION 1 PROJECT DESCRIPTION AND BMP OVERVIEW

Site Location:	29001 Paseo De Colinas, Laguna Niguel CA 92677 The project is located within "South" Orange County and under the jurisdiction of the San Diego Regional Water Quality Control Board. A vicinity map is included in Attachment C.
Project Area: 107,630 ft ${ }^{2}$	Number of Dwelling Units: 38 SIC Code:
Narrative Project Description:	The proposed development consists of 38 residential town-home style units. Each proposed unit will be three stories and will be arranged around central courtyard areas. Surface-level parking will be provided throughout the Project Site. On-site activities are anticipated to be passive land uses associated with residential developments. The Project will redevelop an existing lot used for overflow parking for the adjacent middle school. While impervious surfaces are anticipated to decrease, the change in land uses across the site results in the requirement for a Priority WQMP.
Project-Specific Source Control BMPs:	(N1) Education for Property Owners, Tenants and Occupants, (N2) Activity Restrictions, (N3) Common Area Landscape Management, (N4) BMP Maintenance, (N11) Common Area Litter Control, (N12) Employee Training, (N14) Common Area Catch Basin Inspection, (N15) Street Sweeping Private Streets and Parking Lots
Summary of Drainage Patterns:	The project site drains northerly toward the NE corner of the site, where flows exit the site to Paseo De Colinas.
Summary of Hydrologic Source Controls:	Minimize Impervious Area - Impervious surfaces have been minimized by incorporating landscaped areas throughout the site. Preserve Existing Drainage Patterns and Time of Concentration - Runoff from the site will continue to flow similar to existing conditions. Low flows will be routed to LID and hydromodification BMPs, while high flows will exit the site. Disconnect Impervious Areas - Landscaping will be provided adjacent to sidewalks and buildings. Low flows will be routed to LID and hydromodification BMPs for treatment before exiting the site.

GENERAL PROJECT ATTRIBUTES AND STORMWATER CONTROL MEASURES

Soil Stockpiling and Site Generated Organics - As part of the grading and stockpiling activities on the site, organic materials that are suitable for assisting with the re-vegetation of the site will be collected, stored and then reused during planting of the site.

Water Efficient Landscaping - Xeriscape landscaping is not proposed for the project. However, native landscaping with lower water demands will be incorporated into the site design.

Low flows are picked up in the onsite area drain system and conveyed to the MWS units located on the south side of the northern and middle driveways to Paseo De Colinas. Treated "first flush" and flows

Structural Treatment and Hydromodification BMPs: up to 10 -yr storm will then ender the underground tank located under the surface parking area in the north end of the site for hydromodification mitigation to reduce flows. Runoff leaving the tank is then pumped up to the surface in the northeast corner of the site and exits on the surface through a parkway culvert out to Paseo De Colinas.

Below is a table summary of all BMPs onsite.

BMP ID	BMP Type	Narrative Description	Location	Other Considerations
BMP 1	MWS (Modular Wetland System) Unit	Proprietary 8' \times 16' biotreatment device to treat LID ("first flush" flows from DMA 1)	Manholes located in southeastern corner of sidewalk in the middle driveway to/from Paseo De Colinas.	N/A

SECTION 2 PERSONNEL, DOCUMENTATION, AND REPORTING

2.1 MAINTENANCE ROLES AND RESPONSIBILITIES

The roles related to O\&M of the BMPs are defined as follows:

- Facility Owner - The Facility Owner is the party who is ultimately responsible for the functionality of all BMPs. The maintenance agreement (Attachment 2) identifies the facility owner for each BMP, including the timing of any ownership transitions.
- Responsible Party - The Responsible Party is the party that shall have direct responsibility for the O\&M of the BMPs. This party shall be the designated contact with inspectors and lead maintenance personnel. The Responsible Party shall sign self-inspection reports and any correspondence regarding the verification of inspections and required maintenance. The Responsible Party will establish a system to delegate general inquiries to the appropriate maintenance personnel concerning the operation and maintenance of the BMPs. The Responsible Party reports directly to the Facility Owner and operates and manages the BMPs on the Facility Owner's behalf.
- Designated Emergency Respondent - The Designated Emergency Respondent is the party responsible for directing activities and communications during emergencies such as broken irrigation pipes, landslides, hazardous spill responses etc., that would require immediate response should they occur during off-hours. It is the responsibility of the Designated Emergency Respondent to communicate the emergent situation with the Responsible Party as soon as possible.
- Key Maintenance Personnel - Key Maintenance Personnel are the designated lead field manager(s) or supervisor(s) who directly oversee and delegate the maintenance activities, maintain the scheduling, and coordinate activities between all personnel. These tend to change more often than other personnel over time, so their names do not necessarily need to be included in the O\&M Plan. However, they must be properly trained as recorded in the training logs (Section 2.2).

The table below lists the roles for this project. This table must be updated whenever changes occur.

Role	Name (Title and Affiliation)	Phone Number	Address	Email Address
Facility	Project Owner	Dimensions - Jon Conk	$949-476-$ 2246	4 Park Plaza, Suite 700 , Irvine, CA 92614

2.2 QUALIFICATION AND TRAINING REQUIREMENTS FOR PERSONNEL

Many of the activities presented in this O\&M plan can be completed by personnel with basic landscaping and yard maintenance skills and project-specific orientation. However, there are activities that require a more experienced skillset to identify and remediate potential issues that could compromise the functionality of each BMP. The Responsible Party shall exercise discretion in determining the skillset required to complete each task.

Activities that can typically be completed by maintenance personnel with basic training and/or qualifications include:

- General landscaping activities (pruning, weeding, and raking)
- Routine sediment, trash and debris removal;
- Filling in minor scour or erosion areas, or replacing rip rap that has become displaced; and
- Watering or irrigation, as necessary.

Activities that typically require maintenance personnel with specialized qualifications, training, and/or engineering oversight include:

- Inspection and/or repair of inflow and outflow structures;
- Inspection and/or repair of underground elements;
- Large-volume sediment or media removal requiring specialized equipment;
- Inspection, diagnosis, and remediation of significant erosion issues potentially compromising function and/or structural stability; and
- Spill response and remediation.

Maintenance personnel who have identified a potential major issue with any facility should contact the designated key maintenance personnel for the facility immediately.

Training must be provided for all personnel performing maintenance tasks on or providing maintenance oversight of structural BMPs. The table below provides the personnel and relevant training topics.

Training Logs contained in Attachment 3 should be used to document training of maintenance personnel.

Training Topic	Responsible Party	Designated Emergency Respondent	Key Maintenance Personnel
Proper Maintenance of all BMP components	X		X
Identification and clean-up procedures for spills and overflows	X	X	X
Safety concerns when maintaining devices and responding to emergency situations	X	X	X

2.3 MAINTENANCE AGREEMENTS AND FUNDING MECHANISMS

At this preliminary stage of design, it is projected that long-term funding for BMP maintenance will be provided by the Owner/Developer. Should the maintenance responsibility be transferred at any time during the operational life of the project, such as when an HOA or POA is formed for a project, a formal notice of transfer shall be submitted to the County of Orange at the time responsibility of the property subject to this WQMP is transferred. The transfer of responsibility shall be incorporated into this WQMP as an amendment.

2.4 RECORD KEEPING REQUIREMENTS

Documentation of site conditions, maintenance activities performed, and any other remaining maintenance required is necessary during each inspection/maintenance visit. Inspection and maintenance records shall be retained in an accessible, secure location for the life of the facility, and not less than 5 years.

The following documentation mechanisms and procedures have been established for this O\&M Plan:

- Training Logs: Personnel must document training activities as part of implementing this O\&M Plan. Attachment 3 contains a sample training log.
- Inspection and Routine Maintenance Logs: Maintenance personnel are required to maintain logs of inspection and maintenance activities. Attachment 4 contain inspection and maintenance logs.
- Rehabilitative and Corrective Maintenance Log and Reporting: Rehabilitation and corrective maintenance activities should be documented at a degree of detail that is commensurate to the complexity/significance of the activity. Any significant changes to the BMP designs that arise from rehabilitation/corrective maintenance will be documented via an update to the Project WQMP and as-built drawings. Corrective maintenance that does not result in design changes will be documented as a special entry in the maintenance logs to provide pertinent details of that rehabilitative or corrective maintenance activity.

2.5 REQUIRED PERMITS ASSOCIATED WITH MAINTENANCE ACTIVITIES

Supplemental permits are not required for the implementation, operation, and maintenance of the BMPs.

2.6 SELF-REPORTING REQUIREMENTS

No additional self-reporting requirements are known at this time.

2.7 CITY INSPECTIONS

The City of Laguna Niguel may conduct a site inspection to evaluate compliance with the Project WQMP, at any time, in accordance with (ordinance code number unknown at this time).

2.8 ELECTRONIC DATA SUBMITTAL

This document, along with the attachments, shall be provided to the City or County in PDF format. Autocad files and/or GIS coordinates of BMPs shall also be submitted to the City/County.

SECTION 3 INSPECTION AND MAINTENANCE ACTIVITIES

This section identifies the inspection and O\&M activities for each BMP incorporated into the project. Section 3.1 and 3.2 contain common maintenance activities and frequencies associated with Source Control BMPs and HSCs, respectively. Section 3.3 contains individual tables for each structural LID or hydromodification BMP with an explanation of the various types of maintenance activities associated with these BMPs.

3.1 INSPECTION AND MAINTENANCE OF SOURCE CONTROL BMPS

Source Control BMP	Activity	Frequency
Dry Weather Flow Source Control Note: this is a South Orange County High Priority Water Quality Condition for All Projects	Check for dry weather flows such as street washing, irrigation overspray, air conditioner condensate in areas of the project that do not drain to LID BMPs, the sanitary sewer, or landscaped pervious areas. Notify residents of any dry weather flows and follow up to correct.	Twice per year during dry season
	Inspect project outfall or most-downstream project manhole for presence of dry weather flow. If present, conduct reconnaissance to determine source and implement actions to eliminate source.	Twice per year during dry season
N1. Education for Property Owner's Tenants and Occupants	Distribute appropriate materials to owners, tenants, and/or occupants via contract language, mailings, website, or meetings.	Information provided to owners and tenants upon sale or lease. Reminders sent or posted as needed.
	Check www.ocwatersheds.com and/or City website for updated educational materials.	Annually
N2. Activity Restrictions	Within the CC\&R's or lease agreement, restrict the following activities: activities to be updated at a later time once CC\&R's are finalized.	Information provided to owners and tenants upon sale or lease. Reminders sent or posted as needed.
N3/S4. Common Area Landscape Management, Efficient Landscape	Check that fertilizer and pesticide usage is in accordance wiN1th the Integrated Pest Management Program. Adjust, if needed.	Annually

Source Control BMP	Activity	Frequency
Design, and Efficient Irrigation	Check the irrigation system water budget to ensure efficiency targets are being met and the system is in good condition. Adjust/repair irrigation system and controllers, if needed.	Annually prior to irrigation system activation
	Check landscaping for presence of invasive species and remove, if needed.	Annually
N1 1. Common Area Litter Control	Remove trash from around trash enclosure, inspect to ensure lids closed, structurally sound, and not overflowing. Repair or replace, as needed.	Monthly
	Inspect common area for litter and trash disposal violations by homeowners and reporting to the HOA or responsible party for investigation. Remove litter, as needed.	Weekly
N14. Common Area Catch Basin Inspection	Remove trash and debris from catch basins and grates. Check for damage, clogging, and standing water. Repair or mitigate clogging/standing water, as needed.	Four times per year during wet season, including inspection just before the wet season and within 24 hours after at least two storm events >0.5 inches
N15. Street Sweeping Private Streets and Parking Lots	Sweep curb and gutter areas using a vacuum street sweeper. Report any significant or illicit debris in curb/gutter to HOA or responsible party, as needed.	Weekly
S1. Provide Storm Drain System Stenciling and Signage	Check that all catch basins in paved areas marked or stenciled with "No dumping-Drains to Ocean; No Descargue Basura" language. Replace/repaint markings if faded, damaged, removed, or otherwise illegible.	Annually

3.2 INSPECTION AND MAINTENANCE OF HYDROLOGIC SOURCE CONTROLS

No HSCs are proposed for the project to offset LID BMP sizing. This section not applicable.

3.3 INSPECTION AND MAINTENANCE OF STRUCTURAL LID AND HYDROMODIFICATION BMPS

The section is organized by type of structural LID or hydromodification BMP with separate tables for each BMP type included in the project. The section identifies four categories of activities related to O\&M of the BMPs:

General Inspections - Evaluations conducted at regularly scheduled intervals to indicate the need for maintenance of structural BMPs.

Routine Maintenance Activities - Activities conducted at regularly scheduled intervals to sustain long-term performance of each BMP, including inspections and normal upkeep.

Corrective (Major) Maintenance Activities - Includes activities conducted to replace or rehabilitate system components at the end of their usable life as well as activities conducted to resolve major issues that are not anticipated.
Emergency Response Activities - Activities related to emergencies, primarily concerning spills, which may require immediate action and notifications (Section 3.4).

BMP ID	BMP Type	Reference Maintenance Table
BMP 1	MWS biotreatment Unit (or equivalent)	BIO-5 Proprietary Biotreatment (Page 10)
BMP 2	MWS biotreatment Unit (or equivalent)	BIO-5 Proprietary Biotreatment (Page 10)
BMP 3	Underground storage tank	Hydromodification Cisterns or Tanks (Page 11)

BIO-5/7 PROPRIETARY BIOTREATMENT	
Activity	Frequency
GENERAL INSPECTIONS	
Remove trash and debris	Four times per year during wet season, including inspection just before the wet season and within 24 hours after at least two storm events ≥ 0.5 inches.
Identify excess erosion or scour	
Identify sediment accumulation that requires maintenance	
Inspect during storm event, when possible, to estimate treatment capacity and determine if premature bypass is occurring	
Evaluate plant health and need for corrective action	
Identify any needed corrective maintenance that will require site-specific planning or design	
OPERATION AND MAINTENANCE	
- O\&M of proprietary BMPs must follow established manufacturer guidelines - O\&M of accompanying retention BMPs should follow the guidelines established in the associated fact sheet for that BMP.	

HYDROMODIFICATION CISTERNS OR TANKS	
Activity	Frequency
GENERAL INSPECTIONS	
Check for leaks	Four times per year during wet season, including inspection just before the wet season and within 24 hours after at least two storm events ≥ 0.5 inches.
Inspect for minor sediment in cistern bottom	
Inspect for vector control issues	
Identify any needed corrective maintenance that will require site-specific planning or design	
ROUTINE MAINTENANCE	
Clean out gutters, screening, and/or first-flush diverter	As-needed
Remove sediment, trash, debris, and oil accumulation from cistern	Semi-annually or as needed
Clean inside surfaces of cistern and disinfect	Annually
Maintain treatment systems per manufacturer or designer recommendations	As specified
CORRECTIVE (MAJOR) MAINTENANCE	
Prepare documentation of issues and resolutions for review by appropriate parties; modify WQMP if needed.	Before major maintenance
Document major maintenance activities; record modified WQMP and as-built plan set if needed	After major maintenance

3.4 EMERGENCY RESPONSE PLAN

In some cases, adverse conditions may occur which could be an imminent threat to human or environmental health or severe damage to infrastructure or property. For example, a spill of hazardous substances in the contributing area to a BMP could cause harmful substances to enter the BMP and be released downstream, affecting environmental and public health. Other emergencies could arise related to the stormwater features or water quality protection, such as landsliding, major erosion, or burst pipes in the tributary area.

In the event of an actual or suspected hazardous material release, the following plan shall take effect. The primary importance of initial response to an actual or suspected spill will be public safety, control of the source of pollution, and containment of spills that have occurred, as applicable. The table below provides the emergency contact information for hazardous materials spills affecting BMPs.

Name	Phone	When to Report
Local Emergency Response (Fire Department)	911	Immediately
Orange County 24-Hour Water Pollution Problem Reporting Hotline	$1-877-897-7455$	Immediately
CalOES State Warning Center	$1-800-852-7550$	Immediately

The first number to call is emergency response (9-1-1), followed by the California Governor's Office of Emergency Services (CalOES), formerly the California Emergency Management Agency (CalEMA). (CalOES) maintains guidance and instructions of what to do in the event of a spill of hazardous substances (http://www.caloes.ca.gov/cal-oes-divisions/fire-rescue/hazardous-materials/spill-releasereporting). This plan is based on the guidance provided by CalOES (CaIOES, 2014).

