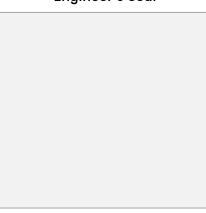
Preliminary Water Quality Management Plan (WQMP)

Project Name:

Paseo De Colinas

CITY OF LAGUNA NIGUEL GRADING # / PLANNING APPLICATION # 29001 PASEO DE COLINAS APN 637-181-01, 637-392-02, 637-412-02

Prepared for:


PROJECT DIMENSIONS 4 Park Plaza, Suite 700 Irvine, CA 92614 949.476.2246

Prepared by:

FUSCOE ENGINEERING, INC.

Engineer's Seal

Engineer: Josh Ruiz, PE Registration No: C90418 16795 Von Karman Suite 100 Irvine, CA 92606 949.474.1960

Prepared on: May 25, 2021

PROJECT OWNER'S CERTIFICATION							
Permit/Application No. Pending Grading Permit No. Pending							
Tract/Parcel Map No.	N/A	Building Permit No.	Pending				
Address of Project Site a (Specify Lot Numbers if F		29001 Paseo De Colin APN 637-181-01, 637					

This Water Quality Management Plan (WQMP) has been prepared for PROJECT DIMENSIONS by Fuscoe Engineering, Inc. The WQMP is intended to comply with the requirements of the local NPDES Stormwater Program requiring the preparation of the plan.

The undersigned, while it owns the subject property, is responsible for the implementation of the provisions of this plan and will ensure that this plan is amended as appropriate to reflect up-to-date conditions on the site consistent with the current Orange County Drainage Area Management Plan (DAMP) and the intent of the non-point source NPDES Permit for Waste Discharge Requirements for the County of Orange, Orange County Flood Control District and the incorporated Cities of Orange County within the San Diego Region (South Orange County)... Once the undersigned transfers its interest in the property, its successors-in-interest shall bear the aforementioned responsibility to implement and amend the WQMP. An appropriate number of approved and signed copies of this document shall be available on the subject site in perpetuity.

OWNER: Proje	OWNER: Project Dimensions						
Title:	Jon Conk						
Company:	Project Dimensions						
Address:	4 Park Plaza, Suite 700						
Email:	jconk@projectdimensions.com						
Telephone #	949.476.2246						
Owner Signature:	Date:						

CONTENTS

SECTION 1	DISCRETIONARY PERMIT(S) AND WATER QUALITY CONDITIONS	1
SECTION 2	PROJECT DESCRIPTION	2
2.1 Proj	ect Description	2
2.2 Post	-Development Drainage Characteristics	3
2.3 Prop	perty Ownership/Management	3
SECTION 3	SITE & WATERSHED CHARACTERIZATION	4
3.1 Site	Conditions	4
3.1.1	Existing Site Conditions	4
3.1.2	Infiltration-Related Characteristics	4
3.2 Prop	bosed Site Development Activities	6
3.2.1	Overview of Site Development Activities	6
3.2.2.	Project Attributes Influencing Stormwater Management	6
3.2.3	Effects on Infiltration and Harvest and Use Feasibility	6
3.3 Rec	eiving Waterbodies	7
3.4 Stor	mwater Pollutants or Conditions of Concern	8
3.5 Hyd	rologic Conditions of Concern	
3.6 Crit	ical Course Sediment Yield Areas	9
SECTION 4	SITE PLAN AND DRAINAGE PLAN	
	inage Management Area Delineation	
4.2 Ove	erall Site Design BMPs	
4.3 DM	A Characteristics and Site Design BMPs	11
4.3.1	DMA 1 & 2	11
4.3.2	DMA 3	11
4.3.3	DMA Summary	11
4.4 Sou	rce Control BMPs	12
SECTION 5	LOW IMPACT DEVELOPMENT BMPS	16
5.1 LID	BMPs in DMA 1	16
5.1.1	Hydrologic Source Controls for DMA 1 & DMA 2	16
5.1.2	Structural LID BMP for DMA 1& DMA 2	16
5.2 Sum	nmary of LID BMPs	
SECTION 6	HYDROMODIFICATION BMPS	20
6.1 Poir	nts of Compliance	

ATTACH	IMENTS	
SECTIO	N 7 EDUCATIONAL MATERIALS INDEX	
6.5	Hydrologic Modeling and Hydromodification Compliance	
6.4	Measures for Avoidance of Critical Coarse Sediment Yield Areas	
6.3	Post-Development Conditions and Hydromodification BMPs	
6.2	Pre-Development (Natural) Conditions	

LIST OF ATTACHMENTS

Attachment A	Educational Materials
Attachment B	Operation & Maintenance (O&M) Plan
Attachment C	Exhibit
Attachment D	BMP Design Calculations & Details
Attachment E	
Attachment F	Conditions of Approval
Attachment G	Geotechnical Feasibility Report

LIST OF EXHIBITS (INCLUDED IN ATTACHMENT C)

- Vicinity Map
- WQMP Exhibit
- Typical Cross Sections

SECTION 1 DISCRETIONARY PERMIT(S) AND WATER QUALITY CONDITIONS

PROJECT INFORMATION						
Permit/Application No.	PENDING Site Address Tract/Parcel Map No. 29001 Paseo De Colinas Laguna Niguel, CA					
Additional Information/ Comments	APN 637-181-01, 637-392-02, 637-412-02					
WATER Q	WATER QUALITY CONDITIONS OF APPROVAL OR ISSUANCE					
Water Quality Conditions from prior approvals or applicable watershed-based plans	PENDING					

SECTION 2 PROJECT DESCRIPTION

2.1 PROJECT DESCRIPTION

ſ	DESCRIPTION OF PROPOSED PROJECT							
Site Location:	29001 Paseo De Colinas, Laguna Niguel CA 92677 The project is located within "South" Orange County and under the jurisdiction of the San Diego Regional Water Quality Control Board. A vicinity map is included in Attachment C.							
Project Area (ft²) : 107,630 ft²	Number of	Dwelling Units:	38	SIC	Code: N/A			
Narrative Project Description:	units. Each proper around central co throughout the Pr passive land uses The Project will re the adjacent mide	velopment consists osed unit will be th ourtyard areas. Sur roject Site. On-site associated with re edevelop an existir dle school. While i change in land use Priority WQMP.	ree stories face-level activities esidential ng lot usec impervious	and will parking are antic developn for over s surface:	be arranged will be provided ipated to be nents. flow parking for s are anticipated			
	Perv	ious		Imper	vious			
Project Area	Area (acres or sq ft)	Percentage	Are (acres c		Percentage			
Pre-Project Conditions	0.346 ac 14% 2.124 ac 86%							
Post-Project Conditions	0.716 ac	29%	1.75	4 ac	71%			

2.2 POST-DEVELOPMENT DRAINAGE CHARACTERISTICS

Runoff from the proposed project will follow existing drainage patterns. Low flows will be picked up in the onsite area drain system and conveyed to the BMP system, while high flows will sheet flow offsite to Paseo De Colinas as in the existing condition. Treated water will be pumped up to the surface before exiting the site in the northeast corner via parkway culvert. WQMP Exhibit is included in Attachment C.

2.3 PROPERTY OWNERSHIP/MANAGEMENT

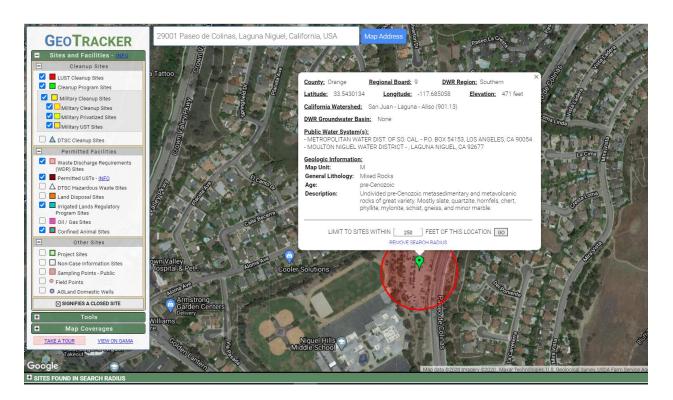
	PROPERTY OWNERSHIP/MANAGEMENT					
Private Streets	Project Dimensions					
Landscaped Areas	Project Dimensions					
Open Space	Capistrano Unified School District					
Buildings	Project Dimensions					
Storm Drain	Project Dimensions					
Structural BMPs	Project Dimensions					

All portions of the project disturbed area including BMPs will be the responsibility of the Owner/Developer. The two adjacent portions of the total parcel will be dedicated to the City of Laguna Niguel as parks. This is outlined on the site plan included in Attachment C.

SECTION 3 SITE & WATERSHED CHARACTERIZATION

3.1 SITE CONDITIONS

3.1.1 Existing Site Conditions


The proposed project site is located in the City of Laguna Niguel, with Paseo De Colinas bordering to the east, residential to the north, and Niguel Hills Middle School along the west/southwest. Currently, the project site is developed as a paved parking lot with minimal landscape and a dirt lot. Site typography is relatively flat with slopes between 1.5 and 3 percent. The site generally drains northerly and leaves the site via surface flow to Paseo De Colinas, or down the 1.5:1 and 2:1 slopes on the northern and western outer edges of the property. The site contains drop inlets and sewer cleanouts that will be removed during construction of new utilities.

EXISTING LAND USES								
Land Use DescriptionTotal Area (acres)Impervious Area (acres)Pervious Area (acres)Imperviousness (%)								
Parking Lot	2.15	1.85	0.30	86				
Dirt Lot	0.32	0.01	0.31	3				
Total	2.47	1.75	0.219	71				

3.1.2 Infiltration-Related Characteristics

3.1.2.1 Hydrogeologic Conditions

Based on the Geotechnical Feasibility Report by LGC Geotechnical, Inc. dated May 15, 2018, "Groundwater was not encountered to maximum explored depth of approximately 90 feet below ground existing grade. Historic high groundwater is not mapped on the site (CGS, 2001a)." According to the SWRCB Geotracker database, there are no LUST cleanup sites within 250 feet of the project. See screen clip below. County GIS maps also indicated that the site is not within any major Groundwater Management Agency plumes. See supporting maps in Attachment D.

3.1.2.2 Soil and Geologic Infiltration Characteristics

According to Orange County GIS maps, the site is underlain by Type D soils (TGD map in Attachment D). Infiltration testing was not conducted at this preliminary stage of the project.

3.1.2.3 Geotechnical Conditions

Based on the Geotechnical Feasibility Report by LGC Geotechnical, Inc. dated May 15, 2018, "the site is underlain by Capistrano Formation bedrock material. Generally, the Capistrano Formation consists of a weak, clayey siltstone with some interbedded silty sandstone. Bedding within the boring was found to be nearly flat to gently dipping into the slope. Capistrano Formation material and fill derived from it typically has a high potential for expansion and considered to be severely corrosive to concrete."

Slope stability analysis indicated that a 60-foot horizontal setback is required from the top of slope in order to provide the required factor of safety for static loading conditions. This would apply to the northern and southwestern edges of the project site. Geotechnical Feasibility Report is included in Attachment G.

3.1.2.4 Summary of Infiltration Opportunities and Constraints of Existing Site

Due to soil type D and slope stability constraints at the site, infiltration is considered to be infeasible at this time.

3.2 PROPOSED SITE DEVELOPMENT ACTIVITIES

3.2.1 Overview of Site Development Activities

The proposed project will redevelop an existing parking lot into 38 residential townhome style units. Each proposed unit will be three stories and will be arranged around central courtyard areas. Surfacelevel parking will be provided throughout the site. On-site activities are anticipated to be passive land uses associated with residential developments.

3.2.2. Project Attributes Influencing Stormwater Management

Existing drainage patterns will remain the same in the proposed condition. Low flows will be captured by an onsite area drain system for treatment, while high flows exit the site via surface flow. On-site activities are anticipated to be passive land uses associated with residential developments. The below table shows proposed land use and imperviousness.

PROPOSED LAND USES								
Land Use DescriptionTotal Area (acres)Impervious Area (acres)Pervious Area (acres)Imperviousness (%)								
Residential	2.15	1.69	0.46	79				
Park	0.32	0.07	0.25	22				
Total	2.47	1.75	0.72	71				

3.2.3 Effects on Infiltration and Harvest and Use Feasibility

Harvest and use (aka. Rainwater Harvesting) BMPs are LID BMPs that capture and store storm water runoff for later use. Per Section 4.2.3 of the South OC TGD, Projects are required to consider harvest and use if the reliable wet season demand for harvest water is adequate to use the DCV (Design Capture Volume) within 48 hours.

In order to quantify harvested water demand for the common areas of the project, the Modified Estimated Applied Water Use (EAWU) method was used, consistent with Appendix F of the South OC TGD (dated September 28, 2017).

The Modified EAWU method is modified from the OC Irrigation Code (County Ordinance No. 09-010) to account for the wet season demand and storm events (assuming that no irrigation would be applied for approximately 30% of the days in the wet season).

The equation used to calculate the Modified EAWU is:

Modified EAWU =
$$\frac{(ETo_{wet} \times K_L \times LA \times 0.015)}{IE}$$

Where:

Modified EAWU = estimated daily average water use during wet season
ETo_{wet} = average reference ET from November through April (inches per month) per Table F-2 of the TGD
K_L = landscape coefficient (Table -F-4 of the TGD)
LA = landscape area irrigated with harvested water (square feet)
IE = irrigation efficiency (assumed at 90%)

Note: In the equation, the coefficient (0.015) accounts for unit conversions and shut down of irrigation during and for three days following a significant precipitation event.

For a system to be considered "feasible", the reliable wet season demand for harvested water must be adequate to use the DCV within 48 hours.

The project site was evaluated using planned impervious/pervious land area ratios and planting types to estimate the feasibility for harvest and reuse systems on-site. The following table summarizes the estimated applied water use for these areas of the project.

ESTIMATED APPLIED WATER USE (EAWU) FOR COMMON AREA LANDSCAPING									
Drainage Area & Landscape Type	Total Area (ac)	% imp.	Impervious Tributary (ac)	Irrigated LS Area (ac)	ETo _{wet} ⁽¹⁾ (in/mo)	K _L ⁽²⁾	Modified EAWU (gpd)	Drawdown of DCV (days)	ls Drawdown of DCV <48 hours?
Project Site Mixed Landscaping	2.47	71%	1.75	0.72	2.75	0.55	786.6	49.5	No
Notes: Per Table F-2 for Irvine Region (similar climate type), South OC Technical Guidance Document, September 28, 2017. Per Table F-4 of the South OC Technical Guidance Document, September 28, 2017.									

As shown above, the project site does not have sufficient water demand during the wet season to support harvest and reuse. There is insufficient irrigation demand to drawdown the DCV in 48 hours.

3.3 RECEIVING WATERBODIES

The project is located within the Aliso Creek watershed. Surface flows enter the City storm drain system that outlets to Aliso Creek, which flows southwesterly to the Pacific Ocean. According to the 2014-2016 303(d) list, Aliso Creek is impaired for benthic community effects, malathion, nitrogen, phosphorus, selenium, toxicity, and indicator bacteria. Aliso Creek has a TMDL for indicator bacteria. The project does not discharge to ESA or ASBS areas.

3.4 STORMWATER POLLUTANTS OR CONDITIONS OF CONCERN

POLLUTANTS OR CONDITIONS OF CONCERN								
Pollutant	Expected from Proposed Land Uses/ Activities (Yes or No) Receiving Waterbody Impaired? (Yes or No)		Priority Pollutant from WQIP or other Water Quality Condition? (Yes or No)	Pollutant of Concern (Primary, Other or No)				
Suspended Solids	Y	Ν	Ν	Other				
Nutrients	Y	Y	Ν	Primary				
Heavy Metals	Ν	Y	N	No				
Bacteria/Virus/Pathogens	Y	Y	N	Primary				
Pesticides	Y	Ν	N	Other				
Oil and Grease	Y	Ν	N	Other				
Toxic Organic Compounds	Ν	Y	Ν	No				
Trash and Debris	Y	Ν	Ν	Other				
Dry Weather Runoff	Ν	Ν	Y	Other				

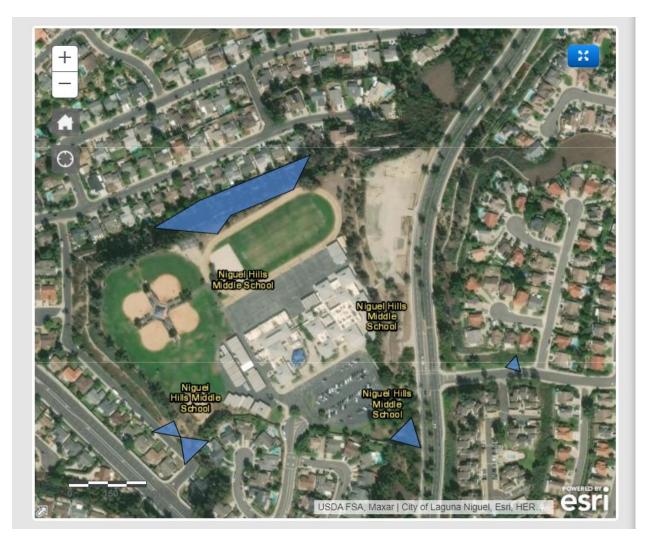
3.5 HYDROLOGIC CONDITIONS OF CONCERN

Does a hydrologic condition of concern exist for this project?

No – An HCOC does not exist for this receiving water because (select one):

Project discharges directly to a protected conveyance (bed and bank are concrete lined the entire way from the point(s) of discharge to a receiving lake, reservoir, embayment, or the Ocean

Project discharges directly to storm drains which discharge directly to a reservoir, lake, embayment, ocean or protected conveyance (as described above)


The project discharges to an area identified in the WMAA as exempt from hydromodification concerns

Yes – An HCOC does exist for this receiving water because none of the above are applicable.

Although the project discharges to the storm drain, the storm drain outlets to Aliso Creek. See Attachment E for hydromodification exemption exhibit from the South Orange County TGD.

3.6 CRITICAL COURSE SEDIMENT YIELD AREAS

According to the County GIS database, the project site is not within a potential critical course sediment yield area. See screen clip below. This section is not applicable to the project.

SECTION 4 SITE PLAN AND DRAINAGE PLAN

4.1 DRAINAGE MANAGEMENT AREA DELINEATION

The proposed project site is split into three DMAs. DMAs 1 and 2 that include all of the residential development will be routed to biotreatment BMPs and a detention system to meet hydromodification requirements. DMA 3 consists of a park with very little impervious area which will be considered self treating. WQMP Exhibit is included in Attachment C.

4.2 OVERALL SITE DESIGN BMPS

Minimize Impervious Area

Impervious surfaces have been minimized by incorporating landscaped areas throughout the site.

Maximize Natural Infiltration Capacity

Infiltration is not considered feasible for the project site due to low permeability of soils, and the potential for causing adverse geotechnical conditions. Refer to Section 3.1.2 for details.

Preserve Existing Drainage Patterns and Time of Concentration

Runoff from the site will continue to flow similar to existing conditions. Low flows will be routed to LID and hydromodification BMPs, while high flows will exit the site.

Disconnect Impervious Areas

Landscaping will be provided adjacent to sidewalks and buildings. Low flows will be routed to LID and hydromodification BMPs for treatment before exiting the site.

Protect Existing Vegetation and Sensitive Areas

Not applicable. The existing site contains little to no vegetation.

Revegetate Disturbed Areas

Not applicable. The proposed project will have larger pervious footprint than existing condition.

Soil Stockpiling and Site Generated Organics

As part of the grading and stockpiling activities on the site, organic materials that are suitable for assisting with the re-vegetation of the site will be collected, stored and then reused during planting of the site.

<u>Firescaping</u>

The proposed project will be designed to meet the Orange County Fire Authority's fuel modification standards.

Water Efficient Landscaping

Xeriscape landscaping is not proposed for the project. However, native landscaping with lower water demands will be incorporated into the site design.

Slopes and Channel Buffers

Not applicable. Vegetated slopes are not included in the project footprint.

4.3 DMA CHARACTERISTICS AND SITE DESIGN BMPS

Following is a detailed description of each Drainage Management Area as delineated on the WQMP Exhibit in Attachment C.

4.3.1 DMA 1 & 2

DMAs 1 & 2 include 38 residential townhome units with surrounding landscape and surface level parking. As discussed in Section II and III, infiltration and harvest & reuse were both ruled as infeasible for the project given geotechnical and drawdown constraints. Runoff from DMAs 1 & 2 will be routed to biotreatment units, before entering the hydromodification BMP before exiting the site.

The Project will redevelop an existing lot used for overflow parking for the adjacent middle school. While impervious surfaces are anticipated to decrease, the change in land uses across the site results in the requirement for a Priority WQMP.

4.3.2 DMA 3

DMA 3 is comprised of a park amenity for the residential units and includes grass, turf, benches, hardscape walkways, and cobble walkways. DMA 3 is approximately 22% impervious with walkways draining to adjacent pervious or landscaped areas. Therefore, this area will be considered self treating.

DRAINAGE MANAGEMENT AREAS					
DMA (Number/Description)	Total Area (acres)	Imperviousness (%)	Infiltration Feasibility Category (Full, Partial or No Infiltration)	Hydrologic Source Controls Used	
DMA 1	1.73	83	No Infiltration	Site Design	
DMA 2	0.42	62	No Infiltration	Site Design	
DMA 3	0.32	22	No Infiltration	Impervious Area Dispersion	

4.3.3 DMA Summary

4.4 SOURCE CONTROL BMPS

The table below indicates all BMPs to be incorporated in the project. For those designated as not applicable (N/A), a brief explanation why is provided.

	NON-STRUCTURAL SOURCE CONTROL BMPs					
		Check One		Reason Source Control is		
ID	Name	Included	Not Applicable	Not Applicable		
N1	Education for Property Owners, Tenants & Occupants	\boxtimes				
N2	Activity Restrictions	\boxtimes				
N3	Common Area Landscape Management	\boxtimes				
N4	BMP Maintenance	\boxtimes				
N5	Title 22 CCR Compliance (How development will comply)		\boxtimes	No hazardous materials storage proposed.		
N6	Local Water Quality Permit Compliance		\boxtimes			
N7	Spill Contingency Plan		\boxtimes	No hazardous materials storage proposed.		
N8	Underground Storage Tank Compliance		\boxtimes	Not proposed.		
N9	Hazardous Materials Disclosure Compliance		\boxtimes	No hazardous materials storage proposed.		
N10	Uniform Fire Code Implementation		\boxtimes	No hazardous materials storage proposed.		
N11	Common Area Litter Control	\boxtimes				
N12	Employee Training					
N13	Housekeeping of Loading Docks		\boxtimes	Not proposed.		
N14	Common Area Catch Basin Inspection	\boxtimes				
N15	Street Sweeping Private Streets and Parking Lots	\boxtimes				
N16	Retail Gasoline Outlets		\boxtimes	Not proposed.		

N1, Education for Property Owners, Tenants and Occupants

Educational materials will be provided to tenants, including brochures and restrictions to reduce pollutants from reaching the storm drain system. Examples include tips for pet care, household tips, and proper household hazardous waste disposal. Tenants will be provided with these materials by the property management prior to occupancy, and periodically thereafter. Refer to Section 7 for a list of materials available and attached to this WQMP. Additional materials are available through the County of Orange Stormwater Program website (<u>http://ocwatersheds.com/PublicEd/</u>) and the California Stormwater Quality Association's (CASQA) BMP Handbooks (<u>http://www.casqa.org/resources/bmphandbooks</u>).

N2, Activity Restrictions

The Owner/Developer shall develop ongoing activity restrictions that include those that have the potential to create adverse impacts on water quality. Activities include but are not limited to: handling and disposal of contaminants, fertilizer and pesticide application restrictions, litter control and pick-up, and vehicle or equipment repair and maintenance in non-designated areas, as well as any other activities that may potentially contribute to water pollution.

N3, Common Area Landscape Management

Management programs will be designed and implemented by the Owner/Developer to maintain all the common areas within the project site. These programs will cover how to reduce the potential pollutant sources of fertilizer and pesticide uses, utilization of water-efficient landscaping practices and proper disposal of landscape wastes by the owner/developer and/or contractors.

N4, BMP Maintenance

The Owner/Developer will be responsible for the implementation and maintenance of each applicable non-structural BMP, as well as scheduling inspections and maintenance of all applicable structural BMP facilities through its staff, landscape contractor, and/or any other necessary maintenance contractors. Details on BMP maintenance can be found in the O&M Plan, Attachment B of this WQMP.

N11, Common Area Litter Control

The Owner/Developer will be responsible for performing trash pickup and sweeping of littered common areas on a weekly basis or whenever necessary. Responsibilities will also include noting improper disposal materials by the public and reporting such violations for investigation.

N12, Employee Training

All employees of the Owner/Developer and any contractors will require training to ensure that employees are aware of maintenance activities that may result in pollutants reaching the storm drain. Training will include, but not be limited to, spill cleanup procedures, proper waste disposal, housekeeping practices, etc.

N14, Common Area Catch Basin Inspection

All on-site catch basin inlets and drainage facilities shall be inspected and maintained by the Owner/Developer at least once a year, prior to the rainy season, no later than October 1st of each year.

N15, Street Sweeping Private Streets and Parking Lots

The Owner/Developer shall be responsible for sweeping all on-site streets, drive aisles, and uncovered parking areas within the project on a weekly basis.

The table below indicates all structural source control BMPs to be incorporated in the project. For those designated as not applicable (N/A), a brief explanation why is provided.

	STRUCTURAL SOURCE CONTROL BMPs					
		Check One		Reason Source Control is		
ID	Name	Included	Not Applicable	Not Applicable		
S1	Provide storm drain system stenciling and signage	\boxtimes				
S2	Design and construct outdoor material storage areas to reduce pollution introduction		\boxtimes	None proposed.		
\$3	Design and construct trash and waste storage areas to reduce pollution introduction		\boxtimes	None proposed. All units will have separate trash bins.		
S4	Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source control	\boxtimes				
S5	Protect slopes and channels and provide energy dissipation		\boxtimes	None proposed.		
individu	Incorporate requirements applicable to individual priority project categories (from SDRWQCB NPDES Permit)		\boxtimes	None proposed.		
S6	Dock areas		\boxtimes	None proposed.		
S7	Maintenance bays		\boxtimes	None proposed.		
S8	Vehicle wash areas		\boxtimes	None proposed.		
S9	Outdoor processing areas		\boxtimes	None proposed.		
S10	Equipment wash areas		\boxtimes	None proposed.		
S11	Fueling areas			None proposed.		
S12	Hillsidendscaping		\boxtimes	None proposed.		
S13	Wash water control for food preparation areas		\square	None proposed.		
S14	Community car wash racks		\boxtimes	None proposed.		

<u>S1, Provide storm drain system stenciling and signage</u>

The phrase "NO DUMPING! DRAINS TO OCEAN", or an equally effective phrase approved by the City, will be stenciled on all major storm drain inlets within the project site to alert the public to the destination of pollutants discharged into storm water. Stencils shall be in place prior to release of certificate of occupancy. Stencils shall be inspected for legibility on an annual basis and re-stenciled as necessary.

S4, Use efficient irrigation systems & landscape design, water conservation, smart controllers, and source <u>control</u>

The Owner will be responsible for the installation and maintenance of all common landscape areas utilizing similar planting materials with similar water requirements to reduce excess irrigation runoff. The Owner will be responsible for implementing all efficient irrigation systems for common area landscaping including, but not limited to, provisions for water sensors and programmable irrigation cycles. This includes smart timers, rain sensors, and moisture shut-off valves. The irrigation systems shall be in conformance with water efficiency guidelines. Systems shall be tested twice per year, and water used during testing/flushing shall not be discharged to the storm drain system.

SECTION 5 LOW IMPACT DEVELOPMENT BMPS

5.1 LID BMPS IN DMA 1

5.1.1 Hydrologic Source Controls for DMA 1 & DMA 2

Impervious area dispersion and reduction will be incorporated into the site design for the project. Worksheet 4 was not used for these DMA's.

5.1.2 Structural LID BMP for DMA 1& DMA 2

STRUCTURAL LID BMP FOR DMA 1 & DMA 2		
Infiltration Feasibility	Not feasible. See Section 3.1.2	
Harvest and Use Feasibility	Not feasible. See Section 3.2.3	
Selected BMP	BIO-5: Proprietary Biotreatment (Modular Wetland System) HSC-2: Impervious Area Dispersion	
Selected BMP Sizing Method	Worksheet 4: Hydrologic Source Control Calculation Form Worksheet 9: Flow-Based Compact Biofiltration Method	
Selected BMP Description	See Section 4.3.3	

STRUCTU	RAL LID BMP FOR DMA 1 & DMA 2
	<u>DMA 1</u>
LID Design Flow Rate ⁽¹⁾	$ \begin{array}{l} Q_{design} = 1.5 \times Q_{80\%} \\ \\ \text{Where:} \\ & Q_{design} = design flow rate \\ & Q_{80\%} = c \times I_{design} \times A \\ & c = runoff coefficient = (0.75 \times imp + 0.15) \\ & I_{design} = design intensity \\ & A = tributary area (acres) \\ & Imp = 83\% \\ & I_{design} = 0.26 \text{ in/hr} \\ & A = 1.73 \text{ acres} \\ \end{array} $ $ \begin{array}{l} Q_{design} = 1.5 \times (0.75 \times 0.83 + 0.15) \times 0.26 \text{ in/hr} \times 1.73 \text{ ac} \\ & = 0.521 \text{ cfs} \\ \hline \\ \hline \\ \hline \\ DMA 2 \\ Q_{design} = 1.5 \times Q_{80\%} \\ \hline \\ Where: \\ & Q_{design} = design flow rate \\ & Q_{80\%} = c \times I_{design} \times A \\ & c = runoff coefficient = (0.75 \times imp + 0.15) \\ & I_{design} = design intensity \\ & A = tributary area (acres) \\ \hline \\ Imp = 62\% \\ & I_{design} = 0.26 \text{ in/hr} \\ & A = 0.42 \text{ acres} \\ \hline \\ $
Proprietary BMP ⁽²⁾	DMA 1: MWS-L-8-20 DMA 2: MWS-L-4-8
Unit Treatment Capacity ⁽¹⁾ (Q _{unit})	MWS-L-8-20 capacity of 0.577 cfs MWS-L-4-8 capacity of 0.115 cfs
Total Treatment Capacity ⁽¹⁾ (Q _{BMP})	0.692 cfs

STRUCTURAL LID BMP FOR DMA 1 & DMA 2

Hydromodification Requirements

Hydromodification requirements were met using an underground storage vault. SOHM routing calculations provided in Attachment E.

Notes:

¹ Refer to Worksheet 9 in Attachment D for further calculation details
 ² Refer to WQMP exhibit and cross sections in Attachment C for BMP details

5.2 SUMMARY OF LID BMPS

	FLOW-BASED LID BMP SUMMARY TABLE						
DMA	Selecte d BMP	BMP Sizing Method	DMA Q _{design} (cfs)	BMP Unit / Model	# of Units	Unit Treatment Capacity (cfs)	Total Treatment Capacity (cfs)
1	BIO-5	Worksheet 9	0.521	MWS-L-8-20	1	0.577	0.577
2	BIO-5	Worksheet 9	0.101	MWS-L-4-8	1	0.115	0.115

HSC BMP SUMMARY TABLE							
DMA	Selected BMP	BMP Sizing Method	Impervious Area (ac)	Pervious Area (ac)	Ratio of Pervious to Impervious	d_{hsc}	Percent Capture Provided by HSCs
3	HSC-2	Worksheet 4	0.07	0.25	3.57	0.85	80%

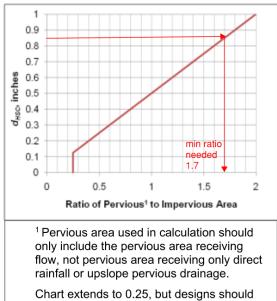


Chart extends to 0.25, but designs should not go below a minimum value of 0.5 (2 parts impervious to 1 part pervious).

SECTION 6 HYDROMODIFICATION BMPS

6.1 POINTS OF COMPLIANCE

To meet hydromodification requirements, an analysis was prepared using the South Orange County Hydrology Model (SOHM) for the pre- and post-developed conditions at the site in order to determine the detention volume required within the water quality basins to meet the required flow duration requirements.

For both the existing and proposed conditions, there is one (1) main Point of Compliance (POC) based on the existing and proposed drainage patterns. POC "1" drains to Paseo De Colinas. The SOHM analysis compared the existing and proposed flow duration, and an underground tank was sized to appropriately mitigate the hydromodification flow from the project.

6.2 PRE-DEVELOPMENT (NATURAL) CONDITIONS

Surrounding land was used as a reference when identifying the pre-developed land use for the project site, since it is currently a paved parking lot. Slopes, drainage patters, soil types, and critical course sediment yield areas are discussed and identified in Section 3. A brief summary of the existing conditions SOHM modeling results are provided below. Refer to Attachment E for more details.

PRE-DEVELOPMENT FLOW CONDITIONS				
Return Period	Point of Compliance	Pre-Development Flow (cfs)		
2-year	POC "1"	0.77		
5-year	POC "1"	0.96		
10-year	POC "1"	1.15		

6.3 POST-DEVELOPMENT CONDITIONS AND HYDROMODIFICATION BMPS

As described above, first flush runoff from DMA 1 and DMA 2 will be treated by a proprietary biofiltration system (MWS or equivalent) before entering the underground storage tank for hydromodification mitigation. Flows above the first flush will enter the area drain system and bypass the MWS unit and enter the underground tank. Treated flows will exit the tank and be pumped up to grade before exiting the site via parkway culvert to Paseo De Colinas. DMA 3 currently sheet flows to Paseo de Colinas in the existing condition. The proposed condition runoff within the park will mimic existing sheet flow drainage. As the perviousness between the existing and proposed condition is similar, it is anticipated hydromodification controls will not be required for this DMA 3.

HYDROMODIFICATION BMP's & VOLUME SUMMARY					
Pont of Compliance (POC)	Hydromod Facility	Details	Detention Volume Provided (ft³)	Detention Volume Provided (ac-ft)	
POC "1"	Underground storage system	350' of 5' diameter pipe	6,873	0.158	
		Total	6,873	0.158	

A summary of the proposed hydromodification BMPs, details and detention capacity are provided below.

6.4 MEASURES FOR AVOIDANCE OF CRITICAL COARSE SEDIMENT YIELD AREAS

Not applicable. The project is not within a potential critical coarse sediment yield area.

6.5 HYDROLOGIC MODELING AND HYDROMODIFICATION COMPLIANCE

Based on the results of the proposed hydromodification BMPs, the post-development discharges will be reduced to less than the existing pre-development discharges. The table below provides a summary of the results from the SOHM analysis based on the proposed BMP volume at this preliminary stage of design. Additional detail will be provided during final design. Post-development flows are less than existing conditions and meet the flow duration criteria for POC "1.".

HYDROMODIFICATION CONTROL BMP SUMMARY PER POINT OF COMPLIANCE					
Return Period	Point of Compliance	Pre-Development Flow (cfs)	Post-Development (Mitigated) Flow (cfs)	Reduction, Existing - Mitigated (cfs)_	
2-year	POC "1"	0.77	0.65	0.12	
5-year	POC "1"	0.95	0.83	0.12	
10-year	POC "1"	1.15	1.04	0.11	

SECTION 7 EDUCATIONAL MATERIALS INDEX

E	DUCATION	N MATERIALS	
Residential Materials (http://www.ocwatersheds.com)	Check if Applicable	Business Materials (http://www.ocwatersheds.com)	Check if Applicable
The Ocean Begins at Your Front Door	\square	Tips for the Automotive Industry	
Tips for Car Wash Fund-raisers		Tips for Using Concrete and Mortar	
Tips for the Home Mechanic		Tips for the Food Service Industry	
Household Tips	\square	Proper Maintenance Practices for Your Business	
Homeowners Guide for Sustainable Water Use	\boxtimes	Compliance BMPs for Mobile Businesses	
Proper Disposal of Household Hazardous Waste		Other Materials	Check if Attached
Recycle at Your Local Used Oil Collection Center (North County)			
Recycle at Your Local Used Oil Collection Center (Central County)			
Recycle at Your Local Used Oil Collection Center (South County)			
Tips for Maintaining a Septic Tank System			
Responsible Pest Control	\square		
Sewer Spill			
Tips for the Home Improvement Projects			
Tips for Horse Care			
Tips for Landscaping and Gardening	\square		
Tips for Pet Care	\square		
Tips for Pool Maintenance			
Tips for Residential Pool, Landscape and Hardscape Drains	\boxtimes		
Tips for Projects Using Paint			
Other:			

ATTACHMENTS

Attachment A	Educational Materials
Attachment B	Operation & Maintenance (O&M) Plan
Attachment C	Exhibits
Attachment D	BMP Design Calculations & Details
Attachment E	Hydromodification Control Calculations
Attachment F	Conditions of Approval (PENDING)
Attachment G	Geotechnical Feasibility Report

ATTACHMENT A EDUCATION MATERIALS

The Ocean Begins at Your Front Door

.ti gnitullod əfiə $\mathbf{p}_{\mathbf{d}}$ əy ava the more səlim əvil no ℓ in the $\mathbf{p}_{\mathbf{d}}$

Swon X nov bia

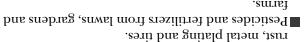
- called "non-point source" pollution. lots. This type of pollution is sometimes neighborhoods, construction sites and parking of water pollution comes from city streets, treatment plants. In fact, the largest source specific sources such as factories and sewage of water pollution in urban areas comes from Most people believe that the largest source
- .nouullon florition: stormwater and urban runoff There are two types of non-point source
- of water to rinse the urban landscape, When rainstorms cause large volumes Stormwater runoff results from rainfall.
- other urban pollutants into storm drains. sources carries trash, lawn clippings and irrigation, vehicle washing and other the year when excessive water use from Urban runoff can happen any time of picking up pollutants along the way.

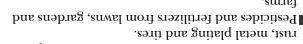
Where Does It Go?

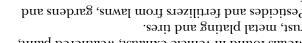
- tertilizers and cleaners can be blown or washed businesses - like motor oil, paint, pesticides, Anything we use outside homes, vehicles and
- A little water from a garden hose or rain can also into storm drains.
- sewer systems; unlike water in sanitary sewers Storm drains are separate from our sanitary send materials into storm drains.
- not treated before entering our waterways. (from sinks or toilets), water in storm drains is

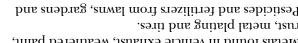
- Oil stains on parking lots and paved surfaces. organic matter.
- Litter, lawn clippings, animal waste, and other
- construction activities.
- Soil erosion and dust debris from landscape and
- removers.
- Improper disposal of cleaners, paint and paint
- .smisi
- Metals found in vehicle exhaust, weathered paint,

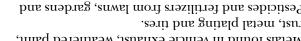
- .sbiult

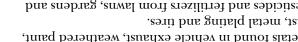

Sources of Non-Point Source Pollution

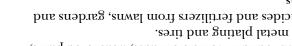

Automotive leaks and spills.

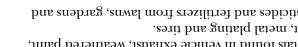

425-2535

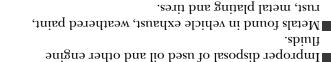

765-6860


- rust, metal plating and tires.









as well as coastal and wetland habitats. They can can harm marine life atorm drain system Pollutants from the in Orange County. on water quality a serious impact pollution can have Source source

The Effect on the Ocean

before it reaches the storm drain and the ocean. noitulloq qote qlad lliw eleriatem to leeopen ban and reduce urban runoff pollution. Proper use

businesses is needed to improve water quality

investigate illegal dumping and maintain storm

been developed throughout Orange County to

Stormwater quality management programs have

also degrade recreation areas such as beaches,

quality, monitor runoff in the storm drain system,

educate and encourage the public to protect water

Support from Orange County residents and

crains.

revealed have and bays.

contractions for such the second seco storm drain can contaminate 250,000 $oldsymbol{v}$ one duck of motor of into $oldsymbol{a}$

Orange County Stormwater Program

Anaheim Public Works Operations (714)

California Environmental Protection Agency

For More Information

www.calepa.ca.gov

- **Air Resources Board**
- www.arb.ca.gov
- **Department of Pesticide Regulation**
- www.cdpr.ca.gov Department of Toxic Substances Control
- www.dtsc.ca.gov **Integrated Waste Management Board** www.ciwmb.ca.gov
- Office of Environmental Health Hazard Assessment
- www.oehha.ca.gov
- State Water Resources Control Board www.waterboards.ca.gov

Earth 911 - Community-Specific Environmental Information 1-800-cleanup or visit www.1800cleanup. org

990-7666 562-3655 754-5323 229-6740 248-3584 593-4441738-6853741-5956 536 - 5431Huntington Beach Public Works (714) 724-6315 905 - 9792690 - 3310497-0378 707-2650 362-4337 639-0500

Health Care Agency's Ocean and Bay Water Closure and Posting Hotline

(714) 433-6400 or visit www.ocbeachinfo.com

Integrated Waste Management Dept. of Orange

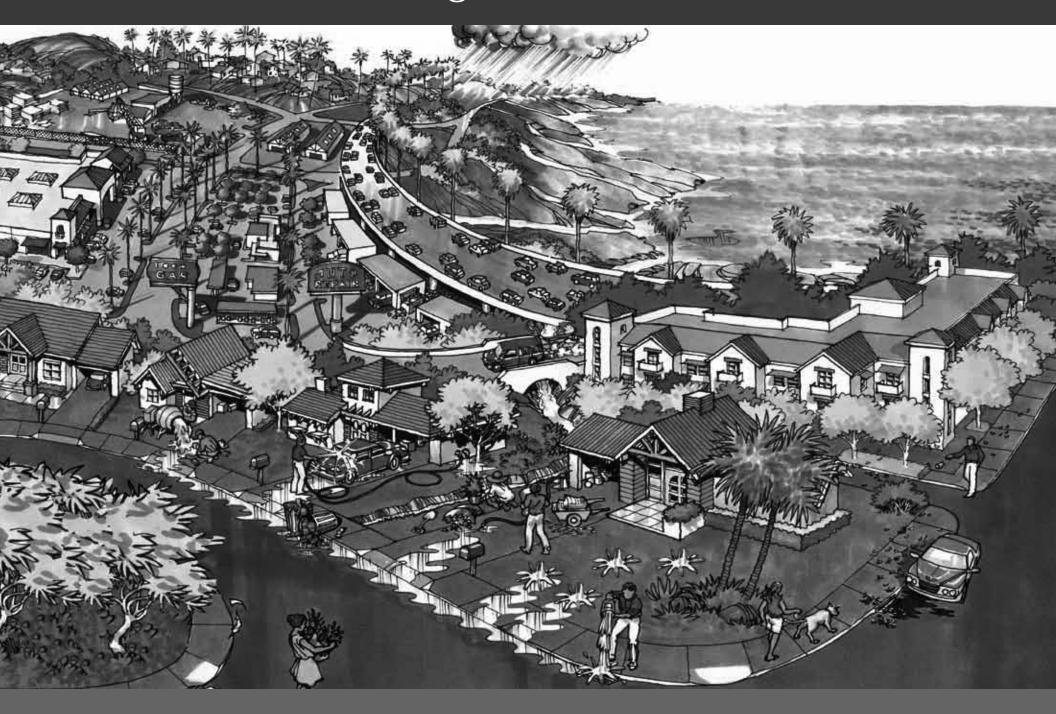
County (714) 834-6752 or visit www.oclandfills.com for information on household hazardous waste collection centers, recycling centers and solid waste collection

O.C. Agriculture Commissioner (714) 447-7100 or visit www.ocagcomm.com

Stormwater Best Management Practice Handbook Visit www.cabmphandbooks.com

UC Master Gardener Hotline

(714) 708-1646 or visit www.uccemg.com


The Orange County Stormwater Program has created and moderates an electronic mailing list to facilitate communications, take questions and exchange ideas among its users about issues and topics related to stormwater and urban runoff and the implementation of program elements. To join the list, please send an email to ocstormwaterinfo-join@list.ocwatersheds.com

Lake Forest Public Works	461-3480
Los Alamitos Community Dev (562)	431-3538
Mission Viejo Public Works	470-3056
Newport Beach, Code & Water	
Quality Enforcement	644-3215
Orange Public Works	532-6480
Placentia Public Works	993-8245
Rancho Santa Margarita	635-1800
San Clemente Environmental Programs (949)	361-6143
San Juan Capistrano Engineering (949)	234-4413
Santa Ana Public Works	647-3380
Seal Beach Engineering	2527 x317
Stanton Public Works	9222 x204
Tustin Public Works/Engineering (714)	573-3150
Villa Park Engineering	998-1500
Westminster Public Works/Engineering (714) 898-	3311 x446
Yorba Linda Engineering	961-7138
Orange County Stormwater Program (877)	897-7455
Orange County 24-Hour	
Water Pollution Problem Reporting Hotline	
1-877-89-SPILL (1-877-897-7455)	

On-line Water Pollution Problem Reporting Form www.ocwatersheds.com

The Ocean Begins at Your Front Door

Never allow pollutants to enter the street, gutter or storm drain!

Follow these simple steps to help reduce water pollution:

Household Activities

- Do not rinse spills with water. Use dry cleanup methods such as applying cat litter or another absorbent material, sweep and dispose of in the trash. Take items such as used or excess batteries, oven cleaners, automotive fluids, painting products and cathode ray tubes, like TVs and computer monitors, to a Household Hazardous Waste Collection Center (HHWCC).
- For a HHWCC near you call (714) 834-6752 or visit www.oclandfills.com.
- Do not hose down your driveway, sidewalk or patio to the street, gutter or storm drain. Sweep up debris and dispose of it in the trash.

Automotive

Pool Maintenance

- Pool and spa water must be dechlorinated and free of excess acid, alkali or color to be allowed in the street, gutter or storm drain.
- When it is not raining, drain dechlorinated pool and spa water directly into the sanitary sewer.
- Some cities may have ordinances that do not allow pool water to be disposed of in the storm drain. Check with your city.