1. If an actual or suspected hazardous material incident exists, maintenance personnel will immediately call 911 and the CalOES State Warning Center (Table 6).
2. The Designated Emergency Respondent and Responsible Party assigned to the facility (from Section 2.1) must also be notified of any actual or potential spill.
3. Remediation of contamination in the water quality facility should be handled as a corrective maintenance issue per Section 3.2 of this O\&M plan.

In the event that a potential spill is identified prior to it reaching the BMPs, the Designated Emergency Respondent will implement an isolation protocol to prevent the spill from entering the BMP. An inflatable plug, Hazmat Plug, or equivalent device as approved by the Designated Emergency Respondent will be installed within the storm drains or catch basins to block upstream flow from reaching and contaminating the BMP. The temporary plug will be an interim measure until the spill is properly maintained and remediated and the Designated Emergency Respondent has determined the risk to the BMP of contamination no longer exists.

Similar measures should be taken in the event of a landslide, mudslide, or major erosion within the tributary area of the BMP to prevent sediment from damaging the BMP to the extent possible.

3.5 VECTOR CONTROL

In addition to the inspection and maintenance activities listed in Section 3, all BMPs shall be inspected for standing water on a regular basis. Standing water which exists for longer than 72 hours may contribute to mosquito breeding areas. Standing water may indicate that the BMP is not functioning properly and proper action to remedy the situation shall be taken in a timely manner.

Elimination of standing water and managing garbage, lawn clippings, and pet droppings can help decrease the present of mosquitoes and flies in the area.

The Orange County Vector Control District may be contacted for more information and support at 714-971-2421 or 949-654-2421 or www.ocvcd.org.

ATTACHMENT 1 PHOTOS AND EXHIBITS

- Vicinity Map
- WQMP Exhibit
- BMP Details \& Cross Sections

SITE SPECIFIC DATA			
PROJECT NUMBER			
PROJECT NAME			
PROJECT LOCATION			
STRUCTURE ID			
TREATMENT REQUIRED			
VOLUME BASED (CF)		FLOW BASED (CFS)	
N / A		0.577	
PEAK BYPASS REQUIRED (CFS) - IF APPLICABLE			OFFLINE
PIPE DATA	I.E.	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2	N/A	N/A	N/A
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	discharge
RIM ELEVATION			
SURFACE LOAD	PEDESTRIAN		
FRAME \& COVER	3EA ¢ 30 "	OPEN PLANTER	¢24"
NOTES:			

* PRELIMINARY NOT FOR CONSTRUCTION

INSTALLATION NOTES

1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND
APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE APPURIENANCES IN ACCORDANCE WITH THIS DRAWING AND THE
MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINMUM $6 "$ LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONIIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
4. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND 6. VEGETATION SUPPLIED AND INSTALLED BY OTHFRS AIL UNITS WITH 6EGETAIIIN SUPPLIED AND INSTALLED BY OTHERS. ALL UNIIS
VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
5. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR ACTVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTVATION BY A BIO CLEAN REPRESENTATIVE.
general notes
6. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
7. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETALLING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

ELEVATION VIEW

SITE SPECIFIC DATA			
PROJECT NUMBER			
PROJECT NAME			
PROJECT LOCATİN			
STRUCTURE ID			
TREATMENT REQUIRED			
VOLUME BASED (CF)		FLOW BASED (CFS)	
N/A		0.144	
PEAK BYPASS REQUIRED (CFS) - IF APPLICABLE			OFFLINE
PIPE DATA	I.E.	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2	N/A	N/A	N/A
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION			
SURFACE LOAD	PEDESTRIAN		
FRAME \& COVER	¢30"	OPEN PLANTER	¢24"
NOTES:			

PLAN VIEW

LEFT END VIEW

INSTALLATION NOTES

1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN
MANUFACTURERS CONTRACT.
2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM '" $^{\prime \prime}$ LEVEL ROCK BASE UNLESS SPECIFIED BY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS
COMTRACTOR RESPONSBELE FOR
MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
4. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
5. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR ACTVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATVE.

GENERAL NOTES

1. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
2. MANUFACIURER TO PROVIDE ALL MAATERIALS UNLESS CAFERSIONS, ELEVATONS, SPECIFICATINS AND CAPACITES ARE SUBJECT TO CHANGE. FOR PROUECT SPECIFIC DRAWINGS DETALING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

ELEVATION VIEW

RIGHT END VIEW

TREATMENT FLOW (CFS)	0.144
OPERATING HEAD (FT)	3.4
PRETREATMENT LOADING RATE (GPM/SF)	1.3
WETLAND MEDIA LOADING RATE (GPM/SF)	1.0
MWS-L-4-13-V	
STORMWATER BIOFILTRATION SYSTEM	
STANDARD DETAIL	

ATTACHMENT 2 MAINTENANCE AGREEMENT AND FUNDING MECHANISM DOCUMENTATION

NOTICE OF TRANSFER OF RESPONSIBILITY

WATER QUALITY MANAGEMENT PLAN

Paseo De Colinas
29001 Paseo De Colinas, Laguna Niguel, CA 92614

Submission of this Notice Of Transfer of Responsibility constitutes notice to the County of Orange that responsibility for the Water Quality Management Plan ("WQMP") for the subject property identified below, and implementation of that plan, is being transferred from the Previous Owner (and his/her agent) of the site (or a portion thereof) to the New Owner, as further described below.
I. Previous Owner/ Previous Responsible Party Information

| Company/ Individual Name: | Contact Person: | |
| :--- | :--- | :--- | :--- |
| Street Address: | State: | Title: |
| City: | ZIP: | Phone: |

II. Information about Site Transferred

Name of Project (if applicable):	
Title of WQMP Applicable to site:	
Street Address of Site (if applicable):	Lot Numbers (if Site is a portion of a tract):
Planning Area (PA) and/ or Tract Number(s) for Site:	Date WQMP Prepared (and revised if applicable):

III. New Owner/ New Responsible Party Information

| Company/ Individual Name: | Contact Person: | |
| :--- | :--- | :--- | :--- |
| Street Address: | State: | Title: |
| City: | ZIP: | Phone: |

IV. Ownership Transfer Information

General Description of Site Transferred to New Owner:	General Description of Portion of Project/ Parcel Subject to WQMP Retained by Owner (if any):

Lot/ Tract Numbers of Site Transferred to New Owner:
Remaining Lot/ Tract Numbers Subject to WQMP Still Held by Owner (if any):
Date of Ownership Transfer:

Note: When the Previous Owner is transferring a Site that is a portion of a larger project/ parcel addressed by the WQMP, as opposed to the entire project/parcel addressed by the WQMP, the General Description of the Site transferred and the remainder of the project/ parcel no transferred shall be set forth as maps attached to this notice. These maps shall show those portions of a project/ parcel addressed by the WQMP that are transferred to the New Owner (the Transferred Site), those portions retained by the Previous Owner, and those portions previously transferred by Previous Owner. Those portions retained by Previous Owner shall be labeled as "Previously Transferred".

V. Purpose of Notice of Transfer

The purposes of this Notice of Transfer of Responsibility are: 1) to track transfer of responsibility for implementation and amendment of the WQMP when property to which the WQMP is transferred from the Previous Owner to the New Owner, and 2) to facilitate notification to a transferee of property subject to a WQMP that such New Order is now the Responsible Party of record for the WQMP for those portions of the site that it owns.
VI. Certifications
A. Previous Owner

I certify under penalty of law that I am no longer the owner of the Transferred Site as described in Section II above. I have provided the New Owner with a copy of the WQMP applicable to the Transferred Site that the New Owner is acquiring from the Previous Owner.

Printed Name of Previous Owner Representative:	Title:
Signature of Previous Owner Representative:	Date:

B. New Owner

I certify under penalty of law that I am the owner of the Transferred Site, as described in Section II above, that I have been provided a copy of the WQMP, and that I have informed myself and understand the New Owner's responsibilities related to the WQMP, its implementation, and Best Management Practices associated with it. I understand that by signing this notice, the New Owner is accepting all ongoing responsibilities for implementation and amendment of the WQMP for the Transferred Site, which the New Owner has acquired from the Previous Owner.

Printed Name of New Owner Representative:	Title:
Signature:	Date:

ATTACHMENT 3 TRAINING LOG FORM

TRAINING / EDUCATIONAL LOG

Date of Training/Educational Activity: \qquad
Name of Person Performing Activity (Printed): \qquad
Signature: \qquad
Topic of Training/Educational Activity

Name of Participant	Signature of Participant

For newsletter or mailer educational activities, please include the following information:

- Date of mailing:
- Number distributed:
- Method of distribution:
- Topics addressed:

If a newsletter article was distributed, please include a copy of it.

ATTACHMENT 4 INSPECTION AND MAINTENANCE LOG FORM

TRAINING / EDUCATIONAL LOG

Date of Training/Educational Activity: \qquad
Name of Person Performing Activity (Printed): \qquad
Signature: \qquad

BMP Name or Type (As Shown in O\&M Plan)	Brief Description of Operation, Maintenance or Inspection Activity Performed	Summary of Notable Observations or Outcomes from Activity

[add additional pages, photographs, drawings, notes as needed]

ATTACHMENT 5 INSPECTION AND O\&M CHECKLIST (OPTIONAL)

Guidance: Based on the BMPs present at the site, this checklist is intended to summarize the activities necessary at each frequency. Include more details if desired.

Weekly Activities	Check Box
Selected source control/housekeeping activities (See Section 3.1)	
Monthly Activities	
Selected source control/housekeeping activities (See Section 3.1)	
Quarterly Activities (before wet season, after wet season, plus twice after rain > 0.5 inches)	
Inspections of selected source control BMPs (See Section 3.1)	
Inspections and as-needed minor maintenance of all structural treatment and hydromodification BMPs (See Section 3.3)	
	Twice Yearly Activities (during dry weather)
Dry weather flow inspections (non-structural source control) (See Section 3.1)	
Inspection and as-needed maintenance of other selected source control BMPs (See Section 3.1)	
Annual Activities	
Self-certification (See Section 2.6)	
Various source control BMP and housekeeping activities (See Section 3.1)	
Inspection and maintenance of HSCs (See Section 3.2)	
Various planned maintenance activities of treatment and hydromodification BMPs, such as vegetation maintenance, minor sediment maintenance, etc. (See Section 3.3)	

ATTACHMENT 6 VENDOR O\&M INFORMATION

Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

o Remove Trash from Screening Device - average maintenance interval is 6 to 12 months.

- (5 minute average service time).
o Remove Sediment from Separation Chamber - average maintenance interval is 12 to 24 months.
- (10 minute average service time).
o Replace Cartridge Filter Media - average maintenance interval 12 to 24 months.
- (10-15 minute per cartridge average service time).
o Replace Drain Down Filter Media - average maintenance interval is 12 to 24 months.
- (5 minute average service time).
o Trim Vegetation - average maintenance interval is 6 to 12 months.
- (Service time varies).

System Diagram

Maintenance Procedures

Screening Device

1. Remove grate or manhole cover to gain access to the screening device in the PreTreatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
2. Enter separation chamber.
3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
4. Remove each of 4 to 8 media cages holding the media in place.
5. Spray down the cartridge filter to remove any accumulated pollutants.
6. Vacuum out old media and accumulated pollutants.
7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

1. Remove hatch or manhole cover over discharge chamber and enter chamber.
2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
4. Entry into chambers may require confined space training based on state and local regulations.
5. No fertilizer shall be used in the Biofiltration Chamber.
6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.

Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

Modular Wetland System, Inc.
P. 760.433-7640
F. 760-433-3176
E. Info@modularwetlands.com
ENVIRONMENTAL SERVICES, INC

For Office Use Only
(Reviewed By)
(Date) Office personnel to complete section to the left.

Contact			
Inspector Name			
Type of Inspection $\quad \square$ Routine $\quad \square$ Follow Up $\quad \square$ Complain			
Weather Condition			

Inspection Checklist

Modular Wetland System Type (Curb, Grate or UG Vault):
Size (22', 14 ' or etc.):

Structural Integrity:	Yes	No	Comments
Damage to pre-treatment access cover (manhole cover/grate) or cannot be opened using normal lifting pressure?			
Damage to discharge chamber access cover (manhole cover/grate) or cannot be opened using normal lifting pressure?			
Does the MWS unit show signs of structural deterioration (cracks in the wall, damage to frame)?			
Is the inlet/outlet pipe or drain down pipe damaged or otherwise not functioning properly?			
Working Condition:			
Is there evidence of illicit discharge or excessive oil, grease, or other automobile fluids entering and clogging the unit?			
Is there standing water in inappropriate areas after a dry period?			
Is the filter insert (if applicable) at capacity and/or is there an accumulation of debris/trash on the shelf system?			
Does the depth of sediment/trash/debris suggest a blockage of the inflow pipe, bypass or cartridge filter? If yes, specify which one in the comments section. Note depth of accumulation in in pre-treatment chamber.			Depth:
Does the cartridge filter media need replacement in pre-treatment chamber and/or discharge chamber?			Chamber:
Any signs of improper functioning in the discharge chamber? Note issues in comments section.			
Other Inspection Items:			
Is there an accumulation of sediment/trash/debris in the wetland media (if applicable)?			
Is it evident that the plants are alive and healthy (if applicable)? Please note Plant Information below.			
Is there a septic or foul odor coming from inside the system?			

Waste:	Yes	No				
Sediment / Silt / Clay						
Trash / Bags / Bottles						
Green Waste / Leaves / Foliage			\quad	Recommended Maintenance		
:---	:---	:---	:---			
No Cleaning Needed	Plant Information					
Schedule Maintenance as Planned		\begin{tabular}{ll}				
\hline						
\end{tabular}						
Needs Immediate Maintenance						

Additional Notes:

Maintenance Report

Modular Wetland System, Inc.
P. 760.433-7640
F. 760-433-3176
E. Info@modularwetlands.com

| Site
 Map \# | GPS Coordinates
 of Insert | Manufacturer/
 Description / Sizing | Trash
 Accumulation | Foliage
 Accumulation | Sediment
 Accumulation | Total Debris
 Accumulation | Condition of Media
 25/50/75/100
 (will be changed
 @ 75\%) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Operational Per
 Manufactures'
 Specifications
 (If not, why?) |
| :---: |

Attachment C
 ExHIBITS

ABBREVATIONS			NOTES
			ANY PROPOSED DRIVEWAY, CURB, GUTTER, CURB RAMP AND/OR SIDEWALK TO BE CONSTRUCTED PER CITY OF AND/OR SIDEWALK TO BE CONSTRUCTED PER LAGUNA NIGUEL \& OC PUBLIC WORKS AGENCY STANDARDS 2. THE SITE WILL BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE CALIFORNIA REGIONAL WATER QUALITY BOARD DISCHARGE REQUIREMENTS APPLICABLE TO THIS SITE. 3. MAIN ENTRY TO BE RIGHT-IN/RIGHT-OUT ONLY 4. 60^{\prime} SHEAR PIN IS PROPOSED ON NORTH TOP OF SLOPE. THIS REDUCES THE BUILDING SLOPE SET BACK TO 7'
LEGEND			

EARTHWORK

PROJECT DIMENSION
PPark Plaza, Suite 700

PASEO DE COLINAS

SITE DEVELOPMENT PERMIT APPLICATION PLOT DATE: 6.14201

ATTACHMENT D
 bMP Design Calculations \& Detalls

Storm Water Quality Design Calculations

Paseo de Colinas, 5-25-2021

DCV Calculations									
Drainage Area Name / DMA	Worksheet	Total Drainage Area (ft^{2})	Assumed \% impervious	Runoff Coefficient	Design Storm Depth (in)	Average or Estimated Tc (min)	Rainfall Intensity (in/hr)	Simple Method $\operatorname{DCV}\left(\mathrm{ft}^{3}\right)$	$Q_{\text {Design }}$ (cfs)
DMA 1	SOC-9	75,359	83\%	0.773	0.85	5	0.26	5,741	0.484
DMA 2	SOC-9	18295.2	62\%	0.615	0.85	5	0.26	3,283	0.277
DMA 3	SOC-4	13,939	22\%	0.315	0.85	5	0.26	311	0.026

Worksheet 9: Flow-Based Compact Biofiltration with Supplemental Retention Method

		DMA $=$	DMA 1	DMA 2	
Part 1: Determine the design storm intensity of the compact biofiltration BMP					
1	Enter the time of concentration, $\mathrm{T}_{\mathrm{c}}(\mathrm{min})$ (See E.2.3) (account for upstream detention by increasing Tc to a maximum 60 minutes per Section E.3.5.2 if detention is provided)	$\mathrm{T}_{\mathrm{c}}=$	5	5	min
2	Using Figure E-7 or the figure included in the worksheet, determine the design intensity at which the estimated time of concentration $\left(T_{c}\right)$ achieves 80% capture efficiency, I_{1}	$l_{1}=$	0.26	0.26	in/hr
3	Enter capture efficiency corresponding to upstream HSCs and/or upstream BMPs, Y_{2}. Attach associated calculations.	$Y_{2}=$	0	0	\%
4	Using Figure E-7, determine the design intensity at which the time of concentration $\left(T_{c}\right)$ achieves the upstream capture efficiency $\left(Y_{2}\right), I_{2}$	$\mathrm{I}_{2}=$	0	0	in/hr
5	Determine the design intensity that must be provided by BMP to achieve 80 percent capture, $I_{\text {design }}=I_{1}-I_{2}$	$\mathrm{I}_{\text {design_80\% }}=$	0.26	0.26	in/hr
Part 2: Calculate the design flowrate of the compact biofiltration BMP (Section E.2.6)					
6a	Enter DMA area tributary to BMP (s), A (acres)	$\mathrm{A}=$	1.73	0.42	acres
6b	Enter DMA Imperviousness, imp (unitless)	imp=	83\%	62\%	
6 c	Calculate runoff coefficient, $c=(0.75 \times$ imp $)+0.15$	$\mathrm{C}=$	0.773	0.615	
6d	Calculate flowrate to achieve 80 percent capture, $Q_{80 \%}=\left(c \times I_{\text {design }} \times \mathrm{A}\right)$	$\mathrm{Q}_{80 \%}=$	0.347	0.067	cfs
7	Calculate design flowrate, $Q_{\text {design }}=Q_{80 \%} \times 150 \%$	$\mathrm{Q}_{\text {design }}=$	0.521	0.101	cfs

Part 3: Demonstrate that Supplemental Retention BMPs Conform to Volume Reduction Targets (Only DMAs Categorized as "Biotreatment with Partial Infiltration'")

8	Describe system, including features to maximize volume reduction (if applicable):			
	Proprietary BioTreatment (BIO-7):			
	Unit Size / Model	MWS-L-8-20	MWS-L-4	
	Unit Size / Model Treatment Capacity	0.577	0.115	cfs
	Number of Units Needed	1.000	1.000	
	Total Bio-treatment Provided	0.577	0.115	cfs
9	Summarize calculations to demonstrate that volume reduction targets are met, where feasi	and applicab		

Supporting Calculations
Provide time of concentration assumptions:
Minimum Tc assumed for conservative estimation.

Provide supporting graphical operations in figure above

Worksheet 4: Hydrologic Source Control Calculation Form

Name
Paseo de Colinas, 5-25-2021

	Drainage area ID	DMA 3		
	Total drainage area	0.320	acres	
	Total drainage area Impervious Area ($\mathrm{I}_{\text {total }}$)	0.070		
		1. SOC-4 HSC Ca		
HSC ID	HSC Type/ Description/ Reference BMP Fact Sheet	Effect of individual HSC per criteria in relevant fact sheet (Appendix G.1) $\left(d_{H S C i}\right)$	Impervious Area Tributary to $\mathrm{HSC}_{\mathrm{i}}$ $\left(I A_{i}\right)$	$d_{i} \times 1 A_{i}$
0	HSC-2: Impervious Area Dispersion, Ratio = 3.5	0.85"	0.0704	0.0598
	Box 1:		$\sum d_{i} \times l a i=$	0.0598
	Box 2:		$1 A_{\text {total }}=$	0.070
	[Box 1]/[Box 2]:		$d_{\text {HSC total }}=$	0.850
		Percent Captur	Provided by HSCs (Table III.1)	80\%

1 - For HSCs meeting criteria to be considered self-retaining, enter the DCV for the project.

SITE SPECIFIC DATA			
PROJECT NUMBER			
PROJECT NAME			
PROJECT LOCATION			
STRUCTURE ID			
TREATMENT REQUIRED			
VOLUME BASED (CF)		FLOW BASED (CFS)	
N / A		0.577	
PEAK BYPASS REQUIRED (CFS) - IF APPLICABLE			OFFLINE
PIPE DATA	I.E.	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2	N/A	N/A	N/A
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	discharge
RIM ELEVATION			
SURFACE LOAD	PEDESTRIAN		
FRAME \& COVER	3EA ¢ 30 "	OPEN PLANTER	¢24"
NOTES:			

* PRELIMINARY NOT FOR CONSTRUCTION

INSTALLATION NOTES

1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND
APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE APPURIENANCES IN ACCORDANCE WITH THIS DRAWING AND THE
MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINMUM $6 "$ LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONIIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
3. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
4. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND 6. VEGETATION SUPPLIED AND INSTALLED BY OTHFRS AIL UNITS WITH 6EGETAIIIN SUPPLIED AND INSTALLED BY OTHERS. ALL UNIIS
VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
5. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR ACTVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTVATION BY A BIO CLEAN REPRESENTATIVE.
general notes
6. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
7. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETALLING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

ELEVATION VIEW

flowrates
PEAK TREATMENT FLOW RATE $=116$ CFS OR 520 GPM
PEAK BYPASS FLOW RATE $=\text { OPTIONAL }$
SPECIFICATIONS
INSTALL AT SURFACE
$\begin{aligned} & \text { O.D. DIMENSIONS } \\ & =9^{\prime} \times 5^{\prime} \times 4 . \end{aligned}$
TOP OF VAULT TO INVERT OU $=4.13^{\prime}$
SEDIMENT STORAGE CAPACITY $=1000$ LBS OR 23．5 CF

MODULAR WETLAND SYSTEMS－LINEAR 2.0
4－8 VAULT TYPE

＊NOTE：

MWS UNIT CAN BE CONSTRUCTED WITH INLET ON EITHER SIDE． FOR INLET ON OPPOSITE SIDE ENTIRE UNIT WILL BE MIRRORED．

LEGEND

awIIm 2＂DRAIN CELL PERIMETER
W WETLAND MEDIA
PIANT／ROOT
．MOISTURE RETENTION LAYER
谷泈冬 MANHOLE／ACCESS HATCH

ATtACHMENT E

Hydromodification Control Calculations

SOHM

PROJECT REPORT

General Model Information

Project Name:	CUSD2
Site Name:	CUSD
Site Address:	
City:	Laguna Niguel
Report Date:	$5 / 24 / 2021$
Gage:	Laguna Beach
Data Start:	$10 / 01 / 1949$
Data End:	$09 / 30 / 2006$
Timestep:	Hourly
Precip Scale:	1.000
Version Date:	$2021 / 03 / 09$
POC Thresholds	

Low Flow Threshold for POC1: 10 Percent of the 2 Year High Flow Threshold for POC1: 10 Year

Landuse Basin Data

Predeveloped Land Use

Basin 1	
Bypass:	No
GroundWater:	No
Pervious Land Use	acre
D,Scrub,VSteep(>15\%)	1.075
D,Open Brush,VSteep	1.075
Pervious Total	2.15
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.15

Element Flows To:
Surface
Interflow
Groundwater

DMA1
Bypass: No

GroundWater: No
Pervious Land Use acre
D,Urban,Flat(0-5\%) 0.322
Pervious Total 0.322
Impervious Land Use acre
Impervious,Flat(0-5) $\quad 1.828$
Impervious Total 1.828
Basin Total 2.15

Element Flows To:

Surface	Interflow
Tank 1	Tank 1

Tank 1 Tank 1

Groundwater

Routing Elements
Predeveloped Routing

Tank 1
Dimensions

Depth:
Tank Type:
Diameter:
Length:
Discharge Structure
Riser Height:
Riser Diameter:
Notch Type:
Notch Width:
Notch Height:
Orifice 1 Diameter: Element Flows To:
Outlet 1

5 ft .
Circular
5 ft .
350 ft .
4 ft .
54 in.
Rectangular
0.500 ft .
1.000 ft .
1.3 in . Elevation:0 ft.

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge(cfs) Infilt(cfs)	
0.0000	0.000000	0.000000	0.000	0.000
0.0556	0.008422	0.000313	0.010	0.000
0.1111	0.011844	0.000881	0.015	0.000
0.1667	0.014423	0.001614	0.018	0.000
0.2222	0.016558	0.002476	0.021	0.000
0.2778	0.018405	0.003448	0.024	0.000
0.3333	0.020043	0.004517	0.026	0.000
0.3889	0.021519	0.005672	0.028	0.000
0.4444	0.022866	0.006906	0.030	0.000
0.5000	0.024105	0.008211	0.032	0.000
0.5556	0.025251	0.009582	0.034	0.000
0.6111	0.026318	0.011015	0.035	0.000
0.6667	0.027313	0.012505	0.037	0.000
0.7222	0.028246	0.014049	0.039	0.000
0.7778	0.029121	0.015642	0.040	0.000
0.8333	0.029944	0.017283	0.041	0.000
0.8889	0.030719	0.018969	0.043	0.000
0.9444	0.031450	0.020696	0.044	0.000
1.0000	0.032140	0.022462	0.045	0.000
1.0556	0.032790	0.024266	0.047	0.000
1.1111	0.033404	0.026105	0.048	0.000
1.1667	0.033984	0.027977	0.049	0.000
1.2222	0.034531	0.029880	0.050	0.000
1.2778	0.035046	0.031813	0.051	0.000
1.3333	0.035532	0.033774	0.053	0.000
1.3889	0.035989	0.035761	0.054	0.000
1.4444	0.036418	0.037772	0.055	0.000
1.5000	0.036821	0.039807	0.056	0.000
1.5556	0.037197	0.041863	0.057	0.000
1.6111	0.037549	0.043939	0.058	0.000
1.6667	0.037877	0.046034	0.059	0.000
1.7222	0.038181	0.048147	0.060	0.000
1.7778	0.038462	0.050276	0.061	0.000
1.8333	0.038720	0.052420	0.062	0.000
1.8889	0.038956	0.054578	0.063	0.000

1.9444	0.039170	0.056748	0.064	0.000
2.0000	0.039363	0.058930	0.064	0.000
2.0556	0.039535	0.061122	0.065	0.000
2.1111	0.039685	0.063322	0.066	0.000
2.1667	0.039816	0.065531	0.067	0.000
2.2222	0.039926	0.067746	0.068	0.000
2.2778	0.040015	0.069966	0.069	0.000
2.3333	0.040085	0.072192	0.070	0.000
2.3889	0.040135	0.074420	0.070	0.000
2.4444	0.040165	0.076651	0.071	0.000
2.5000	0.040174	0.078882	0.072	0.000
2.5556	0.040165	0.081114	0.073	0.000
2.6111	0.040135	0.083345	0.074	0.000
2.6667	0.040085	0.085573	0.074	0.000
2.7222	0.040015	0.087798	0.075	0.000
2.7778	0.039926	0.090019	0.076	0.000
2.8333	0.039816	0.092234	0.077	0.000
2.8889	0.039685	0.094443	0.077	0.000
2.9444	0.039535	0.096643	0.078	0.000
3.0000	0.039363	0.098835	0.079	0.000
3.0556	0.039170	0.101016	0.102	0.000
3.1111	0.038956	0.103187	0.142	0.000
3.1667	0.038720	0.105344	0.194	0.000
3.2222	0.038462	0.107488	0.256	0.000
3.2778	0.038181	0.109618	0.326	0.000
3.3333	0.037877	0.111730	0.404	0.000
3.3889	0.037549	0.113826	0.488	0.000
3.4444	0.037197	0.115902	0.578	0.000
3.5000	0.036821	0.117958	0.674	0.000
3.5556	0.036418	0.119993	0.775	0.000
3.6111	0.035989	0.122004	0.882	0.000
3.6667	0.035532	0.123991	0.994	0.000
3.7222	0.035046	0.125952	1.110	0.000
3.7778	0.034531	0.127884	1.231	0.000
3.8333	0.033984	0.129788	1.356	0.000
3.8889	0.033404	0.131660	1.485	0.000
3.9444	0.032790	0.133499	1.619	0.000
4.0000	0.032140	0.135302	1.756	0.000
4.0556	0.031450	0.137069	2.382	0.000
4.1111	0.030719	0.138796	3.526	0.000
4.1667	0.029944	0.140481	5.005	0.000
4.2222	0.029121	0.142122	6.755	0.000
4.2778	0.028246	0.143716	8.736	0.000
4.3333	0.027313	0.145260	10.92	0.000
4.3889	0.026318	0.146750	13.29	0.000
4.4444	0.025251	0.148183	15.82	0.000
4.50000	0.024105	0.149554	18.50	0.000
4.5556	0.022866	0.150859	21.32	0.000
4.6111	0.021519	0.152093	24.25	0.000
4.6667	0.020043	0.153248	27.28	0.000
4.7222	0.018405	0.154317	30.39	0.000
4.7778	0.016558	0.155289	33.58	0.000
4.8333	0.014423	0.156151	36.82	0.000
4.8889	0.011844	0.156883	40.09	0.000
4.3444	0.008422	0.157452	43.39	0.000
5.00000	0.000000	0.157765	46.70	0.000
5.0556	0.000000	0.000000	49.99	0.000

Analysis Results POC 1

+ Predeveloped

x Mitigated

Predeveloped Landuse Totals for POC \#1
Total Pervious Area:
2.15

Total Impervious Area: 0
Mitigated Landuse Totals for POC \#1
Total Pervious Area: 0.322
Total Impervious Area: 1.828
Flow Frequency Method: Cunnane
Flow Frequency Return Periods for Predeveloped. POC \#1
Return Period Flow(cfs)

2 year 0.774345
5 year
0.957521

10 year
1.154086

25 year
1.480801

Flow Frequency Return Periods for Mitigated. POC \#1
Return Period
Flow(cfs)
2 year
5 year
10 year
0.655779

25 year
0.838205
1.044747
1.300589

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0774	1219	1351	110	Pass
0.0883	1113	973	87	Pass
0.0992	1012	883	87	Pass
0.1101	956	826	86	Pass
0.1209	893	785	87	Pass
0.1318	830	737	88	Pass
0.1427	779	694	89	Pass
0.1536	737	652	88	Pass
0.1644	691	616	89	Pass
0.1753	645	588	91	Pass
0.1862	605	548	90	Pass
0.1971	571	506	88	Pass
0.2079	540	475	87	Pass
0.2188	512	444	86	Pass
0.2297	473	424	89	Pass
0.2406	443	398	89	Pass
0.2514	414	382	92	Pass
0.2623	388	363	93	Pass
0.2732	370	340	91	Pass
0.2841	349	327	93	Pass
0.2949	326	315	96	Pass
0.3058	304	305	100	Pass
0.3167	294	289	98	Pass
0.3276	279	274	98	Pass
0.3384	265	259	97	Pass
0.3493	255	244	95	Pass
0.3602	236	229	97	Pass
0.3711	223	221	99	Pass
0.3819	213	203	95	Pass
0.3928	204	190	93	Pass
0.4037	194	184	94	Pass
0.4146	181	173	95	Pass
0.4254	179	165	92	Pass
0.4363	169	156	92	Pass
0.4472	163	150	92	Pass
0.4581	158	141	89	Pass
0.4689	149	135	90	Pass
0.4798	145	131	90	Pass
0.4907	142	124	87	Pass
0.5016	137	114	83	Pass
0.5124	128	107	83	Pass
0.5233	121	102	84	Pass
0.5342	115	97	84	Pass
0.5451	112	90	80	Pass
0.5559	109	88	80	Pass
0.5668	106	83	78	Pass
0.5777	103	79	76	Pass
0.5886	98	78	79	Pass
0.5994	94	72	76	Pass
0.6103	90	70	77	Pass
0.6212	86	67	77	Pass
0.6321	82	63	76	Pass
0.6429	77	59	76	Pass

0.6538	74	53	71	Pass
0.6647	71	49	69	Pass
0.6756	68	46	67	Pass
0.6864	68	44	64	Pass
0.6973	67	43	64	Pass
0.7082	62	40	64	Pass
0.7191	58	39	67	Pass
0.7300	58	37	63	Pass
0.7408	57	35	61	Pass
0.7517	52	33	63	Pass
0.7626	51	28	54	Pass
0.7735	47	27	57	Pass
0.7843	43	25	58	Pass
0.7952	42	23	54	Pass
0.8061	37	23	62	Pass
0.8170	36	21	58	Pass
0.8278	34	20	58	Pass
0.8387	30	20	66	Pass
0.8496	29	19	65	Pass
0.8605	29	19	65	Pass
0.8713	27	19	70	Pass
0.8822	25	19	76	Pass
0.8931	25	19	76	Pass
0.9040	25	19	76	Pass
0.9148	24	18	75	Pass
0.9257	20	16	80	Pass
0.9366	20	14	70	Pass
0.9475	19	13	68	Pass
0.9583	18	13	72	Pass
0.9692	18	13	72	Pass
0.9801	17	11	64	Pass
0.9910	17	10	58	Pass
1.0018	17	10	58	Pass
1.0127	17	10	58	Pass
1.0236	16	10	10	62
1.0345	16	10	62	Pass
1.0453	16	10	62	Pass
1.0562	16	8	50	Pass
1.0671	16	8	50	Pass
1.0780	15	8	53	Pass
1.0888	15	7	46	Pass
1.0997	15	7	46	Pass
1.1106	13	7	53	Pass
1.1215	13	7	53	Pass
1.1323	10	7	70	Pass
1.1432	10	7	70	Pass
1.1541	10	7	Pass	

Water Quality

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.
IMPLND Changes
No IMPLND changes have been made.