Landscape and Gardening

Do not over-water. Water your lawn and garden by hand to control the amount of water you use or set irrigation systems to reflect seasonal water needs. If water flows off your yard onto your driveway or

Trash

- Place trash and litter that cannot be recycled in securely covered trash cans.
- Whenever possible, buy recycled products.
- Remember: Reduce, Reuse, Recycle.

Pet Care

- Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash. Pet waste, if left outdoors, can wash into the street, gutter or storm drain.
- If possible, bathe your pets indoors. If you must bathe your pet outside, wash it on your lawn or another absorbent/permeable surface to keep the washwater from entering the street, gutter or storm drain.

Take your vehicle to a commercial car wash whenever possible. If you wash your vehicle at home, choose soaps, cleaners, or detergents labeled non-toxic, phosphate-free or biodegradable. Vegetable and citrus-based products are typically safest for the environment.
Do not allow washwater from vehicle washing to drain into the street, gutter or storm drain. Excess washwater should be disposed of in the sanitary sewer (through a sink or toilet) or onto an absorbent surface like your lawn.

- Monitor your vehicles for leaks and place a pan under leaks. Keep your vehicles well maintained to stop and prevent leaks.
- Never pour oil or antifreeze in the street, gutter or storm drain. Recycle these substances at a service station, a waste oil collection center or used oil recycling center. For the nearest Used Oil Collection Center call 1-800-CLEANUP or visit www.1800cleanup.org.

sidewalk, your system is over-watering. Periodically inspect and fix leaks and misdirected sprinklers.
Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain. Instead, dispose of waste by composting, hauling it to a permitted landfill, or as green waste through your city's recycling program.

Follow directions on pesticides and fertilizer, (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
Take unwanted pesticides to a HHWCC to be

recycled. For locations and hours of HHWCC, call (714) 834-6752 or visit www.oclandfills.com.

Follow directions for use of pet care products and dispose of any unused products at a HHWCC.

Common Pollutants

Home Maintenance
Detergents, cleaners and solvents
Oil and latex paint
Swimming pool chemicals
Outdoor trash and litter

Lawn and Garden

- Pet and animal waste
- Pesticides
- Clippings, leaves and soilFertilizer

Automobile

- Oil and grease
- Radiator fluids and antifreeze
- Cleaning chemicals
- Brake pad dust

lean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities can lead to water pollution if you're not careful. Home improvement projects and work sites must be maintained to ensure that building materials do not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump building materials into the ocean, so don't let them enter the storm drains. Follow these tips to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while performing home improvement projects. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution: Tips for Home Improvement Projects

Tips for Home Improvement Projects

Home improvement projects can cause significant damage to the environment. Whether you hire a contractor or work on the house yourself, it is important to follow these simple tips while renovating, remodeling or improving your home:

General Construction

- Schedule projects for dry weather.
- Keep all construction debris away from the street, gutter and storm drain.
- Store materials under cover with temporary roofs or plastic sheets to eliminate or reduce the possibility that rainfall, runoff or wind will carry materials from the project site to the street, storm drain or adjacent properties.

Building Materials

- Never hose materials into a street, gutter or storm drain.
- Exposed piles of construction material should not be stored on the street or sidewalk.
- Minimize waste by ordering only the amount of materials needed to complete the job.
- Do not mix more fresh concrete than is needed for each project.
- Wash concrete mixers and equipment in a designated washout area where the water can flow into a containment area or onto dirt.
- Dispose of small amounts of dry excess materials in the trash. Powdery waste, such as dry concrete, must be properly contained within a box or bag prior to disposal. Call your local trash hauler for weight and size limits.

Paint

- Measure the room or object to be painted, then buy only the amount needed.
- Place the lid on firmly and store the paint can upsidedown in a dry location away from the elements.
- Tools such as brushes, buckets and rags should never be washed where excess water can drain into the street, gutter or storm drain. All tools should be rinsed in a sink connected to the sanitary sewer.
- When disposing of paint, never put wet paint in the trash.
- Dispose of water-based paint by removing the lid and letting it dry

in the can. Large amounts must be taken to a Household Hazardous Waste Collection Center (HHWCC).

- Oil-based paint is a household hazardous waste. All leftover paint should be taken to a HHWCC.
- For HHWCC locations and hours, call (714) 834-6752 or visit www.oclandfills.com.

Erosion Control

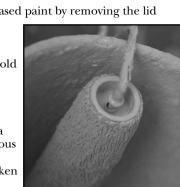
- Schedule grading and excavation projects for dry weather.
- When temporarily removing soil, pile it in a contained, covered area where it cannot spill into the street, or obtain the required temporary encroachment or street closure permit and follow the conditions instructed by the permit.

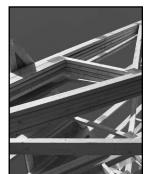
- When permanently removing large quantities of soil, a disposal location must be found prior to excavation. Numerous businesses are available to handle disposal needs. For disposal options, visit www.ciwmb.ca.gov/SWIS.
- Prevent erosion by planting fast-growing annual and perennial grasses. They will shield and bind the soil.

Recycle

Use a construction and demolition recycling

company to recycle lumber, paper, cardboard, metals, masonry (bricks, concrete, etc.), carpet, plastic, pipes (plastic, metal and clay), drywall, rocks, dirt and green waste.




For a listing of construction and demolition recycling locations in your area, visit www.ciwmb.ca.gov/recycle.

Spills

- Clean up spills immediately by using an absorbent material such as cat litter, then sweep it up and dispose of it in the trash.
- Immediately report spills that have entered the street, gutter or storm drain to the County's 24-Hour Water Pollution Problem Reporting Hotline at (714) 567-6363 or visit www.ocwatersheds.com to fill out an incident reporting form.

Help Prevent Ocean Pollution:

Do your part to prevent water pollution in our creeks, rivers, bays and ocean.

Clean beaches and healthy creeks, rivers, bays, and ocean are important to Orange County. However, many common household

REMEMBER THEwater pollution if you're
not careful.WATER IN YOURLitter, oil, chemicals and
other substances that

Storm Drain is Not Treated BEFORE It Enters Our Waterways Litter, oil, chemicals and other substances that are left on your yard or driveway can be blown or washed into storm drains that flow to the ocean. Over-watering your lawn and washing your car can also flush materials into the storm

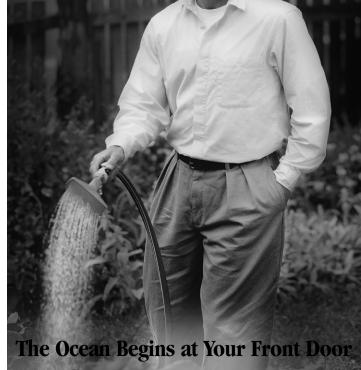
activities can lead to

drains. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated.

You would never pour soap, fertilizers or oil into the ocean, so don't let them enter streets, gutters or storm drains. Follow the easy tips in this brochure to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455)

> or visit www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).


For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while performing everyday household activities. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Household Tips

Pollution Prevention

Household Activities

- **Do not rinse spills with water!** Sweep outdoor spills and dispose of in the trash. For wet spills like oil, apply cat litter or another absorbent material, then sweep and bring to a household hazardous waste collection center (HHWCC).
- Securely cover trash cans.
- Take household hazardous waste to a household hazardous waste collection center.
- Store household hazardous waste in closed, labeled containers inside or under a cover.
- Do not hose down your driveway, sidewalk or patio. Sweep up debris and dispose of in trash.
- Always pick up after your pet. Flush waste down the toilet or dispose of in the trash.
- Bathe pets indoors or have them professionally groomed.

Household Hazardous Wastes include:

- ▲ Batteries
- ▲ Paint thinners, paint strippers and removers
- ▲ Adhesives
- ▲ Drain openers
- ▲ Oven cleaners
- ▲ Wood and metal cleaners and polishes
- ▲ Herbicides and pesticides
- ▲ Fungicides/wood preservatives
- ▲ Automotive fluids and products
- ▲ Grease and rust solvents
- ▲ Thermometers and other products containing mercury
- ▲ Fluorescent lamps
- ▲ Cathode ray tubes, e.g. TVs, computer monitors

▲ Pool and spa chemicals

Gardening Activities

- Follow directions on pesticides and fertilizers, (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Water your lawn and garden by hand to control the amount of water you use. Set irrigation systems to reflect seasonal water needs. If water flows off your yard and onto your driveway or sidewalk, your system is over-watering.
- Mulch clippings or leave them on the lawn. If necessary, dispose in a green waste container.
- Cultivate your garden often to control weeds.

Washing and Maintaining Your Car

- Take your car to a commercial car wash whenever possible.
- Choose soaps, cleaners, or detergents labeled "non-toxic," "phosphate free" or "biodegradable." Vegetable and citrusbased products are typically safest for the environment, but even these should not be allowed into the storm drain.
- Shake floor mats into a trash can or vacuum to clean.

- Do not use acid-based wheel cleaners and "hose off" engine degreasers at home. They can be used at a commercial facility, which can properly process the washwater.
- Do not dump washwater onto your driveway, sidewalk, street, gutter or storm drain. Excess washwater should be disposed of in the sanitary sewers (through a sink, or toilet) or onto an absorbent surface like your lawn.
- Use a nozzle to turn off water when not actively washing down automobile.
- Monitor vehicles for leaks and place pans under leaks. Keep your car well maintained to stop and prevent leaks.
- Use cat litter or other absorbents and sweep to remove any materials deposited by vehicles. Contain sweepings and dispose of at a HHWCC.
- Perform automobile repair and maintenance under a covered area and use drip pans or plastic sheeting to keep spills and waste material from reaching storm drains.
- Never pour oil or antifreeze in the street, gutter or storm drains.

Recycle these substances at a service station, HHWCC, or used oil recycling center. For the nearest Used Oil Collection Center call 1-800-CLEANUP or visit www.ciwmb.ca.gov/UsedOil.

For locations and hours of Household Hazardous Waste Collection Centers in Anabeim, Huntington Beach, Irvine and San Juan Capistrano, call (714)834-6752 or visit www.oclandfills.com.

lean beaches and healthy creeks, rivers, bays and ocean are important to **Orange County.** However, many common activities can lead to water pollution if you're not careful. Fertilizers, pesticides and other chemicals that are left on yards or driveways can be blown or washed into storm drains that flow to the ocean. Overwatering lawns can also send materials into storm drains. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never pour gardening products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution. For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

UCCE Master Gardener Hotline: (714) 708-1646

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while landscaping or gardening. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Landscape & Gardening

Tips for Landscape & Gardening

Never allow gardening products or polluted water to enter the street, gutter or storm drain.

General Landscaping Tips

- Protect stockpiles and materials from wind and rain by storing them under tarps or secured plastic sheeting.
- ■Prevent erosion of slopes by planting fast-growing, dense ground covering plants. These will shield and bind the soil.
- Plant native vegetation to reduce the amount of water, fertilizers, and pesticide applied to the landscape.

■Never apply pesticides or fertilizers when rain is predicted within the next 48 hours.

Garden & Lawn Maintenance

Do not overwater. Use irrigation practices such as drip irrigation, soaker hoses or micro spray systems. Periodically inspect and fix leaks and misdirected sprinklers. Do not rake or blow leaves, clippings or pruning waste into the street, gutter or storm drain.
 Instead, dispose of green waste by composting, hauling it to a permitted

landfill, or recycling it through your city's program.

- Use slow-release fertilizers to minimize leaching, and use organic fertilizers.
- Read labels and use only as directed. Do not over-apply pesticides or fertilizers. Apply to spots as needed, rather than blanketing an entire area.
- Store pesticides, fertilizers and other chemicals in a dry covered area to prevent exposure that may result

in the deterioration of containers and packaging.

Rinse empty pesticide containers and re-use rinse water as you would use the

product. Do not dump rinse water down storm drains. Dispose of empty containers in the trash.

- When available, use non-toxic alternatives to traditional pesticides, and use pesticides specifically designed to control the pest you are targeting. For more information, visit www.ipm.ucdavis.edu.
- If fertilizer is spilled, sweep up the spill before irrigating. If the spill is liquid, apply an absorbent material such as cat litter, and then sweep it up and dispose of it in the trash.
- Take unwanted pesticides to a Household Hazardous Waste Collection Center to be recycled. Locations are provided below.

Household Hazardous Waste Collection Centers

Anaheim: 1	071 N. Blue Gum St.
Huntington Beach:	17121 Nichols St.
Irvine:	6411 Oak Canyon
San Juan Capistrano:	32250 La Pata Ave.

For more information, call (714) 834-6752 or visit www.oclandfills.com

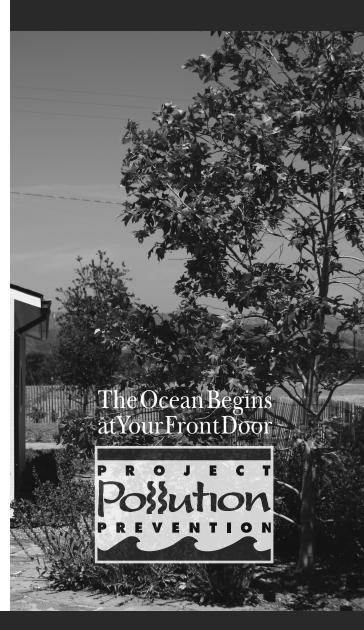
lean beaches and healthy creeks, rivers, bays and ocean are important to Orange County. However, many common activities such as pest control can lead to water pollution if you're not careful. Pesticide treatments must be planned and applied properly to ensure that pesticides do not enter the street, gutter or storm drain. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never dump pesticides into the ocean, so don't let it enter the storm drains. Pesticides can cause significant damage to our environment if used improperly. If you are thinking of using a pesticide to control a pest, there are some important things to consider. For more information, please call University of California Cooperative Extension Master Gardeners at (714) 708-1646 or visit these Web sites: www.uccemg.org www.ipm.ucdavis.edu

For instructions on collecting a specimen sample visit the Orange County Agriculture Commissioner's website at: http://www.ocagcomm.com/ser_lab.asp

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.


Information From: Cheryl Wilen, Area IPM Advisor; Darren Haver, Watershed Management Advisor; Mary Louise Flint, IPM Education and Publication Director; Pamela M. Geisel, Environmental Horticulture Advisor; Carolyn L. Unruh, University of California Cooperative Extension staff writer. Photos courtesy of the UC Statewide IPM Program and Darren Haver.

Funding for this brochure has been provided in full or in part through an agreement with the State Water Resources Control Board (SWRCB) pursuant to the Costa-Machado Water Act of 2000 (Prop. 13).

Help Prevent Ocean Pollution:

Responsible Pest Control

Tips for Pest Control

Key Steps to Follow:

Step 1: Correctly identify the pest (insect, weed, rodent, or disease) and verify that it is actually causing the problem.

This is important because beneficial insects are often mistaken for pests and sprayed with pesticides needlessly.

Three life stages of the common lady beetle, a beneficial insect.

Consult with a Certified Nursery

Professional at a local nursery or garden center or send a sample of the pest to the Orange County Agricultural Commissioner's Office.

Determine if the pest is still present – even though you see damage, the pest may have left.

Step 2: Determine how many pests are present and causing damage.

Small pest populations may be controlled more safely using non-

pesticide techniques. These include removing food sources, washing off leaves with a strong stream of water, blocking entry into the home using caulking and replacing problem plants with ones less susceptible to pests.

Integrated Pest Management (IPM) usually combines several least toxic pest control methods for long-term prevention and management of pest problems without harming you, your family, or the environment.

Step 3: If a pesticide must be used, choose the least toxic chemical.

Obtain information on the least toxic pesticides that are effective at controlling the target pest from the UC Statewide Integrated Pest Management (IPM) Program's Web site at www.ipm.ucdavis.edu.

Seek out the assistance of a Certified Nursery Professional at a local nursery or garden center when selecting a pesticide. Purchase the smallest amount of pesticide available.

Apply the pesticide to the pest during its most vulnerable life stage. This information can be found on the pesticide label.

Step 4: Wear appropriate protective clothing.

Follow pesticide labels regarding specific types of protective equipment you should wear. Protective clothing should always be washed separately from other clothing.

Step 5: Continuously monitor external conditions when applying pesticides such as weather, irrigation, and the presence of children and animals.

Never apply pesticides when rain is predicted within the next 48 hours. Also, do not water after applying pesticides unless the directions say it is necessary.

Apply pesticides when the air is still; breezy conditions may cause the spray or dust to drift away from your targeted area.

In case of an emergency call 911 and/or the regional poison control number at (714) 634-5988 or (800) 544-4404 (CA only).

For general questions you may also visit www.calpoison.org.

Step 6: In the event of accidental spills, sweep up or use an absorbent agent to remove any excess pesticides. Avoid the use of water.

Be prepared. Have a broom, dust pan, or dry absorbent material, such as cat litter, newspapers or paper towels, ready to assist in cleaning up spills.

Contain and clean up the spill right away. Place contaminated materials in a doubled plastic bag. All materials used to clean up the spill should be properly disposed of according to your local Household Hazardous Waste Disposal site.

Step 7: Properly store and dispose of unused pesticides.

Purchase Ready-To-Use (RTU) products to avoid storing large concentrated quantities of pesticides.

Store unused chemicals in a locked cabinet.

Unused pesticide chemicals may be disposed of at a Household Hazardous Waste Collection Center.

Empty pesticide containers should be triple rinsed prior to disposing of them in the trash.

Household Hazardous Waste Collection Center (714) 834-6752 www.oclandfills.com

lean beaches and healthy creeks, rivers, bays and ocean are important to **Orange County.** However, many common activities can lead to water pollution if you're not careful. Pet waste and pet care products can be washed into the storm drains that flow to the ocean. Unlike water in sanitary sewers (from sinks and toilets), water in storm drains is not treated before entering our waterways.

You would never put pet waste or pet care products into the ocean, so don't let them enter the storm drains. Follow these easy tips to help prevent water pollution. please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

For more information,

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution while caring for your pet. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Pet Care

The Ocean Begins at Your Front Door

TION

ENTION

Tips for Pet Care

Never let any pet care products or washwater run off your yard and into the street, gutter or storm drain.

Washing Your Pets

Even biodegradable soaps and shampoos can be harmful to marine life and the environment.

- If possible, bathe your pets indoors using less-toxic shampoos or have your pet professionally groomed.
 Follow instructions on the products and clean up spills.
- ■If you bathe your pet outside, wash it on your lawn or another absorbent/ permeable surface to keep the washwater from running into the street, gutter or storm drain.

Flea Control

- Consider using oral or topical flea control products.
- If you use flea control products such as shampoos, sprays or collars, make sure to dispose of any unused

products at a Household Hazardous Waste Collection Center. For location information, call (714) 834-6752.

Why You Should Pick Up After Your Pet

It's the law! Every city has an ordinance requiring you to pick up after your pet. Besides being a nuisance, pet

waste can lead to water pollution, even if you live inland. During rainfall, pet waste left outdoors can wash into storm drains. This waste flows directly into our waterways and the ocean where it can harm human health, marine life and the environment.

As it decomposes, pet waste demands a high level of oxygen from water. This decomposition can contribute to

killing marine life by reducing the amount of dissolved oxygen available to them.

Have fun with your pets, but please be a responsible pet owner by taking

care of them and the environment.

- Take a bag with you on walks to pick up after your pet.
- Dispose of the waste in the trash or in a toilet.

For more information, please call the Orange County Stormwater Program at 1-877-89-SPILL (1-877-897-7455) or visit www.ocwatersheds.com

To report a spill, call the Orange County 24-Hour Water Pollution Problem Reporting Hotline at 1-877-89-SPILL (1-877-897-7455).

For emergencies, dial 911.

The tips contained in this brochure provide useful information to help prevent water pollution. If you have other suggestions, please contact your city's stormwater representatives or call the Orange County Stormwater Program.

Help Prevent Ocean Pollution:

Tips for Residential Pool, Landscape and Hardscape Drains

The Ocean Begins

at Your Front Door

Pool Maintenance

All pool water discharged to the curb, gutter or permitted pool drain from your property must meet the following water quality criteria:

- The residual chlorine does not exceed
- 0.1 mg/L (parts per million).
- The pH is between 6.5 and 8.5.
- The water is free of any unusual coloration.
 - coloration. There is no discharge of filter media or acid cleaning wastes.

Some cities have ordinances that do not allow pool water to be discharged to the storm drain. Check with your city.

Landscape and Hardscape Drains

The following recommendations will help reduce or prevent pollutants from your landscape and hardscape drains from entering the street, gutter or storm drain. Unlike water that enters the sewer (from sinks and toilets), water that enters a landscape or hardscape drain is not treated before entering our creeks, rivers, bays and ocean.

Household Activities

- Do not rinse spills of materials or chemicals to any drain.
- Use dry cleanup methods such as applying cat litter or another absorbent material, then sweep it up and dispose of it in the trash. If the material is hazardous, dispose of it at a Household Hazardous Waste Collection Center (HHWCC). For locations, call (714) 834-6752 or visit www.oclandfills.com.
- Do not hose down your driveways, sidewalks or patios to your landscape or hardscape drain. Sweep up debris and dispose of it in the trash.
- Always pick up after your pet. Flush waste down the toilet or dispose of it in the trash.

Do not store items such as cleaners, batteries, automotive fluids, paint products, TVs, or computer monitors uncovered outdoors. Take them to a HHWCC for disposal.

Yard Maintenance

Do not overwater. Water by hand or set automated irrigation systems to reflect seasonal water needs.

- Follow directions on pesticides and fertilizers (measure, do not estimate amounts) and do not use if rain is predicted within 48 hours.
- Cultivate your garden often to control weeds and reduce the need to use chemicals.

Vehicle Maintenance

- Never pour oil or antifreeze down your landscape or hardscape drain. Recycle these substances at a service station, a waste collection center or used oil recycling center. For locations, contact the Used Oil Program at 1-800-CLEANUP or visit www.CLEANUP.org.
- Whenever possible, take your vehicle to a commercial car wash.
- If you do wash your vehicle at home, do not allow the washwater to go down your landscape or hardscape drain. Instead, dispose of it in the sanitary sewer (a sink or toilet) or onto an absorbent surface such as your lawn.
- Use a spray nozzle that will shut off the water when not in use.

The Pollution Solution

Several residential activities can result in water pollution. Among these activities are car washing and hosing off driveways and sidewalks. Both activities can waste water and result in excess runoff. Water conservation methods described in this pamphlet can prevent considerable amounts of runoff and conserve water. By taking your car to a commercial car wash and by sweeping driveways and sidewalks, you can further prevent the transport of pollutants to Orange County waterways. Here are some of the common pollutants for which you can be part of the solution:

Pesticides and Fertilizer

Pollution: The same pesticides that are designed to be toxic to pests can have an equally lethe impact on our marine life. The same fertilizer that promotes pla growth in lawns and gardens can also create nuisance alga blooms, which remove oxyger from the water and clog waterwa when it decomposes.

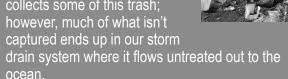
• Solution: Never use pesticides or fertilizer within 48 hours of an anticipated rainstorm. Use only as much as is directed on the label and keep it off driveways and sidewalks.

2 Dirt and Sediment

- **Pollution:** Dirt or sediment can impede the flow of the stormwater and negatively impact stream habitat as it travels through waterways and deposits downstream. Pollutants can attach to sediment, which can then be transported through our waterways.
- **Solution:** Protect dirt stockpiles by covering them with tarps or secure plastic sheets to prevent wind or rain from allowing dirt or sediment to enter the storm drain system.

- **Pollution:** Metals and other toxins present in car wash water can harm important plankton, which forms the base of the aquatic food chain.
- **Solution:** Take your car to a commercial car wash where the wash water is captured and treated at a local wastewater treatment plant.

DID YOU KNOW?


Did you know that most of the pollution found in our waterways is not from a single source, but from a "non-point" source meaning the accumulation of pollution from residents and businesses throughout the community

Pet Waste

- **Pollution:** Pet waste carries bacteria through our watersheds and eventually will be washed out to the ocean. This can pose a health risk to swimmers and surfers.
- **Solution:** Pick up after your pets!

ash and Debris

Pollution: Trash and debris can enter waterways by wind, littering and careless maintenance of trash receptacles. Street sweeping collects some of this tras however, much of what isn't captured ends up in our storm ocean.

Solution: Don't litter and make sure trash containers are properly covered. It is far more expensive to clean up the litter and trash that ends up in our waterways than it is to prevent it in the first place. Come out to one of Orange County's many locations for Coastal and Inner-Coastal Cleanup Day, which is held in September.

Motor Oil / Vehicle Fluids

- Pollution: Oil and petroleum products from our vehicles are toxic to people, wildlife and plants.
- Solution: Fix any leaks from your vehicle and keep the maintenance up on your car. Use absorbent material such as cat litter on oil spills then sweep it up and dispose of it in the trash Recycle used motor oil

at a local Household Hazardous Waste Collection Center.

A TEAM EFFORT

pamphlet.

Low Impact Development (LID) and sustainable water use prevents water pollution and conserves water for drinking and reuse. Reducing your water use and the amount of water flowing from your home protects the environment and saves you money.

Thank you for making water protection a priority!

For more information. olease visit www.ocwatersheds. com/publiced/

www.mwdoc.com

www.uccemg.com

To report a spill, call the Orange County 24-Hour Water Pollution Prevention Reporting Hotline at 1-877-89-SPILL \ (1-877-897-7455)

Special Thanks to

The Metropolitan Water District of Southern California for the use of the California-Friendly Plant and Native Habitat photos

The Orange County Stormwater Program has teamed with the Municipal Water District of Orange County (MWDOC) and the University of California Cooperative Extension Program (UCCE) to develop this

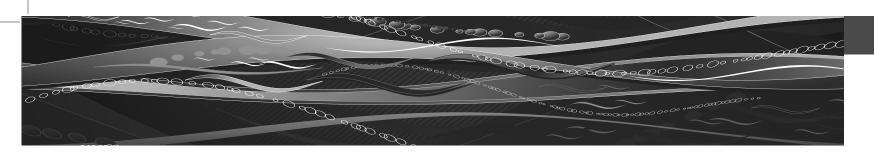
The City of Los Angeles Stormwater Program for the use of its artwork

Homeowners Guide for Sustainable Water Use

Low Impact Development, Water Conservation & Pollution Preventior

A STANDARD

The Ocean Begins at Your Front Door



RUNOFF, RAINWATER AND REUSE

Where Does Water Runoff Go?

Stormwater, or water from rainfall events, and runoff from outdoor water use such as sprinklers and hoses flows from homes directly into catch basins and the storm drain system. After entering the storm drain, the water flows untreated into streams, rivers, bays and ultimately the Pacific Ocean. Runoff can come from lawns, gardens, driveways, sidewalks and roofs. As it flows over hard, impervious surfaces, it picks up pollutants. Some pollutants carried by the water runoff include trash, pet waste, pesticides, fertilizer, motor oil and more.

Water Conservation

Pollution not only impairs the water quality for habitat and recreation, it can also reduce the water available for reuse. Runoff allowed to soak into the ground is cleaned as it percolates through the soil, replenishing depleted groundwater supplies. Groundwater provides at least 50% of the total water for drinking and other indoor household activities in north and central Orange County. When land is covered with roads, parking lots, homes, etc., there is less land to take in the water and more hard surfaces over which the water can flow.

In Orange County, 60-70% of water used by residents and businesses goes to irrigation and other outdoor uses. Reusing rainwater to irrigate our lawn not only reduces the impact of water pollution from runoff, but it also is a great way to conserve our precious water resources and replenish our groundwater basin.

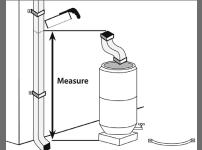
What is Low Impact Development (LID)? Low Impact Development (LID) is a method of development that seeks to maintain the natural hydrologic character of an area. LID provides a more sustainable and pollution-preventative approach to water management.

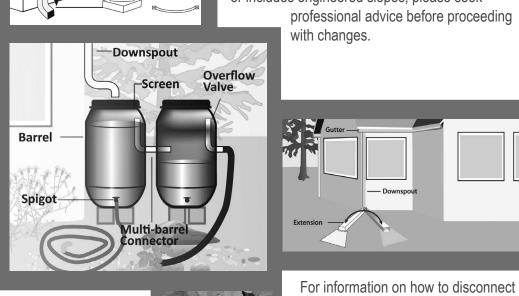
New water quality regulations require implementation of LID in larger new developments and encourage implementation of LID and other sustainable practices in existing residential areas. Implementing modifications to your lawn or garden can reduce pollution in our environment, conserve water and reduce your water bill.

runoff to infiltrate through the soil and prevents most pollutants from eaching the storm drain system.

OPTIONS FOR RAINWATER HARVESTING AND REUSE

Rainwater harvesting is a great way to save money, prevent pollution and reduce potable water use. To harvest your rainwater, simply redirect the runoff from roofs and downspouts to rain barrels. Rain gardens are another option; these reduce runoff as well as encourage infiltration.


Downspout

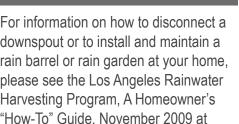

Disconnection/Redirection Disconnecting downspouts from pipes running to the gutter prevents runoff from transporting pollutants to the storm drain. Once disconnected, downspouts can be redirected to rain gardens or other vegetated areas, or be connected to a rain barrel.

Rain Barrels

0000000

Rain barrels capture rainwater flow from roofs for reuse in landscape irrigation. Capacity of rain barrels needed for your home will depend on the amount of roof area and rainfall received. When purchasing your rain barrel, make sure it includes a screen, a spigot to siphon water for use, an overflow tube to allow for excess water to run out and a connector if

you wish to connect multiple barrels to add capacity of water storage.


Mosquito growth prevention is very important when installing a rain barrel. The best way to prevent mosquito breeding is to eliminate entry points by ensuring all openings are sealed tightly. If these methods are unsuccessful, products are available to kill mosquito larvae, but that are harmless to animals and humans. Regular application of these products is essential. Please visit the Orange County Vector Control website for more information at www.ocvcd.org/mosquitoes3.php.

Rain Gardens

Rain gardens allow runoff to be directed from your roof downspout into a landscaped area. Vegetation and rocks in the garden will slow the flow of water to allow for infiltration into the soil. Plants and soil particles will absorb pollutants from the roof runoff. By utilizing a native plant palate, rain gardens can be maintained all year with minimal additional irrigation. These plants are adapted to the semi-arid climate of Southern California, require less water and can reduce your water bill.

Before modifying your yard to install a rain garden, please consult your local building and/or planning departments to ensure your garden plan follows pertinent building codes and ordinances. Besides codes and ordinances, some home owner associations also have guidelines for yard modifications. If your property is in hill areas or includes engineered slopes, please seek

For information on how to disconnect a downspout or to install and maintain a rain barrel or rain garden at your home, please see the Los Angeles Rainwater Harvesting Program, A Homeowner's

www.larainwaterharvesting.org/

water and nutrients. Weed your yard by hand if possible. If you use herbicides to

control the weeds, use only the amount recommended on the label and never use it if rain is forecast within the next 48 hours.

Soil Amendments

Soil amendments such as green waste (e.g. grass clippings, compost, etc.) can be a significant source of nutrients and can help keep the soil near the roots of plants moist. However, they can cause algal booms if they get into our waterways, which reduces the amount of oxygen in the water and impacts most aquatic organisms. It is important to apply soil amendments more than 48 hours prior to predicted rainfall.

OTHER WATER CONSERVATION AND

Native Vegetation and Maintenance

friendly plants and other garden resources at

www.bewaterwise.com/Gardensoft.

Weed Free Yards

Weeds are water thieves.

and rob your yard of both

POLLUTION PREVENTION TECHNIQUES

"California Friendly" plants or native vegetation can significantly

reduce water use. These plants often require far less fertilizers

Orange County waterways. Replacing water "thirsty" plants and

grass types with water efficient natives is a great way to save water

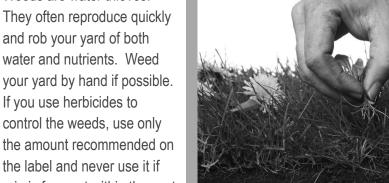
and reduce the need for potentially harmful pesticides and fertilizer.

Please see the California Friendly Garden Guide produced by the

Metropolitan Water District of Southern California and associated

Southern California Water Agencies for a catalog of California

and pesticides, which are two significant pollutants found in


Smart Irrigation Controllers

nart Irrigation Controllers ha nat will turn off the sprinklers response to environment

anges. If it is raining, too windy or too cold, the mart irrigation control sprinklers will automatically shut

heck with your local water agency for available retes on irrigation controllers and smart timers.

- Aim your sprinklers at your lawn, not the sidewalk you can save water, prevent water pollution from runoff, keep your lawn healthy and save money.
- **Set a timer for your sprinklers** lawns absorb the water they need to stay healthy within a few sprinklers; when water begins running off your to water your lawn for this duration every time.
- Water at Sunrise Watering early in the morning Additionally, winds tend to die down in the early morning so the water will get to the lawn as intended
- Water by hand Instead of using sprinklers, consider watering your yard by hand. Handwatering ensures that all plants get the proper amount of water and you will prevent any water runoff, which wastes water and carries pollutants into our waterways.
- Fix leaks Nationwide, households waste one trillion gallons of water a year to leaks – that is enough water to serve the entire state of Texas for a year. If your garden hose is leaking, replace the nylon or rubber hose washer and ensure a tight

ATTACHMENT B

OPERATIONS AND MAINTENANCE (O&M) PLAN

OPERATION & MAINTENANCE (O&M) PLAN FOR WQMP TBD

Project Name: Paseo De Colinas

Prepared for:

PROJECT DIMENSIONS 4 Park Plaza, Suite 700 Irvine, CA 92614 949.476.1960

Prepared on:

May 25, 2021

CONTENTS

SECTION	41 F	PROJECT DESCRIPTION AND BMP OVERVIEW	. 1
SECTION	12 I	PERSONNEL, DOCUMENTATION, AND REPORTING	. 3
2.1	Main	enance Roles and Responsibilities	. 3
2.2	Qual	fication and Training Requirements for Personnel	. 4
2.3	Main	enance Agreements and Funding Mechanisms	. 5
2.4	Recor	d Keeping Requirements	. 5
2.5	Requi	red Permits Associated with Maintenance Activities	. 6
2.6	Self-R	eporting Requirements	. 6
2.7	City I	nspections	. 6
2.8	Electr	onic Data Submittal	. 6
SECTION	13 I	NSPECTION AND MAINTENANCE ACTIVITIES	.7
3.1	Inspe	ction and Maintenance of Source Control BMPs	. 7
3.2	Inspe	ction and Maintenance of Hydrologic Source Controls	. 9
3.3	Inspe	ction and Maintenance of Structural LID and Hydromodification BMPs	. 9
3.4	Emer	gency Response Plan	12
3.5	Vecto	r Control	13
ATTACH	MENT	1 PHOTOS AND EXHIBITS	14
ATTACH	MENT		
ATTACH			
ATTACH	MENT		
ATTACH	MENT	5 INSPECTION AND O&M CHECKLIST (OPTIONAL)	24
ATTACH	MENT	6 VENDOR O&M INFORMATION	25

SECTION 1 PROJECT DESCRIPTION AND BMP OVERVIEW

GENERAL PROJECT ATTRIBUTES AND STORMWATER CONTROL MEASURES					
Site Location:	29001 Paseo De Colinas, Laguna Niguel CA 92677 The project is located within "South" Orange County and under the jurisdiction of the San Diego Regional Water Quality Control Board. A vicinity map is included in Attachment C.				
Project Area : 107,630 ft ²	ct Area: 107,630 ft ² Number of Dwelling Units: 38 SIC Code: N/A				
Narrative Project Description:	The proposed development consists of 38 residential town-home style units. Each proposed unit will be three stories and will be arranged around central courtyard areas. Surface-level parking will be provided throughout the Project Site. On-site activities are anticipated to be passive land uses associated with residential developments. The Project will redevelop an existing lot used for overflow parking for				
	the adjacent middle school. While impervious surfaces are anticipated to decrease, the change in land uses across the site results in the requirement for a Priority WQMP.				
Project-Specific Source Control BMPs:(N1) Education for Property Owners, Tenants and Occupant Activity Restrictions, (N3) Common Area Landscape Manage (N4) BMP Maintenance, (N11) Common Area Litter Control Employee Training, (N14) Common Area Catch Basin Insp (N15) Street Sweeping Private Streets and Parking Lots					
Summary of Drainage Patterns:	The project site drains northerly toward the NE corner of the site, where flows exit the site to Paseo De Colinas.				
Summary of Hydrologic Source Controls:	Minimize Impervious Area - Impervious surfaces have been minimized by incorporating landscaped areas throughout the site. Preserve Existing Drainage Patterns and Time of Concentration - Runoff from the site will continue to flow similar to existing conditions. Low flows will be routed to LID and hydromodification BMPs, while high flows will exit the site. Disconnect Impervious Areas - Landscaping will be provided adjacent to sidewalks and buildings. Low flows will be routed to LID and hydromodification BMPs for treatment before exiting the site.				

GENERAL PROJECT ATTRIBUTES AND STORMWATER CONTROL MEASURES				
	Soil Stockpiling and Site Generated Organics - As part of the grading and stockpiling activities on the site, organic materials that are suitable for assisting with the re-vegetation of the site will be collected, stored and then reused during planting of the site.			
	Water Efficient Landscaping - Xeriscape landscaping is not proposed for the project. However, native landscaping with lower water demands will be incorporated into the site design.			
Structural Treatment and Hydromodification BMPs:	Low flows are picked up in the onsite area drain system and conveyed to the MWS units located on the south side of the northern and middle driveways to Paseo De Colinas. Treated "first flush" and flows up to 10-yr storm will then ender the underground tank located under the surface parking area in the north end of the site for hydromodification mitigation to reduce flows. Runoff leaving the tank is then pumped up to the surface in the northeast corner of the site and exits on the surface through a parkway culvert out to Paseo De Colinas.			

Below is a table summary of all BMPs onsite.

BMP ID	ВМР Туре	Narrative Description	Location	Other Considerations
BMP 1	MWS (Modular Wetland System) Unit	Proprietary 8' x 16' biotreatment device to treat LID ("first flush" flows from DMA 1)	Manholes located in southeastern corner of sidewalk in the middle driveway to/from Paseo De Colinas.	N/A
BMP 2	MWS (Modular Wetland System) Unit	Proprietary 4' x 13' biotreatment device to treat LID ("first flush" flows from DMA 2)	Manholes located in southeastern corner of sidewalk in the northern driveway to/from Paseo De Colinas.	N/A
BMP 3	Underground storage tank	Below ground detention tank 5' diameter x 350' length to reduce flows for hydromodification mitigation	In center of surface parking area in norther portion of the site.	LID flows will be treated first, up to 10-year flows will bypass MWS.

SECTION 2 PERSONNEL, DOCUMENTATION, AND REPORTING

2.1 MAINTENANCE ROLES AND RESPONSIBILITIES

The roles related to O&M of the BMPs are defined as follows:

- Facility Owner The Facility Owner is the party who is ultimately responsible for the functionality
 of all BMPs. The maintenance agreement (Attachment 2) identifies the facility owner for each
 BMP, including the timing of any ownership transitions.
- Responsible Party The Responsible Party is the party that shall have direct responsibility for the O&M of the BMPs. This party shall be the designated contact with inspectors and lead maintenance personnel. The Responsible Party shall sign self-inspection reports and any correspondence regarding the verification of inspections and required maintenance. The Responsible Party will establish a system to delegate general inquiries to the appropriate maintenance personnel concerning the operation and maintenance of the BMPs. The Responsible Party reports directly to the Facility Owner and operates and manages the BMPs on the Facility Owner's behalf.
- Designated Emergency Respondent The Designated Emergency Respondent is the party
 responsible for directing activities and communications during emergencies such as broken
 irrigation pipes, landslides, hazardous spill responses etc., that would require immediate
 response should they occur during off-hours. It is the responsibility of the Designated Emergency
 Respondent to communicate the emergent situation with the Responsible Party as soon as
 possible.
- Key Maintenance Personnel Key Maintenance Personnel are the designated lead field manager(s) or supervisor(s) who directly oversee and delegate the maintenance activities, maintain the scheduling, and coordinate activities between all personnel. These tend to change more often than other personnel over time, so their names do not necessarily need to be included in the O&M Plan. However, they must be properly trained as recorded in the training logs (Section 2.2).

The table below lists the roles for this project. This table must be updated whenever changes occur.

Role	Name (Title and Affiliation)	Phone Number	Address	Email Address
Facility Owner	Project Dimensions – Jon Conk	949-476- 2246	4 Park Plaza, Suite 700, Irvine, CA 92614	jconk@projectdimensions.com
Responsible Party	Project Dimensions – Jon Conk	949-476- 2246	4 Park Plaza, Suite 700, Irvine, CA 92614	jconk@projectdimensions.com
Designated Emergency Respondent	Project Dimensions – Jon Conk	949-476- 2246	4 Park Plaza, Suite 700, Irvine, CA 92614	jconk@projectdimensions.com

2.2 QUALIFICATION AND TRAINING REQUIREMENTS FOR PERSONNEL

Many of the activities presented in this O&M plan can be completed by personnel with basic landscaping and yard maintenance skills and project-specific orientation. However, there are activities that require a more experienced skillset to identify and remediate potential issues that could compromise the functionality of each BMP. The Responsible Party shall exercise discretion in determining the skillset required to complete each task.

Activities that can typically be completed by maintenance personnel with basic training and/or qualifications include:

- General landscaping activities (pruning, weeding, and raking)
- Routine sediment, trash and debris removal;
- Filling in minor scour or erosion areas, or replacing rip rap that has become displaced; and
- Watering or irrigation, as necessary.

Activities that typically require maintenance personnel with specialized qualifications, training, and/or engineering oversight include:

- Inspection and/or repair of inflow and outflow structures;
- Inspection and/or repair of underground elements;
- Large-volume sediment or media removal requiring specialized equipment;
- Inspection, diagnosis, and remediation of significant erosion issues potentially compromising function and/or structural stability; and
- Spill response and remediation.

Maintenance personnel who have identified a potential major issue with any facility should contact the designated key maintenance personnel for the facility immediately.

Training must be provided for all personnel performing maintenance tasks on or providing maintenance oversight of structural BMPs. The table below provides the personnel and relevant training topics.

Training Logs contained in Attachment 3 should be used to document training of maintenance personnel.

Training Topic	Responsible Party	Designated Emergency Respondent	Key Maintenance Personnel
Proper Maintenance of all BMP components	Х		X
Identification and clean-up procedures for spills and overflows	Х	x	x
Safety concerns when maintaining devices and responding to emergency situations	X	X	X

2.3 MAINTENANCE AGREEMENTS AND FUNDING MECHANISMS

At this preliminary stage of design, it is projected that long-term funding for BMP maintenance will be provided by the Owner/Developer. Should the maintenance responsibility be transferred at any time during the operational life of the project, such as when an HOA or POA is formed for a project, a formal notice of transfer shall be submitted to the County of Orange at the time responsibility of the property subject to this WQMP is transferred. The transfer of responsibility shall be incorporated into this WQMP as an amendment.

2.4 RECORD KEEPING REQUIREMENTS

Documentation of site conditions, maintenance activities performed, and any other remaining maintenance required is necessary during each inspection/maintenance visit. Inspection and maintenance records shall be retained in an accessible, secure location for the life of the facility, and not less than 5 years.

The following documentation mechanisms and procedures have been established for this O&M Plan:

- Training Logs: Personnel must document training activities as part of implementing this O&M Plan. Attachment 3 contains a sample training log.
- Inspection and Routine Maintenance Logs: Maintenance personnel are required to maintain logs of inspection and maintenance activities. Attachment 4 contain inspection and maintenance logs.
- Rehabilitative and Corrective Maintenance Log and Reporting: Rehabilitation and corrective maintenance activities should be documented at a degree of detail that is commensurate to the complexity/significance of the activity. Any significant changes to the BMP designs that arise from rehabilitation/corrective maintenance will be documented via an update to the Project WQMP and as-built drawings. Corrective maintenance that does not result in design changes will be documented as a special entry in the maintenance logs to provide pertinent details of that rehabilitative or corrective maintenance activity.

2.5 REQUIRED PERMITS ASSOCIATED WITH MAINTENANCE ACTIVITIES

Supplemental permits are not required for the implementation, operation, and maintenance of the BMPs.

2.6 SELF-REPORTING REQUIREMENTS

No additional self-reporting requirements are known at this time.

2.7 CITY INSPECTIONS

The City of Laguna Niguel may conduct a site inspection to evaluate compliance with the Project WQMP, at any time, in accordance with (ordinance code number unknown at this time).

2.8 ELECTRONIC DATA SUBMITTAL

This document, along with the attachments, shall be provided to the City or County in PDF format. Autocad files and/or GIS coordinates of BMPs shall also be submitted to the City/County.

SECTION 3 INSPECTION AND MAINTENANCE ACTIVITIES

This section identifies the inspection and O&M activities for each BMP incorporated into the project. Section 3.1 and 3.2 contain common maintenance activities and frequencies associated with Source Control BMPs and HSCs, respectively. Section 3.3 contains individual tables for each structural LID or hydromodification BMP with an explanation of the various types of maintenance activities associated with these BMPs.