Appendix

Predeveloped Schematic

Mitigated Schematic

Predeveloped UCI File

RUN
GLOBAL
WWHM4 model simulation
START 19491001 END 20060930
RUN INTERP OUTPUT
RESUME 0 RUN 1
UNIT SYSTEM 1
END GLOBAL
FILES

```
<File> <Un#> <------------File Name---------------------------------------------
<-ID-> 26 CUSD2.wd
MESSU 25 PreCUSD2.MES
27 PreCUSD2.L61
28 PreCUSD2.L62
30 POCCUSD21.dat
```

END FILES
OPN SEQUENCE
INGRP INDELT 00:60
PERLND 40
PERLND 44
COPY 501
DISPLY
DINPE
END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1
\# - \#<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
1 Basin 1 MAX $\quad 1 \begin{array}{lllll} & 2 & 30 & 9\end{array}$
END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES
\# - \# NPT NMN ***
501 1 1
END TIMESERIES
END COPY
GENER
OPCODE
\# \# OPCD ***
END OPCODE
PARM
\# \# K ***
END PARM
END GENER
PERLND
GEN-INFO
<PLS ><-------Name------->NBLKS Unit-systems Printer ***
\# \# User t-series Engl Metr ***
40 D,Scrub, VSteep (>15\%) $40 \begin{array}{lllllll}0\end{array}$
44 D,Open Brush, VSteep $1 \begin{array}{lllllll}0\end{array}$
END GEN-INFO
*** Section PWATER***
ACTIVITY

\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
$\begin{array}{lllllllllllll}40 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 44 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
END ACTIVITY
PRINT-INFO
<PLS > ***************** Print-flags ***************************** PIVL PYR
\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********

END PERLND
IMP LND
GEN-INFO
<PLS ><-------Name-------> Unit-systems Printer $* * *$
\# - \# User t-series Engl Metr $\begin{gathered}* * * \\ \text { in out }\end{gathered}$
END GEN-INFO
*** Section IWATER***
ACTIVITY

\# - \# ATMP SNOW IWAT SLD IWG IQAL ***
END ACTIVITY
PRINT-INFO
<ILS > ******** Print-flags ******** PIVL PYR
\# - \# ATMP SNOW IWAT SLD IWG IQAL *********
END PRINT-INFO

```
IWAT-PARM1
    <PLS > IWATER variable monthly parameter value flags ***
    # - # CSNO RTOP VRS VNN RTLI ***
END IWAT-PARM1
IWAT-PARM2
    <PLS > IWATER input info: Part 2 ***
    # - # *** LSUR SLSUR NSUR RETSC
END IWAT-PARM2
IWAT-PARM3
    <PLS > IWATER input info: Part 3 ***
    # - # ***PETMAX PETMIN
END IWAT-PARM3
IWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
    # - # *** RETS SURS
END IWAT-STATE1
```

END IMPLND

SCHEMATIC						
<-Source->		<--Area-->	<-Targ	t->	MBLK	***
<Name>	\#	<-factor->	<Name>	\#	Tbl\#	***
Basin	1***					
PERLND	40	1.075	COPY	501	12	
PERLND	40	1.075	COPY	501	13	
PERLND	44	1.075	COPY	501	12	
PERLND	44	1.075	COPY	501	13	

NETWORK

<-Volume->	<-Grp>	<-Member-><--Mult-->Tran	<-Target	vols>	<-Grp>	<-Member->	***	
<Name>	\#		<Name> \# \#<-factor->strg	<Name>	\#	\#		<Name> \# \# **
COPY	501	OUTPUT	MEAN	1	1	12.1	DISPLY	1

```
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
END NETWORK
RCHRES
    GEN-INFO
        RCHRES Name Nexits Unit Systems Printer m
                            in out ***
    END GEN-INFO
    *** Section RCHRES***
    ACTIVITY
        <PLS > ************* Active Sections *****************************
        # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
    END ACTIVITY
    PRINT-INFO
        <PLS > ******************** Print-flags ********************** PIVL PYR
        # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *********
    END PRINT-INFO
    HYDR-PARM1
        RCHRES Flags for each HYDR Section ***
        # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each
                        FG FG FG FG possible exit *** possible exit possible exit
```

 END HYDR-PARM1

END MASS-LINK

END RUN

Mitigated UCI File

RUN
GLOBAL
WWHM4 model simulation
START 19491001 END 20060930
RUN INTERP OUTPUT LEVE
RESUME 0 RUN 1
UNIT SYSTEM 1
END GLOBAL
FILES

```
<File> <Un#> <------------File Name---------------------------------------------
<-ID->
WDM 26 CUSD2.wdm
MESSU 25 MitCUSD2.MES
27 MitCUSD2.L61
28 MitCUSD2.L62
30 POCCUSD21.dat
```

END FILES
OPN SEQUENCE
INGRP INDELT 00:60
PERLND 61
IMPLND 1
RCHRES 1
COPY 1
COPY 501
DISPLY 1
END INGRP
END OPN SEQUENCE
DISPLY
DISPLY-INFO1
\# - \#<----------Title----------->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
$1 \begin{array}{lllllll}1 & \text { Tank } 1 & \text { MAX } & 1 & 2 & 30 & 9\end{array}$
END DISPLY-INFO1
END DISPLY
COPY
TIMESERIES

$\#$	\#	NPT	NMN
1		1	1
501		1	1

 END TIMESERIES
 END COPY
GENER
OPCODE
\# \# OPCD ***
END OPCODE
PARM
\# \# K ***
END PARM
END GENER
PERLND
GEN-INFO
<PLS ><-------Name------->NBLKS Unit-systems Printer ***
\# - \# User t-series Engl Metr ***
61 D,Urban,Flat (0-5\%) 1 1 1
END GEN-INFO
*** Section PWATER***
ACTIVITY

\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
$61 \begin{array}{lllllllllllll} & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
END ACTIVITY
PRINT-INFO
<PLS > ***************** Print-flags ******************************RIVL PYR
\# - \# ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********


```
END PERLND
IMPLND
    GEN-INFO
        <PLS ><-------Name-------> Unit-systems Printer ***
        # - U User t-series Engl Metr ***
        1 Impervious,Flat(0-5) 1 1 1 1 27 0
    END GEN-INFO
    *** Section IWATER***
    ACTIVITY
        <PLS > ************* Active Sections *****************************
        # - # ATMP SNOW IWAT SLD IWG IQAL ***
    END ACTIVITY
    PRINT-INFO
        <ILS > ******** Print-flags ********* PIVL PYR
        # - # ATMP SNOW IWAT SLD IWG IQAL *********
        1 0 0 0 4 4 0
    END PRINT-INFO
    IWAT-PARM1
        <PLS > IWATER variable monthly parameter value flags ***
        # - # CSNO RTOP VRS VNN RTLI ***
```



```
END IWAT-PARM1
IWAT-PARM2
    <PLS > IWATER input info: Part 2 ***
    # - # *** LSUR SLSUR NSUR RETSC
    1 100 0.05 0.1 0.1
END IWAT-PARM2
IWAT-PARM3
    <PLS > IWATER input info: Part 3 ***
    # - # ***PETMAX PETMIN
    1 0 0
END IWAT-PARM3
IWAT-STATE1
    <PLS > *** Initial conditions at start of simulation
    # - # *** RETS SURS
    1 0 0
END IWAT-STATE1
```

END IMPLND

NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<Name> \# <Name> \# \#<-factor->strg <Name> \# \# <Name> \# \# ***
COPY 501 OUTPUT MEAN 1112.1 DISPLY 1 INPUT TIMSER 1
$\begin{array}{lllll}\text { <-Volume-> <-Grp> } & \text { <-Member-><--Mult-->Tran } & \text { <-Target vols> } \\ \text { <Name> } \# & \text { <Name> \# \#<-factor->strg <Name> } \# \text { - Member-> }\end{array}$
END NETWORK
RCHRES

RCHRES	Flags for each HYDR Section															**				
\# - \#	VC	A1	A2	A3	ODFV	G	for	r ea		***	ODGT	FG	for	r ea		FUN	CT			each
	FG	FG	$\underset{\star}{\mathrm{FG}}$	FG	$\underset{\star}{\operatorname{poss}}$	$\underset{\star}{i b l}$	*	$\underset{*}{\text { exi }}$	t		${\underset{\star}{\mathrm{p}}}^{2}$	*	*	$\underset{*}{\text { exi }}$	*	pos	sib			exit
1	0	1	0	0	4	0	0	0	0		0	0	0	0	0	2	2	2		2

END HYDR-PARM1
END HYDR-PARM2
HYDR-INIT
RCHRES Initial conditions for each HYDR section ***
\# - \# *** VOL Initial value of COLIND Initial value of OUTDGT
*** ac-ft for each possible exit for each possible exit
<------><--------->
<---><---><---><---><---> *** <---><---><---><---><--->

END HYDR-INIT
END RCHRES

```
SPEC-ACTIONS
END SPEC-ACTIONS
```

FTABLES
FTABLE
${ }^{91} \begin{array}{r}4 \\ \text { Depth }\end{array}$
(ft)
0.000000
0.000000
0.055556
0.111111
0.166667
0.222222
0.277778
0.333333
0.388889
0.444444
0.500000
0.555556
0.611111
0.666667
0.722222
0.777778
0.833333
0.888889
0.944444
1.000000
1.055556
1.111111
1.166667
1.222222
1.277778
1.333333
1.388889
1.444444
1.500000
1.555556
1.611111
1.666667
1.722222
1.777778
1.833333
1.888889
1.944444
2.000000
2.055556
2.111111
2.166667
2.222222
2.277778
1
Area
Volume
Outflow1 Velocity Travel Time***

 \(\begin{array}{cc}\text { (acres) } & \text { (acre-ft) } \\ 0.000000 & 0.000000\end{array}\)
 (cfs) (ft/sec) (Minutes)***
 END RCHRES

2.333333	0.040085	0.072192	0.070054
2.388889	0.040135	0.074420	0.070883
2.444444	0.040165	0.076651	0.071703
2.500000	0.040174	0.078882	0.072513
2.555556	0.040165	0.081114	0.073314
2.611111	0.040135	0.083345	0.074107
2.666667	0.040085	0.085573	0.074891
2.722222	0.040015	0.087798	0.075667
2.777778	0.039926	0.090019	0.076435
2.833333	0.039816	0.092234	0.077196
2.888889	0.039685	0.094443	0.077949
2.944444	0.039535	0.096643	0.078695
3.000000	0.039363	0.098835	0.079434
3.055556	0.039170	0.101016	0.101969
3.111111	0.038956	0.103187	0.142558
3.166667	0.038720	0.105344	0.194900
3.222222	0.038462	0.107488	0.256743
3.277778	0.038181	0.109618	0.326789
3.333333	0.037877	0.111730	0.404160
3.388889	0.037549	0.113826	0.488213
3.444444	0.037197	0.115902	0.578448
3.500000	0.036821	0.117958	0.674465
3.555556	0.036418	0.119993	0.775931
3.611111	0.035989	0.122004	0.882566
3.666667	0.035532	0.123991	0.994129
3.722222	0.035046	0.125952	1.110409
3.777778	0.034531	0.127884	1.231221
3.833333	0.033984	0.129788	1.356400
3.888889	0.033404	0.131660	1.485797
3.944444	0.032790	0.133499	1.619279
4.000000	0.032140	0.135302	1.756722
4.055556	0.031450	0.137069	2.382815
4.111111	0.030719	0.138796	3.526088
4.166667	0.029944	0.140481	5.005245
4.222222	0.029121	0.142122	6.755072
4.277778	0.028246	0.143716	8.736928
4.333333	0.027313	0.145260	10.92344
4.388889	0.026318	0.146750	13.29295
4.444444	0.025251	0.148183	15.82691
4.500000	0.024105	0.149554	18.50849
4.555556	0.022866	0.150859	21.32177
4.611111	0.021519	0.152093	24.25124
4.666667	0.020043	0.153248	27.28152
4.722222	0.018405	0.154317	30.39715
4.777778	0.016558	0.155289	33.58249
4.833333	0.014423	0.156151	36.82172
4.888889	0.011844	0.156883	40.09879
4.944444	0.008422	0.157452	43.39751
5.000000	0.001000	0.157765	46.70158
END 7 FTABLE	1		
2		0	

END EXT SOURCES
EXT TARGETS

MASS-LINK					
<Volume> <-Grp>	<-Member->	><--Mult-->	<Target>	<-Grp>	<-Member->***
<Name> MASS-LINK	<Name> \# 2	\#<-factor->	<Name>		<Name> \# \#***
PERLND PWATER	SURO	0.083333	RCHRES	INFLOW	IVOL
END MASS-LINK	2				
MASS-LINK	3				
PERLND PWATER	IFWO	0.083333	RCHRES	INFLOW	IVOL
END MASS-LINK	3				
MASS-LINK	5				
IMPLND IWATER	SURO	0.083333	RCHRES	INFLOW	IVOL
END MASS-LINK	5				
MASS-LINK	12				
PERLND PWATER	SURO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	12				
MASS-LINK	13				
PERLND PWATER	IFWO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	13				
MASS-LINK	15				
IMPLND IWATER	SURO	0.083333	COPY	INPUT	MEAN
END MASS-LINK	15				
MASS-LINK	16				
RCHRES ROFLOW			COPY	INPUT	MEAN
END MASS-LINK	16				

END MASS-LINK
END RUN

Mitigated HSPF Message File

ERROR/WARNING ID: 238 1

The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.
Relevant data are:
DATE/TIME: 1962/11/30 24: 0
RCHRES : 1

RELERR	STORS	STOR	MATIN	MATDIF
$-1.718 \mathrm{E}-02$	0.00000	$0.0000 \mathrm{E}+00$	0.00000	$3.8243 \mathrm{E}-12$

Where:
RELERR is the relative error (ERROR/REFVAL).
ERROR is (STOR-STORS) - MATDIF.
REFVAL is the reference value (STORS+MATIN).
STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval.
STORS is the storage of material in the pu at the start of the present printout reporting period.
MATIN is the total inflow of material to the pu during the present printout reporting period.
MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

ERROR/WARNING ID: 238 1

The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.
Relevant data are:
DATE/TIME: 1962/12/31 24: 0
RCHRES : 1

RELERR	STORS	STOR	MATIN	MATDIF
$-4.484 \mathrm{E}-01$	0.00000	$0.0000 \mathrm{E}+00$	0.00000	$4.5677 \mathrm{E}-11$

Where:
RELERR is the relative error (ERROR/REFVAL).
ERROR is (STOR-STORS) - MATDIF.
REFVAL is the reference value (STORS+MATIN).
STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval.
STORS is the storage of material in the pu at the start of the present printout reporting period.
MATIN is the total inflow of material to the pu during the present printout reporting period.
MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

ERROR/WARNING ID: 2381
The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.
Relevant data are:

DATE/TIME: 1980/11/30 24: 0
RCHRES : 1

RELERR	STORS	STOR	MATIN	MATDIF
$-2.872 \mathrm{E}-02$	0.00000	$0.0000 \mathrm{E}+00$	0.00000	$7.2466 \mathrm{E}-12$

Where:

```
RELERR is the relative error (ERROR/REFVAL).
ERROR is (STOR-STORS) - MATDIF.
REFVAL is the reference value (STORS+MATIN).
STOR is the storage of material in the processing unit (land-segment or
reach/reservior) at the end of the present interval.
STORS is the storage of material in the pu at the start of the present
printout reporting period.
MATIN is the total inflow of material to the pu during the present printout
reporting period.
MATDIF is the net inflow (inflow-outflow) of material to the pu during the
present printout reporting period.
```

ERROR/WARNING ID: 2381
The continuity error reported below is greater than 1 part in 1000 and is
therefore considered high.
Did you specify any "special actions"? If so, they could account for it.
Relevant data are:
DATE/TIME: 1999/12/31 24: 0
RCHRES : 1

RELERR	STORS	STOR	MATIN	MATDIF
$-1.827 E-02$	0.00000	$0.0000 \mathrm{E}+00$	0.00000	$3.4807 \mathrm{E}-12$

Where:
RELERR is the relative error (ERROR/REFVAL).
ERROR is (STOR-STORS) - MATDIF.
REFVAL is the reference value (STORS+MATIN).
STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval.
STORS is the storage of material in the pu at the start of the present printout reporting period.
MATIN is the total inflow of material to the pu during the present printout reporting period.
MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period.

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2021; All Rights Reserved.

Clear Creek Solutions, Inc.
6200 Capitol Blvd. Ste F
Olympia, WA. 98501
Toll Free 1(866)943-0304
Local (360)943-0304
www.clearcreeksolutions.com

ATTACHMENT F
 CONDITIONS OF APPROVAL

Attachment G

Geotechnical Feasibility Report

May 15, 2018
Project No. 18045-01

Mr. Jon Conk
Project Dimensions, Inc.
4 Park Plaza, Suite 700
Irvine, California 92614

Subject: Summary of Geotechnical Evaluation and Feasibility Study, Residential Development, Paseo De La Colinas, Laguna Niguel, California

Introduction

In accordance with your request and authorization, LGC Geotechnical, Inc. has performed a preliminary geotechnical evaluation and feasibility study for the proposed residential development to be located at a property located between Niguel Hills Middle School and Paseo De La Colinas in the City of Laguna Niguel, California. We have prepared this report to present the findings of our study and our conclusions with regard to feasibility of site development from a geotechnical standpoint.

Site Description

The subject site is a 2.5 -acre property located between Niguel Hills Middle School and Paseo De La Colinas in the City of Laguna Niguel, California (Figure 1). The site is a roughly rectangular-shaped, flat site, with slopes descending from the north and west sides. The flat portion of the site is at an elevation of approximately 470 feet above mean sea-level (msl). The west-facing slope is approximately 40 feet tall, at an inclination of approximately $2: 1$ (horizontal to vertical). The north-facing slope is approximately 80 feet tall, at an inclination of approximately $1.5: 1$ (horizontal to vertical). Vegetation on the slopes is generally comprised of low brush, and weeds. Some bare dirt areas are also present. The flat portion of the site is covered in areas by asphalt concrete, gravel and bare dirt and is currently being utilized for auto parking.

We understand that potential development of the site may include grading for and construction of 30 at-grade multi-family residential units, associated interior drives and parking.

Geotechnical Evaluation

The field portion of our evaluation included geologic mapping of the site and excavation of two largediameter borings (BA-1 \& BA-2) in the top of slope area in the northern and western portions of the site, respectively (see Geologic Map, Sheet 1). Borings BA-1 and BA-2 were drilled and sampled to depth of 90 feet and 55 feet below existing grade, respectively. The borings were then entered and down-hole logged by a geologist from our firm. The boring logs are included with this report.

Based on the findings of our study, a geologic model of the site geologic conditions was prepared. The geologic model is presented on Cross-Sections A-A', B-B' \& C-C' (Figures 2, 3 \& 4, respectively).

Laboratory Testing

Representative driven and bulk samples were retained for laboratory testing during our field evaluation. Laboratory testing included in-situ dry density and moisture content, Atterberg Limits and direct shear. A summary of the laboratory test results is provided in Appendix C.

- Dry density values ranged from approximately 88 pounds per cubic foot (pcf) to 104 pcf with an average of 98 pcf. Field moisture contents ranged from approximately 22 percent to 32 percent with an average of 25 percent.
- Two Atterberg Limits tests were performed. Results indicated Plasticity Index values of 27 and 42.
- Direct shear tests were performed on select obtained driven soil samples. The shear plots are provided in Appendix C.

A summary of the laboratory test results is presented in Appendix C. The moisture and dry unit weight results are presented on the boring logs in Appendix B.

Geotechnical Conditions

Based on our evaluation, the site is underlain by Capistrano Formation bedrock material. Generally, the Capistrano Formation consists of a weak, clayey siltstone with some interbedded silty sandstone. Bedding within the boring was found to be nearly flat to gently dipping into the slope. Capistrano Formation material and fill derived from it typically has a high potential for expansion and are considered to be "severely" corrosive to concrete.

No active or inactive faults are mapped in the vicinity of the site (CGS, 1974). No landslides were observed or have been mapped in the vicinity of the site (CGS, 1974). The slopes descending from the site are located in a zone of potential seismically-induced landsliding (CGS, 2001b). The site is not located in a zone of potential seismically-induced liquefaction (CGS, 2001b).

Minor groundwater seepage was observed along sandy beds and along some joints. Historic high groundwater is not mapped on the site (CGS, 2001a).

Soil Shear Strength Parameters

The soil shear strength parameters utilized in our slope stability analysis are based on laboratory testing, published shear strength data (CDMG, 2001a) and engineering judgment. The along bedding clay shear strength is based on published shear strength correlations (Liquid Limit) for drained fully-softened friction angle (Stark and Hussain, 2013). Soil shear strength parameters for seismic loading conditions were increased (below composite peak strength) for Capistrano Formation bedrock. Table 1 summarizes the static shear strength parameters utilized in our analysis.

TABLE 1
Static Soil Shear Strength Parameters for Slope Stability Analysis

Soil Type	ϕ (Degrees)	Cohesion (psf)
Capistrano Formation (Tc)	26	300
Along Clay Bed	18	0

Slope Stability Analysis

Slope stability analysis was performed on a two-dimensional cross-sectional model (Cross-Sections A-A' through C-C', Figures 2 through 4) positioned through the northern and western site slopes. The cross-sections were drawn approximately perpendicular to the face of the slope at each location.

Slope stability analysis was performed using the computer program GSTABL7 with STEDwin version 2.005.3 (Gregory Geotechnical Software, 2013). Potential rotational and block surfaces were analyzed using Bishop's Modified Method and Janbu's Simplified Method, respectively. Slope stability analysis was performed for static and seismic loading conditions. A minimum factor of safety of 1.5 is typically required for static loading conditions. Seismic slope stability analysis was performed in accordance with the County of Orange Grading Manual (1993). Where applicable, the County of Orange Grading Manual requires a horizontal seismic coefficient (Kh) of 0.15 with a minimum resulting factor of safety of 1.1 . Since the clay bed is less than 12 degrees from the horizontal, pseudostatic (seismic) slope stability was not performed for block surfaces in accordance with County of Orange Grading Manual.

The results of our analyses indicate that the existing northern portion of the site has a static factor of safety less than 1.5 and requires a structural set-back zone of 60 horizontal feet from the top-of-slope in order to provide the required static factor of safety of 1.5 (refer to the Geologic Map and Cross Section A-A' Refer to the Slope stability analysis provided in Appendix D.

Conclusions and Recommendations

Based on the results of our preliminary geotechnical evaluation, it is our professional opinion that proposed development of the site is feasible from a geotechnical standpoint. However, significant slope stability issues will need to be considered. This and the other geotechnical constraints and advantages of the site are discussed in the follow subsections.

Please note that the subject evaluation was focused on the geotechnical stability of the site and feasibility of site development in consideration of the geologic constraints encountered. The intent of this study was to provide sufficient data to allow prospective developers to understand the site geologic conditions and how they will impact the proposed site development. Once development plans have been prepared, additional geotechnical analyses and laboratory testing must be performed in order to provide design-level geotechnical recommendations. A full geotechnical evaluation report can be prepared at that time, including project specific conclusions, recommendations and parameters for site design, grading and construction. It is anticipated that the scope of services described herein will contribute data to that study.

1) Slope Stability

Based on the findings of our study, slope stability indicates that the top of slope area in the northern portion of the site has a static factor of safety less than 1.5 for the current site conditions. Accordingly, structural improvements must be set back at least 60 horizontal feet from the top of slope in the northern portion of the site (see Geologic Map). We recommend that no structures designed for human occupancy be constructed in this area. However, this does not preclude the construction of patio slabs, small retaining walls, drainage swales, landscape related features, and the like with the understanding that these improvements will be founded in an area that may undergo tilting/deflection and cracking and could potentially be rendered unusable. Elsewhere on the site, slope stability analysis generally indicates adequate static and seismic slope stability factor of safety.

The site is not located within a State of California Seismic Hazard Zone for earthquake-induced landslides (CGS, 2001b). No landslides were observed during our site visit or are mapped in the vicinity of the site (CGS, 1974).

2) Seismicity

The subject site is not located within a Fault Rupture Hazard Zone and there are no active or potentially active faults mapped on or in close vicinity of the site (CGS, 1974).

The main seismic hazard that may affect the site is from ground shaking from one of the active regional faults. The subject site will likely experience strong seismic ground shaking during its design life. Parameters for seismic design in accordance with the current California Building Code should be provided in future geotechnical reports for the project.

3) Liquefaction

The site is not located in a zone of potential seismically-induced liquefaction (CGS, 2001b).

4) Expansive Soils

The majority of the onsite soils are expected to have a High to Very High expansion potential. Mitigation measures are recommended for foundations and site improvements like concrete flatwork to minimize the impacts of expansive site soils. Pre-soaking of the subgrade for building slabs and flatwork is recommended due to site expansive soils.

5) Corrosive Soils

Based on experience in the area, site soils are considered to be "severely" corrosive to concrete.

6) Groundwater

Groundwater was not encountered to maximum explored depth of approximately 90 feet below existing grade. Historic high groundwater is not mapped on the site (CGS, 2001a).

7) Remedial Grading

The depth of potentially compressible materials recommended for removal during site remedial grading are estimated to extend from approximately 3 to 5 feet below existing grades. This should be further evaluated based on the proposed grading plan and structural loads of the proposed building structures.

8) Rippability and Oversized Material

In general, rippability is not anticipated to be an issue during the majority of site grading. It is anticipated that the onsite materials, within the limits of proposed grading, may be excavated with conventional construction equipment.

Generation of some oversized material (material larger than 8 inches in maximum dimension) during site grading should be anticipated. Recommendations for appropriate handling of oversized materials should be provided in future geotechnical reports for the project.

9) Temporary Excavations

Excavations should be made in accordance with $\mathrm{Cal} / \mathrm{OSHA}$, as a general guideline. Excavation safety is the sole responsibility of the contractor.

10) Fill Placement

In general, it appears that the onsite soils should be considered geotechnically suitable for use as compacted fill provided the soils are free of organics, oversized rock and other deleterious material. Oversized rock may be placed in nonstructural areas or in structural fills if placed in accordance with the recommendations of the geotechnical consultant and local grading codes.

The site contains soils that are not suitable for retaining wall backfill due to their fines content and expansion potential, therefore import of sandy soils will be required by the contractor for obtaining suitable backfill soil for planned site retaining walls.

Limitations

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

Our services were provided in order to form an opinion concerning the suitability of the proposed development relative to the geotechnical aspects of the site. The data and information provided in this report are based on observations made by representatives of our firm during a brief site visit. This report is not a warranty of the work performed by others.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification, and should not be relied upon after a period of 3 years.

Should you have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Respectfully,

LGC Geotechnical, Inc.

Brad Zellmer, GE 2618 Project Engineer

KBC/BTZ/aca
Attachments: Figure 1 - Site Location Map
Figure 2 - Cross-Section A-A'
Figure 3 - Cross-Section B-B'
Figure 4 - Cross-Section C-C'
Sheet 1 - Geologic Map
Appendix A - References
Appendix B - Boring Logs
Appendix C - Laboratory Test Results
Appendix D - Slope Stability Analysis
Distribution: (4) Addressee (1 electronic copy \& 3 wet-signed copies)

Approximate Site Location

FIGURE 1
Site Location Map

PROJECT NAME	Laguna Niguel - Paseo de la Colinas
PROJECT NO.	$18045-01$
ENG. / GEOL.	BTZ/KBC
SCALE	Not to Scale
DATE	May 2018

Figure 2 Cross Section A-A'

PROJECT NAME	Paseo De La Colinas

PROJECT NO.	$18045-01$

ENG. / GEOL.	BTZ/KBC

ENG. GEOL.	BTZ/KBC
SCALE	$1^{\prime \prime}=40^{\prime}$
DAIE	

Figure 3 Cross Section B-B'

PROJECT NAME	Paseo De La Colinas

PROJECT NO.	$18045-01$

FROJEC	
ENG. GEOL.	BTZ/KBC

SCALE	$1^{\prime \prime}=40^{\prime}$

Appendix A
 References

References

California Geological Survey (CGS), (Previously California Division of Mines and Geology), 1974, Geologic Map of the San Juan Capistrano Quadrangle, Orange County, California, Paul K. Morton, William J. Edgington and Donald L. Fife, Scale: 1:12,000.
\qquad , 2000, Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region, CDMG CD 2000-03.
\qquad , 2001a, Seismic Hazard Evaluation of the San Juan Capistrano 7.5-Minute Quadrangle, Orange County, California, Open File Report 053.
\qquad , 2001b, State of California Seismic Hazard Zones, San Juan Capistrano Quadrangle, Official Map, Released December 21, 2001.
\qquad , 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps, Special Publication 42, Interim Revision 2007.

County of Orange Grading Manual, 1993, Appendix F, Minimum Standards for Slope Stability Analysis.
Gregory Geotechnical Software, 2013, GSTABL7, Version 2.005.3, March.
Stark T.D., Choi, H., and McCone, S., 2005, Drained shear strength parameters for analysis of landslides, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 575-588, dated May 2005.

Stark, T.D., Hussain, M., 2013, Empirical Correlations: Drained shear strength for slope stability analysis, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 853-862, dated June 2013.

Appendix B
Boring Logs

Appendix C Laboratory Test Results

APPENDIX C

Laboratory Test Results

The laboratory testing program was directed towards providing quantitative data relating to the relevant engineering properties of the soils. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

Moisture and Density Determination Tests: Moisture content (ASTM D2216) and dry density determinations (ASTM D2937) were performed on driven samples obtained from the test borings. The results of these tests are presented in the boring logs. Where applicable, only moisture content was determined from undisturbed or disturbed samples.

Atterberg Limits: The liquid and plastic limits ("Atterberg Limits") were determined per ASTM D4318 for engineering classification of fine-grained material and presented in the table below. The USCS soil classification indicated in the table below is based on the portion of sample passing the No. 40 sieve and may not necessarily be representative of the entire sample. The plots are provided in this Appendix.

Sample Location	Liquid Limit (\%)	Plastic Limit (\%)	Plasticity Index (\%)	USCS Soil Classification
BA-1@ 20 ft	54	27	27	CH
BA-1@ 50 ft	65	23	42	CH

Direct Shear: Direct shear tests were performed on selected driven samples, which were soaked for a minimum of 24 hours prior to testing. The samples were tested under various normal loads using a motor-driven, strain-controlled, direct-shear testing apparatus (ASTM D3080). The plot is provided in this Appendix.