3.1 INSPECTION AND MAINTENANCE OF SOURCE CONTROL BMPS

Source Control BMP	Activity	Frequency
Dry Weather Flow Source Control Note: this is a South Orange County High	Check for dry weather flows such as street washing, irrigation overspray, air conditioner condensate in areas of the project that do not drain to LID BMPs, the sanitary sewer, or landscaped pervious areas. Notify residents of any dry weather flows and follow up to correct.	Twice per year during dry season
Priority Water Quality Condition for All Projects	Inspect project outfall or most-downstream project manhole for presence of dry weather flow. If present, conduct reconnaissance to determine source and implement actions to eliminate source.	Twice per year during dry season
N1. Education for Property Owner's Tenants and Occupants	Distribute appropriate materials to owners, tenants, and/or occupants via contract language, mailings, website, or meetings.	Information provided to owners and tenants upon sale or lease. Reminders sent or posted as needed.
	Check <u>www.ocwatersheds.com</u> and/or City website for updated educational materials.	Annually
N2. Activity Restrictions	Within the CC&R's or lease agreement, restrict the following activities: <u>activities to be updated</u> at a later time once CC&R's are finalized.	Information provided to owners and tenants upon sale or lease. Reminders sent or posted as needed.
N3/S4. Common Area Landscape Management, Efficient Landscape	Check that fertilizer and pesticide usage is in accordance wiN1th the Integrated Pest Management Program. Adjust, if needed.	Annually

Source Control BMP	Activity	Frequency
Design, and Efficient Irrigation	Check the irrigation system water budget to ensure efficiency targets are being met and the system is in good condition. Adjust/repair irrigation system and controllers, if needed.	Annually prior to irrigation system activation
	Check landscaping for presence of invasive species and remove, if needed.	Annually
N11. Common Area Litter	Remove trash from around trash enclosure, inspect to ensure lids closed, structurally sound, and not overflowing. Repair or replace, as needed.	Monthly
Control	Inspect common area for litter and trash disposal violations by homeowners and reporting to the HOA or responsible party for investigation. Remove litter, as needed.	Weekly
N14. Common Area Catch Basin Inspection	Remove trash and debris from catch basins and grates. Check for damage, clogging, and standing water. Repair or mitigate clogging/standing water, as needed.	Four times per year during wet season, including inspection just before the wet season and within 24 hours after at least two storm events >0.5 inches
N15. Street Sweeping Private Streets and Parking Lots	Sweep curb and gutter areas using a vacuum street sweeper. Report any significant or illicit debris in curb/gutter to HOA or responsible party, as needed.	Weekly
S1. Provide Storm Drain System Stenciling and Signage	Check that all catch basins in paved areas marked or stenciled with "No dumping-Drains to Ocean; No Descargue Basura" language. Replace/repaint markings if faded, damaged, removed, or otherwise illegible.	Annually

3.2 INSPECTION AND MAINTENANCE OF HYDROLOGIC SOURCE CONTROLS

No HSCs are proposed for the project to offset LID BMP sizing. This section not applicable.

3.3 INSPECTION AND MAINTENANCE OF STRUCTURAL LID AND HYDROMODIFICATION BMPS

The section is organized by type of structural LID or hydromodification BMP with separate tables for each BMP type included in the project. The section identifies four categories of activities related to O&M of the BMPs:

General Inspections – Evaluations conducted at regularly scheduled intervals to indicate the need for maintenance of structural BMPs.

Routine Maintenance Activities – Activities conducted at regularly scheduled intervals to sustain long-term performance of each BMP, including inspections and normal upkeep.

Corrective (Major) Maintenance Activities – Includes activities conducted to replace or rehabilitate system components at the end of their usable life as well as activities conducted to resolve major issues that are not anticipated.

Emergency Response Activities – Activities related to emergencies, primarily concerning spills, which may require immediate action and notifications (Section 3.4).

BMP ID	ВМР Туре	Reference Maintenance Table
BMP 1	MWS biotreatment Unit (or equivalent)	BIO-5 Proprietary Biotreatment (Page 10)
BMP 2	MWS biotreatment Unit (or equivalent)	BIO-5 Proprietary Biotreatment (Page 10)
BMP 3	Underground storage tank	Hydromodification Cisterns or Tanks (Page 11)

BIO-5/7 PROPRIETARY BIOTREATMENT					
Activity Frequency					
GENERAL INSPECTIONS					
Remove trash and debris					
Identify excess erosion or scour					
Identify sediment accumulation that requires maintenance	Four times per year during wet season, including inspection just before the wet season and within 24 hours after at lease two storm events ≥ 0.5 inches.				
Inspect during storm event, when possible, to estimate treatment capacity and determine if premature bypass is occurring					
Evaluate plant health and need for corrective action					
Identify any needed corrective maintenance that will require site-specific planning or design					
OPERATION AND MAIL	NTENANCE				
 O&M of proprietary BMPs must follow establish O&M of accompanying retention BMPs should associated fact sheet for that BMP. 	-				

HYDROMODIFICATION CISTERNS OR TANKS					
Activity Frequency					
GENERAL INSPECTIONS					
Check for leaks					
Inspect for minor sediment in cistern bottom	Four times per year during wet season, including inspection just before the wet				
Inspect for vector control issues	season and within 24 hours after at				
Identify any needed corrective maintenance that will require site-specific planning or design	least two storm events ≥ 0.5 inches.				
ROUTINE MAINTENANCE					
Clean out gutters, screening, and/or first-flush diverter	As-needed				
Remove sediment, trash, debris, and oil accumulation from cistern	Semi-annually or as needed				
Clean inside surfaces of cistern and disinfect	Annually				
Maintain treatment systems per manufacturer or designer recommendations	As specified				
CORRECTIVE (MAJOR) MAINTENANCE					
Prepare documentation of issues and resolutions for review by appropriate parties; modify WQMP if needed.	Before major maintenance				
Document major maintenance activities; record modified WQMP and as-built plan set if needed	After major maintenance				

3.4 EMERGENCY RESPONSE PLAN

In some cases, adverse conditions may occur which could be an imminent threat to human or environmental health or severe damage to infrastructure or property. For example, a spill of hazardous substances in the contributing area to a BMP could cause harmful substances to enter the BMP and be released downstream, affecting environmental and public health. Other emergencies could arise related to the stormwater features or water quality protection, such as landsliding, major erosion, or burst pipes in the tributary area.

In the event of an actual or suspected hazardous material release, the following plan shall take effect. The primary importance of initial response to an actual or suspected spill will be public safety, control of the source of pollution, and containment of spills that have occurred, as applicable. The table below provides the emergency contact information for hazardous materials spills affecting BMPs.

Name	Phone	When to Report
Local Emergency Response (Fire Department)	911	Immediately
Orange County 24-Hour Water Pollution Problem Reporting Hotline	1-877-897-7455	Immediately
CalOES State Warning Center	1-800-852-7550	Immediately

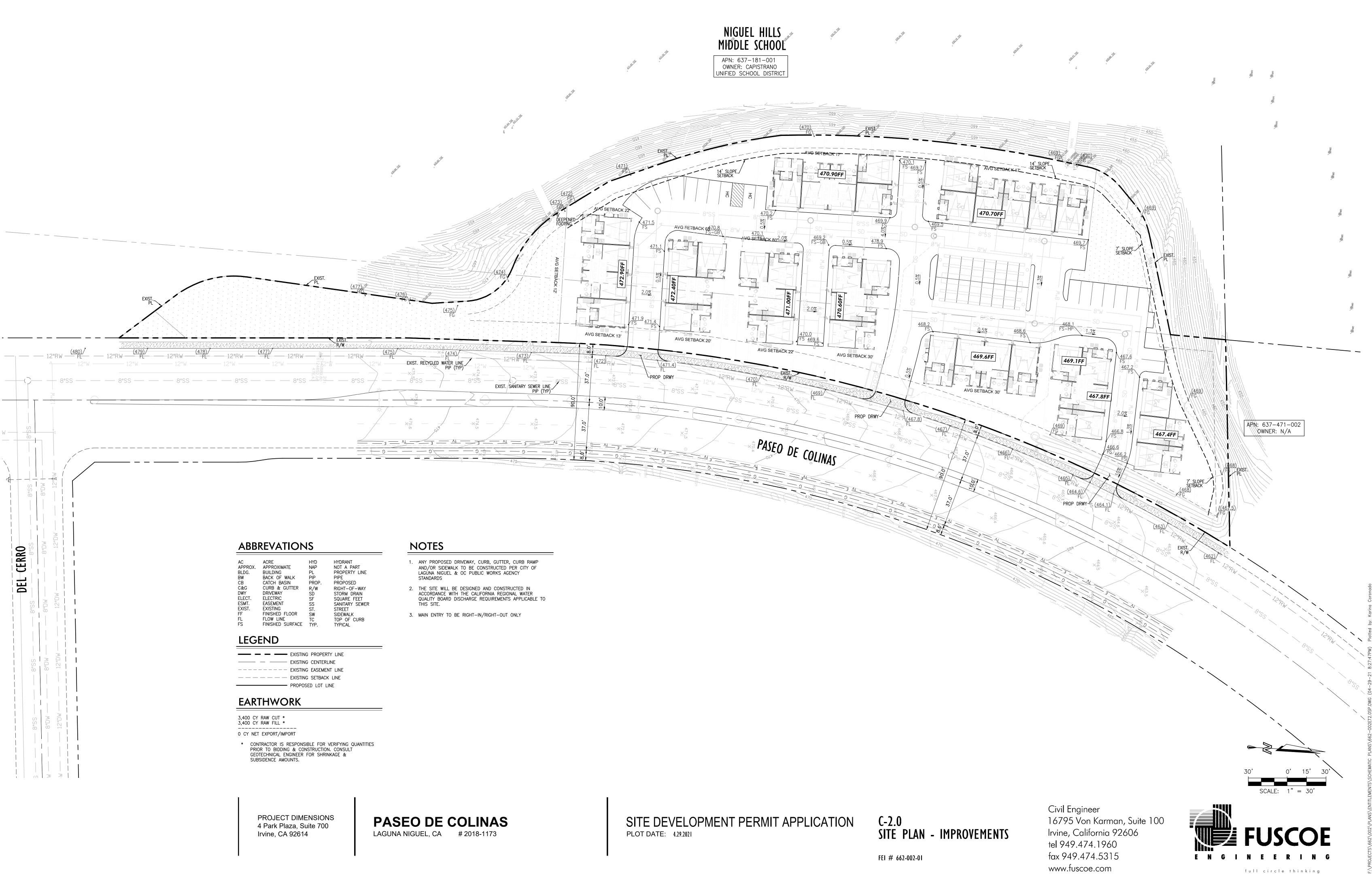
The first number to call is emergency response (9-1-1), followed by the California Governor's Office of Emergency Services (CalOES), formerly the California Emergency Management Agency (CalEMA). (CalOES) maintains guidance and instructions of what to do in the event of a spill of hazardous substances (http://www.caloes.ca.gov/cal-oes-divisions/fire-rescue/hazardous-materials/spill-release-reporting). This plan is based on the guidance provided by CalOES (CalOES, 2014).

- 1. If an actual or suspected hazardous material incident exists, maintenance personnel will immediately call 911 and the CalOES State Warning Center (Table 6).
- 2. The Designated Emergency Respondent and Responsible Party assigned to the facility (from Section 2.1) must also be notified of any actual or potential spill.
- 3. Remediation of contamination in the water quality facility should be handled as a corrective maintenance issue per Section 3.2 of this O&M plan.

In the event that a potential spill is identified prior to it reaching the BMPs, the Designated Emergency Respondent will implement an isolation protocol to prevent the spill from entering the BMP. An inflatable plug, Hazmat Plug, or equivalent device as approved by the Designated Emergency Respondent will be installed within the storm drains or catch basins to block upstream flow from reaching and contaminating the BMP. The temporary plug will be an interim measure until the spill is properly maintained and remediated and the Designated Emergency Respondent has determined the risk to the BMP of contamination no longer exists.

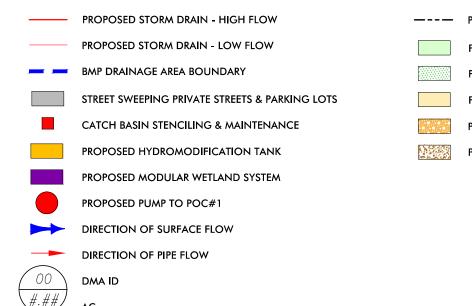
Similar measures should be taken in the event of a landslide, mudslide, or major erosion within the tributary area of the BMP to prevent sediment from damaging the BMP to the extent possible.

3.5 VECTOR CONTROL

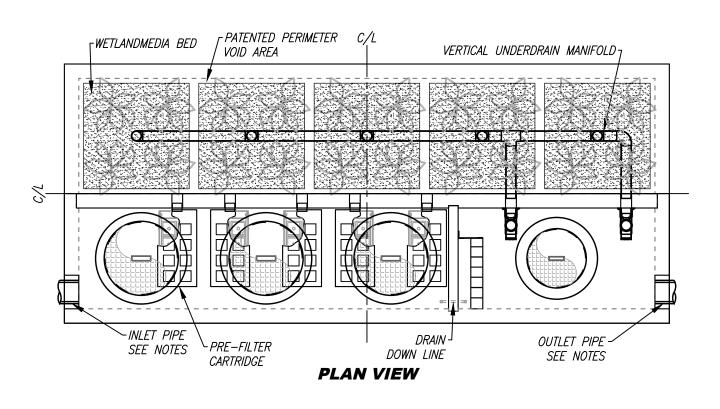

In addition to the inspection and maintenance activities listed in Section 3, all BMPs shall be inspected for standing water on a regular basis. Standing water which exists for longer than 72 hours may contribute to mosquito breeding areas. Standing water may indicate that the BMP is not functioning properly and proper action to remedy the situation shall be taken in a timely manner.

Elimination of standing water and managing garbage, lawn clippings, and pet droppings can help decrease the present of mosquitoes and flies in the area.

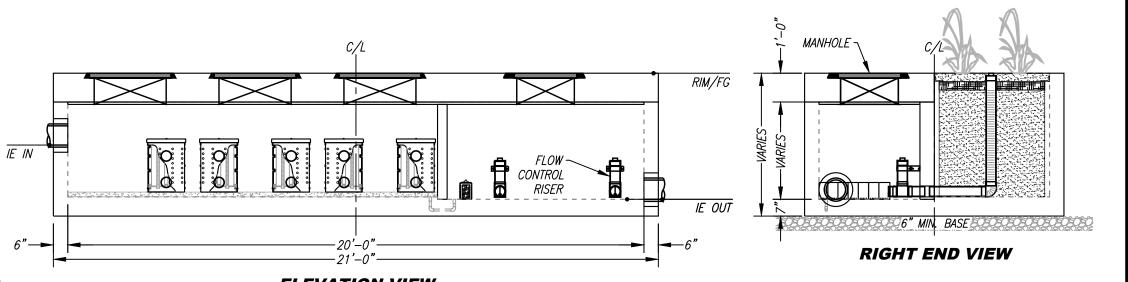
The Orange County Vector Control District may be contacted for more information and support at 714-971-2421 or 949-654-2421 or www.ocvcd.org.


ATTACHMENT 1 PHOTOS AND EXHIBITS

- Vicinity Map
- WQMP Exhibit
- BMP Details & Cross Sections



SITE SPECIFIC DATA				
PROJECT NUMBE	TR			
PROJECT NAME				
PROJECT LOCATI	ON			
STRUCTURE ID				
	TREATMENT	REQUIRED		
VOLUME B	ASED (CF)	FLOW BAS	SED (CFS)	
N,	/A			
PEAK BYPASS R	EQUIRED (CFS) –	IF APPLICABLE		
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER	
INLET PIPE 1				
INLET PIPE 2				
OUTLET PIPE				
	PRETREATMENT	BIOFILTRATION	DISCHARGE	
RIM ELEVATION		•		
SURFACE LOAD				
FRAME & COVER	3EA Ø30"		ø24"	

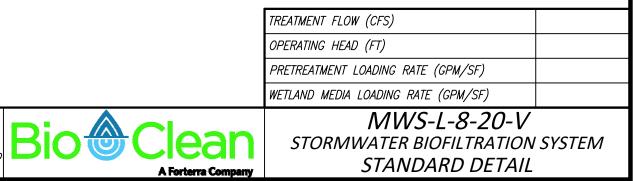


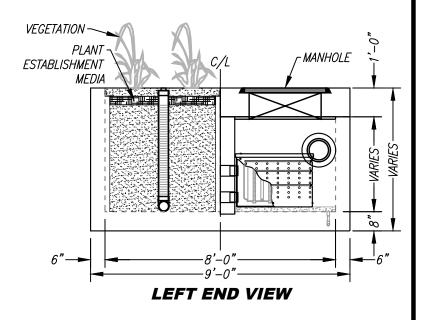
INSTALLATION NOTES

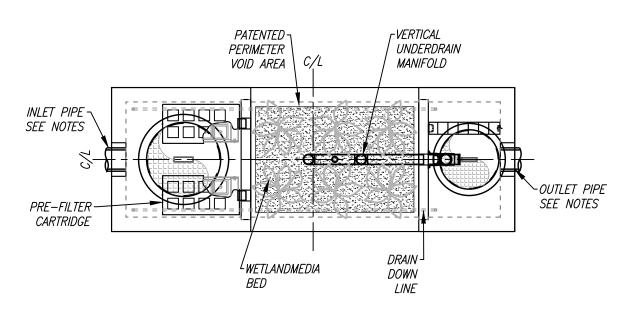
- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 4. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
- 7. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR ACTIVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATIVE.

GENERAL NOTES

- 1. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- 2. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

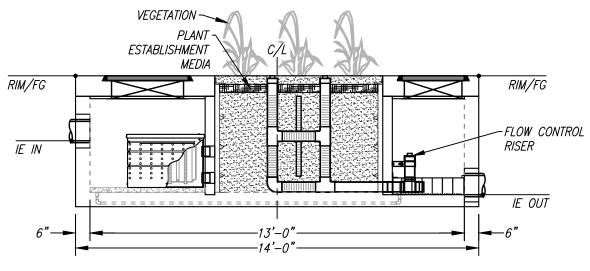



ELEVATION VIEW


PROPRIETARY AND CONFIDENTIAL:

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF FORTERRA AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF FORTERRA.

	SITE SPEC	IFIC DATA	
PROJECT NUMBER			
PROJECT NAME			
PROJECT LOCAT	'ON		
STRUCTURE ID			
	TREATMENT	REQUIRED	
VOLUME B	ASED (CF)	FLOW BAS	ED (CFS)
N,	/A		
PEAK BYPASS R	PEQUIRED (CFS) –	IF APPLICABLE	
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION		•	
SURFACE LOAD			
FRAME & COVER	ø30"		ø24"


PLAN VIEW

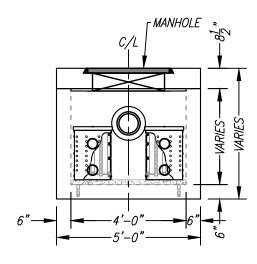
INSTALLATION NOTES

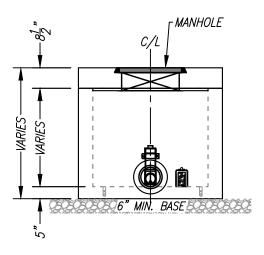
- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 4. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
- 7. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR ACTIVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATIVE.

GENERAL NOTES

- 1. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- 2. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.

ELEVATION VIEW


PROPRIETARY AND CONFIDENTIAL:


THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF MODULAR WETLANDS SYSTEMS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF MODULAR WETLANDS SYSTEMS IS PROHIBITED.

19701 FF

LEFT END VIEW

RIGHT END VIEW

,			
	TREATMENT FLOW (CFS)		
	OPERATING HEAD (FT)		
	PRETREATMENT LOADING RATE (GPM/SF)		
	WETLAND MEDIA LOADING RATE (GPM/SF)		
	MWS-L-4-13-V		
	STORMWATER BIOFILTRATION SYSTEM		
ny	STANDARD DETAIL		

ATTACHMENT 2 MAINTENANCE AGREEMENT AND FUNDING MECHANISM DOCUMENTATION

NOTICE OF TRANSFER OF RESPONSIBILITY

WATER QUALITY MANAGEMENT PLAN

Paseo De Colinas

29001 Paseo De Colinas, Laguna Niguel, CA 92614

Submission of this Notice Of Transfer of Responsibility constitutes notice to the County of Orange that responsibility for the Water Quality Management Plan ("WQMP") for the subject property identified below, and implementation of that plan, is being transferred from the Previous Owner (and his/her agent) of the site (or a portion thereof) to the New Owner, as further described below.

I. <u>Previous Owner/ Previous Responsible Party Information</u>

Company/ Individual Name:		Contact Person:	
Street Address:		Title:	
City:	State:	ZIP:	Phone:

II. Information about Site Transferred

Name of Project (if applicable):	
raine of Foleci (il applicable).	
Title of WQMP Applicable to site:	
Street Address of Site (if applicable):	
Planning Area (PA) and/	Lot Numbers (if Site is a portion of a tract):
or Tract Number(s) for Site:	
Date WQMP Prepared (and revised if applicable):	

III. New Owner/ New Responsible Party Information

Company/ Individual Name:		Contact Person:	
Street Address:		Title:	
City:	State:	ZIP:	Phone:

IV. <u>Ownership Transfer Information</u>

General Description of Site Transferred to New	General Description of Portion of Project/ Parcel
Owner:	Subject to WQMP Retained by Owner (if any):

Lot/ Tract Numbers of Site Transferred to New Owner:

Remaining Lot/ Tract Numbers Subject to WQMP Still Held by Owner (if any):

Date of Ownership Transfer:

Note: When the Previous Owner is transferring a Site that is a portion of a larger project/ parcel addressed by the WQMP, as opposed to the entire project/parcel addressed by the WQMP, the General Description of the Site transferred and the remainder of the project/ parcel no transferred shall be set forth as maps attached to this notice. These maps shall show those portions of a project/ parcel addressed by the WQMP that are transferred to the New Owner (the Transferred Site), those portions retained by the Previous Owner, and those portions previously transferred by Previous Owner. Those portions retained by Previous Owner shall be labeled as "Previously Transferred".

V. <u>Purpose of Notice of Transfer</u>

The purposes of this Notice of Transfer of Responsibility are: 1) to track transfer of responsibility for implementation and amendment of the WQMP when property to which the WQMP is transferred from the Previous Owner to the New Owner, and 2) to facilitate notification to a transferee of property subject to a WQMP that such New Order is now the Responsible Party of record for the WQMP for those portions of the site that it owns.

VI. <u>Certifications</u>

A. Previous Owner

I certify under penalty of law that I am no longer the owner of the Transferred Site as described in Section II above. I have provided the New Owner with a copy of the WQMP applicable to the Transferred Site that the New Owner is acquiring from the Previous Owner.

Printed Name of Previous Owner Representative:	Title:
Signature of Previous Owner Representative:	Date:

B. New Owner

I certify under penalty of law that I am the owner of the Transferred Site, as described in Section II above, that I have been provided a copy of the WQMP, and that I have informed myself and understand the New Owner's responsibilities related to the WQMP, its implementation, and Best Management Practices associated with it. I understand that by signing this notice, the New Owner is accepting all ongoing responsibilities for implementation and amendment of the WQMP for the Transferred Site, which the New Owner has acquired from the Previous Owner.

Printed Name of New Owner Representative:	Title:
Signature:	Date:

ATTACHMENT 3 TRAINING LOG FORM

TRAINING / EDUCATIONAL LOG

Signature: _____

Topic of Training/Educational Activity

Name of Participant	Signature of Participant

For newsletter or mailer educational activities, please include the following information:

- Date of mailing:
- Number distributed:
- Method of distribution:
- Topics addressed:

If a newsletter article was distributed, please include a copy of it.

ATTACHMENT 4 INSPECTION AND MAINTENANCE LOG FORM

TRAINING / EDUCATIONAL LOG

Date of Training/Educational Activity:

Name of Person Performing Activity (Printed):

Signature: _____

BMP Name or Type (As Shown in O&M Plan)	Brief Description of Operation, Maintenance or Inspection Activity Performed	Summary of Notable Observations or Outcomes from Activity

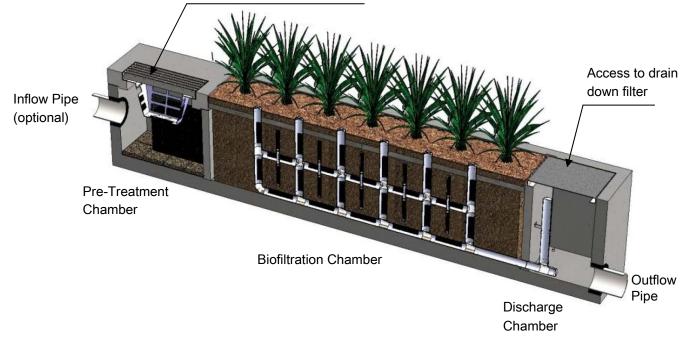
[add additional pages, photographs, drawings, notes as needed]

ATTACHMENT 5 INSPECTION AND O&M CHECKLIST (OPTIONAL)

Guidance: Based on the BMPs present at the site, this checklist is intended to summarize the activities necessary at each frequency. Include more details if desired.

Weekly Activities	Check Box
Selected source control/housekeeping activities (See Section 3.1)	
Monthly Activities	
Selected source control/housekeeping activities (See Section 3.1)	
Quarterly Activities (before wet season, after wet season, plus twice after rain > 0.5 inches)	
Inspections of selected source control BMPs (See Section 3.1)	
Inspections and as-needed minor maintenance of all structural treatment and hydromodification BMPs (See Section 3.3)	
Twice Yearly Activities (during dry weather)	
Dry weather flow inspections (non-structural source control) (See Section 3.1)	
Inspection and as-needed maintenance of other selected source control BMPs (See Section 3.1)	
Annual Activities	
Self-certification (See Section 2.6)	
Various source control BMP and housekeeping activities (See Section 3.1)	
Inspection and maintenance of HSCs (See Section 3.2)	
Various planned maintenance activities of treatment and hydromodification BMPs, such as vegetation maintenance, minor sediment maintenance, etc. (See Section 3.3)	

ATTACHMENT 6 VENDOR O&M INFORMATION


Maintenance Guidelines for Modular Wetland System - Linear

Maintenance Summary

- o Remove Trash from Screening Device average maintenance interval is 6 to 12 months.
 - (5 minute average service time).
- Remove Sediment from Separation Chamber average maintenance interval is 12 to 24 months.
 - (10 minute average service time).
- o Replace Cartridge Filter Media average maintenance interval 12 to 24 months.
 - (10-15 minute per cartridge average service time).
- o Replace Drain Down Filter Media average maintenance interval is 12 to 24 months.
 - (5 minute average service time).
- o Trim Vegetation average maintenance interval is 6 to 12 months.
 - (Service time varies).

System Diagram

Access to screening device, separation chamber and cartridge filter

Maintenance Procedures

Screening Device

- 1. Remove grate or manhole cover to gain access to the screening device in the Pre-Treatment Chamber. Vault type units do not have screening device. Maintenance can be performed without entry.
- 2. Remove all pollutants collected by the screening device. Removal can be done manually or with the use of a vacuum truck. The hose of the vacuum truck will not damage the screening device.
- 3. Screening device can easily be removed from the Pre-Treatment Chamber to gain access to separation chamber and media filters below. Replace grate or manhole cover when completed.

Separation Chamber

- 1. Perform maintenance procedures of screening device listed above before maintaining the separation chamber.
- 2. With a pressure washer spray down pollutants accumulated on walls and cartridge filters.
- 3. Vacuum out Separation Chamber and remove all accumulated pollutants. Replace screening device, grate or manhole cover when completed.

Cartridge Filters

- 1. Perform maintenance procedures on screening device and separation chamber before maintaining cartridge filters.
- 2. Enter separation chamber.
- 3. Unscrew the two bolts holding the lid on each cartridge filter and remove lid.
- 4. Remove each of 4 to 8 media cages holding the media in place.
- 5. Spray down the cartridge filter to remove any accumulated pollutants.
- 6. Vacuum out old media and accumulated pollutants.
- 7. Reinstall media cages and fill with new media from manufacturer or outside supplier. Manufacturer will provide specification of media and sources to purchase.
- 8. Replace the lid and tighten down bolts. Replace screening device, grate or manhole cover when completed.

Drain Down Filter

- 1. Remove hatch or manhole cover over discharge chamber and enter chamber.
- 2. Unlock and lift drain down filter housing and remove old media block. Replace with new media block. Lower drain down filter housing and lock into place.
- 3. Exit chamber and replace hatch or manhole cover.

Maintenance Notes

- 1. Following maintenance and/or inspection, it is recommended the maintenance operator prepare a maintenance/inspection record. The record should include any maintenance activities performed, amount and description of debris collected, and condition of the system and its various filter mechanisms.
- 2. The owner should keep maintenance/inspection record(s) for a minimum of five years from the date of maintenance. These records should be made available to the governing municipality for inspection upon request at any time.
- 3. Transport all debris, trash, organics and sediments to approved facility for disposal in accordance with local and state requirements.
- 4. Entry into chambers may require confined space training based on state and local regulations.
- 5. No fertilizer shall be used in the Biofiltration Chamber.
- 6. Irrigation should be provided as recommended by manufacturer and/or landscape architect. Amount of irrigation required is dependent on plant species. Some plants may require irrigation.

Maintenance Procedure Illustration

Screening Device

The screening device is located directly under the manhole or grate over the Pre-Treatment Chamber. It's mounted directly underneath for easy access and cleaning. Device can be cleaned by hand or with a vacuum truck.

Separation Chamber

The separation chamber is located directly beneath the screening device. It can be quickly cleaned using a vacuum truck or by hand. A pressure washer is useful to assist in the cleaning process.

Cartridge Filters

The cartridge filters are located in the Pre-Treatment chamber connected to the wall adjacent to the biofiltration chamber. The cartridges have removable tops to access the individual media filters. Once the cartridge is open media can be easily removed and replaced by hand or a vacuum truck.

Drain Down Filter

The drain down filter is located in the Discharge Chamber. The drain filter unlocks from the wall mount and hinges up. Remove filter block and replace with new block.

Trim Vegetation

Vegetation should be maintained in the same manner as surrounding vegetation and trimmed as needed. No fertilizer shall be used on the plants. Irrigation per the recommendation of the manufacturer and or landscape architect. Different types of vegetation requires different amounts of irrigation.

Inspection Form

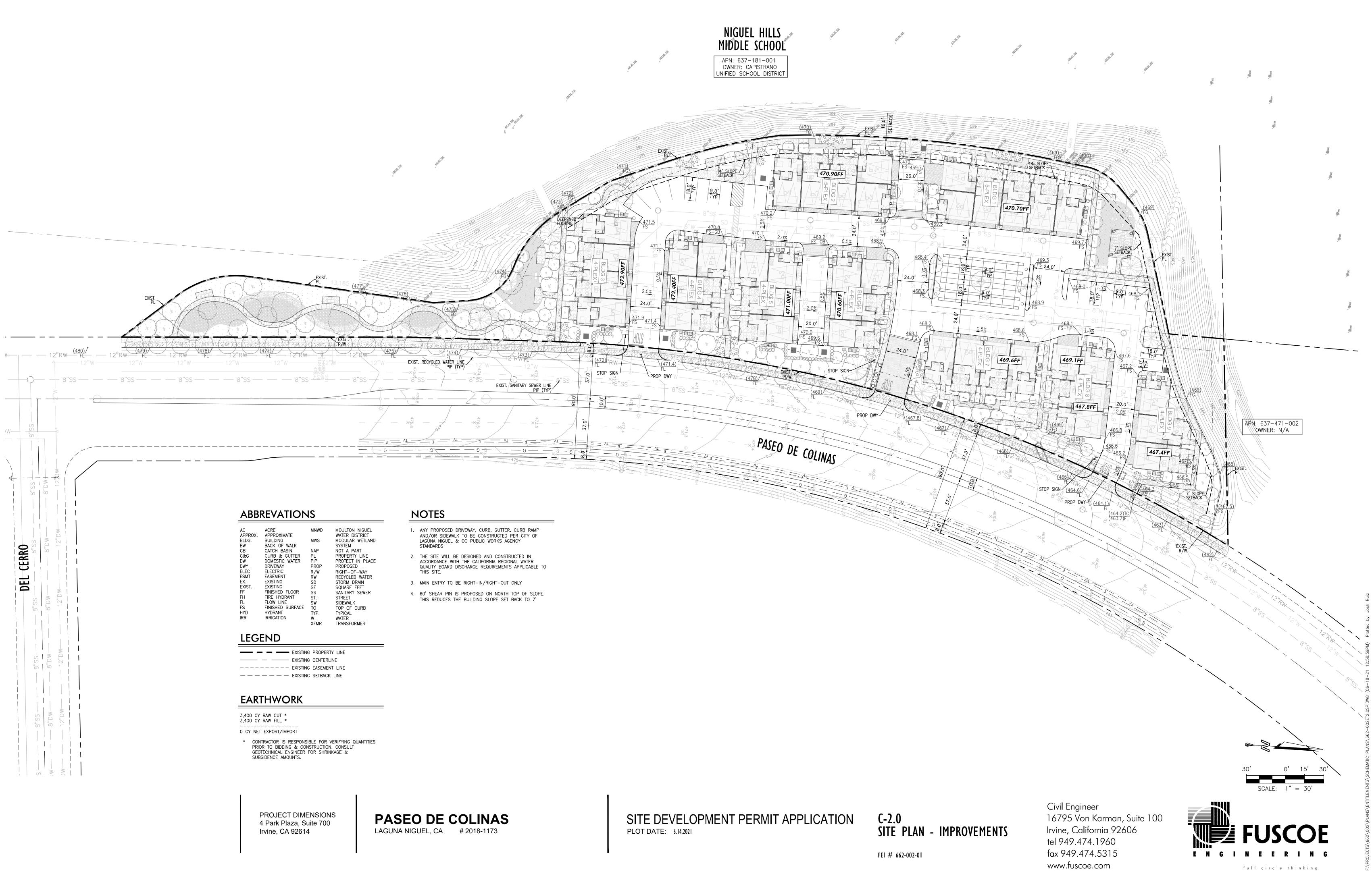
Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com

Project Name										For Office Use On	ly
Project Address								(Reviewed By)			
Owner / Management Company						(Gity)					
Contact					Phone ()	_			(Date) Office personnel to co the left	
Inspector Name					Date	/	/		Time	e	AM / PM
Type of Inspection Routin	ie 🗌 Fo	ollow Up		aint	Storm		St	orm Event i	n Last 72-ho	ours? 🗌 No 🗌 N	/es
Weather Condition					Additional N	otes					
			l	nspect	ion Chec	dist					
Modular Wetland System T	ype (Curb,	Grate or L	IG Vault):			Siz	ze (22	2', 14' or e	etc.):		
Structural Integrity:								Yes	No	Comme	nts
Damage to pre-treatment access pressure? Damage to discharge chamber a pressure?							ing				
Does the MWS unit show signs o	of structural of	deterioration	(cracks in the	e wall, dan	nage to frame)	?					
Is the inlet/outlet pipe or drain do	wn pipe dam	aged or othe	erwise not fun	ctioning p	roperly?						
Working Condition:											
Is there evidence of illicit discharg	ge or excessi	ve oil, greas	e, or other au	itomobile f	fluids entering	and clogg	ing the				
Is there standing water in inappro	opriate areas	after a dry p	eriod?								
Is the filter insert (if applicable) at	t capacity and	d/or is there	an accumulat	ion of deb	ris/trash on th	e shelf sys	stem?				
Does the depth of sediment/trash specify which one in the commer							lf yes,				Depth:
Does the cartridge filter media ne	ed replacem	ent in pre-tre	eatment cham	nber and/o	r discharge ch	amber?				Chamber:	
Any signs of improper functioning	g in the disch	arge chambe	er? Note issu	ies in com	ments section						
Other Inspection Items:											
Is there an accumulation of sediment/trash/debris in the wetland media (if applicable)?											
Is it evident that the plants are ali	ive and healt	hy (if applica	ble)? Please	note Plant	t Information b	elow.					
Is there a septic or foul odor coming from inside the system?											
Waste:	Yes	No		R	ecommend	ed Main	tenar	nce		Plant Inform	nation
Sediment / Silt / Clay				No Clean	ing Needed					Damage to Plants	
Trash / Bags / Bottles				Schedule	Maintenance	as Planne	ed			Plant Replacement	
Green Waste / Leaves / Foliage				Needs Im	imediate Main	enance				Plant Trimming	

Additional Notes:

Maintenance Report

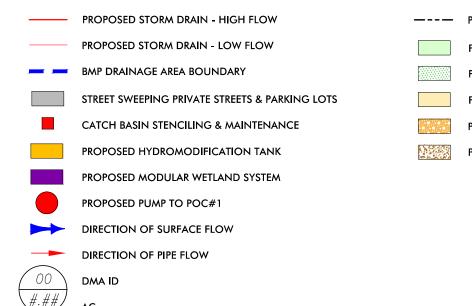
Modular Wetland System, Inc. P. 760.433-7640 F. 760-433-3176 E. Info@modularwetlands.com


Cleaning and Maintenance Report Modular Wetlands System

Project N	ame						For Of	fice Use Only
Project A	ddress				(city)	(Zip Code)	(Review	ed By)
Owner / I	Management Company						(Date)	
Contact				Phone ()	-	Office	bersonnel to complete section to the left.
Inspector	Name			Date	/	/	Time	AM / PM
Type of I	nspection 🗌 Routir	e 🗌 Follow Up	Complaint	Storm		Storm Event in	Last 72-hours?	No 🗌 Yes
Weather	Condition			Additiona	al Notes			
Site Map #	GPS Coordinates of Insert	Manufacturer / Description / Sizing	Trash Accumulation	Foliage Accumulation	Sediment Accumulation	Total Debris Accumulation	Condition of Media 25/50/75/100 (will be changed @ 75%)	Operational Per Manufactures' Specifications (If not, why?)
	Lat: Long:	MWS Catch Basins						
		MWS Sedimentation Basin						
		Media Filter Condition						
		Plant Condition						
		Drain Down Media Condition						
		Discharge Chamber Condition						
		Drain Down Pipe Condition						
		Inlet and Outlet Pipe Condition						
Commen	ts:							

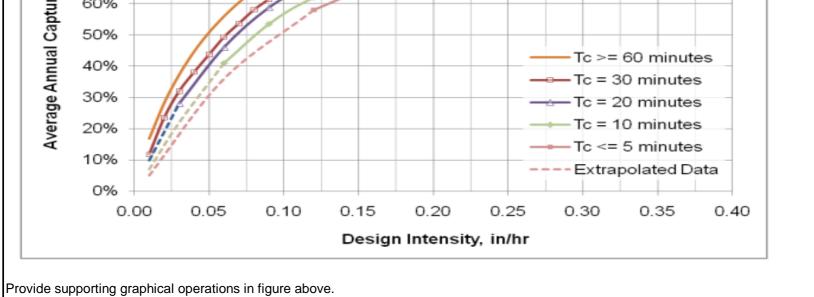
ATTACHMENT C

Ехнівітѕ



AC	ACRE	MNWD	м
APPROX.	APPROXIMATE		W
BLDG.	BUILDING	MWS	M
BW	BACK OF WALK		S`
СВ	CATCH BASIN	NAP	N
C&G	CURB & GUTTER	PL	PI
DW	DOMESTIC WATER	PIP	PI
DWY	DRIVEWAY	PROP	PI
ELEC	ELECTRIC	R/W	RI
ESMT	EASEMENT	RŴ	RI
EX.	EXISTING	SD	S
EXIST.	EXISTING	SF	S
FF	FINISHED FLOOR	SS	SA
FH	FIRE HYDRANT	ST.	S
FL	FLOW LINE	SW	SI
FS	FINISHED SURFACE	TC	T
HYD	HYDRANT	TYP.	n

ATTACHMENT D BMP DESIGN CALCULATIONS & DETAILS

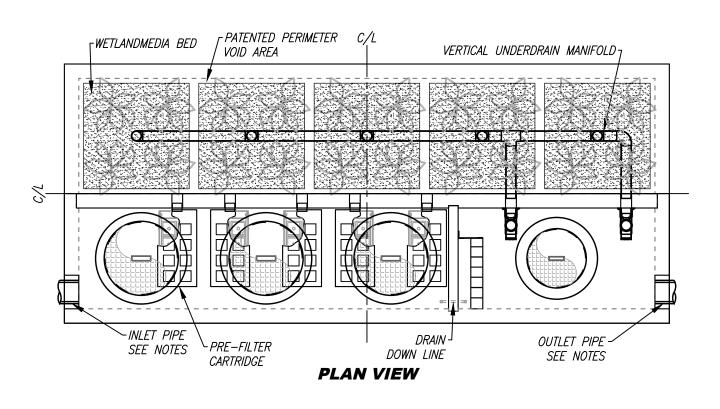

Storm Water Quality Design Calculations

Paseo de Colinas, 5-25-2021

DCV Calculations									
Drainage Area Name / DMA	Worksheet	Total Drainage Area (ft ²)	Assumed % impervious	Runoff Coefficient	Design Storm Depth (in)	Average or Estimated Tc (min)	Rainfall Intensity (in/hr)	Simple Method DCV (ft ³)	Q _{Design} (cfs)
DMA 1	SOC-9	75,359	83%	0.773	0.85	5	0.26	5,741	0.484
DMA 2	SOC-9	18295.2	62%	0.615	0.85	5	0.26	3,283	0.277
DMA 3	SOC-4	13,939	22%	0.315	0.85	5	0.26	311	0.026

Worksheet 9: Flow-Based Compact Biofiltration with Supplemental Retention Method

		DMA =	DMA 1	DMA 2	
art 1: De	etermine the design storm intensity of the compact biofiltration BMP				
	Enter the time of concentration, T_c (min) (See E.2.3) (account for upstream				
1	detention by increasing Tc to a maximum 60 minutes per Section E.3.5.2 if detention is provided)	T _c =	5	5	min
2	Using Figure E-7 or the figure included in the worksheet, determine the design intensity at which the estimated time of concentration (T_c) achieves 80% capture efficiency, I_1	I ₁ =	0.26	0.26	in/hr
3	Enter capture efficiency corresponding to upstream HSCs and/or upstream BMPs, Y ₂ . Attach associated calculations.	Y ₂ =	0	0	%
4	Using Figure E-7, determine the design intensity at which the time of concentration (T_c) achieves the upstream capture efficiency(Y_2), I_2	I ₂ =	0	0	in/hr
5	Determine the design intensity that must be provided by BMP to achieve 80 percent capture, $I_{design} = I_1 - I_2$	I _{design_80%} =	0.26	0.26	in/hr
art 2: Ca	alculate the design flowrate of the compact biofiltration BMP (Section E.2.6)	·			
6a	Enter DMA area tributary to BMP (s), A (acres)	A=	1.73	0.42	acres
6b	Enter DMA Imperviousness, imp (unitless)	imp=	83%	62%	
6c	Calculate runoff coefficient, $c = (0.75 \text{ x imp}) + 0.15$	C=	0.773	0.615	
6d	Calculate flowrate to achieve 80 percent capture, $Q_{80\%} = (c \times I_{design} \times A)$	Q _{80%} =	0.347	0.067	cfs
7	Calculate design flowrate, $Q_{design} = Q_{80\%} \times 150\%$	Q _{design} =	0.521	0.101	cfs
8	Describe system, including features to maximize volume reduction (if applicable): Proprietary BioTreatme				
		e / Model =	MWS-L-8-20	MWS-L-4-8	
	Unit Size / Model Treatment		0.577	0.115	cfs
	Number of Units		1.000	1.000	013
					ofo
	Total Bio-treatment	Provided =	0.577	0.115	cfs
upportin	ng Calculations				
	me of concentration assumptions:				
	Minimum Tc assumed for conservative estimation.				
raphical	I Operations				
	100%				
5	90%	2 2 3	2 2 8		
ure Efficiency	80%				
fici	70%				
	70%				
μ					

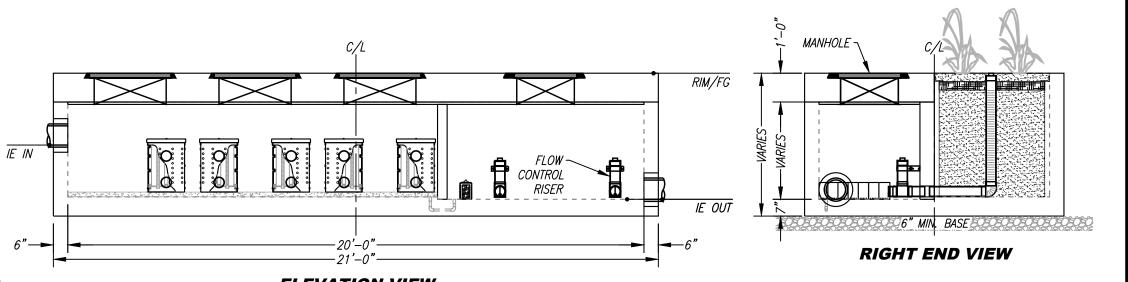

Worksheet 4: Hydrologic Source Control Calculation Form

Name Paseo de Colinas, 5-25-2021

	Drainage area ID	DMA 3	_	
	Total drainage area	0.320	acres	
	Total drainage area Impervious Area (IA _{total})	0.070	acres	
		1. SOC-4 HSC Ca	lcs	
		Effect of		
		individual HSC _i		
		per criteria in		
		relevant fact	Impervious Area	
		sheet (Appendix	Tributary to HSC _i	
HSC ID	HSC Type/ Description/ Reference BMP Fact Sheet	G.1) (<i>d</i> _{HSCi}) ¹	(<i>IA</i> _{<i>i</i>})	$d_i \times IA_i$
0	HSC-2: Impervious Area Dispersion, Ratio = 3.5	0.85"	0.0704	0.0598
	Box 1:		∑ d _i × lai =	0.0598
	Box 2:		IA _{total} =	0.070
	[Box 1]/[Box 2]:		d _{HSC total} =	0.850
		Percent Captur	e Provided by HSCs (Table III.1)	80%

1 - For HSCs meeting criteria to be considered self-retaining, enter the DCV for the project.

	SITE SPEC	IFIC DATA	
PROJECT NUMBE	TR		
PROJECT NAME			
PROJECT LOCATI	ON		
STRUCTURE ID			
	TREATMENT	REQUIRED	
VOLUME B	ASED (CF)	FLOW BAS	SED (CFS)
N,	/A		
PEAK BYPASS R	EQUIRED (CFS) –	IF APPLICABLE	
PIPE DATA	<i>I.E.</i>	MATERIAL	DIAMETER
INLET PIPE 1			
INLET PIPE 2			
OUTLET PIPE			
	PRETREATMENT	BIOFILTRATION	DISCHARGE
RIM ELEVATION		•	
SURFACE LOAD			
FRAME & COVER	3EA Ø30"		ø24"

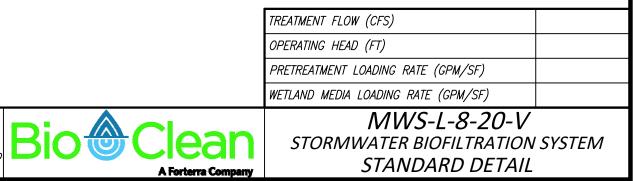


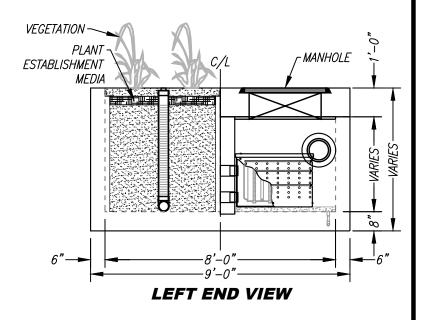
INSTALLATION NOTES

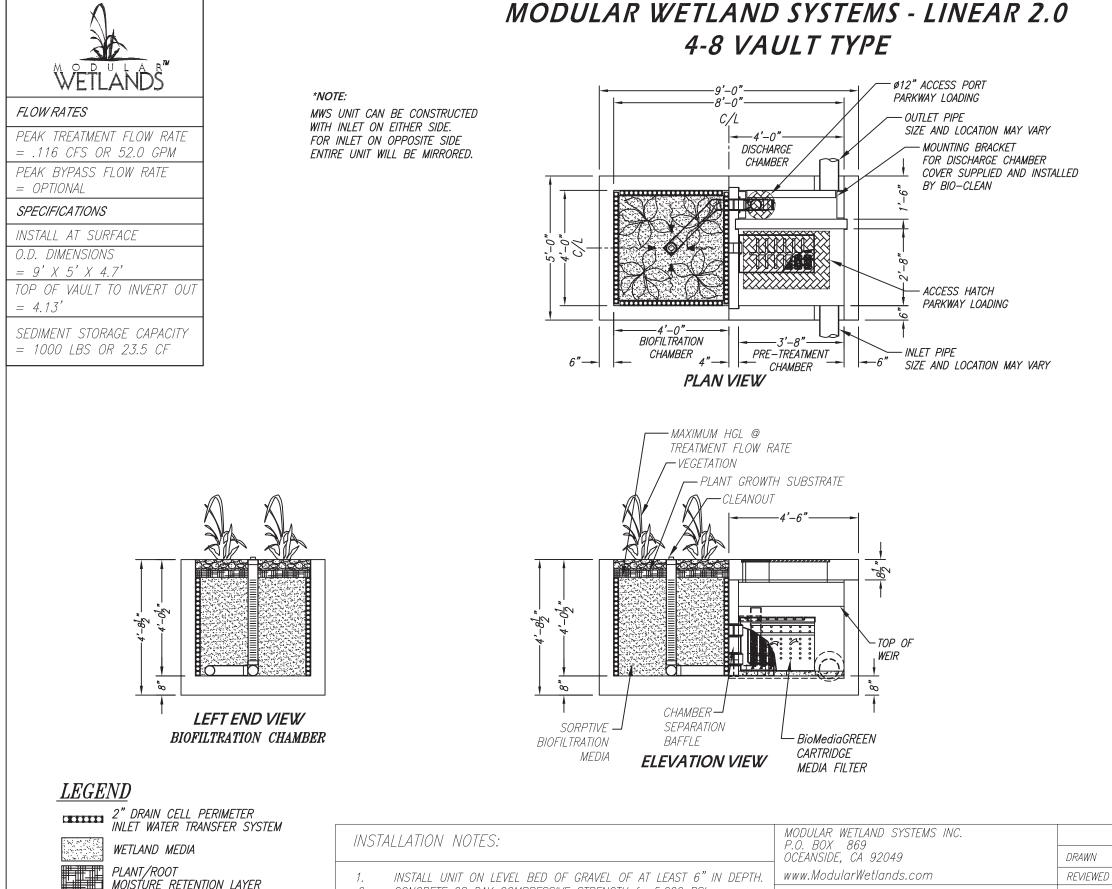
- 1. CONTRACTOR TO PROVIDE ALL LABOR, EQUIPMENT, MATERIALS AND INCIDENTALS REQUIRED TO OFFLOAD AND INSTALL THE SYSTEM AND APPURTENANCES IN ACCORDANCE WITH THIS DRAWING AND THE MANUFACTURERS SPECIFICATIONS, UNLESS OTHERWISE STATED IN MANUFACTURERS CONTRACT.
- 2. UNIT MUST BE INSTALLED ON LEVEL BASE. MANUFACTURER RECOMMENDS A MINIMUM 6" LEVEL ROCK BASE UNLESS SPECIFIED BY THE PROJECT ENGINEER. CONTRACTOR IS RESPONSIBLE TO VERIFY PROJECT ENGINEERS RECOMMENDED BASE SPECIFICATIONS.
- 4. CONTRACTOR TO SUPPLY AND INSTALL ALL EXTERNAL CONNECTING PIPES. ALL PIPES MUST BE FLUSH WITH INSIDE SURFACE OF CONCRETE. (PIPES CANNOT INTRUDE BEYOND FLUSH). INVERT OF OUTFLOW PIPE MUST BE FLUSH WITH DISCHARGE CHAMBER FLOOR. ALL PIPES SHALL BE SEALED WATER TIGHT PER MANUFACTURERS STANDARD CONNECTION DETAIL.
- 5. CONTRACTOR RESPONSIBLE FOR INSTALLATION OF ALL RISERS, MANHOLES, AND HATCHES. CONTRACTOR TO GROUT ALL MANHOLES AND HATCHES TO MATCH FINISHED SURFACE UNLESS SPECIFIED OTHERWISE.
- 6. VEGETATION SUPPLIED AND INSTALLED BY OTHERS. ALL UNITS WITH VEGETATION MUST HAVE DRIP OR SPRAY IRRIGATION SUPPLIED AND INSTALLED BY OTHERS.
- 7. CONTRACTOR RESPONSIBLE FOR CONTACTING BIO CLEAN FOR ACTIVATION OF UNIT. MANUFACTURERS WARRANTY IS VOID WITH OUT PROPER ACTIVATION BY A BIO CLEAN REPRESENTATIVE.

GENERAL NOTES

- 1. MANUFACTURER TO PROVIDE ALL MATERIALS UNLESS OTHERWISE NOTED.
- 2. ALL DIMENSIONS, ELEVATIONS, SPECIFICATIONS AND CAPACITIES ARE SUBJECT TO CHANGE. FOR PROJECT SPECIFIC DRAWINGS DETAILING EXACT DIMENSIONS, WEIGHTS AND ACCESSORIES PLEASE CONTACT BIO CLEAN.




ELEVATION VIEW



PROPRIETARY AND CONFIDENTIAL:

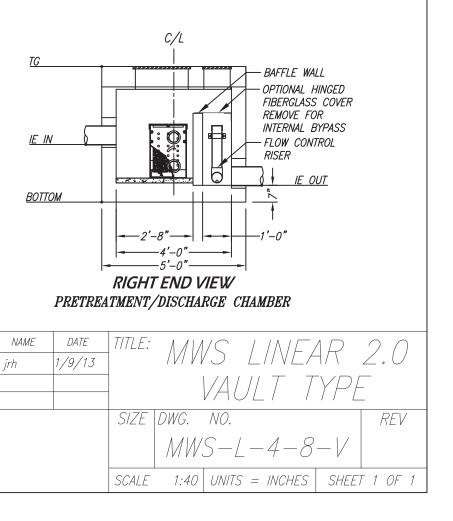
THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE SOLE PROPERTY OF FORTERRA AND ITS COMPANIES. THIS DOCUMENT, NOR ANY PART THEREOF, MAY BE USED, REPRODUCED OR MODIFIED IN ANY MANNER WITH OUT THE WRITTEN CONSENT OF FORTERRA.

MANHOLE / ACCESS HATCH

 1.
 INSTALL UNIT ON LEVEL BED OF GRAVEL OF AT LEAST 6" IN DEPTH.
 www.ModularWetlands.com

 2.
 CONCRETE 28 DAY COMPRESSIVE STRENGTH fc=5,000 PSI.
 PROPRIETARY AND CONFIDENTIAL

 3.
 REINFORCING: ASTM A-615, GRADE 60.
 PROPRIETARY AND CONFIDENTIAL


 4.
 RATED FOR PARKWAY LOADING 300 PSF.
 THE INFORMATION CONTAINED IN THIS DRAWING IS

 5.
 JOINT SEALANT: BUTYL RUBBER SS-S-00210
 SYSTEMS INC. ANY REPRODUCTION IN PART OR AS

 6.
 PLANTING SUPPLIED AND INSTALLED BY CONTRACTOR PER
 WHOLE WITHOUT THE WRITTEN PERMISSION OF

MANUFACTURES RECOMMENDATIONS UNLESS OTHER WISE STATED ON CONTRACT.

BIOFILTRATION CHAMBER SURFACE AREA CALCS SIDES = 2 $3.7' L \times 3.4' H = 12.6 SF$ SIDE SURFACE AREA = 25.2 SF ENDS = 2 $3.7' L \times 3.4' H = 12.6 SF$ END SURFACE AREA = 25.2 SF TOTAL WETLAND MEDIA SURFACE AREA *= 50.4 SF* WETLAND MEDIA LOADING RATE 52.0 GPM / 50.4 SF = 1.03 GPM/SF PRETREATMENT FILTER SURFACE AREA CALCS SIDES = 2 $0.50' L \times 1.67' H = 0.84 SF$ SIDE SURFACE AREA = 1.68 SF ENDS = 2 $0.25' L \times 1.67' H = 0.42 SF$ END SURFACE AREA = 0.84 SF TOTAL PRETREATMENT SURFACE AREA 2.52 SF x 14 FILTERS *= 35.28 SF* PRETREATMENT FILTER LOADING RATE 52.0 GPM / 35.28 SF = 1.47 GPM/SF

COMMENTS:

MODULAR WETLAND SYSTEMS INC. IS PROHIBITED.

ATTACHMENT E

HYDROMODIFICATION CONTROL CALCULATIONS

General Model Information

Project Name:	CUSD2
Site Name:	CUSD
Site Address:	
City:	Laguna Niguel
Report Date:	5/24/2021
Gage:	Laguna Beach
Data Start:	10/01/1949
Data End:	09/30/2006
Timestep:	Hourly
Precip Scale:	1.000
Version Date:	2021/03/09

POC Thresholds

Low Flow Threshold for POC1:	10 Percent of the 2 Year
High Flow Threshold for POC1:	10 Year

Landuse Basin Data Predeveloped Land Use

Basin 1 Bypass:	No
GroundWater:	No
Pervious Land Use D,Scrub,VSteep(>15 D,Open Brush,VStee	
Pervious Total	2.15
Impervious Land Use	acre
Impervious Total	0
Basin Total	2.15
Element Flows To: Surface	Interflow

Groundwater

Mitigated Land Use

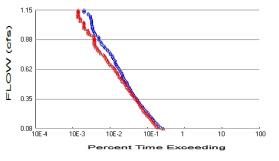
DMA1

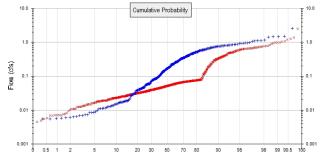
Bypass:	No
GroundWater:	No
Pervious Land Use D,Urban,Flat(0-5%)	acre 0.322
Pervious Total	0.322
Impervious Land Use Impervious,Flat(0-5)	acre 1.828
Impervious Total	1.828
Basin Total	2.15
Element Flows To:	

Element Flows To:		
Surface	Interflow	Gr
Tank 1	Tank 1	

Groundwater

Routing Elements Predeveloped Routing


Mitigated Routing


Tank 1 Dimensions	
Depth:	5 ft.
Tank Type:	Circular
Diameter:	5 ft.
Length:	350 ft.
Discharge Structure	
Riser Height:	4 ft.
Riser Diameter:	54 in.
Notch Type:	Rectangular
Notch Width:	0.500 ft.
Notch Height:	1.000 ft.
Orifice 1 Diameter:	1.3 in. Elevation:0 ft.
Element Flows To: Outlet 1	Outlet 2

Tank Hydraulic Table

Stage(feet)	Area(ac.)	Volume(ac-ft.)	Discharge	(cfs) Infilt(cfs)
0.0000	0.000000	0.000000	0.000	0.000
0.0556	0.008422	0.000313	0.010	0.000
0.1111	0.011844	0.000881	0.015	0.000
0.1667	0.014423	0.001614	0.018	0.000
0.2222	0.016558	0.002476	0.021	0.000
0.2778	0.018405	0.003448	0.024	0.000
0.3333	0.020043	0.004517	0.026	0.000
0.3889	0.021519	0.005672	0.028	0.000
0.4444	0.022866	0.006906	0.030	0.000
0.5000	0.024105	0.008211	0.032	0.000
0.5556	0.025251	0.009582	0.034	0.000
0.6111	0.026318	0.011015	0.035	0.000
0.6667	0.027313	0.012505	0.037	0.000
0.7222	0.028246	0.014049	0.039	0.000
0.7778	0.029121	0.015642	0.040	0.000
0.8333	0.029944	0.017283	0.041	0.000
0.8889	0.030719	0.018969	0.043	0.000
0.9444	0.031450	0.020696	0.044	0.000
1.0000	0.032140	0.022462	0.045	0.000
1.0556	0.032790	0.024266	0.047	0.000
1.1111	0.033404	0.026105	0.048	0.000
1.1667	0.033984	0.027977	0.049	0.000
1.2222	0.034531	0.029880	0.050	0.000
1.2778	0.035046	0.031813	0.051	0.000
1.3333	0.035532	0.033774	0.053	0.000
1.3889	0.035989	0.035761	0.054	0.000
1.4444	0.036418	0.037772	0.055	0.000
1.5000	0.036821	0.039807	0.056	0.000
1.5556	0.037197	0.041863	0.057	0.000
1.6111	0.037549	0.043939	0.058	0.000
1.6667	0.037877	0.046034	0.059	0.000
1.7222	0.038181	0.048147	0.060	0.000
1.7778	0.038462	0.050276	0.061	0.000
1.8333	0.038720	0.052420	0.062	0.000
1.8889	0.038956	0.054578	0.063	0.000

Analysis Results POC 1

+ Predeveloped x Mitigated

Predeveloped Landuse	Totals for POC #1
Total Pervious Area:	2.15
Total Impervious Area:	0

Mitigated Landuse Totals for POC #1 Total Pervious Area: 0.322 Total Impervious Area: 1.828

Flow Frequency Method: Cunnane

Flow Frequency Return Periods for Predeveloped. POC #1Return PeriodFlow(cfs)2 year0.7743455 year0.95752110 year1.15408625 year1.480801

Flow Frequency Return Periods for Mitigated. POC #1Return PeriodFlow(cfs)2 year0.6557795 year0.83820510 year1.04474725 year1.300589

Duration Flows

The Facility PASSED

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0774	1219	1351	110	Pass
0.0883	1113	973	87	Pass
0.0992	1012	883	87	Pass
0.1101	956	826	86	Pass
0.1209	893	785	87	Pass
0.1318	830	737	88	Pass
0.1427	779	694 652	89	Pass
0.1536	737 691	652 616	88	Pass
0.1644 0.1753	645	616 588	89 91	Pass Pass
0.1862	605	500 548	90	Pass
0.1971	571	506	88	Pass
0.2079	540	475	87	Pass
0.2188	512	444	86	Pass
0.2297	473	424	89	Pass
0.2406	443	398	89	Pass
0.2514	414	382	92	Pass
0.2623	388	363	93	Pass
0.2732	370	340	91	Pass
0.2841	349	327	93	Pass
0.2949	326	315	96	Pass
0.3058	304	305	100	Pass
0.3167	294	289 274	98	Pass
0.3276 0.3384	279 265	259	98 97	Pass Pass
0.3493	255	239	97 95	Pass
0.3602	236	229	97	Pass
0.3711	223	221	99	Pass
0.3819	213	203	95	Pass
0.3928	204	190	93	Pass
0.4037	194	184	94	Pass
0.4146	181	173	95	Pass
0.4254	179	165	92	Pass
0.4363	169	156	92	Pass
0.4472	163	150	92	Pass
0.4581	158	141	89	Pass
0.4689 0.4798	149 145	135 131	90 90	Pass Pass
0.4907	142	124	87	Pass
0.5016	137	114	83	Pass
0.5124	128	107	83	Pass
0.5233	121	102	84	Pass
0.5342	115	97	84	Pass
0.5451	112	90	80	Pass
0.5559	109	88	80	Pass
0.5668	106	83	78	Pass
0.5777	103	79 70	76	Pass
0.5886	98	78	79 70	Pass
0.5994	94	72	76 77	Pass
0.6103 0.6212	90 86	70 67	77 77	Pass
0.6321	82	63	76	Pass Pass
0.6429	02 77	59	76	Pass
0.0720		00	10	1 400

0.6538 0.6647 0.6756 0.6864 0.6973 0.7082 0.7191 0.7300 0.7408 0.7517 0.7626 0.7735 0.7843 0.7952 0.8061 0.8170 0.8278 0.8496 0.8605 0.8713 0.8496 0.8605 0.8713 0.8496 0.9360 0.9475 0.9366 0.9475 0.9366 0.9475 0.9366 0.9475 0.9366 0.9475 0.9366 0.9475 0.9366 0.9475 0.9366 1.027 1.0236 1.0345 1.0453 1.0453 1.0562 1.0671 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0780 1.0236 1.0997 1.1106 1.1215 1.1323	74 71 68 67 62 58 57 52 51 73 34 30 99 27 55 52 20 98 87 77 17 16 66 16 16 15 53 13 10	53 49 46 44 43 40 39 37 35 33 28 27 25 23 21 20 20 19 19 19 19 19 19 19 19 19 19 19 19 19	71 67 64 64 67 36 63 55 55 55 56 65 50 76 66 57 80 82 72 65 58 82 22 62 50 53 66 53 70 66 57 76 76 77 78 78 78 72 65 58 82 22 62 50 53 66 53 70 66 55 70 66 55 70 66 75 80 82 72 65 55 55 56 55 55 55 55 55 55 55 55 55	Pass Pass Pass Pass Pass Pass Pass Pass
		7 7 7 7		

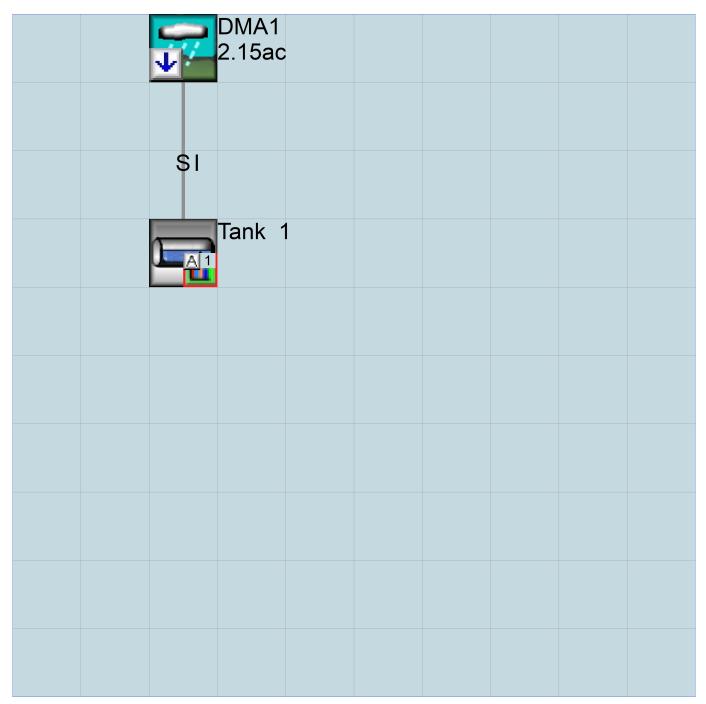
Water Quality

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

	帰	Basin 2.15ac	1		

Mitigated Schematic

Predeveloped UCI File

RUN

GLOBAL WWHM4 model simulation END 3 0 START 1949 10 01 2006 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 CUSD2.wdm PreCUSD2.MES MESSU 25 27 PreCUSD2.L61 28 PreCUSD2.L62 POCCUSD21.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:60 40 PERLND 44 PERLND COPY 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND 1 Basin 1 MAX 1 2 30 9 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 501 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # D,Scrub,VSteep(>15%) 1 * * * in out 1 27 40 1 1 0 1 D,Open Brush,VSteep 1 27 44 1 0 END GEN-INFO *** Section PWATER*** ACTIVITY # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
 40
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********

0 $\begin{array}{ccc} 0 & 0 & 4 \\ 0 & 0 & 4 \end{array}$ 0 0 0 0 0 0 0 40 0 0 0 1 9 44 9 0 0 0 0 0 Ο 0 0 1 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 40
 0
 0
 1
 0
 0
 1
 0

 44
 0
 0
 1
 0
 0
 1
 0
 0

 END PWAT-PARM1 PWATER input info: Part 2 *** PWAT-PARM2 <PLS >

 # - # ***FOREST
 LZSN
 INFILT

 40
 0
 3.7
 0.012

 44
 0
 3.7
 0.012

 KVARY AGWRC 40 0 44 0 0.8 250 250 0.2 0.955 0.955 0.2 0.8 END PWAT-PARM2 PWAT-PARM3 <PLS >PWATER input info: Part 3***# - # ***PETMAXPETMININFEXPINFILDDEEPFR4040354204025420 BASETP AGWETP 40 40 44 40 0 0 0.03 35 4 2 0 0.03 0 END PWAT-PARM3 PWAT-PARM4 <PLS > PWATER input info: Part 4 * * *
 # #
 CEPSC
 UZSN
 NSUR

 40
 0
 0.3
 0.3

 44
 0
 0.25
 0.25
 INTFW IRC 0.3 0.3 0.3 0.3 LZETP *** 0 0 END PWAT-PARM4 MON-LZETPARM <PLS > PWATER input info: Part 3 * * * # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ***
 40
 0.5
 0.5
 0.6
 0.65
 0.65
 0.65
 0.65
 0.65
 0.65
 0.65
 0.65
 0.55
 0.55
 0.55
 0.55
 0.55
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45
 0.45 END MON-LZETPARM MON-INTERCEP <PLS > PWATER input info: Part 3 * * *

 # # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

 40
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.13
 0.14
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 END MON-INTERCEP PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 0
 0
 0.03
 0
 0.74
 0.3

 0
 0
 0.025
 0
 0.74
 0.3
 GWVS # 0.3 40 0.01 44 0.01 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # * * * in out END GEN-INFO *** Section IWATER*** ACTIVITY # - # ATMP SNOW IWAT SLD IWG IQAL *** END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR # - # ATMP SNOW IWAT SLD IWG IQAL ******** END PRINT-INFO

IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** END IWAT-PARM1 IWAT-PARM2 <PLS > IWATER input info: Part 2 *
- # *** LSUR SLSUR NSUR RETSC * * * <PLS > END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> # Basin 1*** 1.075COPY501121.075COPY501131.075COPY501121.075COPY50113 perlnd 40 PERLND 40 PERLND 44 PERLND 44 ******Routing***** END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # _ <Name> # #<-factor->strg <Name> # # _ <Name> # # *** COPY 501 OUTPUT MEAN 1 1 12.1 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * * * * # - #<----- User T-series Engl Metr LKFG in out * * * END GEN-INFO *** Section RCHRES*** ACTIVITY # - # HYFG ADFG CNFG HTFG SDFG GOFG OXFG NUFG PKFG PHFG *** END ACTIVITY PRINT-INFO # - # HYDR ADCA CONS HEAT SED GOL OXRX NUTR PLNK PHCB PIVL PYR ******* END PRINT-INFO HYDR-PARM1 RCHRES Flags for each HYDR Section * * * # - # END HYDR-PARM1

HYDR-PARM2 # - # FTABNO LEN DELTH STCOR KS DB50 * * * <----><----><-----><-----> *** END HYDR-PARM2 HYDR-INIT RCHRES Initial conditions for each HYDR section *** ac-ft for each possible exit for each possible exit
<----><---> *** <---><---> END HYDR-INIT END RCHRES SPEC-ACTIONS END SPEC-ACTIONS FTABLES END FTABLES EXT SOURCES <-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name># <Name># tem strg<-factor->strgName># #<Name</td>WDM2PRECENGL1SUMPERLND1999EXTNLPRECWDM2PRECENGL1SUMIMPLND1999EXTNLPRECWDM1EVAPENGL1SUMIMPLND1999EXTNLPRECWDM1EVAPENGL1PERLND1999EXTNLPETINWDM1EVAPENGL1IMPLND1999EXTNLPETIN <Name> # # *** PERLND 1 999 EXTNL PETINP IMPLND 1 999 EXTNL PETINP END EXT SOURCES EXT TARGETS <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd *** <Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
COPY 501 OUTPUT MEAN 1 1 12.1 WDM 501 FLOW ENGL REPL END EXT TARGETS MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <Target> <Name> <Name> # #<-factor-> <Name> MASS-LINK 12 <-Grp> <-Member->*** <Name> # #*** PERLND PWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 12 MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 END MASS-LINK

END RUN

Mitigated UCI File

RUN

GLOBAL WWHM4 model simulation END 3 0 START 1949 10 01 2006 09 30 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** * * * <-ID-> WDM 26 CUSD2.wdm MESSU 25 MitCUSD2.MES 27 MitCUSD2.L61 28 MitCUSD2.L62 POCCUSD21.dat 30 END FILES OPN SEOUENCE INGRP INDELT 00:60 61 PERLND 1 IMPLND 1 RCHRES COPY 1 501 DISPLY 1 END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1

 # #<-----Title---->***TRAN PIVL DIG1 FIL1
 PYR DIG2 FIL2 YRND

 1
 Tank 1
 MAX
 1
 2
 30
 9

 END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 501 1 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name---->NBLKS Unit-systems Printer *** User t-series Engl Metr *** # - # in out 1 1 1 1 2 * * * 61 D,Urban,Flat(0-5%) 27 0 END GEN-INFO *** Section PWATER*** ACTIVITY # -# ATMP SNOW PWATSEDPSTPWGPQALMSTLPESTNITRPHOSTRAC***6100100000000 END ACTIVITY PRINT-INFO # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********

0 0 4 0 0 0 0 0 0 0 0 1 9 61 END PRINT-INFO PWAT-PARM1 <PLS > PWATER variable monthly parameter value flags ***

 # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

 61
 0
 0
 1
 0
 0
 1
 0

 END PWAT-PARM1 PWAT-PARM2
 <PLS >
 PWATER input info: Part 2

 # - # ***FOREST
 LZSN
 INFILT
 LSUR
 SLSUR
 KVARY
 AGWRC

 51
 0
 4.4
 0.04
 400
 0.05
 0.8
 0.955
 <PLS > 61 END PWAT-PARM2 PWAT-PARM3 <PLS > PWATER input info: Part 3 *** # - # ***PETMAX PETMIN INFEXP 61 40 35 4 INFILD DEEPFR BASETP AGWETP 0 2 0.03 0 END PWAT-PARM3 PWAT-PARM4
 <PLS >
 PWATER input info: Part 4

 # - #
 CEPSC
 UZSN
 NSUR
 INTFW
 IRC
 LZETP ***

 61
 0
 0.7
 0.25
 3
 0.7
 0
 0 END PWAT-PARM4 MON-LZETPARM <PLS > PWATER input info: Part 3
 # - #
 JAN
 FEB
 MAR
 APR
 MAY
 JUN
 JUL
 AUG
 SEP
 OCT
 NOV
 DEC

 51
 0.5
 0.5
 0.6
 0.65
 0.65
 0.65
 0.65
 0.55
 0.5
 61 END MON-LZETPARM MON-INTERCEP <PLS > PWATER input info: Part 3 * * *

 # - # JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

 61
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12
 0.12 END MON-INTERCEP PWAT-STATE1 <PLS > *** Initial conditions at start of simulation ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
 # - # *** CEPS
 SURS
 UZS
 IFWS
 LZS
 AGWS

 61
 0
 0
 0.07
 0
 0.88
 0.3
 GWVS 0.3 0.01 END PWAT-STATE1 END PERLND IMPLND GEN-INFO <PLS ><-----Name----> Unit-systems Printer *** User t-series Engl Metr *** # - # in out *** 1 Impervious,Flat(0-5) 1 1 1 27 0 END GEN-INFO *** Section IWATER*** ACTIVITY * * * END ACTIVITY PRINT-INFO <ILS > ******* Print-flags ******* PIVL PYR END PRINT-INFO IWAT-PARM1 <PLS > IWATER variable monthly parameter value flags *** # - # CSNO RTOP VRS VNN RTLI *** 1 0 0 0 0 0

END IWAT-PARM1 IWAT-PARM2
 <PLND2</th>
 IWATER input info: Part 2
 *

 # - # *** LSUR
 SLSUR
 NSUR
 RETSC

 1
 100
 0.05
 0.1
 0.1
 * * * END IWAT-PARM2 IWAT-PARM3 IWATER input info: Part 3 * * * <PLS > # - # ***PETMAX PETMIN 1 0 0 1 END IWAT-PARM3 IWAT-STATE1 <PLS > *** Initial conditions at start of simulation # - # *** RETS SURS 1 0 0 END IWAT-STATE1 END IMPLND SCHEMATIC <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# *** <-Source-> <Name> DMA1*** 0.322 RCHRES 1 2 0.322 RCHRES 1 3 1.828 RCHRES 1 5 PERLND 61 PERLND 61 IMPLND 1 *****Routing***** 0.322 COPY 1 12 1.828 COPY 1 15 0.322 COPY 1 13 1 COPY 501 16 PERLND 61 IMPLND 1 PERLND 61 RCHRES 1 END SCHEMATIC NETWORK <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # ***
COPY 501 OUTPUT MEAN 1 1 12.1 DISPLY 1 INPUT TIMSER 1 <-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> *** <Name> # <Name> # #<-factor->strg <Name> # # <Name> # # *** END NETWORK RCHRES GEN-INFO RCHRES Name Nexits Unit Systems Printer * * * * * * # - #<----> User T-series Engl Metr LKFG * * * in out 1 Tank 1 1 1 1 28 0 1 1 END GEN-INFO *** Section RCHRES*** ACTIVITY END ACTIVITY PRINT-INFO ******* 1 END PRINT-INFO

HYDR-PARM1

	VC A1 A2 FG FG FG	FG possib	for each		ole exit	FUNCT for possible ***	
1 END HYDR-	0 1 0	0 4 0	0 0 0	0 0	0 0 0	2 2 2	2 2
HYDR-PARM # - #	FTABNO	LEN	DELTH	STCOR	KS		* * * * * *
1 END HYDR- HYDR-INIT	PARM2	0.07		0.0	0.5		
RCHRES # - # *	Initial c *** VOL ** ac-ft	for eac	l value h possible	of COLIND e exit	Initial for each	value of O possible exi	*** UTDGT t
2>< 1 END HYDR-	0					0.0 0.0 0.0	
END RCHRES							
SPEC-ACTION END SPEC-AC FTABLES FTABLE 91 4							
Depth (ft) 0.000000 0.055556 0.11111 0.166667 0.222222 0.277778 0.333333 0.388889 0.444444 0.500000 0.555556 0.611111 0.666667 0.722222 0.777778 0.833333	(acres) 0.000000 0.008422 0.011844 0.014423 0.016558 0.018405 0.020043 0.021519 0.022866 0.024105 0.025251 0.026318 0.027313 0.028246 0.029121 0.029944	Volume (acre-ft) 0.00000 0.000313 0.000881 0.001614 0.002476 0.003448 0.004517 0.005672 0.006906 0.008211 0.009582 0.011015 0.012505 0.014049 0.015642 0.017283 0.018969 0.020696 0.022462 0.024266 0.022462 0.024266 0.022462 0.024266 0.022462 0.024266 0.022462 0.024266 0.022462 0.024266 0.022462 0.024266 0.022462 0.024578 0.03777 0.039807 0.041863 0.043939 0.046034 0.045177 0.052420 0.054578 0.056748 0.056748 0.056748 0.056748 0.065531 0.067746 0.069966	(cfs) 0.000000 0.010810 0.015287 0.018723 0.021619 0.024171 0.026478 0.028599 0.030574 0.032429 0.034183 0.035851 0.037446 0.038975 0.040446 0.041865	Velocity (ft/sec)	Travel Time (Minutes)	2 * * * * * *	

2.333333 0.040085 0.072192 0.070054 2.388889 0.040135 0.074420 0.070883 2.44444 0.040165 0.076651 0.071703 2.500000 0.040174 0.078882 0.072513 2.55556 0.040165 0.081114 0.073314 2.611111 0.040135 0.083345 0.074107 2.666667 0.040085 0.08573 0.074891 2.722222 0.040015 0.087798 0.075667 2.77778 0.039926 0.090019 0.076435 2.833333 0.039816 0.092234 0.077196 2.88889 0.039685 0.094433 0.077899 2.94444 0.039535 0.096643 0.078695 3.000000 0.039363 0.098835 0.079434 3.05556 0.039170 0.101016 0.101969 3.11111 0.038956 0.103187 0.142558 3.166667 0.038720 0.105344 0.194900 3.22222 0.038462 0.107488 0.256743 3.277778 0.038181 0.109618 0.326789 3.33333 0.037877 0.111730 0.404160 3.38889 0.037549 0.113826 0.488213 3.44444 0.037197 0.115902 0.578448 3.500000 0.036821 0.117958 0.674465 3.55556 0.036418 0.11993 0.775931 3.61111 0.03598 0.122044 0.882566 3.666667 0.035532 0.123991 0.994129 3.722222 0.035046 0.125952 1.110409 3.77778 0.034531 0.127884 1.231221 3.83333 0.037844 0.131660 1.485797 3.944444 0.037199 0.13302 1.756722 4.055556 0.031450 0.137069 2.382815 4.11111 0.03719 0.138796 3.526088 4.166667 0.029944 0.140481 5.005245 4.22222 0.029121 0.142122 6.755072 4.277778 0.028246 0.143716 8.736928 4.33333 0.027313 0.145260 10.92344 4.38889 0.026318 0.146750 13.29295 4.44444 0.025251 0.148183 15.82691 4.500000 0.024105 0.149554 18.508284 4.66667 0.029944 0.140481 5.005245 4.22222 0.029121 0.142122 6.755072 4.277778 0.028246 0.15316 8.736928 4.366667 0.029121 0.142529 1.32177 4.61111 0.021519 0.152093 24.25124 4.66667 0.020944 0.146750 13.29295 4.44444 0.025251 0.148183 15.82691 4.500000 0.024105 0.14954 18.50824 4.66667 0.020043 0.153248 27.28152 4.33333 0.014423 0.156151 36.82172 4.88889 0.01844 0.15688 40.09879 4.94444 0.008422 0.157452 43.33751 5.000000 0.001000 0.157765 46.70158 END FTABLE 1 END FTABLES	
EXT SOURCES <-Volume-> <member> SsysSgap<mult>Tran <name> # <name> # tem strg<-factor->strg WDM 2 PREC ENGL 1 SUM WDM 2 PREC ENGL 1 SUM WDM 1 EVAP ENGL 1 WDM 1 EVAP ENGL 1 WDM 22 IRRG ENGL 0.7 SAME</name></name></mult></member>	
END EXT SOURCES	
EXT TARGETS <-Volume-> <-Grp> <-Member-> <mult>Tran <name> # <name> # #<-factor->strg RCHRES 1 HYDR RO 1 1 1 RCHRES 1 HYDR STAGE 1 1 1 COPY 1 OUTPUT MEAN 1 1 12.1 COPY 501 OUTPUT MEAN 1 1 12.1</name></name></mult>	

MASS-LINK <Volume> <-Grp> <-Member-><--Mult--> <-Grp> <-Member->*** <Target> <Name> <Name> # #<-factor-> <Name> <Name> # #*** MASS-LINK 2 PERLND PWATER SURO 0.083333 RCHRES INFLOW IVOL END MASS-LINK 2 3 MASS-LINK PERLND PWATER IFWO 0.083333 RCHRES INFLOW IVOL END MASS-LINK 3 MASS-LINK 5 IMPLND IWATER SURO 0.083333 RCHRES INFLOW IVOL END MASS-LINK 5 MASS-LINK 12 PERLND PWATER SURO END MASS-LINK 12 0.083333 COPY INPUT MEAN MASS-LINK 13 PERLND PWATER IFWO 0.083333 COPY INPUT MEAN END MASS-LINK 13 MASS-LINK 15 IMPLND IWATER SURO 0.083333 COPY INPUT MEAN END MASS-LINK 15 MASS-LINK 16 RCHRES ROFLOW COPY INPUT MEAN END MASS-LINK 16

END MASS-LINK

END EXT TARGETS

END RUN

Predeveloped HSPF Message File

Mitigated HSPF Message File

ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1962/11/30 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF 0.00000 3.8243E-12 -1.718E-02 0.00000 0.0000E+00 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1962/12/31 24: 0 RCHRES : 1 RELERR STORS STOR MATTN MATDIF -4.484E-01 0.00000 0.0000E+00 0.00000 4.5677E-11 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high.

Did you specify any "special actions"? If so, they could account for it.

Relevant data are:

DATE/TIME: 1980/11/30 24: 0 RCHRES : 1 RELERR STORS STOR MATIN MATDIF -2.872E-02 0.00000 0.0000E+00 0.00000 7.2466E-12 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). STOR is the storage of material in the processing unit (land-segment or reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the present printout reporting period. ERROR/WARNING ID: 238 1 The continuity error reported below is greater than 1 part in 1000 and is therefore considered high. Did you specify any "special actions"? If so, they could account for it. Relevant data are: DATE/TIME: 1999/12/31 24: 0 RCHRES : 1 STORS RELERR STOR MATIN MATDIF -1.827E-02 0.00000 0.0000E+00 0.00000 3.4807E-12 Where: RELERR is the relative error (ERROR/REFVAL). ERROR is (STOR-STORS) - MATDIF. REFVAL is the reference value (STORS+MATIN). is the storage of material in the processing unit (land-segment or STOR reach/reservior) at the end of the present interval. STORS is the storage of material in the pu at the start of the present printout reporting period. MATIN is the total inflow of material to the pu during the present printout reporting period. MATDIF is the net inflow (inflow-outflow) of material to the pu during the

present printout reporting period.

Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2021; All Rights Reserved.

Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

ATTACHMENT F CONDITIONS OF APPROVAL

ATTACHMENT G GEOTECHNICAL FEASIBILITY REPORT

May 15, 2018

Project No. 18045-01

Mr. Jon Conk *Project Dimensions, Inc.* 4 Park Plaza, Suite 700 Irvine, California 92614

Subject: Summary of Geotechnical Evaluation and Feasibility Study, Residential Development, Paseo De La Colinas, Laguna Niguel, California

Introduction

In accordance with your request and authorization, LGC Geotechnical, Inc. has performed a preliminary geotechnical evaluation and feasibility study for the proposed residential development to be located at a property located between Niguel Hills Middle School and Paseo De La Colinas in the City of Laguna Niguel, California. We have prepared this report to present the findings of our study and our conclusions with regard to feasibility of site development from a geotechnical standpoint.

Site Description

The subject site is a 2.5-acre property located between Niguel Hills Middle School and Paseo De La Colinas in the City of Laguna Niguel, California (Figure 1). The site is a roughly rectangular-shaped, flat site, with slopes descending from the north and west sides. The flat portion of the site is at an elevation of approximately 470 feet above mean sea-level (msl). The west-facing slope is approximately 40 feet tall, at an inclination of approximately 2:1 (horizontal to vertical). The north-facing slope is approximately 80 feet tall, at an inclination of approximately 1.5:1 (horizontal to vertical). Vegetation on the slopes is generally comprised of low brush, and weeds. Some bare dirt areas are also present. The flat portion of the site is covered in areas by asphalt concrete, gravel and bare dirt and is currently being utilized for auto parking.

We understand that potential development of the site may include grading for and construction of 30 at-grade multi-family residential units, associated interior drives and parking.

Geotechnical Evaluation

The field portion of our evaluation included geologic mapping of the site and excavation of two largediameter borings (BA-1 & BA-2) in the top of slope area in the northern and western portions of the site, respectively (see Geologic Map, Sheet 1). Borings BA-1 and BA-2 were drilled and sampled to depth of 90 feet and 55 feet below existing grade, respectively. The borings were then entered and down-hole logged by a geologist from our firm. The boring logs are included with this report. Based on the findings of our study, a geologic model of the site geologic conditions was prepared. The geologic model is presented on Cross-Sections A-A', B-B' & C-C' (Figures 2, 3 & 4, respectively).

Laboratory Testing

Representative driven and bulk samples were retained for laboratory testing during our field evaluation. Laboratory testing included in-situ dry density and moisture content, Atterberg Limits and direct shear. A summary of the laboratory test results is provided in Appendix C.

- Dry density values ranged from approximately 88 pounds per cubic foot (pcf) to 104 pcf with an average of 98 pcf. Field moisture contents ranged from approximately 22 percent to 32 percent with an average of 25 percent.
- Two Atterberg Limits tests were performed. Results indicated Plasticity Index values of 27 and 42.
- Direct shear tests were performed on select obtained driven soil samples. The shear plots are provided in Appendix C.

A summary of the laboratory test results is presented in Appendix C. The moisture and dry unit weight results are presented on the boring logs in Appendix B.

Geotechnical Conditions

Based on our evaluation, the site is underlain by Capistrano Formation bedrock material. Generally, the Capistrano Formation consists of a weak, clayey siltstone with some interbedded silty sandstone. Bedding within the boring was found to be nearly flat to gently dipping into the slope. Capistrano Formation material and fill derived from it typically has a high potential for expansion and are considered to be "severely" corrosive to concrete.

No active or inactive faults are mapped in the vicinity of the site (CGS, 1974). No landslides were observed or have been mapped in the vicinity of the site (CGS, 1974). The slopes descending from the site are located in a zone of potential seismically-induced landsliding (CGS, 2001b). The site is not located in a zone of potential seismically-induced liquefaction (CGS, 2001b).

Minor groundwater seepage was observed along sandy beds and along some joints. Historic high groundwater is not mapped on the site (CGS, 2001a).

Soil Shear Strength Parameters

The soil shear strength parameters utilized in our slope stability analysis are based on laboratory testing, published shear strength data (CDMG, 2001a) and engineering judgment. The along bedding clay shear strength is based on published shear strength correlations (Liquid Limit) for drained fully-softened friction angle (Stark and Hussain, 2013). Soil shear strength parameters for seismic loading conditions were increased (below composite peak strength) for Capistrano Formation bedrock. Table 1 summarizes the static shear strength parameters utilized in our analysis.

TABLE 1

Soil Type	\$ (Degrees)	Cohesion (psf)
Capistrano Formation (Tc)	26	300
Along Clay Bed	18	0

Static Soil Shear Strength Parameters for Slope Stability Analysis

Slope Stability Analysis

Slope stability analysis was performed on a two-dimensional cross-sectional model (Cross-Sections A-A' through C-C', Figures 2 through 4) positioned through the northern and western site slopes. The cross-sections were drawn approximately perpendicular to the face of the slope at each location.

Slope stability analysis was performed using the computer program GSTABL7 with STEDwin version 2.005.3 (Gregory Geotechnical Software, 2013). Potential rotational and block surfaces were analyzed using Bishop's Modified Method and Janbu's Simplified Method, respectively. Slope stability analysis was performed for static and seismic loading conditions. A minimum factor of safety of 1.5 is typically required for static loading conditions. Seismic slope stability analysis was performed in accordance with the County of Orange Grading Manual (1993). Where applicable, the County of Orange Grading Manual requires a horizontal seismic coefficient (Kh) of 0.15 with a minimum resulting factor of safety of 1.1. Since the clay bed is less than 12 degrees from the horizontal, pseudostatic (seismic) slope stability was not performed for block surfaces in accordance with County of Orange Grading Manual.

The results of our analyses indicate that the existing northern portion of the site has a static factor of safety less than 1.5 and requires a structural set-back zone of 60 horizontal feet from the top-of-slope in order to provide the required static factor of safety of 1.5 (refer to the Geologic Map and Cross Section A-A' Refer to the Slope stability analysis provided in Appendix D.

Conclusions and Recommendations

Based on the results of our preliminary geotechnical evaluation, it is our professional opinion that proposed development of the site is feasible from a geotechnical standpoint. However, significant slope stability issues will need to be considered. This and the other geotechnical constraints and advantages of the site are discussed in the follow subsections.

Please note that the subject evaluation was focused on the geotechnical stability of the site and feasibility of site development in consideration of the geologic constraints encountered. The intent of this study was to provide sufficient data to allow prospective developers to understand the site geologic conditions and how they will impact the proposed site development. Once development plans have been prepared, additional geotechnical analyses and laboratory testing must be performed in order to provide design-level geotechnical recommendations. A full geotechnical evaluation report can be prepared at that time, including project specific conclusions, recommendations and parameters for site design, grading and construction. It is anticipated that the scope of services described herein will contribute data to that study.

1) <u>Slope Stability</u>

Based on the findings of our study, slope stability indicates that the top of slope area in the northern portion of the site has a static factor of safety less than 1.5 for the current site conditions. Accordingly, structural improvements must be set back at least 60 horizontal feet from the top of slope in the northern portion of the site (see Geologic Map). We recommend that no structures designed for human occupancy be constructed in this area. However, this does not preclude the construction of patio slabs, small retaining walls, drainage swales, landscape related features, and the like with the understanding that these improvements will be founded in an area that may undergo tilting/deflection and cracking and could potentially be rendered unusable. Elsewhere on the site, slope stability analysis generally indicates adequate static and seismic slope stability factor of safety.

The site is not located within a State of California Seismic Hazard Zone for earthquake-induced landslides (CGS, 2001b). No landslides were observed during our site visit or are mapped in the vicinity of the site (CGS, 1974).

2) <u>Seismicity</u>

The subject site is not located within a Fault Rupture Hazard Zone and there are no active or potentially active faults mapped on or in close vicinity of the site (CGS, 1974).

The main seismic hazard that may affect the site is from ground shaking from one of the active regional faults. The subject site will likely experience strong seismic ground shaking during its design life. Parameters for seismic design in accordance with the current California Building Code should be provided in future geotechnical reports for the project.