ATTERBERG LI MITS

ASTM D 4318

Project Name:	Laguna Niguel
Project No.:	18045-01
Boring No.:	BA-1
Sample No.:	2

Tested By: R. Manning
Input By: J. Ward
Checked By: J. Ward
Depth (ft.)
20.0

Soil Identification: Light olive brown fat clay (CH)

TEST	PLASTIC LIMIT		LIQUID LIMIT			
NO.	1	2	1	2	3	4
Number of Blows [N]			35	26	19	
Wet Wt. of Soil + Cont. (g)	18.61	18.15	24.34	25.12	25.52	
Dry Wt. of Soil + Cont. (g)	17.17	16.70	20.67	21.05	21.28	
Wt. of Container (g)	11.75	11.27	13.58	13.51	13.70	
Moisture Content (\%) [Wn]	26.57	26.70	51.76	53.98	55.94	

Liquid Limit	54
Plastic Limit	27
Plasticity Index	27
Classification	CH

Pl at "A" - Line $=0.73$ (LL-20) \square
One - Point Liquid Limit Calculation $\mathrm{LL}=\mathrm{Wn}(\mathrm{N} / 25)^{0.121}$

\square Wet Preparation Multipoint - Wet
\mathbf{X} Dry Preparation Multipoint - Dry
\mathbf{X} Procedure A Multipoint Test
\square Procedure B One-point Test

Appendix ' Slope Stability Analysis

Summary of Slope Stability Analysis

Cross- Section	File Name	Factor of Safety	Description
A-A'	xa	1.34	Along Clay Bed - Static
	xa15	1.53	Along Clay Bed - 30 ft Set-Back
	xar	1.32	Rotational - Static
	xarx15	1.51	Rotational - $60 \mathrm{ft} \mathrm{Set-Back} \mathrm{-} \mathrm{Static}$
	xarx15e	1.28	Rotational - 60 ft Set-Back - Seismic
B-B'	sec b	1.47	Along Clay Bed - Static
	sec br	1.68	Rotational - Static
	sec bre	1.49	Rotational - Seismic
C-C'	sec c	1.83	Along Clay Bed - Static
	sec cr	1.72	Rotational - Static
	sec cre	1.53	Rotational - Seismic

Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay Bed / Static

Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay Bed / Static
540 (
*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited)
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
(Includes Spencer $\&$ Morgenstern-Price Type Analysis)
Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback
Nonlinear Undrained Shear Strength, Curved Phi Envelope
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
Surfaces, Pseudo- Static \& Newmark Earthquake, and Applied Forces
$* ~$ \qquad
Analysis Run Date:
Time of Run:
Run By:
$5 / 10 / 2018$
03.38 PM
LGC Geotechnical
 gineering\Slope Stability\sec
z: \2018-05\18045-01 Project Dimensions - Paseo de la Colinas \backslash En gineering
Output Filename
gineering\Slope Stability\Sec
plotted Output Filename: English
gineering\Slope Stability\sec Al2018_05\xa.PLT Project Dimensions - Paseo de la Colinas \backslash En
PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ sec A-A'

BOUNDARY COORDINATES						
15 Top	Boundaries		X-Right			
15 Total Boundary	Boundaries					
	X-Left	Y-Left		Y-Right		
Boundary	(ft)	(ft)	(ft)	(ft)		
1	40.00	386.00	80.00	387.00		
2	80.00	387.00	120.00	389.00		
	120.00	389.00	129.00	390.00		
4	129.00	390.00	137.00	395.00		
5	137.00	395.00	166.00	414.00		
6	166.00	414.00	176.00	416.00		
7	176.00	416.00	188.00	425.00		
8	188.00	425.00	214.00	443.00		
9	214.00	443.00	225.00	446.00		
10	225.00	446.00	253.00	464.00		
11	253.00	464.00	260.00	465.00		
12	260.00	465.00	269.00	470.00		
13	269.00	470.00	273.00	471.00		
14	273.00	471.00	280.00	471.00		
User Specified Y-Origin $=\quad 300.00(\mathrm{ft}) \quad 4$						
User Specified Y-Origin $=0(f)$Default C -Plus Value $=0.00(\mathrm{ft})$						
Default Y-plus Value $=0.00(\mathrm{ft}$)						
ISOTROPIC SOIL PARAMETERS						
1 Type(s) of Soil						
Soil Total	Saturated	Cohesion	Friction	Pore Pre		
Type Unit Wt No. (pcf)	t. Unit Wt.	Intercept	Angle	Pressure Const		
	(pcf)	(psf)	(deg)	Param. (ps		
1125.0	125.0	300.0	26.0	0.00 0.		
anisotropic strength parameters						
Soil Type 1 Is Anisotropic						
Number Of Direction Ranges Specified						
Direction	Counterclo	ockwise	Cohesion	F Friction		
Range	Direction	Limit	Intercept	Angle		
	(deg)		(psf)	(deg)		
,	-4.0		300.00	026.00		
2	-1.0		0.00	18.00		
3	90.0		300.00	26.00		

(1) An input value of 0.01 for C and/or Phi will cause Aniso
(2) An input value of 0.02 for Phi will set both Phi and
(3) An input value of 0.03 for Phi will set both Phi and crack.

C equal to zero, with water weight in the tension crack.
Janbus Emirical Coef is being used for the case of c \& phi both >0
Critical Failure Surface Searching Method, Using A Rando Technique
5000 Trial Surfaces Have Been Generated
Boxes Specified For Generation of Central Block Base
Length of Line Segments For Active And Passive Portions of Sength Of Line Segmen
Sliding Block Is

Box	X-Left	Y-Left	X-Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	188.10	425.00	188.10	425.00	0.00
2	190.00	424.90	360.00	417.50	0.80
Following	Are Disp	ed The	most Cri	1 of Th	

** Safety Factors Are Calculated By The Simplified Janbu Method *
Total Number of Trial Surfaces Attempted $=50$
Number of Trial Surfaces With Valid FS $=500$
Statistical Data 0 All Valid FS Values:

Failure surface Specified By 8 coordinate Points
ailure
Point
No.
K-Surf
(ft)

Point	X-Surf
o.	(ft)
1	188.051
2	188.100
3	236.391
4	245.666
5	255.522
6	265.939
7	274.934
8	276.748
	$\begin{gathered} \mathrm{rr} \text { of Saf } \\ 1.337 \end{gathered}$

(ft)
425.036
425.000
422.792
434.581
445.888
456.681
468.685
471.000
of Safety
1.337

2	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681
7	274.934	468.685
7	276.748	471.000
	Factor of Safety	

Failure Surface Specified By 8 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	425.0
2	188.100	425.0
3	236.391	422.7
4	245.666	434.5
5	255.522	445.8
6	265.939	456.6
7	274.934	468.6
8	276.748	471.0

Failure Surface Specified By 8 Coordinate Points

$\underset{* * *}{\text { Factor of Safety }}$

Point No.	X-Surf (ft)	Y-Surf (ft)
1	188.051	425.0
2	188.100	425.0
3	236.391	422.7
4	245.666	434.5
5	255.522	445.8
6	265.939	456.61
7	274.934	468.6
8	276.748	471.0

$\underset{* * *}{\text { Factor of Safety }}$
Failure
Point
Surface Surf
X-Surf

Point	X-Surf
No.	(ft)
1	188.05
2	188.10
3	236.39
4	245.66
5	255.52
6	265.93
7	274.93
8	276.74

Factor of safety
Failure Surface Specified By 8 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	425.036
2	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681

$\begin{array}{lrr}7 & 274.934 & 468.685 \\ 8 & 276.748 & 471.000\end{array}$ $\underset{* * *}{\text { Factor of Safety }}$
Failure Surface Specified By 8 Coordinate Points

$\underset{\star * *}{\text { Factor of }{ }^{225} .748}$
Failure Surface ${ }^{1.337}{ }^{* * * * *}$ Specified By 8 Coordinate Points
Point
No.
O-Surf
$(\mathrm{ft})$$\underset{(\mathrm{ft})}{\text { Y-Sur }}$

No.	(ft)	(ft)
1	188.051	425.036
2	188.100	425.09
3	236.391	422.79
4	245.666	434.58
5	255.522	445.88
		27.939

$\begin{array}{rr}274.934 & 468.685 \\ 276.748 & 471.000\end{array}$
$\underset{* * *}{\text { Factor of }} 1.337$ safety $_{* * *}$
1.337
$* * * * * *$
*ND
OF
GSTABLI
OUTPUT ****

Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay - 30 ft Setback / Static

Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay - 30 ft Setback / Static

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE *
** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 *

SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Includes Spencer
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water

Time of Run
Run By:
5/10/2018
$03: 45 P M$
Inn By:
LGC Geotechnical
gineering\Slope Stability \backslash Sec
A $\backslash 2018 _05 \backslash x a 15$.in Output Filename:

Z: \2018\18045-01 Project Dimensions - Paseo de la Colinas \backslash En gineering\Slope Stability\Sec A\2018_05\xa15.0UT

Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas \backslash En
gineering\Slope Stability\Sec A\2018_05\xa15.PLT
PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec A-A
BOUNDARY COORDINATES

C equal to zero, with water weight in the tension crack
Janbus Empirical Coef is being used for the case of c \& phi both > A Critical Failure Surface Searching Method, Using A Rando Technique
5000 Trial Surfaces Have Been Generated.
Boxes specified for Generation of Central Block Base
Sliding Block Is 10.0

Box	X-Left	Y-Left	X -Right	Y-Right	Height
No.	(ft)	(ft)	(ft)	(ft)	(ft)
1	188.10	425.00	188.10	425.00	0.00
2	190.00	424.90	260.00	421.50	0.80
3	260.10	421.50	260.10	421.50	0.80

ollowing Are Displayed The Ten Most Critic
Failure Surfaces Evaluated. They Are
$\underset{*}{\text { Ordered - Most Critical First }}$

* * Safety Factors Are Calculated By The Simplified Janbu Method *

Total Number of Trial Surfaces Attempted $=500$
Number of Trial Surfaces with valid $F S=5000$
$\begin{gathered}\text { Statistical Data On All Valid FS Values } \\ \text { FS Max } \\ 6.617 \\ \text { FS Min }\end{gathered}=\quad 1.529$

7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
	of Saf	

Failure Surface Specified By 11 Coordinate Points Point
X-Surf
-St Y-sur

Po.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
	of Saf	

Failure Surface Specified By 11 Coordinate Points

No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
	of Saf	

$\begin{array}{cc}\text { Failure } \\ \text { Point } \\ \text { Surface Specified } \\ \text { X-Surf } & \text { By } \\ \text { Y-Surf }\end{array}$

Failure Surface Specified By
Point
X-Surf $\quad \begin{aligned} & \text { B-Surf }\end{aligned}$

Point	x-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861

Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / Static

*** GSTABL7 ***

** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE *
** Original version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights, Reserved Unauthor ized Uee Prohibited)

Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applied Forces
$* ~$ \qquad Time of Run:
Run By:
Input Data Filename:
la Colinas \Sec Alxar.in
Output Filename:
la Colinas\Sec Alxar.OUT lotted out

56:3018
BTZ
C:\Users\Bradley\Documents\Engineering\Slope Stability\Paseo
C:\Users\Bradley\Documents\Engineering\Slope Stability\Pase English
$\mathrm{C}: \$ Users \backslash Bradley \backslash Documents \backslash Engineering \backslash Slope Stability \backslash Pase
e la Colinas \Sect Alxar.PLT
eo de la Colinas $18045-01 / \sec A-A^{\prime}$
BOUNDARY COORDINATES

1 Type(s) of Soil
soil Total Sot
Type Unit Wt. Unit Wt. Intercept
Thiction
Angle Pore Pressure Prestare Piez.
 A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, 45000 Trial Surfaces Have Been Generated.
3000 Surface(s) Initiate(s) From Each of 15 Points Equally Spaced
long The Ground Surface Between $\begin{aligned} & x=115.00(\mathrm{ft}) \\ & \text { and } \\ & x=145.00(\mathrm{ft})\end{aligned}$
$\begin{aligned} & \text { Each Surface Terminates Between } \\ & \text { and } x=255.00(\mathrm{ft}) \\ & \mathrm{x}=390.00(\mathrm{ft})\end{aligned}$
Unless Further Limitations were Imposed, The Minimum Elevation
Unless Further Limitations Were Imposed, The Min
At Which A Surface Extends Is Y $=$ Trial $0.00(\mathrm{ft})$
$6.00(\mathrm{ft})$ Line Segments Define Each Trial Failure Surface
6.00(ft) Line Segments Define Each Trial Failure Surface.

Failure Surfaces Evaluated. They Are

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Attempted $=0$

Number of Trial Surfaces With Valid FS $=0$
Statistical Data On All Valid FS Values:
FS Max $=0.000 \quad$ FS Min $=500.000$
FS Ave $=$
FS Max $=0.000$ FS Min $=500.000$ FS Ave $=$ NaN
Standard Deviation $=0.000$ Coefficient of Variation = NaN

Failure Surface Specified By 34								
No.		(ft)	(ft)					
1		117.143	388	857				
2		123.137	388	591				
3		129.137	388	522				
4		135.135	388	650				
5		141.126	388	975				
6		147.104	389	495				
7		153.061	390	212				
8		158.991	391	124				
9		164.888	392	229				
10		170.746	393	528				
11		176.558	395	018				
12		182.318	396	698				
13		188.020	398	566				
14		193.658	400	620				
15		199.225	402	. 858				
16		204.715	405	277				
17		210.124	407	875				
18		215.444	410	649				
19		220.670	413	596				
20		225.797	416	713				
21		230.819	419	. 997				
22		235.730	423	. 443				
23		240.526	427	. 049				
24		245.201	430	. 810				
25		249.750	434	. 722				
26		254.168	438	. 782				
27		258.450	442	. 984				
28		262.593	447	. 325				
29		266.591	451	. 799				
30		270.440	456	. 402				
31		274.135	461	. 128				
32		277.674	465	. 974				
33		281.052		. 932				
Circle Center		281.089	470	991				
		At $\mathrm{X}=$ of Safe	${ }^{128.24}$	$3 ; Y=$	571.393	; and R	adius $=$	182.874
Individua		1.321	on theWater	46 Tie slices ${ }_{\text {Tie }}$				
		data				Earthquake		
		Force	Force	Force	Force	Forc	ce Sur	charge
	Weight							
(ft)	(lbs)							
2.9	48.1	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
3.1	201.3	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
5.9	818.4	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
0.1	25.9	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
6.0	2529.8	0.0	0.0	\bigcirc.	. 0	0.0	0.0	0.0
1.9	1332.6	0.0	0.0	0.	. 0	0.0	0.0	0.0
4.1	3862.9	0.0	0.0	0.	. 0	0.0	0.0	0.0
6.0	7790.5	0.0	0.0	0.	. 0	0.0	0.0	0.0
6.0	10214.5	0.0	0.0	\bigcirc.	. 0 .	0.0	0.0	0.0
5.9	12451.8	0.0	0.0	0.	. 0	0.0	0.0	0.0
5.9	14494.9	0.0	0.0	0.	. 0	0.0	0.0	0.0
1.1	2957.3	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
4.7	12739.2	0.0	0.0	0.	. 0.	0.0	0.0	0.0
5.3	13970.6	0.0	0.0	0.	. 0	0.0	0.0	0.0
0.6	1483.6	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
5.8	16358.9	0.0	0.0	0.	. 0	0.0	0.0	0.0
5.7	17926.4	0.0	0.0	0.	. 0.	0.0	0.0	0.0
0.0	66.3	0.0	0.0	0.	. 0	0.0	0.0	0.0
5.6	19288.8	0.0	0.0	0.	. 0	0.0	0.0	0.0
5.6	20253.6	0.0	0.0	0.	. 0 .	0.0	0.0	0.0
5.5	21004.5	0.0	0.					