3) *Liquefaction*

The site is not located in a zone of potential seismically-induced liquefaction (CGS, 2001b).

4) <u>Expansive Soils</u>

The majority of the onsite soils are expected to have a High to Very High expansion potential. Mitigation measures are recommended for foundations and site improvements like concrete flatwork to minimize the impacts of expansive site soils. Pre-soaking of the subgrade for building slabs and flatwork is recommended due to site expansive soils.

5) <u>Corrosive Soils</u>

Based on experience in the area, site soils are considered to be "severely" corrosive to concrete.

6) <u>Groundwater</u>

Groundwater was not encountered to maximum explored depth of approximately 90 feet below existing grade. Historic high groundwater is not mapped on the site (CGS, 2001a).

7) <u>Remedial Grading</u>

The depth of potentially compressible materials recommended for removal during site remedial grading are estimated to extend from approximately 3 to 5 feet below existing grades. This should be further evaluated based on the proposed grading plan and structural loads of the proposed building structures.

8) <u>Rippability and Oversized Material</u>

In general, rippability is not anticipated to be an issue during the majority of site grading. It is anticipated that the onsite materials, within the limits of proposed grading, may be excavated with conventional construction equipment.

Generation of some oversized material (material larger than 8 inches in maximum dimension) during site grading should be anticipated. Recommendations for appropriate handling of oversized materials should be provided in future geotechnical reports for the project.

9) <u>Temporary Excavations</u>

Excavations should be made in accordance with Cal/OSHA, as a general guideline. Excavation safety is the sole responsibility of the contractor.

10) <u>Fill Placement</u>

In general, it appears that the onsite soils should be considered geotechnically suitable for use as compacted fill provided the soils are free of organics, oversized rock and other deleterious material. Oversized rock may be placed in nonstructural areas or in structural fills if placed in accordance with the recommendations of the geotechnical consultant and local grading codes.

The site contains soils that are not suitable for retaining wall backfill due to their fines content and expansion potential, therefore import of sandy soils will be required by the contractor for obtaining suitable backfill soil for planned site retaining walls.

<u>Limitations</u>

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

Our services were provided in order to form an opinion concerning the suitability of the proposed development relative to the geotechnical aspects of the site. The data and information provided in this report are based on observations made by representatives of our firm during a brief site visit. This report is not a warranty of the work performed by others.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and modification, and should not be relied upon after a period of 3 years.

Should you have any questions regarding this report, please do not hesitate to contact our office. We appreciate this opportunity to be of service.

Respectfully,

LGC Geotechnical, Inc.

Be zun

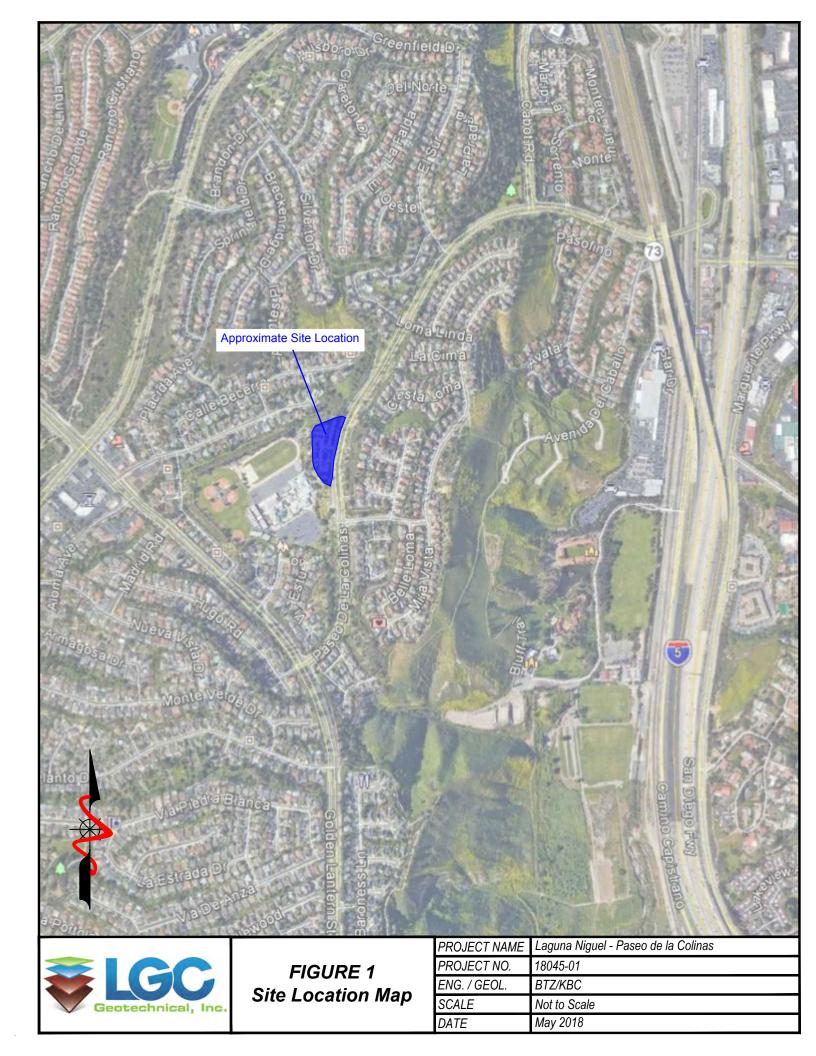
Brad Zellmer, GE 2618 Project Engineer

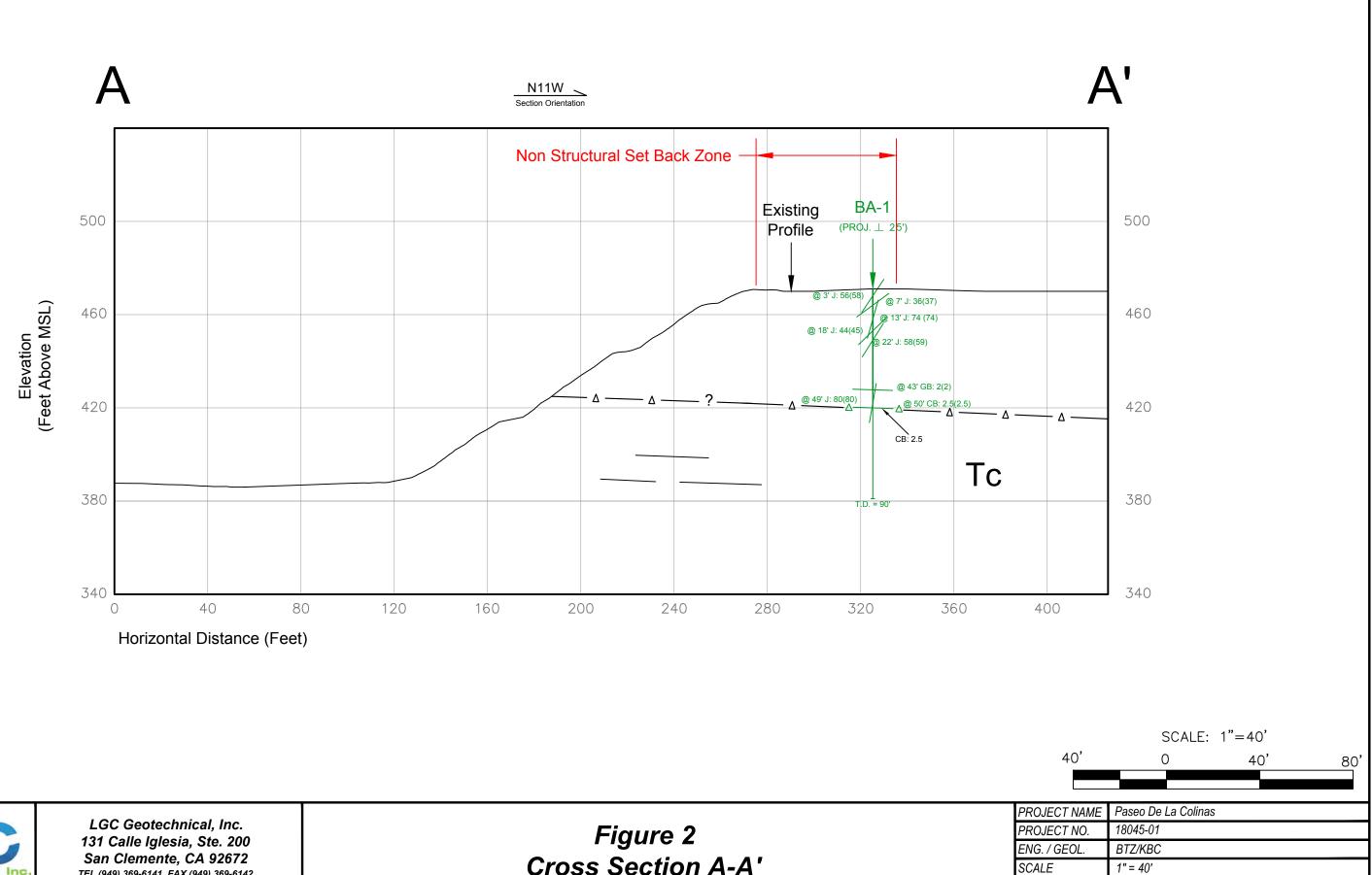
KBC/BTZ/aca

Attachments: Figure 1 - Site Location Map

No. 2618 Exp. 12/31/18 * * * * * * *

Kevin B. Colson, CEG 2210 Vice President

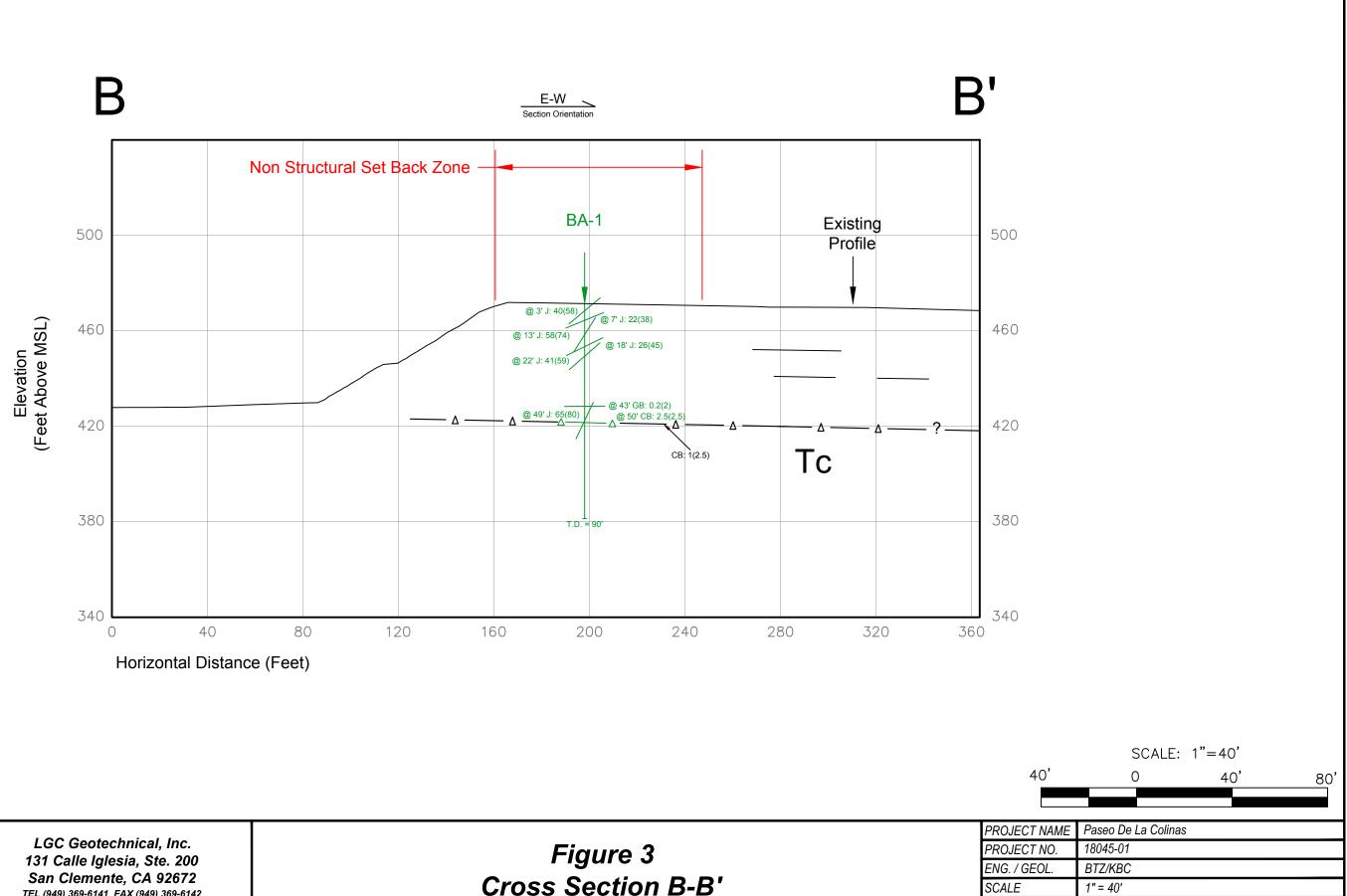



Distribution: (4) Addressee (1 electronic copy & 3 wet-signed copies)

Appendix C - Laboratory Test Results Appendix D – Slope Stability Analysis

Figure 2 – Cross-Section A-A' Figure 3 – Cross-Section B-B' Figure 4 – Cross-Section C-C'

Sheet 1 – Geologic Map Appendix A - References Appendix B - Boring Logs

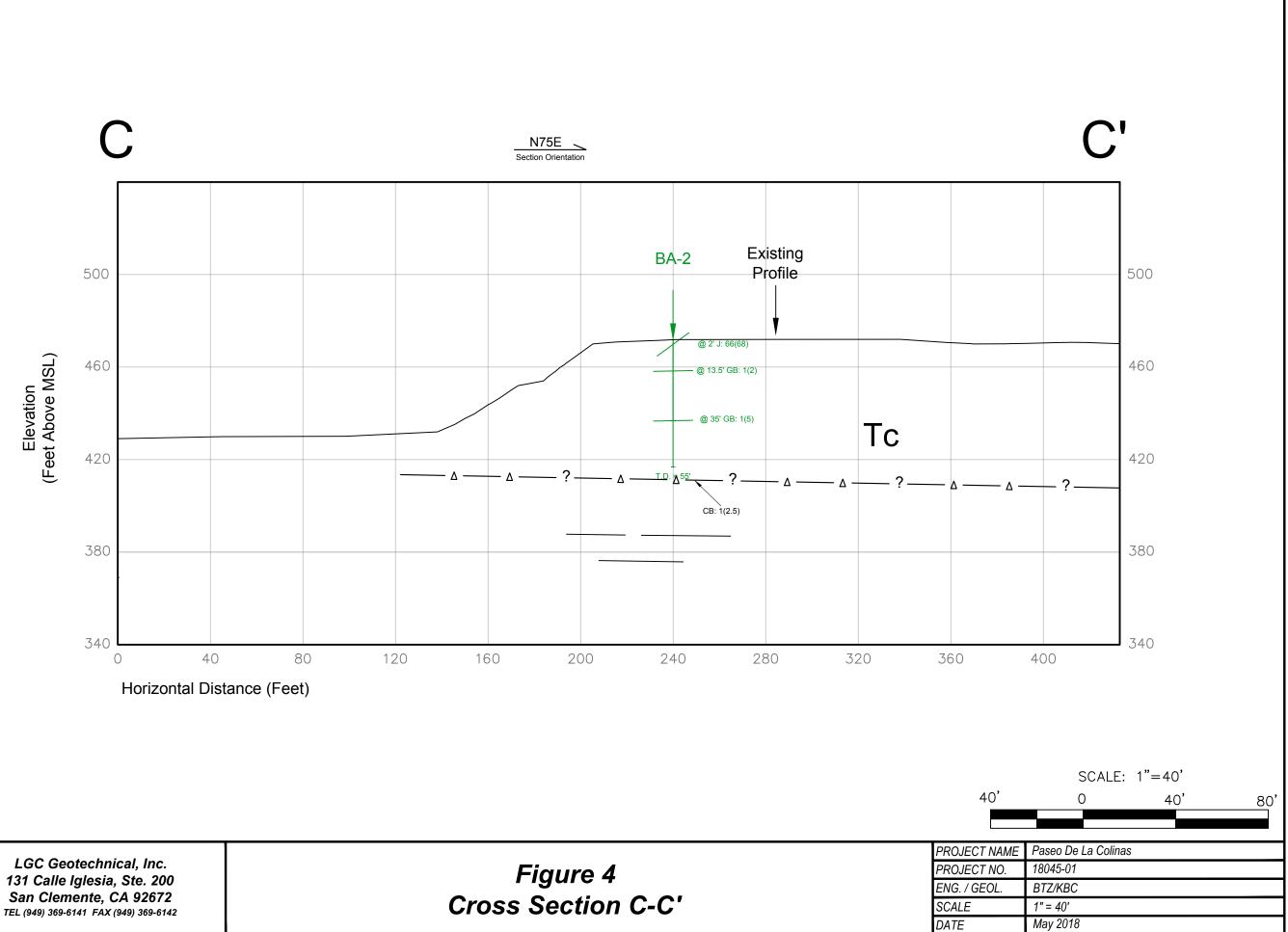


TEL (949) 369-6141 FAX (949) 369-6142

Cross Section A-A'

DATE

May 2018



TEL (949) 369-6141 FAX (949) 369-6142

Cross Section B-B'

DATE

May 2018

LEGEND

BA-2

T.D. = 55'

N80W

N60E √ √- 12.5

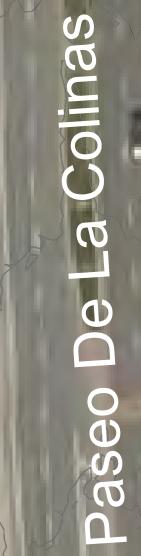
80 N70E

С

Tertiary Capistrano Formation, Circled Тс Where Buried

> Approximate Location of Bucket Auger Boring by LGC Geotechnical, With Total Depth in Feet

Geotechnical Cross-Section Alignment


Non Structural Set Back Zone

Geologic Attitudes (Dashed Where Subsurface)

General Bedding

Clay Bed

LGC Geotechnical, Inc. 131 Calle Iglesia, Ste. 200 San Clemente, CA 92672 TEL (949) 369-6141 FAX (949) 369-6142

Geologic Map

PROJECT NAME	Paseo De La Colinas	
PROJECT NO.	18045-01	
ENG. / GEOL.	BTZ/KBC	SHEET
SCALE	1'=40"	
DATE	May 2018	1 of 1

SCALE: 1"=40

Appendix A References

<u>References</u>

- California Geological Survey (CGS), (Previously California Division of Mines and Geology), 1974, Geologic Map of the San Juan Capistrano Quadrangle, Orange County, California, Paul K. Morton, William J. Edgington and Donald L. Fife, Scale: 1:12,000.
- _____, 2000, Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region, CDMG CD 2000-03.
- _____, 2001a, Seismic Hazard Evaluation of the San Juan Capistrano 7.5-Minute Quadrangle, Orange County, California, Open File Report 053.
- _____, 2001b, State of California Seismic Hazard Zones, San Juan Capistrano Quadrangle, Official Map, Released December 21, 2001.
 - _____, 2007, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps, Special Publication 42, Interim Revision 2007.

County of Orange Grading Manual, 1993, Appendix F, Minimum Standards for Slope Stability Analysis.

- Gregory Geotechnical Software, 2013, GSTABL7, Version 2.005.3, March.
- Stark T.D., Choi, H., and McCone, S., 2005, Drained shear strength parameters for analysis of landslides, *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, pp. 575-588, dated May 2005.
- Stark, T.D., Hussain, M., 2013, Empirical Correlations: Drained shear strength for slope stability analysis, *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, pp. 853-862, dated June 2013.

Appendix B Boring Logs

				G	eo	tec	hni	cal	Boring Log BA-1	
Date			4/19/2018				e 1 of		Drilling Company : Big Johnny's Drilling	
Proje		ne :	Paseo De	La Co	linas				Type of Rig : Calweld	
								Drop : 18" Hole Diameter : 24"		
	-									
Hole Location : See Geotechnical Map									Drive Weight : 0'-25' = 3300 lbs; 25'-50' = 2200 lbs; 50 -75' = 1100 lbs; 75'-95' = 2100 lbs	
TIOIC	-0041									
									Logged by ARN	
				er		ि		_	Sampled by ARN	
(f)		0		Sample Number	ц.	Dry Density(pcf)	9	USCS Symbol		st
n (†	ť)	۲	S	ž	Un	sit	6)	λu		of Test
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	<u>d</u>	Blow Count	l P	Moisture (%)	S S		of
eva	ept	rap	ttitt	am	N		ois	SC		Type (
Ш	Ō	G	A	S	Θ		∣≥	Π	DESCRIPTION	É.
	0	····							@0' to 90' Tertiary Capistrano Formation (Tc):	
	-	Z_{\geq}		ΙΓ					@0' - Crushed aggregate base; pavement section @1' - SILTSTONE with SAND lenses and CLAY: light gray brown	
	-								with orange, moist, stiff; moderately weathered bedrock	
	-	X-	J: N54E, 58N						@2' - Silty SAND: orange; subhorizontal bedding, 4" thick, poorly	
465-	5-	1-							defined @3' - Joint attitude on gypsum filled joint; overall moderately	
100	-	÷/.							weathered bedrock with iron oxide and evenly spaced jointing;	
	-		J: N60E, 37N	-					 moisture increasing with depth, moist to very moist in general @7' - Joint attitude on crystalline gypsum filled joint; similar to above; 	
	-								approximately 1/2" wide	
460-	10-	£.1		R-1	1 for 12"	89.8	31.9	CL	@10' - SILTSTONE to SILTSTONE with SAND: light gray brown, very moist, stiff to very stiff; scattered oxidation staining; transitions from moderately weathered to slightly weathered	
	-	\mathcal{N}							@11' - Trace fossils; manganese oxide on joint surfaces	
	-	Ī.	J: N64E, 74N						@13' - Joint attitude on gypsum filled joint; planar joint with iron oxide staining, part of the way around the boring; moisture has decreased;	
	-	·		-					stiffness has increased @14' - Subhorizontal Sand stringers	
455—	15—			-					@16' - Scattered jarosite; soft sediment deformation observed in	
	-	·Z.							faintly stained sand lenses	
	-	÷7	J: N62E, 45N						@ 17' to 22' - Joint attitude. Manganese and iron oxide stained gypsum filled joint; \sim 1/8" thick; less weathered material below and	
	-	T.		-					joint all around boring, entering at ~17' and exiting ~22'. Increased	
450-	20-	7-		R-2	1	97.1	26.1	СН	stiffness, scattered joints. below 22'; averaged attitude at 22'; variable oxidation	AL MD
	-	\vdash .			1					DS
	-		J: N60E, 59N	-						
1	-	Ł.	,	-						
1	-	1		-						
445-	25-	,		-						
1	-			-					@ 27' - Joint attitude, iron oxide	
	-	1.7	J: N64E,	-						
1	-	•{	Vertical	-						
	-	-1		-						
	_			-						
								IES ONLY		
	2				LOCA	TION OF	THIS BO	ORING AN	D AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR DITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY	
	-		E C		DIFFE	R AT OT	HER LO	CATIONS	AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS AND MAY SIEVE AND HYDROME ITH THE PASSAGE EI EXPANSION INDEX	TER
	1				OF TI	ME. THE	DATA F	RESENT	ED IS A CN CONSOLIDATION AL CONDITIONS CR CORROSION	
	G	eot	echnical,	Inc.		UNTERE			AL ATTERBERG LIMITS CO COLLAPSE/SWELL	
									RV R-VALUE	

Last Edited: 5/2/2018

	Geotechnical Boring Log BA-1												
Date :			4/19/2018				Page	e 2 of	4	Drilling Company : Big Johnny's Drilling			
Proje	ct Nan	1e :	Paseo De	La Co	olir	nas				Type of Rig : Calweld			
-			: 18045-01							Drop : 18" Hole Diameter : 24"			
	tion of Locati	-	of Hole : ~ See Geote				0			Drive Weight : 0'-25' = 3300 lbs; 25'-50' = 2200 lbs; 50 -75' = 1100 lbs; 75'-95' = 2100 lbs			
							-			Logged by ARN			
				_						Sampled by ARN			
Elevation (ft)	(ft)	Graphic Log	des	Sample Number		Blow Count	Density(pcf)	Moisture (%)	USCS Symbol		of lest		
Eleva	Depth (ft)	Grapt	Attitudes	Sam		Blow	Dry D	Vloist	JSC	DESCRIPTION	Type		
	30			R-3	_	1	93.8	29.2	CL	@30' - Vertical joint, followed since 27', tight, has gypsum, iron oxide, and manganese oxide. Material is dark gray, SILTSTONE w/ SAND, sl. moist, v. stiff.			
440-	- 35 —				-					@33' - SILTSTONE with SAND; Increase in fine SAND, and oxidized zone with circular laminations.			
	-	1.0			-					 @36' - SILTSTONE with some SAND: dark gray, moist, very stiff; fresh bedrock; unoxidized @37.5 - Lense of orange SILT; subhorizontal; discontinuous; two large oxidized circles 			
435—	- 40			R-4		2 4	98.2	26.9	ML	@40 - Same as above @36'			
430—	45		GB: N80W, 2S		-					 @43' - General bedding attitude on SANDSTONE interbed: orange, wet; 1" thick; minor seepage from sandbed, gypsum @45.5' - Active seep; coming out of sandbed; varies in thickness from 1" to 3"; ~1" zone of Sandy SILT around the sand bed; bioturbation on sand lense; subhorizontal; at 46' returns to the same material as above @46' - SILTSTONE; dark gray, moist, stiff; iron oxide and 			
425—	50		J: N70E, 80N CB: Sub-horizontal	R-5 GB-1	- III - -	3 10	88.3	24.7	ML	manganese oxide staining @49' - Attitude on joint; iron oxide joint with few gypsum crystals. ends on claybed @50' @50' - Two or three very thin CLAY beds in a ~1" thick zone; subhorizontal; an iron oxide joint ends at the claybed; clay beds are poorly defined, subplanar			
420—					-								
	G		C C	Inc		Loca ⁻ Drilli Diffe Chan Of Tin Simpl	TION OF ING. SUI R AT OT GE AT TI ME. THE	THIS BO BSURFA HER LOO HIS LOC DATA P DN OF TI	ACE COND CATIONS / ATION WI PRESENTE	D AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR ITTIONS MAY R RING SAMPLE MD MAXIMUM DENSITY AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS AND MAY S&H SIEVE AND HYDROMETE TH THE PASSAGE EI EXPANSION INDEX	ER		

	Geotechnical Boring Log BA-1												
Date			4/19/2018			Page	e 3 of	4	Drilling Company : Big Johnny's Drilling				
Proje	ct Nan	ne :	Paseo De	La Co	olinas				Type of Rig : Calweld				
	ct Nun								Drop : 18" Hole Diameter : 24"				
			of Hole : \sim						Drive Weight : 0'-25' = 3300 lbs; 25'-50' = 2200 lbs;				
Hole	Locati	on :	See Geote	chnic	al Ma	р 			50 -75' = 1100 lbs; 75'-95' = 2100 lbs				
									Logged by ARN				
				Der		G		_	Sampled by ARN				
(I		b		nmt	_ ۲	y(p	(%	oqu		st			
) uo	(ft)	L C	S	S S	our	nsit	e e	Syr		fT€			
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	Sample Number	Blow Count	Dry Density(pcf)	Moisture (%)	USCS Symbol		Type of Test			
Шe	Dep	Gra	Atti	Sal	Blo	Dry	Moi	NS(DESCRIPTION	Тур			
	60			R-6	4 9	101.5	22.6	CL-ML	WOU - Dark gray SILTSTONE W/ Valiable SAND, moist to wet, V. still	MD DS			
	-	1							to sl. hard.				
	-												
	-			-									
415-	65 —			-									
	-	a		-									
	-			-									
	-			F									
410-	70-												
410	<i>,</i> , , , , , , , , , , , , , , , , , ,			R-7	7 16	103.2	24.1	ML	@70' - as above at 60', moist				
	_			-									
	-			-					@73' - SAND content increased; becomes Sandy SILTSTONE, color				
	-			-					slightly browning gray				
405-	75-			-									
	-	<u>.</u>		-					@76' - Small concretion; ~2" diameter, irregular shape				
	-			F									
400-	80-			R-8	4	103.6	23.0	ML	@79' - Decreased SAND; back to SILTSTONE with some SAND, moist, sl. hard, micaceous				
	-			14-0	12		20.0						
	-			-									
	-			-									
	-			-									
395 —	85 —			-									
	-			F									
]	e 1 🚔							@87' - End visual log				
	_												
								IES ONLY					
			CC		DRILL	ING. SU	BSURF		ITIONS MAY R RING SAMPLE MD MAXIMUM DENSITY G GRAB SAMPLE SA SIEVE ANALYSIS				
			51	1	CHAN	IGE AT T	HIS LOC		TH THE PASSAGE EI EXPANSION INDEX D IS A CN CONSOLIDATION	IER			
	G	eote	echnical,	Inc	SIMPI		ON OF T		L CONDITIONS CR CORROSION AL ATTERBERG LIMITS CO COLLAPSE/SWELL				
~									RV R-VALUE				

	Geotechnical Boring Log BA-1												
Date	:		4/19/2018			Page	4 of	4	Drilling Company : Big Johnny's Drilling				
Proje	ct Nan	ne :	Paseo De	La Co	olinas				Type of Rig : Calweld				
-			: 18045-01						Drop : 18" Hole Diameter : 24"				
	tion of Locati	-	of Hole : ~ See Geote			n			Drive Weight : 0'-25' = 3300 lbs; 25'-50' = 2200 lbs; 50 -75' = 1100 lbs; 75'-95' = 2100 lbs				
	Locali								Logged by ARN				
									Sampled by ARN				
				Sample Number		ocf)			Sampled by ARM				
(ft)		bo-		-Un	II	Dry Density(pcf)	Moisture (%)	USCS Symbol		Type of Test			
Elevation (ft)	(#)	Graphic Log	Attitudes	le	Blow Count	ens	are	s Sy		of T			
eva	Depth (ft)	aph	tituo	ame	NO		oistı	SCS		be			
Ш	_	Ģ	At						DESCRIPTION	ц			
	90			R-9	3 10	101.7	23.2	ML	Total Depth = 90'				
	-			-					Groundwater Seepage Encountered Backfilled with Cuttings on 4/19/2018				
	-			-									
	-			-									
390 —	95 —			-									
	-			F									
]												
]												
385-	100-												
	-			-									
	-			-									
	-			-									
	-			-									
380-	105-			F									
	-			-									
]												
375-	110-												
	-			-									
	-			-									
	-			-									
	-			-									
370-	115-			-									
	1												
]												
	_			-									
			GC echnical,		LOCA DRILL DIFFE CHAN OF TII SIMPL	TION OF ING. SUI R AT OTI GE AT TH ME. THE	THIS BO BSURFA HER LO HIS LOC DATA F DN OF T	ACE COND CATIONS / ATION WI PRESENTE	AT THE TIME OF B BULK SAMPLE DS DIRECT SHE TIONS MAY R RING SAMPLE MD MAXIMUM DI ND MAY G GRAB SAMPLE SA SIEVE ANAL ND MAY H SKH SEVE AND F SKH SEVE AND F IF THE PASSAGE EI EXPANSION EXPANSION EXPANSION	Ensity Ysis Hydrometer Index Tion 5 Limits			

	Geotechnical Boring Log BA-2												
Date :			4/20/2018			Page	e 1 of	2	Drilling Company : Big Johnny's Drilling				
Proje	ct Nan	ne :	Paseo De	La C	olina	S			Type of Rig : Calweld				
Project Number: 18045-01									Drop : 18" Hole Diameter : 24"				
	tion of Locati	-	of Hole : ~ See Geote					Drive Weight : 0'-25' = 3300 lbs; 25'-50' = 2200 lbs; 50 -75' = 1100 lbs; 75'-95' = 2100 lbs					
						1			Logged by KTM/ARN				
				L					Sampled by ARN				
Elevation (ft)	Depth (ft)	Graphic Log	Attitudes	Sample Number	Blow Count	Dry Density(pcf)	Moisture (%)	USCS Symbol		Type of Test			
	0) معا							@0' to 55' Tertiary Capistrano Formation (Tc):				
465—	- - - 5-		J: N6E, 68S		-				 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)				
460-	- - - 10 - -			B-1 R-1	222	103.0	22.4	ML	 @ 8.8' - Slightly stiffer material; tighter; a couple small trace fossils and/or burrows; light brown SAND filling burrows @10' - SILTSTONE: medium gray, moist, stiff @10.5' - Concretion; gray; ~3" diameter 				
455—	- 15— -		GB: N40E, 2S		-				 @13.5' - General bedding attitude. Sandy SILTSTONE interbed; subhorizontal bedding; correlates to the bed from BA-1 at 2' depth; ~4" thick ; bioturbated; poorly defined boundaries @17' - Small concretion 				
450—	- - 20— -			R-2	- - 2 4	98.5	25.2	ML	@20' -Gradual increase in SAND content; Sample is similar to 10' above				
445—	- - 25 — - - - -				- - - - - -				@25.5' - Fine SAND filled trace fossill; tan colored SAND @ 27' - Increase in trace fossil abundance				
THIS SUMMARY APPLIES ONLY A LOCATION OF THIS BORING AND DRILLING, SUBSURFACE CONDI DIFFER AT OTHER LOCATION WIT CHANGE AT THIS LOCATION WIT OF THE. THE DATA PRESENTED SIMPLIFICATION OF THE ACTUAL ENCOUNTERED.								D AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR DITTIONS MAY R RING SAMPLE MD MAXIMUM DENSITY AND MAY G GRAB SAMPLE SA SIEVE ANALYSIS S&H SIEVE AND HYDROMET TH THE PASSAGE EI EXPANSION INDEX ED IS A CN CONSOLIDATION	rer				

Geotechnical Boring Log BA-2										
Date			4/20/2018			Page	e 2 of	2	Drilling Company : Big Johnny's Drilling	
Proje	ct Nan	ne :	Paseo De	La Co	olinas				Type of Rig : Calweld	
-			: 18045-01						Drop : 18" Hole Diameter : 24"	
Elevation of Top of Hole : ~ 470 ' MSL Hole Location : See Geotechnical Map						р			Drive Weight : 0'-25' = 3300 lbs; 25'-50' = 2200 lbs; 50 -75' = 1100 lbs; 75'-95' = 2100 lbs	
						İ			Logged by KTM/ARN	
				<u> </u>					Sampled by ARN	
		~		Sample Number		Dry Density(pcf)				t
n (f	t)	Ľ	S	N	nut	sity	6)	, M		Tes
atio	h (fl	hic	rde	ple	ပိ	Den	ture	S S		o f
Elevation (ft)	Jepth (ft)	Graphic Log	Attitudes	Sam	Blow Count	2	Moisture (%)	USCS Symbol	DECOUDTION	Type of Test
ш	_	Ċ	٩	0) R-3		101.1			DESCRIPTION	_ ⊢
	30 -			R-3	2 4		24.0	IVIL	@30' - SILTSTONE: medium to dark gray, moist, stiff; has some white specs; slightly micaceous, few forams	
	-			-						
	-	Č., s		-						
	-			-	-					
440-	35 —	ar .	GB: N84E, 5S	-	-				@35' - General bedding attitude taken on cemented Sandy SILT	
	-				•				concretion; poorly defined edges; disc shaped and several feet long; occupied ~1/2 of the boring; discontinuous; vague	
	-			-	-				······································	
	-				-					
425	40				-				@40' - as above at 30', some SAND	
435-	40 —			R-4	3 7	100.2	24.4	ML	W40 - as above at 50, some SAND	
	_								@43.7' - Very thin SAND stringer; brownish gray; subhorizontal	
	_			-	-				@44' - Zone of Sandy SILTSTONE with abundant trace burrows ;	
430-	45-			-					few concretions; SILTSTONE to Sandy SILTSTONE below	
	_			-	-					
	-			-	-					
	-			-	-					
	-			-	-					
425-	50 —			R-5	3	95.8	24.7	ML	@50' - as above at 30', variable SAND	
	-				Ŭ					
									@54' - Gray SAND bed; coorelates to BA-1 at 43' depth; ~1" thick,	
420-	55 —								active seepage, continuous around boring	
	_			-					Total Depth = 55'	
	-	4 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1		-					No Ground Water Encountered Backfilled with Cuttings on 4/20/2018	
	-			-					-	
	-				-					
					•					
								IES ONLY DRING ANI	AT THE TIME OF B BULK SAMPLE DS DIRECT SHEAR	
			C		DRILL DIFFE	ING. SU	BSURF# HER LO	ACE COND	TIONS MAY R RING SAMPLE MD MAXIMUM DENSI' ND MAY G GRAB SAMPLE SA SIEVE ANALYSIS S&H SIEVE AND HYDR	
	6			1	OF TI	ME. THE	DATA F	PRESENTE	H THE PASSAGE EI EXPANSION INDE D IS A CN CONSOLIDATION	
	G	eote	echnical,	Inc				HE ACTUA	L CONDITIONS CR CORROSION AL ATTERBERG LIMI CO COLLAPSE/SWEL	
									RV R-VALUE	

Appendix C Laboratory Test Results

APPENDIX C

Laboratory Test Results

The laboratory testing program was directed towards providing quantitative data relating to the relevant engineering properties of the soils. Samples considered representative of site conditions were tested in general accordance with American Society for Testing and Materials (ASTM) procedure and/or California Test Methods (CTM), where applicable. The following summary is a brief outline of the test type and a table summarizing the test results.

<u>Moisture and Density Determination Tests</u>: Moisture content (ASTM D2216) and dry density determinations (ASTM D2937) were performed on driven samples obtained from the test borings. The results of these tests are presented in the boring logs. Where applicable, only moisture content was determined from undisturbed or disturbed samples.

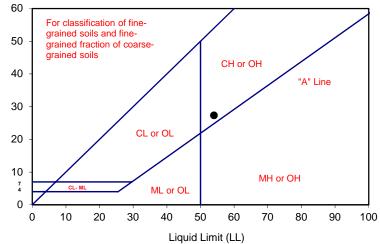
<u>Atterberg Limits</u>: The liquid and plastic limits ("Atterberg Limits") were determined per ASTM D4318 for engineering classification of fine-grained material and presented in the table below. The USCS soil classification indicated in the table below is based on the portion of sample passing the No. 40 sieve and may not necessarily be representative of the entire sample. The plots are provided in this Appendix.

Sample Location	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	USCS Soil Classification
BA-1 @ 20 ft	54	27	27	СН
BA-1 @ 50 ft	65	23	42	СН

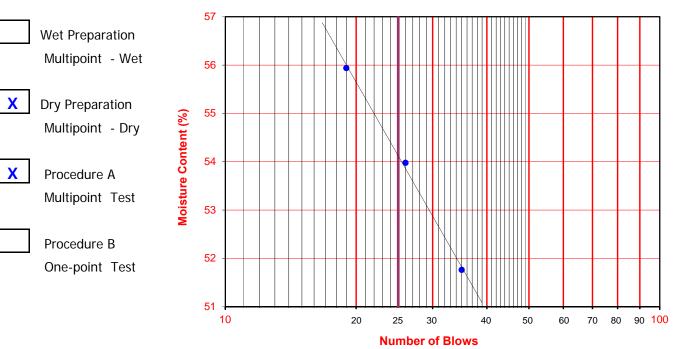
<u>Direct Shear</u>: Direct shear tests were performed on selected driven samples, which were soaked for a minimum of 24 hours prior to testing. The samples were tested under various normal loads using a motor-driven, strain-controlled, direct-shear testing apparatus (ASTM D3080). The plot is provided in this Appendix.