$\begin{array}{lll}33 & 280.085 & 469.242\end{array}$
Circle Center At $X=126.288 ; Y=575.087$; and Radius $=186.679$ $\underset{* * *}{\text { Factor of safety }} 1.324$
Failure
Point
Surface Specified By
X-Surf

Z:xar.oUT Page 7

z:xar.oUT Page 8

Circle center At $\mathrm{X}=1380.270 .99{ }^{280} ; \mathrm{Y}=566.181$; and Radius $=178.087$ $\underset{* * *}{\text { Factor of Safety }} 1.326$
1.326 **** END OF GSTABL7 OUTPUT ****

Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / 60 ft Setback / Static

*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 *
(All Rights, Reserved Unathor ized Use Prohibited) 2013
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback
Nonlinear Undrained Shear Strength, Curved Phi Envelope
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
 \qquad

5/9/2018

 Time of Run:Run By:

56:44PM
BTZ
$\begin{array}{ll}\text { Input Data Filename: } & \text { C: }\end{array}$
la Colinas \Sec A\xarx15.in Output Filename: C:\Users\Bradley\Documents\Engineering\Slope Stability\Pase la Colinas Plotted Output Filename: C: : UUsers \Bradley\Documents\Engineering\Slope Stability\Pasea
e la Colinas \Sec Alxarx15.PLT
PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec A-A
BOUNDARY COORDINATES

BOUNDARY COORDINATES					
15 Top 15 Total	Boundaries				
Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
		(ft)	(ft)	(ft)	Below Bnd
1	40.00	386.00	80.00	387.00	1
2	80.00	387.00	120.00	389.00	1
3	120.00	389.00	129.00	390.00	1
4	129.00	390.00	137.00	395.00	1
5	137.00	395.00	166.00	414.00	1
6	166.00	414.00	176.00	416.00	1
7	176.00	416.00	188.00	425.00	1
8	188.00	425.00	214.00	443.00	1
9	214.00	443.00	225.00	446.00	1
10	225.00	446.00	253.00	464.00	1
11	253.00	464.00	260.00	465.00	1
12	260.00	465.00	269.00	470.00	1
13	269.00	470.00	273.00	471.00	1
14	273.00	471.00	280.00	471.00	1
15	280.00	471.00	400.00	470.00	1
User Specif	ied Y-Origin	=	300.00 (ft)		

Default X-Plus Value $=0.00(\mathrm{ft})$
Default Y-Plus Value $=0.00(\mathrm{ft})$
ISOTROPIC SOIL PARAMETERS
1 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez

A Critical Failure Surface Searching Method, Using A Raddom
Technique For Generating Circular Surfaces, Has Been Specified 5000 Trial Surfaces Have Been Generated.
3000 Surface(s) Initiate(s) From Each of

$\begin{array}{cl}\text { Each Surface Terminates Between } & x=330.00(\mathrm{ft}) \\ \text { and } & x=390.00(\mathrm{ft})\end{array}$
Unless Further Limitations were Imposed, The Minimum Elevation
Unless Further Limitations Were Imposed, The Mi
At Which A Surface Extends Is Y $=$ Trial 0.00 (ft)
$6.00(f t)$ Line Segments Define Each Trilure Surface
oilowing Are Displayed The Ten Most Critical Of The Trial
Failure Surfaces Evaluated. They Are
$* *$ Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Attempted $=0$

Number of Trial Surfaces With Valid FS $=0$
FS Max $=0.000 \quad$ FS Min $=500.000 \quad$ FS Ave $=\mathrm{NaN}$
FS Max $=0.000$ FS Min $=500.000$ FS Ave $=$ NaN

15	211.536	404.351		
16	217.253	406.173		
17	222.935	408.099		
18	228.581	410.128		
19	234.190	412.260		
20	239.759	414.493		
21	245.286	416.827		
22	250.770	419.261		
23	256.209	421.795		
24	261.601	424.427		
25	266.944	427.157		
26	272.236	429.984		
27	277.477	432.906		
28	282.663	435.923		
29	287.793	439.035		
30	292.866	442.239		
31	297.880	445.534		
32	302.833	448.921		
33	307.724	452.397		
34	312.550	455.961		
35	317.311	459.612		
36	322.005	463.350		
37	326.630	467.172		
38	330.601	470.578		
Circle	Center At $X=1$ Factor of Safety	$114.243 ; Y=$	719.407 ; and Radius =	329.737
	*** $1.506^{* * *}$			
Failure	Surface Specifie	ed By 38 Coor	nate Points	
Point	x-Surf	Y-Surf		
No.	(ft)	(ft)		
1	129.000	390.000		
2	134.992	390.315		
3	140.977	390.739		
4	146.953	391.273		
5	152.918	391.915		
6	158.871	392.667		
7	164.809	393.527		
8	170.731	394.495		
9	176.633	395.572		
10	182.515	396.756		
11	188.375	398.047		
12	194.209	399.445		
13	200.018	400.949		
14	205.798	402.560		
15	211.547	404.275		
16	217.264	406.096		
17	222.947	408.020		
18	228.594	410.048		
19	234.203	412.179		
20	239.772	414.412		
21	245.299	416.746		
22	250.783	419.181		
23	256.222	421.716		
24	261.613	424.349		
25	266.955	427.081		
26	272.246	429.910		
27	277.485	432.835		
28	282.669	435.855		
29	287.798	438.969		
30	292.869	442.176		
31	297.880	445.476		
32	302.830	448.867		
33	307.717	452.347		
34	312.540	455.916		
35	317.297	459.573		
36	321.987	463.316		
37	326.607	467.144		
${ }^{38}$	${ }^{330.602}$	${ }^{4740.578} \mathrm{Y}$ -		
Circle	Center At $X=1$ Factor of Safety	114.772 ; $Y=$	718.084 ; and Radius $=$	328.393

Failure Surface Specified By 38 Coordinate Points

Point
No.
1
2
2
3
4
5
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
circle center

ज

Factor of Safety

Point
X Surf
(ftified
By

Z:xarx15.0UT Page 6

Factor of Safety

Failure Surface Specified By 39 Coordinate Points

Point	X-Surf	Y-Surf No.
(ft)		
1	129.000	(ft)
2	135.000	380.000
3	140.999	399.939
4	146.996	390.008
5	152.987	390.536
6	158.969	390.959
7	164.941	391.583
7	170.897	392.301
8	176.837	393.147
9	182.758	394.122
10	188.655	395.225

Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / 60 ft Setback / Seismic

*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE ** 2013 **
** Original version 1.0, January 1996, Current Ver. 2.005.3, Feb. 2013 **
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Includes Spencer \& Morgenstern-Price Type Analysis)
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Nnisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
 \qquad
nalysis Run Date:
Time of Run:
Run By:
5/11/2018
02:54PM
un By: \quad LGC Geotechnical

Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas
gineering\Slope Stability\Sec A\2018_05\xarx15e. PLT
PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec A-A
BOUNDARY COORDINATES
15 Top Boundarie

Failure Surfaces Evaluated. They Are
Ordered - Most Critical First

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Nuta Number of Trial Surfaces Attempted $=$
Number of Trial Surfaces With Valid FS $=$

$\begin{array}{lll}37 & 326.687 & 467.246 \\ 38 & 330 & 600\end{array}$
 $\underset{* * *}{\text { Factor of safety }}$

Z:xarx15e.0UT Page 5

Z:xarx15e.0ut Page 6

Z:xarx15e.out Page 7

Z:xarx15e.out Page 8

9	176.757	394.286		
10	182.660	395.360		
11	188.541	396.552		
12	194.396	397.861		
13	200.224	399.289		
14	206.022	400.832		
15	211.788	402.492		
16	217.519	404.268		
17	223.214	406.158		
18	228.869	408.162		
19	234.483	410.279		
20	240.053	412.509		
21	245.578	414.850		
22	251.054	417.301		
23	256.480	419.862		
24	261.853	422.532		
25	267.172	425.309		
26	272.434	428.192		
27	277.637	431.180		
28	282.779	434.272		
29	287.858	437.467		
30	292.871	440.763		
31	297.818	444.159		
32	302.695	447.654		
33	307.501	451.246		
34	312.234	454.933		
35	316.892	458.715		
36	321.473	462.590		
37	325.975	466.556		
38	330.362	470.580		
Circle	At $\mathrm{X}=$.260 ; Y	688.729 ; and Radius =	298.742
$\underset{* * \pm}{\text { Factor of Safety }}$				
end of gstabl7 out				

Paseo de la Colinas 18045-01/ Sec B-B' / Along Clay Bed / Static

Paseo de la Colinas 18045-01/ Sec B-B' / Along Clay Bed / Static

*** GSTABL7 ***

* GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **
(All Rights Reserved-Unauthorized Use Prohibited
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phí Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water
$\underset{* ~}{\text { Sur }}$ \qquad
Analysis Run
Time of Run:
Run By:
5/11/2018
03:11PM
Run By:
gineering\Slope Stability \backslash Sec
GC Geotechnical
Output Filename:
Z: $\backslash 2018 \backslash 18045-01$
B $\backslash 2018 _05 \backslash \mathrm{sec}$
b.
gineering\slope stability\Sec
plotted Output Filename: English
gineering \Slope Stability
PROBLEM DESCRIPTION: Paseo de la Coline b.PLT
BOUNDARY COORDINATES
7 Top \quad Boundaries

Slid	ock Is	10.0			
Box No.	X-Left	Y-Left	$\underset{(\mathrm{ft})}{\mathrm{X} \text {-Right }}$	Y-Right	Heigh
,	40.00	424.70	110.00	423.50	0.80
2	110.10	423.50	197.00	422.00	0.80
ollowing	Are Disp	ed The T	Most Cri	of	

$\begin{array}{cccc}1 & 110.10 & 423.50 & 197.00 \\ 2 & 422.00 \\ \text { Following Are Displayed The Ten Most Critical Of The Trial } \\ \text { Failure Surfaces Evaluated. They Are }\end{array}$
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Simplified Janbu Method *
Total Number of Trial

Total Number of Trial Surfaces Attempted $=5000$
Number of Trial Surfaces With Valid FS $=5000$
Number of Trial Surfaces with Valid FS $=$
Statistical Data on All valid FS Values:

Slice	Individual data			on the	14 slices		Earthquake		charge
				water Force	$\begin{aligned} & 14 \\ & \text { Tie } \\ & \text { Force } \end{aligned}$	Tie Force			
	Width	Weight	Top	Bot	Norm	Tan	Hor	ver	Load
	(ft)	(lbs)					(lbs)	(lbs)	
1	5.7	1927.2	0.0	0.0	0.	0.	0.0	0.0	0.0
2	12.9	9159.9	0.0	0.0	0.	0.	0.0	0.0	0.0
3	28.0	49410.3	0.0	0.0	0.	0.	0.0	0.0	0.0
4	6.0	16950.0	0.0	0.0	0.	0.	0.0	0.0	0.0
5	19.5	70961.6	0.0	0.0	0.	0.	0.0	0.0	0.0
6	7.1	30126.8	0.0	0.0	0.	0.	0.0	0.0	0.0
7	6.9	27297.1	0.0	0.0	0.	0.	0.0	0.0	0.0
8	0.5	2016.1	0.0	0.0	0.	0.	0.0	0.0	0.0
9	6.3	21421.6	0.0	0.0	0.	0.	0.0	0.0	0.0
10	5.7	16052.2	0.0	0.0	0.	0.	0.0	0.0	0.0
11	1.4	3342.3	0.0	0.0	0.	0.	0.0	0.0	0.0
12	6.3	11782.2	0.0	0.0	0.	0.	0.0	0.0	0.0
13	5.9	5199.5	0.0	0.0	0.	0.	0.0	0.0	0.0
14	2.6	495.6	0.0	0.0	0.	0.	0.0	0.0	0.0
	Failu	e Surface Specified By			0 Coordi	nate Poi			
	Poi								
	No		(ft)	(ft)					
			67.458	429					
			73.116	424					
			39.457	423					
			46.515	430					
			53.461	437	621				
			60.294	444	922				
			67.359	452					
			73.618	459	799				
			79.507	467					
	10		82.154	470	852				
		$\underset{* * *}{\text { Factor }}$	$\begin{aligned} & \text { of Safe } \\ & .465 \end{aligned}$						

Failure Surface specified By 10 Coordinate Points

Point	x-Surf	Y-Surf
No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
	146.51	

Z:sec b.OUT Page 3

Failure
Point
Surface Specified By
X-Surf
Y-Surf

Point	X-Surf	Y-surf
No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852
	of Safe	

Failure Surface Specified By 10 Coordinate Points

Point	(ft)	
No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852

ilure Surface Specified By 10 Coordinate Points
Point
No.
P-Surf
(ft)

No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852

Factor of Safety
$\star * *$
1.465
Failure Surface Specified By 10 Coordinate Points Point $\quad \mathrm{X}$-Surf

,	-surf	Y-Sur
No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852
	of Saf 1.465	470.852

(ft)
67.458
(ft)
429.569

1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852

Failure
Point
Surface specified
X-Surf
By
-Surf
10 Coordinate Points

*** END OF GSTABL7 OUTPUT ****

Paseo de la Colinas 18045-01/ Sec B-B' / Rotational / Static

*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E., D.GE **
** Original Version 1.0, January 1996; Current ver. 2.005.3, Feb. 2013 ** (All Rights Reserved - Unauthorized Use Pronibited . 2013 . SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applie, For Forces \qquad
Analysis Run Date:
Analysis Run
Time of Run:
Run By:
5/11/2018
02:07PM
LGP Geotechnical
ineering\Slope Stability \backslash Sec $\mathrm{B} \backslash 2018$ - $05 \backslash \mathrm{sec}$ br. in

Plotted output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas
gineering\Slope stability\Sec Bl 2018 _05\sec br.PL
/ Rotational / Static
BOUNDARY COORDINATES
7 Top Boundaries
7 To

Boundary	X-Left	Y-Left	X-Right	Y-Right	Soil Type
No.	(ft)	(ft)	(ft) 86.00	$(f t)$ 430.00	Below Bnd
2	86.00	430.00	114.00	${ }_{446.00}$	1
3	114.00	446.00	120.00	446.50	1
4	120.00	446.50	154.00	468.00	1
5	154.00	468.00	166.00	471.00	1
6	166.00	471.00	275.00	470.00	1
7	275.00	470.00	316.00	470.00	1
ser Spe	Y-Or		400.00(ft)		

Default X-Plus Value $=0.00(\mathrm{ft})$
Detauit Y-Plus Value $=0$
1 Type(s) of Soil
Soil Total Saturated Cohesion Friction Pore Pressure Piez.

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfac
20000 Trial Surfaces Have Been Generated
1000 Surface(s) Initiate (s) From Each of 20 Points Equally Spaced
Along The Ground Surface Between $x=86.00(\mathrm{ft})$

$\begin{array}{cc}\text { Each Surface Terminates Between } \\ \text { and } & x=150.00(\mathrm{ft}) \\ \text { and } \\ x=250.00(\mathrm{ft})\end{array}$
Unless Further Limitations Were Imposed, The Minimum Elevation
Unless Further Limitations Were Im .
At which A Surface Extends Is Y \quad E
6.00(ft)
Line Segments Define Each Trial Failure surface
Following Are Displayed The Ten Most Critical of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *

Total Number of Trial Surfaces Attempted $=0$
Number of
Statistical Data on All Valid FS Values:

Standard Deviation = 0.000 Coefficient of Variation $=$ NaN

$\begin{array}{cll}\text { No. } & (\mathrm{ft}) & (\mathrm{ft}) \\ 1 & 86.000 & 430.000\end{array}$

$\underset{* * *}{\text { Factor of Safety }}$
Failure Surface Specified By 18 Coordinate Points

Failure Surface Specified By 18 Coordinate Point

 $\underset{* * *}{\text { Factor of safety }} 1.677{ }_{* * *}$
Failure
Point
Surface Specified
X-Surf
Y-Surf
By Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	86.000	430.000
2	91.969	429.388
3	97.965	429.187
4	103.962	429.397
5	109.930	430.017
6	115.841	431.044
7	121.668	432.474
8	127.384	434.300
9	132.961	436.513
10	138.373	439.102
11	143.595	442.057
12	148.603	445.362
13	153.372	449.002
14	157.881	452.961
15	162.108	457.219
16	166.034	461.756
17	169.639	466.552
18	172.490	470.940

Circle center ${ }^{172.49} \mathrm{X}=\stackrel{470.940}{=} \quad 97.914 ; \mathrm{Y}=516.660$; and Radius $=87.475$
98.259 $\underset{* * *}{\text { Factor of safety }} 1.678{ }_{* * *}$
Failure
Point
$\begin{array}{ll}\text { Surface Specified By } \\ \text { X-Surf }\end{array}$
Y-Surf

Point	$\begin{array}{c}\text { X-Surf } \\ \text { No. }\end{array}$	$\begin{array}{c}\text { Y-Surf } \\ \text { (ft) }\end{array}$
1	86.000	430.000
2	91.069	429.388
3	97.965	429.187
4	103.962	429.397
5	109.930	430.017
6	115.841	431.044
7	121.668	432.474
8	127.384	434.300
9	132.961	436.513
10	138.373	439.102
11	143.595	442.057
12	148.603	445.362
13	153.372	449.002
14	157.881	452.961
15	162.108	457.219
16	166.034	461.756
17	169.639	466.552
18	172.490	470.940

 Factor of Safety
**** END OF GSTABL7 OUTPUT ****

Paseo de la Colinas 18045-01/ Sec B-B' / Rotational / Seismic

*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE **
** Original Version 1.0, January 1996; Current Ver. 2. 0055.3 , Feb. 2013 **
(All Rights, Reserved Unauthor ined Uer Prohibited
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
 \qquad
Analysis Run Date:
Time of Run:
Run By:
5/11/2018
02:56PM
\quad LGC Geotechnical
gineering ${ }^{\text {Slope }}$ Stability \backslash Sec $\mathrm{B} \backslash 2018$ _05\sec bre.in Output Filename: \quad Z:\2018 $118045-01$ Pro
ering\Slope Stability\Sec B\2018 05\sec bre.0UT Unit system: English
gineering\slope Stability
PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ sec b-B'
BOUNDARY COORDINATES

Z:sec bre.out Page 5

Paseo de la Colinas 18045-01/ Sec C-C' / Along Clay Bed / Static

Paseo de la Colinas 18045-01/ Sec C-C' / Along Clay Bed / Static
$z: \mid 2018 \backslash 18045-01$ project dimensions - paseo de la colinaslengineering\slope stabilitylsec cl2018_05\sec c.plt Run By: LGC Geotechnical 5/10/2018 03:40PM

** Original Version 1.0, January H. Gregory, Ph.D.,P.E.,D.GE ** ${ }^{*}$. 2013 * al Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 **

SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
Surfaces, Pseudo'-Static \& Newmark Earthquare, and Apline For Forces, \qquad Analysis Run
time of Run:
Run By:

5/10/2018 $03: 40 \mathrm{PM}$

Run By:
Input Data Filename:
GC Geotechnical
gineering\Slope Stability\Sec C $\backslash 2018$ _05\sec c in Output Filename: : $\backslash 2018 \backslash 18045-01$ Project Dimensions - Paseo de la Colinas\en

Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas $\backslash E n$ gineering\Slope Stability\Sec C $\backslash 2018-05 \backslash$ sec c.PLT

PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec C-C
BOUNDARY COORDINATES
8 Top Boundaries

Length of Line Segments For Active And Passive Portions of
Sliding Block Is 15.0
Sliding Block Is 15.0

Ordered - Most Critical First
* * Safety Factors Are Calculated By The Simplified Janbu Method *
Total Number of Trial Surfaces Attempted $=5000$
Number of Trial surfaces With

FS Max $=6.664$ FS Min $=1.825$ FS Ave $=$
Standard Deviation $=\quad$. 612 Coefficient of
Failure Surface Specified By 11 Coordinate Points
Point
P-Surf

Failure Surface Specified By 11 Coordinate Points
Poin
$\underset{\substack{x-\text { Surf } \\(\mathrm{ft})}}{\mathrm{Y} \text {-Sur }} \mathrm{(ft})$

Z:sec c.OUT Page 3

Failure
Point
Surface Specified
X-Surf $\underset{\text { Y-Surf }}{\text { By }} 11$ Coordinate Points

ure Surface Specified By 11 Coordinate Points
Failure
Point
Surface Specified
X-Surf $\quad \begin{gathered}\text { By } \\ \text { Y-surf }\end{gathered}$

Point	X-Surf	Y-surf
No.	(ft)	(ft)
1	116.488	430.92
2	122.300	428.02
3	135.440	420.78
4	147.389	411.71
5	193.258	410.67
6	203.835	421.31
7	213.968	432.372
7	224.166	443.372
9	234.019	454.682
10	243.866	465.99
11	246.682	472.00

$\underset{* * *}{\text { Factor of Safety }}$
Failure Surface Specified By 11 Coordinate Points

Point	x-Surf	Y-Surf
No.	(ft)	(ft)
1	116.488	430.924
2	122.300	428.022
3	135.440	420.787
4	147.389	411.719
5	193.258	410.676
6	203.835	421.312
7	213.968	432.372
8	224.166	443.372
9	234.019	454.682
10	243.866	465.997
11	246.682	472.000

$\underset{* * *}{\text { Factor of Safety }}$
Failure Surface Specified By 11 Coordinate Points

Paseo de la Colinas 18045-01/ Sec C-C' / Rotational / Static

*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE *
** Original Version 1.0, January 1996; Current Ver. 2.005. 3, Feb. 2013 ** (All Rights Reserved - Unauthorized Use Pronibited) 2013 SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water
Surfaces, Pseudo-Static \& Newmark Earthquake, and Applie, For Forces \qquad
Analysis Run Date:
Time of Run:
Run By:
5/11/2018
02:57PM
Input Data Filename: LGC Geotechnical
 Output Filename:
gineering Unit System: English
gineering\slope Stability
neering\Slope Stability ${ }^{\text {SNec Cl2018_05\sec cr.PLT }}$ PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec C-C'
BOUNDARY COORDINATES
8 Top Boundaries

Boundary	X -Left	Y-Left	X-Right	Y-Right	Soil Type
No.	${ }_{0}^{\text {(ft) }} 0$	(ft) 429.00	(ft) 57.00	(ft) 430.00	Below Bnd
2	57.00	430.00	98.00	430.00	1
3	98.00	430.00	138.00	432.00	1
4	138.00	432.00	173.00	452.00	1
5	173.00	452.00	184.00	454.00	1
6	184.00	454.00	205.00	470.00	1
7	205.00	470.00	241.00	472.00	1
8	241.00	472.00	338.00	472.00	1
Spe			$300.00(\mathrm{ft}$		

Default X-Plus Value $=0.00(\mathrm{ft}$
Default Y-Plus Value $=0.00(\mathrm{ft}$
SOTROPIC SOIL PARAMETER
1 Type(s) of Soil
Total
Type Unit Wt. Unit Wt. Wohesion

A Critical Failure Surface Searching Method, Using A Random
Technique For Generating Circular Surfaces, Has Been Specified.
30000 Trial Surfaces Have Been Generated.
1000 Surface (s) Initiate(s) From Each of

$\begin{aligned} & \text { Along The Ground Surface Between } \\ & \text { and } X=138.00(\mathrm{ft}) \\ & X=138.00(\mathrm{ft})\end{aligned}$
$\begin{aligned} & \text { Each Surface Terminates Between } \\ & \text { and }\left.\begin{array}{l}x=202.00(f t) \\ x=285.00(f t)\end{array}\right)\end{aligned}$
Unless Further Limitations Were Imposed, The Minimum Elevation
At Which A Surface Extends Is $Y==0.00(f t)$
8.00(ft) Line Segments Define Each Trial Failure Surface.
ollowing Are Displayed The Ten Most Critical of The Trial
Failure Surfaces Evaluated. They Are
Ordered - Most Critical First.

* Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Attempted $=0$
Number of Trial Surfaces With Valid FS $=$
Statistical Data On All Valid FS Values.
FS Max $=0.000 \mathrm{FS}$ Min $=500.000$. FS Ave $=\mathrm{NaN}$.

$\begin{array}{cc}\text { Point } & \begin{array}{c}\text { X-Surf } \\ (\mathrm{ft})\end{array} \\ \text { No. } & \begin{array}{c}\text { Y-Surf } \\ (\mathrm{ft})\end{array}\end{array}$
 $\underset{* * *}{\text { Factor of Safety }}$

*** 1.724 ***
Failure Surface Specified By 13 Coordinate Point

Circle Center At $X=145.027 ; Y=521.716$; and Radius $=$ $\underset{* * *}{\text { Factor of safety }}$
Failure Surface Specified By 13 Coordinate Points

$\underset{* * *}{\text { Factor of Safety }}$
Failure Surface Specified By 13 Coordinate Point

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	138.000	432.000
2	145.995	431.730
3	153.983	432.172
4	161.900	433.321
5	169.684	435.169
6	177.273	437.70

Paseo de la Colinas 18045-01/ Sec C-C' / Rotational / Seismic
$z: \ 2018 \backslash 18045-01$ project dimensions - paseo de la colinaslengineeringlslope stabilitylsec cl2018_05\sec cre.pl2 Run By: LGC Geotechnical 5/11/2018 02:58PM

*** GSTABL7 ***
** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E., D.GE *
** Original Version 1.0, January 1996; Current Ver. 2. 0 ., 5.3 . GE Feb. 2013 **
(All Rights, Reserved Unauthor ined Uer Prohibited
SLOPE STABILITY ANALYSIS SYSTEM
Modified Bishop, Simplified Janbu, or GLE Method of Slices.
Including Pier/Pile, Reinforcement, Soil Nail, Tieback,
Nonlinear Undrained Shear Strength, Curved Phi Envelope,
Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, water

Analysis Run Date:
Analysis Run
Time of Run:
Run By:
52:11/2018
02:58M
Input Data Filename: \quad Z: $: \backslash 2018 \backslash 18045-01$ Project Dimensions - Paseo de la Colinas $\backslash E n$

Unit System: English
Plotted output Filename: Z: $\backslash 2018 \backslash 18045-01$ Project Dimensions - Paseo de la Colinas \backslash En
gineering\SIope Stability Sec cl2018_05\sec cre.PLT
PROBLEM DESCRIPTION: Paseo de la Colinas $18045-01 /$ sec C-C'
bOUNDARY COORDINATES

Standard Deviation $=0.000$ Coefficient of Variation $=\mathrm{NaN} \%$

Point No.	X-Surf (ft)	Y-Surf (ft)
1	138.000	432.000
2	145.995	431.727
3	153.987	432.085
4	161.926	433.072
5	169.762	434.682
5	177.447	436.905
6	184.933	439.727
7	192.933	443.131
8	192.173	447.095
9	199.122	447.095
10	205.737	451.594
11	211.976	456.601
12	217.801	462.085
13	223.176	468.010
14	225.596	471.144

Circle Center At X ${ }^{225.596} \stackrel{471.144}{=} \quad 145.511: Y=532.775$; and Radius = 101.054 $\underset{* * *}{\text { Factor of Safety }} 1.525 \quad * *$
Individual data on the
Force Force Force Force Force Surcharge

$\begin{array}{lll}12 & 218.115 & 461.003 \\ 13 & 223.50 & 47.217\end{array}$
$\begin{array}{lrr}13 & 223.526 & 466.895 \\ 14 & 26.899 & 471.217 \\ \text { Circle } & \\ \text { Center } A t ~ X= & 147.340\end{array}$
Factor of Safety

Point	X-Surf
No.	(ft)
1	138.000
	145.989
3	153.986
4	161.940
5	169.800
6	177.516
7	185.039
8	192.319
9	199.310
10	205.968
11	212.250
12	218.115
13	223.526
14	226.899
Circle	At $\mathrm{X}=$

Z:sec cre.out Page 4

14 $\stackrel{226.899}{471.217} \quad 147.340 ; Y=531.197$; and Radius $=99.636$ ****tor of Safety
Failure Surface Specified By 14 Coordinate Points

Y-Surf
(ft)
432.000
431.575
431.790
432.645
434.133
436.245
438.968
442.285
446.173
450.608
455.562
461.003
466.895
471.217

Failure Surface Specified By 14 Coordinate Points

United States Department of Agriculture

Natural
Resources Conservation Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Orange County and Part of Riverside County, California

CUSD Laguna Niguel

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.
Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/ portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.
Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require
alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map 9
Legend 10
Map Unit Legend 12
Map Unit Descriptions. 12
Orange County and Part of Riverside County, California 14
101-Alo clay, 15 to 30 percent slopes, dry 14
102-Alo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20 15
133-Botella clay loam, 9 to 15 percent slopes 17
209-Sorrento clay loam, 2 to 9 percent slopes, warm MAAT, MLRA 19 18
References 21

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.
Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.
Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.
After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report
Map Scale: 1:2,400 if printed on A portrait ($8.5^{\prime \prime} \times 11^{\prime \prime}$) sheet.

MAP LEGEND

Area of Interest (AOI)	Spoil Area		
Soils		Sor Interest (AOI)	Sap Unit Polygons
Spery Stony Spot			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
101	Alo clay, 15 to 30 percent slopes, dry	3.8	12.7\%
102	Alo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	23.6	79.4\%
133	Botella clay loam, 9 to 15 percent slopes	1.7	5.8\%
209	Sorrento clay loam, 2 to 9 percent slopes, warm MAAT, MLRA 19	0.6	2.1\%
Totals for Area of Interest		29.7	100.0\%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.
Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.
A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Orange County and Part of Riverside County, California

101—Alo clay, 15 to 30 percent slopes, dry

Map Unit Setting

National map unit symbol: 2y8sm
Elevation: 20 to 1,720 feet
Mean annual precipitation: 13 to 16 inches
Mean annual air temperature: 64 to 65 degrees F
Frost-free period: 360 to 365 days
Farmland classification: Not prime farmland

Map Unit Composition

Alo and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alo

Setting

Landform: Ridges
Landform position (two-dimensional): Summit, backslope
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Residuum weathered from calcareous sandstone or shale

Typical profile

A - 0 to 15 inches: clay
Bkss - 15 to 22 inches: clay
Cr-22 to 59 inches: bedrock

Properties and qualities

Slope: 15 to 30 percent
Depth to restrictive feature: 22 to 26 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.5 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4e
Hydrologic Soil Group: D
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No

Minor Components

Balcom, clay loam
Percent of map unit: 5 percent
Landform: Ridges
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No
Anaheim, clay loam
Percent of map unit: 5 percent
Landform: Ridges
Landform position (two-dimensional): Shoulder, backslope
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Convex
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No
Bonsall, clay
Percent of map unit: 5 percent
Landform: Ridges
Landform position (two-dimensional): Shoulder
Landform position (three-dimensional): Crest
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

102—Alo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20

Map Unit Setting

National map unit symbol: 2tyzn
Elevation: 10 to 1,890 feet
Mean annual precipitation: 12 to 21 inches
Mean annual air temperature: 63 to 65 degrees F
Frost-free period: 300 to 360 days
Farmland classification: Not prime farmland

Map Unit Composition

Alo and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alo

Setting
Landform: Hills

Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Residuum weathered from sandstone and shale

Typical profile

A - 0 to 15 inches: clay
Bkss - 15 to 22 inches: clay
Cr-22 to 79 inches: bedrock

Properties and qualities

Slope: 30 to 50 percent
Depth to restrictive feature: 20 to 30 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to $0.20 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: D
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No

Minor Components

Anaheim

Percent of map unit: 5 percent
Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No
Balcom
Percent of map unit: 5 percent
Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Calleguas

Percent of map unit: 3 percent
Landform: Hills
Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Bosanko

Percent of map unit: 2 percent
Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

133-Botella clay loam, 9 to 15 percent slopes

Map Unit Setting

National map unit symbol: hcm9
Elevation: 50 to 800 feet
Mean annual precipitation: 12 to 25 inches
Mean annual air temperature: 57 to 59 degrees F
Frost-free period: 260 to 350 days
Farmland classification: Not prime farmland

Map Unit Composition

Botella and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Botella

Setting

Landform: Alluvial fans
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Riser, flat
Down-slope shape: Linear
Across-slope shape: Convex
Parent material: Alluvium derived from sedimentary rock

Typical profile

H1-0 to 8 inches: clay loam
H2-8 to 35 inches: silty clay loam
H3-35 to 66 inches: sandy clay loam

Properties and qualities

Slope: 9 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.57 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches

Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: High (about 10.4 inches)
Interpretive groups
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No

Minor Components

Botella, loam
Percent of map unit: 4 percent
Hydric soil rating: No
Mocho, loam
Percent of map unit: 4 percent
Hydric soil rating: No

Sorrento, clay loam

Percent of map unit: 4 percent
Hydric soil rating: No

Unnamed

Percent of map unit: 3 percent
Hydric soil rating: No

209—Sorrento clay loam, 2 to 9 percent slopes, warm MAAT, MLRA 19

Map Unit Setting

National map unit symbol: 2tz07
Elevation: 20 to 2,040 feet
Mean annual precipitation: 12 to 18 inches
Mean annual air temperature: 62 to 66 degrees F
Frost-free period: 320 to 365 days
Farmland classification: Prime farmland if irrigated

Map Unit Composition

Sorrento and similar soils: 75 percent
Minor components: 25 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sorrento

Setting

Landform: Alluvial fans
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from sedimentary rock

Typical profile

Ap1-0 to 6 inches: clay loam
Ap2-6 to 12 inches: clay loam
AB1-12 to 21 inches: silty clay loam
AB2-21 to 27 inches: silty clay loam
AB3-27 to 37 inches: silty clay loam
Bk1-37 to 49 inches: silty clay loam
Bk2-49 to 62 inches: silty clay loam
2C - 62 to 72 inches: stratified loamy fine sand to silt loam

Properties and qualities

Slope: 2 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to $0.60 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 11.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No

Minor Components

Mocho

Percent of map unit: 10 percent
Landform: Alluvial fans
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: LOAMY (1975) (R019XD029CA)
Hydric soil rating: No

Sorrento, loam

Percent of map unit: 10 percent
Landform: Alluvial fans
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: LOAMY (1975) (R019XD029CA)
Hydric soil rating: No

Custom Soil Resource Report

Botella

Percent of map unit: 5 percent
Landform: Alluvial fans
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Base slope
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: CLAYEY (1975) (R019XD001CA)
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.
Federal Register. September 18, 2002. Hydric soils of the United States.
Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http:// www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://
www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242
United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624
United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

[^0]: For locations and bours of Household Hazardous Waste Collection Centers in Anabeim, Huntington Beach, Ivvine and San Juan Capistrano, call (714)834-6752 or visit www.oclandfills.com.