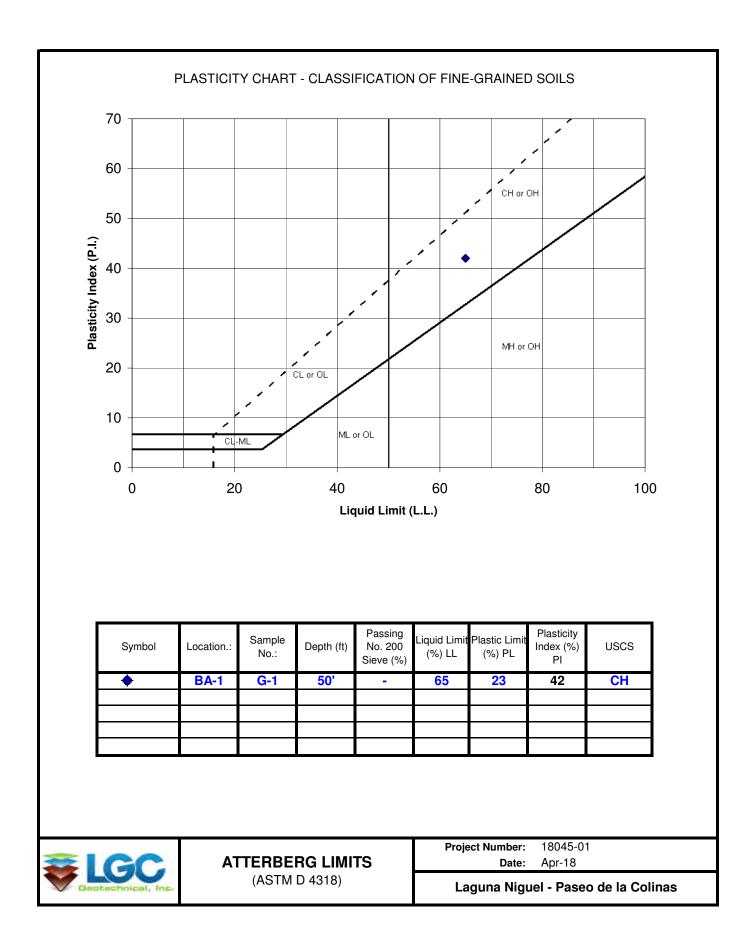
ATTERBERG LIMITS

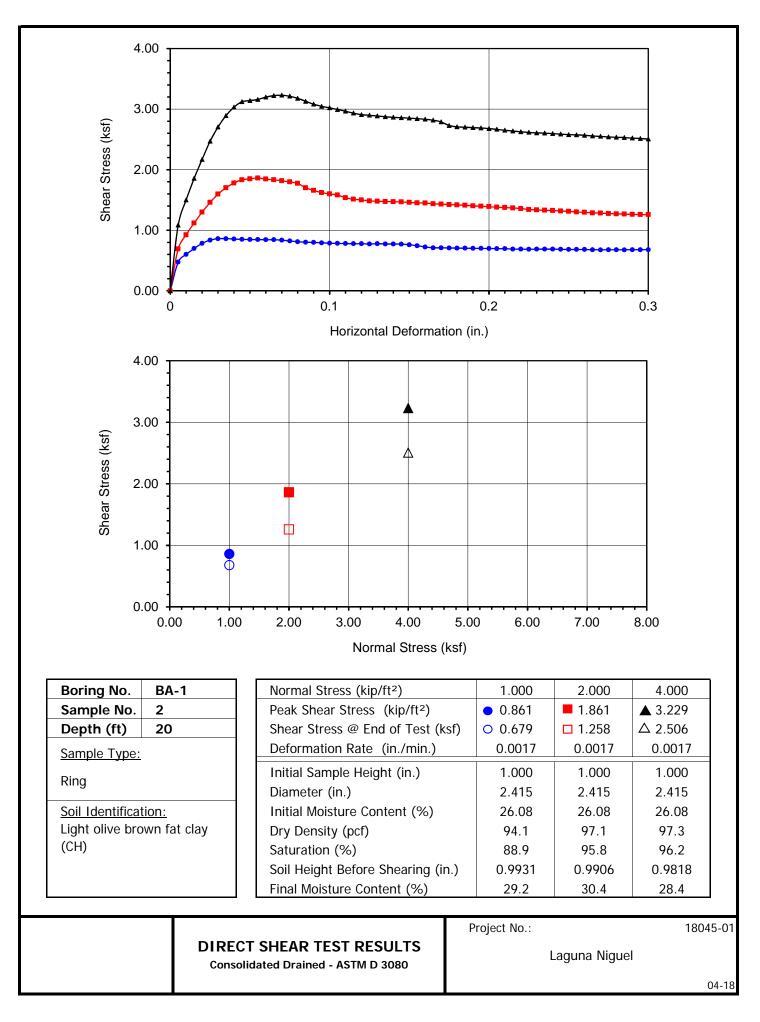
ASTM D 4318

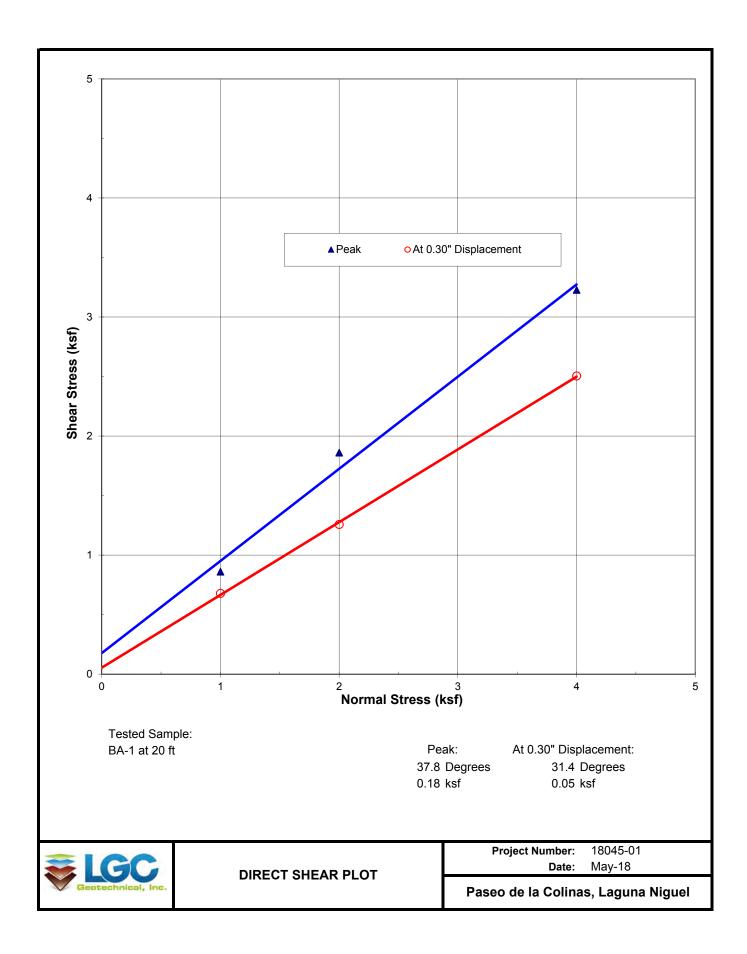

Project Name: Laguna Nig		R. Manning	Date:	05/03/18
Project No. : <u>18045-01</u>	Input By:	J. Ward	Date:	05/04/18
Boring No.: BA-1	Checked By:	J. Ward		
Sample No.: 2	Depth (ft.)	20.0		

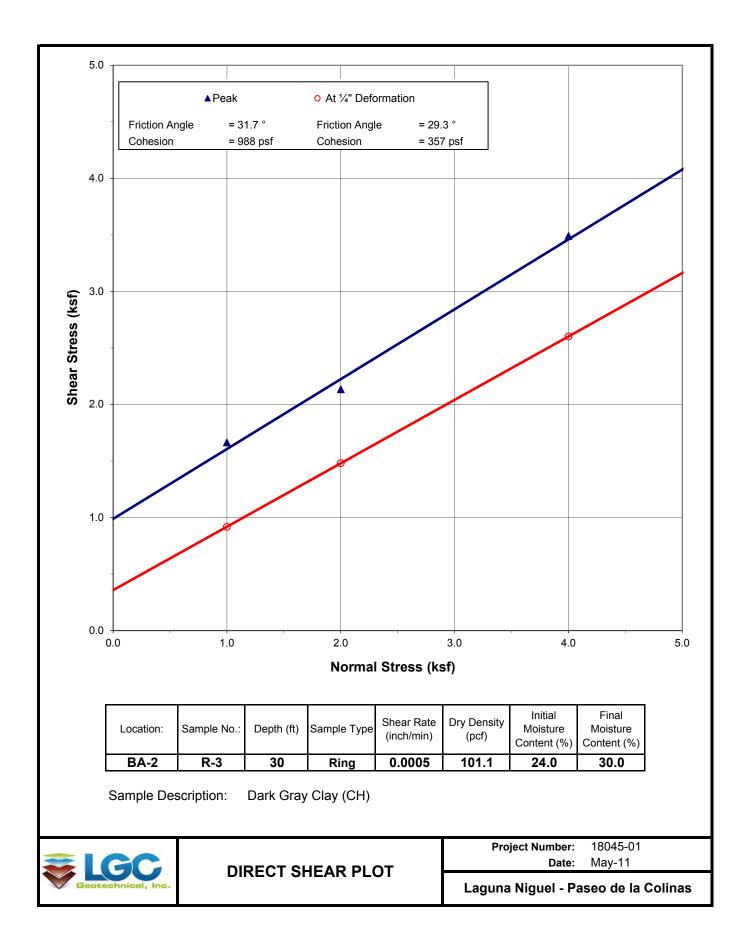
Soil Identification: Light olive brown fat clay (CH)

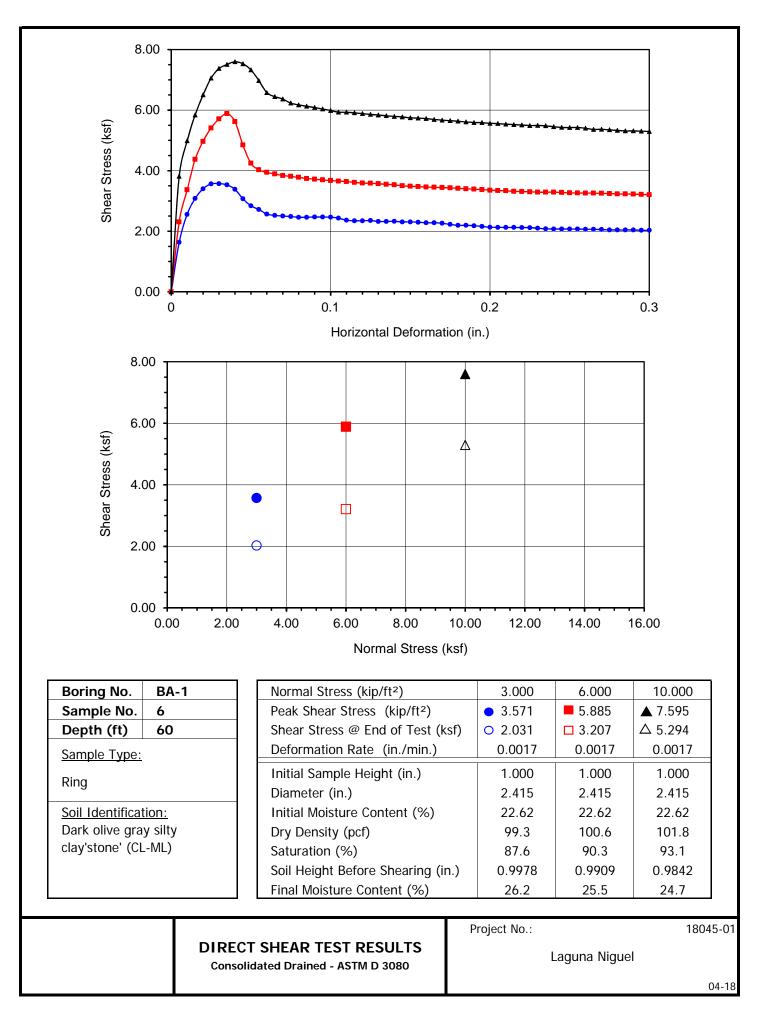

TEST	PLASTIC LIMIT		LIQUID LIMIT			
NO.	1	2	1	2	3	4
Number of Blows [N]			35	26	19	
Wet Wt. of Soil + Cont. (g)	18.61	18.15	24.34	25.12	25.52	
Dry Wt. of Soil + Cont. (g)	17.17	16.70	20.67	21.05	21.28	
Wt. of Container (g)	11.75	11.27	13.58	13.51	13.70	
Moisture Content (%) [Wn]	26.57	26.70	51.76	53.98	55.94	

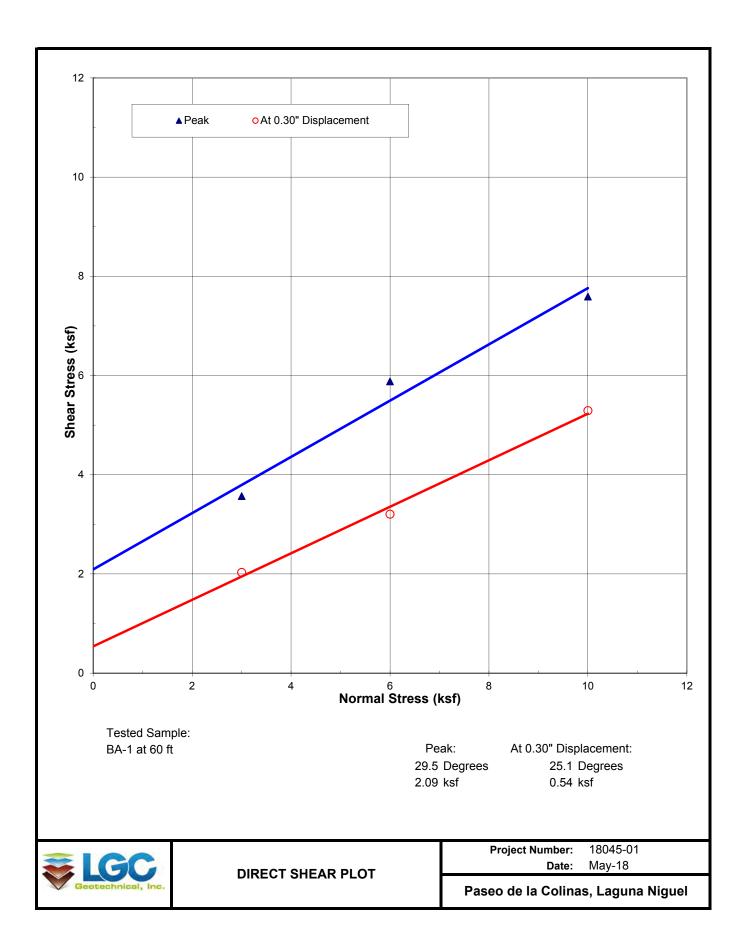

		-
Liquid Limit	54	
Plastic Limit	27	
Plasticity Index	27	(Tr
Classification	СН	l) xəp
		ty Inc
PI at "A" - Line = 0.73(LL-20)	24.82	Plasticity Index (PI)
		6

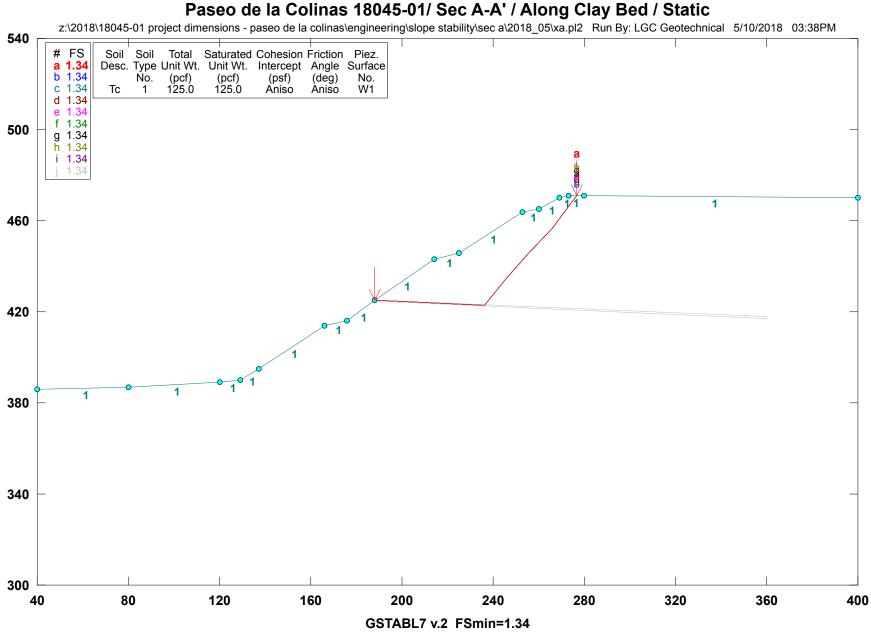

PI at "A" - Line = 0.73(LL-20) 24.82 One - Point Liquid Limit Calculation $LL = Wn(N/25)^{0.121}$













Appendix F Slope Stability Analysis

Cross-		Factor of	
Section	File Name	Safety	Description
A-A'	xa	1.34	Along Clay Bed - Static
	xa15	1.53	Along Clay Bed – 30 ft Set-Back
	xar	1.32	Rotational – Static
	xarx15	1.51	Rotational – 60 ft Set-Back - Static
	xarx15e	1.28	Rotational - 60 ft Set-Back - Seismic
B-B'	sec b	1.47	Along Clay Bed - Static
	sec br	1.68	Rotational – Static
	sec bre	1.49	Rotational - Seismic
C-C'	sec c	1.83	Along Clay Bed - Static
	sec cr	1.72	Rotational – Static
	sec cre	1.53	Rotational - Seismic

Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay Bed / Static

Z:xa.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads. Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 5/10/2018 03:38PM Time of Run: Run By: LGC Geotechnical Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Input Data Filename: gineering\Slope Stability\Sec A\2018 05\xa.in Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Output Filename: gineering\Slope Stability\Sec A\2018_05\xa.OUT Unit System: English Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec A\2018_05\xa.PLT PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay Bed / Static BOUNDARY COORDINATES 15 Top Boundaries 15 Total Boundaries Y-Left X-Right Soil Type Boundary X-Left Y-Right No. (ft) (ft) (ft) (ft) Below Bnd 40.00 386.00 80.00 387.00 80.00 387.00 389.00 120.00 2 120.00 389.00 129.00 390.00 3 129.00 390.00 137.00 395.00 4 137.00 395.00 166.00 414.00 5 166.00 414.00 176.00 416.00 176.00 416.00 188.00 425.00 188.00 425.00 214.00 443.00 443.00 225.00 214.00 446.00 225.00 446.00 253.00 464.00 10 11 253.00 464.00 260.00 465.00 12 260.00 465.00 269.00 470.00 1 13 269.00 470.00 273.00 471.00 1 14 273 00 471 00 280 00 471.00 1 15 280 00 471.00 400 00 470 00 User Specified Y-Origin = 300.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) Param. (deg) (psf) No. 125.0 125.0 300.0 26.0 0.00 1 0 0 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) -4.0 300 00 26 00 1 2 -1.0 0 00 18 00 3 90 0 300.00 26 00 ANISOTROPIC SOIL NOTES: (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range. (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack. (3) An input value of 0.03 for Phi will set both Phi and

C equal to zero, with water weight in the tension crack. Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 5000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 15.0 X-Left Y-Left Height Box X-Right Y-Right No. (ft) (ft) (ft) (ft) (ft) 188.10 425.00 188.10 425.00 0.00 190.00 424.90 360.00 417.50 0.80 Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Simplified Janbu Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 49.611 FS Min = 1.337 FS Ave = 2.849 2.721 Coefficient of Variation = 95.51 % Standard Deviation = Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf (ft)(ft) No 188.051 425.036 1 188.100 425.000 2 236.391 422.792 3 245.666 434 581 255.522 445.888 5 265.939 456.681 274.934 468.685 276.748 471.000 Factor of Safety * * * 1.337 *** Individual data on the 13 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 31166.5 2 25 9 0 0 0 0 0 0 0 0 0 0 0 0 28786.5 ٦ 11.0 0.0 0. 0.0 0.0 0. 0.0 0.0 4 11.4 37887.7 0.0 Ο. 0. 0.0 0.0 0.0 0.0 32020.1 Ο. 9.3 0.0 0.0 0.0 0.0 5 0.0 Ο. 7.3 20951.6 0.0 Ο. 0.0 0.0 б 0.0 Ο. 0.0 2.5 6222.1 0.0 Ο. 0.0 0.0 0.0 0.0 Ο. 9220.5 4.5 0.0 0.0 Ο. 0. 0.0 0.0 0.0 9 5.9 9684.7 0.0 0.0 Ο. 0. 0.0 0.0 0.0 3.1 3989.1 0.0 Ο. 0.0 0.0 10 0.0 Ο. 0.0 11 4.0 3532.4 0.0 0. 0.0 0.0 0.0 0.0 Ο. 12 1.9 871.5 0.0 0.0 0. 0. 0.0 0.0 0.0 13 1 8 262.5 0.0 0.0 0 Ο. 0.0 0 0 0.0 Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No (ft) (ft)425 036 1 188 051 188 100 425 000 2 236 391 422 792 3 245.666 434.581 4 255.522 445.888 5 265.939 456.681 б 274 934 468 685 8 276.748 471.000 Factor of Safety * * * 1.337 *** Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft.) (ft.) 188.051 425.036

Z:xa.OUT Page 2

Z:xa.OUT Page 3

2	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681
7	274.934	468.685
8	276.748	471.000
	ctor of Safety	1111000
***	1.337 ***	
Failure S		d By 8 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	
2		425.036
	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681
7	274.934	468.685
8	276.748	471.000
	ctor of Safety	
* * *	1.337 ***	
Failure Su	urface Specifie	d By 8 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	425.036
2	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681
7	274.934	468.685
8	276.748	471.000
	ctor of Safety	1,11,000
***	1.337 ***	
Failure S		d By 8 Coordinate Points
Point Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	425.036
2		
2	188.100	425.000
4	236.391	422.792
	245.666	434.581
5	255.522	445.888
6	265.939	456.681
7	274.934	468.685
8	276.748	471.000
Fac	ctor of Safety	
	1.337 ***	
		d By 8 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	425.036
2	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681
7	274.934	468.685
8	276.748	471.000
	ctor of Safety	
***	1.337 ***	
		d By 8 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.051	425.036
2	188.100	425.000
3	236.391	422.792
4	245.666	434.581
5	255.522	445.888
6	265.939	456.681

```
7 274.934 468.685

8 276.748 471.000

Factor of Safety

*** 1.337 ***

Failure Surface Specified By 8 Coordinate Points

Point X-Surf Y-Surf

No. (ft) (ft)

1 188.051 425.036

2 188.100 425.000

3 236.391 422.792

4 245.666 434.581
                4
                                        245.666
255.522
                                                                            434.581
                5
                                                                            445.888
                 б
                                        265.939
                                                                            456.681
7 2/4...

8 276.748 4/1...

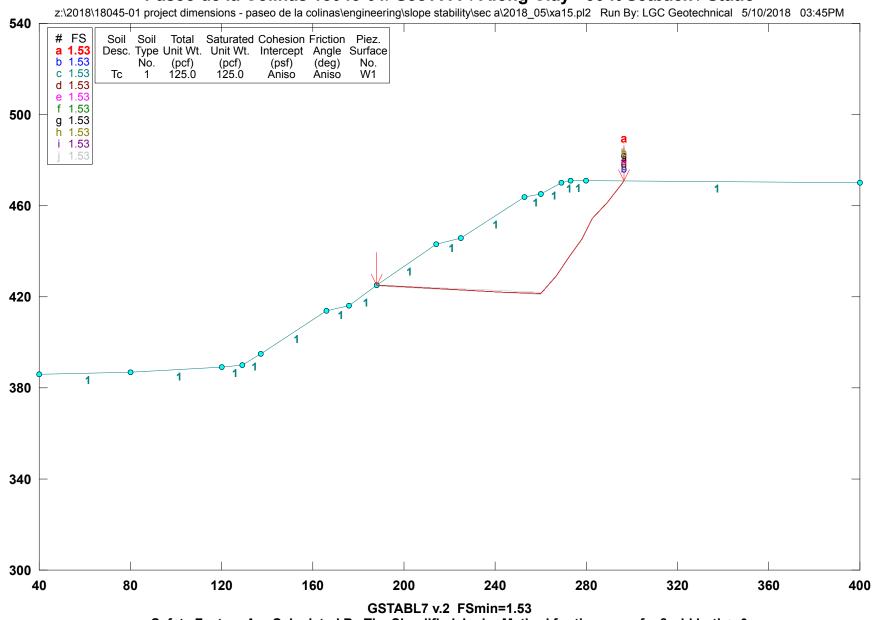
Factor of Safety

*** 1.337 ***

Failure Surface Specified By 8 Coordinate Points

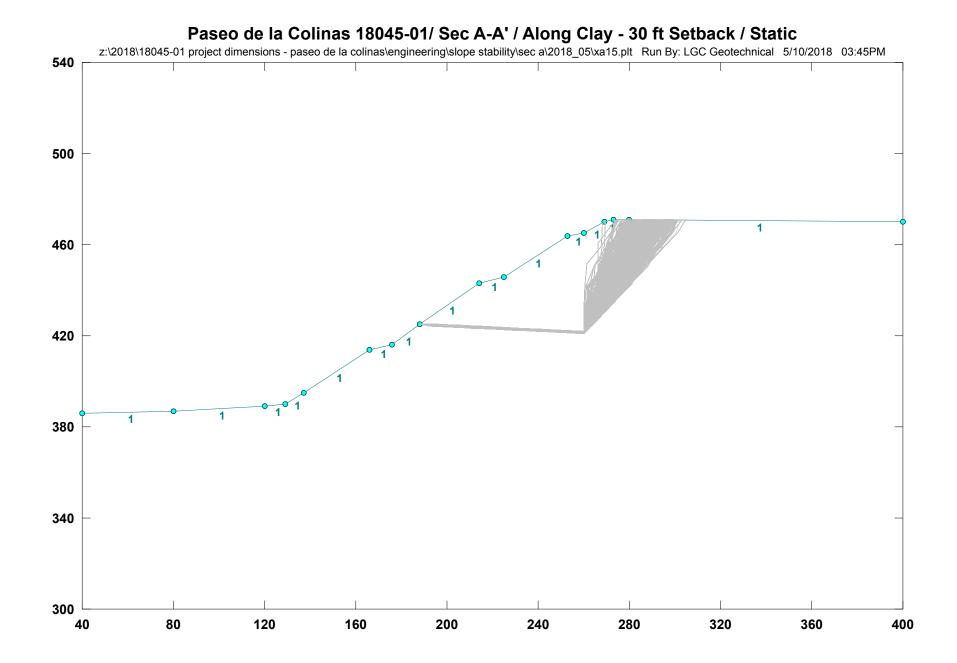
Point X-Surf Y-Surf

No. (ft) (ft)


1 188.051 425.036

2 188.100 425.000

236.391 422.792


434.581
                                        245.666
                                                                           434.581 445.888
                                        265.939
274.934
                6
                                                                            456.681
                                                                            468.685
                7
                    2 /4.394 400.005
3 276.748 471.000
Factor of Safety
*** 1.337 ***
**** END OF GSTABL7 OUTPUT ****
                8
```

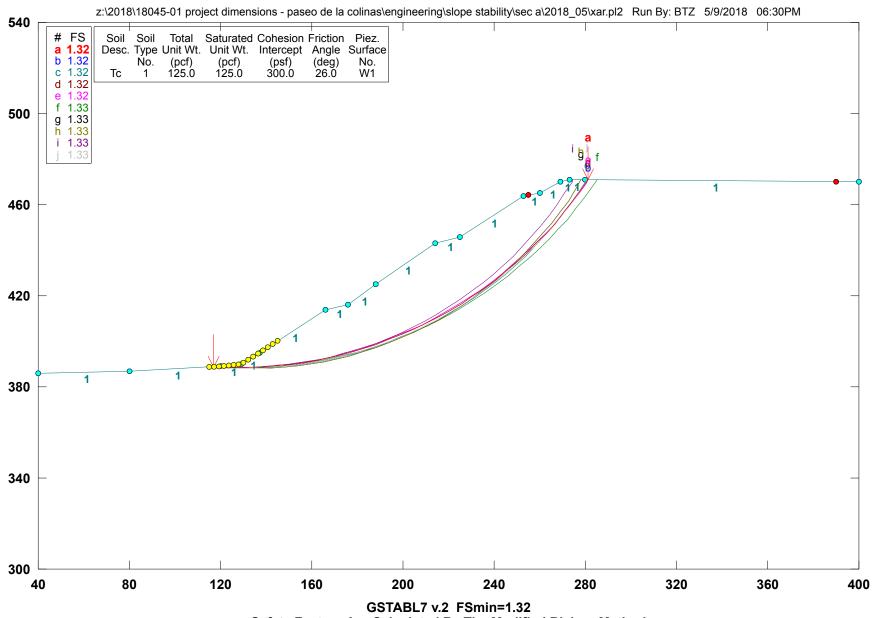
Z:xa.OUT Page 4

Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay - 30 ft Setback / Static

Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

Z:xal5.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 5/10/2018 03:45PM Time of Run: Run By: LGC Geotechnical Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Input Data Filename: gineering\Slope Stability\Sec A\2018 05\xa15.in Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Output Filename: gineering\Slope Stability\Sec A\2018_05\xa15.OUT Unit System: English Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec A\2018_05\xa15.PLT PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec A-A' / Along Clay - 30 ft Setback / Static BOUNDARY COORDINATES 15 Top Boundaries 15 Total Boundaries Y-Left X-Right Soil Type Boundary X-Left Y-Right No. (ft) (ft) (ft) (ft) Below Bnd 40.00 386.00 80.00 387.00 80.00 387.00 389.00 120.00 2 120.00 389.00 129.00 390.00 3 129.00 390.00 137.00 395.00 4 137.00 395.00 166.00 414.00 5 166.00 414.00 176.00 416.00 176.00 416.00 188.00 425.00 188.00 425.00 214.00 443.00 443.00 225.00 214.00 446.00 225.00 446.00 253.00 464.00 10 11 253.00 464.00 260.00 465.00 12 260.00 465.00 269.00 470.00 1 13 269.00 470.00 273.00 471.00 1 14 273 00 471 00 280 00 471.00 1 15 280 00 471.00 400 00 470 00 User Specified Y-Origin = 300.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) Param. (deg) (psf) No. 125.0 125.0 300.0 26.0 0.00 0 0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Range Direction Limit Intercept Angle No. (deg) (psf) (deg) -4.0 300 00 26 00 1 2 -1.0 0 00 18 00 3 90 0 300.00 26 00 ANISOTROPIC SOIL NOTES: (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range. (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack. (3) An input value of 0.03 for Phi will set both Phi and

C equal to zero, with water weight in the tension crack. Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 5000 Trial Surfaces Have Been Generated. 3 Boxes Specified For Generation Of Central Block Base Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 10.0 X-Left Y-Left Height Box X-Right Y-Right No. (ft) (ft) (ft) (ft) (ft) 188.10 425.00 188.10 425.00 0.00 190.00 424.90 260.00 421.50 0.80 260.10 421.50 260.10 421.50 0.80 Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Simplified Janbu Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 6.617 FS Min = 1.529 FS Ave = 1.831 Standard Deviation = 0.395 Coefficient of Variation = 21.60 % Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 188.043 425.030 1 188.100 425.000 2 ٦ 243.914 421 946 260.100 421.585 429.087 5 266.712 272.421 437.297 6 278.246 445.425 7 8 282.618 454.419 9 289.416 461.753 10 295 690 469 540 11 296 693 470.861 Factor of Safety *** 1.529 *** Individual data on the 17 slices Tie Tie Earthquake Water Water Force Force Force Force Force Surcharge Slice Width Weight Bot Tan Hor Ver Load qoT Norm No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 0.1 0.2 0.0 0.0 0. 0.0 0.0 0.0 0. 25.9 31543.5 0 0 2 0.0 0 0 0 Ο. 0 0 0.0 3 11.0 29174.8 0.0 Ο. 0.0 0.0 0.0 0.0 Ο. 70020.3 4 18.9 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 9.1 44560.1 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 7.0 37480.5 0.0 Ο. 0.0 0.0 б 0.0 Ο. 0.0 0.1 543.1 0.0 Ο. 0.0 0.0 0.0 Ο. 0.0 8 6.6 34347.1 0.0 0.0 0. Ο. 0.0 0.0 0.0 9 2.3 11048 3 0.0 0.0 0. Ο. 0.0 0.0 0.0 10 3.4 15220 7 0 0 0 0 0 0. 0.0 0 0 0.0 11 0.6 2403 7 0.0 0 0 0 0. 0.0 0.0 0.0 12 5.2 19170 0 0 0 0 0 0 0. 0 0 0 0 0.0 13 1 8 5212 3 0 0 0 0 0 0 0 0 0 0 0 0 14 6303 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 15 10931 1 0 0 0 68 0 0 0 0 0 0 0 0 0 16 4116.9 0.0 0. 0.0 0.0 0.0 6.3 0.0 Ο. 83.3 1.0 0.0 0 Ο. 0.0 0.0 0.0 0.0 Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 188.043 425.030 2 188.100 425.000 3 243.914 421.946 260.100 421.585 4 266.712 429.087 5 272.421 437.297


Z:xal5.OUT Page 2

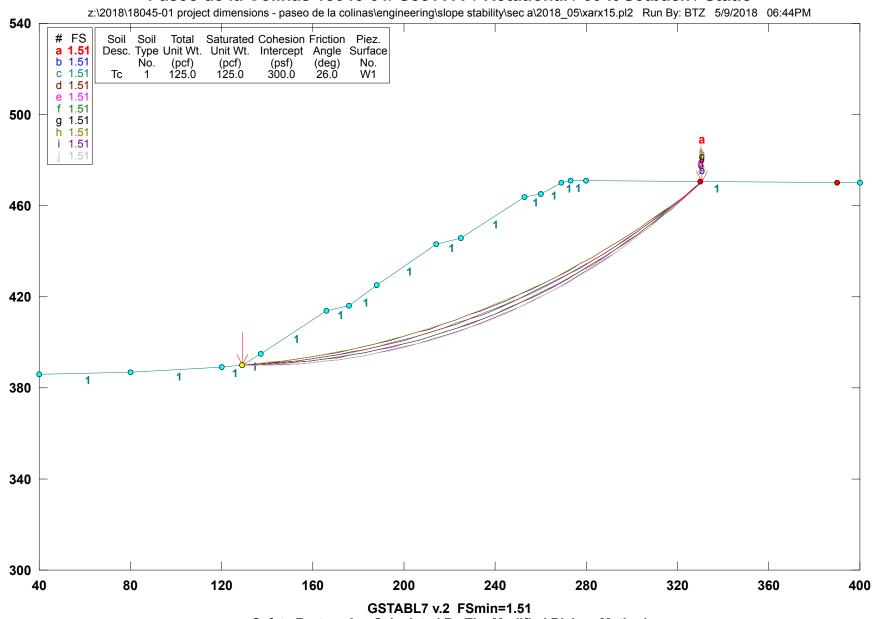
Z:xal5.OUT Page 3

7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
Facto	or of Safety	
* * *	1.529 ***	
Failure Sur		By 11 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7		
	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
	or of Safety	
***	1.529 ***	
		d By 11 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
	or of Safety	470.001
***	1.529 ***	
	1.525	By 11 Coordinate Points
Point	X-Surf	
		Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2 3	188.100	425.000
	243.914	421.946
4	260.100	421.946 421.585
4 5	260.100 266.712	421.946 421.585 429.087
4 5 6	260.100 266.712 272.421	421.946 421.585 429.087 437.297
4 5 6 7	260.100 266.712 272.421 278.246	421.946 421.585 429.087 437.297 445.425
4 5 6 7 8	260.100 266.712 272.421 278.246 282.618	421.946 421.585 429.087 437.297 445.425 454.419
4 5 7 8 9	260.100 266.712 272.421 278.246 282.618 289.416	421.946 421.585 429.087 437.297 445.425 454.419 461.753
4 5 7 8 9 10	260.100 266.712 272.421 278.246 282.618 289.416 295.690	421.946 429.087 437.297 445.425 445.425 454.419 461.753 469.540
4 5 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693	421.946 421.585 429.087 437.297 445.425 454.419 461.753
4 5 7 8 9 10 11 Facto	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 or of Safety	421.946 429.087 437.297 445.425 445.425 454.419 461.753 469.540
4 5 6 7 8 9 10 11 Facto ***	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 ***	421.946 421.585 429.087 437.297 445.425 454.419 461.753 469.540 470.861
4 5 6 7 8 9 10 11 Facto ***	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 ***	421.946 429.087 437.297 445.425 445.425 454.419 461.753 469.540
4 5 6 7 8 9 10 11 Facture Failure Surr Point	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 pr of Safety 1.529 *** face Specified X-Surf	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 d By 11 Coordinate Points Y-Surf
4 5 6 7 8 9 10 11 Factor *** Failure Surr Point No.	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft)	421.946 421.585 429.087 437.297 445.425 454.419 461.753 469.540 470.861 By 11 Coordinate Points Y-Surf (ft)
4 5 6 7 8 9 10 11 Facture **** Failure Surr Point No. 1	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 or of Safety 1.529 *** face Specified X-Surf (ft) 188.043	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 i By 11 Coordinate Points Y-Surf (ft) 425.030
4 5 6 7 8 9 10 11 Factu *** Failure Sur: Point No. 1 2	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 R By 11 Coordinate Points Y-Surf (ft) 425.030 425.000
4 5 6 7 8 9 10 11 Facture Failure Sur: Point No. 1 2 3	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.661 Y-Surf (ft) 425.030 421.946
4 5 6 7 8 9 10 11 Factu *** Failure Sur: Point No. 1 2	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 R By 11 Coordinate Points Y-Surf (ft) 425.030 425.000
4 5 6 7 8 9 10 11 Facture Failure Sur: Point No. 1 2 3	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.661 Y-Surf (ft) 425.030 421.946
4 5 6 7 8 9 10 11 Factu *** Failure Sur: Point No. 1 2 3 4	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 459.540 470.861 459.540 470.861 425.030 425.030 425.030 421.946 421.585
4 5 6 7 8 9 10 11 Fact: *** Failure Sur: Point No. 1 2 3 4 5	260.100 266.712 272.421 278.246 282.618 289.416 295.690 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100 266.712	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861
4 5 6 7 8 9 10 11 Facture Sur: Foint No. 1 2 3 4 5 6	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 296.693 r of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100 266.712 272.421 278.246	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 459.540 470.861 459.540 425.030 425.030 425.030 425.030 425.030 425.040 421.946 421.946 421.946 421.947 425.030 421.947 425.030 421.947 425.030 421.947 425.030 421.947 425.030 425.047 425
4 5 6 7 8 9 10 11 Fact. *** Failure Sur: Point No. 1 2 3 4 5 6 7 8	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 Dr of Safety 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100 266.712 272.421 278.246 282.618	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 Y-Surf (ft) 425.030 425.030 421.946 421.585 429.087 437.297 445.425 454.419
4 5 6 7 8 9 10 11 Facture Failure Sur: Point No. 1 2 3 4 5 6 7 8 9	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100 266.712 272.421 278.246 282.618 289.416	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 459.540 470.861 459.000 421.946 421.585 429.087 437.297 445.425 454.419 461.753
4 5 6 7 8 9 10 11 Factu- *** Failure Sur: Point No. 1 2 3 4 5 6 7 8 9 10	260.100 266.712 272.421 278.246 282.618 289.416 295.690 295.690 295.690 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100 266.712 272.421 278.246 282.618 289.416 295.690	421.946 421.585 429.087 437.297 445.425 445.425 469.540 470.861
4 5 6 7 8 9 10 11 Failure Sur: Point No. 1 2 3 4 5 6 7 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 r of Safety 1.529 *** face Specified X-Surf (ft) 188.100 243.914 260.100 266.712 272.421 278.246 282.618 289.416 295.693	421.946 421.585 429.087 437.297 445.425 445.425 454.419 461.753 469.540 470.861 459.540 470.861 459.000 421.946 421.585 429.087 437.297 445.425 454.419 461.753
4 5 6 7 8 9 10 11 Failure Sur: Point No. 1 2 3 4 5 6 7 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 295.690 295.690 1.529 *** face Specified X-Surf (ft) 188.043 188.100 243.914 260.100 266.712 272.421 278.246 282.618 289.416 295.690	421.946 421.585 429.087 437.297 445.425 445.425 469.540 470.861

	* 1.529 ***	k.
Failure		ed By 11 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7	278.246	445.425
8		
	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
	actor of Safety	
**	* 1.529 ***	k
Failure	Surface Specifie	ed By 11 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	421.385
6	272.421	437.297
7	278.246	445.425
8	282.618	454.419
9	289.416	461.753
10	295.690	469.540
11	296.693	470.861
F	actor of Safety	
**	1.525	
		ed By 11 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
2	188.100	425.000
3	243.914	421.946
4	260.100	421.585
5	266.712	429.087
6	272.421	437.297
7	278.246	445.425
8	282.618	454.419
9	289.416	454.419 461.753
10	295.690	469.540
11	296.693	470.861
F **	actor of Safety	
		ed By 11 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	188.043	425.030
	188.100	425.000
2	243.914	421.946
2 3		
	260.100	421.585
3		421.585 429.087
3 4 5	260.100 266.712	429.087
3 4 5 6	260.100 266.712 272.421	429.087 437.297
3 4 5 6 7	260.100 266.712 272.421 278.246	429.087 437.297 445.425
3 4 5 6 7 8	260.100 266.712 272.421 278.246 282.618	429.087 437.297 445.425 454.419
3 4 5 6 7 8 9	260.100 266.712 272.421 278.246 282.618 289.416	429.087 437.297 445.425 454.419 461.753
3 4 5 6 7 8 9 10	260.100 266.712 272.421 278.246 282.618 289.416 295.690	429.087 437.297 445.425 454.419 461.753 469.540
3 4 5 6 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693	429.087 437.297 445.425 454.419 461.753
3 4 5 6 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 °actor of Safety	429.087 437.297 445.425 454.419 461.753 469.540 470.861
3 4 5 6 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 'actor of Safety * 1.529 ***	429.087 437.297 445.425 454.419 461.753 469.540 470.861
3 4 5 6 7 8 9 10 11	260.100 266.712 272.421 278.246 282.618 289.416 295.690 296.693 'actor of Safety * 1.529 ***	429.087 437.297 445.425 454.419 461.753 469.540 470.861

Z:xal5.OUT Page 4

Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / Static


Safety Factors Are Calculated By The Modified Bishop Method

<pre> Prime rule rule rule rule rule rule rule rul</pre>		
	Zivar OUT Page 1	Z:xar.OUT Page 2
Failure Surfaces Evaluated. They Are 10 5.6 19288.8 0.0	<pre>+•• GYTABLT Vp Dr. Garry H. Gregory. Ph.D. P.E. D. C. M. •• GYTABLT Vp Dr. Garry H. Gregory. Ph.D. P.E. D. C. 2013 •• Intervention 1.0. January 1996 (Current Ver. 2.005.3. Peb. 2013 •• Intervention Feature Control (Control (Contr</pre>	Number of Trial Surfaces With Valid FS = 0 Statistical Data On All Valid FS Oxline: Bistandard Deviation = Non
Total Number of Trial Surfaces Attempted = 0	Ordered - Most Critical First.	20 5.6 20253.6 0.0 0.0 0. 0. 0.0 0.0 0.0

	Z:xar.OUT Page 3	Z:xar.OUT Page 4
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	5.4 21544.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	$ \begin{array}{c} 1 & 129.125 & 388.237 \\ 6 & 141.122 & 388.443 \\ 6 & 147.107 & 388.454 \\ 7 & 135.019 & 300.233 \\ 9 & 164.391 & 391.399 \\ 164.391 & 391.399 \\ 101 & 170.804 & 392.547 \\ 11 & 156.66 & 356.005 \\ 13 & 168.121 & 397.431 \\ 14 & 103.707 & 394.563 \\ 15 & 102.55 & 406.665 \\ 16 & 203.570 & 394.538 \\ 16 & 203.570 & 394.538 \\ 16 & 203.570 & 394.538 \\ 21 & 203.570 & 394.538 \\ 22 & 255.027 & 422.334 \\ 23 & 235.207 & 422.334 \\ 23 & 235.207 & 422.334 \\ 23 & 235.207 & 422.334 \\ 23 & 235.207 & 422.334 \\ 23 & 245.207 & 425.307 \\ 23 & 245.207 & 425.307 \\ 24 & 120.944 & 485.700 \\ 24 & 120.944 & 388.433 \\ 6 & 144.943 & 389.347 \\ 7 & 152.279 & 326.209 \\ 10 & 166.624 & 393.375 \\ 11 & 170.435 & 346.335 \\ 12 & 127.206 & 415.307 \\ 13 & 185.912 & 396.317 \\ 13 & 185.912 & 396.316 \\ 14 & 403.393 & 375 \\ 15 & 127.206 & 415.307 \\ 25 & 245.107 & 331.407 \\ 30 & 245.127 & 425.307 \\ 31 & 127.206 & 415.307 \\ 32 & 245.254 & 437.608 \\ 33 & 245.127 & 445.302 \\ 34 & 245.254 & 445.302 \\ 35 & 246.125 & 547.301 \\ 14 & 213.471 & 40.017 \\ 15 & 213.471 & 40.017 \\ 15 & 213.471 & 40.433 \\ 35 & 246.125 & 445.307 \\ 25 & 246.254 & 445.307 \\ 25 & 246.254 & 445.307 \\ 25 & 246.254 & 445.432 \\ 25 & 246.254 & 445.432 \\ 25 & 246.254 & 445.432 \\ 25 & 246.254 & 445.432 \\ 25 & 246$

1 10000 0.0000	33 280.085 469.242 23 241.256 425.198 34 281.248 470.990 24 246.030 428.833	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33 280.085 469.242 23 241.256 425.198 34 281.248 470.990 24 246.030 428.833	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33 280.085 469.242 23 241.256 425.198 34 281.248 470.990 24 246.030 428.833	
$ \begin{array}{c c c c c c c } & 231:241 & 470.930 & 24.341 \\ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	34 281.248 470.990 24 246.030 428.833	Page 6
20 226.277 415.228 11 176.627 393.750 21 231.375 418.392 12 182.397 395.399		Page 6
	22 236.370 421.716 13 188.103 397.252	

Z:xar.OUT Page 7	Z:xar.OUT Page 8
14 193.740 399.307 15 199.300 401.562	6 144.966 388.705 7 150.936 389.302
16 204.777 404.014	8 156.883 390.099
17 210.162 406.660 18 215.449 409.496	9 162.800 391.095 10 168.679 392.291
19 220.632 412.519	11 174.516 393.684
20 225.704 415.724 21 230.658 419.109	12 180.301 395.272 13 186.031 397.054
22 235.488 422.668	14 191.697 399.029
23 240.189 426.398 24 244.753 430.292	15 197.293 401.193 16 202.813 403.544
25 249.175 434.347	17 208.251 406.079
27 257.573 442.917	19 218.855 411.692
28 261.537 447.421 29 265.338 452.063	20 224.009 414.764 21 229.058 418.007
30 268.970 456.838	22 233.994 421.418
31 272.431 461.740 32 275.714 466.762	23 238.812 424.993 24 243.507 428.729
33 278.274 471.000	25 248.074 432.620
Circle Center At X = 133.315 ; Y = 556.274 ; and Radius = 168.196 Factor of Safety	26 252.507 436.663 27 256.802 440.853
*** 1.326 *** Failure Surface Specified By 33 Coordinate Points	28 260.953 445.186 29 264.956 449.655
Point X-Surf Y-Surf	30 268.806 454.257
No. (ft) (ft) 1 117.143 388.857	31 272.499 458.986 32 276.030 463.837
2 123.136 388.563 3 129.135 388.480	33 279.396 468.803 34 280.775 470.994
4 135.134 388.607	Circle Center At X = 130.263 ; Y = 566.181 ; and Radius = 178.087
5 141.124 388.946 6 147.099 389.494	Factor of Safety *** 1.326 ***
7 153.051 390.253	**** END OF GSTABL7 OUTPUT ****
9 164.856 392.394	
10 170.695 393.775 11 176.482 395.360	
12 182.210 397.147	
13 187.871 399.135 14 193.459 401.320	
15 198.967 403.700 16 204.387 406.273	
17 209.714 409.034	
18 214.940 411.981 19 220.060 415.110	
20 225.067 418.416	
21 229.954 421.897 22 234.716 425.547	
23 239.346 429.363	
24 243.840 433.339 25 248.191 437.470	
26 252.394 441.751 27 256.445 446.178	
28 260.337 450.744	
29 264.066 455.445 30 267.628 460.273	
31 271.018 465.224	
32 274.231 470.291 33 274.647 471.000	
Circle Center At X = 128.506 ; Y = 559.169 ; and Radius = 170.691 Factor of Safety	
*** 1.326 ***	
Failure Surface Specified By 34 Coordinate Points Point X-Surf Y-Surf	
No. (ft) (ft) 1 115.000 388.750	
2 120.986 388.337	
3 126.982 388.126 4 132.982 388.117	
5 138.979 388.311	

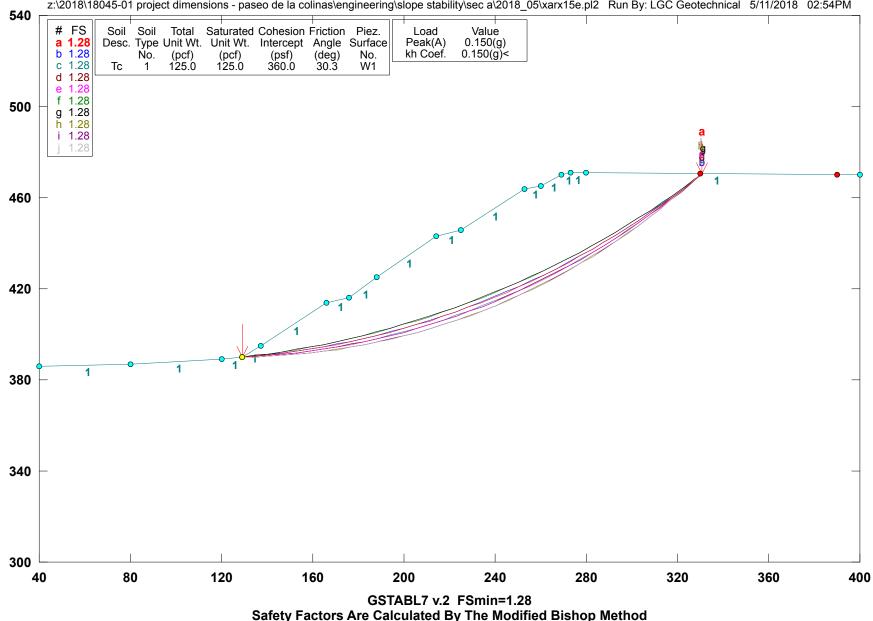
Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / 60 ft Setback / Static

Safety Factors Are Calculated By The Modified Bishop Method

	Z:xarx15.0UT Page 2
Z:xarx15.0UT Page 1 *** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D.,P.E.,D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use prohibited) ************************************	Number of Trial Surfaces With Valid FS = 0 Statistical Data On All Valid FS Values: FS Max = 0.000 FS Min = 500.000 FS Ave = NaN Standard Deviation = 0.000 Coefficient of Variation = NaN % Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 129.000 390.000 2 134.990 390.345 3 140.973 390.797 4 146.947 391.357 5 152.910 392.025 6 158.859 392.800 7 164.794 393.681
<pre>Analysis Run Date: 5/9/2018 Time of Run: 06:44MM Run By: BTZ Timput Tas Filename: C'\Users\Bradley\Documents\Engineering\Slope Stability\Paseo dd Dut Filename: C'\Users\Bradley\Documents\Engineering\Slope Stability\Paseo de la Colinas\Sec Avarx15.00T FORLENA DESCHFTPN: Paseo de la Colinas 18045-01/ Sec A-A' FORLENA DESCHFTPN: Paseo de la Colinas 18045-01/ Sec A-A' for Dot Dot Distribution: Paseo de la Colinas 18045-01/ Sec A-A' for Distribution: Paseo de la Colina 2400 01 for Distribution for Histribution: Paseo de</pre>	<pre>/ 104.194 394.670 / 107.712 394.670 / 177.611 395.760 / 1082.490 396.962 // 11 188.196 398.644 // 188.64 // 188.670 // 188.670 // 188.670 // 188.670 // 188.670 // 188.670 // 188.670 // 188.67 // 198.17</pre>

Z:xarx15.OUT Page 3	Z:xarx15.OUT Page 4
<pre>15 211.536 404.351 17 222.933 406.733 17 222.933 406.793 13 234.530 446.130 13 234.530 446.130 13 234.536 416.137 12 245.266 416.127 12 250.770 115.261 23 250.770 115.261 23 250.770 115.261 23 250.770 115.261 23 250.771 413.2934 27 277.477 132.904 28 226.653 435.923 29 287.733 439.033 30 222.866 442.233 30 222.866 442.233 30 222.866 442.233 30 222.866 442.233 30 222.866 442.233 30 222.866 442.233 30 222.867 442.333 30 222.867 442.334 30 222.867 444 30 200 12 2132 12 2132 12 2105 12 2134 12 2105 12 2134 14 20 15 211.547 14 140.953 19 27 10 12 2.515 15 2.91.13 14 29.15 15 2.91.14 14 290 13 290.335 14 146.953 19 2.77 15 12 2.918 19 2.97 15 12 2.918 19 2.97 15 12 2.918 19 2.97 15 12 2.918 19 170.73 19 2.97 14 146.953 19 2.97 15 12 2.918 19 2.97 16 2.77.264 10 2.97 15 12 2.918 19 2.97 16 2.77.264 10 2.97 16 2.77.264 10 2.97 16 2.77.264 10 2.93 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.57 16 2.77.264 10.640 13 2.23.59 14 1.97 15 16 2.77.264 10.640 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	$ \begin{array}{c} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $

Z:xarx15.OUT Page 5	Z:xarx15.0UT Page 6
23 256.472 419.919	5 152.853 392.614
24 261.846 422.588 25 267.166 425.364	6 158.785 393.513 7 164.702 394.510
26 272.428 428.245	8 170.601 395.604
27 277.632 431.232 28 282.775 434.322	9 176.482 396.796 10 182.342 398.084
29 287.855 437.515 30 292.871 440.808	11 188.180 399.470 12 193.994 400.951
31 297.819 444.202	13 199.783 402.528
32 302.698 447.694 33 307.506 451.283	14 205.545 404.201 15 211.279 405.968
34 312.242 454.967	16 216.983 407.830
35 316.902 458.746 36 321.486 462.617	17 222.655 409.786 18 228.294 411.835
37 325.992 466.579	19 233.899 413.977
38 330.362 470.580 Circle Center At X = 125.951 ; Y = 689.499 ; and Radius = 299.515	20 239.467 416.211 21 244.998 418.537
Factor of Safety	22 250.490 420.954
*** 1.507 *** Failure Surface Specified By 38 Coordinate Points	23 255.941 423.461 24 261.350 426.058
Point X-Surf Y-Surf	25 266.715 428.744
No. (ft) (ft) 1 129.000 390.000	26 272.035 431.518 27 277.309 434.379
2 134.999 390.115 3 140.994 390.351	28 282.535 437.327 29 287.711 440.361
4 146.984 390.707	30 292.837 443.480
5 152.965 391.183 6 158.935 391.780	31 297.910 446.684 32 302.930 449.970
7 164.892 392.496	33 307.895 453.339
8 170.834 393.332 9 176.757 394.286	34 312.803 456.790 35 317.654 460.321
10 182.660 395.360 11 188.541 396.552	36 322.446 463.932 37 327.178 467.621
12 194.396 397.861	38 330.842 470.576
13 200.224 399.289 14 206.022 400.832	Circle Center At $X = 101.387$; $Y = 752.264$; and Radius = 363.315 Factor of Safety
15 211.788 402.492	*** 1.508 ***
16 217.519 404.268 17 223.214 406.158	Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf
18 228.869 408.162 19 234.483 410.279	No. (ft) (ft) 1 129.000 390.000
20 240.053 412.509	2 134.977 390.521
21 245.578 414.850 22 251.054 417.301	3 140.945 391.139 4 146.903 391.855
23 256.480 419.862	5 152.847 392.669
24 261.853 422.532 25 267.172 425.309	6 158.778 393.579 7 164.692 394.587
26 272.434 428.192 27 277.637 431.180	8 170.590 395.692 9 176.468 396.893
28 282.779 434.272	10 182.327 398.189
29 287.858 437.467 30 292.871 440.763	11 188.163 399.582 12 193.975 401.070
31 297.818 444.159	13 199.763 402.653
32 302.695 447.654 33 307.501 451.246	14 205.523 404.331 15 211.256 406.103
34 312.234 454.933 35 316.892 458.715	16 216.959 407.968 17 222.630 409.926
36 321.473 462.590	18 228.268 411.978
37 325.975 466.556 38 330.362 470.580	19 233.873 414.121 20 239.441 416.355
Circle Center At X = 126.260 ; Y = 688.729 ; and Radius = 298.742	21 244.972 418.681
Factor of Safety *** 1.508 ***	22 250.464 421.096 23 255.916 423.602
Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf	24 261.326 426.196 25 266.693 428.879
No. (ft) (ft)	26 272.016 431.649
1 129.000 390.000 2 134.979 390.506	27 277.292 434.505 28 282.521 437.448
3 140.948 391.110	29 287.700 440.476
4 146.907 391.813	30 292.830 443.589
4 146.907 391.813	30 292.830 443.589


Z:xarx15.OUT Page 7

31 32	297.908 302.933	446.785 450.063
33	307.903	453.424
34	312.818	456.865
35	317.676	460.387
36	322.476	463.987
37	327.216	467.666
38	330.841	470.576
		LOO.215 ; Y = 755.196 ; and Radius = 366.329
Fac ***	tor of Safety	
Point Point	X-Surf	ed By 39 Coordinate Points Y-Surf
No.	(ft)	(ft)
1	129.000	390.000
2	135.000	389.959
3	140.999	390.047
4	146.995	390.264
5	152.985	390.609
6	158.967	391.084
7	164.936	391.687
8 9	170.891	392.418
10	176.830 182.748	393.277 394.263
11	188.644	395.377
12	194.514	396.617
13	200.357	397.983
14	206.168	399.474
15	211.947	401.090
16	217.689	402.830
17	223.392	404.693
18	229.054	406.678
19	234.673	408.784
20 21	240.244 245.766	411.011 413.357
21	245.700	415.821
23	256.654	418.402
24	262.013	421.099
25	267.314	423.911
26	272.552	426.836
27	277.727	429.873
28	282.835	433.021
29	287.874	436.277
30	292.842	439.641
31 32	297.737 302.556	443.112 446.686
33	307.297	450.364
34	311.957	454.143
35	316.536	458.020
36	321.030	461.996
37	325.437	466.067
38	329.756	470.232
39	330.104	470.582
		133.913 ; Y = 668.989 ; and Radius = 279.032
Fac ***	tor of Safety	
	1.010	ed By 39 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	129.000	390.000
2	135.000	389.939
3	140.999	390.008
4	146.996	390.207
5	152.987	390.536
6	158.969	390.995
7 8	164.941 170.897	391.583 392.301
8	176.837	392.301 393.147
10	182.758	394.122
11	188.655	395.225

13	200.372	397.814	
14	206.186	399.298	
15	211.966	400.908	
16	217.709	402.643	
17	223.414	404.501	
18	229.077	406.483	
19	234.696	408.588	
20	240.268	410.813	
21	245.791	413.159	
22	251.261	415.624	
23	256.677	418.207	
24	262.035	420.907	
25	267.333	423.722	
26	272.570	426.652	
27	277.741	429.694	
28	282.845	432.848	
29	287.880	436.111	
30	292.843	439.483	
31	297.732	442.962	
32	302.544	446.546	
33	307.277	450.233	
34	311.929	454.022	
35	316.498	457.911	
36	320.982	461.898	
37	325.378	465.981	
38	329.685	470.159	
39	330.103	470.582	
Circle Ce	enter At X =	134.816 ; Y =	666.733 ; and Radius = 276.795
Fa	actor of Safety		
* * *			
	**** END OF G	STABL7 OUTPUT	* * * *

12 194.528 396.456

Z:xarx15.OUT Page 8

Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / 60 ft Setback / Seismic

z:\2018\18045-01 project dimensions - paseo de la colinas\engineering\slope stability\sec a\2018_05\xarx15e.pl2 Run By: LGC Geotechnical 5/11/2018 02:54PM

Z:xarx15e.OUT Page 1

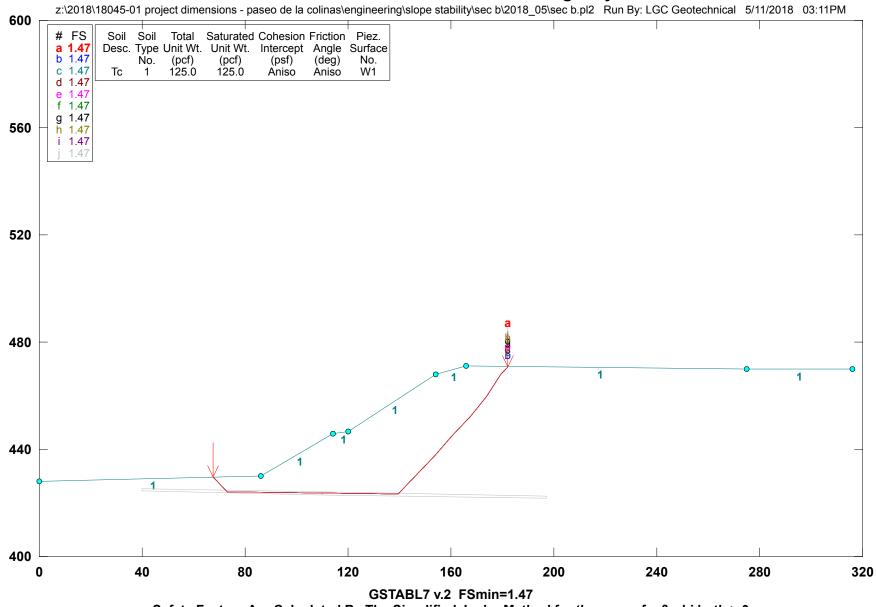
*** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads. Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 5/11/2018 Time of Run: 02:54PM Run By: LGC Geotechnical Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Input Data Filename: gineering\Slope Stability\Sec A\2018 05\xarx15e.in Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Output Filename: gineering\Slope Stability\Sec A\2018_05\xarx15e.OUT Unit System: English Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec A\2018_05\xarx15e.PLT PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec A-A' / Rotational / 60 ft Setback / Seismic BOUNDARY COORDINATES 15 Top Boundaries 15 Total Boundaries Y-Left X-Right Y-Right Soil Type Boundary X-Left (ft) No. (ft) (ft) (ft) Below Bnd 40.00 386.00 80.00 387.00 80.00 387.00 120.00 389.00 2 120.00 389.00 129.00 390.00 3 129.00 390.00 137.00 395.00 1 137.00 395.00 166.00 414.00 1 5 166.00 414.00 176.00 416.00 1 176.00 416.00 188.00 425.00 188.00 425.00 214.00 443.00 1 214.00 443.00 225.00 446.00 225.00 446.00 253.00 464.00 10 1 11 253.00 464.00 260.00 465.00 1 12 260.00 465.00 269.00 470.00 1 13 269.00 470.00 273.00 471.00 1 14 273 00 471 00 280 00 471 00 1 15 280 00 471.00 400 00 470 00 1 300.00(ft) User Specified Y-Origin = Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft)ISOTROPIC SOLL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 125 0 125.0 360.0 30.3 0.00 0 0 1 Specified Peak Ground Acceleration Coefficient (A) = 0.150(g) Specified Horizontal Earthquake Coefficient (kh) = 0.150(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) Specified Seismic Pore-Pressure Factor = 0.000 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 45000 Trial Surfaces Have Been Generated. 3000 Surface(s) Initiate(s) From Each Of 15 Points Equally Spaced Along The Ground Surface Between X = 129.00(ft)and X = 129.00(ft)Each Surface Terminates Between X = 330.00(ft) and X = 390.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 6.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial

Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * * * Safety Factors Are Calculated by Inc. Total Number of Trial Surfaces Attempted = Statistical Data On All Valid FS Values: FS Max = 0.000 FS Min = 500.000 FS Ave = NaN Standard Deviation = 0.000 Coefficient of Variation = NaN % Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf No. (ft.) (ft.) 129.000 390.000 2 134.979 390.506 3 140.948 391.110 146.907 391.813 4 152.853 392.614 5 158.785 393.513 6 7 164.702 394.510 8 170.601 395.604 9 176.482 396.796 398.084 10 182.342 11 188,180 399,470 12 193.994 400.951 13 199.783 402.528 14 205 545 404 201 15 211.279 405.968 16 216.983 407.830 17 222.655 409.786 18 228 294 411 835 19 233.899 413.977 20 239.467 416.211 21 244.998 418.537 22 250.490 420 954 23 255.941 423.461 24 261.350 426.058 25 266 715 428 744 26 272 035 431 518 27 277 309 434.379 28 282 535 437 327 29 287 711 440 361 30 292 837 443 480 31 297 910 446 684 32 302.930 449.970 33 307.895 453.339 34 312.803 456.790 35 317.654 460 321 36 322.446 463.932 327.178 37 467.621 38 330.842 470.576 Circle Center At X = 101.387 ; Y = 752.264 ; and Radius = 363.315 Factor of Safety 1.275 *** * * * Individual data on the 0 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight qoT Bot Norm Tan Hor Ver Load (lbs) (lbs) (lbs) No (ft) (lbs) (lbs) (lbs) (lbs) (lbs) Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 129.000 390.000 1 2 134.977 390.521 140.945 391 139 ٦ 146.903 391.855 152.847 5 392.669 б 158.778 393.579 164.692 394.587 170.590 395.692 8 176.468 396.893 10 182.327 398.189

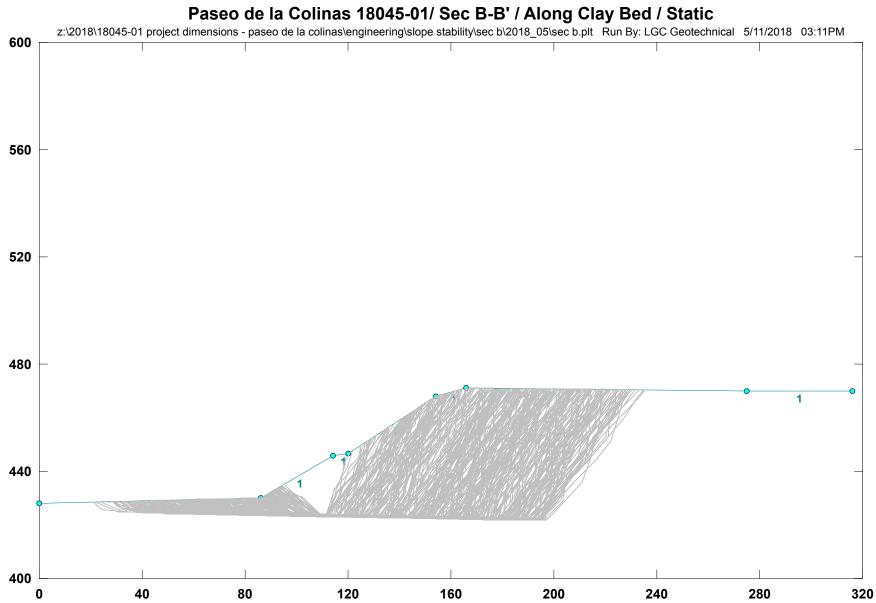
Z:xarx15e.OUT Page 2

	Z:xarx15e.OUT Page 3	Z:xarx15e.OUT Pag	ge 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<pre>37 326.687 467.246 38 330.600 470.578 Circle Center At X = 112.857 ; Y = 722.871 ; and Radius = 333.262 Factor of Safety *** 1.275 *** Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 129.000 390.000 2 134.991 390.323 3 140.976 390.755 4 146.951 391.296</pre>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
<pre>37 327.216 467.666 38 330.841 470.576 Circle Center At X = 100.215; Y = 755.196; and Radius = Factor of Safety *** 1.275 *** Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 129.000 390.000 2 134.990 390.345 3 140.973 390.797 4 146.947 391.357 5 152.910 392.025</pre>	366.329	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32 302.833 448.921 33 307.724 452.397 34 312.550 455.961 35 317.311 459.612 36 322.005 463.350 37 326.630 467.172 38 330.601 470.578 Circle Center At X = 114.243 ; Y = 719.407 ; and Radius = 329.737 Factor of Safety *** 1.275 *** Failure Surface Specified By 38 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 129.000 390.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Z:xarx15e.OUT Page 5	Z:xarx15e.OUT Page 6
<pre></pre>	respin = 1 + 129.000 + 390.000 + 2 + 134.4956 + 390.721 + 314.095 + 390.721 + 314.095 + 393.402 + 6 + 56.653 + 394.468 + 7 + 16.4548 + 395.633 + 402 + 6 + 56.653 + 394.468 + 7 + 16.4548 + 395.633 + 10.727 + 10.146.548 + 395.543 + 10.738 + 10.146.1038 + 10.1038 + 1


Z:xarx15e.OUT	Page	7
---------------	------	---

				2.vaixije.00
27	277.625	431.303		
28	282.770	434.390		
29	287.852	437.580		
30	292.869	440.870		
31	297.820	444.260		
32	302.702	447.748		
33	307.513	451.333		
34	312.252	455.013		
35	316.916	458.787		
36	321.504	462.654		
37	326.015	466.611		
38	330.361	470.580		
		125.527 ; Y =	690.558 ; and Radius	= 300.578
	ctor of Safety	125.527 7 1 -	050.550 / and Radius	- 500.570
***	1.278 ***	*		
Failure Su	urface Specifie		inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	129.000	390.000		
2	134.999	390.121		
3	140.994	390.363		
4	146.983	390.724		
5	152.964	391.205		
6	158.934	391.806		
7	164.890	392.527		
8	170.831	393.366		
9	176.754	394.325		
10	182.657	395.401		
11	188.536	396.596		
12	194.391	397.909		
13	200.218	399.338		
14	206.016	400.884		
15	211.781	402.546		
16	217.512	404.323		
17	223.206	406.214		
18	228.861	408.219		
19	234.475	410.337		
20	240.045	412.567		
21	245.570	414.908		
22	251.046	417.359		
23	256.472	419.919		
24	261.846	422.588		
25	267.166	425.364		
26	272.428	428.245		
27	277.632	431.232		
28	282.775	434.322		
29	287.855	437.515		
30	292.871	440.808		
31	297.819	444.202		
32	302.698	447.694		
33	307.506	451.283		
34	312.242	454.967		
35	316.902	458.746		
36	321.486	462.617		
37	325.992	466.579		
38	330.362	470.580		
		125.951 ; Y =	689.499 ; and Radius	= 299.515
	ctor of Safety			
***	1.279 ***	*		
Failure Su	urface Specifie	ed By 38 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	129.000	390.000		
2	134.999	390.115		
3	140.994	390.351		
4	146.984	390.707		
5	152.965	391.183		
6	158.935	391.780		
7	164.892	392.496		
8	170.834	393.332		
-				


		394.286				
		395.360				
		396.552				
		397.861				
		399.289				
		400.832				
15 2	11.788	402.492				
16 2	17.519	404.268				
17 2	23.214	406.158				
18 2	28.869	408.162				
19 2	34.483	410.279				
20 2	40.053	412.509				
21 2	45.578	414.850				
22 2	51.054	417.301				
23 2	56.480	419.862				
24 2	61.853	422.532				
25 2	67.172	425.309				
26 2	72.434	428.192				
27 2	77.637	431.180				
28 2	82.779	434.272				
29 2	87.858	437.467				
30 2	92.871	440.763				
31 2	97.818	444.159				
32 3	02.695	447.654				
33 3	07.501	451.246				
34 3	12.234	454.933				
35 3	16.892	458.715				
36 3	21.473	462.590				
37 3	25.975	466.556				
38 3	30.362	470.580				
Circle Center .	At X = 126	.260 ; Y =	688.729	; and	Radius =	298.742
Factor	of Safety					
*** 1	.279 ***					
***	END OF GSTA	BL7 OUTPUT *	* * *			

Z:xarx15e.OUT Page 8

Paseo de la Colinas 18045-01/ Sec B-B' / Along Clay Bed / Static

Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

Z:sec b.OUT Page 1

							Z:sec b.	OUT	Page
		,	*** GSTAB	L7 ***					
-	nal Version (All Rig	ghts Reserv	arry H. Gr ary 1996; ved-Unauth	egory, Ph Current V orized Us	er. 2.005 e Prohibi	.3, Feb. ted)			
********	**********					* * * * * * * * *	********	* * *	
(Inc Incl Nonl Anis Surf	fied Bishop ludes Spence uding Pier/I inear Undra. otropic Soi. aces, Pseude	er & Morger Pile, Reinf ined Shear l, Fiber-Re o-Static &	ed Janbu, hstern-Pri forcement, Strength, einforced Newmark E	or GLE Me ce Type A Soil Nai Curved P Soil, Bou arthquake	thod of S nalysis) 1, Tiebac hi Envelo ndary Loa , and App	k, pe, ds, Waten lied Ford	ces.	***	
Analysis Ru		5/11/20							
Time of Run	:	03:11PM							
Run By: Input Data	Filonomo	LGC Geo Z:\2018	technical	Project	Dimonsion	a - Dagor	a da la Ca	lina	- - - -
gineering\Slope					DIMONSION	5 rused	5 40 14 00	I IIIG.	5 (LIII
Output File					Dimension	s - Pasec	o de la Co	linas	s∖En
gineering\Slope Unit System		Sec B\2018_ English		OUT					
	put Filenam			Project	Dimension	s - Pasec	o de la Co	linas	s∖En
gineering\Slope	Stability\	Sec B\2018_	_05\sec b.	PLT					
PROBLEM DES	CRIPTION:	Paseo de la / Along Cla			Sec B-B'				
BOUNDARY CO		/ Along cit	ly Dea / D	CUCIC					
	Boundaries								
7 Total Boundary	Boundaries X-Left	Y-Left	X-Right	Y-Righ	t Soil	Type			
No.	(ft)	(ft)	(ft)	(ft)		w Bnd			
1	0.00	428.00	86.00	430.0		1			
2 3	86.00 114.00	430.00 446.00	114.00 120.00	446.0 446.5		1			
4	120.00	446.50	154.00	468.0		1			
5	154.00	468.00	166.00	471.0		1			
6 7	166.00 275.00	471.00 470.00	275.00 316.00	470.0 470.0		1			
User Specif Default X-P	ied Y-Origin lus Value = lus Value = IL PARAMETE	n = 4 0.00(ft) 0.00(ft)	100.00(ft)	170.0	0	Ŧ			
	Saturated					Piez.			
Type Unit W No. (pcf)	t. Unit Wt. (pcf)	Intercept (psf)	Angle (deg)		(psf)	No.			
1 125.0	125.0	300.0	26.0	0.00	0.0	1			
ANISOTROPIC	STRENGTH PAL type(s)	RAMETERS							
	1 Is Anisot:	ropic							
Number Of D	irection Ra	nges Specif							
Direction Range	Countercle Direction		Cohesion Intercept		tion gle				
No.	(deg		(psf)		.eg)				
1	-2.	0	300.00		26.00				
2	0. 90.		0.00 300.00		18.00 26.00				
	SOIL NOTES		500.00		20.00				
	nput value				cause An	iso			
	d/or Phi to nput value				Dhi and				
C eq (3) An i	ual to zero nput value	, with no w of 0.03 for	vater weig Phi will	ht in the set both	tension Phi and				
Janbus Empi A Critical	ual to zero rical Coef Failure Sur	is being us face Search	sed for th ning Metho	e case of d, Using	c & phi A Random		D		
Specified. 5000 Trial	or Generation Surfaces Have	ve Been Ger	nerated.						
	cified For (ine Segment)								

Sliding Block Is 10.0 Y-Left Height Box X-Left X-Right Y-Right (ft) No. (ft.) (ft) (ft) (ft) 1 40.00 424.70 110.00 423.50 0.80 110.10 423.50 197.00 422.00 0.80 Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Simplified Janbu Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 4.424 FS Min = 1.465 FS Ave = 2.230 Standard Deviation = 0.493 Coefficient of Variation = 22.13 % Failure Surface Specified By 10 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 67.458 429.569 1 2 73.116 424.251 423.343 3 139.457 146.515 430.427 4 5 153,461 437.621 160.294 444.922 6 167.359 452.000 7 173.618 459.799 8 179.507 467.881 9 182.154 470.852 10 Factor of Safety * * * 1.465 *** Individual data on the 14 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 0.0 0.0 1 5.7 1927.2 0.0 0. 0. 0.0 0.0 2 12.9 9159.9 0.0 0.0 Ο. 0. 0.0 0.0 0.0 3 28.0 49410.3 0.0 0.0 Ο. 0. 0.0 0.0 0.0 4 6.0 16950.0 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 5 19.5 70961.6 0.0 0.0 Ο. 0. 0.0 0.0 0.0 б 7.1 30126 8 0.0 0 0 0 0. 0.0 0.0 0.0 69 27297.1 0 0 Ο. 0 0 0 0 7 0 0 0 0.0 Ο. 8 0 5 2016 1 0 0 0 0 0 0 0 0 0 0.0 21421.6 Ο. 9 6.3 0.0 0.0 Ο. 0.0 0.0 0.0 10 5.7 16052.2 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 11 1.4 3342.3 0.0 Ο. 0.0 0.0 0.0 0.0 Ο. 12 6.3 11782.2 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 13 5.9 5199.5 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 14 495.6 0.0 0.0 2.6 0.0 Ο. Ο. 0.0 0.0 Failure Surface Specified By 10 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 67.458 429.569 1 2 73.116 424.251 3 139.457 423.343 4 146.515 430.427 437.621 5 153.461 6 160 294 444.922 452 000 167 359 7 173 618 459.799 8 179.507 467.881 9 182.154 470.852 10 Factor of Safety *** 1.465 *** Failure Surface Specified By 10 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 67.458 429.569 1 73.116 424.251 2 3 139.457 423.343 4 146.515 430.427

Z:sec b.OUT Page 2

Z:sec b.OUT Page 3

5 6	153.461	437.621	
	160.294	444.922	
7	167.359	452.000	
8	173.618	459.799	
9	179.507	467.881	
10	182.154	470.852	
	ctor of Safety		
***	1.465 ***	*	
Failure S		ed By 10 Coordinate	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	67.458	429.569	
2	73.116	424.251	
3	139.457	423.343	
4	146.515	430.427	
5	153.461	437.621	
6	160.294	444.922	
7	167.359	452.000	
8	173.618	459.799	
9	179.507	467.881	
10	182.154	470.852	
Fa:	ctor of Safety		
	1.405		
		ed By 10 Coordinate	Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	67.458	429.569	
2	73.116	424.251	
3 4	139.457	423.343	
4 5	146.515 153.461	430.427 437.621	
6	160.294	444.922	
7	167.359	452.000	
8	173.618	459.799	
9	179.507	467.881	
10	182.154	470.852	
	ctor of Safety	1,01052	
***	1.465 ***	*	
Failure S		ed By 10 Coordinate	Points
Point	X-Surf	Y-Surf	
Point No.	X-Surf (ft)	Y-Surf (ft)	
Point No. 1	(ft) 67.458	(ft) 429.569	
Point No. 1 2	(ft) 67.458 73.116	(ft) 429.569 424.251	
Point No. 1 2 3	(ft) 67.458 73.116 139.457	(ft) 429.569 424.251 423.343	
Point No. 1 2 3 4	(ft) 67.458 73.116 139.457 146.515	(ft) 429.569 424.251 423.343 430.427	
Point No. 1 2 3 4 5	(ft) 67.458 73.116 139.457 146.515 153.461	(ft) 429.569 424.251 423.343 430.427 437.621	
Point No. 1 2 3 4 5 6	(ft) 67.458 73.116 139.457 146.515 153.461 160.294	(ft) 429.569 424.251 423.343 430.427 437.621 444.922	
Point No. 1 2 3 4 5 6 7	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000	
Point No. 2 3 4 5 6 7 8	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799	
Point No. 2 3 4 5 6 7 8 9	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507	(ft) 429.559 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881	
Point No. 2 3 4 5 6 7 8 9 10	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799	
Point No. 2 3 4 5 6 7 8 9 10	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety	(ft) 429.559 424.251 433.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852	
Point No. 2 3 4 5 6 7 7 8 9 10 Fax ***	(ft) 67.458 73.116 139.457 146.515 153.461 167.359 173.618 179.507 182.154 ctor of Safety 1.465 ***	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852	Points
Point No. 1 2 3 4 5 6 7 8 9 10 Failure S	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 ***	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 470.852	Points
Point No. 1 2 3 4 5 6 6 7 8 9 10 *** Failure S Foint	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 **: urface Specific X-Surf	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * ed By 10 Coordinate Y-Surf	Points
Point No. 1 2 3 4 5 6 7 8 9 10 Failure S	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** urface Specific X-Surf (ft)	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * ed By 10 Coordinate Y-Surf (ft)	Points
Point No. 1 2 3 4 5 6 7 8 9 10 Failure S Point No.	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 **: urface Specific X-Surf	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * ed By 10 Coordinate Y-Surf	Points
Point No. 1 2 3 4 5 6 7 8 9 10 *** * *** Failure S Point No. 1	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 129.507 182.154 tor of Safety 1.465 *** urface Specific X-Surf (ft) 67.458	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 463 470.852 452 452.000 459.799 467.881 470.852 463 470.852 463 475 429.569	Points
Point No. 1 2 3 4 5 6 7 8 9 10 Fai **** Failure S Point No. 1 2 3 4	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** urface Specific X-Surf (ft) 67.458 73.116 139.457 146.515	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * d By 10 Coordinate Y-Surf (ft) 429.569 424.251 433.43 430.427	Points
Point No. 2 3 4 5 6 7 8 9 10 Fai *** Failure S Point No. 1 2 3 4 5	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** urface Specific X-Surf (ft) 67.458 73.116 139.457 146.515 153.461	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * ed By 10 Coordinate Y-Surf (ft) 429.569 424.251 423.343 430.427 437.621	Points
Point No. 1 2 3 4 5 6 7 8 9 10 *** * *** Failure S Point No. 1 2 3 4 5 6	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 **: urface Specific X-Surf (ft) 67.458 73.116 139.457 146.515 153.461 160.294	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 467 470.852 40 452.000 459.799 467.881 470.852 429.569 424.251 429.569 424.251 423.343 430.427 437.621 444.922	Points
Point No. 2 3 4 5 6 7 8 9 10 Fa *** Failure S Point No. 1 2 3 4 5 6 7	<pre>(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359</pre>	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * * * * * * * * * * * * * * * * * * *	Points
Point No. 2 3 4 5 6 7 8 9 10 *** Failure S Foint No. 2 3 4 5 6 7 8	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 x-Surf (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * d By 10 Coordinate Y-Surf (ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799	Points
Point No. 2 3 4 5 6 7 8 9 10 Failure S Point No. 1 2 3 4 5 6 7 8 9 9	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 **: (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * d By 10 Coordinate Y-Surf (ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881	Points
Point No. 2 3 4 5 6 7 8 9 10 Fai *** Failure S Point No. 1 2 3 4 5 6 7 8 9 10	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** x-Surf (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * d By 10 Coordinate Y-Surf (ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799	Points
Point No. 2 3 4 5 6 7 8 9 10 *** Failure S Point No. 1 2 3 4 5 6 7 7 8 9 10 8 9 10 8 7 9 10 8 9 10 7 8 9 10 8 7 8 9 10 7 8 8 9 10 7 8 9 10 7 8 8 9 10 7 8 8 9 10 7 8 9 10 8 7 8 9 10 7 8 7 8 9 10 7 8 9 10 8 7 8 7 8 9 10 8 8 8 9 10 8 8 9 10 8 8 9 10 8 8 9 10 8 8 9 10 8 8 9 10 8 8 8 9 10 8 8 8 8 8 9 10 8 8 8 9 10 8 8 9 10 8 8 8 8 8 9 10 8 8 8 9 10 8 8 9 10 8 8 9 10 8 8 9 10 8 8 8 8 8 8 9 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * ed By 10 Coordinate Y-Surf (ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852	Points
Point No. 2 3 4 5 6 7 8 9 10 Failure S Point S Point 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 ***	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * * * * * * * * * * * * *	
Point No. 1 2 3 4 5 6 7 8 9 10 *** Failure S Foint No. 1 2 3 4 4 5 6 7 7 8 9 10 *** * * * * *	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 120.54 tor of Safety 1.465 *** (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 tor of Safety 1.465 ** 153.461 160.294 167.359 173.618 179.507 182.154 tor of Safety **	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 465 429.569 424.251 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 467.881 470.852 4	
Point No. 2 3 4 5 6 7 8 9 10 Failure S Point S Point 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	(ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 *** (ft) 67.458 73.116 139.457 146.515 153.461 160.294 167.359 173.618 179.507 182.154 ctor of Safety 1.465 ***	(ft) 429.569 424.251 423.343 430.427 437.621 444.922 452.000 459.799 467.881 470.852 * * * * * * * * * * * * *	

No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852
Fac	tor of Safety	Y
* * *	1.465 *	**
Failure Su	rface Specif:	ied By 10 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139.457	423.343
4	146.515	430.427
5	153,461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852
	tor of Safet	
***		**
Failure Su		ied By 10 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	67.458	429.569
2	73.116	424.251
3	139,457	423.343
4	146.515	430.427
5	153.461	437.621
6	160.294	444.922
7	167.359	452.000
8	173.618	459.799
9	179.507	467.881
10	182.154	470.852
	tor of Safet	
***		* *
	**** END OF (GSTABL7 OUTPUT ****

Z:sec b.OUT Page 4

Paseo de la Colinas 18045-01/ Sec B-B' / Rotational / Static

z:\2018\18045-01 project dimensions - paseo de la colinas\engineering\slope stability\sec b\2018_05\sec br.pl2 Run By: LGC Geotechnical 5/11/2018 02:07PM 600 Soil Soil Total Saturated Cohesion Friction Piez. Desc. Type Unit Wt. Unit Wt. Intercept Angle Surface # FS a 1.68 b 1.68 (pcf) 125.0 (pcf) 125.0 (psf) (deg) No. No. c 1.68 Тс 1 300.0 26.0 W1 d 1.68 e 1.68 f 1.68 g 1.68 560 h 1.68 i 1.68 j 1.68 520 480 1 1 440 1 400 80 40 120 160 200 240 280 320 0 GSTABL7 v.2 FSmin=1.68

Safety Factors Are Calculated By The Modified Bishop Method

Z:sec br.OUT Page 1	
<pre>Pige true for the second /pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Z:sec br.OUT Page 2

470.964 .815 ; Y = 518.479 ; and Radius = 88.917 21 slices Tie Tie Earthquake Force Surcharge Hor Ver Load Force Norm Force Tan Hor (lbs) (lbs) 0 0.0 0 0 0.0 0 (lbs) (lbs) (lbs) 0.0 . . 0 0. ΄ο. 0.0 Ö. 0.0 0.0 Ο. 0.0 0. 0. 0.0 0.0 0.0 0. 0.0 0. 0.0 0.0 0.0 0.0 0. Ο. 0.0 0.0 0.0 0.0 0. Ο. 0.0 0.0 0.0 0.0 0.0 Ο. 0. 0. 0.0 0.0 0.0 Ο. 0.0 0.0 0.0 Ο. 0. 0. 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0. 0. 0. 0. 0. 0. 0. 0.0 0.0 0.0 0. 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Ο. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 0.0 0.0 Ο. 0. 0. 0. 0.0 0.0 0.0 0.0 0. 0.0 0. 0. 0.0 0.0 0.0 Ο. 0.0 Ο. 0.0 0.0 0.0 By 18 Coordinate Points -Surf (ft) 430.000 429.610 429.623 430.040 430.860 430.880 432.077 433.688 435.684 438.056 440.794 443.885 447.315 451.069 455.129 159.478 464.095 468.960 470.964 .815 ; Y = 518.479 ; and Radius = 88.917

Z:sec br.OUT Page 3

				Z-sec br.(
Failure Su	urface Specif	ied By 18 Coordinat	e Points	
Point	X-Surf	Y-Surf	e romeb	
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.987	429.610		
3	97.987	429.623		
4	103.973	430.040		
5	109.917 115.792	430.860 432.077		
7	121.572	433.688		
8	127.230	435.684		
9	132.741	438.056		
10	138.080	440.794		
11	143.222	443.885		
12	148.145	447.315		
13	152.826	451.069		
14 15	157.243 161.377	455.129 459.478		
16	165.209	464.095		
17	168.721	468.960		
18	169.972	470.964		
	nter At X =	94.815 ; Y = 51	8.479 ; and Radius =	88.917
	ctor of Safet	Y		
***	1.677 *			
		ied By 18 Coordinat	e Points	
Point No.	X-Surf	Y-Surf		
NO. 1	(ft) 86.000	(ft) 430.000		
2	91.987	429.610		
3	97.987	429.623		
4	103.973	430.040		
5	109.917	430.860		
6	115.792	432.077		
7	121.572	433.688		
8	127.230	435.684		
9 10	132.741 138.080	438.056 440.794		
10	143.222	443.885		
12	148.145	447.315		
13	152.826	451.069		
14	157.243	455.129		
15	161.377	459.478		
16	165.209	464.095		
17	168.721	468.960 470.964		
18 Circlo Cor	169.972 nter At X =		8.479 ; and Radius =	88.917
	ctor of Safet		0.4/5 / and Radius -	- 00.917
***	1.677 *			
Failure Su		ied By 18 Coordinat	e Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	86.000	430.000		
2 3	91.995	429.759		
4	97.994 103.974	429.883 430.373		
5	109.913	431.227		
6	115.789	432.441		
7	121.580	434.011		
8	127.264	435.931		
9	132.821	438.193		
10	138.230	440.791		
11 12	143.470 148.523	443.713 446.949		
12	153.368	446.949		
14	157.990	454.314		
15	162.369	458.415		
16	166.490	462.776		
17	170.338	467.380		
18	172.959	470.936		
Circle Cer	nter At X =	92.976 ; Y = 52	8.011 ; and Radius =	98.259

				Z-sec br.0
Facto	or of Safety			
* * *	1.677 ***			
		By 18 Coordinat	e Points	
Point		Y-Surf		
No. 1	(ft)	(ft)		
2	86.000 91.995	430.000 429.759		
3	97.994	429.883		
4	103.974	430.373		
5	109.913	431.227		
б	115.789	432.441		
7	121.580	434.011		
8	127.264	435.931		
9	132.821	438.193		
10 11	138.230	440.791		
12	143.470 148.523	443.713 446.949		
13	153.368	450.487		
14	157.990	454.314		
15	162.369	458.415		
16	166.490	462.776		
17	170.338	467.380		
18	172.959	470.936		
Circle Cente		2.976 ; Y = 52	8.011 ; and Radius	= 98.259
Facto	or of Safety 1.677 ***			
		By 18 Coordinat	o Dointa	
Point		Y-Surf	e Poincs	
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.995	429.759		
3	97.994	429.883		
4	103.974	430.373		
5	109.913	431.227		
6 7	115.789 121.580	432.441 434.011		
8	121.380	435.931		
9	132.821	438.193		
10	138.230	440.791		
11	143.470	443.713		
12	148.523	446.949		
13	153.368	450.487		
14	157.990	454.314		
15 16	162.369 166.490	458.415 462.776		
17	170.338	467.380		
18	172.959	470.936		
Circle Cente			8.011 ; and Radius	= 98.259
	or of Safety			
***	1.677 ***			
		By 18 Coordinat	e Points	
Point No.		Y-Surf		
1	(ft) 86.000	(ft) 430.000		
2	91.995	429.759		
3	97.994	429.883		
4	103.974	430.373		
5	109.913	431.227		
6	115.789	432.441		
7	121.580	434.011		
8	127.264	435.931 438.193		
10	132.821 138.230	438.193 440.791		
10	143.470	443.713		
12	148.523	446.949		
13	153.368	450.487		
14	157.990	454.314		
15	162.369	458.415		
16	166.490	462.776		
17	170.338	467.380		

Z:sec br.OUT Page 4

Z:sec br.OUT Page 5

18	172.959	470.936		
Circle Cer	iter At X =	92.976 ; Y =	528.011 ; and Radius =	98.259
	tor of Safet			
* * *	1.677 *			
		ied By 18 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.969	429.388		
3	97.965	429.187		
4	103.962	429.397		
5	109.930	430.017		
6	115.841	431.044		
7	121.668	432.474		
8	127.384	434.300		
9	132.961	436.513		
10	138.373	439.102		
11	143.595	442.057		
12	148.603	445.362		
13	153.372	449.002		
14	157.881	452.961		
15	162.108	457.219		
16	166.034	461.756		
17	169.639	466.552		
18	172.490	470.940		
	iter At X =		516.660 ; and Radius =	87.475
Fac ***	tor of Safet	Y **		
	1.070		ante Deinte	
Point Point	X-Surf	ied By 18 Coord: Y-Surf	inate Points	
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.969	429.388		
3	97.965	429.187		
4	103.962	429.397		
5	109.930	430.017		
6	115.841	431.044		
7	121.668	432.474		
8	127.384	434.300		
9	132.961	436.513		
10	138.373	439.102		
11	143.595	442.057		
12	148.603	445.362		
13	153.372	449.002		
14	157.881	452,961		
15	162.108	457.219		
16	166.034	461.756		
17	169.639	466.552		
18	172.490	470.940		
	ter At X =		516.660 ; and Radius =	87.475
	tor of Safet			
***		**		
		GSTABL7 OUTPUT	* * * *	

z:\2018\18045-01 project dimensions - paseo de la colinas\engineering\slope stability\sec b\2018_05\sec bre.pl2 Run By: LGC Geotechnical 5/11/2018 02:56PM 600 # FS Soil Soil Total Saturated Cohesion Friction Piez. Load Value 0.150(g) 0.150(g)< a 1.49 Desc. Type Unit Wt. Unit Wt. Intercept Angle Surface Peak(A) kh Coef. (pcf) 125.0 (deg) 30.3 b 1.49 (pcf) (psf) No. No. c 1.49 Тс 1 125.0 360.0 W1 d 1.49 e 1.49 f 1.49 g 1.49 560 ĥ 1.49 i 1.49 j 1.49 520 а ģ 480 1 1 440 1 400 40 80 120 160 200 240 280 320 0 GSTABL7 v.2 FSmin=1.49

Paseo de la Colinas 18045-01/ Sec B-B' / Rotational / Seismic

Safety Factors Are Calculated By The Modified Bishop Method

Z:sec bre.OUT Page 1

		Z:sec bre.OUT Page
	*** GSTABL7 ***	
** Original Version 1. (All Right)	y Dr. Garry H. Gregory, Ph.D.,P. 0, January 1996; Current Ver. 2. s Reserved-Unauthorized Use Proh	005.3, Feb. 2013 ** nibited)
	**************************************	**************
Modified Bishop, S (Includes Spencer Including Pier/Pil- Nonlinear Undraine Anisotropic Soil, 3	<pre>implified Janbu, or GLE Method c & Morgenstern-Price Type Analysi e, Reinforcement, Soil Nail, Tie d Shear Strength, Curved Phi Env Fiber-Reinforced Soil, Boundary tatic & Newmark Earthquake, and</pre>	s) back, relope, Loads, Water
****************	*****	*******
Analysis Run Date: Time of Run:	5/11/2018 02:56PM	
Run By:	LGC Geotechnical	
Input Data Filename: gineering\Slope Stability\Sec	Z:\2018\18045-01 Project Dimens	sions - Paseo de la Colinas\En
Output Filename: gineering\Slope Stability\Sec	Z:\2018\18045-01 Project Dimens B\2018_05\sec bre.OUT	sions - Paseo de la Colinas\En
Unit System: Plotted Output Filename:	English Z:\2018\18045-01 Project Dimens	sions - Paseo de la Colinas\En
gineering\Slope Stability\Sec PROBLEM DESCRIPTION: Pas		
BOUNDARY COORDINATES		
7 Top Boundaries 7 Total Boundaries		
Boundary X-Left Y		Soil Type
	(ft) (ft) (ft) E 28.00 86.00 430.00	Selow Bnd
	30.00 114.00 446.00	1
	46.00 120.00 446.50	1
	46.50 154.00 468.00 68.00 166.00 471.00	1
	71.00 275.00 470.00	1
7 275.00 4 User Specified Y-Origin =	70.00 316.00 470.00 400.00(ft)	1
Default X-Plus Value = 0.	00(ft)	
Default Y-Plus Value = 0. ISOTROPIC SOIL PARAMETERS	00(ft)	
1 Type(s) of Soil		
	ohesion Friction Pore Pressu tercept Angle Pressure Consta	
No. (pcf) (pcf)	(psf) (deg) Param. (psf) No.
	360.0 30.3 0.00 0.0 eleration Coefficient (A) = 0.) 1 .150(g)
Specified Horizontal Eart	hquake Coefficient (kh) = 0.15	
Specified Vertical Earthq Specified Seismic Pore-Pro		g)
	e Searching Method, Using A Rand	lom
	Circular Surfaces, Has Been Spec	ified.
20000 Trial Surfaces Have 1 1000 Surface(s) Initiate(s)		ally Spaced
Along The Ground Surface 1	and $X = 86.00(ft)$	
Each Surface Terminates B	etween X = 150.00(ft) and X = 250.00(ft)	
At Which A Surface Extend	s Were Imposed, The Minimum Elev s Is Y = 0.00(ft)	
Following Are Displayed T	efine Each Trial Failure Surface he Ten Most Critical Of The Tria	
Failure Surfaces Ev Ordered - Most Crit	ical First.	
	Are Calculated By The Modified E al Surfaces Attempted = 0	Bishop Method * *
Number of Trial Sur	faces With Valid FS = 0	
	All Valid FS Values: FS Min = 500.000 FS Ave =	NaN
	on = 0.000 Coefficient of V	

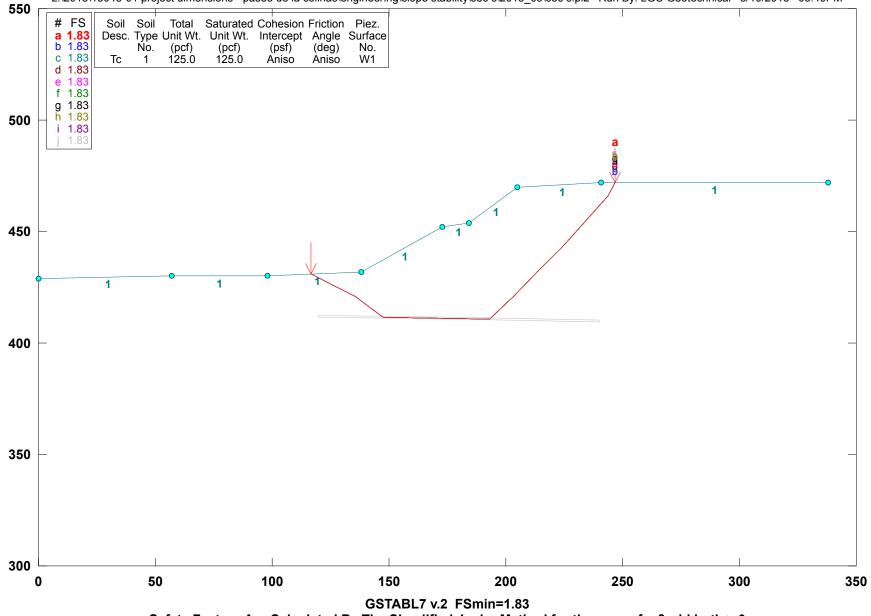
		Z:sec bre.OU	Г
Failure Surface Spec	ified By 19 Coord	dinata Dointa	
Point X-Surf	Y-Surf	dinate Points	
No. (ft)	(ft)		
1 86.000			
2 91.98	429.607		
3 97.98			
4 103.979			
5 109.941			
6 115.852			
7 121.692 8 127.441			
8 127.441 9 133.07			
10 138.58			
11 143.934			
12 149.11			
13 154.111	448.187		
14 158.899			
15 163.464			
16 167.790			
17 171.862 18 175.669			
18 175.669 19 177.111			
Circle Center At X =		530.622 ; and Radius = 101.080	
Factor of Sai		550.022 / and Radius - 101.000	
*** 1.488			
Individual data		lices	
	Water Tie	Tie Earthquake	
Force	e Force Force	Force Force Surcharge	
Slice Width Weight Top	Bot Norm	Tan Hor Ver Load	
		(lbs) (lbs) (lbs) (lbs)	
Failure Surface Spec Point X-Surf		dinate Points	
No. (ft)	Y-Surf (ft)		
1 86.000			
2 91.98			
3 97.98			
4 103.979	429.888		
5 109.941			
6 115.852			
7 121.692			
8 127.441 9 133.077			
10 138.58			
11 143.934			
12 149.11			
13 154.111			
14 158.899			
15 163.464			
16 167.790			
17 171.862			
18 175.669 19 177.111			
Circle Center At X =		530.622 ; and Radius = 101.080	
Factor of Sai		550.022 / and Radius - 101.000	

Failure Surface Spec	ified By 19 Coord	dinate Points	
Point X-Surf			
No. (ft)	(ft)		
1 86.000			
2 91.98			
3 97.98			
4 103.979 5 109.943			
6 115.852			
7 121.692			
8 127.44			
9 133.07			
10 138.58	439.128		
11 143.934	441.839		
12 149.11	444.862		

Z:sec bre.OUT Page 3

13	154.111	448.187		
14	158.899	451.803		
15	163.464	455.697		
16	167.790	459.855		
17	171.862	464.262		
18	175.665	468.902		
19	177.111	470.898		
Circle Cen		95.615 ; Y =	530.622 ; and Radius =	101.080
	tor of Safet		550.022 / and Radius -	101.000
rac ***	1.488 *			
			ante Deinte	
		ied By 19 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.996	429.795		
3	97.995	429.924		
4	103.977	430.387		
5	109.924	431.181		
6	115.818	432.306		
7	121.640	433.756		
8	127.372	435.528		
9	132.997	437.617		
10	138.497	440.015		
11	143.855	442.715		
12	149.054	445.710		
13	154.079	448.989		
14	158.914	452.542		
15	163.543	456.359		
16	167.953	460.428		
17	172.129	464.736		
18	176.060	469.269		
19	177.319	470.896		
Circle Cent	ter At X =	92.679 ; Y =	537.588 ; and Radius =	107.795
	tor of Safet			
* * *	1.488 *	* *		
Failure Su	rface Specif	ied By 19 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.996	429.795		
3	97.995	429.924		
4	103.977	430.387		
5	109.924	431.181		
6	115.818	432.306		
7	121.640	433.756		
8	127.372			
		435.528		
9	132.997	437.617		
10	138.497	440.015		
11	143.855	442.715		
12	149.054	445.710		
13	154.079	448.989		
14	158.914	452.542		
15	163.543	456.359		
16	167.953	460.428		
17	172.129	464.736		
18	176.060	469.269		
19	177.319	470.896		
Circle Cent	ter At X =	92.679 ; Y =	537.588 ; and Radius =	107.795
	tor of Safet			
***	1.488 *	**		
Failure Su		ied By 19 Coord	inate Points	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	86.000	430.000		
2	91.996	429.795		
3	97.995	429.924		
4	103.977	430.387		
5	109.924	431.181		
6	115.818	432.306		
7	121.640	433.756		

				Z:sec	bre.OUT	Page 4	4
8	127.372	435.528					
9	132.997	437.617					
10	138.497	440.015					
11 12	143.855	442.715					
12	149.054 154.079	445.710 448.989					
14	158.914	452.542					
15	163.543	456.359					
16	167.953	460.428					
17 18	172.129 176.060	464.736 469.269					
19	177.319	470.896					
Circle C	enter At X =	92.679 ; Y =	537.588 ; and Radius	= 107.	795		
F **	actor of Safety						
	1.100	ed By 18 Coordir.	ato Pointa				
Point	X-Surf	Y-Surf	late Points				
No.	(ft)	(ft)					
1	86.000	430.000					
2	91.998	429.834					
3 4	97.995 103.972	430.016 430.544					
5	109.908	431.417					
6	115.783	432.632					
7	121.579	434.185					
8	127.275	436.071					
9 10	132.852 138.292	438.283 440.814					
11	143.577	443.656					
12	148.688	446.798					
13	153.609	450.231					
14 15	158.323 162.815	453.943 457.921					
16	167.068	462.152					
17	171.070	466.623					
18	174.492	470.922					
	enter At X =		533.448 ; and Radius	= 103.0	614		
۲ **	actor of Safety * 1.489 **						
Failure	Surface Specifi	ed By 18 Coordin	nate Points				
Point	X-Surf	Y-Surf					
No. 1	(ft) 86.000	(ft) 430.000					
2	91.998	429.834					
3	97.995	430.016					
4	103.972	430.544					
5	109.908	431.417					
6 7	115.783 121.579	432.632 434.185					
8	127.275	436.071					
9	132.852	438.283					
10	138.292	440.814					
11	143.577	443.656					
12 13	148.688 153.609	446.798 450.231					
14	158.323	453.943					
15	162.815	457.921					
16	167.068	462.152					
17 18	171.070 174.492	466.623 470.922					
	enter At X =		533.448 ; and Radius	= 103.0	614		
	actor of Safety	,			-		
* *	* 1.489 **	*					
		ed By 18 Coordin	nate Points				
Point No.	X-Surf (ft)	Y-Surf (ft)					
1	86.000	430.000					
2	91.998	429.834					
3	97.995	430.016					
4	103.972	430.544					


Z:sec bre.OUT Page 5

5	109.908	431.417					
6	115.783	432.632					
7	121.579	434.185					
8	127.275	436.071					
9	132.852	438.283					
10	138.292	440.814					
11	143.577	443.656					
12	148.688	446.798					
13	153.609	450.231					
14	158.323	453.943					
15	162.815	457.921					
16	167.068	462.152					
17	171.070	466.623					
18	174.492	470.922					
Circle Ce	nter At X =	91.870 ; Y =	533.448	; and Radius	3 =	103.614	
Fa	ctor of Safety						
***	1.489 **						
Failure S	urface Specifi	ed By 19 Coordi	nate Poir	nts			
Point	X-Surf	Y-Surf					
No.	(ft)	(ft)					
1	86.000	430.000					
2	91.992	429.681					
3	97.991	429.700					
4	103.981	430.058					
5	109.940	430.753					
6	115.851	431.783					
7	121.695	433.144					
8	127,452	434.833					
9	133.105	436.844					
10	138.636	439.170					
11	144.027	441.804					
12	149.260	444.738					
13	154.320	447.963					
14	159.190	451.468					
15	163.855	455.242					
16	168.299	459.273					
17	172.509	463.548					
18	176.471	468.053					
19	178.690	470.884					
	nter At X =	94.648 ; Y =	536.013	; and Radius	3 =	106.365	
	ctor of Safety			Huditu	-		
***	1.489 **						
		א שוומשוות ל ופגשמי	***				

**** END OF GSTABL7 OUTPUT ****

Paseo de la Colinas 18045-01/ Sec C-C' / Along Clay Bed / Static

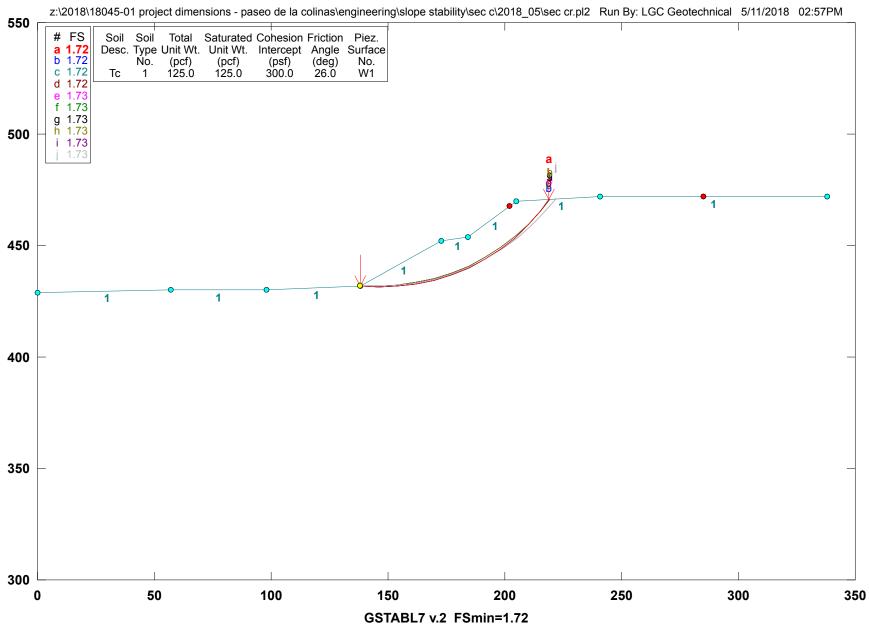
z:\2018\18045-01 project dimensions - paseo de la colinas\engineering\slope stability\sec c\2018_05\sec c.pl2 Run By: LGC Geotechnical 5/10/2018 03:40PM

Safety Factors Are Calculated By The Simplified Janbu Method for the case of c & phi both > 0

Paseo de la Colinas 18045-01/ Sec C-C' / Along Clay Bed / Static z:\2018\18045-01 project dimensions - paseo de la colinas\engineering\slope stability\sec c\2018_05\sec c.plt Run By: LGC Geotechnical 5/10/2018 03:40PM

Z:sec c.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads. Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 5/10/2018 Time of Run: 03:40PM Run By: LGC Geotechnical Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Input Data Filename: gineering\Slope Stability\Sec C\2018 05\sec c.in Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Output Filename: gineering\Slope Stability\Sec C\2018_05\sec c.OUT Unit System: English Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec C\2018_05\sec c.PLT PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec C-C' / Along Clay Bed / Static BOUNDARY COORDINATES 8 Top Boundaries 8 Total Boundaries Y-Left X-Right Soil Type Boundary X-Left Y-Right No. (ft) (ft) (ft) (ft) Below Bnd 0.00 429.00 57.00 430.00 57.00 430.00 430.00 98.00 2 98.00 430.00 138.00 432.00 3 138.00 432.00 173.00 452.00 1 173.00 452.00 184.00 454.00 5 184.00 454.00 205.00 470.00 205.00 470.00 241 00 472.00 241.00 472.00 338.00 472.00 User Specified Y-Origin = 300.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) 1 125.0 125.0 300.0 (deg) Param. (psf) No. 26 0 0 00 0 0 1 ANISOTROPIC STRENGTH PARAMETERS 1 soil type(s) Soil Type 1 Is Anisotropic Number Of Direction Ranges Specified = 3 Direction Counterclockwise Cohesion Friction Direction Limit Intercept Range Angle No (deg) (psf) (deg) -2.0 300.00 26.00 2 0.0 0.00 18.00 90.0 300.00 26.00 ANISOTROPIC SOIL NOTES: (1) An input value of 0.01 for C and/or Phi will cause Aniso C and/or Phi to be ignored in that range. (2) An input value of 0.02 for Phi will set both Phi and C equal to zero, with no water weight in the tension crack. (3) An input value of 0.03 for Phi will set both Phi and C equal to zero, with water weight in the tension crack. Janbus Empirical Coef is being used for the case of c & phi both > 0 A Critical Failure Surface Searching Method Using A Random Technique For Generating Sliding Block Surfaces, Has Been Specified. 5000 Trial Surfaces Have Been Generated. 2 Boxes Specified For Generation Of Central Block Base

Length Of Line Segments For Active And Passive Portions Of Sliding Block Is 15.0 Y-Left Box X-Left X-Right Y-Right Height No. (ft) (ft) (ft) (ft) (ft) 411.00 120.00 412.10 180.00 0.80 1 180.10 411.00 240.00 410.00 0.80 Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Simplified Janbu Method * * Total Number of Trial Surfaces Attempted = 5000 Number of Trial Surfaces With Valid FS = 5000 Statistical Data On All Valid FS Values: FS Max = 6.664 FS Min = 1.825 FS Ave = 2.601 Standard Deviation = 0.612 Coefficient of Variation = 23.53 % Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 116.488 430.924 2 122.300 428.022 135.440 420.787 2 147.389 4 411.719 193.258 5 410.676 203.835 421.312 6 213.968 432 372 224.166 8 443.372 234.019 454.682 9 10 243.866 465.997 11 246.682 472.000 Factor of Safety 1.825 * * * Individual data on the 15 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Hor Slice Width Weight Top Bot Norm Tan Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 58 1160 1 0.0 0 0 0 0 0 0 0 0 0 0 13.1 11726 0 0.0 0 0 0 0. 0.0 0.0 0.0 2 ٦ 2 6 3878 1 0 0 0 0 0 0. 0 0 0 0 0.0 4 94 22769 4 0 0 0 0 0 0. 0 0 0 0 0 0 25 6 106462 1 0 5 0 0 0 0 0 0 0 0 0 0 0 57734 4 б 11 0 0 0 0 0 0 0 0 0 0 0 0 0 54096.4 9.3 0.0 0. 0.0 0.0 0.0 0.0 0. 10.6 64900.7 0.0 Ο. 0. 0.0 0.0 0.0 8 0.0 6934.3 Ο. 1.2 0.0 0.0 0.0 0.0 0.0 Ο. 10 9.0 47948.6 0.0 Ο. 0.0 0.0 0.0 0 0.0 11 10.2 41952.2 0.0 Ο. 0.0 0.0 0.0 0.0 Ο. 12 27480.1 9.9 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 13 7.0 11442.5 0.0 0.0 Ο. Ο. 0.0 0.0 0.0 14 2 9 2740 5 0.0 0.0 0.0 Ο. 0. 0.0 0.0 15 2.8 1056.4 0.0 0.0 0.0 Ο. 0. 0.0 0.0 Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 116 488 430 924 1 2 122 300 428 022 3 135 440 420 787 411 719 147 389 4 193.258 410 676 5 203.835 6 421.312 213.968 432.372 224.166 443.372 8 234 019 454.682 q 10 243.866 465.997 11 246.682 472.000 Factor of Safety 1.825 *** Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft)


Z:sec c.OUT Page 2

Z:sec c.OUT Page 3

1	116.488	430.924	
2	122.300	428.022	
3	135.440	420.787	
4	147.389	411.719	
5	193.258	410.676	
6	203.835	421.312	
7	213.968	432.372	
8	224.166	443.372	
9	234.019	454.682	
10	243.866	465.997	
11	246.682	472.000	
Facto	r of Safety 1.825 ***		
		By 11 Coordinate	Deinte
Point		Y-Surf	FOILICS
No.	(ft)	(ft)	
1	116.488	430.924	
2	122.300	428.022	
3	135.440	420.787	
4	147.389	411.719	
5	193.258	410.676	
6	203.835	421.312	
7	213.968	432.372	
8	224.166	443.372	
9	234.019	454.682	
10	243.866	465.997	
11	246.682	472.000	
Facto	r of Safety		
* * *	1.825 ***		
		By 11 Coordinate	Points
Point		Y-Surf	
No.	(ft)	(ft)	
1	116.488	430.924	
2	122.300	428.022	
3	135.440	420.787	
4	147.389	411.719	
5	193.258	410.676	
6 7	203.835	421.312	
8	213.968	432.372 443.372	
9	224.166 234.019	454.682	
10	243.866	465.997	
11	246.682	472.000	
	r of Safety	1,21000	
***	1.825 ***		
Failure Surf	ace Specified	By 11 Coordinate	Points
Point		Y-Surf	
No.	(ft)	(ft)	
1	116.488	430.924	
2	122.300	428.022	
3	135.440	420.787	
4	147.389	411.719	
5	193.258	410.676	
6 7	203.835	421.312	
8	213.968	432.372	
9	224.166 234.019	443.372 454.682	
10	243.866	465.997	
11	246.682	472.000	
	r of Safety		
***	1.825 ***		
Failure Surf		By 11 Coordinate	Points
Point		Y-Surf	
No.	(ft)	(ft)	
1	116.488	430.924	
2	122.300	428.022	
3	135.440	420.787	
4	147.389	411.719	
5	193.258	410.676	
6	203.835	421.312	

432.372 443.372 454.682 465.997 213.968 224.166 7 8 9 234.019 243.866 10 11 246.682 Factor of Safety *** 1.825 *** 472.000 Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 116.488 430.924 1 2 122.300 428.022 3 135.440 420.787 4 147.389 411.719 5 193.258 410.676 б 203.835 421.312 7 213.968 432.372 224.166 443.372 8 454.682 465.997 472.000 9 234.019 10 243.866 246.682 11 Factor of Safety *** 1.825 *** Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 116.488 430.924 1 2 122.300 428.022 3 135.440 420.787 4 147.389 411.719 5 193.258 410.676 б 203.835 421.312 7 213.968 432.372 8 224.166 443.372 9 234.019 454.682 243.866 465.997 10 246.682 472.000 11 Factor of Safety *** 1.825 *** Failure Surface Specified By 11 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 116.488 430.924 1 2 122.300 428.022 3 135.440 420.787 4 147.389 411.719 5 193.258 410.676 б 203.835 421.312 7 213.968 432.372 8 224.166 443.372 9 234.019 454.682 465.997 10 243.866 11 246.682 472.000 Factor of Safety *** 1.825 *** **** END OF GSTABL7 OUTPUT ****

Z:sec c.OUT Page 4

Safety Factors Are Calculated By The Modified Bishop Method

Paseo de la Colinas 18045-01/ Sec C-C' / Rotational / Static

Z:sec cr.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 5/11/2018 Time of Run: 02:57PM LGC Geotechnical Run By: Input Data Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec C\2018 05\sec cr.in Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec C\2018_05\sec cr.OUT Unit System: English Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec C\2018_05\sec cr.PLT PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec C-C' / Rotational / Static BOUNDARY COORDINATES 8 Top Boundaries 8 Total Boundaries Y-Left X-Right Y-Right Soil Type Boundary X-Left (ft) No. (ft) (ft.) (ft) Below Bnd 429.00 57.00 430.00 0.00 1 57.00 430.00 98.00 430.00 2 98.00 430.00 138.00 432.00 3 1 452.00 138.00 432.00 173.00 4 1 173.00 452.00 184.00 454.00 1 5 184.00 454.00 205.00 470.00 1 205.00 470.00 241.00 472.00 1 241.00 472.00 338.00 472.00 1 User Specified Y-Origin = 300.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) 26.0 0.00 0.0 No. 1 125 0 125.0 300.0 1 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 30000 Trial Surfaces Have Been Generated. 1000 Surface(s) Initiate(s) From Each Of 30 Points Equally Spaced Along The Ground Surface Between X = 138.00(ft)and X = 138.00(ft) Each Surface Terminates Between X = 202.00(ft) and X = 285.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 8.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. \ast * Safety Factors Are Calculated By The Modified Bishop Method \ast * Total Number of Trial Surfaces Attempted = 0 0 Number of Trial Surfaces With Valid FS = Statistical Data On All Valid FS Values: FS Max = 0.000 FS Min = 500.000 FS Ave = NaN Standard Deviation = 0.000 Coefficient of Variation = NaN % Failure Surface Specified By 13 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft)

	1		138.000	432.	000					
	2		145.983	431.						
	3		153.980	431.	714					
	4		161.919	432.	700					
	5		169.729	434.	431					
	e		177.342	436.	890					
	5		184.689	440.						
	8		191.704	443.						
	9		198.327	448.						
	10		204.496	453.						
	11		210.159	459.						
	12		215.263	465.						
	13		218.995	470.		F1C 04C			04 700	
	Circi	e Center		147.503	, <u>r</u> =	510.240	; and Ra	aius =	84.780	
			of Safe 1.724	LY ***						
		Individua		on the	15 sli	700				
		Individua	Water		Tie		Earthqu	ake		
			Force		Force	Force	Forc		harge	
lice	Width	Weight	Top	Bot	Norm	Tan			Load	
lo.	(ft)	(lbs)	(lbs)		(lbs)				(lbs)	
1	8.0	2535.8	0 0	0 0	0.		0.0	0.0	0.0	
2	8.0	7246.9	0.0	0.0	0.	0.	0.0	0.0	0.0	
3	7.9	11107.0	0.0	0.0	0.	0.	0.0	0.0	0.0	
4	7.8	13994.1	0.0	0.0	0.	0.	0.0	0.0	0.0	
5	3.3	6585.2	0.0	0.0	0.	0.	0.0	0.0	0.0	
б	4.3	8794.9		0.0		0.	0.0	0.0	0.0	
7	6.7	12542.4					0.0	0.0	0.0	
8	0.7	1235.6					0.0	0.0	0.0	
9	7.0	13346.8					0.0	0.0	0.0	
10	6.6	13449.9					0.0	0.0	0.0	
12	6.2	12594.5				0. 0.	0.0	0.0	0.0	
13	0.5 5.2	1012.0 8759.8			0. 0.	0.	0.0	0.0	0.0	
14	5.1	5241.8			0.	0.	0.0	0.0	0.0	
15	3.7	1231.1	0.0	0.0	0.	0.	0.0	0.0	0.0	
		ire Surfa	ce Speci	fied By 1						
	Poi		X-Surf	Y-Sur						
	No).	(ft)	(ft)						
			138.000	432.	000					
	2		145.983	431.						
	3		153.980	431.						
	4		161.919	432.						
	5		169.729	434.						
	6		177.342	436.						
	8		184.689	440. 443.						
	9		191.704 198.327	448.						
	10		204.496	453.						
	11		210.159	459.						
	12		215.263	465.						
	13		218.995	470.						
	Circl	e Center	At X =	147.503		516.246	; and Ra	dius =	84.780	
		Factor	of Safe	ty						
			1.724							
		ire Surfa				nate Poir	nts			
	Poi		X-Surf	Y-Sur						
	No		(ft) 138.000	(ft) 432.						
			145.983	432. 431.						
			153.980	431.						
	4		161.919	432.						
	5		169.729	434.						
	ē		177.342	436.						
	5		184.689	440.						
	8		191.704	443.						
	9		198.327	448.						
	10		204.496	453.						
	11	. :	210.159	459.						
	12	2 2	215.263	465.	293					

S1

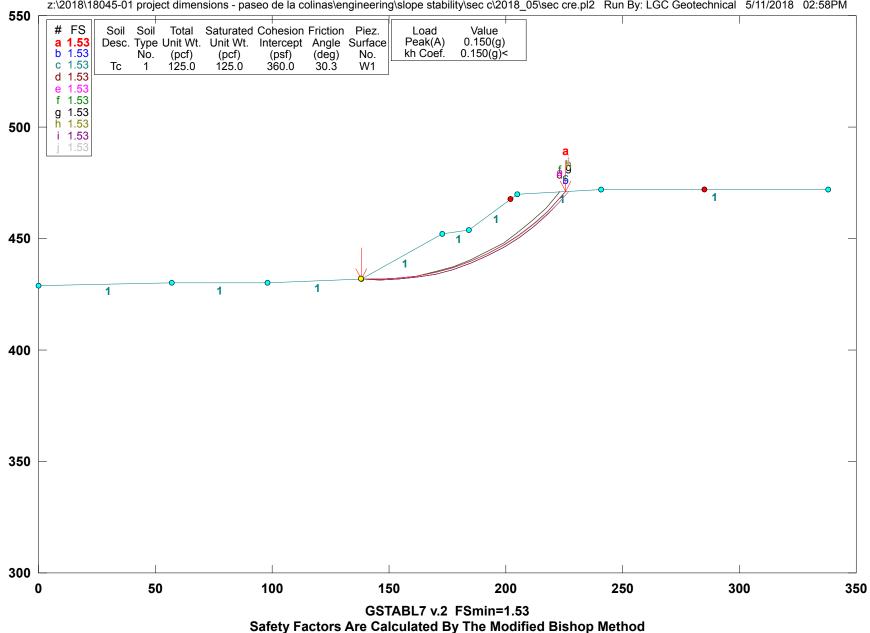
Ν

1

1

1

1


1

Z:sec cr.OUT Page 2

Z:sec cr.OUT Page 3

13 218.995 470.778 Circle Center At X = 147.503 ; Y = 516.246 ; and Radius = 84.780 Factor of Safety *** 1.724 *** Failure Surface Specified By 13 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 138.000 432.000 1 2 145.983 431.479 431.714 153.980 3 161.919 432.700 4 169.729 434.431 177.342 436.890 184.689 440.056 191.704 443.900 198.327 448.389 a 10 204.496 453.481 11 210.159 459.133 12 215.263 465.293 218,995 13 470.778 Circle Center At X = 147.503 ; Y = 516.246 ; and Radius = 84.780 Factor of Safety *** 1.724 *** Failure Surface Specified By 13 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 138.000 432.000 1 145.995 431.730 2 3 153.983 432.172 161.900 433.321 169.684 435.169 177.273 437.701 184.607 440.897 191.628 444.731 9 198.281 449.174 10 204.513 454.190 11 210.275 459 740 12 215.521 465.780 13 219 142 470.786 Circle Center At X = 145.027 ; Y = 521.716 ; and Radius = 89.990 Factor of Safety *** 1.726 *** Failure Surface Specified By 13 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 138.000 432.000 1 2 145.995 431.730 153,983 432.172 161.900 433.321 169.684 435.169 177.273 437.701 184.607 440.897 8 191.628 444.731 198 281 449 174 9 10 204.513 454.190 11 210 275 459 740 465 780 12 215 521 219 142 470 786 13 Circle Center At X = 145.027; Y = 521.716; and Radius = 89.990Factor of Safety *** 1.726 *** *** Failure Surface Specified By 13 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 138.000 432.000 1 145.995 431.730 2 3 153.983 432.172 161.900 433.321 4 169.684 435.169 5 177.273 437.701

```
Z:sec cr.OUT Page 4
                         440.897
   7
            184.607
            191.628
                         444.731
   8
                         449.174
   9
            198.281
   10
            204.513
                         454.190
                         459.740
   11
            210.275
                         465.780
   12
            215.521
   13
            219.142
                         470.786
Circle Center At X = 145.027 ; Y = 521.716 ; and Radius = 89.990
      Factor of Safety
     ***
           1.726 ***
Failure Surface Specified By 13 Coordinate Points
 Point
            X-Surf
                        Y-Surf
   No.
             (ft)
                         (ft)
            138.000
                         432.000
            145.995
                         431.730
   2
   3
            153.983
                         432.172
            161.900
                         433.321
   4
   5
            169.684
                         435.169
                         437.701
   6
            177.273
            184.607
                         440.897
   7
            191.628
                         444.731
   8
   9
            198.281
                         449.174
                         454.190
            204.513
  10
  11
            210.275
                         459.740
   12
            215 521
                         465.780
            219.142
                         470.786
   13
Circle Center At X = 145.027 ; Y = 521.716 ; and Radius = 89.990
      Factor of Safety
     *** 1.726 ***
Failure Surface Specified By 14 Coordinate Points
 Point
            X-Surf
                       Y-Surf
  No.
             (ft)
                         (ft)
            138.000
                         432.000
   1
   2
            145.994
                         431.678
   3
            153.985
                         432.044
   4
            161 916
                         433 093
   5
            169.728
                         434 819
            177.362
   6
                         437.209
   7
            184.764
                         440 245
   8
            191 878
                         443 904
            198 651
                         448 161
   9
   10
            205.035
                         452.983
            210.981
                         458.335
   11
  12
            216.447
                         464.177
            221.391
   13
                         470.466
   14
            221.693
                         470.927
Circle Center At X = 145.755 ; Y = 524.760 ; and Radius = 93.084
     Factor of Safety
*** 1.726 ***
Failure Surface Specified By 14 Coordinate Points
 Point
            X-Surf
                       Y-Surf
  No.
             (ft)
                         (ft)
                         432.000
   1
            138 000
   2
            145.994
                         431 678
   3
            153.985
                         432.044
            161.916
   4
                         433 093
   5
            169 728
                         434 819
            177 362
                         437 209
   6
            184.764
                         440.245
   7
            191.878
                         443.904
   8
            198.651
                         448.161
   9
   10
            205.035
                         452.983
  11
            210.981
                         458.335
   12
            216.447
                         464.177
   13
            221.391
                         470.466
            221.693
  14
                         470.927
Circle Center At X = 145.755; Y = 524.760; and Radius = 93.084
     Factor of Safety
*** 1.726 ***
**** END OF GSTABL7 OUTPUT ****
```


Paseo de la Colinas 18045-01/ Sec C-C' / Rotational / Seismic

z:\2018\18045-01 project dimensions - paseo de la colinas\engineering\slope stability\sec c\2018_05\sec cre.pl2 Run By: LGC Geotechnical 5/11/2018 02:58PM

Z:sec cre.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Dr. Garry H. Gregory, Ph.D., P.E., D.GE ** ** Original Version 1.0, January 1996; Current Ver. 2.005.3, Feb. 2013 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads. Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 5/11/2018 Time of Run: 02:58PM LGC Geotechnical Run By: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Input Data Filename: gineering\Slope Stability\Sec C\2018 05\sec cre.in Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En Output Filename: gineering\Slope Stability\Sec C\2018_05\sec cre.OUT Unit System: English Plotted Output Filename: Z:\2018\18045-01 Project Dimensions - Paseo de la Colinas\En gineering\Slope Stability\Sec C\2018_05\sec cre.PLT PROBLEM DESCRIPTION: Paseo de la Colinas 18045-01/ Sec C-C' / Rotational / Seismic BOUNDARY COORDINATES 8 Top Boundaries 8 Total Boundaries Y-Left X-Right Y-Right Soil Type Boundary X-Left No. (ft) (ft.) (ft.) (ft.) Below Bnd 0.00 429.00 57.00 430.00 1 57.00 430.00 98.00 430.00 2 98.00 430.00 138.00 432.00 3 138.00 432.00 173.00 452.00 1 173.00 452.00 184.00 454.00 1 5 184.00 454.00 205.00 470.00 1 205.00 470.00 241 00 472.00 1 241.00 472.00 338.00 472.00 User Specified Y-Origin = 300.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 1 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) 1 125.0 125.0 360.0 (deg) Param. (psf) No. 30 3 0.00 0 0 1 Specified Peak Ground Acceleration Coefficient (A) = 0.150(q) Specified Horizontal Earthquake Coefficient (kh) = 0.150(q) Specified Vertical Earthquake Coefficient (ky) = 0.000(q) Specified Seismic Pore-Pressure Factor = 0.000 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 30000 Trial Surfaces Have Been Generated. 30 Points Equally Spaced 1000 Surface(s) Initiate(s) From Each Of Along The Ground Surface Between X = 138.00(ft) and X = 138.00(ft) Each Surface Terminates Between X = 202.00(ft) and X = 285.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 8.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 0 Number of Trial Surfaces With Valid FS = 0 Statistical Data On All Valid FS Values: FS Max = 0.000 FS Min = 500.000 FS Ave = NaN

```
Z:sec cre.OUT Page 2
           Standard Deviation = 0.000 Coefficient of Variation = NaN %
        Failure Surface Specified By 14 Coordinate Points
          Point
                     X-Surf
                                 Y-Surf
           No.
                      (ft.)
                                  (ft)
                     138.000
                                  432,000
            1
                     145.995
            2
                                  431.727
                     153.987
                                  432.085
            3
                     161.926
                                  433.072
            4
                     169.762
                                  434.682
            5
                     177.447
                                  436,905
            6
                     184.933
                                  439.727
            8
                     192.173
                                  443.131
            9
                     199.122
                                  447.095
           10
                     205.737
                                  451.594
           11
                     211,976
                                  456,601
           12
                     217.801
                                  462.085
           13
                     223.176
                                  468.010
           14
                     225.596
                                  471.144
        Circle Center At X = 145.511 ; Y = 532.775 ; and Radius = 101.054
              Factor of Safety
*** 1.525 ***
             Individual data on the
                                       0 slices
                                                       Earthquake
                       Water Water
                                        Tie
                                               Tie
                       Force Force
                                       Force
                                             Force
                                                          Force Surcharge
Slice Width Weight
                                                               Ver
                                                                     Load
                       Top
                               Bot
                                       Norm
                                                Tan
                                                        Hor
                                       (lbs)
                                                      (lbs) (lbs)
                                                                      (lbs)
No.
       (ft)
               (lbs) (lbs) (lbs)
                                               (lbs)
        Failure Surface Specified By 14 Coordinate Points
          Point
                     X-Surf
                                Y-Surf
           No.
                      (ft)
                                  (ft)
                     138.000
                                  432,000
                     145.995
                                  431.727
            2
                     153.987
                                  432.085
            3
                     161.926
                                  433 072
            4
            5
                     169.762
                                  434.682
            6
                     177 447
                                  436.905
            7
                     184 933
                                  439 727
            8
                     192 173
                                  443 131
            9
                     199 122
                                  447 095
           10
                     205 737
                                  451 594
           11
                     211 976
                                  456 601
                                  462 085
                     217 801
           12
           13
                     223 176
                                  468 010
                     225.596
           14
                                  471.144
        Circle Center At X =
                               145.511 ; Y = 532.775 ; and Radius = 101.054
               Factor of Safety
              * * *
                    1 525
                             . . . .
         Failure Surface Specified By 14 Coordinate Points
          Point
                     X-Surf
                                 Y-Surf
           No.
                      (ft)
                                  (ft)
                     138 000
                                  432 000
            1
                     145.995
                                  431.727
            2
            3
                     153 987
                                  432 085
            4
                     161 926
                                  433 072
            5
                     169 762
                                  434 682
            6
                     177 447
                                  436 905
            7
                     184 933
                                  439 727
            8
                     192 173
                                  443 131
                                  447 095
                     199 122
            9
           10
                     205 737
                                  451 594
                     211.976
                                  456.601
           11
           12
                     217.801
                                  462.085
           13
                     223.176
                                  468.010
           14
                     225 596
                                  471 144
         Circle Center At X = 145.511 ; Y = 532.775 ; and Radius = 101.054
               Factor of Safety
              ***
                    1.525 ***
         Failure Surface Specified By 14 Coordinate Points
          Point
                     X-Surf
                                 Y-Surf
           No.
                      (ft.)
                                  (ft)
                     138.000
                                  432.000
```

Zisec	cre.OUT	Page	2

2	145.997	431.779
3	153.985	432.212
4	161.911	433.296
5	169.723	435.023
6	177.367	437.382
7	184.793	440.358
8	191.951	443.930
9	198.794	448.074
10	205.276	452.764
11	211.352	457.966
12	216.984	463.648
13 14	222.133 223.006	469.771 471.000
		144.736 ; Y = 529.460 ; and Radius = 97.692
	ctor of Safety	
***	1.526 **	*
Failure Su		ed By 14 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	138.000	432.000
2	145.997	431.779
3	153.985	432.212
4	161.911	433.296
5 6	169.723	435.023 437.382
6 7	177.367 184.793	437.382 440.358
8	191.951	440.556
9	198.794	448.074
10	205.276	452.764
11	211.352	457.966
12	216.984	463.648
13	222.133	469.771
14	223.006	471.000
Circle Cer	ter At X =	144.736 ; Y = 529.460 ; and Radius = 97.692
rau ***	1.526 **	*
Failure Su		ed By 14 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	138.000	432.000
2	145.997	431.779
3	153.985	432.212
4 5	161.911	433.296
6	169.723 177.367	435.023 437.382
7	184.793	440.358
8	191.951	443.930
9	198.794	448.074
10	205.276	452.764
11	211.352	457.966
12	216.984	463.648
13	222.133	469.771
14	223.006	471.000
Circle Cer		144.736 ; Y = 529.460 ; and Radius = 97.692
Fac ***	tor of Safety 1.526 **	*
Failure Su	1.520	ed By 14 Coordinate Points
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	138.000	432.000
2	145.989	431.575
3	153.986	431.790
4 5	161.940	432.645
6	169.800 177.516	434.133 436.245
7	185.039	438.968
8		442.285
9	192.319	
9	192.319 199.310	446.173
10	199.310 205.968	450.608
	199.310	
10	199.310 205.968	450.608
10	199.310 205.968	450.608

218.115 461.003 12 13 223.526 466.895 14 226.899 471.217 Circle Center At X = 147.340; Y = 531.197; and Radius = 99.636 Factor of Safety *** 1.526 *** Failure Surface Specified By 14 Coordinate Points Point X-Surf Y-Surf X-Surf Point (ft) (ft) No. 138.000 432.000 1 2 145.989 431.575 3 153.986 431.790 4 161.940 432.645 5 169.800 434.133 б 177.516 436.245 7 185.039 438.968 8 192.319 442.285 446.173 9 199.310 450.608 455.562 461.003 10 205.968 11 212.250 12 218.115 466.895 13 223.526 226.899 471.217 14 Circle Center At X = 147.340 ; Y = 531.197 ; and Radius = 99.636 Factor of Safety *** 1.526 *** Failure Surface Specified By 14 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 138.000 432.000 2 145.989 431.575 3 153.986 431.790 4 161.940 432.645 5 169.800 434.133 б 177.516 436.245 185.039 438.968 7 442.285 8 192.319 446.173 9 199.310 450.608 10 205.968 455.562 212.250 11 218.115 461.003 12 13 223.526 466.895 226.899 14 471.217 Circle Center At X = 147.340; Y = 531.197; and Radius = 99.636Factor of Safety *** 1.526 *** Failure Surface Specified By 14 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 138.000 432.000 1 2 145.998 431.828 3 153.987 432.256 4 161.921 433.281 5 169.756 434.897 177.448 437.096 б 439.865 7 184.953 8 192.230 443.189 447.048 199.238 9 205.936 451.422 10 11 212.288 456.285 12 218.258 461.610 13 223.813 467.368 14 227.010 471.223 Circle Center At X = 144.344 ; Y = 538.213 ; and Radius = 106.402 Factor of Safety *** 1.526 *** **** END OF GSTABL7 OUTPUT ****

Z:sec cre.OUT Page 4

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Orange County and Part of Riverside County, California

CUSD Laguna Niguel

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	12
Map Unit Descriptions	12
Orange County and Part of Riverside County, California	14
101—Alo clay, 15 to 30 percent slopes, dry	14
102—Alo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	15
133—Botella clay loam, 9 to 15 percent slopes	17
209—Sorrento clay loam, 2 to 9 percent slopes, warm MAAT, MLRA 19	9 18
References	21

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND)	MAP INFORMATION
	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points	Ø0 ♥ △	Very Stony Spot Wet Spot Other	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
ဖ	Point Features Blowout Borrow Pit	Water Fea	Special Line Features atures Streams and Canals	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
⊠ ¥ ◇	Clay Spot Closed Depression	Transport	t ation Rails Interstate Highways	Please rely on the bar scale on each map sheet for map measurements.
*	Gravel Pit Gravelly Spot	~	US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
يد بلد الله	Landfill Lava Flow Marsh or swamp	Backgrou	Local Roads Ind Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
* 0 0	Mine or Quarry Miscellaneous Water Perennial Water			accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
× + ::	Rock Outcrop Saline Spot Sandy Spot			Soil Survey Area: Orange County and Part of Riverside County, California Survey Area Data: Version 13, Sep 16, 2019
⊕ ◊	Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
\$ Ø	Slide or Slip Sodic Spot			Date(s) aerial images were photographed: Apr 11, 2018—May 5, 2018 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
101	Alo clay, 15 to 30 percent slopes, dry	3.8	12.7%
102	Alo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20	23.6	79.4%
133	Botella clay loam, 9 to 15 percent slopes	1.7	5.8%
209	Sorrento clay loam, 2 to 9 percent slopes, warm MAAT, MLRA 19	0.6	2.1%
Totals for Area of Interest		29.7	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Orange County and Part of Riverside County, California

101—Alo clay, 15 to 30 percent slopes, dry

Map Unit Setting

National map unit symbol: 2y8sm Elevation: 20 to 1,720 feet Mean annual precipitation: 13 to 16 inches Mean annual air temperature: 64 to 65 degrees F Frost-free period: 360 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Alo and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alo

Setting

Landform: Ridges Landform position (two-dimensional): Summit, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from calcareous sandstone or shale

Typical profile

A - 0 to 15 inches: clay Bkss - 15 to 22 inches: clay Cr - 22 to 59 inches: bedrock

Properties and qualities

Slope: 15 to 30 percent
Depth to restrictive feature: 22 to 26 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: D Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

Minor Components

Balcom, clay loam

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

Anaheim, clay loam

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Shoulder, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

Bonsall, clay

Percent of map unit: 5 percent Landform: Ridges Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

102—Alo clay, 30 to 50 percent slopes, warm MAAT, MLRA 20

Map Unit Setting

National map unit symbol: 2tyzn Elevation: 10 to 1,890 feet Mean annual precipitation: 12 to 21 inches Mean annual air temperature: 63 to 65 degrees F Frost-free period: 300 to 360 days Farmland classification: Not prime farmland

Map Unit Composition

Alo and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Alo

Setting Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Residuum weathered from sandstone and shale

Typical profile

A - 0 to 15 inches: clay Bkss - 15 to 22 inches: clay Cr - 22 to 79 inches: bedrock

Properties and qualities

Slope: 30 to 50 percent
Depth to restrictive feature: 20 to 30 inches to paralithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: D Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

Minor Components

Anaheim

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Balcom

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Calleguas

Percent of map unit: 3 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Bosanko

Percent of map unit: 2 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

133—Botella clay loam, 9 to 15 percent slopes

Map Unit Setting

National map unit symbol: hcm9 Elevation: 50 to 800 feet Mean annual precipitation: 12 to 25 inches Mean annual air temperature: 57 to 59 degrees F Frost-free period: 260 to 350 days Farmland classification: Not prime farmland

Map Unit Composition

Botella and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Botella

Setting

Landform: Alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Riser, flat Down-slope shape: Linear Across-slope shape: Convex Parent material: Alluvium derived from sedimentary rock

Typical profile

- H1 0 to 8 inches: clay loam
- H2 8 to 35 inches: silty clay loam
- H3 35 to 66 inches: sandy clay loam

Properties and qualities

Slope: 9 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: More than 80 inches

Frequency of flooding: None *Frequency of ponding:* None *Available water storage in profile:* High (about 10.4 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

Minor Components

Botella, loam

Percent of map unit: 4 percent Hydric soil rating: No

Mocho, loam

Percent of map unit: 4 percent Hydric soil rating: No

Sorrento, clay loam

Percent of map unit: 4 percent Hydric soil rating: No

Unnamed

Percent of map unit: 3 percent Hydric soil rating: No

209—Sorrento clay loam, 2 to 9 percent slopes, warm MAAT, MLRA 19

Map Unit Setting

National map unit symbol: 2tz07 Elevation: 20 to 2,040 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 62 to 66 degrees F Frost-free period: 320 to 365 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Sorrento and similar soils: 75 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sorrento

Setting

Landform: Alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock

Typical profile

Ap1 - 0 to 6 inches: clay loamAp2 - 6 to 12 inches: clay loamAB1 - 12 to 21 inches: silty clay loamAB2 - 21 to 27 inches: silty clay loamAB3 - 27 to 37 inches: silty clay loamBk1 - 37 to 49 inches: silty clay loamBk2 - 49 to 62 inches: silty clay loam2C - 62 to 72 inches: stratified loamy fine sand to silt loam

Properties and qualities

Slope: 2 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: High (about 11.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

Minor Components

Mocho

Percent of map unit: 10 percent Landform: Alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: LOAMY (1975) (R019XD029CA) Hydric soil rating: No

Sorrento, loam

Percent of map unit: 10 percent Landform: Alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: LOAMY (1975) (R019XD029CA) Hydric soil rating: No

Botella

Percent of map unit: 5 percent Landform: Alluvial fans Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: CLAYEY (1975) (R019XD001CA) Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf