Appendix A - Air Quality, Global Climate Change, Health Risk Assessment, Global Climate Change, and Energy Impact Analysis # TERRACINA AT REDLANDS (TTM 20320) AIR QUALITY, GLOBAL CLIMATE CHANGE, HRA, AND ENERGY IMPACT ANALYSIS City of Redlands August 16, 2021 # TERRACINA AT REDLANDS (TTM 20320) AIR QUALITY, GLOBAL CLIMATE CHANGE, HRA, AND ENERGY IMPACT ANALYSIS City of Redlands August 16, 2021 prepared by Katie Wilson, MS Catherine Howe, MS ### **GANDDINI GROUP INC** 555 Parkcenter Drive, Suite 225 Santa Ana, California 92705 (714) 795-3100 | ganddini.com # **TABLE OF CONTENTS** | | CUTIVE SUMMARY | | |----|---|----| | 1. | INTRODUCTION | | | | Purpose and Objectives | | | | Project Location | | | | Project Description | | | | Phasing and Timing | | | | Sensitive Receptors in Project Vicinity | | | 2. | AIR QUALITY ANALYSIS | | | | Existing Air Quality Conditions | | | | Local Air Quality | | | | Pollutants | | | | Other Pollutants of Concern | | | | Regulatory Setting | | | | Federal - United States Environmental Protection Agency | | | | State - California Air Resources Board | | | | Regional | | | | Local – City of Redlands | | | | Monitored Air Quality | | | | Ozone | | | | Carbon Monoxide | | | | Nitrogen Dioxide | | | | Particulate Matter | | | | Air Quality Standards | | | | Significance Thresholds | | | | Regional Air Quality | | | | Local Air Quality
Toxic Air Contaminants | | | | Odor Impacts | | | | Short-Term Construction Emissions | | | | Methodology | | | | Construction-Related Regional Impacts | | | | Construction-Related Local Impacts | | | | Construction-Related Human Health Impacts | | | | Construction-Related Toxic Air Contaminant Impacts | | | | Construction-Related Odor Impacts | | | | Long-Term Operational Emissions | | | | Operations-Related Regional Air Quality Impacts | | | | Operations-Related Local Air Quality Impacts | | | | Operations-Related Human Health Impacts | | | | Operations-Related Odor Impacts | | | | Cumulative Air Quality Impacts | | | | Project Specific Impacts | | | | Air Quality Compliance | 37 | | 3. | DIESEL EMISSIONS HEALTH RISK ASSESSMENT | 39 | | | Estimate of Emissions Factors | 40 | | | Receptor Network | 40 | | | Dispersion Modeling | | | | Model Selection | 40 | | | General Model Assumptions | 41 | |----|---|-----| | | Meteorological Data | | | | Estimation of Health Risks | | | | Cancer Risks | 41 | | | Non-Cancer Risks | 42 | | 4. | GLOBAL CLIMATE CHANGE ANALYSIS | 55 | | | Existing Greenhouse Gas Environment | 55 | | | Water Vapor | 55 | | | Carbon Dioxide (CO ₂) | | | | Methane (CH ₄) | | | | Nitrous Oxide (N ₂ O) | | | | Chlorofluorocarbons (CFC) | | | | Hydrofluorocarbons (HFC) | | | | Perfluorocarbons (PFC) | | | | Sulfur Hexafluoride (SF ₆) | | | | Aerosols | | | | Global Warming Potential | 5/ | | | Greenhouse Gas Standards and RegulationInternational | 59 | | | International
Federal | | | | State of California | | | | Regional – South Coast Air Quality Management District | | | | Local - City of Redlands | | | | Significance Thresholds | | | | Appendix G of State CEQA Guidelines | | | | Thresholds of Significance for this Project | | | | Methodology | | | | Project Greenhouse Gas Emissions | | | | Consistency With Applicable Greenhouse Gas Reduction Plans and Policies | | | | Cumulative Greenhouse Gas Impacts | | | 5. | ENERGY ANALYSIS | 80 | | | Existing Conditions | 80 | | | Overview | | | | Electricity | 81 | | | Natural Gas | 81 | | | Transportation Energy Resources | 82 | | | Regulatory Background | | | | Federal Regulations | | | | State Regulations | | | | Project Energy Demands and Energy Efficiency Measures | | | | Evaluation Criteria | | | | Methodology | | | | Construction Energy Demands | | | | Operational Energy Demands | | | | Renewable Energy and Energy Efficiency Plan Consistency Conclusions | | | 4 | EMISSIONS REDUCTION MEASURES | | | 6. | Construction Measures | | | | Operational Measures | | | _ | • | | | 7. | REFERENCES | 103 | # **APPENDICES** Appendix A Glossary Appendix B CalEEMod Model Daily Emissions Printouts Appendix C AERMOD Model Printouts Appendix D CalEEMod Model Annual Emissions Printouts and EMFAC Data # **LIST OF TABLES** | Table 1. | Local Monthly Climate Data | 6 | |-----------|--|-----| | Table 2. | State and Federal Criteria Pollutant Standards | 17 | | Table 3. | South Coast Air Basin Attainment Status | 18 | | Table 4. | Air Quality Monitoring Summary | 21 | | Table 5. | SCAQMD Air Quality Significance Thresholds | 25 | | Table 6. | Construction-Related Regional Pollutant Emissions | 30 | | Table 7. | Maximum Number of Acres Disturbed Per Day | 31 | | Table 8. | Local Construction Emissions at the Nearest Receptors | 32 | | Table 9. | Regional Operational Pollutant Emissions | 36 | | Table 10. | DPM Emissions Factors | 44 | | Table 11. | Summary of Emission Configurations | 45 | | Table 12. | General Modeling Assumptions – AERMOD Model | 46 | | Table 13. | Carcinogenic Risks and Non-Carcinogenic 3rd Trimester Exposure Scenario (0.25 Years) | 47 | | Table 14. | Carcinogenic Risks and Non-Carcinogenic Infant Exposure Scenario (2 Year) | 48 | | Table 15. | Carcinogenic Risks and Non-Carcinogenic Child Exposure Scenario (14 Year) | 49 | | Table 16. | Carcinogenic Risks and Non-Carcinogenic Adult Exposure Scenario (14 Year) | 50 | | Table 17. | Cumulative Carcinogenic Risk 30.25 Year Exposure Scenario | 51 | | Table 18. | Global Warming Potentials and Atmospheric Lifetimes | 58 | | Table 19. | Project-Related Greenhouse Gas Emissions | 77 | | Table 20. | Total Electricity System Power (California 2019) | 93 | | Table 21. | SCE 2019 Power Content Mix | 94 | | Table 22. | Project Construction Power Cost and Electricity Usage | 95 | | Table 23. | Construction Equipment Fuel Consumption Estimates | 96 | | Table 24. | Construction Worker Fuel Consumption Estimates | 97 | | Table 25. | Construction Vendor Fuel Consumption Estimates (MHD Trucks) | 98 | | Table 26. | Construction Hauling Fuel Consumption Estimates (HHD Trucks) | 99 | | Table 27. | Estimated Vehicle Operations Fuel Consumption | 100 | | Table 28. | Project Annual Operational Energy Demand Summary | 101 | | | | | # **LIST OF FIGURES** | Figure 1. | Project Location Map | 3 | |-----------|---|----| | _ | Site Plan | | | Figure 3. | AERMOD Model Source and Receptor Placement | 52 | | Figure 4. | Wind Rose: Redlands | 53 | | Figure 5. | Modeled Study Area Highest Annual DPM Emissions | 54 | # **EXECUTIVE SUMMARY** The purpose of this air quality, global climate change, health risk assessment and energy impact analysis is to provide an assessment of the impacts resulting from development of the proposed Terracina at Redlands project and to identify measures that may be necessary to reduce potentially significant impacts. #### Construction-Source Emissions Project construction-source emissions would not exceed applicable regional thresholds of significance established by the South Coast Air Quality Management District (SCAQMD). For localized emissions, the project will not exceed applicable Localized Significance Thresholds (LSTs) established by the SCAQMD. Project construction-source emissions would not conflict with the Basin Air Quality Management Plan (AQMP). As discussed herein, the project will comply with all applicable SCAQMD construction-source emission reduction rules and guidelines. Project construction source emissions would not cause or substantively contribute to violation of the California Ambient Air Quality Standards (CAAQS) or National Ambient Air Quality Standards (NAAQS). Given the temporary and short-term construction schedule, the project would not result in a long-term (i.e., lifetime or 30-year) exposure to TACs as a result of project construction. Furthermore, construction-based particulate matter (PM) emissions (including diesel exhaust emissions) do not exceed any local or regional thresholds. Therefore, impacts from TACs during construction would be less than significant. Established requirements addressing construction equipment operations, and construction material use, storage, and disposal requirements act to minimize odor impacts that may result from construction activities. Moreover, construction-source odor emissions would be temporary, short-term, and intermittent in nature and would not result in persistent impacts that would affect substantial numbers of people. Potential construction-source odor impacts are therefore considered less than significant. # Operational-Source Emissions Project operational-sourced emissions would not exceed applicable regional thresholds of significance established by the SCAQMD. Project operational-source emissions would not result in or cause a significant localized air quality or toxic air contaminant (TAC) impacts as discussed in the Operations-Related Local Air Quality Impacts section of this report. Additionally, project-related trips will not cause or result in CO concentrations exceeding applicable state and/or federal standards (CO "hotspots). The Diesel Emissions Health Risk Assessment conducted for this project showed that the cancer risk from freeway-related DPM emissions would exceed the SCAQMD MICR threshold of 10 in a million at proposed residential uses within 950 feet of the I-10 freeway. However, with incorporation of mitigation measure 1 (see Section 6 of this report), which requires the installation of MERV 13 filtration within the affected homes, the cancer risk from freeway-related DPM concentrations would be reduced to less than significant levels at affected receptor locations. Therefore, with mitigation project operational-source emissions would therefore not adversely affect sensitive receptors within the
vicinity of the project. Project operational-source emissions would not conflict with the Basin Air Quality Management Plan (AQMP). The project's emissions meet SCAQMD regional thresholds and will not result in a significant cumulative impact. The project does not propose any such uses or activities that would result in potentially significant operational-source odor impacts. Potential operational-source odor impacts are therefore considered less than significant. #### Greenhouse Gases Project-related GHG emissions would not exceed either the SCAQMD draft screening threshold of 3,000 MTCO2e per year for all land uses or the City of Redlands CAP GHG emissions threshold of 6.0 MTCOe per capita per year. Furthermore, the project's GHG emissions would not exceed the SCAQMD screening threshold (based on EO S-3-05). The project would not conflict with the goals of AB-32, SB-32, or the City of Redlands CAP; therefore, the project would not conflict with an applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases and impacts are considered to be less than significant. #### Energy For new development such as that proposed by the Terracina at Redlands project, compliance with California Building Standards Code Title 24 energy efficiency requirements (CalGreen), are considered demonstrable evidence of efficient use of energy. As discussed below, the project would provide for, and promote, energy efficiencies required under other applicable federal and State of California standards and regulations, and in so doing would meet or exceed all California Building Standards Code Title 24 standards. Moreover, energy consumed by the project's operation is calculated to be comparable to, or less than, energy consumed by other residential uses of similar scale and intensity that are constructed and operating in California. On this basis, the project would not result in the inefficient, wasteful, or unnecessary consumption of energy. Impacts are considered to be less than significant. # 1. INTRODUCTION This section describes the purpose of this air quality, global climate change, health risk assessment, and energy impact analysis, project location, proposed development, and study area. Figure 1 shows the project location map and Figure 2 illustrates the project site plan. #### **PURPOSE AND OBJECTIVES** This study was performed to address the possibility of regional/local air quality impacts and global climate change impacts, from project related air emissions. The objectives of the study include: - documentation of the atmospheric setting - discussion of criteria pollutants and greenhouse gases - discussion of the air quality and global climate change regulatory framework - analysis of the construction related air quality and greenhouse gas emissions - analysis of the operations related air quality and greenhouse gas emissions - discussion of the health risk impacts - analysis of the conformity of the proposed project with the SCAQMD AQMP - analysis of the project's energy use during construction and operation - recommendations for mitigation measures The City of Redlands is the lead agency for this air quality and greenhouse gas analysis, in accordance with the California Environmental Quality Act authorizing legislation. Although this is a technical report, every effort has been made to write the report clearly and concisely. To assist the reader with terms unique to air quality and global climate change, a definition of terms has been provided in Appendix A. #### **PROJECT LOCATION** The approximately 64.56-acre project site is located north of Reservoir Road adjacent to Wabash Avenue in the City of Redlands. The project site is currently vacant. A vicinity map showing the project location is provided on Figure 1. # **PROJECT DESCRIPTION** The proposed project involves construction of 67 single-family detached residential dwelling units. The proposed project is anticipated to be fully operational by Year 2025. Figure 2 illustrates the proposed site plan. #### **PHASING AND TIMING** The proposed project is anticipated to be operational in 2025. The project is anticipated to be built in two phases; however, in order to be conservative and consistent with the Traffic Impact Analysis, the project was assumed to be completed in one phase with construction starting no sooner than the beginning of February 2023 and being completed by mid-July 2025.¹ ¹ The Project Phasing Description (July 8, 2021) shows that the project is to be completed in two phases; however, to be conservative and consistent with the TIA completed for the proposed project, it was modeled as being completed in one phase. The construction timeline for each construction phase was based on the total timeline for the proposed project (Phases 1 and 2 combined) provided in the Project Phasing Description. Terracina at Redlands (TTM 20320) #### **S**ENSITIVE RECEPTORS IN PROJECT VICINITY Those who are sensitive to air pollution include children, the elderly, and persons with preexisting respiratory or cardiovascular illness. For purposes of CEQA, the SCAQMD considers a sensitive receptor to be a location where a sensitive individual could remain for 24 hours, such as residences, hospitals, or convalescent facilities (South Coast Air Quality Management District 2008). Commercial and industrial facilities are not included in the definition because employees do not typically remain on-site for 24 hours. The nearest sensitive receptors to the project site include the single-family detached residential dwelling located adjacent to the west and north of the project site boundaries. Figure 1 Project Location Map # 2. AIR QUALITY ANALYSIS #### **EXISTING AIR QUALITY CONDITIONS** #### **Local Air Quality** The project site is located in the City of Redlands in San Bernardino County, which is part of the South Coast Air Basin (Basin) that includes all of Orange County as well as the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. The South Coast Air Basin is located on a coastal plain with connecting broad valleys and low hills to the east. Regionally, the South Coast Air Basin is bounded by the Pacific Ocean to the southwest and high mountains to the east forming the inland perimeter. The project site is located toward the northeast portion of the South Coast Air Basin near the foot of the San Bernardino Mountains, which define the eastern boundary of the South Coast Air Basin. The climate of San Bernardino County, technically called an interior valley subclimate of the Southern California's Mediterranean-type climate, is characterized by hot dry summers, mild moist winters with infrequent rainfall, moderate afternoon breezes, and generally fair weather. Occasional periods of strong Santa Ana winds and winter storms interrupt the otherwise mild weather pattern. The clouds and fog that form along the area's coastline rarely extend as far inland as western Riverside County. When morning clouds and fog form, they typically burn off quickly after sunrise. The most important weather pattern from an air quality perspective is associated with the warm season airflow across the populated areas of the Los Angeles Basin. This airflow brings polluted air into western Riverside County late in the afternoon. This transport pattern creates unhealthful air quality that may extend to the project site particularly during the summer months. Winds are an important parameter in characterizing the air quality environment of a project site because they both determine the regional pattern of air pollution transport and control the rate of dispersion near a source. Daytime winds in western Riverside County are usually light breezes from off the coast as air moves regionally onshore from the cool Pacific Ocean to the warm Mojave Desert interior of Southern California. These winds allow for good local mixing, but as discussed above, these coastal winds carry significant amounts of industrial and automobile air pollutants from the densely urbanized western portion of the South Coast Air Basin into the interior valleys which become trapped by the mountains that border the eastern edge of the South Coast Air Basin. In the summer, strong temperature inversions may occur that limit the vertical depth through which air pollution can be dispersed. Air pollutants concentrate because they cannot rise through the inversion layer and disperse. These inversions are more common and persistent during the summer months. Over time, sunlight produces photochemical reactions within this inversion layer that creates ozone, a particularly harmful air pollutant. Occasionally, strong thermal convections occur which allows the air pollutants to rise high enough to pass over the mountains and ultimately dilute the smog cloud. In the winter, light nocturnal winds result mainly from the drainage of cool air off of the mountains toward the valley floor while the air aloft over the valley remains warm. This forms a type of inversion known as a radiation inversion. Such winds are characterized by stagnation and poor local mixing and trap pollutants such as automobile exhaust near their source. While these inversions may lead to air pollution "hot spots" in heavily developed coastal areas of the basin, there is not enough vehicular volumes in inland valleys to cause any winter air pollution problems. Despite light wind conditions, especially at night and in the early morning, winter is generally a period of good air quality in the project vicinity. The temperature and precipitation levels for the Redlands area, closest monitoring site with data, are shown below in Table 1. Table 1 shows that August is typically the warmest month and December is typically the coolest month. Rainfall in the project area varies considerably in both time and space. Almost all the annual rainfall comes from the fringes of mid-latitude storms from late November to
early April, with summers being almost completely dry. Table 1 Local Monthly Climate Data | Descriptor | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |--------------------------------|------|------|------|------|------|------|------|------|------|------|------|------| | Avg. Max. Temperature | 66.9 | 67.5 | 71 | 75.7 | 81 | 88.1 | 94.7 | 95.6 | 91.3 | 82.4 | 71.4 | 66.9 | | Avg. Min. Temperature | 41.1 | 43 | 45.3 | 48.4 | 53.2 | 57.3 | 62.1 | 62.8 | 59.6 | 53.1 | 44.1 | 40.9 | | Avg. Total Precipitation (in.) | 2.66 | 2.88 | 2.1 | 0.99 | 0.35 | 0.11 | 0.07 | 0.16 | 0.23 | 0.62 | 1.01 | 2.14 | Source: https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca5790 Data from the Redlands, CA station (047306). #### **Pollutants** Pollutants are generally classified as either criteria pollutants or non-criteria pollutants. Federal ambient air quality standards have been established for criteria pollutants, whereas no ambient standards have been established for non-criteria pollutants. For some criteria pollutants, separate standards have been set for different periods. Most standards have been set to protect public health. For some pollutants, standards have been based on other values (such as protection of crops, protection of materials, or avoidance of nuisance conditions). A summary of federal and state ambient air quality standards is provided in the Regulatory Framework section. #### Criteria Pollutants The criteria pollutants consist of: ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide, lead, and particulate matter. These pollutants can harm your health and the environment, and cause property damage. The Environmental Protection Agency (EPA) calls these pollutants "criteria" air pollutants because it regulates them by developing human health-based and/or environmentally-based criteria for setting permissible levels. The following provides descriptions of each of the criteria pollutants. #### Nitrogen Dioxides Nitrogen Oxides (NOx) is the generic term for a group of highly reactive gases which contain nitrogen and oxygen. While most NOx are colorless and odorless, concentrations of nitrogen dioxide (NO_2) can often be seen as a reddish-brown layer over many urban areas. NOx form when fuel is burned at high temperatures, as in a combustion process. The primary manmade sources of NOx are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuel. NOx reacts with other pollutants to form, ground-level ozone, nitrate particles, acid aerosols, as well as NO_2 , which cause respiratory problems. NOx and the pollutants formed from NOx can be transported over long distances, following the patterns of prevailing winds. Therefore, controlling NOx is often most effective if done from a regional perspective, rather than focusing on the nearest sources. #### Ozone Ozone (O₃) is not usually emitted directly into the air but at ground-level is created by a chemical reaction between NOx and volatile organic compounds (VOC) in the presence of sunlight. Motor vehicle exhaust, industrial emissions, gasoline vapors, chemical solvents as well as natural sources emit NOx and VOC that help form ozone. Ground-level ozone is the primary constituent of smog. Sunlight and hot weather cause ground-level ozone to form with the greatest concentrations usually occurring downwind from urban areas. Ozone is subsequently considered a regional pollutant. Ground-level ozone is a respiratory irritant and an oxidant that increases susceptibility to respiratory infections and can cause substantial damage to vegetation and other materials. Because NOx and VOC are ozone precursors, the health effects associated with ozone are also indirect health effects associated with significant levels of NOx and VOC emissions. #### Carbon Monoxide Carbon monoxide (CO) is a colorless, odorless gas that is formed when carbon in fuel is not burned completely. It is a component of motor vehicle exhaust, which contributes about 56 percent of all CO emissions nationwide. In cities, 85 to 95 percent of all CO emissions may come from motor vehicle exhaust. Other sources of CO emissions include industrial processes (such as metals processing and chemical manufacturing), residential wood burning, and natural sources such as forest fires. Woodstoves, gas stoves, cigarette smoke, and unvented gas and kerosene space heaters are indoor sources of CO. The highest levels of CO in the outside air typically occur during the colder months of the year when inversion conditions are more frequent. The air pollution becomes trapped near the ground beneath a layer of warm air. CO is described as having only a local influence because it dissipates quickly. Since CO concentrations are strongly associated with motor vehicle emissions, high CO concentrations generally occur in the immediate vicinity of roadways with high traffic volumes and traffic congestion, active parking lots, and in automobile tunnels. Areas adjacent to heavily traveled and congested intersections are particularly susceptible to high CO concentrations. CO is a public health concern because it combines readily with hemoglobin and thus reduces the amount of oxygen transported in the bloodstream. The health threat from lower levels of CO is most serious for those who suffer from heart disease such as angina, clogged arteries, or congestive heart failure. For a person with heart disease, a single exposure to CO at low levels may cause chest pain and reduce that person's ability to exercise; repeated exposures may contribute to other cardiovascular effects. High levels of CO can affect even healthy people. People who breathe high levels of CO can develop vision problems, reduced ability to work or learn, reduced manual dexterity, and difficulty performing complex tasks. At extremely high levels, CO is poisonous and can cause death. #### Sulfur Dioxide Sulfur Oxide (SOx) gases (including sulfur dioxide [SO2]) are formed when fuel containing sulfur, such as coal and oil is burned, and from the refining of gasoline. SOx dissolves easily in water vapor to form acid and interacts with other gases and particles in the air to form sulfates and other products that can be harmful to people and the environment. #### Lead Lead (Pb) is a metal found naturally in the environment as well as manufactured products. The major sources of lead emissions have historically been motor vehicles and industrial sources. Due to the phase out of leaded gasoline, metal processing is now the primary source of lead emissions to the air. High levels of lead in the air are typically only found near lead smelters, waste incinerators, utilities, and lead-acid battery manufacturers. Exposure of fetuses, infants and children to low levels of lead can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased lead levels are associated with increased blood pressure. #### Particulate Matter Particulate matter (PM) is the term for a mixture of solid particles and liquid droplets found in the air. Particulate matter is made up of a number of components including acids (such as nitrates and sulfates), organic chemicals, metals, and soil or dust particles. The size of particles is directly linked to their potential for causing health problems. Particles that are less than 10 micrometers in diameter (PM10) are the particles that generally pass through the throat and nose and enter the lungs. Once inhaled, these particles can affect the heart and lungs and cause serious health effects. Particles that are less than 2.5 micrometers in diameter (PM2.5) have been designated as a subset of PM10 due to their increased negative health impacts and its ability to remain suspended in the air longer and travel further. #### Reactive Organic Gases (ROG) Although not a criteria pollutant, reactive organic gases (ROGs), or volatile organic compounds (VOCs), are defined as any compound of carbon—excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate—that participates in atmospheric photochemical reactions. Although there are slight differences in the definition of ROGs and VOCs, the two terms are often used interchangeably. Indoor sources of VOCs include paints, solvents, aerosol sprays, cleansers, tobacco smoke, etc. Outdoor sources of VOCs are from combustion and fuel evaporation. A reduction in VOC emissions reduces certain chemical reactions that contribute to the formulation of ozone. VOCs are transformed into organic aerosols in the atmosphere, which contribute to higher PM10 and lower visibility. #### **Other Pollutants of Concern** #### Toxic Air Contaminants In addition to the above-listed criteria pollutants, toxic air contaminants (TACs) are another group of pollutants of concern. Sources of toxic air contaminants include industrial processes such as petroleum refining and chrome plating operations, commercial operations such as gasoline stations and dry cleaners, and motor vehicle exhaust. Cars and trucks release at least forty different toxic air contaminants. The most important of these toxic air contaminants, in terms of health risk, are diesel particulates, benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Public exposure to toxic air contaminants can result from emissions from normal operations as well as from accidental releases. Health effects of toxic air contaminants include cancer, birth defects, neurological damage, and death. Toxic air contaminants are less pervasive in the urban atmosphere than criteria air pollutants, however they are linked to short-term (acute) or long-term (chronic or carcinogenic) adverse human health effects. There are hundreds of different types of toxic air contaminants with varying degrees of toxicity. Sources of toxic air contaminants
include industrial processes, commercial operations (e.g., gasoline stations and dry cleaners), and motor vehicle exhaust. According to the 2013 California Almanac of Emissions and Air Quality, the majority of the estimated health risk from toxic air contaminants can be attributed to relatively few compounds, the most important of which is diesel particulate matter (DPM). Diesel particulate matter is a subset of PM2.5 because the size of diesel particles are typically 2.5 microns and smaller. The identification of diesel particulate matter as a toxic air contaminant in 1998 led the California Air Resources Board (CARB) to adopt the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-fueled Engines and Vehicles in September 2000. The plan's goals are a 75-percent reduction in diesel particulate matter by 2010 and an 85-percent reduction by 2020 from the 2000 baseline. Diesel engines emit a complex mixture of air pollutants, composed of gaseous and solid material. The visible emissions in diesel exhaust are known as particulate matter or PM, which includes carbon particles or "soot". Diesel exhaust also contains a variety of harmful gases and over 40 other cancercausing substances. California's identification of diesel particulate matter as a toxic air contaminant was based on its potential to cause cancer, premature deaths, and other health problems. Exposure to diesel particulate matter is a health hazard, particularly to children whose lungs are still developing and the elderly who may have other serious health problems. Overall, diesel engine emissions are responsible for the majority of California's potential airborne cancer risk from combustion sources. #### Asbestos Asbestos is listed as a TAC by the ARB and as a Hazardous Air Pollutant by the EPA. Asbestos occurs naturally in mineral formations and crushing or breaking these rocks, through construction or other means, can release asbestiform fibers into the air. Asbestos emissions can result from the sale or use of asbestos-containing materials, road surfacing with such materials, grading activities, and surface mining. The risk of disease is dependent upon the intensity and duration of exposure. When inhaled, asbestos fibers may remain in the lungs and with time may be linked to such diseases as asbestosis, lung cancer, and mesothelioma. Naturally occurring asbestos is not present in San Bernardino County. The nearest likely locations of naturally occurring asbestos, as identified in the <u>General Location Guide for Ultramafic Rocks in California</u> prepared by the California Division of Mines and Geology, is located at Asbestos Mountain in the San Jacinto Mountains, approximately 47 miles southwest of the project site. Due to the distance to the nearest natural occurrences of asbestos, the project site is not likely to contain asbestos. #### **REGULATORY SETTING** The proposed project is addressed through the efforts of various international, federal, state, regional, and local government agencies. These agencies work jointly, as well as individually, to improve air quality through legislation, regulations, planning, policy-making, education, and a variety of programs. The agencies responsible for improving the air quality are discussed below. # Federal - United States Environmental Protection Agency The United States Environmental Protection Agency (EPA) is responsible for setting and enforcing the National Ambient Air Quality Standards (NAAQS) for atmospheric pollutants. It regulates emission sources that are under the exclusive authority of the federal government, such as aircraft, ships, and certain locomotives. The National Ambient Air Quality Standards (NAAQS) pollutants were identified using medical evidence and are shown below in Table 2. The EPA and the California Air Resource Board (CARB) designate air basins where ambient air quality standards are exceeded as "nonattainment" areas. If standards are met, the area is designated as an "attainment" area. If there is inadequate or inconclusive data to make a definitive attainment designation, they are considered "unclassified." National nonattainment areas are further designated as marginal, moderate, serious, severe, or extreme as a function of deviation from standards. Each standard has a different definition, or 'form' of what constitutes attainment, based on specific air quality statistics. For example, the Federal 8hour CO standard is not to be exceeded more than once per year; therefore, an area is in attainment of the CO standard if no more than one 8-hour ambient air monitoring values exceeds the threshold per year. In contrast, the Federal annual PM2.5 standard is met if the three-year average of the annual average PM2.5 concentration is less than or equal to the standard. Attainment status is shown in Table 3. As part of its enforcement responsibilities, the EPA requires each state with federal nonattainment areas to prepare and submit a State Implementation Plan (SIP) that demonstrates the means to attain the national standards. The State Implementation Plan (SIP) must integrate federal, state, and local components and regulations to identify specific measures to reduce pollution, using a combination of performance standards and market-based programs within the timeframe identified in the State Implementation Plan (SIP). As indicated below in Table 3, the Basin has been designated by the EPA as a non-attainment area for ozone (O₃) and suspended particulates (PM10 and PM2.5). Currently, the Basin is in attainment with the ambient air quality standards for carbon monoxide (CO), lead, sulfur dioxide (SO₂), suspended particulate matter (PM-2.5), and nitrogen dioxide (NO₂). #### **State - California Air Resources Board** The California Air Resources Board (CARB), which is a part of the California Environmental Protection Agency, is responsible for the coordination and administration of both federal and state air pollution control programs within California. In this capacity, the CARB conducts research, sets the California Ambient Air Quality Standards (CAAQS), compiles emission inventories, develops suggested control measures, provides oversight of local programs, and prepares the State Implementation Plan (SIP). The California Ambient Air Quality Standards (CAAQS) for criteria pollutants are shown in Table 2. In addition, the CARB establishes emission standards for motor vehicles sold in California, consumer products (e.g., hairspray, aerosol paints, and barbeque lighter fluid), and various types of commercial equipment. Furthermore, the motor vehicle emission standards established by CARB include compliance with the Safer Affordable Fuel-Efficient Vehicles (SAFE) Rule, issued by NHTSA and EPA in March 2020 (published on April 30, 2020 and effective after June 29, 2020). The SAFE Rule sets fuel economy and carbon dioxide standards that increase 1.5 percent in stringency each year from model years 2021 through 2026, and apply to both passenger cars and light trucks. CARB. It also sets fuel specifications to further reduce vehicular emissions. The South Coast Air Basin has been designated by the CARB as a nonattainment area for ozone, PM10 and PM2.5. Currently, the South Coast Air Basin is in attainment with the ambient air quality standards for CO, lead, SO2, NO2, and sulfates and is unclassified for visibility reducing particles and Hydrogen Sulfide. On June 20, 2002, the CARB revised the PM10 annual average standard to 20 μ g/m3 and established an annual average standard for PM2.5 of 12 μ g/m3. These standards were approved by the Office of Administrative Law in June 2003 and are now effective. On September 27, 2007 CARB approved the South Coast Air Basin and the Coachella Valley 2007 Air Quality Management Plan for Attaining the Federal 8-hour Ozone and PM2.5 Standards. The plan projected attainment for the 8-hour Ozone standard by 2024 and the PM2.5 standard by 2015. On December 12, 2008 the CARB adopted Resolution 08-43, which limits NOx, PM10 and PM2.5 emissions from on-road diesel truck fleets that operate in California. On October 12, 2009 Executive Order R-09-010 was adopted that codified Resolution 08-43 into Section 2025, Title 13 of the California Code of Regulations. This regulation requires that by the year 2023 all commercial diesel trucks that operate in California shall meet model year 2010 (Tier 4) or latter emission standards. In the interim period, this regulation provides annual interim targets for fleet owners to meet. This regulation also provides a few exemptions including a onetime per year 3-day pass for trucks registered outside of California. The CARB is also responsible for regulations pertaining to toxic air contaminants. The Air Toxics "Hot Spots" Information and Assessment Act (AB 2588, 1987, Connelly) was enacted in 1987 as a means to establish a formal air toxics emission inventory risk quantification program. AB 2588, as amended, establishes a process that requires stationary sources to report the type and quantities of certain substances their facilities routinely release into the South Coast Air Basin. The data is ranked by high, intermediate, and low categories, which are determined by: the potency, toxicity, quantity, volume, and proximity of the facility to nearby receptors. AB 617 Nonvehicular air pollution: criteria air pollutants and toxic air contaminants This bill requires the state board to develop a uniform statewide system of annual reporting of emissions of criteria air pollutants and toxic air contaminants for use by certain categories of stationary sources. The bill requires those stationary sources to report their annual emissions of criteria air pollutants and toxic air contaminants, as specified. This bill required the state board, by October 1, 2018, to prepare a monitoring plan regarding technologies for monitoring criteria air pollutants and toxic air contaminants and the need for and benefits of
additional community air monitoring systems, as defined. The bill requires the state board to select, based on the monitoring plan, the highest priority locations in the state for the deployment of community air monitoring systems. The bill requires an air district containing a selected location, by July 1, 2019, to deploy a system in the selected location. The bill would authorize the air district to require a stationary source that emits air pollutants in, or that materially affect, the selected location to deploy a fence-line monitoring system, as defined, or other specified real-time, on-site monitoring. The bill authorizes the state board, by January 1, 2020, and annually thereafter, to select additional locations for the deployment of the systems. The bill would require air districts that have deployed a system to provide to the state board air quality data produced by the system. By increasing the duties of air districts, this bill would impose a statemandated local program. The bill requires the state board to publish the data on its Internet Web site. #### Regional The SCAQMD is the agency principally responsible for comprehensive air pollution control in the South Coast Air Basin. To that end, as a regional agency, the SCAQMD works directly with the Southern California Association of Governments (SCAG), county transportation commissions, and local governments and cooperates actively with all federal and state agencies. # South Coast Air Quality Management District The SCAQMD develops rules and regulations, establishes permitting requirements for stationary sources, inspects emission sources, and enforces such measures through educational programs or fines, when necessary. The SCAQMD is directly responsible for reducing emissions from stationary, mobile, and indirect sources. It has responded to this requirement by preparing a sequence of AQMPs. On June 30, 2016, the SCAQMD released its Draft 2016 AQMP. The 2016 AQMP is a regional blueprint for achieving the federal air quality standards and healthful air. # Air Quality Management Plan The 2016 AQMP includes both stationary and mobile source strategies to ensure that rapidly approaching attainment deadlines are met, that public health is protected to the maximum extent feasible, and that the region is not faced with burdensome sanctions if the Plan is not approved or if the NAAQS are not met on time. As with every AQMP, a comprehensive analysis of emissions, meteorology, atmospheric chemistry, regional growth projections, and the impact of existing control measures is updated with the latest data and methods. The most significant air quality challenge in the Basin is to reduce nitrogen oxide (NOx) emissions sufficiently to meet the upcoming ozone standard deadlines. On March 23, 2017 the CARB approved the 2016 AQMP. The primary goal of this Air Quality Management Plan is to meet clean air standards and protect public health, including ensuring benefits to environmental justice and disadvantaged communities. Now that the Plan has been approved by the CARB, it has been forwarded to the U.S. EPA for its review. The Plan was approved by the EPA on June 15, 2017. South Coast AQMD has initiated the development of the 2022 AQMP to address the attainment of the 2015 8-hour ozone standard (70 ppb) for South Coast Air Basin and Coachella Valley. To support the development of mobile source strategies for the 2022 AQMP, South Coast AQMD, in conjunction with California Air Resources Board, has established Mobile Source Working Groups which are open to all interested parties. #### SCAQMD Rules and Regulations During construction and operation, the project must comply with applicable rules and regulations. The following are rules that the project may be required to comply with, either directly, or indirectly: #### SCAQMD Rule 402 Prohibits a person from discharging from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. #### SCAQMD Rule 403 Governs emissions of fugitive dust during construction and operation activities. Compliance with this rule is achieved through application of standard Best Management Practices, such as application of water or chemical stabilizers to disturbed soils, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 miles per hour, sweeping loose dirt from paved site access roadways, cessation of construction activity when winds exceed 25 mph, and establishing a permanent ground cover on finished sites. Rule 403 requires that fugitive dust be controlled with best available control measures so that the presence of such dust does not remain visible in the atmosphere beyond the property line of the emission source. In addition, SCAQMD Rule 403 requires implementation of dust suppression techniques to prevent fugitive dust from creating a nuisance off-site. Applicable dust suppression techniques from Rule 403 are summarized below. Implementation of these dust suppression techniques can reduce the fugitive dust generation (and thus the PM₁₀ component). Compliance with these rules would reduce impacts on nearby sensitive receptors. Rule 403 measures may include but are not limited to the following: Apply nontoxic chemical soil stabilizers according to manufacturers' specifications to all inactive construction areas (previously graded areas inactive for 10 days or more). - Water active sites at least three times daily. (Locations where grading is to occur will be thoroughly watered prior to earthmoving.) - Cover all trucks hauling dirt, sand, soil, or other loose materials, or maintain at least 0.6 meters (2 feet) of freeboard (vertical space between the top of the load and top of the trailer) in accordance with the requirements of California Vehicle Code section 23114. - Reduce traffic speeds on all unpaved roads to 15 miles per hour (mph) or less. - Suspension of all grading activities when wind speeds (including instantaneous wind gusts) exceed 25 - Bumper strips or similar best management practices shall be provided where vehicles enter and exit the construction site onto paved roads or wash off trucks and any equipment leaving the site each trip. - Replanting disturbed areas as soon as practical. - During all construction activities, construction contractors shall sweep on-site and off-site streets if silt is carried to adjacent public thoroughfares, to reduce the amount of particulate matter on public streets. All sweepers shall be compliant with SCAQMD Rule 1186.1, Less Polluting Sweepers. # SCAQMD Rule 445 Prohibits permanently installed wood burning devices into any new development. A wood burning device means any fireplace, wood burning heater, or pellet-fueled wood heater, or any similarly enclosed, permanently installed, indoor or outdoor device burning any solid fuel for aesthetic or space-heating purposes, which has a heat input of less than one million British thermal units per hour. #### SCAQMD Rule 481 Applies to all spray painting and spray coating operations and equipment. The rule states that a person shall not use or operate any spray painting or spray coating equipment unless one of the following conditions is met: - (1) The spray coating equipment is operated inside a control enclosure, which is approved by the Executive Officer. Any control enclosure for which an application for permit for new construction, alteration, or change of ownership or location is submitted after the date of adoption of this rule shall be exhausted only through filters at a design face velocity not less than 100 feet per minute nor greater than 300 feet per minute, or through a water wash system designed to be equally effective for the purpose of air pollution control. - (2) Coatings are applied with high-volume low-pressure, electrostatic and/or airless spray equipment. - (3) An alternative method of coating application or control is used which has effectiveness equal to or greater than the equipment specified in the rule. #### SCAQMD Rule 1108 Governs the sale, use, and manufacturing of asphalt and limits the volatile organic compound (VOC) content in asphalt used in the South Coast Air Basin. This rule would regulate the VOC content of asphalt used during construction. Therefore, all asphalt used during construction of the project must comply with SCAQMD Rule 1108. #### SCAQMD Rule 1113 Governs the sale, use, and manufacturing of architectural coating and limits the VOC content in paints and paint solvents. This rule regulates the VOC content of paints available during construction. Therefore, all paints and solvents used during construction and operation of the project must comply with SCAQMD Rule 1113. #### SCAQMD Rule 1143 Governs the manufacture, sale, and use of paint thinners and solvents used in thinning of coating materials, cleaning of coating application equipment, and other solvent cleaning operations by limiting their VOC content. This rule regulates the VOC content of solvents used during construction. Solvents used during the construction phase must comply with this rule. #### SCAQMD Rule 1186 Limits the presence of fugitive dust on paved and unpaved roads and sets certification protocols and requirements for street sweepers that are under contract to provide sweeping services to any federal, state, county, agency or special district such as water, air, sanitation, transit, or school district. #### SCAQMD Rule 1303 Governs the permitting of re-located or new major emission sources, requiring Best Available Control Measures and setting significance limits for PM_{10} among other pollutants. #### SCAQMD Rule 1401 New Source Review of Toxic Air Contaminants, specifies limits for maximum individual
cancer risk, cancer burden, and non-cancer acute and chronic hazard index from new permit units, relocations, or modifications to existing permit units, which emit toxic air contaminants. #### SCAQMD Rule 1403 Asbestos Emissions from Demolition/Renovation Activities, specifies work practice requirements to limit asbestos emissions from building demolition and renovation activities, including the removal and associated disturbance of asbestos-containing materials (ACM). #### SCAQMD Rule 2202 On-Road Motor Vehicle Mitigation Options, is to provide employers with a menu of options to reduce mobile source emissions generated from employee commutes, to comply with federal and state Clean Air Act requirements, Health & Safety Code Section 40458, and Section 182(d)(1)(B) of the federal Clean Air Act. It applies to any employer who employs 250 or more employees on a full or part-time basis at a worksite for a consecutive six-month period calculated as a monthly average. #### Air Quality Guidance Documents #### SCAQMD CEQA Handbook Although the SCAQMD is responsible for regional air quality planning efforts, it does not have the authority to directly regulate air quality issues associated with plans and new development projects throughout the South Coast Air Basin. Instead, this is controlled through local jurisdictions in accordance with the California Environmental Quality Act (CEQA). In order to assist local jurisdictions with air quality compliance issues the CEQA Air Quality Handbook (SCAQMD CEQA Handbook) prepared by the SCAQMD (1993) with the most current updates found at http://www.aqmd.gov/ceqa/hdbk.html, was developed in accordance with the projections and programs of the AQMP. The purpose of the SCAQMD CEQA Handbook is to assist Lead Agencies, as well as consultants, project proponents, and other interested parties in evaluating a proposed project's potential air quality impacts. Specifically, the SCAQMD CEQA Handbook explains the procedures that the SCAQMD recommends be followed for the environmental review process required by CEQA. The SCAQMD CEQA Handbook provides direction on how to evaluate potential air quality impacts, how to determine whether these impacts are significant, and how to mitigate these impacts. SCAQMD is in the process of developing an "Air Quality Analysis Guidance Handbook" to replace the CEQA Air Quality Handbook approved by the AQMD Governing Board in 1993. The 1993 CEQA Air Quality Handbook is still available but not online. In addition, there are sections of the 1993 Handbook that are obsolete. In order to assist the CEQA practitioner in conducting an air quality analysis while the new Handbook is being prepared, supplemental information regarding: significance thresholds and analysis, emissions factors, cumulative impacts emissions analysis, and other useful subjects, are available at the SCAQMD website². The SCAQMD CEQA Handbook and supplemental information is used in this analysis. #### Southern California Association of Governments The SCAG is the regional planning agency for Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial Counties and addresses regional issues relating to transportation, the economy, community development and the environment. SCAG is the Federally designated MPO for the majority of the southern California region and is the largest MPO in the nation. With respect to air quality planning, SCAG has prepared the Regional Transportation Plan and Regional Transportation Improvement Plan (RTIP), which addresses regional development and growth forecasts. These plans form the basis for the land use and transportation components of the AQMP, which are utilized in the preparation of air quality forecasts and in the consistency analysis included in the AQMP. The Regional Transportation Plan, Regional Transportation Improvement Plan, and AQMP are based on projections originating within the City and County General Plans. On April 7, 2016, SCAG's Regional Council adopted the 2016-2040 Regional Transportation Plan/ Sustainable Communities Strategy (2016 RTP/SCS or Plan). The Plan is a long-range visioning plan that balances future mobility and housing needs with economic, environmental and public health goals. The Plan charts a course for closely integrating land use and transportation - so that the region can grow smartly and sustainably. It outlines more than \$556.5 billion in transportation system investments through 2040. The Plan was prepared through a collaborative, continuous, and comprehensive process with input from local governments, county transportation commissions, tribal governments, non-profit organizations, businesses and local stakeholders within the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura. In June 2016, SCAG received its conformity determination from the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA) indicating that all air quality conformity requirements for the 2016 RTP/SCS and associated 2015 FTIP Consistency Amendment through Amendment 15-12 have been met. On May 7, 2020, SCAG's Regional Council adopted Connect SoCal (2020 - 2045 Regional Transportation Plan/Sustainable Communities Strategy) for federal transportation conformity purposes only. In light of the COVID-19 pandemic, the Regional Council will consider approval of Connect SoCal in its entirety and for all other purposes within 120 days from May 7, 2020. Connect SoCal is a long-range visioning plan that builds upon and expands land use and transportation strategies established over several planning cycles to increase mobility options and achieve a more sustainable growth pattern. Connect SoCal outlines more than \$638 billion in transportation system investments through 2045. It was prepared through a collaborative, continuous, and comprehensive process with input from local governments, county transportation commissions, tribal governments, non-profit organizations, businesses and local stakeholders within the counties of Imperial, Los Angeles, Orange, Riverside, San Bernardino and Ventura. #### **Local - City of Redlands** Local jurisdictions, such as the City of Redlands, have the authority and responsibility to reduce air pollution through its police power and decision-making authority. Specifically, the City is responsible for the assessment and mitigation of air emissions resulting from its land use decisions. The City is also responsible for the implementation of transportation control measures as outlined in the 2016 AQMP. Examples of such measures include bus turnouts, energy-efficient streetlights, and synchronized traffic signals. In accordance with CEQA requirements and the CEQA review process, the City assesses the air quality impacts of new ² http://www.agmd.gov/home/regulations/cega/air-quality-analysis-handbook. development projects, requires mitigation of potentially significant air quality impacts by conditioning discretionary permits, and monitors and enforces implementation of such mitigation. The City relies on the expertise of the SCAQMD and utilizes the SCAQMD CEQA Air Quality Handbook as the guidance document for the environmental review of plans and development proposals within its jurisdiction. The Healthy Community Element of the City of Redlands General Plan establishes principles and actions to improve air quality in the City. Applicable principles and actions include: - **Policy 7-P.44** Protect air quality within the city and support efforts for enhanced regional air quality. - Policy 7-P.46 Increase average vehicle ridership during peak commute hours as a way of reducing vehicle miles traveled and peak period auto travel. - Policy 7-P.49 Protect sensitive receptors from exposure to hazardous concentrations of air pollutants. - Action 7-P.147 Cooperate with the ongoing efforts of the U.S. Environmental Protection Agency, the South Coast Air Quality Management District, and the State of California Air Resources Board in improving air quality in the regional air basin. - Action 7-P.46 Continue to monitor the City's compliance with State-mandated GHG emissions, as provided for in the Climate Action Plan. Make timely adjustments to City policies as required to continue meeting State GHG targets, and as changes in technology, federal and State programs, or other circumstances warrant. - Action 7-P.149 Ensure that construction and grading projects minimize short-term impacts to air quality. - Action 7-P.152 Enforce regulations to prevent trucks from excessive idling in residential areas. - Action 7-P.153 Require applicants for sensitive land uses (e.g., residences, schools, daycare centers, playgrounds, and medical facilities) to site development and/or incorporate design features (e.g., pollution prevention, pollution reduction, barriers, landscaping, ventilation systems, or other measures) to minimize the potential impacts of air pollution on sensitive receptors. - Action 7-P.154 Require applicants for sensitive land uses within a Proposition 65 warning contour to conduct a health risk assessment and mitigate any health impacts to a less than significant level. # Table 2 State and Federal Criteria Pollutant Standards | | Concentration / Averaging Time | | | | | | |---|---|-------------------------------------|--
--|--|--| | Air Pollutant | California Standards | Federal Primary
Standards | Most Relevant Effects | | | | | Ozone (O ₃) | 0.09 ppm/1-hour
0.07 ppm/8-hour | 0.070 ppm/8-hour | (a) Decline in pulmonary function and localized lung edema in humans and animals; (b) Risk to public health implied by alterations in pulmonary morphology and host defense in animals; (c) Increased mortality risk; (d) Risk to public health implied by altered connective tissue metabolism and altered pulmonary morphology in animals after long-term exposures and pulmonary function decrements in chronically exposed humans; (e) Vegetation damage; and (f) Property damage. | | | | | Carbon
Monoxide
(CO) | 20.0 ppm/1-hour
9.0 ppm/8-hour | 35.0 ppm/1-hour
9.0 ppm/8-hour | (a) Aggravation of angina pectoris and other aspects of coronary heart disease; (b) Decreased exercise tolerance in persons with peripheral vascular disease and lung disease; (c) Impairment of central nervous system functions; and (d) Possible increased risk to fetuses. | | | | | Nitrogen
Dioxide (NO ₂) | 0.18 ppm/1-hour
0.03 ppm/annual | 100 ppb/1-hour
0.053 ppm/annual | (a) Potential to aggravate chronic respiratory disease and respiratory symptoms in sensitive groups; (b) Risk to public health implied by pulmonary and extra-pulmonary biochemical and cellular changes and pulmonary structural changes; and (c) Contribution to atmospheric discoloration. | | | | | Sulfur Dioxide
(SO ₂) | 0.25 ppm/1-hour
0.04 ppm/24-hour | 75 ppb/1-hour
0.14 ppm/annual | (a) Bronchoconstriction accompanied by symptoms which may include wheezing, shortness of breath and chest tightness, during exercise or physical activity in persons with asthma. | | | | | Suspended
Particulate
Matter (PM ₁₀) | | | (a) Exacerbation of symptoms in sensitive patients with respiratory or cardiovascular | | | | | Suspended
Particulate
Matter (PM _{2.5}) | 12 μg/m³ / annual | 35 μg/m³/24-hour
12 μg/m³/annual | disease; (b) Declines in pulmonary function growth in children; (c) Increased risk of premature death from heart or lung diseases in elderly. | | | | | Sulfates | 25 μg/m³/24-hour | No Federal Standards | (a) Decrease in ventilatory function; (b) Aggravation of asthmatic symptoms; (c) Aggravation of cardio-pulmonary disease; (d) Vegetation damage; (e) Degradation of visibility; (f) property damage. | | | | | Lead | 1.5 µg/m³/30-day | 0.15 μg/m³/3-month rolling | (a) Learning disabilities; (b) Impairment of blood formation and nerve conduction. | | | | | Visibility
Reducing
Particles | Extinction coefficient
of 0.23 per kilometer-
visibility of 10 miles or
more due to particles
when humidity is less
than 70 percent. | No Federal Standards | Visibility impairment on days when relative humidity is less than 70 percent. | | | | Source: http://www3.epa.gov/climatechange/ghgemissions/gases.html Table 3 South Coast Air Basin Attainment Status | Pollutant | State Status | National Status | | | |------------------|---------------|--------------------------|--|--| | Ozone | Nonattainment | Nonattainment (Extreme) | | | | Carbon monoxide | Attainment | Maintenance (Serious) | | | | Nitrogen dioxide | Attainment | Maintenance (Primary) | | | | Sulfur dioxide | Attainment | Attainment/Unclassified | | | | PM10 | Nonattainment | Maintenance (Serious) | | | | PM2.5 | Nonattainment | Nonattainment (Moderate) | | | $Source: (Federal \ and \ State \ Status): California \ Air \ Resources \ Board \ (2020) \ https://ww2.arb.ca.gov/resources/documents/maps-state-and-federal-area-designations \ \& \ US \ EPA \ (2020) \ https://www.epa.gov/green-book.$ #### MONITORED AIR QUALITY The air quality at any site is dependent on the regional air quality and local pollutant sources. Regional air quality is determined by the release of pollutants throughout the air basin. Estimates of the existing emissions in the Basin provided in the Final 2016 Air Quality Management Plan prepared by SCAQMD (March 2017) indicate that collectively, mobile sources account for 60 percent of the VOC, 90 percent of the NOx emissions, 95 percent of the CO emissions and 34 percent of directly emitted PM2.5, with another 13 percent of PM2.5 from road dust. The SCAQMD has divided the South Coast Air Basin into 38 air-monitoring areas with a designated ambient air monitoring station representative of each area. The project site is located in the East San Bernardino Valley Air Monitoring Area (Area 35). The nearest air monitoring station to the project site is the Redland - Dearborn Monitoring Station (Redlands Station). The Redlands Station is located approximately 1.4 miles northwest of the project site at 500 N. Dearborn, Redlands. As not all monitoring stations monitor all pollutants, data was also taken from the San Bernardino – 4th Street Monitoring Station (San Bernardino Station) located approximately 8.83 miles northwest of the project site at 24302 4th Street, San Bernardino was also utilized. However, it should be noted that due to the air monitoring stations distances from the project site, recorded air pollution levels at the air monitoring station reflect with varying degrees of accuracy, local air quality conditions at the project site. Table 4 presents the monitored pollutant levels from the Redlands and San Bernardino Stations. Table 4 summarizes 2017 through 2019 published monitoring data, which is the most recent 3-year period available. The data shows that during the past few years, the project area has exceeded the ozone standards. #### Ozone During the 2017 to 2019 monitoring period, the State 1-hour concentration standard for ozone was exceeded between 53 and 80 days each year at the Redlands Station. The State 8-hour ozone standard has been exceeded between 99 and 117 days each year over the past three years at the Redlands Station. The Federal 8-hour ozone standard was exceeded between 95 and 116 days each year over the past three years at the Redlands Station. Ozone is a secondary pollutant as it is not directly emitted. Ozone is the result of chemical reactions between other pollutants, most importantly hydrocarbons and NO_2 , which occur only in the presence of bright sunlight. Pollutants emitted from upwind cities react during transport downwind to produce the oxidant concentrations experienced in the area. Many areas of the SCAQMD contribute to the ozone levels experienced at the monitoring station, with the more significant areas being those directly upwind. ## **Carbon Monoxide** CO is another important pollutant that is due mainly to motor vehicles. The San Bernardino Station did not record an exceedance of the state or federal 8-hour CO standard for the last three years. #### Nitrogen Dioxide The San Bernardino Station did not record an exceedance of the State or Federal NO₂ standards for the last three years. #### **Particulate Matter** The State 24-hour concentration standards for PM10 were exceeded for two days each year in 2017 and 2018 over the last three years at the Redlands Station. Over the past three years, the Redlands Station did not record an exceedance of the Federal 24-hour standards for PM10. Over the last three years, the Federal 24-hour standard for PM2.5 was exceeded for one day each year in 2017 and 2019 at the Pico Rivera Station. According to the EPA, some people are much more sensitive than others to breathing fine particles (PM10 and PM2.5). People with influenza, chronic respiratory and cardiovascular diseases, and the elderly may suffer worsening illness and premature death due to breathing these fine particles. People with bronchitis can expect aggravated symptoms from breathing in fine particles. Children may experience decline in lung function due to breathing in PM10 and PM2.5. Other groups considered sensitive are smokers and people who cannot breathe well through their noses. Exercising athletes are also considered sensitive, because many breathe through their mouths during exercise. Table 4 Air Quality Monitoring Summary | | | | Year | | | |----------------------------------|---------------------------------------|-------|-------|-------|--| | | Pollutant (Standard) ¹ | 2017 | 2018 | 2019 | | | | Maximum 1-Hour Concentration (ppm) | 0.156 | 0.136 | 0.137 | | | | Days > CAAQS (0.09 ppm) | 80 | 53 | 73 | | | Ozone: | Maximum 8-Hour Concentration (ppm) | 0.135 | 0.115 | 0.118 | | | | Days > NAAQS (0.070 ppm) | 116 | 95 | 109 | | | | Days > CAAQS (0.070 ppm) | 117 | 99 | 111 | | | | Maximum 8-Hour Concentration (ppm) | * | * | * | | | Carbon
Monoxide: ² | Days > CAAQS (9 ppm) | 0 | 0 | 0 | | | IVIOIIOXIGE. | Days > NAAQS (9 ppm) | 0 | 0 | 0 | | | Nitrogen | Maximum 1-Hour Concentration (ppm) | 0.066 | 0.057 | 0.059 | | | Dioxide: ² | Days > CAAQS (0.18 ppm) | 0 | 0 | 0 | | | | Maximum 24-Hour Concentration (μg/m³) | 77.0 | 74.2 | 44.9 | | | Inhalable
Particulates | Days > NAAQS (150 μg/m3) | 0 | 0 | 0 | | | (PM10): | Days > CAAQS (50 μg/m3) | 2 | 2 | * | | | | Annual Average (μg/m3) | 26.2 | 26.4 | 26.0 | | | Ultra-Fine | Maximum 24-Hour Concentration (µg/m3) | 38.2 | 30.1 | 60.5 | | | Particulates | Days > NAAQS (35 μg/m3) | 1 | 0 | 1 | | | (PM2.5): ² | Annual Average (μg/m3) | 11.4 | 11.1 | * | | #### Notes: Source: http://www.arb.ca.gov/adam/topfour/topfour1.php. Data from the Redlands-Dearborn Monitoring Station, unless otherwise noted. ⁽¹⁾ CAAQS = California Ambient Air Quality Standard; NAAQS = National Ambient Air Quality Standard; ppm = parts per million ^{*} Means there was insufficient data available to determine value. ⁽²⁾ Data taken from the San Bernardino - 4th Street Monitoring Station. #### **AIR QUALITY STANDARDS** #### Significance Thresholds Appendix G of the State CEQA Guidelines Appendix G of the State CEQA Guidelines states that, where available, the significance criteria established by the applicable air quality management district or air pollution control district may be relied upon to make a
significance determination. Pursuant to Appendix G, the project would result in a significant impact related to air quality if it would: - Conflict with or obstruct the implementation of the applicable air quality plan; - Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard; - Expose sensitive receptors to substantial pollutant concentrations; or - Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people. The CEQA Guidelines Section 15064.7 provides the significance criteria established by the applicable air quality management district or air pollution control district, when available, may be relied upon to make determinations of significance. The potential air quality impacts of the project are, therefore, evaluated according to thresholds developed by SCAQMD in their CEQA Air Quality Handbook, Air Quality Analysis Guidance Handbook, and subsequent guidance, which are listed below.³ Therefore, the project would result in a potentially significant impact to air quality if it would: - AIR-1: Conflict with or obstruct the implementation of the applicable air quality plan; - AIR-2: Violate any air quality standard or contribute substantially to an existing or projected air quality violation as a result of: - Criteria pollutant emissions during construction (direct and indirect) in excess of the SCAQMD's regional significance thresholds, - Criteria pollutant emissions during operation (direct and indirect) in excess of the SCAQMD's regional significance thresholds. - AIR-3: Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors); - AIR-4: Expose sensitive receptors to substantial pollutant concentrations that would: - Exceed SCAQMD's localized significance thresholds, - Cause or contribute to the formation of CO hotspots. - AIR-5: Create objectionable odors affecting a substantial number of people. The SCAQMD is in the process of developing an Air Quality Analysis Guidance Handbook to replace the CEQA Air Quality Handbook. In the interim, supplemental guidance has been adopted by the SCAQMD. The ³ While the SCAQMD CEQA Air Quality Handbook contains significance thresholds for lead. Project construction and operation would not include sources of lead emissions and would not exceed the established thresholds for lead. Unleaded fuel and unleaded paints have virtually eliminated lead emissions from residential land use projects such as the Project. As a result, lead emissions are not further evaluated herein. potential air quality impacts of the project are, therefore, evaluated according to numeric indicators developed by the SCAQMD in the CEQA Air Quality Handbook and supplemental guidance from the SCAQMD.⁴ # **Regional Air Quality** Many air quality impacts that derive from dispersed mobile sources, which are the dominate pollution generators in the basin, often occurs hours later and miles away after photochemical processes have converted primary exhaust pollutants into secondary contaminants such as ozone. The incremental regional air quality impact of an individual project is generally very small and difficult to measure. Therefore, the SCAQMD has developed significance thresholds based on the volume of pollution emitted rather than on actual ambient air quality because the direct air quality impact of a project is not quantifiable on a regional scale. The SCAQMD CEQA Handbook states that any project in the South Coast Air Basin with daily emissions that exceed any of the identified significance thresholds should be considered as having an individually and cumulatively significant air quality impact. For the purposes to this air quality impact analysis, a regional air quality impact would be considered significant if emissions exceed the SCAQMD significance thresholds identified in Table 5. #### **Local Air Quality** Project-related construction air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. In order to assess local air quality impacts the SCAQMD has developed Localized Significant Thresholds (LSTs) to assess the project-related air emissions in the project vicinity. The SCAQMD has also provided Final Localized Significant Threshold Methodology (LST Methodology), June 2003, which details the methodology to analyze local air emission impacts. The Localized Significant Threshold Methodology found that the primary emissions of concern are NO2, CO, PM10, and PM2.5. The significance thresholds for the local emissions of NO₂ and CO are determined by subtracting the highest background concentration from the last three years of these pollutants from Table 4 above, from the most restrictive ambient air quality standards for these pollutants that are outlined in the Localized Significant Thresholds. Table 5 shows the ambient air quality standards for NO₂, CO, and PM10 and PM2.5. #### **Toxic Air Contaminants** According to the SCAQMD CEQA Handbook, any project that has the potential to expose the public to toxic air contaminants in excess of the following thresholds would be considered to have a significant air quality impact: - If the Maximum Incremental Cancer Risk is 10 in one million or greater; or - Toxic air contaminants from the proposed project would result in a Hazard Index increase of 1 or greater. In order to determine if the proposed project may have a significant impact related to hazardous air pollutants (HAP), the Health Risk Assessment Guidance for analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis, (Diesel Analysis), prepared by SCAQMD, August 2003, recommends that if the proposed project is anticipated to create hazardous air pollutants through stationary sources or regular operations of diesel trucks on the project site, then the proximity of the nearest receptors to the source of the hazardous air pollutants and the toxicity of the hazardous air pollutants should be analyzed through a comprehensive facility-wide health risk assessment (HRA). ⁴ While the SCAQMD CEQA Air Quality Handbook contains significance thresholds for lead, Project construction and operation would not include sources of lead emissions and would not exceed the established thresholds for lead. Unleaded fuel and unleaded paints have virtually eliminated lead emissions from residential land use projects such as the Project. As a result, lead emissions are not further evaluated herein. The proposed project is the development of the site with residential uses; however, the southern boundary of the project site is located within 500 feet of the Interstate 10 Freeway. Therefore, the potential of freeway related health risks associated to the proposed project is examined in Section 3 of this report. # **Odor Impacts** The SCAQMD CEQA Handbook states that an odor impact would occur if the proposed project creates an odor nuisance pursuant to SCAQMD Rule 402, which states: A person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule shall not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals. If the proposed project results in a violation of Rule 402 with regards to odor impacts, then the proposed project would create a significant odor impact. Table 5 SCAQMD Air Quality Significance Thresholds | | Mass Daily | Thresholds | | | |---|---|------------------------------------|---------------------|--| | Po | ollutant | Construction (lbs/day) | Operation (lbs/day) | | | | NOx | 100 | 55 | | | | VOC | 75 | 55 | | | ĺ | PM10 | 150 | 150 | | | F | PM2.5 | 55 | 55 | | | | SOx | 150 | 150 | | | | CO | 550 | 550 | | | | Lead | 3 | 3 | | | | | Odor and GHG Thresholds | <u> </u> | | | TACs | Maximum Incremental Car
Cancer Burden > 0.5 exce | | | | | Odor | Project creates an odor nu | isance pursuant to SCAQMD Rule 402 | | | | GHG | 10,000 MT/yr CO2e for ir | ndustrial projects | | | | | | uality Standards | | | | Pollutant | , | SCAQMD Standards | | | | NO2 -1-hour average | | 0.18 ppm (338 μg/m^3) | | | | PM10 -24-hour average Construction 10.4 µg/m^3 Operations 2.5 µg/m^3 | | | | | | PM2.5 -24-hour average
Construction
Operations | | 10.4 μg/m^3
2.5 μg/m^3 | | | | SO2 1-hour average 0.25 ppm 24-hour average 0.04 ppm | | | | | | CO 1-hour average 20 ppm (23,000 μg/m^3) 8-hour average 9 ppm (10,000 μg/m^3) | | | | | | Lead 30-day average 1.5 μg/m^3 Rolling 3-month average 0.15 μg/m^3 Quarterly average 1.5 μg/m^3 | | | | | Source: http://www.aqmd.gov/ceqa/handbook/signthres.pdf # **SHORT-TERM CONSTRUCTION EMISSIONS** Construction activities associated with the proposed project would have the potential to generate air emissions, toxic air contaminant emissions, and odor impacts. Assumptions for the phasing, duration, and required equipment for the construction of the proposed project were obtained from the project applicant. The construction activities for the proposed project are anticipated to include: grading of
approximately 64.56 acres; construction of 67 single-family residential dwelling units and approximately 28.2 acres of open space; paving of approximately 14.61 acres of on-site roadways; and application of architectural coatings. See Appendix B for more details. The proposed project is anticipated to start construction no sooner than the beginning of February 2023 and being completed by mid-July 2025. The project is anticipated to be operational in 2025.⁵ #### Methodology The following provides a discussion of the methodology used to calculate regional construction air emissions and an analysis of the proposed project's short-term construction emissions for the criteria pollutants. The construction-related regional air quality impacts have been analyzed for both criteria pollutants and GHGs. Emissions are estimated using the CalEEMod (Version 2020.4.0) software, which is a statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantify potential criteria pollutant and GHG emissions from a variety of land use projects. CalEEMod was developed in collaboration with the air districts of California. Regional data (e.g., emission factors, trip lengths, meteorology, source inventory, etc.) have been provided by the various California air districts to account for local requirements and conditions. The model is considered to be an accurate and comprehensive tool for quantifying air quality and GHG impacts from land use projects throughout California and is recommended by the SCAQMD.⁶ Daily regional emissions during construction are forecasted by assuming a conservative estimate of construction activities (i.e., assuming all construction occurs at the earliest feasible date) and applying the mobile source and fugitive dust emissions factors. The input values used in this analysis were adjusted to be project-specific for the construction schedule and the equipment used was based on CalEEMod defaults. The CalEEMod program uses the EMFAC2017 computer program to calculate the emission rates specific for the southwestern portion of Riverside County for construction-related employee vehicle trips and the OFFROAD2011 computer program to calculate emission rates for heavy truck operations. EMFAC2017 and OFFROAD2011 are computer programs generated by CARB that calculates composite emission rates for vehicles. Emission rates are reported by the program in grams per trip and grams per mile or grams per running hour. Daily truck trips and CalEEMod default trip length data were used to assess roadway emissions from truck exhaust. The maximum daily emissions are estimated values for the worst-case day and do not represent the emissions that would occur for every day of project construction. The maximum daily emissions are compared to the SCAQMD daily regional numeric indicators. Detailed construction equipment lists, construction scheduling, and emission calculations are provided in Appendix B. The project will be required to comply with existing SCAQMD rules for the reduction of fugitive dust emissions. SCAQMD Rule 403 establishes these procedures. Compliance with this rule is achieved through application of standard best management practices in construction and operation activities, such as application of water or chemical stabilizers to disturbed soils, managing haul road dust by application of water, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 mph, sweeping loose dirt from paved site ⁶ South Coast Air Quality Management District, California Emissions Estimator Model, http://www.agmd.gov/caleemod/. ⁵ The Project Phasing Description (July 8, 2021) shows that the project is to be completed in two phases; however, to be conservative and consistent with the TIA completed for the proposed project, it was modeled as being completed in one phase. The construction timeline for each construction phase was based on the total timeline for the proposed project (Phases 1 and 2 combined) provided in the Project Phasing Description. access roadways, cessation of construction activity when winds exceed 25 mph and establishing a permanent, stabilizing ground cover on finished sites. In addition, projects that disturb 50 acres or more of soil or move 5,000 cubic yards of materials per day are required to submit a Fugitive Dust Control Plan or a Large Operation Notification Form to SCAQMD. The Project area is approximately 64.54 acres and is anticipated to balance (no import/export); however, per the construction LST calculations in Table 7 below, the project will disturb no more than 5 acres per day. Therefore, as the project would not disturb 50 acres or more of soil or move 5,000 cubic yards of materials per day, a Fugitive Dust Control Plan or Large Operation Notification would be required. SCAQMD's Rule 403 minimum requirements require that the application of the best available dust control measures is used for all grading operations and include the application of water or other soil stabilizers in sufficient quantity to prevent the generation of visible dust plumes. Compliance with Rule 403 would require the use of water trucks during all phases where earth moving operations would occur. Compliance with Rule 403 has been included in the CalEEMod modeling for the proposed project. Per SCAQMD Rule 1113 as amended on June 3, 2011, the architectural coatings that would be applied after January 1, 2014 will be limited to an average of 50 grams per liter or less of VOCs for building coatings and 100 grams per liter or less of VOCs for traffic coatings. The phases of the construction activities which have been analyzed below for each phase are: (1) grading, (2) building construction, (3) paving, and (4) application of architectural coatings. Details pertaining to the project's construction timing and the type of equipment modeled for each construction phase are available in the CalEEMod output in Appendix B. # **Construction-Related Regional Impacts** The construction-related criteria pollutant emissions for each phase are shown below in Table 6. Table 6 shows that none of the project's emissions will exceed regional thresholds. Therefore, a less than significant regional air quality impact would occur from construction of the proposed project. #### **Construction-Related Local Impacts** Construction-related air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. The proposed project has been analyzed for the potential local air quality impacts created from: construction-related fugitive dust and diesel emissions; from toxic air contaminants; and from construction-related odor impacts. Local Air Quality Impacts from Construction The SCAQMD has published a "Fact Sheet for Applying CalEEMod to Localized Significance Thresholds" (South Coast Air Quality Management District 2011b). CalEEMod calculates construction emissions based on the number of equipment hours and the maximum daily disturbance activity possible for each piece of equipment. In order to compare CalEEMod reported emissions against the localized significance threshold lookup tables, the CEQA document should contain the following parameters: - (1) The off-road equipment list (including type of equipment, horsepower, and hours of operation) assumed for the day of construction activity with maximum emissions. - (2) The maximum number of acres disturbed on the peak day. - (3) Any emission control devices added onto off-road equipment. - (4) Specific dust suppression techniques used on the day of construction activity with maximum emissions. The CalEEMod output in Appendix B show the equipment used for this analysis. As shown in Table 7, the maximum number of acres disturbed in a day would be 5 acres during grading. The local air quality emissions from construction were analyzed using the SCAQMD's Mass Rate Localized Significant Threshold Look-up Tables and the methodology described in Localized Significance Threshold Methodology prepared by SCAQMD (revised July 2008). The Look-up Tables were developed by the SCAQMD in order to readily determine if the daily emissions of CO, NOx, PM10, and PM2.5 from the proposed project could result in a significant impact to the local air quality. The emission thresholds were calculated based on the East San Bernardino Valley source receptor area (SRA) 35 and a disturbance value of five acres per day. According to LST Methodology, any receptor located closer than 25 meters (82 feet) shall be based on the 25-meter thresholds. The nearest sensitive receptors to the project site are the single-family residential uses adjacent to the west and north of the project site; therefore, the SCAQMD Look-up Tables for 25 meters was used. Table 8 shows the on-site emissions from the CalEEMod model for the different construction phases and the LST emissions thresholds. The data provided in Table 8 shows that none of the analyzed criteria pollutants would exceed the local emissions thresholds at the nearest sensitive receptors. Therefore, a less than significant local air quality impact would occur from construction of the proposed project. # **Construction-Related Human Health Impacts** Regarding health effects related to criteria pollutant emissions, the applicable significance thresholds are established for regional compliance with the state and federal ambient air quality standards, which are intended to protect public health from both acute and long-term health impacts, depending on the potential effects of the pollutant. Because regional and local emissions of criteria pollutants during construction of the project would be below the applicable thresholds, it would not contribute to long-term health impacts related to nonattainment of the ambient air
quality standards. Therefore, significant adverse acute health impacts as a result of project construction are not anticipated. #### **Construction-Related Toxic Air Contaminant Impacts** The greatest potential for toxic air contaminant emissions would be related to diesel particulate emissions associated with heavy equipment operations during construction of the proposed project. According to the Office of Environmental Health Hazard Assessment (OEHHA)⁷ and the SCAQMD Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis (August 2003),⁸ health effects from TACs are described in terms of individual cancer risk based on a lifetime (i.e., 30-year) resident exposure duration. Given the temporary and short-term construction schedule (approximately 29.5 months), the project would not result in a long-term (i.e., lifetime or 30-year) exposure as a result of project construction. Furthermore, construction-based particulate matter (PM) emissions (including diesel exhaust emissions) do not exceed any local or regional thresholds. The project would comply with the CARB Air Toxics Control Measure that limits diesel powered equipment and vehicle idling to no more than 5 minutes at a location, and the CARB In-Use Off-Road Diesel Vehicle Regulation; compliance with these would minimize emissions of TACs during construction. The project would also comply with the requirements of SCAQMD Rule 1403 if asbestos is found during the renovation and construction activities. Therefore, impacts from TACs during construction would be less than significant. # **Construction-Related Odor Impacts** ⁸ South Coast Air Quality Management District, Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis, August 2003,http://www.aqmd.gov/docs/default-source/ceqa/handbook/mobile-source-toxics-analysis.doc?sfvrsn=2. Terracina at Redlands (TTM 20320) Office of Environmental Health Hazard Assessment, Air Toxic Hot Spots Program Risk Assessment Guidelines Guidance Manual for Preparation of Health Risk Assessment, February 2015, https://oehha.ca.gov/media/downloads/crnr/2015guidancemanual.pdf. Potential sources that may emit odors during construction activities include the application of materials such as asphalt pavement. The objectionable odors that may be produced during the construction process are of short-term in nature and the odor emissions are expected to cease upon the drying or hardening of the odor producing materials. Due to the short-term nature and limited amounts of odor producing materials being utilized, no significant impact related to odors would occur during construction of the proposed project. Diesel exhaust and VOCs would be emitted during construction of the project, which are objectionable to some; however, emissions would disperse rapidly from the project site and therefore should not reach an objectionable level at the nearest sensitive receptors. Table 6 Construction-Related Regional Pollutant Emissions | | | Pollutant Emissions (pounds/day) | | | | | | | |---|-----------------------|----------------------------------|-------|-------|-----------------|-------|-------|--| | Activity | | ROG | NOx | CO | SO ₂ | PM10 | PM2.5 | | | | On-Site ¹ | 4.58 | 47.84 | 36.11 | 0.08 | 8.32 | 4.57 | | | Grading | Off-Site ² | 0.11 | 0.07 | 1.06 | 0.00 | 0.31 | 0.08 | | | | Subtotal | 4.69 | 47.91 | 37.16 | 0.09 | 8.64 | 4.66 | | | | On-Site ¹ | 2.68 | 24.16 | 26.29 | 0.05 | 1.15 | 1.09 | | | Building Construction | Off-Site ² | 3.52 | 13.60 | 35.04 | 0.14 | 11.15 | 3.09 | | | | Subtotal | 6.20 | 37.76 | 61.33 | 0.18 | 12.30 | 4.18 | | | | On-Site ¹ | 1.50 | 8.58 | 14.58 | 0.02 | 0.42 | 0.39 | | | Paving | Off-Site ² | 0.05 | 0.03 | 0.49 | 0.00 | 0.17 | 0.05 | | | | Subtotal | 1.55 | 8.61 | 15.07 | 0.02 | 0.59 | 0.43 | | | | On-Site ¹ | 17.15 | 1.15 | 1.81 | 0.00 | 0.05 | 0.05 | | | Architectural Coating | Off-Site ² | 0.54 | 0.32 | 5.25 | 0.02 | 1.81 | 0.48 | | | | Subtotal | 17.69 | 1.46 | 7.06 | 0.02 | 1.86 | 0.54 | | | Total for overlapping phases ³ | | 25.43 | 47.83 | 83.46 | 0.22 | 14.75 | 5.14 | | | SCAQMD Thresholds | | 75 | 100 | 550 | 150 | 150 | 55 | | | Exceeds Thresholds? | | No | No | No | No | No | No | | Source: CalEEMod Version 2020.4.0 ⁽¹⁾ On-site emissions from equipment operated on-site that is not operated on public roads. On-site grading PM-10 and PM-2.5 emissions show mitigated values for fugitive dust for compliance with SCAQMD Rule 403. ⁽²⁾ Off-site emissions from equipment operated on public roads. ⁽³⁾ Construction, painting and paving phases may overlap. Table 7 Maximum Number of Acres Disturbed Per Day | Activity | Equipment | Number | Acres/8hr-day | Total Acres | |-----------------|-------------------------------|--------|---------------|-------------| | | Rubber Tired Dozers | 2 | 0.5 | 1 | | Grading | Graders | 2 | 0.5 | 1 | | Grading | Scrapers | 2 | 1 | 2 | | | Crawler Tractors ¹ | 2 | 0.5 | 1 | | Total for phase | | - | - | 5 | Source: South Coast AQMD, Fact Sheet for Applying CalEEMod to Localized Significance Thresholds, 2011b. (1) Tractor/loader/backhoe is a suitable surrogate for a crawler tractor per SCAQMD staff. Table 8 Local Construction Emissions at the Nearest Receptors | | | On-Site Pollutant Emissions (pounds/day) | | | | | | |--------------------------------|-------|--|------|-------|--|--|--| | Activity | NOx | СО | PM10 | PM2.5 | | | | | Grading | 47.84 | 36.11 | 8.32 | 4.57 | | | | | Building Construction | 24.16 | 26.29 | 1.15 | 1.09 | | | | | Paving | 8.58 | 14.58 | 0.42 | 0.39 | | | | | Architectural Coating | 1.15 | 1.81 | 0.05 | 0.05 | | | | | SCAQMD Thresholds ¹ | 270 | 2,075 | 14 | 9 | | | | | Exceeds Threshold? | No | No | No | No | | | | Source: Calculated from CalEEMod and SCAQMD's Mass Rate Look-up Tables for 5 acres at a distance of 25 m in SRA 35 East San Benardino Valley. (1) The nearest sensitive receptors are the single-family detached residential dwelling located adjacent to the west and north of the project site; therefore, the 25 meter threshold was used. Note: The project will disturb up to a maximum of 5 acres a day during grading (see Table 7). # **LONG-TERM OPERATIONAL EMISSIONS** The on-going operation of the proposed project would result in a long-term increase in air quality emissions. This increase would be due to emissions from the project-generated vehicle trips and through operational emissions from the on-going use of the proposed project. The following section provides an analysis of potential long-term air quality impacts due to: regional air quality and local air quality impacts with the ongoing operations of the proposed project. ## **Operations-Related Regional Air Quality Impacts** The potential operations-related air emissions have been analyzed below for the criteria pollutants and cumulative impacts. Operations-Related Criteria Pollutants Analysis The operations-related criteria air quality impacts created by the proposed project have been analyzed through the use of the CalEEMod model. The operating emissions were based on the year 2025, which is the anticipated opening year for the proposed project. The operations daily emissions printouts from the CalEEMod model are provided in Appendix B. The CalEEMod analyzes operational emissions from area sources, energy usage, and mobile sources, which are discussed below. #### Mobile Sources Mobile sources include emissions from the additional vehicle miles generated from the proposed project. The vehicle trips associated with the proposed project have been analyzed by inputting the project-generated vehicular trips (trip generation rate) from the Terracina at Redlands (TTM 20320) Project Traffic Impact Analysis (TIA) prepared by Ganddini Group, Inc. (July 28, 2021) into the CalEEMod Model. The TIA found that the proposed project would create approximately 632 vehicle trips per day with a trip generation rate of 9.44 trips per dwelling unit per day. The program then applies the emission factors for each trip which is provided by the EMFAC2017 model to determine the vehicular traffic pollutant emissions. #### Area Sources Per the CAPCOA Appendix A Calculation Details for CalEEMod, area sources include emissions from consumer products, landscape equipment and architectural coatings. Landscape maintenance includes fuel combustion emissions from equipment such as lawn mowers, rototillers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers, as well as air compressors, generators, and pumps. As specifics were not known about the landscaping equipment fleet, CalEEMod defaults were used to estimate emissions from landscaping equipment. No changes were made to the default area source parameters. ### Energy Usage Energy usage includes emissions from the generation of electricity and natural gas used on-site. No changes were made to the default energy usage parameters. #### Project Impacts The worst-case summer or winter criteria pollutant emissions created from the proposed project's long-term operations have been calculated and are shown below in Table 9. The results show that none of the SCAQMD regional thresholds would be exceeded. Therefore, a less than significant regional air quality impact would occur from operation of the proposed project. # **Operations-Related Local Air Quality Impacts** Project-related air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. The proposed project has been analyzed for the potential local CO emission impacts from the project-generated vehicular trips and from the potential local air quality impacts from on-site operations. The following
analysis analyzes the vehicular CO emissions, local impacts from on-site operations per SCAQMD LST methodology, and odor impacts. Local CO Emission Impacts from Project-Generated Vehicular Trips CO is the pollutant of major concern along roadways because the most notable source of CO is motor vehicles. For this reason, CO concentrations are usually indicative of the local air quality generated by a roadway network and are used as an indicator of potential local air quality impacts. Local air quality impacts can be assessed by comparing future without and with project CO levels to the State and Federal CO standards which were presented above. To determine if the proposed project could cause emission levels in excess of the CO standards discussed above, a sensitivity analysis is typically conducted to determine the potential for CO "hot spots" at a number of intersections in the general project vicinity. Because of reduced speeds and vehicle queuing, "hot spots" potentially can occur at high traffic volume intersections with a Level of Service E or worse. The analysis prepared for CO attainment in the South Coast Air Basin by the SCAQMD can be used to assist in evaluating the potential for CO exceedances in the South Coast Air Basin. CO attainment was thoroughly analyzed as part of the SCAQMD's 2003 Air Quality Management Plan (2003 AQMP) and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan). As discussed in the 1992 CO Plan, peak carbon monoxide concentrations in the South Coast Air Basin are due to unusual meteorological and topographical conditions, and not due to the impact of particular intersections. Considering the region's unique meteorological conditions and the increasingly stringent CO emissions standards, CO modeling was performed as part of 1992 CO Plan and subsequent plan updates and air quality management plans. In the 1992 CO Plan, a CO hot spot analysis was conducted for four busy intersections in Los Angeles at the peak morning and afternoon time periods. The intersections evaluated included: South Long Beach Boulevard and Imperial Highway (Lynwood); Wilshire Boulevard and Veteran Avenue (Westwood); Sunset Boulevard and Highland Avenue (Hollywood); and La Cienega Boulevard and Century Boulevard (Inglewood). These analyses did not predict a violation of CO standards. The busiest intersection evaluated was that at Wilshire Boulevard and Veteran Avenue, which has a daily traffic volume of approximately 100,000 vehicles per day. The Los Angeles County Metropolitan Transportation Authority evaluated the Level of Service in the vicinity of the Wilshire Boulevard/Veteran Avenue intersection and found it to be Level of Service E during the morning peak hour and Level of Service F during the afternoon peak hour. The TIA showed that the proposed project would generate a maximum of approximately 632 daily vehicle trips. The intersection with the highest traffic volume is located at Ford Street and Reservoir Road and has an Existing Plus Project PM peak hour volume of 470 vehicles. The 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan) showed that an intersection which has a daily traffic volume of approximately 100,000 vehicles per day would not violate the CO standard. Therefore, as the intersection volume falls far short of 100,000 vehicles per day, no CO "hot spot" modeling was performed and no significant long-term air quality impact is anticipated to local air quality with the on-going use of the proposed project. Local Air Quality Impacts from On-Site Operations Project-related air emissions from on-site sources such as architectural coatings, landscaping equipment, on-site usage of natural gas appliances as well as the operation of vehicles on-site may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the Air Basin. Single-family detached residential dwelling units are located adjacent to the west and north of the project site. According to SCAQMD LST methodology, LSTs would apply to the operational phase of a project, if the project includes stationary sources, or attracts mobile sources (such as heavy-duty trucks) that may spend long periods queuing and idling at the site; such as industrial warehouse/transfer facilities. The proposed project consists of the development of the site with residential uses and does not include such uses. Therefore, due the lack of stationary source emissions, no long-term localized significance threshold analysis is warranted. # **Operations-Related Human Health Impacts** Regarding health effects related to criteria pollutant emissions, the applicable significance thresholds are established for regional compliance with the state and federal ambient air quality standards, which are intended to protect public health from both acute and long-term health impacts, depending on the potential effects of the pollutant. Because regional and local emissions of criteria pollutants during operation of the project would be below the applicable thresholds, it would not contribute to long-term health impacts related to nonattainment of the ambient air quality standards. Therefore, significant adverse acute health impacts as a result of project operation are not anticipated. ## **Operations-Related Odor Impacts** Potential sources that may emit odors during the on-going operations of the proposed project would include odor emissions from the intermittent diesel delivery truck emissions and trash storage areas. Due to the distance of the nearest receptors from the project site and through compliance with SCAQMD's Rule 402 no significant impact related to odors would occur during the on-going operations of the proposed project. Table 9 Regional Operational Pollutant Emissions | | Pollutant Emissions (pounds/day) | | | | | | | |-----------------------------|----------------------------------|------|-------|------|------|-------|--| | Activity | ROG | NOx | CO | SO2 | PM10 | PM2.5 | | | Area Sources ¹ | 3.68 | 1.06 | 5.95 | 0.01 | 0.11 | 0.11 | | | Energy Usage ² | 0.06 | 0.48 | 0.20 | 0.00 | 0.04 | 0.04 | | | Mobile Sources ³ | 2.00 | 2.68 | 19.45 | 0.04 | 4.60 | 1.25 | | | Total Emissions | 5.73 | 4.23 | 25.61 | 0.05 | 4.75 | 1.40 | | | SCAQMD Thresholds | 55 | 55 | 550 | 150 | 150 | 55 | | | Exceeds Threshold? | No | No | No | No | No | No | | Source: CalEEMod Version 2020.4.0; the higher of either summer or winter emissions. - (1) Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment. - (2) Energy usage consists of emissions from generation of electricity and on-site natural gas usage. - (3) Mobile sources consist of emissions from vehicles and road dust. # **CUMULATIVE AIR QUALITY IMPACTS** There are a number of cumulative projects in the project area that have not yet been built or are currently under construction. Since the timing or sequencing of the cumulative projects is unknown, any quantitative analysis to ascertain daily construction emissions that assumes multiple, concurrent construction projects would be speculative. Further, cumulative projects include local development as well as general growth within the project area. However, as with most development, the greatest source of emissions is from mobile sources, which travel well out of the local area. Therefore, from an air quality standpoint, the cumulative analysis would extend beyond any local projects and when wind patterns are considered would cover an even larger area. The SCAQMD recommends using two different methodologies: (1) that project-specific air quality impacts be used to determine the potential cumulative impacts to regional air quality; and (2) that a project's consistency with the current AQMP be used to determine its potential cumulative impacts. ## **Project Specific Impacts** The project area is out of attainment for ozone, PM10, and PM2.5. Construction and operation of cumulative projects will further degrade the local air quality, as well as the air quality of the South Coast Air Basin. The greatest cumulative impact on the quality of regional air cell will be the incremental addition of pollutants mainly from increased traffic volumes from residential, commercial, and industrial development and the use of heavy equipment and trucks associated with the construction of these projects. Air quality will be temporarily degraded during construction activities that occur separately or simultaneously. However, in accordance with the SCAQMD methodology, projects that do not exceed the SCAQMD criteria or can be mitigated to less than criteria levels are not significant and do not add to the overall cumulative impact. A significant impact may occur if a project would add a cumulatively considerable contribution of a federal or state non-attainment pollutant. Project operations would generate emissions of NOx, ROG, CO, PM10, and PM2.5, which, would not exceed the SCAQMD regional or local thresholds and would not be expected to result in ground level concentrations that exceed the NAAQS or CAAQS. Since the project would not introduce any substantial stationary sources of emissions, CO is the benchmark pollutant for assessing local area air quality impacts from post-construction motor vehicle operations. As indicated earlier, no violations of the state and federal CO standards are projected to occur for the project, based on the magnitude of traffic the project is anticipated to create. Therefore, operation of the project would not result in a cumulatively considerable net increase for nonattainment of criteria pollutants or ozone precursors. As a result, the project would result in a less than significant cumulative impact for operational emissions. # **Air Quality Compliance** The California Environmental Quality Act (CEQA) requires a discussion of any inconsistencies between a
proposed project and applicable General Plans and Regional Plans (CEQA Guidelines Section 15125). The regional plan that applies to the proposed project includes the SCAQMD Air Quality Management Plan (AQMP). Therefore, this section discusses any potential inconsistencies of the proposed project with the AQMP. The purpose of this discussion is to set forth the issues regarding consistency with the assumptions and objectives of the AQMP and discuss whether the proposed project would interfere with the region's ability to comply with Federal and State air quality standards. If the decision-makers determine that the proposed project is inconsistent, the lead agency may consider project modifications or inclusion of mitigation to eliminate the inconsistency. South Coast Air Quality Management District, Potential Control Strategies to Address Cumulative Impacts from Air Pollution White Paper, 1993, http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook. The SCAQMD CEQA Handbook states that "New or amended General Plan Elements (including land use zoning and density amendments), Specific Plans, and significant projects must be analyzed for consistency with the AQMP". Strict consistency with all aspects of the plan is usually not required. A proposed project should be considered to be consistent with the AQMP if it furthers one or more policies and does not obstruct other policies. The SCAQMD CEQA Handbook identifies two key indicators of consistency: - (1) Whether the project will result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP. - (2) Whether the project will exceed the assumptions in the AQMP in 2016 or increments based on the year of project buildout and phase. Both of these criteria are evaluated in the following sections. Criteria 1 – Increase in the Frequency or Severity of Violations Based on the air quality modeling analysis contained in this Air Analysis, short-term construction impacts will not result in significant impacts based on the SCAQMD regional and local thresholds of significance. This Air Analysis also found that, long-term operations impacts will not result in significant impacts based on the SCAQMD local and regional thresholds of significance. Therefore, the proposed project is not projected to contribute to the exceedance of any air pollutant concentration standards and is found to be consistent with the AQMP for the first criterion. Criteria 2 – Exceed Assumptions in the AQMP? Consistency with the AQMP assumptions is determined by performing an analysis of the proposed project with the assumptions in the AQMP. The emphasis of this criterion is to ensure that the analyses conducted for the proposed project are based on the same forecasts as the AQMP. The 2016-2040 Regional Transportation/Sustainable Communities Strategy prepared by SCAG (2016) includes chapters on: the challenges in a changing region, creating a plan for our future, and the road to greater mobility and sustainable growth. These chapters currently respond directly to federal and state requirements placed on SCAG. Local governments are required to use these as the basis of their plans for purposes of consistency with applicable regional plans under CEQA. For this project, the City of Redlands Land Use Plan defines the assumptions that are represented in the AQMP. The project site is currently designated as Very Low Density Residential in the City of Redlands General Plan. The project proposes to develop the site with 67 single-family residential uses on approximately 64.54 acres. Therefore, the proposed project is consistent with the City's land use designation. The proposed project is not anticipated to exceed the AQMP assumptions for the project site and is found to be consistent with the AOMP for the second criterion. Based on the above, the proposed project will not result in an inconsistency with the SCAQMD AQMP. Therefore, a less than significant impact will occur. Air Quality, Global Climate Change, HRA, and Energy Impact Analysis # **DIESEL EMISSIONS HEALTH RISK ASSESSMENT** The proposed project would be exposed to toxic air contaminant emissions from diesel truck emissions from nearby freeway DPM sources. As stated previously, in the California Building Industry Association v. Bay Area Air Quality Management District (2015) 62 Cal. 4th 369 (CBIA) case the California Supreme Court determined that CEQA does not generally require an impact analysis of the existing environmental conditions on the future residents of a proposed project and generally only requires an analysis of the proposed project's impact on the environment. However, the CBIA case also stated that when a proposed project brings development and people into an area already subject to specific hazards and the new development/people exacerbate the existing hazards, then CEQA requires an analysis of the hazards and the proposed project's effect in terms of increasing the risks related to those hazards. In regards to air quality hazards, TACs are defined as substances that may cause or contribute to an increase in deaths or in serious illness, or that may pose a present or potential hazard to human health. As such, if a proposed project would not exacerbate pre-existing hazards (e.g., TAC health risks) then an analysis of those hazards and the proposed project's effect on increasing those hazards is not required. However, as the project is a residential project and will not be a source of toxic air contaminants, and the existing conditions on the project site does not contain any operational land uses that emit toxic air contaminants, the following health risk assessment was performed for informational and disclosure purposes only. SCAQMD methodology states that health effects from carcinogenic air toxics are usually described in terms of individual cancer risk. "Individual Cancer Risk" is the likelihood that a person exposed to concentrations of toxic air contaminants over a 30-year lifetime will contract cancer, based on the use of revised Office of Environmental Health Hazard Assessment (OEHHA) risk-assessment methodology¹⁰. A health risk assessment requires the completion and interaction of four general steps: - (1) Quantify project-generated TAC emissions. - (2) Identify nearby ground-level receptor locations that may be affected by the emissions (including any special sensitive receptor locations such as residences, schools, hospitals, convalescent homes, and - (3) Perform air dispersion modeling analyses to estimate ambient pollutant concentrations at each receptor location using project TAC emissions and representative meteorological data to define the transport and dispersion of those emissions in the atmosphere. - (4) Characterize and compare the calculated health risks with the applicable health risk significance thresholds. The ARB Air Quality and Land Use Handbook (ARB Handbook) provides an advisory recommendation to avoid the locating of new sensitive land uses within 500 feet of a freeway, urban roads with 100,000 vehicles per day, or rural roads with 50,000 vehicles per day. The proposed residential uses are to be located approximately 250 feet of the Interstate 10 freeway. The California Department of Transportation vehicular counts show 2019 AADT numbers of 155,000 (ahead AADT) at the segment of Redlands, Wabash Avenue with a total of 20,150 (13%) of those vehicles being trucks. According to the SCAQMD's MATES-V study, the project area has an estimated multi-pathway cancer risk of 403 in one million and an inhalation cancer risk of 382 in one million. In comparison the average multi-pathway cancer risk for the South Coast Air Basin portion of San Bernardino County is 471 in one million and the ¹⁰ In February 2015, the Office of Environmental Health Hazard Assessment updated their "Air Toxics Hot Spots Program, Risk Assessments Guidelines, Guidance Manual for Preparation of Health Risk Assessments; however, the updated OEHHA guidance states in the page footers "do not cite or quote." SCAQMD staff have incorporated the updates into their methodology for SCAQMD's Rules 1401, 1401.1, 1402, and 212, and have updated their HRA Guidance for permitting; however they are still in the process of updating the guidance for CEQA analyses (via working group sessions); however, to be conservative, the new OEHHA guidance was used to assess HRA impacts in this analysis. inhalation cancer risk is 439 in a million. This increased cancer risk at the project site is largely due to the proximity to the Interstate 10 freeway To determine the potential health risk from freeway emissions sources to the future residents of the project site, a health risk estimate was performed. #### **ESTIMATE OF EMISSIONS FACTORS** The DPM emission factors for the various vehicle types were derived from the CARB EMFAC2017 mobile source emission model for the South Coast Air Basin. The 1-year exposure used opening year (2025) emissions factors and reflects exposure during third trimester, 2-year factors (for infant exposure) reflect years 2026 and 2027, the first 14-year average factors are used for child exposure during years 2-16) reflect emissions during the subsequent 14 years of operation (2028 to 2041), and the second 14 years of exposure (years 2042-2055¹¹) were used for assessment of adult exposure during years 16 to 30. The four different sets of emissions factors used in this assessment are detailed in Table 10. It should be noted that the DPM emissions on both the gram per mile and gram per idle hour bases have declined beyond 2021 for all vehicle classes and in particular the heavy-heavy-duty truck class (the 4+ axle "big rig" trucks). This is due to the CARB emissions' requirements on heavy-duty trucks that call for either the replacement of older trucks with cleaner
trucks or the installation of diesel particulate matter filters on the truck fleet. #### Emission Source Characterization Each of the emission source types described above also requires geometrical and emission release specifications for use in the air dispersion model. Table 11 provides a summary of the assumptions used to configure the various emission sources. The following definitions are used to characterize the emission source geometrical configurations referred to in Table 11: Line source: A series of volume sources along a path, for example, vehicular volumes along a roadway (shown as blue lines on Figure 3). Figure 3 provides the location of the receptors (shown by orange triangles) and emission source locations, shown by the blue line along each direction of the freeway (as the emissions are calculated for both the northbound and southbound lanes of the freeway). The residential area is outlined in pink. #### **RECEPTOR NETWORK** The assessment requires that a network of receptors be specified where the impacts can be computed at the various locations. Receptors were located at the closest proposed sensitive receptors to the Interstate 10 Freeway (as detailed above). In addition, the identified sensitive receptor locations were supplemented by the specification of a modeling grid that extended around the proposed project to identify other potential locations of impact. The locations of the receptors are shown as orange triangles on Figure 3. #### **DISPERSION MODELING** The next step in the assessment process utilizes the emissions inventory along with a mathematical air dispersion model and representative meteorological data to calculate impacts at the various receptor locations. The dispersion model used in this assessment is described below. ## Model Selection The assessment of air quality and health risk impacts from pollutant emissions from the freeway applied the USEPA AERMOD Model, which is the air dispersion model accepted by the SCAQMD for performing air ¹¹ EMFAC2017 only estimates emissions out to the year 2050; therefore, for years beyond 2050, the values for 2050 are used. EIMIFACZU17 quality impact analyses. AERMOD predicts pollutant concentrations from point, area, volume, line, and flare sources with variable emissions in terrain from flat to complex with the inclusion of building downwash effects from buildings on pollutant dispersion. It captures the essential atmospheric physical processes and provides reasonable estimates over a wide range of meteorological conditions and modeling scenarios. # General Model Assumptions A summary of Emission Configurations is shown in Table 11. The basic options used in the dispersion modeling are summarized in Table 12. #### Meteorological Data Meteorological data (processed with the ADJ_U option) from the Air District's Redlands monitoring site was selected for this modeling application. Five full years of sequential meteorological data was collected at the site from January 1, 2012 to December 31, 2016 by the SCAQMD. The SCAQMD processed the data for input to the model. The data was obtained at SCAQMD's https://www.aqmd.gov/home/air-quality/air-quality-data-studies/meteorological-data/data-for-aermod (see Figure 4). #### **ESTIMATION OF HEALTH RISKS** Health risks from diesel particulate matter are twofold. First, diesel particulate matter is a carcinogen according to the State of California. Second, long-term chronic exposure to diesel particulate matter can cause health effects to the respiratory system. Each of these health risks is discussed below. #### Cancer Risks According to the *Risk Assessment Guidelines: Guidance Manual for Preparation of Health Risk Assessments*, released by the Office of Environmental Health Hazard Assessment (OEHHA) in February 2015 and formally adopted in March 2015, the residential inhalation dose for cancer risk assessment should be calculated using the following formula: [Dose-air (mg/(Kg-day)]*Cancer Potency*[$1x10^{-6}$] = Potential Cancer Risk Where: Cancer Potency Factor = 1.1 Dose-inh = (C¬air * DBR * A * EF * ED *ASF*FAH* 10-6) / AT Where: Cair [Concentration in air $(\mu g/m3)$] = (Calculated by AERMOD Model) DBR [Daily breathing rate (L/kg body weight – day)] = 261 for adults, 572 for children, and 1,090 for infants, and 361 for 3rd trimester per SCAQMD Permit Application Package "N" Table 4.1 D guidance. A [Inhalation absorption factor] = 1 EF [Exposure frequency (days/year)] = 350 ED [Exposure duration (years)] = 30 for adults (for an individual who is an adult at opening year), 14 for children (from 2-16 years), 14 for adults (from 16-30 years), 2 for infants, and 1 for 3rd Trimester ASF [Age sensitivity factor) = 10 for 3rd trimester to 2 years of age, 3 for 2 to 16 years of age, and 1 for 16 to 30 years of age FAH [Fraction of time spent at home] = 1 for 3rd trimester to 2 years of age, 1 for 2 to 16 years of age, and 0.73 for 16 to 30 years of age 10⁶ [Micrograms to milligrams conversion] AT [Average time period over which exposure is averaged in days] = 25,550 The model run results are shown in Appendix B. Figure 5 illustrates the cancer risk to the most affected agegroup, children (2-16 years). Table 13 show the cancer risk for the unborn child during the 3rd trimester, Table 14 shows the cancer risk to infants (0-2 years), Table 15 shows the cancer risk to children ages 2 to 16 years and Table 16 shows the cancer risk as that child becomes an adult (years 16-30). The highest cancer risk corresponds to child cancer risk 2-16 years (see Table 15), and is at receptor 2, with a maximum risk of 16 in one million. The highest infant cancer risk 0-2 years is also at receptor 2; with a maximum risk of 15.83 in one million. Therefore, children and infants are exposed to cancer risks in excess of 10 in a million from freeway-related DPM sources. The assessment of cancer-related health risk to proposed sensitive receptors is based on the following mostconservative scenario: An unborn child in its 3rd trimester is potentially exposed to DPM emissions (via exposure of the mother) during the opening year. That child is born opening year and then remains at home for the entire first two years of life. From age 2 to 16, the child remains at home 100 percent of the time. From age 16 to 30, the child continues to live at home, growing into an adult that spends 73 percent of its time at home and lives there until age 30. Based on the above, ultra-conservative assumptions, the 30.25-year, cumulative carcinogenic health risk (3rd trimester [-0.25 to 0 years] + infant [0-2 years] + child [2-16 years] + adult [16-30 years]) to an individual born during the opening year of the project, and located in the project vicinity for the entire 30-year duration, is a maximum of 34.22 in a million at receptor location 2, as shown in Table 17. Therefore, the on-going operations of the proposed project could result in a significant impact due to the cancer risk from diesel emissions to the proposed project. There currently is no SCAQMD TAC threshold for "existing" cancer risk to sensitive receptors. The SCAQMD TAC threshold of 10 in one million is defined as the "maximum incremental cancer risk." As the project does not involve the construction of sources that would significantly contribute to "incremental cancer risk," the application of the 10 in one million threshold is not well applied in this case. Other air quality districts have refined methodology and thresholds for evaluation of the health risks posed by heavily traveled roadways and freeways to adjacent receptors. For example, the Bay Area Air Quality Management District has a "Roadway Screening Analysis" procedure and thresholds based on annual average daily traffic (AADT) and distance from the source. The San Luis Obispo Air Pollution Control District has a requirement that new land use projects that will place sensitive receptors (e.g., residential units) in close proximity to existing toxics sources (e.g., freeway) must not exceed the CEQA health risk threshold of 89 in a million. However, as the cancer risk exceeds the SCAQMD MICR threshold of 10 in a million, mitigation is required. Mitigation requiring minimum efficiency reporting value (MERV) 13 filters would remove a substantial amount of particulates, including DPM. MERV 13 filters have a particle size removal efficiency rating of greater than 90 percent for particulates 3 micron to 10 microns in size and a rating of 85 percent for particles 1.0 to 3.0 micron in size.¹² A MERV 13 filter creates more resistance to airflow because the filter media becomes denser as efficiency increases. The MERV filters do not remove gaseous pollutants; however. See Mitigation Measure 1 in Section 6 of this report for details. Therefore, indoor (interior) exposure to DPM (of particles greater than 1.0 micron) and consequently cancer risk would be reduced by 85 percent, to 5.13 in one million; less than the 10 in one million SCAQMD threshold. Outdoor levels would still present a risk level exceeding the SCAQMD threshold of 10 in one million. # Non-Cancer Risks The relationship for non-cancer health effects is given by the equation: ¹² Source: https://www.secondnature.com/blog/what-merv-rating-should-i-use # HIDPM = CDPM/RELDPM Where, HIDPM = Hazard Index; an expression of the potential for non-cancer health effects. CDPM = Annual average diesel particulate matter concentration in μ g/m3. RELDPM = Reference Exposure Level (REL) for diesel particulate matter; the diesel particulate matter concentration at which no adverse health effects are anticipated. The non-carcinogenic hazards to adult, child and infant receptors are also detailed in Tables 13 through 16 column (j). The RELDPM is 5 μ g/m3. The Office of Environmental Health Hazard Assessment as protective for the respiratory system has established this
concentration. Using the maximum DPM concentration from years 2025-2055, the resulting Hazard Index is: HIDPM = 0.0494/5 = 0.0099 The criterion for significance is a Hazard Index increase of 1.0 or greater. Therefore, the on-going operations of the proposed project would result in a less than significant impact due to the non-cancer risk from freeway-related diesel emissions to the proposed project. # Table 10 DPM Vehicular Emission Factors¹ | Vehicle Type | MPH assumed for vehicle type | 1-year (2025) Average DPM Exhaust
Emissions Factor(g/mi) | |----------------------------------|------------------------------|---| | Light Duty Auto (LDA) | 70 | 0.004164408 | | Light Duty Truck 1 (LDT1) | 70 | 0.139326979 | | Light Duty Truck 2 (LDT2) | 70 | 0.003725823 | | Medium Duty Truck (MDV) | 60 | 0.003161293 | | Light-Heavy Duty Truck 1 (LHDT1) | 60 | 0.015608783 | | Light-Heavy Duty Truck 2 (LHDT2) | 60 | 0.015765879 | | Medium-Heavy Duty Truck (MHDT) | 55 | 0.010109 | | Heavy-Heavy Duty Truck (HHDT) | 55 | 0.023525 | | Vehicle Type | MPH assumed for vehicle type | 2-year (2026-2027) Average DPM
Exhaust Emissions Factor(g/mi) | |----------------------------------|------------------------------|--| | Light Duty Auto (LDA) | 70 | 0.003031835 | | Light Duty Truck 1 (LDT1) | 70 | 0.095229131 | | Light Duty Truck 2 (LDT2) | 70 | 0.00346121 | | Medium Duty Truck (MDV) | 60 | 0.002727943 | | Light-Heavy Duty Truck 1 (LHDT1) | 60 | 0.014034685 | | Light-Heavy Duty Truck 2 (LHDT2) | 60 | 0.014960975 | | Medium-Heavy Duty Truck (MHDT) | 55 | 0.010208 | | Heavy-Heavy Duty Truck (HHDT) | 55 | 0.023467 | | Vehicle Type | MPH assumed for vehicle type | 1st 14-year (2028-2041) Average DPM
Exhaust Emissions Factor(g/mi) | |----------------------------------|------------------------------|---| | Light Duty Auto (LDA) | 70 | 0.001149899 | | Light Duty Truck 1 (LDT1) | 70 | 0.009619132 | | Light Duty Truck 2 (LDT2) | 70 | 0.003242716 | | Medium Duty Truck (MDV) | 60 | 0.001337376 | | Light-Heavy Duty Truck 1 (LHDT1) | 60 | 0.008294268 | | Light-Heavy Duty Truck 2 (LHDT2) | 60 | 0.012232816 | | Medium-Heavy Duty Truck (MHDT) | 55 | 0.010282 | | Heavy-Heavy Duty Truck (HHDT) | 55 | 0.022548 | | Vehicle Type | MPH assumed for vehicle type | 2nd 14-year (2042-2055) Average
DPM Exhaust Emissions Factor(g/mi) | |----------------------------------|------------------------------|---| | Light Duty Auto (LDA) | 70 | 0.000572728 | | Light Duty Truck 1 (LDT1) | 70 | 0.003442482 | | Light Duty Truck 2 (LDT2) | 70 | 0.00329775 | | Medium Duty Truck (MDV) | 60 | 0.000663243 | | Light-Heavy Duty Truck 1 (LHDT1) | 60 | 0.004460849 | | Light-Heavy Duty Truck 2 (LHDT2) | 60 | 0.010553487 | | Medium-Heavy Duty Truck (MHDT) | 55 | 0.010028 | | Heavy-Heavy Duty Truck (HHDT) | 55 | 0.022173 | Source: EMFAC2017 for South Coast. # Table 11 Summary of Emission Configurations | Emission Source Type | Geometric Configuration | Relevant Assumptions | |-------------------------|-------------------------|--| | | | Plume height: 3.66 meters | | | | Vehicle speed: See Table 10 | | Off-Site Diesel Traffic | Line Sources | Length of the line source (10 Freeway segment southwest of project site) | | | | Vehicle types: see Table 10 | | | | Emission factor: CARB EMFAC2017 | Table 12 General Modeling Assumptions - AERMOD Model | Feature | Option Selected | |-------------------------------|------------------------------------| | Zone | 11 North | | Terrain processing | AERMAP NED GEOTIFF (30 m) | | Emission source configuration | See Table 11 | | Regulatory dispersion options | Default | | Land use | Urban ¹ | | Coordinate system | UTM | | Receptor height | 0 meters above ground ¹ | | Meteorological data | SCAQMD Redlands | (1) Per SCAQMD AERMOD guidance methodology, available at http://www.aqmd.gov/home/library/air-quality-data-studies/meteorological-data/modeling-guidance Table 13 Carcinogenic Risks and Non-Carcinogenic Hazards 3rd Trimester Exposure Scenario (0.25-Years) | | Maxi | mum | | | Carcinoger | nic Hazards | Nonc | arcinogenic Ha | zards | |----------|---------|----------|----------|-------------|-------------|-------------|---------|----------------|--------| | Receptor | Concer | ntration | Weight | | CPF | RISK (per | REL | RfD | | | ID | (ug/m3) | (mg/m3) | Fraction | Contaminant | (mg/kg/day) | million) | (ug/m3) | (mg/kg/day) | Index | | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | | 1 | 0.04712 | 4.7E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.64 | 5.0E+00 | 1.4E-03 | 0.0094 | | 2 | 0.0494 | 4.9E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.67 | 5.0E+00 | 1.4E-03 | 0.0099 | | 3 | 0.03911 | 3.9E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.53 | 5.0E+00 | 1.4E-03 | 0.0078 | | 4 | 0.03108 | 3.1E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.42 | 5.0E+00 | 1.4E-03 | 0.0062 | | 5 | 0.01342 | 1.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.18 | 5.0E+00 | 1.4E-03 | 0.0027 | | OS_6 | 0.01377 | 1.4E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.19 | 5.0E+00 | 1.4E-03 | 0.0028 | | 7 | 0.02347 | 2.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.32 | 5.0E+00 | 1.4E-03 | 0.0047 | | 8 | 0.02407 | 2.4E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.33 | 5.0E+00 | 1.4E-03 | 0.0048 | Exposure factors used to calculate TAC intake: | Exposure Frequency (days/year) | 350 | |---|-------| | Exposure Duration (years) | 0.25 | | Daily Breathing Rate | 361 | | Age Sensitivity Factor | 10 | | Fraction of Time At Home (FAH) | 1 | | Averaging Time _(cancer) (days) | 25550 | | Averaging Time (non-cancer) (days) | 91.25 | Table 14 Carcinogenic Risks and Non-Carcinogenic Hazards Infant Exposure Scenario (2-Year) | | Maximum | | | | Carcinogenic Hazards | | Noncarcinogenic Hazards | | | |----------|---------|----------|----------|-------------|----------------------|-----------|-------------------------|-------------|--------| | Receptor | Concer | ntration | Weight | | CPF | RISK (per | REL | RfD | | | ID | (ug/m3) | (mg/m3) | Fraction | Contaminant | (mg/kg/day) | million) | (ug/m3) | (mg/kg/day) | Index | | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | | 1 | 0.04598 | 4.6E-05 | 1.00E+00 | DPM | 1.1E+00 | 15.10 | 5.0E+00 | 1.4E-03 | 0.0092 | | 2 | 0.0482 | 4.8E-05 | 1.00E+00 | DPM | 1.1E+00 | 15.83 | 5.0E+00 | 1.4E-03 | 0.0096 | | 3 | 0.03816 | 3.8E-05 | 1.00E+00 | DPM | 1.1E+00 | 12.54 | 5.0E+00 | 1.4E-03 | 0.0076 | | 4 | 0.03032 | 3.0E-05 | 1.00E+00 | DPM | 1.1E+00 | 9.96 | 5.0E+00 | 1.4E-03 | 0.0061 | | 5 | 0.01309 | 1.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 4.30 | 5.0E+00 | 1.4E-03 | 0.0026 | | OS_6 | 0.01344 | 1.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 4.41 | 5.0E+00 | 1.4E-03 | 0.0027 | | 7 | 0.0229 | 2.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 7.52 | 5.0E+00 | 1.4E-03 | 0.0046 | | 8 | 0.02349 | 2.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 7.72 | 5.0E+00 | 1.4E-03 | 0.0047 | Exposure factors used to calculate TAC intake: | Exposure Frequency (days/year) | 350 | |---|-------| | Exposure Duration (years) | 2 | | Daily Breathing Rate | 1090 | | Age Sensitivity Factor | 10 | | Fraction of Time At Home (FAH) | 1 | | Averaging Time _(cancer) (days) | 25550 | | Averaging Time (non-cancer) (days) | 730 | # Table 15 Carcinogenic Risks and Non-Carcinogenic Hazards Child Exposure Scenario (14-Year) | | Maxi | mum | | | Carcinogenic Hazards | | Noncarcinogenic Hazards | | | |----------|---------|----------|----------|-------------|----------------------|-----------|-------------------------|-------------|--------| | Receptor | Concer | ntration | Weight | | CPF | RISK (per | REL | RfD | | | ID | (ug/m3) | (mg/m3) | Fraction | Contaminant | (mg/kg/day) | million) | (ug/m3) | (mg/kg/day) | Index | | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | | 1 | 0.04218 | 2.7E-03 | 1.00E+00 | DPM | 1.1E+00 | 15.27 | 5.0E+00 | 1.4E-03 | 0.0084 | | 2 | 0.04421 | 2.5E-03 | 1.00E+00 | DPM | 1.1E+00 | 16.00 | 5.0E+00 | 1.4E-03 | 0.0088 | | 3 | 0.035 | 2.5E-03 | 1.00E+00 | DPM | 1.1E+00 | 12.67 | 5.0E+00 | 1.4E-03 | 0.0070 | | 4 | 0.02782 | 2.5E-03 | 1.00E+00 | DPM | 1.1E+00 | 10.07 | 5.0E+00 | 1.4E-03 | 0.0056 | | 5 | 0.01201 | 2.5E-03 | 1.00E+00 | DPM | 1.1E+00 | 4.35 | 5.0E+00 | 1.4E-03 | 0.0024 | | OS_6 | 0.01233 | 2.5E-03 | 1.00E+00 | DPM | 1.1E+00 | 4.46 | 5.0E+00 | 1.4E-03 | 0.0025 | | 7 | 0.021 | 2.5E-03 | 1.00E+00 | DPM | 1.1E+00 | 7.60 | 5.0E+00 | 1.4E-03 | 0.0042 | | 8 | 0.02154 | 2.2E-05 | 1.00E+00 | DPM | 1.1E+00 | 7.80 | 5.0E+00 | 1.4E-03 | 0.0043 | #### Notes: Exposure factors used to calculate TAC intake: | Exposure Frequency (days/year) | 350 | |---|-------| | Exposure Duration (years) | 14 | | Daily Breathing Rate | 572 | | Age Sensitivity Factor | 3 | | Fraction of Time At Home (FAH) | 1 | | Averaging Time _(cancer) (days) | 25550 | | Averaging Time (non-cancer) (days) | 5110 | # Table 16 Carcinogenic Risks and Non-Carcinogenic Hazards Adult Exposure Scenario (14-Year) | | Maximum | | | | Carcinogenic Hazards | | Noncarcinogenic Hazards | | | |----------|---------|----------|----------|-------------|----------------------|-----------|-------------------------|-------------|--------| | Receptor | Concer | ntration | Weight | | CPF | RISK (per | REL | RfD | | | ID | (ug/m3) | (mg/m3) | Fraction | Contaminant | (mg/kg/day) | million) | (ug/m3) | (mg/kg/day) | Index | | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) | | 1 | 0.04066 | 4.1E-05 | 1.00E+00 | DPM | 1.1E+00 | 1.63 | 5.0E+00 | 1.4E-03 | 0.0081 | | 2 | 0.04262 | 4.3E-05 | 1.00E+00 | DPM | 1.1E+00 | 1.71 | 5.0E+00 | 1.4E-03 | 0.0085 | | 3 | 0.03374 | 3.4E-05 | 1.00E+00 | DPM | 1.1E+00 | 1.36 | 5.0E+00 | 1.4E-03 | 0.0067 | | 4 | 0.02682 |
2.7E-05 | 1.00E+00 | DPM | 1.1E+00 | 1.08 | 5.0E+00 | 1.4E-03 | 0.0054 | | 5 | 0.01158 | 1.2E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.47 | 5.0E+00 | 1.4E-03 | 0.0023 | | OS_6 | 0.01188 | 1.2E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.48 | 5.0E+00 | 1.4E-03 | 0.0024 | | 7 | 0.02025 | 2.0E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.81 | 5.0E+00 | 1.4E-03 | 0.0041 | | 8 | 0.02077 | 2.1E-05 | 1.00E+00 | DPM | 1.1E+00 | 0.83 | 5.0E+00 | 1.4E-03 | 0.0042 | #### Notes: Exposure factors used to calculate TAC intake | Exposure Frequency (days/year) | 350 | |------------------------------------|-------| | Exposure Duration (years) | 14 | | Daily Breathing Rate | 261 | | Age Sensitivity Factor | 1 | | Fraction of Time At Home (FAH) | 0.73 | | Averaging Time (cancer) (days) | 25550 | | Averaging Time (non-cancer) (days) | 5110 | Table 17 Cumulative Carcinogenic Risk 30.25-Year Exposure Scenario | Receptor ID | Cumulative RISK (per million) | |-------------|-------------------------------| | 1 | 32.65 | | 2 | 34.22 | | 3 | 27.09 | | 4 | 21.53 | | 5 | 9.30 | | OS_6 | 9.54 | | 7 | 16.26 | | 8 | 16.68 | Figure 4 Wind Rose: Redlands # **GLOBAL CLIMATE CHANGE ANALYSIS** #### **EXISTING GREENHOUSE GAS ENVIRONMENT** Constituent gases of the Earth's atmosphere, called atmospheric greenhouse gases (GHG), play a critical role in the Earth's radiation amount by trapping infrared radiation emitted from the Earth's surface, which otherwise would have escaped to space. Prominent greenhouse gases contributing to this process include carbon dioxide (CO₂), methane (CH₄), ozone, water vapor, nitrous oxide (N₂O), and chlorofluorocarbons (CFCs). This phenomenon, known as the Greenhouse Effect, is responsible for maintaining a habitable climate. Anthropogenic (caused or produced by humans) emissions of these greenhouse gases in excess of natural ambient concentrations are responsible for the enhancement of the Greenhouse Effect and have led to a trend of unnatural warming of the Earth's natural climate, known as global warming or climate change. Emissions of gases that induce global warming are attributable to human activities associated with industrial/manufacturing, agriculture, utilities, transportation, and residential land uses. Transportation is responsible for 41 percent of the State's greenhouse gas emissions, followed by electricity generation. Emissions of CO₂ and nitrous oxide (NOx) are byproducts of fossil fuel combustion. Methane, a potent greenhouse gas, results from off-gassing associated with agricultural practices and landfills. Sinks of CO₂, where CO₂ is stored outside of the atmosphere, include uptake by vegetation and dissolution into the ocean. The following provides a description of each of the greenhouse gases and their global warming potential. #### Water Vapor Water vapor is the most abundant, important, and variable GHG in the atmosphere. Water vapor is not considered a pollutant; in the atmosphere it maintains a climate necessary for life. Changes in its concentration are primarily considered a result of climate feedbacks related to the warming of the atmosphere rather than a direct result of industrialization. The feedback loop in which water is involved is critically important to projecting future climate change. As the temperature of the atmosphere rises, more water is evaporated from ground storage (rivers, oceans, reservoirs, soil). Because the air is warmer, the relative humidity can be higher (in essence, the air is able to "hold" more water when it is warmer), leading to more water vapor in the atmosphere. As a GHG, the higher concentration of water vapor is then able to absorb more thermal indirect energy radiated from the Earth, thus further warming the atmosphere. The warmer atmosphere can then hold more water vapor and so on and so on. This is referred to as a "positive feedback loop". The extent to which this positive feedback loop will continue is unknown as there is also dynamics that put the positive feedback loop in check. As an example, when water vapor increases in the atmosphere, more of it will eventually also condense into clouds, which are more able to reflect incoming solar radiation (thus allowing less energy to reach the Earth's surface and heat it up). # Carbon Dioxide (CO₂) The natural production and absorption of CO₂ is achieved through the terrestrial biosphere and the ocean. However, humankind has altered the natural carbon cycle by burning coal, oil, natural gas, and wood. Since the industrial revolution began in the mid-1700s. Each of these activities has increased in scale and distribution. CO₂ was the first GHG demonstrated to be increasing in atmospheric concentration with the first conclusive measurements being made in the last half of the 20th century. Prior to the industrial revolution, concentrations were fairly stable at 280 parts per million (ppm). The International Panel on Climate Change (IPCC Fifth Assessment Report, 2014) Emissions of CO₂ from fossil fuel combustion and industrial processes contributed about 78% of the total GHG emissions increase from 1970 to 2010, with a similar percentage contribution for the increase during the period 2000 to 2010. Globally, economic and population growth continued to be the most important drivers of increases in CO₂ emissions from fossil fuel combustion. The contribution of population growth between 2000 and 2010 remained roughly identical to the previous three decades, while the contribution of economic growth has risen sharply. # Methane (CH₄) CH_4 is an extremely effective absorber of radiation, although its atmospheric concentration is less than that of CO_2 . Its lifetime in the atmosphere is brief (10 to 12 years), compared to some other GHGs (such as CO_2 , N_2O , and Chlorofluorocarbons (CFCs). CH_4 has both natural and anthropogenic sources. It is released as part of the biological processes in low oxygen environments, such as in swamplands or in rice production (at the roots of the plants). Over the last 50 years, human activities such as growing rice, raising cattle, using natural gas, and mining coal have added to the atmospheric concentration of methane. Other anthropocentric sources include fossil-fuel combustion and biomass burning. # Nitrous Oxide (N₂O) Concentrations of N_2O also began to rise at the beginning of the industrial revolution. In 1998, the global concentration of this GHG was documented at 314 parts per billion (ppb). N_2O is produced by microbial processes in soil and water, including those reactions which occur in fertilizer containing nitrogen. In addition to agricultural sources, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid production, and vehicle emissions) also contribute to its atmospheric load. It is also commonly used as an aerosol spray propellant, (i.e., in whipped cream bottles, in potato chip bags to keep chips fresh, and in rocket engines and in race cars). # **Chlorofluorocarbons (CFC)** CFCs are gases formed synthetically by replacing all hydrogen atoms in methane or ethane (C_2H_6) with chlorine and/or fluorine atoms. CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the Earth's surface). CFCs have no natural source, but were first synthesized in 1928. It was used for refrigerants, aerosol propellants, and cleaning solvents. Due to the discovery that they are able to destroy stratospheric ozone, a global effort to halt their production was undertaken and in 1989 the European Community agreed to ban CFCs by 2000 and subsequent treaties banned CFCs worldwide by 2010. This effort was extremely successful, and the levels of the major CFCs are now remaining level or declining. However, their long atmospheric lifetimes mean that some of the CFCs will remain in the atmosphere for over 100 years. # **Hydrofluorocarbons (HFC)** HFCs are synthetic man-made chemicals that are used as a substitute for CFCs. Out of all the GHGs, they are one of three groups with the highest global warming potential. The HFCs with the largest measured atmospheric abundances are (in order), HFC-23 (CHF $_3$), HFC-134a (CF $_3$ CH $_2$ F), and HFC-152a (CH $_3$ CHF $_2$). Prior to 1990, the only significant emissions were HFC-23. HFC-134a use is increasing due to its use as a refrigerant. Concentrations of HFC-23 and HFC-134a in the atmosphere are now about 10 parts per trillion (ppt) each. Concentrations of HFC-152a are about 1 ppt. HFCs are manmade for applications such as automobile air conditioners and refrigerants. # Perfluorocarbons (PFC) PFCs have stable molecular structures and do not break down through the chemical processes in the lower atmosphere. High-energy ultraviolet rays about 60 kilometers above Earth's surface are able to destroy the compounds. Because of this, PFCs have very long lifetimes, between 10,000 and 50,000 years. Two common PFCs are tetrafluoromethane (CF_4) and hexafluoroethane (C_2F_6). Concentrations of CF_4 in the atmosphere are over 70 ppt. The two main sources of PFCs are primary aluminum production and semiconductor manufacturing. # Sulfur Hexafluoride (SF₆) SF_6 is an inorganic, odorless, colorless, nontoxic, nonflammable gas. SF_6 has the highest global warming potential of any gas evaluated; 23,900 times that of CO_2 . Concentrations in the 1990s were about 4 ppt. Sulfur hexafluoride is used for insulation in electric power transmission and distribution equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection. #### **Aerosols** Aerosols are particles emitted into the air through burning biomass (plant material) and fossil fuels. Aerosols can warm the atmosphere by absorbing and emitting heat and can cool the atmosphere by reflecting light. Cloud formation can also be affected by aerosols. Sulfate aerosols are emitted when fuel containing sulfur is burned. Black carbon (or soot) is emitted during biomass burning
due to the incomplete combustion of fossil fuels. Particulate matter regulation has been lowering aerosol concentrations in the United States; however, global concentrations are likely increasing. # **Global Warming Potential** The Global Warming Potential (GWP) was developed to allow comparisons of the global warming impacts of different gases. Specifically, it is a measure of how much energy the emissions of 1 ton of a gas will absorb over a given period of time, relative to the emissions of 1 ton of carbon dioxide (CO_2). The larger the GWP, the more that a given gas warms the Earth compared to CO_2 over that time period. The time period usually used for GWPs is 100 years. GWPs provide a common unit of measure, which allows analysts to add up emissions estimates of different gases (e.g., to compile a national GHG inventory), and allows policymakers to compare emissions reduction opportunities across sectors and gases. A summary of the atmospheric lifetime and the global warming potential of selected gases are summarized in Table 18. As shown in Table 18, the global warming potential of GHGs ranges from 1 to 22,800. Table 18 Global Warming Potentials and Atmospheric Lifetimes | Gas | Atmospheric Lifetime | Global Warming Potential ¹
(100 Year Horizon) | |---|----------------------|---| | Carbon Dioxide (CO ₂) | _2 | 1 | | Methane (CH ₄) | 12 | 28-36 | | Nitrous Oxide (NO) | 114 | 298 | | Hydrofluorocarbons (HFCs) | 1-270 | 12-14,800 | | Perfluorocarbons (PFCs) | 2,600-50,000 | 7,390-12,200 | | Nitrogen trifluoride (NF ₃) | 740 | 17,200 | | Sulfur Hexafluoride (SF ₆) | 3,200 | 22,800 | Source: http://www3.epa.gov/climatechange/ghgemissions/gases.html - (1) Compared to the same quantity of CO₂ emissions. - (2) Carbon dioxide's lifetime is poorly defined because the gas is not destroyed over time, but instead moves among different parts of the ocean-atmosphere-land system. Some of the excess carbon dioxide will be absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments. # **GREENHOUSE GAS STANDARDS AND REGULATION** #### International Montreal Protocol In 1988, the United Nations established the Intergovernmental Panel on Climate Change (IPCC) to evaluate the impacts of global climate change and to develop strategies that nations could implement to curtail global climate change. In 1992, the United States joined other countries around the world in signing the United Nations' Framework Convention on Climate Change (UNFCCC) agreement with the goal of controlling GHG emissions. As a result, the Climate Change Action Plan was developed to address the reduction of GHGs in the United States. The plan consists of more than 50 voluntary programs. Additionally, the Montreal Protocol was originally signed in 1987 and substantially amended in 1990 and 1992. The Montreal Protocol stipulates that the production and consumption of compounds that deplete ozone in the stratosphere—CFCs, halons, carbon tetrachloride, and methyl chloroform—were to be phased out, with the first three by the year 2000 and methyl chloroform by 2005. The Paris Agreement The Paris Agreement became effective on November 4, 2016. Thirty days after this date at least 55 Parties to the United Nations Framework Convention on Climate Change (Convention), accounting in total for at least an estimated 55 % of the total global greenhouse gas emissions, had deposited their instruments of ratification, acceptance, approval or accession with the Depositary. The Paris Agreement built upon the Convention and – for the first time – attempted to bring all nations into a common cause to undertake ambitious efforts to combat climate change and adapt to its effects, with enhanced support to assist developing countries to do so. As such, it charts a new course in the global climate effort. The Paris Agreement's central aim is to strengthen the global response to the threat of climate change by keeping a global temperature rise this century well below 2 degrees Celsius above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius. Additionally, the agreement aims to strengthen the ability of countries to deal with the impacts of climate change. To reach these ambitious goals, appropriate financial flows, a new technology framework and an enhanced capacity building framework will be put in place, thus supporting action by developing countries and the most vulnerable countries, in line with their own national objectives. The Agreement also provides for enhanced transparency of action and support through a more robust transparency framework. # **Federal** The United States Environmental Protection Agency (USEPA) is responsible for implementing federal policy to address GHGs. The federal government administers a wide array of public-private partnerships to reduce the GHG intensity generated in the United States. These programs focus on energy efficiency, renewable energy, methane and other non-CO2 gases, agricultural practices, and implementation of technologies to achieve GHG reductions. The USEPA implements numerous voluntary programs that contribute to the reduction of GHG emissions. These programs (e.g., the ENERGY STAR labeling system for energy-efficient products) play a significant role in encouraging voluntary reductions from large corporations, consumers, industrial and commercial buildings, and many major industrial sectors. In Massachusetts v. Environmental Protection Agency (Docket No. 05–1120), argued November 29, 2006 and decided April 2, 2007, the U.S. Supreme Court held that not only did the EPA have authority to regulate greenhouse gases, but the EPA's reasons for not regulating this area did not fit the statutory requirements. As such, the U.S. Supreme Court ruled that the EPA should be required to regulate CO₂ and other greenhouse gases as pollutants under the federal Clean Air Act (CAA). In response to the FY2008 Consolidations Appropriations Act (H.R. 2764; Public Law 110-161), EPA proposed a rule on March 10, 2009 that requires mandatory reporting of GHG emissions from large sources in the United States. On September 22, 2009, the Final Mandatory Reporting of GHG Rule was signed and published in the Federal Register on October 30, 2009. The rule became effective on December 29, 2009. This rule requires suppliers of fossil fuels or industrial GHGs, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons or more per year of GHG emissions to submit annual reports to EPA. On December 7, 2009, the EPA Administrator signed two distinct findings under section 202(a) of the Clean Air Act. One is an endangerment finding that finds concentrations of the six GHGs in the atmosphere threaten the public health and welfare of current and future generations. The other is a cause or contribute finding, that finds emissions from new motor vehicles and new motor vehicle engines contribute to the GHG pollution which threatens public health and welfare. These actions will not themselves impose any requirements on industry or other entities. However, it is a prerequisite to finalizing the EPA's proposed GHG emission standards for light-duty vehicles, which were jointly proposed by the EPA and Department of Transportation on September 15, 2009. #### Clean Air Act In Massachusetts v. Environmental Protection Agency (Docket No. 05–1120), the U.S. Supreme Court held in April of 2007 that the USEPA has statutory authority under Section 202 of the federal Clean Air Act (CAA) to regulate GHGs. The court did not hold that the USEPA was required to regulate GHG emissions; however, it indicated that the agency must decide whether GHGs cause or contribute to air pollution that is reasonably anticipated to endanger public health or welfare. On December 7, 2009, the USEPA Administrator signed two distinct findings regarding GHGs under Section 202(a) of the CAA. The USEPA adopted a Final Endangerment Finding for the six defined GHGs (CO2, CH4, N2O, HFCs, PFCs, and SF6) on December 7, 2009. The Endangerment Finding is required before USEPA can regulate GHG emissions under Section 202(a)(1) of the CAA consistently with the United States Supreme Court decision. The USEPA also adopted a Cause or Contribute Finding in which the USEPA Administrator found that GHG emissions from new motor vehicle and motor vehicle engines are contributing to air pollution, which is endangering public health and welfare. These findings do not, by themselves, impose any requirements on industry or other entities. However, these actions were a prerequisite for implementing GHG emissions standards for vehicles. #### Energy Independence Security Act The Energy Independence and Security Act of 2007 (EISA) facilitates the reduction of national GHG emissions by requiring the following: - Increasing the supply of alternative fuel sources by setting a mandatory Renewable Fuel Standard (RFS) that requires fuel producers to use at least 36 billion gallons of biofuel in 2022; - Prescribing or revising standards affecting regional efficiency for heating and cooling products, procedures for new or amended standards, energy conservation, energy efficiency labeling for consumer electronic products, residential boiler efficiency, electric motor efficiency, and home appliances; - Requiring approximately 25 percent greater efficiency for light bulbs by phasing out incandescent light bulbs between 2012 and 2014; requiring approximately 200 percent greater efficiency for light bulbs, or similar energy savings, by 2020; and - While superseded by the USEPA and NHTSA actions described above, (i) establishing miles per gallon targets for cars and light trucks and (ii) directing the NHTSA to establish
a fuel economy program for medium- and heavy-duty trucks and create a separate fuel economy standard for trucks. Additional provisions of EISA address energy savings in government and public institutions, promote research for alternative energy, additional research in carbon capture, international energy programs, and the creation of green jobs.¹³ #### Executive Order 13432 In response to the Massachusetts v. Environmental Protection Agency ruling, the President signed Executive Order 13432 on May 14, 2007, directing the USEPA, along with the Departments of Transportation, Energy, and Agriculture, to initiate a regulatory process that responds to the Supreme Court's decision. Executive Order 13432 was codified into law by the 2009 Omnibus Appropriations Law signed on February 17, 2009. The order sets goals in the areas of energy efficiency, acquisition, renewable energy, toxics reductions, recycling, sustainable buildings, electronics stewardship, fleets, and water conservation. Light-Duty Vehicle Greenhouse Gas and Corporate Average Fuel Economy Standards. On May 19, 2009, President Obama announced a national policy for fuel efficiency and emissions standards in the United States auto industry. The adopted federal standard applies to passenger cars and light-duty trucks for model years 2012 through 2016. The rule surpasses the prior Corporate Average Fuel Economy standards (CAFE)¹⁴ and requires an average fuel economy standard of 35.5 miles per gallon (mpg) and 250 grams of CO2 per mile by model year 2016, based on USEPA calculation methods. These standards were formally adopted on April 1, 2010. In August 2012, standards were adopted for model year 2017 through 2025 for passenger cars and light-duty trucks. By 2025, vehicles are required to achieve 54.5 mpg (if GHG reductions are achieved exclusively through fuel economy improvements) and 163 grams of CO2 per mile. According to the USEPA, a model year 2025 vehicle would emit one-half of the GHG emissions from a model year 2010 vehicle. In 2017, the USEPA recommended no change to the GHG standards for light-duty vehicles for model years 2022-2025. Issued by NHTSA and EPA in March 2020 (published on April 30, 2020 and effective after June 29, 2020), the Safer Affordable Fuel-Efficient Vehicles Rule would maintain the CAFE and CO2 standards applicable in model year 2020 for model years 2021 through 2026. The estimated CAFE and CO2 standards for model year 2020 are 43.7 mpg and 204 grams of CO2 per mile for passenger cars and 31.3 mpg and 284 grams of CO2 per mile for light trucks, projecting an overall industry average of 37 mpg, as compared to 46.7 mpg under the standards issued in 2012. This Rule also excludes CO2- equivalent emission improvements associated with air conditioning refrigerants and leakage (and, optionally, offsets for nitrous oxide and methane emissions) after model year 2020.¹⁶ #### **State of California** California Air Resources Board CARB, a part of the California Environmental Protection Agency (CalEPA), is responsible for the coordination and administration of both federal and state air pollution control programs within California. In this capacity, CARB conducts research, sets state ambient air quality standards (California Ambient Air Quality Standards ¹⁶ National Highway Traffic Safety Administration (NHTSA) and U.S. Environmental Protection Agency (USEPA), 2018. Federal Register / Vol. 83, No. 165 / Friday, August 24, 2018 / Proposed Rules, The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021–2026 Passenger Cars and Light Trucks 2018. Available at: https://www.gpo.gov/fdsys/pkg/FR-2018-08-24/pdf/2018-16820.pdf. Terracina at Redlands (TTM 20320) ¹³ A green job, as defined by the United States Department of Labor, is a job in business that produces goods or provides services that benefit the environment or conserve natural resources. ¹⁴ The Corporate Average Fuel Economy standards are regulations in the United States, first enacted by Congress in 1975, to improve the average fuel economy of cars and light trucks. The U.S Department of Transportation has delegated the National Highway Traffic Safety Administration as the regulatory agency for the Corporate Average Fuel Economy standards. ¹⁵ United States Environmental Protection Agency, EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model Years 2017-2025 Cars and Light Trucks, August 2012, https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EZ7C.PDF?Dockey=P100EZ7C.PDF. [CAAQS]), compiles emission inventories, develops suggested control measures, and provides oversight of local programs. CARB establishes emissions standards for motor vehicles sold in California, consumer products (such as hairspray, aerosol paints, and barbecue lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions. In 2004, the California Air Resources Board (CARB) adopted an Airborne Toxic Control Measure to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to diesel particulate matter and other toxic air contaminants (Title 13 California Code of Regulations [CCR], Section 2485). The measure applies to diesel-fueled commercial vehicles with gross vehicle weight ratings greater than 10,000 pounds that are licensed to operate on highways, regardless of where they are registered. This measure generally does not allow diesel-fueled commercial vehicles to idle for more than 5 minutes at any given location with certain exemptions for equipment in which idling is a necessary function such as concrete trucks. While this measure primarily targets diesel particulate matter emissions, it has co-benefits of minimizing GHG emissions from unnecessary truck idling. In 2008, CARB approved the Truck and Bus regulation to reduce particulate matter and nitrogen oxide emissions from existing diesel vehicles operating in California (13 CCR, Section 2025, subsection (h)). CARB has also promulgated emission standards for off-road diesel construction equipment of greater than 25 horsepower such as bulldozers, loaders, backhoes and forklifts, as well as many other self-propelled off-road diesel vehicles. The regulation, adopted by the CARB on July 26, 2007, aims to reduce emissions by installation of diesel soot filters and encouraging the retirement, replacement, or repower of older, dirtier engines with newer emission-controlled models. Refer to Section IV.B, Air Quality, of this Draft EIR for additional details regarding these regulations. While these regulations primarily target reductions in criteria air pollutant emission, they have co-benefits of minimizing GHG emissions due to improved engine efficiencies. The State currently has no regulations that establish ambient air quality standards for GHGs. However, the State has passed laws directing CARB to develop actions to reduce GHG emissions, which are listed below. #### Assembly Bill 1493 California Assembly Bill 1493 enacted on July 22, 2002, required the CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. In 2005, the CARB submitted a "waiver" request to the EPA from a portion of the federal Clean Air Act in order to allow the State to set more stringent tailpipe emission standards for CO_2 and other GHG emissions from passenger vehicles and light duty trucks. On December 19, 2007 the EPA announced that it denied the "waiver" request. On January 21, 2009, CARB submitted a letter to the EPA administrator regarding the State's request to reconsider the waiver denial. The EPA approved the waiver on June 30, 2009. ### Executive Order S-3-05 The California Governor issued Executive Order S-3-05, GHG Emission, in June 2005, which established the following reduction targets: - By 2010, California shall reduce GHG emissions to 2000 levels; - By 2020, California shall reduce GHG emissions to 1990 levels; and - By 2050, California shall reduce GHG emissions to 80 percent below 1990 levels. The Executive Order directed the secretary of the California Environmental Protection Agency (CalEPA) to coordinate a multi-agency effort to reduce GHG emissions to the target levels. To comply with the Executive Order, the secretary of CalEPA created the California Climate Action Team (CAT), made up of members from various state agencies and commissions. The team released its first report in March 2006. The report proposed to achieve the targets by building on the voluntary actions of businesses, local governments, and communities and through State incentive and regulatory programs. Assembly Bill 32 (California Health and Safety Code, Division 25.5 - California Global Warming Solutions Act of 2006) In 2006, the California State Legislature adopted Assembly Bill (AB) 32 (codified in the California Health and Safety Code [HSC], Division 25.5 - California Global Warming Solutions Act of 2006), which focuses on reducing GHG emissions in California to 1990 levels by 2020. HSC Division 25.5 defines GHGs as CO2, CH4, N2O, HFCs, PFCs, and SF6 and represents the first enforceable statewide program to limit emissions of these GHGs from all major industries with penalties for noncompliance. The law further requires that reduction measures be technologically feasible and cost effective. Under HSC Division 25.5, CARB has the primary responsibility for reducing GHG emissions. CARB is required to adopt rules and regulations directing state actions that would achieve GHG emissions reductions equivalent to 1990 statewide levels by 2020. Senate Bill 32 and Assembly Bill 197 In 2016, the California State Legislature adopted Senate Bill (SB) 32 and its companion bill AB 197, and both were signed by Governor Brown. SB 32 and AB 197 amends HSC Division 25.5 and establishes a new climate pollution reduction target of 40 percent below 1990 levels by 2030 and includes provisions to ensure the benefits of state climate
policies reach into disadvantaged communities. Climate Change Scoping Plan (2008) A specific requirement of AB 32 was to prepare a Climate Change Scoping Plan for achieving the maximum technologically feasible and cost-effective GHG emission reduction by 2020 (Health and Safety Code section 38561 (h)). CARB developed an AB 32 Scoping Plan that contains strategies to achieve the 2020 emissions cap. The initial Scoping Plan was approved in 2008, and contains a mix of recommended strategies that combined direct regulations, market-based approaches, voluntary measures, policies, and other emission reduction programs calculated to meet the 2020 statewide GHG emission limit and initiate the transformations needed to achieve the State's long-range climate objectives. As required by HSC Division 25.5, CARB approved the 1990 GHG emissions inventory, thereby establishing the emissions limit for 2020. The 2020 emissions limit was originally set at 427 MMTCO2e using the GWP values from the IPCC SAR. CARB also projected the state's 2020 GHG emissions under no-action-taken (NAT) conditions – that is, emissions that would occur without any plans, policies, or regulations to reduce GHG emissions. CARB originally used an average of the state's GHG emissions from 2002 through 2004 and projected the 2020 levels at approximately 596 MMTCO2e (using GWP values from the IPCC SAR). Therefore, under the original projections, the state must reduce its 2020 NAT emissions by 28.4 percent in order to meet the 1990 target of 427 MMTCO2e. First Update to the Climate Change Scoping Plan (2014) The First Update to the Scoping Plan was approved by CARB in May 2014 and builds upon the initial Scoping Plan with new strategies and recommendations. In 2014, CARB revised the target using the GWP values from the IPCC AR4 and determined that the 1990 GHG emissions inventory and 2020 GHG emissions limit is 431 MMTCO2e. CARB also updated the State's 2020 NAT emissions estimate to account for the effect of the 2007–2009 economic recession, new estimates for future fuel and energy demand, and the reductions required by regulation that were recently adopted for motor vehicles and renewable energy. CARB's projected statewide 2020 emissions estimate using the GWP values from the IPCC AR4 is 509.4 MMTCO2e. 2017 Climate Change Scoping Plan In response to the 2030 GHG reduction target, CARB adopted the 2017 Climate Change Scoping Plan at a public meeting held in December 2017. The 2017 Scoping Plan outlines the strategies the State will implement to achieve the 2030 GHG reduction target of 40 percent below 1990 levels. The 2017 Scoping Plan also addresses GHG emissions from natural and working lands of California, including the agriculture and forestry sectors. The 2017 Scoping Plan considered the Scoping Plan Scenario and four alternatives for achieving the required GHG reductions but ultimately selected the Scoping Plan Scenario. CARB states that the Scoping Plan Scenario "is the best choice to achieve the State's climate and clean air goals." Under the Scoping Plan Scenario, the majority of the reductions would result from the continuation of the Cap-and-Trade regulation. Additional reductions are achieved from electricity sector standards (i.e., utility providers to supply at least 50 percent renewable electricity by 2030), doubling the energy efficiency savings at end uses, additional reductions from the LCFS, implementing the short-lived GHG strategy (e.g., hydrofluorocarbons), and implementing the mobile source strategy and sustainable freight action plan. The alternatives were designed to consider various combinations of these programs, as well as consideration of a carbon tax in the event the Cap-and-Trade regulation is not continued. However, in July 2017, the California Legislature voted to extend the Cap-and-Trade regulation to 2030. Implementing this Scoping Plan will ensure that California's climate actions continue to promote innovation, drive the generation of new jobs, and achieve continued reductions of smog and air toxics. The ambitious approach draws on a decade of successful programs that address the major sources of climate-changing gases in every sector of the economy: - More Clean Cars and Trucks: The plan sets out far-reaching programs to incentivize the sale of millions of zero-emission vehicles, drive the deployment of zero-emission trucks, and shift to a cleaner system of handling freight statewide. - Increased Renewable Energy: California's electric utilities are ahead of schedule meeting the requirement that 33 percent of electricity come from renewable sources by 2020. The Scoping Plan guides utilities to 50 percent renewables, as required under SB 350. - Slashing Super-Pollutants: The plan calls for a significant cut in super-pollutants such as methane and HFC refrigerants, which are responsible for as much as 40 percent of global warming. - Cleaner Industry and Electricity: California's renewed cap-and-trade program extends the declining cap on emissions from utilities and industries and the carbon allowance auctions. The auctions will continue to fund investments in clean energy and efficiency, particularly in disadvantaged communities. - Cleaner Fuels: The Low Carbon Fuel Standard will drive further development of cleaner, renewable transportation fuels to replace fossil fuels. - Smart Community Planning: Local communities will continue developing plans which will further link transportation and housing policies to create sustainable communities. - Improved Agriculture and Forests: The Scoping Plan also outlines innovative programs to account for and reduce emissions from agriculture, as well as forests and other natural lands. The 2017 Scoping Plan also evaluates reductions of smog-causing pollutants through California's climate programs. SB 32, Pavley. California Global Warming Solutions Act of 2006 - (5) The California Global Warming Solutions Act of 2006 designates the State Air Resources Board as the state agency charged with monitoring and regulating sources of emissions of greenhouse gases. The state board is required to approve a statewide greenhouse gas emissions limit equivalent to the statewide greenhouse gas emissions level in 1990 to be achieved by 2020 and to adopt rules and regulations in an open public process to achieve the maximum, technologically feasible, and cost-effective greenhouse gas emissions reductions. This bill would require the state board to ensure that statewide greenhouse gas emissions are reduced to 40% below the 1990 level by 2030. - (2) This bill would become operative only if AB 197 of the 2015–16 Regular Session is enacted and becomes effective on or before January 1, 2017. AB 197 requires that the California Air Resources Board, which 64 ¹⁷ California Air Resources Board, California's 2017 Climate Change Scoping Plan, November 2017, https://www.arb.ca.gov/cc/scopingplan/scoping_plan_2017.pdf 4 directs implementation of emission-reduction programs, should target direct reductions at both stationary and mobile sources. AB 197 of the 2015-2016 Regular Session was approved on September 8, 2016. #### Executive Order S-1-07 Executive Order S-1-07 was issued in 2007 and proclaims that the transportation sector is the main source of GHG emissions in the State, since it generates more than 40 percent of the State's GHG emissions. It establishes a goal to reduce the carbon intensity of transportation fuels sold in the State by at least ten percent by 2020. This Order also directs the CARB to determine whether this Low Carbon Fuel Standard (LCFS) could be adopted as a discrete early-action measure as part of the effort to meet the mandates in AB 32. On April 23, 2009 CARB approved the proposed regulation to implement the low carbon fuel standard and began implementation on January 1, 2011. The low carbon fuel standard is anticipated to reduce GHG emissions by about 16 MMT per year by 2020. CARB approved some amendments to the LCFS in December 2011, which were implemented on January 1, 2013. In September 2015, the Board approved the re-adoption of the LCFS, which became effective on January 1, 2016, to address procedural deficiencies in the way the original regulation was adopted. In 2018, the Board approved amendments to the regulation, which included strengthening and smoothing the carbon intensity benchmarks through 2030 in-line with California's 2030 GHG emission reduction target enacted through SB 32, adding new crediting opportunities to promote zero emission vehicle adoption, alternative jet fuel, carbon capture and sequestration, and advanced technologies to achieve deep decarbonization in the transportation sector. The LCFS is designed to encourage the use of cleaner low-carbon transportation fuels in California, encourage the production of those fuels, and therefore, reduce GHG emissions and decrease petroleum dependence in the transportation sector. Separate standards are established for gasoline and diesel fuels and the alternative fuels that can replace each. The standards are "back-loaded", with more reductions required in the last five years, than during the first five years. This schedule allows for the development of advanced fuels that are lower in carbon than today's fuels and the market penetration of plug-in hybrid electric vehicles, battery electric vehicles, fuel cell vehicles, and flexible fuel vehicles. It is anticipated that compliance with the low carbon fuel standard will be based on a combination of both lower carbon fuels and more efficient vehicles. Reformulated gasoline mixed with corn-derived ethanol at ten percent by volume and low sulfur diesel fuel represent the baseline fuels. Lower carbon fuels may be ethanol, biodiesel, renewable diesel, or blends of these fuels with gasoline or diesel as appropriate. Compressed natural gas and liquefied natural gas also may be low carbon fuels. Hydrogen and electricity, when used in fuel cells or electric vehicles are also
considered as low carbon fuels for the low carbon fuel standard. # Senate Bill 97 Senate Bill 97 (SB 97) was adopted August 2007 and acknowledges that climate change is a prominent environmental issue that requires analysis under CEQA. SB 97 directed the Governor's Office of Planning and Research (OPR), which is part of the State Natural Resources Agency, to prepare, develop, and transmit to the CARB guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions, as required by CEQA, by July 1, 2009. The Natural Resources Agency was required to certify and adopt those guidelines by January 1, 2010. Pursuant to the requirements of SB 97 as stated above, on December 30, 2009, the Natural Resources Agency adopted amendments to the state CEQA guidelines that address GHG emissions. The CEQA Guidelines Amendments changed 14 sections of the CEQA Guidelines and incorporate GHG language throughout the Guidelines. However, no GHG emissions thresholds of significance were provided and no specific mitigation measures were identified. The GHG emission reduction amendments went into effect on March 18, 2010, and are summarized below: - Climate action plans and other greenhouse gas reduction plans can be used to determine whether a project has significant impacts, based upon its compliance with the plan. - Local governments are encouraged to quantify the greenhouse gas emissions of proposed projects, noting that they have the freedom to select the models and methodologies that best meet their needs and circumstances. The section also recommends consideration of several qualitative factors that may be used in the determination of significance, such as the extent to which the given project complies with state, regional, or local GHG reduction plans and policies. OPR does not set or dictate specific thresholds of significance. Consistent with existing CEQA Guidelines, OPR encourages local governments to develop and publish their own thresholds of significance for GHG impacts assessment. - When creating their own thresholds of significance, local governments may consider the thresholds of significance adopted or recommended by other public agencies, or recommended by experts. - New amendments include guidelines for determining methods to mitigate the effects of greenhouse gas emissions in Appendix F of the CEQA Guidelines. - OPR is clear to state that "to qualify as mitigation, specific measures from an existing plan must be identified and incorporated into the project; general compliance with a plan, by itself, is not mitigation". - OPR's emphasizes the advantages of analyzing GHG impacts on an institutional, programmatic level. OPR therefore approves tiering of environmental analyses and highlights some benefits of such an approach. - Environmental impact reports (EIRs) must specifically consider a project's energy use and energy efficiency potential. # Senate Bill 100 Senate Bill 100 (SB 100) requires 100 percent of total retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 2045. SB 100 was adopted September 2018. The interim thresholds from prior Senate Bills and Executive Orders would also remain in effect. These include Senate Bill 1078 (SB 1078), which requires retail sellers of electricity, including investor-owned utilities and community choice aggregators, to provide at least 20 percent of their supply from renewable sources by 2017. Senate Bill 107 (SB 107) which changed the target date to 2010. Executive Order S-14-08, which was signed on November 2008 and expanded the State's Renewable Energy Standard to 33 percent renewable energy by 2020. Executive Order S-21-09 directed the CARB to adopt regulations by July 31, 2010 to enforce S-14-08. Senate Bill X1-2 codifies the 33 percent renewable energy requirement by 2020. #### Senate Bill 375 Senate Bill 375 (SB 375) was adopted September 2008 and aligns regional transportation planning efforts, regional GHG emission reduction targets, and land use and housing allocation. SB 375 requires Metropolitan Planning Organizations (MPO) to adopt a sustainable communities strategy (SCS) or alternate planning strategy (APS) that will prescribe land use allocation in that MPOs Regional Transportation Plan (RTP). The CARB, in consultation with each MPO, will provide each affected region with reduction targets for GHGs emitted by passenger cars and light trucks in the region for the years 2020 and 2035. These reduction targets will be updated every eight years but can be updated every four years if advancements in emissions technologies affect the reduction strategies to achieve the targets. The CARB is also charged with reviewing each MPO's sustainable communities strategy or alternate planning strategy for consistency with its assigned targets. The proposed project is located within the Southern California Association of Governments (SCAG) jurisdiction, which has authority to develop the SCS or APS. For the SCAG region, the targets set by the CARB are at eight percent below 2005 per capita GHG emissions levels by 2020 and 19 percent below 2005 per capita GHG emissions levels by 2035. These reduction targets became effective October 2018. #### Senate Bill X7-7 Senate Bill X7-7 (SB X7-7), enacted on November 9, 2009, mandates water conservation targets and efficiency improvements for urban and agricultural water suppliers. SB X7-7 requires the Department of Water Resources (DWR) to develop a task force and technical panel to develop alternative best management practices for the water sector. In addition, SB X7-7 required the DWR to develop criteria for baseline uses for residential, commercial, and industrial uses for both indoor and landscaped area uses. The DWR was also required to develop targets and regulations that achieve a statewide 20 percent reduction in water usage. Assembly Bill 939 and Senate Bill 1374 Assembly Bill 939 (AB 939) requires that each jurisdiction in California to divert at least 50 percent of its waste away from landfills, whether through waste reduction, recycling or other means. Senate Bill 1374 (SB 1374) requires the California Integrated Waste Management Board to adopt a model ordinance by March 1, 2004, suitable for adoption by any local agency to require 50 to 75 percent diversion of construction and demolition of waste materials from landfills. California Code of Regulations (CCR) Title 24, Part 6 CCR Title 24, Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings (Title 24) were first established in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. Although it was not originally intended to reduce GHG emissions, electricity production by fossil fuels results in GHG emissions and energy efficient buildings require less electricity. Therefore, increased energy efficiency results in decreased GHG emissions. The Energy Commission adopted 2008 Standards on April 23, 2008, and Building Standards Commission approved them for publication on September 11, 2008. These updates became effective on August 1, 2009. CalEEMod modeling defaults to 2008 standards. 2013 Standards were approved and have been effective since July 1, 2014. 2016 Standards were adopted January 1, 2017. 2019 standards were published July 1, 2019 and became effective January 1, 2020. All buildings for which an application for a building permit is submitted on or after January 1, 2020 must follow the 2019 standards. The 2016 residential standards were estimated to be approximately 28 percent more efficient than the 2013 standards, whereas the 2019 residential standards are estimated to be approximately 7 percent more efficient than the 2016 standards. Furthermore, once rooftop solar electricity generation is factored in, 2019 residential standards are estimated to be approximately 53 percent more efficient than the 2016 standards. Under the 2019 standards, nonresidential buildings are estimated to be approximately 30 percent more efficient than the 2016 standards. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas emissions. Per Section 100 Scope, the 2019 Title 24, Part 6 Building Code now requires healthcare facilities, such as assisted living facilities, hospitals, and nursing homes, to meet documentation requirements of Title 24, Part 1 Chapter 7 – Safety Standards for Health Facilities. A healthcare facility is defined as any building or portion thereof licensed pursuant to California Health and Safety Code Division 2, Chapter 1, Section 1204 or Chapter 2, Section 1250. Section 120.1 Ventilation and Indoor Air Quality included both additions and revisions in the 2019 Code. This section now requires nonresidential and hotel/motel buildings to have air filtration systems that use forced air ducts to supply air to occupiable spaces to have air filters. Further, the air filter efficiency must be either MERV 13 or use a particle size efficiency rating specific in the Energy Code AND be equipped with air filters with a minimum 2-inch depth or minimum 1-inch depth if sized according to the equation 120.1-A. If natural ventilation is to be used the space must also use mechanical unless ventilation openings are either permanently open or controlled to stay open during occupied times. The 2019 version of the Code also completely revised the minimum ventilation requirements including DVC airflow rates within Section 120.1 Table 120.1-A. Table 120.1-A now includes air classification and recirculation limitations, these are based on either the number of occupants or the CFM/ft² (cubic feet per minute per square foot), whichever is greater. Section 120.1 Ventilation and Indoor Air
Quality also included additions for high-rise residential buildings. Requirements include that mechanical systems must provide air filters that and that air filters must be MERV 13 or use a particle size efficiency rating specified in the Energy Code. Window operation is no longer a method allowed to meet ventilation requirements, continuous operation of central forced air system handlers used in central fan integrated ventilation system is not a permissible method of providing the dwelling unit ventilation airflow, and central ventilation systems that serve multiple dwelling units must be balanced to provide ventilation airflow to each dwelling unit. In addition, requirements for kitchen range hoods were also provided in the updated Section 120.1. Per Section 120.1(a) healthcare facilities must be ventilated in accordance with Chapter 4 of the California Mechanical Code and are NOT required to meet the ventilations requirements of Title 24, Part 6. Section 140.4 Space Conditioning Systems included both additions and revisions within the 2019 Code. The changes provided new requirements for cooling tower efficiency, new chilled water-cooling system requirements, as well as new formulas for calculating allowed fan power. Section 140.4(n) also provide a new exception for mechanical system shut-offs for high-rise multifamily dwelling units, while Section 140.4(o) added new requirements for conditioned supply air being delivered to space with mechanical exhaust. Section 120.6 Covered Processes added information in regards to adiabatic chiller requirements that included that all condenser fans for air-cooled converseness, evaporative-cooled condensers, adiabatic condensers, gas coolers, air or water fluid coolers or cooling towers must be continuously variable speed, with the speed of all fans serving a common condenser high side controlled in unison .Further, the mid-condensing setpoint must be 70 degrees Fahrenheit for all of the above mentioned systems. New regulations were also adopted under Section 130.1 Indoor Lighting Controls. These included new exceptions being added for restrooms, the exception for classrooms being removed, as well as exceptions in regard to sunlight provided through skylights and overhangs. Section 130.2 Outdoor Lighting Controls and Equipment added automatic scheduling controls which included that outdoor lighting power must be reduced by 50 to 90 percent, turn the lighting off during unoccupied times and have at least two scheduling options for each luminaire independent from each other and with a 2-hour override function. Furthermore, motion sensing controls must have the ability to reduce power within 15 minutes of area being vacant and be able to come back on again when occupied. An exception allows for lighting subject to a health or life safety statute, ordinance, or regulation may have a minimum time-out period longer than 15 minutes or a minimum dimming level above 50% when necessary to comply with the applicable law. California Code of Regulations (CCR) Title 24, Part 11 (California Green Building Standards) On January 12, 2010, the State Building Standards Commission unanimously adopted updates to the California Green Building Standards Code, which went into effect on January 1, 2011. 2016 CALGreen Code: The 2016 residential standards were estimated to be approximately 28 percent more efficient than the 2013 standards. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas emissions. During the 2016-2017 fiscal year, the Department of Housing and Community Development (HCD) updated CALGreen through the 2015 Triennial Code Adoption Cycle. HCD also increased the required construction waste reduction from 50 percent to 65 percent of the total building site waste. This increase aids in meeting CalRecycle's statewide solid waste recycling goal of 75 percent for 2020 as stated in Chapter 476, Statutes of 2011 (AB 341). HCD adopted new regulations requiring recycling areas for multifamily projects of five or more dwelling units. This regulation requires developers to provide readily accessible areas adequate in size to accommodate containers for depositing, storage and collection of non-hazardous materials (including organic waste) for recycling. This requirement assists businesses that were required as of April 1, 2016, to meet the requirements of Chapter 727, Statutes of 2014 (AB 1826). HCD adopted new regulations to require information on photovoltaic systems and electric vehicle chargers to be included in operation and maintenance manuals. Currently, CALGreen section 4.410.1 Item 2(a) requires operation and maintenance instructions for equipment and appliances. Photovoltaic systems and electric vehicle chargers are systems that play an important role in many households in California, and their importance is increasing every day. HCD incorporated these two terms in the existing language in order to provide clarity to code users as to additional systems requiring operation and maintenance instructions. HCD updated the reference to Clean Air Standards of the United States Environmental Protection Agency applicable to woodstoves and pellet stoves. HCD also adopted a new requirement for woodstoves and pellet stoves to have a permanent label indicating they are certified to meet the emission limits. This requirement provides clarity to the code user and is consistent with the United States Environmental Protection Agency's New Source Performance Standards. HCD updated the list of standards which can be used for verification of compliance for exterior grade composite wood products. This list now includes four standards from the Canadian Standards Association (CSA): CSA O121, CSA O151, CSA O153 and CSA O325. HCD updated heating and air-conditioning system design references to the ANSI/ACCA 2 Manual J, ANSI/ACCA 1 Manual D, and ANSI/ACCA 3 Manual S to the most recent versions approved by ANSI. HCD adopted a new elective measure for hot water recirculation systems for water conservation. The United States Department of Energy estimates that 3,600 to 12,000 gallons of water per year can be saved by the typical household (with four points of hot water use) if a hot water recirculation system is installed. 2019 CALGreen Code: During the 2019-2020 fiscal year, the Department of Housing and Community Development (HCD) updated CALGreen through the 2019 Triennial Code Adoption Cycle. HCD modified the best management practices for stormwater pollution prevention adding Section 5.106.2 for projects that disturb one or more acres of land. This section requires projects that disturb one acre or more of land or less than one acre of land but are part of a larger common plan of development or sale must comply with the postconstruction requirement detailed in the applicable National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities issued by the State Water Resources Control Board. The NPDES permits require postconstruction runoff (post-project hydrology) to match the preconstruction runoff pre-project hydrology) with installation of postconstruction stormwater management measures. HCD added sections 5.106.4.1.3 and 5.106.4.1.5 in regard to bicycle parking. Section 5.106.4.1.3 requires new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5 percent of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility. In addition, Section 5.106.4.1.5 states that acceptable bicycle parking facility for Sections 5.106.4.1.2 through 5.106.4.1.4 shall be convenient from the street and shall meeting one of the following: (1) covered, lockable enclosures with permanently anchored racks for bicycles; (2) lockable bicycle rooms with permanently anchored racks; or (3) lockable, permanently anchored bicycle lockers. HCD amended section 5.106.5.3.5 allowing future charging spaces to qualify as designated parking for clean air vehicles. HCD updated section 5.303.3.3 in regard to showerhead flow rates. This update reduced the flow rate to 1.8 GPM. HCD amended section 5.304.1 for outdoor potable water use in landscape areas and repealed sections 5.304.2 and 5.304.3. The update requires nonresidential developments to comply with a local water efficient landscape ordinance or the current California Department of Water Resource's' Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent. Some updates were also made in regard to the outdoor potable water use in landscape areas for public schools and community colleges. HCD updated Section 5.504.5.3 in regard to the use of MERV filters in mechanically ventilated buildings. This update changed the filter use from MERV 8 to MERV 13. MERV 13 filters are to be installed prior to occupancy, and recommendations for maintenance with filters of the same value shall be included in the operation and maintenance manual. Executive Order B-30-15 On April 29, 2015, Governor Brown issued Executive Order B-30-15. Therein, the Governor directed the following: - Established a new interim statewide reduction target to reduce GHG emissions to 40 percent below 1990 levels by 2030. - Ordered all state agencies with jurisdiction over sources of GHG emissions to implement measures to achieve reductions of GHG emissions to meet the 2030 and 2050 reduction targets. - Directed CARB to update the Climate Change Scoping Plan to express the 2030 target in terms of million metric tons of carbon dioxide equivalent. Executive Order B-29-15 Executive Order B-29-15, mandates a statewide 25 percent reduction in potable water usage. EO B-29-15 signed into law on April 1, 2015. Executive Order B-37-16 Executive Order B-37-16, continuing the State's adopted water reductions, was signed into law on May 9, 2016. The
water reductions build off the mandatory 25 percent reduction called for in EO B-29-15. Executive Order N-79-20 Executive Order N-79-20 was signed into law on September 23, 2020 and mandates 100 percent of in-state sales of new passenger cars and trucks be zero-emission by 2035; 100 percent of medium- and heavy-duty vehicles in the state be zero-emission vehicles by 2045 for all operations where feasible and by 2035 for drayage trucks; and to transition to 100 percent zero-emission off-road vehicles and equipment by 2035 where feasible. SBX1 2 Signed into law in April 2011, SBX1 2, requires one-third of the State's electricity to come from renewable sources. The legislation increases California's current 20 percent renewables portfolio standard target in 2010 to a 33 percent renewables portfolio standard by December 31, 2020. Senate Bill 350 Signed into law October 7, 2015, SB 350 increases California's renewable electricity procurement goal from 33 percent by 2020 to 50 percent by 2030. This will increase the use of Renewables Portfolio Standard (RPS) eligible resources, including solar, wind, biomass, geothermal, and others. In addition, SB 350 requires the state to double statewide energy efficiency savings in electricity and natural gas end uses by 2030. To help ensure these goals are met and the greenhouse gas emission reductions are realized, large utilities will be required to develop and submit Integrated Resource Plans (IRPs). These IRPs will detail how each entity will meet their customers resource needs, reduce greenhouse gas emissions and ramp up the deployment of clean energy resources. Energy Sector and CEQA Guidelines Appendix F The CEC first adopted Energy Efficiency Standards for Residential and Nonresidential Buildings (CCR, Title 24, Part 6) in 1978 in response to a legislative mandate to reduce energy consumption in the state. Although not originally intended to reduce GHG emissions, increased energy efficiency and reduced consumption of electricity, natural gas, and other fuels would result in fewer GHG emissions from residential and nonresidential buildings subject to the standard. The standards are updated periodically (typically every three years) to allow for the consideration and inclusion of new energy efficiency technologies and methods. The 2016 update to the Energy Efficiency Standards for Residential and Nonresidential Buildings focuses on several key areas to improve the energy efficiency of renovations and addition to existing buildings as well as newly constructed buildings and renovations and additions to existing buildings. The major efficiency improvements to the residential Standards involve improvements for attics, walls, water heating, and lighting, whereas the major efficiency improvements to the nonresidential Standards include alignment with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 national standards. Furthermore, the 2016 update required that enforcement agencies determine compliance with CCR, Title 24, Part 6 before issuing building permits for any construction.¹⁸ Part 11 of the Title 24 Building Energy Efficiency Standards is referred to as the California Green Building Standards (CALGreen) Code. The purpose of the CALGreen Code is to "improve public health, safety and general welfare by enhancing the design and construction of buildings through the use of building concepts having a reduced negative impact or positive environmental impact and encouraging sustainable construction practices in the following categories: (1) Planning and design; (2) Energy efficiency; (3) Water efficiency and conservation; (4) Material conservation and resource efficiency; and (5) Environmental air quality." As of January 1, 2011, the CALGreen Code is mandatory for all new buildings constructed in the state. The CALGreen Code establishes mandatory measures for new residential and non-residential buildings. Such mandatory measures include energy efficiency, water conservation, material conservation, planning and design, and overall environmental quality. The CALGreen Code was most recently updated in 2019 to include new mandatory measures for residential and nonresidential uses; the new measures took effect on January 1, 2020. #### Regional - South Coast Air Quality Management District The project is within the South Coast Air Basin, which is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). SCAQMD Regulation XXVII, Climate Change SCAQMD Regulation XXVII currently includes three rules: - The purpose of Rule 2700 is to define terms and post global warming potentials. - The purpose of Rule 2701, SoCal Climate Solutions Exchange, is to establish a voluntary program to encourage, quantify, and certify voluntary, high quality certified greenhouse gas emission reductions in the SCAQMD. - Rule 2702, Greenhouse Gas Reduction Program, was adopted on February 6, 2009. The purpose of this rule is to create a Greenhouse Gas Reduction Program for greenhouse gas emission reductions in the SCAQMD. The SCAQMD will fund projects through contracts in response to requests for proposals or purchase reductions from other parties. 71 ¹⁹ California Building Standards Commission, 2010 California Green Building Standards Code, (2010). _ ¹⁸ California Energy Commission, 2016 Building Energy Efficiency Standards, June 2015, http://www.energy.ca.gov/2015publications/CEC-400-2015-037/CEC-400-2015-037-CMF.pdf A variety of agencies have developed greenhouse gas emission thresholds and/or have made recommendations for how to identify a threshold. However, the thresholds for projects in the jurisdiction of the SCAQMD remain in flux. The California Air Pollution Control Officers Association explored a variety of threshold approaches but did not recommend one approach (2008). The ARB recommended approaches for setting interim significance thresholds (California Air Resources Board 2008b), in which a draft industrial project threshold suggests that non-transportation related emissions under 7,000 MTCO2e per year would be less than significant; however, the ARB has not approved those thresholds and has not published anything since then. The SCAQMD is in the process of developing thresholds, as discussed below. # SCAQMD Threshold Development On December 5, 2008, the SCAQMD Governing Board adopted an interim greenhouse gas significance threshold for stationary sources, rules, and plans where the SCAQMD is lead agency (SCAQMD permit threshold). The SCAQMD permit threshold consists of five tiers. However, the SCAQMD is not the lead agency for this project. Therefore, the five permit threshold tiers do not apply to the proposed project. The SCAQMD is in the process of preparing recommended significance thresholds for greenhouse gases for local lead agency consideration ("SCAQMD draft local agency threshold"); however, the SCAQMD Board has not approved the thresholds as of the date of the Notice of Preparation. The current draft thresholds consist of the following tiered approach: - Tier 1 consists of evaluating whether or not the project qualifies for any applicable exemption under CEOA. - Tier 2 consists of determining whether the project is consistent with a greenhouse gas reduction plan. If a project is consistent with a qualifying local greenhouse gas reduction plan, it does not have significant greenhouse gas emissions. - Tier 3 consists of screening values, which the lead agency can choose, but must be consistent with all projects within its jurisdiction. A project's construction emissions are averaged over 30 years and are added to a project's operational emissions. If a project's emissions are under one of the following screening thresholds, then the project is less than significant: - □ All land use types: 3,000 MTCO2e per year - Based on land use type: residential: 3,500 MTCO2e per year; commercial: 1,400 MTCO2e per year; or mixed use: 3,000 MTCO2e per year. - Based on land type: Industrial (where SCAQMD is the lead agency), 10,000 MTCO2e per year. - Tier 4 has the following options: - Option 1: Reduce emissions from business as usual (BAU) by a certain percentage; this percentage is currently undefined. - Option 2: Early implementation of applicable AB 32 Scoping Plan measures. - Option 3, 2020 target for service populations (SP), which includes residents and employees: 4.8 MTCO2e/SP/year for projects and 6.6 MTCO2e/SP/year for plans; - Option 3, 2035 target: 3.0 MTCO2e/SP/year for projects and 4.1 MTCO2e/SP/year for plans. - Tier 5 involves mitigation offsets to achieve target significance threshold. The SCAQMD's draft threshold uses the Executive Order S-3-05 goal as the basis for the Tier 3 screening level. Achieving the Executive Order's objective would contribute to worldwide efforts to cap carbon dioxide concentrations at 450 ppm, thus stabilizing global climate. Specifically, the Tier 3 screening level for stationary sources is based on an emission capture rate of 90 percent for all new or modified projects. A 90 percent emission capture rate means that 90 percent of total emissions from all new or modified stationary source projects would be subject to a CEQA analysis, including a negative declaration, a mitigated negative declaration, or an environmental impact report, which includes analyzing feasible alternatives and imposing feasible mitigation measures. A GHG significance threshold based on a 90 percent emission capture rate may be more appropriate to address the long-term adverse impacts associated with global climate change because most projects will be required to implement GHG reduction measures. Further, a 90 percent emission capture rate sets the emission threshold low enough to capture a substantial fraction of future stationary source projects that will be constructed to accommodate future statewide population and economic growth, while setting the emission threshold high enough to exclude small projects
that will in aggregate contribute a relatively small fraction of the cumulative statewide GHG emissions. This assertion is based on the fact that staff estimates that these GHG emissions would account for slightly less than one percent of future 2050 statewide GHG emissions target (85 MMTCO2eq/year). In addition, these small projects may be subject to future applicable GHG control regulations that would further reduce their overall future contribution to the statewide GHG inventory. Finally, these small sources are already subject to BACT for criteria pollutants and are more likely to be single-permit facilities, so they are more likely to have few opportunities readily available to reduce GHG emissions from other parts of their facility. # SCAQMD Working Group Since neither the CARB nor the OPR has developed GHG emissions threshold, the SCAQMD formed a Working Group to develop significance thresholds related to GHG emissions. At the September 28, 2010 Working Group meeting, the SCAQMD released its most current version of the draft GHG emissions thresholds, which recommends a tiered approach that provides a quantitative annual threshold of 10,000 MTCO2e for industrial uses. In order to assist local agencies with direction on GHG emissions, the SCAQMD organized a working group and adopted Rules 2700, 2701, 2702, and 3002 which are described below. #### SCAQMD Rules 2700 and 2701 The SCAQMD adopted Rules 2700 and 2701 on December 5, 2008, which establishes the administrative structure for a voluntary program designed to quantify GHG emission reductions. Rule 2700 establishes definitions for the various terms used in Regulation XXVII – Global Climate Change. Rule 2701 provides specific protocols for private parties to follow to generate certified GHG emission reductions for projects within the district. Approved protocols include forest projects, urban tree planting, and manure management. The SCAQMD is currently developing additional protocols for other reduction measures. For a GHG emission reduction project to qualify, it must be verified and certified by the SCAQMD Executive Officer, who has 60 days to approve or deny the Plan to reduce GHG emissions. Upon approval of the Plan, the Executive Officer issues required to issue a certified receipt of the GHG emission reductions within 90 days. #### SCAQMD Rule 2702 The SCAQMD adopted Rule 2702 on February 6, 2009, which establishes a voluntary air quality investment program from which SCAQMD can collect funds from parties that desire certified GHG emission reductions, pool those funds, and use them to purchase or fund GHG emission reduction projects within two years, unless extended by the Governing Board. Priority will be given to projects that result in co-benefit emission reductions of GHG emissions and criteria or toxic air pollutants within environmental justice areas. Further, this voluntary program may compete with the cap-and-trade program identified for implementation in CARB's Scoping Plan, or a federal cap and trade program. #### SCAQMD Rule 3002 The SCAQMD amended Rule 3002 on November 5, 2010 to include facilities that emit greater than 100,000 tons per year of CO_2 e are required to apply for a Title V permit by July 1, 2011. A Title V permit is for facilities that are considered major sources of emissions. 73 # **Local - City of Redlands** City of Redlands Climate Action Plan The City adopted the City of Redlands Climate Action Plan (CAP) on December 5, 2017. This CAP was designed to reinforce the City's commitment to reducing greenhouse gas (GHG) emissions, and demonstrate how the City will comply with State of California's GHG emission reduction standards. The CAP was prepared concurrently with the updated Redlands General Plan and provides analysis of GHG emissions to the year 2035, which is the horizon year for the General Plan. The CAP reflects guidelines established in the 2017 Scoping Plan prepared by the California Air Resources Board (CARB). The CAP used a linear trajectory in emissions reductions between 2030 and 2050 to determine the 2035 target of 5 MTCO2e per capita per year. The CAP also has a Year 2015 GHG emissions target of 6.1 MTCO2e per capita per year and a Year 2030 GHG emissions target of 6.0 per capita per year. City of Redlands General Plan The Sustainable Community Element of the City's General Plan includes the following principles and actions related to the reduction of greenhouse gases. - **Policy 8-P.9** Undertake initiatives to enhance sustainability by reducing the community's GHG emissions. - **Policy 8-P.10** Demonstrate leadership by reducing the use of energy and fossil fuel consumption in municipal operations, including transportation, waste reduction, and recycling, and by promoting efficient building design and use. - Action 8-A.45 Prepare a Climate Action Plan to ensure that the Planning Area complies with State-mandated GHG emissions. - Action 8-A.46 Continue to monitor the City's compliance with State-mandated GHG emissions, as provided for in the Climate Action Plan. Make timely adjustments to City policies as required to continue meeting State GHG targets, and as changes in technology, federal and State programs, or other circumstances warrant. - Action 8-A.47 Demonstrate City leadership by giving preference to or providing incentives for climate-friendly purchasing. - Action 8-A.48 Support a regional approach to study the feasibility of establishing Community Choice Aggregation (CCA) or another program that increases the renewable energy supply and maintains the reliability and sustainability of the electrical grid. #### **SIGNIFICANCE THRESHOLDS** # **Appendix G of State CEQA Guidelines** The CEQA Guidelines recommend that a lead agency consider the following when assessing the significance of impacts from GHG emissions on the environment: - The extent to which the project may increase (or reduce) GHG emissions as compared to the existing environmental setting; - Whether the project emissions exceed a threshold of significance that the lead agency determines applies to the project; • The extent to which the project complies with regulations or requirements adopted to implement an adopted statewide, regional, or local plan for the reduction or mitigation of GHG emissions²⁰. # **Thresholds of Significance for this Project** To determine whether the project's GHG emissions are significant, this analysis uses the SCAQMD draft screening threshold of 3,000 MTCO2e per year and the GHG emissions threshold of 6.0 MTCO2e per capita per year for year 2025 GHG emissions. #### **METHODOLOGY** The proposed project is anticipated to generate GHG emissions from area sources, energy usage, mobile sources, waste, water, and construction equipment. The following provides the methodology used to calculate the project-related GHG emissions and the project impacts. CalEEMod Version 2020.4.0 was used to calculate the GHG emissions from the proposed project. The CalEEMod Annual Output for year 2025 is available in Appendix C. Each source of GHG emissions is described in greater detail below. #### Area Sources Area sources include emissions from consumer products, landscape equipment and architectural coatings. No changes were made to the default area source emissions. # Energy Usage Energy usage includes emissions from the generation of electricity and natural gas used on-site. No changes were made to the default energy usage parameters. #### Mobile Sources Mobile sources include emissions from the additional vehicle miles generated from the proposed project. The vehicle trips associated with the proposed project have been analyzed by inputting the project-generated vehicular trips from the TIA into the CalEEMod Model. The program then applies the emission factors for each trip which is provided by the EMFAC2017 model to determine the vehicular traffic pollutant emissions. See Section 2 for details. #### Waste Waste includes the GHG emissions generated from the processing of waste from the proposed project as well as the GHG emissions from the waste once it is interred into a landfill. AB 341 requires that 75 percent of waste be diverted from landfills by 2020, reductions for this are shown in the mitigated CalEEMod output values. Credit was taken in Table 19 for compliance with this regulation. #### Water Water includes the water used for the interior of the building as well as for landscaping and is based on the GHG emissions associated with the energy used to transport and filter the water. Per CalGreen standards, 75 Terracina at Redlands (TTM 20320) ²⁰ The Governor's Office of Planning and Research recommendations include a requirement that such a plan must be adopted through a public review process and include specific requirements that reduce or mitigate the project's incremental contribution of GHG emissions. If there is substantial evidence that the possible effects of a particular project are still cumulatively considerable, notwithstanding compliance with the adopted regulations or requirements, an EIR must be prepared for the project. indoor water use is required to be reduce by 20 percent reductions for this are shown in the mitigated CalEEMod output values. Credit was taken in Table 19 for compliance with this regulation. #### Construction The construction-related GHG emissions were also included in the analysis and were based on a 30-year amortization rate as recommended in the SCAQMD GHG Working Group meeting on November 19, 2009. The construction-related GHG emissions were calculated by CalEEMod and in the manner detailed above in Section 2. #### **PROJECT GREENHOUSE GAS EMISSIONS** The GHG emissions have been calculated based on the parameters described above. A summary of the results is shown below in Table 19 and the CalEEMod Model run for the proposed project is provided in Appendix C. Table 19 shows that the total for the proposed project's emissions (including credit for reductions for compliance with
Cal Green and AB 341 regulatory requirements) would be 1,114.94 MTCO2e per year. According to the thresholds of significance established above, a cumulative global climate change impact would occur if the GHG emissions created from the on-going operations of the proposed project would exceed the SCAQMD draft threshold of 3,000 MTCO2e per year for all land uses. Furthermore, using the population data of 192 residents from CalEEMod, the project would generate GHG emissions of 5.81 MTCO2e per capita per year. Therefore, the project's emissions do not exceed either the SCAQMD 3,000 MTCO2e/year draft emissions threshold or the City of Redlands CAP Year 2030 Service Population of 6.0 MTCO2e per capita per year. The operation of the proposed project would not create a significant cumulative impact to global climate change. No mitigation is required. Table 19 Project-Related Greenhouse Gas Emissions | | | Greenhouse Gas Emissions (Metric Tons/Year) | | | | | | | | | |---|--------------|---|-----------------|-----------------|------------------|-------------------|--|--|--|--| | Category | Bio-CO2 | NonBio-CO ₂ | CO ₂ | CH ₄ | N ₂ O | CO ₂ e | | | | | | Area Sources ¹ | 0.00 | 15.61 | 15.61 | 0.00 | 0.00 | 15.72 | | | | | | Energy Usage ² | 0.00 | 195.77 | 195.77 | 0.01 | 0.00 | 196.86 | | | | | | Mobile Sources ³ | 0.00 | 713.22 | 713.22 | 0.04 | 0.04 | 724.61 | | | | | | Waste ⁴ | 15.98 | 0.00 | 15.98 | 0.94 | 0.00 | 9.90 | | | | | | Water ⁵ | 1.38 | 15.50 | 16.89 | 0.14 | 0.00 | 18.31 | | | | | | Construction ⁶ | 0.00 | 146.77 | 146.77 | 0.01 | 0.01 | 149.54 | | | | | | Total Emissions | 17.36 | 1,086.87 | 1,104.23 | 1.15 | 0.05 | 1,114.94 | | | | | | SCAQMD Draft Threshold for A | II Land Uses | | | | | 3,000 | | | | | | Exceeds Threshold? | | | | | | | | | | | | MTCO2e per Service Population Per Year | | | | | | | | | | | | City of Redlands CAP Year 2030 Service Population Threshold Per Capita Per Year | | | | | | | | | | | | Exceeds Threshold? | | | | | | No | | | | | Source: CalEEMod Version 2020.4.0 for Opening Year 2025. - (1) Area sources consist of GHG emissions from consumer products, architectural coatings, and landscape equipment. - (2) Energy usage consist of GHG emissions from electricity and natural gas usage. - (3) Mobile sources consist of GHG emissions from vehicles. - (4) Solid waste includes the ${\rm CO_2}$ and ${\rm CH_4}$ emissions created from the solid waste placed in landfills. - (5) Water includes GHG emissions from electricity used for transport of water and processing of wastewater. - (6) Construction GHG emissions CO2e based on a 30-year amortization rate. # CONSISTENCY WITH APPLICABLE GREENHOUSE GAS REDUCTION PLANS AND POLICIES The proposed project would have the potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases. As stated previously, the applicable plan for the proposed project is the City of Redlands CAP, which was prepared pursuant to Section 15183.5(b) of the CEQA Guidelines to be utilized as a tiering document for the General Plan as well as future projects within the City that are consistent with the General Plan. As stated in the Air Quality Compliance Section of the report above, the project is consistent with the General Plan, therefore, the proposed project meets the criteria allowed for use of the CAP for analysis of the proposed project. The CAP incorporates the guidelines established in CARB's 2017 Scoping Plan. The 2017 Scoping Plan was prepared to meet the most current GHG emissions reduction targets set in Executive Order S-3-05 and SB 32 that recommends local governments to develop plans to reduce GHG emissions to 6 MTCO2e per capita per year by the year 2030 and 2 MTCO2e per capita per year by the year 2050. The CAP was prepared in coordination with the General Plan that has a horizon year of 2035, and therefore, provides a year 2035 target of 5 MTCO2e per capita per year. As shown in Table 19, the proposed project is anticipated to be operational in 2025 and would generate 1,114.94 MTCO2e per year resulting in 5.81 MTCO2e per service population per year, which is below the 6 MTCO2e per year per service population threshold for 2030. Therefore, as the CAP used a linear trajectory in emissions reductions between 2030 and 2050 to determine the 2035 target of 5 MTCO2e per capita per year and the proposed project's emissions in 2025 are below the service population threshold for 2030, the proposed project's emissions would be anticipated to meet the City's year 2035 service population threshold. Therefore, the proposed project is consistent with the Redlands CAP and would not conflict with the applicable plan adopted for the purpose of reducing the emissions of greenhouse gases. Impacts would be less than significant. Furthermore, the project will comply with applicable Green Building Standards and City of Redlands' policies regarding sustainability (as dictated by the City's General Plan). Impacts are considered to be less than significant. 78 #### **CUMULATIVE GREENHOUSE GAS IMPACTS** Although the project is expected to emit GHGs, the emission of GHGs by a single project into the atmosphere is not itself necessarily an adverse environmental effect. Rather, it is the increased accumulation of GHG from more than one project and many sources in the atmosphere that may result in global climate change. Therefore, in the case of global climate change, the proximity of the project to other GHG emission generating activities is not directly relevant to the determination of a cumulative impact because climate change is a global condition. According to CAPCOA, "GHG impacts are exclusively cumulative impacts; there are no noncumulative GHG emission impacts from a climate change perspective." The resultant consequences of that climate change can cause adverse environmental effects. A project's GHG emissions typically would be very small in comparison to state or global GHG emissions and, consequently, they would, in isolation, have no significant direct impact on climate change. The state has mandated a goal of reducing statewide emissions to 1990 levels by 2020, even though statewide population and commerce are predicted to continue to expand. In order to achieve this goal, CARB is in the process of establishing and implementing regulations to reduce statewide GHG emissions. Consistent with CEQA Guidelines Section 15064h(3),²² the City, as lead agency, has determined that the project's contribution to cumulative GHG emissions and global climate change would be less than significant if the project is consistent with the applicable regulatory plans and policies to reduce GHG emissions. As discussed in the Consistency With Applicable Greenhouse Gas Reduction Plans and Policies section above, the project is consistent with the goals and objectives of the City of Redlands CAP. Thus, given the project's consistency with the City's CAP and SCAQMD's 3,000 MTCO2e per year threshold for all land uses, the project would not conflict with any applicable plan, policy, or regulation of an agency adopted for the purpose of reducing the emissions of GHGs. Given this consistency, it is concluded that the project's incremental contribution to greenhouse gas emissions and their effects on climate change would not be cumulatively considerable. The State CEQA Guidelines were amended in response to SB 97. In particular, the State CEQA Guidelines were amended to specify that compliance with a GHG emissions reduction program renders a cumulative impact insignificant. Per State CEQA Guidelines Section 15064(h)(3), a project's incremental contribution to a cumulative impact can be found not cumulatively considerable if the project will comply with an approved plan or mitigation program that provides specific requirements that will avoid or substantially lessen the cumulative problem within the geographic area of the project. To qualify, such a plan or program must be specified in law or adopted by the public agency with jurisdiction over the affected resources through a public review process to implement, interpret, or make specific the law enforced or administered by the public agency. Examples of such programs include a "water quality control plan, air quality attainment or maintenance plan, integrated waste management plan, habitat conservation plan, natural community conservation plan, [and] plans or regulations for the reduction of greenhouse gas emissions." _ ²¹ Source: California Air Pollution Control Officers Association, CEQA & Climate change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act, (2008). # 5. ENERGY ANALYSIS #### **EXISTING CONDITIONS** This section provides an overview of the existing energy conditions in the project area and region. # Overview California's estimated annual energy use as of 2019 included: - Approximately 277,704 gigawatt hours of electricity;²³ - Approximately 2,154,030 million cubic feet of natural gas per year²⁴; and - Approximately 23.2 billion gallons of transportation fuel (for the year 2015).²⁵ As of 2018, the year of most recent data currently available by the United States Energy Information Administration (EIA), energy use in California by demand sector was: - Approximately 39.1 percent transportation; - Approximately 23.5 percent industrial; - Approximately 18.3 percent residential; and - Approximately 19.2 percent commercial.²⁶ California's electricity in-state generation system generates approximately 200,475 gigawatt-hours each year. In 2019, California produced approximately 72 percent of the electricity it uses; the rest was imported from the Pacific Northwest (approximately 9 percent) and the U.S. Southwest (approximately 19 percent). Natural gas is the main source
for electricity generation at approximately 42.97 percent of the total in-state electric generation system power as shown in Table 20. A summary of and context for energy consumption and energy demands within the State is presented in "U.S. Energy Information Administration, California State Profile and Energy Estimates, Quick Facts" excerpted below: - California was the seventh-largest producer of crude oil among the 50 states in 2018, and, as of January 2019, it ranked third in oil refining capacity. - California is the largest consumer of jet fuel among the 50 states and accounted for one-fifth of the nation's jet fuel consumption in 2018. - California's total energy consumption is the second-highest in the nation, but, in 2018, the State's per capita energy consumption ranked the fourth-lowest, due in part to its mild climate and its energy efficiency programs. - In 2018, California ranked first in the nation as a producer of electricity from solar, geothermal, and biomass resources and fourth in the nation in conventional hydroelectric power generation. ²⁶ U.S. Energy Information Administration. California Energy Consumption by End-Use Sector. California State Profile and Energy Estimates.[Online] January 16, 2020 https://www.eia.gov/state/?sid=CA#tabs-2 _ ²³ California Energy Commission. Energy Almanac. Total Electric Generation. [Online] 2020. https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2019-total-system-electric-generation. ²⁴ Natural Gas Consumption by End Use. U.S. Energy Information Administration. [Online] August 31, 20020. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_SCA_a.htm. ²⁵ California Energy Commission. Revised Transportation Energy Demand Forecast 2018-2030. [Online] April 19, 2018. https://www.energy.ca.gov/assessments/ In 2018, large- and small-scale solar PV and solar thermal installations provided 19% of California's net electricity generation.²⁷ As indicated above, California is one of the nation's leading energy-producing states, and California per capita energy use is among the nation's most efficient. Given the nature of the proposed project, the remainder of this discussion will focus on the three sources of energy that are most relevant to the project—namely, electricity and natural gas, and transportation fuel for vehicle trips associated with the proposed project. # **Electricity** Electricity would be provided to the project by Southern California Edison (SCE). SCE provides electric power to more than 15 million persons, within a service area encompassing approximately 50,000 square miles.²⁸ SCE derives electricity from varied energy resources including: fossil fuels, hydroelectric generators, nuclear power plants, geothermal power plants, solar power generation, and wind farms. SCE also purchases from independent power producers and utilities, including out-of-state suppliers.²⁹ Table 21 identifies SCE's specific proportional shares of electricity sources in 2019. As shown in Table 21, the 2019 SCE Power Mix has renewable energy at 35 percent of the overall energy resources, of which biomass and waste is at 1 percent, geothermal is at 8 percent, eligible hydroelectric is at 1 percent, solar energy is at 16 percent, and wind power is at 12 percent; other energy sources include large hydroelectric at 8 percent, natural gas at 16 percent, nuclear at 8 percent and unspecified sources at 33 percent. #### **Natural Gas** Natural gas would be provided to the project by Southern California Gas (SoCalGas). The following summary of natural gas resources and service providers, delivery systems, and associated regulation is excerpted from information provided by the California Public Utilities Commission (CPUC). The CPUC regulates natural gas utility service for approximately 11 million customers that receive natural gas from Pacific Gas and Electric (PG&E), Southern California Gas (SoCalGas), San Diego Gas & Electric (SDG&E), Southwest Gas, and several smaller investor-owned natural gas utilities. The CPUC also regulates independent storage operators Lodi Gas Storage, Wild Goose Storage, Central Valley Storage and Gill Ranch Storage. The vast majority of California's natural gas customers are residential and small commercial customers, referred to as "core" customers. Larger volume gas customers, like electric generators and industrial customers, are called "noncore" customers. Although very small in number relative to core customers, noncore customers consume about 65% of the natural gas delivered by the state's natural gas utilities, while core customers consume about 35%. The PUC regulates the California utilities' natural gas rates and natural gas services, including in-state transportation over the utilities' transmission and distribution pipeline systems, storage, procurement, metering and billing. Most of the natural gas used in California comes from out-of-state natural gas basins. In 2017, for example, California utility customers received 38% of their natural gas supply from basins located in the U.S. Southwest, 27% from Canada, 27% from the U.S. Rocky Mountain area, and 8% from production located in California."³⁰ ³⁰California Public Utilities Commission. Natural Gas and California. http://www.cpuc.ca.gov/natural_gas/ Terracina at Redlands (TTM 20320) ²⁷ State Profile and Energy Estimates. Independent Statistics and Analysis. [Online] [Cited: January 16, 2020.] http://www.eia.gov/state/?sid=CA#tabs2. ²⁸ https://www.sce.com/about-us/who-we-are/leadership/our-service-territory ²⁹ California Energy Commission. Utility Energy Supply plans from 2015. https://www.energy.ca.gov/almanac/electricity_data/supply_forms.html # **Transportation Energy Resources** The project would attract additional vehicle trips with resulting consumption of energy resources, predominantly gasoline and diesel fuel. Gasoline (and other vehicle fuels) are commercially provided commodities and would be available to the project patrons and employees via commercial outlets. The most recent data available shows the transportation sector emits 40 percent of the total greenhouse gases in the state and about 84 percent of smog-forming oxides of nitrogen (NOx). 31,32 About 28 percent of total United States energy consumption in 2019 was for transporting people and goods from one place to another. In 2019, petroleum comprised about 91 percent of all transportation energy use, excluding fuel consumed for aviation and most marine vessels. 33 In 2020, about 123,49 billion gallons (or about 2.94 billion barrels) of finished motor gasoline were consumed in the United States, an average of about 337 million gallons (or about 8.03 million barrels) per day. 34 #### **REGULATORY BACKGROUND** Federal and state agencies regulate energy use and consumption through various means and programs. On the federal level, the United States Department of Transportation, the United States Department of Energy, and the United States Environmental Protection Agency are three federal agencies with substantial influence over energy policies and programs. On the state level, the PUC and the California Energy Commissions (CEC) are two agencies with authority over different aspects of energy. Relevant federal and state energy-related laws and plans are summarized below. # Federal Regulations Corporate Average Fuel Economy (CAFE) Standards First established by the U.S. Congress in 1975, the Corporate Average Fuel Economy (CAFE) standards reduce energy consumption by increasing the fuel economy of cars and light trucks. The National Highway Traffic Safety Administration (NHTSA) and U.S. Environmental Protection Agency (USEPA) jointly administer the CAFE standards. The U.S. Congress has specified that CAFE standards must be set at the "maximum feasible level" with consideration given for: (1) technological feasibility; (2) economic practicality; (3) effect of other standards on fuel economy; and (4) need for the nation to conserve energy.³⁵ Issued by NHTSA and EPA in March 2020 (published on April 30, 2020 and effective after June 29, 2020), the Safer Affordable Fuel-Efficient Vehicles Rule would maintain the CAFE and CO2 standards applicable in model year 2020 for model years 2021 through 2026. The estimated CAFE and CO2 standards for model year 2020 are 43.7 mpg and 204 grams of CO2 per mile for passenger cars and 31.3 mpg and 284 grams of CO2 per mile for light trucks, projecting an overall industry average of 37 mpg, as compared to 46.7 mpg under the standards issued in 2012.³⁶ ³⁶ National Highway Traffic Safety Administration (NHTSA) and U.S. Environmental Protection Agency (USEPA), 2018. Federal Register / Vol. 83, No. 165 / Friday, August 24, 2018 / Proposed Rules, The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021–2026 Passenger Cars and Light Trucks 2018. Available at: https://www.epa.gov/regulations-emissions-vehicles-and-epgips/safer-affordable-fuel-efficient-safe-vehicles-final-rule engines/safer-affordable-fuel-efficient-safe-vehicles-final-rule. ³¹ CARB. California Greenhouse Gas Emissions Inventory - 2020 Edition. https://www.arb.ca.gov/cc/inventory/data/data.htm ³² CARB. 2016 SIP Emission Projection Data. https://www.arb.ca.gov/app/emsinv/2017/emseic1_query.php?F_DIV=-4&F_YR=2012&F_SEASON=A&SP=SIP105ADJ&F_AREA=CA ³³ US Energy Information Administration. Use of Energy in the United States Explained: Energy Use for Transportation. https://www.eia.gov/energyexplained/?page=us_energy_transportation ³⁴ https://www.eia.gov/tools/faqs/faq.php?id=23&t=10 ³⁵ https://www.nhtsa.gov/lawsregulations/corporate-average-fuel-economy. Intermodal Surface transportation Efficiency Act of 1991 (ISTEA) The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) promoted the development of intermodal transportation systems to maximize mobility as well as address national and local interests in air quality and energy. ISTEA contained factors that Metropolitan Planning
Organizations (MPOs) were to address in developing transportation plans and programs, including some energy-related factors. To meet the new ISTEA requirements, MPOs adopted explicit policies defining the social, economic, energy, and environmental values guiding transportation decisions. The Transportation Equity Act of the 21st Century (TEA-21) The Transportation Equity Act for the 21st Century (TEA-21) was signed into law in 1998 and builds upon the initiatives established in the ISTEA legislation, discussed above. TEA-21 authorizes highway, highway safety, transit, and other efficient surface transportation programs. TEA-21 continues the program structure established for highways and transit under ISTEA, such as flexibility in the use of funds, emphasis on measures to improve the environment, and focus on a strong planning process as the foundation of good transportation decisions. TEA-21 also provides for investment in research and its application to maximize the performance of the transportation system through, for example, deployment of Intelligent Transportation Systems, to help improve operations and management of transportation systems and vehicle safety. #### **State Regulations** #### Integrated Energy Policy Report (IEPR) Senate Bill 1389 requires the California Energy Commission (CEC) to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the State's electricity, natural gas, and transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state's economy; and protect public health and safety. The Energy Commission prepares these assessments and associated policy recommendations every two years, with updates in alternate years, as part of the Integrated Energy Policy Report. The 2019 Integrated Energy Policy Report (2019 IEPR) was adopted February 20, 2020, and continues to work towards improving electricity, natural gas, and transportation fuel energy use in California. The 2019 IEPR focuses on a variety of topics such as decarbonizing buildings, integrating renewables, energy efficiency, energy equity, integrating renewable energy, updates on Southern California electricity reliability, climate adaptation activities for the energy sector, natural gas assessment, transportation energy demand forecast, and the California Energy Demand Forecast.³⁷ # State of California Energy Plan The CEC is responsible for preparing the State Energy Plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The Plan calls for the state to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies a number of strategies, including assistance to public agencies and fleet operators and encouragement of urban designs that reduce vehicle miles traveled and accommodate pedestrian and bicycle access. # California Building Standards Code (Title 24) ³⁷ California Energy Commission. Final 2019 Integrated Energy Policy Report. February 20, 2020. https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2019-integrated-energy-policy-report 37 The California Building Standards Code Title 24 was previously discussed in Section 4 of this report. California Building Energy Efficiency Standards (Title 24, Part 6) The California Building Energy Efficiency Standards for Residential and Nonresidential Buildings (California Code of Regulations, Title 24, Part 6) were adopted to ensure that building construction and system design and installation achieve energy efficiency and preserve outdoor and indoor environmental quality. The current California Building Energy Efficiency Standards (Title 24 standards) are the 2019 Title 24 standards, which became effective on January 1, 2020. The 2019 Title 24 standards include efficiency improvements to the lighting and efficiency improvements to the non-residential standards include alignment with the American Society of Heating and Air-Conditioning Engineers. For example, window operation is no longer a method allowed to meet ventilation requirements, continuous operation of central forced air system handlers used in central fan integrated ventilation system is not a permissible method of providing the dwelling unit ventilation airflow, and central ventilation systems that serve multiple dwelling units must be balanced to provide ventilation airflow to each dwelling unit. In addition, requirements for kitchen range hoods were also provided in the updated Section 120.1. Ventilation and Indoor Air Quality included both additions and revisions in the 2019 Code. This section now requires nonresidential and hotel/motel buildings to have air filtration systems that use forced air ducts to supply air to occupiable spaces to have air filters. Further, the air filter efficiency must be either MERV 13 or use a particle size efficiency rating specific in the Energy Code AND be equipped with air filters with a minimum 2-inch depth or minimum 1-inch depth if sized according to the equation 120.1-A. If natural ventilation is to be used the space must also use mechanical unless ventilation openings are either permanently open or controlled to stay open during occupied times. New regulations were also adopted under Section 130.1 Indoor Lighting Controls. These included new exceptions being added for restrooms, the exception for classrooms being removed, as well as exceptions in regard to sunlight provided through skylights and overhangs. All buildings for which an application for a building permit is submitted on or after January 1, 2020 must follow the 2019 standards. The 2016 residential standards were estimated to be approximately 28 percent more efficient than the 2013 standards, whereas the 2019 residential standards are estimated to be approximately 7 percent more efficient than the 2016 standards. Furthermore, once rooftop solar electricity generation is factored in, 2019 residential standards are estimated to be approximately 53 percent more efficient than the 2016 standards. Under the 2019 standards, nonresidential buildings are estimated to be approximately 30 percent more efficient than the 2016 standards. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas emissions. California Building Energy Efficiency Standards (Title 24, Part 11) The 2019 California Green Building Standards Code (California Code of Regulations, Title 24, Part 11), commonly referred to as the CALGreen Code, went into effect on January 1, 2020. The 2019 CALGreen Code includes mandatory measures for non-residential development related to site development; energy efficiency; water efficiency and conservation; material conservation and resource efficiency; and environmental quality. As previously discussed in Section 3 of this report, the Department of Housing and Community Development (HCD) updated CALGreen through the 2019 Triennial Code Adoption Cycle. HCD modified the best management practices for stormwater pollution prevention adding Section 5.106.2 for projects that disturb one or more acres of land. This section requires projects that disturb one acre or more of land or less than one acre of land but are part of a larger common plan of development or sale must comply with the postconstruction requirement detailed in the applicable National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities issued by the State Water Resources Control Board. The NPDES permits require postconstruction runoff (post-project hydrology) to match the preconstruction runoff pre-project hydrology) with installation of postconstruction stormwater management measures. HCD added sections 5.106.4.1.3 and 5.106.4.1.5 in regard to bicycle parking. Section 5.106.4.1.3 requires new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5 percent of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility. In addition, Section 5.106.4.1.5 states that acceptable bicycle parking facility for Sections 5.106.4.1.2 through 5.106.4.1.4 shall be convenient from the street and shall meeting one of the following: (1) covered, lockable enclosures with permanently anchored racks for bicycles; (2) lockable bicycle rooms with permanently anchored racks; or (3) lockable, permanently anchored bicycle lockers. HCD amended section 5.106.5.3.5 allowing future charging spaces to qualify as designated parking for clean air vehicles. HCD updated section 5.303.3.3 in regard to showerhead flow rates. This update reduced the flow rate to 1.8 GPM. HCD amended section 5.304.1 for outdoor potable water use in landscape areas and repealed sections 5.304.2 and 5.304.3. The update requires nonresidential developments to comply with a local water efficient landscape ordinance or the current California Department of Water Resource's' Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent. Some updates were also made in regard to the outdoor potable water use in landscape areas for public schools and community colleges. HCD updated Section 5.504.5.3 in regard to the use of MERV filters in mechanically ventilated buildings. This update changed the filter use from MERV 8 to MERV 13. MERV 13 filters are to be installed prior to occupancy, and recommendations for maintenance with filters of the same value shall be included in the operation and maintenance manual. #### Senate Bill 100 Senate Bill 100 (SB 100) requires 100 percent of total
retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 2045. SB 100 was adopted September 2018. The interim thresholds from prior Senate Bills and Executive Orders would also remain in effect. These include Senate Bill 1078 (SB 1078), which requires retail sellers of electricity, including investor-owned utilities and community choice aggregators, to provide at least 20 percent of their supply from renewable sources by 2017. Senate Bill 107 (SB 107) which changed the target date to 2010. Executive Order S-14-08, which was signed on November 2008 and expanded the State's Renewable Energy Standard to 33 percent renewable energy by 2020. Executive Order S-21-09 directed the CARB to adopt regulations by July 31, 2010 to enforce S-14-08. Senate Bill X1-2 codifies the 33 percent renewable energy requirement by 2020. # Senate Bill 350 As previously discussed in Section 4 of this report, Senate Bill 350 (SB 350) was signed into law October 7, 2015, SB 350 increases California's renewable electricity procurement goal from 33 percent by 2020 to 50 percent by 2030. This will increase the use of Renewables Portfolio Standard (RPS) eligible resources, including solar, wind, biomass, geothermal, and others. In addition, SB 350 requires the state to double statewide energy efficiency savings in electricity and natural gas end uses by 2030. To help ensure these goals are met and the greenhouse gas emission reductions are realized, large utilities will be required to develop and submit Integrated Resource Plans (IRPs). These IRPs will detail how each entity will meet their customers resource needs, reduce greenhouse gas emissions and ramp up the deployment of clean energy resources. #### Assembly Bill 32 As discussed in Section 4 of this report, in 2006 the California State Legislature adopted Assembly Bill 32 (AB 32), the California Global Warming Solutions Act of 2006. AB 32 requires CARB, to adopt rules and regulations that would achieve GHG emissions equivalent to statewide levels in 1990 by 2020 through an enforceable statewide emission cap which will be phased in starting in 2012. Emission reductions shall include carbon sequestration projects that would remove carbon from the atmosphere and best management practices that are technologically feasible and cost effective. Please see Section 4 for further detail on AB 32. # Assembly Bill 1493/Pavley Regulations As discussed in Section 4 of this report, California Assembly Bill 1493 enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. In 2005, the CARB submitted a "waiver" request to the EPA from a portion of the federal Clean Air Act in order to allow the State to set more stringent tailpipe emission standards for CO₂ and other GHG emissions from passenger vehicles and light duty trucks. On December 19, 2007 the EPA announced that it denied the "waiver" request. On January 21, 2009, CARB submitted a letter to the EPA administrator regarding the State's request to reconsider the waiver denial. The EPA approved the waiver on June 30, 2009. #### Executive Order S-1-07/Low Carbon Fuel Standard As discussed in Section 4 of this report, Executive Order S-1-07 was issued in 2007 and proclaims that the transportation sector is the main source of GHG emissions in the State, since it generates more than 40 percent of the State's GHG emissions. It establishes a goal to reduce the carbon intensity of transportation fuels sold in the State by at least ten percent by 2020. This Order also directs CARB to determine whether this Low Carbon Fuel Standard (LCFS) could be adopted as a discrete early-action measure as part of the effort to meet the mandates in AB 32. On April 23, 2009 CARB approved the proposed regulation to implement the low carbon fuel standard. The low carbon fuel standard is anticipated to reduce GHG emissions by about 16 MMT per year by 2020. The low carbon fuel standard is designed to provide a framework that uses market mechanisms to spur the steady introduction of lower carbon fuels. The framework establishes performance standards that fuel producers and importers must meet each year beginning in 2011. Separate standards are established for gasoline and diesel fuels and the alternative fuels that can replace each. The standards are "back-loaded", with more reductions required in the last five years, than during the first five years. This schedule allows for the development of advanced fuels that are lower in carbon than today's fuels and the market penetration of plug-in hybrid electric vehicles, battery electric vehicles, fuel cell vehicles, and flexible fuel vehicles. It is anticipated that compliance with the low carbon fuel standard will be based on a combination of both lower carbon fuels and more efficient vehicles. Reformulated gasoline mixed with corn-derived ethanol at ten percent by volume and low sulfur diesel fuel represent the baseline fuels. Lower carbon fuels may be ethanol, biodiesel, renewable diesel, or blends of these fuels with gasoline or diesel as appropriate. Compressed natural gas and liquefied natural gas also may be low carbon fuels. Hydrogen and electricity, when used in fuel cells or electric vehicles are also considered as low carbon fuels for the low carbon fuel standard. # California Air Resources Board # CARB's Advanced Clean Cars Program Closely associated with the Pavley regulations, the Advanced Clean Cars emissions control program was approved by CARB in 2012. The program combines the control of smog, soot, and GHGs with requirements for greater numbers of zero-emission vehicles for model years 2015–2025.15 The components of the Advanced Clean Cars program include the Low-Emission Vehicle (LEV) regulations that reduce criteria pollutants and GHG emissions from light- and medium-duty vehicles, and the Zero-Emission Vehicle (ZEV) regulation, which requires manufacturers to produce an increasing number of pure ZEVs (meaning battery electric and fuel cell electric vehicles), with provisions to also produce plug-in hybrid electric vehicles (PHEV) in the 2018 through 2025 model years.³⁸ Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling The Airborne Toxic Control Measure to Limit Diesel-Fueled Commercial Motor Vehicle Idling (Title 13, California Code of Regulations, Division 3, Chapter 10, Section 2435) was adopted to reduce public exposure to diesel particulate matter and other air contaminants by limiting the idling of diesel-fueled commercial motor vehicles. This section applies to diesel-fueled commercial motor vehicles with gross vehicular weight ratings of greater than 10,000 pounds that are or must be licensed for operation on highways. Reducing idling of diesel-fueled commercial motor vehicles reduces the amount of petroleum-based fuel used by the vehicle. Regulation to Reduce Emissions of Diesel Particulate Matter, Oxides of Nitrogen, and other Criteria Pollutants, form In-Use Heavy-Duty Diesel-Fueled Vehicles The Regulation to Reduce Emissions of Diesel Particulate Matter, Oxides of Nitrogen and other Criteria Pollutants, from In-Use Heavy-Duty Diesel-Fueled Vehicles (Title 13, California Code of Regulations, Division 3, Chapter 1, Section 2025) was adopted to reduce emissions of diesel particulate matter, oxides of nitrogen (NOX) and other criteria pollutants from in-use diesel-fueled vehicles. This regulation is phased, with full implementation by 2023. The regulation aims to reduce emissions by requiring the installation of diesel soot filters and encouraging the retirement, replacement, or repower of older, dirtier engines with newer emission-controlled models. The newer emission-controlled models would use petroleum-based fuel in a more efficient manner. #### Sustainable Communities Strategy The Sustainable Communities and Climate Protection Act of 2008, or Senate Bill 375 (SB 375), coordinates land use planning, regional transportation plans, and funding priorities to help California meet the GHG reduction mandates established in AB 32. As previously stated in Section 4 of this report, Senate Bill 375 (SB 375) was adopted September 2008 and aligns regional transportation planning efforts, regional GHG emission reduction targets, and land use and housing allocation. SB 375 requires Metropolitan Planning Organizations (MPO) to adopt a sustainable communities strategy (SCS) or alternate planning strategy (APS) that will prescribe land use allocation in that MPOs Regional Transportation Plan (RTP). CARB, in consultation with each MPO, will provide each affected region with reduction targets for GHGs emitted by passenger cars and light trucks in the region for the years 2020 and 2035. These reduction targets will be updated every eight years but can be updated every four years if advancements in emissions technologies affect the reduction strategies to achieve the targets. CARB is also charged with reviewing each MPO's sustainable communities strategy or alternate planning strategy for consistency with its assigned targets. The proposed project is located within the Southern California Association of Governments (SCAG) jurisdiction, which has authority to develop the SCS or APS. For the SCAG region, the targets set by CARB are at eight percent below 2005 per capita GHG emissions levels by 2020 and 19 percent below 2005 per capita GHG emissions levels by 2035. These reduction targets became effective October 2018. ³⁸ California Air Resources Board, California's Advanced Clean Cars Program, January 18, 2017. www.arb.ca.gov/msprog/acc/acc.htm. #### PROJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES #### **Evaluation Criteria** In compliance with Appendix G of the State CEQA Guidelines, this report analyzes the project's anticipated energy use to determine if the project would: - Result in potentially significant environmental
impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation; or - Conflict with or obstruct a state or local plan for renewable energy or energy efficiency. In addition, Appendix F of the State CEQA Guidelines states that the means of achieving the goal of energy conservation includes the following: - Decreasing overall per capita energy consumption; - Decreasing reliance on fossil fuels such as coal, natural gas and oil; and - Increasing reliance on renewable energy sources. # Methodology Information from the CalEEMod 2020.4.0 Daily and Annual Outputs contained in Appendix B and D, utilized for air quality and greenhouse gas analyses in Sections 2 and 4 of this report, were also utilized for this analysis. The CalEEMod outputs detail project related construction equipment, transportation energy demands, and facility energy demands. # **Construction Energy Demands** The construction schedule is anticipated to occur between the beginning of February 2023 and mid-July 2025 and be completed in one phase.³⁹ Staging of construction vehicles and equipment will occur on-site. The approximately 29.5 month schedule is relatively short and the project site is approximately 64.54 acres. Construction Equipment Electricity Usage Estimates As stated previously, Electrical service will be provided by Southern California Edison. The focus within this section is the energy implications of the construction process, specifically the power cost from on-site electricity consumption during construction of the proposed project. Based on the 2017 National Construction Estimator, Richard Pray (2017),⁴⁰ the typical power cost per 1,000 square feet of building construction per month is estimated to be \$2.32. The project plans to develop the site with 67 single-family residential dwelling units, which, using CalEEMod default estimates, would total approximately 120,600 square feet. Based on Table 22, the total power cost of the on-site electricity usage during the construction of the proposed project is estimated to be approximately \$8,253.86. Construction Equipment Fuel Estimates Fuel consumed by construction equipment would be the primary energy resource expended over the course of project construction. Fuel consumed by construction equipment was evaluated with the following assumptions: ⁴⁰ Pray, Richard. 2017 National Construction Estimator. Carlsbad: Craftsman Book Company, 2017. _ ³⁹ The Project Phasing Description (July 8, 2021) shows that the project is to be completed in two phases; however, to be conservative and consistent with the TIA completed for the proposed project, it was modeled as being completed in one phase. The construction timeline for each construction phase was based on the total timeline for the proposed project (Phases 1 and 2 combined) provided in the Project Phasing Description. - Construction schedule of approximately 29.5 months - All construction equipment was assumed to run on diesel fuel - Typical daily use of 8 hours, with some equipment operating from ~6-7 hours - Aggregate fuel consumption rate for all equipment was estimated at 18.5 hp-hr/day (from CARB's 2017 Emissions Factors Tables and fuel consumption rate factors as shown in Table D-21 of the Moyer Guidelines: (https://www.arb.ca.gov/msprog/moyer/guidelines/2017gl/2017 gl appendix d.pdf). - Diesel fuel would be the responsibility of the equipment operators/contractors and would be sources within the region. - Project construction represents a "single-event" for diesel fuel demand and would not require on-going or permanent commitment of diesel fuel resources during long term operation. Using the CalEEMod data input for the air quality and greenhouse gas analyses (Sections 2 and 4 of this report), the project's construction phase would consume electricity and fossil fuels as a single energy demand, that is, once construction is completed their use would cease. CARB's 2017 Emissions Factors Tables show that on average, aggregate fuel consumption (gasoline and diesel fuel) would be approximately 18.5 hp-hrgal. Table 23 shows the results of the analysis of construction equipment. As presented in Table 23, project construction activities would consume an estimated 129,308 gallons of diesel fuel. As stated previously, project construction would represent a "single-event" diesel fuel demand and would not require on-going or permanent commitment of diesel fuel resources for this purpose. #### Construction Worker Fuel Estimates It is assumed that all construction worker trips are from light duty autos (LDA) along area roadways. With respect to estimated VMT, the construction worker trips would generate an estimated 6,173,574 VMT. Data regarding project related construction worker trips were based on CalEEMod 2020.4.0 model defaults. Vehicle fuel efficiencies for construction workers were estimated in the air quality and greenhouse gas analyses (Sections 2 and 4 of this report) using information generated using CARB's 2017 EMFAC model (see Appendix D for details). An aggregate fuel efficiency of 31.82 miles per gallon (mpg) was used to calculate vehicle miles traveled for construction worker trips. Table 24 shows that an estimated 194,016 gallons of fuel would be consumed for construction worker trips. #### Construction Vendor/Hauling Fuel Estimates Tables 25 and 26 show the estimated fuel consumption for vendor and hauling during building construction and architectural coating. With respect to estimated VMT, the vendor and hauling trips would generate an estimated 1,084,169 VMT. Data regarding project related construction worker trips were based on CalEEMod 2020.4.0 model defaults. For the architectural coatings it is assumed that the contractors would be responsible for bringing coatings and equipment with them in their light duty vehicles. Therefore, vendors delivering construction material or hauling debris from the site during grading would use medium to heavy duty vehicles with an average fuel consumption of 9.58 mpg for medium heavy-duty trucks and 7.14 for heavy heavy duty trucks (see Appendix D for details). Tables 25 and 26 show that an estimated 113,170 gallons of fuel would be consumed for vendor and hauling trips. # Construction Energy Efficiency/Conservation Measures Construction equipment used over the approximately 29.5-month construction phase would conform to CARB regulations and California emissions standards and is evidence of related fuel efficiencies. There are no unusual project characteristics or construction processes that would require the use of equipment that would be more energy intensive than is used for comparable activities; or equipment that would not conform to current emissions standards (and related fuel efficiencies). Equipment employed in construction of the project would therefore not result in inefficient wasteful, or unnecessary consumption of fuel. The project would utilize construction contractors which practice compliance with applicable CARB regulation regarding retrofitting, repowering, or replacement of diesel off-road construction equipment. Additionally, CARB has adopted the Airborne Toxic Control Measure to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to diesel particulate matter and other Toxic Air Contaminants. Compliance with these measures would result in a more efficient use of construction-related energy and would minimize or eliminate wasteful or unnecessary consumption of energy. Idling restrictions and the use of newer engines and equipment would result in less fuel combustion and energy consumption. Additionally, as required by California Code of Regulations Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than five minutes, thereby minimizing or eliminating unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. Enforcement of idling limitations is realized through periodic site inspections conducted by County building officials, and/or in response to citizen complaints. #### **Operational Energy Demands** Energy consumption in support of or related to project operations would include transportation energy demands (energy consumed by employee and patron vehicles accessing the project site) and facilities energy demands (energy consumed by building operations and site maintenance activities). #### Transportation Fuel Consumption Using the CalEEMod output from the air quality and greenhouse gas analyses (Sections 2 and 4 of this report), it is assumed that an average trip for autos and light trucks was assumed to be 14.7 miles and 3-4-axle trucks were assumed to travel an average of 8.7 miles. The project includes the development of the site with residential uses; therefore, in order to present a worst-case scenario, it was assumed that vehicles would operate 365 days per year. Table 27 shows the estimated annual fuel consumption for all classes of vehicles from autos to heavy-heavy trucks. A2 The proposed project would generate 632 trips per day. The vehicle fleet mix was used from the CalEEMod output. Table 27 shows that an estimated 118,198 gallons of fuel would be consumed per year for the operation of the proposed project. Trip generation and VMT generated by the proposed project are consistent with other similar residential uses of similar scale and configuration as reflected respectively in the Institute of Transportation Engineers (ITE) Trip Generation Manual (20th Edition, 2017). That is, the proposed project does not propose uses or operations that would inherently result in excessive and wasteful vehicle trips and VMT, nor associated excess and wasteful vehicle energy consumption. Furthermore, the state of California consumed approximately 4.2 billion gallons of diesel and 15.1 billion gallons of gasoline in 2015. ^{43,44} Therefore, the increase in fuel consumption from the proposed
project is insignificant in comparison to the State's demand. Therefore, project transportation energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary. ⁴⁴ https://www.energy.ca.gov/data-reports/energy-almanac/transportation-energy/diesel-fuel-data-facts-and-statistics 41 ⁴¹ CalEEMod default distance for H-W (home-work) or C-W (commercial-work) is 14.7 miles; 8.7 miles for H-O (home-other) or C-O (commercial-other). ⁴² Average fuel economy based on aggregate mileage calculated in EMFAC 2017 for opening year (2025). See Appendix C for EMFAC output ⁴³ https://www.energy.ca.gov/data-reports/energy-almanac/transportation-energy/california-gasoline-data-facts-and-statistics Facility Energy Demands (Electricity and Natural Gas) Building operation and site maintenance (including landscape maintenance) would result in the consumption of electricity (provided by Southern California Edison) and natural gas (provided by Southern California Gas Company). The annual natural gas and electricity demands were provided per the CalEEMod output from the air quality and greenhouse gas analyses (Sections 2 and 4 of this report) and are provided in Table 28. As shown in Table 28, the estimated electricity demand for the proposed project is approximately 533,632 kWh per year. In 2019, the residential sector of the County of San Bernardino consumed approximately 5,054 million kWh of electricity.⁴⁵ In addition, the estimated natural gas consumption for the proposed project is approximately 1,895,220 kBTU per year. In 2019, the residential sector of the County of San Bernardino consumed approximately 275million therms of gas.⁴⁶ Therefore, the increase in both electricity and natural gas demand from the proposed project is insignificant compared to the County's 2019 residential sector demand. Energy use in buildings is divided into energy consumed by the built environment and energy consumed by uses that are independent of the construction of the building such as in plug-in appliances. In California, the California Building Standards Code Title 24 governs energy consumed by the built environment, mechanical systems, and some types of fixed lighting. Non-building energy use, or "plug-in" energy use can be further subdivided by specific end-use (refrigeration, cooking, appliances, etc.). Furthermore, the proposed project energy demands in total would be comparable to other residential projects of similar scale and configuration. Therefore, the project facilities' energy demands and energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary. #### RENEWABLE ENERGY AND ENERGY EFFICIENCY PLAN CONSISTENCY Regarding federal transportation regulations, the project site is located in an already developed area. Access to/from the project site is from existing roads. These roads are already in place so the project would not interfere with, nor otherwise obstruct intermodal transportation plans or projects that may be proposed pursuant to the ISTEA because SCAG is not planning for intermodal facilities in the project area. Regarding the State's Energy Plan and compliance with Title 24 CCR energy efficiency standards, the applicant is required to comply with the California Green Building Standard Code requirements for energy efficient buildings and appliances as well as utility energy efficiency programs implemented by Southern California Edison and Southern California Gas Company. Regarding Pavley (AB 1493) regulations, an individual project does not have the ability to comply or conflict with these regulations because they are intended for agencies and their adoption of procedures and protocols for reporting and certifying GHG emission reductions from mobile sources. Regarding the State's Renewable Energy Portfolio Standards, the project would be required to meet or exceed the energy standards established in the California Green Building Standards Code, Title 24, Part 11 (CALGreen). CALGreen Standards require that new buildings reduce water consumption, employ building commissioning to increase building system efficiencies, divert construction waste from landfills, and install low pollutant-emitting finish materials. As shown in Section 4 above, the proposed project would be consistent with the applicable goals of the City of Redlands CAP. ⁴⁶ California Energy Commission, Gas Consumption by County. http://ecdms.energy.ca.gov/gasbycounty.aspx ⁴⁵ California Energy Commission, Electricity Consumption by County. https://ecdms.energy.ca.gov/elecbycounty.aspx #### **CONCLUSIONS** As supported by the preceding analyses, project construction and operations would not result in the inefficient, wasteful or unnecessary consumption of energy. The proposed project does not include any unusual project characteristics or construction processes that would require the use of equipment that would be more energy intensive than is used for comparable activities and is a residential project that is not proposing any additional features that would require a larger energy demand than other residential projects of similar scale and configuration. The project land uses are consistent with the General Plan designations, and therefore, the energy demands of the project are anticipated to be accommodated within the context of available resources and energy delivery systems. The project would therefore not cause or result in the need for additional energy producing or transmission facilities. The project would not engage in wasteful or inefficient uses of energy and aims to achieve energy conservations goals within the State of California. Notwithstanding, the project proposes residential uses and will not have any long-term effects on an energy provider's future energy development or future energy conservation strategies. Table 20 Total Electricity System Power (California 2019) | Fuel Type | California In-
State
Generation
(GWh) | Percent of
California In-
State
Generation | Northwest
Imports
(GWh) | Southwest
Imports
(GWh) | Total Imports
(GWh) | Percent of
Imports | Total
California
Energy Mix
(GWh) | Total
California
Power Mix | |-----------------------------------|--|---|-------------------------------|-------------------------------|------------------------|-----------------------|--|----------------------------------| | Coal | 248 | 0.12% | 219 | 7,765 | 7,985 | 10.34% | 8,233 | 2.96% | | Natural Gas | 86,136 | 42.97% | 62 | 8,859 | 8,921 | 11.55% | 95,057 | 34.23% | | Nuclear | 16,163 | 8.06% | 39 | 8,743 | 8,782 | 11.37% | 24,945 | 8.98% | | Oil | 36 | 0.02% | 0 | 0 | 0 | 0.00% | 36 | 0.01% | | Other (Petroleum Coke/Waste Heat) | 411 | 0.20% | 0 | 11 | 11 | 0.01% | 422 | 0.15% | | Large Hydro | 33,145 | 16.53% | 6,387 | 1,071 | 7,458 | 9.66% | 40,603 | 14.62% | | Unspecified Sources of Power | 0 | 0.00% | 6,609 | 13,767 | 20,376 | 26.38% | 20,376 | 7.34% | | Renewables | 64,336 | 32.09% | 10,615 | 13,081 | 23,696 | 30.68% | 88,032 | 31.70% | | Biomass | 5,851 | 2.92% | 903 | 33 | 936 | 1.21% | 6,787 | 2.44% | | Geothermal | 10,943 | 5.46% | 99 | 2,218 | 2,318 | 3.00% | 13,260 | 4.77% | | Somall Hydro | 5,349 | 2.67% | 292 | 4 | 296 | 0.38% | 5,646 | 2.03% | | Solar | 28,513 | 14.22% | 282 | 5,295 | 5,577 | 7.22% | 34,090 | 12.28% | | Wind | 13,680 | 6.82% | 9,038 | 5,531 | 14,569 | 18.87% | 28,249 | 10.17% | | Total | 200,475 | 100.00% | 23,930 | 53,299 | 77,229 | 100.00% | 277,704 | 100.00% | ⁽¹⁾ Source: California Energy Commission. 2019 Total System electric Generation. https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2019-total-system-electric-generation Table 21 SCE 2019 Power Content Mix | Energy Resources | 2019 SCE Power Mix | |-------------------------------|--------------------| | Eligible Renewable | 35% | | Biomass & Biowaste | 1% | | Geothermal | 6% | | Eligible Hydroelectric | 1% | | Solar | 16% | | Wind | 12% | | Coal | 0% | | Large Hydroelectric | 8% | | Natural Gas | 16% | | Nuclear | 8% | | Other | 0% | | Unspecified Sources of power* | 33% | | Total | 100% | - (1) https://www.sce.com/sites/default/files/inline-files/SCE_2019PowerContentLabel.pdf - * Unspecified sources of power means electricity from transactions that are not traceable to specific generation sources. # Table 22 Project Construction Power Cost and Electricity Usage | Power Cost
(per 1,000 square foot of building per
month of construction) | Total Building Size
(1,000 Square Foot) | Construction
Duration
(months) | Total Project
Construction
Power Cost | |--|--|--------------------------------------|---| | \$2.32 | 120.600 | 29.5 | \$8,253.86 | # Notes: (1) Proposed project is 67 single-family dweling units, the estimated total default square footage given in CalEEMod of 120,600 square feet was used to estimate the total project construction cost. Table 23 Construction Equipment Fuel Consumption Estimates | Phase | Number
of Days | Offroad Equipment Type | Amount | Usage
Hours | Horse
Power | Load
Factor | HP hrs/day | Total Fuel
Consumption
(gal diesel fuel) ¹ | |-----------------------|-------------------|---------------------------|--------|----------------|----------------|----------------|------------|---| | | 64 | Excavator | 3 | 8 | 158 | 0.38 | 1441 | 4985 | | Cradina | 64 | Graders | 2 | 8 | 187 | 0.41 | 1,227 | 4,244 | | Grading | 64 | Rubber Tired Dozers | 2 | 8 | 247 | 0.4 | 1,581 | 5,469 | | | 64 | Tractors/Loaders/Backhoes | 2 | 8 | 97 | 0.37 | 574 | 1,987 | | | 502 | Cranes | 2 | 7 | 231 | 0.29 | 938 | 25,449 | | | 502 |
Forklifts | 4 | 8 | 89 | 0.2 | 570 | 15,456 | | Building Construction | 502 | Generator Sets | 2 | 8 | 84 | 0.74 | 995 | 26,988 | | | 502 | Tractors/Loaders/Backhoes | 4 | 7 | 97 | 0.37 | 1,005 | 27,269 | | | 502 | Welders | 2 | 8 | 46 | 0.45 | 331 | 8,987 | | | 66 | Pavers | 2 | 8 | 130 | 0.42 | 874 | 3,117 | | Paving | 66 | Paving Equipment | 2 | 8 | 132 | 0.36 | 760 | 2,712 | | | 66 | Rollers | 2 | 8 | 80 | 0.38 | 486 | 1,735 | | Architectural Coating | 75 | Air Compressors | 1 | 6 | 78 | 0.48 | 225 | 911 | | CONSTRUCTION FUEL | . DEMAND (ga | llons of diesel fuel) | | | | | | 129,308 | ⁽¹⁾ Using Carl Moyer Guidelines Table D-21 Fuel consumption rate factors (bhp-hr/gal) for engines less than 750 hp. (Source: https://www.arb.ca.gov/msprog/moyer/guidelines/2017gl/2017_gl_appendix_d.pdf) Table 24 Construction Worker Fuel Consumption Estimates | Phase | Number of Days | Worker
Trips/Day | Trip Length
(miles) | Vehicle Miles
Traveled | Average Vehicle
Fuel Economy
(mpg) | Estimated Fuel
Consumption
(gallons) | |-------------------------|----------------|---------------------|------------------------|---------------------------|--|--| | Grading | 64 | 28 | 14.7 | 26,342 | 31.82 | 828 | | Building Construction | 502 | 807 | 14.7 | 5,955,176 | 31.82 | 187,152 | | Paving | 66 | 15 | 14.7 | 14,553 | 31.82 | 457 | | Architectural Coating | 75 | 161 | 14.7 | 177,503 | 31.82 | 5,578 | | Total Construction Work | 194,016 | | | | | | ⁽¹⁾ Assumptions for the worker trip length and vehicle miles traveled are consistent with CalEEMod 2020.4.0 defaults. Table 25 Construction Vendor Fuel Consumption Estimates (MHD Trucks)¹ | Phase | Number of Days | Vendor
Trips/Day | Trip Length
(miles) | Vehicle Miles
Traveled | Average Vehicle
Fuel Economy
(mpg) | Estimated Fuel
Consumption
(gallons) | |--------------------------|----------------|---------------------|------------------------|---------------------------|--|--| | Grading | 64 | 0 | 6.9 | 0 | 9.58 | 0 | | Building Construction | 502 | 313 | 6.9 | 1,084,169 | 9.58 | 113,170 | | Paving | 66 | 0 | 6.9 | 0 | 9.58 | 0 | | Architectural Coating | 75 | 0 | 6.9 | 0 | 9.58 | 0 | | Total Construction Vendo | 113,170 | | | | | | ⁽¹⁾ Assumptions for the vendor trip length and vehicle miles traveled are consistent with CalEEMod 2020.4.0 defaults. Table 26 Construction Hauling Fuel Consumption Estimates (HHD Trucks)¹ | Phase | Number of Days | Total Hauling
Trips | Trip Length
(miles) | Vehicle Miles
Traveled | Average Vehicle
Fuel Economy
(mpg) | Estimated Fuel
Consumption
(gallons) | |---------------------------|----------------|------------------------|------------------------|---------------------------|--|--| | Grading | 64 | 0 | 20 | 0 | 7.14 | 0 | | Building Construction | 502 | 0 | 20 | 0 | 7.14 | 0 | | Paving | 66 | 0 | 20 | 0 | 7.14 | 0 | | Architectural Coating | 75 | 0 | 20 | 0 | 7.14 | 0 | | Total Construction Haulin | 0 | | | | | | ⁽¹⁾ Assumptions for the hauling trip length and vehicle miles traveled are consistent with CalEEMod 2020.4.0 defaults. Table 27 Estimated Vehicle Operations Fuel Consumption | Vehicle Type | Vehicle Mix | Number of
Vehicles | Average Trip (miles) ¹ | Daily VMT | Average Fuel
Economy
(mpg) | Total Gallons
per Day | Total Annual
Fuel
Consumption
(gallons) | |--------------------------------|--------------|-----------------------|-----------------------------------|-----------|----------------------------------|--------------------------|--| | Light Auto | Automobile | 343 | 14.7 | 5,042 | 33.59 | 150.11 | 54,789 | | Light Truck | Automobile | 36 | 14.7 | 529 | 28.54 | 18.54 | 6,768 | | Light Truck | Automobile | 109 | 14.7 | 1,602 | 27.37 | 58.54 | 21,368 | | Medium Truck | Automobile | 85 | 14.7 | 1,250 | 22.2 | 56.28 | 20,544 | | Light Heavy Truck | 2-Axle Truck | 16 | 14.7 | 235 | 14.37 | 16.37 | 5,974 | | Light Heavy Truck 10,000 lbs + | 2-Axle Truck | 4 | 14.7 | 59 | 14.75 | 3.99 | 1,455 | | Medium Heavy Truck | 3-Axle Truck | 8 | 8.7 | 70 | 9.92 | 7.02 | 2,561 | | Heavy Heavy Truck | 4-Axle Truck | 11 | 8.7 | 96 | 7.37 | 12.99 | 4,740 | | Total | | 632 | | 8,882 | 12.38 | 323.83 | | | Total Annual Fuel Consumption | | | | | | | 118,198 | #### Notes: ⁽¹⁾ Based on the size of the site and relative location, trips were assumed to be local rather than regional. ## Table 28 Project Annual Operational Energy Demand Summary | Natural Gas Demand | kBTU/year ¹ | |-----------------------|------------------------| | Single Family Housing | 1,895,220 | | Total | 1,895,220 | | Electricity Demand | kWh/year | |-----------------------|----------| | Single Family Housing | 533,632 | | Total | 533,632 | #### Notes: (1) Taken from the CalEEMod 2020.4.0 annual output (Appendix C of this report). ## 6. EMISSIONS REDUCTION MEASURES #### **CONSTRUCTION MEASURES** Adherence to SCAQMD Rule 403 is required and the project will be required to obtain and prepare a Fugitive Dust Control Plan. No construction mitigation is required. #### **OPERATIONAL MEASURES** Mitigation Measure 1. Residential dwelling units within 950 feet of the I-10 freeway shall be required to install high efficiency Minimum Efficiency Reporting Value (MERV) filters of MERV 13 or better as indicated by the American Society of Heating Refrigerating and Air Conditioning Engineers ASHRAE) Standard 52.2, in the intake of ventilation systems. Heating, air conditioning and ventilation (HVAC) systems shall be installed with a fan unit power designed to force air through the MERV 13 filter. To ensure long-term maintenance and replacement of the MERV 13 filters, the following shall occur: i) The developer shall provide notification to all affected future residents of the project site of the potential health risk from the I-10 freeway for all affected dwelling units, ii) the property owner shall inform residents of increased risk of exposure to diesel particulates from the freeway when windows are open and when outside. ## 7. REFERENCES #### California Air Pollution Control Officers Association 2009 Health Risk Assessments for Proposed Land Use Projects #### California Air Resources Board 2008 Resolution 08-43 - 2008 Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act - 2008 ARB Recommended Interim Risk Management Policy for Inhalation-Based Residential Cancer Risk Frequently Asked Questions - 2008 Climate Change Scoping Plan, a framework for change. - 2011 Supplement to the AB 32 Scoping Plan Functional Equivalent Document - 2013 Almanac of Emissions and Air Quality. Source: https://www.arb.ca.gov/aqd/almanac/almanac13/almanac13.htm - 2014 First Update to the Climate Change Scoping Plan, Building on the Framework Pursuant to AB32, the California Global Warming Solutions Act of 2006. May. - 2017 California's 2017 Climate Change Scoping Plan. November. - 2021 Historical Air Quality, Top 4 Summary #### City of Redlands - 2017 City of Redlands General Plan 2035. December 5. - 2017 City of Redlands Climate Action Plan. December 5. #### Ganddini Group, Inc. 2021 Terracina at Redlands (TTM 20320) Traffic Impact Analysis. July 28. #### Governor's Office of Planning and Research - 2008 CEQA and Climate: Addressing Climate Change Through California Environmental Quality Act (CEQA) Review - 2018 CEQA Guideline Sections to be Added or Amended #### Intergovernmental Panel on Climate Change (IPCC). 2014 IPCC Fifth Assessment Report, Climate Change 2014: Synthesis Report #### Office of Environmental Health Hazard Assessment 2015 Air Toxics Hot Spots Program Risk Assessment Guidelines #### **South Coast Air Quality Management District** | 1993 | CEQA Air Quality Handbook | |------|--| | 2003 | Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis | | 2005 | Rule 403 Fugitive Dust | | 2007 | 2007 Air Quality Management Plan | | 2008 | Final Localized Significance Threshold Methodology, Revised | | 2012 | Final 2012 Air Quality Management Plan | | 2016 | 2016 Air Quality Management Plan | | 2021 | MATES-V Multiple Air Toxics Exposure Study in the South Coast AQMD Final Report. August. | | 2021 | Historical Data by Year. 2013, 2014 and 2015 Air Quality Data Tables.
Source: http://www.aqmd.gov/home/library/air-quality-data-studies/historical-data-by-year | #### **Southern California Association of Governments** 2016 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy #### **U.S. Environmental Protection Agency (EPA)** 2017 Understanding Global Warming Potentials (Source: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials) #### **U.S. Geological Survey** 2011 Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Other Natural Occurrences of Asbestos in California ## **APPENDICES** Appendix A Glossary Appendix B CalEEMod Model Daily Emissions Printouts Appendix C AERMOD Model Printouts Appendix D CalEEMod Model Annual Emissions Printouts and EMFAC Data **APPENDIX A** **G**LOSSARY AQMP Air Quality Management Plan BACT Best Available Control Technologies CAAQS California Ambient Air Quality Standards California Environmental Protection Agency CARB California Air Resources Board CCAA California Clean Air Act CCAR California Climate Action Registry CEQA California Environmental Quality Act CFCs Chlorofluorocarbons CH₄ Methane $\begin{array}{ccc} \mathsf{CNG} & & \mathsf{Compressed} \
\mathsf{natural} \ \mathsf{gas} \\ \mathsf{CO} & & \mathsf{Carbon} \ \mathsf{monoxide} \\ \mathsf{CO}_2 & & \mathsf{Carbon} \ \mathsf{dioxide} \end{array}$ CO₂e Carbon dioxide equivalent DPM Diesel particulate matter EPA U.S. Environmental Protection Agency GHG Greenhouse gas GWP Global warming potential HIDPM Hazard Index Diesel Particulate Matter HFCs Hydrofluorocarbons IPCC International Panel on Climate Change LCFS Low Carbon Fuel Standard Localized Significant Thresholds MTCO₂e Metric tons of carbon dioxide equivalent MMTCO₂e Million metric tons of carbon dioxide equivalent MPO Metropolitan Planning Organization NAAQS National Ambient Air Quality Standards $\begin{array}{ccc} NOx & Nitrogen Oxides \\ NO_2 & Nitrogen dioxide \\ N_2O & Nitrous oxide \\ O_3 & Ozone \end{array}$ OPR Governor's Office of Planning and Research PFCs Perfluorocarbons PM Particle matter PM10 Particles that are less than 10 micrometers in diameter PM2.5 Particles that are less than 2.5 micrometers in diameter PMI Point of maximum impact PPM Parts per million PPB Parts per billion RTIP Regional Transportation Improvement Plan RTP Regional Transportation Plan SANBAG San Bernardino Association of Governments SCAB South Coast Air Basin SCAG Southern California Association of Governments SCAQMD South Coast Air Quality Management District SSAB Salton Sea Air Basin SF6 Sulfur hexafluoride SIP State Implementation Plan SOx Sulfur Oxides TAC Toxic air contaminants VOC Volatile organic compounds # APPENDIX B CALEEMOD MODEL DAILY EMISSIONS PRINTOUTS CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 27 Date: 7/26/2021 2:56 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 19208 Terracina at Redlands #### San Bernardino-South Coast County, Summer #### 1.0 Project Characteristics #### 1.1 Land Usage Urbanization | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |----------------------------|-------|---------------|-------------|--------------------|------------| | Other Asphalt Surfaces | 14.61 | Acre | 14.61 | 636,411.60 | 0 | | Other Non-Asphalt Surfaces | 28.20 | Acre | 28.20 | 1,228,392.00 | 0 | | Single Family Housing | 67.00 | Dwelling Unit | 21.75 | 120,600.00 | 192 | Precipitation Freq (Days) 32 #### 1.2 Other Project Characteristics Urban | | | . , | | | • | |----------------------------|-----------------------|----------------------------|-------|----------------------------|-------| | Climate Zone | 10 | | | Operational Year | 2025 | | Utility Company | Southern California E | Edison | | | | | CO2 Intensity
(lb/MWhr) | 390.98 | CH4 Intensity
(lb/MWhr) | 0.033 | N2O Intensity
(lb/MWhr) | 0.004 | 2.2 Wind Speed (m/s) #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - 64.56 gross ac w/ 67 SFD, 28.2 ac open space, & remainder (~14.61 ac) paving of on-site roadways. Construction Phase - Consistent w/ TIA, assumed one phase. Per phasing provided, grading ~2-3 months (entire site), building construction ~26 months, paving ~3 months. CalEEmod defaut used for coatings. Off-road Equipment - CalEEMod default construction timing for building construction reduced by ~55%; therefore, ~55% more equipment added to CalEEMod defaults. Off-road Equipment - CalEEMod default construction timing for grading reduced by ~42%; therefore, ~42% more equipment added to CalEEMod defaults. Off-road Equipment - Grading - Site anticipated to balance. Vehicle Trips - TIA, 9.44 trips/DU/day. Woodstoves - SCAQMD Rule 445 prohibits the installation of wood burning devices in new developments. #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied Sequestration - Landscape plans, ~505 new trees to be planted. Construction Off-road Equipment Mitigation - Mobile Land Use Mitigation - 67 DU/64.56 ac = ~1 DU/ac. Site is ~2.57 miles SW downtown Redlands. Sidewalks on/off-site. Water Mitigation - Per CalGreen Standards, 20% indoor water reduction. Water-efficient irrigation systems. Waste Mitigation - AB 341 requires each juridiction in CA to divert at least 75% of their waste away from landfills by 2020. Fleet Mix - Energy Use - | Table Name | Column Name | Default Value | New Value | |------------------------|------------------------------|---------------|-----------| | tblConstDustMitigation | WaterUnpavedRoadVehicleSpeed | 0 | 15 | | tblConstructionPhase | NumDays | 1,110.00 | 502.00 | | tblConstructionPhase | NumDays | 110.00 | 64.00 | | tblConstructionPhase | NumDays | 75.00 | 66.00 | | tblFireplaces | NumberGas | 56.95 | 60.30 | | tblFireplaces | NumberWood | 3.35 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 2.00 | 3.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 4.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 4.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblSequestration | NumberOfNewTrees | 0.00 | 505.00 | | tblVehicleTrips | ST_TR | 9.54 | 9.44 | | tblVehicleTrips | SU_TR | 8.55 | 9.44 | | tblWoodstoves | NumberCatalytic | 3.35 | 0.00 | | tblWoodstoves | NumberNoncatalytic | 3.35 | 0.00 | CalEEMod Version: CalEEMod.2020.4.0 Page 3 of 27 Date: 7/26/2021 2:56 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 2.0 Emissions Summary CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 2.1 Overall Construction (Maximum Daily Emission) #### **Unmitigated Construction** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | | |---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------|--| | Year | lb/day | | | | | | | | | | lb/day | | | | | | | | 2023 | 6.1975 | 47.9105 | 61.3332 | 0.1820 | 16.5991 | 1.9735 | 18.5727 | 7.1615 | 1.8156 | 8.9771 | 0.0000 | 18,538.50
35 | 18,538.50
35 | 2.5875 | 1.0810 | 18,893.20
70 | | | 2024 | 5.7922 | 35.3528 | 59.0131 | 0.1788 | 11.0257 | 1.1323 | 12.1580 | 2.9697 | 1.0700 | 4.0397 | 0.0000 | 18,279.51
25 | 18,279.51
25 | 1.2725 | 1.0545 | 18,625.55
68 | | | 2025 | 19.2374 | 33.4850 | 56.7662 | 0.1751 | 11.0256 | 0.9947 | 12.0203 | 2.9697 | 0.9399 | 3.9095 | 0.0000 | 17,966.15
79 | 17,966.15
79 | 1.2432 | 1.0246 | 18,302.55
41 | | | Maximum | 19.2374 | 47.9105 | 61.3332 | 0.1820 | 16.5991 | 1.9735 | 18.5727 | 7.1615 | 1.8156 | 8.9771 | 0.0000 | 18,538.50
35 | 18,538.50
35 | 2.5875 | 1.0810 | 18,893.20
70 | | #### **Mitigated Construction** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Year | lb/day | | | | | | | | | | lb/day | | | | | | | 2023 | 6.1975 | 47.9105 | 61.3332 | 0.1820 | 11.0257 | 1.9735 | 12.3009 | 2.9697 | 1.8156 | 4.6593 | 0.0000 | 18,538.50
35 | 18,538.50
35 | 2.5875 | 1.0810 | 18,893.20
70 | | 2024 | 5.7922 | 35.3528 | 59.0131 | 0.1788 | 11.0257 | 1.1323 | 12.1580 | 2.9697 | 1.0700 | 4.0397 | 0.0000 | 18,279.51
25 | 18,279.51
25 | 1.2725 | 1.0545 | 18,625.55
68 | | 2025 | 19.2374 | 33.4850 | 56.7662 | 0.1751 | 11.0256 | 0.9947 | 12.0203 | 2.9697 | 0.9399 | 3.9095 | 0.0000 | 17,966.15
79 | 17,966.15
79 | 1.2432 | 1.0246 | 18,302.55
41 | | Maximum | 19.2374 | 47.9105 | 61.3332 | 0.1820 | 11.0257 | 1.9735 | 12.3009 | 2.9697 | 1.8156 | 4.6593 | 0.0000 | 18,538.50
35 | 18,538.50
35 | 2.5875 | 1.0810 | 18,893.20
70 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent
Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 14.42 | 0.00 | 14.67 | 32.00 | 0.00 | 25.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 2.2 Overall Operational #### **Unmitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|-----------------|------------------|-----------------|---------------
-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | lb/day | | | | | | | | | | lb/day | | | | | | | Area | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | | Energy | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Mobile | 1.9976 | 2.5260 | 19.4505 | 0.0440 | 4.5634 | 0.0331 | 4.5965 | 1.2170 | 0.0309 | 1.2480 | | 4,592.316
6 | 4,592.316
6 | 0.2297 | 0.2040 | 4,658.836
3 | | Total | 5.7341 | 4.0684 | 25.6065 | 0.0537 | 4.5634 | 0.1833 | 4.7467 | 1.2170 | 0.1812 | 1.3982 | 0.0000 | 6,490.090
4 | 6,490.090
4 | 0.2755 | 0.2386 | 6,568.067
3 | #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | lb/day | | | | | | | | | | lb/day | | | | | | | Area | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | | Energy | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Mobile | 1.8911 | 2.2772 | 17.3978 | 0.0387 | 3.9984 | 0.0293 | 4.0277 | 1.0664 | 0.0274 | 1.0937 | | 4,037.427
5 | 4,037.427
5 | 0.2091 | 0.1834 | 4,097.297
8 | | Total | 5.6276 | 3.8196 | 23.5538 | 0.0484 | 3.9984 | 0.1795 | 4.1779 | 1.0664 | 0.1776 | 1.2440 | 0.0000 | 5,935.201
3 | 5,935.201
3 | 0.2548 | 0.2180 | 6,006.528
8 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent
Reduction | 1.86 | 6.11 | 8.02 | 9.89 | 12.38 | 2.07 | 11.98 | 12.38 | 1.96 | 11.03 | 0.00 | 8.55 | 8.55 | 7.49 | 8.63 | 8.55 | #### 3.0 Construction Detail #### **Construction Phase** | Phase
Number | Phase Name | Phase Type | Start Date | End Date | Num Days
Week | Num Days | Phase Description | |-----------------|-----------------------|-----------------------|------------|-----------|------------------|----------|-------------------| | 1 | Grading | Grading | 2/1/2023 | 5/1/2023 | 5 | 64 | | | 2 | Building Construction | Building Construction | 5/2/2023 | 4/2/2025 | 5 | 502 | | | 3 | Paving | Paving | 4/3/2025 | 7/3/2025 | 5 | 66 | | | 4 | Architectural Coating | Architectural Coating | 4/3/2025 | 7/16/2025 | 5 | 75 | | Acres of Grading (Site Preparation Phase): 0 Acres of Grading (Grading Phase): 256 Acres of Paving: 42.81 Residential Indoor: 244,215; Residential Outdoor: 81,405; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 111,888 (Architectural Coating - sqft) #### **OffRoad Equipment** | Phase Name | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor | |-----------------------|---------------------------|--------|-------------|-------------|-------------| | Grading | Excavators | 3 | 8.00 | 158 | 0.38 | | Grading | Graders | 2 | 8.00 | 187 | 0.41 | | Grading | Rubber Tired Dozers | 2 | 8.00 | 247 | 0.40 | | Grading | Scrapers | 2 | 8.00 | 367 | 0.48 | | Grading | Tractors/Loaders/Backhoes | 2 | 8.00 | 97 | 0.37 | | Building Construction | Cranes | 2 | 7.00 | 231 | 0.29 | | Building Construction | Forklifts | 4 | 8.00 | 89 | 0.20 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Building Construction | Generator Sets | 2 | 8.00 | 84 | 0.74 | |-----------------------|---------------------------|---|------|-----|------| | Building Construction | Tractors/Loaders/Backhoes | 4 | 7.00 | 97 | 0.37 | | Building Construction | Welders | 2 | 8.00 | 46 | 0.45 | | Paving | Pavers | 2 | 8.00 | 130 | 0.42 | | Paving | Paving Equipment | 2 | 8.00 | 132 | 0.36 | | Paving | Rollers | 2 | 8.00 | 80 | 0.38 | | Architectural Coating | Air Compressors | 1 | 6.00 | 78 | 0.48 | #### **Trips and VMT** | Phase Name | Offroad Equipment
Count | Worker Trip
Number | Vendor Trip
Number | Hauling Trip
Number | Worker Trip
Length | Vendor Trip
Length | Hauling Trip
Length | Worker Vehicle
Class | Vendor
Vehicle Class | Hauling
Vehicle Class | |-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------| | Grading | 11 | 28.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Building Construction | 14 | 807.00 | 313.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Paving | 6 | 15.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Architectural Coating | 1 | 161.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | #### **3.1 Mitigation Measures Construction** Water Exposed Area Reduce Vehicle Speed on Unpaved Roads CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.2 Grading - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|---------------------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Fugitive Dust | | | | | 16.2862 | 0.0000 | 16.2862 | 7.0785 | 0.0000 | 7.0785 | | | 0.0000 | | | 0.0000 | | Off-Road | 4.5785 | 47.8444 | 36.1079 | 0.0824 |
 | 1.9720 | 1.9720 | | 1.8142 | 1.8142 | | 7,979.439
2 | 7,979.439
2 | 2.5807 |

 | 8,043.957
0 | | Total | 4.5785 | 47.8444 | 36.1079 | 0.0824 | 16.2862 | 1.9720 | 18.2581 | 7.0785 | 1.8142 | 8.8927 | | 7,979.439
2 | 7,979.439
2 | 2.5807 | | 8,043.957
0 | ## **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.1095 | 0.0661 | 1.0559 | 2.8000e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 286.0672 | 286.0672 | 6.8300e-
003 | 6.7300e-
003 | 288.2426 | | Total | 0.1095 | 0.0661 | 1.0559 | 2.8000e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 286.0672 | 286.0672 | 6.8300e-
003 | 6.7300e-
003 | 288.2426 | CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.2 Grading - 2023 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | day | | | | Fugitive Dust | | | | | 6.3516 | 0.0000 | 6.3516 | 2.7606 | 0.0000 | 2.7606 | | | 0.0000 | | | 0.0000 | | Off-Road | 4.5785 | 47.8444 | 36.1079 | 0.0824 | | 1.9720 | 1.9720 | 1
1
1
1 | 1.8142 | 1.8142 | 0.0000 | 7,979.439
2 | 7,979.439
2 | 2.5807 | | 8,043.957
0 | | Total | 4.5785 | 47.8444 | 36.1079 | 0.0824 | 6.3516 | 1.9720 | 8.3236 | 2.7606 | 1.8142 | 4.5748 | 0.0000 | 7,979.439
2 | 7,979.439
2 | 2.5807 | | 8,043.957
0 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------
------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.1095 | 0.0661 | 1.0559 | 2.8000e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 286.0672 | 286.0672 | 6.8300e-
003 | 6.7300e-
003 | 288.2426 | | Total | 0.1095 | 0.0661 | 1.0559 | 2.8000e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 286.0672 | 286.0672 | 6.8300e-
003 | 6.7300e-
003 | 288.2426 | CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2023 **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | day | | | | | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | 1
1
1 | 1.0857 | 1.0857 | | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | | Total | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | | 1.0857 | 1.0857 | | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | ## **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3664 | 10.9787 | 4.6068 | 0.0560 | 2.0053 | 0.0825 | 2.0878 | 0.5774 | 0.0789 | 0.6564 | | 6,007.039
1 | 6,007.039
1 | 0.1570 | 0.8871 | 6,275.312
4 | | Worker | 3.1555 | 1.9041 | 30.4328 | 0.0806 | 9.0204 | 0.0446 | 9.0649 | 2.3922 | 0.0410 | 2.4333 | | 8,244.865
1 | 8,244.865
1 | 0.1969 | 0.1939 | 8,307.564
0 | | Total | 3.5219 | 12.8827 | 35.0396 | 0.1366 | 11.0257 | 0.1271 | 11.1527 | 2.9697 | 0.1199 | 3.0896 | | 14,251.90
42 | 14,251.90
42 | 0.3539 | 1.0810 | 14,582.87
64 | CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2023 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | day | | | | | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | | 1.0857 | 1.0857 | 0.0000 | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | | Total | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | | 1.0857 | 1.0857 | 0.0000 | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3664 | 10.9787 | 4.6068 | 0.0560 | 2.0053 | 0.0825 | 2.0878 | 0.5774 | 0.0789 | 0.6564 | | 6,007.039
1 | 6,007.039
1 | 0.1570 | 0.8871 | 6,275.312
4 | | Worker | 3.1555 | 1.9041 | 30.4328 | 0.0806 | 9.0204 | 0.0446 | 9.0649 | 2.3922 | 0.0410 | 2.4333 | | 8,244.865
1 | 8,244.865
1 | 0.1969 | 0.1939 | 8,307.564
0 | | Total | 3.5219 | 12.8827 | 35.0396 | 0.1366 | 11.0257 | 0.1271 | 11.1527 | 2.9697 | 0.1199 | 3.0896 | | 14,251.90
42 | 14,251.90
42 | 0.3539 | 1.0810 | 14,582.87
64 | CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2024 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Off-Road | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | | 4,287.244
4 | 4,287.244
4 | 0.9422 | | 4,310.798
2 | | Total | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | | 4,287.244
4 | 4,287.244
4 | 0.9422 | | 4,310.798
2 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3579 | 11.0763 | 4.5302 | 0.0552 | 2.0053 | 0.0812 | 2.0865 | 0.5774 | 0.0777 | 0.6551 | | 5,924.287
9 | 5,924.287
9 | 0.1522 | 0.8747 | 6,188.766
4 | | Worker | 2.9314 | 1.6904 | 28.3402 | 0.0782 | 9.0204 | 0.0428 | 9.0632 | 2.3922 | 0.0394 | 2.4317 | | 8,067.980
3 | 8,067.980
3 | 0.1782 | 0.1797 | 8,125.992
2 | | Total | 3.2893 | 12.7667 | 32.8704 | 0.1335 | 11.0257 | 0.1241 | 11.1497 | 2.9697 | 0.1171 | 3.0868 | | 13,992.26
82 | 13,992.26
82 | 0.3304 | 1.0545 | 14,314.75
87 | CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2024 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Off-Road | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | 0.0000 | 4,287.244
3 | 4,287.244
3 | 0.9422 | | 4,310.798
2 | | Total | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | 0.0000 | 4,287.244
3 | 4,287.244
3 | 0.9422 | | 4,310.798
2 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3579 | 11.0763 | 4.5302 | 0.0552 | 2.0053 | 0.0812 | 2.0865 | 0.5774 | 0.0777 | 0.6551 | | 5,924.287
9 | 5,924.287
9 | 0.1522 |
0.8747 | 6,188.766
4 | | Worker | 2.9314 | 1.6904 | 28.3402 | 0.0782 | 9.0204 | 0.0428 | 9.0632 | 2.3922 | 0.0394 | 2.4317 | | 8,067.980
3 | 8,067.980
3 | 0.1782 | 0.1797 | 8,125.992
2 | | Total | 3.2893 | 12.7667 | 32.8704 | 0.1335 | 11.0257 | 0.1241 | 11.1497 | 2.9697 | 0.1171 | 3.0868 | | 13,992.26
82 | 13,992.26
82 | 0.3304 | 1.0545 | 14,314.75
87 | CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2025 **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Off-Road | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 |
 | 0.8248 | 0.8248 | | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | | Total | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | | 0.8248 | 0.8248 | | 4,288.289
3 | 4,288.289 | 0.9352 | | 4,311.668
9 | ## **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3510 | 11.0102 | 4.4591 | 0.0542 | 2.0053 | 0.0811 | 2.0864 | 0.5774 | 0.0776 | 0.6550 | | 5,809.111
2 | 5,809.111
2 | 0.1479 | 0.8573 | 6,068.269
9 | | Worker | 2.7286 | 1.5089 | 26.3072 | 0.0755 | 9.0204 | 0.0407 | 9.0611 | 2.3922 | 0.0375 | 2.4297 | | 7,868.757
4 | 7,868.757
4 | 0.1602 | 0.1673 | 7,922.615
2 | | Total | 3.0797 | 12.5191 | 30.7663 | 0.1297 | 11.0256 | 0.1219 | 11.1475 | 2.9697 | 0.1151 | 3.0848 | | 13,677.86
86 | 13,677.86
86 | 0.3080 | 1.0246 | 13,990.88
51 | CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2025 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Off-Road | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | | 0.8248 | 0.8248 | 0.0000 | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | | Total | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | | 0.8248 | 0.8248 | 0.0000 | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3510 | 11.0102 | 4.4591 | 0.0542 | 2.0053 | 0.0811 | 2.0864 | 0.5774 | 0.0776 | 0.6550 | | 5,809.111
2 | 5,809.111
2 | 0.1479 | 0.8573 | 6,068.269
9 | | Worker | 2.7286 | 1.5089 | 26.3072 | 0.0755 | 9.0204 | 0.0407 | 9.0611 | 2.3922 | 0.0375 | 2.4297 | | 7,868.757
4 | 7,868.757
4 | 0.1602 | 0.1673 | 7,922.615
2 | | Total | 3.0797 | 12.5191 | 30.7663 | 0.1297 | 11.0256 | 0.1219 | 11.1475 | 2.9697 | 0.1151 | 3.0848 | | 13,677.86
86 | 13,677.86
86 | 0.3080 | 1.0246 | 13,990.88
51 | CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.4 Paving - 2025 Unmitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Off-Road | 0.9152 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | | Paving | 0.5800 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Total | 1.4951 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0507 | 0.0281 | 0.4890 | 1.4000e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 146.2594 | 146.2594 | 2.9800e-
003 | 3.1100e-
003 | 147.2605 | | Total | 0.0507 | 0.0281 | 0.4890 | 1.4000e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 146.2594 | 146.2594 | 2.9800e-
003 | 3.1100e-
003 | 147.2605 | CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.4 Paving - 2025 <u>Mitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Off-Road | 0.9152 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | 0.0000 | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | | Paving | 0.5800 |
 | 1 | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Total | 1.4951 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | 0.0000 | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0507 | 0.0281 | 0.4890 | 1.4000e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 146.2594 | 146.2594 | 2.9800e-
003 | 3.1100e-
003 | 147.2605 | | Total | 0.0507 | 0.0281 | 0.4890 | 1.4000e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 146.2594 | 146.2594 | 2.9800e-
003 | 3.1100e-
003 | 147.2605
| CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.5 Architectural Coating - 2025 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/c | day | | | | Archit. Coating | 16.9763 | | i
i | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | | 0.1709 | 1.1455 | 1.8091 | 2.9700e-
003 | | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | | 281.4481 | 281.4481 | 0.0154 |

 | 281.8319 | | Total | 17.1472 | 1.1455 | 1.8091 | 2.9700e-
003 | | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.5444 | 0.3010 | 5.2484 | 0.0151 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,569.851
2 | 1,569.851
2 | 0.0320 | 0.0334 | 1,580.596
1 | | Total | 0.5444 | 0.3010 | 5.2484 | 0.0151 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,569.851
2 | 1,569.851
2 | 0.0320 | 0.0334 | 1,580.596
1 | CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.5 Architectural Coating - 2025 Mitigated Construction On-Site | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Archit. Coating | 16.9763 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Off-Road | 0.1709 | 1.1455 | 1.8091 | 2.9700e-
003 |
 | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | 0.0000 | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | | Total | 17.1472 | 1.1455 | 1.8091 | 2.9700e-
003 | | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | 0.0000 | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.5444 | 0.3010 | 5.2484 | 0.0151 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,569.851
2 | 1,569.851
2 | 0.0320 | 0.0334 | 1,580.596
1 | | Total | 0.5444 | 0.3010 | 5.2484 | 0.0151 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,569.851
2 | 1,569.851
2 | 0.0320 | 0.0334 | 1,580.596
1 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 4.0 Operational Detail - Mobile #### **4.1 Mitigation Measures Mobile** **Increase Density** Improve Destination Accessibility Improve Pedestrian Network | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | day | | | | Mitigated | 1.8911 | 2.2772 | 17.3978 | 0.0387 | 3.9984 | 0.0293 | 4.0277 | 1.0664 | 0.0274 | 1.0937 | | 4,037.427
5 | 4,037.427
5 | 0.2091 | 0.1834 | 4,097.297
8 | | Unmitigated | 1.9976 | 2.5260 | 19.4505 | 0.0440 | 4.5634 | 0.0331 | 4.5965 | 1.2170 | 0.0309 | 1.2480 | | 4,592.316
6 | 4,592.316
6 | 0.2297 | 0.2040 | 4,658.836
3 | #### **4.2 Trip Summary Information** | | Avei | age Daily Trip Ra | ate | Unmitigated | Mitigated | |----------------------------|---------|-------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | | Other Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Single Family Housing | 632.48 | 632.48 | 632.48 | 2,161,280 | 1,893,686 | | Total | 632.48 | 632.48 | 632.48 | 2,161,280 | 1,893,686 | ## 4.3 Trip Type Information CalEEMod Version: CalEEMod.2020.4.0 Page 22 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | | Miles | | | Trip % | | | Trip Purpos | e % | |----------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | Other Asphalt Surfaces | 16.60 | 8.40 | 6.90 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Other Non-Asphalt Surfaces | 16.60 | 8.40 | 6.90 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Single Family Housing | 14.70 | 5.90 | 8.70 | 40.20 | 19.20 | 40.60 | 86 | 11 | 3 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Other Asphalt Surfaces | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | | Other Non-Asphalt Surfaces | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | | Single Family Housing | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | ## 5.0 Energy Detail Historical Energy Use: N ## **5.1 Mitigation Measures Energy** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | NaturalGas
Mitigated | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | NaturalGas
Unmitigated | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | i
i | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## **5.2 Energy by Land Use - NaturalGas** #### **Unmitigated** | | NaturalGa
s Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Land Use | kBTU/yr | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000
 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 5192.4 | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Total | | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## **5.2 Energy by Land Use - NaturalGas** #### **Mitigated** | | NaturalGa
s Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Land Use | kBTU/yr | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 5.1924 | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Total | | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | #### 6.0 Area Detail ## **6.1 Mitigation Measures Area** CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 27 Date: 7/26/2021 2:56 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Mitigated | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | | Unmitigated | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | ## 6.2 Area by SubCategory #### **Unmitigated** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|----------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|-----------------|--------|----------------| | SubCategory | y lb/day | | | | | | | | | | | lb/d | day | | | | | Architectural
Coating | 0.3488 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | i
i
i | 0.0000 | | | 0.0000 | | Consumer
Products | 3.0484 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | |
 | 0.0000 | | | 0.0000 | | Hearth | 0.1171 | 1.0003 | 0.4257 | 6.3800e-
003 | | 0.0809 | 0.0809 |
 | 0.0809 | 0.0809 | 0.0000 | 1,276.941
2 | 1,276.941
2 | 0.0245 | 0.0234 | 1,284.529
4 | | Landscaping | 0.1662 | 0.0637 | 5.5267 | 2.9000e-
004 | | 0.0307 | 0.0307 | i
i | 0.0307 | 0.0307 | | 9.9624 | 9.9624 | 9.5600e-
003 | | 10.2013 | | Total | 3.6805 | 1.0639 | 5.9524 | 6.6700e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 6.2 Area by SubCategory #### **Mitigated** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|------------|--------|--------|-----------------|------------------|-----------------|---------------|---------------------|------------------|----------------|----------|----------------|----------------|-----------------|--------|----------------| | SubCategory | ory lb/day | | | | | | | | | | lb/d | day | | | | | | Architectural
Coating | 0.3488 | | | | | 0.0000 | 0.0000 |
 | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Consumer
Products | 3.0484 | | | |
 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Hearth | 0.1171 | 1.0003 | 0.4257 | 6.3800e-
003 |
 | 0.0809 | 0.0809 |

 | 0.0809 | 0.0809 | 0.0000 | 1,276.941
2 | 1,276.941
2 | 0.0245 | 0.0234 | 1,284.529
4 | | Landscaping | 0.1662 | 0.0637 | 5.5267 | 2.9000e-
004 |
 | 0.0307 | 0.0307 |

 | 0.0307 | 0.0307 | | 9.9624 | 9.9624 | 9.5600e-
003 | | 10.2013 | | Total | 3.6805 | 1.0639 | 5.9524 | 6.6700e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | #### 7.0 Water Detail ## 7.1 Mitigation Measures Water Apply Water Conservation Strategy Use Water Efficient Irrigation System CalEEMod Version: CalEEMod.2020.4.0 Page 27 of 27 Date: 7/26/2021 2:56 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Summer #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 8.0 Waste Detail #### 8.1 Mitigation Measures Waste Institute Recycling and Composting Services #### 9.0 Operational Offroad | Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type | |----------------|--------|-----------|-----------|-------------|-------------|-----------| ## **10.0 Stationary Equipment** #### **Fire Pumps and Emergency Generators** | Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type | |----------------|--------|-----------|------------|-------------|-------------|-----------| | | | | | | | | #### **Boilers** | Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type | |----------------|--------|----------------|-----------------|---------------|-----------| #### **User Defined Equipment** | Equipment Type | Number | |----------------|--------| ## 11.0 Vegetation CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 27 Date: 7/26/2021 2:57 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 19208 Terracina at Redlands #### San Bernardino-South Coast County, Winter #### 1.0 Project Characteristics #### 1.1 Land Usage Urbanization | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |----------------------------|-------|---------------|-------------|--------------------|------------| | Other Asphalt Surfaces | 14.61 | Acre | 14.61 | 636,411.60 | 0 | | Other Non-Asphalt Surfaces | 28.20 | Acre | 28.20 | 1,228,392.00 | 0 | | Single Family Housing | 67.00 | Dwelling Unit | 21.75 | 120,600.00 | 192 | Precipitation Freq (Days) 32 #### 1.2 Other Project Characteristics Urban | | | . , , | | | • | |----------------------------|---------------------|----------------------------|-------|----------------------------|-------| | Climate Zone | 10 | | | Operational Year | 2025 | | Utility Company | Southern California | Edison | | | | | CO2 Intensity
(lb/MWhr) | 390.98 | CH4 Intensity
(lb/MWhr) | 0.033 | N2O Intensity
(lb/MWhr) | 0.004 | 2.2 Wind Speed (m/s) #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - 64.56 gross ac w/ 67 SFD, 28.2 ac open space, & remainder (~14.61 ac) paving of on-site roadways. Construction Phase - Consistent w/ TIA, assumed one phase. Per phasing provided, grading ~2-3 months (entire site), building construction ~26 months, paving ~3 months. CalEEmod defautl used for coatings. Off-road Equipment - CalEEMod default construction timing for building construction reduced by ~55%; therefore, ~55% more equipment added to CalEEMod defaults. Off-road Equipment - CalEEMod default construction timing for grading reduced by ~42%; therefore, ~42% more equipment added to CalEEMod defaults. Off-road Equipment - Grading - Site anticipated to balance. Vehicle Trips - TIA, 9.44 trips/DU/day. Woodstoves - SCAQMD Rule 445 prohibits the installation of wood burning devices in new developments. #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied Sequestration - Landscape plans, ~505 new trees to be planted. Construction Off-road Equipment Mitigation - Mobile Land Use Mitigation - 67 DU/64.56 ac = ~1 DU/ac. Site is ~2.57 miles SW downtown Redlands. Sidewalks on/off-site. Water Mitigation - Per CalGreen Standards, 20% indoor water reduction. Water-efficient irrigation systems. Waste Mitigation - AB 341 requires each juridiction in CA to divert at least 75% of their waste away from landfills by 2020. Fleet Mix - Energy Use - | Table Name | Column Name | Default Value | New Value |
------------------------|------------------------------|---------------|-----------| | tblConstDustMitigation | WaterUnpavedRoadVehicleSpeed | 0 | 15 | | tblConstructionPhase | NumDays | 1,110.00 | 502.00 | | tblConstructionPhase | NumDays | 110.00 | 64.00 | | tblConstructionPhase | NumDays | 75.00 | 66.00 | | tblFireplaces | NumberGas | 56.95 | 60.30 | | tblFireplaces | NumberWood | 3.35 | 0.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 2.00 | 3.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 4.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 4.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblSequestration | NumberOfNewTrees | 0.00 | 505.00 | | tblVehicleTrips | ST_TR | 9.54 | 9.44 | | tblVehicleTrips | SU_TR | 8.55 | 9.44 | | tblWoodstoves | NumberCatalytic | 3.35 | 0.00 | | tblWoodstoves | NumberNoncatalytic | 3.35 | ; 0.00 | CalEEMod Version: CalEEMod.2020.4.0 Page 3 of 27 Date: 7/26/2021 2:57 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 2.0 Emissions Summary CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 2.1 Overall Construction (Maximum Daily Emission) #### **Unmitigated Construction** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Year | | | | | lb/d | day | | | | | | | lb/d | day | | | | 2023 | 6.0561 | 47.9139 | 56.0903 | 0.1745 | 16.5991 | 1.9735 | 18.5727 | 7.1615 | 1.8156 | 8.9771 | 0.0000 | 17,777.84
43 | 17,777.84
43 | 2.5876 | 1.0899 | 18,135.20
11 | | 2024 | 5.6659 | 36.0607 | 54.1654 | 0.1716 | 11.0257 | 1.1326 | 12.1583 | 2.9697 | 1.0703 | 4.0400 | 0.0000 | 17,536.98
98 | 17,536.98
98 | 1.2719 | 1.0629 | 17,885.52
31 | | 2025 | 19.2183 | 34.1802 | 52.3031 | 0.1682 | 11.0256 | 0.9950 | 12.0206 | 2.9697 | 0.9402 | 3.9098 | 0.0000 | 17,243.89
69 | 17,243.89
69 | 1.2429 | 1.0325 | 17,582.64
41 | | Maximum | 19.2183 | 47.9139 | 56.0903 | 0.1745 | 16.5991 | 1.9735 | 18.5727 | 7.1615 | 1.8156 | 8.9771 | 0.0000 | 17,777.84
43 | 17,777.84
43 | 2.5876 | 1.0899 | 18,135.20
11 | #### **Mitigated Construction** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Year | | | | | lb/d | day | | | | | | | lb/d | lay | | | | 2023 | 6.0561 | 47.9139 | 56.0903 | 0.1745 | 11.0257 | 1.9735 | 12.3013 | 2.9697 | 1.8156 | 4.6593 | 0.0000 | 17,777.84
43 | 17,777.84
43 | 2.5876 | 1.0899 | 18,135.20
11 | | 2024 | 5.6659 | 36.0607 | 54.1654 | 0.1716 | 11.0257 | 1.1326 | 12.1583 | 2.9697 | 1.0703 | 4.0400 | 0.0000 | 17,536.98
98 | 17,536.98
98 | 1.2719 | 1.0629 | 17,885.52
31 | | 2025 | 19.2183 | 34.1802 | 52.3031 | 0.1682 | 11.0256 | 0.9950 | 12.0206 | 2.9697 | 0.9402 | 3.9098 | 0.0000 | 17,243.89
69 | 17,243.89
69 | 1.2429 | 1.0325 | 17,582.64
41 | | Maximum | 19.2183 | 47.9139 | 56.0903 | 0.1745 | 11.0257 | 1.9735 | 12.3013 | 2.9697 | 1.8156 | 4.6593 | 0.0000 | 17,777.84
43 | 17,777.84
43 | 2.5876 | 1.0899 | 18,135.20
11 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent
Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 14.42 | 0.00 | 14.67 | 32.00 | 0.00 | 25.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 2.2 Overall Operational #### **Unmitigated Operational** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Area | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | | Energy | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Mobile | 1.7400 | 2.6841 | 17.4013 | 0.0408 | 4.5634 | 0.0331 | 4.5965 | 1.2170 | 0.0310 | 1.2480 | | 4,261.550
0 | 4,261.550
0 | 0.2350 | 0.2089 | 4,329.689
4 | | Total | 5.4765 | 4.2265 | 23.5573 | 0.0505 | 4.5634 | 0.1833 | 4.7467 | 1.2170 | 0.1812 | 1.3982 | 0.0000 | 6,159.323
8 | 6,159.323
8 | 0.2808 | 0.2436 | 6,238.920
4 | #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/e | day | | | | | | | lb/d | lay | | | | Area | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 |
 | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | | Energy | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Mobile | 1.6351 | 2.4200 | 15.6587 | 0.0359 | 3.9984 | 0.0293 | 4.0277 | 1.0664 | 0.0274 | 1.0938 | | 3,747.847
3 | 3,747.847
3 | 0.2149 | 0.1879 | 3,809.223
2 | | Total | 5.3716 | 3.9625 | 21.8146 | 0.0456 | 3.9984 | 0.1795 | 4.1779 | 1.0664 | 0.1776 | 1.2440 | 0.0000 | 5,645.621
1 | 5,645.621
1 | 0.2607 | 0.2225 | 5,718.454
2 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent
Reduction | 1.92 | 6.25 | 7.40 | 9.74 | 12.38 | 2.07 | 11.98 | 12.38 | 1.96 | 11.03 | 0.00 | 8.34 | 8.34 | 7.15 | 8.63 | 8.34 | #### 3.0 Construction Detail #### **Construction Phase** | Phase
Number | Phase Name | Phase Type | Start Date | End Date | Num Days
Week | Num Days | Phase Description | |-----------------|-----------------------|-----------------------|------------|-----------|------------------|----------|-------------------| | 1 | Grading | Grading | 2/1/2023 | 5/1/2023 | 5 | 64 | | | 2 | Building Construction | Building Construction | 5/2/2023 | 4/2/2025 | 5 | 502 | | | 3 | Paving | Paving | 4/3/2025 | 7/3/2025 | 5 | 66 | | | 4 | Architectural Coating | Architectural Coating | 4/3/2025 | 7/16/2025 | 5 | 75 | | Acres of Grading (Site Preparation Phase): 0 Acres of Grading (Grading Phase): 256 Acres of Paving: 42.81 Residential Indoor: 244,215; Residential Outdoor: 81,405; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 111,888 (Architectural Coating - sqft) #### **OffRoad Equipment** | Phase Name | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor | |-----------------------|---------------------------|--------|-------------|-------------|-------------| | Grading | Excavators | 3 | 8.00 | 158 | 0.38 | | Grading | Graders | 2 | 8.00 | 187 | 0.41 | | Grading | Rubber Tired Dozers | 2 | 8.00 | 247 | 0.40 | | Grading | Scrapers | 2 | 8.00 | 367 | 0.48 | | Grading | Tractors/Loaders/Backhoes | 2 | 8.00 | 97 | 0.37 | | Building Construction | Cranes | 2 | 7.00 | 231 | 0.29 | | Building Construction | Forklifts | 4 | 8.00 | 89 | 0.20 | # EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Building Construction |
Generator Sets | 2 | 8.00 | 84 | 0.74 | |-----------------------|---------------------------|---|------|-----|------| | Building Construction | Tractors/Loaders/Backhoes | 4 | 7.00 | 97 | 0.37 | | Building Construction | Welders | 2 | 8.00 | 46 | 0.45 | | Paving | Pavers | 2 | 8.00 | 130 | 0.42 | | Paving | Paving Equipment | 2 | 8.00 | 132 | 0.36 | | Paving | Rollers | 2 | 8.00 | 80 | 0.38 | | Architectural Coating | Air Compressors | 1 | 6.00 | 78 | 0.48 | #### **Trips and VMT** | Phase Name | Offroad Equipment
Count | Worker Trip
Number | Vendor Trip
Number | Hauling Trip
Number | Worker Trip
Length | Vendor Trip
Length | Hauling Trip
Length | Worker Vehicle
Class | Vendor
Vehicle Class | Hauling
Vehicle Class | |-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------| | Grading | 11 | 28.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Building Construction | 14 | 807.00 | 313.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Paving | 6 | 15.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Architectural Coating | 1 | 161.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | #### **3.1 Mitigation Measures Construction** Water Exposed Area Reduce Vehicle Speed on Unpaved Roads CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.2 Grading - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|---------------------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Fugitive Dust | | | | | 16.2862 | 0.0000 | 16.2862 | 7.0785 | 0.0000 | 7.0785 | | | 0.0000 | | | 0.0000 | | Off-Road | 4.5785 | 47.8444 | 36.1079 | 0.0824 | | 1.9720 | 1.9720 | | 1.8142 | 1.8142 | | 7,979.439
2 | 7,979.439
2 | 2.5807 |

 | 8,043.957
0 | | Total | 4.5785 | 47.8444 | 36.1079 | 0.0824 | 16.2862 | 1.9720 | 18.2581 | 7.0785 | 1.8142 | 8.8927 | | 7,979.439
2 | 7,979.439
2 | 2.5807 | | 8,043.957
0 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.1055 | 0.0695 | 0.8691 | 2.5300e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 259.1696 | 259.1696 | 6.8400e-
003 | 6.9400e-
003 | 261.4097 | | Total | 0.1055 | 0.0695 | 0.8691 | 2.5300e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 259.1696 | 259.1696 | 6.8400e-
003 | 6.9400e-
003 | 261.4097 | CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.2 Grading - 2023 # **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|---------------------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Fugitive Dust |
 | | | | 6.3516 | 0.0000 | 6.3516 | 2.7606 | 0.0000 | 2.7606 | | 1 | 0.0000 | | | 0.0000 | | Off-Road | 4.5785 | 47.8444 | 36.1079 | 0.0824 | | 1.9720 | 1.9720 | | 1.8142 | 1.8142 | 0.0000 | 7,979.439
2 | 7,979.439
2 | 2.5807 |

 | 8,043.957
0 | | Total | 4.5785 | 47.8444 | 36.1079 | 0.0824 | 6.3516 | 1.9720 | 8.3236 | 2.7606 | 1.8142 | 4.5748 | 0.0000 | 7,979.439
2 | 7,979.439
2 | 2.5807 | | 8,043.957
0 | ## **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.1055 | 0.0695 | 0.8691 | 2.5300e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 259.1696 | 259.1696 | 6.8400e-
003 | 6.9400e-
003 | 261.4097 | | Total | 0.1055 | 0.0695 | 0.8691 | 2.5300e-
003 | 0.3130 | 1.5500e-
003 | 0.3145 | 0.0830 | 1.4200e-
003 | 0.0844 | | 259.1696 | 259.1696 | 6.8400e-
003 | 6.9400e-
003 | 261.4097 | CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.3 Building Construction - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | 1
1
1 | 1.0857 | 1.0857 | | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | | Total | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | | 1.0857 | 1.0857 | | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | ## **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3408 | 11.5963 | 4.7489 | 0.0562 | 2.0053 | 0.0828 | 2.0882 | 0.5774 | 0.0793 | 0.6567 | | 6,021.606
8 | 6,021.606
8 | 0.1558 | 0.8898 | 6,290.670
0 | | Worker | 3.0397 | 2.0020 | 25.0478 | 0.0730 | 9.0204 | 0.0446 | 9.0649 | 2.3922 | 0.0410 | 2.4333 | | 7,469.638
3 | 7,469.638
3 | 0.1972 | 0.2001 | 7,534.200
5 | | Total | 3.3805 | 13.5983 | 29.7967 | 0.1291 | 11.0257 | 0.1274 | 11.1531 | 2.9697 | 0.1203 | 3.0899 | | 13,491.24
50 | 13,491.24
50 | 0.3529 | 1.0899 | 13,824.87
05 | CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.3 Building Construction - 2023 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 | 1.1482 | 1
1
1 | 1.0857 | 1.0857 | 0.0000 | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | | Total | 2.6756 | 24.1630 | 26.2936 | 0.0454 | | 1.1482 |
1.1482 | | 1.0857 | 1.0857 | 0.0000 | 4,286.599
3 | 4,286.599
3 | 0.9493 | | 4,310.330
6 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3408 | 11.5963 | 4.7489 | 0.0562 | 2.0053 | 0.0828 | 2.0882 | 0.5774 | 0.0793 | 0.6567 | | 6,021.606
8 | 6,021.606
8 | 0.1558 | 0.8898 | 6,290.670
0 | | Worker | 3.0397 | 2.0020 | 25.0478 | 0.0730 | 9.0204 | 0.0446 | 9.0649 | 2.3922 | 0.0410 | 2.4333 | | 7,469.638
3 | 7,469.638
3 | 0.1972 | 0.2001 | 7,534.200
5 | | Total | 3.3805 | 13.5983 | 29.7967 | 0.1291 | 11.0257 | 0.1274 | 11.1531 | 2.9697 | 0.1203 | 3.0899 | | 13,491.24
50 | 13,491.24
50 | 0.3529 | 1.0899 | 13,824.87
05 | CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.3 Building Construction - 2024 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | | 4,287.244
4 | 4,287.244
4 | 0.9422 | | 4,310.798
2 | | Total | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | | 4,287.244
4 | 4,287.244
4 | 0.9422 | | 4,310.798
2 | ## **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3323 | 11.6980 | 4.6711 | 0.0554 | 2.0053 | 0.0816 | 2.0869 | 0.5774 | 0.0780 | 0.6554 | | 5,938.767
2 | 5,938.767
2 | 0.1510 | 0.8774 | 6,204.017
1 | | Worker | 2.8307 | 1.7766 | 23.3515 | 0.0709 | 9.0204 | 0.0428 | 9.0632 | 2.3922 | 0.0394 | 2.4317 | | 7,310.978
3 | 7,310.978
3 | 0.1787 | 0.1854 | 7,370.707
8 | | Total | 3.1631 | 13.4747 | 28.0227 | 0.1263 | 11.0257 | 0.1244 | 11.1500 | 2.9697 | 0.1174 | 3.0871 | | 13,249.74
54 | 13,249.74
54 | 0.3297 | 1.0629 | 13,574.72
49 | CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.3 Building Construction - 2024 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | 1
1
1 | 0.9529 | 0.9529 | 0.0000 | 4,287.244
3 | 4,287.244
3 | 0.9422 | | 4,310.798
2 | | Total | 2.5029 | 22.5861 | 26.1427 | 0.0454 | | 1.0083 | 1.0083 | | 0.9529 | 0.9529 | 0.0000 | 4,287.244
3 | 4,287.244
3 | 0.9422 | | 4,310.798
2 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3323 | 11.6980 | 4.6711 | 0.0554 | 2.0053 | 0.0816 | 2.0869 | 0.5774 | 0.0780 | 0.6554 | | 5,938.767
2 | 5,938.767
2 | 0.1510 | 0.8774 | 6,204.017
1 | | Worker | 2.8307 | 1.7766 | 23.3515 | 0.0709 | 9.0204 | 0.0428 | 9.0632 | 2.3922 | 0.0394 | 2.4317 | | 7,310.978
3 | 7,310.978
3 | 0.1787 | 0.1854 | 7,370.707
8 | | Total | 3.1631 | 13.4747 | 28.0227 | 0.1263 | 11.0257 | 0.1244 | 11.1500 | 2.9697 | 0.1174 | 3.0871 | | 13,249.74
54 | 13,249.74
54 | 0.3297 | 1.0629 | 13,574.72
49 | CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.3 Building Construction - 2025 **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | 1
1
1 | 0.8248 | 0.8248 | | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | | Total | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | | 0.8248 | 0.8248 | | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | ## **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3254 | 11.6289 | 4.5988 | 0.0543 | 2.0053 | 0.0814 | 2.0867 | 0.5774 | 0.0779 | 0.6553 | | 5,823.445
0 | 5,823.445
0 | 0.1466 | 0.8599 | 6,083.357
6 | | Worker | 2.6410 | 1.5854 | 21.7044 | 0.0685 | 9.0204 | 0.0407 | 9.0611 | 2.3922 | 0.0375 | 2.4297 | | 7,132.162
6 | 7,132.162
6 | 0.1612 | 0.1726 | 7,187.617
6 | | Total | 2.9664 | 13.2143 | 26.3032 | 0.1228 | 11.0256 | 0.1222 | 11.1478 | 2.9697 | 0.1154 | 3.0851 | | 12,955.60
76 | 12,955.60
76 | 0.3078 | 1.0325 | 13,270.97
52 | CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.3 Building Construction - 2025 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Off-Road | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | | 0.8248 | 0.8248 | 0.0000 | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | | Total | 2.3298 | 20.9659 | 25.9999 | 0.0454 | | 0.8728 | 0.8728 | | 0.8248 | 0.8248 | 0.0000 | 4,288.289
3 | 4,288.289
3 | 0.9352 | | 4,311.668
9 | # **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------------|-----------------|--------|--------|-----------------| |
Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.3254 | 11.6289 | 4.5988 | 0.0543 | 2.0053 | 0.0814 | 2.0867 | 0.5774 | 0.0779 | 0.6553 | | 5,823.445
0 | 5,823.445
0 | 0.1466 | 0.8599 | 6,083.357
6 | | Worker | 2.6410 | 1.5854 | 21.7044 | 0.0685 | 9.0204 | 0.0407 | 9.0611 | 2.3922 | 0.0375 | 2.4297 | | 7,132.162
6 | 7,132.162
6 | 0.1612 | 0.1726 | 7,187.617
6 | | Total | 2.9664 | 13.2143 | 26.3032 | 0.1228 | 11.0256 | 0.1222 | 11.1478 | 2.9697 | 0.1154 | 3.0851 | | 12,955.60
76 | 12,955.60
76 | 0.3078 | 1.0325 | 13,270.97
52 | CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.4 Paving - 2025 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Off-Road | 0.9152 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | | Paving | 0.5800 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | !
!
! | 0.0000 | | | 0.0000 | | Total | 1.4951 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0491 | 0.0295 | 0.4034 | 1.2700e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 132.5681 | 132.5681 | 3.0000e-
003 | 3.2100e-
003 | 133.5988 | | Total | 0.0491 | 0.0295 | 0.4034 | 1.2700e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 132.5681 | 132.5681 | 3.0000e-
003 | 3.2100e-
003 | 133.5988 | CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.4 Paving - 2025 <u>Mitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|-----|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Off-Road | 0.9152 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | 0.0000 | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | | Paving | 0.5800 |
 |] | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Total | 1.4951 | 8.5816 | 14.5780 | 0.0228 | | 0.4185 | 0.4185 | | 0.3850 | 0.3850 | 0.0000 | 2,206.745
2 | 2,206.745
2 | 0.7137 | | 2,224.587
8 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0491 | 0.0295 | 0.4034 | 1.2700e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 132.5681 | 132.5681 | 3.0000e-
003 | 3.2100e-
003 | 133.5988 | | Total | 0.0491 | 0.0295 | 0.4034 | 1.2700e-
003 | 0.1677 | 7.6000e-
004 | 0.1684 | 0.0445 | 7.0000e-
004 | 0.0452 | | 132.5681 | 132.5681 | 3.0000e-
003 | 3.2100e-
003 | 133.5988 | CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.5 Architectural Coating - 2025 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Archit. Coating | 16.9763 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Off-Road | 0.1709 | 1.1455 | 1.8091 | 2.9700e-
003 |
 | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | | Total | 17.1472 | 1.1455 | 1.8091 | 2.9700e-
003 | | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | day | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.5269 | 0.3163 | 4.3301 | 0.0137 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,422.897
4 | 1,422.897
4 | 0.0322 | 0.0344 | 1,433.960
9 | | Total | 0.5269 | 0.3163 | 4.3301 | 0.0137 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,422.897
4 | 1,422.897
4 | 0.0322 | 0.0344 | 1,433.960
9 | CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied # 3.5 Architectural Coating - 2025 Mitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|---------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|-----|----------| | Category | | | | | lb/d | day | | | | | | | lb/c | day | | | | Archit. Coating | 16.9763 | | | | | 0.0000 | 0.0000 | i
i | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Off-Road | 0.1709 | 1.1455 | 1.8091 | 2.9700e-
003 |
 | 0.0515 | 0.0515 |
 | 0.0515 | 0.0515 | 0.0000 | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | | Total | 17.1472 | 1.1455 | 1.8091 | 2.9700e-
003 | | 0.0515 | 0.0515 | | 0.0515 | 0.0515 | 0.0000 | 281.4481 | 281.4481 | 0.0154 | | 281.8319 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.5269 | 0.3163 | 4.3301 | 0.0137 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,422.897
4 | 1,422.897
4 | 0.0322 | 0.0344 | 1,433.960
9 | | Total | 0.5269 | 0.3163 | 4.3301 | 0.0137 | 1.7996 | 8.1300e-
003 | 1.8077 | 0.4773 | 7.4800e-
003 | 0.4847 | | 1,422.897
4 | 1,422.897
4 | 0.0322 | 0.0344 | 1,433.960
9 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 4.0 Operational Detail - Mobile #### **4.1 Mitigation Measures Mobile** **Increase Density** Improve Destination Accessibility Improve Pedestrian Network | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Mitigated | 1.6351 | 2.4200 | 15.6587 | 0.0359 | 3.9984 | 0.0293 | 4.0277 | 1.0664 | 0.0274 | 1.0938 | | 3,747.847
3 | 3,747.847
3 | 0.2149 | 0.1879 | 3,809.223
2 | | Unmitigated | 1.7400 | 2.6841 | 17.4013 | 0.0408 | 4.5634 | 0.0331 | 4.5965 | 1.2170 | 0.0310 | 1.2480 | | 4,261.550
0 | 4,261.550
0 | 0.2350 | 0.2089 | 4,329.689
4 | #### **4.2 Trip Summary Information** | | Avei | age Daily Trip Ra | ate | Unmitigated | Mitigated | |----------------------------|---------|-------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | | Other Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Single Family Housing | 632.48 | 632.48 | 632.48 | 2,161,280 | 1,893,686 | | Total | 632.48 | 632.48 | 632.48 | 2,161,280 | 1,893,686 | ## 4.3 Trip Type Information CalEEMod Version: CalEEMod.2020.4.0 Page 22 of 27 #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter Date: 7/26/2021 2:57 PM #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | | Miles | | | Trip % | | | Trip Purpos | e % | |----------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | Other Asphalt Surfaces | 16.60 | 8.40 | 6.90 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Other Non-Asphalt Surfaces | 16.60 | 8.40 | 6.90 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Single Family Housing | 14.70 | 5.90 | 8.70 | 40.20 | 19.20 | 40.60 | 86 | 11 | 3 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Other Asphalt Surfaces | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | | Other Non-Asphalt Surfaces | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | | Single Family Housing | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | # 5.0 Energy Detail Historical Energy Use: N ## **5.1 Mitigation Measures Energy** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | NaturalGas
Mitigated | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | NaturalGas
Unmitigated | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## **5.2 Energy by Land Use - NaturalGas** #### **Unmitigated** | | NaturalGa
s Use | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Land Use | kBTU/yr | | | | | lb/d | day | | | | | | | lb/d | day | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 5192.4 | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Total | | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## **5.2 Energy by Land Use - NaturalGas** #### **Mitigated** | | NaturalGa
s Use | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Land Use | kBTU/yr | | | | | lb/d | day | | | | | | | lb/d | lay | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 5.1924 | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | | Total | | 0.0560 | 0.4785 | 0.2036 | 3.0500e-
003 | | 0.0387 | 0.0387 | | 0.0387 | 0.0387 | | 610.8703 | 610.8703 | 0.0117 | 0.0112 | 614.5004 | #### 6.0 Area Detail # **6.1 Mitigation Measures Area** CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 27 Date: 7/26/2021 2:57 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | lb/d | day | | | | | | | lb/c | lay | | | | Mitigated | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | | Unmitigated | 3.6805 | 1.0639 | 5.9524 | 6.6800e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | ## 6.2 Area by SubCategory #### **Unmitigated** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|---------------------|------------------|----------------|----------|----------------|----------------|-----------------|--------|----------------| | SubCategory | | | | | lb/d | day | | | | | | | lb/d | day | | | | Architectural
Coating | 0.3488 | | | | | 0.0000 | 0.0000 |
 | 0.0000 | 0.0000 | | !
! | 0.0000 | | | 0.0000 | | Consumer
Products | 3.0484 | | | | | 0.0000 | 0.0000 |

 | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Hearth | 0.1171 | 1.0003 | 0.4257 | 6.3800e-
003 | | 0.0809 | 0.0809 |

 | 0.0809 | 0.0809 | 0.0000 | 1,276.941
2 | 1,276.941
2 | 0.0245 | 0.0234 | 1,284.529
4 | | Landscaping | 0.1662 | 0.0637 | 5.5267 | 2.9000e-
004 | | 0.0307 | 0.0307 | | 0.0307 | 0.0307 | | 9.9624 | 9.9624 | 9.5600e-
003 | | 10.2013 | | Total | 3.6805 | 1.0639 | 5.9524 | 6.6700e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 |
0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 6.2 Area by SubCategory #### **Mitigated** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|---------------------|------------------|----------------|----------|----------------|----------------|-----------------|--------|----------------| | SubCategory | | | | | lb/d | day | | | | | | | lb/c | lay | | | | | 0.3488 | | | | | 0.0000 | 0.0000 |
 | 0.0000 | 0.0000 | | | 0.0000 | | | 0.0000 | | Consumer
Products | 3.0484 | | | |
 | 0.0000 | 0.0000 |

 | 0.0000 | 0.0000 | | | 0.0000 | |
 | 0.0000 | | Hearth | 0.1171 | 1.0003 | 0.4257 | 6.3800e-
003 |
 | 0.0809 | 0.0809 |

 | 0.0809 | 0.0809 | 0.0000 | 1,276.941
2 | 1,276.941
2 | 0.0245 | 0.0234 | 1,284.529
4 | | Landscaping | 0.1662 | 0.0637 | 5.5267 | 2.9000e-
004 | | 0.0307 | 0.0307 |
 | 0.0307 | 0.0307 | | 9.9624 | 9.9624 | 9.5600e-
003 |
 | 10.2013 | | Total | 3.6805 | 1.0639 | 5.9524 | 6.6700e-
003 | | 0.1115 | 0.1115 | | 0.1115 | 0.1115 | 0.0000 | 1,286.903
6 | 1,286.903
6 | 0.0340 | 0.0234 | 1,294.730
7 | ## 7.0 Water Detail # 7.1 Mitigation Measures Water Apply Water Conservation Strategy Use Water Efficient Irrigation System CalEEMod Version: CalEEMod.2020.4.0 Page 27 of 27 Date: 7/26/2021 2:57 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Winter #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 8.0 Waste Detail #### **8.1 Mitigation Measures Waste** Institute Recycling and Composting Services #### 9.0 Operational Offroad | Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type | |----------------|--------|-----------|-----------|-------------|-------------|-----------| ## **10.0 Stationary Equipment** #### **Fire Pumps and Emergency Generators** | Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type | |----------------|--------|-----------|------------|-------------|-------------|-----------| | | | | | | | | #### **Boilers** | Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type | |----------------|--------|----------------|-----------------|---------------|-----------| #### **User Defined Equipment** | Equipment Type | Number | |----------------|--------| ## 11.0 Vegetation # APPENDIX C AERMOD Model Printouts #### 19208 Terracina at Redlands #### Estimation of DPM Emissions Along the 10 Freeway #### Cal Trans Vehicle Traffic - 2019 | | | | | | | | 2 axle | | 3 axle | | 4+ Axle | |----------------------------------|------------|--------------|-------------|---------------|----------|--------|----------|--------|----------|---------|----------| | Segment | Ahead AADT | Total Trucks | LDA/LDT/MDT | % LDA/LDT/MDT | % Trucks | 2 axle | % Trucks | 3 axle | % Trucks | 4+ axle | % Trucks | | Redlands, Wabash Avenue | 155000 | 20150 | 134850 | 87.0% | 13.0% | 7476 | 37.1% | 1874 | 9.3% | 10801 | 53.6% | | Yucaipa Boulevard for Truck ADTs | | | | | | | | | | | | #### **Diesel Vehicle Distribution** Vehicle Mix 2 axle trucks = LHDT1 and LHDT2 3 axle trucks = MHDT 4+ axle trucks = HHDT | Adjusted Fleet Mix | SCAB
CalEEMod | Adjusted | Daile Trin | |----------------------|------------------|-----------|------------| | 184 | Fleet Mix | Fleet Mix | Daily Trip | | LDA | 55.23 | 59.6% | 80361 | | LDT1 | 4.429 | 4.8% | 6444 | | LDT2 | 21.11 | 22.8% | 30716 | | MDV | 11.91 | 12.9% | 17329 | | Total | 92.679 | 100.0% | 134850 | | LHD1 | 1.75 | 75.1% | 5617 | | LHD2 | 0.579 | 24.9% | 1859 | | Total | 2.329 | 100.0% | 7476 | | MHDT | | | 1874 | | HHDT | | | 10801 | | Total - All Vehicles | | | 155001 | #### Diesel Vehicle Distribution (from URBEMIS: 2025 in SCAQMD) | | | Daily | |-------|----------|-----------------| | | % Diesel | Diesel Vehicles | | LDA | 0.0% | 0 | | LDT1 | 1.4% | 90 | | LDT2 | 0.0% | 0 | | MDV | 0.0% | 0 | | LHDT1 | 17.6% | 989 | | LHDT2 | 40.0% | 743 | | MHDT | 80.0% | 1499 | | HHDT | 100.0% | 10801 | # Vehicle Speed/1-year Average DPM Emission Factor (2025) from EMFAC2017 for South Coast AB Emission Factor | | Speed (mph) | (g/mi) | |-------|-------------|-------------| | LDA | 70 | 0.004164408 | | LDT1 | 70 | 0.139326979 | | LDT2 | 70 | 0.003725823 | | MDV | 60 | 0.003161293 | | LHDT1 | 60 | 0.015608783 | | LHDT2 | 60 | 0.015765879 | | MHDT | 55 | 0.010109 | #### **Vehicle Emissions** HHDT Vehicle Emissions = Emission Factor (g/mi) x Mile/Trip x Trip/Day Length of Roadway Segment 1114.4 meters or 0.692 miles 0.023525 Assumption: over an annual period, traffic is assumed to be uniformly distributed during the day 55 | | Daily Emissions | Hourly Emissions | | | | | |-------|-----------------|-------------------------|----|----------|----|----------| | | (g/day) | (g/sec) | | | | | | LDA | 0.0 | 0.00E+00 | | | | | | LDT1 | 8.7 | 1.01E-04 | | | | | | LDT2 | 0.0 | 0.00E+00 | | | | | | MDV | 0.0 | 0.00E+00 | | | | | | LHDT1 | 10.7 | 1.24E-04 | | | | | | LHDT2 | 8.1 | 9.39E-05 | | | | | | MHDT | 10.5 | 1.21E-04 | | | | | | HHDT | 175.9 | 2.04E-03 | | | | | | | | | EB | | WB | | | Total | 213.9 | 2.48E-03 | | 1.24E-03 | | 1.24E-03 | #### 19208 Terracina at Redlands #### Estimation of DPM Emissions Along the 10 Freeway #### Cal Trans Vehicle Traffic - 2019 | | | | | | | | 2 axle | | 3 axle | | 4+ Axle | |----------------------------------|------------|--------------|-------------|---------------|----------|--------|----------|--------|----------|---------|----------| | Segment | Ahead AADT | Total Trucks | LDA/LDT/MDT | % LDA/LDT/MDT | % Trucks | 2 axle | % Trucks | 3 axle | % Trucks | 4+ axle | % Trucks | | Redlands, Wabash Avenue | 155000 | 20150 | 134850 | 87.0% | 13.0% | 7476 | 37.1% | 1874 | 9.3% | 10801 | 53.6% | | Yucaipa Boulevard for Truck ADTs | | | | | | | | | | | | #### **Diesel Vehicle Distribution** Vehicle Mix 2 axle trucks = LHDT1 and LHDT2 3 axle trucks = MHDT 4+ axle trucks = HHDT | Adjusted Fleet Mix | SCAB
CalEEMod | Adjusted | Daile Trins | |----------------------|------------------|-----------|-------------| | | Fleet Mix | Fleet Mix | Daily Trips | | LDA | 55.23 | 59.6% | 80361 | | LDT1 | 4.429 | 4.8% | 6444 | | LDT2 | 21.11 | 22.8% | 30716 | | MDV | 11.91 | 12.9% | 17329 | | Total | 92.679 | 100.0% | 134850 | | LHD1 | 1.75 | 75.1% | 5617 | | LHD2 | 0.579 | 24.9% | 1859 | | Total | 2.329 | 100.0% | 7476 | | MHDT | | | 1874 | | HHDT | | | 10801 | | Total - All Vehicles | | | 155001 | #### Diesel Vehicle Distribution (from URBEMIS: 2025 in SCAQMD) | | | Daily | |-------|----------|-----------------| | | % Diesel | Diesel Vehicles | | LDA | 0.0% | 0 | | LDT1 | 1.4% | 90 | | LDT2 | 0.0% | 0 | | MDV | 0.0% | 0 | | LHDT1 | 17.6% | 989 | | LHDT2 | 40.0% | 743 | | MHDT | 80.0% | 1499 | | HHDT | 100.0% | 10801 | # Vehicle Speed/2-year Average DPM Emission Factor (2026 to 2027) from EMFAC2017 for South Coast AB Emission Factor | | Speed (mph) | (g/mi) | |-------|-------------|-------------| | LDA | 70 | 0.003031835 | | LDT1 | 70 | 0.095229131 | | LDT2 | 70 | 0.00346121 | | MDV | 60 | 0.002727943 | | LHDT1 | 60 | 0.014034685 | | LHDT2 | 60 | 0.014960975 | | MHDT | 55 | 0.010208 | | HHDT | 55 | 0.023467 | #### **Vehicle Emissions** Vehicle Emissions = Emission Factor (g/mi) x Mile/Trip x Trip/Day Length of Roadway Segment 1114.4 meters or 0.692 miles Assumption: over an annual period, traffic is assumed to be uniformly distributed during the day | | Daily Emissions
(g/day) | Hourly Emissions (g/sec) | | | | |-------|----------------------------|--------------------------|----|----------|----------| | LDA | 0.0 | 0.00E+00 | | | | | LDT1 | 5.9 | 6.88E-05 | | | | | LDT2 | 0.0 | 0.00E+00 | | | | | MDV | 0.0 | 0.00E+00 | | | | | LHDT1 | 9.6 | 1.11E-04 | | | | | LHDT2 | 7.7 | 8.91E-05 | | | | | MHDT | 10.6 | 1.23E-04 | | | | | HHDT | 175.5 | 2.03E-03 | | | | | | | | EB | WB | | | Total | 209.3 | 2.42E-03 | | 1.21E-03 | 1.21E-03 | #### 19208 Terracina at Redlands #### Estimation of DPM Emissions Along the 10 Freeway #### Cal Trans Vehicle Traffic - 2019 | | | | | | | | 2 axle | | 3 axle | | 4+ Axle | |----------------------------------|------------|--------------|-------------|---------------|----------|--------|----------|--------|----------|---------|----------| | Segment | Ahead AADT | Total Trucks | LDA/LDT/MDT | % LDA/LDT/MDT | % Trucks | 2 axle | % Trucks | 3 axle | % Trucks | 4+ axle | % Trucks | | Redlands, Wabash Avenue | 155000 | 20150 | 134850 | 87.0% | 13.0% | 7476 | 37.1% | 1874 | 9.3% | 10801 | 53.6% | | Yucaipa Boulevard for Truck ADTs | | | | | | | | | | | | #### **Diesel Vehicle Distribution** Vehicle Mix 2 axle trucks = LHDT1 and LHDT2 3 axle trucks = MHDT 4+ axle trucks = HHDT | Adjusted Fleet Mix | SCAB
CalEEMod
Fleet Mix | Adjusted
Fleet Mix | Daily Trips | |----------------------|-------------------------------|-----------------------|-------------| | LDA | 55.23 | 59.6% | 80361 | | LDT1 | 4.429 | 4.8% | 6444 | | | | | | | LDT2 | 21.11 | 22.8% | 30716 | | MDV | 11.91 | 12.9% | 17329 | | Total | 92.679 | 100.0% | 134850 | | LHD1 | 1.75 | 75.1% | 5617 | | LHD2 | 0.579 | 24.9% | 1859 | | Total | 2.329 | 100.0% | 7476 | | MHDT | | | 1874 | | HHDT | | | 10801 | | Total - All Vehicles | | | 155001 | #### Diesel Vehicle Distribution (from URBEMIS: 2025 in SCAQMD) | | | Daily | |-------|----------|-----------------| | | % Diesel | Diesel Vehicles | | LDA | 0.0% | 0 | | LDT1 | 1.4% | 90 | | LDT2 | 0.0% | 0 | | MDV | 0.0% | 0 | | LHDT1 | 17.6% | 989 | | LHDT2 | 40.0% | 743 | | MHDT
| 80.0% | 1499 | | HHDT | 100.0% | 10801 | # Vehicle Speed/14-year Average DPM Emission Factor (2028 to 2041) from EMFAC2017 for South Coast AB Emission Factor | | | EIIIISSIUII FACIUI | |-------|-------------|--------------------| | | Speed (mph) | (g/mi) | | LDA | 70 | 0.001149899 | | LDT1 | 70 | 0.009619132 | | LDT2 | 70 | 0.003242716 | | MDV | 60 | 0.001337376 | | LHDT1 | 60 | 0.008294268 | | LHDT2 | 60 | 0.012232816 | | MHDT | 55 | 0.010282 | | HHDT | 55 | 0.022548 | #### **Vehicle Emissions** Vehicle Emissions = Emission Factor (g/mi) x Mile/Trip x Trip/Day Length of Roadway Segment 1114.4 meters or 0.692 miles Assumption: over an annual period, traffic is assumed to be uniformly distributed during the day | | Daily Emissions | Hourly Emissions | | | | | |-------|-----------------|-------------------------|----|----------|----|----------| | | (g/day) | (g/sec) | | | | | | LDA | 0.0 | 0.00E+00 | | | | | | LDT1 | 0.6 | 6.95E-06 | | | | | | LDT2 | 0.0 | 0.00E+00 | | | | | | MDV | 0.0 | 0.00E+00 | | | | | | LHDT1 | 5.7 | 6.57E-05 | | | | | | LHDT2 | 6.3 | 7.29E-05 | | | | | | MHDT | 10.7 | 1.24E-04 | | | | | | HHDT | 168.6 | 1.95E-03 | | | | | | | | | EB | | WB | | | Total | 191.8 | 2.22E-03 | | 1.11E-03 | | 1.11E-03 | #### 19208 Terracina at Redlands #### Estimation of DPM Emissions Along the 10 Freeway #### Cal Trans Vehicle Traffic - 2019 | | | | | | | | 2 axle | | 3 axle | | 4+ Axle | |----------------------------------|------------|--------------|-------------|---------------|----------|--------|----------|--------|----------|---------|----------| | Segment | Ahead AADT | Total Trucks | LDA/LDT/MDT | % LDA/LDT/MDT | % Trucks | 2 axle | % Trucks | 3 axle | % Trucks | 4+ axle | % Trucks | | Redlands, Wabash Avenue | 155000 | 20150 | 134850 | 87.0% | 13.0% | 7476 | 37.1% | 1874 | 9.3% | 10801 | 53.6% | | Yucaipa Boulevard for Truck ADTs | | | | | | | | | | | | #### **Diesel Vehicle Distribution** Vehicle Mix 2 axle trucks = LHDT1 and LHDT2 3 axle trucks = MHDT 4+ axle trucks = HHDT | Adjusted Fleet Mix | SCAB
CalEEMod | Adjusted | Daile Tale | |----------------------|------------------|-----------|------------| | LDA | Fleet Mix | Fleet Mix | Daily Trip | | LDA | 55.23 | 59.6% | 80361 | | LDT1 | 4.429 | 4.8% | 6444 | | LDT2 | 21.11 | 22.8% | 30716 | | MDV | 11.91 | 12.9% | 17329 | | Total | 92.679 | 100.0% | 134850 | | LHD1 | 1.75 | 75.1% | 5617 | | LHD2 | 0.579 | 24.9% | 1859 | | Total | 2.329 | 100.0% | 7476 | | MHDT | | | 1874 | | HHDT | | | 10801 | | Total - All Vehicles | | | 155001 | #### Diesel Vehicle Distribution (from URBEMIS: 2025 in SCAQMD) | | | Daily | |-------|----------|-----------------| | | % Diesel | Diesel Vehicles | | LDA | 0.0% | 0 | | LDT1 | 1.4% | 90 | | LDT2 | 0.0% | 0 | | MDV | 0.0% | 0 | | LHDT1 | 17.6% | 989 | | LHDT2 | 40.0% | 743 | | MHDT | 80.0% | 1499 | | HHDT | 100.0% | 10801 | # Vehicle Speed/14-year Average DPM Emission Factor (2042 to 2055) from EMFAC2017 for South Coast AB Emission Factor | | Speed (mph) | (g/mi) | |-------|-------------|-------------| | LDA | 70 | 0.000572728 | | LDT1 | 70 | 0.003442482 | | LDT2 | 70 | 0.00329775 | | MDV | 60 | 0.000663243 | | LHDT1 | 60 | 0.004460849 | | LHDT2 | 60 | 0.010553487 | | MHDT | 55 | 0.010028 | | HHDT | 55 | 0.022173 | #### **Vehicle Emissions** Vehicle Emissions = Emission Factor (g/mi) x Mile/Trip x Trip/Day Length of Roadway Segment 1114.4 meters or 0.692 miles Assumption: over an annual period, traffic is assumed to be uniformly distributed during the day | | Daily Emissions | Hourly Emissions | | | | |-------|-----------------|------------------|----|----------|----------| | | (g/day) | (g/sec) | | | | | LDA | 0.0 | 0.00E+00 | | | | | LDT1 | 0.2 | 2.49E-06 | | | | | LDT2 | 0.0 | 0.00E+00 | | | | | MDV | 0.0 | 0.00E+00 | | | | | LHDT1 | 3.1 | 3.53E-05 | | | | | LHDT2 | 5.4 | 6.29E-05 | | | | | MHDT | 10.4 | 1.20E-04 | | | | | HHDT | 165.8 | 1.92E-03 | | | | | | | | EB | WB | | | Total | 184.9 | 2.14E-03 | | 1.07E-03 | 1.07E-03 | ``` ** Lakes Environmental AERMOD MPI ********** ** AERMOD Input Produced by: ** AERMOD View Ver. 10.0.1 ** Lakes Environmental Software Inc. ** Date: 8/11/2021 ** File: C:\Lakes\AERMOD View\Terracina at Redlands OY\Terracina at Redlands OY.ADI ********** ********** ** AERMOD Control Pathway ************ CO STARTING TITLEONE Terracina at Redlands TITLETWO Freeway-related DPM Concentrations OY MODELOPT DFAULT CONC AVERTIME PERIOD URBANOPT 2035210 San_Bernardino_County POLLUTID DPM RUNORNOT RUN ERRORFIL "Terracina at Redlands OY.err" CO FINISHED *********** ** AERMOD Source Pathway ********** SO STARTING ** Source Location ** ** Source ID - Type - X Coord. - Y Coord. ** ** ----- ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE1 ** DESCRSRC EB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00124 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 12 ** 486616.041, 3766076.797, 526.82, 0.00, 1.70 ** 486786.952, 3766018.704, 535.73, 0.00, 1.70 ``` ``` ** 486896.402, 3765982.502, 539.74, 0.00, 1.70 ** 487020.166, 3765938.721, 544.37, 0.00, 1.70 ** 487127.090, 3765896.625, 550.05, 0.00, 1.70 ** 487255.905, 3765839.374, 556.47, 0.00, 1.70 ** 487365.355, 3765779.597, 565.73, 0.00, 1.70 ** 487442.813, 3765739.185, 575.21, 0.00, 1.70 ** 487518.586, 3765698.772, 574.32, 0.00, 1.70 ** 487573.311, 3765669.305, 575.18, 0.00, 1.70 ** 487609.514, 3765647.415, 578.30, 0.00, 1.70 ** 487635.614, 3765634.786, 578.12, 0.00, 1.70 LOCATION LOCOCOLL 486617.773 3766076.209 527.35 VOLUME LOCATION L0000002 VOLUME 486621.236 3766075.032 527.48 LOCATION L0000003 VOLUME 486624.699 3766073.855 527.61 LOCATION L0000004 VOLUME 486628.162 3766072.678 527.73 LOCATION L0000005 VOLUME 486631.625 3766071.500 527.88 LOCATION L0000006 VOLUME 486635.088 3766070.323 528.02 LOCATION L0000007 VOLUME 486638.551 3766069.146 528.14 LOCATION L0000008 VOLUME 486642.014 3766067.969 528.26 LOCATION L0000009 VOLUME 486645.477 3766066.792 528.37 LOCATION L0000010 VOLUME 486648.940 3766065.615 528.47 LOCATION L0000011 VOLUME 486652.403 3766064.438 528.55 LOCATION L0000012 VOLUME 486655.866 3766063.261 528.67 VOLUME 486659.329 3766062.084 528.80 LOCATION L0000013 LOCATION L0000014 VOLUME 486662.792 3766060.907 528.97 LOCATION L0000015 VOLUME 486666.255 3766059.730 529.16 486669.718 3766058.553 529.36 LOCATION L0000016 VOLUME LOCATION L0000017 VOLUME 486673.181 3766057.375 529.54 VOLUME 486676.644 3766056.198 529.73 LOCATION L0000018 LOCATION L0000019 VOLUME 486680.107 3766055.021 529.91 VOLUME 486683.570 3766053.844 530.11 LOCATION L0000020 486687.033 3766052.667 530.30 LOCATION L0000021 VOLUME LOCATION L0000022 VOLUME 486690.496 3766051.490 530.48 LOCATION L0000023 VOLUME 486693.959 3766050.313 530.66 LOCATION L0000024 VOLUME 486697.422 3766049.136 530.83 LOCATION L0000025 VOLUME 486700.885 3766047.959 530.99 LOCATION L0000026 VOLUME 486704.348 3766046.782 531.15 LOCATION L0000027 VOLUME 486707.811 3766045.605 531.33 LOCATION L0000028 VOLUME 486711.274 3766044.428 531.51 LOCATION L0000029 VOLUME 486714.737 3766043.250 531.68 LOCATION L0000030 VOLUME 486718.200 3766042.073 531.84 VOLUME 486721.663 3766040.896 531.98 LOCATION L0000031 LOCATION L0000032 VOLUME 486725.126 3766039.719 532.11 VOLUME 486728.589 3766038.542 532.23 LOCATION L0000033 LOCATION L0000034 VOLUME 486732.052 3766037.365 532.42 LOCATION L0000035 VOLUME 486735.515 3766036.188 532.65 486738.978 3766035.011 532.84 LOCATION L0000036 VOLUME LOCATION L0000037 VOLUME 486742.441 3766033.834 532.99 LOCATION L0000038 VOLUME 486745.904 3766032.657 533.10 LOCATION L0000039 VOLUME 486749.367 3766031.480 533.16 LOCATION L0000040 VOLUME 486752.830 3766030.302 533.23 ``` | LOCATION | L0000041 | VOLUME | 486756.293 | 3766029.125 | 533.44 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000042 | VOLUME | 486759.756 | 3766027.948 | 533.73 | | LOCATION | L0000043 | VOLUME | 486763.219 | 3766026.771 | 534.01 | | LOCATION | L0000044 | VOLUME | 486766.682 | 3766025.594 | 534.27 | | LOCATION | L0000045 | VOLUME | 486770.145 | 3766024.417 | 534.53 | | LOCATION | L0000046 | VOLUME | 486773.608 | 3766023.240 | 534.77 | | LOCATION | L0000047 | VOLUME | 486777.071 | 3766022.063 | 534.99 | | LOCATION | L0000048 | VOLUME | 486780.534 | 3766020.886 | 535.21 | | LOCATION | L0000049 | VOLUME | 486783.997 | 3766019.709 | 535.45 | | LOCATION | L0000050 | VOLUME | 486787.462 | 3766018.536 | 535.70 | | LOCATION | L0000051 | VOLUME | 486790.934 | 3766017.387 | 535.92 | | LOCATION | L0000052 | VOLUME | 486794.407 | 3766016.239 | 536.12 | | LOCATION | L0000053 | VOLUME | 486797.880 | 3766015.090 | 536.31 | | LOCATION | L0000054 | VOLUME | 486801.352 | 3766013.941 | 536.47 | | LOCATION | L0000055 | VOLUME | 486804.825 | 3766012.793 | 536.61 | | LOCATION | L0000056 | VOLUME | 486808.297 | 3766011.644 | 536.74 | | LOCATION | L0000057 | VOLUME | 486811.770 | 3766010.495 | 536.87 | | LOCATION | L0000058 | VOLUME | 486815.242 | 3766009.347 | 536.98 | | LOCATION | L0000059 | VOLUME | 486818.715 | 3766008.198 | 537.06 | | LOCATION | L0000060 | VOLUME | 486822.188 | 3766007.050 | 537.11 | | LOCATION | L0000061 | VOLUME | 486825.660 | 3766005.901 | 537.14 | | LOCATION | L0000062 | VOLUME | 486829.133 | 3766004.752 | 537.14 | | LOCATION | L0000063 | VOLUME | 486832.605 | 3766003.604 | 537.12 | | LOCATION | L0000064 | VOLUME | 486836.078 | 3766002.455 | 537.10 | | LOCATION | L0000065 | VOLUME | 486839.550 | 3766001.307 | 537.08 | | | L0000066 | VOLUME | 486843.023 | 3766000.158 | 537.05 | | | L0000067 | VOLUME | 486846.496 | 3765999.009 | 537.15 | | LOCATION | L0000068 | VOLUME | 486849.968 | 3765997.861 | 537.35 | | | L0000069 | VOLUME | 486853.441 | 3765996.712 | 537.54 | | | L0000070 | VOLUME | 486856.913 | 3765995.563 | 537.74 | | | L0000071 | VOLUME | 486860.386 | 3765994.415 | 537.95 | | | L0000072 | VOLUME | 486863.858 | 3765993.266 | 538.18 | | | L0000073 | VOLUME | 486867.331
 3765992.118 | 538.40 | | | L0000074 | VOLUME | 486870.803 | 3765990.969 | 538.61 | | | L0000075 | VOLUME | 486874.276 | 3765989.820 | 538.81 | | | L0000076 | VOLUME | 486877.749 | 3765988.672 | 539.00 | | | L0000077 | VOLUME | 486881.221 | 3765987.523 | 539.18 | | | L0000078 | VOLUME | 486884.694 | 3765986.374 | 539.36 | | | L0000079 | VOLUME | 486888.166 | 3765985.226 | 539.56 | | | L0000080 | VOLUME | 486891.639 | 3765984.077 | 539.74 | | | L0000081 | VOLUME | 486895.111 | 3765982.929 | 539.91 | | | L0000082 | VOLUME | 486898.569 | 3765981.735 | 540.06 | | | L0000083 | VOLUME | 486902.017 | 3765980.516 | 540.20 | | | L0000084 | VOLUME | 486905.465 | 3765979.296 | 540.32 | | | L0000085 | VOLUME | 486908.913 | 3765978.076 | 540.42 | | | L0000086 | VOLUME | 486912.362 | 3765976.856 | 540.51 | | | L0000087 | VOLUME | 486915.810 | 3765975.636 | 540.59 | | | L0000088 | VOLUME | 486919.258 | 3765974.417 | 540.66 | | | L0000089 | VOLUME | 486922.706 | 3765973.197 | 540.71 | | | L0000090 | VOLUME | 486926.154 | 3765971.977 | 540.76 | | LOCATION | L0000091 | VOLUME | 486929.603 | 3765970.757 | 540.79 | | LOCATION | L0000092 | VOLUME | 486933.051 | 3765969.538 | 540.82 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000093 | VOLUME | 486936.499 | 3765968.318 | 540.90 | | LOCATION | L0000094 | VOLUME | 486939.947 | 3765967.098 | 541.11 | | LOCATION | L0000095 | VOLUME | 486943.396 | 3765965.878 | 541.31 | | LOCATION | L0000096 | VOLUME | 486946.844 | 3765964.658 | 541.51 | | LOCATION | L0000097 | VOLUME | 486950.292 | 3765963.439 | 541.70 | | LOCATION | L0000098 | VOLUME | 486953.740 | 3765962.219 | 541.89 | | LOCATION | L0000099 | VOLUME | 486957.188 | 3765960.999 | 542.08 | | LOCATION | L0000100 | VOLUME | 486960.637 | 3765959.779 | 542.26 | | LOCATION | L0000101 | VOLUME | 486964.085 | 3765958.560 | 542.47 | | LOCATION | L0000102 | VOLUME | 486967.533 | 3765957.340 | 542.67 | | LOCATION | L0000103 | VOLUME | 486970.981 | 3765956.120 | 542.86 | | LOCATION | L0000104 | VOLUME | 486974.429 | 3765954.900 | 543.03 | | LOCATION | L0000105 | VOLUME | 486977.878 | 3765953.680 | 543.20 | | LOCATION | L0000106 | VOLUME | 486981.326 | 3765952.461 | 543.36 | | LOCATION | L0000107 | VOLUME | 486984.774 | 3765951.241 | 543.51 | | LOCATION | L0000108 | VOLUME | 486988.222 | 3765950.021 | 543.66 | | LOCATION | L0000109 | VOLUME | 486991.671 | 3765948.801 | 543.80 | | LOCATION | L0000110 | VOLUME | 486995.119 | 3765947.582 | 543.93 | | LOCATION | L0000111 | VOLUME | 486998.567 | 3765946.362 | 544.05 | | LOCATION | L0000112 | VOLUME | 487002.015 | 3765945.142 | 544.15 | | LOCATION | L0000113 | VOLUME | 487005.463 | 3765943.922 | 544.23 | | LOCATION | L0000114 | VOLUME | 487008.912 | 3765942.702 | 544.30 | | LOCATION | L0000115 | VOLUME | 487012.360 | 3765941.483 | 544.35 | | LOCATION | L0000116 | VOLUME | 487015.808 | 3765940.263 | 544.42 | | LOCATION | L0000117 | VOLUME | 487019.256 | 3765939.043 | 544.47 | | | L0000118 | VOLUME | 487022.671 | 3765937.735 | 544.52 | | LOCATION | | VOLUME | 487026.075 | 3765936.395 | 544.70 | | | L0000120 | VOLUME | 487029.478 | 3765935.055 | 544.87 | | LOCATION | | VOLUME | 487032.881 | 3765933.715 | 545.04 | | LOCATION | | VOLUME | 487036.285 | 3765932.375 | 545.22 | | LOCATION | | VOLUME | 487039.688 | 3765931.035 | 545.41 | | | L0000124 | VOLUME | 487043.091 | 3765929.696 | 545.62 | | LOCATION | | VOLUME | 487046.495 | 3765928.356 | 545.82 | | LOCATION | | VOLUME | 487049.898 | 3765927.016 | 546.02 | | | L0000127 | VOLUME | 487053.301 | 3765925.676 | 546.21 | | LOCATION | | VOLUME | 487056.705 | 3765924.336 | 546.39 | | LOCATION | | VOLUME | 487060.108 | 3765922.996 | 546.56 | | LOCATION | | VOLUME | 487063.511 | 3765921.656 | 546.72 | | LOCATION | | VOLUME | 487066.915 | 3765920.316 | 546.89 | | LOCATION | | VOLUME | 487070.318 | 3765918.976 | 547.04 | | LOCATION | | VOLUME | 487073.721 | 3765917.636 | 547.18 | | LOCATION | | VOLUME | 487077.125 | 3765916.297 | 547.30 | | LOCATION | | VOLUME | 487080.528 | 3765914.957 | 547.40 | | LOCATION | | VOLUME | 487083.931 | 3765913.617 | 547.49 | | LOCATION | | VOLUME | 487087.335 | 3765912.277 | 547.57 | | LOCATION | | VOLUME | 487090.738 | 3765910.937 | 547.63 | | LOCATION | | VOLUME | 487094.142 | 3765909.597 | 547.69 | | LOCATION | | VOLUME | 487097.545 | 3765908.257 | 547.73 | | | L0000141 | VOLUME | 487100.948 | 3765906.917 | 547.76 | | LOCATION | L0000142 | VOLUME | 48/104.352 | 3765905.577 | 547.90 | | | | | | | | | LOCATION | L0000143 | VOLUME | 487107.755 | 3765904.237 | 548.04 | |----------|----------|--------|--------------------------|-------------|--------| | LOCATION | L0000144 | VOLUME | 487111.158 | 3765902.898 | 548.19 | | LOCATION | L0000145 | VOLUME | 487114.562 | 3765901.558 | 548.34 | | LOCATION | L0000146 | VOLUME | 487117.965 | 3765900.218 | 548.57 | | LOCATION | L0000147 | VOLUME | 487121.368 | 3765898.878 | 548.80 | | LOCATION | L0000148 | VOLUME | 487124.772 | 3765897.538 | 549.03 | | LOCATION | L0000149 | VOLUME | 487128.155 | 3765896.152 | 549.25 | | LOCATION | L0000150 | VOLUME | 487131.498 | 3765894.666 | 549.47 | | LOCATION | L0000151 | VOLUME | 487134.840 | 3765893.181 | 549.68 | | LOCATION | L0000152 | VOLUME | 487138.183 | 3765891.695 | 549.88 | | LOCATION | L0000153 | VOLUME | 487141.525 | 3765890.210 | 550.20 | | LOCATION | L0000154 | VOLUME | 487144.867 | 3765888.724 | 550.76 | | LOCATION | L0000155 | VOLUME | 487148.210 | 3765887.239 | 551.30 | | LOCATION | L0000156 | VOLUME | 487151.552 | 3765885.753 | 551.81 | | LOCATION | L0000157 | VOLUME | 487154.894 | 3765884.268 | 552.29 | | LOCATION | L0000158 | VOLUME | 487158.237 | 3765882.782 | 552.76 | | LOCATION | L0000159 | VOLUME | 487161.579 | 3765881.297 | 553.19 | | LOCATION | L0000160 | VOLUME | 487164.921 | 3765879.811 | 553.61 | | LOCATION | L0000161 | VOLUME | 487168.264 | 3765878.326 | 554.01 | | LOCATION | L0000162 | VOLUME | 487171.606 | 3765876.840 | 554.42 | | LOCATION | L0000163 | VOLUME | 487174.948 | 3765875.355 | 554.80 | | LOCATION | L0000164 | VOLUME | 487178.291 | 3765873.869 | 555.12 | | | L0000165 | VOLUME | 487181.633 | 3765872.384 | 555.41 | | LOCATION | L0000166 | VOLUME | 487184.976 | 3765870.898 | 555.68 | | LOCATION | L0000167 | VOLUME | 487188.318 | 3765869.413 | 555.92 | | LOCATION | L0000168 | VOLUME | 487191.660 | 3765867.927 | 556.14 | | | L0000169 | VOLUME | 487195.003 | 3765866.442 | 555.75 | | | L0000170 | VOLUME | 487198.345 | 3765864.956 | 555.39 | | | L0000171 | VOLUME | 487201.687 | 3765863.471 | 555.07 | | | L0000172 | VOLUME | 487205.030 | 3765861.985 | 554.80 | | | L0000173 | VOLUME | 487208.372 | 3765860.500 | 554.56 | | | L0000174 | VOLUME | 487211.714 | 3765859.014 | 554.38 | | | L0000175 | VOLUME | 487215.057 | 3765857.529 | 554.23 | | | L0000176 | VOLUME | 487218.399 | 3765856.043 | 554.19 | | | L0000177 | VOLUME | 487221.741 | 3765854.558 | 554.32 | | | L0000178 | VOLUME | 487225.084 | 3765853.072 | 554.43 | | | L0000179 | VOLUME | 487228.426 | 3765851.587 | 554.54 | | | L0000180 | VOLUME | 487231.769 | 3765850.101 | 554.64 | | | L0000181 | VOLUME | 487235.111 | 3765848.616 | 554.73 | | | L0000182 | VOLUME | 487238.453 | 3765847.130 | 554.81 | | | L0000183 | VOLUME | 487241.796 | 3765845.645 | 554.89 | | | L0000184 | VOLUME | 487245.138 | 3765844.159 | 555.12 | | | L0000185 | VOLUME | 487248.480 | 3765842.674 | 555.44 | | | L0000186 | VOLUME | 487251.823 | 3765841.189 | 555.74 | | | L0000187 | VOLUME | 487255.165 | 3765839.703 | 556.03 | | | L0000188 | VOLUME | 487258.404 | 3765838.009 | 556.30 | | | L0000189 | VOLUME | 487261.614 | 3765836.256 | 556.55 | | | L0000190 | VOLUME | 487264.824 | 3765834.503 | 556.78 | | | L0000191 | VOLUME | 487268.035 | 3765832.750 | 556.99 | | | L0000192 | VOLUME | 487271.245
487274.455 | 3765830.996 | 557.33 | | LOCATION | L0000193 | VOLUME | 40/2/4.455 | 3765829.243 | 557.66 | | LOCATION | L0000194 | VOLUME | 487277.665 | 3765827.490 | 557.95 | |----------|----------|-----------|------------|-------------|--------| | LOCATION | L0000195 | VOLUME | 487280.875 | 3765825.737 | 558.20 | | LOCATION | L0000196 | VOLUME | 487284.085 | 3765823.984 | 558.41 | | LOCATION | L0000197 | VOLUME | 487287.295 | 3765822.230 | 558.59 | | LOCATION | L0000198 | VOLUME | 487290.505 | 3765820.477 | 558.72 | | LOCATION | L0000199 | VOLUME | 487293.715 | 3765818.724 | 558.82 | | LOCATION | L0000200 | VOLUME | 487296.925 | 3765816.971 | 558.91 | | LOCATION | L0000201 | VOLUME | 487300.135 | 3765815.218 | 558.97 | | LOCATION | L0000202 | VOLUME | 487303.345 | 3765813.465 | 559.09 | | LOCATION | L0000203 | VOLUME | 487306.555 | 3765811.711 | 559.30 | | LOCATION | L0000204 | VOLUME | 487309.765 | 3765809.958 | 559.51 | | LOCATION | L0000205 | VOLUME | 487312.975 | 3765808.205 | 559.70 | | LOCATION | L0000206 | VOLUME | 487316.185 | 3765806.452 | 559.89 | | LOCATION | L0000207 | VOLUME | 487319.395 | 3765804.699 | 560.06 | | LOCATION | L0000208 | VOLUME | 487322.605 | 3765802.946 | 560.44 | | LOCATION | L0000209 | VOLUME | 487325.815 | 3765801.192 | 560.82 | | LOCATION | L0000210 | VOLUME | 487329.025 | 3765799.439 | 561.17 | | LOCATION | L0000211 | VOLUME | 487332.235 | 3765797.686 | 561.49 | | LOCATION | L0000212 | VOLUME | 487335.446 | 3765795.933 | 561.76 | | LOCATION | L0000213 | VOLUME | 487338.656 | 3765794.180 | 562.00 | | LOCATION | L0000214 | VOLUME | 487341.866 | 3765792.426 | 562.21 | | LOCATION | L0000215 | VOLUME | 487345.076 | 3765790.673 | 562.38 | | LOCATION | L0000216 | VOLUME | 487348.286 | 3765788.920 | 562.80 | | | L0000217 | VOLUME | 487351.496 | 3765787.167 | 563.21 | | | L0000218 | VOLUME | 487354.706 | 3765785.414 | 563.57 | | | L0000219 | VOLUME | 487357.916 | 3765783.661 | 563.87 | | | L0000220 | VOLUME | 487361.126 | 3765781.907 | 564.26 | | | L0000221 | VOLUME | 487364.336 | 3765780.154 | 564.63 | | | L0000222 | VOLUME | 487367.568 | 3765778.443 | 564.97 | | LOCATION | L0000223 | VOLUME | 487370.811 | 3765776.751 | 565.25 | | | L0000224 | VOLUME
| 487374.054 | 3765775.059 | 565.55 | | | L0000225 | VOLUME | 487377.297 | 3765773.367 | 565.82 | | | L0000226 | VOLUME | 487380.539 | 3765771.675 | 566.05 | | | L0000227 | VOLUME | 487383.782 | 3765769.983 | 566.24 | | | L0000228 | VOLUME | 487387.025 | 3765768.292 | 566.40 | | | L0000229 | VOLUME | 487390.268 | 3765766.600 | 566.53 | | | L0000230 | VOLUME | 487393.510 | 3765764.908 | 566.61 | | | L0000231 | VOLUME | 487396.753 | 3765763.216 | 566.66 | | | L0000232 | VOLUME | 487399.996 | 3765761.524 | 567.08 | | | L0000233 | VOLUME | 487403.239 | 3765759.832 | 567.46 | | | L0000234 | VOLUME | 487406.482 | 3765758.140 | 567.79 | | | L0000235 | VOLUME | 487409.724 | 3765756.448 | 568.08 | | | L0000236 | VOLUME | 487412.967 | 3765754.756 | 568.32 | | | L0000237 | VOLUME | 487416.210 | 3765753.065 | 568.52 | | | L0000237 | VOLUME | 487419.453 | 3765751.373 | 568.87 | | | L0000239 | VOLUME | 487422.695 | 3765749.681 | 569.29 | | | L0000239 | VOLUME | 487425.938 | 3765747.989 | 570.08 | | | L0000210 | VOLUME | 487429.181 | 3765746.297 | 570.77 | | | L0000241 | VOLUME | 487432.424 | 3765744.605 | 571.36 | | | L0000242 | VOLUME | 487435.667 | 3765742.913 | 571.84 | | | L0000243 | VOLUME | 487438.909 | 3765741.221 | 572.23 | | TOCALION | TOUUDAI | A OTIOITE | 10/430.909 | 2102141.661 | 214.43 | | LOCATION | L0000245 | VOLUME | 487442.152 | 3765739.530 | 572.52 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000246 | VOLUME | 487445.383 | 3765737.814 | 572.70 | | LOCATION | L0000247 | VOLUME | 487448.610 | 3765736.093 | 572.81 | | LOCATION | L0000248 | VOLUME | 487451.837 | 3765734.372 | 572.96 | | LOCATION | L0000249 | VOLUME | 487455.064 | 3765732.651 | 573.06 | | LOCATION | L0000250 | VOLUME | 487458.292 | 3765730.929 | 573.09 | | LOCATION | L0000251 | VOLUME | 487461.519 | 3765729.208 | 573.08 | | LOCATION | L0000252 | VOLUME | 487464.746 | 3765727.487 | 573.01 | | LOCATION | L0000253 | VOLUME | 487467.974 | 3765725.766 | 572.88 | | LOCATION | L0000254 | VOLUME | 487471.201 | 3765724.045 | 572.69 | | LOCATION | L0000255 | VOLUME | 487474.428 | 3765722.323 | 572.44 | | LOCATION | L0000256 | VOLUME | 487477.655 | 3765720.602 | 572.52 | | LOCATION | L0000257 | VOLUME | 487480.883 | 3765718.881 | 572.81 | | LOCATION | L0000258 | VOLUME | 487484.110 | 3765717.160 | 573.07 | | LOCATION | L0000259 | VOLUME | 487487.337 | 3765715.438 | 573.28 | | LOCATION | L0000260 | VOLUME | 487490.565 | 3765713.717 | 573.46 | | LOCATION | L0000261 | VOLUME | 487493.792 | 3765711.996 | 573.60 | | LOCATION | L0000262 | VOLUME | 487497.019 | 3765710.275 | 573.70 | | LOCATION | L0000263 | VOLUME | 487500.247 | 3765708.554 | 573.87 | | LOCATION | L0000264 | VOLUME | 487503.474 | 3765706.832 | 574.22 | | LOCATION | L0000265 | VOLUME | 487506.701 | 3765705.111 | 574.54 | | LOCATION | L0000266 | VOLUME | 487509.928 | 3765703.390 | 574.81 | | LOCATION | L0000267 | VOLUME | 487513.156 | 3765701.669 | 575.03 | | LOCATION | L0000268 | VOLUME | 487516.383 | 3765699.947 | 575.22 | | LOCATION | L0000269 | VOLUME | 487519.608 | 3765698.222 | 575.36 | | LOCATION | L0000270 | VOLUME | 487522.829 | 3765696.488 | 575.46 | | LOCATION | L0000271 | VOLUME | 487526.049 | 3765694.754 | 575.69 | | LOCATION | L0000272 | VOLUME | 487529.269 | 3765693.020 | 576.15 | | LOCATION | L0000273 | VOLUME | 487532.490 | 3765691.286 | 576.55 | | LOCATION | | VOLUME | 487535.710 | 3765689.552 | 577.10 | | | L0000275 | VOLUME | 487538.931 | 3765687.818 | 577.65 | | LOCATION | | VOLUME | 487542.151 | 3765686.084 | 578.12 | | | L0000277 | VOLUME | 487545.371 | 3765684.350 | 578.49 | | | L0000278 | VOLUME | 487548.592 | 3765682.615 | 578.78 | | LOCATION | | VOLUME | 487551.812 | 3765680.881 | 579.11 | | | L0000280 | VOLUME | 487555.033 | 3765679.147 | 579.53 | | | L0000281 | VOLUME | 487558.253 | 3765677.413 | 579.85 | | LOCATION | | VOLUME | 487561.473 | 3765675.679 | 580.07 | | LOCATION | | VOLUME | 487564.694 | 3765673.945 | 580.19 | | | L0000284 | VOLUME | 487567.914 | 3765672.211 | 580.21 | | LOCATION | | VOLUME | 487571.135 | 3765670.477 | 580.13 | | LOCATION | | VOLUME | 487574.326 | 3765668.692 | 579.92 | | | L0000287 | VOLUME | 487577.456 | 3765666.799 | 579.64 | | | L0000288 | VOLUME | 487580.586 | 3765664.907 | 579.46 | | LOCATION | | VOLUME | 487583.716 | 3765663.014 | 579.22 | | LOCATION | | VOLUME | 487586.845 | 3765661.122 | 578.94 | | LOCATION | | VOLUME | 487589.975 | 3765659.229 | 578.88 | | LOCATION | | VOLUME | 487593.105 | 3765657.337 | 579.30 | | LOCATION | | VOLUME | 487596.235 | 3765655.444 | 579.64 | | | L0000294 | VOLUME | 487599.365 | 3765653.551 | 579.90 | | LOCATION | ь0000295 | VOLUME | 487602.495 | 3765651.659 | 580.06 | | | | | | | | ``` LOCATION L0000296 VOLUME 487605.625 3765649.766 580.10 VOLUME 487608.755 3765647.874 580.10 LOCATION L0000297 LOCATION L0000298 VOLUME 487612.008 3765646.208 580.14 LOCATION L0000299 VOLUME 487615.300 3765644.615 580.18 LOCATION L0000300 VOLUME 487618.593 3765643.022 580.18 VOLUME 487621.885 3765641.429 580.14 LOCATION L0000301 LOCATION L0000302 VOLUME 487625.178 3765639.836 580.07 VOLUME 487628.470 3765638.243 579.90 LOCATION L0000303 LOCATION L0000304 VOLUME 487631.762 3765636.650 579.65 LOCATION L0000305 VOLUME 487635.055 3765635.056 579.47 ** End of LINE VOLUME Source ID = SLINE1 ** ______ ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE2 ** DESCRSRC WB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00124 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 14 ** 486605.096, 3766049.014, 529.48, 0.00, 1.70 ** 486742.167, 3766004.131, 533.61, 0.00, 1.70 ** 486838.624, 3765970.257, 538.29, 0.00, 1.70 ** 486919.851, 3765944.004, 541.73, 0.00, 1.70 ** 486993.463, 3765920.293, 545.01, 0.00, 1.70 ** 487116.996, 3765877.950, 549.91, 0.00, 1.70 ** 487196.530, 3765842.382, 553.73, 0.00, 1.70 ** 487281.988, 3765800.887, 557.96, 0.00, 1.70 ** 487338.678, 3765767.860, 561.06, 0.00, 1.70 ** 487411.444, 3765726.364, 565.81, 0.00, 1.70 ** 487479.979, 3765690.796, 567.60, 0.00, 1.70 ** 487527.361, 3765666.238, 569.90, 0.00, 1.70 ** 487576.436, 3765639.138, 572.76, 0.00, 1.70 ** 487625.511, 3765614.580, 576.21, 0.00, 1.70 ** ______ LOCATION L0000609 VOLUME 486606.834 3766048.445 528.65 VOLUME 486610.310 3766047.306 528.76 LOCATION L0000610 LOCATION L0000611 VOLUME 486613.786 3766046.168 528.87 VOLUME 486617.262 3766045.030 528.99 LOCATION L0000612 LOCATION L0000613 VOLUME 486620.738 3766043.892 529.11 VOLUME 486624.214 3766042.754 529.24 LOCATION L0000614 LOCATION L0000615 VOLUME 486627.690 3766041.616 529.37 LOCATION L0000616 VOLUME 486631.166 3766040.477 529.52 486634.642 3766039.339 529.67 LOCATION L0000617 VOLUME LOCATION L0000618 VOLUME 486638.118 3766038.201 529.83 LOCATION L0000619 VOLUME 486641.594 3766037.063 529.99 LOCATION L0000620 VOLUME 486645.070 3766035.925 530.15 LOCATION L0000621 VOLUME 486648.546 3766034.786 530.31 ``` | LOCATION | L0000622 | VOLUME | 486652.022 | 3766033.648 | 530.48 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000623 | VOLUME | 486655.498 | 3766032.510 | 530.64 | | LOCATION | L0000624 | VOLUME | 486658.974 | 3766031.372 | 530.79 | | LOCATION | L0000625 | VOLUME | 486662.450 | 3766030.234 | 530.91 | | LOCATION | L0000626 | VOLUME | 486665.926 | 3766029.095 | 531.00 | | LOCATION | L0000627 | VOLUME | 486669.402 | 3766027.957 | 531.09 | | LOCATION | L0000628 | VOLUME | 486672.878 | 3766026.819 | 531.19 | | LOCATION | L0000629 | VOLUME | 486676.354 | 3766025.681 | 531.29 | | LOCATION | L0000630 | VOLUME | 486679.830 | 3766024.543 | 531.40 | | LOCATION | L0000631 | VOLUME | 486683.306 | 3766023.404 | 531.51 | | LOCATION | L0000632 | VOLUME | 486686.782 | 3766022.266 | 531.62 | | LOCATION | L0000633 | VOLUME | 486690.258 | 3766021.128 | 531.74 | | LOCATION | L0000634 | VOLUME | 486693.734 | 3766019.990 | 531.87 | | LOCATION | L0000635 | VOLUME | 486697.210 | 3766018.852 | 532.00 | | LOCATION | L0000636 | VOLUME | 486700.686 | 3766017.713 | 532.14 | | LOCATION | L0000637 | VOLUME | 486704.162 | 3766016.575 | 532.29 | | LOCATION | L0000638 | VOLUME | 486707.638 | 3766015.437 | 532.44 | | LOCATION | L0000639 | VOLUME | 486711.114 | 3766014.299 | 532.59 | | LOCATION | L0000640 | VOLUME | 486714.590 | 3766013.161 | 532.75 | | LOCATION | L0000641 | VOLUME | 486718.066 | 3766012.022 | 532.91 | | LOCATION | L0000642 | VOLUME | 486721.542 | 3766010.884 | 533.08 | | LOCATION | L0000643 | VOLUME | 486725.018 | 3766009.746 | 533.25 | | LOCATION | L0000644 | VOLUME | 486728.494 | 3766008.608 | 533.43 | | LOCATION | L0000645 | VOLUME | 486731.970 | 3766007.470 | 533.61 | | LOCATION | L0000646 | VOLUME | 486735.446 | 3766006.331 | 533.79 | | LOCATION | L0000647 | VOLUME | 486738.922 | 3766005.193 | 533.97 | | LOCATION | L0000648 | VOLUME | 486742.396 | 3766004.050 | 534.15 | | LOCATION | L0000649 | VOLUME | 486745.847 | 3766002.838 | 534.32 | | LOCATION | L0000650 | VOLUME | 486749.298 | 3766001.626 | 534.50 | | LOCATION | | VOLUME | 486752.749 | 3766000.414 | 534.67 | | LOCATION | | VOLUME | 486756.200 | 3765999.202 | 534.80 | | LOCATION | | VOLUME | 486759.651 | 3765997.991 | 534.89 | | | L0000654 | VOLUME | 486763.102 | 3765996.779 | 534.99 | | LOCATION | | VOLUME | 486766.553 | 3765995.567 | 535.09 | | LOCATION | | VOLUME | 486770.004 | 3765994.355 | 535.20 | | LOCATION | | VOLUME | 486773.455 | 3765993.143 | 535.32 | | | L0000658 | VOLUME | 486776.906 | 3765991.931 | 535.45 | | LOCATION | | VOLUME | 486780.357 | 3765990.719 | 535.58 | | LOCATION | | VOLUME | 486783.808 | 3765989.507 | 535.71 | | LOCATION | | VOLUME | 486787.259 | 3765988.295 | 535.85 | | LOCATION | | VOLUME | 486790.710 | 3765987.083 | 535.99 | | LOCATION | | VOLUME | 486794.161 | 3765985.871 | 536.13 | | | L0000664 | VOLUME | 486797.612 | 3765984.659 | 536.29 | | LOCATION | | VOLUME | 486801.063 | 3765983.447 | 536.45 | | LOCATION | | VOLUME | 486804.514 |
3765982.236 | 536.62 | | LOCATION | | VOLUME | 486807.965 | 3765981.024 | 536.79 | | LOCATION | | VOLUME | 486811.416 | 3765979.812 | 536.96 | | LOCATION | | VOLUME | 486814.867 | 3765978.600 | 537.13 | | LOCATION | | VOLUME | 486818.318 | 3765977.388 | 537.31 | | | L0000671 | VOLUME | 486821.769 | 3765976.176 | 537.49 | | LOCATION | L0000672 | VOLUME | 486825.220 | 3765974.964 | 537.67 | | | | | | | | | LOCATION | L0000673 | VOLUME | 486828.671 | 3765973.752 | 537.86 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000674 | VOLUME | 486832.122 | 3765972.540 | 538.05 | | LOCATION | L0000675 | VOLUME | 486835.573 | 3765971.328 | 538.22 | | LOCATION | L0000676 | VOLUME | 486839.027 | 3765970.126 | 538.39 | | LOCATION | L0000677 | VOLUME | 486842.507 | 3765969.002 | 538.56 | | LOCATION | L0000678 | VOLUME | 486845.988 | 3765967.877 | 538.66 | | LOCATION | L0000679 | VOLUME | 486849.468 | 3765966.752 | 538.77 | | LOCATION | L0000680 | VOLUME | 486852.948 | 3765965.627 | 538.88 | | LOCATION | L0000681 | VOLUME | 486856.429 | 3765964.502 | 538.99 | | LOCATION | L0000682 | VOLUME | 486859.909 | 3765963.377 | 539.10 | | LOCATION | L0000683 | VOLUME | 486863.389 | 3765962.253 | 539.21 | | LOCATION | L0000684 | VOLUME | 486866.870 | 3765961.128 | 539.32 | | LOCATION | L0000685 | VOLUME | 486870.350 | 3765960.003 | 539.44 | | LOCATION | L0000686 | VOLUME | 486873.830 | 3765958.878 | 539.56 | | LOCATION | L0000687 | VOLUME | 486877.311 | 3765957.753 | 539.69 | | LOCATION | L0000688 | VOLUME | 486880.791 | 3765956.628 | 539.83 | | LOCATION | L0000689 | VOLUME | 486884.272 | 3765955.504 | 539.97 | | LOCATION | L0000690 | VOLUME | 486887.752 | 3765954.379 | 540.11 | | LOCATION | L0000691 | VOLUME | 486891.232 | 3765953.254 | 540.26 | | LOCATION | L0000692 | VOLUME | 486894.713 | 3765952.129 | 540.41 | | LOCATION | L0000693 | VOLUME | 486898.193 | 3765951.004 | 540.57 | | LOCATION | L0000694 | VOLUME | 486901.673 | 3765949.879 | 540.73 | | LOCATION | L0000695 | VOLUME | 486905.154 | 3765948.754 | 540.90 | | LOCATION | L0000696 | VOLUME | 486908.634 | 3765947.630 | 541.08 | | LOCATION | L0000697 | VOLUME | 486912.114 | 3765946.505 | 541.25 | | LOCATION | L0000698 | VOLUME | 486915.595 | 3765945.380 | 541.42 | | | L0000699 | VOLUME | 486919.075 | 3765944.255 | 541.59 | | LOCATION | L0000700 | VOLUME | 486922.556 | 3765943.133 | 541.77 | | LOCATION | L0000701 | VOLUME | 486926.038 | 3765942.012 | 541.95 | | LOCATION | | VOLUME | 486929.519 | 3765940.890 | 542.13 | | LOCATION | | VOLUME | 486933.000 | 3765939.769 | 542.31 | | LOCATION | | VOLUME | 486936.482 | 3765938.647 | 542.49 | | LOCATION | | VOLUME | 486939.963 | 3765937.526 | 542.62 | | LOCATION | | VOLUME | 486943.445 | 3765936.404 | 542.71 | | LOCATION | | VOLUME | 486946.926 | 3765935.283 | 542.82 | | | L0000708 | VOLUME | 486950.408 | 3765934.161 | 542.92 | | | L0000709 | VOLUME | 486953.889 | 3765933.040 | 543.04 | | LOCATION | | VOLUME | 486957.371 | 3765931.919 | 543.16 | | LOCATION | | VOLUME | 486960.852 | 3765930.797 | 543.29 | | LOCATION | | VOLUME | 486964.333 | 3765929.676 | 543.40 | | LOCATION | | VOLUME | 486967.815 | 3765928.554 | 543.51 | | LOCATION | | VOLUME | 486971.296 | 3765927.433 | 543.63 | | | L0000715 | VOLUME | 486974.778 | 3765926.311 | 543.76 | | LOCATION | | VOLUME | 486978.259 | 3765925.190 | 543.89 | | LOCATION | | VOLUME | 486981.741 | 3765924.069 | 544.02 | | LOCATION | | VOLUME | 486985.222 | 3765922.947 | 544.16 | | LOCATION | | VOLUME | 486988.703 | 3765921.826 | 544.31 | | LOCATION | | VOLUME | 486992.185 | 3765920.704 | 544.45 | | LOCATION | | VOLUME | 486995.653 | 3765919.542 | 544.60 | | LOCATION | | VOLUME | 486999.113 | 3765918.356 | 544.76 | | LOCATION | ь0000723 | VOLUME | 487002.573 | 3765917.170 | 544.92 | | | | | | | | | LOCATION | L0000724 | VOLUME | 487006.033 | 3765915.984 | 545.09 | |----------|----------|-----------|------------|-------------|---------| | LOCATION | L0000725 | VOLUME | 487009.493 | 3765914.798 | 545.27 | | LOCATION | L0000726 | VOLUME | 487012.953 | 3765913.612 | 545.44 | | LOCATION | L0000727 | VOLUME | 487016.413 | 3765912.426 | 545.61 | | LOCATION | L0000728 | VOLUME | 487019.873 | 3765911.240 | 545.78 | | LOCATION | L0000729 | VOLUME | 487023.333 | 3765910.054 | 545.96 | | LOCATION | L0000730 | VOLUME | 487026.793 | 3765908.868 | 546.13 | | LOCATION | L0000731 | VOLUME | 487030.253 | 3765907.682 | 546.30 | | LOCATION | L0000732 | VOLUME | 487033.713 | 3765906.496 | 546.49 | | LOCATION | L0000733 | VOLUME | 487037.173 | 3765905.310 | 546.71 | | LOCATION | L0000734 | VOLUME | 487040.633 | 3765904.125 | 546.89 | | LOCATION | L0000735 | VOLUME | 487044.093 | 3765902.939 | 547.05 | | LOCATION | L0000736 | VOLUME | 487047.553 | 3765901.753 | 547.20 | | LOCATION | L0000737 | VOLUME | 487051.013 | 3765900.567 | 547.34 | | LOCATION | L0000738 | VOLUME | 487054.473 | 3765899.381 | 547.47 | | LOCATION | L0000739 | VOLUME | 487057.933 | 3765898.195 | 547.59 | | LOCATION | L0000740 | VOLUME | 487061.393 | 3765897.009 | 547.69 | | LOCATION | L0000741 | VOLUME | 487064.853 | 3765895.823 | 547.80 | | LOCATION | L0000742 | VOLUME | 487068.313 | 3765894.637 | 547.91 | | LOCATION | L0000743 | VOLUME | 487071.773 | 3765893.451 | 548.02 | | LOCATION | L0000744 | VOLUME | 487075.233 | 3765892.265 | 548.13 | | LOCATION | L0000745 | VOLUME | 487078.693 | 3765891.079 | 548.24 | | LOCATION | L0000746 | VOLUME | 487082.153 | 3765889.893 | 548.35 | | | L0000747 | VOLUME | 487085.613 | 3765888.707 | 548.45 | | | L0000748 | VOLUME | 487089.073 | 3765887.521 | 548.56 | | | L0000749 | VOLUME | 487092.533 | 3765886.335 | 548.71 | | | L0000750 | VOLUME | 487095.993 | 3765885.149 | 548.87 | | | L0000751 | VOLUME | 487099.453 | 3765883.963 | 549.03 | | | L0000752 | VOLUME | 487102.913 | 3765882.777 | 549.19 | | LOCATION | L0000753 | VOLUME | 487106.373 | 3765881.591 | 549.35 | | | L0000754 | VOLUME | 487109.832 | 3765880.405 | 549.52 | | | L0000755 | VOLUME | 487113.292 | 3765879.219 | 549.69 | | | L0000756 | VOLUME | 487116.752 | 3765878.033 | 549.87 | | | L0000757 | VOLUME | 487120.100 | 3765876.562 | 550.06 | | | L0000758 | VOLUME | 487123.439 | 3765875.069 | 550.27 | | | L0000759 | VOLUME | 487126.778 | 3765873.576 | 550.48 | | | L0000760 | VOLUME | 487130.117 | 3765872.082 | 550.66 | | | L0000761 | VOLUME | 487133.456 | 3765870.589 | 550.82 | | | L0000762 | VOLUME | 487136.795 | 3765869.096 | 550.95 | | | L0000763 | VOLUME | 487140.134 | 3765867.603 | 551.07 | | | L0000764 | VOLUME | 487143.472 | 3765866.110 | 551.39 | | | L0000765 | VOLUME | 487146.811 | 3765864.617 | 551.71 | | | L0000766 | VOLUME | 487150.150 | 3765863.123 | 551.99 | | | L0000767 | VOLUME | 487153.489 | 3765861.630 | 552.25 | | | L0000768 | VOLUME | 487156.828 | 3765860.137 | 552.47 | | | L0000769 | VOLUME | 487160.167 | 3765858.644 | 552.65 | | | L0000770 | VOLUME | 487163.506 | 3765857.151 | 552.81 | | | L0000770 | VOLUME | 487166.845 | 3765855.658 | 552.95 | | | L0000771 | VOLUME | 487170.184 | 3765854.164 | 553.13 | | | L0000772 | VOLUME | 487173.523 | 3765852.671 | 553.27 | | | L0000773 | VOLUME | | 3765851.178 | 553.40 | | TOCKLION | T0000114 | A OTIOITE | 10/1/0.002 | 3,03031.170 | JJJ. 40 | | LOCATION | L0000775 | VOLUME | 487180.201 | 3765849.685 | 553.49 | |----------|----------|-----------|------------|-------------|--------| | LOCATION | L0000776 | VOLUME | 487183.540 | 3765848.192 | 553.56 | | LOCATION | L0000777 | VOLUME | 487186.879 | 3765846.699 | 553.60 | | LOCATION | L0000778 | VOLUME | 487190.218 | 3765845.205 | 553.61 | | LOCATION | L0000779 | VOLUME | 487193.557 | 3765843.712 | 553.79 | | LOCATION | L0000780 | VOLUME | 487196.890 | 3765842.208 | 553.92 | | LOCATION | L0000781 | VOLUME | 487200.180 | 3765840.610 | 554.05 | | LOCATION | L0000782 | VOLUME | 487203.471 | 3765839.012 | 554.16 | | LOCATION | L0000783 | VOLUME | 487206.761 | 3765837.415 | 554.26 | | LOCATION | L0000784 | VOLUME | 487210.051 | 3765835.817 | 554.34 | | LOCATION | L0000785 | VOLUME | 487213.341 | 3765834.220 | 554.42 | | LOCATION | L0000786 | VOLUME | 487216.632 | 3765832.622 | 554.48 | | LOCATION | L0000787 | VOLUME | 487219.922 | 3765831.024 | 554.60 | | LOCATION | L0000788 | VOLUME | 487223.212 | 3765829.427 | 554.73 | | LOCATION | L0000789 | VOLUME | 487226.502 | 3765827.829 | 554.86 | | LOCATION | L0000790 | VOLUME | 487229.792 | 3765826.231 | 554.99 | | LOCATION | L0000791 | VOLUME | 487233.083 | 3765824.634 | 555.12 | | LOCATION | L0000792 | VOLUME | 487236.373 | 3765823.036 | 555.25 | | LOCATION | L0000793 | VOLUME | 487239.663 | 3765821.438 | 555.38 | | LOCATION | L0000794 | VOLUME | 487242.953 | 3765819.841 | 555.50 | | LOCATION | L0000795 | VOLUME | 487246.244 | 3765818.243 | 555.71 | | LOCATION | L0000796 | VOLUME | 487249.534 | 3765816.646 | 555.89 | | LOCATION | L0000797 | VOLUME | 487252.824 | 3765815.048 | 556.06 | | | L0000798 | VOLUME | 487256.114 | 3765813.450 | 556.25 | | | L0000799 | VOLUME | 487259.404 | 3765811.853 | 556.45 | | | L0000800 | VOLUME | 487262.695 | 3765810.255 | 556.63 | | | L0000801 | VOLUME | 487265.985 | 3765808.657 | 556.79 | | | L0000802 | VOLUME | 487269.275 | 3765807.060 | 556.95 | | | L0000803 | VOLUME | 487272.565 | 3765805.462 | 557.16 | | LOCATION | L0000804 | VOLUME | 487275.856 | 3765803.864 | 557.36 | | | L0000805 | VOLUME | 487279.146 | 3765802.267 | 557.55 | | | L0000806 | VOLUME | 487282.418 | 3765800.636 | 557.72 | | | L0000807 | VOLUME | 487285.579 | 3765798.795 | 557.88 | | | L0000808 | VOLUME | 487288.739 | 3765796.954 | 558.03 | | | L0000809 | VOLUME | 487291.900 | 3765795.112 | 558.17 | | | L0000810 | VOLUME | 487295.060 | 3765793.271 | 558.31 | | | L0000811 | VOLUME | 487298.220 | 3765791.430 | 558.48 | | | L0000812 | VOLUME | 487301.381 | 3765789.589 | 558.63 | | | L0000813 | VOLUME | 487304.541 | 3765787.747 | 558.78 | | | L0000814 | VOLUME | 487307.701 | 3765785.906 | 558.91 | | | L0000815 | VOLUME | 487310.862 | 3765784.065 | 559.04 | | | L0000816 | VOLUME |
487314.022 | 3765782.224 | 559.20 | | | L0000817 | VOLUME | 487317.183 | 3765780.383 | 559.38 | | | L0000818 | VOLUME | 487320.343 | 3765778.541 | 559.57 | | | L0000819 | VOLUME | 487323.503 | 3765776.700 | 559.82 | | | L0000820 | VOLUME | 487326.664 | 3765774.859 | 560.07 | | | L0000821 | VOLUME | 487329.824 | 3765773.018 | 560.29 | | | L0000822 | VOLUME | 487332.984 | 3765771.177 | 560.50 | | | L0000823 | VOLUME | 487336.145 | 3765769.335 | 560.69 | | | L0000824 | VOLUME | 487339.308 | 3765767.500 | 560.87 | | | L0000825 | VOLUME | | 3765765.688 | 561.03 | | TOCALION | T0000023 | A OTIOIAE | 10/374.700 | 2102103.000 | 201.03 | | LOCATION | L0000826 | VOLUME | 487345.663 | 3765763.876 | 561.18 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000827 | VOLUME | 487348.840 | 3765762.064 | 561.41 | | LOCATION | L0000828 | VOLUME | 487352.018 | 3765760.252 | 561.60 | | LOCATION | L0000829 | VOLUME | 487355.195 | 3765758.441 | 561.73 | | LOCATION | L0000830 | VOLUME | 487358.372 | 3765756.629 | 561.82 | | LOCATION | L0000831 | VOLUME | 487361.549 | 3765754.817 | 561.86 | | LOCATION | L0000832 | VOLUME | 487364.727 | 3765753.005 | 561.85 | | LOCATION | L0000833 | VOLUME | 487367.904 | 3765751.193 | 561.96 | | LOCATION | L0000834 | VOLUME | 487371.081 | 3765749.381 | 562.12 | | LOCATION | L0000835 | VOLUME | 487374.259 | 3765747.569 | 562.39 | | LOCATION | L0000836 | VOLUME | 487377.436 | 3765745.757 | 562.64 | | LOCATION | L0000837 | VOLUME | 487380.613 | 3765743.945 | 562.88 | | LOCATION | L0000838 | VOLUME | 487383.790 | 3765742.134 | 563.10 | | LOCATION | L0000839 | VOLUME | 487386.968 | 3765740.322 | 563.31 | | LOCATION | L0000840 | VOLUME | 487390.145 | 3765738.510 | 563.51 | | LOCATION | L0000841 | VOLUME | 487393.322 | 3765736.698 | 563.69 | | LOCATION | L0000842 | VOLUME | 487396.500 | 3765734.886 | 563.85 | | LOCATION | L0000843 | VOLUME | 487399.677 | 3765733.074 | 564.13 | | LOCATION | L0000844 | VOLUME | 487402.854 | 3765731.262 | 564.36 | | LOCATION | L0000845 | VOLUME | 487406.031 | 3765729.450 | 564.53 | | LOCATION | L0000846 | VOLUME | 487409.209 | 3765727.638 | 564.64 | | LOCATION | L0000847 | VOLUME | 487412.406 | 3765725.864 | 564.69 | | LOCATION | L0000848 | VOLUME | 487415.653 | 3765724.179 | 564.70 | | LOCATION | L0000849 | VOLUME | 487418.899 | 3765722.495 | 564.66 | | LOCATION | L0000850 | VOLUME | 487422.146 | 3765720.810 | 564.70 | | LOCATION | L0000851 | VOLUME | 487425.392 | 3765719.125 | 564.98 | | LOCATION | L0000852 | VOLUME | 487428.639 | 3765717.440 | 565.25 | | LOCATION | L0000853 | VOLUME | 487431.885 | 3765715.755 | 565.50 | | LOCATION | L0000854 | VOLUME | 487435.132 | 3765714.071 | 565.74 | | LOCATION | L0000855 | VOLUME | 487438.378 | 3765712.386 | 565.96 | | LOCATION | L0000856 | VOLUME | 487441.625 | 3765710.701 | 566.17 | | LOCATION | L0000857 | VOLUME | 487444.871 | 3765709.016 | 566.37 | | LOCATION | | VOLUME | 487448.117 | 3765707.331 | 566.56 | | LOCATION | | VOLUME | 487451.364 | 3765705.647 | 566.89 | | LOCATION | | VOLUME | 487454.610 | 3765703.962 | 567.16 | | LOCATION | | VOLUME | 487457.857 | 3765702.277 | 567.39 | | LOCATION | | VOLUME | 487461.103 | 3765700.592 | 567.56 | | LOCATION | | VOLUME | 487464.350 | 3765698.907 | 567.68 | | LOCATION | | VOLUME | 487467.596 | 3765697.223 | 567.75 | | LOCATION | | VOLUME | 487470.843 | 3765695.538 | 567.77 | | LOCATION | | VOLUME | 487474.089 | 3765693.853 | 567.75 | | LOCATION | | VOLUME | 487477.336 | 3765692.168 | 567.77 | | LOCATION | | VOLUME | 487480.582 | 3765690.484 | 567.82 | | LOCATION | | VOLUME | 487483.829 | 3765688.801 | 568.06 | | LOCATION | | VOLUME | 487487.077 | 3765687.117 | 568.30 | | LOCATION | | VOLUME | 487490.324 | 3765685.434 | 568.53 | | LOCATION | | VOLUME | 487493.571 | 3765683.751 | 568.74 | | LOCATION | | VOLUME | 487496.819 | 3765682.068 | 568.94 | | LOCATION | | VOLUME | 487500.066 | 3765680.385 | 569.19 | | LOCATION | | VOLUME | 487503.313 | 3765678.702 | 569.55 | | LOCATION | L0000876 | VOLUME | 487506.561 | 3765677.019 | 569.87 | | | | | | | | | | LOCATION L0000877 | VOLUME | 487509.808 | 3765675.336 | 570.14 | |---|--|-----------|------------|-------------|--------| | | LOCATION L0000878 | VOLUME | 487513.055 | 3765673.652 | 570.36 | | | LOCATION L0000879 | VOLUME | 487516.303 | 3765671.969 | 570.54 | | | LOCATION L0000880 | VOLUME | 487519.550 | 3765670.286 | 570.67 | | | LOCATION L0000881 | VOLUME | 487522.797 | 3765668.603 | 570.75 | | | LOCATION L0000882 | VOLUME | | 3765666.920 | | | | LOCATION L0000883 | VOLUME | | 3765665.186 | | | | LOCATION L0000884 | VOLUME | 487532.467 | | | | | LOCATION L0000885 | VOLUME | | 3765661.650 | | | | LOCATION L0000886 | VOLUME | | 3765659.882 | | | | LOCATION L0000887 | VOLUME | | 3765658.114 | | | | LOCATION L0000888 | VOLUME | | 3765656.346 | | | | LOCATION L0000889 | VOLUME | | 3765654.578 | | | | LOCATION L0000890 | VOLUME | | 3765652.810 | | | | LOCATION L0000891 | VOLUME | | 3765651.042 | | | | LOCATION L0000892 | VOLUME | | 3765649.274 | | | | LOCATION L0000893 | VOLUME | | 3765647.506 | | | | LOCATION L0000894 | VOLUME | | 3765645.738 | | | | LOCATION L0000895 | VOLUME | | 3765643.969 | | | | LOCATION L0000896 | VOLUME | | 3765642.201 | | | | LOCATION L0000897 | VOLUME | | 3765640.433 | | | | LOCATION LOCOTOS | VOLUME | | 3765638.700 | | | | LOCATION LOCOTOS | VOLUME | | 3765637.063 | | | | LOCATION LOCOTOGO LOCATION LOCOTOGO LOCATION LOC | VOLUME | | 3765635.427 | | | | LOCATION L0000900 | VOLUME | | 3765633.790 | | | | LOCATION L0000901 | VOLUME | | 3765632.153 | | | | LOCATION L0000902 | VOLUME | | 3765630.516 | | | | LOCATION L0000903 | VOLUME | | 3765628.879 | | | | LOCATION L0000905 | VOLUME | | 3765627.242 | | | | LOCATION L0000905 | VOLUME | | 3765625.605 | | | | LOCATION L0000900 | VOLUME | | 3765623.969 | | | | LOCATION L0000907 | VOLUME | | 3765622.332 | | | | LOCATION L0000908 | VOLUME | | 3765620.695 | | | | LOCATION L0000909 | VOLUME | | 3765619.058 | | | | LOCATION L0000910 | VOLUME | | 3765617.421 | | | | LOCATION L0000911 | VOLUME | | 3765615.784 | | | * | End of LINE VOLUME Sou | | | 3/03013./04 | 373.39 | | * | Source Parameters ** | itce in - | STINES | | | | * | LINE VOLUME Source ID | - CITNE1 | | | | | | SRCPARAM L0000001 | 0.0000040 | 0.0 | 00 1.70 | 0.85 | | | SRCPARAM L0000001 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000003 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000003 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000004
SRCPARAM L0000005 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000005 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000007 | 0.0000040 | | | 0.85 | | | | 0.0000040 | | | 0.85 | | | SRCPARAM L0000008
SRCPARAM L0000009 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000009
SRCPARAM L0000010 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000010
SRCPARAM L0000011 | 0.0000040 | | | 0.85 | | | SRCPARAM L0000011
SRCPARAM L0000012 | 0.0000040 | | | 0.85 | | | SICPARAM LUUUUUIZ | 0.0000040 | 0.0 | 1.70 | 0.05 | | | L0000013 | 0.00004066 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | | L0000014 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000015 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000016 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000017 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000018 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000019 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000020 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000021 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000022 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000023 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000024 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000025 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000026 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000027 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000028 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000029 | 0.000004066 |
0.00 | 1.70 | 0.85 | | | L0000030 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000031 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000032 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000033 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000033 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000031 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000033 | 0.000001000 | 0.00 | 1.70 | 0.85 | | | L0000037 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000037 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000038 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000039 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000040 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0000042 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000043 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000044 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000045 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000046 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000047 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000048 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000049 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000050 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000051 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000052 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000053 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000054 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000055 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000056 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000057 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000058 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000059 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000060 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000061 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000062 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000063 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000064 | 0.000004066 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0000065 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000066 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000067 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000068 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000069 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000070 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000071 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000072 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000073 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000074 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000075 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000076 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000077 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000078 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000079 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000080 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000081 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000082 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000083 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000084 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000085 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000086 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000087 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000088 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000089 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000090 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000091 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000092 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000093 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000094 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000095 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000096 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000097 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000098 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000099 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000100 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000101 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000102 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000103 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000104 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000105 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000106 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000107 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000107 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000109 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000110 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000111 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000111 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000112 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000113 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | | | | 3.03 | | SRCPARAM | L0000115 | 0.000004066 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|-----------|------|------| | SRCPARAM | L0000116 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000117 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000118 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000119 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000120 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000121 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000122 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000123 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000124 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000125 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000126 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000127 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000128 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000129 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000130 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000131 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000132 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000133 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000134 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000135 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000136 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000137 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000138 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000139 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000140 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000141 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000142 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000143 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000144 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000145 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000146 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000147 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000148 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000149 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000150 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000151 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000152 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000153 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000154 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000155 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000156 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000157 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000157 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000150 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000160 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000161 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000162 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000163 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000164 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000165 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | | - • • • • | | 3.03 | | SRCPARAM | L0000166 | 0.000004066 | 0.00 | 1.70 | 0.85 | |------------------|----------|-------------|------|------|------| | SRCPARAM | L0000167 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000168 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000169 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000170 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000171 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000172 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000173 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000174 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000175 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000176 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000177 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000178 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000179 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000180 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000181 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000182 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000183 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000184 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000185 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000186 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000187 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000188 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000189 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000190 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000191 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000192 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000193 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000194 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000195 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000196 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000197 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000198 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000199 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000200 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000201 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000202 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000203 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000204 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000205 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000206 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ |
L0000207 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000208 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000209 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000210 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000211 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000212 | 0.000004066 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0000213 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000214 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000215 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000216 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | | | | | | SRCPARAM | L0000217 | 0.000004066 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0000218 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000220 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000221 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000222 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000223 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000224 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000226 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000227 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000228 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000229 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000231 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000232 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000233 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000234 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000235 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000237 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000238 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000239 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000240 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000241 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000242 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000243 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000244 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000245 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000246 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000247 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000250 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000252 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000253 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000257 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | | L0000259 | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004066 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000267 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | | | | | | | SRCPARAM | L0000268 | 0.000004066 | 0.00 | 1.70 | 0.85 | |---|----------|---------------|-------------|------|------|------| | | | L0000269 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000270 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000271 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000272 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000273 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000274 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000275 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000275 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000277 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000277 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000270 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000279 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000280 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000281 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000282 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000283 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | | 0.000004066 | | | | | | | L0000285 | | 0.00 | 1.70 | 0.85 | | | | L0000286 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000287 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000288 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000289 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000290 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000291 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000292 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000293 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000294 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000295 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000296 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000297 | 0.00004066 | 0.00 | 1.70 | 0.85 | | | | L0000298 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000299 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000300 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000301 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000302 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000303 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | | L0000304 | 0.000004066 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000305 | 0.000004066 | 0.00 | 1.70 | 0.85 | | • | | | | | | | | • | | JME Source ID | | | | | | | | L0000609 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | L0000610 | 0.00004079 | 0.00 | 1.70 | 0.85 | | | | L0000611 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | L0000612 | 0.00004079 | 0.00 | 1.70 | 0.85 | | | | L0000613 | 0.00004079 | 0.00 | 1.70 | 0.85 | | | | L0000614 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | L0000615 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | L0000616 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | L0000617 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | L0000618 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000619 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000620 | 0.000004079 | 0.00 | 1.70 | 0.85 | |----------|--------------|-------------|------|------|------| | SRCPARAM | L0000621 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000622 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000623 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000624 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000625 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000626 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000627 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000628 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000629 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000630 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000631 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000632 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000633 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000634 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000635 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000636 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000637 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000640 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000641 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000642 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000643 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000644 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000645 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000647 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000648 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000649 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000650 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000652 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000653 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000654 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000655 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000656 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000657 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000658 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000659 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000660 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000662 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000663 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000664 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000665 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000667 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000668 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000669 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | - | | | | | | SRCPARAM | L0000671 | 0.000004079 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000674 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000675 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000676 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000677 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000679 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000680 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000681 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000682 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000683 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000685 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000686 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000687 |
0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000688 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000689 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000691 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000692 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000694 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000695 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000698 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000699 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000700 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000701 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000704 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000707 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000711 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000713 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000721 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0000722 | 0.00004079 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | | L0000723 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000724 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000725 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000726 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000727 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000728 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000729 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000730 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000731 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000732 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000733 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000733 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000731 | 0.000001079 | 0.00 | 1.70 | 0.85 | | | L0000735 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000737 | | | | | | | L0000738 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000739 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000740 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000741 | 0.00004079 | 0.00 | 1.70 | 0.85 | | | L0000742 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000743 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000744 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000745 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000746 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000747 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000748 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000749 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000750 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000751 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000752 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000753 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000754 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000755 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000756 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000757 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000758 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000759 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000760 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000761 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000762 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000763 | 0.000001079 | 0.00 | 1.70 | 0.85 | | | L0000764 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0000765 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000766 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000767 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000768 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000769 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000770 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000771 | 0.00004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000772 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000773 | 0.000004079 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0000774 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000775 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000776 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000777 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000778 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000779 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000780 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000781 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000782 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000783 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000784 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000785 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000786 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000787 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000788 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000789 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000790 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000792 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000793 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000794 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000797 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000800 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000801 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000802 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000803 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000804 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000805 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000807 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000808 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000809 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000810 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000812 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000813 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000814 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000817 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000819 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000820 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000822 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0000824 | 0.00004079 | 0.00 | 1.70 | 0.85 | |----------|----------------------|----------------------------|------|------|------| | | L0000825 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000826 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000827 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000828 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000829 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000830 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000831 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000832 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000833 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000834 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000835 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000836 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000837 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000838 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000839 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000840 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000841 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000842 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000843 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000844 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000845 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000846 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000847 | 0.000001079 | 0.00 | 1.70 | 0.85 | | | L0000848 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000849 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000849 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000851 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000851 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | | | 0.00 | 1.70 | | | | L0000853
L0000854 | 0.000004079
0.000004079 | | 1.70 | 0.85 | | | | | 0.00 | | | | | L0000855 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000856 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000857 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000858 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000859 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000860 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000861 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000862 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000863 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000864 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000865 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000866 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000867 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000868 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000869 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000870 |
0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000871 | 0.000004079 | 0.00 | 1.70 | 0.85 | | | L0000872 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000873 | 0.000004079 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000874 | 0.000004079 | 0.00 | 1.70 | 0.85 | ``` SRCPARAM L0000875 0.000004079 0.00 1.70 0.85 0.00 1.70 SRCPARAM L0000876 0.000004079 0.85 SRCPARAM L0000877 0.000004079 0.00 1.70 0.85 SRCPARAM L0000878 0.000004079 0.00 1.70 0.85 SRCPARAM L0000879 0.000004079 0.00 1.70 0.85 SRCPARAM L0000880 0.000004079 0.00 1.70 0.85 SRCPARAM L0000881 0.000004079 0.00 1.70 0.85 SRCPARAM L0000882 0.000004079 0.00 1.70 0.85 SRCPARAM L0000883 0.000004079 0.00 1.70 0.85 SRCPARAM L0000884 0.000004079 0.00 1.70 0.85 SRCPARAM L0000885 0.000004079 0.00 1.70 0.85 SRCPARAM L0000886 0.000004079 0.00 1.70 0.85 0.000004079 0.00 1.70 SRCPARAM L0000887 0.85 1.70 SRCPARAM L0000888 0.000004079 0.00 0.85 1.70 SRCPARAM L0000889 0.000004079 0.00 0.85 SRCPARAM L0000890 0.000004079 0.00 1.70 0.85 SRCPARAM L0000891 0.000004079 0.00 1.70 0.85 SRCPARAM L0000892 0.000004079 0.00 1.70 0.85 1.70 SRCPARAM L0000893 0.000004079 0.00 0.85 SRCPARAM L0000894 0.000004079 0.00 1.70 0.85 SRCPARAM L0000895 0.000004079 0.00 1.70 0.85 0.00 1.70 SRCPARAM L0000896 0.000004079 0.85 SRCPARAM L0000897 0.000004079 0.00 1.70 0.85 1.70 SRCPARAM L0000898 0.000004079 0.00 0.85 SRCPARAM L0000899 0.000004079 0.00 1.70 0.85 SRCPARAM L0000900 0.000004079 0.00 1.70 0.85 SRCPARAM L0000901 0.000004079 0.00 1.70 0.85 SRCPARAM L0000902 0.000004079 0.00 1.70 0.85 0.00 1.70 SRCPARAM L0000903 0.000004079 0.85 SRCPARAM L0000904 0.000004079 0.00 1.70 0.85 1.70 SRCPARAM L0000905 0.000004079 0.00 0.85 SRCPARAM L0000906 0.000004079 0.00 1.70 0.85 SRCPARAM L0000907 0.000004079 0.00 1.70 0.85 SRCPARAM L0000908 0.000004079 0.00 1.70 0.85 SRCPARAM L0000909 1.70 0.000004079 0.00 0.85 SRCPARAM L0000910 0.000004079 0.00 1.70 0.85 SRCPARAM L0000911 0.000004079 0.00 1.70 0.85 SRCPARAM L0000912 1.70 0.000004079 0.00 0.85 URBANSRC ALL SRCGROUP ALL SO FINISHED * * ** AERMOD Receptor Pathway * * RE STARTING INCLUDED "Terracina at Redlands OY.rou" RE FINISHED ``` ``` ** AERMOD Meteorology Pathway *********** * * ME STARTING SURFFILE "E:\New MET data\RDLD_V9_ADJU\RDLD_v9.SFC" PROFFILE "E:\New MET data\RDLD V9 ADJU\RDLD v9.PFL" SURFDATA 3171 2012 UAIRDATA 3190 2012 SITEDATA 99999 2012 PROFBASE 481.0 METERS ME FINISHED ********** ** AERMOD Output Pathway ********** * * OU STARTING ** Auto-Generated Plotfiles PLOTFILE PERIOD ALL "Terracina at Redlands OY.AD\PE00GALL.PLT" 31 SUMMFILE "Terracina at Redlands OY.sum" OU FINISHED *** Message Summary For AERMOD Model Setup *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) 0 Informational Message(s) A Total of ****** FATAL ERROR MESSAGES ****** *** NONE *** ME W186 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ********* *** SETUP Finishes Successfully *** ********** *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY * * * 18:13:06 ``` ``` *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* MODEL SETUP OPTIONS SUMMARY **Model Is Setup For Calculation of Average CONCentration Values. -- DEPOSITION LOGIC -- **NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. DRYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses URBAN Dispersion Algorithm for the SBL for 609 Source(s), for Total of 1 Urban Area(s): Urban Population = 2035210.0; Urban Roughness Length = 1.000 m **Model Uses Regulatory DEFAULT Options: 1. Stack-tip Downwash. 2. Model Accounts for ELEVated Terrain Effects. 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. 6. Urban Roughness Length of 1.0 Meter Assumed. **Other Options Specified: ADJ_U* - Use ADJ_U* option for SBL in AERMET TEMP_Sub - Meteorological data includes TEMP substitutions **Model Assumes No FLAGPOLE Receptor Heights. **The User Specified a Pollutant Type of: DPM **Model Calculates PERIOD Averages Only **This Run Includes: 609 Source(s); 1 Source Group(s); and 449 Receptor(s) with: 0 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 609 VOLUME source(s) and: 0 AREA type source(s) and: 0 LINE source(s) and: 0 RLINE/RLINEXT source(s) and: 0 OPENPIT source(s) and: **Model Set To Continue RUNning After the Setup Testing. ``` **The AERMET Input Meteorological Data Version Date: 16216 #### **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours $\tt m$ for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 481.00; Decay Coef. = 0.000; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 *** 08/11/21 18:13:06 PAGE 2 Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 3.8 MB of RAM. **Input Runstream File: aermod.inp **Output Print File: aermod.out **Detailed Error/Message File: Terracina at Redlands OY.err **File for Summary of Results: Terracina at Redlands OY.sum *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY *** *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | L0000001 | 0 | 0.40660E-05 | 486617.8 | 3766076.2 | 527.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000002 | 0 | 0.40660E-05 | 486621.2 | 3766075.0 | 527.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000003 | 0 | 0.40660E-05 | 486624.7 | 3766073.9 | 527.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000004 | 0 | 0.40660E-05 | 486628.2 | 3766072.7 | 527.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000005 | 0 | 0.40660E-05 | 486631.6 | 3766071.5 | 527.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000006 | 0 | 0.40660E-05 | 486635.1 | 3766070.3 | 528.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000007 | 0 | 0.40660E-05 | 486638.6 | 3766069.1 | 528.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000008 | 0 | 0.40660E-05 | 486642.0 | 3766068.0 | 528.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000009 | 0 | 0.40660E-05 | 486645.5 | 3766066.8 | 528.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000010 | 0 | 0.40660E-05 | 486648.9 | 3766065.6 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000011 | 0 | 0.40660E-05 | 486652.4 | 3766064.4 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000012 | 0 | 0.40660E-05 | 486655.9 | 3766063.3 | 528.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000013 | 0 | 0.40660E-05 | 486659.3 | 3766062.1 | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000014 | 0 | 0.40660E-05 | 486662.8 | 3766060.9 | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000015 | 0 | 0.40660E-05 | 486666.3 | 3766059.7 | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000016 | 0 | 0.40660E-05 | 486669.7 | 3766058.6 | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000018 | L0000017 | 0 | 0.40660E-05 | 486673.2 3766057.4 | 529.5 | 0.00 | 1.70 | 0.85 | YES | | |--|----------------|---------|-------------|---------------------|----------|------------|------|------|-----|-----| | L0000020 | L0000018 | 0 | 0.40660E-05 | 486676.6 3766056.2 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000021 | L0000019 | 0 | 0.40660E-05 | 486680.1 3766055.0 | 529.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000022 | L0000020 | 0 | 0.40660E-05 | 486683.6 3766053.8 | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000023 | L0000021 | 0 | 0.40660E-05 | 486687.0 3766052.7 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000024 | L0000022 | 0 | 0.40660E-05 | 486690.5 3766051.5 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000025 | L0000023 | 0 | 0.40660E-05 | 486694.0 3766050.3 | 530.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000026 | L0000024 | 0 | 0.40660E-05 | 486697.4 3766049.1 | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000027 | L0000025 | 0 | 0.40660E-05 | 486700.9 3766048.0 | 531.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000028 | L0000026 | 0 | 0.40660E-05 | 486704.3 3766046.8 | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000029 | L0000027 | 0 | 0.40660E-05 | | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000030 | L0000028 | 0 | 0.40660E-05 | 486711.3 3766044.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000031 | L0000029 | 0 | 0.40660E-05 | 486714.7 3766043.2 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000032 | L0000030 | 0 | 0.40660E-05 | 486718.2 3766042.1 | 531.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000033 | L0000031 | 0 | 0.40660E-05 | 486721.7 3766040.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000034 | L0000032 | 0 | 0.40660E-05 | 486725.1 3766039.7 | | 0.00 | 1.70 | | YES | | | L0000035 | L0000033 | 0 | 0.40660E-05 | 486728.6 3766038.5 | 532.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000036 | L0000034 | 0 | 0.40660E-05 | 486732.1 3766037.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000037 | L0000035 | 0 | 0.40660E-05 | 486735.5 3766036.2 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000038 | L0000036 | 0 | 0.40660E-05 | | | | | | YES | | | L0000039 | L0000037 | 0 | 0.40660E-05 | 486742.4 3766033.8 | 533.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000040 0 0.40660E-05 486752.8 3766030.3 533.2 0.00 1.70 0.85 YES *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** | | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands
*** | L0000039 | 0 | 0.40660E-05 | 486749.4 3766031.5 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | ABILIOD VERDION ZIIIZ ICIIACINA AC REGIANAS | L0000040 | 0 | 0.40660E-05 | 486752.8 3766030.3 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | ABILIOD VERDION ZIIIZ ICIIACINA AC REGIANAS | | | | | | | | | | | | *** AERMET - VERSION 16216 *** | | | | | | | | | | | | | *** AERMET - V | JERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | OY | | | *** | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* # *** VOLUME SOURCE DATA *** 08/11/21 18:13:06 PAGE 3 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X
(METERS)
 | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------|---------------|-------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | L0000041 | 0 | 0.40660E-05 | 486756.3 | 3766029.1 | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000042 | 0 | 0.40660E-05 | 486759.8 | 3766027.9 | 533.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000043 | 0 | 0.40660E-05 | 486763.2 | 3766026.8 | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000044 | 0 | 0.40660E-05 | 486766.7 | 3766025.6 | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000045 | 0 | 0.40660E-05 | 486770.1 | 3766024.4 | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000046 | 0 | 0.40660E-05 | 486773.6 | 3766023.2 | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000047 | 0 | 0.40660E-05 | 486777.1 | 3766022.1 | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000048 | 0 | 0.40660E-05 | 486780.5 | 3766020.9 | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000049 | 0 | 0.40660E-05 | 486784.0 | 3766019.7 | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000050 | 0 | 0.40660E-05 | 486787.5 | 3766018.5 | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000051 | 0 | 0.40660E-05 | 486790.9 | 3766017.4 | 535.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000052 | 0 | 0.40660E-05 | 486794.4 | 3766016.2 | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000053 | 0 | 0.40660E-05 | 486797.9 | 3766015.1 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000054 | 0 | 0.40660E-05 | 486801.4 3766013.9 | 536.5 | 0.00 | 1.70 | 0.85 | YES | | |------------|-----------|-------------|----------------------|--------|------|------|------|-----|-----| | L0000055 | 0 | 0.40660E-05 | 486804.8 3766012.8 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000056 | 0 | 0.40660E-05 | 486808.3 3766011.6 | 536.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000057 | 0 | 0.40660E-05 | 486811.8 3766010.5 | 536.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000058 | 0 | 0.40660E-05 | 486815.2 3766009.3 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000059 | 0 | 0.40660E-05 | 486818.7 3766008.2 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000060 | 0 | 0.40660E-05 | 486822.2 3766007.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000061 | 0 | 0.40660E-05 | 486825.7 3766005.9 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000062 | 0 | 0.40660E-05 | 486829.1 3766004.8 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000063 | 0 | 0.40660E-05 | 486832.6 3766003.6 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000064 | 0 | 0.40660E-05 | 486836.1 3766002.5 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000065 | 0 | 0.40660E-05 | 486839.5 3766001.3 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000066 | 0 | 0.40660E-05 | 486843.0 3766000.2 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000067 | 0 | 0.40660E-05 | 486846.5 3765999.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000068 | 0 | 0.40660E-05 | 486850.0 3765997.9 | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000069 | 0 | 0.40660E-05 | 486853.4 3765996.7 | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000070 | 0 | 0.40660E-05 | 486856.9 3765995.6 | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000071 | 0 | 0.40660E-05 | 486860.4 3765994.4 | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000072 | 0 | 0.40660E-05 | 486863.9 3765993.3 | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000073 | 0 | 0.40660E-05 | 486867.3 3765992.1 | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000074 | 0 | 0.40660E-05 | 486870.8 3765991.0 | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000075 | 0 | 0.40660E-05 | 486874.3 3765989.8 | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000076 | 0 | 0.40660E-05 | 486877.7 3765988.7 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000077 | 0 | 0.40660E-05 | 486881.2 3765987.5 | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000078 | 0 | 0.40660E-05 | 486884.7 3765986.4 | 539.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000079 | 0 | 0.40660E-05 | 486888.2 3765985.2 | 539.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000080 | 0 | 0.40660E-05 | 486891.6 3765984.1 | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | *** AERMOD | - VERSION | 7 21112 *** | *** Terracina at Red | llands | | | | | *** | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY ## *** VOLUME SOURCE DATA *** 08/11/21 18:13:06 PAGE 4 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE
(GRAMS/SEC) | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | |--------------|--------------------|------------------------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------| | L0000081 | 0 | 0.40660E-05 | 486895.1 | 3765982.9 | 539.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000082 | 0 | 0.40660E-05 | 486898.6 | 3765981.7 | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000083 | 0 | 0.40660E-05 | 486902.0 | 3765980.5 | 540.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000084 | 0 | 0.40660E-05 | 486905.5 | 3765979.3 | 540.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000085 | 0 | 0.40660E-05 | 486908.9 | 3765978.1 | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000086 | 0 | 0.40660E-05 | 486912.4 | 3765976.9 | 540.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000087 | 0 | 0.40660E-05 | 486915.8 | 3765975.6 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000088 | 0 | 0.40660E-05 | 486919.3 | 3765974.4 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000089 | 0 | 0.40660E-05 | 486922.7 | 3765973.2 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000090 | 0 | 0.40660E-05 | 486926.2 | 3765972.0 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000091 | 0 | 0.40660E-05 | 486929.6 3765970. | 8 540.8 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|-------------------|---------|------|------|------|-----| | L0000092 | 0 | 0.40660E-05 | 486933.1 3765969. | 5 540.8 | 0.00 | 1.70 | 0.85 | YES | | L0000093 | 0 | 0.40660E-05 | 486936.5 3765968. | 3 540.9 | 0.00 | 1.70 | 0.85 | YES | | L0000094 | 0 | 0.40660E-05 | 486939.9 3765967. | 1 541.1 | 0.00 | 1.70 | 0.85 | YES | | L0000095 | 0 | 0.40660E-05 | 486943.4 3765965. | 9 541.3 | 0.00 | 1.70 | 0.85 | YES | | L0000096 | 0 | 0.40660E-05 | 486946.8 3765964. | 7 541.5 | 0.00 | 1.70 | 0.85 | YES | | L0000097 | 0 | 0.40660E-05 | 486950.3 3765963. | 4 541.7 | 0.00 | 1.70 | 0.85 | YES | | L0000098 | 0 | 0.40660E-05 | 486953.7 3765962. | 2 541.9 | 0.00 | 1.70 | 0.85 | YES | | L0000099 | 0 | 0.40660E-05 | 486957.2 3765961. | 0 542.1 | 0.00 | 1.70 | 0.85 | YES | | L0000100 | 0 | 0.40660E-05 | 486960.6 3765959. | 8 542.3 | 0.00 | 1.70 | 0.85 | YES | | L0000101 | 0 | 0.40660E-05 | 486964.1 3765958. | 6 542.5 | 0.00 | 1.70 | 0.85 | YES | | L0000102 | 0 | 0.40660E-05 | 486967.5 3765957. | 3 542.7 | 0.00 | 1.70 | 0.85 | YES | | L0000103 | 0 | 0.40660E-05 | 486971.0 3765956. | 1 542.9 | 0.00 | 1.70 | 0.85 | YES | | L0000104 | 0 | 0.40660E-05 | 486974.4 3765954. | 9 543.0 | 0.00 | 1.70 | 0.85 | YES | | L0000105 | 0 | 0.40660E-05 | 486977.9 3765953. | 7 543.2 | 0.00 | 1.70 | 0.85 | YES | | L0000106 | 0 | 0.40660E-05 | 486981.3 3765952. | 5 543.4 | 0.00 | 1.70 | 0.85 | YES | | L0000107 | 0 | 0.40660E-05 | 486984.8 3765951. | 2 543.5 | 0.00 | 1.70 | 0.85 | YES | | L0000108 | 0 | 0.40660E-05 | 486988.2 3765950. | 0 543.7 | 0.00 | 1.70 | 0.85 | YES | | L0000109 | 0 | 0.40660E-05 | 486991.7 3765948. | 8 543.8 | 0.00 | 1.70 | 0.85 | YES | | L0000110 | 0 | 0.40660E-05 | 486995.1 3765947. | 6 543.9 | 0.00 | 1.70 | 0.85 | YES | | L0000111 | 0 | 0.40660E-05 | 486998.6 3765946. | 4 544.0 | 0.00 | 1.70 | 0.85 | YES | | L0000112 | 0 | 0.40660E-05 | 487002.0 3765945. | 1 544.1 | 0.00 | 1.70 | 0.85 | YES | | L0000113 | 0 | 0.40660E-05 | 487005.5 3765943. | 9 544.2 | 0.00 | 1.70 | 0.85 | YES | | L0000114 | 0 | 0.40660E-05 | 487008.9 3765942. | 7 544.3 | 0.00 | 1.70 | 0.85 | YES | | L0000115 | 0 | 0.40660E-05 | 487012.4 3765941. | 5 544.3 | 0.00 | 1.70 | 0.85 | YES | | L0000116 | 0 | 0.40660E-05 | 487015.8 3765940. | 3 544.4 | 0.00 | 1.70 | 0.85 | YES | | L0000117 | 0 | 0.40660E-05 | 487019.3 3765939. | 0 544.5 | 0.00 | 1.70 | 0.85 | YES | | L0000118 | 0 | 0.40660E-05 | 487022.7 3765937. | | 0.00 | 1.70 | 0.85 | YES | | L0000119 | 0 | 0.40660E-05 | 487026.1 3765936. | | 0.00 | 1.70 | 0.85 | YES | | L0000120 | 0 | 0.40660E-05 | 487029.5 3765935. | 1 544.9 | 0.00 | 1.70 | 0.85 | YES | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** VOLUME SOURCE DATA *** * * * 08/11/21 18:13:06 PAGE 5 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE
(GRAMS/SEC) | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | | |-------------------|--------------------|------------------------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------|--| | - 0 0 0 0 0 0 0 0 | | | 405000 | | - 4 - 0 | | | | | | | | L0000121 | 0 | 0.40660E-05 |
487032.9 | 3765933.7 | 545.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000122 | 0 | 0.40660E-05 | 487036.3 | 3765932.4 | 545.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000123 | 0 | 0.40660E-05 | 487039.7 | 3765931.0 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000124 | 0 | 0.40660E-05 | 487043.1 | 3765929.7 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000125 | 0 | 0.40660E-05 | 487046.5 | 3765928.4 | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000126 | 0 | 0.40660E-05 | 487049.9 | 3765927.0 | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000127 | 0 | 0.40660E-05 | 487053.3 | 3765925.7 | 546.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000128 | 0 | 0.40660E-05 | 487056 7 | 3765924.3 | 546.4 | 0.00 | 1.70 | 0.85 | YES | |----------------------|---|-------------|----------|-----------|-------|------|------|--------------|------------| | L0000120 | 0 | 0.40660E-05 | | 3765923.0 | 546.6 | 0.00 | 1.70 | 0.85 | YES | | L0000129 | 0 | 0.40660E-05 | | 3765921.7 | 546.7 | 0.00 | 1.70 | 0.85 | YES | | L0000130 | 0 | 0.40660E-05 | | 3765920.3 | 546.9 | 0.00 | 1.70 | 0.85 | YES | | L0000131 | 0 | 0.40660E-05 | | 3765919.0 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | L0000132 | 0 | 0.40660E-05 | | 3765917.6 | 547.2 | 0.00 | 1.70 | 0.85 | YES | | L0000133 | 0 | 0.40660E-05 | | 3765917.0 | 547.2 | 0.00 | 1.70 | 0.85 | YES | | L0000134
L0000135 | 0 | 0.40660E-05 | | 3765916.3 | 547.3 | 0.00 | 1.70 | 0.85 | YES | | L0000135 | 0 | 0.40660E-05 | | 3765913.6 | 547.4 | 0.00 | 1.70 | 0.85 | YES | | L0000136
L0000137 | 0 | 0.40660E-05 | | 3765913.6 | 547.5 | 0.00 | 1.70 | | | | L0000137
L0000138 | 0 | 0.40660E-05 | | 3765912.3 | 547.6 | 0.00 | 1.70 | 0.85
0.85 | YES
YES | | | - | | | | | | | | | | L0000139 | 0 | 0.40660E-05 | | 3765909.6 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | L0000140 | 0 | 0.40660E-05 | | 3765908.3 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | L0000141 | 0 | 0.40660E-05 | | 3765906.9 | 547.8 | 0.00 | 1.70 | 0.85 | YES | | L0000142 | 0 | 0.40660E-05 | | 3765905.6 | 547.9 | 0.00 | 1.70 | 0.85 | YES | | L0000143 | 0 | 0.40660E-05 | | 3765904.2 | 548.0 | 0.00 | 1.70 | 0.85 | YES | | L0000144 | 0 | 0.40660E-05 | | 3765902.9 | 548.2 | 0.00 | 1.70 | 0.85 | YES | | L0000145 | 0 | 0.40660E-05 | | 3765901.6 | 548.3 | 0.00 | 1.70 | 0.85 | YES | | L0000146 | 0 | 0.40660E-05 | | 3765900.2 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | L0000147 | 0 | 0.40660E-05 | | 3765898.9 | 548.8 | 0.00 | 1.70 | 0.85 | YES | | L0000148 | 0 | 0.40660E-05 | | 3765897.5 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | L0000149 | 0 | 0.40660E-05 | 487128.2 | 3765896.2 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | L0000150 | 0 | 0.40660E-05 | 487131.5 | 3765894.7 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | L0000151 | 0 | 0.40660E-05 | 487134.8 | 3765893.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | L0000152 | 0 | 0.40660E-05 | 487138.2 | 3765891.7 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | L0000153 | 0 | 0.40660E-05 | 487141.5 | 3765890.2 | 550.2 | 0.00 | 1.70 | 0.85 | YES | | L0000154 | 0 | 0.40660E-05 | 487144.9 | 3765888.7 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | L0000155 | 0 | 0.40660E-05 | 487148.2 | 3765887.2 | 551.3 | 0.00 | 1.70 | 0.85 | YES | | L0000156 | 0 | 0.40660E-05 | 487151.6 | 3765885.8 | 551.8 | 0.00 | 1.70 | 0.85 | YES | | L0000157 | 0 | 0.40660E-05 | 487154.9 | 3765884.3 | 552.3 | 0.00 | 1.70 | 0.85 | YES | | L0000158 | 0 | 0.40660E-05 | 487158.2 | 3765882.8 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | L0000159 | 0 | 0.40660E-05 | 487161.6 | 3765881.3 | 553.2 | 0.00 | 1.70 | 0.85 | YES | | L0000160 | 0 | 0.40660E-05 | 487164.9 | 3765879.8 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | *** 08/11/21 *** 18:13:06 PAGE 6 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE (GRAMS/SEC) | X
(METERS)
 | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | | |--------------|--------------------|---------------------------|-------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------|--| | L0000161 | 0 | 0.40660E-05 | 487168.3 | 3765878.3 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000162 | 0 | 0.40660E-05 | 487171.6 | 3765876.8 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000163 | 0 | 0.40660E-05 | 487174.9 | 3765875.4 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000164 | 0 | 0.40660E-05 | 487178.3 | 3765873.9 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000165 | 0 | 0.40660E-05 | 487181.6 3765872.4 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | |--------------|---------|-------------|----------------------|--------|------|------|------|-----|---| | L0000166 | 0 | 0.40660E-05 | 487185.0 3765870.9 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000167 | 0 | 0.40660E-05 | 487188.3 3765869.4 | 555.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000168 | 0 | 0.40660E-05 | 487191.7 3765867.9 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000169 | 0 | 0.40660E-05 | 487195.0 3765866.4 | 555.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000170 | 0 | 0.40660E-05 | 487198.3 3765865.0 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000171 | 0 | 0.40660E-05 | 487201.7 3765863.5 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000172 | 0 | 0.40660E-05 | 487205.0 3765862.0 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000173 | 0 | 0.40660E-05 | 487208.4 3765860.5 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000174 | 0 | 0.40660E-05 | 487211.7 3765859.0 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000175 | 0 | 0.40660E-05 | 487215.1 3765857.5 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000176 | 0 | 0.40660E-05 | 487218.4 3765856.0 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000177 | 0 | 0.40660E-05 | 487221.7 3765854.6 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000178 | 0 | 0.40660E-05 | 487225.1 3765853.1 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000179 | 0 | 0.40660E-05 | 487228.4 3765851.6 | 554.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000180 | 0 | 0.40660E-05 | 487231.8 3765850.1 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000181 | 0 | 0.40660E-05 | 487235.1 3765848.6 | 554.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000182 | 0 | 0.40660E-05 | 487238.5 3765847.1 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000183 | 0 | 0.40660E-05 | 487241.8 3765845.6 | 554.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000184 | 0 | 0.40660E-05 | 487245.1 3765844.2 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000185 | 0 | 0.40660E-05 | 487248.5 3765842.7 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000186 | 0 | 0.40660E-05 | 487251.8 3765841.2 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000187 | 0 | 0.40660E-05 | 487255.2 3765839.7 | 556.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000188 | 0 | 0.40660E-05 | 487258.4 3765838.0 | 556.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000189 | 0 | 0.40660E-05 | 487261.6 3765836.3 | 556.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000190 | 0 | 0.40660E-05 | 487264.8 3765834.5 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000191 | 0 | 0.40660E-05 | 487268.0 3765832.8 | 557.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000192 | 0 | 0.40660E-05 | 487271.2 3765831.0 | 557.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000193 | 0 | 0.40660E-05 | 487274.5 3765829.2 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000194 | 0 | 0.40660E-05 | 487277.7 3765827.5 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000195 | 0 | 0.40660E-05 | 487280.9 3765825.7 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000196 | 0 | 0.40660E-05 | 487284.1 3765824.0 | 558.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000197 | 0 | 0.40660E-05 | 487287.3 3765822.2 | 558.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000198 | 0 | 0.40660E-05 | 487290.5 3765820.5 | 558.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000199 | 0 | 0.40660E-05 | 487293.7 3765818.7 | 558.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000200 | 0 | 0.40660E-05 | 487296.9 3765817.0 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Rec | dlands | | | | | • | *** 18:13:06 PAGE 7 08/11/21 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE | <u>c</u> | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | L0000201 | 0 | 0.40660E-05 | 487300.1 | 3765815.2 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000202 | 0 | 0.40660E-05 | 487303.3 3765813.5 | 559.1 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|--------------------|-------|------|------|------|-----| | L0000203 | 0 | 0.40660E-05 | 487306.6 3765811.7 | 559.3 | 0.00 | 1.70 | 0.85 | YES | | L0000204 | 0 | 0.40660E-05 | 487309.8 3765810.0 | 559.5 | 0.00 | 1.70 | 0.85 | YES | | L0000205 | 0 | 0.40660E-05 | 487313.0 3765808.2 | 559.7 | 0.00 | 1.70 | 0.85 | YES | | L0000206 | 0 | 0.40660E-05 | 487316.2 3765806.5 | 559.9 | 0.00 | 1.70 | 0.85 | YES | | L0000207 | 0 | 0.40660E-05 | 487319.4 3765804.7 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | L0000208 | 0 | 0.40660E-05 | 487322.6 3765802.9 | 560.4 | 0.00 | 1.70 | 0.85 | YES | | L0000209 | 0 | 0.40660E-05 | 487325.8 3765801.2 | 560.8 | 0.00 | 1.70 | 0.85 | YES | | L0000210 | 0 | 0.40660E-05 | 487329.0 3765799.4 | 561.2 | 0.00 | 1.70 | 0.85 | YES | | L0000211 | 0 | 0.40660E-05 | 487332.2 3765797.7 | 561.5 | 0.00 | 1.70 | 0.85 | YES | | L0000212 | 0 | 0.40660E-05 | 487335.4 3765795.9 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | L0000213 | 0 | 0.40660E-05 | 487338.7 3765794.2 | 562.0 | 0.00 | 1.70 | 0.85 | YES | | L0000214 | 0 | 0.40660E-05 | 487341.9 3765792.4 | 562.2 | 0.00 | 1.70 | 0.85 | YES | | L0000215 | 0 | 0.40660E-05 | 487345.1 3765790.7 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | L0000216 | 0 | 0.40660E-05 | 487348.3 3765788.9 | 562.8 | 0.00 | 1.70 | 0.85 | YES | | L0000217 | 0 | 0.40660E-05 |
487351.5 3765787.2 | 563.2 | 0.00 | 1.70 | 0.85 | YES | | L0000218 | 0 | 0.40660E-05 | 487354.7 3765785.4 | 563.6 | 0.00 | 1.70 | 0.85 | YES | | L0000219 | 0 | 0.40660E-05 | 487357.9 3765783.7 | 563.9 | 0.00 | 1.70 | 0.85 | YES | | L0000220 | 0 | 0.40660E-05 | 487361.1 3765781.9 | 564.3 | 0.00 | 1.70 | 0.85 | YES | | L0000221 | 0 | 0.40660E-05 | 487364.3 3765780.2 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | L0000222 | 0 | 0.40660E-05 | 487367.6 3765778.4 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | L0000223 | 0 | 0.40660E-05 | 487370.8 3765776.8 | 565.2 | 0.00 | 1.70 | 0.85 | YES | | L0000224 | 0 | 0.40660E-05 | 487374.1 3765775.1 | 565.5 | 0.00 | 1.70 | 0.85 | YES | | L0000225 | 0 | 0.40660E-05 | 487377.3 3765773.4 | 565.8 | 0.00 | 1.70 | 0.85 | YES | | L0000226 | 0 | 0.40660E-05 | 487380.5 3765771.7 | 566.0 | 0.00 | 1.70 | 0.85 | YES | | L0000227 | 0 | 0.40660E-05 | 487383.8 3765770.0 | 566.2 | 0.00 | 1.70 | 0.85 | YES | | L0000228 | 0 | 0.40660E-05 | 487387.0 3765768.3 | 566.4 | 0.00 | 1.70 | 0.85 | YES | | L0000229 | 0 | 0.40660E-05 | 487390.3 3765766.6 | 566.5 | 0.00 | 1.70 | 0.85 | YES | | L0000230 | 0 | 0.40660E-05 | 487393.5 3765764.9 | 566.6 | 0.00 | 1.70 | 0.85 | YES | | L0000231 | 0 | 0.40660E-05 | 487396.8 3765763.2 | 566.7 | 0.00 | 1.70 | 0.85 | YES | | L0000232 | 0 | 0.40660E-05 | 487400.0 3765761.5 | 567.1 | 0.00 | 1.70 | 0.85 | YES | | L0000233 | 0 | 0.40660E-05 | 487403.2 3765759.8 | 567.5 | 0.00 | 1.70 | 0.85 | YES | | L0000234 | 0 | 0.40660E-05 | 487406.5 3765758.1 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | L0000235 | 0 | 0.40660E-05 | 487409.7 3765756.4 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | L0000236 | 0 | 0.40660E-05 | 487413.0 3765754.8 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | L0000237 | 0 | 0.40660E-05 | 487416.2 3765753.1 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | L0000238 | 0 | 0.40660E-05 | 487419.5 3765751.4 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | L0000239 | 0 | 0.40660E-05 | 487422.7 3765749.7 | 569.3 | 0.00 | 1.70 | 0.85 | YES | | L0000240 | 0 | 0.40660E-05 | 487425.9 3765748.0 | 570.1 | 0.00 | 1.70 | 0.85 | YES | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION | RATE | |--------|--------|---------------|----------|----------|----------|----------|----------|----------|--------|----------|------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR ' | VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | T 0 0 0 0 0 4 1 | 0 | 0 406600 05 | 407400 0 2765746 2 | F70 0 | 0.00 | 1 70 | 0.05 | WDQ. | | | |----------------------|---------|----------------------------|--|----------------|-----------|--------------|------|------------|-----|----------| | L0000241 | 0 | 0.40660E-05 | | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000242
L0000243 | 0 | 0.40660E-05
0.40660E-05 | 487432.4 3765744.6
487435.7 3765742.9 | 571.4
571.8 | 0.00 | 1.70
1.70 | 0.85 | YES
YES | | | | | - | 0.40660E-05 | 487438.9 3765742.9 | | 0.00 | | 0.85 | | | | | L0000244 | 0 | | | 572.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000245 | - | 0.40660E-05 | 487442.2 3765739.5 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000246 | 0 | 0.40660E-05 | 487445.4 3765737.8 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000247 | 0 | 0.40660E-05 | 487448.6 3765736.1 | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000248 | 0 | 0.40660E-05 | 487451.8 3765734.4 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000249 | 0 | 0.40660E-05 | 487455.1 3765732.7 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000250 | 0 | 0.40660E-05 | 487458.3 3765730.9 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000251 | 0 | 0.40660E-05 | 487461.5 3765729.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000252 | 0 | 0.40660E-05 | 487464.7 3765727.5 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000253 | 0 | 0.40660E-05 | 487468.0 3765725.8 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000254 | 0 | 0.40660E-05 | 487471.2 3765724.0 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000255 | 0 | 0.40660E-05 | 487474.4 3765722.3 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000256 | 0 | 0.40660E-05 | 487477.7 3765720.6 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000257 | 0 | 0.40660E-05 | 487480.9 3765718.9 | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000258 | 0 | 0.40660E-05 | 487484.1 3765717.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000259 | 0 | 0.40660E-05 | 487487.3 3765715.4 | 573.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000260 | 0 | 0.40660E-05 | 487490.6 3765713.7 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000261 | 0 | 0.40660E-05 | 487493.8 3765712.0 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000262 | 0 | 0.40660E-05 | 487497.0 3765710.3 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000263 | 0 | 0.40660E-05 | 487500.2 3765708.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000264 | 0 | 0.40660E-05 | 487503.5 3765706.8 | 574.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000265 | 0 | 0.40660E-05 | 487506.7 3765705.1 | 574.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000266 | 0 | 0.40660E-05 | 487509.9 3765703.4 | 574.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000267 | 0 | 0.40660E-05 | 487513.2 3765701.7 | 575.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000268 | 0 | 0.40660E-05 | 487516.4 3765699.9 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000269 | 0 | 0.40660E-05 | 487519.6 3765698.2 | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000270 | 0 | 0.40660E-05 | 487522.8 3765696.5 | 575.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000271 | 0 | 0.40660E-05 | | 575.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000272 | 0 | 0.40660E-05 | 487529.3 3765693.0 | 576.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000273 | 0 | 0.40660E-05 | 487532.5 3765691.3 | 576.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000274 | 0 | 0.40660E-05 | 487535.7 3765689.6 | 577.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000275 | 0 | 0.40660E-05 | 487538.9 3765687.8 | 577.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000276 | 0 | 0.40660E-05 | 487542.2 3765686.1 | 578.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000277 | 0 | 0.40660E-05 | 487545.4 3765684.3 | 578.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000277 | 0 | 0.40660E-05 | | 578.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000279 | 0 | 0.40660E-05 | 487551.8 3765680.9 | 579.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000279 | 0 | 0.40660E-05 | 487555.0 3765679.1 | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | | | - 01110 +::: | | | | | | | *** | 00/11/01 | | *** AERMOD - | | | *** Terracina at Re | | | | | | | 08/11/21 | | *** AERMET - | VERSION | N 16216 *** | *** Freeway-related | DPM Conc | entration | s OY | | | *** | 18:13:06 | | *** MODELODE | a. D. | ~DENII TOM | יי דרי ואגרורוו זיקוע ל | * | | | | | | PAGE 9 | | *** MODELOPT | s· Re | SON CONC | C ELEV URBAN ADJ_U | | | | | | | | | SOURCE
ID | NUMBER
PART.
CATS. | EMISSION RATE
(GRAMS/SEC) | X | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | | |----------------------|--------------------------|------------------------------|-----------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------|----------| | | | | | | | | | | | | | | L0000281 | 0 | 0.40660E-05 | 487558.3 | 3765677.4 | 579.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000282 | 0 | 0.40660E-05 | 487561.5 | 3765675.7 | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000283 | 0 | 0.40660E-05 | | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000284 | 0 | 0.40660E-05 | | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000285 | 0 | 0.40660E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000286 | 0 | 0.40660E-05 | | 3765668.7 | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000287 | 0 | 0.40660E-05 | | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000288 | 0 | 0.40660E-05 | | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000289 | 0 | 0.40660E-05 | | | 579.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000290 | 0 | 0.40660E-05 | | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000291 | 0 | 0.40660E-05 | | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000292 | 0 | 0.40660E-05 | | | 579.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000293 | 0 | 0.40660E-05 | | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000294 | 0 | 0.40660E-05 | | 3765653.6 | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000295 | 0 | 0.40660E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000296 | 0 | 0.40660E-05 | | 3765649.8 | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000297 | 0
0 | 0.40660E-05 | 487608.8 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000298
L0000299 | 0 | 0.40660E-05
0.40660E-05 | 487612.0 | 3765646.2 | 580.1 | 0.00 | 1.70 | 0.85 | YES
YES | | | | L0000299 | 0 | 0.40660E-05 | | 3765643.0 | 580.2
580.2 | 0.00 | 1.70
1.70 | 0.85
0.85 | YES | | | | L0000300 | 0 | 0.40660E-05 | 487621.9 | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000301 | 0 | 0.40660E-05 | | 3765639.8 | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000302 | 0 | 0.40660E-05 | | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000303 | 0 | 0.40660E-05 | | 3765636.6 | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000304 | 0 | 0.40660E-05 | 487635.1 | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000505 | 0 | 0.40790E-05 | | 3766048.4 | 528.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000610 | 0 | 0.40790E-05 | | | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000611 | 0 | 0.40790E-05 | | | 528.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000612 | 0 | 0.40790E-05 | | | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000613 | 0 | 0.40790E-05 | | 3766043.9 | 529.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000614 | 0 | 0.40790E-05 | | | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000615 | 0 | 0.40790E-05 | | 3766041.6 | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000616 | 0 | 0.40790E-05 | | 3766040.5 | 529.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000617 | 0
 0.40790E-05 | | 3766039.3 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000618 | 0 | 0.40790E-05 | | 3766038.2 | 529.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000619 | 0 | 0.40790E-05 | | 3766037.1 | 530.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000620 | 0 | 0.40790E-05 | 486645.1 | 3766035.9 | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000621 | 0 | 0.40790E-05 | | 3766034.8 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000622 | 0 | 0.40790E-05 | 486652.0 | 3766033.6 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000623 | 0 | 0.40790E-05 | | 3766032.5 | 530.6 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | edlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freew | ay-related | DPM Cond | centration | ns OY | | | *** | 18:13:06 | | *** NODEL ODE | | - DELLIE GONG | | | | | | | | | PAGE 10 | *** VOLUME SOURCE DATA *** | | | EMISSION RATI | | | BASE | RELEASE | INIT. | INIT. | URBAN | | | |----------------------|---------|----------------------------|----------------------|------------|----------------|------------|--------------|--------------|------------|-----|----------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | T 0000604 | 0 | 0 407000 05 | 406650 0 | 2766021 4 | F20 0 | 0 00 | 1 70 | 0.05 | VEC | | | | L0000624 | 0 | 0.40790E-05 | | | 530.8 | 0.00 | 1.70
1.70 | 0.85 | YES | | | | L0000625
L0000626 | 0
0 | | 486662.5
486665.9 | | 530.9 | 0.00 | 1.70 | 0.85 | YES
YES | | | | | | | | | 531.0 | 0.00 | | 0.85 | | | | | L0000627 | 0
0 | 0.40790E-05
0.40790E-05 | 486669.4 | | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000628 | 0 | 0.40790E-05
0.40790E-05 | 486672.9 | | 531.2 | 0.00 | 1.70
1.70 | 0.85 | YES
YES | | | | L0000629
L0000630 | 0 | | 486676.4
486679.8 | | 531.3
531.4 | 0.00 | 1.70 | 0.85
0.85 | YES | | | | L0000630 | 0 | 0.40790E-05 | | | 531.4 | | 1.70 | 0.85 | YES | | | | L0000631 | 0 | | 486683.3
486686.8 | | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000632 | 0 | 0.40790E-05 | 486690.3 | | | 0.00 | 1.70 | 0.85 | YES | | | | L0000633 | 0 | 0.40790E-05 | | | 531.7
531.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000634 | 0 | | 486697.2 | | 531.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000635 | 0 | 0.40790E-05 | | | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000637 | 0 | | 486704.2 | | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000637 | 0 | | 486707.6 | | 532.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000639 | 0 | | 486711.1 | | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000640 | 0 | | 486714.6 | | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000641 | 0 | | 486718.1 | | 532.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000642 | 0 | | 486721.5 | | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000643 | 0 | | 486725.0 | | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000644 | 0 | | 486728.5 | | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000645 | 0 | 0.40790E-05 | 486732.0 | | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000646 | 0 | 0.40790E-05 | 486735.4 | | 533.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000647 | 0 | | 486738.9 | | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000648 | 0 | 0.40790E-05 | 486742.4 | | 534.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000649 | 0 | | 486745.8 | | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000650 | 0 | 0.40790E-05 | 486749.3 | | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000651 | 0 | | 486752.7 | | 534.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000652 | 0 | 0.40790E-05 | 486756.2 | | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000653 | 0 | 0.40790E-05 | | | 534.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000654 | 0 | | 486763.1 | | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000655 | 0 | 0.40790E-05 | | | 535.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000656 | 0 | | 486770.0 | | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000657 | 0 | | 486773.5 | | 535.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000658 | 0 | 0.40790E-05 | 486776.9 | 3765991.9 | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000659 | 0 | | 486780.4 | | 535.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000660 | 0 | 0.40790E-05 | 486783.8 | 3765989.5 | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000661 | 0 | 0.40790E-05 | 486787.3 | 3765988.3 | 535.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000662 | 0 | 0.40790E-05 | 486790.7 | 3765987.1 | 536.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000663 | 0 | 0.40790E-05 | 486794.2 | 3765985.9 | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | | | | 21112 *** | | cina at Re | | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freew | ay-related | DPM Con | centration | ns OY | | | *** | 18:13:06 | | | | EMISSION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|---------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | L0000664 | 0 | 0.40790E-05 | 486797.6 | 3765984.7 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000665 | 0 | 0.40790E-05 | 486801.1 | 3765983.4 | 536.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000666 | 0 | 0.40790E-05 | 486804.5 | 3765982.2 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000667 | 0 | 0.40790E-05 | 486808.0 | 3765981.0 | 536.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000668 | 0 | 0.40790E-05 | 486811.4 | 3765979.8 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000669 | 0 | 0.40790E-05 | 486814.9 | 3765978.6 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000670 | 0 | 0.40790E-05 | | 3765977.4 | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000671 | 0 | 0.40790E-05 | | 3765976.2 | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000672 | 0 | 0.40790E-05 | | 3765975.0 | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000673 | 0 | 0.40790E-05 | | 3765973.8 | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000674 | 0 | 0.40790E-05 | | 3765972.5 | 538.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000675 | 0 | 0.40790E-05 | | 3765971.3 | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000676 | 0 | 0.40790E-05 | | 3765970.1 | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000677 | 0 | 0.40790E-05 | | 3765969.0 | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000678 | 0 | | | 3765967.9 | 538.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000679 | 0 | 0.40790E-05 | | 3765966.8 | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000680 | 0 | 0.40790E-05 | | | 538.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000681 | 0 | 0.40790E-05 | | 3765964.5 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000682 | 0 | 0.40790E-05 | | 3765963.4 | 539.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000683 | 0 | 0.40790E-05 | | 3765962.3 | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000684 | 0 | 0.40790E-05 | | 3765961.1 | 539.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000685 | 0 | 0.40790E-05 | | 3765960.0 | 539.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000686 | 0 | 0.40790E-05 | | 3765958.9 | 539.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000687 | 0 | 0.40790E-05 | | 3765957.8 | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000688 | 0 | 0.40790E-05 | | 3765956.6 | 539.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000689 | 0 | 0.40790E-05 | | 3765955.5 | 540.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000690 | 0 | 0.40790E-05 | | 3765954.4 | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000691 | 0 | 0.40790E-05 | | | 540.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000692 | 0 | 0.40790E-05 | | 3765952.1 | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000693 | 0 | 0.40790E-05 | | 3765951.0 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000694 | 0 | 0.40790E-05 | | 3765949.9 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000695 | 0 | 0.40790E-05 | | 3765948.8 | 540.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000696 | 0 | 0.40790E-05 | | 3765947.6 | 541.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000697 | 0 | 0.40790E-05 | | 3765946.5 | 541.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000698 | 0 | 0.40790E-05 | | 3765945.4 | 541.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000699 | 0 | 0.40790E-05 | | 3765944.3 | 541.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000700 | 0 | 0.40790E-05 | | 3765943.1 | 541.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000701 | 0 | 0.40790E-05 | | 3765942.0 | 541.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000702 | 0
0 | 0.40790E-05 | | | 542.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000703 | U | 0.40790E-05 | 400933.0 | 3/65939.8 | 542.3 | 0.00 | 1.70 | 0.85 | YES | | | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |----------------------|--------------------|----------------------------|----------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | T 0000704 | 0 | 0 407000 05 | 406026 5 | 2765020 6 | F40 F | 0.00 | 1 70 | 0.05 | VID C | | | L0000704 | 0 | 0.40790E-05 | 486936.5 | | 542.5
542.6 | 0.00 | 1.70
1.70 | 0.85
0.85 | YES
YES | | | L0000705
L0000706 | 0
0 | 0.40790E-05
0.40790E-05 | 486940.0 | 3765937.5 | 542.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000707 | 0 | 0.40790E-05 | | 3765935.3 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000707 | 0 | 0.40790E-05 | 486950.4 | | 542.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000708 | 0 | 0.40790E-05 | 486953.9 | | 542.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000709 | 0 | 0.40790E-05 | 486957.4 | | 543.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000710 | 0 | 0.40790E-05 | 486960.9 | | 543.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000711 | 0 | 0.40790E-05 | 486964.3 | | 543.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000712 | 0 | 0.40790E-05 | 486967.8 | | 543.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000713 | 0 | 0.40790E-05 | 486971.3 | | 543.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000711 | 0 | 0.40790E-05 |
486974.8 | | 543.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000716 | 0 | 0.40790E-05 | 486978.3 | | 543.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000717 | 0 | 0.40790E-05 | 486981.7 | | 544.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000718 | 0 | 0.40790E-05 | 486985.2 | | 544.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000719 | 0 | 0.40790E-05 | 486988.7 | 3765921.8 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000720 | 0 | 0.40790E-05 | | 3765920.7 | 544.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000721 | 0 | 0.40790E-05 | 486995.7 | 3765919.5 | 544.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000722 | 0 | 0.40790E-05 | 486999.1 | 3765918.4 | 544.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000723 | 0 | 0.40790E-05 | 487002.6 | 3765917.2 | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000724 | 0 | 0.40790E-05 | 487006.0 | 3765916.0 | 545.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000725 | 0 | 0.40790E-05 | 487009.5 | 3765914.8 | 545.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000726 | 0 | 0.40790E-05 | 487013.0 | 3765913.6 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000727 | 0 | 0.40790E-05 | 487016.4 | 3765912.4 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000728 | 0 | 0.40790E-05 | 487019.9 | 3765911.2 | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000729 | 0 | 0.40790E-05 | 487023.3 | | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000730 | 0 | 0.40790E-05 | 487026.8 | | 546.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000731 | 0 | 0.40790E-05 | | 3765907.7 | 546.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000732 | 0 | 0.40790E-05 | 487033.7 | | 546.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000733 | 0 | 0.40790E-05 | 487037.2 | | 546.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000734 | 0 | 0.40790E-05 | 487040.6 | | 546.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000735 | 0 | 0.40790E-05 | 487044.1 | | 547.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000736 | 0 | 0.40790E-05 | 487047.6 | | 547.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000737 | 0 | 0.40790E-05 | 487051.0 | | 547.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000738 | 0 | 0.40790E-05 | 487054.5 | | 547.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000739 | 0 | 0.40790E-05 | | 3765898.2 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000740 | 0 | 0.40790E-05 | 487061.4 | 3765897.0 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000741 | 0 | 0.40790E-05 | 487064.9 3765895.8 | 547.8 | 0.00 | 1.70 | 0.85 | YES | | | |----------------|---------|-------------|----------------------|----------|------------|------|------|-----|-----|----------| | L0000742 | 0 | 0.40790E-05 | 487068.3 3765894.6 | 547.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000743 | 0 | 0.40790E-05 | 487071.8 3765893.5 | 548.0 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | *** AERMOD - V | VERSION | 21112 *** | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | *** AERMET - V | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | S OY | | | *** | 18:13:06 | | | | | | | | | | | | PAGE 13 | | | NUMBER | EMISSION RATI | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0000744 | 0 | | | 3765892.3 | 548.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000745 | 0 | 0.40790E-05 | | 3765891.1 | 548.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000746 | 0 | 0.40790E-05 | | 3765889.9 | 548.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000747 | 0 | 0.40790E-05 | | 3765888.7 | 548.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000748 | 0 | 0.40790E-05 | 487089.1 | 3765887.5 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000749 | 0 | 0.40790E-05 | 487092.5 | 3765886.3 | 548.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000750 | 0 | 0.40790E-05 | 487096.0 | 3765885.1 | 548.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000751 | 0 | 0.40790E-05 | 487099.5 | 3765884.0 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000752 | 0 | 0.40790E-05 | 487102.9 | 3765882.8 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000753 | 0 | 0.40790E-05 | 487106.4 | 3765881.6 | 549.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000754 | 0 | 0.40790E-05 | 487109.8 | 3765880.4 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000755 | 0 | 0.40790E-05 | 487113.3 | 3765879.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000756 | 0 | 0.40790E-05 | 487116.8 | 3765878.0 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000757 | 0 | 0.40790E-05 | 487120.1 | 3765876.6 | 550.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000758 | 0 | 0.40790E-05 | 487123.4 | 3765875.1 | 550.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000759 | 0 | 0.40790E-05 | 487126.8 | 3765873.6 | 550.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000760 | 0 | 0.40790E-05 | 487130.1 | 3765872.1 | 550.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000761 | 0 | 0.40790E-05 | 487133.5 | 3765870.6 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000762 | 0 | 0.40790E-05 | 487136.8 | 3765869.1 | 550.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000763 | 0 | 0.40790E-05 | 487140.1 | 3765867.6 | 551.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000764 | 0 | 0.40790E-05 | 487143.5 | 3765866.1 | 551.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000765 | 0 | 0.40790E-05 | 487146.8 | 3765864.6 | 551.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000766 | 0 | 0.40790E-05 | 487150.1 | 3765863.1 | 552.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000767 | 0 | 0.40790E-05 | 487153.5 | 3765861.6 | 552.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000768 | 0 | 0.40790E-05 | 487156.8 | 3765860.1 | 552.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000769 | 0 | 0.40790E-05 | 487160.2 | 3765858.6 | 552.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000770 | 0 | 0.40790E-05 | | 3765857.2 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000771 | 0 | 0.40790E-05 | | 3765855.7 | 552.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000772 | 0 | 0.40790E-05 | | 3765854.2 | 553.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000773 | 0 | 0.40790E-05 | | 3765852.7 | 553.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000774 | 0 | 0.40790E-05 | | 3765851.2 | 553.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000775 | 0 | 0.40790E-05 | | 3765849.7 | 553.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000776 | 0 | 0.40790E-05 | | 3765848.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000777 | 0 | | | 3765846.7 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | - | | | | | | | | | | | L0000778 | 0 | 0.40790E-05 | 487190.2 3765845.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|-----------|-------------|----------------------|----------|------------|------|------|-----|-----|----------| | L0000779 | 0 | 0.40790E-05 | 487193.6 3765843.7 | 553.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000780 | 0 | 0.40790E-05 | 487196.9 3765842.2 | 553.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000781 | 0 | 0.40790E-05 | 487200.2 3765840.6 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000782 | 0 | 0.40790E-05 | 487203.5 3765839.0 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000783 | 0 | 0.40790E-05 | 487206.8 3765837.4 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - VERSION | T 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | - VERSION | J 16216 *** | *** Freeway-related | DPM Conc | entrations | S OY | | | *** | 18:13:06 | | | | | | | | | | | | PAGE 14 | | SOURCE
ID | | | X | | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | SOURCE | EMISSION RATE SCALAR VARY BY | |--------------|---|-------------|----------|-----------|---------------------------|-------------------------------|-------------------------|-------------------------|--------|------------------------------| | | | | | | | | | | | | | L0000784 | | 0.40790E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0000785 | | 0.40790E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0000786 | 0 | 0.40790E-05 | | | 554.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000787 | 0 | 0.40790E-05 | | | 554.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000788 | 0 | 0.40790E-05 | | | 554.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000789 | 0 | | 487226.5 | | 554.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000790 | 0 | | 487229.8 | | 555.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000791 | 0 | | 487233.1 | | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000792 | 0 | | | 3765823.0 | 555.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000793 | 0 | 0.40790E-05 | 487239.7 | | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000794 | 0 | 0.40790E-05 | 487243.0 | | 555.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000795 | 0 | 0.40790E-05 | 487246.2 | | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000796 | 0 | 0.40790E-05 | 487249.5 | | 555.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000797 | 0 | 0.40790E-05 | | 3765815.0 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000798 | 0 | 0.40790E-05 | | 3765813.4 | 556.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000799 | 0 | 0.40790E-05 | 487259.4 | 3765811.9 | 556.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000800 | 0 | 0.40790E-05 | 487262.7 | 3765810.3 | 556.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000801 | 0 | 0.40790E-05 | 487266.0 | 3765808.7 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000802 | 0 | 0.40790E-05 | 487269.3 | 3765807.1 | 556.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000803 | 0 | 0.40790E-05 | 487272.6 | 3765805.5 | 557.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000804 | 0 | 0.40790E-05 | 487275.9 | 3765803.9 | 557.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000805 | 0 | 0.40790E-05 | 487279.1 | 3765802.3 | 557.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000806 | 0 | 0.40790E-05 | 487282.4 | 3765800.6 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000807 | 0 | 0.40790E-05 | 487285.6 | 3765798.8 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000808 | 0 | 0.40790E-05 | 487288.7 | 3765797.0 | 558.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000809 | 0 | 0.40790E-05 | 487291.9 | 3765795.1 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000810 | 0 | 0.40790E-05 | 487295.1 | 3765793.3 | 558.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000811 | 0 | 0.40790E-05 | 487298.2 | 3765791.4 | 558.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000812 | 0 | 0.40790E-05 | 487301.4 | | 558.6 | 0.00 | 1.70 | 0.85 | YES | | | | 0
| 0.40790E-05 | | 3765787.7 | 558.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000814 | 0 | 0.40790E-05 | 487307.7 | 3765785.9 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000815 | 0 | 0.40790E-05 | 487310.9 3765784.1 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|----------|------------|------|------|-----|-----|----------| | L0000816 | 0 | 0.40790E-05 | 487314.0 3765782.2 | 559.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000817 | 0 | 0.40790E-05 | 487317.2 3765780.4 | 559.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000818 | 0 | 0.40790E-05 | 487320.3 3765778.5 | 559.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000819 | 0 | 0.40790E-05 | 487323.5 3765776.7 | 559.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000820 | 0 | 0.40790E-05 | 487326.7 3765774.9 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000821 | 0 | 0.40790E-05 | 487329.8 3765773.0 | 560.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000822 | 0 | 0.40790E-05 | 487333.0 3765771.2 | 560.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000823 | 0 | 0.40790E-05 | 487336.1 3765769.3 | 560.7 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | S OY | | | *** | 18:13:06 | | | | | | | | | | | | PAGE 15 | | | NUMBER | EMISSION RATE | Ē | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | 0 | 0.40790E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0000825 | 0 | 0.40790E-05 | | | 561.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000826 | 0 | 0.40790E-05 | | | 561.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000827 | 0 | 0.40790E-05 | | 3765762.1 | 561.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000828 | 0 | 0.40790E-05 | | | 561.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000829 | 0 | 0.40790E-05 | | | 561.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000830 | 0 | 0.40790E-05 | 487358.4 | 3765756.6 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000831 | 0 | 0.40790E-05 | 487361.5 | 3765754.8 | 561.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000832 | 0 | 0.40790E-05 | 487364.7 | 3765753.0 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000833 | 0 | 0.40790E-05 | 487367.9 | 3765751.2 | 562.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000834 | 0 | 0.40790E-05 | 487371.1 | 3765749.4 | 562.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000835 | 0 | 0.40790E-05 | 487374.3 | 3765747.6 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000836 | 0 | 0.40790E-05 | 487377.4 | 3765745.8 | 562.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000837 | 0 | 0.40790E-05 | 487380.6 | 3765743.9 | 562.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000838 | 0 | 0.40790E-05 | 487383.8 | 3765742.1 | 563.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000839 | 0 | 0.40790E-05 | 487387.0 | 3765740.3 | 563.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000840 | 0 | 0.40790E-05 | 487390.1 | 3765738.5 | 563.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000841 | 0 | 0.40790E-05 | 487393.3 | 3765736.7 | 563.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000842 | 0 | 0.40790E-05 | 487396.5 | 3765734.9 | 563.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000843 | 0 | 0.40790E-05 | 487399.7 | 3765733.1 | 564.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000844 | 0 | 0.40790E-05 | 487402.9 | 3765731.3 | 564.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000845 | 0 | 0.40790E-05 | 487406.0 | 3765729.4 | 564.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000846 | 0 | 0.40790E-05 | 487409.2 | 3765727.6 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000847 | 0 | 0.40790E-05 | 487412.4 | 3765725.9 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000848 | 0 | 0.40790E-05 | 487415.7 | 3765724.2 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000849 | 0 | 0.40790E-05 | 487418.9 | 3765722.5 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000850 | 0 | 0.40790E-05 | 487422.1 | 3765720.8 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000851 | 0 | 0.40790E-05 | 487425.4 | 3765719.1 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000852 | 0 | 0.40790E-05 | 487428.6 3765717.4 | 565.2 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|-----------|-------------|----------------------|-----------|-------------|------|------|-----|-----|----------| | | | | | | | | | | | | | L0000853 | 0 | 0.40790E-05 | 487431.9 3765715.8 | 565.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000854 | 0 | 0.40790E-05 | 487435.1 3765714.1 | 565.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000855 | 0 | 0.40790E-05 | 487438.4 3765712.4 | 566.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000856 | 0 | 0.40790E-05 | 487441.6 3765710.7 | 566.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000857 | 0 | 0.40790E-05 | 487444.9 3765709.0 | 566.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000858 | 0 | 0.40790E-05 | 487448.1 3765707.3 | 566.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000859 | 0 | 0.40790E-05 | 487451.4 3765705.6 | 566.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000860 | 0 | 0.40790E-05 | 487454.6 3765704.0 | 567.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000861 | 0 | 0.40790E-05 | 487457.9 3765702.3 | 567.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000862 | 0 | 0.40790E-05 | 487461.1 3765700.6 | 567.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000863 | 0 | 0.40790E-05 | 487464.3 3765698.9 | 567.7 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - VERSION | 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | | | *** Freeway-related | | entrations | · OV | | | *** | 18:13:06 | | AERMEI - | ARICHIA | 10210 | rieeway-related | DEM COILC | CITCLACIONS | 5 01 | | | | | | | | | | | | | | | | PAGE 16 | | | NUMBER | EMISSION RATE |] | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------|---| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | - | | | | | 405465 | | | | | | | | | | L0000864 | 0 | 0.40790E-05 | | | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000865 | 0 | | | 3765695.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000866 | 0 | | | 3765693.9 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000867 | 0 | | | 3765692.2 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000868 | 0 | 0.40790E-05 | 487480.6 | 3765690.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000869 | 0 | 0.40790E-05 | 487483.8 | 3765688.8 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000870 | 0 | 0.40790E-05 | 487487.1 | 3765687.1 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0000871 | 0 | 0.40790E-05 | 487490.3 | 3765685.4 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000872 | 0 | 0.40790E-05 | 487493.6 | 3765683.8 | 568.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000873 | 0 | 0.40790E-05 | 487496.8 | 3765682.1 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000874 | 0 | 0.40790E-05 | 487500.1 | 3765680.4 | 569.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000875 | 0 | 0.40790E-05 | 487503.3 | 3765678.7 | 569.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000876 | 0 | 0.40790E-05 | 487506.6 | 3765677.0 | 569.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000877 | 0 | 0.40790E-05 | 487509.8 | 3765675.3 | 570.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000878 | 0 | 0.40790E-05 | 487513.1 | 3765673.7 | 570.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000879 | 0 | 0.40790E-05 | 487516.3 | 3765672.0 | 570.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000880 | 0 | 0.40790E-05 | 487519.5 | 3765670.3 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000881 | 0 | 0.40790E-05 | 487522.8 | 3765668.6 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000882 | 0 | 0.40790E-05 | 487526.0 | 3765666.9 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000883 | 0 | 0.40790E-05 | 487529.3 | 3765665.2 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000884 | 0 | 0.40790E-05 | 487532.5 | 3765663.4 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000885 | 0 | 0.40790E-05 | 487535.7 | 3765661.6 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000886 | 0 | | | 3765659.9 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000887 | 0 | | | 3765658.1 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000888 | 0 | | | 3765656.3 | 571.1 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | - | | | | L0000889 | 0 | 0.40790E-05 | 487548.5 3765654.6 | 571.2 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|----------|------------|------|------|-----|-----|----------| | L0000890 | 0 | 0.40790E-05 | 487551.7 3765652.8 | 571.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000891 | 0 | 0.40790E-05 | 487554.9 3765651.0 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0000892 | 0 | 0.40790E-05 | 487558.1 3765649.3 | 572.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000893 | 0 | 0.40790E-05 | 487561.3 3765647.5 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000894 | 0 | 0.40790E-05 | 487564.5 3765645.7 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000895 | 0 | 0.40790E-05 | 487567.7 3765644.0 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000896 | 0 | 0.40790E-05 | 487570.9 3765642.2 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0000897 | 0 | 0.40790E-05 | 487574.1 3765640.4 | 573.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000898 | 0 | 0.40790E-05 | 487577.3 3765638.7 | 573.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000899 | 0 | 0.40790E-05 | 487580.6 3765637.1 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000900 | 0 | 0.40790E-05 | 487583.9 3765635.4 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000901 | 0 | 0.40790E-05 | 487587.1 3765633.8 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000902 | 0 | 0.40790E-05 | 487590.4 3765632.2 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000903 | 0 | 0.40790E-05 | 487593.7 3765630.5 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | *** AERMOD - | VERSION |
21112 *** | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | S OY | | | *** | 18:13:06 | | | | | | | | | | | | PAGE 17 | ### *** VOLUME SOURCE DATA *** | SOURCE
ID | NUMBER PART. CATS. | EMISSION RAT | E
X
(METERS)
 | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | | |--------------|--------------------|--------------|------------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------|----------| | L0000904 | 0 | 0.40790E-05 | 487596.9 | 3765628.9 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0000905 | 0 | 0.40790E-05 | 487600.2 | 3765627.2 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0000906 | 0 | 0.40790E-05 | 487603.5 | 3765625.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000907 | 0 | 0.40790E-05 | 487606.8 | 3765624.0 | 574.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0000908 | 0 | 0.40790E-05 | 487610.0 | 3765622.3 | 574.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0000909 | 0 | 0.40790E-05 | 487613.3 | 3765620.7 | 574.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0000910 | 0 | 0.40790E-05 | 487616.6 | 3765619.1 | 574.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0000911 | 0 | 0.40790E-05 | 487619.8 | 3765617.4 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0000912 | 0 | 0.40790E-05 | 487623.1 | 3765615.8 | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | edlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freew | ay-related | d DPM Con | centration | ns OY | | | *** | 18:13:06 | | | | | | | | | | | | | PAGE 18 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | ALL | L000001 | , L0000002 | , L0000003 | , L0000004 | , L0000005 | , L0000006 | , L000007 | , L00000 | 08 , | |-----------------------|-----------|------------|----------------------------------|------------|-------------|------------|------------|----------|---------------------------------| | | L0000009 | , L0000010 | , L0000011 | , L0000012 | , L0000013 | , L0000014 | , L0000015 | , L00000 | 16 , | | | L0000017 | , L0000018 | , L0000019 | , L0000020 | , L0000021 | , L0000022 | , L0000023 | , L00000 | 24 , | | | L0000025 | , L0000026 | , L0000027 | , L0000028 | , L0000029 | , L0000030 | , L0000031 | , L00000 | 32 , | | | L0000033 | , L0000034 | , L0000035 | , L0000036 | , L0000037 | , L0000038 | , L0000039 | , L00000 | 40 , | | | L0000041 | , L0000042 | , L0000043 | , L0000044 | , L0000045 | , L0000046 | , L0000047 | , L00000 | 48 , | | | L0000049 | , L0000050 | , L0000051 | , L0000052 | , L0000053 | , L0000054 | , L0000055 | , L00000 | 56 , | | | L0000057 | , L0000058 | , L0000059 | , L0000060 | , L0000061 | , L0000062 | , L0000063 | , L00000 | 64 , | | | L0000065 | , L0000066 | , L0000067 | , L0000068 | , L0000069 | , L0000070 | , L0000071 | , L00000 | 72 , | | | L0000073 | , L0000074 | , L0000075 | , L0000076 | , L0000077 | , L0000078 | , L0000079 | , L00000 | 80 , | | | L0000081 | , L0000082 | , L0000083 | , L0000084 | , L0000085 | , L0000086 | , L0000087 | , L00000 | 88 , | | | L0000089 | , L0000090 | , L0000091 | , L0000092 | , L0000093 | , L0000094 | , L0000095 | , L00000 | 96 , | | | L0000097 | , L0000098 | , L0000099 | , L0000100 | , L0000101 | , L0000102 | , L0000103 | , L00001 | 04 , | | | L0000105 | , L0000106 | , L0000107 | , L0000108 | , L0000109 | , L0000110 | , L0000111 | , L00001 | 12 , | | | L0000113 | , L0000114 | , L0000115 | , L0000116 | , L0000117 | , L0000118 | , L0000119 | , L00001 | 20 , | | | L0000121 | , L0000122 | , L0000123 | , L0000124 | , L0000125 | , L0000126 | , L0000127 | , L00001 | 28 , | | | L0000129 | , L0000130 | , L0000131 | , L0000132 | , L0000133 | , L0000134 | , L0000135 | , L00001 | 36 , | | | L0000137 | , L0000138 | , L0000139 | , L0000140 | , L0000141 | , L0000142 | , L0000143 | , L00001 | 44 , | | | L0000145 | , L0000146 | , L0000147 | , L0000148 | , L0000149 | , L0000150 | , L0000151 | , L00001 | 52 , | | | L0000153 | , L0000154 | , L0000155 | , L0000156 | , L0000157 | , L0000158 | , L0000159 | , L00001 | 60 , | | *** AERMOD *** AERMET | - VERSION | | * Terracina at
* Freeway-rela | | trations OY | | | *** | 08/11/21
18:13:06
PAGE 19 | *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | L0000161 | , L0000162 | , L0000163 | , L0000164 | , L0000165 | , L0000166 | , L0000167 | , L0000168 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0000169 | , L0000170 | , L0000171 | , L0000172 | , L0000173 | , L0000174 | , L0000175 | , L0000176 | , | | L0000177 | , L0000178 | , L0000179 | , L0000180 | , L0000181 | , L0000182 | , L0000183 | , L0000184 | , | | L0000185 | , L0000186 | , L0000187 | , L0000188 | , L0000189 | , L0000190 | , L0000191 | , L0000192 | , | | L0000193 | , L0000194 | , L0000195 | , L0000196 | , L0000197 | , L0000198 | , L0000199 | , L0000200 | , | | L0000201 | , L0000202 | , L0000203 | , L0000204 | , L0000205 | , L0000206 | , L0000207 | , L0000208 | , | | L0000209 | , L0000210 | , L0000211 | , L0000212 | , L0000213 | , L0000214 | , L0000215 | , L0000216 | , | | L0000217 | , L0000218 | , L0000219 | , L0000220 | , L0000221 | , L0000222 | , L0000223 | , L0000224 | , | | L0000225 | , L0000226 | , L0000227 | , L0000228 | , L0000229 | , L0000230 | , L0000231 | , L0000232 | , | | L0000233 | , L0000234 | , L0000235 | , L0000236 | , L0000237 | , L0000238 | , L0000239 | , L0000240 | , | | L0000241 | , L0000242 | , L0000243 | , L0000244 | , L0000245 | , L0000246 | , L0000247 | , L0000248 | , | | L0000249 | , L0000250 | , L0000251 | , L0000252 | , L0000253 | , L0000254 | , L0000255 | , L0000256 | , | | L0000257 | , L0000258 | , L0000259 | , L0000260 | , L0000261 | , L0000262 | , L0000263 | , L0000264 | , | | L0000265 | , L0000266 | , L0000267 | , L0000268 | , L0000269 | , L0000270 | , L0000271 | , L0000272 | , | | L0000273 | , L0000274 | , L0000275 | , L0000276 | , L0000277 | , L0000278 | , L0000279 | , L0000280 | , | | L0000281 | , L0000282 | , L0000283 | , L0000284 | , L0000285 | , L0000286 | , L0000287 | , L0000288 | , | | L0000289 | , L0000290 | , L0000291 | , L0000292 | , L0000293 | , L0000294 | , L0000295 | , L0000296 | , | | L0000297 | , L0000298 | , L0000299 | , L0000300 | , L0000301 | , L0000302 | , L0000303 | , L0000304 | , | | L0000305 | , L0000609 | , L0000610 | , L0000611 | , L0000612 | , L0000613 | , L0000614 | , L0000615 | , | | L0000616 | , L0000617 | , L0000618 | , L0000619 | , L0000620 | , L0000621 | , L0000622 | , L0000623 | , | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS *** *** 08/11/21 18:13:06 PAGE 20 | L0000624 | l , L0000625 | , L0000626 | , L0000627 | , L0000628 | , L0000629 | , L0000630 | , L000063 | 31 , | |---|--------------|----------------|------------|--------------|------------|------------|-----------|----------------------| | L0000632 | , L0000633 | , L0000634 | , L0000635 | , L0000636 | , L0000637 | , L0000638 | , L000063 | 39 , | | L0000640 |) , L0000641 | , L0000642 | , L0000643 | , L0000644 | , L0000645 | , L0000646 | , L000064 | <u>1</u> 7, | | L0000648 | , L0000649 | , L0000650 | , L0000651 | , L0000652 | , L0000653 | , L0000654 | , L000065 | | | L0000656 | 5 , L0000657 | , L0000658 | , L0000659 | , L0000660 | , L0000661 | , L0000662 | , L000066 | | | L0000664 | , | , L0000666 | , L0000667 | , L0000668 | , L0000669 | , L0000670 | , L000067 | | | L0000672 | , | , L0000674 | , L0000675 | , L0000676 | , L0000677 | , L0000678 | , L000067 | | | L0000680 | , | , L0000682 | , L0000683 | , L0000684 | , L0000685 | , L0000686 | , L000068 | | | | , | • | • | • | • | , | • | , | | L0000688 | , L0000689 | , L0000690 | , L0000691 | , L0000692 | , L0000693 | , L0000694 | , L000069 | , | | L0000696 | , L0000697 | , L0000698 | , L0000699 | , L0000700 | , L0000701 | , L0000702 | , L000070 |)3 , | | L0000704 | , L0000705 | , L0000706 | , L0000707 | , L0000708 | , L0000709 | , L0000710 | , L000071 | .1 , | | L0000712 | , L0000713 | , L0000714 | , L0000715 | , L0000716 | , L0000717 | , L0000718 | , L000071 | .9 , | | L0000720 | , L0000721 | , L0000722 | , L0000723 | , L0000724 | , L0000725 | , L0000726 | , L000072 | .7 , | | L0000728 | , L0000729 | , L0000730 | , L0000731 | , L0000732 | , L0000733 | , L0000734 | , L000073 | 35 , | | L0000736 | , L0000737 | , L0000738 | , L0000739 | , L0000740 | , L0000741 | , L0000742 | , L000074 | | | L0000744 | , L0000745 | , L0000746 | , L0000747 | , L0000748 | , L0000749 | , L0000750 | , L000075 | 51 , | | L0000752 | , L0000753 | , L0000754 | , L0000755 | , L0000756 | , L0000757 | , L0000758 | , L000075 | 59 , | | L0000760 |) , L0000761 | , L0000762 | , L0000763 | , L0000764 | , L0000765 | , L0000766 | , L000076 | 57 , | | L0000768 | , L0000769 | , L0000770 | , L0000771 | , L0000772 | , L0000773 | , L0000774 | , L000077 | 75 , | | L0000776 | , L0000777 | , L0000778 | , L0000779 | , L0000780 | , L0000781 | , L0000782 | , L000078 | 33 , | | *** AERMOD - VERSION *** AERMET - VERSION | | ICII aCIIIa ac | Redlands | ntrations OY | | | *** | 08/11/21
18:13:06 | *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS PAGE 21 _____ | | L0000784 | , L0000785 | , L0000786 | , L0000787 | , L0000788 | , L0000789 | , L0000790 | , L00007 | 91 , | |------------|--------------------------|------------------------------|---------------|----------------------------|----------------|------------|------------|------------
---------------------------------| | | L0000792 | , L0000793 | , L0000794 | , L0000795 | , L0000796 | , L0000797 | , L0000798 | , L00007 | 99 , | | | L0000800 | , L0000801 | , L0000802 | , L0000803 | , L0000804 | , L0000805 | , L0000806 | , L00008 | 07 , | | | L0000808 | , L0000809 | , L0000810 | , L0000811 | , L0000812 | , L0000813 | , L0000814 | , L00008 | 15 , | | | L0000816 | , L0000817 | , L0000818 | , L0000819 | , L0000820 | , L0000821 | , L0000822 | , L00008 | 23 , | | | L0000824 | , L0000825 | , L0000826 | , L0000827 | , L0000828 | , L0000829 | , L0000830 | , L00008 | 31 , | | | L0000832 | , L0000833 | , L0000834 | , L0000835 | , L0000836 | , L0000837 | , L0000838 | , L00008 | 39 , | | | L0000840 | , L0000841 | , L0000842 | , L0000843 | , L0000844 | , L0000845 | , L0000846 | , L00008 | 47 , | | | L0000848 | , L0000849 | , L0000850 | , L0000851 | , L0000852 | , L0000853 | , L0000854 | , L00008 | 55 , | | | L0000856 | , L0000857 | , L0000858 | , L0000859 | , L0000860 | , L0000861 | , L0000862 | , L00008 | 63 , | | | L0000864 | , L0000865 | , L0000866 | , L0000867 | , L0000868 | , L0000869 | , L0000870 | , L00008 | 71 , | | | L0000872 | , L0000873 | , L0000874 | , L0000875 | , L0000876 | , L0000877 | , L0000878 | , L00008 | 79 , | | | L0000880 | , L0000881 | , L0000882 | , L0000883 | , L0000884 | , L0000885 | , L0000886 | , L00008 | 87 , | | | L0000888 | , L0000889 | , L0000890 | , L0000891 | , L0000892 | , L0000893 | , L0000894 | , L00008 | 95 , | | | L0000896 | , L0000897 | , L0000898 | , L0000899 | , L0000900 | , L0000901 | , L0000902 | , L00009 | 03 , | | | L0000904 | , L0000905 | , L0000906 | , L0000907 | , L0000908 | , L0000909 | , L0000910 | , L00009 | 11 , | | | L0000912 | , | | | | | | | | | | - VERSION 2
- VERSION | 21112 *** **
16216 *** ** | ICII GOING GO | Redlands
ted DPM Concen | trations OY | | | *** | 08/11/21
18:13:06
PAGE 22 | | *** MODELO | PTs: RegI | OFAULT CONC E | LEV URBAN AD | J_U* | | | | | 11102 22 | | | | | *** SOURC | E IDs DEFINED . | AS URBAN SOURC | ES *** | | | | | URBAN ID | URBAN POP | | | SOURCE | | | | | | | L0000008 | 2035210. | L0000001 | , ь0000002 | , L0000003 | , L000004 | , L0000005 | , L0000006 | , L0000007 | , | | *** AERMOD -
*** AERMET - | | | Terracina at
Freeway-relat | Redlands
ed DPM Concent | crations OY | | | *** | 08/11/21
18:13:06
PAGE 23 | |------------------------------|----------|------------|-------------------------------|----------------------------|-------------|------------|------------|-----------|---------------------------------| | | L0000153 | , L0000154 | , L0000155 | , L0000156 | , L0000157 | , L0000158 | , L0000159 | , L000016 | 50 , | | | L0000145 | , L0000146 | , L0000147 | , L0000148 | , L0000149 | , L0000150 | , L0000151 | , L000015 | 52 , | | | L0000137 | , L0000138 | , L0000139 | , L0000140 | , L0000141 | , L0000142 | , L0000143 | , L000014 | 14 , | | | L0000129 | , L0000130 | , L0000131 | , L0000132 | , L0000133 | , L0000134 | , L0000135 | , L000013 | 36 , | | | L0000121 | , L0000122 | , L0000123 | , L0000124 | , L0000125 | , L0000126 | , L0000127 | , L000012 | 28 , | | | L0000113 | , L0000114 | , L0000115 | , L0000116 | , L0000117 | , L0000118 | , L0000119 | , L000012 | 20 , | | | L0000105 | , L0000106 | , L0000107 | , L0000108 | , L0000109 | , L0000110 | , L0000111 | , L000011 | 12 , | | | L0000097 | , L0000098 | , L0000099 | , L0000100 | , L0000101 | , L0000102 | , L0000103 | , L000010 | 04 , | | | L0000089 | , L0000090 | , L0000091 | , L0000092 | , L0000093 | , L0000094 | , L0000095 | , L000009 | 96 , | | | L0000081 | , L0000082 | , L0000083 | , L0000084 | , L0000085 | , L0000086 | , L0000087 | , L000008 | 38 , | | | L0000073 | , L0000074 | , L0000075 | , L0000076 | , L0000077 | , L0000078 | , L0000079 | , L000008 | 30 , | | | L0000065 | , L0000066 | , L0000067 | , L0000068 | , L0000069 | , L0000070 | , L0000071 | , L00000 | 72 , | | | L0000057 | , L0000058 | , L0000059 | , L0000060 | , L0000061 | , L0000062 | , L0000063 | , L000006 | 54 , | | | L0000049 | , L0000050 | , L0000051 | , L0000052 | , L0000053 | , L0000054 | , L0000055 | , L000005 | 56 , | | | L0000041 | , L0000042 | , L0000043 | , L0000044 | , L0000045 | , L0000046 | , L0000047 | , L000004 | 18 , | | | L0000033 | , L0000034 | , L0000035 | , L0000036 | , L0000037 | , L0000038 | , L0000039 | , L000004 | 10 , | | | L0000025 | , L0000026 | , L0000027 | , L0000028 | , L0000029 | , L0000030 | , L0000031 | , L000003 | 32 , | | | L0000017 | , L0000018 | , L0000019 | , L0000020 | , L0000021 | , L0000022 | , L0000023 | , L000002 | 24 , | | | L0000009 | , L0000010 | , L0000011 | , L0000012 | , L0000013 | , L0000014 | , L0000015 | , L000001 | 16 , | *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS | L0000161 | , L0000162 | , L0000163 | , L0000164 | , L0000165 | , L0000166 | , L0000167 | , L0000168 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0000169 | , L0000170 | , L0000171 | , L0000172 | , L0000173 | , L0000174 | , L0000175 | , L0000176 | , | | L0000177 | , L0000178 | , L0000179 | , L0000180 | , L0000181 | , L0000182 | , L0000183 | , L0000184 | , | | L0000185 | , L0000186 | , L0000187 | , L0000188 | , L0000189 | , L0000190 | , L0000191 | , L0000192 | , | | L0000193 | , L0000194 | , L0000195 | , L0000196 | , L0000197 | , L0000198 | , L0000199 | , L0000200 | , | | L0000201 | , L0000202 | , L0000203 | , L0000204 | , L0000205 | , L0000206 | , L0000207 | , L0000208 | , | | L0000209 | , L0000210 | , L0000211 | , L0000212 | , L0000213 | , L0000214 | , L0000215 | , L0000216 | , | | L0000217 | , L0000218 | , L0000219 | , L0000220 | , L0000221 | , L0000222 | , L0000223 | , L0000224 | , | | L0000225 | , L0000226 | , L0000227 | , L0000228 | , L0000229 | , L0000230 | , L0000231 | , L0000232 | , | | L0000233 | , L0000234 | , L0000235 | , L0000236 | , L0000237 | , L0000238 | , L0000239 | , L0000240 | , | | L0000241 | , L0000242 | , L0000243 | , L0000244 | , L0000245 | , L0000246 | , L0000247 | , L0000248 | , | | L0000249 | , L0000250 | , L0000251 | , L0000252 | , L0000253 | , L0000254 | , L0000255 | , L0000256 | , | | L0000257 | , L0000258 | , L0000259 | , L0000260 | , L0000261 | , L0000262 | , L0000263 | , L0000264 | , | | L0000265 | , L0000266 | , L0000267 | , L0000268 | , L0000269 | , L0000270 | , L0000271 | , L0000272 | , | | L0000273 | , L0000274 | , L0000275 | , L0000276 | , L0000277 | , L0000278 | , L0000279 | , L0000280 | , | | L0000281 | , L0000282 | , L0000283 | , L0000284 | , L0000285 | , L0000286 | , L0000287 | , L0000288 | , | | L0000289 | , L0000290 | , L0000291 | , L0000292 | , L0000293 | , L0000294 | , L0000295 | , L0000296 | , | | L0000297 | , L0000298 | , L0000299 | , L0000300 | , L0000301 | , L0000302 | , L0000303 | , L0000304 | , | | L0000305 | , L0000609 | , L0000610 | , L0000611 | , L0000612 | , L0000613 | , L0000614 | , L0000615 | , | | L0000616 | , L0000617 | , L0000618 | , L0000619 | , L0000620 | , L0000621 | , L0000622 | , L0000623 | , | | | | | | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS ``` L0000624 , L0000625 , L0000626 , L0000627 , L0000628 , L0000629 , L0000630 , L0000631 L0000632 , L0000633 , L0000634 , L0000635 , L0000636 , L0000637 , L0000638 , L0000639 L0000640 , L0000641 , L0000642 , L0000643 , L0000644 , L0000645 , L0000646 , L0000647 L0000648 , L0000649 , L0000653 , L0000655 , L0000650 , L0000651 , L0000652 , L0000654 L0000656 , L0000657 , L0000658 , L0000659 , L0000660 , L0000661 , L0000662 , L0000663 L0000664 , L0000667 , L0000668 , L0000669 , L0000671 , L0000665 , L0000666 , L0000670 , L0000673 , L0000676 , L0000677 , L0000679 L0000672 , L0000674 , L0000675 , L0000678 L0000680 , L0000681 , L0000682 , L0000683 , L0000684 , L0000685 , L0000686 , L0000687 L0000688 , L0000689 , L0000690 , L0000691 , L0000692 , L0000693 , L0000694 , L0000695 L0000696 , L0000697 , L0000698 , L0000699 , L0000700 , L0000701 , L0000702 , L0000703 L0000704 , L0000705 , L0000706 , L0000707 , L0000708 , L0000709 , L0000710 , L0000711 L0000712 , L0000713 , L0000714 , L0000715 , L0000716 , L0000717 , L0000718 , L0000719 L0000720 , L0000721 , L0000722 , L0000723 , L0000724 , L0000725 , L0000726 , L0000727 L0000728 , L0000729 , L0000730 , L0000731 , L0000732 , L0000733 , L0000734 , L0000735 L0000736 , L0000737 , L0000738 , L0000739 , L0000740 , L0000741 , L0000742 , L0000743 L0000744 , L0000745 , L0000748 , L0000749 , L0000746 , L0000747 , L0000750 , L0000751 L0000752 , L0000755 , L0000756 , L0000759 , L0000753 , L0000754 , L0000757 , L0000758 L0000760 , L0000761 , L0000762 , L0000763 , L0000764 , L0000765 , L0000766 , L0000767 L0000768 , L0000769 , L0000770 , L0000771 , L0000772 , L0000773 , L0000774 , L0000775 L0000776 , L0000777 , L0000778 , L0000779 , L0000780 , L0000781 , L0000782 , L0000783 * * * 08/11/21 ``` *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDs * * * 18:13:06 PAGE 25 ``` L0000792 , L0000793 , L0000794 , L0000795 , L0000796 , L0000797 , L0000798 , L0000799 L0000800 , L0000801 , L0000802 , L0000803 , L0000804 , L0000805 , L0000806 , L0000807 L0000808 , L0000809 , L0000810 , L0000811 , L0000812 , L0000813 , L0000814 , L0000815 L0000816 , L0000817 , L0000818 , L0000819 , L0000820 , L0000821 , L0000822 , L0000823 L0000824 , L0000825 , L0000826 , L0000827 , L0000828 , L0000829 , L0000830 , L0000831 L0000832 , L0000833 , L0000834 , L0000835 , L0000836 , L0000837 , L0000838 , L0000839 L0000840 , L0000841 , L0000842 , L0000843 , L0000844 , L0000845 , L0000846 , L0000847 L0000848 , L0000849 , L0000850 , L0000851 , L0000852 , L0000853 , L0000854 , L0000855 L0000856 , L0000859 , L0000860 , L0000863 , L0000857 , L0000858 , L0000861 , L0000862 L0000864 ,
L0000865 , L0000866 , L0000867 , L0000868 , L0000869 , L0000870 , L0000871 L0000872 . L0000873 , L0000874 , L0000875 , L0000876 , L0000877 , L0000878 , L0000879 L0000880 , L0000881 , L0000882 , L0000883 , L0000884 , L0000885 , L0000886 , L0000887 L0000888 , L0000889 , L0000890 , L0000891 , L0000892 , L0000893 , L0000894 , L0000895 L0000896 , L0000897 , L0000898 , L0000899 , L0000900 , L0000901 , L0000902 , L0000903 L0000904 , L0000905 , L0000906 , L0000907 , L0000908 , L0000909 , L0000910 , L0000911 L0000912 *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY 18:13:06 PAGE 26 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** GRIDDED RECEPTOR NETWORK SUMMARY *** *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** *** X-COORDINATES OF GRID *** (METERS) 486627.2, 486677.2, 486727.2, 486777.2, 486827.2, 486877.2, 486927.2, 486977.2, 487027.2, 487077.2, 487127.2, 487177.2, 487227.2, 487277.2, 487327.2, 487377.2, 487427.2, 487477.2, 487527.2, 487577.2, 487627.2, ``` L0000784 , L0000785 , L0000786 , L0000787 , L0000788 , L0000789 , L0000790 , L0000791 # *** Y-COORDINATES OF GRID *** (METERS) 3765628.5, 3765678.5, 3765728.5, 3765778.5, 3765828.5, 3765878.5, 3765928.5, 3765978.5, 3766028.5, 3766078.5, 3766128.5, 3766178.5, 3766228.5, 3766278.5, 3766328.5, 3766428.5, 3766478.5, 3766528.5, 3766578.5, 3766628.5, *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** #### * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | | | | | | | | | | | | | 3766628.46 | 544.20 | 545.30 | 544.90 | 547.20 | 550.40 | 554.20 | 558.10 | 558.20 | 556.00 | | 3766578.46 | 548.60 | 552.30 | 553.20 | 550.10 | 551.10 | 556.50 | 559.20 | 561.60 | 564.60 | | | | | | | | | | | | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 554.60 | 555.90 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 561.20 | 561.40 | 563.40 | 564.50 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 552.00 | 554.70 | 560.20 | 564.40 | 563.80 | 558.40 | | 3766378.46 | 548.90 | 550.20 | 548.70 | 546.10 | 549.70 | 552.50 | 554.80 | 554.10 | 554.10 | | 3766328.46 | 544.90 | 548.20 | 546.60 | 543.30 | 544.40 | 546.10 | 547.80 | 551.20 | 555.30 | | 3766278.46 | 542.10 | 543.90 | 543.30 | 541.90 | 541.60 | 545.30 | 552.20 | 559.30 | 563.90 | | 3766228.46 | 538.30 | 539.20 | 540.10 | 539.50 | 543.20 | 548.20 | 554.10 | 560.70 | 569.10 | | 3766178.46 | 529.40 | 533.30 | 536.00 | 539.10 | 544.60 | 553.20 | 563.20 | 566.40 | 564.40 | | 3766128.46 | 527.10 | 530.90 | 533.50 | 541.80 | 554.20 | 564.90 | 567.50 | 560.40 | 562.80 | | 3766078.46 | 527.50 | 529.40 | 531.80 | 542.90 | 552.80 | 554.70 | 555.40 | 552.50 | 553.40 | | 3766028.46 | 530.00 | 531.30 | 532.30 | 534.90 | 540.10 | 543.10 | 546.30 | 547.40 | 550.50 | | 3765978.46 | 532.50 | 531.30 | 533.30 | 535.70 | 537.60 | 539.20 | 541.10 | 543.60 | 547.20 | | 3765928.46 | 548.90 | 538.10 | 534.90 | 535.70 | 537.80 | 540.00 | 542.10 | 543.80 | 545.10 | | 3765878.46 | 567.50 | 554.20 | 542.70 | 539.70 | 540.60 | 542.50 | 543.50 | 546.10 | 548.70 | | 3765828.46 | 573.70 | 561.60 | 549.80 | 553.60 | 558.90 | 551.90 | 555.90 | 560.80 | 572.20 | | 3765778.46 | 575.00 | 574.30 | 566.80 | 568.70 | 575.50 | 567.00 | 563.50 | 575.00 | 581.50 | | 3765728.46 | 574.40 | 576.50 | 577.70 | 580.90 | 585.60 | 582.20 | 578.20 | 583.70 | 592.00 | | 3765678.46 | 581.00 | 578.80 | 579.80 | 583.50 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 582.20 | 586.30 | 591.10 | 593.20 | 594.80 | 596.80 | 601.00 | | *** 3 = 3 *** | | | | , | | | | *** | /11 /01 | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands | | | | | | | 00 | /11/21 | | | *** AERMET - VERSION 16216 *** | | | | | | | | *** 18 | :13:06 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * ELEVATION HEIGHTS IN METERS * PAGE 28 | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|------------------|------------|---------------|---------------|-----------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | | | | | | | | | | | | | 3766628.46 | 554.80 | 556.50 | 560.60 | 564.70 | 566.90 | 568.10 | 569.60 | 572.00 | 574.30 | | 3766578.46 | 564.30 | 560.70 | 560.30 | 564.00 | 568.50 | 571.20 | 572.40 | 574.30 | 576.70 | | 3766528.46 | 568.30 | 568.90 | 567.10 | 565.00 | 566.80 | 572.00 | 574.10 | 576.40 | 579.30 | | 3766478.46 | 564.10 | 568.30 | 570.70 | 570.80 | 568.10 | 570.90 | 574.60 | 577.70 | 582.00 | | 3766428.46 | 557.60 | 561.10 | 565.40 | 571.50 | 573.20 | 575.60 | 578.20 | 581.30 | 590.40 | | 3766378.46 | 560.70 | 563.00 | 569.20 | 576.20 | 580.20 | 585.80 | 591.00 | 592.80 | 592.90 | | 3766328.46 | 562.50 | 569.60 | 572.90 | 582.10 | 590.20 | 594.50 | 592.50 | 596.20 | 599.70 | | 3766278.46 | 566.00 | 574.20 | 585.00 | 589.60 | 595.40 | 589.20 | 584.10 | 589.70 | 591.00 | | 3766228.46 | 573.80 | 578.10 | 588.60 | 582.90 | 585.00 | 581.70 | 577.70 | 581.80 | 582.80 | | 3766178.46 | 572.80 | 579.70 | 582.40 | 577.30 | 577.30 | 574.20 | 573.10 | 577.10 | 583.60 | | 3766128.46 | 570.90 | 571.10 | 576.80 | 571.80 | 569.40 | 569.10 | 571.50 | 578.60 | 588.50 | | 3766078.46 | 557.60 | 562.50 | 570.70 | 565.30 | 565.60 | 567.90 | 571.00 | 574.80 | 581.40 | | 3766028.46 | 553.70 | 556.90 | 561.10 | 559.60 | 561.60 | 568.60 | 580.20 | 581.30 | 579.80 | | 3765978.46 | 550.10 | 554.90 | 558.40 | 557.30 | 563.80 | 572.30 | 580.80 | 593.60 | 598.00 | |
3765928.46 | 547.20 | 550.50 | 556.40 | 557.40 | 570.10 | 584.80 | 590.90 | 598.40 | 611.40 | | 3765878.46 | 548.90 | 550.20 | 555.20 | 554.80 | 562.60 | 576.90 | 580.70 | 594.40 | 605.10 | | 3765828.46 | 570.60 | 560.70 | 555.30 | 554.90 | 557.90 | 563.90 | 574.50 | 586.80 | 602.20 | | 3765778.46 | 590.70 | 580.80 | 565.10 | 558.80 | 557.90 | 560.10 | 566.60 | 580.40 | 601.40 | | 3765728.46 | 594.90 | 582.90 | 569.60 | 562.80 | 559.40 | 560.00 | 562.60 | 566.50 | 576.00 | | 3765678.46 | 600.80 | 595.30 | 579.00 | 569.40 | 567.30 | 562.00 | 561.90 | 564.80 | 567.50 | | 3765628.46 | 602.80 | 597.50 | 580.20 | 575.40 | 577.30 | 575.80 | 564.50 | 564.20 | 566.00 | | *** AERMOD - | VERSION 21112 ** | * *** Terr | acina at Redl | ands | | | | *** 08 | 3/11/21 | | *** AERMET - | VERSION 16216 ** | | | PM Concentrat | ions OY | | | | 3:13:06 | | | | | • | | | | | PA | AGE 29 | *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ## * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD (METERS) | |--------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | 0555500 45 1 | | 555.00 | 550 40 | | | 3766628.46 | 575.90 | 577.20 | 579.40 | | | 3766578.46 | 578.80 | 580.50 | 582.70 | | | 3766528.46 | 581.80 | 583.90 | 586.90 | | | 3766478.46 | 585.50 | 588.20 | 593.90 | | | 3766428.46 | 596.40 | 591.70 | 600.40 | | | 3766378.46 | 600.80 | 599.00 | 598.00 | | | 3766328.46 | 598.80 | 603.10 | 602.00 | | | 3766278.46 | 593.70 | 594.50 | 605.50 | | | 3766228.46 | 586.00 | 589.60 | 596.50 | | | 3766178.46 | 591.20 | 596.00 | 594.60 | | | 3766128.46 | 598.70 | 603.50 | 608.30 | | | 3766078.46 | 588.40 | 595.50 | 609.30 | |------------|--------|--------|--------| | 3766028.46 | 583.20 | 595.20 | 603.70 | | 3765978.46 | 589.20 | 589.40 | 595.70 | | 3765928.46 | 604.20 | 602.40 | 595.90 | | 3765878.46 | 617.00 | 620.70 | 615.80 | | 3765828.46 | 618.90 | 616.80 | 626.10 | | 3765778.46 | 601.20 | 607.60 | 633.60 | | 3765728.46 | 586.20 | 611.70 | 619.10 | | 3765678.46 | 572.80 | 586.30 | 596.40 | | 3765628.46 | 569.10 | 572.30 | 576.40 | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 08/11/21 *** 18:13:06 PAGE 30 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |------------|-----------------|-----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | 3766628.46 | 555.40 | 555.70 | 556.30 | 555.20 | 550.40 | 554.20 | 558.10 | 564.30 | 569.00 | | 3766578.46 | 548.60 | 552.30 | 555.70 | 559.60 | 559.90 | 556.50 | 559.20 | 561.60 | 564.60 | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 563.50 | 563.70 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 563.50 | 561.40 | 563.40 | 596.40 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 563.50 | 563.80 | 563.80 | 565.40 | 563.80 | 596.40 | | 3766378.46 | 548.90 | 550.20 | 551.50 | 590.00 | 595.20 | 596.40 | 596.40 | 596.40 | 600.20 | | 3766328.46 | 544.90 | 551.70 | 551.70 | 596.40 | 596.40 | 596.40 | 596.40 | 599.90 | 600.20 | | 3766278.46 | 542.10 | 551.70 | 590.00 | 596.40 | 596.40 | 637.60 | 596.40 | 596.40 | 596.40 | | 3766228.46 | 566.60 | 589.10 | 595.20 | 652.40 | 652.40 | 596.40 | 596.40 | 596.40 | 595.20 | | 3766178.46 | 652.40 | 652.40 | 652.40 | 652.40 | 652.40 | 595.20 | 589.10 | 590.00 | 596.40 | | 3766128.46 | 655.00 | 655.00 | 655.00 | 652.40 | 569.30 | 566.60 | 567.50 | 637.60 | 652.40 | | 3766078.46 | 655.00 | 667.30 | 671.50 | 654.70 | 652.40 | 652.40 | 652.40 | 667.30 | 671.50 | | 3766028.46 | 655.00 | 668.60 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765978.46 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765928.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765878.46 | 574.70 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765828.46 | 573.70 | 606.20 | 655.00 | 655.00 | 655.00 | 671.50 | 671.50 | 671.50 | 667.30 | | 3765778.46 | 588.60 | 589.70 | 610.60 | 652.40 | 607.90 | 655.00 | 671.50 | 655.00 | 655.00 | | 3765728.46 | 594.40 | 593.10 | 588.70 | 588.00 | 587.10 | 609.80 | 655.00 | 654.70 | 652.40 | | 3765678.46 | 591.40 | 595.00 | 595.00 | 591.40 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 597.00 | 592.50 | 591.10 | 593.20 | 594.80 | 607.90 | 602.20 | | *** | VERSION 21112 * | ** | acina at Redl | ande | | | | *** NQ | /11/21 | | AERMOD - | ARICHION SITIS | reli | acina at Redi | anus | _ | | | 08 | / 11 / 21 | *** 18:13:06 PAGE 31 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* # *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |---|------------------|------------|---------------|---------------|-----------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | | | | | | | | | | | | | 000000000000000000000000000000000000000 | =0.5 4.0 | 505.40 | | | | | | | 64.6 F0 | | 3766628.46 | 596.40 | 596.40 | 596.40 | 564.70 | 566.90 | 601.00 | 609.90 | 616.50 | 616.70 | | 3766578.46 | 568.00 | 596.40 | 600.80 | 601.00 | 601.00 | 601.90 | 609.90 | 616.50 | 616.70 | | 3766528.46 | 568.30 | 568.90 | 596.40 | 601.90 | 604.20 | 604.20 | 609.90 | 616.50 | 616.70 | | 3766478.46 | 596.40 | 596.40 | 596.40 | 600.20 | 605.20 | 609.90 | 614.50 | 616.50 | 616.50 | | 3766428.46 | 600.20 | 600.80 | 601.00 | 600.80 | 601.90 | 604.20 | 606.80 | 609.90 | 604.20 | | 3766378.46 | 599.90 | 600.80 | 600.20 | 599.90 | 599.90 | 599.90 | 599.90 | 600.20 | 604.20 | | 3766328.46 | 599.90 | 596.40 | 596.40 | 596.40 | 596.40 | 594.50 | 599.90 | 599.90 | 599.70 | | 3766278.46 | 596.40 | 596.40 | 595.20 | 595.20 | 595.40 | 596.40 | 600.80 | 600.80 | 608.90 | | 3766228.46 | 595.20 | 596.00 | 588.60 | 596.40 | 596.40 | 637.60 | 650.80 | 650.80 | 660.00 | | 3766178.46 | 595.20 | 590.00 | 590.00 | 637.60 | 637.60 | 660.00 | 660.00 | 660.00 | 660.00 | | 3766128.46 | 590.00 | 637.60 | 637.60 | 650.80 | 660.00 | 668.60 | 668.60 | 660.00 | 660.00 | | 3766078.46 | 668.60 | 667.30 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 667.30 | | 3766028.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 668.60 | 671.50 | | 3765978.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 660.00 | 660.00 | | 3765928.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 660.00 | 650.80 | 637.60 | | 3765878.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 650.80 | | 3765828.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | | 3765778.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765728.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765678.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765628.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3703020:10 | 032.10 | 033.00 | 071.50 | 071.50 | 071.50 | 071.50 | 071.50 | 071.50 | 071.50 | | *** AERMOD - | VERSION 21112 ** | * *** Terr | acina at Redl | ands | | | | *** 08 | /11/21 | | *** AERMET - | VERSION 16216 ** | * *** Free | way-related D | PM Concentrat | ions OY | | | *** 18 | :13:06 | | | | | _ | | | | | PA | GE 32 | | | | | | | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD (METERS) | |------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | 3766628.46 | 617.40 | 618.70 | 618.70 | | | 3766578.46 | 617.40 | 618.70 | 619.50 | | | 3766528.46 | 617.40 | 618.70 | 618.70 | | | 3766478.46 | 617.40 | 617.40 | 617.40 | | | 3766428.46 | 600.30 | 617.40 | 611.50 | | | 3766378.46 | 600.80 | 604.20 | 617.40 | | | 3766328.46 | 604.20 | 604.20 | 613.90 | | | 3766278.46 | 627.70 | 632.70 | 608.90 | | | | | | | | | 3766228.46 3766178.46 3766128.46 3766028.46 3765978.46 | 660.00
650.80
637.60
660.00
671.50
669.60 | 660.00
649.20
632.70
660.00
660.00
671.50 | 635.40
660.00
632.70
632.70
660.00 | | | | | | |--|--|--|--|----------------------|---|--------|----------------|---------------------------------| | 3765928.46 | 660.00 | 660.00 | 671.50 | | | | | | | 3765878.46 | 637.60 | 637.60 | 660.00 | | | | | | | 3765828.46 | 637.60 | 650.80 | 637.60 | | | | | | | 3765778.46 | 671.50 | 671.50 | 637.60 | | | | | | | 3765728.46 | 671.50 | 671.50 | 667.30 | | | | | | | 3765678.46 | 671.50 | 671.50 | 671.50 | | | | | | | 3765628.46 | 671.50 | 671.50 | 671.50 | | | | | | | | VERSION 21112 ***
VERSION 16216 *** | | acina at Re
way-related | dlands
DPM Concen | trations OY | | * * *
* * * | 08/11/21
18:13:06
PAGE 33 | | *** MODELOPTS | : RegDFAULT CO | NC ELEV U | RBAN ADJ_U | * | | | | | | | | | | - | AN RECEPTORS ***
EV, ZHILL, ZFLAG)
S) | | | | | (486910 | 9 3766071 2 | 552 6 | 654 1 | 0 0): | (487071.7, 3766032.3, | 553.8, | 671.5, | 0.0); | | • | | | • | , | (487280.7, 3766020.6, | • | | , | | • | 2, 3766054.5, | | • | , | (487507.5,
3765926.8, | • | | 0.0); | | | 8, 3766103.6, | | | | | | | 0.0); | | *** AERMOD - | VERSION 21112 *** | *** Terr | acina at Re | dlands | | | *** | 08/11/21 | | | VERSION 16216 *** | | way-related | DPM Concent | trations OY | | *** | 18:13:06
PAGE 34 | ^{***} MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ^{*} SOURCE-RECEPTOR COMBINATIONS FOR WHICH CALCULATIONS MAY NOT BE PERFORMED * LESS THAN 1.0 METER; WITHIN OPENPIT; OR BEYOND 80KM FOR FASTAREA/FASTALL | SOURCE | RECEPTOR L | | DISTANCE | |----------|-------------|-------------|----------| | ID | XR (METERS) | YR (METERS) | (METERS) | | | | | | | L0000163 | 487177.2 | 3765878.5 | 0.17 | | L0000103 | 487277.2 | 3765828.5 | -0.82 | | L0000193 | 487277.2 | 3765828.5 | -2.57 | | L0000191 | 487277.2 | 3765828.5 | 0.93 | | L0000224 | 487377.2 | 3765778.5 | 0.96 | | L0000628 | 486677.2 | 3766028.5 | 0.95 | | L0000629 | 486677.2 | 3766028.5 | -0.76 | | L0000672 | 486827.2 | 3765978.5 | 0.35 | | L0000715 | 486977.2 | 3765928.5 | -0.43 | | L0000716 | 486977.2 | 3765928.5 | -0.21 | | – - | | | | ### 487227.2 3765828.5 L0000788 0.43 487227.2 3765828.5 -2.73 L0000789 L0000790 487227.2 3765828.5 -0.22 0.42 L0000819 487327.2 3765778.5 L0000820 487327.2 3765778.5 -0.02 * * * *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY 18:13:06 PAGE 35 *** MODELOPTs: ReqDFAULT CONC ELEV URBAN ADJ U* *** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE. *** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC) 1.54, 3.09, 5.14, 8.23, 10.80, *** AERMOD - VERSION 21112 *** *** Terracina at Redlands * * * 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY * * * 18:13:06 PAGE 36 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA *** Surface file: E:\New MET data\RDLD_V9_ADJU\RDLD_v9.SFC Met Version: 16216 Profile file: E:\New MET data\RDLD V9 ADJU\RDLD v9.PFL Surface format: FREE Profile format: FREE Surface station no.: 3171 Upper air station no.: 3190 Name: UNKNOWN Name: UNKNOWN Year: 2012 Year: 2012 First 24 hours of scalar data YR MO DY JDY HR HO U* W* DT/DZ ZICNV ZIMCH M-O LEN ZO BOWEN ALBEDO REF WS WD HT REF TA HT 12 01 01 1 01 -10.6 0.149 -9.000 -9.000 -999. 138. 26.7 0.32 3.22 1.00 1.30 110. 9.1 285.4 5.5 ``` 12 01 01 1 02 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 130. 9.1 284.5 5.5 12 01 01 1 03 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 100. 9.1 285.0 5.5 12 01 01 1 04 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 107. 9.1 284.6 5.5 12 01 01 1 05 -10.7 0.149 -9.000 -9.000 -9.99. 138. 26.7 0.32 3.22 1.00 1.30 98. 9.1 284.9 5.5 12 01 01 1 06 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 86. 9.1 284.5 12 01 01 1 07 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 91. 9.1 284.0 12 01 01 1 08 -4.0 0.102 -9.000 -9.000 -999. 78. 22.9 0.32 3.22 0.54 0.90 107. 9.1 285.0 5.5 12 01 01 1 09 44.6 0.237 0.382 0.006 43. 276. -25.6 0.15 3.22 0.33 2.10 81. 10.1 289.1 12 01 01 1 10 134.3 0.111 0.882 0.008 176. 99. -1.0 0.32 3.22 0.26 0.40 72. 9.1 295.1 12 01 01 1 11 199.8 0.409 1.429 0.005 503. 627. -29.4 0.15 3.22 0.23 3.68 78. 10.1 297.9 -10.0 0.32 3.22 0.22 1.80 333. 9.1 299.4 5.5 -10.1 0.32 3.22 0.22 1.80 72. 9.1 300.4 5.5 12 01 01 1 14 194.0 0.294 2.109 0.005 1663. 382. -11.2 0.32 3.22 0.24 1.80 277. 9.1 301.0 5.5 9.1 301.0 12 01 01 1 16 39.5 0.199 1.278 0.005 1817. 240. -17.2 0.32 3.22 0.36 1.30 274. 9.1 300.1 5.5 12 01 01 1 17 -4.7 0.101 -9.000 -9.000 -999. 85. 19.0 0.32 3.22 0.65 0.90 252. 9.1 298.2 12 01 01 1 18 -4.9 0.102 -9.000 -9.000 -999. 78. 18.2 0.32 3.22 1.00 0.90 116. 9.1 296.4 12 01 01 1 19 -18.8 0.204 -9.000 -9.000 -999. 220. 45.6 0.15 3.22 1.00 2.27 79. 10.1 292.2 12 01 01 1 20 -5.0 0.102 -9.000 -9.000 -999. 83. 18.1 0.32 3.22 1.00 0.90 95. 9.1 290.2 12 01 01 1 21 -5.0 0.102 -9.000 -9.000 -999. 78. 18.0 0.32 3.22 1.00 0.90 99. 9.1 287.8 5.5 12 01 01 1 22 -5.0 0.102 -9.000 -9.000 -999. 78. 18.0 0.32 3.22 1.00 0.90 110. 9.1 287.6 5.5 12 01 01 1 23 -10.6 0.149 -9.000 -9.000 -999. 138. 26.8 0.32 3.22 1.00 1.30 89. 9.1 287.2 5.5 12 01 01 1 24 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 105. 9.1 285.9 First hour of profile data YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV 12 01 01 01 5.5 0 -999. -99.00 285.5 99.0 -99.00 -99.00 12 01 01 01 9.1 1 110. 1.30 -999.0 99.0 -99.00 -99.00 F indicates top of profile (=1) or below (=0) *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY *** 18:13:06 PAGE 37 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL , L0000005 INCLUDING SOURCE(S): L0000001 , L0000002 , L0000003 , L0000004 , L0000007 , L0000008 , L0000009 , L0000010 , L0000011 , L0000012 , L0000013 , T-0000006 L0000014 , L0000015 , L0000016 , L0000017 , L0000018 , L0000019 , L0000020 , L0000021 L0000022 , L0000023 , L0000024 , L0000025 , L0000026 , L0000027 , L0000028 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM IN MICROGRAMS/M**3 Y-COORD X-COORD (METERS) 486627.18 486677.18 486727.18 486777.18 486827.18 486877.18 486927.18 486977.18 487027.18 (METERS) ``` | 2766620 46 1 | | | | | | | | | | | |---|---|--|---|--|---|--|---|---|---|--| | 3766628.46 | 0.00506 | 0.00519 | 0.00537 | 0.00539 | 0.00532 | 0.00516 | 0.00495 | 0.00498 | 0.00514 | | | 3766578.46 | 0.00537 | 0.00533 | 0.00545 | 0.00582 | 0.00587 | 0.00556 | 0.00541 | 0.00526 | 0.00504 | | | 3766528.46 | 0.00578 | 0.00579 | 0.00585 | 0.00601 | 0.00628 | 0.00627 | 0.00607 | 0.00588 | 0.00554 | | | 3766478.46 | 0.00657 | 0.00653 | 0.00670 | 0.00668 | 0.00656 | 0.00650 | 0.00657 | 0.00640 | 0.00630 | | | 3766428.46 | 0.00749 | 0.00778 | 0.00797 | 0.00823 | 0.00809 | 0.00751 | 0.00707 | 0.00720 | 0.00791 | | | 3766378.46 | 0.00867 | 0.00902 | 0.00969 | 0.01040 | 0.01016 | 0.00990 | 0.00963 | 0.00976 | 0.00970 | | | 3766328.46 | 0.01076 | 0.01097 | 0.01186 | 0.01281 | 0.01292 | 0.01278 | 0.01253 | 0.01193 | 0.01112 | | | 3766278.46 | 0.01348 | 0.01429 | 0.01524 | 0.01597 | 0.01619 | 0.01565 | 0.01415 | 0.01234 | 0.01118 | | | 3766228.46 | 0.01775 | 0.01940 | 0.02032 | 0.02084 | 0.02023 | 0.01879 | 0.01676 | 0.01447 | 0.01197 | | | 3766178.46 | 0.02545 | 0.02845 | 0.02917 | 0.02848 | 0.02635 | 0.02189 | 0.01703 | 0.01570 | 0.01625 | | | 3766128.46 | 0.04397 | 0.04912 | 0.04711 | 0.04140 | 0.02033 | 0.02180 | 0.02013 | 0.02351 | 0.02161 | | | 3766078.46 | 0.39769 | 0.15032 | 0.10319 | 0.07318 | 0.04825 | 0.04271 | 0.03972 | 0.04062 | 0.03725 | | | 3766028.46 | 0.20796 | 0.42539 | 0.36255 | 0.44114 | 0.16878 | 0.11393 | 0.08683 | 0.07189 | 0.05983 | | | 3765978.46 | 0.05594 | 0.08564 | 0.13082 | 0.25350 | 0.10878 | 0.37060 | 0.43100 | 0.17219 | 0.11657 | | | 3765928.46 | 0.03534 | 0.04435 | 0.05827 | 0.07487 | 0.49821 | 0.14267 | 0.26178 | 0.43773 | 0.46565 | | | 3765878.46 | 0.02030 | 0.02220 | 0.03589 | 0.04460 | 0.05342 | 0.06435 | 0.20178 | 0.10243 | 0.14495 | | | 3765828.46 | 0.01413 | 0.01517 | 0.03389 | 0.02569 | 0.03342 | 0.03758 | 0.04073 | 0.10243 | 0.03863 | | | 3765778.46 | 0.00897 | 0.01022 | 0.02391 | 0.01446 | 0.02012 | 0.01961 | 0.02487 | 0.04202 | 0.02348 | | | 3765778.46 | 0.00796 | 0.01022 | 0.01323 | 0.01446 | 0.01449 | 0.01207 | 0.01446 | 0.02194 | 0.02348 | | | ! | | | 0.00932 | 0.00987 | 0.01035 | 0.01207 | 0.01446 | 0.01046 | 0.01389 | | | 3765678.46
3765628.46 | 0.00638
0.00502 | 0.00728
0.00551 | 0.00787 | 0.00681 | 0.00687 | 0.00895 | 0.00968 | 0.01046 | 0.00844 | | | 3/03020.40 | 0.00502 | 0.00551 | 0.006/1 | 0.00001 | 0.00667 | 0.00725 | 0.00773 | 0.00621 | 0.00644 | | | *** 7 EDMOD - | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands | | | | | | | | | | | | | | | DPM Concentrat: | iona OV | | ** | 00 | :13:06 | | | AERMEI - | VERSION 10210 | rree | way-related L | OPM CONCENTIAL. | IONS OF | | | 10 | .13.06
.GE 38 | | | *** MODELODE | . Downeyii m | COMO ELEM III | אוז דרוג ז ו גרור + | | | | | PA | GE 38 | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | | | | | | | | | | | | _ | | | | | | | | | | | | J | | _ | TATEDACE COM | | VALUES EOD SOU | DGE CDOUD: ALL | *** | | | | | J | *** THE PERIO | —
D (43848 HRS | S) AVERAGE CON | | | RCE GROUP: ALI | | 0.5 | | | | 10000006 | *** THE
PERION | _
D (43848 HRS
SOURCE(S): | L000001 | , L0000002 | , L000003 | , L000004 | , L00000 | | | | | | *** THE PERION INCLUDING , L0000007 | | L0000001
, L0000009 | , L0000002
, L0000010 | , L0000003
, L0000011 | , L0000004
, L0000012 | , L00000
, L00000 | 13 , | | | | L0000014 | *** THE PERION
INCLUDING
, L0000007
, L0000015 | | L0000001
, L0000009
, L0000017 | , L0000002
, L0000010
, L0000018 | , L0000003
, L0000011
, L0000019 | , L0000004
, L0000012
, L0000020 | , L00000
, L00000 | 13 ,
21 , | | | | L0000014 | *** THE PERION
INCLUDING
, L0000007
, L0000015 | | L0000001
, L0000009 | , L0000002
, L0000010 | , L0000003
, L0000011 | , L0000004
, L0000012 | , L00000
, L00000 | 13 ,
21 , | | | | L0000014 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024 | L0000001
, L0000009
, L0000017
, L0000025 | , L0000002
, L0000010
, L0000018
, L0000026 | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020 | , L00000
, L00000 | 13 ,
21 , | | | | L0000014 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 | | L0000001
, L0000009
, L0000017
, L0000025 | , L0000002
, L0000010
, L0000018 | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020 | , L00000
, L00000 | 13 ,
21 , | | | | L0000014 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024 | L0000001
, L0000009
, L0000017
, L0000025 | , L0000002
, L0000010
, L0000018
, L0000026 | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020
, L0000028 | , L00000
, L00000 | 13 ,
21 , | | | | L0000014 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024 | L0000001
, L0000009
, L0000017
, L0000025 | , L0000002
, L0000010
, L0000018
, L0000026 | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020 | , L00000
, L00000 | 13 ,
21 , | | | | L0000014 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024 | L0000001
, L0000009
, L0000017
, L0000025
T1 ; NETWORN | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDCA | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020
, L0000028 | , L00000
, L00000 | 13 ,
21 , | | | Y-COORD | L0000014
L0000022 | *** THE PERIOD INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024
DRK ID: UCART | L0000001
, L0000009
, L0000017
, L0000025
F1 ; NETWORN
IN MICROGO | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDCARAMS/M**3 | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020
, L0000028 | , L00000
, L00000
, L00000 | 13 , 21 , | | | | L0000014 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024 | L0000001
, L0000009
, L0000017
, L0000025
T1 ; NETWORN | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDCA | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020
, L0000028 | , L00000
, L00000 | 13 ,
21 , | | | Y-COORD | L0000014
L0000022 | *** THE PERIOD INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024
DRK ID: UCART | L0000001
, L0000009
, L0000017
, L0000025
F1 ; NETWORN
IN MICROGO | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDCARAMS/M**3 | , L0000003
, L0000011
, L0000019
, L0000027 | , L0000004
, L0000012
, L0000020
, L0000028 | , L00000
, L00000
, L00000 | 13 , 21 , | | | Y-COORD
(METERS) | L0000014
L0000022 | *** THE PERIOD INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO *** (487127.18 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORD IN MICROGR 487227.18 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC.
RAMS/M**3
(METERS)
487277.18 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** | , L0000004
, L0000012
, L0000020
, L0000028
** | , L00000
, L00000
, L00000
, | 13 ,
21 ,
,
487477.18 | | | Y-COORD
(METERS)

3766628.46 | L0000014
L0000022 | *** THE PERIOD INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORN IN MICROGN 487227.18 0.00446 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC
RAMS/M**3
(METERS)
487277.18 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 | , L00000
, L00000
, L00000
, | 13 ,
21 ,
,
487477.18
 | | | Y-COORD
(METERS)

3766628.46
3766578.46 | L0000014
L0000022
487077.18
0.00521
0.00506 | *** THE PERIOD INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024
DRK ID: UCART
CONC OF DPM
487177.18 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORN IN MICROGN 487227.18 0.00446 0.00496 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 | , L00000
, L00000
, L00000
, | 13 ,
21 ,
,
487477.18

0.00350
0.00366 | | | Y-COORD
(METERS)

3766628.46
3766578.46
3766528.46 | L0000014
L0000022
487077.18
 | *** THE PERIOD INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 | D (43848 HRS
SOURCE(S):
, L0000008
, L0000016
, L0000024
DRK ID: UCART
CONC OF DPM
487177.18
 | L0000001 , L0000009 , L0000017 , L0000025 F1 ; NETWORN IN MICROGN 487227.18 0.00446 0.00496 0.00542 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 | , L00000
, L00000
, L00000
, | 13 ,
21 ,
,
,
487477.18

0.00350
0.00366
0.00383 | | | Y-COORD (METERS) | L0000014
L0000022
487077.18
0.00521
0.00506
0.00528
0.00634 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 0.00587 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 | L0000001 , L0000009 , L0000017 , L0000025 F1 ; NETWORN IN MICROGN 487227.18 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC.
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 | 487427.18

0.00372
0.00391
0.00446 | 13 ,
21 ,
,
487477.18

0.00350
0.00366
0.00383
0.00399 | | | Y-COORD (METERS) | L0000014
L0000022
487077.18
0.00521
0.00506
0.00528
0.00634
0.00796 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00532 0.00521 0.00587 0.00746 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 | L0000001 , L0000009 , L0000017 , L0000025 F1 ; NETWORN IN MICROGN 487227.18 0.00446 0.00496 0.00550 0.00550 0.00608 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 0.00541 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 0.00503 | 487427.18

0.00372
0.00391
0.00414
0.00461 | 13 ,
21 ,
,
487477.18

0.00350
0.00366
0.00383
0.00399
0.00370 | | | Y-COORD (METERS) | L0000014
L0000022
487077.18
0.00521
0.00506
0.00528
0.00634
0.00796
0.00868 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 0.00587 0.00746 0.00825 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 | L0000001 , L0000009 , L0000017 , L0000025 F1 ; NETWORN IN MICROGN 487227.18 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 0.00521 0.00495 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 0.00503 0.00431 | 487427.18

0.00372
0.00391
0.00414
0.00446
0.00461
0.00403 | 13 ,
21 ,
,
487477.18

0.00350
0.00366
0.00383
0.00399
0.00370
0.00389 | | | Y-COORD (METERS)
3766628.46 3766578.46 3766528.46 3766478.46 3766428.46 3766378.46 | L0000014
L0000022
487077.18
 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 0.00521 0.00587 0.00746 0.00825 0.00840 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 0.00477 0.00530 0.00532 0.00558 0.00686 0.00729 0.00776 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORI IN MICROGI X-COORD 487227.18 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC.
RAMS/M**3
(METERS)
487277.18

0.00426
0.00457
0.00519
0.00565
0.00579
0.00568
0.00522 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 0.00528 0.00541 0.00495 0.00465 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 0.00503 0.00431 0.00470 | 487427.18

0.00372
0.00391
0.00414
0.00446
0.00461
0.00403
0.00422 | 13 ,
21 ,
,
487477.18

0.00350
0.00366
0.00383
0.00399
0.00370
0.00389
0.00379 | | | Y-COORD (METERS) | L0000014
L0000022
487077.18
 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 0.00587 0.00746 0.00825 0.00840 0.00888 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 0.00477 0.00530 0.00532 0.00558 0.00686 0.00729 0.00776 0.00699 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORN IN MICROGN 487227.18 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC.
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 0.00528 0.00541 0.00495 0.00465 0.00593 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 0.00503 0.00431 0.00470 0.00641 | 487427.18

0.00372
0.00391
0.00414
0.00446
0.00461
0.00403
0.00422
0.00548 | 13 ,
21 ,
,
487477.18

0.00350
0.00366
0.00383
0.00379
0.00370
0.00379
0.00379
0.00512 | | | Y-COORD (METERS) 3766628.46 3766528.46 3766478.46 3766378.46 3766328.46 3766278.46 3766228.46 | L0000014
L0000022
487077.18
 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 0.00587 0.00587 0.00746 0.00825 0.00840 0.00888 0.00964 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORD | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC.
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 0.00528 0.00541 0.00495 0.00495 0.00465 0.00593 0.00807 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 0.00503 0.00503 0.00431 0.00470 0.00641 0.00847 | 487427.18

0.00372
0.00372
0.00391
0.00414
0.00446
0.00461
0.00403
0.00422
0.00548
0.00748 | 13 ,
21 ,
,
,
487477.18

0.00350
0.00366
0.00383
0.00399
0.00379
0.00379
0.00512
0.00701 | | | Y-COORD (METERS) | L0000014
L0000022
487077.18
 | *** THE PERIOR INCLUDING , L0000007 , L0000015 , L0000023 *** NETWO 487127.18 0.00507 0.00532 0.00521 0.00587 0.00746 0.00825 0.00840 0.00888 | D (43848 HRS SOURCE(S): , L0000008 , L0000016 , L0000024 DRK ID: UCART CONC OF DPM 487177.18 0.00477 0.00530 0.00532 0.00558 0.00686 0.00729 0.00776 0.00699 | L0000001 , L0000009 , L0000017 , L0000025 T1 ; NETWORN IN MICROGN 487227.18 | , L0000002
, L0000010
, L0000018
, L0000026
K TYPE: GRIDC.
RAMS/M**3
(METERS)
487277.18
 | , L0000003
, L0000011
, L0000019
, L0000027
ART *** 487327.18 0.00412 0.00430 0.00468 0.00528 0.00528 0.00541 0.00495 0.00465 0.00593 | , L0000004
, L0000012
, L0000020
, L0000028
** 487377.18 0.00395 0.00413 0.00441 0.00483 0.00503 0.00431 0.00470 0.00641 | 487427.18

0.00372
0.00391
0.00414
0.00446
0.00461
0.00403
0.00422
0.00548 | 13 ,
21 ,
,
487477.18

0.00350
0.00366
0.00383
0.00379
0.00370
0.00379
0.00379
0.00512 | | ``` 3766128.46 0.01737 0.01682 0.01435 0.01551 0.01570 0.01504 0.01360 0.01117 0.00853 3766078.46 0.03202 0.02706 0.02118 0.02285 0.02138 0.01921 0.01694 0.01471 0.01204 3766028.46 0.05049 0.04302 0.03621 0.03400 0.03003 0.02438 0.01757 0.01600 0.01535 3765978.46 0.08874 0.06954 0.04967 0.02988 0.02245 0.01321 0.05647 0.03985 0.01574 0.29654 3765928.46 0.14924 0.10190 0.07852 0.05042 0.03089 0.02437 0.01906 0.01430 3765878.46 0.27457 0.61997 0.51394 0.17569 0.10558 0.05578 0.04314 0.02780 0.02043 3765828.46 0.05028 0.09653 0.19038 0.38243 0.38057 0.16748 0.08488 0.04802 0.02964 3765778.46 0.02709 0.03409 0.06509 0.10499 0.44019 0.45690 0.11021 0.04799 0.18318 3765728.46 0.01803 0.02313 0.03864 0.05668 0.07628 0.11049 0.22571 0.38379 0.35406 0.07741 3765678.46 0.01219 0.01488 0.02269 0.03514 0.04490 0.05908 0.11519 0.25653 0.00907 0.05704 0.07407 3765628.46 0.01101 0.01779 0.02336 0.02626 0.03298 0.04662 *** *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations OY 18:13:06 PAGE 39 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* *** *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): L0000001 , L0000002 , L0000003 , L0000004 , L0000005 , L0000008 , L0000011 , L0000012 L0000006 , L0000007 , L0000009 , L0000010 , L0000013 , L0000016 , L0000018 , L0000019 L0000014 , L0000015 , L0000017 , L0000020 , L0000021 L0000022 , L0000023 , L0000024 , L0000025 , L0000026 , L0000027 , L0000028 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM IN MICROGRAMS/M**3 Y-COORD X-COORD (METERS) 487577.18 (METERS) 487527.18 487627.18 3766628.46 0.00332 0.00316 0.00296 3766578.46 0.00344 0.00324 0.00301 0.00355 3766528.46 0.00330 0.00301 3766478.46 0.00361 0.00330 0.00283 0.00316 0.00336 0.00272 3766428.46 3766378.46 0.00321 0.00319 0.00313 3766328.46 0.00371 0.00328 0.00321 3766278.46 0.00464 0.00435 0.00337 3766228.46 0.00625 0.00549 0.00449 3766178.46 0.00644 0.00551 0.00535 3766128.46 0.00651 0.00561 0.00487 3766078.46 0.00967 0.00774 0.00570 3766028.46 0.01319 0.00938 0.00740 3765978.46 0.01434 0.01297 0.01028 0.01375 0.01253 3765928.46 0.01248 3765878.46 0.01562 0.01307 0.01176 3765828.46 0.02086 0.01750 0.01380 0.03601 0.02599 0.01748 3765778.46 3765728.46 0.09894 0.03969 0.02642 3765678.46 0.36117 0.20918 0.05887 ``` | 3765628.46 0.11108 | 0.29014 0.25755 | | | | | |--|--|--|--|--|---------------------------------| | *** AERMOD - VERSION 21112 *** *** AERMET - VERSION 16216 *** | | ilands
DPM Concentrations OY | | * * *
* * * | 08/11/21
18:13:06
PAGE 40 | | *** MODELOPTs: RegDFAULT CON | IC ELEV URBAN ADJ_U | * | | | | | L0000006 , L0
L0000014 , L0 | THE PERIOD (43848 HF INCLUDING SOURCE(S): 0000007 , L0000008 0000015 , L0000016 0000023 , L00000024 | RS) AVERAGE CONCENTRATION | , L0000003 , L00
, L0000011 , L00
, L0000019 , L00 | 00004 , L0
00012 , L0
00020 , L0 | ** 000005 , 000013 , 000021 , | | | *** DISCRE | ETE CARTESIAN RECEPTOR POIN | TS *** | | | | | ** CONC OF DPM | IN MICROGRAMS/M**3 | | ** | | | X-COORD (M) Y-COORD (M) | CONC | X-COORD (M) | Y-COORD (M) CONC | ! | | | 486910.88 3766071.19
487146.10 3766029.99
487485.24 3766054.47
487080.82 3766103.59 | 0.04712
0.03911
0.01342
0.02347 | 487071.68
487280.73
487507.54
486821.49 | 3766032.30 0.04
3766020.65 0.03
3765926.79 0.01
3766197.66 0.02 | 108
377 | | | *** AERMOD - VERSION 21112 *** *** AERMET - VERSION 16216 *** *** MODELOPTs: RegDFAULT CON | *** Terracina at Rec
*** Freeway-related
IC ELEV URBAN ADJ_U | DPM Concentrations OY | | *** | 08/11/21
18:13:06
PAGE 41 | | | *** THE SUMMARY | Y OF MAXIMUM PERIOD (43848 | HRS) RESULTS *** | | | | | ** CONC OF DPM | IN MICROGRAMS/M**3 | ** | | | | GROUP ID AV | VERAGE CONC | RECEPTOR (XR, YR, ZEL | EV, ZHILL, ZFLAG) OF T | NETWORK 'YPE GRID-ID | · - | | ALL 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS | 0.51394 AT (4871 | 127.18, 3765878.46, 550.
177.18, 3765878.46, 555.
327.18, 3765978.46, 537. | 20, 671.50, 0.00) | GC UCART1
GC UCART1
GC UCART1 | | | 4TH HIGHEST VALUE IS
5TH HIGHEST VALUE IS
6TH HIGHEST VALUE IS | 0.46565 AT (4870
0.45690 AT (4873
0.44114 AT (4867 | 027.18, 3765928.46, 545.
377.18, 3765778.46, 566.
777.18, 3766028.46, 534. | 10, 671.50, 0.00)
60, 671.50, 0.00)
90, 671.50, 0.00) | GC UCART1
GC UCART1
GC UCART1 | | | 7TH HIGHEST VALUE IS
8TH HIGHEST VALUE IS
9TH HIGHEST VALUE IS | 0.43773 AT (4869 | 327.18, 3765778.46, 560.
977.18, 3765928.46, 543.
927.18, 3765978.46, 541. | 80, 671.50, 0.00) | GC UCART1 GC UCART1 GC UCART1 | | *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) A Total of 388 Informational Message(s) A Total of 43848 Hours Were Processed A Total of 191 Calm Hours Identified A Total of 197 Missing Hours Identified (
0.45 Percent) ****** FATAL ERROR MESSAGES ******* *** NONE *** ****** WARNING MESSAGES ****** ME W186 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ``` ** Lakes Environmental AERMOD MPI ********** ** AERMOD Input Produced by: ** AERMOD View Ver. 10.0.1 ** Lakes Environmental Software Inc. ** Date: 8/11/2021 ** File: C:\Lakes\AERMOD View\Terracina at Redlands 2026-2027\Terracina at Redlands 2026-2027.ADI ********** ********** ** AERMOD Control Pathway ************ CO STARTING TITLEONE Terracina at Redlands TITLETWO Freeway-related DPM Concentrations 2026-2027 MODELOPT DFAULT CONC AVERTIME PERIOD URBANOPT 2035210 San_Bernardino_County POLLUTID DPM RUNORNOT RUN ERRORFIL "Terracina at Redlands 2026-2027.err" CO FINISHED *********** ** AERMOD Source Pathway ********** SO STARTING ** Source Location ** ** Source ID - Type - X Coord. - Y Coord. ** ** ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE1 ** DESCRSRC EB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00121 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 12 ** 486616.041, 3766076.797, 526.82, 0.00, 1.70 ** 486786.952, 3766018.704, 535.73, 0.00, 1.70 ``` ``` ** 486896.402, 3765982.502, 539.74, 0.00, 1.70 ** 487020.166, 3765938.721, 544.37, 0.00, 1.70 ** 487127.090, 3765896.625, 550.05, 0.00, 1.70 ** 487255.905, 3765839.374, 556.47, 0.00, 1.70 ** 487365.355, 3765779.597, 565.73, 0.00, 1.70 ** 487442.813, 3765739.185, 575.21, 0.00, 1.70 ** 487518.586, 3765698.772, 574.32, 0.00, 1.70 ** 487573.311, 3765669.305, 575.18, 0.00, 1.70 ** 487609.514, 3765647.415, 578.30, 0.00, 1.70 ** 487635.614, 3765634.786, 578.12, 0.00, 1.70 486617.773 3766076.209 527.35 LOCATION L0000913 VOLUME LOCATION L0000914 VOLUME 486621.236 3766075.032 527.48 486624.699 3766073.855 527.61 LOCATION L0000915 VOLUME LOCATION L0000916 VOLUME 486628.162 3766072.678 527.73 LOCATION L0000917 VOLUME 486631.625 3766071.500 527.88 VOLUME 486635.088 3766070.323 528.02 LOCATION L0000918 LOCATION L0000919 VOLUME 486638.551 3766069.146 528.14 VOLUME 486642.014 3766067.969 528.26 LOCATION L0000920 LOCATION L0000921 VOLUME 486645.477 3766066.792 528.37 LOCATION L0000922 VOLUME 486648.940 3766065.615 528.47 LOCATION L0000923 VOLUME 486652.403 3766064.438 528.55 LOCATION L0000924 VOLUME 486655.866 3766063.261 528.67 VOLUME 486659.329 3766062.084 528.80 LOCATION L0000925 LOCATION L0000926 VOLUME 486662.792 3766060.907 528.97 LOCATION L0000927 VOLUME 486666.255 3766059.730 529.16 LOCATION L0000928 VOLUME 486669.718 3766058.553 529.36 LOCATION L0000929 VOLUME 486673.181 3766057.375 529.54 VOLUME 486676.644 3766056.198 529.73 LOCATION L0000930 LOCATION L0000931 VOLUME 486680.107 3766055.021 529.91 VOLUME 486683.570 3766053.844 530.11 LOCATION L0000932 LOCATION L0000933 VOLUME 486687.033 3766052.667 530.30 LOCATION L0000934 VOLUME 486690.496 3766051.490 530.48 LOCATION L0000935 VOLUME 486693.959 3766050.313 530.66 LOCATION L0000936 VOLUME 486697.422 3766049.136 530.83 486700.885 3766047.959 530.99 LOCATION L0000937 VOLUME LOCATION L0000938 VOLUME 486704.348 3766046.782 531.15 LOCATION L0000939 VOLUME 486707.811 3766045.605 531.33 LOCATION L0000940 VOLUME 486711.274 3766044.428 531.51 LOCATION L0000941 VOLUME 486714.737 3766043.250 531.68 LOCATION L0000942 VOLUME 486718.200 3766042.073 531.84 VOLUME 486721.663 3766040.896 531.98 LOCATION L0000943 LOCATION L0000944 VOLUME 486725.126 3766039.719 532.11 486728.589 3766038.542 532.23 LOCATION L0000945 VOLUME LOCATION L0000946 VOLUME 486732.052 3766037.365 532.42 LOCATION L0000947 VOLUME 486735.515 3766036.188 532.65 486738.978 3766035.011 532.84 LOCATION L0000948 VOLUME LOCATION L0000949 VOLUME 486742.441 3766033.834 532.99 486745.904 3766032.657 533.10 LOCATION L0000950 VOLUME LOCATION L0000951 VOLUME 486749.367 3766031.480 533.16 LOCATION L0000952 VOLUME 486752.830 3766030.302 533.23 ``` | LOCATION | L0000953 | VOLUME | 486756.293 | 3766029.125 | 533.44 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0000954 | VOLUME | 486759.756 | 3766027.948 | 533.73 | | LOCATION | L0000955 | VOLUME | 486763.219 | 3766026.771 | 534.01 | | LOCATION | L0000956 | VOLUME | 486766.682 | 3766025.594 | 534.27 | | LOCATION | L0000957 | VOLUME | 486770.145 | 3766024.417 | 534.53 | | LOCATION | L0000958 | VOLUME | 486773.608 | 3766023.240 | 534.77 | | LOCATION | L0000959 | VOLUME | 486777.071 | 3766022.063 | 534.99 | | LOCATION | L0000960 | VOLUME | 486780.534 | 3766020.886 | 535.21 | | LOCATION | L0000961 | VOLUME | 486783.997 | 3766019.709 | 535.45 | | LOCATION | L0000962 | VOLUME | 486787.462 | 3766018.536 | 535.70 | | LOCATION | L0000963 | VOLUME | 486790.934 | 3766017.387 | 535.92 | | LOCATION | L0000964 | VOLUME | 486794.407 | 3766016.239 | 536.12 | | LOCATION | L0000965 | VOLUME | 486797.880 | 3766015.090 | 536.31 | | LOCATION | L0000966 | VOLUME | 486801.352 | 3766013.941 | 536.47 | | LOCATION | L0000967 | VOLUME | 486804.825 | 3766012.793 | 536.61 | | LOCATION | L0000968 | VOLUME | 486808.297 | 3766011.644 | 536.74 | | LOCATION | L0000969 | VOLUME | 486811.770 | 3766010.495 | 536.87 | | LOCATION | L0000970 | VOLUME | 486815.242 | 3766009.347 | 536.98 | | LOCATION | L0000971 | VOLUME | 486818.715 | 3766008.198 | 537.06 | | LOCATION | L0000972 | VOLUME | 486822.188 | 3766007.050 | 537.11 | | LOCATION | L0000973 | VOLUME | 486825.660 | 3766005.901 | 537.14 | | LOCATION | L0000974 | VOLUME | 486829.133 | 3766004.752 | 537.14 | | LOCATION | L0000975 | VOLUME | 486832.605 | 3766003.604 | 537.12 | | LOCATION | L0000976 | VOLUME | 486836.078 | 3766002.455 | 537.10 | | LOCATION | L0000977 | VOLUME | 486839.550 | 3766001.307 | 537.08 | | LOCATION | L0000978 | VOLUME | 486843.023 | 3766000.158 | 537.05 | | LOCATION | L0000979 | VOLUME | 486846.496 | 3765999.009 | 537.15 | | LOCATION | L0000980 | VOLUME | 486849.968 | 3765997.861 | 537.35 | | LOCATION | L0000981 | VOLUME | 486853.441 | 3765996.712 | 537.54 | | LOCATION | L0000982 | VOLUME | 486856.913 | 3765995.563 | 537.74 | | LOCATION | L0000983 | VOLUME | 486860.386 | 3765994.415 | 537.95 | | LOCATION | L0000984 | VOLUME | 486863.858 | 3765993.266 | 538.18 | | LOCATION | L0000985 | VOLUME | 486867.331 | 3765992.118 | 538.40 | | LOCATION | L0000986 | VOLUME | 486870.803 | 3765990.969 | 538.61 | | LOCATION | L0000987 | VOLUME | 486874.276 | 3765989.820 | 538.81 | | LOCATION | L0000988 | VOLUME | 486877.749 | 3765988.672 | 539.00 | | LOCATION | L0000989 | VOLUME | 486881.221 | 3765987.523 | 539.18 | | LOCATION | L0000990 | VOLUME | 486884.694 | 3765986.374 | 539.36 | | LOCATION | L0000991 | VOLUME | 486888.166 | 3765985.226 | 539.56 | | LOCATION | L0000992 | VOLUME | 486891.639 | 3765984.077 | 539.74 | | LOCATION | L0000993 | VOLUME | 486895.111 | 3765982.929 | 539.91 | | LOCATION | L0000994 | VOLUME | 486898.569 | 3765981.735 | 540.06 | | LOCATION | L0000995 | VOLUME | 486902.017 | 3765980.516 | 540.20 | | | L0000996 | VOLUME | 486905.465 | 3765979.296 | 540.32 | | LOCATION | L0000997 | VOLUME | 486908.913 | 3765978.076 | 540.42 | | LOCATION | | VOLUME | 486912.362 | 3765976.856 | 540.51 | | | L0000999 | VOLUME | 486915.810 | 3765975.636 | 540.59 | | LOCATION | | VOLUME | 486919.258 | 3765974.417 | 540.66 | | LOCATION | | VOLUME | 486922.706 | 3765973.197 | 540.71 | | | L0001002 | VOLUME | 486926.154 | 3765971.977 | 540.76 | | LOCATION | L0001003 | VOLUME | 486929.603 | 3765970.757 | 540.79 | | | | | | | | | LOCATION | L0001004 | VOLUME | 486933.051 | 3765969.538 | 540.82 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001005 | VOLUME | 486936.499 | 3765968.318 | 540.90 | | LOCATION | L0001006 | VOLUME | 486939.947 | 3765967.098 | 541.11 | | LOCATION | L0001007 | VOLUME | 486943.396 | 3765965.878 | 541.31 | | LOCATION | L0001008 | VOLUME | 486946.844 | 3765964.658 | 541.51 | | LOCATION | L0001009 | VOLUME | 486950.292 | 3765963.439 | 541.70 | | LOCATION | L0001010 | VOLUME | 486953.740 | 3765962.219 | 541.89 | | LOCATION | L0001011 | VOLUME | 486957.188 | 3765960.999 | 542.08 | | LOCATION | L0001012 | VOLUME | 486960.637 | 3765959.779 | 542.26 | | LOCATION | L0001013 | VOLUME | 486964.085 | 3765958.560 | 542.47 | | LOCATION | L0001014 | VOLUME | 486967.533 | 3765957.340 | 542.67 | | LOCATION | L0001015 | VOLUME | 486970.981 | 3765956.120 | 542.86 | | LOCATION | L0001016 | VOLUME | 486974.429 | 3765954.900 | 543.03 | | LOCATION | L0001017 | VOLUME | 486977.878 | 3765953.680 | 543.20 | | LOCATION | L0001018 | VOLUME | 486981.326 | 3765952.461 | 543.36 | | LOCATION | L0001019 | VOLUME | 486984.774 | 3765951.241 | 543.51 | | LOCATION | L0001020 | VOLUME | 486988.222 | 3765950.021 | 543.66 | | LOCATION | L0001021 | VOLUME | 486991.671 | 3765948.801 | 543.80 | | LOCATION | L0001022 | VOLUME | 486995.119 | 3765947.582 | 543.93 | | LOCATION | L0001023 | VOLUME | 486998.567 | 3765946.362 | 544.05 | | LOCATION | L0001024 | VOLUME | 487002.015 | 3765945.142 | 544.15 | | LOCATION | L0001025 | VOLUME | 487005.463 | 3765943.922 | 544.23 | | | L0001026 | VOLUME | 487008.912 | 3765942.702 | 544.30 | | LOCATION | L0001027 | VOLUME | 487012.360 | 3765941.483 | 544.35 | | LOCATION | L0001028 | VOLUME | 487015.808 | 3765940.263 | 544.42 | | LOCATION | L0001029 | VOLUME | 487019.256 | 3765939.043 | 544.47 | | | L0001030 | VOLUME | 487022.671 | 3765937.735 | 544.52 | | | L0001031 | VOLUME | 487026.075 | 3765936.395 | 544.70 | | | L0001032 | VOLUME | 487029.478 | 3765935.055 | 544.87 | | | L0001033 | VOLUME | 487032.881 | 3765933.715 | 545.04 | | | L0001034 | VOLUME | 487036.285 | 3765932.375 | 545.22 | | | L0001035 | VOLUME | 487039.688 | 3765931.035 | 545.41 | | | L0001036 | VOLUME | 487043.091 | 3765929.696 | 545.62 | | | L0001037 | VOLUME | 487046.495 | 3765928.356 | 545.82 | | | L0001038 | VOLUME | 487049.898 | 3765927.016 | 546.02 | | | L0001039 | VOLUME | 487053.301 | 3765925.676 | 546.21
| | | L0001040 | VOLUME | 487056.705 | 3765924.336 | 546.39 | | | L0001041 | VOLUME | 487060.108 | 3765922.996 | 546.56 | | | L0001042 | VOLUME | 487063.511 | 3765921.656 | 546.72 | | | L0001043 | VOLUME | 487066.915 | 3765920.316 | 546.89 | | | L0001044 | VOLUME | 487070.318 | 3765918.976 | 547.04 | | | L0001045 | VOLUME | 487073.721 | 3765917.636 | 547.18 | | | L0001046 | VOLUME | 487077.125 | 3765916.297 | 547.30 | | | L0001047 | VOLUME | 487080.528 | 3765914.957 | 547.40 | | | L0001048 | VOLUME | 487083.931 | 3765913.617 | 547.49 | | | L0001049 | VOLUME | 487087.335 | 3765912.277 | 547.57 | | | L0001050 | VOLUME | 487090.738 | 3765910.937 | 547.63 | | | L0001051 | VOLUME | 487094.142 | 3765909.597 | 547.69 | | | L0001052 | VOLUME | 487097.545 | 3765908.257 | 547.73 | | | L0001053 | VOLUME | 487100.948 | 3765906.917 | 547.76 | | LOCATION | L0001054 | VOLUME | 40/104.352 | 3765905.577 | 547.90 | | LOCATION | L0001055 | VOLUME | 487107.755 | 3765904.237 | 548.04 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001056 | VOLUME | 487111.158 | 3765902.898 | 548.19 | | LOCATION | L0001057 | VOLUME | 487114.562 | 3765901.558 | 548.34 | | LOCATION | L0001058 | VOLUME | 487117.965 | 3765900.218 | 548.57 | | LOCATION | L0001059 | VOLUME | 487121.368 | 3765898.878 | 548.80 | | LOCATION | L0001060 | VOLUME | 487124.772 | 3765897.538 | 549.03 | | LOCATION | L0001061 | VOLUME | 487128.155 | 3765896.152 | 549.25 | | LOCATION | L0001062 | VOLUME | 487131.498 | 3765894.666 | 549.47 | | LOCATION | L0001063 | VOLUME | 487134.840 | 3765893.181 | 549.68 | | LOCATION | L0001064 | VOLUME | 487138.183 | 3765891.695 | 549.88 | | LOCATION | L0001065 | VOLUME | 487141.525 | 3765890.210 | 550.20 | | LOCATION | L0001066 | VOLUME | 487144.867 | 3765888.724 | 550.76 | | LOCATION | L0001067 | VOLUME | 487148.210 | 3765887.239 | 551.30 | | LOCATION | L0001068 | VOLUME | 487151.552 | 3765885.753 | 551.81 | | LOCATION | L0001069 | VOLUME | 487154.894 | 3765884.268 | 552.29 | | LOCATION | L0001070 | VOLUME | 487158.237 | 3765882.782 | 552.76 | | LOCATION | L0001071 | VOLUME | 487161.579 | 3765881.297 | 553.19 | | LOCATION | L0001072 | VOLUME | 487164.921 | 3765879.811 | 553.61 | | LOCATION | L0001073 | VOLUME | 487168.264 | 3765878.326 | 554.01 | | LOCATION | L0001074 | VOLUME | 487171.606 | 3765876.840 | 554.42 | | LOCATION | L0001075 | VOLUME | 487174.948 | 3765875.355 | 554.80 | | LOCATION | L0001076 | VOLUME | 487178.291 | 3765873.869 | 555.12 | | LOCATION | L0001077 | VOLUME | 487181.633 | 3765872.384 | 555.41 | | LOCATION | L0001078 | VOLUME | 487184.976 | 3765870.898 | 555.68 | | LOCATION | L0001079 | VOLUME | 487188.318 | 3765869.413 | 555.92 | | LOCATION | L0001080 | VOLUME | 487191.660 | 3765867.927 | 556.14 | | LOCATION | L0001081 | VOLUME | 487195.003 | 3765866.442 | 555.75 | | LOCATION | L0001082 | VOLUME | 487198.345 | 3765864.956 | 555.39 | | LOCATION | L0001083 | VOLUME | 487201.687 | 3765863.471 | 555.07 | | LOCATION | | VOLUME | 487205.030 | 3765861.985 | 554.80 | | | L0001085 | VOLUME | 487208.372 | 3765860.500 | 554.56 | | LOCATION | | VOLUME | 487211.714 | 3765859.014 | 554.38 | | | L0001087 | VOLUME | 487215.057 | 3765857.529 | 554.23 | | | L0001088 | VOLUME | 487218.399 | 3765856.043 | 554.19 | | LOCATION | | VOLUME | 487221.741 | 3765854.558 | 554.32 | | | L0001090 | VOLUME | 487225.084 | 3765853.072 | 554.43 | | | L0001091 | VOLUME | 487228.426 | 3765851.587 | 554.54 | | LOCATION | | VOLUME | 487231.769 | 3765850.101 | 554.64 | | LOCATION | | VOLUME | 487235.111 | 3765848.616 | 554.73 | | | L0001094 | VOLUME | 487238.453 | 3765847.130 | 554.81 | | LOCATION | | VOLUME | 487241.796 | 3765845.645 | 554.89 | | LOCATION | | VOLUME | 487245.138 | 3765844.159 | 555.12 | | | L0001097 | VOLUME | 487248.480 | 3765842.674 | 555.44 | | | L0001098 | VOLUME | 487251.823 | 3765841.189 | 555.74 | | LOCATION | | VOLUME | 487255.165 | 3765839.703 | 556.03 | | LOCATION | | VOLUME | 487258.404 | 3765838.009 | 556.30 | | LOCATION | | VOLUME | 487261.614 | 3765836.256 | 556.55 | | LOCATION | | VOLUME | 487264.824 | 3765834.503 | 556.78 | | LOCATION | | VOLUME | 487268.035 | 3765832.750 | 556.99 | | | L0001104 | VOLUME | 487271.245 | 3765830.996 | 557.33 | | LOCATION | T0001102 | VOLUME | 487274.455 | 3765829.243 | 557.66 | | | | | | | | | LOCATION | L0001106 | VOLUME | 487277.665 | 3765827.490 | 557.95 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001107 | VOLUME | 487280.875 | 3765825.737 | 558.20 | | LOCATION | L0001108 | VOLUME | 487284.085 | 3765823.984 | 558.41 | | LOCATION | L0001109 | VOLUME | 487287.295 | 3765822.230 | 558.59 | | LOCATION | L0001110 | VOLUME | 487290.505 | 3765820.477 | 558.72 | | LOCATION | L0001111 | VOLUME | 487293.715 | 3765818.724 | 558.82 | | LOCATION | L0001112 | VOLUME | 487296.925 | 3765816.971 | 558.91 | | LOCATION | L0001113 | VOLUME | 487300.135 | 3765815.218 | 558.97 | | LOCATION | L0001114 | VOLUME | 487303.345 | 3765813.465 | 559.09 | | LOCATION | L0001115 | VOLUME | 487306.555 | 3765811.711 | 559.30 | | LOCATION | L0001116 | VOLUME | 487309.765 | 3765809.958 | 559.51 | | LOCATION | L0001117 | VOLUME | 487312.975 | 3765808.205 | 559.70 | | LOCATION | L0001118 | VOLUME | 487316.185 | 3765806.452 | 559.89 | | LOCATION | L0001119 | VOLUME | 487319.395 | 3765804.699 | 560.06 | | LOCATION | L0001120 | VOLUME | 487322.605 | 3765802.946 | 560.44 | | LOCATION | L0001121 | VOLUME | 487325.815 | 3765801.192 | 560.82 | | LOCATION | L0001122 | VOLUME | 487329.025 | 3765799.439 | 561.17 | | LOCATION | L0001123 | VOLUME | 487332.235 | 3765797.686 | 561.49 | | LOCATION | L0001124 | VOLUME | 487335.446 | 3765795.933 | 561.76 | | LOCATION | L0001125 | VOLUME | 487338.656 | 3765794.180 | 562.00 | | LOCATION | L0001126 | VOLUME | 487341.866 | 3765792.426 | 562.21 | | LOCATION | L0001127 | VOLUME | 487345.076 | 3765790.673 | 562.38 | | LOCATION | L0001128 | VOLUME | 487348.286 | 3765788.920 | 562.80 | | LOCATION | L0001129 | VOLUME | 487351.496 | 3765787.167 | 563.21 | | LOCATION | L0001130 | VOLUME | 487354.706 | 3765785.414 | 563.57 | | LOCATION | L0001131 | VOLUME | 487357.916 | 3765783.661 | 563.87 | | | L0001132 | VOLUME | 487361.126 | 3765781.907 | 564.26 | | LOCATION | L0001133 | VOLUME | 487364.336 | 3765780.154 | 564.63 | | LOCATION | L0001134 | VOLUME | 487367.568 | 3765778.443 | 564.97 | | LOCATION | L0001135 | VOLUME | 487370.811 | 3765776.751 | 565.25 | | LOCATION | L0001136 | VOLUME | 487374.054 | 3765775.059 | 565.55 | | LOCATION | L0001137 | VOLUME | 487377.297 | 3765773.367 | 565.82 | | LOCATION | L0001138 | VOLUME | 487380.539 | 3765771.675 | 566.05 | | LOCATION | L0001139 | VOLUME | 487383.782 | 3765769.983 | 566.24 | | LOCATION | L0001140 | VOLUME | 487387.025 | 3765768.292 | 566.40 | | LOCATION | L0001141 | VOLUME | 487390.268 | 3765766.600 | 566.53 | | LOCATION | L0001142 | VOLUME | 487393.510 | 3765764.908 | 566.61 | | LOCATION | L0001143 | VOLUME | 487396.753 | 3765763.216 | 566.66 | | LOCATION | L0001144 | VOLUME | 487399.996 | 3765761.524 | 567.08 | | LOCATION | L0001145 | VOLUME | 487403.239 | 3765759.832 | 567.46 | | LOCATION | L0001146 | VOLUME | 487406.482 | 3765758.140 | 567.79 | | LOCATION | L0001147 | VOLUME | 487409.724 | 3765756.448 | 568.08 | | LOCATION | L0001148 | VOLUME | 487412.967 | 3765754.756 | 568.32 | | | L0001149 | VOLUME | 487416.210 | 3765753.065 | 568.52 | | | L0001150 | VOLUME | 487419.453 | 3765751.373 | 568.87 | | | L0001151 | VOLUME | 487422.695 | 3765749.681 | 569.29 | | | L0001152 | VOLUME | 487425.938 | 3765747.989 | 570.08 | | | L0001153 | VOLUME | 487429.181 | 3765746.297 | 570.77 | | | L0001154 | VOLUME | 487432.424 | 3765744.605 | 571.36 | | | L0001155 | VOLUME | 487435.667 | 3765742.913 | 571.84 | | | L0001156 | VOLUME | 487438.909 | 3765741.221 | 572.23 | | | | | | | | | LOCATION | L0001157 | VOLUME | 487442.152 | 3765739.530 | 572.52 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001158 | VOLUME | 487445.383 | 3765737.814 | 572.70 | | LOCATION | L0001159 | VOLUME | 487448.610 | 3765736.093 | 572.81 | | LOCATION | L0001160 | VOLUME | 487451.837 | 3765734.372 | 572.96 | | LOCATION | L0001161 | VOLUME | 487455.064 | 3765732.651 | 573.06 | | LOCATION | L0001162 | VOLUME | 487458.292 | 3765730.929 | 573.09 | | LOCATION | L0001163 | VOLUME | 487461.519 | 3765729.208 | 573.08 | | LOCATION | L0001164 | VOLUME | 487464.746 | 3765727.487 | 573.01 | | LOCATION | L0001165 | VOLUME | 487467.974 | 3765725.766 | 572.88 | | LOCATION | L0001166 | VOLUME | 487471.201 | 3765724.045 | 572.69 | | LOCATION | L0001167 | VOLUME | 487474.428 | 3765722.323 | 572.44 | | LOCATION | L0001168 | VOLUME | 487477.655 | 3765720.602 | 572.52 | | LOCATION | L0001169 | VOLUME | 487480.883 | 3765718.881 | 572.81 | | LOCATION | L0001170 | VOLUME | 487484.110 | 3765717.160 | 573.07 | | LOCATION | L0001171 | VOLUME | 487487.337 | 3765715.438 | 573.28 | | LOCATION | L0001172 | VOLUME | 487490.565 | 3765713.717 | 573.46 | | LOCATION | L0001173 | VOLUME | 487493.792 | 3765711.996 | 573.60 | | LOCATION | L0001174 | VOLUME | 487497.019 | 3765710.275 | 573.70 | | LOCATION | L0001175 | VOLUME | 487500.247 | 3765708.554 | 573.87 | | LOCATION | L0001176 | VOLUME | 487503.474 | 3765706.832 | 574.22 | | LOCATION | L0001177 | VOLUME | 487506.701 | 3765705.111 | 574.54 | | LOCATION | L0001178 | VOLUME | 487509.928 | 3765703.390 | 574.81 | | LOCATION | L0001179 | VOLUME | 487513.156 | 3765701.669 | 575.03 | | LOCATION | L0001180 | VOLUME | 487516.383 | 3765699.947 | 575.22 | | LOCATION | L0001181 | VOLUME | 487519.608 | 3765698.222 | 575.36 | | LOCATION | L0001182 | VOLUME | 487522.829 | 3765696.488 | 575.46 | | | L0001183 | VOLUME | 487526.049 | 3765694.754 | 575.69 | | LOCATION | L0001184 | VOLUME | 487529.269 | 3765693.020 | 576.15 | | LOCATION | L0001185 | VOLUME | 487532.490 | 3765691.286 | 576.55 | | LOCATION | | VOLUME | 487535.710 | 3765689.552 | 577.10 | | | L0001187 | VOLUME |
487538.931 | 3765687.818 | 577.65 | | LOCATION | | VOLUME | 487542.151 | 3765686.084 | 578.12 | | | L0001189 | VOLUME | 487545.371 | 3765684.350 | 578.49 | | | L0001190 | VOLUME | 487548.592 | 3765682.615 | 578.78 | | LOCATION | | VOLUME | 487551.812 | 3765680.881 | 579.11 | | | L0001192 | VOLUME | 487555.033 | 3765679.147 | 579.53 | | | L0001193 | VOLUME | 487558.253 | 3765677.413 | 579.85 | | LOCATION | | VOLUME | 487561.473 | 3765675.679 | 580.07 | | LOCATION | | VOLUME | 487564.694 | 3765673.945 | 580.19 | | | L0001196 | VOLUME | 487567.914 | 3765672.211 | 580.21 | | LOCATION | | VOLUME | 487571.135 | 3765670.477 | 580.13 | | LOCATION | | VOLUME | 487574.326 | 3765668.692 | 579.92 | | | L0001199 | VOLUME | 487577.456 | 3765666.799 | 579.64 | | | L0001200 | VOLUME | 487580.586 | 3765664.907 | 579.46 | | LOCATION | | VOLUME | 487583.716 | 3765663.014 | 579.22 | | LOCATION | | VOLUME | 487586.845 | 3765661.122 | 578.94 | | | L0001203 | VOLUME | 487589.975 | 3765659.229 | 578.88 | | LOCATION | | VOLUME | 487593.105 | 3765657.337 | 579.30 | | LOCATION | | VOLUME | 487596.235 | 3765655.444 | 579.64 | | | L0001206 | VOLUME | 487599.365 | 3765653.551 | 579.90 | | LOCATION | L0001207 | VOLUME | 487602.495 | 3765651.659 | 580.06 | | | | | | | | ``` LOCATION L0001208 VOLUME 487605.625 3765649.766 580.10 VOLUME 487608.755 3765647.874 580.10 LOCATION L0001209 LOCATION L0001210 VOLUME 487612.008 3765646.208 580.14 LOCATION L0001211 VOLUME 487615.300 3765644.615 580.18 LOCATION L0001212 VOLUME 487618.593 3765643.022 580.18 VOLUME 487621.885 3765641.429 580.14 LOCATION L0001213 LOCATION L0001214 VOLUME 487625.178 3765639.836 580.07 VOLUME 487628.470 3765638.243 579.90 LOCATION L0001215 LOCATION L0001216 VOLUME 487631.762 3765636.650 579.65 LOCATION L0001217 VOLUME 487635.055 3765635.056 579.47 ** End of LINE VOLUME Source ID = SLINE1 ** ______ ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE2 ** DESCRSRC WB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00121 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 14 ** 486605.096, 3766049.014, 529.48, 0.00, 1.70 ** 486742.167, 3766004.131, 533.61, 0.00, 1.70 ** 486838.624, 3765970.257, 538.29, 0.00, 1.70 ** 486919.851, 3765944.004, 541.73, 0.00, 1.70 ** 486993.463, 3765920.293, 545.01, 0.00, 1.70 ** 487116.996, 3765877.950, 549.91, 0.00, 1.70 ** 487196.530, 3765842.382, 553.73, 0.00, 1.70 ** 487281.988, 3765800.887, 557.96, 0.00, 1.70 ** 487338.678, 3765767.860, 561.06, 0.00, 1.70 ** 487411.444, 3765726.364, 565.81, 0.00, 1.70 ** 487479.979, 3765690.796, 567.60, 0.00, 1.70 ** 487527.361, 3765666.238, 569.90, 0.00, 1.70 ** 487576.436, 3765639.138, 572.76, 0.00, 1.70 ** 487625.511, 3765614.580, 576.21, 0.00, 1.70 ** ______ LOCATION L0001218 VOLUME 486606.834 3766048.445 528.65 VOLUME 486610.310 3766047.306 528.76 LOCATION L0001219 LOCATION L0001220 VOLUME 486613.786 3766046.168 528.87 VOLUME 486617.262 3766045.030 528.99 LOCATION L0001221 LOCATION L0001222 VOLUME 486620.738 3766043.892 529.11 VOLUME 486624.214 3766042.754 529.24 LOCATION L0001223 LOCATION L0001224 VOLUME 486627.690 3766041.616 529.37 LOCATION L0001225 VOLUME 486631.166 3766040.477 529.52 486634.642 3766039.339 529.67 LOCATION L0001226 VOLUME LOCATION L0001227 VOLUME 486638.118 3766038.201 529.83 LOCATION L0001228 VOLUME 486641.594 3766037.063 529.99 LOCATION L0001229 VOLUME 486645.070 3766035.925 530.15 ``` VOLUME 486648.546 3766034.786 530.31 LOCATION L0001230 | LOCATION | L0001231 | VOLUME | 486652.022 | 3766033.648 | 530.48 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001232 | VOLUME | 486655.498 | 3766032.510 | 530.64 | | LOCATION | L0001233 | VOLUME | 486658.974 | 3766031.372 | 530.79 | | LOCATION | L0001234 | VOLUME | 486662.450 | 3766030.234 | 530.91 | | LOCATION | L0001235 | VOLUME | 486665.926 | 3766029.095 | 531.00 | | LOCATION | L0001236 | VOLUME | 486669.402 | 3766027.957 | 531.09 | | LOCATION | L0001237 | VOLUME | 486672.878 | 3766026.819 | 531.19 | | LOCATION | L0001238 | VOLUME | 486676.354 | 3766025.681 | 531.29 | | LOCATION | L0001239 | VOLUME | 486679.830 | 3766024.543 | 531.40 | | LOCATION | L0001240 | VOLUME | 486683.306 | 3766023.404 | 531.51 | | LOCATION | L0001241 | VOLUME | 486686.782 | 3766022.266 | 531.62 | | LOCATION | L0001242 | VOLUME | 486690.258 | 3766021.128 | 531.74 | | LOCATION | L0001243 | VOLUME | 486693.734 | 3766019.990 | 531.87 | | LOCATION | L0001244 | VOLUME | 486697.210 | 3766018.852 | 532.00 | | LOCATION | L0001245 | VOLUME | 486700.686 | 3766017.713 | 532.14 | | LOCATION | L0001246 | VOLUME | 486704.162 | 3766016.575 | 532.29 | | LOCATION | L0001247 | VOLUME | 486707.638 | 3766015.437 | 532.44 | | LOCATION | L0001248 | VOLUME | 486711.114 | 3766014.299 | 532.59 | | LOCATION | L0001249 | VOLUME | 486714.590 | 3766013.161 | 532.75 | | LOCATION | L0001250 | VOLUME | 486718.066 | 3766012.022 | 532.91 | | LOCATION | L0001251 | VOLUME | 486721.542 | 3766010.884 | 533.08 | | LOCATION | L0001252 | VOLUME | 486725.018 | 3766009.746 | 533.25 | | LOCATION | L0001253 | VOLUME | 486728.494 | 3766008.608 | 533.43 | | LOCATION | L0001254 | VOLUME | 486731.970 | 3766007.470 | 533.61 | | LOCATION | L0001255 | VOLUME | 486735.446 | 3766006.331 | 533.79 | | LOCATION | L0001256 | VOLUME | 486738.922 | 3766005.193 | 533.97 | | LOCATION | L0001257 | VOLUME | 486742.396 | 3766004.050 | 534.15 | | LOCATION | L0001258 | VOLUME | 486745.847 | 3766002.838 | 534.32 | | LOCATION | L0001259 | VOLUME | 486749.298 | 3766001.626 | 534.50 | | LOCATION | L0001260 | VOLUME | 486752.749 | 3766000.414 | 534.67 | | LOCATION | L0001261 | VOLUME | 486756.200 | 3765999.202 | 534.80 | | LOCATION | L0001262 | VOLUME | 486759.651 | 3765997.991 | 534.89 | | | L0001263 | VOLUME | 486763.102 | 3765996.779 | 534.99 | | | L0001264 | VOLUME | 486766.553 | 3765995.567 | 535.09 | | LOCATION | | VOLUME | 486770.004 | 3765994.355 | 535.20 | | | L0001266 | VOLUME | 486773.455 | 3765993.143 | 535.32 | | | L0001267 | VOLUME | 486776.906 | 3765991.931 | 535.45 | | LOCATION | | VOLUME | 486780.357 | 3765990.719 | 535.58 | | LOCATION | | VOLUME | 486783.808 | 3765989.507 | 535.71 | | LOCATION | | VOLUME | 486787.259 | 3765988.295 | 535.85 | | LOCATION | | VOLUME | 486790.710 | 3765987.083 | 535.99 | | LOCATION | | VOLUME | 486794.161 | 3765985.871 | 536.13 | | LOCATION | | VOLUME | 486797.612 | 3765984.659 | 536.29 | | LOCATION | | VOLUME | 486801.063 | 3765983.447 | 536.45 | | LOCATION | | VOLUME | 486804.514 | 3765982.236 | 536.62 | | LOCATION | | VOLUME | 486807.965 | 3765981.024 | 536.79 | | LOCATION | | VOLUME | 486811.416 | 3765979.812 | 536.96 | | LOCATION | | VOLUME | 486814.867 | 3765978.600 | 537.13 | | LOCATION | | VOLUME | 486818.318 | 3765977.388 | 537.31 | | LOCATION | | VOLUME | 486821.769 | 3765976.176 | 537.49 | | LOCATION | L0001281 | VOLUME | 486825.220 | 3765974.964 | 537.67 | | | | | | | | | LOCATION | L0001282 | VOLUME | 486828.671 | 3765973.752 | 537.86 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001283 | VOLUME | 486832.122 | 3765972.540 | 538.05 | | LOCATION | L0001284 | VOLUME | 486835.573 | 3765971.328 | 538.22 | | LOCATION | L0001285 | VOLUME | 486839.027 | 3765970.126 | 538.39 | | LOCATION | L0001286 | VOLUME | 486842.507 | 3765969.002 | 538.56 | | LOCATION | L0001287 | VOLUME | 486845.988 | 3765967.877 | 538.66 | | LOCATION | L0001288 | VOLUME | 486849.468 | 3765966.752 | 538.77 | | LOCATION | L0001289 | VOLUME | 486852.948 | 3765965.627 | 538.88 | | LOCATION | L0001290 | VOLUME | 486856.429 | 3765964.502 | 538.99 | | LOCATION | L0001291 | VOLUME | 486859.909 | 3765963.377 | 539.10 | | LOCATION | L0001292 | VOLUME | 486863.389 | 3765962.253 | 539.21 | | LOCATION | L0001293 | VOLUME | 486866.870 | 3765961.128 | 539.32 | | LOCATION | L0001294 | VOLUME | 486870.350 | 3765960.003 | 539.44 | | LOCATION | L0001295 | VOLUME | 486873.830 | 3765958.878 | 539.56 | | LOCATION | L0001296 | VOLUME | 486877.311 | 3765957.753 | 539.69 | | LOCATION | L0001297 | VOLUME | 486880.791 | 3765956.628 | 539.83 | | LOCATION | L0001298 | VOLUME | 486884.272 | 3765955.504 | 539.97 | | LOCATION | L0001299 | VOLUME | 486887.752 | 3765954.379 | 540.11 | | LOCATION | L0001300 | VOLUME | 486891.232 | 3765953.254 | 540.26 | | LOCATION | L0001301 | VOLUME | 486894.713 | 3765952.129 | 540.41 | | LOCATION | L0001302 | VOLUME | 486898.193 | 3765951.004 | 540.57 | | LOCATION | L0001303 | VOLUME | 486901.673 | 3765949.879 | 540.73 | | LOCATION | L0001304 | VOLUME | 486905.154 | 3765948.754 | 540.90 | | LOCATION | L0001305 | VOLUME | 486908.634 | 3765947.630 | 541.08 | | LOCATION | L0001306 | VOLUME | 486912.114 | 3765946.505 | 541.25 | | LOCATION | L0001307 | VOLUME | 486915.595 | 3765945.380 | 541.42 | | LOCATION | L0001308 | VOLUME | 486919.075 | 3765944.255 | 541.59 | | LOCATION | L0001309 | VOLUME | 486922.556 | 3765943.133 | 541.77 | | LOCATION | L0001310 | VOLUME | 486926.038 | 3765942.012 | 541.95 | | LOCATION | | VOLUME | 486929.519 | 3765940.890 | 542.13 | | | L0001312 | VOLUME | 486933.000 | 3765939.769 | 542.31 | | LOCATION | | VOLUME | 486936.482 | 3765938.647 | 542.49 | | | L0001314 | VOLUME | 486939.963 | 3765937.526 | 542.62 | | | L0001315 | VOLUME | 486943.445 | 3765936.404 | 542.71 | | LOCATION | | VOLUME | 486946.926 | 3765935.283 | 542.82 | | | L0001317 | VOLUME | 486950.408 | 3765934.161 | 542.92 | | | L0001318 | VOLUME | 486953.889 | 3765933.040 | 543.04 | | LOCATION | | VOLUME | 486957.371 | 3765931.919 | 543.16 | | LOCATION | | VOLUME | 486960.852 | 3765930.797 | 543.29 | | LOCATION | | VOLUME | 486964.333 | 3765929.676 | 543.40 | | LOCATION | | VOLUME | 486967.815 | 3765928.554 | 543.51 | | LOCATION | | VOLUME | 486971.296 | 3765927.433 | 543.63 | | | L0001324 | VOLUME | 486974.778 | 3765926.311 | 543.76 | | | L0001325 | VOLUME | 486978.259 | 3765925.190 | 543.89 | | LOCATION | | VOLUME | 486981.741 | 3765924.069 | 544.02 | |
LOCATION | | VOLUME | 486985.222 | 3765922.947 | 544.16 | | | L0001328 | VOLUME | 486988.703 | 3765921.826 | 544.31 | | LOCATION | | VOLUME | 486992.185 | 3765920.704 | 544.45 | | LOCATION | | VOLUME | 486995.653 | 3765919.542 | 544.60 | | | L0001331 | VOLUME | 486999.113 | 3765918.356 | 544.76 | | LOCATION | L0001332 | VOLUME | 487002.573 | 3765917.170 | 544.92 | | | | | | | | | LOCATION | L0001333 | VOLUME | 487006.033 | 3765915.984 | 545.09 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001334 | VOLUME | 487009.493 | 3765914.798 | 545.27 | | LOCATION | L0001335 | VOLUME | 487012.953 | 3765913.612 | 545.44 | | LOCATION | L0001336 | VOLUME | 487016.413 | 3765912.426 | 545.61 | | LOCATION | L0001337 | VOLUME | 487019.873 | 3765911.240 | 545.78 | | LOCATION | L0001338 | VOLUME | 487023.333 | 3765910.054 | 545.96 | | LOCATION | L0001339 | VOLUME | 487026.793 | 3765908.868 | 546.13 | | LOCATION | L0001340 | VOLUME | 487030.253 | 3765907.682 | 546.30 | | LOCATION | L0001341 | VOLUME | 487033.713 | 3765906.496 | 546.49 | | LOCATION | L0001342 | VOLUME | 487037.173 | 3765905.310 | 546.71 | | LOCATION | L0001343 | VOLUME | 487040.633 | 3765904.125 | 546.89 | | LOCATION | L0001344 | VOLUME | 487044.093 | 3765902.939 | 547.05 | | LOCATION | L0001345 | VOLUME | 487047.553 | 3765901.753 | 547.20 | | LOCATION | L0001346 | VOLUME | 487051.013 | 3765900.567 | 547.34 | | LOCATION | L0001347 | VOLUME | 487054.473 | 3765899.381 | 547.47 | | LOCATION | L0001348 | VOLUME | 487057.933 | 3765898.195 | 547.59 | | LOCATION | L0001349 | VOLUME | 487061.393 | 3765897.009 | 547.69 | | LOCATION | L0001350 | VOLUME | 487064.853 | 3765895.823 | 547.80 | | LOCATION | L0001351 | VOLUME | 487068.313 | 3765894.637 | 547.91 | | LOCATION | L0001352 | VOLUME | 487071.773 | 3765893.451 | 548.02 | | LOCATION | L0001353 | VOLUME | 487075.233 | 3765892.265 | 548.13 | | LOCATION | L0001354 | VOLUME | 487078.693 | 3765891.079 | 548.24 | | LOCATION | L0001355 | VOLUME | 487082.153 | 3765889.893 | 548.35 | | LOCATION | L0001356 | VOLUME | 487085.613 | 3765888.707 | 548.45 | | LOCATION | L0001357 | VOLUME | 487089.073 | 3765887.521 | 548.56 | | LOCATION | L0001358 | VOLUME | 487092.533 | 3765886.335 | 548.71 | | LOCATION | L0001359 | VOLUME | 487095.993 | 3765885.149 | 548.87 | | LOCATION | L0001360 | VOLUME | 487099.453 | 3765883.963 | 549.03 | | LOCATION | L0001361 | VOLUME | 487102.913 | 3765882.777 | 549.19 | | LOCATION | L0001362 | VOLUME | 487106.373 | 3765881.591 | 549.35 | | LOCATION | L0001363 | VOLUME | 487109.832 | 3765880.405 | 549.52 | | LOCATION | L0001364 | VOLUME | 487113.292 | 3765879.219 | 549.69 | | LOCATION | L0001365 | VOLUME | 487116.752 | 3765878.033 | 549.87 | | LOCATION | L0001366 | VOLUME | 487120.100 | 3765876.562 | 550.06 | | LOCATION | L0001367 | VOLUME | 487123.439 | 3765875.069 | 550.27 | | LOCATION | L0001368 | VOLUME | 487126.778 | 3765873.576 | 550.48 | | LOCATION | L0001369 | VOLUME | 487130.117 | 3765872.082 | 550.66 | | LOCATION | L0001370 | VOLUME | 487133.456 | 3765870.589 | 550.82 | | LOCATION | L0001371 | VOLUME | 487136.795 | 3765869.096 | 550.95 | | LOCATION | L0001372 | VOLUME | 487140.134 | 3765867.603 | 551.07 | | LOCATION | L0001373 | VOLUME | 487143.472 | 3765866.110 | 551.39 | | LOCATION | L0001374 | VOLUME | 487146.811 | 3765864.617 | 551.71 | | LOCATION | L0001375 | VOLUME | 487150.150 | 3765863.123 | 551.99 | | | L0001376 | VOLUME | 487153.489 | 3765861.630 | 552.25 | | | L0001377 | VOLUME | 487156.828 | 3765860.137 | 552.47 | | | L0001378 | VOLUME | 487160.167 | 3765858.644 | 552.65 | | | L0001379 | VOLUME | 487163.506 | 3765857.151 | 552.81 | | | L0001380 | VOLUME | 487166.845 | 3765855.658 | 552.95 | | | L0001381 | VOLUME | 487170.184 | 3765854.164 | 553.13 | | | L0001382 | VOLUME | 487173.523 | 3765852.671 | 553.27 | | | L0001383 | VOLUME | | 3765851.178 | | | | | | | | | | LOCATION | L0001384 | VOLUME | 487180.201 | 3765849.685 | 553.49 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001385 | VOLUME | 487183.540 | 3765848.192 | 553.56 | | LOCATION | L0001386 | VOLUME | 487186.879 | 3765846.699 | 553.60 | | LOCATION | L0001387 | VOLUME | 487190.218 | 3765845.205 | 553.61 | | LOCATION | L0001388 | VOLUME | 487193.557 | 3765843.712 | 553.79 | | LOCATION | L0001389 | VOLUME | 487196.890 | 3765842.208 | 553.92 | | LOCATION | L0001390 | VOLUME | 487200.180 | 3765840.610 | 554.05 | | LOCATION | L0001391 | VOLUME | 487203.471 | 3765839.012 | 554.16 | | LOCATION | L0001392 | VOLUME | 487206.761 | 3765837.415 | 554.26 | | LOCATION | L0001393 | VOLUME | 487210.051 | 3765835.817 | 554.34 | | LOCATION | L0001394 | VOLUME | 487213.341 | 3765834.220 | 554.42 | | LOCATION | L0001395 | VOLUME | 487216.632 | 3765832.622 | 554.48 | | LOCATION | L0001396 | VOLUME | 487219.922 | 3765831.024 | 554.60 | | LOCATION | L0001397 | VOLUME | 487223.212 | 3765829.427 | 554.73 | | LOCATION | L0001398 | VOLUME | 487226.502 | 3765827.829 | 554.86 | | LOCATION | L0001399 | VOLUME | 487229.792 | 3765826.231 | 554.99 | | LOCATION | L0001400 | VOLUME | 487233.083 | 3765824.634 | 555.12 | | LOCATION | L0001401 | VOLUME | 487236.373 | 3765823.036 | 555.25 | | LOCATION | L0001402 | VOLUME | 487239.663 | 3765821.438 | 555.38 | | LOCATION | L0001403 | VOLUME | 487242.953 | 3765819.841 | 555.50 | | LOCATION | L0001404 | VOLUME | 487246.244 | 3765818.243 | 555.71 | | LOCATION | L0001405 | VOLUME | 487249.534 | 3765816.646 | 555.89 | | LOCATION | L0001406 | VOLUME | 487252.824 | 3765815.048 | 556.06 | | LOCATION | L0001407 | VOLUME | 487256.114 | 3765813.450 | 556.25 | | LOCATION | L0001408 | VOLUME | 487259.404 | 3765811.853 | 556.45 | | LOCATION | L0001409 | VOLUME | 487262.695 | 3765810.255 | 556.63 | | LOCATION | L0001410 | VOLUME | 487265.985 | 3765808.657 | 556.79 | | LOCATION | L0001411 | VOLUME | 487269.275 | 3765807.060 | 556.95 | | LOCATION | L0001412 | VOLUME | 487272.565 | 3765805.462 | 557.16 | | LOCATION | L0001413 | VOLUME | 487275.856 | 3765803.864 | 557.36 | | LOCATION | L0001414 | VOLUME | 487279.146 | 3765802.267 | 557.55 | | LOCATION | L0001415 | VOLUME | 487282.418 | 3765800.636 | 557.72 | | LOCATION | L0001416 | VOLUME | 487285.579 | 3765798.795 | 557.88 | | LOCATION | L0001417 | VOLUME | 487288.739 | 3765796.954 | 558.03 | | LOCATION | L0001418 | VOLUME | 487291.900 | 3765795.112 | 558.17 | | LOCATION | L0001419 | VOLUME | 487295.060 | 3765793.271 | 558.31 | | LOCATION | L0001420 | VOLUME | 487298.220 | 3765791.430 | 558.48 | | LOCATION | L0001421 | VOLUME | 487301.381 | 3765789.589 | 558.63 | | LOCATION | L0001422 | VOLUME | 487304.541 | 3765787.747 | 558.78 | | LOCATION | L0001423 | VOLUME | 487307.701 | 3765785.906 | 558.91 | | LOCATION | L0001424 | VOLUME | 487310.862 | 3765784.065 | 559.04 | | LOCATION | L0001425 | VOLUME | 487314.022 | 3765782.224 | 559.20 | | LOCATION | L0001426 | VOLUME | 487317.183 | 3765780.383 | 559.38 | | LOCATION | L0001427 | VOLUME | 487320.343 | 3765778.541 | 559.57 | | LOCATION | L0001428 | VOLUME | 487323.503 | 3765776.700 | 559.82 | | LOCATION | L0001429 | VOLUME | 487326.664 | 3765774.859 | 560.07 | | LOCATION | L0001430 | VOLUME | 487329.824 | 3765773.018 | 560.29 | | LOCATION | L0001431 | VOLUME | 487332.984 | 3765771.177 | 560.50 | | LOCATION | L0001432 | VOLUME | 487336.145 | 3765769.335 | 560.69 | | LOCATION | L0001433 | VOLUME | 487339.308 | 3765767.500 | 560.87 | | LOCATION | L0001434 | VOLUME | 487342.486 | 3765765.688 | 561.03 | | | | | | | | | LOCATION | L0001435 | VOLUME | 487345.663 | 3765763.876 | 561.18 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001436 | VOLUME | 487348.840 | 3765762.064 | 561.41 | | LOCATION | L0001437 | VOLUME | 487352.018 | 3765760.252 | 561.60 | | LOCATION | L0001438 | VOLUME | 487355.195 | 3765758.441 | 561.73 | | LOCATION | L0001439 | VOLUME | 487358.372 | 3765756.629 | 561.82 | | LOCATION | L0001440 | VOLUME | 487361.549 | 3765754.817 | 561.86 | | LOCATION | L0001441 | VOLUME | 487364.727 | 3765753.005 | 561.85 | | LOCATION | L0001442 | VOLUME | 487367.904 | 3765751.193 | 561.96 | | LOCATION | L0001443 | VOLUME | 487371.081 | 3765749.381 | 562.12 | | LOCATION | L0001444 | VOLUME | 487374.259 | 3765747.569 | 562.39 | | LOCATION | L0001445 | VOLUME | 487377.436 | 3765745.757 | 562.64 | | LOCATION | L0001446 | VOLUME | 487380.613 | 3765743.945 | 562.88 | | LOCATION | L0001447 | VOLUME | 487383.790 | 3765742.134 | 563.10 | | LOCATION | L0001448 | VOLUME | 487386.968 | 3765740.322 | 563.31 | | | L0001449 | VOLUME | 487390.145 | 3765738.510 | 563.51 | | | L0001450 | VOLUME | 487393.322 | 3765736.698 | 563.69 | | | L0001451 | VOLUME | 487396.500 | 3765734.886 | 563.85 | | | L0001452 | VOLUME | 487399.677 | 3765733.074 | 564.13 | | | L0001453 | VOLUME | 487402.854 | 3765731.262 | 564.36 | | | L0001454 | VOLUME | 487406.031 | 3765729.450 | 564.53 | | | L0001455 | VOLUME | 487409.209 | 3765727.638 | 564.64 | | | L0001456 | VOLUME | 487412.406 | 3765725.864 | 564.69 | | | L0001457 | VOLUME | 487415.653 | 3765724.179 | 564.70 | | | L0001458 | VOLUME | 487418.899 | 3765722.495 | 564.66 | | | L0001459 | VOLUME | 487422.146 | 3765720.810 | 564.70 | | | L0001460 | VOLUME | 487425.392 | 3765719.125 | 564.98 | | | L0001461 | VOLUME | 487428.639 | 3765717.440 | 565.25 | | | L0001462 | VOLUME | 487431.885 | 3765715.755 | 565.50 | | | L0001463 | VOLUME | 487435.132 | 3765714.071 | 565.74 | | | L0001464 | VOLUME | 487438.378 | 3765712.386 | 565.96 | | | L0001465 | VOLUME | 487441.625 | 3765710.701 | 566.17 | | | L0001466 | VOLUME | 487444.871 | 3765709.016 | 566.37 | | | L0001467 | VOLUME | 487448.117 | 3765707.331 | 566.56 | | | L0001468 | VOLUME | 487451.364 | 3765705.647 | 566.89 | | | L0001469 | VOLUME | 487454.610 | 3765703.962 | 567.16 | | | L0001470 | VOLUME | 487457.857 | 3765702.277 | 567.39 | | | L0001471 | VOLUME | 487461.103 | 3765700.592 | 567.56 | | | L0001472 | VOLUME | 487464.350 | 3765698.907 | 567.68 | | | L0001473 | VOLUME |
487467.596 | 3765697.223 | 567.75 | | | L0001474 | VOLUME | 487470.843 | 3765695.538 | 567.77 | | | L0001475 | VOLUME | 487474.089 | 3765693.853 | 567.75 | | | L0001476 | VOLUME | 487477.336 | 3765692.168 | 567.77 | | | L0001170 | VOLUME | 487480.582 | 3765690.484 | 567.82 | | | L0001477 | VOLUME | 487483.829 | 3765688.801 | 568.06 | | | L0001478 | VOLUME | 487487.077 | 3765687.117 | 568.30 | | | L0001475 | VOLUME | 487490.324 | 3765685.434 | 568.53 | | | L0001480 | VOLUME | 487493.571 | 3765683.751 | 568.74 | | | L0001481 | VOLUME | 487496.819 | 3765682.068 | 568.94 | | | L0001482 | VOLUME | 487500.066 | 3765680.385 | 569.19 | | | L0001483 | VOLUME | 487503.313 | 3765678.702 | 569.55 | | | L0001484 | VOLUME | 487506.561 | 3765677.019 | 569.87 | | TOCALION | T0001402 | AOTOME | 401200.30T | 3/030//.019 | 505.07 | | | LOCATION | L0001486 | VOLUME | 487509.8 | 376567 | 5.336 | 570.14 | |---|-----------|----------------|-----------|----------|------------|-------|--------| | | LOCATION | L0001487 | VOLUME | | 55 376567 | | | | | LOCATION | L0001488 | VOLUME | 487516.3 | 376567 | 1.969 | 570.54 | | | LOCATION | L0001489 | VOLUME | 487519.5 | 50 376567 | 0.286 | 570.67 | | | LOCATION | L0001490 | VOLUME | 487522.7 | 97 376566 | 8.603 | 570.75 | | | LOCATION | L0001491 | VOLUME | 487526.0 | 45 376566 | 6.920 | 570.85 | | | LOCATION | L0001492 | VOLUME | 487529.2 | 65 376566 | 5.186 | 570.95 | | | LOCATION | L0001493 | VOLUME | 487532.4 | 67 376566 | 3.418 | 570.95 | | | LOCATION | L0001494 | VOLUME | 487535.6 | 69 376566 | 1.650 | 570.87 | | | LOCATION | L0001495 | VOLUME | 487538.8 | 376565 | 9.882 | 570.70 | | | LOCATION | L0001496 | VOLUME | 487542.0 | 73 376565 | 8.114 | 570.88 | | | LOCATION | L0001497 | VOLUME | 487545.2 | 74 376565 | 6.346 | 571.06 | | | LOCATION | L0001498 | VOLUME | 487548.4 | 76 376565 | 4.578 | 571.23 | | | LOCATION | L0001499 | VOLUME | 487551.6 | 78 376565 | 2.810 | 571.48 | | | LOCATION | L0001500 | VOLUME | 487554.8 | 880 376565 | 1.042 | 571.83 | | | LOCATION | L0001501 | VOLUME | 487558.0 | 82 376564 | 9.274 | 572.14 | | | LOCATION | L0001502 | VOLUME | 487561.2 | 84 376564 | 7.506 | 572.42 | | | LOCATION | L0001503 | VOLUME | 487564.4 | 86 376564 | 5.738 | 572.66 | | | LOCATION | L0001504 | VOLUME | 487567.6 | 87 376564 | 3.969 | 572.87 | | | LOCATION | L0001505 | VOLUME | 487570.8 | 889 376564 | 2.201 | 573.05 | | | LOCATION | L0001506 | VOLUME | 487574.0 | 91 376564 | 0.433 | 573.20 | | | LOCATION | L0001507 | VOLUME | 487577.3 | 376563 | 8.700 | 573.36 | | | LOCATION | L0001508 | VOLUME | 487580.5 | 82 376563 | 7.063 | 573.56 | | | LOCATION | L0001509 | VOLUME | 487583.8 | 376563 | 5.427 | 573.68 | | | LOCATION | L0001510 | VOLUME | 487587.1 | .24 376563 | 3.790 | 573.72 | | | LOCATION | L0001511 | VOLUME | 487590.3 | 95 376563 | 2.153 | 573.70 | | | LOCATION | L0001512 | VOLUME | 487593.6 | 66 376563 | 0.516 | 573.60 | | | LOCATION | L0001513 | VOLUME | 487596.9 | 37 376562 | 8.879 | 573.46 | | | LOCATION | L0001514 | VOLUME | 487600.2 | 08 376562 | 7.242 | 573.62 | | | LOCATION | L0001515 | VOLUME | 487603.4 | 79 376562 | 5.605 | 573.86 | | | LOCATION | L0001516 | VOLUME | 487606.7 | 50 376562 | 3.969 | 574.15 | | | LOCATION | L0001517 | VOLUME | 487610.0 | 20 376562 | 2.332 | 574.42 | | | LOCATION | L0001518 | VOLUME | 487613.2 | 91 376562 | 0.695 | 574.69 | | | LOCATION | L0001519 | VOLUME | 487616.5 | 62 376561 | 9.058 | 574.93 | | | LOCATION | L0001520 | VOLUME | 487619.8 | 33 376561 | 7.421 | 575.17 | | | LOCATION | L0001521 | VOLUME | 487623.1 | .04 376561 | 5.784 | 575.39 | | * | End of LI | INE VOLUME Sou | rce ID = | SLINE2 | | | | | * | Source Pa | arameters ** | | | | | | | * | LINE VOLU | JME Source ID | = SLINE1 | | | | | | | SRCPARAM | L0000913 | 0.0000039 | 967 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000914 | 0.0000039 | 967 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000915 | 0.0000039 | 967 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000916 | 0.0000039 | 967 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000917 | 0.0000039 | 967 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0000918 | 0.0000039 | 967 | 0.00 | 1.70 | 0.85 | | | | L0000919 | 0.0000039 | | 0.00 | 1.70 | 0.85 | | | | L0000920 | 0.0000039 | | 0.00 | 1.70 | 0.85 | | | | L0000921 | 0.0000039 | | 0.00 | 1.70 | 0.85 | | | | L0000922 | 0.0000039 | | 0.00 | 1.70 | 0.85 | | | | L0000923 | 0.0000039 | | 0.00 | 1.70 | 0.85 | | | | | | | | | | 0.000003967 0.00 1.70 SRCPARAM L0000924 0.85 | | L0000925 | 0.000003967 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | | L0000926 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000927 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000928 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000929 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000930 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000931 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000932 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000933 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000934 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000935 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000936 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000937 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000938 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000939 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000940 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000941 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000942 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000943 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000944 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000945 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000946 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000947 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000948 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000949 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000950 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000951 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000952 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000953 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000954 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000955 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000956 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000957 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000958 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000959 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000960 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000961 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000962 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000963 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000963 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000965 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000965 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0000967 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000968 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000969 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000970 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000971 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000972 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000973 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0000974 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000975 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000976 | 0.000003967 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0000977 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000978 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000979 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000980 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000981 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000982 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000983 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000984 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000985 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000986 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000987 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000988 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000989 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000990 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000991 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000992 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000993 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000994 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000995 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000996 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000997 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000998 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0000999 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001000 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001001 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001002 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001003 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001004 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001005 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001006 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001007 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001008 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001009 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001010 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001011 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001012 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001013 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001014 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001015 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001016 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001017 | 0.00003967 | 0.00 | 1.70 | 0.85 | | | L0001018 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001019 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001020 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001021 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001022 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001023 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001024 | 0.000003967 | 0.00 | 1.70 |
0.85 | | | L0001025 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001026 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001027 | 0.000003967 | 0.00 | 1.70 | 0.85 | |--------------|-------------|-------------|------|------|------| | SRCPARAM LOC | 001028 0 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001029 0 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001030 0 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001031 0 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001032 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001033 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001034 0 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001035 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001036 0 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001037 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001038 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001039 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001041 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001042 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001043 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001044 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001045 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001046 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001047 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001048 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 001049 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001050 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001051 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001052 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 001053 (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.00003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.00003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.00003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM LOC | 10.10.1.) (| 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001078 | 0.000003967 | 0.00 | 1.70 | 0.85 | |----------|-------------|-------------|------|------|------| | SRCPARAM | L0001079 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001080 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001081 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001082 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001083 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001084 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001085 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001086 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001087 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001088 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001089 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001090 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001091 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001092 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001093 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001094 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001095 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001097 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001098 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001099 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001102 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001103 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001104 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001105 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001106 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001107 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001109 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001112 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001113 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001114 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001118 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001122 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001123 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001124 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001125 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001127 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | | | | | | | ${\tt SRCPARAM}$ | L0001129 | 0.000003967 | 0.00 | 1.70 | 0.85 | |------------------|----------|-------------|------|------|------| | SRCPARAM | L0001130 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001131 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001132 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001133 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001134 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001135 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001136 | 0.000003967 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0001137 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001138 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001139 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001140 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001141 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001142 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001143 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001144 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001145 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001146 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001147 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001148 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001149 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001150 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001151 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001152 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001153 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001154 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001155 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001156 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001157 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001158 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001159 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001160 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001161 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001162 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001163 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001164 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001165 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001166 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001167 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001168 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001169 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001170 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001171 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001172 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001173 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001174 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001175 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001176 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001177 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001178 | 0.000003967 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0001179 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | | | | | | | SRCPARAM | L0001180 | 0.000003967 | 0.00 | 1.70 | 0.85 | |------------------|---------------|-------------|------|------|------| | SRCPARAM | L0001181 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001182 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001183 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001184 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001185 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001186 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001187 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001188 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001189 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001190 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001191 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001192 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001194 | 0.000003967 | 0.00 | 1.70 | 0.85 | |
 L0001195 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001196 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001197 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001198 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001200 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001202 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001203 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | L0001204 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001205 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001206 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001207 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001208 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001209 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001210 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001211 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001212 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001213 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001214 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001215 | 0.000003967 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001216 | 0.000003967 | 0.00 | 1.70 | 0.85 | | ${\tt SRCPARAM}$ | L0001217 | 0.000003967 | 0.00 | 1.70 | 0.85 | | | | | | | | | | JME Source ID | | | | | | SRCPARAM | | 0.00000398 | 0.00 | 1.70 | 0.85 | | | L0001219 | 0.0000398 | 0.00 | 1.70 | 0.85 | | | L0001220 | 0.0000398 | 0.00 | 1.70 | 0.85 | | | L0001221 | 0.00000398 | 0.00 | 1.70 | 0.85 | | | L0001222 | 0.00000398 | 0.00 | 1.70 | 0.85 | | | L0001223 | 0.00000398 | 0.00 | 1.70 | 0.85 | | | L0001224 | 0.00000398 | 0.00 | 1.70 | 0.85 | | | L0001225 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00000398 | 0.00 | 1.70 | 0.85 | | | L0001227 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM | T000T558 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001229 | 0.00000398 | 0.00 | 1.70 | 0.85 | |--|------------|------|------|------| | SRCPARAM L0001230 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001231 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001232 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001233 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001234 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001235 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001236 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001237 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001238 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001239 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001240 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001241 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001242 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001243 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001244 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001245 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001246 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001247 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001248 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001249 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001250 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001251 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001252 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001253 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001254 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001255 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001256 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001257 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001258 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001259 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001260 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001261 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001262 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001263 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001264 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001265 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001266 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001267 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001268 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001269 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001270 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001271 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001271 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001272 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001273 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001274 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001275 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001270 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001277
SRCPARAM L0001278 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001278 | 0.00000398 | 0.00 | 1.70 | 0.85 | | DICTAINN HOUDIZ/9 | 0.00000396 | 0.00 | 1.70 | 0.05 | | SRCPARAM L000128 | 0.00000398 | 0.00 | 1.70 | 0.85 | |------------------|--------------|------|------|------| | SRCPARAM L000128 | 1 0.0000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 2 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 3 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 4 0.0000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 5 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 6 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 7 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 8 0.0000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000128 | 9 0.0000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 0 0.0000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 1 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 2 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 3 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 4 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 5 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 6 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | 7 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000129 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000130 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000131 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000132 | | 0.00 | 1.70 | 0.85 | | DICEARAN DUUUTSS | 0.00000396 | 0.00 | 1.70 | 0.03 | | SRCPARAM L | 0001331 | 0.00000398 | 0.00 | 1.70 | 0.85 | |------------|---------|------------|------|------|------| | SRCPARAM L | 0001332 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001333 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001334 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001335 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001336 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001337 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001338 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001339 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001340 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001341 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001342 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001343 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001344 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001345 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001346 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001347 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001348 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001351 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001352 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0001353 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | |
SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000398 | 0.00 | 1.70 | 0.85 | | | | | | | | | SRCPARAM L0001382 | 0.00000398 | 0.00 | 1.70 | 0.85 | |-------------------|------------|------|------|------| | SRCPARAM L0001383 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001384 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001385 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001386 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001387 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001388 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001389 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001390 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001391 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001392 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001393 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001394 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001395 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001396 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001397 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001398 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001399 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001400 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001401 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001402 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001403 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001404 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001405 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001406 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001407 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001408 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001409 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001410 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001411 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001412 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001413 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001414 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001415 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001416 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001417 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001418 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001419 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001420 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001421 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001422 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001423 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001424 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001425 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001426 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001427 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001428 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001429 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001430 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001431 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0001432 | 0.00000398 | 0.00 | 1.70 | 0.85 | | | 0.0000000 | 0.00 | /- | 0.05 | | SRCPARAM LO | 0001433 | 0.00000398 | 0.00 | 1.70 | 0.85 | |-------------|---------|------------|------|------|------| | SRCPARAM LO | 0001434 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001435 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001436 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001437 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001438 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001439 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001440 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001441 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001442 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001443 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001444 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001445 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001446 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001447 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001448 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001449 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001450 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001453 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001454 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 0001455 | 0.00000398 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.00000398 | 0.00 | 1.70 | 0.85 | | 2 | | | | | | ``` SRCPARAM L0001484 0.00000398 0.00 1.70 0.85 0.00 1.70 0.85 SRCPARAM L0001485 0.00000398 SRCPARAM L0001486 0.00000398 0.00 1.70 0.85 SRCPARAM L0001487 0.00000398 0.00 1.70 0.85 SRCPARAM L0001488 0.00000398 0.00 1.70 0.85 SRCPARAM L0001489 0.00000398 0.00 1.70 0.85 SRCPARAM L0001490 0.00000398 0.00 1.70 0.85 SRCPARAM L0001491 0.00000398 0.00 1.70 0.85 SRCPARAM L0001492 0.00000398 0.00 1.70 0.85 SRCPARAM L0001493 0.00000398 0.00 1.70 0.85 SRCPARAM L0001494 0.00000398 0.00 1.70 0.85 SRCPARAM L0001495 0.00000398 0.00 1.70 0.85 SRCPARAM L0001496 0.00000398 0.00 1.70 0.85 0.00 0.85 SRCPARAM L0001497 0.00000398 1.70 0.00 1.70 0.85 SRCPARAM L0001498 0.00000398 SRCPARAM L0001499 0.00000398 0.00 1.70 0.85 SRCPARAM L0001500 0.00000398 0.00 1.70 0.85 SRCPARAM L0001501 0.00000398 0.00 1.70 0.85 0.00 1.70 SRCPARAM L0001502 0.00000398 0.85 SRCPARAM L0001503 0.00000398 0.00 1.70 0.85 SRCPARAM L0001504 0.00000398 0.00 1.70 0.85 0.00 0.85 SRCPARAM L0001505 0.00000398 1.70 SRCPARAM L0001506 0.00000398 0.00 1.70 0.85 0.00 0.85 SRCPARAM L0001507 0.00000398 1.70 SRCPARAM L0001508 0.00000398 0.00 1.70 0.85 SRCPARAM L0001509 0.00000398 0.00 1.70 0.85 SRCPARAM L0001510 0.00000398 0.00 1.70 0.85 SRCPARAM L0001511 0.00000398 0.00 1.70 0.85 0.00 1.70 0.85 SRCPARAM L0001512 0.00000398 SRCPARAM L0001513 0.00000398 0.00 1.70 0.85 0.00 0.85 SRCPARAM L0001514 0.00000398 1.70 SRCPARAM L0001515 0.00000398 0.00 1.70 0.85 SRCPARAM L0001516 0.00000398 0.00 1.70 0.85 SRCPARAM L0001517 0.00000398 0.00 1.70 0.85 SRCPARAM L0001518 0.00000398 0.00 0.85 1.70 SRCPARAM L0001519 0.00000398 0.00 1.70 0.85 SRCPARAM L0001520 0.00000398 0.00 1.70 0.85 SRCPARAM L0001521 0.00 1.70 0.85 0.00000398 URBANSRC ALL SRCGROUP ALL SO FINISHED * * ** AERMOD Receptor Pathway ********** * * RE STARTING INCLUDED "Terracina at Redlands 2026-2027.rou" RE FINISHED ``` ``` ** AERMOD Meteorology Pathway *********** ** ME STARTING SURFFILE "E:\New MET data\RDLD_V9_ADJU\RDLD_v9.SFC" PROFFILE "E:\New MET data\RDLD V9 ADJU\RDLD v9.PFL" SURFDATA 3171 2012 UAIRDATA 3190 2012 SITEDATA 99999 2012 PROFBASE 481.0 METERS ME FINISHED ********** ** AERMOD Output Pathway ********** * * OU STARTING ** Auto-Generated Plotfiles PLOTFILE PERIOD ALL "TERRACINA AT REDLANDS 2026-2027.AD\PE00GALL.PLT" 31 SUMMFILE "Terracina at Redlands 2026-2027.sum" OU FINISHED *** Message Summary For AERMOD Model Setup *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) 0 Informational Message(s) A Total of ****** FATAL ERROR MESSAGES ****** *** NONE *** 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W186 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ********* *** SETUP Finishes Successfully *** ********* *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 08/11/21 * * * 20:03:29 ``` ``` *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* MODEL SETUP OPTIONS SUMMARY **Model Is Setup For Calculation of Average CONCentration Values. -- DEPOSITION LOGIC -- **NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. DRYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses URBAN Dispersion Algorithm for the SBL for 609 Source(s), for Total of 1 Urban Area(s): Urban Population = 2035210.0; Urban Roughness Length = 1.000 m **Model Uses Regulatory DEFAULT Options: 1. Stack-tip Downwash. 2. Model Accounts for ELEVated Terrain Effects. 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. 6. Urban Roughness Length of 1.0 Meter Assumed. **Other Options Specified: ADJ_U* - Use ADJ_U* option for SBL in AERMET TEMP_Sub - Meteorological data includes TEMP substitutions **Model Assumes No FLAGPOLE Receptor Heights. **The User Specified a Pollutant Type of: DPM **Model Calculates
PERIOD Averages Only **This Run Includes: 609 Source(s); 1 Source Group(s); and 449 Receptor(s) with: 0 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 609 VOLUME source(s) and: 0 AREA type source(s) and: 0 LINE source(s) and: 0 RLINE/RLINEXT source(s) and: 0 OPENPIT source(s) and: **Model Set To Continue RUNning After the Setup Testing. ``` **The AERMET Input Meteorological Data Version Date: 16216 #### **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours $\tt m$ for Missing Hours b for Both Calm and Missing Hours *** 08/11/21 **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 481.00; Decay Coef. = 0.000; Rot. Angle = 0.0 Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 3.8 MB of RAM. **Input Runstream File: aermod.inp **Output Print File: aermod.out **Detailed Error/Message File: Terracina at Redlands 2026-2027.err **File for Summary of Results: Terracina at Redlands 2026-2027.sum *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | SOURCE
ID | NUMBER
PART.
CATS. | EMISSION RATE
(GRAMS/SEC) | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------------|------------------------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | | | | | | | | | | | | | L0000913 | 0 | 0.39670E-05 | 486617.8 | 3766076.2 | 527.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000914 | 0 | 0.39670E-05 | 486621.2 | 3766075.0 | 527.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000915 | 0 | 0.39670E-05 | 486624.7 | 3766073.9 | 527.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000916 | 0 | 0.39670E-05 | 486628.2 | 3766072.7 | 527.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000917 | 0 | 0.39670E-05 | 486631.6 | 3766071.5 | 527.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000918 | 0 | 0.39670E-05 | 486635.1 | 3766070.3 | 528.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000919 | 0 | 0.39670E-05 | 486638.6 | 3766069.1 | 528.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000920 | 0 | 0.39670E-05 | 486642.0 | 3766068.0 | 528.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000921 | 0 | 0.39670E-05 | 486645.5 | 3766066.8 | 528.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000922 | 0 | 0.39670E-05 | 486648.9 | 3766065.6 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000923 | 0 | 0.39670E-05 | 486652.4 | 3766064.4 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000924 | 0 | 0.39670E-05 | 486655.9 | 3766063.3 | 528.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000925 | 0 | 0.39670E-05 | 486659.3 | 3766062.1 | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000926 | 0 | 0.39670E-05 | 486662.8 | 3766060.9 | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000927 | 0 | 0.39670E-05 | 486666.3 | 3766059.7 | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000928 | 0 | 0.39670E-05 | 486669.7 | 3766058.6 | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000929 | 0 | 0.39670E-05 | 486673.2 3766057.4 | 529.5 | 0.00 | 1.70 | 0.85 | YES | | |--------------|---------|-------------|----------------------|--------|------|------|------|-----|----| | L0000930 | 0 | 0.39670E-05 | 486676.6 3766056.2 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000931 | 0 | 0.39670E-05 | 486680.1 3766055.0 | 529.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000932 | 0 | 0.39670E-05 | 486683.6 3766053.8 | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000933 | 0 | 0.39670E-05 | 486687.0 3766052.7 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000934 | 0 | 0.39670E-05 | 486690.5 3766051.5 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000935 | 0 | 0.39670E-05 | 486694.0 3766050.3 | 530.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000936 | 0 | 0.39670E-05 | 486697.4 3766049.1 | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000937 | 0 | 0.39670E-05 | 486700.9 3766048.0 | 531.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000938 | 0 | 0.39670E-05 | 486704.3 3766046.8 | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000939 | 0 | 0.39670E-05 | 486707.8 3766045.6 | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000940 | 0 | 0.39670E-05 | 486711.3 3766044.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000941 | 0 | 0.39670E-05 | 486714.7 3766043.2 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000942 | 0 | 0.39670E-05 | 486718.2 3766042.1 | 531.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000943 | 0 | 0.39670E-05 | 486721.7 3766040.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000944 | 0 | 0.39670E-05 | 486725.1 3766039.7 | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000945 | 0 | 0.39670E-05 | 486728.6 3766038.5 | 532.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000946 | 0 | 0.39670E-05 | 486732.1 3766037.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000947 | 0 | 0.39670E-05 | 486735.5 3766036.2 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000948 | 0 | 0.39670E-05 | 486739.0 3766035.0 | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000949 | 0 | 0.39670E-05 | 486742.4 3766033.8 | 533.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000950 | 0 | 0.39670E-05 | 486745.9 3766032.7 | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000951 | 0 | 0.39670E-05 | 486749.4 3766031.5 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000952 | 0 | 0.39670E-05 | 486752.8 3766030.3 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Red | dlands | | | | | ** | | | | | | | | | | | | *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 ### *** VOLUME SOURCE DATA *** 08/11/21 20:03:29 PAGE 3 *** | SOURCE | NUMBER
PART. | EMISSION RATE
(GRAMS/SEC) | E
X | Y | BASE
ELEV. | RELEASE
HEIGHT | INIT.
SY | INIT.
SZ | URBAN
SOURCE | EMISSION RATE
SCALAR VARY | |----------|-----------------|------------------------------|----------|-----------|---------------|-------------------|-------------|-------------|-----------------|------------------------------| | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0000953 | 0 | 0.39670E-05 | 486756.3 | 3766029.1 | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000954 | 0 | 0.39670E-05 | 486759.8 | 3766027.9 | 533.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000955 | 0 | 0.39670E-05 | 486763.2 | 3766026.8 | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000956 | 0 | 0.39670E-05 | 486766.7 | 3766025.6 | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000957 | 0 | 0.39670E-05 | 486770.1 | 3766024.4 | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000958 | 0 | 0.39670E-05 | 486773.6 | 3766023.2 | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000959 | 0 | 0.39670E-05 | 486777.1 | 3766022.1 | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000960 | 0 | 0.39670E-05 | 486780.5 | 3766020.9 | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000961 | 0 | 0.39670E-05 | 486784.0 | 3766019.7 | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000962 | 0 | 0.39670E-05 | 486787.5 | 3766018.5 | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000963 | 0 | 0.39670E-05 | 486790.9 | 3766017.4 | 535.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000964 | 0 | 0.39670E-05 | 486794.4 | 3766016.2 | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000965 | 0 | 0.39670E-05 | 486797.9 | 3766015.1 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000966 | 0 | 0.39670E-05 | 486801.4 3766013.9 | 536.5 | 0.00 | 1.70 | 0.85 | YES | | |----------------|--------|-------------|----------------------|-----------|------------|----------|------|-----|-----| | L0000967 | 0 | 0.39670E-05 | 486804.8 3766012.8 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000968 | 0 | 0.39670E-05 | 486808.3 3766011.6 | 536.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000969 | 0 | 0.39670E-05 | 486811.8 3766010.5 | 536.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000970 | 0 | 0.39670E-05 | 486815.2 3766009.3 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000971 | 0 | 0.39670E-05 | 486818.7 3766008.2 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000972 | 0 | 0.39670E-05 | 486822.2 3766007.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000973 | 0 | 0.39670E-05 | 486825.7 3766005.9 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000974 | 0 | 0.39670E-05 | 486829.1 3766004.8 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000975 | 0 | 0.39670E-05 | 486832.6 3766003.6 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000976 | 0 | 0.39670E-05 | 486836.1 3766002.5 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000977 | 0 | 0.39670E-05 | 486839.5 3766001.3 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000978 | 0 | 0.39670E-05 | 486843.0 3766000.2 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000979 | 0 | 0.39670E-05 | 486846.5 3765999.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000980 | 0 | 0.39670E-05 | 486850.0 3765997.9 | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000981 | 0 | 0.39670E-05 | 486853.4 3765996.7 | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000982 | 0 | 0.39670E-05 | 486856.9 3765995.6 | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | L0000983 | 0 | 0.39670E-05 | 486860.4 3765994.4 | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000984 | 0 | 0.39670E-05 | 486863.9 3765993.3 | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000985 | 0 | 0.39670E-05 | 486867.3 3765992.1 | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000986 | 0 | 0.39670E-05 | 486870.8 3765991.0 | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | L0000987 | 0 | 0.39670E-05 | 486874.3 3765989.8 | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | L0000988 | 0 | 0.39670E-05 | 486877.7 3765988.7 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0000989 | 0 | 0.39670E-05 | 486881.2 3765987.5 | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000990 | 0 | 0.39670E-05 | 486884.7 3765986.4 | 539.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000991 | 0 | 0.39670E-05 | 486888.2 3765985.2 | 539.6
 0.00 | 1.70 | 0.85 | YES | | | L0000992 | 0 | 0.39670E-05 | 486891.6 3765984.1 | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | *** AERMOD - V | ERSION | 21112 *** | *** Terracina at Red | lands | | | | | *** | | *** AERMET - V | ERSION | 16216 *** | *** Freeway-related | DPM Conce | entrations | 2026-202 | 7 | | *** | | | | | | | | | | | | ## *** VOLUME SOURCE DATA *** 08/11/21 20:03:29 PAGE 4 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X
(METERS)
 | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------|---------------|-------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | L0000993 | 0 | 0.39670E-05 | 486895.1 | 3765982.9 | 539.9 | 0.00 | 1.70 | 0.85 | YES | | | L0000994 | 0 | 0.39670E-05 | 486898.6 | 3765981.7 | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0000995 | 0 | 0.39670E-05 | 486902.0 | 3765980.5 | 540.2 | 0.00 | 1.70 | 0.85 | YES | | | L0000996 | 0 | 0.39670E-05 | 486905.5 | 3765979.3 | 540.3 | 0.00 | 1.70 | 0.85 | YES | | | L0000997 | 0 | 0.39670E-05 | 486908.9 | 3765978.1 | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0000998 | 0 | 0.39670E-05 | 486912.4 | 3765976.9 | 540.5 | 0.00 | 1.70 | 0.85 | YES | | | L0000999 | 0 | 0.39670E-05 | 486915.8 | 3765975.6 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001000 | 0 | 0.39670E-05 | 486919.3 | 3765974.4 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001001 | 0 | 0.39670E-05 | 486922.7 | 3765973.2 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001002 | 0 | 0.39670E-05 | 486926.2 | 3765972.0 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001003 | 0 | 0.39670E-05 | | 3765970.8 | 540.8 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|----------|-----------|-------|------|------|------|-----| | L0001004 | 0 | 0.39670E-05 | 486933.1 | 3765969.5 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | L0001005 | 0 | 0.39670E-05 | 486936.5 | 3765968.3 | 540.9 | 0.00 | 1.70 | 0.85 | YES | | L0001006 | 0 | 0.39670E-05 | 486939.9 | 3765967.1 | 541.1 | 0.00 | 1.70 | 0.85 | YES | | L0001007 | 0 | 0.39670E-05 | 486943.4 | 3765965.9 | 541.3 | 0.00 | 1.70 | 0.85 | YES | | L0001008 | 0 | 0.39670E-05 | 486946.8 | 3765964.7 | 541.5 | 0.00 | 1.70 | 0.85 | YES | | L0001009 | 0 | 0.39670E-05 | 486950.3 | 3765963.4 | 541.7 | 0.00 | 1.70 | 0.85 | YES | | L0001010 | 0 | 0.39670E-05 | 486953.7 | 3765962.2 | 541.9 | 0.00 | 1.70 | 0.85 | YES | | L0001011 | 0 | 0.39670E-05 | 486957.2 | 3765961.0 | 542.1 | 0.00 | 1.70 | 0.85 | YES | | L0001012 | 0 | 0.39670E-05 | 486960.6 | 3765959.8 | 542.3 | 0.00 | 1.70 | 0.85 | YES | | L0001013 | 0 | 0.39670E-05 | 486964.1 | 3765958.6 | 542.5 | 0.00 | 1.70 | 0.85 | YES | | L0001014 | 0 | 0.39670E-05 | 486967.5 | 3765957.3 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | L0001015 | 0 | 0.39670E-05 | 486971.0 | 3765956.1 | 542.9 | 0.00 | 1.70 | 0.85 | YES | | L0001016 | 0 | 0.39670E-05 | 486974.4 | 3765954.9 | 543.0 | 0.00 | 1.70 | 0.85 | YES | | L0001017 | 0 | 0.39670E-05 | 486977.9 | 3765953.7 | 543.2 | 0.00 | 1.70 | 0.85 | YES | | L0001018 | 0 | 0.39670E-05 | 486981.3 | 3765952.5 | 543.4 | 0.00 | 1.70 | 0.85 | YES | | L0001019 | 0 | 0.39670E-05 | 486984.8 | 3765951.2 | 543.5 | 0.00 | 1.70 | 0.85 | YES | | L0001020 | 0 | 0.39670E-05 | 486988.2 | 3765950.0 | 543.7 | 0.00 | 1.70 | 0.85 | YES | | L0001021 | 0 | 0.39670E-05 | 486991.7 | 3765948.8 | 543.8 | 0.00 | 1.70 | 0.85 | YES | | L0001022 | 0 | 0.39670E-05 | 486995.1 | 3765947.6 | 543.9 | 0.00 | 1.70 | 0.85 | YES | | L0001023 | 0 | 0.39670E-05 | 486998.6 | 3765946.4 | 544.0 | 0.00 | 1.70 | 0.85 | YES | | L0001024 | 0 | 0.39670E-05 | 487002.0 | 3765945.1 | 544.1 | 0.00 | 1.70 | 0.85 | YES | | L0001025 | 0 | 0.39670E-05 | 487005.5 | 3765943.9 | 544.2 | 0.00 | 1.70 | 0.85 | YES | | L0001026 | 0 | 0.39670E-05 | 487008.9 | 3765942.7 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | L0001027 | 0 | 0.39670E-05 | 487012.4 | 3765941.5 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | L0001028 | 0 | 0.39670E-05 | 487015.8 | 3765940.3 | 544.4 | 0.00 | 1.70 | 0.85 | YES | | L0001029 | 0 | 0.39670E-05 | 487019.3 | 3765939.0 | 544.5 | 0.00 | 1.70 | 0.85 | YES | | L0001030 | 0 | 0.39670E-05 | 487022.7 | 3765937.7 | 544.5 | 0.00 | 1.70 | 0.85 | YES | | L0001031 | 0 | 0.39670E-05 | 487026.1 | 3765936.4 | 544.7 | 0.00 | 1.70 | 0.85 | YES | | L0001032 | 0 | 0.39670E-05 | 487029.5 | 3765935.1 | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 *** 08/11/21 *** 20:03:29 PAGE 5 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE
(GRAMS/SEC) | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | |--------------|--------------------|------------------------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------| | L0001033 | 0 | 0.39670E-05 | 487032.9 | 3765933.7 | 545.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001034 | 0 | 0.39670E-05 | 487036.3 | 3765932.4 | 545.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001035 | 0 | 0.39670E-05 | 487039.7 | 3765931.0 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001036 | 0 | 0.39670E-05 | 487043.1 | 3765929.7 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001037 | 0 | 0.39670E-05 | 487046.5 | 3765928.4 | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001038 | 0 | 0.39670E-05 | 487049.9 | 3765927.0 | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001039 | 0 | 0.39670E-05 | 487053.3 | 3765925.7 | 546.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001040 | 0 | 0.39670E-05 | 487056.7 3765924.3 | 546.4 | 0.00 | 1.70 | 0.85 | YES | | |----------|---|-------------|--------------------|-------|------|------|------|-----|--| | L0001041 | 0 | 0.39670E-05 | 487060.1 3765923.0 | 546.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001042 | 0 | 0.39670E-05 | 487063.5 3765921.7 | 546.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001043 | 0 | 0.39670E-05 | 487066.9 3765920.3 | 546.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001044 | 0 | 0.39670E-05 | 487070.3 3765919.0 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001045 | 0 | 0.39670E-05 | 487073.7 3765917.6 | 547.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001046 | 0 | 0.39670E-05 | 487077.1 3765916.3 | 547.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001047 | 0 | 0.39670E-05 | 487080.5 3765915.0 | 547.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001048 | 0 | 0.39670E-05 | 487083.9 3765913.6 | 547.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001049 | 0 | 0.39670E-05 | 487087.3 3765912.3 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001050 | 0 | 0.39670E-05 | 487090.7 3765910.9 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001051 | 0 | 0.39670E-05 | 487094.1 3765909.6 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001052 | 0 | 0.39670E-05 | 487097.5 3765908.3 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001053 | 0 | 0.39670E-05 | 487100.9 3765906.9 | 547.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001054 | 0 | 0.39670E-05 | 487104.4 3765905.6 | 547.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001055 | 0 | 0.39670E-05 | 487107.8 3765904.2 | 548.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001056 | 0 | 0.39670E-05 | 487111.2 3765902.9 | 548.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001057 | 0 | 0.39670E-05 | 487114.6 3765901.6 | 548.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001058 | 0 | 0.39670E-05 | 487118.0 3765900.2 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001059 | 0 | 0.39670E-05 | 487121.4 3765898.9 | 548.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001060 | 0 | 0.39670E-05 | 487124.8 3765897.5 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001061 | 0 | 0.39670E-05 | 487128.2 3765896.2 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001062 | 0 | 0.39670E-05 | 487131.5 3765894.7 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001063 | 0 | 0.39670E-05 | 487134.8 3765893.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001064 | 0 | 0.39670E-05 | 487138.2 3765891.7 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001065 | 0 | 0.39670E-05 | 487141.5 3765890.2 | 550.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001066 | 0 | 0.39670E-05 | 487144.9 3765888.7 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001067 | 0 | 0.39670E-05 | 487148.2 3765887.2 | 551.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001068 | 0 | 0.39670E-05 | 487151.6 3765885.8 | 551.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001069 | 0 | 0.39670E-05 | 487154.9 3765884.3 | 552.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001070 | 0 | 0.39670E-05 | 487158.2 3765882.8 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001071 | 0 | 0.39670E-05 | 487161.6 3765881.3 | 553.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001072 | 0 | 0.39670E-05 | 487164.9 3765879.8 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 20:03:29 PAGE 6 08/11/21 *** *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE |] | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | : | L0001073 | 0 | 0.39670E-05 | 487168.3 | 3765878.3 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001074 | 0 | 0.39670E-05 | 487171.6 | 3765876.8 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001075 | 0 | 0.39670E-05 | 487174.9 | 3765875.4 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001076 | 0 | 0.39670E-05 | 487178.3 | 3765873.9 | 555.1 | 0.00 | 1.70 |
0.85 | YES | | | | L0001077 | 0 | 0.39670E-05 | 487181.6 3765872.4 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | |-------------|----------|-------------|----------------------|--------|------|------|------|-----|--| | L0001078 | 0 | 0.39670E-05 | 487185.0 3765870.9 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001079 | 0 | 0.39670E-05 | 487188.3 3765869.4 | 555.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001080 | 0 | 0.39670E-05 | 487191.7 3765867.9 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001081 | 0 | 0.39670E-05 | 487195.0 3765866.4 | 555.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001082 | 0 | 0.39670E-05 | 487198.3 3765865.0 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001083 | 0 | 0.39670E-05 | 487201.7 3765863.5 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001084 | 0 | 0.39670E-05 | 487205.0 3765862.0 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001085 | 0 | 0.39670E-05 | 487208.4 3765860.5 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001086 | 0 | 0.39670E-05 | 487211.7 3765859.0 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001087 | 0 | 0.39670E-05 | 487215.1 3765857.5 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001088 | 0 | 0.39670E-05 | 487218.4 3765856.0 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001089 | 0 | 0.39670E-05 | 487221.7 3765854.6 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001090 | 0 | 0.39670E-05 | 487225.1 3765853.1 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001091 | 0 | 0.39670E-05 | 487228.4 3765851.6 | 554.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001092 | 0 | 0.39670E-05 | 487231.8 3765850.1 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001093 | 0 | 0.39670E-05 | 487235.1 3765848.6 | 554.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001094 | 0 | 0.39670E-05 | 487238.5 3765847.1 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001095 | 0 | 0.39670E-05 | 487241.8 3765845.6 | 554.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001096 | 0 | 0.39670E-05 | 487245.1 3765844.2 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001097 | 0 | 0.39670E-05 | 487248.5 3765842.7 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001098 | 0 | 0.39670E-05 | 487251.8 3765841.2 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001099 | 0 | 0.39670E-05 | 487255.2 3765839.7 | 556.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001100 | 0 | 0.39670E-05 | 487258.4 3765838.0 | 556.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001101 | 0 | 0.39670E-05 | 487261.6 3765836.3 | 556.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001102 | 0 | 0.39670E-05 | 487264.8 3765834.5 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001103 | 0 | 0.39670E-05 | 487268.0 3765832.8 | 557.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001104 | 0 | 0.39670E-05 | 487271.2 3765831.0 | 557.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001105 | 0 | 0.39670E-05 | 487274.5 3765829.2 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001106 | 0 | 0.39670E-05 | 487277.7 3765827.5 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001107 | 0 | 0.39670E-05 | 487280.9 3765825.7 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001108 | 0 | 0.39670E-05 | 487284.1 3765824.0 | 558.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001109 | 0 | 0.39670E-05 | 487287.3 3765822.2 | 558.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001110 | 0 | 0.39670E-05 | 487290.5 3765820.5 | 558.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001111 | 0 | 0.39670E-05 | 487293.7 3765818.7 | 558.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001112 | 0 | 0.39670E-05 | 487296.9 3765817.0 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | *** 7 EDMOD | TOPPOTON | 21112 *** | *** Terragina at Dec | dlande | | | | | | 20:03:29 PAGE 7 *** 08/11/21 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | L0001113 | 0 | 0 206700 05 | 407200 1 | 2765015 2 | 559.0 | 0 00 | 1.70 | 0.05 | MEG | | | | TOOOTIT3 | U | 0.39670E-05 | 48/300.1 | 3/05015.2 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001114 | 0 | 0.39670E-05 | 487303.3 3765813.5 | 559.1 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|--------------------|-------|------|------|------|-----| | L0001115 | 0 | 0.39670E-05 | 487306.6 3765811.7 | 559.3 | 0.00 | 1.70 | 0.85 | YES | | L0001116 | 0 | 0.39670E-05 | 487309.8 3765810.0 | 559.5 | 0.00 | 1.70 | 0.85 | YES | | L0001117 | 0 | 0.39670E-05 | 487313.0 3765808.2 | 559.7 | 0.00 | 1.70 | 0.85 | YES | | L0001118 | 0 | 0.39670E-05 | 487316.2 3765806.5 | 559.9 | 0.00 | 1.70 | 0.85 | YES | | L0001119 | 0 | 0.39670E-05 | 487319.4 3765804.7 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | L0001120 | 0 | 0.39670E-05 | 487322.6 3765802.9 | 560.4 | 0.00 | 1.70 | 0.85 | YES | | L0001121 | 0 | 0.39670E-05 | 487325.8 3765801.2 | 560.8 | 0.00 | 1.70 | 0.85 | YES | | L0001122 | 0 | 0.39670E-05 | 487329.0 3765799.4 | 561.2 | 0.00 | 1.70 | 0.85 | YES | | L0001123 | 0 | 0.39670E-05 | 487332.2 3765797.7 | 561.5 | 0.00 | 1.70 | 0.85 | YES | | L0001124 | 0 | 0.39670E-05 | 487335.4 3765795.9 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | L0001125 | 0 | 0.39670E-05 | 487338.7 3765794.2 | 562.0 | 0.00 | 1.70 | 0.85 | YES | | L0001126 | 0 | 0.39670E-05 | 487341.9 3765792.4 | 562.2 | 0.00 | 1.70 | 0.85 | YES | | L0001127 | 0 | 0.39670E-05 | 487345.1 3765790.7 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | L0001128 | 0 | 0.39670E-05 | 487348.3 3765788.9 | 562.8 | 0.00 | 1.70 | 0.85 | YES | | L0001129 | 0 | 0.39670E-05 | 487351.5 3765787.2 | 563.2 | 0.00 | 1.70 | 0.85 | YES | | L0001130 | 0 | 0.39670E-05 | 487354.7 3765785.4 | 563.6 | 0.00 | 1.70 | 0.85 | YES | | L0001131 | 0 | 0.39670E-05 | 487357.9 3765783.7 | 563.9 | 0.00 | 1.70 | 0.85 | YES | | L0001132 | 0 | 0.39670E-05 | 487361.1 3765781.9 | 564.3 | 0.00 | 1.70 | 0.85 | YES | | L0001133 | 0 | 0.39670E-05 | 487364.3 3765780.2 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | L0001134 | 0 | 0.39670E-05 | 487367.6 3765778.4 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | L0001135 | 0 | 0.39670E-05 | 487370.8 3765776.8 | 565.2 | 0.00 | 1.70 | 0.85 | YES | | L0001136 | 0 | 0.39670E-05 | 487374.1 3765775.1 | 565.5 | 0.00 | 1.70 | 0.85 | YES | | L0001137 | 0 | 0.39670E-05 | 487377.3 3765773.4 | 565.8 | 0.00 | 1.70 | 0.85 | YES | | L0001138 | 0 | 0.39670E-05 | 487380.5 3765771.7 | 566.0 | 0.00 | 1.70 | 0.85 | YES | | L0001139 | 0 | 0.39670E-05 | 487383.8 3765770.0 | 566.2 | 0.00 | 1.70 | 0.85 | YES | | L0001140 | 0 | 0.39670E-05 | 487387.0 3765768.3 | 566.4 | 0.00 | 1.70 | 0.85 | YES | | L0001141 | 0 | 0.39670E-05 | 487390.3 3765766.6 | 566.5 | 0.00 | 1.70 | 0.85 | YES | | L0001142 | 0 | 0.39670E-05 | 487393.5 3765764.9 | 566.6 | 0.00 | 1.70 | 0.85 | YES | | L0001143 | 0 | 0.39670E-05 | 487396.8 3765763.2 | 566.7 | 0.00 | 1.70 | 0.85 | YES | | L0001144 | 0 | 0.39670E-05 | 487400.0 3765761.5 | 567.1 | 0.00 | 1.70 | 0.85 | YES | | L0001145 | 0 | 0.39670E-05 | 487403.2 3765759.8 | 567.5 | 0.00 | 1.70 | 0.85 | YES | | L0001146 | 0 | 0.39670E-05 | 487406.5 3765758.1 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | L0001147 | 0 | 0.39670E-05 | 487409.7 3765756.4 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | L0001148 | 0 | 0.39670E-05 | 487413.0 3765754.8 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | L0001149 | 0 | 0.39670E-05 | 487416.2 3765753.1 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | L0001150 | 0 | 0.39670E-05 | 487419.5 3765751.4 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | L0001151 | 0 | 0.39670E-05 | 487422.7 3765749.7 | 569.3 | 0.00 | 1.70 | 0.85 | YES | | L0001152 | 0 | 0.39670E-05 | 487425.9 3765748.0 | 570.1 | 0.00 | 1.70 | 0.85 | YES | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** VOLUME SOURCE DATA *** | | NUMBER | EMISSION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION | RATE | |--------|--------|---------------|----------|----------|----------|----------|----------|----------|--------|----------|------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR ' | VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | *** 08/11/21 20:03:29 PAGE 8 | L0001153 | 0 | 0.39670E-05 | | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|---------------|----------------------|----------|------------|------------|------|-----|-----|----------| | L0001154 | 0 | 0.39670E-05 | 487432.4 3765744.6 | 571.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001155 | 0 | 0.39670E-05 | 487435.7 3765742.9 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001156 | 0 | 0.39670E-05 | 487438.9 3765741.2 | 572.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001157 | 0 | 0.39670E-05 | 487442.2 3765739.5 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001158 | 0 | 0.39670E-05 | 487445.4 3765737.8 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001159 | 0 | 0.39670E-05 | 487448.6 3765736.1 | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001160 | 0 | 0.39670E-05 | 487451.8 3765734.4 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001161 | 0 | 0.39670E-05 | 487455.1 3765732.7 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001162 | 0 | 0.39670E-05 | 487458.3 3765730.9 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001163 | 0 | 0.39670E-05 | 487461.5 3765729.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001164 | 0 | 0.39670E-05 | 487464.7 3765727.5 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001165 | 0 | 0.39670E-05 | 487468.0 3765725.8 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001166 | 0 | 0.39670E-05 | 487471.2 3765724.0 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001167 | 0 | 0.39670E-05 | 487474.4 3765722.3 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001168 | 0 | 0.39670E-05 | | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001169 | 0 | 0.39670E-05 | | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001109 | 0 | 0.39670E-05 | 487484.1 3765717.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001170 | 0 | 0.39670E-05 | 487487.3 3765715.4 | 573.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001171 | 0
| 0.39670E-05 | | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001172 | 0 | 0.39670E-05 | 487493.8 3765712.0 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001173 | 0 | 0.39670E-05 | 487497.0 3765710.3 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | | 0 | | | | 0.00 | | | | | | | L0001175 | | 0.39670E-05 | 487500.2 3765708.6 | 573.9 | | 1.70 | 0.85 | YES | | | | L0001176 | 0 | 0.39670E-05 | | 574.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001177 | 0 | | 487506.7 3765705.1 | 574.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001178 | 0 | 0.39670E-05 | | 574.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001179 | 0 | 0.39670E-05 | 487513.2 3765701.7 | 575.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001180 | 0 | 0.39670E-05 | 487516.4 3765699.9 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001181 | 0 | 0.39670E-05 | | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001182 | 0 | 0.39670E-05 | | 575.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001183 | 0 | 0.39670E-05 | 487526.0 3765694.8 | 575.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001184 | 0 | 0.39670E-05 | 487529.3 3765693.0 | 576.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001185 | 0 | 0.39670E-05 | 487532.5 3765691.3 | 576.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001186 | 0 | 0.39670E-05 | 487535.7 3765689.6 | 577.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001187 | 0 | 0.39670E-05 | 487538.9 3765687.8 | 577.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001188 | 0 | 0.39670E-05 | 487542.2 3765686.1 | 578.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001189 | 0 | 0.39670E-05 | 487545.4 3765684.3 | 578.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001190 | 0 | 0.39670E-05 | 487548.6 3765682.6 | 578.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001191 | 0 | 0.39670E-05 | 487551.8 3765680.9 | 579.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001192 | 0 | 0.39670E-05 | 487555.0 3765679.1 | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | N 21112 *** | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | *** AERMET - | | | *** Freeway-related | DPM Conc | entrations | s 2026-202 | 27 | | *** | 20:03:29 | | | | | - | | | | | | | PAGE 9 | | *** MODELOPT | s: Re | egDFAULT CONC | E ELEV URBAN ADJ_U | * | | | | | | | | SOURCE | NUMBER
PART. | EMISSION RATI | E
X | Y | BASE
ELEV. | RELEASE
HEIGHT | INIT.
SY | INIT.
SZ | URBAN
SOURCE | EMISSION RATE
SCALAR VARY | | |----------------------|-----------------|---------------|----------|------------|---------------|-------------------|-------------|--------------|-----------------|------------------------------|---------------------| | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | L0001193 | 0 | 0.39670E-05 | 107550 2 | 3765677.4 | 579.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001193 | 0 | 0.39670E-05 | | 3765677.4 | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001194 | 0 | | 487564.7 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001195 | 0 | 0.39670E-05 | 487567.9 | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001196 | 0 | 0.39670E-05 | | | 580.2 | 0.00 | 1.70 | | YES | | | | L0001197 | 0 | 0.39670E-05 | | | 579.9 | 0.00 | 1.70 | 0.85
0.85 | YES | | | | | 0 | 0.39670E-05 | | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001199
L0001200 | 0 | 0.39670E-05 | 487580.6 | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001200 | 0 | 0.39670E-05 | | | 579.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001201 | 0 | 0.39670E-05 | | | 578.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001202 | 0 | 0.39670E-05 | | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001203 | 0 | 0.39670E-05 | | | 579.3 | 0.00 | 1.70 | 0.85 | YES | | | | | 0 | | | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001205 | 0 | 0.39670E-05 | | | | | | | | | | | L0001206 | 0 | 0.39670E-05 | | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001207 | | 0.39670E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001208 | 0 | 0.39670E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001209 | 0
0 | 0.39670E-05 | 487608.8 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001210 | | 0.39670E-05 | 487612.0 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001211 | 0 | 0.39670E-05 | 487615.3 | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001212 | 0 | 0.39670E-05 | 487618.6 | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001213 | 0 | 0.39670E-05 | 487621.9 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001214 | 0 | 0.39670E-05 | 487625.2 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001215 | 0 | 0.39670E-05 | 487628.5 | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001216 | 0 | 0.39670E-05 | 487631.8 | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001217 | 0 | 0.39670E-05 | 487635.1 | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001218 | 0 | 0.39800E-05 | 486606.8 | | 528.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001219 | 0 | 0.39800E-05 | 486610.3 | | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001220 | 0 | 0.39800E-05 | 486613.8 | | 528.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001221 | 0 | 0.39800E-05 | | | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001222 | 0 | 0.39800E-05 | | | 529.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001223 | 0 | 0.39800E-05 | | | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001224 | 0 | 0.39800E-05 | | | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001225 | 0 | 0.39800E-05 | | | 529.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001226 | 0 | 0.39800E-05 | 486634.6 | | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001227 | 0 | 0.39800E-05 | | | 529.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001228 | 0 | 0.39800E-05 | 486641.6 | | 530.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001229 | 0 | 0.39800E-05 | 486645.1 | | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001230 | 0 | 0.39800E-05 | 486648.5 | | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001231 | 0 | 0.39800E-05 | 486652.0 | | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001232 | 0 | 0.39800E-05 | 486655.5 | 3766032.5 | 530.6 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | TIEDOTON | 01110 *** | *** To | aine et Di | adlanda | | | | | *** | 00/11/01 | | | | | | cina at Re | | | 2026 20 | 227 | | *** | 08/11/21 | | *** AERMET - | VERSION | τρ∠τρ ,,, | "" Freew | ay-related | I DEM CON | centrat10 | us 2026-20 | J <u> </u> | | ^^^ | 20:03:29
PAGE 10 | | *** MODELOPT | s: Reg | DFAULT CONC | ELEV UR | BAN ADJ_U | J* | | | | | | PAGE IV | | SOURCE | NUMBER
PART. | EMISSION RATI | E
X | Y | BASE
ELEV. | RELEASE
HEIGHT | INIT.
SY | INIT.
SZ | URBAN
SOURCE | EMISSION RATE
SCALAR VARY | | |--------------|-----------------|---------------|-----------|------------|---------------|-------------------|-------------|-------------|-----------------|------------------------------|----------| | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001233 | 0 | 0.39800E-05 | | | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001234 | 0 | 0.39800E-05 | | | 530.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001235 | 0 | 0.39800E-05 | | | 531.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001236 | 0 | 0.39800E-05 | | | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001237 | 0 | 0.39800E-05 | | | 531.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001238 | 0 | | 486676.4 | | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001239 | 0 | 0.39800E-05 | 486679.8 | 3766024.5 | 531.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001240 | 0 | 0.39800E-05 | 486683.3 | 3766023.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001241 | 0 | 0.39800E-05 | 486686.8 | 3766022.3 | 531.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001242 | 0 | 0.39800E-05 | 486690.3 | 3766021.1 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001243 | 0 | 0.39800E-05 | 486693.7 | 3766020.0 | 531.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001244 | 0 | 0.39800E-05 | 486697.2 | 3766018.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001245 | 0 | 0.39800E-05 | 486700.7 | 3766017.7 | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001246 | 0 | 0.39800E-05 | 486704.2 | 3766016.6 | 532.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001247 | 0 | 0.39800E-05 | 486707.6 | 3766015.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001248 | 0 | 0.39800E-05 | 486711.1 | 3766014.3 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001249 | 0 | 0.39800E-05 | 486714.6 | 3766013.2 | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001250 | 0 | 0.39800E-05 | 486718.1 | 3766012.0 | 532.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001251 | 0 | 0.39800E-05 | 486721.5 | 3766010.9 | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001252 | 0 | 0.39800E-05 | 486725.0 | 3766009.7 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001253 | 0 | 0.39800E-05 | 486728.5 | 3766008.6 | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001254 | 0 | 0.39800E-05 | 486732.0 | 3766007.5 | 533.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001255 | 0 | 0.39800E-05 | 486735.4 | 3766006.3 | 533.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001256 | 0 | 0.39800E-05 | 486738.9 | 3766005.2 | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001257 | 0 | 0.39800E-05 | 486742.4 | 3766004.0 | 534.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001258 | 0 | 0.39800E-05 | 486745.8 | 3766002.8 | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001259 | 0 | 0.39800E-05 | 486749.3 | 3766001.6 | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001260 | 0 | 0.39800E-05 | 486752.7 | 3766000.4 | 534.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001261 | 0 | 0.39800E-05 | 486756.2 | 3765999.2 | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001262 | 0 | 0.39800E-05 | | | 534.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001263 | 0 | 0.39800E-05 | 486763.1 | 3765996.8 | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001264 | 0 | 0.39800E-05 | 486766.6 | 3765995.6 | 535.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001265 | 0 | | 486770.0 | | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001266 | 0 | 0.39800E-05 | | | 535.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001267 | 0 | 0.39800E-05 | | | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001268 | 0 | 0.39800E-05 | | | 535.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001269 | 0 | 0.39800E-05 | | | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001270 | 0 | 0.39800E-05 | | |
535.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001271 | 0 | | 486790.7 | | 536.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001272 | 0 | | 486794.2 | | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | | | - | | | | | 2.20 | | | | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | edlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | | ay-related | | centration | ns 2026-20 | 027 | | *** | 20:03:29 | | | | | | - | | | | | | | | | | NUMBER | EMISSION RAT | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|--------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001273 | 0 | 0.39800E-05 | 486797.6 | 3765984.7 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001274 | 0 | 0.39800E-05 | 486801.1 | 3765983.4 | 536.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001275 | 0 | 0.39800E-05 | 486804.5 | 3765982.2 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001276 | 0 | 0.39800E-05 | | 3765981.0 | 536.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001277 | 0 | 0.39800E-05 | 486811.4 | 3765979.8 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001278 | 0 | 0.39800E-05 | | 3765978.6 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001279 | 0 | 0.39800E-05 | 486818.3 | 3765977.4 | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001280 | 0 | 0.39800E-05 | 486821.8 | 3765976.2 | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001281 | 0 | 0.39800E-05 | | 3765975.0 | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001282 | 0 | 0.39800E-05 | | 3765973.8 | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001283 | 0 | 0.39800E-05 | 486832.1 | 3765972.5 | 538.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001284 | 0 | 0.39800E-05 | | 3765971.3 | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001285 | 0 | 0.39800E-05 | | 3765970.1 | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001286 | 0 | 0.39800E-05 | | 3765969.0 | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001287 | 0 | 0.39800E-05 | | 3765967.9 | 538.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001288 | 0 | 0.39800E-05 | 486849.5 | 3765966.8 | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001289 | 0 | 0.39800E-05 | 486852.9 | 3765965.6 | 538.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001290 | 0 | 0.39800E-05 | 486856.4 | 3765964.5 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001291 | 0 | 0.39800E-05 | | 3765963.4 | 539.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001292 | 0 | 0.39800E-05 | | 3765962.3 | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001293 | 0 | 0.39800E-05 | | 3765961.1 | 539.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001294 | 0 | 0.39800E-05 | | 3765960.0 | 539.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001295 | 0 | 0.39800E-05 | | 3765958.9 | 539.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001296 | 0 | 0.39800E-05 | | 3765957.8 | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001297 | 0 | 0.39800E-05 | | 3765956.6 | 539.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001298 | 0 | 0.39800E-05 | | 3765955.5 | 540.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001299 | 0 | 0.39800E-05 | | 3765954.4 | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001300 | 0 | 0.39800E-05 | | 3765953.3 | 540.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001301 | 0 | 0.39800E-05 | | 3765952.1 | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001302 | 0 | 0.39800E-05 | | 3765951.0 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001303 | 0 | 0.39800E-05 | | 3765949.9 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001304 | 0 | 0.39800E-05 | | 3765948.8 | 540.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001305 | 0 | 0.39800E-05 | | 3765947.6 | 541.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001306 | 0 | 0.39800E-05 | | 3765946.5 | 541.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001307 | 0 | 0.39800E-05 | | 3765945.4 | 541.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001308 | 0 | 0.39800E-05 | | 3765944.3 | 541.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001309 | 0 | 0.39800E-05 | | 3765943.1 | 541.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001310 | 0 | 0.39800E-05 | | 3765942.0 | 541.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001311 | 0 | 0.39800E-05 | | 3765940.9 | 542.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001312 | 0 | 0.39800E-05 | 486933.0 | 3765939.8 | 542.3 | 0.00 | 1.70 | 0.85 | YES | | | SOURCE | PART. | EMISSION RAT | X | Υ | BASE
ELEV. | RELEASE
HEIGHT | INIT. | INIT. | URBAN
SOURCE | SCALAR VARY | |----------|-------|--------------|----------|-----------|---------------|-------------------|----------|-------|-----------------|-------------| | ID | CATS. | | (METERS) | (METERS) | (METERS) | , | (METERS) | . , | | BY | | | | | | | | | | | | | | L0001313 | 0 | 0.39800E-05 | 486936.5 | 3765938.6 | 542.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001314 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001315 | 0 | 0.39800E-05 | 486943.4 | 3765936.4 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001316 | 0 | 0.39800E-05 | 486946.9 | 3765935.3 | 542.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001317 | 0 | 0.39800E-05 | 486950.4 | 3765934.2 | 542.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001318 | 0 | 0.39800E-05 | 486953.9 | 3765933.0 | 543.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001319 | 0 | 0.39800E-05 | 486957.4 | 3765931.9 | 543.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001320 | 0 | 0.39800E-05 | 486960.9 | 3765930.8 | 543.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001321 | 0 | 0.39800E-05 | 486964.3 | 3765929.7 | 543.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001322 | 0 | 0.39800E-05 | 486967.8 | 3765928.6 | 543.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001323 | 0 | 0.39800E-05 | 486971.3 | 3765927.4 | 543.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001324 | 0 | 0.39800E-05 | 486974.8 | 3765926.3 | 543.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001325 | 0 | 0.39800E-05 | | | 543.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001326 | 0 | 0.39800E-05 | 486981.7 | 3765924.1 | 544.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001327 | 0 | 0.39800E-05 | 486985.2 | 3765922.9 | 544.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001328 | 0 | 0.39800E-05 | 486988.7 | 3765921.8 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001329 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001330 | 0 | 0.39800E-05 | | | 544.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001331 | 0 | 0.39800E-05 | | 3765918.4 | 544.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001332 | 0 | 0.39800E-05 | | | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001333 | 0 | 0.39800E-05 | | | 545.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001334 | 0 | 0.39800E-05 | | 3765914.8 | 545.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001335 | 0 | 0.39800E-05 | | 3765913.6 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001336 | 0 | 0.39800E-05 | | | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001337 | 0 | 0.39800E-05 | | | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001338 | 0 | 0.39800E-05 | | | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001339 | 0 | 0.39800E-05 | | 3765908.9 | 546.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001340 | 0 | 0.39800E-05 | | | 546.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001341 | 0 | 0.39800E-05 | | | 546.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001342 | 0 | 0.39800E-05 | | | 546.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001343 | 0 | 0.39800E-05 | | | 546.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001344 | 0 | 0.39800E-05 | | 3765902.9 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001345 | 0 | 0.39800E-05 | | | 547.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001346 | 0 | 0.39800E-05 | | | 547.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001347 | 0 | 0.39800E-05 | | 3765899.4 | 547.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001348 | 0 | 0.39800E-05 | | | 547.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001349 | 0 | 0.39800E-05 | 487061.4 | 3765897.0 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001350
L0001351
L0001352 | 0
0
0 | 0.39800E-05 | 487064.9 3765895.8
487068.3 3765894.6
487071.8 3765893.5 | 547.8
547.9
548.0 | 0.00
0.00
0.00 | 1.70
1.70
1.70 | 0.85
0.85
0.85 | YES
YES
YES | | | |----------------------------------|-------------|-------------|--|-------------------------|----------------------|----------------------|----------------------|-------------------|----------------|---------------------------------| | *** AERMOD -
*** AERMET - | | | *** Terracina at Rec *** Freeway-related | | entrations | s 2026-202 | 27 | | * * *
* * * | 08/11/21
20:03:29
PAGE 13 | | | NUMBER | EMISSION RATE | C | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001353 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001354 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001355 | 0 | | | 3765889.9 | 548.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001356 | 0 | 0.39800E-05 | | 3765888.7 | 548.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001357 | 0 | | | 3765887.5 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001358 | 0 | 0.39800E-05 | 487092.5 | 3765886.3 | 548.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001359 | 0 | 0.39800E-05 | 487096.0 | 3765885.1 | 548.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001360 | 0 | 0.39800E-05 | 487099.5 | 3765884.0 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001361 | 0 | 0.39800E-05 | 487102.9 | 3765882.8 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001362 | 0 | 0.39800E-05 | 487106.4 | 3765881.6 | 549.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001363 | 0 | 0.39800E-05 | 487109.8 | 3765880.4 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001364 | 0 | 0.39800E-05 | 487113.3 | 3765879.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001365 | 0 | 0.39800E-05 | 487116.8 | 3765878.0 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001366 | 0 | 0.39800E-05 | 487120.1 | 3765876.6 | 550.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001367 | 0 |
0.39800E-05 | 487123.4 | 3765875.1 | 550.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001368 | 0 | 0.39800E-05 | 487126.8 | 3765873.6 | 550.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001369 | 0 | 0.39800E-05 | 487130.1 | 3765872.1 | 550.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001370 | 0 | 0.39800E-05 | 487133.5 | 3765870.6 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001371 | 0 | 0.39800E-05 | 487136.8 | 3765869.1 | 550.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001372 | 0 | 0.39800E-05 | 487140.1 | 3765867.6 | 551.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001373 | 0 | 0.39800E-05 | 487143.5 | 3765866.1 | 551.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001374 | 0 | 0.39800E-05 | 487146.8 | 3765864.6 | 551.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001375 | 0 | 0.39800E-05 | 487150.1 | 3765863.1 | 552.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001376 | 0 | 0.39800E-05 | 487153.5 | 3765861.6 | 552.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001377 | 0 | 0.39800E-05 | 487156.8 | 3765860.1 | 552.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001378 | 0 | 0.39800E-05 | 487160.2 | 3765858.6 | 552.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001379 | 0 | 0.39800E-05 | 487163.5 | 3765857.2 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001380 | 0 | 0.39800E-05 | | | 552.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001381 | 0 | | | 3765854.2 | 553.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001382 | 0 | 0.39800E-05 | | 3765852.7 | 553.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001383 | 0 | 0.39800E-05 | | 3765851.2 | 553.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001384 | 0 | 0.39800E-05 | | 3765849.7 | 553.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001385 | 0 | 0.39800E-05 | | 3765848.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001386 | 0 | 0.39800E-05 | | 3765846.7 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | - | | | | | | | | | | | L0001387 | 0 | 0.39800E-05 | 487190.2 3765845.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|-----------|-------------|----------------------|----------|------------|------------|-------|-----|-----|----------| | | | | | | | | | | | | | L0001388 | 0 | 0.39800E-05 | 487193.6 3765843.7 | 553.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001389 | 0 | 0.39800E-05 | 487196.9 3765842.2 | 553.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001390 | 0 | 0.39800E-05 | 487200.2 3765840.6 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001391 | 0 | 0.39800E-05 | 487203.5 3765839.0 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001392 | 0 | 0.39800E-05 | 487206.8 3765837.4 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - VERSTON | л 21112 *** | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | | | | | | | 0006 006 | N. 17 | | *** | , | | *** AERMET - | - VERSION | √ 16216 *** | *** Freeway-related | DPM Conc | entrations | 3 2026-202 | 27 | | *** | 20:03:29 | | | | | | | | | | | | PAGE 14 | | | NUMBER | EMISSION RATE | G | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |--|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001393 | 0 | | | | | | | | YES | | | L0001394
L0001395
L0001396
L0001397 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001395 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001396 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001397 | 0 | 0.39800E-05 | | | 554.7 | 0.00 | 1.70 | 0.85 | YES | | | T0001330 | U | 0.39800E-05 | | | 554.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001399 | 0 | 0.39800E-05 | 487229.8 | 3765826.2 | 555.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001400 | 0 | 0.39800E-05 | 487233.1 | 3765824.6 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001401 | 0 | 0.39800E-05 | 487236.4 | 3765823.0 | 555.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001402 | 0 | 0.39800E-05 | 487239.7 | 3765821.4 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001403 | 0 | 0.39800E-05 | 487243.0 | 3765819.8 | 555.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001404 | 0 | 0.39800E-05 | 487246.2 | 3765818.2 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001405 | 0 | 0.39800E-05 | 487249.5 | 3765816.6 | 555.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001406 | 0 | 0.39800E-05 | 487252.8 | 3765815.0 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001407 | 0 | 0.39800E-05 | 487256.1 | 3765813.4 | 556.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001408 | 0 | 0.39800E-05 | 487259.4 | 3765811.9 | 556.4 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487262.7 | 3765810.3 | 556.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001410 | 0 | 0.39800E-05 | 487266.0 | 3765808.7 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001411 | 0 | 0.39800E-05 | 487269.3 | 3765807.1 | 556.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001412 | 0 | 0.39800E-05 | 487272.6 | 3765805.5 | 557.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001413 | 0 | 0.39800E-05 | 487275.9 | 3765803.9 | 557.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001414 | 0 | 0.39800E-05 | 487279.1 | 3765802.3 | 557.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001415 | 0 | 0.39800E-05 | 487282.4 | 3765800.6 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001416 | 0 | 0.39800E-05 | 487285.6 | 3765798.8 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001417 | 0 | 0.39800E-05 | 487288.7 | 3765797.0 | 558.0 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487291.9 | 3765795.1 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487295.1 | 3765793.3 | 558.3 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | | 558.6 | 0.00 | 1.70 | 0.85 | YES | | | | | 0.39800E-05 | | | | | 1.70 | 0.85 | YES | | | | | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001424 | 0 | 0.39800E-05 | 487310.9 3765784.1 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|-----------|-------------|----------------------|----------|-----------|-----------|------|-----|-----|----------| | L0001425 | 0 | 0.39800E-05 | 487314.0 3765782.2 | 559.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001426 | 0 | 0.39800E-05 | 487317.2 3765780.4 | 559.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001427 | 0 | 0.39800E-05 | 487320.3 3765778.5 | 559.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001428 | 0 | 0.39800E-05 | 487323.5 3765776.7 | 559.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001429 | 0 | 0.39800E-05 | 487326.7 3765774.9 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001430 | 0 | 0.39800E-05 | 487329.8 3765773.0 | 560.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001431 | 0 | 0.39800E-05 | 487333.0 3765771.2 | 560.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001432 | 0 | 0.39800E-05 | 487336.1 3765769.3 | 560.7 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - VERSION | 21112 *** | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | *** AERMET - | - VERSION | 16216 *** | *** Freeway-related | DPM Conc | entration | s 2026-20 | 27 | | *** | 20:03:29 | | | | | - | | | | | | | PAGE 15 | | | | EMISSION RAT | | | BASE | RELEASE | INIT. | | URBAN | EMISSION RATE | |----------------------|--------|--------------|----------|-----------|-------|---------|-------|------|-------|---------------| | | | (GRAMS/SEC) | | | | | | SZ | | SCALAR VARY | | ID | CATS. | | | | | | | , | | | | | | | | | | | | | | | | L0001433 | Ο | 0.39800E-05 | 197339 3 | 3765767 5 | 560 0 | 0 00 | 1.70 | 0.85 | YES | | | L0001433 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001131 | 0 | 0.39800E-05 | | | 561.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001135 | 0 | 0.39800E-05 | | 3765762.1 | | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001438 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001439 | 0 | 0.39800E-05 | | | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | 3765754.8 | 561.9 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | 3765753.0 | | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001443 | 0 | 0.39800E-05 | 487371.1 | 3765749.4 | 562.1 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487374.3 | 3765747.6 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001445 | 0 | 0.39800E-05 | 487377.4 | 3765745.8 | 562.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001446 | 0 | 0.39800E-05 | 487380.6 | 3765743.9 | 562.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001447 | 0 | 0.39800E-05 | 487383.8 | 3765742.1 | 563.1 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487387.0 | 3765740.3 | 563.3 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487390.1 | 3765738.5 | 563.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001450 | 0 | 0.39800E-05 | 487393.3 | 3765736.7 | 563.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001451 | 0 | 0.39800E-05 | 487396.5 | 3765734.9 | 563.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001452 | 0 | 0.39800E-05 | 487399.7 | 3765733.1 | 564.1 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | 487402.9 | 3765731.3 | 564.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001454 | 0
0 | 0.39800E-05 | 487406.0 | 3765729.4 | 564.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001455 | 0 | 0.39800E-05 | 487409.2 | 3765727.6 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001456 | 0 | 0.39800E-05 | 487412.4 | 3765725.9 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.39800E-05 | | 3765724.2 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001458 | 0 | 0.39800E-05 | | | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001458
L0001459 | 0 | 0.39800E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001460 | 0 | 0.39800E-05 | 487425.4 | 3765719.1 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001461
L0001462
L0001463
L0001464
L0001465
L0001466
L0001467
L0001468
L0001469
L0001470 | 0
0
0
0
0
0
0 | 0.39800E-05
0.39800E-05
0.39800E-05
0.39800E-05
0.39800E-05
0.39800E-05
0.39800E-05
0.39800E-05
0.39800E-05 | 487428.6 3765717.4
487431.9 3765715.8
487435.1 3765714.1
487438.4 3765712.4
487441.6 3765710.7
487444.9 3765709.0
487448.1 3765707.3
487451.4
3765705.6
487454.6 3765704.0
487457.9 3765702.3 | 565.2
565.5
565.7
566.0
566.2
566.4
566.6
566.9
567.2 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 1.70
1.70
1.70
1.70
1.70
1.70
1.70
1.70 | 0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85 | YES | | | |--|---------------------------------|---|--|---|---|--|--|---|----------------|---------------------------------| | L0001470
L0001471
L0001472
*** AERMOD -
*** AERMET - | 0
0
- VERSION | 0.39800E-05
0.39800E-05 | 487457.9 3765702.3
487461.1 3765700.6
487464.3 3765698.9
*** Terracina at Rec
*** Freeway-related | 567.6
567.7
dlands | 0.00 | 1.70
1.70 | 0.85
0.85 | YES
YES
YES | * * *
* * * | 08/11/21
20:03:29
PAGE 16 | | | | EMISSION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|-------|---------------|----------|------------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) |) (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | L0001473 | 0 | 0.39800E-05 | 487467.6 | 3765697.2 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001474 | 0 | 0.39800E-05 | 487470.8 | 3765695.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001475 | 0 | 0.39800E-05 | 487474.1 | 3765693.9 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001476 | 0 | 0.39800E-05 | 487477.3 | 3765692.2 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001477 | 0 | 0.39800E-05 | 487480.6 | 3765690.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001478 | 0 | 0.39800E-05 | 487483.8 | 3765688.8 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001479 | 0 | 0.39800E-05 | 487487.1 | 3765687.1 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001480 | 0 | 0.39800E-05 | 487490.3 | 3765685.4 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001481 | 0 | 0.39800E-05 | 487493.6 | 3765683.8 | 568.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001482 | 0 | 0.39800E-05 | 487496.8 | 3765682.1 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001483 | 0 | 0.39800E-05 | 487500.1 | 3765680.4 | 569.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001484 | 0 | 0.39800E-05 | 487503.3 | 3765678.7 | 569.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001485 | 0 | 0.39800E-05 | 487506.6 | 3765677.0 | 569.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001486 | 0 | 0.39800E-05 | 487509.8 | 3765675.3 | 570.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001487 | 0 | 0.39800E-05 | 487513.1 | 3765673.7 | 570.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001488 | 0 | 0.39800E-05 | 487516.3 | 3765672.0 | 570.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001489 | 0 | 0.39800E-05 | 487519.5 | 3765670.3 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001490 | 0 | 0.39800E-05 | 487522.8 | 3765668.6 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001491 | 0 | 0.39800E-05 | 487526.0 | 3765666.9 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001492 | 0 | 0.39800E-05 | 487529.3 | 3765665.2 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001493 | 0 | 0.39800E-05 | 487532.5 | 3765663.4 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001494 | 0 | 0.39800E-05 | 487535.7 | 3765661.6 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001495 | 0 | 0.39800E-05 | 487538.9 | 3765659.9 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001496 | 0 | 0.39800E-05 | 487542.1 | 3765658.1 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001497 | 0 | 0.39800E-05 | 487545.3 | 3765656.3 | 571.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001498 | 0 | 0.39800E-05 | 487548.5 3765654.6 | 571.2 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---|-------------|----------------------|----------|------------|------------|------|-----|-----|----------| | L0001499 | 0 | 0.39800E-05 | 487551.7 3765652.8 | 571.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001500 | 0 | 0.39800E-05 | 487554.9 3765651.0 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001501 | 0 | 0.39800E-05 | 487558.1 3765649.3 | 572.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001502 | 0 | 0.39800E-05 | 487561.3 3765647.5 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001503 | 0 | 0.39800E-05 | 487564.5 3765645.7 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001504 | 0 | 0.39800E-05 | 487567.7 3765644.0 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001505 | 0 | 0.39800E-05 | 487570.9 3765642.2 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001506 | 0 | 0.39800E-05 | 487574.1 3765640.4 | 573.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001507 | 0 | 0.39800E-05 | 487577.3 3765638.7 | 573.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001508 | 0 | 0.39800E-05 | 487580.6 3765637.1 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001509 | 0 | 0.39800E-05 | 487583.9 3765635.4 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001510 | 0 | 0.39800E-05 | 487587.1 3765633.8 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001511 | 0 | 0.39800E-05 | 487590.4 3765632.2 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001512 | 0 | 0.39800E-05 | 487593.7 3765630.5 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | . 01110 | | | | | | | *** | 00/11/01 | | *** AERMOD - | | | *** Terracina at Rec | | | | | | | 08/11/21 | | *** AERMET - | VERSION | 1 16216 *** | *** Freeway-related | DPM Conc | entrations | s 2026-202 | 27 | | *** | 20:03:29 | | | | | | | | | | | | PAGE 17 | | *** MODELOPT | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | | | | | | | | | ### *** VOLUME SOURCE DATA *** | SOURCE
ID | NUMBER
PART.
CATS. | EMISSION RAT | E
X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | | |--------------|--------------------------|--------------|--------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------|----------| | | | | | | | | | | | | | | L0001513 | 0 | 0.39800E-05 | 487596.9 | 3765628.9 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001514 | 0 | 0.39800E-05 | 487600.2 | 3765627.2 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001515 | 0 | 0.39800E-05 | 487603.5 | 3765625.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001516 | 0 | 0.39800E-05 | 487606.8 | 3765624.0 | 574.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001517 | 0 | 0.39800E-05 | 487610.0 | 3765622.3 | 574.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001518 | 0 | 0.39800E-05 | 487613.3 | 3765620.7 | 574.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001519 | 0 | 0.39800E-05 | 487616.6 | 3765619.1 | 574.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001520 | 0 | 0.39800E-05 | 487619.8 | 3765617.4 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001521 | 0 | 0.39800E-05 | 487623.1 | 3765615.8 | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | edlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freew | ay-related | d DPM Con | centration | ns 2026-20 | 027 | | *** | 20:03:29 | | | | | | | | | | | | | PAGE 18 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | ALL | L0000913 | , L0000914 | , L0000915 | , L0000916 | , L0000917 | , L0000918 | , L0000919 | , L000092 | , 0 | |-----|-------------|------------|---------------|----------------------------|----------------|------------|------------|-----------|---------------------------------| | | L0000921 | , L0000922 | , L0000923 | , L0000924 | , L0000925 | , L0000926 | , L0000927 | , L000092 | 8 , | | | L0000929 | , L0000930 | , L0000931 | , L0000932 | , L0000933 | , L0000934 | , L0000935 | , L000093 | 6 , | | | L0000937 | , L0000938 | , L0000939 | , L0000940 | , L0000941 | , L0000942 | , L0000943 | , L000094 | 4 , | | | L0000945 | , L0000946 | , L0000947 | , L0000948 | , L0000949 | , L0000950 | , L0000951 | , L000095 | 2 , | | | L0000953 | , L0000954 | , L0000955 | , L0000956 | , L0000957 | , L0000958 | , L0000959 | , L000096 | 0 , | | | L0000961 | , L0000962 | , L0000963 | , L0000964 | , L0000965 | , L0000966 | , L0000967 | , L000096 | 8 , | | | L0000969 | , L0000970 | , L0000971 | , L0000972 | , L0000973 | , L0000974 | , L0000975 | , L000097 | 6 , | | | L0000977 | , L0000978 | , L0000979 | , L0000980 | , L0000981 | , L0000982 | , L0000983 | , L000098 | 4 , | | | L0000985 | , L0000986 | , L0000987 | , L0000988 | , L0000989 | , L0000990 | , L0000991 | , L000099 | 2 , | | | L0000993 | , L0000994 | , L0000995 | , L0000996 | , L0000997 | , L0000998 | , L0000999 | , L000100 | 0 , | | | L0001001 | , L0001002 | , L0001003 | , L0001004 | , L0001005 | , L0001006 | , L0001007 | , L000100 | 8 , | | | L0001009 | , L0001010 | , L0001011 | , L0001012 | , L0001013 | , L0001014 | , L0001015 | , L000101 | .6 , | | | L0001017 | , L0001018 | , L0001019 | , L0001020 | , L0001021 | , L0001022 | , L0001023 | , L000102 | 4 , | | | L0001025 | , L0001026 | , L0001027 | , L0001028 | , L0001029 | , L0001030 | , L0001031 | , L000103 | 2 , | | | L0001033 | , L0001034 | , L0001035 | , L0001036 | , L0001037 | , L0001038 | , L0001039 | , L000104 | .0 , | | | L0001041 | , L0001042 | , L0001043 | , L0001044 | , L0001045 | , L0001046 | ,
L0001047 | , L000104 | .8 , | | | L0001049 | , L0001050 | , L0001051 | , L0001052 | , L0001053 | , L0001054 | , L0001055 | , L000105 | 6 , | | | L0001057 | , L0001058 | , L0001059 | , L0001060 | , L0001061 | , L0001062 | , L0001063 | , L000106 | 4 , | | | L0001065 | , L0001066 | , L0001067 | , L0001068 | , L0001069 | , L0001070 | , L0001071 | , L000107 | 2 , | | | - VERSION 2 | | ICII GOING GO | Redlands
ted DPM Concen | trations 2026- | 2027 | | *** | 08/11/21
20:03:29
PAGE 19 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | L0001073 | , L0001074 | , L0001075 | , L0001076 | , L0001077 | , L0001078 | , L0001079 | , L0001080 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001081 | , L0001082 | , L0001083 | , L0001084 | , L0001085 | , L0001086 | , L0001087 | , L0001088 | , | | L0001089 | , L0001090 | , L0001091 | , L0001092 | , L0001093 | , L0001094 | , L0001095 | , L0001096 | , | | L0001097 | , L0001098 | , L0001099 | , L0001100 | , L0001101 | , L0001102 | , L0001103 | , L0001104 | , | | L0001105 | , L0001106 | , L0001107 | , L0001108 | , L0001109 | , L0001110 | , L0001111 | , L0001112 | , | | L0001113 | , L0001114 | , L0001115 | , L0001116 | , L0001117 | , L0001118 | , L0001119 | , L0001120 | , | | L0001121 | , L0001122 | , L0001123 | , L0001124 | , L0001125 | , L0001126 | , L0001127 | , L0001128 | , | | L0001129 | , L0001130 | , L0001131 | , L0001132 | , L0001133 | , L0001134 | , L0001135 | , L0001136 | , | | L0001137 | , L0001138 | , L0001139 | , L0001140 | , L0001141 | , L0001142 | , L0001143 | , L0001144 | , | | L0001145 | , L0001146 | , L0001147 | , L0001148 | , L0001149 | , L0001150 | , L0001151 | , L0001152 | , | | L0001153 | , L0001154 | , L0001155 | , L0001156 | , L0001157 | , L0001158 | , L0001159 | , L0001160 | , | | L0001161 | , L0001162 | , L0001163 | , L0001164 | , L0001165 | , L0001166 | , L0001167 | , L0001168 | , | | L0001169 | , L0001170 | , L0001171 | , L0001172 | , L0001173 | , L0001174 | , L0001175 | , L0001176 | , | | L0001177 | , L0001178 | , L0001179 | , L0001180 | , L0001181 | , L0001182 | , L0001183 | , L0001184 | , | | L0001185 | , L0001186 | , L0001187 | , L0001188 | , L0001189 | , L0001190 | , L0001191 | , L0001192 | , | | L0001193 | , L0001194 | , L0001195 | , L0001196 | , L0001197 | , L0001198 | , L0001199 | , L0001200 | , | | L0001201 | , L0001202 | , L0001203 | , L0001204 | , L0001205 | , L0001206 | , L0001207 | , L0001208 | , | | L0001209 | , L0001210 | , L0001211 | , L0001212 | , L0001213 | , L0001214 | , L0001215 | , L0001216 | , | | L0001217 | , L0001218 | , L0001219 | , L0001220 | , L0001221 | , L0001222 | , L0001223 | , L0001224 | , | | L0001225 | , L0001226 | , L0001227 | , L0001228 | , L0001229 | , L0001230 | , L0001231 | , L0001232 | , | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 08/11/21 * * * 20:03:29 PAGE 20 *** *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDs ---------- | L0001233 | , L0001234 | , L0001235 | , L0001236 | , L0001237 | , L0001238 | , L0001239 | , L0001240 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001241 | , L0001242 | , L0001243 | , L0001244 | , L0001245 | , L0001246 | , L0001247 | , L0001248 | , | | L0001249 | , L0001250 | , L0001251 | , L0001252 | , L0001253 | , L0001254 | , L0001255 | , L0001256 | , | | L0001257 | , L0001258 | , L0001259 | , L0001260 | , L0001261 | , L0001262 | , L0001263 | , L0001264 | , | | L0001265 | , L0001266 | , L0001267 | , L0001268 | , L0001269 | , L0001270 | , L0001271 | , L0001272 | , | | L0001273 | , L0001274 | , L0001275 | , L0001276 | , L0001277 | , L0001278 | , L0001279 | , L0001280 | , | | L0001281 | , L0001282 | , L0001283 | , L0001284 | , L0001285 | , L0001286 | , L0001287 | , L0001288 | , | | L0001289 | , L0001290 | , L0001291 | , L0001292 | , L0001293 | , L0001294 | , L0001295 | , L0001296 | , | | L0001297 | , L0001298 | , L0001299 | , L0001300 | , L0001301 | , L0001302 | , L0001303 | , L0001304 | , | | L0001305 | , L0001306 | , L0001307 | , L0001308 | , L0001309 | , L0001310 | , L0001311 | , L0001312 | , | | L0001313 | , L0001314 | , L0001315 | , L0001316 | , L0001317 | , L0001318 | , L0001319 | , L0001320 | , | | L0001321 | , L0001322 | , L0001323 | , L0001324 | , L0001325 | , L0001326 | , L0001327 | , L0001328 | , | | L0001329 | , L0001330 | , L0001331 | , L0001332 | , L0001333 | , L0001334 | , L0001335 | , L0001336 | , | | L0001337 | , L0001338 | , L0001339 | , L0001340 | , L0001341 | , L0001342 | , L0001343 | , L0001344 | , | | L0001345 | , L0001346 | , L0001347 | , L0001348 | , L0001349 | , L0001350 | , L0001351 | , L0001352 | , | | L0001353 | , L0001354 | , L0001355 | , L0001356 | , L0001357 | , L0001358 | , L0001359 | , L0001360 | , | | L0001361 | , L0001362 | , L0001363 | , L0001364 | , L0001365 | , L0001366 | , L0001367 | , L0001368 | , | | L0001369 | , L0001370 | , L0001371 | , L0001372 | , L0001373 | , L0001374 | , L0001375 | , L0001376 | , | | L0001377 | , L0001378 | , L0001379 | , L0001380 | , L0001381 | , L0001382 | , L0001383 | , L0001384 | , | | L0001385 | , L0001386 | , L0001387 | , L0001388 | , L0001389 | , L0001390 | , L0001391 | , L0001392 | , | | | 1110 444 | | - 11 1 | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDs _____ | | L0001393 | , L0001394 | , L0001395 | , L0001396 | , L0001397 | , L0001398 | , L0001399 | , L000140 | 00 , | |-------------|--------------------------|--------------|--------------|----------------------------|----------------|------------|------------|------------|---------------------------------| | | L0001401 | , L0001402 | , L0001403 | , L0001404 | , L0001405 | , L0001406 | , L0001407 | , L000140 |)8 , | | | L0001409 | , L0001410 | , L0001411 | , L0001412 | , L0001413 | , L0001414 | , L0001415 | , L000141 | L6 , | | | L0001417 | , L0001418 | , L0001419 | , L0001420 | , L0001421 | , L0001422 | , L0001423 | , L000142 | 24 , | | | L0001425 | , L0001426 | , L0001427 | , L0001428 | , L0001429 | , L0001430 | , L0001431 | , L000143 | 32 , | | | L0001433 | , L0001434 | , L0001435 | , L0001436 | , L0001437 | , L0001438 | , L0001439 | , L000144 | 10 , | | | L0001441 | , L0001442 | , L0001443 | , L0001444 | , L0001445 | , L0001446 | , L0001447 | , L000144 | 18 , | | | L0001449 | , L0001450 | , L0001451 | , L0001452 | , L0001453 | , L0001454 | , L0001455 | , L000145 | 56 , | | | L0001457 | , L0001458 | , L0001459 | , L0001460 | , L0001461 | , L0001462 | , L0001463 | , L000146 | 54 , | | | L0001465 | , L0001466 | , L0001467 | , L0001468 | , L0001469 | , L0001470 | , L0001471 | , L000147 | 72 , | | | L0001473 | , L0001474 | , L0001475 | , L0001476 | , L0001477 | , L0001478 | , L0001479 | , L000148 | 30 , | | | L0001481 | , L0001482 | , L0001483 | , L0001484 | , L0001485 | , L0001486 | , L0001487 | , L000148 | 38 , | | | L0001489 | , L0001490 | , L0001491 | , L0001492 | , L0001493 | , L0001494 | , L0001495 | , L000149 | 96 , | | | L0001497 | , L0001498 | , L0001499 | , L0001500 | , L0001501 | , L0001502 | , L0001503 | , L000150 |)4 , | | | L0001505 | , L0001506 | , L0001507 | , L0001508 | , L0001509 | , L0001510 | , L0001511 | , L000151 | | | | L0001513 | , L0001514 | , L0001515 | , L0001516 | , L0001517 | , L0001518 | , L0001519 | , L000152 | 20 , | | | L0001521 | , | | | | | | | | | | - VERSION 2
- VERSION | | | Redlands
ted DPM Concen | trations 2026- | 2027 | | *** | 08/11/21
20:03:29
PAGE 22 | | *** MODELOR | PTs: RegD | FAULT CONC E | LEV URBAN AD | J_U* | | | | | | | | | | *** SOURC | E IDs DEFINED A | AS URBAN SOURC | ES *** | | | | | URBAN ID | URBAN POP | | | SOURCE : | | | | | | | L0000920 | 2035210. | L0000913 | , L0000914 | , L0000915 | , L0000916 | , L0000917 | , L0000918 | , L0000919 | , | | | L0000921 | , L0000922 | , L0000923 | , L0000924 | , L0000925 | , L0000926 | , L0000927 | , L000092 | | |---------------------------|----------|--------------|-------------------------------|----------------|----------------|------------|------------|----------------|---------------------------------| | | L0000929 | , L0000930 | , L0000931 | , L0000932 | , L0000933 | , L0000934 | , L0000935 | , L000093 | 36 , | | | L0000937 | , L0000938 | , L0000939 | , L0000940 | , L0000941 | , L0000942 | , L0000943 | , L000094 | 14 , | | | L0000945 | , L0000946 | , L0000947 | , L0000948 | , L0000949 | , L0000950 | , L0000951 | , L000095 | 52 , | | | L0000953 | , L0000954 | , L0000955 | , L0000956 | , L0000957 | , L0000958 | , L0000959 | , L000096 | 50 , | | | L0000961 | , L0000962 | , L0000963 | , L0000964 | , L0000965 | , L0000966 | , L0000967 | , L000096 | 58 , | | | L0000969 | , L0000970 | , L0000971 | , L0000972 | , L0000973 | , L0000974 | , L0000975 | , L000097 | 76 , | | | L0000977 | , L0000978 | , L0000979 | , L0000980 | , L0000981 | , L0000982 | , L0000983 | , L000098 | 34 , | | | L0000985 | , L0000986 | , L0000987 | , L0000988 | , L0000989 | , L0000990 | , L0000991 | , L000099 | 92 , | | | L0000993 | , L0000994 | , L0000995 | , L0000996 | , L0000997 | , L0000998 | , L0000999 | , L000100 | , , | | | L0001001 | , L0001002 | , L0001003 | , L0001004 | , L0001005 | , L0001006 | , L0001007 | , L000100 |)8 , | | | L0001009 | , L0001010 | , L0001011 | , L0001012 | , L0001013 | , L0001014 | , L0001015 | , L000101 | | | | L0001017 | , L0001018 | , L0001019 | , L0001020 | , L0001021 | , L0001022 | , L0001023 | , L000102 | 24 , | | | L0001025 | , L0001026 | , L0001027 | , L0001028 | , L0001029 | , L0001030 | , L0001031 | , L000103 | 32 , | | | L0001033 | , L0001034 | , L0001035 | , L0001036 | , L0001037 | , L0001038 | , L0001039 | , L000104 | 10 , | | | L0001041 | , L0001042 | , L0001043 | , L0001044 | ,
L0001045 | , L0001046 | , L0001047 | , L000104 | 18 , | | | L0001049 | , L0001050 | , L0001051 | , L0001052 | , L0001053 | , L0001054 | , L0001055 | , L000105 | 56 , | | | L0001057 | , L0001058 | , L0001059 | , L0001060 | , L0001061 | , L0001062 | , L0001063 | , L000106 | 54 , | | | L0001065 | , L0001066 | , L0001067 | , L0001068 | , L0001069 | , L0001070 | , L0001071 | , L000107 | 72 , | | *** AERMOD - *** AERMET - | | 5216 *** *** | Terracina at
Freeway-relat | ed DPM Concent | rations 2026-2 | 2027 | | * * *
* * * | 08/11/21
20:03:29
PAGE 23 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS | L0001073 | , L0001074 | , L0001075 | , L0001076 | , L0001077 | , L0001078 | , L0001079 | , L0001080 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001081 | , L0001082 | , L0001083 | , L0001084 | , L0001085 | , L0001086 | , L0001087 | , L0001088 | , | | L0001089 | , L0001090 | , L0001091 | , L0001092 | , L0001093 | , L0001094 | , L0001095 | , L0001096 | , | | L0001097 | , L0001098 | , L0001099 | , L0001100 | , L0001101 | , L0001102 | , L0001103 | , L0001104 | , | | L0001105 | , L0001106 | , L0001107 | , L0001108 | , L0001109 | , L0001110 | , L0001111 | , L0001112 | , | | L0001113 | , L0001114 | , L0001115 | , L0001116 | , L0001117 | , L0001118 | , L0001119 | , L0001120 | , | | L0001121 | , L0001122 | , L0001123 | , L0001124 | , L0001125 | , L0001126 | , L0001127 | , L0001128 | , | | L0001129 | , L0001130 | , L0001131 | , L0001132 | , L0001133 | , L0001134 | , L0001135 | , L0001136 | , | | L0001137 | , L0001138 | , L0001139 | , L0001140 | , L0001141 | , L0001142 | , L0001143 | , L0001144 | , | | L0001145 | , L0001146 | , L0001147 | , L0001148 | , L0001149 | , L0001150 | , L0001151 | , L0001152 | , | | L0001153 | , L0001154 | , L0001155 | , L0001156 | , L0001157 | , L0001158 | , L0001159 | , L0001160 | , | | L0001161 | , L0001162 | , L0001163 | , L0001164 | , L0001165 | , L0001166 | , L0001167 | , L0001168 | , | | L0001169 | , L0001170 | , L0001171 | , L0001172 | , L0001173 | , L0001174 | , L0001175 | , L0001176 | , | | L0001177 | , L0001178 | , L0001179 | , L0001180 | , L0001181 | , L0001182 | , L0001183 | , L0001184 | , | | L0001185 | , L0001186 | , L0001187 | , L0001188 | , L0001189 | , L0001190 | , L0001191 | , L0001192 | , | | L0001193 | , L0001194 | , L0001195 | , L0001196 | , L0001197 | , L0001198 | , L0001199 | , L0001200 | , | | L0001201 | , L0001202 | , L0001203 | , L0001204 | , L0001205 | , L0001206 | , L0001207 | , L0001208 | , | | L0001209 | , L0001210 | , L0001211 | , L0001212 | , L0001213 | , L0001214 | , L0001215 | , L0001216 | , | | L0001217 | , L0001218 | , L0001219 | , L0001220 | , L0001221 | , L0001222 | , L0001223 | , L0001224 | , | | L0001225 | , L0001226 | , L0001227 | , L0001228 | , L0001229 | , L0001230 | , L0001231 | , L0001232 | , | | | | | | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** *** 08/11/21 20:03:29 PAGE 24 URBAN ID URBAN POP SOURCE IDS | L0001233 | , L0001234 | , L0001235 | , L0001236 | , L0001237 | , L0001238 | , L0001239 | , L0001240 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001241 | , L0001242 | , L0001243 | , L0001244 | , L0001245 | , L0001246 | , L0001247 | , L0001248 | , | | L0001249 | , L0001250 | , L0001251 | , L0001252 | , L0001253 | , L0001254 | , L0001255 | , L0001256 | , | | L0001257 | , L0001258 | , L0001259 | , L0001260 | , L0001261 | , L0001262 | , L0001263 | , L0001264 | , | | L0001265 | , L0001266 | , L0001267 | , L0001268 | , L0001269 | , L0001270 | , L0001271 | , L0001272 | , | | L0001273 | , L0001274 | , L0001275 | , L0001276 | , L0001277 | , L0001278 | , L0001279 | , L0001280 | , | | L0001281 | , L0001282 | , L0001283 | , L0001284 | , L0001285 | , L0001286 | , L0001287 | , L0001288 | , | | L0001289 | , L0001290 | , L0001291 | , L0001292 | , L0001293 | , L0001294 | , L0001295 | , L0001296 | , | | L0001297 | , L0001298 | , L0001299 | , L0001300 | , L0001301 | , L0001302 | , L0001303 | , L0001304 | , | | L0001305 | , L0001306 | , L0001307 | , L0001308 | , L0001309 | , L0001310 | , L0001311 | , L0001312 | , | | L0001313 | , L0001314 | , L0001315 | , L0001316 | , L0001317 | , L0001318 | , L0001319 | , L0001320 | , | | L0001321 | , L0001322 | , L0001323 | , L0001324 | , L0001325 | , L0001326 | , L0001327 | , L0001328 | , | | L0001329 | , L0001330 | , L0001331 | , L0001332 | , L0001333 | , L0001334 | , L0001335 | , L0001336 | , | | L0001337 | , L0001338 | , L0001339 | , L0001340 | , L0001341 | , L0001342 | , L0001343 | , L0001344 | , | | L0001345 | , L0001346 | , L0001347 | , L0001348 | , L0001349 | , L0001350 | , L0001351 | , L0001352 | , | | L0001353 | , L0001354 | , L0001355 | , L0001356 | , L0001357 | , L0001358 | , L0001359 | , L0001360 | , | | L0001361 | , L0001362 | , L0001363 | , L0001364 | , L0001365 | , L0001366 | , L0001367 | , L0001368 | , | | L0001369 | , L0001370 | , L0001371 | , L0001372 | , L0001373 | , L0001374 | , L0001375 | , L0001376 | , | | L0001377 | , L0001378 | , L0001379 | , L0001380 | , L0001381 | , L0001382 | , L0001383 | , L0001384 | , | | L0001385 | , L0001386 | , L0001387 | , L0001388 | , L0001389 | , L0001390 | , L0001391 | , L0001392 | , | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDs ----- *** * * * 08/11/21 20:03:29 PAGE 25 ``` L0001401 , L0001402 , L0001404 , L0001403 , L0001405 , L0001406 , L0001407 , L0001408 L0001409 , L0001410 , L0001411 , L0001412 , L0001413 , L0001414 , L0001415 , L0001416 L0001417 , L0001418 , L0001419 , L0001420 , L0001422 , L0001423 , L0001421 , L0001424 L0001425 , L0001426 , L0001427 , L0001428 , L0001429 , L0001430 , L0001431 , L0001432 L0001433 , L0001434 , L0001435 , L0001436 , L0001437 , L0001438 , L0001439 , L0001440 L0001441 , L0001442 , L0001443 , L0001444 , L0001445 , L0001446 , L0001447 , L0001448 L0001449 , L0001450 , L0001451 , L0001452 , L0001453 , L0001454 , L0001455 , L0001456 L0001457 , L0001458 , L0001463 , L0001459 , L0001460 , L0001461 , L0001462 , L0001464 L0001465 , L0001466 , L0001468 , L0001469 , L0001472 , L0001467 , L0001470 , L0001471 L0001473 , L0001474 , L0001475 , L0001476 , L0001477 , L0001478 , L0001479 , L0001480 L0001481 , L0001482 , L0001483 , L0001484 , L0001485 , L0001486 , L0001487 , L0001488 L0001489 , L0001490 , L0001491 , L0001492 , L0001493 , L0001494 , L0001495 , L0001496 L0001497 , L0001498 , L0001499 , L0001500 , L0001501 , L0001502 , L0001503 , L0001504 L0001505 , L0001506 , L0001507 , L0001508 , L0001509 , L0001510 , L0001511 , L0001512 L0001513 , L0001514 , L0001515 , L0001516 , L0001517 , L0001518 , L0001519 , L0001520 L0001521 * * * *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 20:03:29 PAGE 26 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** GRIDDED RECEPTOR NETWORK SUMMARY *** *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** *** X-COORDINATES OF GRID *** (METERS) 486627.2, 486677.2, 486727.2, 486777.2, 486827.2, 486877.2, 486927.2, 486977.2, 487027.2, 487077.2, 487127.2, 487177.2, 487227.2, 487277.2, 487327.2, 487377.2, 487427.2, 487477.2, 487527.2, 487577.2, 487627.2, ``` L0001393 , L0001394 , L0001395 , L0001396 , L0001397 , L0001398 , L0001399 , L0001400 # *** Y-COORDINATES OF GRID *** (METERS) 3765628.5, 3765678.5, 3765728.5, 3765778.5, 3765828.5, 3765878.5, 3765928.5, 3765978.5, 3766028.5, 3766078.5, 3766128.5, 3766178.5, 3766228.5, 3766278.5, 3766328.5, 3766428.5, 3766428.5, 3766478.5, 3766528.5, 3766578.5, 3766628.5, *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** #### * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |---------------|-----------------------------------|-------------|---------------|---------------|----------------|-----------|-----------|-----------|-------------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | | | | | | | | | | | | | 3766628.46 | 544.20 | 545.30 | 544.90 | 547.20 | 550.40 | 554.20 | 558.10 | 558.20 | 556.00 | | 3766578.46 | 544.20 | 552.30 | 553.20 | 550.10 | 551.10 | 556.50 | 559.20 | 561.60 | | | | | | | | | | | | 564.60 | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 554.60 | 555.90 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 561.20 | 561.40 | 563.40 | 564.50 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 552.00 | 554.70 | 560.20 | 564.40 | 563.80 | 558.40 | | 3766378.46 | 548.90 | 550.20 | 548.70 | 546.10 | 549.70 | 552.50 | 554.80 | 554.10 | 554.10 | | 3766328.46 | 544.90 | 548.20 | 546.60 | 543.30 | 544.40 | 546.10 | 547.80 | 551.20 | 555.30 | | 3766278.46 | 542.10 | 543.90 | 543.30 | 541.90 | 541.60 | 545.30 | 552.20 | 559.30 | 563.90 | | 3766228.46 | 538.30 | 539.20 | 540.10 | 539.50 | 543.20 | 548.20 | 554.10 | 560.70 | 569.10 | | 3766178.46 | 529.40 | 533.30 | 536.00 | 539.10 | 544.60 | 553.20 | 563.20 | 566.40 | 564.40 | | 3766128.46 | 527.10 | 530.90 | 533.50 | 541.80 | 554.20 | 564.90 | 567.50 | 560.40 | 562.80 | | 3766078.46 | 527.50 | 529.40 | 531.80 | 542.90 | 552.80 | 554.70 | 555.40 | 552.50 | 553.40 | | 3766028.46 | 530.00 | 531.30 | 532.30 | 534.90 | 540.10 | 543.10 | 546.30 | 547.40 | 550.50 | | 3765978.46 | 532.50 | 531.30 | 533.30 | 535.70 | 537.60 | 539.20 | 541.10 | 543.60 | 547.20 | | 3765928.46 | 548.90 | 538.10 | 534.90 | 535.70 | 537.80 | 540.00 | 542.10 | 543.80 | 545.10 | | 3765878.46 | 567.50 | 554.20 | 542.70 | 539.70 | 540.60 | 542.50 | 543.50 | 546.10 | 548.70 | |
3765828.46 | 573.70 | 561.60 | 549.80 | 553.60 | 558.90 | 551.90 | 555.90 | 560.80 | 572.20 | | 3765778.46 | 575.00 | 574.30 | 566.80 | 568.70 | 575.50 | 567.00 | 563.50 | 575.00 | 581.50 | | 3765728.46 | 574.40 | 576.50 | 577.70 | 580.90 | 585.60 | 582.20 | 578.20 | 583.70 | 592.00 | | 3765678.46 | 581.00 | 578.80 | 579.80 | 583.50 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 582.20 | 586.30 | 591.10 | 593.20 | 594.80 | 596.80 | 601.00 | | *** 7 EDMOD 7 | /ERSION 21112 *: | ** *** Town | acina at Redl | anda | | | | *** N8 | /11/21 | | | /ERSION 21112 "' /ERSION 16216 *' | | way-related D | | iona 2026-202 | 7 | | 00 | :03:29 | | - AEKMEI - / | EVOION 10710 | . rree | way-related D | PM CONCENTRAL | 10119 7070-707 | / | | ∠0 | · U J · Δ J | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * ELEVATION HEIGHTS IN METERS * PAGE 28 | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|-----------------|-------------|---------------|-----------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | 3766628.46 | 554.80 | 556.50 | 560.60 | 564.70 | 566.90 | 568.10 | 569.60 | 572.00 | 574.30 | | 3766578.46 | 564.30 | 560.70 | 560.30 | 564.00 | 568.50 | 571.20 | 572.40 | 574.30 | 576.70 | | 3766528.46 | 568.30 | 568.90 | 567.10 | 565.00 | 566.80 | 572.00 | 574.10 | 576.40 | 579.30 | | 3766478.46 | 564.10 | 568.30 | 570.70 | 570.80 | 568.10 | 570.90 | 574.60 | 577.70 | 582.00 | | 3766428.46 | 557.60 | 561.10 | 565.40 | 571.50 | 573.20 | 575.60 | 578.20 | 581.30 | 590.40 | | 3766378.46 | 560.70 | 563.00 | 569.20 | 576.20 | 580.20 | 585.80 | 591.00 | 592.80 | 592.90 | | 3766328.46 | 562.50 | 569.60 | 572.90 | 582.10 | 590.20 | 594.50 | 592.50 | 596.20 | 599.70 | | 3766278.46 | 566.00 | 574.20 | 585.00 | 589.60 | 595.40 | 589.20 | 584.10 | 589.70 | 591.00 | | 3766228.46 | 573.80 | 578.10 | 588.60 | 582.90 | 585.00 | 581.70 | 577.70 | 581.80 | 582.80 | | 3766178.46 | 572.80 | 579.70 | 582.40 | 577.30 | 577.30 | 574.20 | 573.10 | 577.10 | 583.60 | | 3766128.46 | 570.90 | 571.10 | 576.80 | 571.80 | 569.40 | 569.10 | 571.50 | 578.60 | 588.50 | | 3766078.46 | 557.60 | 562.50 | 570.70 | 565.30 | 565.60 | 567.90 | 571.00 | 574.80 | 581.40 | | 3766028.46 | 553.70 | 556.90 | 561.10 | 559.60 | 561.60 | 568.60 | 580.20 | 581.30 | 579.80 | | 3765978.46 | 550.10 | 554.90 | 558.40 | 557.30 | 563.80 | 572.30 | 580.80 | 593.60 | 598.00 | | 3765928.46 | 547.20 | 550.50 | 556.40 | 557.40 | 570.10 | 584.80 | 590.90 | 598.40 | 611.40 | | 3765878.46 | 548.90 | 550.20 | 555.20 | 554.80 | 562.60 | 576.90 | 580.70 | 594.40 | 605.10 | | 3765828.46 | 570.60 | 560.70 | 555.30 | 554.90 | 557.90 | 563.90 | 574.50 | 586.80 | 602.20 | | 3765778.46 | 590.70 | 580.80 | 565.10 | 558.80 | 557.90 | 560.10 | 566.60 | 580.40 | 601.40 | | 3765728.46 | 594.90 | 582.90 | 569.60 | 562.80 | 559.40 | 560.00 | 562.60 | 566.50 | 576.00 | | 3765678.46 | 600.80 | 595.30 | 579.00 | 569.40 | 567.30 | 562.00 | 561.90 | 564.80 | 567.50 | | 3765628.46 | 602.80 | 597.50 | 580.20 | 575.40 | 577.30 | 575.80 | 564.50 | 564.20 | 566.00 | | *** AERMOD - | VERSION 21112 * | ** *** Terr | acina at Redl | ands | | | | *** 08 | 3/11/21 | | | VERSION 16216 * | | way-related D | | ions 2026-202 | :7 | | |):03:29 | | | | | • | | | | | P.F | AGE 29 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ## * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD (METERS) | |------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | | | | | | | 3766628.46 | 575.90 | 577.20 | 579.40 | | | 3766578.46 | 578.80 | 580.50 | 582.70 | | | 3766528.46 | 581.80 | 583.90 | 586.90 | | | 3766478.46 | 585.50 | 588.20 | 593.90 | | | 3766428.46 | 596.40 | 591.70 | 600.40 | | | 3766378.46 | 600.80 | 599.00 | 598.00 | | | 3766328.46 | 598.80 | 603.10 | 602.00 | | | 3766278.46 | 593.70 | 594.50 | 605.50 | | | 3766228.46 | 586.00 | 589.60 | 596.50 | | | 3766178.46 | 591.20 | 596.00 | 594.60 | | | 3766128.46 | 598.70 | 603.50 | 608.30 | | | 3766078.46 | 588.40 | 595.50 | 609.30 | |------------|--------|--------|--------| | 3766028.46 | 583.20 | 595.20 | 603.70 | | 3765978.46 | 589.20 | 589.40 | 595.70 | | 3765928.46 | 604.20 | 602.40 | 595.90 | | 3765878.46 | 617.00 | 620.70 | 615.80 | | 3765828.46 | 618.90 | 616.80 | 626.10 | | 3765778.46 | 601.20 | 607.60 | 633.60 | | 3765728.46 | 586.20 | 611.70 | 619.10 | | 3765678.46 | 572.80 | 586.30 | 596.40 | | 3765628.46 | 569.10 | 572.30 | 576.40 | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * *** 08/11/21 20:03:29 PAGE 30 | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|-----------------|-------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | 3766628.46 | 555.40 | 555.70 | 556.30 | 555.20 | 550.40 | 554.20 | 558.10 | 564.30 | 569.00 | | 3766578.46 | 548.60 | 552.30 | 555.70 | 559.60 | 559.90 | 556.50 | 559.20 | 561.60 | 564.60 | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 563.50 | 563.70 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 563.50 | 561.40 | 563.40 | 596.40 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 563.50 | 563.80 | 563.80 | 565.40 | 563.80 | 596.40 | | 3766378.46 | 548.90 | 550.20 | 551.50 | 590.00 | 595.20 | 596.40 | 596.40 | 596.40 | 600.20 | | 3766328.46 | 544.90 | 551.70 | 551.70 | 596.40 | 596.40 | 596.40 | 596.40 | 599.90 | 600.20 | | 3766278.46 | 542.10 | 551.70 | 590.00 | 596.40 | 596.40 | 637.60 | 596.40 | 596.40 | 596.40 | | 3766228.46 | 566.60 | 589.10 | 595.20 | 652.40 | 652.40 | 596.40 | 596.40 | 596.40 | 595.20 | | 3766178.46 | 652.40 | 652.40 | 652.40 | 652.40 | 652.40 | 595.20 | 589.10 | 590.00 | 596.40 | | 3766128.46 | 655.00 | 655.00 | 655.00 | 652.40 | 569.30 | 566.60 | 567.50 | 637.60 | 652.40 | | 3766078.46 | 655.00 | 667.30 | 671.50 | 654.70 | 652.40 | 652.40 | 652.40 | 667.30 | 671.50 | | 3766028.46 | 655.00 | 668.60 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765978.46 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765928.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765878.46 | 574.70 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765828.46 | 573.70 | 606.20 | 655.00 | 655.00 | 655.00 | 671.50 | 671.50 | 671.50 | 667.30 | | 3765778.46 | 588.60 | 589.70 | 610.60 | 652.40 | 607.90 | 655.00 | 671.50 | 655.00 | 655.00 | | 3765728.46 | 594.40 | 593.10 | 588.70 | 588.00 | 587.10 | 609.80 | 655.00 | 654.70 | 652.40 | | 3765678.46 | 591.40 | 595.00 | 595.00 | 591.40 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 597.00 | 592.50 | 591.10 | 593.20 | 594.80 | 607.90 | 602.20 | | | | | | | | | | | | | | VERSION 21112 * | 1011 | acina at Redl | | | | | | 3/11/21 | | *** AERMET - | VERSION 16216 * | ** *** Free | way-related D | PM Concentrat | ions 2026-202 | 7 | | *** 20 | 1:03:29 | | | | | | | | | | PA | GE 31 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* # *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|-----------------|-------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | 3766628.46 | 596.40 | 596.40 | 596.40 | 564.70 | 566.90 | 601.00 | 609.90 | 616.50 | 616.70 | | 3766578.46 | 568.00 | 596.40 | 600.80 | 601.00 | 601.00 | 601.90 | 609.90 | 616.50 | 616.70 | | 3766528.46 | 568.30 | 568.90 | 596.40 | 601.90 | 604.20 | 604.20 | 609.90 | 616.50 | 616.70 | | 3766478.46 | 596.40 | 596.40 | 596.40 | 600.20 | 605.20 | 609.90 | 614.50 | 616.50 | 616.50 | | 3766428.46 | 600.20 | 600.80 | 601.00 | 600.80 | 601.90 | 604.20 | 606.80 | 609.90 | 604.20 | | 3766378.46 | 599.90 | 600.80 | 600.20 | 599.90 | 599.90 | 599.90 | 599.90 | 600.20 | 604.20 | | 3766328.46 | 599.90 | 596.40 | 596.40 | 596.40 | 596.40 | 594.50 | 599.90 | 599.90 | 599.70 | | 3766278.46 | 596.40 | 596.40 | 595.20 | 595.20 | 595.40 | 596.40 | 600.80 | 600.80 | 608.90 | | 3766228.46 | 595.20 | 596.00 | 588.60 | 596.40 | 596.40 | 637.60 | 650.80 | 650.80 | 660.00 | | 3766178.46 | 595.20 | 590.00 | 590.00 | 637.60 | 637.60 | 660.00 | 660.00 | 660.00 | 660.00 | | 3766128.46 | 590.00 | 637.60 | 637.60 | 650.80 | 660.00 | 668.60 | 668.60 | 660.00 | 660.00 | | 3766078.46 | 668.60 | 667.30 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 667.30 | | 3766028.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 668.60 | 671.50 | | 3765978.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 660.00 | 660.00 | | 3765928.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 660.00 | 650.80 | 637.60 | | 3765878.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 650.80 | | 3765828.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | | 3765778.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765728.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50
 | 3765678.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765628.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | *** AERMOD - | VERSION 21112 * | ** *** Terr | acina at Redl | ands | | | | *** 08 | /11/21 | | *** AERMET - | VERSION 16216 * | ** *** Free | way-related D | PM Concentrat | ions 2026-202 | 7 | | *** 20 | :03:29 | | | | | - | | | | | PA | GE 32 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD (METERS) | |------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | 3766628.46 | 617.40 | 618.70 | 618.70 | | | 3766578.46 | 617.40 | 618.70 | 619.50 | | | 3766528.46 | 617.40 | 618.70 | 618.70 | | | 3766478.46 | 617.40 | 617.40 | 617.40 | | | 3766428.46 | 600.30 | 617.40 | 611.50 | | | 3766378.46 | 600.80 | 604.20 | 617.40 | | | 3766328.46 | 604.20 | 604.20 | 613.90 | | | 3766278.46 | 627.70 | 632.70 | 608.90 | | | | | | | | | 3766228.46
3766178.46 | 660.00
650.80 | 660.00
649.20 | 635.40
660.00 | | | | | | |----------------------------|-------------------|------------------|------------------|----------------|--------------------|-------------|--------|----------| | 3766128.46 | 637.60 | 632.70 | 632.70 | | | | | | | 3766078.46 | 660.00 | 660.00 | 632.70 | | | | | | | 3766028.46 | 671.50 | 660.00 | 660.00 | | | | | | | 3765978.46 | 669.60 | 671.50 | 667.30 | | | | | | | 3765928.46 | 660.00 | 660.00 | 671.50 | | | | | | | 3765878.46 | 637.60 | 637.60 | 660.00 | | | | | | | 3765828.46 | 637.60 | 650.80 | 637.60 | | | | | | | 3765778.46 | 671.50 | 671.50 | 637.60 | | | | | | | 3765728.46 | 671.50 | 671.50 | 667.30 | | | | | | | 3765678.46 | 671.50 | 671.50 | 671.50 | | | | | | | 3765628.46 | 671.50 | 671.50 | 671.50 | | | | | | | *** AERMOD - | VERSION 21112 *** | *** Terra | cina at Red | ilands | | | *** | 08/11/21 | | | VERSION 16216 *** | | | | rations 2026-2027 | | *** | 20:03:29 | | 11211112 | VERDION TOLLO | 1100 | a, reracea | 2111 001100110 | 2020 2027 | | | PAGE 33 | | *** MODELOPTS | RegDFAULT CO | NC ELEV UR | RBAN ADJ_U | ŧ | | | | | | | | | *** DTC/DI | מדד מאסיינים א | N RECEPTORS *** | | | | | | | 1 | | | V, ZHILL, ZFLAG) | | | | | | | (| A COOKD, I | (METERS | | | | | | (486910. | .9, 3766071.2, | 552.6, 6 | 554.1, | 0.0); | (487071.7, 376603 | 2.3, 553.8, | 671.5, | 0.0); | | | | | • | 0.0); | (487280.7, 376602 | | • | 0.0); | | , | | | • | 0.0); | (487507.5, 376592 | | | 0.0); | | (487080. | .8, 3766103.6, | 63.8, | 552.4, | 0.0); | (486821.5, 376619 | 7.7, 542.8, | 652.4, | 0.0); | | *** | VERSION 21112 *** | *** Torro | cina at Red | Nanda | | | *** | 08/11/21 | | | VERSION 21112 *** | | | | rations 2026-2027 | | *** | 20:03:29 | | AERMEI - | VERSION 10210 | rreew | /ay-relateu | DPM CONCENT | 1ac10115 2020-2027 | | | PAGE 34 | | *** MODELOPTS | s: RegDFAULT CO | IC ELEV UR | RBAN ADJ_U | ŧ | | | | PAGE 34 | | | - | | | | | | | | ^{.} ^{*} SOURCE-RECEPTOR COMBINATIONS FOR WHICH CALCULATIONS MAY NOT BE PERFORMED * LESS THAN 1.0 METER; WITHIN OPENPIT; OR BEYOND 80KM FOR FASTAREA/FASTALL | SOURCE
ID | RECEPTOR L
XR (METERS) | OCATION
YR (METERS) | DISTANCE (METERS) | |--------------|---------------------------|------------------------|-------------------| | | | | | | L0001075 | 487177.2 | 3765878.5 | 0.17 | | L0001105 | 487277.2 | 3765828.5 | -0.82 | | L0001106 | 487277.2 | 3765828.5 | -2.57 | | L0001107 | 487277.2 | 3765828.5 | 0.93 | | L0001136 | 487377.2 | 3765778.5 | 0.96 | | L0001237 | 486677.2 | 3766028.5 | 0.95 | | L0001238 | 486677.2 | 3766028.5 | -0.76 | | L0001281 | 486827.2 | 3765978.5 | 0.35 | | L0001324 | 486977.2 | 3765928.5 | -0.43 | | L0001325 | 486977.2 | 3765928.5 | -0.21 | | | | | | | *** AERMOD - VERSION 21112 *** AERMET - VERSION 16216 *** MODELOPTs: ReqDFAULT | *** *** Freeway-r | related DPM Co | 3765828.5
3765828.5
3765828.5
3765778.5
3765778.5 | 0.43
-2.73
-0.22
0.42
-0.02 | ***
*** | 08/11/21
20:03:29
PAGE 35 | | | | |---|---------------------------------------|---------------------------------------|---|---|---|---------------------------------|--|--|--| | *** MODELOPTS: RegDFAULT CONC ELEV URBAN ADJ_U* *** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO) | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 | 1 1
1 1
1 1
1 1
1 1 | | | | | NOTE: METEO | ROLOGICAL DATA ACTUA | ALLY PROCESSED |) WILL ALSO DEPEND ON | WHAT IS INCLUDED | IN THE DATA FILE. | | | | | | | *** UPPER BOUN | | ROUGH FIFTH WIND SPE
METERS/SEC) | ED CATEGORIES *** | | | | | | | | | 1.54, 3.09 | 5.14, 8.23, 1 | 0.80, | | | | | | | *** AERMOD - VERSION 21112 *** AERMET - VERSION 16216 *** MODELOPTs: RegDFAULT | | celated DPM Co | oncentrations 2026-20 | 27 | *** | 08/11/21
20:03:29
PAGE 36 | | | | | | *** UP TO TH | HE FIRST 24 HC | URS OF METEOROLOGICA | L DATA *** | | | | | | | Surface format: FREE Profile format: FREE Surface station no.: Name: UNKN | T data\RDLD_V9_ADJU\ 3171 | RDLD_v9.PFL | station no.: 3190
Name: UNKNOWN
Year: 2012 | | Met Version: | 16216 | | | | | First 24 hours of scalar da
YR MO DY JDY HR HO | | CNV ZIMCH M-C |) LEN ZO BOWEN AL | BEDO REF WS WD | HT REF TA | НТ | | | | | 12 01 01 1 01 -10.6 0.1 | 49 -9.000 -9.000 -99 | 99. 138. | 26.7 0.32 3.22 | 1.00 1.30 110. | 9.1 285.4 | 5.5 | | | | ``` 12 01 01 1 02 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 130. 9.1 284.5 5.5 12 01 01 1 03 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 100. 9.1 285.0 5.5 12 01 01 1 04 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 107. 9.1 284.6 5.5 12 01 01 1 05 -10.7 0.149 -9.000 -9.000 -9.99. 138. 26.7 0.32 3.22 1.00 1.30 98. 9.1 284.9 5.5 12 01 01 1 06 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 86. 9.1 284.5 12 01 01 1 07 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 91. 9.1 284.0 12 01 01 1 08 -4.0 0.102 -9.000 -9.000 -999. 78. 22.9 0.32 3.22 0.54 0.90 107. 9.1 285.0 5.5 12 01 01 1 09 44.6 0.237 0.382 0.006 43. 276. -25.6 0.15 3.22 0.33 2.10 81. 10.1 289.1 12 01 01 1 10 134.3 0.111 0.882 0.008 176. 99. -1.0 0.32 3.22 0.26 0.40 72. 9.1 295.1 12 01 01 1 11 199.8 0.409 1.429 0.005 503. 627. -29.4 0.15 3.22 0.23 3.68 78. 10.1 297.9 -10.0 0.32 3.22 0.22 1.80 333. 9.1 299.4 5.5 -10.1 0.32 3.22 0.22 1.80 72. 9.1 300.4 5.5 3.22 0.24 1.80 277. 9.1 301.0 5.5 9.1 301.0 12 01 01 1 16 39.5 0.199 1.278 0.005 1817. 240. -17.2 0.32 3.22 0.36 1.30 274. 9.1 300.1 5.5 12 01 01 1 17 -4.7 0.101 -9.000 -9.000 -999. 85. 19.0 0.32 3.22 0.65 0.90 252. 9.1 298.2 12 01 01 1 18 -4.9 0.102 -9.000 -9.000 -999. 78. 18.2 0.32 3.22 1.00 0.90 116. 9.1 296.4 12 01 01 1 19 -18.8 0.204 -9.000 -9.000 -999. 220. 45.6 0.15 3.22 1.00 2.27 79. 10.1 292.2 12 01 01 1 20 -5.0 0.102 -9.000 -9.000 -999. 83. 18.1 0.32 3.22 1.00 0.90 95. 9.1 290.2 12 01 01 1 21 -5.0 0.102 -9.000 -9.000 -999. 78. 18.0 0.32 3.22 1.00 0.90 99. 9.1 287.8 5.5 12 01 01 1 22 -5.0 0.102 -9.000 -9.000 -999. 78. 18.0 0.32 3.22 1.00 0.90 110. 9.1 287.6 5.5 12 01 01 1 23 -10.6 0.149 -9.000 -9.000 -999. 138. 26.8 0.32 3.22 1.00 1.30 89. 9.1 287.2 5.5 12 01 01 1 24 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 105. 9.1 285.9 First hour of profile data YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV 12 01 01 01 5.5 0 -999. -99.00 285.5 99.0 -99.00 -99.00 12 01 01 01 9.1 1 110. 1.30 -999.0 99.0 -99.00 -99.00 F indicates top of profile (=1) or below (=0) *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 *** 20:03:29 PAGE 37 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL , L0000917 INCLUDING SOURCE(S): L0000913 , L0000914 , L0000915 , L0000916 , L0000919 , L0000920 , L0000921 , L0000922 , L0000923 , L0000924 , L0000925 T-0000918 , L0000927 , L0000928 , L0000929 , L0000930 , L0000931 L0000926 , L0000932 , L0000933 L0000934 , L0000935 , L0000936 , L0000937 , L0000938 , L0000939 , L0000940 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM IN MICROGRAMS/M**3 Y-COORD X-COORD (METERS) 486627.18 486677.18 486727.18 486777.18 486827.18 486877.18 486927.18 486977.18 487027.18 (METERS) ``` | 3766628.46 | 0.00494 | 0.00507 | 0.00524 | 0.00526 | 0.00519 | 0.00503 | 0.00483 | 0.00486 | 0.00502 | |---|--|--|---|--|--
--|--|--|--| | 3766578.46 | 0.00524 | 0.00520 | 0.00531 | 0.00568 | 0.00573 | 0.00542 | 0.00528 | 0.00513 | 0.00491 | | 3766528.46 | 0.00564 | 0.00565 | 0.00571 | 0.00586 | 0.00613 | 0.00612 | 0.00592 | 0.00573 | 0.00540 | | 3766478.46 | 0.00641 | 0.00638 | 0.00654 | 0.00652 | 0.00640 | 0.00634 | 0.00641 | 0.00624 | 0.00615 | | 3766428.46 | 0.00731 | 0.00759 | 0.00778 | 0.00803 | 0.00789 | 0.00733 | 0.00689 | 0.00703 | 0.00772 | | 3766378.46 | 0.00846 | 0.00880 | 0.00945 | 0.01015 | 0.00991 | 0.00966 | 0.00939 | 0.00952 | 0.00947 | | 3766328.46 | 0.01050 | 0.01070 | 0.01158 | 0.01250 | 0.01260 | 0.01247 | 0.01222 | 0.01164 | 0.01085 | | 3766278.46 | 0.01316 | 0.01394 | 0.01487 | 0.01558 | 0.01579 | 0.01527 | 0.01380 | 0.01204 | 0.01091 | | 3766228.46 | 0.01731 | 0.01893 | 0.01983 | 0.02034 | 0.01973 | 0.01833 | 0.01635 | 0.01412 | 0.01168 | | 3766178.46 | 0.02483 | 0.02776 | 0.02846 | 0.02779 | 0.02571 | 0.02136 | 0.01661 | 0.01532 | 0.01586 | | 3766128.46 | 0.04290 | 0.04792 | 0.04597 | 0.04040 | 0.02858 | 0.02130 | 0.01001 | 0.02293 | 0.02108 | | 3766078.46 | 0.38801 | 0.14667 | 0.10068 | 0.07140 | 0.02030 | 0.04168 | 0.03876 | 0.03964 | 0.03635 | | ! | 0.20290 | 0.41506 | 0.35374 | 0.07140 | 0.16467 | 0.11116 | 0.03870 | | 0.05838 | | 3766028.46 | | | | | | | | 0.07014 | | | 3765978.46 | 0.05458 | 0.08356 | 0.12765 | 0.24735 | 0.48611 | 0.36158 | 0.42051 | 0.16800 | 0.11373 | | 3765928.46 | 0.02574 | 0.04327 | 0.05686 | 0.07305 | 0.09700 | 0.13921 | 0.25542 | 0.42709 | 0.45433 | | 3765878.46 | 0.01379 | 0.02166 | 0.03502 | 0.04351 | 0.05213 | 0.06279 | 0.07769 | 0.09994 | 0.14143 | | 3765828.46 | 0.01049 | 0.01480 | 0.02333 | 0.02506 | 0.02549 | 0.03667 | 0.03974 | 0.04159 | 0.03769 | | 3765778.46 | 0.00876 | 0.00997 | 0.01291 | 0.01411 | 0.01414 | 0.01913 | 0.02426 | 0.02141 | 0.02291 | | 3765728.46 | 0.00777 | 0.00834 | 0.00910 | 0.00963 | 0.01010 | 0.01177 | 0.01410 | 0.01464 | 0.01551 | | 3765678.46 | 0.00623 | 0.00710 | 0.00768 | 0.00794 | 0.00820 | 0.00874 | 0.00944 | 0.01020 | 0.01085 | | 3765628.46 | 0.00490 | 0.00537 | 0.00655 | 0.00664 | 0.00670 | 0.00707 | 0.00754 | 0.00801 | 0.00824 | | *** AERMOD - VERSION 21112 *** | | | | | | | | | | | | | CONC ELEV UP | RBAN ADJ U* | | | | | PA | GE 38 | | | | CONC ELEV UP | RBAN ADJ_U* | | | | | PA | GE 38 | | | | | _ | S) AVERAGE CON | CENTRATION V | JALUES FOR SOU | RCE GROUP: ALI | | GE 38 | | | | *** THE PERIO | —
D (43848 HRS | | | | RCE GROUP: ALI | _ *** | | | | : RegDFAULT | *** THE PERION | -
D (43848 HRS
SOURCE(S): | L0000913 | , L0000914 | , L0000915 | , L0000916 | L ***
, L00009 | 17 , | | | : RegDFAULT | *** THE PERION INCLUDING | _
D (43848 HRS
SOURCE(S):
, L0000920 | L0000913
, L0000921 | , L0000914
, L0000922 | , L0000915
, L0000923 | , L0000916
, L0000924 | L ***
, L00009
, L00009 | 17 ,
25 , | | | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 | | L0000913
, L0000921
, L0000929 | , L0000914
, L0000922
, L0000930 | , L0000915
, L0000923
, L0000931 | , L0000916
, L0000924
, L0000932 | L ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 | _
D (43848 HRS
SOURCE(S):
, L0000920 | L0000913
, L0000921 | , L0000914
, L0000922 | , L0000915
, L0000923 | , L0000916
, L0000924 | L ***
, L00009
, L00009 | 17 ,
25 ,
33 , | | | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 | | L0000913
, L0000921
, L0000929
, L0000937 | , L0000914
, L0000922
, L0000930 | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932 | L ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936 | L0000913
, L0000921
, L0000929
, L0000937 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932
, L0000940 | L ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936 | L0000913
, L0000921
, L0000929
, L0000937 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932 | L ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | *** MODELOPTS | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936 | L0000913
, L0000921
, L0000929
, L0000937
F1 ; NETWOR | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932
, L0000940 | L ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | *** MODELOPTS Y-COORD | : RegDFAULT L0000918 L0000926 L0000934 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936
DRK ID: UCART | L0000913
, L0000921
, L0000929
, L0000937
F1 ; NETWOR
IN MICROG
X-COORD | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3 | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932
, L0000940 | . ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | *** MODELOPTS | : RegDFAULT L0000918 L0000926 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936 | L0000913
, L0000921
, L0000929
, L0000937
F1 ; NETWOR | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932
, L0000940 | L ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | *** MODELOPTS Y-COORD | : RegDFAULT L0000918 L0000926 L0000934 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936
DRK ID: UCART | L0000913
, L0000921
, L0000929
, L0000937
F1 ; NETWOR
IN MICROG
X-COORD | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3 | , L0000915
, L0000923
, L0000931
, L0000939 | , L0000916
, L0000924
, L0000932
, L0000940 | . ***
, L00009
, L00009
, L00009 | 17 ,
25 ,
33 , | | *** MODELOPTS Y-COORD (METERS) | : RegDFAULT L0000918 L0000926 L0000934 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 | L0000913 , L0000921 , L0000929 , L0000937 T1 ; NETWOR IN MICROG X-COORD 487227.18 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** | , L0000916
, L0000924
, L0000932
, L0000940
** | L *** , L00009 , L00009 , L00009 , | 17 ,
25 ,
33 ,
, | | *** MODELOPTS Y-COORD (METERS) 3766628.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG X-COORD 487227.18 0.00435 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 | . ***
, L00009
, L00009
, L00009
, | 17 ,
25 ,
33 ,
,
487477.18
 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 0.00508 0.00494 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936
DRK ID: UCART
CONC OF DPM
487177.18
 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG X-COORD 487227.18 0.00435 0.00484 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 | 487427.18

0.00363
0.00382 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 0.00508 0.00494 0.00515 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00508 | D (43848 HRS
SOURCE(S):
, L0000920
, L0000928
, L0000936
DRK ID: UCART
CONC
OF DPM
487177.18
 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00456 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 | 487427.18
0.00363
0.00382
0.00404 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357
0.00373 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766478.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 0.00508 0.00494 0.00515 0.00618 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00508 0.00573 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00456 0.00515 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 0.00472 | 487427.18
0.00363
0.00382
0.00404
0.00435 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357
0.00373
0.00389 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766478.46 3766428.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 0.00508 0.00494 0.00515 0.00618 0.00776 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00508 0.00573 0.00728 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00456 0.00515 0.00528 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 0.00472 0.00491 | 487427.18

0.00363
0.00382
0.00404
0.00435
0.00450 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357
0.00373
0.00389
0.00361 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766428.46 3766428.46 3766378.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 0.00508 0.00494 0.00515 0.00618 0.00776 0.00847 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00508 0.00573 0.00728 0.00805 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 0.00466 0.00517 0.00519 0.00544 0.00670 0.00712 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00425 0.00456 0.00515 0.00528 0.00483 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 0.00472 0.00491 0.00421 | 487427.18

0.00363
0.00382
0.00404
0.00435
0.00450
0.00393 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357
0.00373
0.00389
0.00361
0.00380 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766478.46 3766378.46 3766328.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00508 0.00573 0.00728 0.00805 0.00820 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 0.00466 0.00517 0.00519 0.00544 0.00670 0.00712 0.00757 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG 487227.18 0.00435 0.00484 0.00529 0.00536 0.00593 0.00612 0.00617 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00420 0.00456 0.00515 0.00528 0.00483 0.00454 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 0.00472 0.00491 0.00421 0.00459 | 487427.18

0.00363
0.00363
0.00382
0.00404
0.00435
0.00450
0.00393
0.00411 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357
0.00373
0.00373
0.00389
0.00361
0.00380
0.00370 | | *** MODELOPTS Y-COORD (METERS) | : RegDFAULT L0000918 L0000926 L0000934 487077.18 0.00508 0.00494 0.00515 0.00618 0.00776 0.00847 0.00948 0.01037 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00519 0.00508 0.00573 0.00728 0.00805 0.00820 0.00866 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 0.00466 0.00517 0.00519 0.00544 0.00670 0.00712 0.00757 0.00682 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG 487227.18 0.00435 0.00484 0.00529 0.00536 0.00593 0.00612 0.00617 0.00606 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00456 0.00515 0.00528 0.00483 0.00454 0.00579 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 0.00472 0.00491 0.00421 0.00459 0.00626 | 487427.18

0.00363
0.00382
0.00404
0.00435
0.00450
0.00435
0.00401
0.00393
0.00411 | 487477.18
 | | *** MODELOPTS Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766478.46 3766378.46 3766328.46 | : RegDFAULT L0000918 L0000926 L0000934 487077.18 | *** THE PERIOR INCLUDING , L0000919 , L0000927 , L0000935 *** NETWO 487127.18 0.00495 0.00519 0.00508 0.00573 0.00728 0.00805 0.00820 | D (43848 HRS SOURCE(S): , L0000920 , L0000928 , L0000936 DRK ID: UCART CONC OF DPM 487177.18 0.00466 0.00517 0.00519 0.00544 0.00670 0.00712 0.00757 | L0000913 , L0000921 , L0000929 , L0000937 F1 ; NETWOR IN MICROG 487227.18 0.00435 0.00484 0.00529 0.00536 0.00593 0.00612 0.00617 | , L0000914
, L0000922
, L0000930
, L0000938
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0000915
, L0000923
, L0000931
, L0000939
ART *** 487327.18 0.00402 0.00420 0.00420 0.00456 0.00515 0.00528 0.00483 0.00454 | , L0000916
, L0000924
, L0000932
, L0000940
** 487377.18 0.00385 0.00403 0.00431 0.00472 0.00491 0.00421 0.00459 | 487427.18

0.00363
0.00363
0.00382
0.00404
0.00435
0.00450
0.00393
0.00411 | 17 ,
25 ,
33 ,
,
487477.18

0.00342
0.00357
0.00373
0.00373
0.00389
0.00361
0.00380
0.00370 | ``` 3766128.46 0.01695 0.01641 0.01400 0.01513 0.01532 0.01467 0.01327 0.01089 0.00833 3766078.46 0.03124 0.02641 0.02066 0.02229 0.02086 0.01875 0.01653 0.01436 0.01174 3766028.46 0.04927 0.04198 0.03533 0.03317 0.02930 0.02379 0.01714 0.01561 0.01498 0.08658 0.06785 0.05510 0.02916 0.02191 0.01536 0.01289 3765978.46 0.04846 0.03888 0.28932 3765928.46 0.14561 0.09942 0.07662 0.04919 0.03014 0.02378 0.01859 0.01396 3765878.46 0.26790 0.60491 0.50143 0.17142 0.10301 0.05443 0.04209 0.02712 0.01993 3765828.46 0.04905 0.09419 0.18575 0.37314 0.37132 0.16340 0.08281 0.04685 0.02892 3765778.46 0.02643 0.03326 0.06351 0.10244 0.17873 0.42950 0.44578 0.10753 0.04683 3765728.46 0.01759 0.02257 0.03770 0.05530 0.07443 0.10780 0.22022 0.37446 0.34545 0.07553 3765678.46 0.01189 0.01452 0.02214 0.03428 0.04381 0.05765 0.11239 0.25030 0.01736 0.05565 0.07227 3765628.46 0.00885 0.01074 0.02279 0.02562 0.03217 0.04548 *** *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2026-2027 20:03:29 PAGE 39 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* *** *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): L0000913 , L0000914 , L0000915 , L0000916 , L0000917 , L0000922 , L0000923 , L0000924 L0000918 , L0000919 , L0000920 , L0000921 , L0000925 , L0000928 , L0000930 , L0000931 L0000926 , L0000927 , L0000929 , L0000932 , L0000933 L0000934 , L0000935 , L0000936 , L0000937 , L0000938 , L0000939 , L0000940 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM IN MICROGRAMS/M**3 Y-COORD X-COORD (METERS) 487577.18 (METERS) 487527.18 487627.18 3766628.46 0.00324 0.00309 0.00289 3766578.46 0.00335 0.00316 0.00294 0.00346 0.00322 0.00294 3766528.46 3766478.46 0.00352 0.00322 0.00276 0.00308 0.00328 3766428.46 0.00265 3766378.46 0.00313 0.00312 0.00305 3766328.46 0.00362 0.00320 0.00313 3766278.46 0.00452 0.00425 0.00329 3766228.46 0.00610 0.00535 0.00438 3766178.46 0.00629 0.00537 0.00522 3766128.46 0.00635 0.00547 0.00476 3766078.46 0.00943 0.00755 0.00556 3766028.46 0.01287 0.00915 0.00722 3765978.46 0.01399 0.01266 0.01003 0.01341 0.01222 3765928.46 0.01218 3765878.46 0.01524 0.01275 0.01148 3765828.46 0.02036 0.01707 0.01347 0.03514 0.02536 0.01706 3765778.46 3765728.46 0.09654 0.03873 0.02578 3765678.46 0.35239 0.20409 0.05743 ``` | 3765628.46 | 0.10838 | 0.28309 0.29 | 5128 | | | | | |--|---|--|--|---|----------------------------------|--|--| | | RSION 21112

RSION 16216 *** | | | ncentrations 2026 | -2027 | * * * | 08/11/21
20:03:29
PAGE 40 | | *** MODELOPTs: | RegDFAULT CONC | ELEV URBAN AI | OJ_U* | | | | | | | | INCLUDING SOURCE
00919 , L00009
00927 , L00009 | (S): L00
920 , L00
928 , L00 | , L0000
, L0000
, L0000
, L0000 | 922 , L0000923
930 , L0000931 | , L0000916
, L0000924
, L0000932 | *** , L0000917 , , L0000925 , , L0000933 , | | | | *** D | SCRETE CART | CESIAN RECEPTOR P | OINTS *** | | | | | | ** CONC OF | DPM IN | MICROGRAMS/M**3 | | ** | | | X-COORD (| M) Y-COORD (M) | CONC | | X-COORD (M) | Y-COORD (M) | CONC | | | 486910.
487146.
487485.
487080. | 10 3766029.99
24 3766054.47 | 0.04598
0.03816
0.01309
0.02290 | | 487071.68
487280.73
487507.54
486821.49 | 3766020.65
3765926.79 | 0.04820
0.03032
0.01344
0.02349 | | | | RSION 21112 *** RSION 16216 *** RegDFAULT CONC | • | ated DPM Cor | ncentrations 2026 | -2027 | *** | 08/11/21
20:03:29
PAGE 41 | | | | *** THE SUI | MARY OF MAX | XIMUM PERIOD (43 | 848 HRS) RESULTS | *** | | | | | ** CONC OF DPM | IN MIC | CROGRAMS/M**3 | | * * | | | GROUP ID | | NATE CONT | | | | NETWO | אסר | | | AVEF | RAGE CONC
 | REC
 | CEPTOR (XR, YR, | ZELEV, ZHILL, ZFLA
 | AG) OF TYPE GRID- | | | 2ND HI
3RD HI
4TH HI
5TH HI | GHEST VALUE IS | 0.60491 AT (0.50143 AT (0.48611 AT (0.45433 AT (0.45433 AT (0.44578 AT (0.43041 AT (| 487127.18,
487177.18,
486827.18,
487027.18,
487377.18, | 3765878.46, 5
3765878.46, 5
3765978.46, 5
3765928.46, 5
3765778.46, 5 | ZELEV, ZHILL, ZFL2
 | | -ID

F1
F1
F1
F1 | *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) A Total of 388 Informational Message(s) A Total of 43848 Hours Were Processed A Total of 191 Calm Hours Identified A Total of 197 Missing Hours Identified (0.45 Percent) ****** FATAL ERROR MESSAGES ******* *** NONE *** ****** WARNING MESSAGES ****** ME W186 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ``` ** Lakes Environmental AERMOD MPI ********** ** AERMOD Input Produced by: ** AERMOD View Ver. 10.0.1 ** Lakes Environmental Software Inc. ** Date: 8/11/2021 ** File: C:\Lakes\AERMOD View\Terracina at Redlands 2028-2041\Terracina at Redlands 2028-2041.ADI ********** ********** ** AERMOD Control Pathway ************ CO STARTING TITLEONE Terracina at Redlands TITLETWO Freeway-related DPM Concentrations 2028-2041 MODELOPT DFAULT CONC AVERTIME PERIOD URBANOPT 2035210 San_Bernardino_County POLLUTID DPM RUNORNOT RUN ERRORFIL "Terracina at Redlands 2028-2041.err" CO FINISHED *********** ** AERMOD Source Pathway ********** SO STARTING ** Source Location ** ** Source ID - Type - X Coord. - Y Coord. ** ** ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE1 ** DESCRSRC EB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00111 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 12 ** 486616.041, 3766076.797, 526.82, 0.00, 1.70 ** 486786.952, 3766018.704, 535.73, 0.00, 1.70 ``` ``` ** 486896.402, 3765982.502, 539.74, 0.00, 1.70 ** 487020.166, 3765938.721, 544.37, 0.00, 1.70 ** 487127.090, 3765896.625, 550.05, 0.00, 1.70 ** 487255.905, 3765839.374, 556.47, 0.00, 1.70 ** 487365.355, 3765779.597, 565.73, 0.00, 1.70 ** 487442.813, 3765739.185, 575.21, 0.00, 1.70 ** 487518.586, 3765698.772, 574.32, 0.00, 1.70 ** 487573.311, 3765669.305, 575.18, 0.00, 1.70 ** 487609.514, 3765647.415, 578.30, 0.00, 1.70 ** 487635.614, 3765634.786, 578.12, 0.00, 1.70 LOCATION L0001522 486617.773 3766076.209 527.35 VOLUME LOCATION L0001523 VOLUME 486621.236 3766075.032 527.48 LOCATION L0001524 486624.699 3766073.855 527.61 VOLUME LOCATION L0001525 VOLUME 486628.162 3766072.678 527.73 LOCATION L0001526 VOLUME 486631.625 3766071.500 527.88 LOCATION L0001527 VOLUME 486635.088 3766070.323 528.02 LOCATION L0001528 VOLUME 486638.551 3766069.146 528.14 VOLUME 486642.014 3766067.969 528.26 LOCATION L0001529 LOCATION L0001530 VOLUME 486645.477 3766066.792 528.37 LOCATION L0001531 VOLUME 486648.940 3766065.615 528.47 VOLUME 486652.403 3766064.438 528.55 LOCATION L0001532 LOCATION L0001533 VOLUME 486655.866 3766063.261 528.67 VOLUME 486659.329 3766062.084 528.80 LOCATION L0001534 LOCATION L0001535 VOLUME 486662.792 3766060.907 528.97 LOCATION L0001536 VOLUME 486666.255 3766059.730 529.16 486669.718 3766058.553 529.36 LOCATION L0001537 VOLUME LOCATION L0001538 VOLUME 486673.181 3766057.375 529.54 VOLUME 486676.644 3766056.198 529.73 LOCATION L0001539 LOCATION L0001540 VOLUME 486680.107 3766055.021 529.91 VOLUME 486683.570 3766053.844 530.11 LOCATION L0001541 LOCATION L0001542 VOLUME 486687.033 3766052.667 530.30 LOCATION L0001543 VOLUME 486690.496 3766051.490 530.48 LOCATION L0001544 VOLUME 486693.959 3766050.313 530.66 LOCATION L0001545 VOLUME 486697.422 3766049.136 530.83 486700.885 3766047.959 530.99 LOCATION L0001546 VOLUME LOCATION L0001547 VOLUME 486704.348 3766046.782 531.15 LOCATION L0001548 VOLUME 486707.811 3766045.605 531.33 LOCATION L0001549 VOLUME 486711.274 3766044.428 531.51 LOCATION L0001550 VOLUME 486714.737 3766043.250 531.68 LOCATION L0001551 VOLUME 486718.200 3766042.073 531.84 VOLUME 486721.663 3766040.896 531.98 LOCATION L0001552 LOCATION L0001553 VOLUME 486725.126 3766039.719 532.11 486728.589 3766038.542 532.23 LOCATION L0001554 VOLUME LOCATION L0001555 VOLUME 486732.052 3766037.365 532.42 LOCATION L0001556 VOLUME 486735.515 3766036.188 532.65 486738.978 3766035.011 532.84 LOCATION L0001557 VOLUME LOCATION L0001558 VOLUME 486742.441 3766033.834 532.99 LOCATION L0001559 VOLUME 486745.904 3766032.657 533.10 LOCATION L0001560 VOLUME 486749.367 3766031.480 533.16 LOCATION L0001561 VOLUME 486752.830 3766030.302 533.23 ``` | LOCATION | L0001562 | VOLUME | 486756.293 | 3766029.125 | 533.44 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001563 | VOLUME | 486759.756 | 3766027.948 | 533.73 | | LOCATION | L0001564 | VOLUME | 486763.219 | 3766026.771 | 534.01 | | LOCATION | L0001565 | VOLUME | 486766.682 | 3766025.594 | 534.27 | | LOCATION | L0001566 | VOLUME | 486770.145 | 3766024.417 | 534.53 | | LOCATION | L0001567 | VOLUME | 486773.608 | 3766023.240 | 534.77 | | LOCATION | L0001568 | VOLUME | 486777.071 | 3766022.063 | 534.99 | | LOCATION | L0001569 | VOLUME | 486780.534 | 3766020.886 | 535.21 | | LOCATION | L0001570 | VOLUME | 486783.997 | 3766019.709 | 535.45 | | LOCATION | L0001571 | VOLUME | 486787.462 | 3766018.536 | 535.70 | | LOCATION | L0001572 | VOLUME | 486790.934 | 3766017.387 | 535.92 | | LOCATION | L0001573 | VOLUME | 486794.407 | 3766016.239 | 536.12 | | LOCATION | L0001574 | VOLUME | 486797.880 | 3766015.090 | 536.31 | | LOCATION | L0001575 | VOLUME | 486801.352 | 3766013.941 | 536.47 | | LOCATION | L0001576 | VOLUME | 486804.825 | 3766012.793 | 536.61 | | LOCATION | L0001577 | VOLUME | 486808.297 | 3766011.644 | 536.74 | | LOCATION | L0001578 | VOLUME | 486811.770 | 3766010.495 | 536.87 | | LOCATION | L0001579 | VOLUME | 486815.242 | 3766009.347 | 536.98 | | LOCATION | L0001580 | VOLUME | 486818.715 | 3766008.198 | 537.06 | | LOCATION | L0001581 | VOLUME | 486822.188 | 3766007.050 | 537.11 | | LOCATION | L0001582 | VOLUME | 486825.660 | 3766005.901 | 537.14 | | LOCATION | L0001583 | VOLUME | 486829.133 | 3766004.752 | 537.14 | | LOCATION | L0001584 | VOLUME | 486832.605 | 3766003.604 | 537.12 | | LOCATION | L0001585 | VOLUME | 486836.078 | 3766002.455 | 537.10 | | LOCATION | L0001586 | VOLUME | 486839.550 | 3766001.307 | 537.08 | | LOCATION | L0001587 | VOLUME | 486843.023 | 3766000.158 | 537.05 | | LOCATION | | VOLUME | 486846.496 | 3765999.009 | 537.15 | | LOCATION | L0001589 | VOLUME | 486849.968 | 3765997.861 | 537.35 | | LOCATION | L0001590 | VOLUME | 486853.441 | 3765996.712 | 537.54 | | LOCATION | | VOLUME | 486856.913 | 3765995.563 | 537.74 | | LOCATION | | VOLUME | 486860.386 | 3765994.415 | 537.95 | | LOCATION | | VOLUME | 486863.858 | 3765993.266 | 538.18 | | | L0001594 | VOLUME | 486867.331 | 3765992.118 | 538.40 | | LOCATION | | VOLUME | 486870.803 | 3765990.969 | 538.61 | | LOCATION | | VOLUME | 486874.276 | 3765989.820 | 538.81 | | | L0001597 | VOLUME | 486877.749 | 3765988.672 | 539.00 | | | L0001598 | VOLUME | 486881.221 | 3765987.523 | 539.18 | | LOCATION | | VOLUME | 486884.694 | 3765986.374 | 539.36 | | LOCATION | | VOLUME | 486888.166 | 3765985.226 | 539.56 | | LOCATION | | VOLUME | 486891.639 | 3765984.077 | 539.74 | | LOCATION | | VOLUME | 486895.111 | 3765982.929 | 539.91 | | LOCATION | | VOLUME | 486898.569 | 3765981.735 | 540.06 | | | L0001604 | VOLUME | 486902.017 | 3765980.516 | 540.20 | | LOCATION | | VOLUME | 486905.465 | 3765979.296 | 540.32 | | LOCATION | | VOLUME | 486908.913 | 3765978.076 | 540.42 | | LOCATION | | VOLUME | 486912.362 | 3765976.856 | 540.51 | | LOCATION | | VOLUME | 486915.810 | 3765975.636 | 540.59 | | LOCATION | | VOLUME | 486919.258 | 3765974.417 | 540.66 | | LOCATION | | VOLUME | 486922.706 | 3765973.197 | 540.71 | | | L0001611 | VOLUME | 486926.154 | 3765971.977 | 540.76 | | LOCATION | L0001612 | VOLUME | 486929.603 | 3765970.757 | 540.79 | | | | | | | | | LOCATION | L0001613 | VOLUME | 486933.051 | 3765969.538 | 540.82 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001614 | VOLUME | 486936.499 | 3765968.318 | 540.90 | | LOCATION | L0001615 | VOLUME | 486939.947 | 3765967.098 | 541.11 | | LOCATION | L0001616 | VOLUME | 486943.396 | 3765965.878 | 541.31 | | LOCATION | L0001617 | VOLUME | 486946.844 | 3765964.658 | 541.51 | | LOCATION | L0001618 | VOLUME | 486950.292 | 3765963.439 | 541.70 | | LOCATION |
L0001619 | VOLUME | 486953.740 | 3765962.219 | 541.89 | | LOCATION | L0001620 | VOLUME | 486957.188 | 3765960.999 | 542.08 | | LOCATION | L0001621 | VOLUME | 486960.637 | 3765959.779 | 542.26 | | LOCATION | L0001622 | VOLUME | 486964.085 | 3765958.560 | 542.47 | | LOCATION | L0001623 | VOLUME | 486967.533 | 3765957.340 | 542.67 | | LOCATION | L0001624 | VOLUME | 486970.981 | 3765956.120 | 542.86 | | LOCATION | L0001625 | VOLUME | 486974.429 | 3765954.900 | 543.03 | | LOCATION | L0001626 | VOLUME | 486977.878 | 3765953.680 | 543.20 | | LOCATION | L0001627 | VOLUME | 486981.326 | 3765952.461 | 543.36 | | LOCATION | L0001628 | VOLUME | 486984.774 | 3765951.241 | 543.51 | | LOCATION | L0001629 | VOLUME | 486988.222 | 3765950.021 | 543.66 | | LOCATION | L0001630 | VOLUME | 486991.671 | 3765948.801 | 543.80 | | LOCATION | L0001631 | VOLUME | 486995.119 | 3765947.582 | 543.93 | | LOCATION | L0001632 | VOLUME | 486998.567 | 3765946.362 | 544.05 | | LOCATION | L0001633 | VOLUME | 487002.015 | 3765945.142 | 544.15 | | LOCATION | L0001634 | VOLUME | 487005.463 | 3765943.922 | 544.23 | | LOCATION | L0001635 | VOLUME | 487008.912 | 3765942.702 | 544.30 | | LOCATION | L0001636 | VOLUME | 487012.360 | 3765941.483 | 544.35 | | LOCATION | L0001637 | VOLUME | 487015.808 | 3765940.263 | 544.42 | | LOCATION | L0001638 | VOLUME | 487019.256 | 3765939.043 | 544.47 | | LOCATION | L0001639 | VOLUME | 487022.671 | 3765937.735 | 544.52 | | LOCATION | L0001640 | VOLUME | 487026.075 | 3765936.395 | 544.70 | | LOCATION | L0001641 | VOLUME | 487029.478 | 3765935.055 | 544.87 | | LOCATION | L0001642 | VOLUME | 487032.881 | 3765933.715 | 545.04 | | LOCATION | L0001643 | VOLUME | 487036.285 | 3765932.375 | 545.22 | | LOCATION | L0001644 | VOLUME | 487039.688 | 3765931.035 | 545.41 | | LOCATION | L0001645 | VOLUME | 487043.091 | 3765929.696 | 545.62 | | LOCATION | L0001646 | VOLUME | 487046.495 | 3765928.356 | 545.82 | | LOCATION | L0001647 | VOLUME | 487049.898 | 3765927.016 | 546.02 | | LOCATION | L0001648 | VOLUME | 487053.301 | 3765925.676 | 546.21 | | LOCATION | L0001649 | VOLUME | 487056.705 | 3765924.336 | 546.39 | | LOCATION | L0001650 | VOLUME | 487060.108 | 3765922.996 | 546.56 | | LOCATION | L0001651 | VOLUME | 487063.511 | 3765921.656 | 546.72 | | LOCATION | L0001652 | VOLUME | 487066.915 | 3765920.316 | 546.89 | | LOCATION | L0001653 | VOLUME | 487070.318 | 3765918.976 | 547.04 | | LOCATION | L0001654 | VOLUME | 487073.721 | 3765917.636 | 547.18 | | LOCATION | L0001655 | VOLUME | 487077.125 | 3765916.297 | 547.30 | | LOCATION | L0001656 | VOLUME | 487080.528 | 3765914.957 | 547.40 | | LOCATION | L0001657 | VOLUME | 487083.931 | 3765913.617 | 547.49 | | LOCATION | L0001658 | VOLUME | 487087.335 | 3765912.277 | 547.57 | | LOCATION | L0001659 | VOLUME | 487090.738 | 3765910.937 | 547.63 | | LOCATION | L0001660 | VOLUME | 487094.142 | 3765909.597 | 547.69 | | | L0001661 | VOLUME | 487097.545 | 3765908.257 | 547.73 | | LOCATION | L0001662 | VOLUME | 487100.948 | 3765906.917 | 547.76 | | LOCATION | L0001663 | VOLUME | | 3765905.577 | 547.90 | | | | | | | | | LOCATION | L0001664 | VOLUME | 487107.755 | 3765904.237 | 548.04 | |----------|----------|----------|------------|-------------|--------| | LOCATION | L0001665 | VOLUME | 487111.158 | 3765902.898 | 548.19 | | LOCATION | L0001666 | VOLUME | 487114.562 | 3765901.558 | 548.34 | | LOCATION | L0001667 | VOLUME | 487117.965 | 3765900.218 | 548.57 | | LOCATION | L0001668 | VOLUME | 487121.368 | 3765898.878 | 548.80 | | LOCATION | L0001669 | VOLUME | 487124.772 | 3765897.538 | 549.03 | | LOCATION | L0001670 | VOLUME | 487128.155 | 3765896.152 | 549.25 | | LOCATION | L0001671 | VOLUME | 487131.498 | 3765894.666 | 549.47 | | LOCATION | L0001672 | VOLUME | 487134.840 | 3765893.181 | 549.68 | | LOCATION | L0001673 | VOLUME | 487138.183 | 3765891.695 | 549.88 | | LOCATION | L0001674 | VOLUME | 487141.525 | 3765890.210 | 550.20 | | LOCATION | L0001675 | VOLUME | 487144.867 | 3765888.724 | 550.76 | | LOCATION | L0001676 | VOLUME | 487148.210 | 3765887.239 | 551.30 | | LOCATION | L0001677 | VOLUME | 487151.552 | 3765885.753 | 551.81 | | LOCATION | L0001678 | VOLUME | 487154.894 | 3765884.268 | 552.29 | | LOCATION | L0001679 | VOLUME | 487158.237 | 3765882.782 | 552.76 | | LOCATION | L0001680 | VOLUME | 487161.579 | 3765881.297 | 553.19 | | LOCATION | L0001681 | VOLUME | 487164.921 | 3765879.811 | 553.61 | | LOCATION | L0001682 | VOLUME | 487168.264 | 3765878.326 | 554.01 | | LOCATION | L0001683 | VOLUME | 487171.606 | 3765876.840 | 554.42 | | LOCATION | L0001684 | VOLUME | 487174.948 | 3765875.355 | 554.80 | | LOCATION | L0001685 | VOLUME | 487178.291 | 3765873.869 | 555.12 | | LOCATION | L0001686 | VOLUME | 487181.633 | 3765872.384 | 555.41 | | | L0001687 | VOLUME | 487184.976 | 3765870.898 | 555.68 | | | L0001688 | VOLUME | 487188.318 | 3765869.413 | 555.92 | | | L0001689 | VOLUME | 487191.660 | 3765867.927 | 556.14 | | | L0001690 | VOLUME | 487195.003 | 3765866.442 | 555.75 | | | L0001691 | VOLUME | 487198.345 | 3765864.956 | 555.39 | | | L0001692 | VOLUME | 487201.687 | 3765863.471 | 555.07 | | LOCATION | L0001693 | VOLUME | 487205.030 | 3765861.985 | 554.80 | | | L0001694 | VOLUME | 487208.372 | 3765860.500 | 554.56 | | | L0001695 | VOLUME | 487211.714 | 3765859.014 | 554.38 | | | L0001696 | VOLUME | 487215.057 | 3765857.529 | 554.23 | | | L0001697 | VOLUME | 487218.399 | 3765856.043 | 554.19 | | | L0001698 | VOLUME | 487221.741 | 3765854.558 | 554.32 | | | L0001699 | VOLUME | 487225.084 | 3765853.072 | 554.43 | | | L0001700 | VOLUME | 487228.426 | 3765851.587 | 554.54 | | | L0001701 | VOLUME | 487231.769 | 3765850.101 | 554.64 | | | L0001702 | VOLUME | 487235.111 | 3765848.616 | 554.73 | | | L0001703 | VOLUME | 487238.453 | 3765847.130 | 554.81 | | | L0001704 | VOLUME | 487241.796 | 3765845.645 | 554.89 | | | L0001705 | VOLUME | 487245.138 | 3765844.159 | 555.12 | | | L0001706 | VOLUME | 487248.480 | 3765842.674 | 555.44 | | | L0001707 | VOLUME | 487251.823 | 3765841.189 | 555.74 | | | L0001708 | VOLUME | 487255.165 | 3765839.703 | 556.03 | | | L0001709 | VOLUME | 487258.404 | 3765838.009 | 556.30 | | | L0001710 | VOLUME | 487261.614 | 3765836.256 | 556.55 | | | L0001711 | VOLUME | 487264.824 | 3765834.503 | 556.78 | | | L0001711 | VOLUME | 487268.035 | 3765832.750 | 556.99 | | | L0001712 | VOLUME | 487271.245 | 3765830.996 | 557.33 | | | L0001713 | VOLUME | 487274.455 | 3765829.243 | 557.66 | | | | , 525112 | 10,2,1,100 | 3.33027.213 | 237.00 | | LOCATION | L0001715 | VOLUME | 487277.665 | 3765827.490 | 557.95 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001716 | VOLUME | 487280.875 | 3765825.737 | 558.20 | | LOCATION | L0001717 | VOLUME | 487284.085 | 3765823.984 | 558.41 | | LOCATION | L0001718 | VOLUME | 487287.295 | 3765822.230 | 558.59 | | LOCATION | L0001719 | VOLUME | 487290.505 | 3765820.477 | 558.72 | | LOCATION | L0001720 | VOLUME | 487293.715 | 3765818.724 | 558.82 | | LOCATION | L0001721 | VOLUME | 487296.925 | 3765816.971 | 558.91 | | LOCATION | L0001722 | VOLUME | 487300.135 | 3765815.218 | 558.97 | | LOCATION | L0001723 | VOLUME | 487303.345 | 3765813.465 | 559.09 | | LOCATION | L0001724 | VOLUME | 487306.555 | 3765811.711 | 559.30 | | LOCATION | L0001725 | VOLUME | 487309.765 | 3765809.958 | 559.51 | | LOCATION | L0001726 | VOLUME | 487312.975 | 3765808.205 | 559.70 | | LOCATION | L0001727 | VOLUME | 487316.185 | 3765806.452 | 559.89 | | LOCATION | L0001728 | VOLUME | 487319.395 | 3765804.699 | 560.06 | | LOCATION | L0001729 | VOLUME | 487322.605 | 3765802.946 | 560.44 | | LOCATION | L0001730 | VOLUME | 487325.815 | 3765801.192 | 560.82 | | LOCATION | L0001731 | VOLUME | 487329.025 | 3765799.439 | 561.17 | | LOCATION | L0001732 | VOLUME | 487332.235 | 3765797.686 | 561.49 | | LOCATION | L0001733 | VOLUME | 487335.446 | 3765795.933 | 561.76 | | LOCATION | L0001734 | VOLUME | 487338.656 | 3765794.180 | 562.00 | | LOCATION | L0001735 | VOLUME | 487341.866 | 3765792.426 | 562.21 | | LOCATION | L0001736 | VOLUME | 487345.076 | 3765790.673 | 562.38 | | LOCATION | L0001737 | VOLUME | 487348.286 | 3765788.920 | 562.80 | | LOCATION | L0001738 | VOLUME | 487351.496 | 3765787.167 | 563.21 | | LOCATION | L0001739 | VOLUME | 487354.706 | 3765785.414 | 563.57 | | LOCATION | L0001740 | VOLUME | 487357.916 | 3765783.661 | 563.87 | | LOCATION | L0001741 | VOLUME | 487361.126 | 3765781.907 | 564.26 | | LOCATION | L0001742 | VOLUME | 487364.336 | 3765780.154 | 564.63 | | LOCATION | L0001743 | VOLUME | 487367.568 | 3765778.443 | 564.97 | | LOCATION | L0001744 | VOLUME | 487370.811 | 3765776.751 | 565.25 | | LOCATION | L0001745 | VOLUME | 487374.054 | 3765775.059 | 565.55 | | LOCATION | L0001746 | VOLUME | 487377.297 | 3765773.367 | 565.82 | | LOCATION | L0001747 | VOLUME | 487380.539 | 3765771.675 | 566.05 | | LOCATION | L0001748 | VOLUME | 487383.782 | 3765769.983 | 566.24 | | LOCATION | L0001749 | VOLUME | 487387.025 | 3765768.292 | 566.40 | | LOCATION | L0001750 | VOLUME | 487390.268 | 3765766.600 | 566.53 | | LOCATION | L0001751 | VOLUME | 487393.510 | 3765764.908 | 566.61 | | LOCATION | L0001752 | VOLUME | 487396.753 | 3765763.216 | 566.66 | | LOCATION | L0001753 | VOLUME | 487399.996 | 3765761.524 | 567.08 | | LOCATION | L0001754 | VOLUME | 487403.239 | 3765759.832 | 567.46 | | LOCATION | L0001755 | VOLUME | 487406.482 | 3765758.140 | 567.79 | | LOCATION | L0001756 | VOLUME | 487409.724 | 3765756.448 | 568.08 | | LOCATION | L0001757 | VOLUME | 487412.967 | 3765754.756 | 568.32 | | LOCATION | L0001758 | VOLUME | 487416.210 | 3765753.065 | 568.52 | | LOCATION | L0001759 | VOLUME | 487419.453 | 3765751.373 | 568.87 | | LOCATION | L0001760 | VOLUME | 487422.695 | 3765749.681 | 569.29 | | LOCATION | L0001761 | VOLUME | 487425.938 | 3765747.989 | 570.08 | | LOCATION | L0001762 | VOLUME | 487429.181 | 3765746.297 | 570.77 | | LOCATION | L0001763 | VOLUME | 487432.424 | 3765744.605 | 571.36 | | | L0001764 | VOLUME | 487435.667 | 3765742.913 | 571.84 | | |
L0001765 | VOLUME | 487438.909 | 3765741.221 | 572.23 | | | | | | | | | LOCATION | L0001766 | VOLUME | 487442.152 | 3765739.530 | 572.52 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001767 | VOLUME | 487445.383 | 3765737.814 | 572.70 | | LOCATION | L0001768 | VOLUME | 487448.610 | 3765736.093 | 572.81 | | LOCATION | L0001769 | VOLUME | 487451.837 | 3765734.372 | 572.96 | | LOCATION | L0001770 | VOLUME | 487455.064 | 3765732.651 | 573.06 | | LOCATION | L0001771 | VOLUME | 487458.292 | 3765730.929 | 573.09 | | LOCATION | L0001772 | VOLUME | 487461.519 | 3765729.208 | 573.08 | | LOCATION | L0001773 | VOLUME | 487464.746 | 3765727.487 | 573.01 | | LOCATION | L0001774 | VOLUME | 487467.974 | 3765725.766 | 572.88 | | LOCATION | L0001775 | VOLUME | 487471.201 | 3765724.045 | 572.69 | | LOCATION | L0001776 | VOLUME | 487474.428 | 3765722.323 | 572.44 | | LOCATION | L0001777 | VOLUME | 487477.655 | 3765720.602 | 572.52 | | LOCATION | L0001778 | VOLUME | 487480.883 | 3765718.881 | 572.81 | | LOCATION | L0001779 | VOLUME | 487484.110 | 3765717.160 | 573.07 | | LOCATION | L0001780 | VOLUME | 487487.337 | 3765715.438 | 573.28 | | LOCATION | L0001781 | VOLUME | 487490.565 | 3765713.717 | 573.46 | | LOCATION | L0001782 | VOLUME | 487493.792 | 3765711.996 | 573.60 | | LOCATION | L0001783 | VOLUME | 487497.019 | 3765710.275 | 573.70 | | LOCATION | L0001784 | VOLUME | 487500.247 | 3765708.554 | 573.87 | | LOCATION | L0001785 | VOLUME | 487503.474 | 3765706.832 | 574.22 | | LOCATION | L0001786 | VOLUME | 487506.701 | 3765705.111 | 574.54 | | LOCATION | L0001787 | VOLUME | 487509.928 | 3765703.390 | 574.81 | | LOCATION | L0001788 | VOLUME | 487513.156 | 3765701.669 | 575.03 | | LOCATION | L0001789 | VOLUME | 487516.383 | 3765699.947 | 575.22 | | LOCATION | L0001790 | VOLUME | 487519.608 | 3765698.222 | 575.36 | | LOCATION | L0001791 | VOLUME | 487522.829 | 3765696.488 | 575.46 | | | L0001792 | VOLUME | 487526.049 | 3765694.754 | 575.69 | | LOCATION | L0001793 | VOLUME | 487529.269 | 3765693.020 | 576.15 | | LOCATION | L0001794 | VOLUME | 487532.490 | 3765691.286 | 576.55 | | LOCATION | | VOLUME | 487535.710 | 3765689.552 | 577.10 | | LOCATION | | VOLUME | 487538.931 | 3765687.818 | 577.65 | | LOCATION | | VOLUME | 487542.151 | 3765686.084 | 578.12 | | | L0001798 | VOLUME | 487545.371 | 3765684.350 | 578.49 | | | L0001799 | VOLUME | 487548.592 | 3765682.615 | 578.78 | | LOCATION | | VOLUME | 487551.812 | 3765680.881 | 579.11 | | | L0001801 | VOLUME | 487555.033 | 3765679.147 | 579.53 | | | L0001802 | VOLUME | 487558.253 | 3765677.413 | 579.85 | | LOCATION | | VOLUME | 487561.473 | 3765675.679 | 580.07 | | LOCATION | | VOLUME | 487564.694 | 3765673.945 | 580.19 | | | L0001805 | VOLUME | 487567.914 | 3765672.211 | 580.21 | | LOCATION | | VOLUME | 487571.135 | 3765670.477 | 580.13 | | LOCATION | | VOLUME | 487574.326 | 3765668.692 | 579.92 | | | L0001808 | VOLUME | 487577.456 | 3765666.799 | 579.64 | | | L0001809 | VOLUME | 487580.586 | 3765664.907 | 579.46 | | LOCATION | | VOLUME | 487583.716 | 3765663.014 | 579.22 | | LOCATION | | VOLUME | 487586.845 | 3765661.122 | 578.94 | | | L0001812 | VOLUME | 487589.975 | 3765659.229 | 578.88 | | LOCATION | | VOLUME | 487593.105 | 3765657.337 | 579.30 | | LOCATION | | VOLUME | 487596.235 | 3765655.444 | 579.64 | | | L0001815 | VOLUME | 487599.365 | 3765653.551 | 579.90 | | LOCATION | T0001819 | VOLUME | 487602.495 | 3765651.659 | 580.06 | | | | | | | | ``` LOCATION L0001817 VOLUME 487605.625 3765649.766 580.10 VOLUME 487608.755 3765647.874 580.10 LOCATION L0001818 LOCATION L0001819 VOLUME 487612.008 3765646.208 580.14 LOCATION L0001820 VOLUME 487615.300 3765644.615 580.18 LOCATION L0001821 VOLUME 487618.593 3765643.022 580.18 VOLUME 487621.885 3765641.429 580.14 LOCATION L0001822 LOCATION L0001823 VOLUME 487625.178 3765639.836 580.07 VOLUME 487628.470 3765638.243 579.90 LOCATION L0001824 LOCATION L0001825 VOLUME 487631.762 3765636.650 579.65 LOCATION L0001826 VOLUME 487635.055 3765635.056 579.47 ** End of LINE VOLUME Source ID = SLINE1 ** ______ ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE2 ** DESCRSRC WB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00111 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 14 ** 486605.096, 3766049.014, 529.48, 0.00, 1.70 ** 486742.167, 3766004.131, 533.61, 0.00, 1.70 ** 486838.624, 3765970.257, 538.29, 0.00, 1.70 ** 486919.851, 3765944.004, 541.73, 0.00, 1.70 ** 486993.463, 3765920.293, 545.01, 0.00, 1.70 ** 487116.996, 3765877.950, 549.91, 0.00, 1.70 ** 487196.530, 3765842.382, 553.73, 0.00, 1.70 ** 487281.988, 3765800.887, 557.96, 0.00, 1.70 ** 487338.678, 3765767.860, 561.06, 0.00, 1.70 ** 487411.444, 3765726.364, 565.81, 0.00, 1.70 ** 487479.979, 3765690.796, 567.60, 0.00, 1.70 ** 487527.361, 3765666.238, 569.90, 0.00, 1.70 ** 487576.436, 3765639.138, 572.76, 0.00, 1.70 ** 487625.511, 3765614.580, 576.21, 0.00, 1.70 ** ______ LOCATION L0001827 VOLUME 486606.834 3766048.445 528.65 VOLUME 486610.310 3766047.306 528.76 LOCATION L0001828 LOCATION L0001829 VOLUME 486613.786 3766046.168 528.87 VOLUME 486617.262 3766045.030 528.99 LOCATION L0001830 LOCATION L0001831 VOLUME 486620.738 3766043.892 529.11 VOLUME 486624.214 3766042.754 529.24 LOCATION L0001832 LOCATION L0001833 VOLUME 486627.690 3766041.616 529.37 LOCATION L0001834 VOLUME 486631.166 3766040.477 529.52 486634.642 3766039.339 529.67 LOCATION L0001835 VOLUME LOCATION L0001836 VOLUME 486638.118 3766038.201 529.83 LOCATION L0001837 VOLUME 486641.594 3766037.063 529.99 LOCATION L0001838 VOLUME 486645.070 3766035.925 530.15 LOCATION L0001839 VOLUME 486648.546 3766034.786 530.31 ``` | LOCATION | L0001840 | VOLUME | 486652.022 | 3766033.648 | 530.48 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001841 | VOLUME | 486655.498 | 3766032.510 | 530.64 | | LOCATION | L0001842 | VOLUME | 486658.974 | 3766031.372 | 530.79 | | LOCATION | L0001843 | VOLUME | 486662.450 | 3766030.234 | 530.91 | | LOCATION | L0001844 | VOLUME | 486665.926 | 3766029.095 | 531.00 | | LOCATION | L0001845 | VOLUME | 486669.402 | 3766027.957 | 531.09 | | LOCATION | L0001846 | VOLUME | 486672.878 | 3766026.819 | 531.19 | | LOCATION | L0001847 | VOLUME | 486676.354 | 3766025.681 | 531.29 | | LOCATION | L0001848 | VOLUME | 486679.830 | 3766024.543 | 531.40 | | LOCATION | L0001849 | VOLUME | 486683.306 | 3766023.404 | 531.51 | | LOCATION | L0001850 | VOLUME | 486686.782 | 3766022.266 | 531.62 | | LOCATION | L0001851 | VOLUME | 486690.258 | 3766021.128 | 531.74 | | LOCATION | L0001852 | VOLUME | 486693.734 | 3766019.990 | 531.87 | | LOCATION | L0001853 | VOLUME | 486697.210 | 3766018.852 | 532.00 | | LOCATION | L0001854 | VOLUME | 486700.686 | 3766017.713 | 532.14 | | LOCATION | L0001855 | VOLUME | 486704.162 | 3766016.575 | 532.29 | | LOCATION | L0001856 | VOLUME | 486707.638 | 3766015.437 | 532.44 | | LOCATION | L0001857 | VOLUME | 486711.114 | 3766014.299 | 532.59 | | LOCATION | L0001858 | VOLUME | 486714.590 | 3766013.161 | 532.75 | | LOCATION | L0001859 | VOLUME | 486718.066 | 3766012.022 | 532.91 | | LOCATION | L0001860 | VOLUME | 486721.542 | 3766010.884 | 533.08 | | LOCATION | L0001861 | VOLUME | 486725.018 | 3766009.746 | 533.25 | | LOCATION | L0001862 | VOLUME | 486728.494 | 3766008.608 | 533.43 | | LOCATION | L0001863 | VOLUME | 486731.970 | 3766007.470 | 533.61 | | LOCATION | L0001864 | VOLUME | 486735.446 | 3766006.331 | 533.79 | | LOCATION | L0001865 | VOLUME | 486738.922 | 3766005.193 | 533.97 | | LOCATION | | VOLUME | 486742.396 | 3766004.050 | 534.15 | | LOCATION | L0001867 | VOLUME | 486745.847 | 3766002.838 | 534.32 | | LOCATION | L0001868 | VOLUME | 486749.298 | 3766001.626 | 534.50 | | LOCATION | | VOLUME | 486752.749 | 3766000.414 | 534.67 | | LOCATION | | VOLUME | 486756.200 | 3765999.202 | 534.80 | | LOCATION | | VOLUME | 486759.651 | 3765997.991 | 534.89 | | LOCATION | | VOLUME | 486763.102 | 3765996.779 | 534.99 | | | L0001873 | VOLUME | 486766.553 | 3765995.567 | 535.09 | | LOCATION | | VOLUME | 486770.004 | 3765994.355 | 535.20 | | LOCATION | | VOLUME | 486773.455 | 3765993.143 | 535.32 | | | L0001876 | VOLUME | 486776.906 | 3765991.931 | 535.45 | | LOCATION | | VOLUME | 486780.357 | 3765990.719 | 535.58 | | LOCATION | | VOLUME | 486783.808 | 3765989.507 | 535.71 | | | L0001879 | VOLUME | 486787.259 | 3765988.295 | 535.85 | | LOCATION | | VOLUME | 486790.710 | 3765987.083 | 535.99 | | LOCATION | | VOLUME | 486794.161 | 3765985.871 | 536.13 | | | L0001882 | VOLUME | 486797.612 | 3765984.659 | 536.29 | | LOCATION | | VOLUME | 486801.063 | 3765983.447 | 536.45 | | LOCATION | | VOLUME | 486804.514 | 3765982.236 | 536.62 | | LOCATION | | VOLUME | 486807.965 | 3765981.024 | 536.79 | | LOCATION | | VOLUME | 486811.416 | 3765979.812 | 536.96 | | LOCATION | | VOLUME | 486814.867 | 3765978.600 | 537.13 | | LOCATION | | VOLUME | 486818.318 | 3765977.388 | 537.31 | | | L0001889 | VOLUME | 486821.769 | 3765976.176 | 537.49 | | LOCATION | T0001880 | VOLUME | 486825.220 | 3765974.964 | 537.67 | | | | | | | | | LOCATION | L0001891 | VOLUME | 486828.671 | 3765973.752 | 537.86 | |----------|----------------------|------------------|--------------------------|----------------------------|------------------| | LOCATION | L0001892 | VOLUME | 486832.122 | 3765972.540 | 538.05 | | LOCATION | L0001893 | VOLUME | 486835.573 | 3765971.328 | 538.22 | | LOCATION | L0001894 | VOLUME | 486839.027 | 3765970.126 | 538.39 | | LOCATION | L0001895 | VOLUME | 486842.507 | 3765969.002 | 538.56 | | LOCATION | L0001896 | VOLUME | 486845.988 | 3765967.877 | 538.66 | | LOCATION | L0001897 | VOLUME | 486849.468 | 3765966.752 | 538.77 | | LOCATION | L0001898 | VOLUME | 486852.948 | 3765965.627 | 538.88 | | LOCATION | L0001899 | VOLUME | 486856.429 | 3765964.502 | 538.99 | | LOCATION | L0001900 | VOLUME | 486859.909 | 3765963.377 | 539.10 | | LOCATION | L0001901 | VOLUME |
486863.389 | 3765962.253 | 539.21 | | | L0001902 | VOLUME | 486866.870 | 3765961.128 | 539.32 | | LOCATION | L0001903 | VOLUME | 486870.350 | 3765960.003 | 539.44 | | LOCATION | L0001904 | VOLUME | 486873.830 | 3765958.878 | 539.56 | | LOCATION | L0001905 | VOLUME | 486877.311 | 3765957.753 | 539.69 | | LOCATION | L0001906 | VOLUME | 486880.791 | 3765956.628 | 539.83 | | | L0001907 | VOLUME | 486884.272 | 3765955.504 | 539.97 | | LOCATION | L0001908 | VOLUME | 486887.752 | 3765954.379 | 540.11 | | LOCATION | L0001909 | VOLUME | 486891.232 | 3765953.254 | 540.26 | | | L0001910 | VOLUME | 486894.713 | 3765952.129 | 540.41 | | | L0001911 | VOLUME | 486898.193 | 3765951.004 | 540.57 | | | L0001912 | VOLUME | 486901.673 | 3765949.879 | 540.73 | | | L0001913 | VOLUME | 486905.154 | 3765948.754 | 540.90 | | | L0001914 | VOLUME | 486908.634 | 3765947.630 | 541.08 | | | L0001915 | VOLUME | 486912.114 | 3765946.505 | 541.25 | | | L0001916 | VOLUME | 486915.595 | 3765945.380 | 541.42 | | | L0001917 | VOLUME | 486919.075 | 3765944.255 | 541.59 | | | L0001918 | VOLUME | 486922.556 | 3765943.133 | 541.77 | | | L0001919 | VOLUME | 486926.038 | 3765942.012 | 541.95 | | | L0001920 | VOLUME | 486929.519 | 3765940.890 | 542.13 | | | L0001921 | VOLUME | 486933.000 | 3765939.769 | 542.31 | | | L0001922 | VOLUME | 486936.482 | 3765938.647 | 542.49 | | | L0001923 | VOLUME | 486939.963 | 3765937.526 | 542.62 | | | L0001924 | VOLUME | 486943.445 | 3765936.404 | 542.71 | | | L0001925 | VOLUME | 486946.926 | 3765935.283 | 542.82 | | | L0001926 | VOLUME | 486950.408 | 3765934.161 | 542.92 | | | L0001927 | VOLUME | 486953.889 | 3765933.040 | 543.04 | | | L0001928 | VOLUME | 486957.371 | 3765931.919 | 543.16 | | | L0001929
L0001930 | VOLUME | 486960.852
486964.333 | 3765930.797
3765929.676 | 543.29
543.40 | | | L0001930 | VOLUME
VOLUME | 486967.815 | 3765929.676 | 543.40 | | | L0001931
L0001932 | VOLUME | 486971.296 | 3765927.433 | 543.63 | | | L0001932 | VOLUME | 486971.296 | 3765927.433 | 543.76 | | | L0001933 | VOLUME | 486978.259 | 3765925.190 | 543.89 | | | L0001934
L0001935 | VOLUME | 486981.741 | 3765924.069 | 544.02 | | | L0001935 | VOLUME | 486985.222 | 3765922.947 | 544.16 | | | L0001930 | VOLUME | 486988.703 | 3765921.826 | 544.31 | | | L0001937 | VOLUME | 486992.185 | 3765920.704 | 544.45 | | | L0001938 | VOLUME | 486995.653 | 3765920.704 | 544.45 | | | L0001939 | VOLUME | 486999.113 | 3765919.342 | 544.76 | | | L0001940 | VOLUME | | 3765917.170 | | | LOCALION | T0001711 | V OLIGINE | 10/002.3/3 | 5,5551,110 | J 1 1 . J Z | |] | LOCATION | L0001942 | VOLUME | 487006.033 | 3765915.984 | 545.09 | |---|----------|----------|--------|------------|-------------|--------| |] | LOCATION | L0001943 | VOLUME | 487009.493 | 3765914.798 | 545.27 | |] | LOCATION | L0001944 | VOLUME | 487012.953 | 3765913.612 | 545.44 | |] | LOCATION | L0001945 | VOLUME | 487016.413 | 3765912.426 | 545.61 | |] | LOCATION | L0001946 | VOLUME | 487019.873 | 3765911.240 | 545.78 | |] | LOCATION | L0001947 | VOLUME | 487023.333 | 3765910.054 | 545.96 | |] | LOCATION | L0001948 | VOLUME | 487026.793 | 3765908.868 | 546.13 | |] | LOCATION | L0001949 | VOLUME | 487030.253 | 3765907.682 | 546.30 | |] | LOCATION | L0001950 | VOLUME | 487033.713 | 3765906.496 | 546.49 | |] | LOCATION | L0001951 | VOLUME | 487037.173 | 3765905.310 | 546.71 | |] | LOCATION | L0001952 | VOLUME | 487040.633 | 3765904.125 | 546.89 | |] | LOCATION | L0001953 | VOLUME | 487044.093 | 3765902.939 | 547.05 | |] | LOCATION | L0001954 | VOLUME | 487047.553 | 3765901.753 | 547.20 | |] | LOCATION | L0001955 | VOLUME | 487051.013 | 3765900.567 | 547.34 | |] | LOCATION | L0001956 | VOLUME | 487054.473 | 3765899.381 | 547.47 | |] | LOCATION | L0001957 | VOLUME | 487057.933 | 3765898.195 | 547.59 | |] | LOCATION | L0001958 | VOLUME | 487061.393 | 3765897.009 | 547.69 | |] | LOCATION | L0001959 | VOLUME | 487064.853 | 3765895.823 | 547.80 | |] | LOCATION | L0001960 | VOLUME | 487068.313 | 3765894.637 | 547.91 | |] | LOCATION | L0001961 | VOLUME | 487071.773 | 3765893.451 | 548.02 | |] | LOCATION | L0001962 | VOLUME | 487075.233 | 3765892.265 | 548.13 | |] | LOCATION | L0001963 | VOLUME | 487078.693 | 3765891.079 | 548.24 | |] | LOCATION | L0001964 | VOLUME | 487082.153 | 3765889.893 | 548.35 | |] | LOCATION | L0001965 | VOLUME | 487085.613 | 3765888.707 | 548.45 | |] | LOCATION | L0001966 | VOLUME | 487089.073 | 3765887.521 | 548.56 | |] | LOCATION | L0001967 | VOLUME | 487092.533 | 3765886.335 | 548.71 | |] | LOCATION | L0001968 | VOLUME | 487095.993 | 3765885.149 | 548.87 | |] | LOCATION | L0001969 | VOLUME | 487099.453 | 3765883.963 | 549.03 | |] | LOCATION | L0001970 | VOLUME | 487102.913 | 3765882.777 | 549.19 | |] | LOCATION | L0001971 | VOLUME | 487106.373 | 3765881.591 | 549.35 | |] | LOCATION | L0001972 | VOLUME | 487109.832 | 3765880.405 | 549.52 | |] | LOCATION | L0001973 | VOLUME | 487113.292 | 3765879.219 | 549.69 | |] | LOCATION | L0001974 | VOLUME | 487116.752 | 3765878.033 | 549.87 | |] | LOCATION | L0001975 | VOLUME | 487120.100 | 3765876.562 | 550.06 | |] | LOCATION | L0001976 | VOLUME | 487123.439 | 3765875.069 | 550.27 | |] | LOCATION | L0001977 | VOLUME | 487126.778 | 3765873.576 | 550.48 | |] | LOCATION | L0001978 | VOLUME | 487130.117 | 3765872.082 | 550.66 | |] | LOCATION | L0001979 | VOLUME | 487133.456 | 3765870.589 | 550.82 | |] | LOCATION | L0001980 | VOLUME | 487136.795 | 3765869.096 | 550.95 | |] | LOCATION | L0001981 | VOLUME | 487140.134 | 3765867.603 | 551.07 | |] | LOCATION | L0001982 | VOLUME | 487143.472 | 3765866.110 | 551.39 | |] | LOCATION | L0001983 | VOLUME | 487146.811 | 3765864.617 | 551.71 | |] | LOCATION | L0001984 | VOLUME | 487150.150 | 3765863.123 | 551.99 | |] | LOCATION | L0001985 | VOLUME | 487153.489 | 3765861.630 | 552.25 | | | | L0001986 | VOLUME | 487156.828 | 3765860.137 | 552.47 | | | | L0001987 | VOLUME | 487160.167 | 3765858.644 | 552.65 | |] | LOCATION | L0001988 | VOLUME | 487163.506 | 3765857.151 | 552.81 | | | | L0001989 | VOLUME | 487166.845 | 3765855.658 | 552.95 | | | | L0001990 | VOLUME | 487170.184 | 3765854.164 | 553.13 | | | | L0001991 | VOLUME | 487173.523 | 3765852.671 | 553.27 | |] | LOCATION | L0001992 | VOLUME | 487176.862 | 3765851.178 | 553.40 | | | | | | | | | | LOCATION | L0001993 | VOLUME | 487180.201 | 3765849.685 | 553.49 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0001994 | VOLUME | 487183.540 | 3765848.192 | 553.56 | | LOCATION | L0001995 | VOLUME | 487186.879 | 3765846.699 | 553.60 | | LOCATION | L0001996 | VOLUME | 487190.218 | 3765845.205 | 553.61 | | LOCATION | L0001997 | VOLUME | 487193.557 | 3765843.712 | 553.79 | | LOCATION | L0001998 | VOLUME | 487196.890 | 3765842.208 | 553.92 | | LOCATION | L0001999 | VOLUME | 487200.180 | 3765840.610 | 554.05 | | LOCATION | L0002000 | VOLUME | 487203.471 | 3765839.012 | 554.16 | | LOCATION | L0002001 | VOLUME | 487206.761 | 3765837.415 | 554.26 | | LOCATION | L0002002 | VOLUME | 487210.051 | 3765835.817 | 554.34 | | LOCATION | L0002003 | VOLUME | 487213.341 | 3765834.220 | 554.42 | | LOCATION | L0002004 | VOLUME | 487216.632 | 3765832.622 | 554.48 | | LOCATION | L0002005 | VOLUME | 487219.922 | 3765831.024 | 554.60 | | LOCATION | L0002006 | VOLUME | 487223.212 | 3765829.427 | 554.73 | | LOCATION | L0002007 | VOLUME | 487226.502 | 3765827.829 | 554.86 | | LOCATION | L0002008 | VOLUME | 487229.792 | 3765826.231 | 554.99 | | LOCATION | L0002009 | VOLUME | 487233.083 | 3765824.634 | 555.12 | | LOCATION | L0002010 | VOLUME | 487236.373 | 3765823.036 | 555.25 | | LOCATION | L0002011 | VOLUME | 487239.663 | 3765821.438 | 555.38 | | LOCATION | L0002012 | VOLUME | 487242.953 | 3765819.841 | 555.50 | | LOCATION | L0002013 | VOLUME | 487246.244 | 3765818.243 | 555.71 | | LOCATION | L0002014 | VOLUME | 487249.534 | 3765816.646 | 555.89 | | LOCATION | L0002015 | VOLUME | 487252.824 | 3765815.048 | 556.06 | | LOCATION | L0002016 | VOLUME | 487256.114 | 3765813.450 | 556.25 | | LOCATION | L0002017 | VOLUME | 487259.404 | 3765811.853 | 556.45 | | LOCATION | L0002018 | VOLUME | 487262.695 | 3765810.255 | 556.63 | | LOCATION | L0002019 | VOLUME | 487265.985 | 3765808.657 | 556.79 | | LOCATION | L0002020 | VOLUME | 487269.275 | 3765807.060 | 556.95 | | LOCATION | L0002021 | VOLUME | 487272.565 | 3765805.462 | 557.16 | | LOCATION | L0002022 | VOLUME | 487275.856 | 3765803.864 | 557.36 | | LOCATION | L0002023 | VOLUME | 487279.146 | 3765802.267 | 557.55 | | LOCATION | | VOLUME | 487282.418 | 3765800.636 | 557.72 | | | L0002025 | VOLUME | 487285.579 | 3765798.795 | 557.88 | | | L0002026 | VOLUME | 487288.739 | 3765796.954 | 558.03 | | LOCATION | | VOLUME | 487291.900 | 3765795.112 | 558.17 | | | L0002028 | VOLUME | 487295.060 | 3765793.271 | 558.31 | | | L0002029 | VOLUME | 487298.220 | 3765791.430 | 558.48 | | LOCATION | | VOLUME | 487301.381 | 3765789.589 | 558.63 | | LOCATION | | VOLUME | 487304.541 | 3765787.747 | 558.78 | | | L0002032 | VOLUME | 487307.701 | 3765785.906 | 558.91 | | LOCATION | | VOLUME | 487310.862 | 3765784.065 | 559.04 | | LOCATION | | VOLUME | 487314.022 | 3765782.224 | 559.20 | | | L0002035 | VOLUME | 487317.183 | 3765780.383 | 559.38 | | | L0002036 | VOLUME | 487320.343 | 3765778.541 | 559.57 | | LOCATION | | VOLUME | 487323.503 | 3765776.700 | 559.82 | | LOCATION | | VOLUME | 487326.664 | 3765774.859 | 560.07 | | | L0002039 | VOLUME | 487329.824 | 3765773.018 | 560.29 | | LOCATION | | VOLUME | 487332.984 | 3765771.177 | 560.50 | | LOCATION | | VOLUME | 487336.145 | 3765769.335 | 560.69 | | | L0002042 | VOLUME | 487339.308 | 3765767.500 | 560.87 | | LOCATION | L0002043 | VOLUME | 487342.486 | 3765765.688 | 561.03 | | | | | | | | | LOCATION | L0002044 | VOLUME | 487345.663 | 3765763.876 | 561.18 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002045 | VOLUME | 487348.840 | 3765762.064 | 561.41 | | LOCATION | L0002046 | VOLUME
 487352.018 | 3765760.252 | 561.60 | | LOCATION | L0002047 | VOLUME | 487355.195 | 3765758.441 | 561.73 | | LOCATION | L0002048 | VOLUME | 487358.372 | 3765756.629 | 561.82 | | LOCATION | L0002049 | VOLUME | 487361.549 | 3765754.817 | 561.86 | | LOCATION | L0002050 | VOLUME | 487364.727 | 3765753.005 | 561.85 | | LOCATION | L0002051 | VOLUME | 487367.904 | 3765751.193 | 561.96 | | LOCATION | L0002052 | VOLUME | 487371.081 | 3765749.381 | 562.12 | | LOCATION | L0002053 | VOLUME | 487374.259 | 3765747.569 | 562.39 | | LOCATION | L0002054 | VOLUME | 487377.436 | 3765745.757 | 562.64 | | LOCATION | L0002055 | VOLUME | 487380.613 | 3765743.945 | 562.88 | | LOCATION | L0002056 | VOLUME | 487383.790 | 3765742.134 | 563.10 | | LOCATION | L0002057 | VOLUME | 487386.968 | 3765740.322 | 563.31 | | LOCATION | L0002058 | VOLUME | 487390.145 | 3765738.510 | 563.51 | | LOCATION | L0002059 | VOLUME | 487393.322 | 3765736.698 | 563.69 | | LOCATION | L0002060 | VOLUME | 487396.500 | 3765734.886 | 563.85 | | LOCATION | L0002061 | VOLUME | 487399.677 | 3765733.074 | 564.13 | | LOCATION | L0002062 | VOLUME | 487402.854 | 3765731.262 | 564.36 | | LOCATION | L0002063 | VOLUME | 487406.031 | 3765729.450 | 564.53 | | LOCATION | L0002064 | VOLUME | 487409.209 | 3765727.638 | 564.64 | | LOCATION | L0002065 | VOLUME | 487412.406 | 3765725.864 | 564.69 | | LOCATION | L0002066 | VOLUME | 487415.653 | 3765724.179 | 564.70 | | LOCATION | L0002067 | VOLUME | 487418.899 | 3765722.495 | 564.66 | | LOCATION | L0002068 | VOLUME | 487422.146 | 3765720.810 | 564.70 | | LOCATION | L0002069 | VOLUME | 487425.392 | 3765719.125 | 564.98 | | LOCATION | L0002070 | VOLUME | 487428.639 | 3765717.440 | 565.25 | | LOCATION | L0002071 | VOLUME | 487431.885 | 3765715.755 | 565.50 | | LOCATION | L0002072 | VOLUME | 487435.132 | 3765714.071 | 565.74 | | LOCATION | L0002073 | VOLUME | 487438.378 | 3765712.386 | 565.96 | | LOCATION | L0002074 | VOLUME | 487441.625 | 3765710.701 | 566.17 | | LOCATION | L0002075 | VOLUME | 487444.871 | 3765709.016 | 566.37 | | LOCATION | | VOLUME | 487448.117 | 3765707.331 | 566.56 | | LOCATION | | VOLUME | 487451.364 | 3765705.647 | 566.89 | | LOCATION | | VOLUME | 487454.610 | 3765703.962 | 567.16 | | LOCATION | | VOLUME | 487457.857 | 3765702.277 | 567.39 | | LOCATION | | VOLUME | 487461.103 | 3765700.592 | 567.56 | | LOCATION | | VOLUME | 487464.350 | 3765698.907 | 567.68 | | LOCATION | | VOLUME | 487467.596 | 3765697.223 | 567.75 | | LOCATION | | VOLUME | 487470.843 | 3765695.538 | 567.77 | | LOCATION | | VOLUME | 487474.089 | 3765693.853 | 567.75 | | LOCATION | | VOLUME | 487477.336 | 3765692.168 | 567.77 | | LOCATION | | VOLUME | 487480.582 | 3765690.484 | 567.82 | | LOCATION | | VOLUME | 487483.829 | 3765688.801 | 568.06 | | LOCATION | | VOLUME | 487487.077 | 3765687.117 | 568.30 | | LOCATION | | VOLUME | 487490.324 | 3765685.434 | 568.53 | | LOCATION | | VOLUME | 487493.571 | 3765683.751 | 568.74 | | LOCATION | | VOLUME | 487496.819 | 3765682.068 | 568.94 | | LOCATION | | VOLUME | 487500.066 | 3765680.385 | 569.19 | | LOCATION | | VOLUME | 487503.313 | 3765678.702 | 569.55 | | LOCATION | L0002094 | VOLUME | 487506.561 | 3765677.019 | 569.87 | | | | | | | | | | LOCATION L0002095 | 5 | VOLUME | 487509.808 | 3765675 | .336 | 570.14 | Ŀ | |---|--------------------|----------|-----------|------------|---------|-------|--------|----------| | | LOCATION L0002096 | 5 | VOLUME | 487513.055 | 3765673 | 3.652 | 570.36 | 5 | | | LOCATION L0002097 | 7 | VOLUME | 487516.303 | 3765671 | .969 | 570.54 | Ŀ | | | LOCATION L0002098 | 3 | VOLUME | 487519.550 | 3765670 | .286 | 570.67 | , | | | LOCATION L0002099 |) | VOLUME | 487522.797 | 3765668 | 3.603 | 570.75 | , | | | LOCATION L0002100 |) | VOLUME | 487526.045 | 3765666 | .920 | 570.85 | | | | LOCATION L0002101 | _ | VOLUME | 487529.265 | 3765665 | .186 | 570.95 | | | | LOCATION L0002102 | 2 | VOLUME | 487532.467 | 3765663 | 3.418 | 570.95 | | | | LOCATION L0002103 | 3 | VOLUME | 487535.669 | | .650 | 570.87 | , | | | LOCATION L0002104 | <u> </u> | VOLUME | 487538.871 | 3765659 | .882 | 570.70 |) | | | LOCATION L0002105 | 5 | VOLUME | 487542.073 | 3765658 | 3.114 | 570.88 | 3 | | | LOCATION L0002106 | 5 | VOLUME | 487545.274 | 3765656 | 3.346 | 571.06 | ; | | | LOCATION L0002107 | 7 | VOLUME | 487548.476 | | | | | | | LOCATION L0002108 | | VOLUME | 487551.678 | | | | | | | LOCATION L0002109 | | VOLUME | 487554.880 | | | | | | | LOCATION L0002110 |) | VOLUME | 487558.082 | 3765649 | .274 | 572.14 | <u>.</u> | | | LOCATION L0002111 | | VOLUME | 487561.284 | | | | | | | LOCATION L0002112 | 2 | VOLUME | 487564.486 | | | | | | | LOCATION L0002113 | | VOLUME | 487567.687 | | | | | | | LOCATION L0002114 | | VOLUME | 487570.889 | | | | | | | LOCATION L0002115 | | VOLUME | 487574.091 | | | | | | | LOCATION L0002116 | | VOLUME | 487577.312 | | | | | | | LOCATION L0002117 | 7 | VOLUME | 487580.582 | 3765637 | 7.063 | 573.56 | ; | | | LOCATION L0002118 | | VOLUME | 487583.853 | | | | | | | LOCATION L0002119 |) | VOLUME | 487587.124 | 3765633 | 3.790 | 573.72 | 2 | | | LOCATION L0002120 | | VOLUME | 487590.395 | | | | | | | LOCATION L0002121 | | VOLUME | 487593.666 | | | | | | | LOCATION L0002122 | 2 | VOLUME | 487596.937 | | | | | | | LOCATION L0002123 | 3 | VOLUME | 487600.208 | | | | | | | LOCATION L0002124 | | VOLUME | 487603.479 | | | | | | | LOCATION L0002125 | 5 | VOLUME | 487606.750 | | | | | | | LOCATION L0002126 | | VOLUME | 487610.020 | | | | | | | LOCATION L0002127 | | VOLUME | 487613.291 | | | | | | | LOCATION L0002128 | 3 | VOLUME | 487616.562 | 3765619 | .058 | 574.93 | 3 | | | LOCATION L0002129 |) | VOLUME | 487619.833 | 3765617 | 7.421 | 575.17 | , | | | LOCATION L0002130 |) | VOLUME | 487623.104 | 3765615 | .784 | 575.39 |) | | * | End of LINE VOLUM | IE Soi | arce ID = | SLINE2 | | | | | | * | Source Parameters | ** | | | | | | | | * | LINE VOLUME Source | e ID | = SLINE1 | | | | | | | | SRCPARAM L0001522 | 2 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001523 | 3 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001524 | Į. | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001525 | 5 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001526 | 5 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001527 | 7 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001528 | 3 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001529 |) | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001530 |) | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001531 | | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001532 | 2 | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | SRCPARAM L0001533 | } | 0.0000036 | 539 0. | 0.0 | 1.70 | 0 | .85 | | | | | | | | | | | | | L0001534 | 0.00003639 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|--------------|------| | | L0001535 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001536 | 0.00003639 | 0.00 | 1.70 | 0.85 | | | L0001537 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001538 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001539 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001540 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001541 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001542 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001543 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001544 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001545 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001546 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001547 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001548 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001549 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001550 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001551 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001552 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001553 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001554 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001555 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001556 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001557 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001558 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001559 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001560 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001561 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001562 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001563 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001564 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001565 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001566 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001567 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001568 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001569 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001570 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001570 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001571 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001572 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001573 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001574 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001575 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001570 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001577 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0001579 | 0.000003639 | 0.00 | 1.70
1.70 | 0.85 | | | L0001580 | 0.000003639 | 0.00 | | 0.85 | | | L0001581 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001582 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001583 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SKCPARAM | L0001584 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001585 | 0.000003639 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | | L0001586 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001587 | 0.00003639 | 0.00 | 1.70 | 0.85 | | | L0001588 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001589 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001590 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001591 |
0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001592 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001593 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001594 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001595 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001596 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001597 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001598 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001599 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001600 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001601 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001602 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001603 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001604 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001605 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001606 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001607 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001608 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001609 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001610 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001611 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001612 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001613 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001614 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001615 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001616 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001617 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001618 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001619 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001619 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001621 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001622 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001623 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001623 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001625 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001625 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001627 | | | | | | | L0001628 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001629 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001630 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001631 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001632 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001633 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001634 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001635 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001636 | 0.000003639 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0001637 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001638 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001639 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001640 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001641 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001642 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001643 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001644 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001645 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001646 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001647 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001648 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001649 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001650 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001651 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001652 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001653 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001654 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001655 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001656 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001657 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001658 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001659 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001660 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001661 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001662 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001663 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001664 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001665 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001666 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001667 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001668 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001669 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001670 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001674 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001675 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001676 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001677 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001678 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001686 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001687 | 0.000003639 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | | L0001688 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001689 | 0.00003639 | 0.00 | 1.70 | 0.85 | | | L0001690 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001691 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001692 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001693 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001694 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001695 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001696 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001697 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001698 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001699 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001700 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001701 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001702 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001703 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001704 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001705 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001706 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001707 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001708 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001709 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001710 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001711 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001712 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001713 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001714 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001715 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001716 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001717 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001717 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001719 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001719 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001720 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001721 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001722 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001723 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001724 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001725 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001727 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001727 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001729 | | | | | | | L0001730 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001731 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001732 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001733 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001734 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001735 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | L0001736 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001737 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001738 | 0.000003639 | 0.00 | 1.70 | 0.85 | |-------------|---------|-------------|------|------|------| | SRCPARAM LO | 001739 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001740 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001741 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001742 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001743 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001744 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001745 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001746 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001747 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001748 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001749 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001750 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001751 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001752 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001753 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001754 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001755 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001756 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001757 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001758 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001759 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001760 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001761 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001762 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 001763 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | 001764 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0 | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 |
1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.00003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.00003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.00003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM LO | 00T.488 | 0.000003639 | 0.00 | 1.70 | 0.85 | | an an | - 0001 500 | 0 000000000 | 0 00 | 1 50 | 0 05 | |----------|---------------|-------------|------|------|------| | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001798 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001799 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001803 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001804 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001805 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001806 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001807 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001808 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001809 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001810 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001811 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001812 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001813 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001814 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001815 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001816 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001817 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001818 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001819 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001820 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001821 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001822 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001823 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001824 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001825 | 0.000003639 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001826 | 0.000003639 | 0.00 | 1.70 | 0.85 | | | | | | | | | | JME Source ID | | | | | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001837 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | | | | | | * * * * | SRCPARAM | L0001838 | 0.000003651 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0001839 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001840 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001841 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001842 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001843 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001844 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001845 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001846 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001847 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001848 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001849 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001850 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001851 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001852 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001853 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001854 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001855 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001856 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001857 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001858 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001859 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001860 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001861 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001862 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001863 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001864 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001865 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001866 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001867 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001868 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001869 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001870 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001871 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001872 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001873 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001874 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001875 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001876 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001877 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001878 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001879 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001880 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001881 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001882 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001883 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001884 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001885 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001886 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001887 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001888 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001889 | 0.000003651 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0001890 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001891 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001892 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001893 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001894 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001895 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001896 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001897 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001898 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001899 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001900 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001901 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001902 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001903 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001904 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001905 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001906 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001907 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001908 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001909 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001910 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001911 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001912 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001913 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001914 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001915 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001916 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001917 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001918 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001919 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001920 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001921 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001922 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001923 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001924 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001925 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001926 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001927 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001928 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001929 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001930 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001931 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001932 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001933 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001934 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001935 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001936 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001937 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | L0001938 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001939 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01940 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | |--------------|-----------|-----------|------|------|------| | SRCPARAM L00 | 01941 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01942 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01943 0.0 | 00003651 | 0.00 |
1.70 | 0.85 | | SRCPARAM L00 | 01944 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01945 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01946 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01947 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01948 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01949 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01950 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01951 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01952 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01953 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01954 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01955 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01956 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01957 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01958 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01959 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01960 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01961 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01962 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01963 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01964 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01965 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 01966 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | | 000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00 | 0.0 | 00003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001991 | 0.000003651 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0001992 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001993 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001994 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001995 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001996 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001997 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001998 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0001999 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002000 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002001 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002002 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002003 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002004 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002005 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002006 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002007 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002008 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002009 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002010 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002011 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002012 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002013 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002014 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002015 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002016 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002017 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002041 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002042 | 0.000003651 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0002043 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002044 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002045 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002046 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002047 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002048 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002049 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002050 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002051 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002052 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002053 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002054 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002055 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002056 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002057 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002058 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002059 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002060 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002061 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002062 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002063 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002064 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002065 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002066 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002067 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002068 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002069 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002070 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002071 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002072 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002073 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002074 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002075 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002076 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002077 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002078 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002079 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002080 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002081 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002082 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002083 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002084 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002085 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002086 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002087 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002088 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002089 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002090 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002091 | 0.000003651 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002092 | 0.000003651 | 0.00 | 1.70 | 0.85 | | | | | | | | ``` SRCPARAM L0002093 0.000003651 0.00 1.70 0.85 0.00 1.70 0.85 SRCPARAM L0002094 0.000003651 SRCPARAM L0002095 0.000003651 0.00 1.70 0.85 SRCPARAM L0002096 0.000003651 0.00 1.70 0.85 SRCPARAM L0002097 0.000003651 0.00 1.70 0.85 SRCPARAM L0002098 0.000003651 0.00 1.70 0.85 SRCPARAM L0002099 0.000003651 0.00 1.70 0.85 SRCPARAM L0002100 0.000003651 0.00 1.70 0.85 SRCPARAM L0002101 0.000003651 0.00 1.70 0.85 SRCPARAM L0002102 0.000003651 0.00 1.70 0.85 SRCPARAM L0002103 0.000003651 0.00 1.70 0.85 SRCPARAM L0002104 0.000003651 0.00 1.70 0.85 SRCPARAM L0002105 0.000003651 0.00 1.70 0.85 0.00 1.70 SRCPARAM L0002106 0.000003651 0.85 SRCPARAM L0002107 0.00 1.70 0.000003651 0.85 SRCPARAM L0002108 0.000003651 0.00 1.70 0.85 SRCPARAM L0002109 0.000003651 0.00 1.70 0.85 SRCPARAM L0002110 0.000003651 0.00 1.70 0.85 SRCPARAM L0002111 1.70 0.000003651 0.00 0.85 SRCPARAM L0002112 0.000003651 0.00 1.70 0.85 SRCPARAM L0002113 0.000003651 0.00 1.70 0.85 SRCPARAM L0002114 0.000003651 0.00 1.70 0.85 SRCPARAM L0002115 0.000003651 0.00 1.70 0.85 1.70 SRCPARAM L0002116 0.000003651 0.00 0.85 SRCPARAM L0002117 0.000003651 0.00 1.70 0.85 SRCPARAM L0002118 0.000003651 0.00 1.70 0.85 SRCPARAM L0002119 0.000003651 0.00 1.70 0.85 SRCPARAM L0002120 0.000003651 0.00 1.70 0.85 0.00 1.70 SRCPARAM L0002121 0.000003651 0.85 SRCPARAM L0002122 0.000003651 0.00 1.70 0.85 1.70 SRCPARAM L0002123 0.000003651 0.00 0.85 SRCPARAM
L0002124 0.000003651 0.00 1.70 0.85 SRCPARAM L0002125 0.000003651 0.00 1.70 0.85 SRCPARAM L0002126 0.000003651 0.00 1.70 0.85 SRCPARAM L0002127 0.000003651 1.70 0.00 0.85 SRCPARAM L0002128 0.000003651 0.00 1.70 0.85 SRCPARAM L0002129 0.000003651 0.00 1.70 0.85 SRCPARAM L0002130 0.000003651 0.00 1.70 0.85 URBANSRC ALL SRCGROUP ALL SO FINISHED ** AERMOD Receptor Pathway * * RE STARTING INCLUDED "Terracina at Redlands 2028-2041.rou" RE FINISHED ``` ``` ** AERMOD Meteorology Pathway *********** ** ME STARTING SURFFILE "E:\New MET data\RDLD_V9_ADJU\RDLD_v9.SFC" PROFFILE "E:\New MET data\RDLD V9 ADJU\RDLD v9.PFL" SURFDATA 3171 2012 UAIRDATA 3190 2012 SITEDATA 99999 2012 PROFBASE 481.0 METERS ME FINISHED ********** ** AERMOD Output Pathway ********** * * OU STARTING ** Auto-Generated Plotfiles PLOTFILE PERIOD ALL "TERRACINA AT REDLANDS 2028-2041.AD\PE00GALL.PLT" 31 SUMMFILE "Terracina at Redlands 2028-2041.sum" OU FINISHED *** Message Summary For AERMOD Model Setup *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) 0 Informational Message(s) A Total of ****** FATAL ERROR MESSAGES ****** *** NONE *** ME W186 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ********* *** SETUP Finishes Successfully *** ********** *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 08/11/21 * * * 21:00:06 ``` ``` *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* MODEL SETUP OPTIONS SUMMARY **Model Is Setup For Calculation of Average CONCentration Values. -- DEPOSITION LOGIC -- **NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. DRYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses URBAN Dispersion Algorithm for the SBL for 609 Source(s), for Total of 1 Urban Area(s): Urban Population = 2035210.0; Urban Roughness Length = 1.000 m **Model Uses Regulatory DEFAULT Options: 1. Stack-tip Downwash. 2. Model Accounts for ELEVated Terrain Effects. 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. 6. Urban Roughness Length of 1.0 Meter Assumed. **Other Options Specified: ADJ_U* - Use ADJ_U* option for SBL in AERMET TEMP_Sub - Meteorological data includes TEMP substitutions **Model Assumes No FLAGPOLE Receptor Heights. **The User Specified a Pollutant Type of: DPM **Model Calculates PERIOD Averages Only **This Run Includes: 609 Source(s); 1 Source Group(s); and 449 Receptor(s) with: 0 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 609 VOLUME source(s) and: 0 AREA type source(s) and: 0 LINE source(s) and: 0 RLINE/RLINEXT source(s) and: 0 OPENPIT source(s) and: **Model Set To Continue RUNning After the Setup Testing. ``` Apx - 223 **The AERMET Input Meteorological Data Version Date: 16216 #### **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours $\tt m$ for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 481.00; Decay Coef. = 0.000; Rot. Angle = 0.0 Emission Units = GRAMS/SEC Output Units = MICROGRAMS/M**3 ; Emission Rate Unit Factor = 0.10000E+07 *** 08/11/21 **Approximate Storage Requirements of Model = 3.8 MB of RAM. **Input Runstream File: aermod.inp **Output Print File: aermod.out **Detailed Error/Message File: Terracina at Redlands 2028-2041.err **File for Summary of Results: Terracina at Redlands 2028-2041.sum *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* MIMPED ENTOCION DAME | | NUMBER | EMISSION RATE | Œ | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001522 | 0 | 0.36390E-05 | 486617.8 | 3766076.2 | 527.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001523 | 0 | 0.36390E-05 | 486621.2 | 3766075.0 | 527.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001524 | 0 | 0.36390E-05 | 486624.7 | 3766073.9 | 527.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001525 | 0 | 0.36390E-05 | 486628.2 | 3766072.7 | 527.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001526 | 0 | 0.36390E-05 | 486631.6 | 3766071.5 | 527.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001527 | 0 | 0.36390E-05 | 486635.1 | 3766070.3 | 528.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001528 | 0 | 0.36390E-05 | 486638.6 | 3766069.1 | 528.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001529 | 0 | 0.36390E-05 | 486642.0 | 3766068.0 | 528.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001530 | 0 | 0.36390E-05 | 486645.5 | 3766066.8 | 528.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001531 | 0 | 0.36390E-05 | 486648.9 | 3766065.6 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001532 | 0 | 0.36390E-05 | 486652.4 | 3766064.4 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001533 | 0 | 0.36390E-05 | 486655.9 | 3766063.3 | 528.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001534 | 0 | 0.36390E-05 | 486659.3 | 3766062.1 | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001535 | 0 | 0.36390E-05 | 486662.8 | 3766060.9 | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001536 | 0 | 0.36390E-05 | | 3766059.7 | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001537 | 0 | 0.36390E-05 | | 3766058.6 | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | ======= | · · | 05 | | | | | , | | -20 | | | L0001538 0 | 0.36390E-05 | 486673.2 3766057.4 | 529.5 | 0.00 | 1.70 | 0.85 | YES | | |----------------------|-------------|----------------------|------------|----------|-----------|------|-----|-----| | | 0.36390E-05 | 486676.6 3766056.2 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486680.1 3766055.0 | 529.9 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486683.6 3766053.8 | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486687.0 3766052.7 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486690.5 3766051.5 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486694.0 3766050.3 | 530.7 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486697.4 3766049.1 | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486700.9 3766048.0 | 531.0 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486704.3 3766046.8 | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486707.8 3766045.6 | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486711.3 3766044.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486714.7 3766043.2 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486718.2 3766042.1 | 531.8 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486721.7 3766040.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001553 0 | 0.36390E-05 | 486725.1 3766039.7 | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | | 0.36390E-05 | 486728.6 3766038.5 | 532.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001555 0 | 0.36390E-05 | 486732.1 3766037.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001556 0 | 0.36390E-05 | 486735.5 3766036.2 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001557 0 | 0.36390E-05 | 486739.0 3766035.0 | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001558 0 | 0.36390E-05 | 486742.4 3766033.8 | 533.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001559 0 | 0.36390E-05 | 486745.9 3766032.7 | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001560 0 | 0.36390E-05 | 486749.4 3766031.5 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001561 0 | 0.36390E-05 | 486752.8 3766030.3 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | *** AERMOD - VERSION | 21112 *** | *** Terracina at Red | lands | | | | | *** | | *** AERMET - VERSION | 16216 *** | *** Freeway-related | DPM Concen | trations | 2028-2041 | | | *** | | | | | | | | | | | ## *** VOLUME SOURCE DATA *** 08/11/21 21:00:06 PAGE 3 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | |--------------|--------------------|---------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------| | L0001562 | 0 | 0.36390E-05 | 486756.3 | 3766029.1 | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001563 | 0 | 0.36390E-05 | 486759.8 | 3766027.9 | 533.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001564 | 0 | 0.36390E-05 | 486763.2 | 3766026.8 | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001565 | 0 | 0.36390E-05 | 486766.7 | 3766025.6 | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001566 | 0 | 0.36390E-05 | 486770.1 | 3766024.4 | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001567 | 0 | 0.36390E-05 | 486773.6 | 3766023.2 | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001568 | 0 | 0.36390E-05 | 486777.1 | 3766022.1 | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001569 | 0 | 0.36390E-05 | 486780.5 | 3766020.9 | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001570 | 0 | 0.36390E-05 | 486784.0 | 3766019.7 | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001571 | 0 | 0.36390E-05 | 486787.5 | 3766018.5 | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001572 | 0 | 0.36390E-05 | 486790.9 | 3766017.4 | 535.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001573 | 0 | 0.36390E-05 | 486794.4 | 3766016.2 | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001574 | 0 | 0.36390E-05 | 486797.9 | 3766015.1 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001575 | 0 | 0.36390E-05 | 486801.4 3766013.9 | 536.5 | 0.00 | 1.70 | 0.85 | YES | | |------------------|------|-------------|----------------------|--------|------|------|------|-----|-----| |
L0001576 | 0 | 0.36390E-05 | 486804.8 3766012.8 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001577 | 0 | 0.36390E-05 | 486808.3 3766011.6 | 536.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001578 | 0 | 0.36390E-05 | 486811.8 3766010.5 | 536.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001579 | 0 | 0.36390E-05 | 486815.2 3766009.3 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001580 | 0 | 0.36390E-05 | 486818.7 3766008.2 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001581 | 0 | 0.36390E-05 | 486822.2 3766007.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001582 | 0 | 0.36390E-05 | 486825.7 3766005.9 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001583 | 0 | 0.36390E-05 | 486829.1 3766004.8 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001584 | 0 | 0.36390E-05 | 486832.6 3766003.6 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001585 | 0 | 0.36390E-05 | 486836.1 3766002.5 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001586 | 0 | 0.36390E-05 | 486839.5 3766001.3 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001587 | 0 | 0.36390E-05 | 486843.0 3766000.2 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001588 | 0 | 0.36390E-05 | 486846.5 3765999.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001589 | 0 | 0.36390E-05 | 486850.0 3765997.9 | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001590 | 0 | 0.36390E-05 | 486853.4 3765996.7 | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001591 | 0 | 0.36390E-05 | 486856.9 3765995.6 | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001592 | 0 | 0.36390E-05 | 486860.4 3765994.4 | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001593 | 0 | 0.36390E-05 | 486863.9 3765993.3 | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001594 | 0 | 0.36390E-05 | 486867.3 3765992.1 | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001595 | 0 | 0.36390E-05 | 486870.8 3765991.0 | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001596 | 0 | 0.36390E-05 | 486874.3 3765989.8 | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001597 | 0 | 0.36390E-05 | 486877.7 3765988.7 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001598 | 0 | 0.36390E-05 | 486881.2 3765987.5 | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001599 | 0 | 0.36390E-05 | 486884.7 3765986.4 | 539.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001600 | 0 | 0.36390E-05 | 486888.2 3765985.2 | 539.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001601 | 0 | 0.36390E-05 | 486891.6 3765984.1 | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | *** AERMOD - VER | SION | 21112 *** | *** Terracina at Rec | dlands | | | | | *** | | | | | | | | | | | | ### *** VOLUME SOURCE DATA *** 08/11/21 21:00:06 PAGE 4 *** | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATI | X
(METERS)
 | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | |--------------|--------------------|---------------|-------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------| | L0001602 | 0 | 0.36390E-05 | 486895.1 | 3765982.9 | 539.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001603 | 0 | 0.36390E-05 | 486898.6 | 3765981.7 | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001604 | 0 | 0.36390E-05 | 486902.0 | 3765980.5 | 540.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001605 | 0 | 0.36390E-05 | 486905.5 | 3765979.3 | 540.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001606 | 0 | 0.36390E-05 | 486908.9 | 3765978.1 | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001607 | 0 | 0.36390E-05 | 486912.4 | 3765976.9 | 540.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001608 | 0 | 0.36390E-05 | 486915.8 | 3765975.6 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001609 | 0 | 0.36390E-05 | 486919.3 | 3765974.4 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001610 | 0 | 0.36390E-05 | 486922.7 | 3765973.2 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001611 | 0 | 0.36390E-05 | 486926.2 | 3765972.0 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001612 | 0 | 0.36390E-05 | 486929.6 3765970.8 | 540.8 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|--------------------|-------|------|------|------|-----| | L0001613 | 0 | 0.36390E-05 | 486933.1 3765969.5 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | L0001614 | 0 | 0.36390E-05 | 486936.5 3765968.3 | 540.9 | 0.00 | 1.70 | 0.85 | YES | | L0001615 | 0 | 0.36390E-05 | 486939.9 3765967.1 | 541.1 | 0.00 | 1.70 | 0.85 | YES | | L0001616 | 0 | 0.36390E-05 | 486943.4 3765965.9 | 541.3 | 0.00 | 1.70 | 0.85 | YES | | L0001617 | 0 | 0.36390E-05 | 486946.8 3765964.7 | 541.5 | 0.00 | 1.70 | 0.85 | YES | | L0001618 | 0 | 0.36390E-05 | 486950.3 3765963.4 | 541.7 | 0.00 | 1.70 | 0.85 | YES | | L0001619 | 0 | 0.36390E-05 | 486953.7 3765962.2 | 541.9 | 0.00 | 1.70 | 0.85 | YES | | L0001620 | 0 | 0.36390E-05 | 486957.2 3765961.0 | 542.1 | 0.00 | 1.70 | 0.85 | YES | | L0001621 | 0 | 0.36390E-05 | 486960.6 3765959.8 | 542.3 | 0.00 | 1.70 | 0.85 | YES | | L0001622 | 0 | 0.36390E-05 | 486964.1 3765958.6 | 542.5 | 0.00 | 1.70 | 0.85 | YES | | L0001623 | 0 | 0.36390E-05 | 486967.5 3765957.3 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | L0001624 | 0 | 0.36390E-05 | 486971.0 3765956.1 | 542.9 | 0.00 | 1.70 | 0.85 | YES | | L0001625 | 0 | 0.36390E-05 | 486974.4 3765954.9 | 543.0 | 0.00 | 1.70 | 0.85 | YES | | L0001626 | 0 | 0.36390E-05 | 486977.9 3765953.7 | 543.2 | 0.00 | 1.70 | 0.85 | YES | | L0001627 | 0 | 0.36390E-05 | 486981.3 3765952.5 | 543.4 | 0.00 | 1.70 | 0.85 | YES | | L0001628 | 0 | 0.36390E-05 | 486984.8 3765951.2 | 543.5 | 0.00 | 1.70 | 0.85 | YES | | L0001629 | 0 | 0.36390E-05 | 486988.2 3765950.0 | 543.7 | 0.00 | 1.70 | 0.85 | YES | | L0001630 | 0 | 0.36390E-05 | 486991.7 3765948.8 | 543.8 | 0.00 | 1.70 | 0.85 | YES | | L0001631 | 0 | 0.36390E-05 | 486995.1 3765947.6 | 543.9 | 0.00 | 1.70 | 0.85 | YES | | L0001632 | 0 | 0.36390E-05 | 486998.6 3765946.4 | 544.0 | 0.00 | 1.70 | 0.85 | YES | | L0001633 | 0 | 0.36390E-05 | 487002.0 3765945.1 | 544.1 | 0.00 | 1.70 | 0.85 | YES | | L0001634 | 0 | 0.36390E-05 | 487005.5 3765943.9 | 544.2 | 0.00 | 1.70 | 0.85 | YES | | L0001635 | 0 | 0.36390E-05 | 487008.9 3765942.7 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | L0001636 | 0 | 0.36390E-05 | 487012.4 3765941.5 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | L0001637 | 0 | 0.36390E-05 | 487015.8 3765940.3 | 544.4 | 0.00 | 1.70 | 0.85 | YES | | L0001638 | 0 | 0.36390E-05 | 487019.3 3765939.0 | 544.5 | 0.00 | 1.70 | 0.85 | YES | | L0001639 | 0 | 0.36390E-05 | 487022.7 3765937.7 | 544.5 | 0.00 | 1.70 | 0.85 | YES | | L0001640 | 0 | 0.36390E-05 | 487026.1 3765936.4 | 544.7 | 0.00 | 1.70 | 0.85 | YES | | L0001641 | 0 | 0.36390E-05 | 487029.5 3765935.1 | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** VOLUME SOURCE DATA *** *** 08/11/21 21:00:06 PAGE 5 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------|---------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | L0001642 | 0 | 0.36390E-05 | 487032.9 | 3765933.7 | 545.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001643 | 0 | 0.36390E-05 | 487036.3 | 3765932.4 | 545.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001644 | 0 | 0.36390E-05 | 487039.7 | 3765931.0 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001645 | 0 | 0.36390E-05 | 487043.1 | 3765929.7 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001646 | 0 | 0.36390E-05 | 487046.5 | 3765928.4 | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001647 | 0 | 0.36390E-05 | 487049.9 | 3765927.0 | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001648 | 0 | 0.36390E-05 | 487053.3 | 3765925.7 | 546.2 | 0.00 | 1.70 | 0.85 | YES | | | -0001640 | _ | 0 06000= 05 | 400000 | 2065004 2 | F 4 6 4 | 0 00 | 1 60 | 0 05 | ***** | |----------|---|-------------|----------|-----------|---------|------|------|------|-------| | L0001649 | 0 | 0.36390E-05 | | 3765924.3 | 546.4 | 0.00 | 1.70 | 0.85 | YES | | L0001650 | 0 | 0.36390E-05 | | 3765923.0 | 546.6 | 0.00 | 1.70 | 0.85 | YES | | L0001651 | 0 | 0.36390E-05 | | 3765921.7 | 546.7 | 0.00 | 1.70 | 0.85 | YES | | L0001652 | 0 | 0.36390E-05 | 487066.9 | 3765920.3 | 546.9 | 0.00 | 1.70 | 0.85 | YES | | L0001653 | 0 | 0.36390E-05 | 487070.3 | 3765919.0 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | L0001654 | 0 | 0.36390E-05 | 487073.7 | 3765917.6 | 547.2 | 0.00 | 1.70 | 0.85 | YES | | L0001655 | 0 | 0.36390E-05 | 487077.1 | 3765916.3 | 547.3 | 0.00 | 1.70 | 0.85 | YES | | L0001656 | 0 | 0.36390E-05 | 487080.5 | 3765915.0 | 547.4 | 0.00 | 1.70 | 0.85 | YES | | L0001657 | 0 | 0.36390E-05 | 487083.9 | 3765913.6 | 547.5 | 0.00 | 1.70 | 0.85 | YES | | L0001658 | 0 | 0.36390E-05 | 487087.3 | 3765912.3 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | L0001659 | 0 | 0.36390E-05 | 487090.7 | 3765910.9 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | L0001660 | 0 | 0.36390E-05 | 487094.1 | 3765909.6 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | L0001661 | 0 | 0.36390E-05 | 487097.5 | 3765908.3 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | L0001662 | 0 | 0.36390E-05 | 487100.9 | 3765906.9 | 547.8 | 0.00 | 1.70 | 0.85 | YES | | L0001663 | 0 | 0.36390E-05 | 487104.4 | 3765905.6 | 547.9 | 0.00 | 1.70 | 0.85 | YES | | L0001664 | 0 | 0.36390E-05 | 487107.8 | 3765904.2 | 548.0 | 0.00 | 1.70 | 0.85 | YES | | L0001665 | 0 | 0.36390E-05 | 487111.2 | 3765902.9 | 548.2 | 0.00 | 1.70 | 0.85 | YES | | L0001666 | 0 | 0.36390E-05 | 487114.6 | 3765901.6 | 548.3 | 0.00 | 1.70 | 0.85 | YES | | L0001667 | 0 | 0.36390E-05 | 487118.0 | 3765900.2 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | L0001668 | 0 | 0.36390E-05 | 487121.4 | 3765898.9 | 548.8 | 0.00 | 1.70 | 0.85 | YES | | L0001669 | 0 | 0.36390E-05 | | 3765897.5 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | L0001670 | 0 | 0.36390E-05 | | 3765896.2 | 549.2 | 0.00 | 1.70 |
0.85 | YES | | L0001671 | 0 | 0.36390E-05 | | 3765894.7 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | L0001672 | 0 | 0.36390E-05 | | 3765893.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | L0001673 | 0 | 0.36390E-05 | | 3765891.7 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | L0001674 | 0 | 0.36390E-05 | | 3765890.2 | 550.2 | 0.00 | 1.70 | 0.85 | YES | | L0001675 | 0 | 0.36390E-05 | | 3765888.7 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | L0001676 | 0 | 0.36390E-05 | | 3765887.2 | 551.3 | 0.00 | 1.70 | 0.85 | YES | | L0001677 | 0 | 0.36390E-05 | | 3765885.8 | 551.8 | 0.00 | 1.70 | 0.85 | YES | | L0001678 | 0 | 0.36390E-05 | | 3765884.3 | 552.3 | 0.00 | 1.70 | 0.85 | YES | | L0001679 | 0 | 0.36390E-05 | | 3765882.8 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | L0001680 | 0 | 0.36390E-05 | | 3765881.3 | 553.2 | 0.00 | 1.70 | 0.85 | YES | | L0001681 | 0 | 0.36390E-05 | | 3765879.8 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | TOOOTOOT | U | 0.303905-03 | 10/104.9 | 3103013.0 | 555.0 | 0.00 | 1.70 | 0.05 | 1110 | | | | | | | | | | | | *** 08/11/21 *** 21:00:06 PAGE 6 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE (GRAMS/SEC) | X
(METERS)
 | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | | |--------------|--------------------|---------------------------|-------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------|--| | L0001682 | 0 | 0.36390E-05 | 487168.3 | 3765878.3 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001683 | 0 | 0.36390E-05 | 487171.6 | 3765876.8 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001684 | 0 | 0.36390E-05 | 487174.9 | 3765875.4 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001685 | 0 | 0.36390E-05 | 487178.3 | 3765873.9 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001686 | 0 | 0.36390E-05 | 487181.6 3765872.4 | 555.4 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|--------------------|-------|------|------|------|-----| | L0001687 | 0 | 0.36390E-05 | 487185.0 3765870.9 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | L0001688 | 0 | 0.36390E-05 | 487188.3 3765869.4 | 555.9 | 0.00 | 1.70 | 0.85 | YES | | L0001689 | 0 | 0.36390E-05 | 487191.7 3765867.9 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | L0001690 | 0 | 0.36390E-05 | 487195.0 3765866.4 | 555.8 | 0.00 | 1.70 | 0.85 | YES | | L0001691 | 0 | 0.36390E-05 | 487198.3 3765865.0 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | L0001692 | 0 | 0.36390E-05 | 487201.7 3765863.5 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | L0001693 | 0 | 0.36390E-05 | 487205.0 3765862.0 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | L0001694 | 0 | 0.36390E-05 | 487208.4 3765860.5 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | L0001695 | 0 | 0.36390E-05 | 487211.7 3765859.0 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | L0001696 | 0 | 0.36390E-05 | 487215.1 3765857.5 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | L0001697 | 0 | 0.36390E-05 | 487218.4 3765856.0 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | L0001698 | 0 | 0.36390E-05 | 487221.7 3765854.6 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | L0001699 | 0 | 0.36390E-05 | 487225.1 3765853.1 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | L0001700 | 0 | 0.36390E-05 | 487228.4 3765851.6 | 554.5 | 0.00 | 1.70 | 0.85 | YES | | L0001701 | 0 | 0.36390E-05 | 487231.8 3765850.1 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | L0001702 | 0 | 0.36390E-05 | 487235.1 3765848.6 | 554.7 | 0.00 | 1.70 | 0.85 | YES | | L0001703 | 0 | 0.36390E-05 | 487238.5 3765847.1 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | L0001704 | 0 | 0.36390E-05 | 487241.8 3765845.6 | 554.9 | 0.00 | 1.70 | 0.85 | YES | | L0001705 | 0 | 0.36390E-05 | 487245.1 3765844.2 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | L0001706 | 0 | 0.36390E-05 | 487248.5 3765842.7 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | L0001707 | 0 | 0.36390E-05 | 487251.8 3765841.2 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | L0001708 | 0 | 0.36390E-05 | 487255.2 3765839.7 | 556.0 | 0.00 | 1.70 | 0.85 | YES | | L0001709 | 0 | 0.36390E-05 | 487258.4 3765838.0 | 556.3 | 0.00 | 1.70 | 0.85 | YES | | L0001710 | 0 | 0.36390E-05 | 487261.6 3765836.3 | 556.5 | 0.00 | 1.70 | 0.85 | YES | | L0001711 | 0 | 0.36390E-05 | 487264.8 3765834.5 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | L0001712 | 0 | 0.36390E-05 | 487268.0 3765832.8 | 557.0 | 0.00 | 1.70 | 0.85 | YES | | L0001713 | 0 | 0.36390E-05 | 487271.2 3765831.0 | 557.3 | 0.00 | 1.70 | 0.85 | YES | | L0001714 | 0 | 0.36390E-05 | 487274.5 3765829.2 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | L0001715 | 0 | 0.36390E-05 | 487277.7 3765827.5 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | L0001716 | 0 | 0.36390E-05 | 487280.9 3765825.7 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | L0001717 | 0 | 0.36390E-05 | 487284.1 3765824.0 | 558.4 | 0.00 | 1.70 | 0.85 | YES | | L0001718 | 0 | 0.36390E-05 | 487287.3 3765822.2 | 558.6 | 0.00 | 1.70 | 0.85 | YES | | L0001719 | 0 | | 487290.5 3765820.5 | 558.7 | 0.00 | 1.70 | 0.85 | YES | | L0001720 | 0 | 0.36390E-05 | 487293.7 3765818.7 | 558.8 | 0.00 | 1.70 | 0.85 | YES | | L0001721 | 0 | 0.36390E-05 | 487296.9 3765817.0 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2028-2041 21:00:06 PAGE 7 *** 08/11/21 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER EMIS | SION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |-----------|-------------|-----------|------------|----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. (GR | AMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | T 0001722 | 0 0 36 | 200E-0E | 107200 1 3 | 765015 2 | 550 O | 0 00 | 1 70 | 0.05 | VEC | | | | L0001723 | 0 | 0.36390E-05 | 487303.3 3765813.5 | 559.1 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|--------------------|-------|------|------|------|-----| | L0001724 | 0 | 0.36390E-05 | 487306.6 3765811.7 | 559.3 | 0.00 | 1.70 | 0.85 | YES | | L0001725 | 0 | 0.36390E-05 | 487309.8 3765810.0 | 559.5 | 0.00 | 1.70 | 0.85 | YES | | L0001726 | 0 | 0.36390E-05 | 487313.0 3765808.2 | 559.7 | 0.00 | 1.70 | 0.85 | YES | | L0001727 | 0 | 0.36390E-05 | 487316.2 3765806.5 | 559.9 | 0.00 | 1.70 | 0.85 | YES | | L0001728 | 0 | 0.36390E-05 | 487319.4 3765804.7 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | L0001729 | 0 | 0.36390E-05 | 487322.6 3765802.9 | 560.4 | 0.00 | 1.70 | 0.85 | YES | | L0001730 | 0 | 0.36390E-05 | 487325.8 3765801.2 | 560.8 | 0.00 | 1.70 | 0.85 | YES | | L0001731 | 0 | 0.36390E-05 | 487329.0 3765799.4 | 561.2 | 0.00 | 1.70 | 0.85 | YES | | L0001732 | 0 | 0.36390E-05 | 487332.2 3765797.7 | 561.5 | 0.00 | 1.70 | 0.85 | YES | | L0001733 | 0 | 0.36390E-05 | 487335.4 3765795.9 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | L0001734 | 0 | 0.36390E-05 | 487338.7 3765794.2 | 562.0 | 0.00 | 1.70 | 0.85 | YES | | L0001735 | 0 | 0.36390E-05 | 487341.9 3765792.4 | 562.2 | 0.00 | 1.70 | 0.85 | YES | | L0001736 | 0 | 0.36390E-05 | 487345.1 3765790.7 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | L0001737 | 0 | 0.36390E-05 | 487348.3 3765788.9 | 562.8 | 0.00 | 1.70 | 0.85 | YES | | L0001738 | 0 | 0.36390E-05 | 487351.5 3765787.2 | 563.2 | 0.00 | 1.70 | 0.85 | YES | | L0001739 | 0 | 0.36390E-05 | 487354.7 3765785.4 | 563.6 | 0.00 | 1.70 | 0.85 | YES | | L0001740 | 0 | 0.36390E-05 | 487357.9 3765783.7 | 563.9 | 0.00 | 1.70 | 0.85 | YES | | L0001741 | 0 | 0.36390E-05 | 487361.1 3765781.9 | 564.3 | 0.00 | 1.70 | 0.85 | YES | | L0001742 | 0 | 0.36390E-05 | 487364.3 3765780.2 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | L0001743 | 0 | 0.36390E-05 | 487367.6 3765778.4 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | L0001744 | 0 | 0.36390E-05 | 487370.8 3765776.8 | 565.2 | 0.00 | 1.70 | 0.85 | YES | | L0001745 | 0 | 0.36390E-05 | 487374.1 3765775.1 | 565.5 | 0.00 | 1.70 | 0.85 | YES | | L0001746 | 0 | 0.36390E-05 | 487377.3 3765773.4 | 565.8 | 0.00 | 1.70 | 0.85 | YES | | L0001747 | 0 | 0.36390E-05 | 487380.5 3765771.7 | 566.0 | 0.00 | 1.70 | 0.85 | YES | | L0001748 | 0 | 0.36390E-05 | 487383.8 3765770.0 | 566.2 | 0.00 | 1.70 | 0.85 | YES | | L0001749 | 0 | 0.36390E-05 | 487387.0 3765768.3 | 566.4 | 0.00 | 1.70 | 0.85 | YES | | L0001750 | 0 | 0.36390E-05 | 487390.3 3765766.6 | 566.5 | 0.00 | 1.70 | 0.85 | YES | | L0001751 | 0 | 0.36390E-05 | 487393.5 3765764.9 | 566.6 | 0.00 | 1.70 | 0.85 | YES | | L0001752 | 0 | 0.36390E-05 | 487396.8 3765763.2 | 566.7 | 0.00 | 1.70 | 0.85 | YES | | L0001753 | 0 | 0.36390E-05 | 487400.0 3765761.5 | 567.1 | 0.00 | 1.70 | 0.85 | YES | | L0001754 | 0 | 0.36390E-05 | 487403.2 3765759.8 | 567.5 | 0.00 | 1.70 | 0.85 | YES | | L0001755 | 0 | 0.36390E-05 | 487406.5 3765758.1 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | L0001756 | 0 | 0.36390E-05 | 487409.7 3765756.4 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | L0001757 | 0 | 0.36390E-05 | 487413.0 3765754.8 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | L0001758 | 0 | 0.36390E-05 | 487416.2 3765753.1 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | L0001759 | 0 | 0.36390E-05 | 487419.5 3765751.4 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | L0001760 | 0 | 0.36390E-05 | 487422.7 3765749.7 | 569.3 | 0.00 | 1.70 | 0.85 | YES | | L0001761 | 0 | 0.36390E-05 | 487425.9 3765748.0 | 570.1 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** VOLUME SOURCE DATA *** | | NUMBER | EMISSION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION | RATE | |--------|--------|---------------|----------|----------|----------|----------|----------|----------|--------|----------|------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR ' | VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS)
 | BY | | *** 08/11/21 21:00:06 PAGE 8 | | | | | | | | | - | | | |---------------|------------|---------------|----------------------|----------|-------------|------------|------|-----|-----|----------| | L0001762 | 0 | 0.36390E-05 | | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001763 | 0 | 0.36390E-05 | 487432.4 3765744.6 | 571.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001764 | 0 | 0.36390E-05 | 487435.7 3765742.9 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001765 | 0 | 0.36390E-05 | 487438.9 3765741.2 | 572.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001766 | 0 | 0.36390E-05 | 487442.2 3765739.5 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001767 | 0 | 0.36390E-05 | 487445.4 3765737.8 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001768 | 0 | 0.36390E-05 | 487448.6 3765736.1 | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001769 | 0 | 0.36390E-05 | 487451.8 3765734.4 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001770 | 0 | 0.36390E-05 | 487455.1 3765732.7 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001771 | 0 | 0.36390E-05 | 487458.3 3765730.9 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001772 | 0 | 0.36390E-05 | 487461.5 3765729.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001773 | 0 | 0.36390E-05 | 487464.7 3765727.5 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001774 | 0 | 0.36390E-05 | 487468.0 3765725.8 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001775 | 0 | 0.36390E-05 | 487471.2 3765724.0 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001776 | 0 | 0.36390E-05 | 487474.4 3765722.3 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001777 | 0 | 0.36390E-05 | 487477.7 3765720.6 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001778 | 0 | 0.36390E-05 | 487480.9 3765718.9 | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001779 | 0 | 0.36390E-05 | 487484.1 3765717.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001780 | 0 | 0.36390E-05 | 487487.3 3765715.4 | 573.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001781 | 0 | 0.36390E-05 | 487490.6 3765713.7 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001782 | 0 | 0.36390E-05 | 487493.8 3765712.0 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001783 | 0 | 0.36390E-05 | 487497.0 3765710.3 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001784 | 0 | 0.36390E-05 | 487500.2 3765708.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001785 | 0 | 0.36390E-05 | 487503.5 3765706.8 | 574.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001786 | 0 | 0.36390E-05 | 487506.7 3765705.1 | 574.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001787 | 0 | 0.36390E-05 | | 574.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001788 | 0 | 0.36390E-05 | 487513.2 3765701.7 | 575.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001789 | 0 | 0.36390E-05 | 487516.4 3765699.9 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001790 | 0 | 0.36390E-05 | 487519.6 3765698.2 | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001791 | 0 | 0.36390E-05 | 487522.8 3765696.5 | 575.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001792 | 0 | 0.36390E-05 | 487526.0 3765694.8 | 575.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001792 | 0 | 0.36390E-05 | 487529.3 3765693.0 | 576.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001794 | 0 | 0.36390E-05 | 487532.5 3765691.3 | 576.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001791 | 0 | 0.36390E-05 | 487535.7 3765689.6 | 577.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001795 | 0 | 0.36390E-05 | | 577.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001797 | 0 | 0.36390E-05 | 487542.2 3765686.1 | 578.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001797 | 0 | 0.36390E-05 | 487545.4 3765684.3 | 578.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001798 | 0 | 0.36390E-05 | 487548.6 3765682.6 | 578.8 | 0.00 | 1.70 | | YES | | | | | 0 | | | | 0.00 | | 0.85 | YES | | | | L0001800 | | 0.36390E-05 | 487551.8 3765680.9 | 579.1 | | 1.70 | 0.85 | | | | | L0001801 | 0 | 0.36390E-05 | 487555.0 3765679.1 | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | ง 21112 *** | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | *** AERMET - | | | *** Freeway-related | | entration | g 2028-204 | 41 | | *** | 21:00:06 | | ABIUIDI | A THEO TOT | . 10210 | riceway related | DIF CORE | CITCIACIOII | 2020 20- | | | | PAGE 9 | | *** MODELOPTS | s: Re | egDFAULT CONC | C ELEV URBAN ADJ_U | * | | | | | | | | SOURCE | NUMBER
PART. | EMISSION RATE (GRAMS/SEC) | E
X | Y | BASE
ELEV. | RELEASE
HEIGHT | INIT.
SY | INIT.
SZ | URBAN
SOURCE | EMISSION RATE
SCALAR VARY | | |--------------|-----------------|---------------------------|-----------|------------|---------------|-------------------|-------------|-------------|-----------------|------------------------------|----------| | ID | CATS. | (0111110,020) | | (METERS) | | | | | DOULIGE | BY | L0001802 | 0 | 0.36390E-05 | | 3765677.4 | 579.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001803 | 0 | 0.36390E-05 | 487561.5 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001804 | 0 | 0.36390E-05 | 487564.7 | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001805 | 0 | 0.36390E-05 | | 3765672.2 | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001806 | 0 | 0.36390E-05 | 487571.1 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001807 | 0 | 0.36390E-05 | | 3765668.7 | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001808 | 0 | 0.36390E-05 | 487577.5 | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001809 | 0 | 0.36390E-05 | 487580.6 | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001810 | 0 | 0.36390E-05 | 487583.7 | | 579.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001811 | 0 | | 487586.8 | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001812 | 0 | 0.36390E-05 | | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001813 | 0 | 0.36390E-05 | 487593.1 | | 579.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001814 | 0 | 0.36390E-05 | 487596.2 | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001815 | 0 | 0.36390E-05 | 487599.4 | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001816 | 0 | 0.36390E-05 | 487602.5 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001817 | 0 | 0.36390E-05 | 487605.6 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001818 | 0 | 0.36390E-05 | 487608.8 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001819 | 0 | 0.36390E-05 | 487612.0 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001820 | 0 | 0.36390E-05 | | 3765644.6 | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001821 | 0 | 0.36390E-05 | 487618.6 | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001822 | 0 | 0.36390E-05 | | 3765641.4 | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001823 | 0 | 0.36390E-05 | 487625.2 | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001824 | 0 | 0.36390E-05 | | 3765638.2 | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001825 | 0 | 0.36390E-05 | | 3765636.6 | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001826 | 0 | 0.36390E-05 | | 3765635.1 | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001827 | 0 | 0.36510E-05 | | 3766048.4 | 528.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001828 | 0 | 0.36510E-05 | | 3766047.3 | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001829 | 0 | 0.36510E-05 | | 3766046.2 | 528.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001830 | 0 | 0.36510E-05 | 486617.3 | | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001831 | 0 | 0.36510E-05 | 486620.7 | | 529.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001832 | 0 | 0.36510E-05 | 486624.2 | | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001833 | 0 | 0.36510E-05 | | 3766041.6 | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001834 | 0 | 0.36510E-05 | 486631.2 | | 529.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001835 | 0 | 0.36510E-05 | | 3766039.3 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001836 | 0 | 0.36510E-05 | 486638.1 | | 529.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001837 | 0 | 0.36510E-05 | 486641.6 | | 530.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001838 | 0 | 0.36510E-05 | 486645.1 | | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001839 | 0 | 0.36510E-05 | | 3766034.8 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001840 | 0 | 0.36510E-05 | | 3766033.6 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001841 | 0 | 0.36510E-05 | 486655.5 | 3766032.5 | 530.6 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | dlande | | | | | *** | 08/11/21 | | *** AERMET - | | | | ay-related | | centration | າຊ 2028-20 | 141 | | *** | 21:00:06 | | ABREE 1 | ATICOTON | 10210 | ricew | a, reraced | . DI 14 COII | cciici acii0i | 2020-20 | <i>-</i> | | | PAGE 10 | | *** MODELOPT | s: Reg | gDFAULT CONC | ELEV UR | BAN ADJ_U | J* | | | | | | | | SOURCE | NUMBER
PART. | EMISSION RATI | E
X | Y | BASE
ELEV. | RELEASE
HEIGHT | INIT.
SY | INIT.
SZ | URBAN
SOURCE | EMISSION RATE
SCALAR VARY | | |--------------|-----------------|---------------|-----------|------------|---------------|-------------------|-------------|-------------|-----------------|------------------------------|----------| | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001842 | 0 | 0.36510E-05 | 486659.0 | 3766031.4 | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001843 | 0 | 0.36510E-05 | 486662.5 | 3766030.2 | 530.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001844 | 0 | 0.36510E-05 | 486665.9 | 3766029.1 | 531.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001845 | 0 | 0.36510E-05 | 486669.4 | 3766028.0 | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001846 | 0 | 0.36510E-05 | 486672.9 | 3766026.8 | 531.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001847 | 0 | 0.36510E-05 | 486676.4 | 3766025.7 | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001848 | 0 | 0.36510E-05 | 486679.8 | 3766024.5 | 531.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001849 | 0 | 0.36510E-05 | 486683.3 | 3766023.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001850 | 0 | 0.36510E-05 | 486686.8 | 3766022.3 | 531.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001851 | 0 | 0.36510E-05 | 486690.3 | 3766021.1 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001852 | 0 | 0.36510E-05 | 486693.7 | 3766020.0 | 531.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001853 | 0 | 0.36510E-05 | 486697.2 |
3766018.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001854 | 0 | 0.36510E-05 | 486700.7 | 3766017.7 | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001855 | 0 | 0.36510E-05 | 486704.2 | 3766016.6 | 532.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001856 | 0 | 0.36510E-05 | 486707.6 | 3766015.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001857 | 0 | 0.36510E-05 | 486711.1 | 3766014.3 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001858 | 0 | 0.36510E-05 | 486714.6 | 3766013.2 | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001859 | 0 | 0.36510E-05 | | | 532.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001860 | 0 | 0.36510E-05 | | | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001861 | 0 | 0.36510E-05 | | | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001862 | 0 | 0.36510E-05 | | | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001863 | 0 | 0.36510E-05 | | | 533.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001864 | 0 | | 486735.4 | | 533.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001865 | 0 | 0.36510E-05 | | | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001866 | 0 | | 486742.4 | | 534.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001867 | 0 | 0.36510E-05 | | | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001868 | 0 | | 486749.3 | | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0001869 | 0 | 0.36510E-05 | | | 534.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001870 | 0 | | 486756.2 | | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0001871 | 0 | 0.36510E-05 | | | 534.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001872 | 0 | | 486763.1 | | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001873 | 0 | 0.36510E-05 | | | 535.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0001874 | 0 | 0.36510E-05 | | | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0001875 | 0 | 0.36510E-05 | | | 535.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0001876 | 0 | 0.36510E-05 | | | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0001877 | 0 | 0.36510E-05 | | | 535.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0001878 | 0 | 0.36510E-05 | | | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001879 | 0 | 0.36510E-05 | | | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0001879 | 0 | 0.36510E-05 | | | 536.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0001881 | 0 | | 486794.2 | | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | | T0001001 | U | 0.000100 00 | 100,01.2 | 2.03,03.9 | 550.1 | 5.00 | 1.70 | 0.05 | 1110 | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | edlands | | | | | *** | 08/11/21 | | *** AERMET - | | | | ay-related | | centration | ns 2028-20 | 041 | | * * * | 21:00:06 | | | | | | | | | | | | | | | LOOL1882 | SOURCE | NUMBER
PART. | EMISSION RATE | Y | BASE
ELEV. | RELEASE
HEIGHT | INIT.
SY | INIT.
SZ | EMISSION RATE
SCALAR VARY | |--|----------|-----------------|---------------|------|---------------|-------------------|-------------|-------------|------------------------------| | L0001882 | | | | | | | | | | | LOOD1883 | | | |
 | · | | | |
 | | LOOD1883 | | | | | | | | | | | LOOD1884 | | | | | | | | | | | LODO1885 | | | | | | | | | | | L0001886 | | | | | | | | | | | L0001887 | | | | | | | | | | | L0001888 | | | | | | | | | | | L0001899 | | | | | | | | | | | L0001891 | | | | | | | | | | | LOOD1891 | | | | | | | | | | | L0001892 | | | | | | | | | | | L0001893 0 0.36510E-05 486835.6 3765970.1 538.2 0.00 1.70 0.85 YES L0001895 0 0.36510E-05 486843.0 3765969.0 538.6 0.00 1.70 0.85 YES L0001896 0 0.36510E-05 486846.0 3765967.9 538.7 0.00 1.70 0.85 YES L0001897 0 0.36510E-05 486849.5 3765966.6 538.8 0.00 1.70 0.85 YES L0001898 0 0.36510E-05 486856.4 3765966.6 538.9 0.00 1.70 0.85 YES L0001900 0 0.36510E-05 486856.4 3765966.6 538.9 0.00 1.70 0.85 YES L0001901 0 0.36510E-05 486866.9 3765966.3 539.2 0.00 1.70 0.85 YES L0001901 0 0.36510E-05 486866.9 3765960.0 539.4 0.00 1.70 0.85 YES </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | L0001894 | | | | | | | | | | | L0001895 | | - | | | | | | | | | L0001896 | | - | | | | | | | | | L0001897 | | | | | | | | | | | L0001898 0 0.36510E-05 486852.9 3765965.6 538.9 0.00 1.70 0.85 YES L0001899 0 0.36510E-05 486856.4 3765964.5 539.0 0.00 1.70 0.85 YES L0001901 0 0.36510E-05 486863.4 3765962.3 539.2 0.00 1.70 0.85 YES L0001902 0 0.36510E-05 486866.9 3765961.1 539.3 0.00 1.70 0.85 YES L0001903 0 0.36510E-05 486873.8 3765958.9 539.6 0.00 1.70 0.85 YES L0001904 0 0.36510E-05 486877.3 3765957.8 539.7 0.00 1.70 0.85 YES L0001905 0 0.36510E-05 486877.3 3765957.8 539.7 0.00 1.70 0.85 YES L0001906 0 0.36510E-05 486884.3 3765955.5 540.0 0.00 1.70 0.85 YES </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | - | | | | | | | | | L0001899 | | | | | | | | | | | L0001900 | | | | | | | | | | | L0001901 | | - | | | | | | | | | L0001902 | | | | | | | | | | | L0001903 | | | | | | | | | | | L0001904 | | - | | | | | | | | | L0001905 | | | | | | | | | | | L0001906 | | - | | | | | | | | | L0001907 | | | | | | | | | | | L0001908 0 0.36510E-05 486887.8 3765954.4 540.1 0.00 1.70 0.85 YES L0001909 0 0.36510E-05 486891.2 3765953.3 540.3 0.00 1.70 0.85 YES L0001910 0 0.36510E-05 486894.7 3765952.1 540.4 0.00 1.70 0.85 YES L0001911 0 0.36510E-05 486898.2 3765945.0 540.6 0.00 1.70 0.85 YES L0001912 0 0.36510E-05 486901.7 3765949.9 540.7 0.00 1.70 0.85 YES L0001913 0 0.36510E-05 486908.6 3765947.6 541.1 0.00 1.70 0.85 YES L0001914 0 0.36510E-05 486912.1 3765946.5 541.1 0.00 1.70 0.85 YES L0001916 0 0.36510E-05 486915.6 3765945.4 541.4 0.00 1.70 0.85 YES L0001917 0 0.36510E-05 486919.1 3765945.4 541.4 | | | | | | | | | | | L0001909 0 0.36510E-05 486891.2 3765953.3 540.3 0.00 1.70 0.85 YES L0001910 0 0.36510E-05 486894.7 3765952.1 540.4 0.00 1.70 0.85 YES L0001911 0 0.36510E-05 486898.2 3765951.0 540.6 0.00 1.70 0.85 YES L0001912 0 0.36510E-05 486901.7 3765949.9 540.7 0.00 1.70 0.85 YES L0001913 0 0.36510E-05 486908.2 3765948.8 540.9 0.00 1.70 0.85 YES L0001914 0 0.36510E-05 486908.6 3765947.6 541.1 0.00 1.70 0.85 YES L0001915 0 0.36510E-05 486919.1 3765945.5 541.2 0.00 1.70 0.85 YES L0001917 0 0.36510E-05 486919.1 3765945.4 541.4 0.00 1.70 0.85 YES L0001918 0 0.36510E-05 486919.1 3765943.1 541.8 | | - | | | | | | | | | L0001910 | | | | | | | | | | | L0001911 | | | | | | | | | | | L0001912 | | | | | | | | | | | L0001913 | | | | | | | | | | | L0001914 | | | | | | | | | | | L0001915 | | | | | | | | | | | L0001916 | | | | | | | | | | | L0001917 | | | | | | | | | | | L0001918 | | | | | | | | | | | L0001919 0 0.36510E-05 486926.0 3765942.0 541.9 0.00 1.70 0.85 YES
L0001920 0 0.36510E-05 486929.5 3765940.9 542.1 0.00 1.70 0.85 YES | | | | | | | | | | | L0001920 0 0.36510E-05 486929.5 3765940.9 542.1 0.00 1.70 0.85 YES | the contract of o | L0001921 | 0 | | | 542.3 | 0.00 | 1.70 | 0.85 | | | SOURCE
ID | NUMBER
PART.
CATS. | EMISSION RATE
(GRAMS/SEC) | X | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------------|------------------------------|----------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | | | | | | | | | | | | | L0001922 | 0 | 0.36510E-05 | 486936.5 | 3765938.6 | 542.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001923 | 0 | 0.36510E-05 | | | 542.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001924 | 0 | 0.36510E-05 | 486943.4 | 3765936.4 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001925 | 0 | 0.36510E-05 | 486946.9 | 3765935.3 | 542.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001926 | 0 | 0.36510E-05 | 486950.4 | 3765934.2 | 542.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001927 | 0 | 0.36510E-05 | 486953.9 | 3765933.0 | 543.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001928 | 0 | 0.36510E-05 | 486957.4 | 3765931.9 | 543.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001929 | 0 |
0.36510E-05 | 486960.9 | 3765930.8 | 543.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001930 | 0 | 0.36510E-05 | 486964.3 | 3765929.7 | 543.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001931 | 0 | 0.36510E-05 | 486967.8 | 3765928.6 | 543.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001932 | 0 | 0.36510E-05 | 486971.3 | 3765927.4 | 543.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001933 | 0 | 0.36510E-05 | 486974.8 | 3765926.3 | 543.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001934 | 0 | 0.36510E-05 | 486978.3 | 3765925.2 | 543.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001935 | 0 | 0.36510E-05 | 486981.7 | 3765924.1 | 544.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001936 | 0 | 0.36510E-05 | 486985.2 | 3765922.9 | 544.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001937 | 0 | 0.36510E-05 | 486988.7 | 3765921.8 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001938 | 0 | 0.36510E-05 | 486992.2 | 3765920.7 | 544.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001939 | 0 | 0.36510E-05 | | | 544.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001940 | 0 | 0.36510E-05 | | | 544.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001941 | 0 | 0.36510E-05 | 487002.6 | 3765917.2 | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001942 | 0 | 0.36510E-05 | | | 545.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001943 | 0 | 0.36510E-05 | | | 545.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001944 | 0 | | | 3765913.6 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001945 | 0 | 0.36510E-05 | 487016.4 | 3765912.4 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001946 | 0 | 0.36510E-05 | | | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001947 | 0 | 0.36510E-05 | | | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001948 | 0 | 0.36510E-05 | 487026.8 | 3765908.9 | 546.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001949 | 0 | | | 3765907.7 | 546.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001950 | 0 | 0.36510E-05 | | | 546.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001951 | 0 | 0.36510E-05 | | | 546.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001952 | 0 | | | 3765904.1 | 546.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001953 | 0 | | | 3765902.9 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001954 | 0 | 0.36510E-05 | | | 547.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001955 | 0 | 0.36510E-05 | | | 547.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001956 | 0 | 0.36510E-05 | | | 547.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001957 | 0 | | | 3765898.2 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001958 | 0 | 0.36510E-05 | 487061.4 | 3765897.0 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001959 | 0 | 0.36510E-05 | 487064.9 3765895.8 | 547.8 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|----------|------------|----------|------|-----|-------|----------| | L0001960 | 0 | 0.36510E-05 | 487068.3 3765894.6 | 547.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0001961 | 0 | 0.36510E-05 | 487071.8 3765893.5 | 548.0 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Red | dlands | | | | | * * * | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | 2028-204 | 11 | | * * * | 21:00:06 | | | | | | | | | | | | PAGE 13 | | | NUMBER | EMISSION RATE | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0001962 | 0 | 0.36510E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001963 | 0 | 0.36510E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0001964 | 0 | 0.36510E-05 | | | 548.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001965 | 0 | 0.36510E-05 | | 3765888.7 | 548.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001966 | 0 | 0.36510E-05 | | 3765887.5 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001967 | 0 | | | 3765886.3 | 548.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001968 | 0 | 0.36510E-05 | | | 548.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001969 | 0 | 0.36510E-05 | | | 549.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001970 | 0 | 0.36510E-05 | 487102.9 | 3765882.8 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001971 | 0 | 0.36510E-05 | 487106.4 | 3765881.6 | 549.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001972 | 0 | 0.36510E-05 | 487109.8 | 3765880.4 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001973 | 0 | 0.36510E-05 | 487113.3 | 3765879.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001974 | 0 | 0.36510E-05 | 487116.8 | 3765878.0 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001975 | 0 | 0.36510E-05 | 487120.1 | 3765876.6 | 550.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001976 | 0 | 0.36510E-05 | 487123.4 | 3765875.1 | 550.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001977 | 0 | 0.36510E-05 | 487126.8 | 3765873.6 | 550.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001978 | 0 | 0.36510E-05 | 487130.1 | 3765872.1 | 550.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001979 | 0 | 0.36510E-05 | 487133.5 | 3765870.6 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001980 | 0 | 0.36510E-05 | 487136.8 | 3765869.1 | 550.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001981 | 0 | 0.36510E-05 | 487140.1 | 3765867.6 | 551.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001982 | 0 | 0.36510E-05 | 487143.5 | 3765866.1 | 551.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001983 | 0 | 0.36510E-05 | 487146.8 | 3765864.6 | 551.7 | 0.00 | 1.70 | 0.85 | YES | | | L0001984 | 0 | 0.36510E-05 | 487150.1 | 3765863.1 | 552.0 | 0.00 | 1.70 | 0.85 | YES | | | L0001985 | 0 | 0.36510E-05 | 487153.5 | 3765861.6 | 552.2 | 0.00 | 1.70 | 0.85 | YES | | | L0001986 | 0 | 0.36510E-05 | 487156.8 | 3765860.1 | 552.5 | 0.00 | 1.70 | 0.85 | YES | | | L0001987 | 0 | 0.36510E-05 | 487160.2 | 3765858.6 | 552.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001988 | 0 | 0.36510E-05 | 487163.5 | 3765857.2 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | | L0001989 | 0 | 0.36510E-05 | 487166.8 | 3765855.7 | 552.9 | 0.00 | 1.70 | 0.85 | YES | | | L0001990 | 0 | 0.36510E-05 | 487170.2 | 3765854.2 | 553.1 | 0.00 | 1.70 | 0.85 | YES | | | L0001991 | 0 | 0.36510E-05 | 487173.5 | 3765852.7 | 553.3 | 0.00 | 1.70 | 0.85 | YES | | | L0001992 | 0 | 0.36510E-05 | 487176.9 | 3765851.2 | 553.4 | 0.00 | 1.70 | 0.85 | YES | | | L0001993 | 0 | | | 3765849.7 | | 0.00 | 1.70 | 0.85 | YES | | | L0001994 | 0 | 0.36510E-05 | 487183.5 | 3765848.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | L0001995 | 0 | 0.36510E-05 | | | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | L0001996
L0001997
L0001998 | 0
0
0 | 0.36510E-05
0.36510E-05
0.36510E-05 | 487190.2 3765845.2
487193.6 3765843.7
487196.9 3765842.2 | 553.6
553.8
553.9 | 0.00
0.00
0.00 | 1.70
1.70
1.70 | 0.85
0.85
0.85 | YES
YES
YES | | | |----------------------------------|-------------|---|--|-------------------------|----------------------|----------------------|----------------------|-------------------|-----|---------------------| | L0001999
L0002000 | 0 | 0.36510E-05
0.36510E-05 | 487200.2 3765840.6
487203.5 3765839.0 | 554.0
554.2 | 0.00 | 1.70 | 0.85 | YES
YES | | | | L0002000 | 0 | 0.36510E-05 | 487206.8 3765837.4 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD | - VERSION | N 21112 *** | *** Terracina at Re | dlands | | | | | *** | 08/11/21 | | *** AERMET | - VERSION | N 16216 *** | *** Freeway-related | DPM Conc | entrations | 3 2028-204 | 11 | | *** | 21:00:06
PAGE 14 | | | NUMBER | EMISSION RAT | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|--------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0002002 | 0 | 0.36510E-05 | 487210.1 | 3765835.8 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002003 | 0 | 0.36510E-05 | 487213.3 | 3765834.2 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002004 | 0 | 0.36510E-05 | 487216.6 | 3765832.6 | 554.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002005 | 0 | 0.36510E-05 | 487219.9 | 3765831.0 | 554.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002006 | 0 | 0.36510E-05 | 487223.2 | 3765829.4 | 554.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002007 | 0 | 0.36510E-05 | 487226.5 | 3765827.8 | 554.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002008 | 0 | 0.36510E-05 | 487229.8 | 3765826.2 | 555.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002009 | 0 | 0.36510E-05 | 487233.1 | 3765824.6 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002010 | 0 | 0.36510E-05 | 487236.4 | 3765823.0 | 555.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002011 | 0 | 0.36510E-05 | 487239.7 | 3765821.4 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002012 | 0 | 0.36510E-05 | 487243.0 | 3765819.8 | 555.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002013 | 0 | 0.36510E-05 | 487246.2 | 3765818.2 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002014 | 0 | 0.36510E-05 | 487249.5 | 3765816.6 | 555.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002015 | 0 | 0.36510E-05 | 487252.8 | 3765815.0 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002016 | 0 | 0.36510E-05 | 487256.1 | 3765813.4 | 556.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002017 | 0 | 0.36510E-05 | 487259.4 | 3765811.9 | 556.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002018 | 0 | 0.36510E-05 | 487262.7 | 3765810.3 | 556.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002019 | 0 | 0.36510E-05 | 487266.0 | 3765808.7 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002020 | 0 | 0.36510E-05 | 487269.3 | 3765807.1 | 556.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002021 | 0 | 0.36510E-05 | 487272.6 | 3765805.5 | 557.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002022 | 0 | 0.36510E-05 | 487275.9 | 3765803.9 | 557.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002023 | 0 | 0.36510E-05 | 487279.1 | 3765802.3 | 557.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002024 | 0 | 0.36510E-05 |
487282.4 | 3765800.6 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002025 | 0 | 0.36510E-05 | 487285.6 | 3765798.8 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002026 | 0 | 0.36510E-05 | 487288.7 | 3765797.0 | 558.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002027 | 0 | 0.36510E-05 | 487291.9 | 3765795.1 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002028 | 0 | 0.36510E-05 | 487295.1 | 3765793.3 | 558.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002029 | 0 | 0.36510E-05 | 487298.2 | 3765791.4 | 558.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002030 | 0 | 0.36510E-05 | 487301.4 | 3765789.6 | 558.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002031 | 0 | 0.36510E-05 | 487304.5 | 3765787.7 | 558.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002032 | 0 | 0.36510E-05 | 487307.7 | 3765785.9 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002033 | 0 | 0.36510E-05 | 487310.9 3765784.1 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|----------|------------|----------|------|-----|-----|----------| | L0002034 | 0 | 0.36510E-05 | 487314.0 3765782.2 | 559.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002035 | 0 | 0.36510E-05 | 487317.2 3765780.4 | 559.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002036 | 0 | 0.36510E-05 | 487320.3 3765778.5 | 559.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002037 | 0 | 0.36510E-05 | 487323.5 3765776.7 | 559.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002038 | 0 | 0.36510E-05 | 487326.7 3765774.9 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002039 | 0 | 0.36510E-05 | 487329.8 3765773.0 | 560.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002040 | 0 | 0.36510E-05 | 487333.0 3765771.2 | 560.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002041 | 0 | 0.36510E-05 | 487336.1 3765769.3 | 560.7 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | 2028-204 | 1 | | *** | 21:00:06 | | | | | | | | | | | | PAGE 15 | | | NUMBER | EMISSION RATE | Ē | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | 0 | 0.36510E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0002043 | 0 | 0.36510E-05 | | | 561.0 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.36510E-05 | | | 561.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002045 | 0 | | | 3765762.1 | 561.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002046 | 0 | 0.36510E-05 | | | 561.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002047 | 0 | 0.36510E-05 | | | 561.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002048 | 0 | 0.36510E-05 | | | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002049 | 0 | 0.36510E-05 | 487361.5 | 3765754.8 | 561.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002050 | 0 | | 487364.7 | | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002051 | 0 | 0.36510E-05 | 487367.9 | 3765751.2 | 562.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002052 | 0 | 0.36510E-05 | 487371.1 | 3765749.4 | 562.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002053 | 0 | 0.36510E-05 | 487374.3 | 3765747.6 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002054 | 0 | 0.36510E-05 | 487377.4 | 3765745.8 | 562.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002055 | 0 | 0.36510E-05 | 487380.6 | 3765743.9 | 562.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002056 | 0 | 0.36510E-05 | 487383.8 | 3765742.1 | 563.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002057 | 0 | 0.36510E-05 | 487387.0 | 3765740.3 | 563.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002058 | 0 | 0.36510E-05 | 487390.1 | 3765738.5 | 563.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002059 | 0 | 0.36510E-05 | 487393.3 | 3765736.7 | 563.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002060 | 0 | 0.36510E-05 | 487396.5 | 3765734.9 | 563.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002061 | 0 | 0.36510E-05 | 487399.7 | 3765733.1 | 564.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002062 | 0 | 0.36510E-05 | 487402.9 | 3765731.3 | 564.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002063 | 0 | 0.36510E-05 | 487406.0 | 3765729.4 | 564.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002064 | 0 | 0.36510E-05 | 487409.2 | 3765727.6 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002065 | 0 | 0.36510E-05 | 487412.4 | 3765725.9 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002066 | 0 | 0.36510E-05 | 487415.7 | 3765724.2 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.36510E-05 | | | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.36510E-05 | 487422.1 | 3765720.8 | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002069 | 0 | 0.36510E-05 | | | 565.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002070
L0002071 | 0
0 | 0.36510E-05
0.36510E-05 | 487428.6 3765717.4
487431.9 3765715.8 | 565.2
565.5 | 0.00 | 1.70
1.70 | 0.85
0.85 | YES
YES | | | |----------------------|-----------|----------------------------|--|----------------|------------|--------------|--------------|------------|-----|---------------------| | L0002072 | 0 | 0.36510E-05 | 487435.1 3765714.1 | 565.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002073 | 0 | 0.36510E-05 | 487438.4 3765712.4 | 566.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002074 | 0 | 0.36510E-05 | 487441.6 3765710.7 | 566.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002075 | 0 | 0.36510E-05 | 487444.9 3765709.0 | 566.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002076 | 0 | 0.36510E-05 | 487448.1 3765707.3 | 566.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002077 | 0 | 0.36510E-05 | 487451.4 3765705.6 | 566.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002078 | 0 | 0.36510E-05 | 487454.6 3765704.0 | 567.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002079 | 0 | 0.36510E-05 | 487457.9 3765702.3 | 567.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002080 | 0 | 0.36510E-05 | 487461.1 3765700.6 | 567.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002081 | 0 | 0.36510E-05 | 487464.3 3765698.9 | 567.7 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - VERSION | 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | - VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | 2028-204 | 11 | | *** | 21:00:06
PAGE 16 | | | | | | | | | | | | PAGE 10 | | | NUMBER | EMISSION RATI | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | 0 | 0.36510E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.36510E-05 | | 3765695.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002084 | 0 | 0.36510E-05 | | 3765693.9 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002085 | 0 | 0.36510E-05 | | 3765692.2 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002086 | 0 | 0.36510E-05 | 487480.6 | 3765690.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002087 | 0 | 0.36510E-05 | 487483.8 | 3765688.8 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002088 | 0 | 0.36510E-05 | 487487.1 | 3765687.1 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002089 | 0 | 0.36510E-05 | 487490.3 | 3765685.4 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002090 | 0 | 0.36510E-05 | 487493.6 | 3765683.8 | 568.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002091 | 0 | 0.36510E-05 | 487496.8 | 3765682.1 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002092 | 0 | 0.36510E-05 | 487500.1 | 3765680.4 | 569.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002093 | 0 | 0.36510E-05 | 487503.3 | 3765678.7 | 569.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002094 | 0 | 0.36510E-05 | 487506.6 | 3765677.0 | 569.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002095 | 0 | 0.36510E-05 | 487509.8 | 3765675.3 | 570.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002096 | 0 | 0.36510E-05 | 487513.1 | 3765673.7 | 570.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002097 | 0 | 0.36510E-05 | 487516.3 | 3765672.0 | 570.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002098 | 0 | 0.36510E-05 | 487519.5 | 3765670.3 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002099 | 0 | 0.36510E-05 | 487522.8 | 3765668.6 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002100 | 0 | 0.36510E-05 | 487526.0 | 3765666.9 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002101 | 0 | 0.36510E-05 | 487529.3 | 3765665.2 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002102 | 0 | 0.36510E-05 | 487532.5 | 3765663.4 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002103 | 0 | 0.36510E-05 | 487535.7 | 3765661.6 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002104 | 0 | 0.36510E-05 | 487538.9 | 3765659.9 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002105 | 0 | 0.36510E-05 | 487542.1 | 3765658.1 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002106 | 0 | 0.36510E-05 | 487545.3 | 3765656.3 | 571.1 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | L0002107 | 0 | 0.36510E-05 | 487548.5 3765654.6 | 571.2 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|----------|------------|----------|------|-----|-------|----------| | L0002108 | 0 | 0.36510E-05 | 487551.7 3765652.8 | 571.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002109 | 0 | 0.36510E-05 | 487554.9 3765651.0 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002110 | 0 | 0.36510E-05 | 487558.1 3765649.3 | 572.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002111 | 0 | 0.36510E-05 | 487561.3 3765647.5 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002112 | 0 | 0.36510E-05 | 487564.5 3765645.7 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002113 | 0 | 0.36510E-05 | 487567.7 3765644.0 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002114 | 0 | 0.36510E-05 | 487570.9 3765642.2 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002115 | 0 | 0.36510E-05 | 487574.1 3765640.4 | 573.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002116 | 0 | 0.36510E-05 | 487577.3 3765638.7 | 573.4 | 0.00
| 1.70 | 0.85 | YES | | | | L0002117 | 0 | 0.36510E-05 | 487580.6 3765637.1 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002118 | 0 | 0.36510E-05 | 487583.9 3765635.4 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002119 | 0 | 0.36510E-05 | 487587.1 3765633.8 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002120 | 0 | 0.36510E-05 | 487590.4 3765632.2 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002121 | 0 | 0.36510E-05 | 487593.7 3765630.5 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Red | dlands | | | | | * * * | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | 2028-204 | 11 | | *** | 21:00:06 | | | | | | | | | | | | PAGE 17 | ### *** VOLUME SOURCE DATA *** | | NUMBER | EMISSION RAT | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |--------------|-----------|--------------|------------|-------------|-----------|-----------|------------|----------|--------|---------------|----------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0002122 | 0 | 0.36510E-05 | 487596.9 | 3765628.9 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002123 | 0 | 0.36510E-05 | 487600.2 | 3765627.2 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002124 | 0 | 0.36510E-05 | 487603.5 | 3765625.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002125 | 0 | 0.36510E-05 | 487606.8 | 3765624.0 | 574.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002126 | 0 | 0.36510E-05 | 487610.0 | 3765622.3 | 574.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002127 | 0 | 0.36510E-05 | 487613.3 | 3765620.7 | 574.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002128 | 0 | 0.36510E-05 | 487616.6 | 3765619.1 | 574.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002129 | 0 | 0.36510E-05 | 487619.8 | 3765617.4 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002130 | 0 | 0.36510E-05 | 487623.1 | 3765615.8 | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | | *** AERMOD - | - VERSION | | *** Terra | icina at Re | edlands | | | | | * * * | 08/11/21 | | *** AERMET - | - VERSION | 16216 *** | *** Freew | ay-related | d DPM Con | centratio | ns 2028-20 | 041 | | * * * | 21:00:06 | | | | | | | | | | | | | PAGE 18 | | +++ MODELODE | n n_ | OMO DITTER | DT D77 IID | י דמג זוגמי | · T 4 | | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | ALL | L0001522 | , L0001523 | , L0001524 | , L0001525 | , L0001526 | , L0001527 | , L0001528 | , L000152 | .9 , | |-----|----------------------------|------------|--------------|----------------------------|----------------|------------|------------|----------------|---------------------------------| | | L0001530 | , L0001531 | , L0001532 | , L0001533 | , L0001534 | , L0001535 | , L0001536 | , L000153 | 37 , | | | L0001538 | , L0001539 | , L0001540 | , L0001541 | , L0001542 | , L0001543 | , L0001544 | , L000154 | | | | L0001546 | , L0001547 | , L0001548 | , L0001549 | , L0001550 | , L0001551 | , L0001552 | , L000155 | , | | | L0001554 | , L0001555 | , L0001556 | , L0001557 | , L0001558 | , L0001559 | , L0001560 | , L000156 | 51 , | | | L0001562 | , L0001563 | , L0001564 | , L0001565 | , L0001566 | , L0001567 | , L0001568 | , L000156 | i9 , | | | L0001570 | , L0001571 | , L0001572 | , L0001573 | , L0001574 | , L0001575 | , L0001576 | , L000157 | 77, | | | L0001578 | , L0001579 | , L0001580 | , L0001581 | , L0001582 | , L0001583 | , L0001584 | , L000158 | 35 , | | | L0001586 | , L0001587 | , L0001588 | , L0001589 | , L0001590 | , L0001591 | , L0001592 | , L000159 |)3 , | | | L0001594 | , L0001595 | , L0001596 | , L0001597 | , L0001598 | , L0001599 | , L0001600 | , L000160 |)1 , | | | L0001602 | , L0001603 | , L0001604 | , L0001605 | , L0001606 | , L0001607 | , L0001608 | , L000160 | 19 , | | | L0001610 | , L0001611 | , L0001612 | , L0001613 | , L0001614 | , L0001615 | , L0001616 | , L000161 | .7 , | | | L0001618 | , L0001619 | , L0001620 | , L0001621 | , L0001622 | , L0001623 | , L0001624 | , L000162 | 25 , | | | L0001626 | , L0001627 | , L0001628 | , L0001629 | , L0001630 | , L0001631 | , L0001632 | , L000163 | 33 , | | | L0001634 | , L0001635 | , L0001636 | , L0001637 | , L0001638 | , L0001639 | , L0001640 | , L000164 | l1 , | | | L0001642 | , L0001643 | , L0001644 | , L0001645 | , L0001646 | , L0001647 | , L0001648 | , L000164 | | | | L0001650 | , L0001651 | , L0001652 | , L0001653 | , L0001654 | , L0001655 | , L0001656 | , L000165 | 57 , | | | L0001658 | , L0001659 | , L0001660 | , L0001661 | , L0001662 | , L0001663 | , L0001664 | , L000166 | 55 , | | | L0001666 | , L0001667 | , L0001668 | , L0001669 | , L0001670 | , L0001671 | , L0001672 | , L000167 | 13 , | | | L0001674 | , L0001675 | , L0001676 | , L0001677 | , L0001678 | , L0001679 | , L0001680 | , L000168 | 31 , | | | O - VERSION
C - VERSION | | iciiacina ac | Redlands
ted DPM Concen | trations 2028- | 2041 | | * * *
* * * | 08/11/21
21:00:06
PAGE 19 | *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | L0001682 | , L0001683 | , L0001684 | , L0001685 | , L0001686 | , L0001687 | , L0001688 | , L0001689 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001690 | , L0001691 | , L0001692 | , L0001693 | , L0001694 | , L0001695 | , L0001696 | , L0001697 | , | | L0001698 | , L0001699 | , L0001700 | , L0001701 | , L0001702 | , L0001703 | , L0001704 | , L0001705 | , | | L0001706 | , L0001707 | , L0001708 | , L0001709 | , L0001710 | , L0001711 | , L0001712 | , L0001713 | , | | L0001714 | , L0001715 | , L0001716 | , L0001717 | , L0001718 | , L0001719 | , L0001720 | , L0001721 | , | | L0001722 | , L0001723 | , L0001724 | , L0001725 | , L0001726 | , L0001727 | , L0001728 | , L0001729 | , | | L0001730 | , L0001731 | , L0001732 | , L0001733 | , L0001734 | , L0001735 | , L0001736 | , L0001737 | , | | L0001738 | , L0001739 | , L0001740 | , L0001741 | , L0001742 | , L0001743 | , L0001744 | , L0001745 | , | | L0001746 | , L0001747 | , L0001748 | , L0001749 | , L0001750 | , L0001751 | , L0001752 | , L0001753 | , | | L0001754 | , L0001755 | , L0001756 | , L0001757 | , L0001758 | , L0001759 | , L0001760 | , L0001761 | , | | L0001762 | , L0001763 | , L0001764 | , L0001765 | , L0001766 | , L0001767 | , L0001768 | , L0001769 | , | | L0001770 | , L0001771 | , L0001772 | , L0001773 | , L0001774 | , L0001775 | , L0001776 | , L0001777 | , | | L0001778 | , L0001779 | , L0001780 | , L0001781 | , L0001782 | , L0001783 | , L0001784 | , L0001785 | , | | L0001786 | , L0001787 | , L0001788 | , L0001789 | , L0001790 | , L0001791 | , L0001792 | , L0001793 | , | | L0001794 | , L0001795 | , L0001796 | , L0001797 | , L0001798 | , L0001799 | , L0001800 | , L0001801 | , | | L0001802 | , L0001803 | , L0001804 | , L0001805 | , L0001806 | , L0001807 | , L0001808 | , L0001809 | , | | L0001810 | , L0001811 | , L0001812 | , L0001813 | , L0001814 | , L0001815 | , L0001816 | , L0001817 | , | | L0001818 | , L0001819 | , L0001820 | , L0001821 | , L0001822 | , L0001823 | , L0001824 | , L0001825 | , | | L0001826 | , L0001827 | , L0001828 | , L0001829 | , L0001830 | , L0001831 | , L0001832 | , L0001833 | , | | L0001834 | , L0001835 | , L0001836 | , L0001837 | , L0001838 | , L0001839 | , L0001840 | , L0001841 | , | | | | | | | | | | | *** 08/11/21 *** 21:00:06 PAGE 20 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | L | 0001842 | , L0001843 | , L0001844 | , L0001845 | , L0001846 | , L0001847 | , L0001848 | , L000184 | 9 , | |---|---------------------------|------------|----------------------------------|------------|----------------|------------|------------|-----------|---------------------------------| | L | 0001850 | , L0001851 | , L0001852 | , L0001853 | , L0001854 | , L0001855 | , L0001856 | , L000185 | 7 , | | L | 20001858 | , L0001859 | , L0001860 | , L0001861 | , L0001862 | , L0001863 | , L0001864 | , L000186 | 5 , | | L | 0001866 | , L0001867 | , L0001868 | , L0001869 | , L0001870 | , L0001871 | , L0001872 | , L000187 | 3 , | | L | 0001874 | , L0001875 | , L0001876 | , L0001877 | , L0001878 | , L0001879 | , L0001880 | , L000188 | 1 , | | L | 0001882 | , L0001883 | , L0001884 | , L0001885 | , L0001886 | , L0001887 | , L0001888 | , L000188 | 9 , | | L | 10001890 | , L0001891 | , L0001892 | , L0001893 | , L0001894 | , L0001895 | , L0001896 | , L000189 | 7 , | | L | 20001898 | , L0001899 | , L0001900 | , L0001901 | , L0001902 | , L0001903 | , L0001904 | , L000190 | 5 , | | L | 20001906 | , L0001907 | , L0001908 | , L0001909 | , L0001910 | , L0001911 | , L0001912 | , L000191 | 3 , | | L | 0001914 | , L0001915 | , L0001916 | , L0001917 | , L0001918 | , L0001919 | , L0001920 | , L000192 | 1 , | | L | 0001922 | , L0001923 | , L0001924 | , L0001925 | , L0001926 | , L0001927 | , L0001928 | , L000192 | 9 , | | L | 10001930 | , L0001931 | , L0001932 | , L0001933 | , L0001934 | , L0001935 | , L0001936 | , L000193 | 7 , | | L | 20001938 | , L0001939 | , L0001940 | , L0001941 | , L0001942 | , L0001943 | , L0001944 | , L000194 | 5 , | | L | 0001946 | , L0001947 | , L0001948 | , L0001949 | , L0001950 | , L0001951 | , L0001952 | , L000195 | 3 , | | L | 0001954 | , L0001955 | , L0001956 | , L0001957 | , L0001958 | , L0001959 | , L0001960 | , L000196 | 1 , | | L | 0001962 | , L0001963 | , L0001964 | , L0001965 | , L0001966 | , L0001967 | , L0001968 | , L000196 | 9 , | | L | 20001970 | , L0001971 | , L0001972 | , L0001973 | , L0001974 | , L0001975 | , L0001976 | , L000197 | 7 , | | L | 0001978 | , L0001979 | , L0001980 | , L0001981 | , L0001982 | , L0001983 | , L0001984 | , L000198 | 5 , | | L | 20001986 | , L0001987 | , L0001988 | , L0001989 | , L0001990 | , L0001991 |
, L0001992 | , L000199 | 3 , | | L | 0001994 | , L0001995 | , L0001996 | , L0001997 | , L0001998 | , L0001999 | , L0002000 | , L000200 | 1 , | | | VERSION 211
VERSION 16 | | Terracina at I
Freeway-relate | | rations 2028-2 | 041 | | * * * | 08/11/21
21:00:06
PAGE 21 | *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS PAGE 21 _____ | | L0002002 | , L0002003 | , L0002004 | , L0002005 | , L0002006 | , L0002007 | , L0002008 | , L000200 |)9 , | |-------------|--------------------------|--------------|--------------|-----------------------------|----------------|------------|------------|----------------|---------------------------------| | | L0002010 | , L0002011 | , L0002012 | , L0002013 | , L0002014 | , L0002015 | , L0002016 | , L000201 | | | | | , 10002011 | , 10002012 | , 10002013 | , 10002014 | , 10002013 | , 10002010 | , 1000201 | , | | | L0002018 | , L0002019 | , L0002020 | , L0002021 | , L0002022 | , L0002023 | , L0002024 | , L000202 | 25 , | | | L0002026 | , L0002027 | , L0002028 | , L0002029 | , L0002030 | , L0002031 | , L0002032 | , L000203 | 33 , | | | L0002034 | , L0002035 | , L0002036 | , L0002037 | , L0002038 | , L0002039 | , L0002040 | , L000204 | 11 , | | | L0002042 | , L0002043 | , L0002044 | , L0002045 | , L0002046 | , L0002047 | , L0002048 | , L000204 | 19 , | | | L0002050 | , L0002051 | , L0002052 | , L0002053 | , L0002054 | , L0002055 | , L0002056 | , L000205 | 57 , | | | L0002058 | , L0002059 | , L0002060 | , L0002061 | , L0002062 | , L0002063 | , L0002064 | , L000206 | 55 , | | | L0002066 | , L0002067 | , L0002068 | , L0002069 | , L0002070 | , L0002071 | , L0002072 | , L000207 | 73 , | | | L0002074 | , L0002075 | , L0002076 | , L0002077 | , L0002078 | , L0002079 | , L0002080 | , L000208 | 31 , | | | L0002082 | , L0002083 | , L0002084 | , L0002085 | , L0002086 | , L0002087 | , L0002088 | , L000208 | 39 , | | | L0002090 | , L0002091 | , L0002092 | , L0002093 | , L0002094 | , L0002095 | , L0002096 | , L000209 | 97 , | | | L0002098 | , L0002099 | , L0002100 | , L0002101 | , L0002102 | , L0002103 | , L0002104 | , L000210 |)5 , | | | L0002106 | , L0002107 | , L0002108 | , L0002109 | , L0002110 | , L0002111 | , L0002112 | , L000211 | | | | L0002114 | , L0002115 | , L0002116 | , L0002117 | , L0002118 | , L0002119 | , L0002120 | , L000212 | 21 , | | | L0002122 | , L0002123 | , L0002124 | , L0002125 | , L0002126 | , L0002127 | , L0002128 | , L000212 | 29 , | | | L0002130 | , | | | | | | | | | | - VERSION 2
- VERSION | | ICIICOTIC CO | Redlands
ted DPM Concent | trations 2028- | 2041 | | * * *
* * * | 08/11/21
21:00:06
PAGE 22 | | *** MODELOF | PTs: RegD | FAULT CONC E | LEV URBAN AD | J_U* | | | | | PAGE ZZ | | | | | *** SOURC | E IDs DEFINED A | AS URBAN SOURC | ES *** | | | | | | | | | | | | | | | | URBAN ID | URBAN POP | | | SOURCE I | | | | | | | L0001529 | 2035210. | L0001522 | , L0001523 | , L0001524 , | L0001525 | , L0001526 | , L0001527 | , L0001528 | , | | L00 | 001530 , | L0001531 | , L0001532 | , L0001533 | , L0001534 | , L0001535 | , L0001536 | , L000153 | 7, | |---|----------|----------|------------|------------|------------|------------|------------|-----------|---------------------------------| | T00 | 001538 , | L0001539 | , L0001540 | , L0001541 | , L0001542 | , L0001543 | , L0001544 | , L000154 | 5 , | | L00 | 001546 , | L0001547 | , L0001548 | , L0001549 | , L0001550 | , L0001551 | , L0001552 | , L000155 | 3 , | | L00 | 001554 , | L0001555 | , L0001556 | , L0001557 | , L0001558 | , L0001559 | , L0001560 | , L000156 | 1 , | | L00 | 001562 , | L0001563 | , L0001564 | , L0001565 | , L0001566 | , L0001567 | , L0001568 | , L000156 | 9 , | | L00 | 001570 , | L0001571 | , L0001572 | , L0001573 | , L0001574 | , L0001575 | , L0001576 | , L000157 | 7 , | | L00 | 001578 , | L0001579 | , L0001580 | , L0001581 | , L0001582 | , L0001583 | , L0001584 | , L000158 | 5 , | | L00 | 001586 , | L0001587 | , L0001588 | , L0001589 | , L0001590 | , L0001591 | , L0001592 | , L000159 | 3 , | | L00 | 001594 , | L0001595 | , L0001596 | , L0001597 | , L0001598 | , L0001599 | , L0001600 | , L000160 | 1 , | | L00 | 001602 , | L0001603 | , L0001604 | , L0001605 | , L0001606 | , L0001607 | , L0001608 | , L000160 | 9 , | | L00 | 001610 , | L0001611 | , L0001612 | , L0001613 | , L0001614 | , L0001615 | , L0001616 | , L000161 | 7, | | L00 | 001618 , | L0001619 | , L0001620 | , L0001621 | , L0001622 | , L0001623 | , L0001624 | , L000162 | 5 , | | L00 | 001626 , | L0001627 | , L0001628 | , L0001629 | , L0001630 | , L0001631 | , L0001632 | , L000163 | 3 , | | L00 | 001634 , | L0001635 | , L0001636 | , L0001637 | , L0001638 | , L0001639 | , L0001640 | , L000164 | 1 , | | L00 | 001642 , | L0001643 | , L0001644 | , L0001645 | , L0001646 | , L0001647 | , L0001648 | , L000164 | 9 , | | L00 | 001650 , | L0001651 | , L0001652 | , L0001653 | , L0001654 | , L0001655 | , L0001656 | , L000165 | 7, | | L00 | 001658 , | L0001659 | , L0001660 | , L0001661 | , L0001662 | , L0001663 | , L0001664 | , L000166 | 5 , | | L00 | 001666 , | L0001667 | , L0001668 | , L0001669 | , L0001670 | , L0001671 | , L0001672 | , L000167 | 3 , | | L00 | 001674 , | L0001675 | , L0001676 | , L0001677 | , L0001678 | , L0001679 | , L0001680 | , L000168 | 1 , | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2028-2041 | | | | | | | | | 08/11/21
21:00:06
PAGE 23 | *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS | L0001682 | , L0001683 | , L0001684 | , L0001685 | , L0001686 | , L0001687 | , L0001688 | , L0001689 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001690 | , L0001691 | , L0001692 | , L0001693 | , L0001694 | , L0001695 | , L0001696 | , L0001697 | , | | L0001698 | , L0001699 | , L0001700 | , L0001701 | , L0001702 | , L0001703 | , L0001704 | , L0001705 | , | | L0001706 | , L0001707 | , L0001708 | , L0001709 | , L0001710 | , L0001711 | , L0001712 | , L0001713 | , | | L0001714 | , L0001715 | , L0001716 | , L0001717 | , L0001718 | , L0001719 | , L0001720 | , L0001721 | , | | L0001722 | , L0001723 | , L0001724 | , L0001725 | , L0001726 | , L0001727 | , L0001728 | , L0001729 | , | | L0001730 | , L0001731 | , L0001732 | , L0001733 | , L0001734 | , L0001735 | , L0001736 | , L0001737 | , | | L0001738 | , L0001739 | , L0001740 | , L0001741 | , L0001742 | , L0001743 | , L0001744 | , L0001745 | , | | L0001746 | , L0001747 | , L0001748 | , L0001749 | , L0001750 | , L0001751 | , L0001752 | , L0001753 | , | | L0001754 | , L0001755 | , L0001756 | , L0001757 | , L0001758 | , L0001759 | , L0001760 | , L0001761 | , | | L0001762 | , L0001763 | , L0001764 | , L0001765 | , L0001766 | , L0001767 | , L0001768 | , L0001769 | , | | L0001770 | , L0001771 | , L0001772 | , L0001773 | , L0001774 | , L0001775 | , L0001776 | , L0001777 | , | | L0001778 | , L0001779 | , L0001780 | , L0001781 | , L0001782 | , L0001783 | , L0001784 | , L0001785 | , | | L0001786 | , L0001787 | , L0001788 | , L0001789 | , L0001790 | , L0001791 | , L0001792 | , L0001793 | , | | L0001794 | , L0001795 | , L0001796 | , L0001797 | , L0001798 | , L0001799 | , L0001800 | , L0001801 | , | | L0001802 | , L0001803 | , L0001804 | , L0001805 | , L0001806 | , L0001807 | , L0001808 | , L0001809 | , | | L0001810 | , L0001811 | , L0001812 | , L0001813 | , L0001814 | , L0001815 | , L0001816 | , L0001817 | , | | L0001818 | , L0001819 | , L0001820 | , L0001821 | , L0001822 | , L0001823 | , L0001824 | , L0001825 | , | | L0001826 | , L0001827 | , L0001828 | , L0001829 | , L0001830 | , L0001831 | , L0001832 | , L0001833 | , | | L0001834 | , L0001835 | , L0001836 | , L0001837 | , L0001838 | , L0001839 | , L0001840 | , L0001841 | , | | | | | | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINED AS URBAN SOURCES *** *** 08/11/21 21:00:06 PAGE 24 URBAN ID URBAN POP SOURCE IDS | L0001842 | , L0001843 | , L0001844 | , L0001845 | , L0001846 | , L0001847 | , L0001848 | , L0001849 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0001850 | , L0001851 | , L0001852 | , L0001853 | , L0001854 | , L0001855 | , L0001856 | , L0001857 | , | | L0001858 | , L0001859 | , L0001860 | , L0001861 | , L0001862 | , L0001863 | , L0001864 | , L0001865 | , | | L0001866 | , L0001867 | , L0001868 | , L0001869 | , L0001870 | , L0001871 | , L0001872 | , L0001873 | , | | L0001874 | , L0001875 | , L0001876 | , L0001877 | , L0001878 | , L0001879 | , L0001880 | , L0001881 | , | | L0001882 | , L0001883 | , L0001884 | , L0001885 | , L0001886 | , L0001887 | , L0001888 | , L0001889 | , | | L0001890 | , L0001891 | , L0001892 | , L0001893 | , L0001894 | , L0001895 | , L0001896 | , L0001897 | , | | L0001898 | , L0001899 | , L0001900 | , L0001901 | , L0001902 | , L0001903 | , L0001904 | , L0001905 | , | | L0001906 | , L0001907 | , L0001908 | , L0001909 | , L0001910 | , L0001911 | , L0001912 | , L0001913 | , | | L0001914 | , L0001915 | , L0001916 | , L0001917 | , L0001918 | , L0001919 | , L0001920 | , L0001921 | , | | L0001922 | , L0001923 | , L0001924 | , L0001925 | , L0001926 | , L0001927 | , L0001928 | , L0001929 | , | | L0001930 | , L0001931 | , L0001932 | , L0001933 | , L0001934 | , L0001935 | , L0001936 | , L0001937 | , | | L0001938 | , L0001939 | , L0001940 | , L0001941 | , L0001942 | , L0001943 | , L0001944 | , L0001945 | , | | L0001946 | , L0001947 | , L0001948 | , L0001949 | , L0001950 | , L0001951 | , L0001952 | , L0001953 | , | | L0001954 | , L0001955 | , L0001956 | , L0001957 | , L0001958 | , L0001959 | , L0001960 | , L0001961 | , | | L0001962 | , L0001963 | , L0001964 | , L0001965 | , L0001966 | , L0001967 | , L0001968 | , L0001969 | , | | L0001970 | , L0001971 | , L0001972 | , L0001973 | , L0001974 | ,
L0001975 | , L0001976 | , L0001977 | , | | L0001978 | , L0001979 | , L0001980 | , L0001981 | , L0001982 | , L0001983 | , L0001984 | , L0001985 | , | | L0001986 | , L0001987 | , L0001988 | , L0001989 | , L0001990 | , L0001991 | , L0001992 | , L0001993 | , | | L0001994 | , L0001995 | , L0001996 | , L0001997 | , L0001998 | , L0001999 | , L0002000 | , L0002001 | , | | | | | | | | | | | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS *** *** 08/11/21 21:00:06 PAGE 25 ``` L0002010 , L0002011 , L0002012 , L0002013 , L0002014 , L0002015 , L0002016 , L0002017 L0002018 , L0002019 , L0002020 , L0002021 , L0002022 , L0002023 , L0002024 , L0002025 L0002026 , L0002027 , L0002028 , L0002030 , L0002031 , L0002029 , L0002032 , L0002033 L0002034 , L0002035 , L0002036 , L0002037 , L0002038 , L0002039 , L0002040 , L0002041 L0002042 , L0002043 , L0002044 , L0002045 , L0002046 , L0002047 , L0002048 , L0002049 L0002050 , L0002051 , L0002052 , L0002053 , L0002054 , L0002055 , L0002056 , L0002057 L0002058 , L0002059 , L0002060 , L0002061 , L0002062 , L0002063 , L0002064 , L0002065 L0002066 , L0002067 , L0002068 , L0002069 , L0002070 , L0002071 , L0002072 , L0002073 L0002074 , L0002077 , L0002081 , L0002075 , L0002076 , L0002078 , L0002079 , L0002080 L0002082 , L0002083 , L0002084 , L0002085 , L0002086 , L0002087 , L0002088 , L0002089 L0002090 , L0002091 , L0002092 , L0002096 , L0002093 , L0002094 , L0002095 , L0002097 L0002098 , L0002099 , L0002100 , L0002101 , L0002102 , L0002103 , L0002104 , L0002105 L0002106 , L0002107 , L0002108 , L0002109 , L0002110 , L0002111 , L0002112 , L0002113 L0002114 , L0002115 , L0002116 , L0002117 , L0002118 , L0002119 , L0002120 , L0002121 L0002122 , L0002123 , L0002124 , L0002125 , L0002126 , L0002127 , L0002128 , L0002129 L0002130 *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2028-2041 21:00:06 PAGE 26 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** GRIDDED RECEPTOR NETWORK SUMMARY *** *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** *** X-COORDINATES OF GRID *** (METERS) 486627.2, 486677.2, 486727.2, 486777.2, 486827.2, 486877.2, 486927.2, 486977.2, 487027.2, 487077.2, 487127.2, 487177.2, 487227.2, 487277.2, 487327.2, 487377.2, 487427.2, 487477.2, 487527.2, 487577.2, 487627.2, ``` L0002002 , L0002003 , L0002004 , L0002005 , L0002006 , L0002007 , L0002008 , L0002009 # *** Y-COORDINATES OF GRID *** (METERS) 3765628.5, 3765678.5, 3765728.5, 3765778.5, 3765828.5, 3765878.5, 3765928.5, 3765978.5, 3766028.5, 3766078.5, 3766128.5, 3766178.5, 3766228.5, 3766278.5, 3766328.5, 3766428.5, 3766478.5, 3766528.5, 3766578.5, 3766628.5, *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** #### * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|------------------|------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | | | | | | | | | | | | | 3766628.46 | 544.20 | 545.30 | 544.90 | 547.20 | 550.40 | 554.20 | 558.10 | 558.20 | 556.00 | | 3766578.46 | 548.60 | 552.30 | 553.20 | 550.10 | 551.10 | 556.50 | 559.20 | 561.60 | 564.60 | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 554.60 | 555.90 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 561.20 | 561.40 | 563.40 | 564.50 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 552.00 | 554.70 | 560.20 | 564.40 | 563.80 | 558.40 | | 3766378.46 | 548.90 | 550.20 | 548.70 | 546.10 | 549.70 | 552.50 | 554.80 | 554.10 | 554.10 | | 3766328.46 | 544.90 | 548.20 | 546.60 | 543.30 | 544.40 | 546.10 | 547.80 | 551.20 | 555.30 | | 3766278.46 | 542.10 | 543.90 | 543.30 | 541.90 | 541.60 | 545.30 | 552.20 | 559.30 | 563.90 | | 3766228.46 | 538.30 | 539.20 | 540.10 | 539.50 | 543.20 | 548.20 | 554.10 | 560.70 | 569.10 | | 3766178.46 | 529.40 | 533.30 | 536.00 | 539.10 | 544.60 | 553.20 | 563.20 | 566.40 | 564.40 | | 3766128.46 | 527.10 | 530.90 | 533.50 | 541.80 | 554.20 | 564.90 | 567.50 | 560.40 | 562.80 | | 3766078.46 | 527.50 | 529.40 | 531.80 | 542.90 | 552.80 | 554.70 | 555.40 | 552.50 | 553.40 | | 3766028.46 | 530.00 | 531.30 | 532.30 | 534.90 | 540.10 | 543.10 | 546.30 | 547.40 | 550.50 | | 3765978.46 | 532.50 | 531.30 | 533.30 | 535.70 | 537.60 | 539.20 | 541.10 | 543.60 | 547.20 | | 3765928.46 | 548.90 | 538.10 | 534.90 | 535.70 | 537.80 | 540.00 | 542.10 | 543.80 | 545.10 | | 3765878.46 | 567.50 | 554.20 | 542.70 | 539.70 | 540.60 | 542.50 | 543.50 | 546.10 | 548.70 | | 3765828.46 | 573.70 | 561.60 | 549.80 | 553.60 | 558.90 | 551.90 | 555.90 | 560.80 | 572.20 | | 3765778.46 | 575.00 | 574.30 | 566.80 | 568.70 | 575.50 | 567.00 | 563.50 | 575.00 | 581.50 | | 3765728.46 | 574.40 | 576.50 | 577.70 | 580.90 | 585.60 | 582.20 | 578.20 | 583.70 | 592.00 | | 3765678.46 | 581.00 | 578.80 | 579.80 | 583.50 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 582.20 | 586.30 | 591.10 | 593.20 | 594.80 | 596.80 | 601.00 | | *** AERMOD - | VERSION 21112 ** | * *** Terr | acina at Redl | ands | | | | *** 08 | /11/21 | | | VERSION 16216 ** | | | PM Concentrat | ions 2028-204 | 1 | | | :00:06 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * ELEVATION HEIGHTS IN METERS * PAGE 28 | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|-----------------|-------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | 3766628.46 | 554.80 | 556.50 | 560.60 | 564.70 | 566.90 | 568.10 | 569.60 | 572.00 | 574.30 | | 3766578.46 | 564.30 | 560.70 | 560.30 | 564.00 | 568.50 | 571.20 | 572.40 | 574.30 | 576.70 | | 3766528.46 | 568.30 | 568.90 | 567.10 | 565.00 | 566.80 | 572.00 | 574.10 | 576.40 | 579.30 | | 3766478.46 | 564.10 | 568.30 | 570.70 | 570.80 | 568.10 | 570.90 | 574.60 | 577.70 | 582.00 | | 3766428.46 | 557.60 | 561.10 | 565.40 | 571.50 | 573.20 | 575.60 | 578.20 | 581.30 | 590.40 | | 3766378.46 | 560.70 | 563.00 | 569.20 | 576.20 | 580.20 | 585.80 | 591.00 | 592.80 | 592.90 | | 3766328.46 | 562.50 | 569.60 | 572.90 | 582.10 | 590.20 | 594.50 | 592.50 | 596.20 | 599.70 | | 3766278.46 | 566.00 | 574.20 | 585.00 | 589.60 | 595.40 | 589.20 | 584.10 | 589.70 | 591.00 | | 3766228.46 | 573.80 | 578.10 | 588.60 | 582.90 | 585.00 | 581.70 | 577.70 | 581.80 | 582.80 | | 3766178.46 | 572.80 | 579.70 | 582.40 | 577.30 | 577.30 | 574.20 | 573.10 | 577.10 | 583.60 | | 3766128.46 | 570.90 | 571.10 | 576.80 | 571.80 | 569.40 | 569.10 | 571.50 | 578.60 | 588.50 | | 3766078.46 | 557.60 | 562.50 | 570.70 | 565.30 | 565.60 | 567.90 | 571.00 | 574.80 | 581.40 | | 3766028.46 | 553.70 | 556.90 | 561.10 | 559.60 | 561.60 | 568.60 | 580.20 | 581.30 | 579.80 | | 3765978.46 | 550.10 | 554.90 | 558.40 | 557.30 | 563.80 | 572.30 | 580.80 | 593.60 | 598.00 | | 3765928.46 | 547.20 | 550.50 | 556.40 | 557.40 | 570.10 | 584.80 | 590.90 | 598.40 | 611.40 | | 3765878.46 | 548.90 | 550.20 | 555.20 | 554.80 | 562.60 | 576.90 | 580.70 | 594.40 | 605.10 | | 3765828.46 | 570.60 | 560.70 | 555.30 | 554.90 | 557.90 | 563.90 | 574.50 | 586.80 | 602.20 | | 3765778.46 | 590.70 | 580.80 | 565.10 | 558.80 | 557.90 | 560.10 | 566.60 | 580.40 | 601.40 | | 3765728.46 | 594.90 | 582.90 | 569.60 | 562.80 | 559.40 | 560.00 | 562.60 | 566.50 | 576.00 | | 3765678.46 | 600.80 | 595.30 | 579.00 | 569.40 | 567.30 | 562.00 | 561.90 | 564.80 | 567.50 | | 3765628.46 | 602.80 | 597.50 | 580.20 | 575.40 | 577.30 | 575.80 | 564.50 | 564.20 | 566.00 | | *** AERMOD - | VERSION 21112 * | ** *** Terr | acina at Redl | ands | | | | *** | 3/11/21 | | *** AERMET - | VERSION 16216 * | ** *** Free | way-related D | PM Concentrat | ions 2028-204 | 1 | | *** 21 | :00:06 | | | | | - | | | | | P.F | GE 29 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ## * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD (METERS) | |------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | | | | | | | 3766628.46 | 575.90 | 577.20 | 579.40 | | | 3766578.46 | 578.80 | 580.50 | 582.70 | | | 3766528.46 | 581.80 | 583.90 | 586.90 | | | 3766478.46 | 585.50 | 588.20 | 593.90 | | | 3766428.46 | 596.40 | 591.70 | 600.40 | | | 3766378.46 | 600.80 | 599.00 | 598.00 | | | 3766328.46 | 598.80 | 603.10 | 602.00 | | | 3766278.46 | 593.70 | 594.50 | 605.50 | | | 3766228.46 | 586.00 | 589.60 | 596.50 | | | 3766178.46 | 591.20 | 596.00 | 594.60 | | | 3766128.46 | 598.70 | 603.50 | 608.30 | | | | | | | | | 3766078.46 | 588.40 | 595.50 | 609.30 | |------------|--------|--------|--------| | 3766028.46 | 583.20 | 595.20 | 603.70 | | 3765978.46 | 589.20 | 589.40 | 595.70 | | 3765928.46 | 604.20 | 602.40 | 595.90 | | 3765878.46 | 617.00 | 620.70 | 615.80 | | 3765828.46 | 618.90 | 616.80 | 626.10 | | 3765778.46 | 601.20 | 607.60 | 633.60 | | 3765728.46 | 586.20 | 611.70 | 619.10 | | 3765678.46 | 572.80 | 586.30 | 596.40 | | 3765628.46 | 569.10 | 572.30 | 576.40 | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * *** 08/11/21 21:00:06 PAGE 30 PAGE 31 | Y-COORD | | | | X-COORD | (METERS) | | | | | |----------------|------------------|----------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | | |
| 3766628.46 | 555.40 | 555.70 | 556.30 | 555.20 | 550.40 | 554.20 | 558.10 | 564.30 | 569.00 | | 3766578.46 | 548.60 | 552.30 | 555.70 | 559.60 | 559.90 | 556.50 | 559.20 | 561.60 | 564.60 | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 563.50 | 563.70 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 563.50 | 561.40 | 563.40 | 596.40 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 563.50 | 563.80 | 563.80 | 565.40 | 563.80 | 596.40 | | 3766378.46 | 548.90 | 550.20 | 551.50 | 590.00 | 595.20 | 596.40 | 596.40 | 596.40 | 600.20 | | 3766328.46 | 544.90 | 551.70 | 551.70 | 596.40 | 596.40 | 596.40 | 596.40 | 599.90 | 600.20 | | 3766278.46 | 542.10 | 551.70 | 590.00 | 596.40 | 596.40 | 637.60 | 596.40 | 596.40 | 596.40 | | 3766228.46 | 566.60 | 589.10 | 595.20 | 652.40 | 652.40 | 596.40 | 596.40 | 596.40 | 595.20 | | 3766178.46 | 652.40 | 652.40 | 652.40 | 652.40 | 652.40 | 595.20 | 589.10 | 590.00 | 596.40 | | 3766128.46 | 655.00 | 655.00 | 655.00 | 652.40 | 569.30 | 566.60 | 567.50 | 637.60 | 652.40 | | 3766078.46 | 655.00 | 667.30 | 671.50 | 654.70 | 652.40 | 652.40 | 652.40 | 667.30 | 671.50 | | 3766028.46 | 655.00 | 668.60 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765978.46 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765928.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765878.46 | 574.70 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765828.46 | 573.70 | 606.20 | 655.00 | 655.00 | 655.00 | 671.50 | 671.50 | 671.50 | 667.30 | | 3765778.46 | 588.60 | 589.70 | 610.60 | 652.40 | 607.90 | 655.00 | 671.50 | 655.00 | 655.00 | | 3765728.46 | 594.40 | 593.10 | 588.70 | 588.00 | 587.10 | 609.80 | 655.00 | 654.70 | 652.40 | | 3765678.46 | 591.40 | 595.00 | 595.00 | 591.40 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 597.00 | 592.50 | 591.10 | 593.20 | 594.80 | 607.90 | 602.20 | | | | | | _ | | | | | | | | VERNETOR ETTE | | acina at Redl | | | | | | /11/21 | | *** AERMET - V | VERSION 16216 *: | ** *** Free | way-related D | PM Concentrat | ions 2028-204 | 1 | | *** 21 | :00:06 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|------------------|------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | 3766628.46 | 596.40 | 596.40 | 596.40 | 564.70 | 566.90 | 601.00 | 609.90 | 616.50 | 616.70 | | 3766578.46 | 568.00 | 596.40 | 600.80 | 601.00 | 601.00 | 601.90 | 609.90 | 616.50 | 616.70 | | 3766528.46 | 568.30 | 568.90 | 596.40 | 601.90 | 604.20 | 604.20 | 609.90 | 616.50 | 616.70 | | 3766478.46 | 596.40 | 596.40 | 596.40 | 600.20 | 605.20 | 609.90 | 614.50 | 616.50 | 616.50 | | 3766428.46 | 600.20 | 600.80 | 601.00 | 600.80 | 601.90 | 604.20 | 606.80 | 609.90 | 604.20 | | 3766378.46 | 599.90 | 600.80 | 600.20 | 599.90 | 599.90 | 599.90 | 599.90 | 600.20 | 604.20 | | 3766328.46 | 599.90 | 596.40 | 596.40 | 596.40 | 596.40 | 594.50 | 599.90 | 599.90 | 599.70 | | 3766278.46 | 596.40 | 596.40 | 595.20 | 595.20 | 595.40 | 596.40 | 600.80 | 600.80 | 608.90 | | 3766228.46 | 595.20 | 596.00 | 588.60 | 596.40 | 596.40 | 637.60 | 650.80 | 650.80 | 660.00 | | 3766178.46 | 595.20 | 590.00 | 590.00 | 637.60 | 637.60 | 660.00 | 660.00 | 660.00 | 660.00 | | 3766128.46 | 590.00 | 637.60 | 637.60 | 650.80 | 660.00 | 668.60 | 668.60 | 660.00 | 660.00 | | 3766078.46 | 668.60 | 667.30 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 667.30 | | 3766028.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 668.60 | 671.50 | | 3765978.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 660.00 | 660.00 | | 3765928.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 660.00 | 650.80 | 637.60 | | 3765878.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 650.80 | | 3765828.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | | 3765778.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765728.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765678.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765628.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | | | | | | | | | | | | *** AERMOD - | VERSION 21112 ** | * *** Terr | acina at Redl | ands | | | | | /11/21 | | *** AERMET - | VERSION 16216 ** | * | way-related D | PM Concentrat | ions 2028-204 | 1 | | *** 21 | :00:06 | | | | | | | | | | PA | GE 32 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD (METERS) | |------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | 3766628.46 | 617.40 | 618.70 | 618.70 | | | 3766578.46 | 617.40 | 618.70 | 619.50 | | | 3766528.46 | 617.40 | 618.70 | 618.70 | | | 3766478.46 | 617.40 | 617.40 | 617.40 | | | 3766428.46 | 600.30 | 617.40 | 611.50 | | | 3766378.46 | 600.80 | 604.20 | 617.40 | | | 3766328.46 | 604.20 | 604.20 | 613.90 | | | 3766278.46 | 627.70 | 632.70 | 608.90 | | | | | | | | | 3766228.46 3766178.46 3766128.46 3766078.46 3765978.46 3765928.46 3765878.46 3765878.46 | 660.00
650.80
637.60
660.00
671.50
669.60
660.00
637.60 | 660.00
649.20
632.70
660.00
660.00
671.50
660.00
637.60 | 635.40
660.00
632.70
632.70
660.00
667.30
671.50 | | | | | | |---|--|--|--|-------------|--|------------------|------------------|---------------------------------| | 3765828.46 | 637.60 | 650.80 | 637.60 | | | | | | | 3765778.46
3765728.46 | 671.50
671.50 | 671.50
671.50 | 637.60
667.30 | | | | | | | 3765678.46 | | 671.50 | 671.50 | | | | | | | 3765628.46 | 671.50 | 671.50 | 671.50 | | | | | | | | VERSION 21112 *** VERSION 16216 *** | *** Freew | ay-related | DPM Concent | crations 2028-2041 | | * * *
* * * | 08/11/21
21:00:06
PAGE 33 | | MODELOFIS | Regulation Co. | NC ELEV OR | .BAN ADO_O | | | | | | | | | (| | | AN RECEPTORS ***
EV, ZHILL, ZFLAG)
S) | | | | | (487146.1
(487485.2 | · · | 559.4, 6
580.3, 6 | 71.5,
69.6, | 0.0); | (487071.7, 3766032.3,
(487280.7, 3766020.6,
(487507.5, 3765926.8,
(486821.5, 3766197.7, | 561.9,
608.6, | 671.5,
650.8, | / | | | VERSION 21112 *** VERSION 16216 *** | *** Freew | ay-related | DPM Concent | crations 2028-2041 | | * * * | 08/11/21
21:00:06
PAGE 34 | ^{***} MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ^{*} SOURCE-RECEPTOR COMBINATIONS FOR WHICH CALCULATIONS MAY NOT BE PERFORMED * LESS THAN 1.0 METER; WITHIN OPENPIT; OR BEYOND 80KM FOR FASTAREA/FASTALL | DISTANCE
(METERS) | LOCATION
YR (METERS) | RECEPTOR
XR (METERS) | SOURCE
ID | |----------------------|-------------------------|-------------------------|--------------| | | | | | | 0.17 | 3765878.5 | 487177.2 | L0001684 | | -0.82 | 3765828.5 | 487277.2 | L0001714 | | -2.57 | 3765828.5 | 487277.2 | L0001715 | | 0.93 | 3765828.5 | 487277.2 | L0001716 | | 0.96 | 3765778.5 | 487377.2 | L0001745 | | 0.95 | 3766028.5 | 486677.2 | L0001846 | | -0.76 | 3766028.5 | 486677.2 | L0001847 | | 0.35 | 3765978.5 | 486827.2 | L0001890 | | -0.43 | 3765928.5 | 486977.2 | L0001933 | | -0.21 | 3765928.5 | 486977.2 | L0001934 | | | | | | #### 487227.2 3765828.5 L0002006 0.43 487227.2 3765828.5 -2.73 L0002007 L0002008 487227.2 3765828.5 -0.22 487327.2 3765778.5 0.42 L0002037 L0002038 487327.2 3765778.5 -0.02 * * * *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** 21:00:06 PAGE 35 *** MODELOPTs: ReqDFAULT CONC ELEV URBAN ADJ U* *** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE. *** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC) 1.54, 3.09, 5.14, 8.23, 10.80, *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2028-2041 * * * 21:00:06 PAGE 36 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA *** Surface file: E:\New MET data\RDLD_V9_ADJU\RDLD_v9.SFC Met Version: 16216 Profile file: E:\New MET data\RDLD V9 ADJU\RDLD v9.PFL Surface format: FREE Profile format: FREE Surface station no.: 3171 Upper air station no.: 3190 Name: UNKNOWN Name: UNKNOWN Year: 2012 Year: 2012 First 24 hours of scalar data YR MO DY JDY HR HO U* W* DT/DZ ZICNV ZIMCH M-O LEN ZO BOWEN ALBEDO REF WS WD HT REF TA HT 12 01 01 1 01 -10.6 0.149 -9.000 -9.000 -999. 138. 26.7 0.32 3.22 1.00 1.30 110. 9.1 285.4 5.5 ``` 12 01 01 1 02 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 130. 9.1 284.5 5.5 12 01 01 1 03 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 100. 9.1 285.0 5.5 12 01 01 1 04 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 107. 9.1 284.6 5.5 12 01 01 1 05 -10.7 0.149 -9.000
-9.000 -9.99. 138. 26.7 0.32 3.22 1.00 1.30 98. 9.1 284.9 5.5 12 01 01 1 06 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 86. 9.1 284.5 12 01 01 1 07 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 91. 9.1 284.0 12 01 01 1 08 -4.0 0.102 -9.000 -9.000 -999. 78. 22.9 0.32 3.22 0.54 0.90 107. 9.1 285.0 12 01 01 1 09 44.6 0.237 0.382 0.006 43. 276. -25.6 0.15 3.22 0.33 2.10 81. 10.1 289.1 12 01 01 1 10 134.3 0.111 0.882 0.008 176. 99. -1.0 0.32 3.22 0.26 0.40 72. 9.1 295.1 12 01 01 1 11 199.8 0.409 1.429 0.005 503. 627. -29.4 0.15 3.22 0.23 3.68 78. 10.1 297.9 -10.0 0.32 3.22 0.22 1.80 333. 9.1 299.4 5.5 12 01 01 1 13 230.0 0.300 2.134 0.005 1453. 394. -10.1 0.32 3.22 0.22 1.80 72. 9.1 300.4 5.5 12 01 01 1 14 194.0 0.294 2.109 0.005 1663. 382. -11.2 0.32 3.22 0.24 1.80 277. 9.1 301.0 5.5 12 01 01 1 15 126.3 0.378 1.872 0.005 1784. 557. -36.5 0.32 3.22 0.27 2.70 243. 9.1 301.0 12 01 01 1 16 39.5 0.199 1.278 0.005 1817. 240. -17.2 0.32 3.22 0.36 1.30 274. 9.1 300.1 5.5 12 01 01 1 17 -4.7 0.101 -9.000 -9.000 -999. 85. 19.0 0.32 3.22 0.65 0.90 252. 9.1 298.2 12 01 01 1 18 -4.9 0.102 -9.000 -9.000 -999. 78. 18.2 0.32 3.22 1.00 0.90 116. 9.1 296.4 12 01 01 1 19 -18.8 0.204 -9.000 -9.000 -999. 220. 45.6 0.15 3.22 1.00 2.27 79. 10.1 292.2 12 01 01 1 20 -5.0 0.102 -9.000 -9.000 -999. 83. 18.1 0.32 3.22 1.00 0.90 95. 9.1 290.2 12 01 01 1 21 -5.0 0.102 -9.000 -9.000 -999. 78. 18.0 0.32 3.22 1.00 0.90 99. 9.1 287.8 5.5 12 01 01 1 22 -5.0 0.102 -9.000 -9.000 -9.99. 78. 18.0 0.32 3.22 1.00 0.90 110. 9.1 287.6 5.5 12 01 01 1 23 -10.6 0.149 -9.000 -9.000 -999. 138. 26.8 0.32 3.22 1.00 1.30 89. 9.1 287.2 5.5 12 01 01 1 24 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 105. 9.1 285.9 First hour of profile data YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV 12 01 01 01 5.5 0 -999. -99.00 285.5 99.0 -99.00 -99.00 12 01 01 01 9.1 1 110. 1.30 -999.0 99.0 -99.00 -99.00 F indicates top of profile (=1) or below (=0) *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2028-2041 *** 21:00:06 PAGE 37 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): L0001522 , L0001523 , L0001524 , L0001525 , L0001526 , L0001528 , L0001529 , L0001530 , L0001531 , L0001532 , L0001533 , L0001534 T-0001527 L0001535 , L0001536 , L0001537 , L0001538 , L0001539 , L0001540 , L0001541 , L0001542 , L0001543 , L0001544 , L0001545 , L0001546 , L0001547 , L0001548 , L0001549 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM IN MICROGRAMS/M**3 Y-COORD X-COORD (METERS) 486627.18 486677.18 486727.18 486777.18 486827.18 486877.18 486927.18 486977.18 487027.18 (METERS) ``` | 3766628.46 | 0.00453 | 0.00465 | 0.00480 | 0.00482 | 0.00476 | 0.00462 | 0.00443 | 0.00446 | 0.00460 | |--|--|--|---|---|--|--|---|---|---| | 3766578.46 | 0.00480 | 0.00477 | 0.00487 | 0.00521 | 0.00526 | 0.00497 | 0.00484 | 0.00471 | 0.00451 | | 3766528.46 | 0.00517 | 0.00518 | 0.00524 | 0.00538 | 0.00562 | 0.00561 | 0.00544 | 0.00526 | 0.00495 | | 3766478.46 | 0.00588 | 0.00585 | 0.00600 | 0.00598 | 0.00587 | 0.00582 | 0.00588 | 0.00573 | 0.00564 | | 3766428.46 | 0.00670 | 0.00697 | 0.00713 | 0.00736 | 0.00724 | 0.00672 | 0.00632 | 0.00644 | 0.00708 | | 3766378.46 | 0.00776 | 0.00807 | 0.00867 | 0.00931 | 0.00909 | 0.00886 | 0.00862 | 0.00873 | 0.00869 | | 3766328.46 | 0.00963 | 0.00982 | 0.01062 | 0.01147 | 0.01156 | 0.01144 | 0.01121 | 0.01067 | 0.00995 | | 3766278.46 | 0.01207 | 0.01279 | 0.01364 | 0.01429 | 0.01449 | 0.01401 | 0.01266 | 0.01105 | 0.01001 | | 3766228.46 | 0.01588 | 0.01736 | 0.01819 | 0.01125 | 0.01119 | 0.01682 | 0.01200 | 0.01295 | 0.01071 | | 3766178.46 | 0.02278 | 0.02546 | 0.02611 | 0.02549 | 0.02359 | 0.01052 | 0.01524 | 0.01205 | 0.01455 | | 3766128.46 | 0.03935 | 0.04396 | 0.04217 | 0.03706 | 0.02622 | 0.01952 | 0.01321 | 0.02104 | 0.01934 | | 3766078.46 | 0.35593 | 0.13454 | 0.09236 | 0.05700 | 0.02022 | 0.03823 | 0.03555 | 0.03636 | 0.03334 | | 3766028.46 | 0.18613 | 0.38075 | 0.32449 | 0.39482 | 0.15106 | 0.10197 | 0.03333 | 0.06434 | 0.05355 | | 3765978.46 | 0.18013 | 0.07665 | 0.11709 | 0.22690 | 0.44592 | 0.33169 | 0.38574 | 0.15411 | 0.10433 | | 3765928.46 | 0.02361 | 0.03969 | 0.05216 | 0.06701 | 0.08898 | 0.12770 | 0.23430 | 0.39179 | 0.41676 | | 3765878.46 | 0.02361 | 0.01987 | 0.03210 | 0.03992 | 0.04782 | 0.12770 | 0.23430 | 0.09168 | 0.12974 | | 3765828.46 | 0.01203 | 0.01358 | 0.03212 | 0.02299 | 0.02338 | 0.03760 | 0.03645 | 0.03815 | 0.03458 | | 3765778.46 | 0.00903 | 0.00915 | 0.02140 | 0.02299 | 0.01297 | 0.03304 | 0.02226 | 0.01964 | 0.03438 | | 3765778.46 | 0.00712 | 0.00915 | 0.01184 | 0.01294 | 0.00926 | 0.01755 | 0.02226 | 0.01343 | 0.02101 | | 3765678.46 | 0.00712 | 0.00765 | 0.00704 | 0.00729 | 0.00926 | 0.01080 | 0.01294 | 0.01343 | 0.01422 | | 3765628.46 | 0.00371 | 0.00493 | 0.00704 | 0.00729 | 0.00752 | 0.00649 | 0.00692 | 0.00936 | 0.00995 | | 3/05028.40 | 0.00449 | 0.00493 | 0.00601 | 0.00609 | 0.00615 | 0.00649 | 0.00692 | 0.00/34 | 0.00755 | | *** AFPMOD - | VERSION 21112 | *** *** Terra | acina at Redl | ande | | | *: | ** N. | /11/21 | | | | 10110 | | PM Concentrat: | iona 2029-204 | 1 | *: | 00 | :00:06 | | AERMEI - | VERSION 10210 | treev | way-related b | PM CONCENTIAL. | 10115 2020-204. | L | | 21 | GE 38 | | | | | | | | | | PA | GE 30 | | *** MODELODE | PACDENIII.T | CONC PIEU III | *וו ד. חול מול מס | | | | | | | | *** MODELOPTs | s: RegDFAULT | CONC ELEV U | RBAN ADJ_U* | | | | | | | | *** MODELOPTs | RegDFAULT | | _ |) AVERAGE CON | CENTRATION V | VALUES FOR SOU | RCE GROUP: ALI | *** | | | *** MODELOPTs | s: RegDFAULT | *** THE PERIO | —
D (43848 HRS | | | VALUES FOR SOU | | _ | 26 | | *** MODELOPTs | - | *** THE PERION | _
D (43848 HRS
SOURCE(S): | L0001522 | , L0001523 | , L0001524 | , L0001525 | , L00015 | | | *** MODELOPTS | L0001527 | *** THE PERION INCLUDING , L0001528 | _
D (43848 HRS
SOURCE(S):
, L0001529 | L0001522
, L0001530 | , L0001523
, L0001531 | , L0001524
, L0001532 | , L0001525
, L0001533 | , L00015
, L00015 | 34 , | | *** MODELOPTS | L0001527
L0001535 | *** THE PERION INCLUDING , L0001528 , L0001536 | | L0001522
, L0001530
, L0001538 | , L0001523
, L0001531
, L0001539 | , L0001524
, L0001532
, L0001540 | , L0001525
, L0001533
, L0001541 | , L00015
, L00015
, L00015 | 34 ,
42 , | | *** MODELOPTS | L0001527
L0001535 | *** THE PERION INCLUDING , L0001528 , L0001536 | _
D (43848 HRS
SOURCE(S):
, L0001529 | L0001522
, L0001530 | , L0001523
, L0001531 | , L0001524
, L0001532 | , L0001525
, L0001533 | , L00015
, L00015 | 34 ,
42 , | | *** MODELOPTS | L0001527
L0001535 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545 | L0001522
, L0001530
, L0001538
, L0001546 | , L0001523
, L0001531
, L0001539
, L0001547 | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541 | , L00015
, L00015
, L00015 | 34 ,
42 , | | *** MODELOPTS | L0001527
L0001535 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545 | L0001522
, L0001530
, L0001538 | , L0001523
, L0001531
, L0001539
, L0001547 | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541 | , L00015
, L00015
, L00015 | 34 ,
42 , | | *** MODELOPTS | L0001527
L0001535 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545 | L0001522
, L0001530
, L0001538
, L0001546 | , L0001523
, L0001531
, L0001539
, L0001547 | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541 | , L00015
, L00015
, L00015 | 34 ,
42 , | | *** MODELOPTS | L0001527
L0001535 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545 | L0001522
, L0001530
, L0001538
, L0001546 | , L0001523
, L0001531
, L0001539
, L0001547 | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541
, L0001549 | , L00015
, L00015
, L00015 | 34 ,
42 , | | | L0001527
L0001535 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545 | L0001522
, L0001530
,
L0001538
, L0001546
1 ; NETWORN | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541
, L0001549 | , L00015
, L00015
, L00015 | 34 ,
42 , | | Y-COORD | L0001527
L0001535
L0001543 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545
DRK ID: UCART | L0001522
, L0001530
, L0001538
, L0001546
:1 ; NETWORI
IN MICROGI | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS) | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541
, L0001549 | , L00015
, L00015
, L00015 | 34 ,
42 ,
, | | | L0001527
L0001535 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545 | L0001522
, L0001530
, L0001538
, L0001546
1 ; NETWORN | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541
, L0001549 | , L00015
, L00015
, L00015 | 34 ,
42 , | | Y-COORD | L0001527
L0001535
L0001543 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO | D (43848 HRS
SOURCE(S):
, L0001529
, L0001537
, L0001545
DRK ID: UCART | L0001522
, L0001530
, L0001538
, L0001546
:1 ; NETWORI
IN MICROGI | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS) | , L0001524
, L0001532
, L0001540
, L0001548 | , L0001525
, L0001533
, L0001541
, L0001549 | , L00015
, L00015
, L00015 | 34 ,
42 ,
, | | Y-COORD
(METERS) | L0001527
L0001535
L0001543 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO *** (487127.18 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 | L0001522
, L0001530
, L0001538
, L0001546
1 ; NETWORI
IN MICROGI
X-COORD
487227.18 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** | , L0001525
, L0001533
, L0001541
, L0001549
** | , L00015
, L00015
, L00015
, | 487477.18 | | Y-COORD
(METERS)

3766628.46 | L0001527
L0001535
L0001543 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 | L0001522 , L0001530 , L0001538 , L0001546 1 ; NETWORN IN MICROGN 487227.18 0.00399 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 | , L00015
, L00015
, L00015
, | 34 ,
42 ,
, , , , , , , , , , , , , , , , , , | | Y-COORD
(METERS)

3766628.46
3766578.46 | L0001527
L0001535
L0001543 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 0.00427 0.00474 | L0001522 , L0001530 , L0001538 , L0001546 I ; NETWORD X-COORD 487227.18 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00385 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 | 487427.18

0.00333
0.00350 | 487477.18

0.00313
0.00328 | | Y-COORD
(METERS)

3766628.46
3766578.46
3766528.46 | L0001527
L0001535
L0001543
487077.18
 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00466 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 0.00427 0.00474 0.00476 | L0001522 , L0001530 , L0001538 , L0001546 1 ; NETWORN IN MICROGN 487227.18 0.00399 0.00444 0.00485 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00385 0.00419 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 | 487427.18

0.00333
0.00350
0.00370 | 487477.18

0.00313
0.00328
0.00342 | | Y-COORD
(METERS)

3766628.46
3766578.46
3766528.46
3766478.46 | L0001527
L0001535
L0001543
487077.18
 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00466 0.00526 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 | L0001522 , L0001530 , L0001538 , L0001546 IN MICROGI X-COORD 487227.18 0.00399 0.00444 0.00485 0.00492 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00385 0.00419 0.00473 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 0.00433 | 487427.18

0.00333
0.00350
0.00370
0.00399 | 487477.18

0.00313
0.00328
0.00342
0.00357 | | Y-COORD (METERS) | L0001527
L0001535
L0001543
487077.18
 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00466 0.00526 0.00668 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 | L0001522 , L0001530 , L0001538 , L0001546 IN MICROGI X-COORD 487227.18 0.00399 0.00444 0.00485 0.00492 0.00544 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00365 0.00419 0.00473 0.00485 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 0.00433 0.00450 | 487427.18

0.00333
0.00350
0.00370
0.00399
0.00412 | 34 ,
42 ,
,
,
487477.18

0.00313
0.00328
0.00342
0.00357
0.00331 | | Y-COORD (METERS) | L0001527
L0001535
L0001543
487077.18
 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00466 0.00526 0.00668 0.00738 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 0.00427 0.00474 0.00476 0.00499 0.00614 0.00653 | L0001522 , L0001530 , L0001538 , L0001546 IN MICROGE X-COORD 487227.18 0.00399 0.00444 0.00485 0.00492 0.00544 0.00561 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00365 0.00419 0.00473 0.00485 0.00443 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 0.00433 0.00450 0.00386 | 487427.18

0.00333
0.00350
0.00370
0.00399
0.00412
0.00361 | 34 ,
42 ,
,
,
487477.18

0.00313
0.00328
0.00342
0.00357
0.00331
0.00349 | | Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766478.46 3766428.46 3766378.46 | L0001527
L0001535
L0001543
487077.18
0.00466
0.00453
0.00473
0.00567
0.00712
0.00777
0.00870 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00466 0.00526 0.00668 0.00738 0.00752 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 0.00427 0.00474 0.00476 0.00499 0.00614 0.00653 0.00695 | L0001522 , L0001530 , L0001538 , L0001546 IN MICROGI X-COORD 487227.18 0.00399 0.00444 0.00485 0.00492 0.00544 0.00561 0.00566 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00385 0.00419 0.00473 0.00485 0.00443 0.00417 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 0.00450 0.00450 0.00386 0.00421 | 487427.18

0.00333
0.00350
0.00370
0.00399
0.00412
0.00361
0.00377 | 34 ,
42 ,
,
,
,
487477.18

0.00313
0.00328
0.00342
0.00357
0.00331
0.00349
0.00349 | | Y-COORD (METERS) | L0001527
L0001535
L0001543
487077.18
 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00476 0.00466 0.00526 0.00668 0.00738 0.00752 0.00795 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 0.00427 0.00474 0.00474 0.00476 0.00499 0.00614 0.00653 0.00695 0.00626 | L0001522 , L0001530 , L0001538 , L0001546 IN MICROGI X-COORD 487227.18 0.00399 0.00444 0.00485 0.00492 0.00566 0.00556 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00385 0.00419 0.00473 0.00485 0.00443 0.00417 0.00531 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 0.00433 0.00450 0.00386 0.00421 0.00574 | 487427.18

0.00333
0.00350
0.00370
0.00399
0.00412
0.00361
0.00377
0.00490 | 34 ,
42 ,
,
,
,
487477.18
 | | Y-COORD (METERS) 3766628.46 3766578.46 3766528.46 3766478.46 3766428.46 3766378.46 |
L0001527
L0001535
L0001543
487077.18
0.00466
0.00453
0.00473
0.00567
0.00712
0.00777
0.00870 | *** THE PERIOR INCLUDING , L0001528 , L0001536 , L0001544 *** NETWO 487127.18 0.00454 0.00476 0.00466 0.00526 0.00668 0.00738 0.00752 | D (43848 HRS SOURCE(S): , L0001529 , L0001537 , L0001545 DRK ID: UCART CONC OF DPM 487177.18 0.00427 0.00474 0.00476 0.00499 0.00614 0.00653 0.00695 | L0001522 , L0001530 , L0001538 , L0001546 IN MICROGI X-COORD 487227.18 0.00399 0.00444 0.00485 0.00492 0.00544 0.00561 0.00566 | , L0001523
, L0001531
, L0001539
, L0001547
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0001524
, L0001532
, L0001540
, L0001548
ART *** 487327.18 0.00368 0.00385 0.00419 0.00473 0.00485 0.00443 0.00417 | , L0001525
, L0001533
, L0001541
, L0001549
** 487377.18 0.00353 0.00370 0.00395 0.00450 0.00450 0.00386 0.00421 | 487427.18

0.00333
0.00350
0.00370
0.00399
0.00412
0.00361
0.00377 | 34 ,
42 ,
,
,
,
487477.18

0.00313
0.00328
0.00342
0.00357
0.00331
0.00349
0.00349 | ``` 3766128.46 0.01554 0.01506 0.01284 0.01388 0.01405 0.01346 0.01217 0.00999 0.00764 3766078.46 0.02866 0.02422 0.01896 0.02045 0.01914 0.01720 0.01516 0.01317 0.01077 3766028.46 0.04519 0.03851 0.03241 0.03043 0.02687 0.02182 0.01572 0.01432 0.01374 0.04445 3765978.46 0.07943 0.06224 0.05054 0.02675 0.02010 0.01409 0.01183 0.03567 0.26540 0.01280 3765928.46 0.13357 0.09120 0.07028 0.04513 0.02765 0.02181 0.01705 3765878.46 0.24575 0.55491 0.45998 0.15725 0.09449 0.04993 0.03861 0.02488 0.01829 3765828.46 0.04500 0.08640 0.17040 0.34229 0.34062 0.14989 0.07597 0.04298 0.02653 3765778.46 0.02425 0.03051 0.05826 0.09397 0.16395 0.39399 0.40892 0.09864 0.04296 3765728.46 0.01613 0.02070 0.03459 0.05073 0.06827 0.09889 0.20202 0.34351 0.31689 0.01332 0.06929 3765678.46 0.01091 0.02031 0.03145 0.04018 0.05288 0.10310 0.22961 0.00812 0.00985 0.01593 0.05105 0.06629 3765628.46 0.02091 0.02350 0.02951 0.04172 *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 08/11/21 *** AERMET - VERSION 16216 *** *** *** Freeway-related DPM Concentrations 2028-2041 21:00:06 PAGE 39 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* *** *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): L0001522 , L0001523 , L0001524 , L0001525 , L0001526 , L0001529 , L0001531 , L0001532 , L0001533 L0001527 , L0001528 , L0001530 , L0001534 , L0001537 , L0001538 , L0001540 L0001535 , L0001536 , L0001539 , L0001541 , L0001542 L0001543 , L0001544 , L0001545 , L0001546 , L0001547 , L0001548 , L0001549 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM TN MTCROGRAMS/M**3 Y-COORD X-COORD (METERS) 487577.18 (METERS) 487527.18 487627.18 3766628.46 0.00297 0.00283 0.00265 3766578.46 0.00308 0.00290 0.00270 0.00317 0.00296 0.00269 3766528.46 3766478.46 0.00323 0.00295 0.00253 0.00283 0.00301 3766428.46 0.00243 3766378.46 0.00287 0.00286 0.00280 3766328.46 0.00332 0.00294 0.00287 3766278.46 0.00415 0.00390 0.00301 3766228.46 0.00560 0.00491 0.00402 3766178.46 0.00577 0.00493 0.00479 3766128.46 0.00582 0.00502 0.00436 3766078.46 0.00865 0.00692 0.00510 3766028.46 0.01181 0.00840 0.00663 3765978.46 0.01283 0.01161 0.00920 0.01231 0.01121 3765928.46 0.01117 3765878.46 0.01398 0.01170 0.01053 3765828.46 0.01867 0.01566 0.01235 0.03223 0.02327 0.01565 3765778.46 3765728.46 0.08855 0.03553 0.02365 3765678.46 0.32326 0.18722 0.05269 ``` | 3765628.46 | 0.09942 | 0.25969 0.23 | 051 | | | | |---|---|---|--|--|---|---| | *** AERMET - | - VERSION 21112 ***
- VERSION 16216 *** | *** Freeway-rela | ted DPM Concentration | ns 2028-2041 | * * *
* * | 08/11/21
21:00:06
PAGE 40 | | *** MODELOPT | rs: RegDFAULT CO | NC ELEV URBAN AD | J_U* | | | | | | L0001527 , L
L0001535 , L | * THE PERIOD (4384
INCLUDING SOURCE(
0001528 , L00015
0001536 , L00015
0001544 , L00015 | S): L0001522 ,
29 , L0001530 ,
37 , L0001538 , | VTRATION VALUES FOR , L0001523 , L0001531 , L0001539 , L0001547 , L0001547 | 524 , L0001525 ,
532 , L0001533 ,
540 , L0001541 , | ***
L0001526 ,
L0001534 ,
L0001542 , | | | | *** DI | SCRETE CARTESIAN RECE | EPTOR POINTS *** | | | | | | ** CONC OF | DPM IN MICROGRAM | MS/M**3 | ** | | | X-COOF | RD (M) Y-COORD (M) | CONC | X-CO0 | ORD (M) Y-COORD (M) | CONC | | | 4871
4874 | 910.88 3766071.19
146.10 3766029.99
485.24 3766054.47
080.82 3766103.59 | 0.01201 | 487
487 | 7071.68 3766032.30
7280.73 3766020.65
7507.54 3765926.79
3766197.66 | | | | *** AERMET - | - VERSION 21112 *** - VERSION 16216 *** Ts: RegDFAULT COR | *** Freeway-rela | ted DPM Concentration | ns 2028-2041 | * * *
* * | 08/11/21
21:00:06
PAGE 41 | | | | *** THE SUM | MARY OF MAXIMUM PERIC | DD (43848 HRS) RESULT | rs *** | | | | | ht govg on pay | | | | | | | | ** CONC OF DPM | IN MICROGRAMS/M* | **3 | ** | | | GROUP ID | Α | ** CONC OF DPM VERAGE CONC | | | ** NETWOR ZFLAG) OF TYPE GRID-I | | | ALL 1S7 2NI 3RI 4TF 5TF 6TF 7TF 8TF 9TF | A I HIGHEST VALUE IS D HIGHEST VALUE IS D HIGHEST VALUE IS H | VERAGE CONC 0.55491 AT (0.45998 AT (0.44592 AT (0.41676 AT (0.40892 AT (0.39399 AT (0.393179 AT (0.38574 AT (| | R, YR, ZELEV, ZHILL, 2
46, 550.20, 671.50
46, 555.20, 671.50
46, 537.60, 671.50
46, 545.10, 671.50
46, 566.60, 671.50
46, 534.90, 671.50
46, 543.80, 671.50
46, 543.80, 671.50
46, 543.80, 671.50 | NETWOR ZFLAG) OF TYPE GRID-I O, 0.00) GC UCART1 | | *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) A Total of 388 Informational Message(s) A Total of 43848 Hours Were Processed A Total of 191 Calm Hours Identified A Total of 197 Missing Hours Identified (0.45 Percent) ****** FATAL ERROR MESSAGES ******* *** NONE *** ****** WARNING MESSAGES ****** ME W186 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ``` ** Lakes Environmental AERMOD MPI ********** ** AERMOD Input Produced by: ** AERMOD View Ver. 10.0.1 ** Lakes Environmental Software Inc. ** Date: 8/11/2021 ** File: C:\Lakes\AERMOD View\Terracina at Redlands 2042-2055\Terracina at Redlands 2042-2055.ADI ********** ********** ** AERMOD Control Pathway *********** CO STARTING TITLEONE Terracina at Redlands TITLETWO Freeway-related DPM Concentrations 2042-2055 MODELOPT DFAULT CONC AVERTIME PERIOD URBANOPT 2035210 San_Bernardino_County POLLUTID DPM RUNORNOT RUN ERRORFIL "Terracina at Redlands 2042-2055.err" CO FINISHED *********** ** AERMOD Source Pathway ********** SO STARTING ** Source Location ** ** Source ID - Type - X Coord. - Y Coord. ** ** ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE1 ** DESCRSRC EB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00107 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 12 ** 486616.041, 3766076.797, 526.82, 0.00, 1.70 ** 486786.952, 3766018.704, 535.73, 0.00, 1.70 ``` ``` ** 486896.402, 3765982.502, 539.74, 0.00, 1.70 ** 487020.166, 3765938.721, 544.37, 0.00, 1.70 ** 487127.090, 3765896.625, 550.05, 0.00, 1.70 ** 487255.905, 3765839.374, 556.47, 0.00, 1.70 ** 487365.355, 3765779.597, 565.73, 0.00, 1.70 ** 487442.813, 3765739.185, 575.21, 0.00, 1.70 ** 487518.586, 3765698.772, 574.32, 0.00, 1.70 ** 487573.311, 3765669.305, 575.18, 0.00, 1.70 ** 487609.514, 3765647.415, 578.30, 0.00, 1.70 ** 487635.614, 3765634.786, 578.12, 0.00, 1.70 LOCATION LOCALIST 486617.773 3766076.209 527.35 VOLUME LOCATION L0002132 VOLUME 486621.236 3766075.032 527.48 LOCATION L0002133 VOLUME 486624.699 3766073.855 527.61 LOCATION L0002134 VOLUME 486628.162 3766072.678 527.73 LOCATION L0002135 VOLUME 486631.625 3766071.500 527.88 LOCATION L0002136 VOLUME 486635.088 3766070.323 528.02 LOCATION L0002137 VOLUME 486638.551 3766069.146 528.14 LOCATION L0002138 VOLUME 486642.014 3766067.969 528.26 LOCATION L0002139 VOLUME 486645.477 3766066.792 528.37 LOCATION L0002140 VOLUME 486648.940 3766065.615 528.47 LOCATION L0002141 VOLUME 486652.403 3766064.438 528.55 LOCATION L0002142 VOLUME 486655.866 3766063.261 528.67 LOCATION L0002143 VOLUME 486659.329 3766062.084 528.80 LOCATION L0002144 VOLUME 486662.792 3766060.907 528.97 LOCATION L0002145 VOLUME 486666.255 3766059.730 529.16 486669.718 3766058.553 529.36 LOCATION L0002146 VOLUME LOCATION L0002147 VOLUME 486673.181 3766057.375 529.54 VOLUME 486676.644 3766056.198 529.73 LOCATION L0002148 LOCATION L0002149 VOLUME 486680.107 3766055.021 529.91 VOLUME 486683.570 3766053.844 530.11 LOCATION L0002150 486687.033 3766052.667 530.30 LOCATION L0002151 VOLUME LOCATION L0002152 VOLUME 486690.496 3766051.490 530.48 LOCATION L0002153
VOLUME 486693.959 3766050.313 530.66 LOCATION L0002154 VOLUME 486697.422 3766049.136 530.83 486700.885 3766047.959 530.99 LOCATION L0002155 VOLUME LOCATION L0002156 VOLUME 486704.348 3766046.782 531.15 LOCATION L0002157 VOLUME 486707.811 3766045.605 531.33 LOCATION L0002158 VOLUME 486711.274 3766044.428 531.51 LOCATION L0002159 VOLUME 486714.737 3766043.250 531.68 LOCATION L0002160 VOLUME 486718.200 3766042.073 531.84 VOLUME 486721.663 3766040.896 531.98 LOCATION L0002161 LOCATION L0002162 VOLUME 486725.126 3766039.719 532.11 VOLUME 486728.589 3766038.542 532.23 LOCATION L0002163 LOCATION L0002164 VOLUME 486732.052 3766037.365 532.42 LOCATION L0002165 VOLUME 486735.515 3766036.188 532.65 486738.978 3766035.011 532.84 LOCATION L0002166 VOLUME LOCATION L0002167 VOLUME 486742.441 3766033.834 532.99 LOCATION L0002168 VOLUME 486745.904 3766032.657 533.10 LOCATION L0002169 VOLUME 486749.367 3766031.480 533.16 LOCATION L0002170 VOLUME 486752.830 3766030.302 533.23 ``` | LOCATION | L0002171 | VOLUME | 486756.293 | 3766029.125 | 533.44 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002172 | VOLUME | 486759.756 | 3766027.948 | 533.73 | | LOCATION | L0002173 | VOLUME | 486763.219 | 3766026.771 | 534.01 | | LOCATION | L0002174 | VOLUME | 486766.682 | 3766025.594 | 534.27 | | LOCATION | L0002175 | VOLUME | 486770.145 | 3766024.417 | 534.53 | | LOCATION | L0002176 | VOLUME | 486773.608 | 3766023.240 | 534.77 | | LOCATION | L0002177 | VOLUME | 486777.071 | 3766022.063 | 534.99 | | LOCATION | L0002178 | VOLUME | 486780.534 | 3766020.886 | 535.21 | | LOCATION | L0002179 | VOLUME | 486783.997 | 3766019.709 | 535.45 | | LOCATION | L0002180 | VOLUME | 486787.462 | 3766018.536 | 535.70 | | LOCATION | L0002181 | VOLUME | 486790.934 | 3766017.387 | 535.92 | | LOCATION | L0002182 | VOLUME | 486794.407 | 3766016.239 | 536.12 | | LOCATION | L0002183 | VOLUME | 486797.880 | 3766015.090 | 536.31 | | LOCATION | L0002184 | VOLUME | 486801.352 | 3766013.941 | 536.47 | | LOCATION | L0002185 | VOLUME | 486804.825 | 3766012.793 | 536.61 | | LOCATION | L0002186 | VOLUME | 486808.297 | 3766011.644 | 536.74 | | LOCATION | L0002187 | VOLUME | 486811.770 | 3766010.495 | 536.87 | | LOCATION | L0002188 | VOLUME | 486815.242 | 3766009.347 | 536.98 | | LOCATION | L0002189 | VOLUME | 486818.715 | 3766008.198 | 537.06 | | LOCATION | L0002190 | VOLUME | 486822.188 | 3766007.050 | 537.11 | | LOCATION | L0002191 | VOLUME | 486825.660 | 3766005.901 | 537.14 | | LOCATION | L0002192 | VOLUME | 486829.133 | 3766004.752 | 537.14 | | LOCATION | L0002193 | VOLUME | 486832.605 | 3766003.604 | 537.12 | | LOCATION | L0002194 | VOLUME | 486836.078 | 3766002.455 | 537.10 | | LOCATION | L0002195 | VOLUME | 486839.550 | 3766001.307 | 537.08 | | LOCATION | L0002196 | VOLUME | 486843.023 | 3766000.158 | 537.05 | | | L0002197 | VOLUME | 486846.496 | 3765999.009 | 537.15 | | LOCATION | L0002198 | VOLUME | 486849.968 | 3765997.861 | 537.35 | | LOCATION | L0002199 | VOLUME | 486853.441 | 3765996.712 | 537.54 | | LOCATION | | VOLUME | 486856.913 | 3765995.563 | 537.74 | | | L0002201 | VOLUME | 486860.386 | 3765994.415 | 537.95 | | LOCATION | | VOLUME | 486863.858 | 3765993.266 | 538.18 | | | L0002203 | VOLUME | 486867.331 | 3765992.118 | 538.40 | | | L0002204 | VOLUME | 486870.803 | 3765990.969 | 538.61 | | LOCATION | | VOLUME | 486874.276 | 3765989.820 | 538.81 | | | L0002206 | VOLUME | 486877.749 | 3765988.672 | 539.00 | | | L0002207 | VOLUME | 486881.221 | 3765987.523 | 539.18 | | | L0002208 | VOLUME | 486884.694 | 3765986.374 | 539.36 | | LOCATION | | VOLUME | 486888.166 | 3765985.226 | 539.56 | | | L0002210 | VOLUME | 486891.639 | 3765984.077 | 539.74 | | | L0002211 | VOLUME | 486895.111 | 3765982.929 | 539.91 | | LOCATION | | VOLUME | 486898.569 | 3765981.735 | 540.06 | | | L0002213 | VOLUME | 486902.017 | 3765980.516 | 540.20 | | | L0002214 | VOLUME | 486905.465 | 3765979.296 | 540.32 | | LOCATION | | VOLUME | 486908.913 | 3765978.076 | 540.42 | | LOCATION | | VOLUME | 486912.362 | 3765976.856 | 540.51 | | | L0002217 | VOLUME | 486915.810 | 3765975.636 | 540.59 | | LOCATION | | VOLUME | 486919.258 | 3765974.417 | 540.66 | | LOCATION | | VOLUME | 486922.706 | 3765973.197 | 540.71 | | | L0002220 | VOLUME | 486926.154 | 3765971.977 | 540.76 | | LOCATION | T0002551 | VOLUME | 486929.603 | 3765970.757 | 540.79 | | | | | | | | | LOCATION | L0002222 | VOLUME | 486933.051 | 3765969.538 | 540.82 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002223 | VOLUME | 486936.499 | 3765968.318 | 540.90 | | LOCATION | L0002224 | VOLUME | 486939.947 | 3765967.098 | 541.11 | | LOCATION | L0002225 | VOLUME | 486943.396 | 3765965.878 | 541.31 | | LOCATION | L0002226 | VOLUME | 486946.844 | 3765964.658 | 541.51 | | LOCATION | L0002227 | VOLUME | 486950.292 | 3765963.439 | 541.70 | | LOCATION | L0002228 | VOLUME | 486953.740 | 3765962.219 | 541.89 | | LOCATION | L0002229 | VOLUME | 486957.188 | 3765960.999 | 542.08 | | LOCATION | L0002230 | VOLUME | 486960.637 | 3765959.779 | 542.26 | | LOCATION | L0002231 | VOLUME | 486964.085 | 3765958.560 | 542.47 | | LOCATION | L0002232 | VOLUME | 486967.533 | 3765957.340 | 542.67 | | LOCATION | L0002233 | VOLUME | 486970.981 | 3765956.120 | 542.86 | | LOCATION | L0002234 | VOLUME | 486974.429 | 3765954.900 | 543.03 | | LOCATION | L0002235 | VOLUME | 486977.878 | 3765953.680 | 543.20 | | LOCATION | L0002236 | VOLUME | 486981.326 | 3765952.461 | 543.36 | | LOCATION | L0002237 | VOLUME | 486984.774 | 3765951.241 | 543.51 | | LOCATION | L0002238 | VOLUME | 486988.222 | 3765950.021 | 543.66 | | LOCATION | L0002239 | VOLUME | 486991.671 | 3765948.801 | 543.80 | | LOCATION | L0002240 | VOLUME | 486995.119 | 3765947.582 | 543.93 | | LOCATION | L0002241 | VOLUME | 486998.567 | 3765946.362 | 544.05 | | LOCATION | L0002242 | VOLUME | 487002.015 | 3765945.142 | 544.15 | | LOCATION | L0002243 | VOLUME | 487005.463 | 3765943.922 | 544.23 | | LOCATION | L0002244 | VOLUME | 487008.912 | 3765942.702 | 544.30 | | LOCATION | L0002245 | VOLUME | 487012.360 | 3765941.483 | 544.35 | | LOCATION | L0002246 | VOLUME | 487015.808 | 3765940.263 | 544.42 | | LOCATION | L0002247 | VOLUME | 487019.256 | 3765939.043 | 544.47 | | LOCATION | L0002248 | VOLUME | 487022.671 | 3765937.735 | 544.52 | | LOCATION | L0002249 | VOLUME | 487026.075 | 3765936.395 | 544.70 | | LOCATION | L0002250 | VOLUME | 487029.478 | 3765935.055 | 544.87 | | LOCATION | L0002251 | VOLUME | 487032.881 | 3765933.715 | 545.04 | | LOCATION | L0002252 | VOLUME | 487036.285 | 3765932.375 | 545.22 | | LOCATION | | VOLUME | 487039.688 | 3765931.035 | 545.41 | | LOCATION | | VOLUME | 487043.091 | 3765929.696 | 545.62 | | LOCATION | | VOLUME | 487046.495 | 3765928.356 | 545.82 | | LOCATION | | VOLUME | 487049.898 | 3765927.016 | 546.02 | | LOCATION | | VOLUME | 487053.301 | 3765925.676 | 546.21 | | LOCATION | | VOLUME | 487056.705 | 3765924.336 | 546.39 | | LOCATION | | VOLUME | 487060.108 | 3765922.996 | 546.56 | | LOCATION | | VOLUME | 487063.511 | 3765921.656 | 546.72 | | LOCATION | | VOLUME | 487066.915 | 3765920.316 | 546.89 | | LOCATION | | VOLUME | 487070.318 | 3765918.976 | 547.04 | | LOCATION | | VOLUME | 487073.721 | 3765917.636 | 547.18 | | LOCATION | | VOLUME | 487077.125 | 3765916.297 | 547.30 | | LOCATION | | VOLUME | 487080.528 | 3765914.957 | 547.40 | | LOCATION | | VOLUME | 487083.931 | 3765913.617 | 547.49 | | LOCATION | | VOLUME | 487087.335 | 3765912.277 | 547.57 | | LOCATION | | VOLUME | 487090.738 | 3765910.937 | 547.63 | | LOCATION | | VOLUME | 487094.142 | 3765909.597 | 547.69 | | LOCATION | | VOLUME | 487097.545 | 3765908.257 | 547.73 | | LOCATION | | VOLUME | 487100.948 | 3765906.917 | 547.76 | | LOCATION | L0002272 | VOLUME | 487104.352 | 3765905.577 | 547.90 | | | | | | | | | LOCATION | L0002273 | VOLUME | 487107.755 | 3765904.237 | 548.04 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002274 | VOLUME | 487111.158 | 3765902.898 | 548.19 | | LOCATION | L0002275 | VOLUME | 487114.562 | 3765901.558 | 548.34 | | LOCATION | L0002276 | VOLUME | 487117.965 | 3765900.218 | 548.57 | | LOCATION | L0002277 | VOLUME | 487121.368 | 3765898.878 | 548.80 | | LOCATION | L0002278 | VOLUME | 487124.772 | 3765897.538 | 549.03 | | LOCATION | L0002279 | VOLUME | 487128.155 | 3765896.152 | 549.25 | | LOCATION | L0002280 | VOLUME | 487131.498 | 3765894.666 | 549.47 | | LOCATION | L0002281 | VOLUME | 487134.840 | 3765893.181 | 549.68 | | LOCATION | L0002282 | VOLUME | 487138.183 | 3765891.695 | 549.88 | | LOCATION | L0002283 | VOLUME | 487141.525 | 3765890.210 | 550.20 | | LOCATION | L0002284 | VOLUME | 487144.867 | 3765888.724 | 550.76 | | LOCATION | L0002285 | VOLUME | 487148.210 | 3765887.239 | 551.30 | | LOCATION | L0002286 | VOLUME | 487151.552 | 3765885.753 | 551.81 | | LOCATION | L0002287 | VOLUME | 487154.894 | 3765884.268 | 552.29 | | LOCATION | L0002288 | VOLUME | 487158.237 | 3765882.782 | 552.76 | | LOCATION | L0002289 | VOLUME | 487161.579 | 3765881.297 | 553.19 | | LOCATION | L0002290 | VOLUME | 487164.921 | 3765879.811 | 553.61 | | LOCATION | L0002291 | VOLUME | 487168.264 | 3765878.326 | 554.01 | | LOCATION | L0002292 | VOLUME | 487171.606 | 3765876.840 | 554.42 | | LOCATION | L0002293 | VOLUME | 487174.948 | 3765875.355 | 554.80 | | LOCATION | L0002294 | VOLUME | 487178.291 | 3765873.869 | 555.12 | | LOCATION | L0002295 | VOLUME | 487181.633 | 3765872.384 | 555.41 | | LOCATION | L0002296 | VOLUME | 487184.976 | 3765870.898 | 555.68 | | LOCATION | L0002297 | VOLUME | 487188.318 | 3765869.413 | 555.92 | | LOCATION | L0002298 | VOLUME | 487191.660 | 3765867.927 | 556.14 | | | L0002299 | VOLUME | 487195.003 | 3765866.442 | 555.75 | | | L0002300 | VOLUME | 487198.345 | 3765864.956 | 555.39 | | | L0002301 | VOLUME | 487201.687 | 3765863.471 | 555.07 | | | L0002302 | VOLUME | 487205.030 | 3765861.985 | 554.80 | | | L0002303 | VOLUME | 487208.372 | 3765860.500 | 554.56 | | | L0002304 | VOLUME |
487211.714 | 3765859.014 | 554.38 | | | L0002305 | VOLUME | 487215.057 | 3765857.529 | 554.23 | | | L0002306 | VOLUME | 487218.399 | 3765856.043 | 554.19 | | | L0002307 | VOLUME | 487221.741 | 3765854.558 | 554.32 | | | L0002308 | VOLUME | 487225.084 | 3765853.072 | 554.43 | | | L0002309 | VOLUME | 487228.426 | 3765851.587 | 554.54 | | | L0002310 | VOLUME | 487231.769 | 3765850.101 | 554.64 | | | L0002311 | VOLUME | 487235.111 | 3765848.616 | 554.73 | | | L0002312 | VOLUME | 487238.453 | 3765847.130 | 554.81 | | | L0002313 | VOLUME | 487241.796 | 3765845.645 | 554.89 | | | L0002314 | VOLUME | 487245.138 | 3765844.159 | 555.12 | | | L0002315 | VOLUME | 487248.480 | 3765842.674 | 555.44 | | | L0002316 | VOLUME | 487251.823 | 3765841.189 | 555.74 | | | L0002317 | VOLUME | 487255.165 | 3765839.703 | 556.03 | | | L0002318 | VOLUME | 487258.404 | 3765838.009 | 556.30 | | | L0002319 | VOLUME | 487261.614 | 3765836.256 | 556.55 | | | L0002320 | VOLUME | 487264.824 | 3765834.503 | 556.78 | | | L0002321 | VOLUME | 487268.035 | 3765832.750 | 556.99 | | | L0002322 | VOLUME | 487271.245 | 3765830.996 | 557.33 | | LOCATION | L0002323 | VOLUME | 40/2/4.455 | 3765829.243 | 557.66 | | LOCATION | L0002324 | VOLUME | 487277.665 | 3765827.490 | 557.95 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002325 | VOLUME | 487280.875 | 3765825.737 | 558.20 | | LOCATION | L0002326 | VOLUME | 487284.085 | 3765823.984 | 558.41 | | LOCATION | L0002327 | VOLUME | 487287.295 | 3765822.230 | 558.59 | | LOCATION | L0002328 | VOLUME | 487290.505 | 3765820.477 | 558.72 | | LOCATION | L0002329 | VOLUME | 487293.715 | 3765818.724 | 558.82 | | LOCATION | L0002330 | VOLUME | 487296.925 | 3765816.971 | 558.91 | | LOCATION | L0002331 | VOLUME | 487300.135 | 3765815.218 | 558.97 | | LOCATION | L0002332 | VOLUME | 487303.345 | 3765813.465 | 559.09 | | LOCATION | L0002333 | VOLUME | 487306.555 | 3765811.711 | 559.30 | | LOCATION | L0002334 | VOLUME | 487309.765 | 3765809.958 | 559.51 | | LOCATION | L0002335 | VOLUME | 487312.975 | 3765808.205 | 559.70 | | LOCATION | L0002336 | VOLUME | 487316.185 | 3765806.452 | 559.89 | | LOCATION | L0002337 | VOLUME | 487319.395 | 3765804.699 | 560.06 | | LOCATION | L0002338 | VOLUME | 487322.605 | 3765802.946 | 560.44 | | LOCATION | L0002339 | VOLUME | 487325.815 | 3765801.192 | 560.82 | | LOCATION | L0002340 | VOLUME | 487329.025 | 3765799.439 | 561.17 | | LOCATION | L0002341 | VOLUME | 487332.235 | 3765797.686 | 561.49 | | LOCATION | L0002342 | VOLUME | 487335.446 | 3765795.933 | 561.76 | | LOCATION | L0002343 | VOLUME | 487338.656 | 3765794.180 | 562.00 | | LOCATION | L0002344 | VOLUME | 487341.866 | 3765792.426 | 562.21 | | LOCATION | L0002345 | VOLUME | 487345.076 | 3765790.673 | 562.38 | | LOCATION | L0002346 | VOLUME | 487348.286 | 3765788.920 | 562.80 | | LOCATION | L0002347 | VOLUME | 487351.496 | 3765787.167 | 563.21 | | LOCATION | L0002348 | VOLUME | 487354.706 | 3765785.414 | 563.57 | | LOCATION | L0002349 | VOLUME | 487357.916 | 3765783.661 | 563.87 | | LOCATION | L0002350 | VOLUME | 487361.126 | 3765781.907 | 564.26 | | LOCATION | L0002351 | VOLUME | 487364.336 | 3765780.154 | 564.63 | | LOCATION | L0002352 | VOLUME | 487367.568 | 3765778.443 | 564.97 | | LOCATION | L0002353 | VOLUME | 487370.811 | 3765776.751 | 565.25 | | LOCATION | L0002354 | VOLUME | 487374.054 | 3765775.059 | 565.55 | | LOCATION | | VOLUME | 487377.297 | 3765773.367 | 565.82 | | LOCATION | L0002356 | VOLUME | 487380.539 | 3765771.675 | 566.05 | | LOCATION | L0002357 | VOLUME | 487383.782 | 3765769.983 | 566.24 | | LOCATION | L0002358 | VOLUME | 487387.025 | 3765768.292 | 566.40 | | LOCATION | L0002359 | VOLUME | 487390.268 | 3765766.600 | 566.53 | | LOCATION | L0002360 | VOLUME | 487393.510 | 3765764.908 | 566.61 | | LOCATION | L0002361 | VOLUME | 487396.753 | 3765763.216 | 566.66 | | LOCATION | L0002362 | VOLUME | 487399.996 | 3765761.524 | 567.08 | | LOCATION | L0002363 | VOLUME | 487403.239 | 3765759.832 | 567.46 | | LOCATION | L0002364 | VOLUME | 487406.482 | 3765758.140 | 567.79 | | LOCATION | L0002365 | VOLUME | 487409.724 | 3765756.448 | 568.08 | | LOCATION | | VOLUME | 487412.967 | 3765754.756 | 568.32 | | LOCATION | | VOLUME | 487416.210 | 3765753.065 | 568.52 | | LOCATION | L0002368 | VOLUME | 487419.453 | 3765751.373 | 568.87 | | LOCATION | | VOLUME | 487422.695 | 3765749.681 | 569.29 | | LOCATION | | VOLUME | 487425.938 | 3765747.989 | 570.08 | | LOCATION | | VOLUME | 487429.181 | 3765746.297 | 570.77 | | LOCATION | | VOLUME | 487432.424 | 3765744.605 | 571.36 | | LOCATION | | VOLUME | 487435.667 | 3765742.913 | 571.84 | | LOCATION | L0002374 | VOLUME | 487438.909 | 3765741.221 | 572.23 | | | | | | | | | LOCATION | L0002375 | VOLUME | 487442.152 | 3765739.530 | 572.52 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002376 | VOLUME | 487445.383 | 3765737.814 | 572.70 | | LOCATION | L0002377 | VOLUME | 487448.610 | 3765736.093 | 572.81 | | LOCATION | L0002378 | VOLUME | 487451.837 | 3765734.372 | 572.96 | | LOCATION | L0002379 | VOLUME | 487455.064 | 3765732.651 | 573.06 | | LOCATION | L0002380 | VOLUME | 487458.292 | 3765730.929 | 573.09 | | LOCATION | L0002381 | VOLUME | 487461.519 | 3765729.208 | 573.08 | | LOCATION | L0002382 | VOLUME | 487464.746 | 3765727.487 | 573.01 | | LOCATION | L0002383 | VOLUME | 487467.974 | 3765725.766 | 572.88 | | LOCATION | L0002384 | VOLUME | 487471.201 | 3765724.045 | 572.69 | | LOCATION | L0002385 | VOLUME | 487474.428 | 3765722.323 | 572.44 | | LOCATION | L0002386 | VOLUME | 487477.655 | 3765720.602 | 572.52 | | LOCATION | L0002387 | VOLUME | 487480.883 | 3765718.881 | 572.81 | | LOCATION | L0002388 | VOLUME | 487484.110 | 3765717.160 | 573.07 | | LOCATION | L0002389 | VOLUME | 487487.337 | 3765715.438 | 573.28 | | LOCATION | L0002390 | VOLUME | 487490.565 | 3765713.717 | 573.46 | | LOCATION | L0002391 | VOLUME | 487493.792 | 3765711.996 | 573.60 | | LOCATION | L0002392 | VOLUME | 487497.019 | 3765710.275 | 573.70 | | LOCATION | L0002393 | VOLUME | 487500.247 | 3765708.554 | 573.87 | | LOCATION | L0002394 | VOLUME | 487503.474 | 3765706.832 | 574.22 | | LOCATION | L0002395 | VOLUME | 487506.701 | 3765705.111 | 574.54 | | LOCATION | L0002396 | VOLUME | 487509.928 | 3765703.390 | 574.81 | | LOCATION | L0002397 | VOLUME | 487513.156 | 3765701.669 | 575.03 | | LOCATION | L0002398 | VOLUME | 487516.383 | 3765699.947 | 575.22 | | LOCATION | L0002399 | VOLUME | 487519.608 | 3765698.222 | 575.36 | | LOCATION | L0002400 | VOLUME | 487522.829 | 3765696.488 | 575.46 | | | L0002401 | VOLUME | 487526.049 | 3765694.754 | 575.69 | | LOCATION | L0002402 | VOLUME | 487529.269 | 3765693.020 | 576.15 | | LOCATION | L0002403 | VOLUME | 487532.490 | 3765691.286 | 576.55 | | LOCATION | | VOLUME | 487535.710 | 3765689.552 | 577.10 | | | L0002405 | VOLUME | 487538.931 | 3765687.818 | 577.65 | | LOCATION | | VOLUME | 487542.151 | 3765686.084 | 578.12 | | | L0002407 | VOLUME | 487545.371 | 3765684.350 | 578.49 | | | L0002408 | VOLUME | 487548.592 | 3765682.615 | 578.78 | | LOCATION | | VOLUME | 487551.812 | 3765680.881 | 579.11 | | | L0002410 | VOLUME | 487555.033 | 3765679.147 | 579.53 | | | L0002411 | VOLUME | 487558.253 | 3765677.413 | 579.85 | | | L0002412 | VOLUME | 487561.473 | 3765675.679 | 580.07 | | LOCATION | | VOLUME | 487564.694 | 3765673.945 | 580.19 | | | L0002414 | VOLUME | 487567.914 | 3765672.211 | 580.21 | | LOCATION | | VOLUME | 487571.135 | 3765670.477 | 580.13 | | LOCATION | | VOLUME | 487574.326 | 3765668.692 | 579.92 | | | L0002417 | VOLUME | 487577.456 | 3765666.799 | 579.64 | | | L0002418 | VOLUME | 487580.586 | 3765664.907 | 579.46 | | LOCATION | | VOLUME | 487583.716 | 3765663.014 | 579.22 | | LOCATION | | VOLUME | 487586.845 | 3765661.122 | 578.94 | | LOCATION | | VOLUME | 487589.975 | 3765659.229 | 578.88 | | LOCATION | | VOLUME | 487593.105 | 3765657.337 | 579.30 | | LOCATION | | VOLUME | 487596.235 | 3765655.444 | 579.64 | | | L0002424 | VOLUME | 487599.365 | 3765653.551 | 579.90 | | LOCATION | ь0002425 | VOLUME | 487602.495 | 3765651.659 | 580.06 | | | | | | | | ``` LOCATION L0002426 VOLUME 487605.625 3765649.766 580.10 LOCATION L0002427 VOLUME 487608.755 3765647.874 580.10 LOCATION L0002428 VOLUME 487612.008 3765646.208 580.14 LOCATION L0002429 VOLUME 487615.300 3765644.615 580.18 LOCATION L0002430 VOLUME 487618.593 3765643.022 580.18 VOLUME 487621.885 3765641.429 580.14 LOCATION L0002431 LOCATION L0002432 VOLUME 487625.178 3765639.836 580.07 VOLUME 487628.470 3765638.243 579.90 LOCATION L0002433 LOCATION L0002434 VOLUME 487631.762 3765636.650 579.65 LOCATION L0002435 VOLUME 487635.055 3765635.056 579.47 ** End of LINE VOLUME Source ID = SLINE1 ** ______ ** Line Source Represented by Adjacent Volume Sources ** LINE VOLUME Source ID = SLINE2 ** DESCRSRC WB 10 freeway ** PREFIX ** Length of Side = 3.66 ** Configuration = Adjacent ** Emission Rate = 0.00107 ** Elevated ** Vertical Dimension = 3.66 ** SZINIT = 0.85 ** Nodes = 14 ** 486605.096, 3766049.014, 529.48, 0.00, 1.70 ** 486742.167, 3766004.131, 533.61, 0.00, 1.70 ** 486838.624, 3765970.257, 538.29, 0.00, 1.70 ** 486919.851, 3765944.004, 541.73, 0.00, 1.70 ** 486993.463, 3765920.293, 545.01, 0.00, 1.70 ** 487116.996, 3765877.950, 549.91, 0.00, 1.70 ** 487196.530, 3765842.382, 553.73, 0.00, 1.70 ** 487281.988, 3765800.887, 557.96, 0.00, 1.70 ** 487338.678, 3765767.860, 561.06, 0.00, 1.70 ** 487411.444, 3765726.364, 565.81, 0.00, 1.70 ** 487479.979, 3765690.796, 567.60, 0.00, 1.70 ** 487527.361, 3765666.238, 569.90, 0.00, 1.70 ** 487576.436, 3765639.138, 572.76, 0.00, 1.70 ** 487625.511, 3765614.580, 576.21, 0.00, 1.70 ** ______ LOCATION L0002436 VOLUME 486606.834 3766048.445 528.65 LOCATION L0002437 VOLUME 486610.310 3766047.306 528.76 LOCATION L0002438 VOLUME 486613.786 3766046.168 528.87 VOLUME 486617.262 3766045.030 528.99 LOCATION L0002439 LOCATION L0002440 VOLUME 486620.738 3766043.892 529.11 VOLUME 486624.214 3766042.754 529.24 LOCATION L0002441
LOCATION L0002442 VOLUME 486627.690 3766041.616 529.37 LOCATION L0002443 VOLUME 486631.166 3766040.477 529.52 486634.642 3766039.339 529.67 LOCATION L0002444 VOLUME LOCATION L0002445 VOLUME 486638.118 3766038.201 529.83 LOCATION L0002446 VOLUME 486641.594 3766037.063 529.99 LOCATION L0002447 VOLUME 486645.070 3766035.925 530.15 ``` VOLUME 486648.546 3766034.786 530.31 LOCATION L0002448 | LOCATION | L0002449 | VOLUME | 486652.022 | 3766033.648 | 530.48 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002450 | VOLUME | 486655.498 | 3766032.510 | 530.64 | | LOCATION | L0002451 | VOLUME | 486658.974 | 3766031.372 | 530.79 | | LOCATION | L0002452 | VOLUME | 486662.450 | 3766030.234 | 530.91 | | LOCATION | L0002453 | VOLUME | 486665.926 | 3766029.095 | 531.00 | | LOCATION | L0002454 | VOLUME | 486669.402 | 3766027.957 | 531.09 | | LOCATION | L0002455 | VOLUME | 486672.878 | 3766026.819 | 531.19 | | LOCATION | L0002456 | VOLUME | 486676.354 | 3766025.681 | 531.29 | | LOCATION | L0002457 | VOLUME | 486679.830 | 3766024.543 | 531.40 | | LOCATION | L0002458 | VOLUME | 486683.306 | 3766023.404 | 531.51 | | LOCATION | L0002459 | VOLUME | 486686.782 | 3766022.266 | 531.62 | | LOCATION | L0002460 | VOLUME | 486690.258 | 3766021.128 | 531.74 | | LOCATION | L0002461 | VOLUME | 486693.734 | 3766019.990 | 531.87 | | LOCATION | L0002462 | VOLUME | 486697.210 | 3766018.852 | 532.00 | | LOCATION | L0002463 | VOLUME | 486700.686 | 3766017.713 | 532.14 | | LOCATION | L0002464 | VOLUME | 486704.162 | 3766016.575 | 532.29 | | LOCATION | L0002465 | VOLUME | 486707.638 | 3766015.437 | 532.44 | | LOCATION | L0002466 | VOLUME | 486711.114 | 3766014.299 | 532.59 | | LOCATION | L0002467 | VOLUME | 486714.590 | 3766013.161 | 532.75 | | LOCATION | L0002468 | VOLUME | 486718.066 | 3766012.022 | 532.91 | | LOCATION | L0002469 | VOLUME | 486721.542 | 3766010.884 | 533.08 | | LOCATION | L0002470 | VOLUME | 486725.018 | 3766009.746 | 533.25 | | LOCATION | L0002471 | VOLUME | 486728.494 | 3766008.608 | 533.43 | | LOCATION | L0002472 | VOLUME | 486731.970 | 3766007.470 | 533.61 | | LOCATION | L0002473 | VOLUME | 486735.446 | 3766006.331 | 533.79 | | LOCATION | L0002474 | VOLUME | 486738.922 | 3766005.193 | 533.97 | | LOCATION | L0002475 | VOLUME | 486742.396 | 3766004.050 | 534.15 | | LOCATION | L0002476 | VOLUME | 486745.847 | 3766002.838 | 534.32 | | LOCATION | L0002477 | VOLUME | 486749.298 | 3766001.626 | 534.50 | | LOCATION | L0002478 | VOLUME | 486752.749 | 3766000.414 | 534.67 | | LOCATION | L0002479 | VOLUME | 486756.200 | 3765999.202 | 534.80 | | LOCATION | L0002480 | VOLUME | 486759.651 | 3765997.991 | 534.89 | | LOCATION | L0002481 | VOLUME | 486763.102 | 3765996.779 | 534.99 | | LOCATION | L0002482 | VOLUME | 486766.553 | 3765995.567 | 535.09 | | LOCATION | L0002483 | VOLUME | 486770.004 | 3765994.355 | 535.20 | | LOCATION | L0002484 | VOLUME | 486773.455 | 3765993.143 | 535.32 | | LOCATION | L0002485 | VOLUME | 486776.906 | 3765991.931 | 535.45 | | LOCATION | L0002486 | VOLUME | 486780.357 | 3765990.719 | 535.58 | | LOCATION | L0002487 | VOLUME | 486783.808 | 3765989.507 | 535.71 | | LOCATION | L0002488 | VOLUME | 486787.259 | 3765988.295 | 535.85 | | LOCATION | L0002489 | VOLUME | 486790.710 | 3765987.083 | 535.99 | | LOCATION | L0002490 | VOLUME | 486794.161 | 3765985.871 | 536.13 | | LOCATION | L0002491 | VOLUME | 486797.612 | 3765984.659 | 536.29 | | LOCATION | L0002492 | VOLUME | 486801.063 | 3765983.447 | 536.45 | | LOCATION | L0002493 | VOLUME | 486804.514 | 3765982.236 | 536.62 | | LOCATION | L0002494 | VOLUME | 486807.965 | 3765981.024 | 536.79 | | LOCATION | L0002495 | VOLUME | 486811.416 | 3765979.812 | 536.96 | | LOCATION | L0002496 | VOLUME | 486814.867 | 3765978.600 | 537.13 | | LOCATION | L0002497 | VOLUME | 486818.318 | 3765977.388 | 537.31 | | LOCATION | L0002498 | VOLUME | 486821.769 | 3765976.176 | 537.49 | | LOCATION | L0002499 | VOLUME | 486825.220 | 3765974.964 | 537.67 | | | | | | | | | LOCATION | L0002500 | VOLUME | 486828.671 | 3765973.752 | 537.86 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002501 | VOLUME | 486832.122 | 3765972.540 | 538.05 | | LOCATION | L0002502 | VOLUME | 486835.573 | 3765971.328 | 538.22 | | LOCATION | L0002503 | VOLUME | 486839.027 | 3765970.126 | 538.39 | | LOCATION | L0002504 | VOLUME | 486842.507 | 3765969.002 | 538.56 | | LOCATION | L0002505 | VOLUME | 486845.988 | 3765967.877 | 538.66 | | LOCATION | L0002506 | VOLUME | 486849.468 | 3765966.752 | 538.77 | | LOCATION | L0002507 | VOLUME | 486852.948 | 3765965.627 | 538.88 | | LOCATION | L0002508 | VOLUME | 486856.429 | 3765964.502 | 538.99 | | LOCATION | L0002509 | VOLUME | 486859.909 | 3765963.377 | 539.10 | | LOCATION | L0002510 | VOLUME | 486863.389 | 3765962.253 | 539.21 | | LOCATION | L0002511 | VOLUME | 486866.870 | 3765961.128 | 539.32 | | LOCATION | L0002512 | VOLUME | 486870.350 | 3765960.003 | 539.44 | | LOCATION | L0002513 | VOLUME | 486873.830 | 3765958.878 | 539.56 | | LOCATION | L0002514 | VOLUME | 486877.311 | 3765957.753 | 539.69 | | LOCATION | L0002515 | VOLUME | 486880.791 | 3765956.628 | 539.83 | | LOCATION | L0002516 | VOLUME | 486884.272 | 3765955.504 | 539.97 | | LOCATION | L0002517 | VOLUME | 486887.752 | 3765954.379 | 540.11 | | LOCATION | L0002518 | VOLUME | 486891.232 | 3765953.254 | 540.26 | | LOCATION | L0002519 | VOLUME | 486894.713 | 3765952.129 | 540.41 | | LOCATION | L0002520 | VOLUME | 486898.193 | 3765951.004 | 540.57 | | LOCATION | L0002521 | VOLUME | 486901.673 | 3765949.879 | 540.73 | | LOCATION | L0002522 | VOLUME | 486905.154 | 3765948.754 | 540.90 | | LOCATION | L0002523 | VOLUME | 486908.634 | 3765947.630 | 541.08 | | LOCATION | L0002524 | VOLUME | 486912.114 | 3765946.505 | 541.25 | | LOCATION | L0002525 | VOLUME | 486915.595 | 3765945.380 | 541.42 | | | L0002526 | VOLUME | 486919.075 | 3765944.255 | 541.59 | | LOCATION | L0002527 | VOLUME | 486922.556 | 3765943.133 | 541.77 | | LOCATION | L0002528 | VOLUME | 486926.038 | 3765942.012 | 541.95 | | LOCATION | | VOLUME | 486929.519 | 3765940.890 | 542.13 | | LOCATION | | VOLUME | 486933.000 | 3765939.769 | 542.31 | | LOCATION | | VOLUME | 486936.482 | 3765938.647 | 542.49 | | | L0002532 | VOLUME | 486939.963 | 3765937.526 | 542.62 | | | L0002533 | VOLUME | 486943.445 | 3765936.404 | 542.71 | | LOCATION | | VOLUME | 486946.926 | 3765935.283 | 542.82 | | | L0002535 | VOLUME | 486950.408 | 3765934.161 | 542.92 | | | L0002536 | VOLUME | 486953.889 | 3765933.040 | 543.04 | | LOCATION | | VOLUME | 486957.371 | 3765931.919 | 543.16 | | LOCATION | | VOLUME | 486960.852 | 3765930.797 | 543.29 | | | L0002539 | VOLUME | 486964.333 | 3765929.676 | 543.40 | | LOCATION | | VOLUME | 486967.815 | 3765928.554 | 543.51 | | LOCATION | | VOLUME | 486971.296 | 3765927.433 | 543.63 | | | L0002542 | VOLUME | 486974.778 | 3765926.311 | 543.76 | | | L0002543 | VOLUME | 486978.259 | 3765925.190 | 543.89 | | LOCATION | | VOLUME | 486981.741 | 3765924.069 | 544.02 | | LOCATION | | VOLUME | 486985.222 | 3765922.947 | 544.16 | | | L0002546 | VOLUME | 486988.703 | 3765921.826 | 544.31 | | LOCATION | | VOLUME | 486992.185 | 3765920.704 | 544.45 | | LOCATION | | VOLUME | 486995.653 | 3765919.542 | 544.60 | | | L0002549 | VOLUME | 486999.113 | 3765918.356 | 544.76 | | LOCATION | L0002550 | VOLUME | 487002.573 | 3765917.170 | 544.92 | | | | | | | | | LOCATION | L0002551 | VOLUME | 487006.033 | 3765915.984 | 545.09 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002552 | VOLUME | 487009.493 | 3765914.798 | 545.27 | | LOCATION | L0002553 | VOLUME | 487012.953 | 3765913.612 | 545.44 | | LOCATION | L0002554 | VOLUME | 487016.413 | 3765912.426 | 545.61 | | LOCATION | L0002555 | VOLUME | 487019.873 | 3765911.240 | 545.78 | | LOCATION | L0002556 | VOLUME | 487023.333 | 3765910.054 | 545.96 | | LOCATION | L0002557 | VOLUME | 487026.793 | 3765908.868 | 546.13 | | LOCATION | L0002558 | VOLUME | 487030.253 | 3765907.682 | 546.30 | | LOCATION | L0002559 | VOLUME | 487033.713 | 3765906.496 | 546.49 | | LOCATION | L0002560 | VOLUME | 487037.173 | 3765905.310 | 546.71 | | LOCATION | L0002561 | VOLUME | 487040.633 | 3765904.125 | 546.89 | | LOCATION | L0002562 | VOLUME | 487044.093 | 3765902.939 | 547.05 | | LOCATION | L0002563 | VOLUME | 487047.553 | 3765901.753 | 547.20 | | LOCATION | L0002564 | VOLUME | 487051.013 | 3765900.567 | 547.34 | | LOCATION | L0002565 | VOLUME | 487054.473 | 3765899.381 | 547.47 | | LOCATION | L0002566 | VOLUME | 487057.933 | 3765898.195 | 547.59 | | LOCATION | L0002567 | VOLUME | 487061.393 | 3765897.009 | 547.69 | | LOCATION | L0002568 | VOLUME | 487064.853 | 3765895.823 | 547.80 | | LOCATION | L0002569 | VOLUME | 487068.313 | 3765894.637 | 547.91 | | LOCATION | L0002570 | VOLUME | 487071.773 | 3765893.451 | 548.02 | | LOCATION | L0002571 | VOLUME | 487075.233 | 3765892.265 | 548.13 | | LOCATION | L0002572 | VOLUME | 487078.693 | 3765891.079 | 548.24 | | LOCATION | L0002573 | VOLUME | 487082.153 | 3765889.893 | 548.35 | | | L0002574 | VOLUME | 487085.613 | 3765888.707 | 548.45 | | LOCATION | L0002575 | VOLUME | 487089.073 | 3765887.521 | 548.56 | | LOCATION | L0002576 | VOLUME | 487092.533 | 3765886.335 | 548.71 | | LOCATION | L0002577 | VOLUME | 487095.993 | 3765885.149 | 548.87 | | LOCATION | L0002578 | VOLUME | 487099.453 | 3765883.963 | 549.03 | | LOCATION | L0002579 | VOLUME | 487102.913 | 3765882.777 | 549.19 | | LOCATION | L0002580 | VOLUME | 487106.373 | 3765881.591 | 549.35 | | | L0002581 | VOLUME | 487109.832 | 3765880.405 | 549.52 | | LOCATION | L0002582 | VOLUME | 487113.292 | 3765879.219 | 549.69 | | | L0002583 | VOLUME | 487116.752 | 3765878.033 | 549.87 | | | L0002584 | VOLUME | 487120.100 | 3765876.562 | 550.06 | | | L0002585 | VOLUME | 487123.439 | 3765875.069 | 550.27 | | | L0002586 | VOLUME | 487126.778 | 3765873.576 | 550.48 | | | L0002587 | VOLUME | 487130.117 | 3765872.082 | 550.66 | | | L0002588 | VOLUME | 487133.456 |
3765870.589 | 550.82 | | | L0002589 | VOLUME | 487136.795 | 3765869.096 | 550.95 | | | L0002590 | VOLUME | 487140.134 | 3765867.603 | 551.07 | | | L0002591 | VOLUME | 487143.472 | 3765866.110 | 551.39 | | | L0002592 | VOLUME | 487146.811 | 3765864.617 | 551.71 | | | L0002593 | VOLUME | 487150.150 | 3765863.123 | 551.99 | | | L0002594 | VOLUME | 487153.489 | 3765861.630 | 552.25 | | | L0002595 | VOLUME | 487156.828 | 3765860.137 | 552.47 | | | L0002596 | VOLUME | 487160.167 | 3765858.644 | 552.65 | | | L0002597 | VOLUME | 487163.506 | 3765857.151 | 552.81 | | | L0002598 | VOLUME | 487166.845 | 3765855.658 | 552.95 | | | L0002599 | VOLUME | 487170.184 | 3765854.164 | 553.13 | | | L0002600 | VOLUME | 487173.523 | 3765852.671 | 553.27 | | | L0002601 | VOLUME | | 3765851.178 | 553.40 | | | | | 0 . 0 0 2 | - 33332.170 | | | LOCATION | L0002602 | VOLUME | 487180.201 | 3765849.685 | 553.49 | |----------|----------|--------|------------|-------------|--------| | LOCATION | L0002603 | VOLUME | 487183.540 | 3765848.192 | 553.56 | | LOCATION | L0002604 | VOLUME | 487186.879 | 3765846.699 | 553.60 | | LOCATION | L0002605 | VOLUME | 487190.218 | 3765845.205 | 553.61 | | LOCATION | L0002606 | VOLUME | 487193.557 | 3765843.712 | 553.79 | | LOCATION | L0002607 | VOLUME | 487196.890 | 3765842.208 | 553.92 | | LOCATION | L0002608 | VOLUME | 487200.180 | 3765840.610 | 554.05 | | LOCATION | L0002609 | VOLUME | 487203.471 | 3765839.012 | 554.16 | | LOCATION | L0002610 | VOLUME | 487206.761 | 3765837.415 | 554.26 | | LOCATION | L0002611 | VOLUME | 487210.051 | 3765835.817 | 554.34 | | LOCATION | L0002612 | VOLUME | 487213.341 | 3765834.220 | 554.42 | | LOCATION | L0002613 | VOLUME | 487216.632 | 3765832.622 | 554.48 | | LOCATION | L0002614 | VOLUME | 487219.922 | 3765831.024 | 554.60 | | LOCATION | L0002615 | VOLUME | 487223.212 | 3765829.427 | 554.73 | | LOCATION | L0002616 | VOLUME | 487226.502 | 3765827.829 | 554.86 | | LOCATION | L0002617 | VOLUME | 487229.792 | 3765826.231 | 554.99 | | LOCATION | L0002618 | VOLUME | 487233.083 | 3765824.634 | 555.12 | | LOCATION | L0002619 | VOLUME | 487236.373 | 3765823.036 | 555.25 | | LOCATION | L0002620 | VOLUME | 487239.663 | 3765821.438 | 555.38 | | LOCATION | L0002621 | VOLUME | 487242.953 | 3765819.841 | 555.50 | | LOCATION | L0002622 | VOLUME | 487246.244 | 3765818.243 | 555.71 | | LOCATION | L0002623 | VOLUME | 487249.534 | 3765816.646 | 555.89 | | LOCATION | L0002624 | VOLUME | 487252.824 | 3765815.048 | 556.06 | | LOCATION | L0002625 | VOLUME | 487256.114 | 3765813.450 | 556.25 | | LOCATION | L0002626 | VOLUME | 487259.404 | 3765811.853 | 556.45 | | LOCATION | L0002627 | VOLUME | 487262.695 | 3765810.255 | 556.63 | | LOCATION | | VOLUME | 487265.985 | 3765808.657 | 556.79 | | LOCATION | L0002629 | VOLUME | 487269.275 | 3765807.060 | 556.95 | | LOCATION | L0002630 | VOLUME | 487272.565 | 3765805.462 | 557.16 | | LOCATION | | VOLUME | 487275.856 | 3765803.864 | 557.36 | | LOCATION | | VOLUME | 487279.146 | 3765802.267 | 557.55 | | LOCATION | | VOLUME | 487282.418 | 3765800.636 | 557.72 | | | L0002634 | VOLUME | 487285.579 | 3765798.795 | 557.88 | | LOCATION | | VOLUME | 487288.739 | 3765796.954 | 558.03 | | LOCATION | | VOLUME | 487291.900 | 3765795.112 | 558.17 | | | L0002637 | VOLUME | 487295.060 | 3765793.271 | 558.31 | | | L0002638 | VOLUME | 487298.220 | 3765791.430 | 558.48 | | LOCATION | | VOLUME | 487301.381 | 3765789.589 | 558.63 | | LOCATION | | VOLUME | 487304.541 | 3765787.747 | 558.78 | | LOCATION | | VOLUME | 487307.701 | 3765785.906 | 558.91 | | LOCATION | | VOLUME | 487310.862 | 3765784.065 | 559.04 | | LOCATION | | VOLUME | 487314.022 | 3765782.224 | 559.20 | | | L0002644 | VOLUME | 487317.183 | 3765780.383 | 559.38 | | LOCATION | | VOLUME | 487320.343 | 3765778.541 | 559.57 | | LOCATION | | VOLUME | 487323.503 | 3765776.700 | 559.82 | | LOCATION | | VOLUME | 487326.664 | 3765774.859 | 560.07 | | LOCATION | | VOLUME | 487329.824 | 3765773.018 | 560.29 | | LOCATION | | VOLUME | 487332.984 | 3765771.177 | 560.50 | | LOCATION | | VOLUME | 487336.145 | 3765769.335 | 560.69 | | | L0002651 | VOLUME | 487339.308 | 3765767.500 | 560.87 | | LOCATION | L0002652 | VOLUME | 487342.486 | 3765765.688 | 561.03 | | | | | | | | | LOCATION | L0002653 | VOLUME | 487345.663 | 3765763.876 | 561.18 | |-------------|----------|------------|------------|-------------|--------| | LOCATION | L0002654 | VOLUME | 487348.840 | 3765762.064 | 561.41 | | LOCATION | L0002655 | VOLUME | 487352.018 | 3765760.252 | 561.60 | | LOCATION | L0002656 | VOLUME | 487355.195 | 3765758.441 | 561.73 | | LOCATION | L0002657 | VOLUME | 487358.372 | 3765756.629 | 561.82 | | LOCATION | L0002658 | VOLUME | 487361.549 | 3765754.817 | 561.86 | | LOCATION | L0002659 | VOLUME | 487364.727 | 3765753.005 | 561.85 | | LOCATION | L0002660 | VOLUME | 487367.904 | 3765751.193 | 561.96 | | LOCATION | L0002661 | VOLUME | 487371.081 | 3765749.381 | 562.12 | | LOCATION | L0002662 | VOLUME | 487374.259 | 3765747.569 | 562.39 | | LOCATION | L0002663 | VOLUME | 487377.436 | 3765745.757 | 562.64 | | LOCATION | L0002664 | VOLUME | 487380.613 | 3765743.945 | 562.88 | | LOCATION | L0002665 | VOLUME | 487383.790 | 3765742.134 | 563.10 | | LOCATION | L0002666 | VOLUME | 487386.968 | 3765740.322 | 563.31 | | LOCATION | L0002667 | VOLUME | 487390.145 | 3765738.510 | 563.51 | | LOCATION | L0002668 | VOLUME | 487393.322 | 3765736.698 | 563.69 | | LOCATION | L0002669 | VOLUME | 487396.500 | 3765734.886 | 563.85 | | LOCATION | L0002670 | VOLUME | 487399.677 | 3765733.074 | 564.13 | | LOCATION | L0002671 | VOLUME | 487402.854 | 3765731.262 | 564.36 | | LOCATION | L0002672 | VOLUME | 487406.031 | 3765729.450 | 564.53 | | LOCATION | L0002673 | VOLUME | 487409.209 | 3765727.638 | 564.64 | | LOCATION | L0002674 | VOLUME | 487412.406 | 3765725.864 | 564.69 | | LOCATION | L0002675 | VOLUME | 487415.653 | 3765724.179 | 564.70 | | LOCATION | L0002676 | VOLUME | 487418.899 | 3765722.495 | 564.66 | | | L0002677 | VOLUME | 487422.146 | 3765720.810 | 564.70 | | | L0002678 | VOLUME | 487425.392 | 3765719.125 | 564.98 | | | L0002679 | VOLUME | 487428.639 | 3765717.440 | 565.25 | | LOCATION | L0002680 | VOLUME | 487431.885 | 3765715.755 | 565.50 | | | L0002681 | VOLUME | 487435.132 | 3765714.071 | 565.74 | | | L0002682 | VOLUME | 487438.378 | 3765712.386 | 565.96 | | LOCATION | L0002683 | VOLUME | 487441.625 | 3765710.701 | 566.17 | | | L0002684 | VOLUME | 487444.871 | 3765709.016 | 566.37 | | | L0002685 | VOLUME | 487448.117 | 3765707.331 | 566.56 | | | L0002686 | VOLUME | 487451.364 | 3765705.647 | 566.89 | | | L0002687 | VOLUME | 487454.610 | 3765703.962 | 567.16 | | | L0002688 | VOLUME | 487457.857 | 3765702.277 | 567.39 | | | L0002689 | VOLUME | 487461.103 | 3765700.592 | 567.56 | | | L0002690 | VOLUME | 487464.350 | 3765698.907 | 567.68 | | | L0002691 | VOLUME | 487467.596 | 3765697.223 | 567.75 | | | L0002692 | VOLUME | 487470.843 | 3765695.538 | 567.77 | | | L0002693 | VOLUME | 487474.089 | 3765693.853 | 567.75 | | | L0002694 | VOLUME | 487477.336 | 3765692.168 | 567.77 | | | L0002695 | VOLUME | 487480.582 | 3765690.484 | 567.82 | | | L0002696 | VOLUME | 487483.829 | 3765688.801 | 568.06 | | | L0002697 | VOLUME | 487487.077 | 3765687.117 | 568.30 | | | L0002698 | VOLUME | 487490.324 | 3765685.434 | 568.53 | | | L0002699 | VOLUME | 487493.571 | 3765683.751 | 568.74 | | | L0002700 | VOLUME | 487496.819 | 3765682.068 | 568.94 | | | L0002701 | VOLUME | 487500.066 | 3765680.385 | 569.19 | | | L0002702 | VOLUME | 487503.313 | 3765678.702 | 569.55 | | | L0002702 | VOLUME | | 3765677.019 | 569.87 | | _00111 10IV | | , 51101111 | 10,000.001 | 3.33011.013 | 202.07 | | | LOCATION | L0002704 | VOLUME | 487509.8 | 08 3765675 | 3.336 | 570.14 | |---|-----------|----------------|-----------|----------|------------|-------|--------| | | LOCATION | L0002705 | VOLUME | | 55 3765673 | | | | | LOCATION | L0002706 | VOLUME | 487516.3 | 03 3765671 | 1.969 | 570.54 | | | LOCATION | L0002707 | VOLUME | 487519.5 | 50 3765670 |).286 | 570.67 | | | LOCATION | L0002708 | VOLUME | 487522.7 | 97 3765668 | 3.603 | 570.75 | | | LOCATION | L0002709 | VOLUME | 487526.0 | 45 3765666 | 5.920 | 570.85 | | | LOCATION | L0002710 | VOLUME | 487529.2 | 65 3765665 | 5.186 | 570.95 | | | LOCATION | L0002711 | VOLUME | 487532.4 | 67 3765663 | 3.418 | 570.95 | | | LOCATION | L0002712 | VOLUME | 487535.6 | 69 3765661 | L.650 | 570.87 | | | LOCATION | L0002713 | VOLUME | 487538.8 | 71 3765659 | .882 | 570.70 | | | LOCATION | L0002714 | VOLUME | 487542.0 | 73 3765658 | 3.114 | 570.88 | | | LOCATION | L0002715 | VOLUME | 487545.2 | 74 3765656 | 5.346 | 571.06 | | | LOCATION | L0002716 | VOLUME | 487548.4 | 76 3765654 | 1.578 | 571.23 | | | LOCATION | L0002717 | VOLUME | 487551.6 | 78 3765652 | 2.810 | 571.48 | | | LOCATION | L0002718 | VOLUME | 487554.8 | 80 3765651 | 1.042 | 571.83 | | | LOCATION | L0002719 | VOLUME | 487558.0 | 82 3765649 | 9.274 | 572.14 | | | LOCATION | L0002720 | VOLUME | 487561.2 | 84 3765647 | 7.506 | 572.42 | | | LOCATION | L0002721 | VOLUME | 487564.4 | 86 3765645 | 5.738 | 572.66 | | | LOCATION | L0002722 | VOLUME | 487567.6 | 87 3765643 | 3.969 | 572.87 | | | LOCATION | L0002723 | VOLUME | 487570.8 | 89 3765642 | 2.201 | 573.05 | | | LOCATION | L0002724 | VOLUME | 487574.0 | 91 3765640 | .433 | 573.20 | | | LOCATION | L0002725 | VOLUME | 487577.3 | 12 3765638 | 3.700 | 573.36 | | | LOCATION | L0002726 | VOLUME | 487580.5 | 82 3765637 | 7.063 | 573.56 | | | LOCATION | L0002727 | VOLUME | 487583.8 | 53 3765635 | 5.427 | 573.68 | | | LOCATION | L0002728 | VOLUME | 487587.1 | 24 3765633 | 3.790 | 573.72 | | | LOCATION | L0002729 | VOLUME | 487590.3 | 95 3765632 | 2.153 | 573.70 | | | LOCATION | L0002730 | VOLUME | 487593.6 | 66 3765630 | .516 | 573.60 | | | LOCATION | L0002731 | VOLUME | 487596.9 | 37 3765628 | 3.879 | 573.46 | | | LOCATION | L0002732 | VOLUME | 487600.2 | 08 3765627 | 7.242 | 573.62 | | | LOCATION | L0002733 | VOLUME | 487603.4 | 79 3765625 | 5.605 | 573.86
 | | LOCATION | L0002734 | VOLUME | 487606.7 | 50 3765623 | 3.969 | 574.15 | | | LOCATION | L0002735 | VOLUME | 487610.0 | 20 3765622 | 2.332 | 574.42 | | | LOCATION | L0002736 | VOLUME | 487613.2 | 91 3765620 | 0.695 | 574.69 | | | LOCATION | L0002737 | VOLUME | 487616.5 | 62 3765619 | 0.058 | 574.93 | | | LOCATION | L0002738 | VOLUME | 487619.8 | 33 3765617 | 7.421 | 575.17 | | | LOCATION | L0002739 | VOLUME | 487623.1 | 04 3765615 | 5.784 | 575.39 | | * | End of LI | INE VOLUME Sou | urce ID = | SLINE2 | | | | | * | Source Pa | arameters ** | | | | | | | * | LINE VOLU | JME Source ID | = SLINE1 | | | | | | | SRCPARAM | L0002131 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002132 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002133 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002134 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002135 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002136 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002137 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002138 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002139 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002140 | 0.0000035 | 808 | 0.00 | 1.70 | 0.8 | | | SRCPARAM | L0002141 | 0.0000035 | | 0.00 | 1.70 | 0.8 | | | | | | | | | | 0.000003508 0.00 1.70 SRCPARAM L0002142 0.85 | SRCPARAM L00021 | 43 0.000003508 | 0.00 | 1.70 | 0.85 | |-----------------|----------------|------|------|------| | SRCPARAM L00021 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 45 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 46 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 47 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 48 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 49 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 50 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 51 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 52 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 53 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 54 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 55 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 56 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 57 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 58 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 59 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 60 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 61 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 62 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 63 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 64 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 65 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 66 0.000003508 | | 1.70 | 0.85 | | SRCPARAM L00021 | 67 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 68 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | 69 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L00021 | | | 1.70 | 0.85 | | SRCPARAM L00021 | 93 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000219 | 4 0.000003508 | 0.00 | 1.70 | 0.85 | |------------------|---------------|------|------|------| | SRCPARAM L000219 | 5 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000219 | 6 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000219 | 7 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000219 | 8 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000219 | 9 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 0 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 1 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 2 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 3 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 4 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 5 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 6 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 7 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 8 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000220 | 9 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 0 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 1 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 2 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 3 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 4 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 5 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 6 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 7 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 8 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000221 | 9 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | 0 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000222 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000223 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000224 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000224 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000224 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000224 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L000224 | 4 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002245 | 0.000003508 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | | L0002246 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002247 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002248 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002249 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002250 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002251 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002252 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002253 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002254 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002255 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002256 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002257 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002258 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002259 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002260 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002261 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002262 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002263 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002264 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002265 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002266 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002267 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002268 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002269 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002270 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002271 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002272 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002273 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002274 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002271 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002276 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002277 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002277 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002270 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002280 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002281 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002281 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002283 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002283 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002284 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002286 | | | | | | | L0002287 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002288 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002289 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002290 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002291 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002292 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002293 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | L0002294 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002295 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002296 | 0.000003508 | 0.00 | 1.70 | 0.85 | |----------|----------|-------------|------|------|------| | SRCPARAM | L0002297 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002298 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002299 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002300 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002301 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002302 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002303 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002304 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002305 |
0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002306 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002307 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002308 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002309 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002310 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002311 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002312 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002313 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002314 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002315 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002316 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002317 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002318 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002319 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002320 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002321 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002322 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002323 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002324 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002325 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002346 | 0.000003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002347 | 0.00003508 | 0.00 | 1.70 | 0.85 | |-------------------|-------------|------|------|------| | SRCPARAM L0002348 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002349 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002350 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002351 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002352 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002353 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002354 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002355 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002356 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002357 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002358 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002359 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002360 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002361 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002362 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002363 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002364 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002365 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002366 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002367 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002368 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002369 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002370 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002371 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002372 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002373 | 0.00003508 | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002374 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002375 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002376 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002377 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002378 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002379 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002380 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002381 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002382 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002383 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002384 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002385 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002386 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002387 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002388 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002389 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002390 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002391 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002392 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002393 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002394 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002395 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002396 | | 0.00 | 1.70 | 0.85 | | SRCPARAM L0002397 | 0.000003508 | 0.00 | 1.70 | 0.85 | | S | RCPARAM | L0002398 | 0.000003508 | 0.00 | 1.70 | 0.85 | | |---|---------|----------------------|-------------|------|------|------|--| | | | L0002399 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | S | RCPARAM | L0002400 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | S | RCPARAM | L0002401 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002402 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002403 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002404 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002405 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002406 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002407 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002408 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002100 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002409 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002410 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002411
L0002412 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002412 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002413 | 0.000003508 | | 1.70 | 0.85 | | | | | | | 0.00 | | | | | | | L0002415 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002416 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002417 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002418 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002419 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002420 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002421 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002422 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002423 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002424 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002425 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002426 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002427 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002428 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002429 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002430 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002431 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002432 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002433 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | | | L0002434 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | S | RCPARAM | L0002435 | 0.000003508 | 0.00 | 1.70 | 0.85 | | | _ | | | | | | | | | | | JME Source ID | | | | | | | | | L0002436 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002437 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002438 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002439 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002440 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002441 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002442 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002443 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002444 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | L0002445 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | S | RCPARAM | L0002446 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | SRCPARAM | L0002447 | 0.00000352 | 0.00 | 1.70 | 0.85 | |----------|----------|------------|------|------|------| | SRCPARAM | L0002448 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002449 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002450 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002451 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002452 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002453 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002454 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002455 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002456 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002457 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002458 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002459 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002460 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002461 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002462 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002463 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002464 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002465 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002466 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002467 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002468 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002469 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002470 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002471 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002472 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002473 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002474 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002475 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002476 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002477 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002478 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002479 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002480 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002481 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002482 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002483 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM |
L0002484 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002485 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002486 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002487 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002488 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002489 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002490 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002491 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002492 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002493 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002494 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002495 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002496 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002497 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | | | | | CDCDADAM | T 0000100 | 0 00000000 | 0 00 | 1 70 | 0 0 5 | |----------|-----------|------------|------|------|-------| | | L0002498 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002499 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002500 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002501 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002502 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002503 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002504 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002505 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002506 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002507 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002508 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002509 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002510 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002511 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002512 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002513 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002514 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002515 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002516 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002517 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002518 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002519 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002520 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002521 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002522 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002523 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002524 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002525 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002526 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002527 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002528 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002529 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002530 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002531 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002531 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002532 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002534 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002535 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002536 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002537 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002538 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002539 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002540 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | | 1.70 | | | | L0002541 | 0.00000352 | 0.00 | | 0.85 | | | L0002542 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002543 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002544 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002545 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002546 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002547 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002548 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002549 | 0.00000352 | 0.00 | 1.70 | 0.85 | |--------------------------|---------|------------|------|------|------| | SRCPARAM L | 0002550 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002551 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002552 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002553 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002554 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002555 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002556 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002557 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002558 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002559 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002560 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002561 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002562 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002563 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002564 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002565 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | 0002566 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L | | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L
SRCPARAM L | | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L
SRCPARAM L | | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L
SRCPARAM L | | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L
SRCPARAM L | | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM L
SRCPARAM L | | 0.00000352 | 0.00 | 1.70 | 0.85 | | SKCPAKAM L | 0002333 | 0.00000352 | 0.00 | 1./0 | 0.05 | | | L0002600 | 0.00000352 | 0.00 | 1.70 | 0.85 | |----------|----------|------------|------|------|------| | | L0002601 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002602 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002603 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002604 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002605 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002606 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002607 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002608 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002609 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002610 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002611 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002612 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002613 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002614 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002615 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002616 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002617 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002618 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002619 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002620 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002621 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002622 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002623 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002624 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002625 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002626 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002627 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002628 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002629 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002630 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002631 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002632 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002633 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002634 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002635 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002636 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002637 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002638 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002639 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002639 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002641 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | | | | | | L0002642 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002643 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002644 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002645 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002646 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002647 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002648 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002649 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002650 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002651 | 0.00000352 | 0.00 | 1.70 | 0.85 | |----------|----------|------------|------|------|------| | | L0002652 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002653 | 0.0000352 | 0.00 | 1.70 | 0.85 | | | L0002654 | 0.0000352 | 0.00 | 1.70 | 0.85 | | | L0002655 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002656 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002657 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002658 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002659 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002660 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002661 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002662 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002663 | 0.00000352 | 0.00 | 1.70 | 0.85 |
 SRCPARAM | L0002664 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002665 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002666 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002667 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002668 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002669 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002670 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002671 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002672 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002673 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002674 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002675 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SRCPARAM | L0002676 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002677 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002678 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002679 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002680 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002681 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002682 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002683 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002684 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002685 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002686 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002687 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002688 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002689 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002690 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002691 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002692 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002693 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002694 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002695 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002696 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | | | | 1.70 | | | | L0002697 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002698 | 0.00000352 | 0.00 | | 0.85 | | | L0002699 | 0.00000352 | 0.00 | 1.70 | 0.85 | | | L0002700 | 0.00000352 | 0.00 | 1.70 | 0.85 | | SKCPARAM | L0002701 | 0.00000352 | 0.00 | 1.70 | 0.85 | ``` SRCPARAM L0002702 0.00000352 0.00 1.70 0.85 0.00 1.70 0.85 SRCPARAM L0002703 0.00000352 SRCPARAM L0002704 0.00000352 0.00 1.70 0.85 SRCPARAM L0002705 0.00000352 0.00 1.70 0.85 SRCPARAM L0002706 0.00000352 0.00 1.70 0.85 SRCPARAM L0002707 0.00000352 0.00 1.70 0.85 SRCPARAM L0002708 0.00000352 0.00 1.70 0.85 SRCPARAM L0002709 0.00000352 0.00 1.70 0.85 SRCPARAM L0002710 0.00000352 0.00 1.70 0.85 SRCPARAM L0002711 0.00000352 0.00 1.70 0.85 SRCPARAM L0002712 0.00000352 0.00 1.70 0.85 SRCPARAM L0002713 0.00000352 0.00 1.70 0.85 SRCPARAM L0002714 0.00000352 0.00 1.70 0.85 SRCPARAM L0002715 0.00000352 0.00 0.85 1.70 SRCPARAM L0002716 0.00000352 0.00 1.70 0.85 SRCPARAM L0002717 0.00000352 0.00 1.70 0.85 SRCPARAM L0002718 0.00000352 0.00 1.70 0.85 SRCPARAM L0002719 0.00000352 0.00 1.70 0.85 SRCPARAM L0002720 0.00 1.70 0.00000352 0.85 SRCPARAM L0002721 0.00000352 0.00 1.70 0.85 SRCPARAM L0002722 0.00000352 0.00 1.70 0.85 SRCPARAM L0002723 0.00000352 0.00 0.85 1.70 SRCPARAM L0002724 0.00000352 0.00 1.70 0.85 0.00 0.85 SRCPARAM L0002725 0.00000352 1.70 SRCPARAM L0002726 0.00000352 0.00 1.70 0.85 SRCPARAM L0002727 0.00000352 0.00 1.70 0.85 SRCPARAM L0002728 0.00000352 0.00 1.70 0.85 SRCPARAM L0002729 0.00000352 0.00 1.70 0.85 0.00 1.70 0.85 SRCPARAM L0002730 0.00000352 SRCPARAM L0002731 0.00000352 0.00 1.70 0.85 0.00 0.85 SRCPARAM L0002732 0.00000352 1.70 SRCPARAM L0002733 0.00000352 0.00 1.70 0.85 SRCPARAM L0002734 0.00000352 0.00 1.70 0.85 SRCPARAM L0002735 0.00000352 0.00 1.70 0.85 SRCPARAM L0002736 0.00000352 0.00 0.85 1.70 SRCPARAM L0002737 0.00000352 0.00 1.70 0.85 SRCPARAM L0002738 0.00000352 0.00 1.70 0.85 SRCPARAM L0002739 0.00000352 0.00 1.70 0.85 URBANSRC ALL SRCGROUP ALL SO FINISHED ** AERMOD Receptor Pathway *********** * * RE STARTING INCLUDED "Terracina at Redlands 2042-2055.rou" RE FINISHED ``` ``` ** AERMOD Meteorology Pathway *********** ** ME STARTING SURFFILE "E:\New MET data\RDLD_V9_ADJU\RDLD_v9.SFC" PROFFILE "E:\New MET data\RDLD V9 ADJU\RDLD v9.PFL" SURFDATA 3171 2012 UAIRDATA 3190 2012 SITEDATA 99999 2012 PROFBASE 481.0 METERS ME FINISHED ********** ** AERMOD Output Pathway ********** * * OU STARTING ** Auto-Generated Plotfiles PLOTFILE PERIOD ALL "TERRACINA AT REDLANDS 2042-2055.AD\PE00GALL.PLT" 31 SUMMFILE "Terracina at Redlands 2042-2055.sum" OU FINISHED *** Message Summary For AERMOD Model Setup *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) 0 Informational Message(s) A Total of ****** FATAL ERROR MESSAGES ****** *** NONE *** 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W186 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET ********* *** SETUP Finishes Successfully *** ********* *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** 08/11/21 *** 22:23:47 ``` ``` *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* MODEL SETUP OPTIONS SUMMARY **Model Is Setup For Calculation of Average CONCentration Values. -- DEPOSITION LOGIC -- **NO GAS DEPOSITION Data Provided. **NO PARTICLE DEPOSITION Data Provided. **Model Uses NO DRY DEPLETION. DRYDPLT = F **Model Uses NO WET DEPLETION. WETDPLT = F **Model Uses URBAN Dispersion Algorithm for the SBL for 609 Source(s), for Total of 1 Urban Area(s): Urban Population = 2035210.0; Urban Roughness Length = 1.000 m **Model Uses Regulatory DEFAULT Options: 1. Stack-tip Downwash. 2. Model Accounts for ELEVated Terrain Effects. 3. Use Calms Processing Routine. 4. Use Missing Data Processing Routine. 5. No Exponential Decay. 6. Urban Roughness Length of 1.0 Meter Assumed. **Other Options Specified: ADJ_U* - Use ADJ_U* option for SBL in AERMET TEMP_Sub - Meteorological data includes TEMP substitutions **Model Assumes No FLAGPOLE Receptor Heights. **The User Specified a Pollutant Type of: DPM **Model Calculates PERIOD Averages Only **This Run Includes: 609 Source(s); 1 Source Group(s); and 449 Receptor(s) with: 0 POINT(s), including 0 POINTCAP(s) and 0 POINTHOR(s) and: 609 VOLUME source(s) and: 0 AREA type source(s) and: 0 LINE source(s) and: 0 RLINE/RLINEXT source(s) and: 0 OPENPIT source(s) and: **Model Set To Continue RUNning After the Setup Testing. ``` **The AERMET Input Meteorological Data Version Date: 16216 #### **Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours *** **Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 481.00; Decay Coef. = 0.000 ; Rot. Angle = 0.0 ; Emission Rate Unit Factor = 0.10000E+07 Emission Units = GRAMS/SEC Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 3.8 MB of RAM. **Input Runstream File: aermod.inp **Output Print File: aermod.out **Detailed Error/Message File: Terracina at Redlands 2042-2055.err **File for Summary of Results: Terracina at Redlands 2042-2055.sum *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 * * * 22:23:47 PAGE 2 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE | 3 | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | L0002131 | 0 | 0.35080E-05 | 486617.8 | 3766076.2 | 527.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002132 | 0 | 0.35080E-05 | 486621.2 | 3766075.0 | 527.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002133 | 0 | 0.35080E-05 | 486624.7 | 3766073.9 | 527.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002134 | 0 | 0.35080E-05 | 486628.2 | 3766072.7 | 527.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002135 | 0 | 0.35080E-05 | 486631.6 | 3766071.5 | 527.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002136 | 0 | 0.35080E-05 | 486635.1 | 3766070.3 | 528.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002137 | 0 | 0.35080E-05 | 486638.6 | 3766069.1 | 528.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002138 | 0 | 0.35080E-05 | 486642.0 | 3766068.0 | 528.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002139 | 0 | 0.35080E-05 | 486645.5 | 3766066.8 | 528.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002140 | 0 | 0.35080E-05 | 486648.9 | 3766065.6 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002141 | 0 | 0.35080E-05 | 486652.4 | 3766064.4 | 528.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002142 | 0 | 0.35080E-05 | 486655.9 | 3766063.3 | 528.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002143 | 0 | 0.35080E-05 | 486659.3 | 3766062.1 | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002144 | 0 | 0.35080E-05 | 486662.8 | 3766060.9 | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002145 | 0 | 0.35080E-05 | 486666.3 | 3766059.7 | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002146 | 0 | 0.35080E-05 | 486669.7 | 3766058.6 | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002147 | 0 | 0.35080E-05 | 486673.2 3766057.4 | 529.5 | 0.00 | 1.70 | 0.85 | YES | | |-----------------|-------|-------------|----------------------|--------|-----------|----------|------|-----|-----| | L0002148 | 0 | 0.35080E-05 | 486676.6 3766056.2 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002149 | 0 | 0.35080E-05 | 486680.1 3766055.0 | 529.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002150 | 0 | 0.35080E-05 | 486683.6 3766053.8 | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002151 | 0 | 0.35080E-05 | 486687.0 3766052.7 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002152 | 0 | 0.35080E-05 | 486690.5 3766051.5 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002153 | 0 | 0.35080E-05 | 486694.0 3766050.3 | 530.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002154 | 0 | 0.35080E-05 | 486697.4 3766049.1 | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002155 | 0 | 0.35080E-05 | 486700.9 3766048.0 | 531.0 |
0.00 | 1.70 | 0.85 | YES | | | L0002156 | 0 | 0.35080E-05 | 486704.3 3766046.8 | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002157 | 0 | 0.35080E-05 | 486707.8 3766045.6 | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002158 | 0 | 0.35080E-05 | 486711.3 3766044.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002159 | 0 | 0.35080E-05 | 486714.7 3766043.2 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002160 | 0 | 0.35080E-05 | 486718.2 3766042.1 | 531.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002161 | 0 | 0.35080E-05 | 486721.7 3766040.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002162 | 0 | 0.35080E-05 | 486725.1 3766039.7 | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002163 | 0 | 0.35080E-05 | 486728.6 3766038.5 | 532.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002164 | 0 | 0.35080E-05 | 486732.1 3766037.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002165 | 0 | 0.35080E-05 | 486735.5 3766036.2 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002166 | 0 | 0.35080E-05 | 486739.0 3766035.0 | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002167 | 0 | 0.35080E-05 | 486742.4 3766033.8 | 533.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002168 | 0 | 0.35080E-05 | 486745.9 3766032.7 | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002169 | 0 | 0.35080E-05 | 486749.4 3766031.5 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002170 | 0 | 0.35080E-05 | 486752.8 3766030.3 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | *** AERMOD - VE | RSION | 21112 *** | *** Terracina at Red | llands | | | | | *** | | *** AERMET - VE | | | *** Freeway-related | | ntrations | 2042-205 | 5 | | *** | | | | | rrcca, rcracca | 001100 | | _512 205 | - | | | ## *** VOLUME SOURCE DATA *** 08/11/21 22:23:47 PAGE 3 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------|---------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | L0002171 | 0 | 0.35080E-05 | 486756.3 | 3766029.1 | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002172 | 0 | 0.35080E-05 | 486759.8 | 3766027.9 | 533.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002173 | 0 | 0.35080E-05 | 486763.2 | 3766026.8 | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002174 | 0 | 0.35080E-05 | 486766.7 | 3766025.6 | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002175 | 0 | 0.35080E-05 | 486770.1 | 3766024.4 | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002176 | 0 | 0.35080E-05 | 486773.6 | 3766023.2 | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002177 | 0 | 0.35080E-05 | 486777.1 | 3766022.1 | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002178 | 0 | 0.35080E-05 | 486780.5 | 3766020.9 | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002179 | 0 | 0.35080E-05 | 486784.0 | 3766019.7 | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002180 | 0 | 0.35080E-05 | 486787.5 | 3766018.5 | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002181 | 0 | 0.35080E-05 | 486790.9 | 3766017.4 | 535.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002182 | 0 | 0.35080E-05 | 486794.4 | 3766016.2 | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002183 | 0 | 0.35080E-05 | 486797.9 | 3766015.1 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002184 | 0 | 0.35080E-05 | 486801.4 3766013.9 | 536.5 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|-----------|------------|------------|------|-----|-----|----------| | L0002185 | 0 | 0.35080E-05 | 486804.8 3766012.8 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002186 | 0 | 0.35080E-05 | 486808.3 3766011.6 | 536.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002187 | 0 | 0.35080E-05 | 486811.8 3766010.5 | 536.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002188 | 0 | 0.35080E-05 | 486815.2 3766009.3 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002189 | 0 | 0.35080E-05 | 486818.7 3766008.2 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002190 | 0 | 0.35080E-05 | 486822.2 3766007.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002191 | 0 | 0.35080E-05 | 486825.7 3766005.9 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002192 | 0 | 0.35080E-05 | 486829.1 3766004.8 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002193 | 0 | 0.35080E-05 | 486832.6 3766003.6 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002194 | 0 | 0.35080E-05 | 486836.1 3766002.5 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002195 | 0 | 0.35080E-05 | 486839.5 3766001.3 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002196 | 0 | 0.35080E-05 | 486843.0 3766000.2 | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002197 | 0 | 0.35080E-05 | 486846.5 3765999.0 | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002198 | 0 | 0.35080E-05 | 486850.0 3765997.9 | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002199 | 0 | 0.35080E-05 | 486853.4 3765996.7 | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002200 | 0 | 0.35080E-05 | 486856.9 3765995.6 | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002201 | 0 | 0.35080E-05 | 486860.4 3765994.4 | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002202 | 0 | 0.35080E-05 | 486863.9 3765993.3 | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002203 | 0 | 0.35080E-05 | 486867.3 3765992.1 | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002204 | 0 | 0.35080E-05 | 486870.8 3765991.0 | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002205 | 0 | 0.35080E-05 | 486874.3 3765989.8 | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002206 | 0 | 0.35080E-05 | 486877.7 3765988.7 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002207 | 0 | 0.35080E-05 | 486881.2 3765987.5 | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002208 | 0 | 0.35080E-05 | 486884.7 3765986.4 | 539.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002209 | 0 | 0.35080E-05 | 486888.2 3765985.2 | 539.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002210 | 0 | 0.35080E-05 | 486891.6 3765984.1 | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | *** AERMOD - | | | *** Terracina at Red | | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 1 16216 *** | *** Freeway-related | DPM Conce | entrations | 3 2042-205 | 5 | | *** | 22:23:47 | ## *** VOLUME SOURCE DATA *** PAGE 4 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE (GRAMS/SEC) | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE SCALAR VARY BY | |--------------|--------------------|---------------------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------| | L0002211 | 0 | 0.35080E-05 | 486895.1 | 3765982.9 | 539.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002212 | 0 | 0.35080E-05 | 486898.6 | 3765981.7 | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002213 | 0 | 0.35080E-05 | 486902.0 | 3765980.5 | 540.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002214 | 0 | 0.35080E-05 | 486905.5 | 3765979.3 | 540.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002215 | 0 | 0.35080E-05 | 486908.9 | 3765978.1 | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002216 | 0 | 0.35080E-05 | 486912.4 | 3765976.9 | 540.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002217 | 0 | 0.35080E-05 | 486915.8 | 3765975.6 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002218 | 0 | 0.35080E-05 | 486919.3 | 3765974.4 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002219 | 0 | 0.35080E-05 | 486922.7 | 3765973.2 | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002220 | 0 | 0.35080E-05 | 486926.2 | 3765972.0 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002221 | 0 | 0.35080E-05 | 486929.6 3765970.8 | 3 540.8 | 0.00 | 1.70 | 0.85 | YES | | |----------|---|-------------|--------------------|---------|------|------|------|-----|--| | L0002222 | 0 | 0.35080E-05 | 486933.1 3765969.5 | 540.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002223 | 0 | 0.35080E-05 | 486936.5 3765968.3 | 540.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002224 | 0 | 0.35080E-05 | 486939.9 3765967.1 | 541.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002225 | 0 | 0.35080E-05 | 486943.4 3765965.9 | 541.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002226 | 0 | 0.35080E-05 | 486946.8 3765964.7 | 7 541.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002227 | 0 | 0.35080E-05 | 486950.3 3765963.4 | 541.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002228 | 0 | 0.35080E-05 | 486953.7 3765962.2 | 541.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002229 | 0 | 0.35080E-05 | 486957.2 3765961.0 | 542.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002230 | 0 | 0.35080E-05 | 486960.6 3765959.8 | 3 542.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002231 | 0 | 0.35080E-05 | 486964.1 3765958.6 | 5 542.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002232 | 0 | 0.35080E-05 | 486967.5 3765957.3 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002233 | 0 | 0.35080E-05 | 486971.0 3765956.1 | 542.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002234 | 0 | 0.35080E-05 | 486974.4 3765954.9 | 543.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002235 | 0 | 0.35080E-05 | 486977.9 3765953.7 | 7 543.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002236 | 0 | 0.35080E-05 | 486981.3 3765952.5 | 543.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002237 | 0 | 0.35080E-05 | 486984.8 3765951.2 | 2 543.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002238 | 0 | 0.35080E-05 | 486988.2 3765950.0 | 543.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002239 | 0 | 0.35080E-05 | 486991.7 3765948.8 | 543.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002240 | 0 | 0.35080E-05 | 486995.1 3765947.6 | 543.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002241 | 0 | 0.35080E-05 | 486998.6 3765946.4 | 1 544.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002242 | 0 | 0.35080E-05 | 487002.0 3765945.1 | 544.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002243 | 0 | 0.35080E-05 | 487005.5 3765943.9 | 544.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002244 | 0 | 0.35080E-05 | 487008.9 3765942.7 | 7 544.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002245 | 0 | 0.35080E-05 | 487012.4 3765941.5 | 5 544.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002246 | 0 | 0.35080E-05 | 487015.8 3765940.3 | 544.4 |
0.00 | 1.70 | 0.85 | YES | | | L0002247 | 0 | 0.35080E-05 | 487019.3 3765939.0 | 544.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002248 | 0 | 0.35080E-05 | 487022.7 3765937.7 | 7 544.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002249 | 0 | 0.35080E-05 | 487026.1 3765936.4 | 1 544.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002250 | 0 | 0.35080E-05 | 487029.5 3765935.1 | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** VOLUME SOURCE DATA *** *** 08/11/21 22:23:47 PAGE 5 | SOURCE
ID | NUMBER PART. CATS. | EMISSION RATE | X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | |--------------|--------------------|---------------|---------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------| | L0002251 | 0 | 0.35080E-05 | 487032.9 | 3765933.7 | 545.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002252 | 0 | 0.35080E-05 | 487036.3 | 3765932.4 | 545.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002253 | 0 | 0.35080E-05 | 487039.7 | 3765931.0 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002254 | 0 | 0.35080E-05 | 487043.1 | 3765929.7 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002255 | 0 | 0.35080E-05 | 487046.5 | 3765928.4 | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002256 | 0 | 0.35080E-05 | 487049.9 | 3765927.0 | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002257 | 0 | 0.35080E-05 | 487053.3 | 3765925.7 | 546.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002258 | 0 | 0.35080E-05 | 487056.7 | 3765924.3 | 546.4 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|----------|-----------|-------|------|------|------|-----| | L0002259 | 0 | 0.35080E-05 | 487060.1 | 3765923.0 | 546.6 | 0.00 | 1.70 | 0.85 | YES | | L0002260 | 0 | 0.35080E-05 | 487063.5 | 3765921.7 | 546.7 | 0.00 | 1.70 | 0.85 | YES | | L0002261 | 0 | 0.35080E-05 | 487066.9 | 3765920.3 | 546.9 | 0.00 | 1.70 | 0.85 | YES | | L0002262 | 0 | 0.35080E-05 | 487070.3 | 3765919.0 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | L0002263 | 0 | 0.35080E-05 | 487073.7 | 3765917.6 | 547.2 | 0.00 | 1.70 | 0.85 | YES | | L0002264 | 0 | 0.35080E-05 | 487077.1 | 3765916.3 | 547.3 | 0.00 | 1.70 | 0.85 | YES | | L0002265 | 0 | 0.35080E-05 | 487080.5 | 3765915.0 | 547.4 | 0.00 | 1.70 | 0.85 | YES | | L0002266 | 0 | 0.35080E-05 | 487083.9 | 3765913.6 | 547.5 | 0.00 | 1.70 | 0.85 | YES | | L0002267 | 0 | 0.35080E-05 | 487087.3 | 3765912.3 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | L0002268 | 0 | 0.35080E-05 | 487090.7 | 3765910.9 | 547.6 | 0.00 | 1.70 | 0.85 | YES | | L0002269 | 0 | 0.35080E-05 | 487094.1 | 3765909.6 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | L0002270 | 0 | 0.35080E-05 | 487097.5 | 3765908.3 | 547.7 | 0.00 | 1.70 | 0.85 | YES | | L0002271 | 0 | 0.35080E-05 | 487100.9 | 3765906.9 | 547.8 | 0.00 | 1.70 | 0.85 | YES | | L0002272 | 0 | 0.35080E-05 | 487104.4 | 3765905.6 | 547.9 | 0.00 | 1.70 | 0.85 | YES | | L0002273 | 0 | 0.35080E-05 | 487107.8 | 3765904.2 | 548.0 | 0.00 | 1.70 | 0.85 | YES | | L0002274 | 0 | 0.35080E-05 | 487111.2 | 3765902.9 | 548.2 | 0.00 | 1.70 | 0.85 | YES | | L0002275 | 0 | 0.35080E-05 | 487114.6 | 3765901.6 | 548.3 | 0.00 | 1.70 | 0.85 | YES | | L0002276 | 0 | 0.35080E-05 | 487118.0 | 3765900.2 | 548.6 | 0.00 | 1.70 | 0.85 | YES | | L0002277 | 0 | 0.35080E-05 | 487121.4 | 3765898.9 | 548.8 | 0.00 | 1.70 | 0.85 | YES | | L0002278 | 0 | 0.35080E-05 | 487124.8 | 3765897.5 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | L0002279 | 0 | 0.35080E-05 | 487128.2 | 3765896.2 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | L0002280 | 0 | 0.35080E-05 | 487131.5 | 3765894.7 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | L0002281 | 0 | 0.35080E-05 | 487134.8 | 3765893.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | L0002282 | 0 | 0.35080E-05 | 487138.2 | 3765891.7 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | L0002283 | 0 | 0.35080E-05 | 487141.5 | 3765890.2 | 550.2 | 0.00 | 1.70 | 0.85 | YES | | L0002284 | 0 | 0.35080E-05 | 487144.9 | 3765888.7 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | L0002285 | 0 | 0.35080E-05 | 487148.2 | 3765887.2 | 551.3 | 0.00 | 1.70 | 0.85 | YES | | L0002286 | 0 | 0.35080E-05 | 487151.6 | 3765885.8 | 551.8 | 0.00 | 1.70 | 0.85 | YES | | L0002287 | 0 | 0.35080E-05 | 487154.9 | 3765884.3 | 552.3 | 0.00 | 1.70 | 0.85 | YES | | L0002288 | 0 | 0.35080E-05 | 487158.2 | 3765882.8 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | L0002289 | 0 | 0.35080E-05 | 487161.6 | 3765881.3 | 553.2 | 0.00 | 1.70 | 0.85 | YES | | L0002290 | 0 | 0.35080E-05 | 487164.9 | 3765879.8 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2042-2055 2042-2055 *** * * * 08/11/21 22:23:47 PAGE 6 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATI | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | L0002291 | 0 | 0.35080E-05 | 487168.3 | 3765878.3 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002292 | 0 | 0.35080E-05 | 487171.6 | 3765876.8 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002293 | 0 | 0.35080E-05 | 487174.9 | 3765875.4 | 554.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002294 | 0 | 0.35080E-05 | 487178.3 | 3765873.9 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002295 | T 000000F | 0 | 0 250005 05 | 407101 6 2765070 4 | FFF 4 | 0 00 | 1 70 | 0.05 | TITO C | | |--|--------------|-----------|-------------|----------------------|----------|------------|----------|------|--------|--| | L0002297 0 0.35080E-05 48718B.3 3765869.4 555.9 0.00 1.70 0.85 YES L0002299 0 0.35080E-05 487191.7 3765866.4 555.8 0.00 1.70 0.85 YES L0002300 0 0.35080E-05 487195.0 3765865.0 555.4 0.00 1.70 0.85 YES L0002301 0 0.35080E-05 487198.3 3765865.0 555.4 0.00 1.70 0.85 YES L0002301 0 0.35080E-05 487201.7 3765863.5 555.1 0.00 1.70 0.85 YES L0002302 0 0.35080E-05 487201.7 3765863.5 555.1 0.00 1.70 0.85 YES L0002303 0 0.35080E-05 487208.4 3765862.0 554.8 0.00 1.70 0.85 YES L0002304 0 0.35080E-05 487208.4 3765859.0 554.4 0.00 1.70 0.85 YES L0002304 0 0.35080E-05 487211.7 3765859.0 554.4 0.00 1.70 0.85 YES L0002306 0 0.35080E-05 487211.7 3765859.0 554.2 0.00 1.70 0.85 YES L0002306 0 0.35080E-05 487211.7 3765854.6 554.2 0.00 1.70 0.85 YES L0002306 0 0.35080E-05 487212.1 3765851.5 554.2 0.00 1.70 0.85 YES L0002308 0 0.35080E-05 487221.7 3765854.6 554.2 0.00 1.70 0.85 YES L0002309 0 0.35080E-05 487221.8 3765851.1 554.2 0.00 1.70 0.85 YES L0002309 0 0.35080E-05 487221.8 3765851.1 554.4 0.00 1.70 0.85 YES L0002309 0 0.35080E-05 487228.4 3765851.6 554.2 0.00 1.70 0.85 YES L0002309 0 0.35080E-05 487228.4 3765851.6 554.5 0.00 1.70 0.85 YES L0002310 0 0.35080E-05 487231.8 3765851.6 554.5 0.00 1.70 0.85 YES L0002311 0 0.35080E-05 487231.8 3765851.6 554.5 0.00 1.70 0.85 YES L0002311 0 0.35080E-05 487231.8 3765851.6 554.5 0.00 1.70 0.85 YES L0002312 0 0.35080E-05 487231.8 3765845.6 554.7 0.00 1.70 0.85 YES L0002312 0 0.35080E-05 487231.8 3765845.6 554.7 0.00 1.70 0.85 YES L0002312 0 0.35080E-05 487248.5 3765845.6 554.7 0.00 1.70 0.85 YES L0002314 0 0.35080E-05 487248.5 3765845.6 554.7 0.00 1.70 0.85 YES L0002315 0 0.35080E-05 487248.5 3765845.6 554.7 0.00 1.70 0.85 YES L0002316 0 0.35080E-05 487248.5 3765845.6 554.7 0.00 1.70 0.85 YES L0002316 0 0.35080E-05 487248.5 3765845.6 554.7 0.00 1.70 0.85 YES L0002317 0 0.35080E-05 487248.3 3765845.6 554.7 0.00 1.70 0.85 YES L0002317 0
0.35080E-05 487248.3 3765845.6 554.7 0.00 1.70 0.85 YES L0002319 0 0.35080E-05 487248.3 3765831.0 556.3 0.00 1.70 0.85 YES L0002310 0 0.35080E-05 487248.3 3765 | | | | | | | | | | | | L0002298 | | | | | | | | | | | | L0002299 | | | | | | | | | | | | L0002300 | | | | | | | | | | | | L0002301 | | | | | | | | | | | | L0002302 | | | | | | | | | | | | L0002303 | | | | | | | | | | | | L0002304 | | | | | | | | | | | | L0002305 | | | | | | | | | | | | L0002306 | | | | | | | | | | | | L0002307 | | | | | | | | | | | | L0002308 0 0.35080E-05 487225.1 3765853.1 554.4 0.00 1.70 0.85 YES L0002309 0 0.35080E-05 487228.4 3765851.6 554.5 0.00 1.70 0.85 YES L0002310 0 0.35080E-05 487231.8 3765850.1 554.6 0.00 1.70 0.85 YES L0002311 0 0.35080E-05 487231.3 3765848.6 554.7 0.00 1.70 0.85 YES L0002312 0 0.35080E-05 487241.8 3765845.6 554.8 0.00 1.70 0.85 YES L0002313 0 0.35080E-05 487245.1 3765844.2 555.1 0.00 1.70 0.85 YES L0002314 0 0.35080E-05 487248.5 3765842.7 555.4 0.00 1.70 0.85 YES L0002316 0 0.35080E-05 487255.2 3765841.2 555.7 0.00 1.70 0.85 YES </td <td></td> | | | | | | | | | | | | L0002309 | | | | | | | | | | | | L0002310 | | | | | | | | | | | | L0002311 | | | | | | | | | | | | L0002312 | | | | | | | | | | | | L0002313 | | | | | | | | | | | | L0002314 0 0.35080E-05 487245.1 3765844.2 555.1 0.00 1.70 0.85 YES L0002315 0 0.35080E-05 487248.5 3765842.7 555.4 0.00 1.70 0.85 YES L0002316 0 0.35080E-05 487251.8 3765841.2 555.7 0.00 1.70 0.85 YES L0002317 0 0.35080E-05 487255.2 3765839.7 556.0 0.00 1.70 0.85 YES L0002318 0 0.35080E-05 487261.6 3765836.3 556.3 0.00 1.70 0.85 YES L0002319 0 0.35080E-05 487264.6 3765836.3 556.5 0.00 1.70 0.85 YES L0002320 0 0.35080E-05 487264.8 3765834.5 556.8 0.00 1.70 0.85 YES L0002321 0 0.35080E-05 487271.2 3765832.8 557.0 0.00 1.70 0.85 YES </td <td></td> | | | | | | | | | | | | L0002315 0 0.35080E-05 487248.5 3765842.7 555.4 0.00 1.70 0.85 YES L0002316 0 0.35080E-05 487251.8 3765841.2 555.7 0.00 1.70 0.85 YES L0002317 0 0.35080E-05 487255.2 3765839.7 556.0 0.00 1.70 0.85 YES L0002318 0 0.35080E-05 487258.4 3765838.0 556.3 0.00 1.70 0.85 YES L0002319 0 0.35080E-05 487261.6 3765836.3 556.5 0.00 1.70 0.85 YES L0002320 0 0.35080E-05 487268.0 3765832.8 557.0 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765831.0 557.3 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487277.5 3765827.5 557.9 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487280.9 3765825.7 558.2 | | | | | | | | | | | | L0002316 0 0.35080E-05 487251.8 3765841.2 555.7 0.00 1.70 0.85 YES L0002317 0 0.35080E-05 487255.2 3765839.7 556.0 0.00 1.70 0.85 YES L0002318 0 0.35080E-05 487258.4 3765838.0 556.3 0.00 1.70 0.85 YES L0002319 0 0.35080E-05 487261.6 3765836.3 556.5 0.00 1.70 0.85 YES L0002320 0 0.35080E-05 487268.0 3765834.5 556.8 0.00 1.70 0.85 YES L0002321 0 0.35080E-05 487268.0 3765831.0 557.3 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765821.0 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487287.3 3765827.5 557.9 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487287.3 3765825.7 558.2 | | | | | | | | | | | | L0002317 0 0.35080E-05 487255.2 3765839.7 556.0 0.00 1.70 0.85 YES L0002318 0 0.35080E-05 487258.4 3765838.0 556.3 0.00 1.70 0.85 YES L0002319 0 0.35080E-05 487261.6 3765836.3 556.5 0.00 1.70 0.85 YES L0002320 0 0.35080E-05 487264.8 3765834.5 556.8 0.00 1.70 0.85 YES L0002321 0 0.35080E-05 487268.0 3765831.0 557.3 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765829.2 557.7 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487277.7 3765827.5 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765825.7 558.2 | | | | | | | | | | | | L0002318 0 0.35080E-05 487258.4 3765838.0 556.3 0.00 1.70 0.85 YES L0002319 0 0.35080E-05 487261.6 3765836.3 556.5 0.00 1.70 0.85 YES L0002320 0 0.35080E-05 487264.8 3765834.5 556.8 0.00 1.70 0.85 YES L0002321 0 0.35080E-05 487268.0 3765832.8 557.0 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765829.2 557.7 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487277.7 3765827.5 557.9 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002326 0 0.35080E-05 487287.3 3765820.5 558.4 | | | | | | | | | | | | L0002319 0 0.35080E-05 487261.6 3765836.3 556.5 0.00 1.70 0.85 YES L0002320 0 0.35080E-05 487264.8 3765834.5 556.8 0.00 1.70 0.85 YES L0002321 0 0.35080E-05 487268.0 3765832.8 557.0 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765831.0 557.3 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487277.7 3765829.2 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487280.9 3765825.7 557.9 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002326 0 0.35080E-05 487287.3 3765822.2 558.4 0.00 1.70 0.85 YES L0002328 0 0.35080E-05 487290.5 3765820.5 558.7 | | | | | | | | | | | | L0002320 0 0.35080E-05 487264.8 3765834.5 556.8 0.00 1.70 0.85 YES L0002321 0 0.35080E-05 487268.0 3765832.8 557.0 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765831.0 557.3 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487277.5 3765829.2 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487280.9 3765827.5 557.9 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002326 0 0.35080E-05 487287.3 3765822.2 558.4 0.00 1.70 0.85 YES L0002327 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 | | | | | | | | | | | | L0002321 0 0.35080E-05 487268.0 3765832.8 557.0 0.00 1.70 0.85 YES L0002322 0 0.35080E-05 487271.2 3765831.0 557.3 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487274.5 3765829.2 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487280.9 3765827.5 557.9 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765824.0 558.2 0.00 1.70 0.85 YES L0002326 0 0.35080E-05 487287.3 3765822.2 558.4 0.00 1.70 0.85 YES L0002327 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES L0002328 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 | | | | | | | | | | | | L0002322 0 0.35080E-05 487271.2 3765831.0 557.3 0.00 1.70 0.85 YES L0002323 0 0.35080E-05 487274.5 3765829.2 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487277.7 3765827.5 557.9 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002326 0 0.35080E-05 487287.3 3765824.0 558.4 0.00 1.70 0.85 YES L0002327 0 0.35080E-05 487287.3 3765820.5 558.7 0.00 1.70 0.85 YES L0002328 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 0.00 1.70 0.85 YES | | | | | | | | | | | | L0002323 0 0.35080E-05 487274.5 3765829.2 557.7 0.00 1.70 0.85 YES L0002324 0 0.35080E-05 487277.7 3765827.5 557.9 0.00 1.70 0.85 YES L0002325 0 0.35080E-05 487280.9 3765825.7 558.2 0.00 1.70 0.85 YES L0002326 0 0.35080E-05 487284.1 3765824.0 558.4 0.00 1.70 0.85 YES L0002327 0 0.35080E-05 487287.3 3765822.2 558.6 0.00 1.70 0.85 YES L0002328 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 0.00 1.70 0.85 YES | | | | | | | | | | | | L0002324 | | | | | | | | | | | | L0002325 | | | | | | | | | | | | L0002326 | | | | | | | | | | | | L0002327 0 0.35080E-05 487287.3 3765822.2 558.6 0.00 1.70 0.85 YES
L0002328 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES
L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 0.00 1.70 0.85 YES | | | | | | | | | | | | L0002328 0 0.35080E-05 487290.5 3765820.5 558.7 0.00 1.70 0.85 YES
L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 0.00 1.70 0.85 YES | | | | | | | | | | | | L0002329 0 0.35080E-05 487293.7 3765818.7 558.8 0.00 1.70 0.85 YES | L0002330 0 0.35080E-05 487296.9 3765817.0 558.9 0.00 1.70 0.85 YES | | | | | | | | | | | | | L0002330 | 0 | 0.35080E-05 | 487296.9 3765817.0 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands | *** AERMOD - | - VERSION | 1 21112 *** | *** Terracina at Red | dlands | | | | | | | *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2042-2055 | *** AERMET - | - VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | 2042-205 | 55 | | | ### *** VOLUME SOURCE DATA *** 08/11/21 22:23:47 PAGE 7 *** | | NUMBER | EMISSION RATE | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |-----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | - 0000001 | | | 400000 4 | | | | | | | | | | L0002331 | 0 | 0.35080E-05 | 487300.1 | 3765815.2 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002332 | 0 | 0.35080E-05 | 487303.3 3765813.5 | 559.1 | 0.00 | 1.70 | 0.85 | YES | |----------|---|-------------|--------------------|-------|------|------|------|-----| | L0002333 | 0 | 0.35080E-05 | 487306.6 3765811.7 | 559.3 | 0.00 | 1.70 | 0.85 | YES | | L0002334 | 0 | 0.35080E-05 | 487309.8 3765810.0 | 559.5 | 0.00 | 1.70 | 0.85 | YES | | L0002335 | 0 | 0.35080E-05 | 487313.0 3765808.2 | 559.7 | 0.00 | 1.70 | 0.85 | YES | | L0002336 | 0 | 0.35080E-05 | 487316.2 3765806.5 | 559.9 | 0.00 | 1.70 | 0.85 | YES | | L0002337 | 0 | 0.35080E-05 | 487319.4 3765804.7 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | L0002338 | 0 | 0.35080E-05 | 487322.6 3765802.9 | 560.4 | 0.00 | 1.70 | 0.85 | YES | | L0002339 | 0 | 0.35080E-05 | 487325.8 3765801.2 | 560.8 | 0.00 | 1.70 | 0.85 | YES | | L0002340 | 0 | 0.35080E-05 | 487329.0 3765799.4 | 561.2 | 0.00 | 1.70 | 0.85 | YES | | L0002341 | 0 | 0.35080E-05 | 487332.2 3765797.7 | 561.5 | 0.00 | 1.70 | 0.85 | YES | | L0002342 | 0 | 0.35080E-05 | 487335.4 3765795.9 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | L0002343 | 0 | 0.35080E-05 | 487338.7 3765794.2 | 562.0 |
0.00 | 1.70 | 0.85 | YES | | L0002344 | 0 | 0.35080E-05 | 487341.9 3765792.4 | 562.2 | 0.00 | 1.70 | 0.85 | YES | | L0002345 | 0 | 0.35080E-05 | 487345.1 3765790.7 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | L0002346 | 0 | 0.35080E-05 | 487348.3 3765788.9 | 562.8 | 0.00 | 1.70 | 0.85 | YES | | L0002347 | 0 | 0.35080E-05 | 487351.5 3765787.2 | 563.2 | 0.00 | 1.70 | 0.85 | YES | | L0002348 | 0 | 0.35080E-05 | 487354.7 3765785.4 | 563.6 | 0.00 | 1.70 | 0.85 | YES | | L0002349 | 0 | 0.35080E-05 | 487357.9 3765783.7 | 563.9 | 0.00 | 1.70 | 0.85 | YES | | L0002350 | 0 | 0.35080E-05 | 487361.1 3765781.9 | 564.3 | 0.00 | 1.70 | 0.85 | YES | | L0002351 | 0 | 0.35080E-05 | 487364.3 3765780.2 | 564.6 | 0.00 | 1.70 | 0.85 | YES | | L0002352 | 0 | 0.35080E-05 | 487367.6 3765778.4 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | L0002353 | 0 | 0.35080E-05 | 487370.8 3765776.8 | 565.2 | 0.00 | 1.70 | 0.85 | YES | | L0002354 | 0 | 0.35080E-05 | 487374.1 3765775.1 | 565.5 | 0.00 | 1.70 | 0.85 | YES | | L0002355 | 0 | 0.35080E-05 | 487377.3 3765773.4 | 565.8 | 0.00 | 1.70 | 0.85 | YES | | L0002356 | 0 | 0.35080E-05 | 487380.5 3765771.7 | 566.0 | 0.00 | 1.70 | 0.85 | YES | | L0002357 | 0 | 0.35080E-05 | 487383.8 3765770.0 | 566.2 | 0.00 | 1.70 | 0.85 | YES | | L0002358 | 0 | 0.35080E-05 | 487387.0 3765768.3 | 566.4 | 0.00 | 1.70 | 0.85 | YES | | L0002359 | 0 | 0.35080E-05 | 487390.3 3765766.6 | 566.5 | 0.00 | 1.70 | 0.85 | YES | | L0002360 | 0 | 0.35080E-05 | 487393.5 3765764.9 | 566.6 | 0.00 | 1.70 | 0.85 | YES | | L0002361 | 0 | 0.35080E-05 | 487396.8 3765763.2 | 566.7 | 0.00 | 1.70 | 0.85 | YES | | L0002362 | 0 | 0.35080E-05 | 487400.0 3765761.5 | 567.1 | 0.00 | 1.70 | 0.85 | YES | | L0002363 | 0 | 0.35080E-05 | 487403.2 3765759.8 | 567.5 | 0.00 | 1.70 | 0.85 | YES | | L0002364 | 0 | 0.35080E-05 | 487406.5 3765758.1 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | L0002365 | 0 | 0.35080E-05 | 487409.7 3765756.4 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | L0002366 | 0 | 0.35080E-05 | 487413.0 3765754.8 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | L0002367 | 0 | 0.35080E-05 | 487416.2 3765753.1 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | L0002368 | 0 | 0.35080E-05 | 487419.5 3765751.4 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | L0002369 | 0 | 0.35080E-05 | 487422.7 3765749.7 | 569.3 | 0.00 | 1.70 | 0.85 | YES | | L0002370 | 0 | 0.35080E-05 | 487425.9 3765748.0 | 570.1 | 0.00 | 1.70 | 0.85 | YES | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | NUMBER | EMISSION RATE | | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |--------|--------|---------------|----------|----------|----------|----------|----------|----------|--------|---------------|--| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | TD | CATS | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | L0002371 | 0 | 0.35080E-05 | 487429.2 3765746.3 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|------------|---------------|---------------------|-----------|-------------|------------|----------|-----|-----|----------| | L0002372 | 0 | 0.35080E-05 | 487432.4 3765744.6 | 571.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002373 | 0 | 0.35080E-05 | 487435.7 3765742.9 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002374 | 0 | 0.35080E-05 | 487438.9 3765741.2 | 572.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002375 | 0 | 0.35080E-05 | 487442.2 3765739.5 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002376 | 0 | 0.35080E-05 | 487445.4 3765737.8 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002377 | 0 | 0.35080E-05 | 487448.6 3765736.1 | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002378 | 0 | 0.35080E-05 | 487451.8 3765734.4 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002379 | 0 | 0.35080E-05 | 487455.1 3765732.7 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002380 | 0 | 0.35080E-05 | 487458.3 3765730.9 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002381 | 0 | 0.35080E-05 | 487461.5 3765729.2 | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002382 | 0 | 0.35080E-05 | 487464.7 3765727.5 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002383 | 0 | 0.35080E-05 | 487468.0 3765725.8 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002384 | 0 | 0.35080E-05 | 487471.2 3765724.0 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002385 | 0 | 0.35080E-05 | | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002386 | 0 | 0.35080E-05 | 487477.7 3765720.6 | 572.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002387 | 0 | 0.35080E-05 | | 572.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002388 | 0 | 0.35080E-05 | | 573.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002389 | 0 | 0.35080E-05 | | 573.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002390 | 0 | | 487490.6 3765713.7 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002391 | 0 | 0.35080E-05 | | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002392 | 0 | 0.35080E-05 | 487497.0 3765710.3 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002393 | 0 | 0.35080E-05 | 487500.2 3765708.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002394 | 0 | 0.35080E-05 | | 574.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002391 | 0 | 0.35080E-05 | | 574.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002396 | 0 | 0.35080E-05 | 487509.9 3765703.4 | 574.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002397 | 0 | 0.35080E-05 | | 575.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002397 | 0 | 0.35080E-05 | 487516.4 3765699.9 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002399 | 0 | 0.35080E-05 | | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002399 | 0 | 0.35080E-05 | | 575.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002400 | 0 | 0.35080E-05 | | 575.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002401 | 0 | | 487529.3 3765693.0 | 576.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002402 | 0 | 0.35080E-05 | | 576.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002403 | 0 | 0.35080E-05 | | 577.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002404 | 0 | 0.35080E-05 | | 577.1 | 0.00 | 1.70 | 0.85 | YES | | | | | 0 | 0.35080E-05 | | 578.1 | | 1.70 | | YES | | | | L0002406 | 0 | | | | 0.00 | | 0.85 | | | | | L0002407 | | 0.35080E-05 | | 578.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002408 | 0 | | 487548.6 3765682.6 | 578.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002409 | 0 | 0.35080E-05 | | 579.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002410 | 0 | 0.35080E-05 | 487555.0 3765679.1 | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - WEDGION | т 21112 *** | *** Terracina at Re | dlande | | | | | *** | 08/11/21 | | *** AERMET - | | | *** Freeway-related | | entration | 2042_20 | 55 | | *** | 22:23:47 | | AERMEI - | A TIVO TOL | N TOZIO | rieeway-related | DEM COILC | CIICIACIOII | 5 ZU4Z-ZU: | <i> </i> | | | PAGE 9 | | *** MODELOPT | rs: Re | egDFAULT CONC | C ELEV URBAN ADJ_U | * | | | | | | rage 9 | | | NUMBER | EMISSION RATE | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | | |--------------|---------|---------------|-----------|------------|-------------|------------|------------|----------|--------|---------------|----------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | 7.0000411 | 0 | 0 25000= 05 | 405550 2 | 2000000 | F. F. O. O. | 0.00 | 1 50 | 0.05 | | | | | L0002411 | 0 | 0.35080E-05 | | | 579.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002412 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002413 | 0 | 0.35080E-05 | | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002414 | 0 | 0.35080E-05 | | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002415 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002416 | 0 | 0.35080E-05 | | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002417 | 0 | 0.35080E-05 | | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002418 | 0 | 0.35080E-05 | | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002419 | 0 | 0.35080E-05 | | | 579.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002420 | 0 | 0.35080E-05 | | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002421 | 0 | 0.35080E-05 | | | 578.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002422 | 0 | 0.35080E-05 | | | 579.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002423 | 0 | 0.35080E-05 | | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002424 | 0 | 0.35080E-05 | | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002425 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002426 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002427 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002428 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002429 | 0 | 0.35080E-05 | | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002430 | 0 | 0.35080E-05 | | | 580.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002431 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002432 | 0 | 0.35080E-05 | | | 580.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002433 | 0 | 0.35080E-05 | | | 579.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002434 | 0 | 0.35080E-05 | | | 579.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002435 | 0 | 0.35080E-05 | | | 579.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002436 | 0 | 0.35200E-05 | | | 528.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002437 | 0 | 0.35200E-05 | | | 528.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002438 | 0 | 0.35200E-05 | | | 528.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002439 | 0 | 0.35200E-05 | | | 529.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002440 | 0 | 0.35200E-05 | | | 529.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002441 | 0 | 0.35200E-05 | | | 529.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002442 | 0 | 0.35200E-05 | | | 529.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002443 | 0 | 0.35200E-05 | 486631.2 | 3766040.5 | 529.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002444 | 0 | 0.35200E-05 | 486634.6 | 3766039.3 | 529.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002445 | 0 | 0.35200E-05 | 486638.1 | 3766038.2 | 529.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002446 | 0 | 0.35200E-05 | 486641.6 | 3766037.1 | 530.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002447 | 0 | 0.35200E-05 |
486645.1 | 3766035.9 | 530.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002448 | 0 | 0.35200E-05 | 486648.5 | 3766034.8 | 530.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002449 | 0 | 0.35200E-05 | 486652.0 | 3766033.6 | 530.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002450 | 0 | 0.35200E-05 | 486655.5 | 3766032.5 | 530.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | 01110 | *** | | | | | | | | 00/17/07 | | *** AERMOD - | | | | cina at Re | | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freew | ay-related | DPM Con | centration | ns 2042-20 | J55 | | * * * | 22:23:47 | | *** MODELOPT | s: Re | gDFAULT CONC | ELEV UR | BAN ADJ_U | J* | | | | | | PAGE 10 | | COLLEGE | | EMISSION RAT | | 77 | BASE | RELEASE | INIT. | INIT. | | EMISSION RATE | | |--------------|-----------|--------------|-----------|------------|----------|------------|------------|----------|--------|---------------|----------| | SOURCE | PART. | (GRAMS/SEC) | | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | | | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | | L0002451 | 0 | 0.35200E-05 | 486659.0 | 3766031.4 | 530.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002452 | 0 | 0.35200E-05 | | | 530.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002453 | 0 | 0.35200E-05 | 486665.9 | 3766029.1 | 531.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002454 | 0 | 0.35200E-05 | 486669.4 | 3766028.0 | 531.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002455 | 0 | 0.35200E-05 | 486672.9 | 3766026.8 | 531.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002456 | 0 | 0.35200E-05 | 486676.4 | 3766025.7 | 531.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002457 | 0 | 0.35200E-05 | 486679.8 | 3766024.5 | 531.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002458 | 0 | 0.35200E-05 | 486683.3 | 3766023.4 | 531.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002459 | 0 | 0.35200E-05 | 486686.8 | 3766022.3 | 531.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002460 | 0 | 0.35200E-05 | 486690.3 | 3766021.1 | 531.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002461 | 0 | 0.35200E-05 | 486693.7 | 3766020.0 | 531.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002462 | 0 | 0.35200E-05 | 486697.2 | 3766018.9 | 532.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002463 | 0 | 0.35200E-05 | 486700.7 | 3766017.7 | 532.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002464 | 0 | 0.35200E-05 | 486704.2 | 3766016.6 | 532.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002465 | 0 | 0.35200E-05 | 486707.6 | 3766015.4 | 532.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002466 | 0 | 0.35200E-05 | 486711.1 | 3766014.3 | 532.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002467 | 0 | 0.35200E-05 | 486714.6 | 3766013.2 | 532.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002468 | 0 | 0.35200E-05 | 486718.1 | 3766012.0 | 532.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002469 | 0 | 0.35200E-05 | 486721.5 | 3766010.9 | 533.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002470 | 0 | 0.35200E-05 | 486725.0 | 3766009.7 | 533.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002471 | 0 | 0.35200E-05 | 486728.5 | 3766008.6 | 533.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002472 | 0 | 0.35200E-05 | 486732.0 | 3766007.5 | 533.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002473 | 0 | 0.35200E-05 | 486735.4 | 3766006.3 | 533.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002474 | 0 | 0.35200E-05 | 486738.9 | 3766005.2 | 534.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002475 | 0 | 0.35200E-05 | 486742.4 | 3766004.0 | 534.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002476 | 0 | 0.35200E-05 | 486745.8 | 3766002.8 | 534.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002477 | 0 | | 486749.3 | | 534.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002478 | 0 | 0.35200E-05 | 486752.7 | 3766000.4 | 534.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002479 | 0 | 0.35200E-05 | 486756.2 | 3765999.2 | 534.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002480 | 0 | | 486759.7 | | 534.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002481 | 0 | 0.35200E-05 | 486763.1 | 3765996.8 | 535.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002482 | 0 | | 486766.6 | | 535.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002483 | 0 | 0.35200E-05 | 486770.0 | | 535.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002484 | 0 | 0.35200E-05 | 486773.5 | 3765993.1 | 535.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002485 | 0 | 0.35200E-05 | | | 535.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002486 | 0 | 0.35200E-05 | | | 535.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002487 | 0 | | 486783.8 | | 535.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002488 | 0 | 0.35200E-05 | | | 535.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002489 | 0 | | 486790.7 | | 536.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002490 | 0 | 0.35200E-05 | 486794.2 | 3765985.9 | 536.1 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | | *** AERMOD - | | | | cina at Re | | | 0040 - | | | *** | 08/11/21 | | *** AERMET - | - VERSION | 16216 *** | *** Freew | ay-related | DPM Con | centration | ns 2042-20 | J55 | | *** | 22:23:47 | | COLLDGE | NUMBER
PART. | EMISSION RATE
(GRAMS/SEC) | | 77 | BASE
ELEV. | RELEASE
HEIGHT | INIT. | INIT.
SZ | | EMISSION RATE
SCALAR VARY | |----------------------|-----------------|------------------------------|-----------|-----------|----------------|-------------------|--------------|--------------|------------|------------------------------| | SOURCE
ID | CATS. | | | | | | | | | | | | | | (METERS) | | (METERS) | | | | | | | | | | | | | | | | | | | L0002491 | 0 | 0.35200E-05 | 486797.6 | 3765984.7 | 536.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002492 | 0 | 0.35200E-05 | 486801.1 | 3765983.4 | 536.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002493 | 0 | 0.35200E-05 | 486804.5 | 3765982.2 | 536.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002494 | 0 | 0.35200E-05 | 486808.0 | 3765981.0 | 536.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002495 | 0 | 0.35200E-05 | | | 537.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002496 | 0 | 0.35200E-05 | | | 537.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002497 | 0 | 0.35200E-05 | | | 537.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002498 | 0 | 0.35200E-05 | | | 537.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002499 | 0 | 0.35200E-05 | | | 537.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002500 | 0 | 0.35200E-05 | | | 537.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002501 | 0 | 0.35200E-05 | | | 538.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002502 | 0 | 0.35200E-05 | | | 538.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002503 | 0 | 0.35200E-05 | | | 538.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002504 | 0 | 0.35200E-05 | | | 538.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002505 | 0 | 0.35200E-05 | | | 538.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002506 | 0 | 0.35200E-05 | | | 538.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002507 | 0 | 0.35200E-05 | | | 538.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002508 | 0 | 0.35200E-05 | | | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002509 | 0 | 0.35200E-05 | | | 539.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002510 | 0 | 0.35200E-05 | | | 539.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002511 | - | 0.35200E-05 | | | 539.3
539.4 | 0.00 | 1.70
1.70 | 0.85 | YES | | | L0002512
L0002513 | 0 | 0.35200E-05
0.35200E-05 | | | 539.4 | 0.00 | 1.70 | 0.85
0.85 | YES
YES | | | L0002513 | 0 | 0.35200E-05 | | 3765957.8 | 539.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002514 | 0 | 0.35200E-05 | | | 539.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002515 | 0 | 0.35200E-05 | | | 540.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002517 | 0 | 0.35200E-05 | | | 540.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002517 | 0 | 0.35200E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0002510 | 0 | 0.35200E-05 | | | 540.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002520 | 0 | | | 3765951.0 | 540.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002521 | 0 | 0.35200E-05 | | | 540.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002522 | 0 | 0.35200E-05 | | | 540.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002523 | 0 | 0.35200E-05 | | | 541.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002524 | 0 | 0.35200E-05 | | | 541.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002525 | 0 | | | 3765945.4 | 541.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002526 | 0 | 0.35200E-05 | 486919.1 | 3765944.3 | 541.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002527 | 0 | 0.35200E-05 | | | 541.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002528 | 0 | 0.35200E-05 | 486926.0 | 3765942.0 | 541.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002529 | 0 | 0.35200E-05 | 486929.5 | 3765940.9 | 542.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002530 | 0 | 0.35200E-05 | 486933.0 | 3765939.8 | 542.3 | 0.00 | 1.70 | 0.85 | YES | | | SOURCE
ID | NUMBER
PART.
CATS. | EMISSION RAT | X | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | | EMISSION RATE
SCALAR VARY
BY | |----------------------|--------------------------|----------------------------|----------|------------------------|---------------------------|-------------------------------|-------------------------|-------------------------|------------|------------------------------------| | L0002531 | 0 | 0.35200E-05 | 496026 E | 2765020 6 | 542.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002531 | 0 | 0.35200E-05 | | 3765937.5 | 542.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002532 | 0 | 0.35200E-05 | | 3765936.4 | 542.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002534 | 0 | | | 3765935.3 | 542.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002535 | 0 | 0.35200E-05 | | 3765934.2 | 542.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002536 | 0 | 0.35200E-05 | | 3765933.0 | 543.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002537 | 0 | 0.35200E-05 | | 3765931.9 | 543.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002538 | 0 | 0.35200E-05 | 486960.9 | 3765930.8 | 543.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002539 | 0 | 0.35200E-05 | 486964.3 | 3765929.7 | 543.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002540 | 0 | 0.35200E-05 | 486967.8 | 3765928.6 | 543.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002541 | 0 | 0.35200E-05 | 486971.3 | 3765927.4 | 543.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002542 | 0 | 0.35200E-05 | 486974.8 | 3765926.3 | 543.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002543 | 0 | 0.35200E-05 | 486978.3 | 3765925.2 | 543.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002544 | 0 |
0.35200E-05 | | 3765924.1 | 544.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002545 | 0 | 0.35200E-05 | 486985.2 | 3765922.9 | 544.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002546 | 0 | 0.35200E-05 | | 3765921.8 | 544.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002547 | 0 | 0.35200E-05 | | 3765920.7 | | 0.00 | 1.70 | 0.85 | YES | | | L0002548 | 0 | 0.35200E-05 | | 3765919.5 | 544.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002549 | 0 | 0.35200E-05 | | 3765918.4 | 544.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002550 | 0 | 0.35200E-05 | | | 544.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002551 | 0 | 0.35200E-05 | | 3765916.0 | 545.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002552 | 0 | 0.35200E-05 | | 3765914.8 | 545.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002553 | 0 | 0.35200E-05 | | 3765913.6 | 545.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002554 | 0 | 0.35200E-05 | | 3765912.4 | 545.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002555 | 0 | 0.35200E-05 | | 3765911.2 | 545.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002556 | 0 | 0.35200E-05 | | 3765910.1 | 546.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002557 | 0 | 0.35200E-05 | | | 546.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002558 | 0 | 0.35200E-05 | | 3765907.7 | 546.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002559 | 0 | 0.35200E-05 | | 3765906.5 | 546.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002560 | 0 | 0.35200E-05 | | 3765905.3 | 546.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002561 | 0 | 0.35200E-05 | | 3765904.1 | 546.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002562 | 0 | 0.35200E-05 | | 3765902.9 | 547.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002563 | 0 | 0.35200E-05 | | 3765901.8 | 547.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002564 | 0 | 0.35200E-05
0.35200E-05 | | 3765900.6
3765899.4 | 547.3
547.5 | 0.00 | 1.70
1.70 | 0.85 | YES | | | L0002565 | 0 | 0.35200E-05 | | 3765899.4 | 547.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002566
L0002567 | 0 | 0.35200E-05
0.35200E-05 | | 3765898.2 | 547.6 | 0.00 | 1.70 | 0.85
0.85 | YES
YES | | | ±0002507 | U | U.35ZUUE-U5 | 40/001.4 | 3/0509/.0 | 54/./ | 0.00 | 1.70 | 0.85 | YES | | | L0002568
L0002569
L0002570 | 0
0
0 | 0.35200E-05 | 487064.9 3765895.8
487068.3 3765894.6
487071.8 3765893.5 | 547.8
547.9
548.0 | 0.00
0.00
0.00 | 1.70
1.70
1.70 | 0.85
0.85
0.85 | YES
YES
YES | | | |----------------------------------|-------------|-------------|--|-------------------------|----------------------|----------------------|----------------------|-------------------|-----|---------------------------------| | *** AERMOD -
*** AERMET - | | | *** Terracina at Rec
*** Freeway-related | | entrations | s 2042-205 | 55 | | *** | 08/11/21
22:23:47
PAGE 13 | | | NUMBER | EMISSION RATE | <u> </u> | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | ВУ | L0002571 | 0 | 0.35200E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0002572 | 0 | 0.35200E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0002573 | 0 | 0.35200E-05 | | | | 0.00 | 1.70 | 0.85 | YES | | | L0002574 | 0 | | | 3765888.7 | | 0.00 | 1.70 | 0.85 | YES | | | L0002575 | 0 | 0.35200E-05 | | | 548.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002576 | 0 | 0.35200E-05 | | | 548.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002577 | 0 | 0.35200E-05 | 487096.0 | 3765885.1 | 548.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002578 | 0 | 0.35200E-05 | 487099.5 | 3765884.0 | 549.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002579 | 0 | 0.35200E-05 | 487102.9 | 3765882.8 | 549.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002580 | 0 | 0.35200E-05 | 487106.4 | 3765881.6 | 549.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002581 | 0 | 0.35200E-05 | 487109.8 | 3765880.4 | 549.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002582 | 0 | 0.35200E-05 | 487113.3 | 3765879.2 | 549.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002583 | 0 | 0.35200E-05 | 487116.8 | 3765878.0 | 549.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002584 | 0 | 0.35200E-05 | 487120.1 | 3765876.6 | 550.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002585 | 0 | 0.35200E-05 | 487123.4 | 3765875.1 | 550.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002586 | 0 | 0.35200E-05 | 487126.8 | 3765873.6 | 550.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002587 | 0 | 0.35200E-05 | 487130.1 | 3765872.1 | 550.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002588 | 0 | 0.35200E-05 | 487133.5 | 3765870.6 | 550.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002589 | 0 | 0.35200E-05 | 487136.8 | 3765869.1 | 550.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002590 | 0 | 0.35200E-05 | 487140.1 | 3765867.6 | 551.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002591 | 0 | 0.35200E-05 | 487143.5 | 3765866.1 | 551.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002592 | 0 | 0.35200E-05 | 487146.8 | 3765864.6 | 551.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002593 | 0 | 0.35200E-05 | 487150.1 | 3765863.1 | 552.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002594 | 0 | 0.35200E-05 | 487153.5 | 3765861.6 | 552.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002595 | 0 | 0.35200E-05 | 487156.8 | 3765860.1 | 552.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002596 | 0 | 0.35200E-05 | 487160.2 | 3765858.6 | 552.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002597 | 0 | 0.35200E-05 | 487163.5 | 3765857.2 | 552.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002598 | 0 | 0.35200E-05 | 487166.8 | 3765855.7 | 552.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002599 | 0 | 0.35200E-05 | 487170.2 | 3765854.2 | 553.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002600 | 0 | 0.35200E-05 | 487173.5 | 3765852.7 | 553.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002601 | 0 | 0.35200E-05 | | 3765851.2 | 553.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002602 | 0 | 0.35200E-05 | | 3765849.7 | | 0.00 | 1.70 | 0.85 | YES | | | L0002603 | 0 | 0.35200E-05 | | 3765848.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.35200E-05 | | 3765846.7 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | L0002605 | 0 | 0.35200E-05 | 487190.2 3765845.2 | 553.6 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|-----------|-------------|----------------------|----------|------------|------------|------|-----|-----|----------| | L0002606 | 0 | 0.35200E-05 | 487193.6 3765843.7 | 553.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002607 | 0 | 0.35200E-05 | 487196.9 3765842.2 | 553.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002608 | 0 | 0.35200E-05 | 487200.2 3765840.6 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002609 | 0 | 0.35200E-05 | 487203.5 3765839.0 | 554.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002610 | 0 | 0.35200E-05 | 487206.8 3765837.4 | 554.3 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | - VERSION | T 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | - VERSION | I 16216 *** | *** Freeway-related | DPM Conc | entrations | 3 2042-205 | 55 | | *** | 22:23:47 | | | | | | | | | | | | PAGE 14 | | SOURCE
ID | NUMBER
PART.
CATS. | EMISSION RATE
(GRAMS/SEC) | X | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | | |----------------------|--------------------------|------------------------------|----------|------------------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------|---| | | | | | | | | | | | | - | | T 0 0 0 0 C 1 1 | 0 | 0 25000# 05 | 407010 1 | 2765025 0 | FF4 2 | 0.00 | 1 70 | 0.05 | TVD C | | | | L0002611
L0002612 | 0 | | | 3765835.8
3765834.2 | 554.3
554.4 | 0.00 | 1.70
1.70 | 0.85
0.85 | YES
YES | | | | L0002612 | 0 | | | 3765834.2 | 554.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002613 | 0 | | | 3765831.0 | 554.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002614
L0002615 | 0 | 0.35200E-05 | | 3765829.4 | 554.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002616 | 0 | 0.35200E-05 | | 3765827.8 | 554.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002617 | 0 | 0.35200E-05 | | 3765826.2 | 555.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002618 | 0 | 0.35200E-05 | | 3765824.6 | 555.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002619 | 0 | 0.35200E-05 | | 3765823.0 | 555.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002620 | 0 | 0.35200E-05 | | 3765821.4 | 555.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002621 | 0 | 0.35200E-05 | | 3765819.8 | 555.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002622 | 0 | 0.35200E-05 | | 3765818.2 | 555.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002623 | 0 | 0.35200E-05 | | 3765816.6 | 555.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002624 | 0 | 0.35200E-05 | | 3765815.0 | 556.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002625 | 0 | 0.35200E-05 | | 3765813.4 | 556.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002626 | 0 | 0.35200E-05 | 487259.4 | 3765811.9 | 556.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002627 | 0 | 0.35200E-05 | 487262.7 | 3765810.3 | 556.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002628 | 0 | 0.35200E-05 | 487266.0 | 3765808.7 | 556.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002629 | 0 | 0.35200E-05 | 487269.3 | 3765807.1 | 556.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002630 | 0 | 0.35200E-05 | 487272.6 | 3765805.5 | 557.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002631 | 0 | 0.35200E-05 | 487275.9 | 3765803.9 | 557.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002632 | 0 | 0.35200E-05 | 487279.1 | 3765802.3 | 557.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002633 | 0 | 0.35200E-05 | 487282.4 | 3765800.6 | 557.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002634 | 0 | 0.35200E-05 | 487285.6 | 3765798.8 | 557.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002635 | 0 | 0.35200E-05 | 487288.7 | 3765797.0 | 558.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002636 | 0 | 0.35200E-05 | 487291.9 | 3765795.1 | 558.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002637 | 0 | 0.35200E-05 | 487295.1 |
3765793.3 | 558.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002638 | 0 | 0.35200E-05 | 487298.2 | 3765791.4 | 558.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002639 | 0 | | | 3765789.6 | 558.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002640 | 0 | | | 3765787.7 | 558.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002641 | 0 | 0.35200E-05 | 487307.7 | 3765785.9 | 558.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002642 | 0 | 0.35200E-05 | 487310.9 3765784.1 | 559.0 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|-------------|----------------------|----------|------------|------------|------|-----|-----|----------| | L0002643 | 0 | 0.35200E-05 | 487314.0 3765782.2 | 559.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002644 | 0 | 0.35200E-05 | 487317.2 3765780.4 | 559.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002645 | 0 | 0.35200E-05 | 487320.3 3765778.5 | 559.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002646 | 0 | 0.35200E-05 | 487323.5 3765776.7 | 559.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002647 | 0 | 0.35200E-05 | 487326.7 3765774.9 | 560.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002648 | 0 | 0.35200E-05 | 487329.8 3765773.0 | 560.3 | 0.00 | 1.70 | 0.85 | YES | | | | L0002649 | 0 | 0.35200E-05 | 487333.0 3765771.2 | 560.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002650 | 0 | 0.35200E-05 | 487336.1 3765769.3 | 560.7 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terracina at Rec | dlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | 16216 *** | *** Freeway-related | DPM Conc | entrations | 3 2042-205 | 55 | | *** | 22:23:47 | | | | | | | | | | | | PAGE 15 | | | NUMBER | EMISSION RATE | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |----------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | | | (GRAMS/SEC) | | | ELEV. | HEIGHT | SY | | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | L0002651 | 0 | 0.35200E-05 | 487339.3 | 3765767.5 | 560.9 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.35200E-05 | | | 561.0 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | | 487345.7 | | 561.2 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.35200E-05 | | 3765762.1 | 561.4 | 0.00 | 1.70 | 0.85 | YES | | | | 0 | 0.35200E-05 | | | 561.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002656 | 0 | 0.35200E-05 | 487355.2 | 3765758.4 | 561.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002657 | 0 | 0.35200E-05 | 487358.4 | 3765756.6 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002658 | 0 | 0.35200E-05 | 487361.5 | 3765754.8 | 561.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002659 | 0 | 0.35200E-05 | 487364.7 | 3765753.0 | 561.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002660 | 0 | 0.35200E-05 | 487367.9 | 3765751.2 | 562.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002661 | 0 | 0.35200E-05 | 487371.1 | 3765749.4 | 562.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002662 | 0 | 0.35200E-05 | 487374.3 | 3765747.6 | 562.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002663 | 0 | 0.35200E-05 | 487377.4 | 3765745.8 | 562.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002664 | 0 | 0.35200E-05 | 487380.6 | 3765743.9 | 562.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002665 | 0 | 0.35200E-05 | 487383.8 | 3765742.1 | 563.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002666 | 0 | 0.35200E-05 | 487387.0 | 3765740.3 | 563.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002667 | 0 | 0.35200E-05 | 487390.1 | 3765738.5 | 563.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002668 | 0 | 0.35200E-05 | 487393.3 | 3765736.7 | 563.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002669 | 0 | | 487396.5 | | 563.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002670 | 0 | | 487399.7 | | 564.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002671 | 0 | 0.35200E-05 | 487402.9 | 3765731.3 | 564.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002672 | 0 | 0.35200E-05 | | | 564.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002673 | 0 | 0.35200E-05 | | | 564.6 | 0.00 | 1.70 | 0.85 | YES | | | L0002674 | 0 | | 487412.4 | | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002675 | 0 | 0.35200E-05 | 487415.7 | | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002676 | 0 | | 487418.9 | | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002677 | 0 | 0.35200E-05 | | | 564.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002678 | 0 | 0.35200E-05 | 487425.4 | 3765719.1 | 565.0 | 0.00 | 1.70 | 0.85 | YES | | | L0002679
L0002680
L0002681
L0002682
L0002683
L0002684
L0002685
L0002686
L0002687 | 0
0
0
0
0
0
0 | 0.35200E-05
0.35200E-05
0.35200E-05
0.35200E-05
0.35200E-05
0.35200E-05
0.35200E-05
0.35200E-05
0.35200E-05 | 487428.6 3765717.4
487431.9 3765715.8
487435.1 3765714.1
487438.4 3765712.4
487441.6 3765710.7
487444.9 3765709.0
487448.1 3765707.3
487451.4 3765705.6
487457.9 3765704.0 | 565.2
565.5
565.7
566.0
566.2
566.4
566.6
566.9
567.2 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 1.70
1.70
1.70
1.70
1.70
1.70
1.70
1.70 | 0.85
0.85
0.85
0.85
0.85
0.85
0.85
0.85 | YES | | | |--|---------------------------------|---|--|---|---|--|--|---|----------------|---------------------------------| | L0002688
L0002689
L0002690 | 0 | 0.35200E-05
0.35200E-05
0.35200E-05 | 487461.1 3765700.6
487464.3 3765698.9 | 567.4
567.6
567.7 | 0.00 | 1.70
1.70
1.70 | 0.85
0.85
0.85 | YES
YES
YES | | | | *** AERMOD -
*** AERMET - | - VERSION
- VERSION | | *** Terracina at Rec
*** Freeway-related | | entrations | 2042-205 | 55 | | * * *
* * * | 08/11/21
22:23:47
PAGE 16 | | | NUMBER | EMISSION RATI | E | | BASE | RELEASE | INIT. | INIT. | URBAN | EMISSION RATE | |-------------|--------|---------------|----------|-----------|----------|----------|----------|----------|--------|---------------| | SOURCE | PART. | (GRAMS/SEC) | X | Y | ELEV. | HEIGHT | SY | SZ | SOURCE | SCALAR VARY | | ID | CATS. | | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | (METERS) | | BY | | | | | | | | | | | | | | | _ | | | | | | | | | | | L0002691 | 0 | 0.35200E-05 | | | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002692 | 0 | 0.35200E-05 | | 3765695.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002693 | 0 | 0.35200E-05 | | 3765693.9 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002694 | 0 | 0.35200E-05 | | 3765692.2 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002695 | 0 | 0.35200E-05 | 487480.6 | 3765690.5 | 567.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002696 | 0 | 0.35200E-05 | 487483.8 | 3765688.8 | 568.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002697 | 0 | 0.35200E-05 | 487487.1 | 3765687.1 | 568.3 | 0.00 | 1.70 | 0.85 | YES | | | L0002698 | 0 | 0.35200E-05 | 487490.3 | 3765685.4 | 568.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002699 | 0 | 0.35200E-05 | 487493.6 | 3765683.8 | 568.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002700 | 0 | 0.35200E-05 | 487496.8 | 3765682.1 | 568.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002701 | 0 | 0.35200E-05 | 487500.1 | 3765680.4 | 569.2 | 0.00 | 1.70 | 0.85 | YES | | | L0002702 | 0 | 0.35200E-05 | 487503.3 | 3765678.7 | 569.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002703 | 0 | 0.35200E-05 | 487506.6 | 3765677.0 | 569.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002704 | 0 | 0.35200E-05 | 487509.8 | 3765675.3 | 570.1 | 0.00 | 1.70 | 0.85 | YES | | | L0002705 | 0 | 0.35200E-05 | 487513.1 | 3765673.7 | 570.4 | 0.00 | 1.70 | 0.85 | YES | | | L0002706 | 0 | 0.35200E-05 | 487516.3 | 3765672.0 | 570.5 | 0.00 | 1.70 | 0.85 | YES | | | L0002707 | 0 | 0.35200E-05 | 487519.5 | 3765670.3 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002708 | 0 | 0.35200E-05 | 487522.8 | 3765668.6 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002709 | 0 | 0.35200E-05 | 487526.0 | 3765666.9 | 570.8 | 0.00 | 1.70 | 0.85 | YES | | | L0002710 | 0 | 0.35200E-05 | 487529.3 | 3765665.2 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002711 | 0 | 0.35200E-05 | 487532.5 | 3765663.4 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002712 | 0 | 0.35200E-05 | 487535.7 | 3765661.6 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002713 | 0 | 0.35200E-05 | | 3765659.9 | 570.7 | 0.00 | 1.70 | 0.85 | YES | | | L0002714 | 0 | 0.35200E-05 | | 3765658.1 | 570.9 | 0.00 | 1.70 | 0.85 | YES | | | L0002715 | 0 | 0.35200E-05 | | 3765656.3 | 571.1 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | L0002716 | 0 | 0.35200E-05 | 487548.5 3765654.6 | 571.2 | 0.00 | 1.70 | 0.85 | YES | | | |--------------|---------|--------------|----------------------|----------|------------|------------|------|-----|-----|----------| | L0002717 | 0 | 0.35200E-05 | 487551.7 3765652.8 | 571.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002718 | 0 | 0.35200E-05 | 487554.9 3765651.0 | 571.8 | 0.00 | 1.70 | 0.85 | YES | | | | L0002719 | 0 | 0.35200E-05 | 487558.1 3765649.3 | 572.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002720 | 0 | 0.35200E-05 | 487561.3 3765647.5 | 572.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002721 | 0 | 0.35200E-05 | 487564.5 3765645.7 | 572.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002722 | 0 | 0.35200E-05 | 487567.7 3765644.0 | 572.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002723 | 0 | 0.35200E-05 | 487570.9 3765642.2 | 573.0 | 0.00 | 1.70 | 0.85 | YES | | | | L0002724 | 0 | 0.35200E-05 | 487574.1 3765640.4 | 573.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002725 | 0 | 0.35200E-05 | 487577.3 3765638.7 | 573.4 | 0.00 |
1.70 | 0.85 | YES | | | | L0002726 | 0 | 0.35200E-05 | 487580.6 3765637.1 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002727 | 0 | 0.35200E-05 | 487583.9 3765635.4 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002728 | 0 | 0.35200E-05 | 487587.1 3765633.8 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002729 | 0 | 0.35200E-05 | 487590.4 3765632.2 | 573.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002730 | 0 | 0.35200E-05 | 487593.7 3765630.5 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | | | | | | | | | | | | | *** AERMOD - | VERSION | | *** Terracina at Red | dlands | | | | | *** | 08/11/21 | | *** AERMET - | VERSION | I 16216 *** | *** Freeway-related | DPM Conc | entrations | s 2042-205 | 55 | | *** | 22:23:47 | | | | | | | | | | | | PAGE 17 | | *** MODELOPT | s: Re | gDFAULT CONC | ELEV URBAN ADJ_U | * | | | | | | | | SOURCE
ID | NUMBER
PART.
CATS. | | E
X
(METERS) | Y
(METERS) | BASE
ELEV.
(METERS) | RELEASE
HEIGHT
(METERS) | INIT.
SY
(METERS) | INIT.
SZ
(METERS) | URBAN
SOURCE | EMISSION RATE
SCALAR VARY
BY | | |--------------|--------------------------|-------------|--------------------|---------------|---------------------------|-------------------------------|-------------------------|-------------------------|-----------------|------------------------------------|----------| L0002731 | 0 | 0.35200E-05 | 487596.9 | 3765628.9 | 573.5 | 0.00 | 1.70 | 0.85 | YES | | | | L0002732 | 0 | 0.35200E-05 | 487600.2 | 3765627.2 | 573.6 | 0.00 | 1.70 | 0.85 | YES | | | | L0002733 | 0 | 0.35200E-05 | 487603.5 | 3765625.6 | 573.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002734 | 0 | 0.35200E-05 | 487606.8 | 3765624.0 | 574.1 | 0.00 | 1.70 | 0.85 | YES | | | | L0002735 | 0 | 0.35200E-05 | 487610.0 | 3765622.3 | 574.4 | 0.00 | 1.70 | 0.85 | YES | | | | L0002736 | 0 | 0.35200E-05 | 487613.3 | 3765620.7 | 574.7 | 0.00 | 1.70 | 0.85 | YES | | | | L0002737 | 0 | 0.35200E-05 | 487616.6 | 3765619.1 | 574.9 | 0.00 | 1.70 | 0.85 | YES | | | | L0002738 | 0 | 0.35200E-05 | 487619.8 | 3765617.4 | 575.2 | 0.00 | 1.70 | 0.85 | YES | | | | L0002739 | 0 | 0.35200E-05 | 487623.1 | 3765615.8 | 575.4 | 0.00 | 1.70 | 0.85 | YES | | | | *** AERMOD - | VERSION | 21112 *** | *** Terra | cina at Re | edlands | | | | | *** | 08/11/21 | | *** AERMET - | | | | ay-related | | aontratio | ag 2042-20 | 155 | | *** | 22:23:47 | | AERMEI - | VEVSION | 10210 | rreew | ay-related | I DEM COIL | Centracion | 15 2042-20 | J | | | | | | | | | | | | | | | | PAGE 18 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | ALL | L0002131 | , L0002132 | , L0002133 | , L0002134 | , L0002135 | , L0002136 | , L0002137 | , L00021 | 38 , | |-----|-------------|------------|----------------------------------|------------|----------------|------------|------------|----------------|---------------------------------| | | L0002139 | , L0002140 | , L0002141 | , L0002142 | , L0002143 | , L0002144 | , L0002145 | , L00021 | 16 , | | | L0002147 | , L0002148 | , L0002149 | , L0002150 | , L0002151 | , L0002152 | , L0002153 | , L00021 | 54 , | | | L0002155 | , L0002156 | , L0002157 | , L0002158 | , L0002159 | , L0002160 | , L0002161 | , L00021 | 52 , | | | L0002163 | , L0002164 | , L0002165 | , L0002166 | , L0002167 | , L0002168 | , L0002169 | , L00021 | 70 , | | | L0002171 | , L0002172 | , L0002173 | , L0002174 | , L0002175 | , L0002176 | , L0002177 | , L00021 | 78 , | | | L0002179 | , L0002180 | , L0002181 | , L0002182 | , L0002183 | , L0002184 | , L0002185 | , L000218 | 36 , | | | L0002187 | , L0002188 | , L0002189 | , L0002190 | , L0002191 | , L0002192 | , L0002193 | , L00021 | 94 , | | | L0002195 | , L0002196 | , L0002197 | , L0002198 | , L0002199 | , L0002200 | , L0002201 | , L00022 |)2 , | | | L0002203 | , L0002204 | , L0002205 | , L0002206 | , L0002207 | , L0002208 | , L0002209 | , L00022 | 10 , | | | L0002211 | , L0002212 | , L0002213 | , L0002214 | , L0002215 | , L0002216 | , L0002217 | , L00022 | 18 , | | | L0002219 | , L0002220 | , L0002221 | , L0002222 | , L0002223 | , L0002224 | , L0002225 | , L00022 | 26 , | | | L0002227 | , L0002228 | , L0002229 | , L0002230 | , L0002231 | , L0002232 | , L0002233 | , L00022 | 34 , | | | L0002235 | , L0002236 | , L0002237 | , L0002238 | , L0002239 | , L0002240 | , L0002241 | , L00022 | 12 , | | | L0002243 | , L0002244 | , L0002245 | , L0002246 | , L0002247 | , L0002248 | , L0002249 | , L00022 | 50 , | | | L0002251 | , L0002252 | , L0002253 | , L0002254 | , L0002255 | , L0002256 | , L0002257 | , L00022 | 58 , | | | L0002259 | , L0002260 | , L0002261 | , L0002262 | , L0002263 | , L0002264 | , L0002265 | , L00022 | 56 , | | | L0002267 | , L0002268 | , L0002269 | , L0002270 | , L0002271 | , L0002272 | , L0002273 | , L00022 | 74 , | | | L0002275 | , L0002276 | , L0002277 | , L0002278 | , L0002279 | , L0002280 | , L0002281 | , L00022 | 32 , | | | L0002283 | , L0002284 | , L0002285 | , L0002286 | , L0002287 | , L0002288 | , L0002289 | , L00022 | 90 , | | | - VERSION 2 | | * Terracina at
* Freeway-rela | | trations 2042- | 2055 | | * * *
* * * | 08/11/21
22:23:47
PAGE 19 | *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | L0002291 | , L0002292 | , L0002293 | , L0002294 | , L0002295 | , L0002296 | , L0002297 | , L0002298 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0002299 | , L0002300 | , L0002301 | , L0002302 | , L0002303 | , L0002304 | , L0002305 | , L0002306 | , | | L0002307 | , L0002308 | , L0002309 | , L0002310 | , L0002311 | , L0002312 | , L0002313 | , L0002314 | , | | L0002315 | , L0002316 | , L0002317 | , L0002318 | , L0002319 | , L0002320 | , L0002321 | , L0002322 | , | | L0002323 | , L0002324 | , L0002325 | , L0002326 | , L0002327 | , L0002328 | , L0002329 | , L0002330 | , | | L0002331 | , L0002332 | , L0002333 | , L0002334 | , L0002335 | , L0002336 | , L0002337 | , L0002338 | , | | L0002339 | , L0002340 | , L0002341 | , L0002342 | , L0002343 | , L0002344 | , L0002345 | , L0002346 | , | | L0002347 | , L0002348 | , L0002349 | , L0002350 | , L0002351 | , L0002352 | , L0002353 | , L0002354 | , | | L0002355 | , L0002356 | , L0002357 | , L0002358 | , L0002359 | , L0002360 | , L0002361 | , L0002362 | , | | L0002363 | , L0002364 | , L0002365 | , L0002366 | , L0002367 | , L0002368 | , L0002369 | , L0002370 | , | | L0002371 | , L0002372 | , L0002373 | , L0002374 | , L0002375 | , L0002376 | , L0002377 | , L0002378 | , | | L0002379 | , L0002380 | , L0002381 | , L0002382 | , L0002383 | , L0002384 | , L0002385 | , L0002386 | , | | L0002387 | , L0002388 | , L0002389 | , L0002390 | , L0002391 | , L0002392 | , L0002393 | , L0002394 | , | | L0002395 | , L0002396 | , L0002397 | , L0002398 | , L0002399 | , L0002400 | , L0002401 | , L0002402 | , | | L0002403 | , L0002404 | , L0002405 | , L0002406 | , L0002407 | , L0002408 | , L0002409 | , L0002410 | , | | L0002411 | , L0002412 | , L0002413 | , L0002414 | , L0002415 | , L0002416 | , L0002417 | , L0002418 | , | | L0002419 | , L0002420 | , L0002421 | , L0002422 | , L0002423 | , L0002424 | , L0002425 | , L0002426 | , | | L0002427 | , L0002428 | , L0002429 | , L0002430 | , L0002431 | , L0002432 | , L0002433 | , L0002434 | , | | L0002435 | , L0002436 | , L0002437 | , L0002438 | , L0002439 | , L0002440 | , L0002441 | , L0002442 | , | | L0002443 | , L0002444 | , L0002445 | , L0002446 | , L0002447 | , L0002448 | , L0002449 | , L0002450 | , | *** 08/11/21 *** 22:23:47 PAGE 20 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDS | L000245 | , L0002452 | , L0002453 | , L0002454 | , L0002455 | , L0002456 | , L0002457 | , L000245 | 58 , | |--|---------------|------------------------------------|------------|-----------------|------------|------------|-----------|----------------------| | L000245 | , L0002460 | , L0002461 | , L0002462 | , L0002463 | , L0002464 | , L0002465 | , L000246 | i6 , | | L000246 | , L0002468 | , L0002469 | , L0002470 | , L0002471 | , L0002472 | , L0002473 | , L000247 | 74 , | | L000247 | '5 , L0002476 | , L0002477 | , L0002478 | , L0002479 | , L0002480 | , L0002481 | , L000248 | 32 , | | L000248 | , L0002484 | , L0002485 | , L0002486 | , L0002487 | , L0002488 | , L0002489 | , L000249 | 90 , | | L000249 | , L0002492 | , L0002493 | , L0002494 | , L0002495 | , L0002496 | , L0002497 | , L000249 | 98 , | | L000249 | 9 , L0002500 | , L0002501 | , L0002502 | , L0002503 | , L0002504 | , L0002505 | , L000250 |)6 , | | L000250 | 7 , L0002508 | , L0002509 | , L0002510 | , L0002511 | , L0002512 | , L0002513 | , L000251 | .4 , | | L000251 | .5 , L0002516 | , L0002517 | , L0002518 | , L0002519 | , L0002520 | , L0002521 | , L000252 | .22 , | | L000252 | , L0002524 | , L0002525 | , L0002526 | , L0002527 | , L0002528 | , L0002529 | , L000253 | 30 , | | L000253 | , L0002532 | , L0002533 | , L0002534 | , L0002535 | , L0002536 | , L0002537 | , L000253 | . , | | L000253 | 9 , L0002540 | , L0002541 | , L0002542 | , L0002543 | , L0002544 | , L0002545 | , L000254 | | | L000254 | .7 , L0002548 | , L0002549 | , L0002550 | , L0002551 | , L0002552 | , L0002553 | , L000255 | 54 , | | L000255 | , L0002556 | , L0002557 | , L0002558 | , L0002559 | , L0002560 | , L0002561 | , L000256 | 52 , | | L000256 | , L0002564 | , L0002565 | , L0002566 | , L0002567 | , L0002568 | , L0002569 | , L000257 | 70 , | | L000257 | , L0002572 | , L0002573 | , L0002574 | , L0002575 | , L0002576 | , L0002577 | , L000257 | 78 , | | L000257 | 9 , L0002580 | , L0002581 | , L0002582 | , L0002583 | , L0002584 | , L0002585 | , L000258 | 36 , | | L000258 | , L0002588 | , L0002589 | , L0002590 | , L0002591 | , L0002592 | , L0002593 | , L000259 |)4 , | | L000259 | 5 , L0002596 | , L0002597 | , L0002598 | , L0002599 | , L0002600 | , L0002601 | , L000260 |)2 , | | L000260 | , L0002604 | , L0002605 |
, L0002606 | , L0002607 | , L0002608 | , L0002609 | , L000261 | .0 , | | *** AERMOD - VERSIO
*** AERMET - VERSIO | | ** Terracina at
** Freeway-rela | | strations 2042- | -2055 | | * * * | 08/11/21
22:23:47 | *** SOURCE IDs DEFINING SOURCE GROUPS *** SRCGROUP ID SOURCE IDs PAGE 21 _____ | | L0002611 | , L0002612 | , L0002613 | , L0002614 | , L0002615 | , L0002616 | , L0002617 | , L000261 | .8 , | |-------------|--------------------------|--------------|------------------------------------|---------------|----------------|------------|------------|------------|---------------------------------| | | L0002619 | , L0002620 | , L0002621 | , L0002622 | , L0002623 | , L0002624 | , L0002625 | , L000262 | .6 , | | | L0002627 | , L0002628 | , L0002629 | , L0002630 | , L0002631 | , L0002632 | , L0002633 | , L000263 | , | | | L0002635 | , L0002636 | , L0002637 | , L0002638 | , L0002639 | , L0002640 | , L0002641 | , L000264 | .2 , | | | L0002643 | , L0002644 | , L0002645 | , L0002646 | , L0002647 | , L0002648 | , L0002649 | , L000265 | , | | | L0002651 | , L0002652 | , L0002653 | , L0002654 | , L0002655 | , L0002656 | , L0002657 | , L000265 | , | | | L0002659 | , L0002660 | , L0002661 | , L0002662 | , L0002663 | , L0002664 | , L0002665 | , L000266 | i6 , | | | L0002667 | , L0002668 | , L0002669 | , L0002670 | , L0002671 | , L0002672 | , L0002673 | , L000267 | . , | | | L0002675 | , L0002676 | , L0002677 | , L0002678 | , L0002679 | , L0002680 | , L0002681 | , L000268 | , | | | L0002683 | , L0002684 | , L0002685 | , L0002686 | , L0002687 | , L0002688 | , L0002689 | , L000269 | , , | | | L0002691 | , L0002692 | , L0002693 | , L0002694 | , L0002695 | , L0002696 | , L0002697 | , L000269 | , | | | L0002699 | , L0002700 | , L0002701 | , L0002702 | , L0002703 | , L0002704 | , L0002705 | , L000270 | , | | | L0002707 | , L0002708 | , L0002709 | , L0002710 | , L0002711 | , L0002712 | , L0002713 | , L000271 | .4 , | | | L0002715 | , L0002716 | , L0002717 | , L0002718 | , L0002719 | , L0002720 | , L0002721 | , L000272 | .2 , | | | L0002723 | , L0002724 | , L0002725 | , L0002726 | , L0002727 | , L0002728 | , L0002729 | , L000273 | , | | | L0002731 | , L0002732 | , L0002733 | , L0002734 | , L0002735 | , L0002736 | , L0002737 | , L000273 | , | | | L0002739 | , | | | | | | | | | | - VERSION 2
- VERSION | | ** Terracina at
** Freeway-rela | | trations 2042- | 2055 | | *** | 08/11/21
22:23:47
PAGE 22 | | *** MODELOE | PTs: RegI | FAULT CONC I | ELEV URBAN AD | J_U* | | | | | | | | | | *** SOURC | E IDs DEFINED | AS URBAN SOURC | ES *** | | | | | URBAN ID | URBAN POP | | | SOURCE | | | | | | | L0002138 | 2035210. | L0002131 | , L0002132 | , L0002133 | , L0002134 | , L0002135 | , L0002136 | , L0002137 | , | | L0002139 | , L0002140 | , L0002141 | , L0002142 | , L0002143 | , L0002144 | , L0002145 | , L000214 | 16 , | |--|------------|----------------------------------|------------|----------------|------------|------------|----------------|---------------------------------| | L0002147 | , L0002148 | , L0002149 | , L0002150 | , L0002151 | , L0002152 | , L0002153 | , L00021 | 54 , | | L0002155 | , L0002156 | , L0002157 | , L0002158 | , L0002159 | , L0002160 | , L0002161 | , L000216 | 52 , | | L0002163 | , L0002164 | , L0002165 | , L0002166 | , L0002167 | , L0002168 | , L0002169 | , L00021 | 70 , | | L0002171 | , L0002172 | , L0002173 | , L0002174 | , L0002175 | , L0002176 | , L0002177 | , L00021 | 78 , | | L0002179 | , L0002180 | , L0002181 | , L0002182 | , L0002183 | , L0002184 | , L0002185 | , L000218 | 36 , | | L0002187 | , L0002188 | , L0002189 | , L0002190 | , L0002191 | , L0002192 | , L0002193 | , L000219 | 94 , | | L0002195 | , L0002196 | , L0002197 | , L0002198 | , L0002199 | , L0002200 | , L0002201 | , L000220 |)2 , | | L0002203 | , L0002204 | , L0002205 | , L0002206 | , L0002207 | , L0002208 | , L0002209 | , L00022 | 10 , | | L0002211 | , L0002212 | , L0002213 | , L0002214 | , L0002215 | , L0002216 | , L0002217 | , L00022 | 18 , | | L0002219 | , L0002220 | , L0002221 | , L0002222 | , L0002223 | , L0002224 | , L0002225 | , L000222 | 26 , | | L0002227 | , L0002228 | , L0002229 | , L0002230 | , L0002231 | , L0002232 | , L0002233 | , L000223 | 34 , | | L0002235 | , L0002236 | , L0002237 | , L0002238 | , L0002239 | , L0002240 | , L0002241 | , L00022 | 12 , | | L0002243 | , L0002244 | , L0002245 | , L0002246 | , L0002247 | , L0002248 | , L0002249 | , L000225 | 50 , | | L0002251 | , L0002252 | , L0002253 | , L0002254 | , L0002255 | , L0002256 | , L0002257 | , L000225 | 58 , | | L0002259 | , L0002260 | , L0002261 | , L0002262 | , L0002263 | , L0002264 | , L0002265 | , L000226 | 56 , | | L0002267 | , L0002268 | , L0002269 | , L0002270 | , L0002271 | , L0002272 | , L0002273 | , L00022 | 74 , | | L0002275 | , L0002276 | , L0002277 | , L0002278 | , L0002279 | , L0002280 | , L0002281 | , L000228 | 32 , | | L0002283 | , L0002284 | , L0002285 | , L0002286 | , L0002287 | , L0002288 | , L0002289 | , L000229 | 90 , | | *** AERMOD - VERSION
*** AERMET - VERSION | | * Terracina at
* Freeway-rela | | trations 2042- | 2055 | | * * *
* * * | 08/11/21
22:23:47
PAGE 23 | *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS | L0002291 | , L0002292 | , L0002293 | , L0002294 | , L0002295 | , L0002296 | , L0002297 | , L0002298 | , | |----------|------------|------------|------------|------------|------------|------------|------------|---| | L0002299 | , L0002300 | , L0002301 | , L0002302 | , L0002303 | , L0002304 | , L0002305 | , L0002306 | , | | L0002307 | , L0002308 | , L0002309 | , L0002310 | , L0002311 | , L0002312 | , L0002313 | , L0002314 | , | | L0002315 | , L0002316 | , L0002317 | , L0002318 | , L0002319 | , L0002320 | , L0002321 | , L0002322 | , | | L0002323 | , L0002324 | , L0002325 | , L0002326 | , L0002327 | , L0002328 | , L0002329 | , L0002330 | , | | L0002331 | , L0002332 | , L0002333 | , L0002334 | , L0002335 | , L0002336 | , L0002337 | , L0002338 | , | | L0002339 | , L0002340 | , L0002341 | , L0002342 | , L0002343 | , L0002344 | , L0002345 | , L0002346 | , | | L0002347 | , L0002348 | , L0002349 | , L0002350 | , L0002351 | , L0002352 | , L0002353 | , L0002354 | , | | L0002355 | , L0002356 | , L0002357 | , L0002358 | , L0002359 | , L0002360 | , L0002361 | , L0002362 | , | | L0002363 | , L0002364 | , L0002365 | , L0002366 | , L0002367 | , L0002368 | , L0002369 | , L0002370 | , | | L0002371 | , L0002372 | , L0002373 | , L0002374 | , L0002375 | , L0002376 | , L0002377 | , L0002378 | , | | L0002379 | , L0002380 | , L0002381 | , L0002382 | , L0002383 | , L0002384 | , L0002385 | , L0002386 | , | | L0002387 | , L0002388 | , L0002389 | , L0002390 | , L0002391 | , L0002392 | , L0002393 | , L0002394 | , | | L0002395 | , L0002396 | , L0002397 | , L0002398 | , L0002399 | , L0002400 | , L0002401 | , L0002402 | , | | L0002403 | , L0002404 | , L0002405 | , L0002406 | , L0002407 | , L0002408 | , L0002409 | , L0002410 | , | | L0002411 | , L0002412 | , L0002413 | , L0002414 | , L0002415 | , L0002416 | , L0002417 | , L0002418 | , | | L0002419 | , L0002420 | , L0002421 | , L0002422 | , L0002423 | , L0002424 | , L0002425 | , L0002426 | , | | L0002427 | , L0002428 | , L0002429 | , L0002430 | , L0002431 | , L0002432 | , L0002433 | , L0002434 | , | | L0002435 | , L0002436 | , L0002437 | , L0002438 | , L0002439 | , L0002440 | , L0002441 | , L0002442 | , | | L0002443 | , L0002444 | , L0002445 | , L0002446 | , L0002447 | , L0002448 | , L0002449 | , L0002450 | , | | | | | | | | | | | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2042-2055 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** *** 08/11/21 22:23:47 PAGE 24 URBAN ID URBAN POP SOURCE IDS | L0002451 | , L0002452 | , L0002453 | , L0002454 | , L0002455 | , L0002456 | , L0002457 | , L0002458 | 3 , | |-------------|-------------|----------------|------------|------------|------------|------------|------------|----------| | L0002459 | , L0002460 | , L0002461 | , L0002462 | , L0002463 | , L0002464 | , L0002465 | , L000246 | 5 , | | L0002467 | , L0002468 | , L0002469 | , L0002470 | , L0002471 | , L0002472 | , L0002473 | , L000247 | 1 , | | L0002475 | , L0002476 | , L0002477 | , L0002478 | , L0002479 | , L0002480 | , L0002481 | , L0002482 | 2 , | | L0002483 | , L0002484 | , L0002485 | , L0002486 | , L0002487 | , L0002488 | , L0002489 | , L0002490 | , | | L0002491 | , L0002492 | , L0002493 | , L0002494 | , L0002495 | , L0002496 | , L0002497 | , L0002498 | 3 , | | L0002499 | , L0002500 | , L0002501 | , L0002502 | , L0002503 | , L0002504 | , L0002505 | , L000250 | 5 , | | L0002507 | , L0002508 | , L0002509 | , L0002510 | , L0002511 | , L0002512 | , L0002513 | , L000251 | 1 , | | L0002515 | , L0002516 | , L0002517 | , L0002518 | , L0002519 | , L0002520 | , L0002521 | , L0002522 | 2 , | | L0002523 | , L0002524 | , L0002525 | , L0002526 | , L0002527 | , L0002528 | , L0002529 | , L0002530 | , | | L0002531 | , L0002532 | , L0002533 | , L0002534 | , L0002535 | , L0002536 | , L0002537 | , L0002538 | 3 , | | L0002539 | , L0002540 | , L0002541 | , L0002542 | , L0002543 | , L0002544 | , L0002545 | , L0002546 | 5 , | | L0002547 | , L0002548 | , L0002549 | , L0002550 | , L0002551 | , L0002552 | , L0002553 | , L000255 | 1 , | | L0002555 | , L0002556 | , L0002557 | , L0002558 | , L0002559 | , L0002560 | , L0002561 | , L0002562 | 2 , | | L0002563 | , L0002564 | , L0002565 | , L0002566 | , L0002567 | , L0002568 | , L0002569 | , L0002570 | , | | L0002571 | , L0002572 | , L0002573 | , L0002574 | , L0002575 | , L0002576 | , L0002577 | , L0002578 | 3 , | | L0002579 | , L0002580 | , L0002581 | , L0002582 | , L0002583 | , L0002584 | , L0002585 | , L0002586 | 5 , | | L0002587 | , L0002588 | , L0002589 | , L0002590 | , L0002591 | , L0002592 | , L0002593 | , L0002594 | 1 , | | L0002595 | , L0002596 | , L0002597 | , L0002598 | ,
L0002599 | , L0002600 | , L0002601 | , L0002602 | 2 , | | L0002603 | , L0002604 | , L0002605 | , L0002606 | , L0002607 | , L0002608 | , L0002609 | , L000261 | , | | - VERSION 2 | 1112 *** ** | * Terracina at | Redlands | | | | *** | 08/11/21 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** SOURCE IDS DEFINED AS URBAN SOURCES *** URBAN ID URBAN POP SOURCE IDS *** 22:23:47 PAGE 25 ``` L0002619 , L0002620 , L0002621 , L0002622 , L0002623 , L0002624 , L0002625 , L0002626 L0002627 , L0002628 , L0002629 , L0002630 , L0002631 , L0002632 , L0002633 , L0002634 L0002635 , L0002636 , L0002637 , L0002640 , L0002638 , L0002639 , L0002641 , L0002642 L0002643 , L0002644 , L0002645 , L0002646 , L0002647 , L0002648 , L0002649 , L0002650 L0002651 , L0002652 , L0002653 , L0002654 , L0002655 , L0002656 , L0002657 , L0002658 L0002659 , L0002660 , L0002661 , L0002662 , L0002663 , L0002664 , L0002665 , L0002666 L0002667 , L0002668 , L0002669 , L0002670 , L0002671 , L0002672 , L0002673 , L0002674 L0002675 , L0002676 , L0002677 , L0002678 , L0002679 , L0002680 , L0002681 , L0002682 L0002683 , L0002686 , L0002687 , L0002690 , L0002684 , L0002685 , L0002688 , L0002689 L0002691 , L0002692 , L0002693 , L0002694 , L0002695 , L0002696 , L0002697 , L0002698 , L0002701 L0002699 , L0002700 , L0002704 , L0002705 , L0002702 , L0002703 , L0002706 L0002707 , L0002708 , L0002709 , L0002710 , L0002711 , L0002712 , L0002713 , L0002714 L0002715 , L0002716 , L0002717 , L0002718 , L0002719 , L0002720 , L0002721 , L0002722 L0002723 , L0002724 , L0002725 , L0002726 , L0002727 , L0002728 , L0002729 , L0002730 L0002731 , L0002732 , L0002733 , L0002734 , L0002735 , L0002736 , L0002737 , L0002738 L0002739 *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2042-2055 22:23:47 PAGE 26 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** GRIDDED RECEPTOR NETWORK SUMMARY *** *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** *** X-COORDINATES OF GRID *** (METERS) 486627.2, 486677.2, 486727.2, 486777.2, 486827.2, 486877.2, 486927.2, 486977.2, 487027.2, 487077.2, 487127.2, 487177.2, 487227.2, 487277.2, 487327.2, 487377.2, 487427.2, 487477.2, 487527.2, 487577.2, 487627.2, ``` L0002611 , L0002612 , L0002613 , L0002614 , L0002615 , L0002616 , L0002617 , L0002618 # *** Y-COORDINATES OF GRID *** (METERS) 3765628.5, 3765678.5, 3765728.5, 3765778.5, 3765828.5, 3765878.5, 3765928.5, 3765978.5, 3766028.5, 3766078.5, 3766128.5, 3766178.5, 3766228.5, 3766278.5, 3766328.5, 3766428.5, 3766478.5, 3766528.5, 3766578.5, 3766628.5, *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** #### * ELEVATION HEIGHTS IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|------------------|------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | | | | | | | | | | | | | 3766628.46 | 544.20 | 545.30 | 544.90 | 547.20 | 550.40 | 554.20 | 558.10 | 558.20 | 556.00 | | 3766578.46 | 548.60 | 552.30 | 553.20 | 550.10 | 551.10 | 556.50 | 559.20 | 561.60 | 564.60 | | | | | | | | | | | | | 3766528.46 | 551.20 | 554.10 | 555.80 | 556.00 | 554.60 | 555.90 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 561.20 | 561.40 | 563.40 | 564.50 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 552.00 | 554.70 | 560.20 | 564.40 | 563.80 | 558.40 | | 3766378.46 | 548.90 | 550.20 | 548.70 | 546.10 | 549.70 | 552.50 | 554.80 | 554.10 | 554.10 | | 3766328.46 | 544.90 | 548.20 | 546.60 | 543.30 | 544.40 | 546.10 | 547.80 | 551.20 | 555.30 | | 3766278.46 | 542.10 | 543.90 | 543.30 | 541.90 | 541.60 | 545.30 | 552.20 | 559.30 | 563.90 | | 3766228.46 | 538.30 | 539.20 | 540.10 | 539.50 | 543.20 | 548.20 | 554.10 | 560.70 | 569.10 | | 3766178.46 | 529.40 | 533.30 | 536.00 | 539.10 | 544.60 | 553.20 | 563.20 | 566.40 | 564.40 | | 3766128.46 | 527.10 | 530.90 | 533.50 | 541.80 | 554.20 | 564.90 | 567.50 | 560.40 | 562.80 | | 3766078.46 | 527.50 | 529.40 | 531.80 | 542.90 | 552.80 | 554.70 | 555.40 | 552.50 | 553.40 | | 3766028.46 | 530.00 | 531.30 | 532.30 | 534.90 | 540.10 | 543.10 | 546.30 | 547.40 | 550.50 | | 3765978.46 | 532.50 | 531.30 | 533.30 | 535.70 | 537.60 | 539.20 | 541.10 | 543.60 | 547.20 | | 3765928.46 | 548.90 | 538.10 | 534.90 | 535.70 | 537.80 | 540.00 | 542.10 | 543.80 | 545.10 | | 3765878.46 | 567.50 | 554.20 | 542.70 | 539.70 | 540.60 | 542.50 | 543.50 | 546.10 | 548.70 | | 3765828.46 | 573.70 | 561.60 | 549.80 | 553.60 | 558.90 | 551.90 | 555.90 | 560.80 | 572.20 | | 3765778.46 | 575.00 | 574.30 | 566.80 | 568.70 | 575.50 | 567.00 | 563.50 | 575.00 | 581.50 | | 3765728.46 | 574.40 | 576.50 | 577.70 | 580.90 | 585.60 | 582.20 | 578.20 | 583.70 | 592.00 | | 3765678.46 | 581.00 | 578.80 | 579.80 | 583.50 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 582.20 | 586.30 | 591.10 | 593.20 | 594.80 | 596.80 | 601.00 | | 2.12.20.10 | 307.00 | 220.70 | 232.20 | 230.30 | 232.20 | 233.20 | 231.00 | 230.00 | 131.00 | | *** AERMOD - | VERSION 21112 ** | * *** Terr | acina at Redl | ands | | | | *** 08 | /11/21 | | *** AERMET - | VERSION 16216 ** | * *** Free | way-related D | PM Concentrat | ions 2042-205 | 5 | | *** 22 | :23:47 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * ELEVATION HEIGHTS IN METERS * PAGE 28 | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|------------------|-------------|---------------|-----------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | 3766628.46 | 554.80 | 556.50 | 560.60 | 564.70 | 566.90 | 568.10 | 569.60 | 572.00 | 574.30 | | 3766578.46 | 564.30 | 560.70 | 560.30 | 564.00 | 568.50 | 571.20 | 572.40 | 574.30 | 576.70 | | 3766528.46 | 568.30 | 568.90 | 567.10 | 565.00 | 566.80 | 572.00 | 574.10 | 576.40 | 579.30 | | 3766478.46 | 564.10 | 568.30 | 570.70 | 570.80 | 568.10 | 570.90 | 574.60 | 577.70 | 582.00 | | 3766428.46 | 557.60 | 561.10 | 565.40 | 571.50 | 573.20 | 575.60 | 578.20 | 581.30 | 590.40 | | 3766378.46 | 560.70 | 563.00 | 569.20 | 576.20 | 580.20 | 585.80 | 591.00 | 592.80 | 592.90 | | 3766328.46 | 562.50 | 569.60 | 572.90 | 582.10 | 590.20 | 594.50 | 592.50 | 596.20 | 599.70 | | 3766278.46 | 566.00 | 574.20 | 585.00 | 589.60 | 595.40 | 589.20 | 584.10 | 589.70 | 591.00 | | 3766228.46 | 573.80 | 578.10 | 588.60 | 582.90 | 585.00 | 581.70 | 577.70 | 581.80 | 582.80 | | 3766178.46 | 572.80 | 579.70 | 582.40 | 577.30 | 577.30 | 574.20 | 573.10 | 577.10 | 583.60 | | 3766128.46 | 570.90 | 571.10 | 576.80 | 571.80 | 569.40 | 569.10 | 571.50 | 578.60 | 588.50 | | 3766078.46 | 557.60 | 562.50 | 570.70 | 565.30 | 565.60 | 567.90 | 571.00 | 574.80 | 581.40 | | 3766028.46 | 553.70 | 556.90 | 561.10 | 559.60 | 561.60 | 568.60 | 580.20 | 581.30 | 579.80 | | 3765978.46 | 550.10 | 554.90 | 558.40 | 557.30 | 563.80 | 572.30 | 580.80 | 593.60 | 598.00 | | 3765928.46 | 547.20 | 550.50 | 556.40 | 557.40 | 570.10 | 584.80 | 590.90 | 598.40 | 611.40 | | 3765878.46 | 548.90 | 550.20 | 555.20 | 554.80 | 562.60 | 576.90 | 580.70 | 594.40 | 605.10 | | 3765828.46 | 570.60 | 560.70 | 555.30 | 554.90 | 557.90 | 563.90 | 574.50 | 586.80 | 602.20 | | 3765778.46 | 590.70 | 580.80 | 565.10 | 558.80 | 557.90 | 560.10 | 566.60 | 580.40 | 601.40 | | 3765728.46 | 594.90 | 582.90 | 569.60 | 562.80 | 559.40 | 560.00 | 562.60 | 566.50 | 576.00 | | 3765678.46 | 600.80 | 595.30 | 579.00 | 569.40 | 567.30 | 562.00 | 561.90 | 564.80 | 567.50 | | 3765628.46 | 602.80 | 597.50 | 580.20 | 575.40 | 577.30 | 575.80 | 564.50 | 564.20 | 566.00 | | *** AERMOD - | VERSION 21112 ** | ** *** Terr | acina at Redl | ands | | | | *** | 3/11/21 | | *** AERMET - | | | way-related D | | ions 2042-205 | 5 | | | 2:23:47 | | | | 1100 | | | | - | | | AGE 29 | | | | | | | | | | 1.7 | | *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ## * ELEVATION HEIGHTS IN METERS * | (METERS) 487527.18 487577.18 487627.18 | | |--|--| | | | | | | | | | | | | | 3766578.46 578.80 580.50 582.70 | | | 3766528.46 581.80 583.90 586.90 | | | 3766478.46 585.50 588.20 593.90 | | | 3766428.46 596.40 591.70 600.40 | | | 3766378.46 600.80 599.00 598.00 | | | 3766328.46 598.80 603.10 602.00 | | | 3766278.46 593.70 594.50 605.50 | | | 3766228.46 586.00 589.60 596.50 | | | 3766178.46 591.20 596.00 594.60 | | | 3766128.46 598.70 603.50 608.30 | | | 3766078.46 | 588.40 | 595.50 | 609.30 | |------------|--------|--------|--------| | 3766028.46 | 583.20 | 595.20 | 603.70 | | 3765978.46 | 589.20 | 589.40 | 595.70 | | 3765928.46 | 604.20 | 602.40 | 595.90 | | 3765878.46 | 617.00 | 620.70 | 615.80 | | 3765828.46 | 618.90 | 616.80 | 626.10 | | 3765778.46 | 601.20 | 607.60 | 633.60 | | 3765728.46 | 586.20 | 611.70 | 619.10 | | 3765678.46 | 572.80 | 586.30 | 596.40 | | 3765628.46 | 569.10 | 572.30 | 576.40 | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * *** 08/11/21 22:23:47 PAGE 30 | Y-COORD | | | | X-COORD | (METERS) | | | | | |---------------|-------------------|------------|---------------|---------------|----------------|-----------|-----------|-----------|-----------| | (METERS) | 486627.18 | 486677.18 | 486727.18 | 486777.18 | 486827.18 | 486877.18 | 486927.18 | 486977.18 | 487027.18 | 3766628.46 | 555.40 | 555.70 | 556.30 | 555.20 | 550.40 | 554.20 | 558.10 | 564.30 | 569.00 | | 3766578.46 | 548.60 | 552.30 | 555.70 | 559.60 | 559.90 | 556.50 | 559.20 | 561.60 | 564.60 | | 3766528.46 |
551.20 | 554.10 | 555.80 | 556.00 | 563.50 | 563.70 | 558.90 | 561.50 | 565.40 | | 3766478.46 | 550.00 | 553.70 | 554.60 | 556.80 | 559.50 | 563.50 | 561.40 | 563.40 | 596.40 | | 3766428.46 | 549.50 | 550.50 | 551.80 | 563.50 | 563.80 | 563.80 | 565.40 | 563.80 | 596.40 | | 3766378.46 | 548.90 | 550.20 | 551.50 | 590.00 | 595.20 | 596.40 | 596.40 | 596.40 | 600.20 | | 3766328.46 | 544.90 | 551.70 | 551.70 | 596.40 | 596.40 | 596.40 | 596.40 | 599.90 | 600.20 | | 3766278.46 | 542.10 | 551.70 | 590.00 | 596.40 | 596.40 | 637.60 | 596.40 | 596.40 | 596.40 | | 3766228.46 | 566.60 | 589.10 | 595.20 | 652.40 | 652.40 | 596.40 | 596.40 | 596.40 | 595.20 | | 3766178.46 | 652.40 | 652.40 | 652.40 | 652.40 | 652.40 | 595.20 | 589.10 | 590.00 | 596.40 | | 3766128.46 | 655.00 | 655.00 | 655.00 | 652.40 | 569.30 | 566.60 | 567.50 | 637.60 | 652.40 | | 3766078.46 | 655.00 | 667.30 | 671.50 | 654.70 | 652.40 | 652.40 | 652.40 | 667.30 | 671.50 | | 3766028.46 | 655.00 | 668.60 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765978.46 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765928.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765878.46 | 574.70 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765828.46 | 573.70 | 606.20 | 655.00 | 655.00 | 655.00 | 671.50 | 671.50 | 671.50 | 667.30 | | 3765778.46 | 588.60 | 589.70 | 610.60 | 652.40 | 607.90 | 655.00 | 671.50 | 655.00 | 655.00 | | 3765728.46 | 594.40 | 593.10 | 588.70 | 588.00 | 587.10 | 609.80 | 655.00 | 654.70 | 652.40 | | 3765678.46 | 591.40 | 595.00 | 595.00 | 591.40 | 587.90 | 590.50 | 592.20 | 594.60 | 598.70 | | 3765628.46 | 589.60 | 588.90 | 597.00 | 592.50 | 591.10 | 593.20 | 594.80 | 607.90 | 602.20 | | *** 7 EDMOD - | VERSION 21112 ** | * *** Torr | acina at Redl | anda | | | | *** | /11/21 | | | VERSION 21112 *** | 1011 | | PM Concentrat | iona 2042-205 | E | | 00 | :23:47 | | - Lawar - | AFV910M 10710 | rree | way-related D | em Concentrat | 10118 2042-205 | 5 | | 22 | | | | | | | | | | | PA | .GE 31 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* ## *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ### * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD | (METERS) | | | | | |--------------|-----------------|-------------|---------------|---------------|---------------|-----------|-----------|-----------|-----------| | (METERS) | 487077.18 | 487127.18 | 487177.18 | 487227.18 | 487277.18 | 487327.18 | 487377.18 | 487427.18 | 487477.18 | 3766628.46 | 596.40 | 596.40 | 596.40 | 564.70 | 566.90 | 601.00 | 609.90 | 616.50 | 616.70 | | 3766578.46 | 568.00 | 596.40 | 600.80 | 601.00 | 601.00 | 601.90 | 609.90 | 616.50 | 616.70 | | 3766528.46 | 568.30 | 568.90 | 596.40 | 601.90 | 604.20 | 604.20 | 609.90 | 616.50 | 616.70 | | 3766478.46 | 596.40 | 596.40 | 596.40 | 600.20 | 605.20 | 609.90 | 614.50 | 616.50 | 616.50 | | 3766428.46 | 600.20 | 600.80 | 601.00 | 600.80 | 601.90 | 604.20 | 606.80 | 609.90 | 604.20 | | 3766378.46 | 599.90 | 600.80 | 600.20 | 599.90 | 599.90 | 599.90 | 599.90 | 600.20 | 604.20 | | 3766328.46 | 599.90 | 596.40 | 596.40 | 596.40 | 596.40 | 594.50 | 599.90 | 599.90 | 599.70 | | 3766278.46 | 596.40 | 596.40 | 595.20 | 595.20 | 595.40 | 596.40 | 600.80 | 600.80 | 608.90 | | 3766228.46 | 595.20 | 596.00 | 588.60 | 596.40 | 596.40 | 637.60 | 650.80 | 650.80 | 660.00 | | 3766178.46 | 595.20 | 590.00 | 590.00 | 637.60 | 637.60 | 660.00 | 660.00 | 660.00 | 660.00 | | 3766128.46 | 590.00 | 637.60 | 637.60 | 650.80 | 660.00 | 668.60 | 668.60 | 660.00 | 660.00 | | 3766078.46 | 668.60 | 667.30 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 667.30 | | 3766028.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 668.60 | 671.50 | | 3765978.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 660.00 | 660.00 | | 3765928.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 660.00 | 650.80 | 637.60 | | 3765878.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | 650.80 | | 3765828.46 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 668.60 | | 3765778.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765728.46 | 652.40 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765678.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | 3765628.46 | 652.40 | 655.00 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | 671.50 | | *** AERMOD - | VERSION 21112 * | ** *** Terr | acina at Redl | ands | | | | *** | 3/11/21 | | *** AERMET - | VERSION 16216 * | ** *** Free | way-related D | PM Concentrat | ions 2042-205 | 5 | | *** 22 | 2:23:47 | | | | | - | | | | | P.F | AGE 32 | *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** * HILL HEIGHT SCALES IN METERS * | Y-COORD | | | | X-COORD (METERS) | |------------|-----------|-----------|-----------|------------------| | (METERS) | 487527.18 | 487577.18 | 487627.18 | | | | | | | | | 3766628.46 | 617.40 | 618.70 | 618.70 | | | 3766578.46 | 617.40 | 618.70 | 619.50 | | | 3766528.46 | 617.40 | 618.70 | 618.70 | | | 3766478.46 | 617.40 | 617.40 | 617.40 | | | 3766428.46 | 600.30 | 617.40 | 611.50 | | | 3766378.46 | 600.80 | 604.20 | 617.40 | | | 3766328.46 | 604.20 | 604.20 | 613.90 | | | 3766278.46 | 627.70 | 632.70 | 608.90 | | | 3766228.46
3766178.46 | 660.00
650.80 | 660.00
649.20 | 635.40
660.00 | | | | | | |----------------------------|-------------------|------------------|------------------|------------------------|---|--------|--------|----------| | | | | | | | | | | | 3766128.46 | 637.60 | 632.70 | 632.70 | | | | | | | 3766078.46 | 660.00 | 660.00 | 632.70 | | | | | | | 3766028.46 | 671.50 | 660.00 | 660.00 | | | | | | | 3765978.46 | 669.60 | 671.50 | 667.30 | | | | | | | 3765928.46 | 660.00 | 660.00 | 671.50 | | | | | | | 3765878.46 | 637.60 | 637.60 | 660.00 | | | | | | | 3765828.46 | 637.60 | 650.80 | 637.60 | | | | | | | 3765778.46 | 671.50 | 671.50 | 637.60 | | | | | | | 3765728.46 | 671.50 | 671.50 | 667.30 | | | | | | | 3765678.46 | 671.50 | 671.50 | 671.50 | | | | | | | 3765628.46 | 671.50 | 671.50 | 671.50 | | | | | | | *** AERMOD - | VERSION 21112 *** | *** Terr | racina at Re | dlands | | | *** | 08/11/21 | | *** AERMET - | VERSION 16216 *** | | | | trations 2042-2055 | | *** | 22:23:47 | | | | | | | | | | PAGE 33 | | *** MODELOPTS | s: RegDFAULT CO | NC ELEV U | JRBAN ADJ_U | * | | | | | | | | | *** DICCD | ETE CADTECT | AN RECEPTORS *** | | | | | | | | | | EV, ZHILL, ZFLAG) | | | | | | | | (X-COORD, 1 | COORD, ZELI)
METER! | · | | | | | | | | | (1121211) | , | | | | | (486910. | 9, 3766071.2, | 552.6, | 654.1, | 0.0); | (487071.7, 3766032.3, | 553.8, | 671.5, | 0.0); | | | | | 671.5, | 0.0); | (487280.7, 3766020.6, | 561.9, | | 0.0); | | , | | | • | 0.0); | (487507.5, 3765926.8, | 608.6, | 650.8, | 0.0); | | | | | 652.4, | 0.0); | (486821.5, 3766197.7, | 542.8, | 652.4, | 0.0); | | , | | , | , | , | , | | , | , | | *** AERMOD - | VERSION 21112 *** | *** Terr | racina at Re | dlands | | | *** | 08/11/21 | | *** AERMET - | VERSION 16216 *** | *** Free | eway-related | DPM Concent | trations 2042-2055 | | *** | 22:23:47 | | | | | | | | | | PAGE 34 | | *** MODELOPTS | RegDFAULT CO | NC ELEV U | JRBAN ADJ_U | * | | | | | ^{*} SOURCE-RECEPTOR COMBINATIONS FOR WHICH CALCULATIONS MAY NOT BE PERFORMED * LESS THAN 1.0 METER; WITHIN OPENPIT; OR BEYOND 80KM FOR FASTAREA/FASTALL | | | DISTANCE (METERS) | |----------|--|--| | | | | | 487177.2 | 3765878.5 | 0.17 | | 487277.2 | 3765828.5 | -0.82 | | 487277.2 | 3765828.5 | -2.57 | | 487277.2 | 3765828.5 | 0.93 | | 487377.2 | 3765778.5 | 0.96 | | 486677.2 | 3766028.5 | 0.95 | | 486677.2 | 3766028.5 | -0.76 | | 486827.2 | 3765978.5 | 0.35 | | 486977.2 | 3765928.5 | -0.43 | | 486977.2 | 3765928.5 | -0.21 | | | XR (METERS) 487177.2 487277.2 487277.2 487277.2 487377.2 486677.2 486677.2 486827.2 486977.2 | 487177.2 3765878.5
487277.2 3765828.5
487277.2 3765828.5
487277.2 3765828.5
487377.2 3765778.5
486677.2 3766028.5
486677.2 3766028.5
486827.2 3765978.5
486977.2 3765928.5 | | *** AERMOD - VERSION 21112
*** AERMET - VERSION 16216 | | elated DPM Co | 3765828.5
3765828.5
3765828.5
3765778.5
3765778.5
ncentrations 2042-2 | 0.43
-2.73
-0.22
0.42
-0.02 | ***
*** | 08/11/21
22:23:47
PAGE 35 | | | | | |--|--|---------------------------------------|--|---|---------------------------------------|---------------------------------|--|--|--|--| | | *** | METEOROLOGICA | L DAYS SELECTED FOR (1=YES; 0=NO) | R PROCESSING *** | | | | | | | | 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | L 1
L 1
L 1
L 1 | | | | | | NOTE: METEOR | OLOGICAL DATA ACTUA | LLY PROCESSED | WILL ALSO DEPEND (| ON WHAT IS INCLUDED | IN THE DATA FILE. | | | | | | | | ***
UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC) | | | | | | | | | | | | | 1.54, 3.09 | , 5.14, 8.23, | 10.80, | | | | | | | | *** AERMET - VERSION 16216 | *** AERMOD - VERSION 21112 *** *** Terracina at Redlands *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2042-2055 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* | | | | | | | | | | | | *** UP TO TH | E FIRST 24 HC | URS OF METEOROLOGIC | CAL DATA *** | | | | | | | | Profile file: E:\New MET Surface format: FREE Profile format: FREE | | RDLD_v9.PFL | tation no.: 319
Name: UNKNOWN
Year: 2012 | | Met Version: 1 | 16216 | | | | | | First 24 hours of scalar data
YR MO DY JDY HR HO U | | NV ZIMCH M-C | LEN ZO BOWEN A | ALBEDO REF WS WD | HT REF TA | НТ | | | | | | 12 01 01 1 01 -10.6 0.14 | 9 -9.000 -9.000 -99 | 9. 138. | 26.7 0.32 3.22 | 1.00 1.30 110. | 9.1 285.4 | 5.5 | | | | | ``` 12 01 01 1 02 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 130. 9.1 284.5 5.5 12 01 01 1 03 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 100. 9.1 285.0 5.5 12 01 01 1 04 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 107. 9.1 284.6 5.5 12 01 01 1 05 -10.7 0.149 -9.000 -9.000 -9.99. 138. 26.7 0.32 3.22 1.00 1.30 98. 9.1 284.9 5.5 12 01 01 1 06 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 86. 9.1 284.5 12 01 01 1 07 -5.0 0.102 -9.000 -9.000 -9.99. 78. 17.9 0.32 3.22 1.00 0.90 91. 9.1 284.0 12 01 01 1 08 -4.0 0.102 -9.000 -9.000 -999. 78. 22.9 0.32 3.22 0.54 0.90 107. 9.1 285.0 12 01 01 1 09 44.6 0.237 0.382 0.006 43. 276. -25.6 0.15 3.22 0.33 2.10 81. 10.1 289.1 12 01 01 1 10 134.3 0.111 0.882 0.008 176. 99. -1.0 0.32 3.22 0.26 0.40 72. 9.1 295.1 12 01 01 1 11 199.8 0.409 1.429 0.005 503. 627. -29.4 0.15 3.22 0.23 3.68 78. 10.1 297.9 5.5 -10.0 0.32 3.22 0.22 1.80 333. 9.1 299.4 5.5 12 01 01 1 13 230.0 0.300 2.134 0.005 1453. 394. -10.1 0.32 3.22 0.22 1.80 72. 9.1 300.4 5.5 9.1 301.0 5.5 12 01 01 1 15 126.3 0.378 1.872 0.005 1784. 557. -36.5 0.32 3.22 0.27 2.70 243. 9.1 301.0 12 01 01 1 16 39.5 0.199 1.278 0.005 1817. 240. -17.2 0.32 3.22 0.36 1.30 274. 9.1 300.1 5.5 12 01 01 1 17 -4.7 0.101 -9.000 -9.000 -999. 85. 19.0 0.32 3.22 0.65 0.90 252. 9.1 298.2 12 01 01 1 18 -4.9 0.102 -9.000 -9.000 -999. 78. 18.2 0.32 3.22 1.00 0.90 116. 9.1 296.4 12 01 01 1 19 -18.8 0.204 -9.000 -9.000 -999. 220. 45.6 0.15 3.22 1.00 2.27 79. 10.1 292.2 12 01 01 1 20 -5.0 0.102 -9.000 -9.000 -999. 83. 18.1 0.32 3.22 1.00 0.90 95. 9.1 290.2 5.5 12 01 01 1 21 -5.0 0.102 -9.000 -9.000 -999. 78. 18.0 0.32 3.22 1.00 0.90 99. 9.1 287.8 5.5 12 01 01 1 22 -5.0 0.102 -9.000 -9.000 -9.99. 78. 18.0 0.32 3.22 1.00 0.90 110. 9.1 287.6 5.5 12 01 01 1 23 -10.6 0.149 -9.000 -9.000 -999. 138. 26.8 0.32 3.22 1.00 1.30 89. 9.1 287.2 5.5 12 01 01 1 24 -5.0 0.102 -9.000 -9.000 -999. 78. 17.9 0.32 3.22 1.00 0.90 105. 9.1 285.9 First hour of profile data YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV 12 01 01 01 5.5 0 -999. -99.00 285.5 99.0 -99.00 -99.00 12 01 01 01 9.1 1 110. 1.30 -999.0 99.0 -99.00 -99.00 F indicates top of profile (=1) or below (=0) *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** Freeway-related DPM Concentrations 2042-2055 *** 22:23:47 PAGE 37 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): L0002131 , L0002132 , L0002133 , L0002134 , L0002135 , L0002137 , L0002138 , L0002139 , L0002140 , L0002141 , L0002142 , L0002143 , T-0002136 L0002144 , L0002145 , L0002146 , L0002147 , L0002148 , L0002149 , L0002150 , L0002151 , L0002152 , L0002153 , L0002154 , L0002155 , L0002156 , L0002157 , L0002158 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM IN MICROGRAMS/M**3 Y-COORD X-COORD (METERS) 486627.18 486677.18 486727.18 486777.18 486827.18 486877.18 486927.18 486977.18 487027.18 (METERS) ``` | 3766628.46 | 0.00437 | 0.00448 | 0.00463 | 0.00465 | 0.00459 | 0.00445 | 0.00427 | 0.00430 | 0.00444 | |---|---|---|---|--|---|--|---|---|--| | 3766578.46 | 0.00463 | 0.00460 | 0.00470 | 0.00502 | 0.00507 | 0.00479 | 0.00467 | 0.00454 | 0.00435 | | 3766528.46 | 0.00499 | 0.00500 | 0.00505 | 0.00519 | 0.00542 | 0.00541 | 0.00524 | 0.00507 | 0.00478 | | 3766478.46 | 0.00567 | 0.00564 | 0.00578 | 0.00577 | 0.00566 | 0.00561 | 0.00567 | 0.00552 | 0.00544 | | 3766428.46 | 0.00646 | 0.00672 | 0.00688 | 0.00710 | 0.00698 | 0.00648 | 0.00610 | 0.00621 | 0.00682 | | 3766378.46 | 0.00748 | 0.00778 | 0.00836 | 0.00898 | 0.00877 | 0.00854 | 0.00831 | 0.00842 | 0.00837 | | 3766328.46 | 0.00928 | 0.00946 | 0.01024 | 0.01105 | 0.01114 | 0.01103 | 0.01081 | 0.01029 | 0.00959 | | 3766278.46 | 0.01164 | 0.01233 | 0.01315 | 0.01378 | 0.01397 | 0.01350 | 0.01221 | 0.01025 | 0.00965 | | 3766228.46 | 0.01531 | 0.01233 | 0.01754 | 0.01798 | 0.01337 | 0.01530 | 0.01221 | 0.01249 | 0.01033 | | 3766178.46 | 0.02196 | 0.02455 | 0.02517 | 0.02458 | 0.02274 | 0.01021 | 0.01110 | 0.01354 | 0.01402 | | 3766128.46 | 0.03794 | 0.04238 | 0.04065 | 0.03572 | 0.02527 | 0.01881 | 0.01737 | 0.02028 | 0.01864 | | 3766078.46 | 0.34312 | 0.12970 | 0.08904 | 0.06314 | 0.04163 | 0.03686 | 0.01737 | 0.03505 | 0.03214 | | 3766028.46 | 0.17945 | 0.36708 | 0.31282 | 0.38062 | 0.14563 | 0.09830 | 0.03427 | 0.06203 | 0.05163 | | 3765978.46 | 0.17943 | 0.07390 | 0.31282 | 0.21875 | 0.42991 | 0.31976 | 0.07492 | 0.14857 | 0.10058 | | 3765928.46 | 0.04827 | 0.03827 | 0.05028 | 0.06460 | 0.42991 | 0.12311 | 0.37180 | 0.37772 | 0.40177 | | 3765878.46 | 0.01219 | 0.01915 | 0.03028 | 0.03848 | 0.04610 | 0.05553 | 0.06871 | 0.08838 | 0.12508 | | 3765828.46 | 0.01219 | 0.01309 | 0.03097 | 0.03848 | 0.02254 | 0.03243 | 0.03514 | 0.03678 | 0.12508 | | , | | | | | | | | | | | 3765778.46 | 0.00774 | 0.00882 | 0.01142 | 0.01248 | 0.01250 | 0.01692 | 0.02146 | 0.01894 | 0.02026 | | 3765728.46 | 0.00687 | 0.00738 | 0.00805 | 0.00852 | 0.00893 | 0.01041 | 0.01247 | 0.01295 | 0.01371 | | 3765678.46 | 0.00551 | 0.00628 | 0.00679 | 0.00703 | 0.00725 | 0.00773 | 0.00835 | 0.00902 | 0.00960 | | 3765628.46 | 0.00433 | 0.00475 | 0.00579 | 0.00588 | 0.00593 | 0.00625 | 0.00667 | 0.00708 | 0.00728 | | 444 355105 | | | | | | | * * | | (11 /01 | | | | | acina at Redl | | | _ | ** | 00 | /11/21 | | *** AERMET - | VERSION 16216 | *** *** Free | way-related D | OPM Concentrat | ions 2042-205 | 5 | * * | 22 | :23:47 | | | | | | | | | | PA | GE 38 | | | | | | | | | | | | | *** MODELOPTS | RegDFAULT | CONC ELEV U | RBAN ADJ_U* | | | | | | | | *** MODELOPTs | RegDFAULT | | _ | | | | | | | | *** MODELOPTs | s: RegDFAULT | *** THE PERIO | —
D (43848 HRS | | | | RCE GROUP: ALI | | | | *** MODELOPTs | J | *** THE PERION | -
D (43848 HRS
SOURCE(S): | L0002131 | , L0002132 | , L0002133 | , L0002134 | , L00021 | | | *** MODELOPTs | L0002136 | *** THE PERION INCLUDING L0002137 | -
D (43848 HRS
SOURCE(S):
, L0002138 | L0002131
, L0002139 | , L0002132
, L0002140 | , L0002133
, L0002141 | , L0002134
, L0002142 | , L00021
, L00021 | 43 , | | *** MODELOPTS | L0002136
L0002144 | *** THE PERION INCLUDING , L0002137 , L0002145 | | L0002131
, L0002139
, L0002147 | , L0002132
, L0002140
, L0002148 | , L0002133
, L0002141
, L0002149 | , L0002134
, L0002142
, L0002150 | , L00021
, L00021
, L00021 | 43 ,
51 , | | *** MODELOPTS | L0002136
L0002144 | *** THE PERION INCLUDING , L0002137 , L0002145 | -
D (43848 HRS
SOURCE(S):
, L0002138 | L0002131
, L0002139 | , L0002132
, L0002140 | , L0002133
, L0002141 | , L0002134
, L0002142 | , L00021
, L00021 | 43 ,
51 , | | *** MODELOPTS | L0002136
L0002144 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154 | L0002131
, L0002139
, L0002147
, L0002155 | , L0002132
, L0002140
, L0002148
, L0002156 | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150 | , L00021
, L00021
, L00021 | 43 ,
51 , | | *** MODELOPTS | L0002136
L0002144 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154 | L0002131
, L0002139
, L0002147 | , L0002132
, L0002140
, L0002148
, L0002156 | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150 | , L00021
, L00021
, L00021 | 43 ,
51 , | | *** MODELOPTS | L0002136
L0002144 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO | D (43848 HRS
SOURCE(S):
,
L0002138
, L0002146
, L0002154
DRK ID: UCART | L0002131
, L0002139
, L0002147
, L0002155 | , L0002132
, L0002140
, L0002148
, L0002156 | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150
, L0002158 | , L00021
, L00021
, L00021 | 43 ,
51 , | | *** MODELOPTS | L0002136
L0002144 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154 | L0002131
, L0002139
, L0002147
, L0002155 | , L0002132
, L0002140
, L0002148
, L0002156 | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150 | , L00021
, L00021
, L00021 | 43 ,
51 , | | | L0002136
L0002144 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154
DRK ID: UCART | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150
, L0002158 | , L00021
, L00021
, L00021 | 43 ,
51 , | | Y-COORD | L0002136
L0002144
L0002152 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154
DRK ID: UCART | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3 | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150
, L0002158 | , L00021
, L00021
, L00021 | 43 ,
51 , | | | L0002136
L0002144 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154
DRK ID: UCART | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150
, L0002158 | , L00021
, L00021
, L00021 | 43 ,
51 , | | Y-COORD | L0002136
L0002144
L0002152 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO | D (43848 HRS
SOURCE(S):
, L0002138
, L0002146
, L0002154
DRK ID: UCART | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3 | , L0002133
, L0002141
, L0002149
, L0002157 | , L0002134
, L0002142
, L0002150
, L0002158 | , L00021
, L00021
, L00021 | 43 ,
51 , | | Y-COORD
(METERS) | L0002136
L0002144
L0002152 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO ** (| D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR:
IN MICROGE
X-COORD
487227.18 | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** | , L0002134
, L0002142
, L0002150
, L0002158
** | , L00021
, L00021
, L00021
, | 487477.18 | | Y-COORD
(METERS)

3766628.46 | L0002136
L0002144
L0002152 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR:
IN MICROSE | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 | , L00021
, L00021
, L00021
, | 487477.18
0.00302 | | Y-COORD
(METERS)
 | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 0.00412 0.00457 | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWOR:
IN MICROSE | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 | 487427.18

0.00321
0.00338 | 487477.18

0.00302
0.00316 | | Y-COORD
(METERS)

3766628.46
3766578.46
3766528.46 | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00449 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 | L0002131 , L0002139 , L0002147 , L0002155 T1 ; NETWOR: | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 | 487427.18
0.00321
0.00338
0.00357 | 487477.18

0.00302
0.00316
0.00330 | | Y-COORD
(METERS)

3766628.46
3766578.46
3766528.46
3766478.46 | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00449 0.00507 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWORE
IN MICROGE
X-COORD
487227.18
 | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 | 487427.18

0.00321
0.00338
0.00357
0.00384 | 487477.18

0.00302
0.00316
0.00330
0.00344 | | Y-COORD (METERS) | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00449 0.00507 0.00644 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWORE
IN MICROGE | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 0.00467 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 0.00434 | 487427.18

0.00321
0.00338
0.00357
0.00398 | 487477.18

0.00302
0.00316
0.00330
0.00344
0.00319 | | Y-COORD (METERS) | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00449 0.00507 0.00644 0.00712 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 0.00412 0.00457 0.00459 0.00481 0.00592 0.00629 | L0002131 , L0002139 , L0002147 , L0002155 C1 ; NETWORE IN MICROGE | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18

0.00368
0.00395
0.00448
0.00488
0.00499
0.00490 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 0.00467 0.00427 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 0.00434 0.00372 | 487427.18

0.00321
0.00338
0.00357
0.00384
0.00398
0.00348 | 487477.18

0.00302
0.00316
0.00330
0.00344
0.00319
0.00336 | | Y-COORD (METERS) | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00459 0.00449 0.00507 0.00644 0.00712 0.00725 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 0.00412 0.00457 0.00459 0.00459 0.00481 0.00592 0.00629 0.00670 | L0002131 , L0002139 , L0002147 , L0002155 C1 ; NETWORE IN MICROGE X-COORD 487227.18 0.00384 0.00428 0.00428 0.00468 0.00474 0.00525 0.00541 0.00546 | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18

0.00368
0.00395
0.00448
0.00488
0.00499
0.00490
0.00451 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 0.00467 0.00427 0.00402 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 0.00434 0.00372 0.00406 | 487427.18

0.00321
0.00338
0.00357
0.00384
0.00398
0.00364 | 487477.18

0.00302
0.00316
0.00330
0.00344
0.00319
0.00336
0.00327 | | Y-COORD (METERS) | L0002136
L0002144
L0002152
487077.18
0.00449
0.00437
0.00456
0.00547
0.00686
0.00749
0.00839
0.00917 | *** THE PERIOR INCLUDING, L0002137, L0002145, L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00459 0.00449 0.00507 0.00644 0.00712 0.00725 0.00766 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWORE | , L0002132
, L0002140
,
L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 0.00467 0.00427 0.00402 0.00512 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 0.00434 0.00372 0.00406 0.00553 | 487427.18

0.00321
0.00338
0.00357
0.00384
0.00398
0.00364
0.00364
0.00473 | 487477.18

0.00302
0.00316
0.00330
0.00344
0.00319
0.00327
0.00442 | | Y-COORD (METERS) | L0002136
L0002144
L0002152
487077.18
 | *** THE PERIOR INCLUDING , L0002137 , L0002145 , L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00459 0.00449 0.00507 0.00644 0.00712 0.00725 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 0.00412 0.00457 0.00459 0.00459 0.00481 0.00592 0.00629 0.00670 | L0002131 , L0002139 , L0002147 , L0002155 C1 ; NETWORE IN MICROGE X-COORD 487227.18 0.00384 0.00428 0.00428 0.00468 0.00474 0.00525 0.00541 0.00546 | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18

0.00368
0.00395
0.00448
0.00488
0.00499
0.00490
0.00451 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 0.00467 0.00427 0.00402 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 0.00434 0.00372 0.00406 | 487427.18

0.00321
0.00338
0.00357
0.00384
0.00398
0.00364 | 487477.18

0.00302
0.00316
0.00330
0.00344
0.00319
0.00336
0.00327 | | Y-COORD (METERS) | L0002136
L0002144
L0002152
487077.18
0.00449
0.00437
0.00456
0.00547
0.00686
0.00749
0.00839
0.00917 | *** THE PERIOR INCLUDING, L0002137, L0002145, L0002153 *** NETWO 487127.18 0.00438 0.00459 0.00459 0.00449 0.00507 0.00644 0.00712 0.00725 0.00766 | D (43848 HRS SOURCE(S): , L0002138 , L0002146 , L0002154 DRK ID: UCART CONC OF DPM 487177.18 | L0002131
, L0002139
, L0002147
, L0002155
C1 ; NETWORE | , L0002132
, L0002140
, L0002148
, L0002156
K TYPE: GRIDCA
RAMS/M**3
(METERS)
487277.18
 | , L0002133
, L0002141
, L0002149
, L0002157
ART *** 487327.18 0.00355 0.00371 0.00404 0.00456 0.00467 0.00427 0.00402 0.00512 | , L0002134
, L0002142
, L0002150
, L0002158
** 487377.18 0.00341 0.00357 0.00381 0.00417 0.00434 0.00372 0.00406 0.00553 | 487427.18

0.00321
0.00338
0.00357
0.00384
0.00398
0.00364
0.00364
0.00473 | 487477.18

0.00302
0.00316
0.00330
0.00344
0.00319
0.00327
0.00442 | ``` 0.00963 3766128.46 0.01499 0.01452 0.01238 0.01338 0.01354 0.01297 0.01173 0.00736 3766078.46 0.02763 0.02335 0.01827 0.01972 0.01845 0.01658 0.01462 0.01270 0.01039 3766028.46 0.04357 0.03712 0.03124 0.02933 0.02591 0.02104 0.01516 0.01380 0.01324 3765978.46 0.07657 0.06001 0.04873 0.04286 0.02579 0.01937 0.01358 0.01140 0.03438 0.25586 3765928.46 0.12877 0.08792 0.06776 0.04350 0.02665 0.02103 0.01644 0.01234 3765878.46 0.23693 0.53498 0.44343 0.15159 0.09110 0.04813 0.03722 0.02398 0.01763 3765828.46 0.04338 0.08329 0.16428 0.33000 0.32837 0.14450 0.07324 0.04143 0.02558 3765778.46 0.02338 0.02941 0.05617 0.09059 0.15806 0.37984 0.39421 0.09510 0.04141 3765728.46 0.01555 0.01996 0.03334 0.04891 0.06582 0.09534 0.19476 0.33117 0.30549 0.06680 0.09939 3765678.46 0.01052 0.01284 0.01958 0.03032 0.03874 0.05098 0.22136 0.00782 0.00950 0.01535 0.04922 0.06391 3765628.46 0.02016 0.02266 0.02845 0.04023 *** *** AERMOD - VERSION 21112 *** *** Terracina at Redlands 08/11/21 *** AERMET - VERSION 16216 *** *** *** Freeway-related DPM Concentrations 2042-2055 22:23:47 PAGE 39 *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ U* *** *** THE PERIOD (43848 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL INCLUDING SOURCE(S): L0002131 , L0002132 , L0002133 , L0002134 , L0002135 , L0002138 , L0002140 , L0002141 , L0002142 L0002136 , L0002137 , L0002139 , L0002143 , L0002146 , L0002147 , L0002148 , L0002149 L0002144 , L0002145 , L0002150 , L0002151 L0002152 , L0002153 , L0002154 , L0002155 , L0002156 , L0002157 , L0002158 , . . . *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF DPM TN MTCROGRAMS/M**3 Y-COORD X-COORD (METERS) 487577.18 (METERS) 487527.18 487627.18 3766628.46 0.00287 0.00273 0.00255 3766578.46 0.00297 0.00279 0.00260 0.00306 0.00285 3766528.46 0.00260 3766478.46 0.00312 0.00285 0.00244 0.00273 0.00290 3766428.46 0.00235 3766378.46 0.00277 0.00276 0.00270 3766328.46 0.00320 0.00283 0.00277 3766278.46 0.00400 0.00376 0.00291 3766228.46 0.00539 0.00473 0.00388 3766178.46 0.00556 0.00475 0.00462 3766128.46 0.00561 0.00484 0.00421 3766078.46 0.00834 0.00667 0.00491 3766028.46 0.01138 0.00809 0.00639 3765978.46 0.01237 0.01120 0.00887 0.01186 0.01081 0.01077 3765928.46 3765878.46 0.01348 0.01127 0.01015 3765828.46 0.01800 0.01510 0.01191 0.03107 0.02243 0.01508 3765778.46 3765728.46 0.08537 0.03425 0.02280 3765678.46 0.31164 0.18048 0.05079 ``` | 3765628.46 0.09585 | 0.25037 0.22222 | | | | |--|--|---|--|-----------------------------------| | *** AERMOD - VERSION 21112 * *** AERMET - VERSION 16216 * | ** *** Terracina at Redlands
** *** Freeway-related DPM Co | ncentrations 2042-2055 | * * *
* * * | 08/11/21
22:23:47
PAGE 40 | | *** MODELOPTs: RegDFAULT | CONC ELEV URBAN ADJ_U* | | | | | L0002136 ,
L0002144 , | <pre>INCLUDING SOURCE(S): L0</pre> | 002139 , L0002140 , L0002141
002147 , L0002148 , L0002149 | , L0002134 , L
, L0002142 , L
, L0002150 , L | *** 0002135 , 0002143 , 0002151 , | | | *** DISCRETE CAR | TESIAN RECEPTOR POINTS *** | | | | | ** CONC OF DPM I | N MICROGRAMS/M**3 | ** | | | X-COORD (M) Y-COORD (| M) CONC | X-COORD (M) Y-COORD (M) | CONC | | | 486910.88 3766071.
487146.10 3766029.
487485.24 3766054.
487080.82 3766103. | 19 0.04066
99 0.03374
47 0.01158 | 487071.68 3766032.30
487280.73 3766020.65
487507.54 3765926.79
486821.49 3766197.66 | 0.04262
0.02682
0.01188
0.02077 | | | *** AERMOD - VERSION 21112 * *** AERMET - VERSION 16216 * *** MODELOPTS: RegDFAULT | ** *** Freeway-related DPM Co | ncentrations 2042-2055 | ***
*** | 08/11/21
22:23:47
PAGE 41 | | | *** THE SUMMARY OF MA | XIMUM PERIOD (43848 HRS) RESULTS * | * * | | | | ** CONC OF DPM IN MI | CROGRAMS/M**3 | ** | | | GROUP ID | AVERAGE CONC RE | CEPTOR (XR, YR, ZELEV, ZHILL, ZFLAC | NETWORK G) OF TYPE GRID-ID | | | ALL 1ST HIGHEST VALUE IS 2ND HIGHEST VALUE IS 3RD HIGHEST VALUE IS 4TH HIGHEST VALUE IS 5TH HIGHEST VALUE IS 6TH HIGHEST VALUE IS 7TH HIGHEST VALUE IS 8TH HIGHEST VALUE IS 9TH HIGHEST VALUE IS 10TH HIGHEST VALUE IS | 0.44343 AT (487177.18,
0.42991 AT (486827.18,
0.40177 AT (487027.18,
0.39421 AT (487377.18,
0.38062 AT (486777.18,
0.37984 AT (487327.18,
0.37772 AT (486977.18,
0.37186 AT (486927.18, | 3765878.46, 555.20, 671.50, 3765978.46, 537.60, 671.50, 3765928.46, 545.10, 671.50, 3765778.46, 566.60, 671.50, 3765778.46, 560.10, 671.50, 3765778.46, 560.10, 671.50, 3765928.46, 543.80, 671.50, 3765978.46, 541.10, 671.50, | 0.00) GC UCART1
0.00) UCART1 | | *** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR *** MODELOPTs: RegDFAULT CONC ELEV URBAN ADJ_U* *** Message Summary : AERMOD Model Execution *** ----- Summary of Total Messages ----- A Total of 0 Fatal Error Message(s) A Total of 2 Warning Message(s) A Total of 388 Informational Message(s) A Total of 43848 Hours Were Processed A Total of 191 Calm Hours Identified A Total of 197 Missing Hours Identified (0.45 Percent) ****** FATAL ERROR MESSAGES ******* *** NONE *** ****** WARNING MESSAGES ****** ME W186 1339 MEOPEN: THRESH_1MIN 1-min ASOS wind speed threshold used 0.50 ME W187 1339 MEOPEN: ADJ_U* Option for Stable Low Winds used in AERMET | EMFAC2017 for San Be | ernardino (S | SC) | | PM10 Rur | ning Exhaust | | Averages a | t bottom of s | heet | | | | | | | | | |----------------------|--------------|-------|------|----------|---------------------|--------------------|------------|---------------|----------|--------------------|--------------------|----------|----------|----------|--------------------|--------------------|----------| | Area | Season | Veh | Fuel | MdlYr | Speed
(Miles/hr) | 2025
(gms/mile) | 2026 | | 2028 | 2029
(gms/mile) | 2030
(ams/mile) | 2031 | 2032 | 2033 | 2034
(ams/mile) | 2035
(gms/mile) | | | San Bernardino (SC) | Annual | LDA | GAS | AllMYr | 70 | | 0.00121 | 0.001151 | 0.001084 | 0.001019 | 0.000957 | 0.0009 | 0.000846 | 0.000797 | 0.000752 | 0.000711 | 0.000675 | | San Bernardino (SC) | Annual | LDA | DSL | AllMYr | 70 | 0.004164 | 0.003337 | 0.002727 | 0.002254 | 0.001922 | 0.001604 | 0.001441 | 0.001251 | 0.001139 | 0.001041 | 0.000953 | 0.000873 | | San Bernardino (SC) | Annual | LDT1 | GAS | AllMYr | 70 | 0.00168 | 0.001567 | 0.001453 | 0.00134 | 0.001237 | 0.001144 | 0.001058 | 0.000983 | 0.000917 | 0.000858 | 0.000807 | 0.000764 | | San
Bernardino (SC) | Annual | LDT1 | DSL | AllMYr | 70 | 0.139327 | 0.119018 | 0.07144 | 0.049327 | 0.022827 | 0.011043 | 0.007116 | 0.006534 | 0.005011 | 0.004743 | 0.004534 | 0.004352 | | San Bernardino (SC) | Annual | LDT2 | GAS | AllMYr | 70 | 0.001302 | 0.00125 | 0.001188 | 0.001118 | 0.00105 | 0.000987 | 0.000929 | 0.000876 | 0.000826 | 0.00078 | 0.000738 | 0.000701 | | San Bernardino (SC) | Annual | LDT2 | DSL | AllMYr | 70 | 0.003726 | 0.003597 | 0.003326 | 0.003277 | 0.003249 | 0.003217 | 0.003218 | 0.00321 | 0.003214 | 0.003227 | 0.003231 | 0.003241 | | San Bernardino (SC) | Annual | LHDT1 | GAS | AllMYr | 60 | 0.000927 | 0.000921 | 0.00092 | 0.00092 | 0.000917 | 0.000913 | 0.000906 | 0.000903 | 0.000902 | 0.000895 | 0.00089 | 0.000891 | | San Bernardino (SC) | Annual | LHDT1 | DSL | AllMYr | 60 | 0.015609 | 0.014546 | 0.013524 | 0.012557 | 0.011646 | 0.010799 | 0.010024 | 0.009337 | 0.008713 | 0.008153 | 0.007626 | 0.007158 | | San Bernardino (SC) | Annual | LHDT2 | GAS | AllMYr | 60 | 0.00082 | 0.000822 | 0.000824 | 0.000828 | 0.000831 | 0.000836 | 0.00084 | 0.000845 | 0.00085 | 0.000856 | 0.00086 | 0.000865 | | San Bernardino (SC) | Annual | LHDT2 | DSL | AllMYr | 60 | 0.015766 | 0.015219 | 0.014703 | 0.014233 | 0.013807 | 0.013415 | 0.013035 | 0.012718 | 0.012417 | 0.012125 | 0.011823 | 0.011641 | | San Bernardino (SC) | Annual | MDV | GAS | AllMYr | 60 | 0.00107 | 0.001029 | 0.000981 | 0.000927 | 0.000876 | 0.000828 | 0.000783 | 0.000741 | 0.000701 | 0.000664 | 0.000629 | 0.000599 | | San Bernardino (SC) | Annual | MDV | DSL | AllMYr | 60 | 0.003161 | 0.0029 | 0.002556 | 0.002248 | 0.002008 | 0.001806 | 0.001642 | 0.001514 | 0.001403 | 0.00129 | 0.001194 | 0.001108 | | San Bernardino (SC) | Annual | MHDT | GAS | AllMYr | 55 | 0.000784 | 0.000791 | 0.000797 | 0.000803 | 0.000809 | 0.000814 | 0.000818 | 0.000822 | 0.000826 | 0.000828 | 0.000831 | 0.000833 | | San Bernardino (SC) | Annual | MHDT | DSL | AllMYr | 55 | 0.010109 | 0.010189 | 0.010227 | 0.010285 | 0.010328 | 0.01035 | 0.010359 | 0.010366 | 0.010371 | 0.010358 | 0.010327 | 0.010292 | $55 \quad 0.000829 \quad 0.000824 \quad 0.00083 \quad 0.000835 \quad 0.000837 \quad 0.000822 \quad 0.00082 \quad 0.000826 \quad 0.00083 \quad 0.000833 \quad 0.000836 \quad 0.000838 0.00088 0.0008$ 0.0225 0.022365 0.022271 55 0.023525 0.023503 0.023431 0.023326 0.023174 0.023021 0.022893 0.022768 0.022647 | | | 1 yr | 14 yr | 14 yr | 2 yr | |-------|----|------------|-----------|-----------|-----------| | | | 2025 | 2028-2041 | 2042-2055 | 2026-2027 | | LDA | 70 | 0.00416441 | 0.0011499 | 0.0005727 | 0.003032 | | LDT1 | 70 | 0.13932698 | 0.0096191 | 0.0034425 | 0.095229 | | LDT2 | 70 | 0.00372582 | 0.0032427 | 0.0032978 | 0.003461 | | MDV | 60 | 0.00316129 | 0.0013374 | 0.0006632 | 0.002728 | | LHDT1 | 60 | 0.01560878 | 0.0082943 | 0.0044608 | 0.014035 | | LHDT2 | 60 | 0.01576588 | 0.0122328 | 0.0105535 | 0.014961 | | MHDT | 55 | 0.010109 | 0.010282 | 0.010028 | 0.010208 | | HHDT | 55 | 0.023525 | 0.022548 | 0.022173 | 0.023467 | HHDT HHDT GAS DSL AllMYr AllMYr Annual Annual San Bernardino (SC) San Bernardino (SC) | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | (gms/mile) | 0.000643 | 0.000614 | 0.00059 | 0.000568 | 0.000551 | 0.000537 | 0.000525 | 0.000516 | 0.000508 | 0.000502 | 0.000497 | 0.000493 | 0.00049 | 0.000488 | 0.000488 | 0.000488 | 0.000488 | 0.000488 | 0.000488 | | 0.000811 | 0.00076 | 0.000717 | 0.00068 | 0.000652 | 0.000629 | 0.000611 | 0.000596 | 0.000585 | 0.000577 | 0.000569 | 0.000563 | 0.000559 | 0.000555 | 0.000555 | 0.000555 | 0.000555 | 0.000555 | 0.000555 | | 0.000727 | 0.000693 | 0.000662 | 0.000636 | 0.000615 | 0.000597 | 0.00058 | 0.000566 | 0.000553 | 0.000542 | 0.000532 | 0.000525 | 0.000518 | 0.000513 | 0.000513 | 0.000513 | 0.000513 | 0.000513 | 0.000513 | | 0.004203 | 0.003966 | 0.003779 | 0.003725 | 0.003506 | 0.003491 | 0.003476 | 0.003465 | 0.003453 | 0.003447 | 0.00344 | 0.003434 | 0.00343 | 0.003427 | 0.003427 | 0.003427 | 0.003427 | 0.003427 | 0.003427 | | 0.000668 | 0.000638 | 0.000612 | 0.00059 | 0.000573 | 0.000558 | 0.000545 | 0.000534 | 0.000525 | 0.000517 | 0.000511 | 0.000505 | 0.000502 | 0.000499 | 0.000499 | 0.000499 | 0.000499 | 0.000499 | 0.000499 | | 0.00325 | 0.003256 | 0.003263 | 0.003269 | 0.003274 | 0.003279 | 0.003283 | 0.003287 | 0.003291 | 0.003295 | 0.003298 | 0.003301 | 0.003304 | 0.003305 | 0.003305 | 0.003305 | 0.003305 | 0.003305 | 0.003305 | | 0.000892 | 0.000893 | 0.000893 | 0.000893 | 0.000895 | 0.000897 | 0.000898 | 0.000898 | 0.000898 | 0.000898 | 0.000898 | 0.000897 | 0.000899 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | | 0.006717 | 0.006328 | 0.005981 | 0.005673 | 0.005409 | 0.005174 | 0.004988 | 0.004817 | 0.004676 | 0.004549 | 0.004442 | 0.004349 | 0.004268 | 0.004198 | 0.004198 | 0.004198 | 0.004198 | 0.004198 | 0.004198 | | 0.00087 | 0.000875 | 0.000879 | 0.000883 | 0.000887 | 0.00089 | 0.000892 | 0.000894 | 0.000896 | 0.000898 | 0.000899 | 0.0009 | 0.000901 | 0.000902 | 0.000902 | 0.000902 | 0.000902 | 0.000902 | 0.000902 | | 0.011473 | 0.01132 | 0.011182 | 0.011076 | 0.010995 | 0.010939 | 0.010901 | 0.010821 | 0.010754 | 0.010673 | 0.010609 | 0.010546 | 0.01047 | 0.010339 | 0.010339 | 0.010339 | 0.010339 | 0.010339 | 0.010339 | | 0.000572 | 0.000548 | 0.000525 | 0.000504 | 0.000487 | 0.000473 | 0.00046 | 0.000449 | 0.000439 | 0.000429 | 0.000421 | 0.000413 | 0.00041 | 0.000407 | 0.000407 | 0.000407 | 0.000407 | 0.000407 | 0.000407 | | 0.001017 | 0.000952 | 0.000894 | 0.000844 | 0.000801 | 0.000763 | 0.000733 | 0.00071 | 0.00069 | 0.000673 | 0.00066 | 0.000648 | 0.000638 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | 0.000628 | | 0.000835 | 0.000836 | 0.000838 | 0.000838 | 0.000839 | 0.00084 | 0.00084 | 0.000841 | 0.000841 | 0.000841 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | | 0.010256 | 0.010219 | 0.01018 | 0.010144 | 0.01011 | 0.010084 | 0.010062 | 0.010046 | 0.010036 | 0.010028 | 0.01002 | 0.010015 | 0.010013 | 0.010014 | 0.010014 | 0.010014 | 0.010014 | 0.010014 | 0.010014 | | 0.000839 | 0.00084 | 0.000841 | 0.000841 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000842 | 0.000843 | 0.000843 | 0.000843 | 0.000843 | 0.000843 | 0.000843 | | 0.0222 | 0.022152 | 0.022125 | 0.022115 | 0.022113 | 0.022122 | 0.022133 | 0.022145 | 0.022157 | 0.022165 | 0.022172 | 0.022177 | 0.022184 | 0.022194 | 0.022194 | 0.022194 | 0.022194 | 0.022194 | 0.022194 | # APPENDIX D CALEEMOD MODEL ANNUAL EMISSIONS PRINTOUTS AND EMFAC DATA #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 19208 Terracina at Redlands #### San Bernardino-South Coast County, Annual #### 1.0 Project Characteristics #### 1.1 Land Usage Urbanization | Land Uses | Size | Metric | Lot Acreage | Floor Surface Area | Population | |----------------------------|-------|---------------|-------------|--------------------|------------| | Other Asphalt Surfaces | 14.61 | Acre | 14.61 | 636,411.60 | 0 | | Other Non-Asphalt Surfaces | 28.20 | Acre | 28.20 | 1,228,392.00 | 0 | | Single Family Housing | 67.00 | Dwelling Unit | 21.75 | 120,600.00 | 192 | Precipitation Freq (Days) 32 #### 1.2 Other Project Characteristics Urban | Climate Zone | 10 | | | Operational Year | 2025 | |----------------------------|---------------------------|----------------------------|-------|----------------------------|-------| | Utility Company | Southern California Ediso | on | | | | | CO2 Intensity
(lb/MWhr) | 390.98 | CH4 Intensity
(lb/MWhr) | 0.033 | N2O Intensity
(lb/MWhr) | 0.004 | 2.2 Wind Speed (m/s) #### 1.3 User Entered Comments & Non-Default Data Project Characteristics - Land Use - 64.56 gross ac w/ 67 SFD, 28.2 ac open space, & remainder (~14.61 ac) paving of on-site roadways. Construction Phase - Consistent w/ TIA, assumed one phase. Per phasing provided, grading ~2-3 months (entire site), building construction ~26 months, paving ~3 months. CalEEmod defautl used for coatings. Off-road Equipment - CalEEMod default construction timing for building construction reduced by ~55%; therefore, ~55% more equipment added to CalEEMod defaults. Off-road Equipment - CalEEMod default construction timing for grading reduced by ~42%; therefore, ~42% more equipment added to CalEEMod defaults. Off-road Equipment - Grading - Site anticipated to balance. Vehicle Trips - TIA, 9.44 trips/DU/day. Woodstoves - SCAQMD Rule 445 prohibits the installation of wood burning devices in new developments. #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied Sequestration - Landscape plans, ~505 new trees to be planted. Construction Off-road Equipment Mitigation - Mobile Land Use Mitigation - 67 DU/64.56 ac = ~1 DU/ac. Site is ~2.57 miles SW downtown Redlands. Sidewalks on/off-site. Water Mitigation - Per CalGreen Standards, 20% indoor water reduction. Water-efficient irrigation systems. Waste Mitigation - AB 341 requires each juridiction in CA to divert at least 75% of their waste away from landfills by 2020. Fleet Mix - Energy Use - | Table Name | Column Name | Default Value | New Value | |------------------------|------------------------------|---------------|-----------| | tblConstDustMitigation | WaterUnpavedRoadVehicleSpeed | 0 | 15 | | tblConstructionPhase | NumDays | 1,110.00 | 502.00 | | tblConstructionPhase | NumDays | 110.00 | 64.00 | | tblConstructionPhase | NumDays | 75.00 | 66.00 | | tblFireplaces | NumberGas | 56.95 | 60.30 | | tblFireplaces | NumberWood | 3.35 | 0.00 | |
tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 2.00 | 3.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 4.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 3.00 | 4.00 | | tblOffRoadEquipment | OffRoadEquipmentUnitAmount | 1.00 | 2.00 | | tblSequestration | NumberOfNewTrees | 0.00 | 505.00 | | tblVehicleTrips | ST_TR | 9.54 | 9.44 | | tblVehicleTrips | SU_TR | 8.55 | 9.44 | | tblWoodstoves | NumberCatalytic | 3.35 | 0.00 | | tblWoodstoves | NumberNoncatalytic | 3.35 | 0.00 | CalEEMod Version: CalEEMod.2020.4.0 Page 3 of 34 Date: 7/26/2021 2:50 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ### 2.0 Emissions Summary CalEEMod Version: CalEEMod.2020.4.0 Page 4 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 2.1 Overall Construction #### **Unmitigated Construction** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Year | | | | | ton | s/yr | | | | | MT/yr | | | | | | | 2023 | 0.6578 | 4.8228 | 6.1633 | 0.0180 | 1.4725 | 0.1741 | 1.6467 | 0.4831 | 0.1630 | 0.6462 | 0.0000 | 1,653.466
4 | 1,653.466
4 | 0.1782 | 0.0867 | 1,683.744
6 | | 2024 | 0.7157 | 4.7290 | 7.2335 | 0.0227 | 1.4177 | 0.1484 | 1.5661 | 0.3825 | 0.1402 | 0.5227 | 0.0000 | 2,100.316
8 | 2,100.316
8 | 0.1515 | 0.1269 | 2,141.918
5 | | 2025 | 0.8805 | 1.4685 | 2.4911 | 7.0200e-
003 | 0.4288 | 0.0489 | 0.4777 | 0.1154 | 0.0460 | 0.1613 | 0.0000 | 649.2458 | 649.2458 | 0.0604 | 0.0324 | 660.3955 | | Maximum | 0.8805 | 4.8228 | 7.2335 | 0.0227 | 1.4725 | 0.1741 | 1.6467 | 0.4831 | 0.1630 | 0.6462 | 0.0000 | 2,100.316
8 | 2,100.316
8 | 0.1782 | 0.1269 | 2,141.918
5 | #### **Mitigated Construction** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Year | | | | | ton | s/yr | | | | | | | MT | /уг | | | | 2023 | 0.6578 | 4.8228 | 6.1633 | 0.0180 | 1.1546 | 0.1741 | 1.3288 | 0.3450 | 0.1630 | 0.5080 | 0.0000 | 1,653.465
8 | 1,653.465
8 | 0.1782 | 0.0867 | 1,683.743
9 | | 2024 | 0.7157 | 4.7290 | 7.2335 | 0.0227 | 1.4177 | 0.1484 | 1.5661 | 0.3825 | 0.1402 | 0.5227 | 0.0000 | 2,100.316
2 | 2,100.316
2 | 0.1515 | 0.1269 | 2,141.917
9 | | 2025 | 0.8805 | 1.4685 | 2.4911 | 7.0200e-
003 | 0.4288 | 0.0489 | 0.4777 | 0.1154 | 0.0460 | 0.1613 | 0.0000 | 649.2455 | 649.2455 | 0.0604 | 0.0324 | 660.3952 | | Maximum | 0.8805 | 4.8228 | 7.2335 | 0.0227 | 1.4177 | 0.1741 | 1.5661 | 0.3825 | 0.1630 | 0.5227 | 0.0000 | 2,100.316
2 | 2,100.316
2 | 0.1782 | 0.1269 | 2,141.917
9 | Date: 7/26/2021 2:50 PM #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------| | Percent
Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 9.58 | 0.00 | 8.61 | 14.08 | 0.00 | 10.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Quarter | Start Date | End Date | Maximum Unmitigated ROG + NOX (tons/quarter) | Maximum Mitigated ROG + NOX (tons/quarter) | |---------|------------|------------|--|--| | 1 | 2-1-2023 | 4-30-2023 | 1.6719 | 1.6719 | | 2 | 5-1-2023 | 7-31-2023 | 1.4242 | 1.4242 | | 3 | 8-1-2023 | 10-31-2023 | 1.4272 | 1.4272 | | 4 | 11-1-2023 | 1-31-2024 | 1.4166 | 1.4166 | | 5 | 2-1-2024 | 4-30-2024 | 1.3350 | 1.3350 | | 6 | 5-1-2024 | 7-31-2024 | 1.3519 | 1.3519 | | 7 | 8-1-2024 | 10-31-2024 | 1.3583 | 1.3583 | | 8 | 11-1-2024 | 1-31-2025 | 1.3461 | 1.3461 | | 9 | 2-1-2025 | 4-30-2025 | 1.1525 | 1.1525 | | 10 | 5-1-2025 | 7-31-2025 | 0.7584 | 0.7584 | | | | Highest | 1.6719 | 1.6719 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 2.2 Overall Operational #### **Unmitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | √yr | | | | Area | 0.6422 | 0.0205 | 0.6962 | 1.2000e-
004 | | 4.8400e-
003 | 4.8400e-
003 | | 4.8400e-
003 | 4.8400e-
003 | 0.0000 | 15.6100 | 15.6100 | 1.3600e-
003 | 2.7000e-
004 | 15.7231 | | Energy | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 | | 7.0600e-
003 | 7.0600e-
003 | | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 195.7737 | 195.7737 | 9.9300e-
003 | 2.8200e-
003 | 196.8629 | | Mobile | 0.3144 | 0.4980 | 3.2981 | 7.5300e-
003 | 0.8149 | 6.0100e-
003 | 0.8209 | 0.2177 | 5.6300e-
003 | 0.2233 | 0.0000 | 713.2159 | 713.2159 | 0.0392 | 0.0350 | 724.6120 | | Waste | 11 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 15.9795 | 0.0000 | 15.9795 | 0.9444 | 0.0000 | 39.5884 | | Water | 1
1
1
1
1 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 1.3849 | 15.5029 | 16.8878 | 0.1436 | 3.5200e-
003 | 21.5247 | | Total | 0.9668 | 0.6058 | 4.0314 | 8.2100e-
003 | 0.8149 | 0.0179 | 0.8328 | 0.2177 | 0.0175 | 0.2352 | 17.3644 | 940.1025 | 957.4668 | 1.1384 | 0.0416 | 998.3112 | CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 2.2 Overall Operational #### **Mitigated Operational** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|---------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | ton | ıs/yr | | | | | | | МТ | /yr | | | | Area | 0.6422 | 0.0205 | 0.6962 | 1.2000e-
004 | | 4.8400e-
003 | 4.8400e-
003 |
 | 4.8400e-
003 | 4.8400e-
003 | 0.0000 | 15.6100 | 15.6100 | 1.3600e-
003 | 2.7000e-
004 | 15.7231 | | Energy | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 |
 | 7.0600e-
003 | 7.0600e-
003 |

 | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 195.7737 | 195.7737 | 9.9300e-
003 | 2.8200e-
003 | 196.8629 | | Mobile | 0.2949 | 0.4486 | 2.9658 | 6.6200e-
003 | 0.7140 | 5.3200e-
003 | 0.7193 | 0.1907 | 4.9800e-
003 | 0.1957 | 0.0000 | 627.1987 | 627.1987 | 0.0359 | 0.0314 | 637.4600 | | Waste | | | | | | 0.0000 | 0.0000 |

 | 0.0000 | 0.0000 | 3.9949 | 0.0000 | 3.9949 | 0.2361 | 0.0000 | 9.8971 | | Water | | |
 | | | 0.0000 | 0.0000 |

 | 0.0000 | 0.0000 | 1.1079 | 13.4868 | 14.5947 | 0.1149 | 2.8200e-
003 | 18.3099 | | Total | 0.9474 | 0.5564 | 3.6991 | 7.3000e-
003 | 0.7140 | 0.0172 | 0.7312 | 0.1907 | 0.0169 | 0.2076 | 5.1028 | 852.0691 | 857.1719 | 0.3982 | 0.0373 | 878.2530 | | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4 | N20 | CO2e | |----------------------|------|------|------|-------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|-------|-------|-------| | Percent
Reduction | 2.01 | 8.16 | 8.24 | 11.08 | 12.38 | 3.85 | 12.20 | 12.38 | 3.71 | 11.73 | 70.61 | 9.36 | 10.48 | 65.02 | 10.15 | 12.03 | Date: 7/26/2021 2:50 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 2.3 Vegetation #### **Vegetation** | | CO2e | |-----------|----------| | Category | MT | | New Trees | 357.5400 | | Total | 357.5400 | #### 3.0 Construction Detail #### **Construction Phase** | Phase
Number | Phase Name | Phase Type | Start Date | End Date | Num Days
Week | Num Days | Phase Description |
-----------------|-----------------------|-----------------------|------------|-----------|------------------|----------|-------------------| | 1 | Grading | Grading | 2/1/2023 | 5/1/2023 | 5 | 64 | | | 2 | Building Construction | Building Construction | 5/2/2023 | 4/2/2025 | 5 | 502 | | | 3 | Paving | Paving | 4/3/2025 | 7/3/2025 | 5 | 66 | | | 4 | Architectural Coating | Architectural Coating | 4/3/2025 | 7/16/2025 | 5 | 75 | | Acres of Grading (Site Preparation Phase): 0 Acres of Grading (Grading Phase): 256 Acres of Paving: 42.81 Residential Indoor: 244,215; Residential Outdoor: 81,405; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 111,888 (Architectural Coating – sqft) OffRoad Equipment Date: 7/26/2021 2:50 PM #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | Phase Name | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor | |-----------------------|---------------------------|--------|-------------|-------------|-------------| | Grading | Excavators | 3 | 8.00 | 158 | 0.38 | | Grading | Graders | 2 | 8.00 | 187 | 0.41 | | Grading | Rubber Tired Dozers | 2 | 8.00 | 247 | 0.40 | | Grading | Scrapers | 2 | 8.00 | 367 | 0.48 | | Grading | Tractors/Loaders/Backhoes | 2 | 8.00 | 97 | 0.37 | | Building Construction | Cranes | 2 | 7.00 | 231 | 0.29 | | Building Construction | Forklifts | 4 | 8.00 | 89 | 0.20 | | Building Construction | Generator Sets | 2 | 8.00 | 84 | 0.74 | | Building Construction | Tractors/Loaders/Backhoes | 4 | 7.00 | 97 | 0.37 | | Building Construction | Welders | 2 | 8.00 | 46 | 0.45 | | Paving | Pavers | 2 | 8.00 | 130 | 0.42 | | Paving | Paving Equipment | 2 | 8.00 | 132 | 0.36 | | Paving | Rollers | 2 | 8.00 | 80 | 0.38 | | Architectural Coating | Air Compressors | 1 | 6.00 | 78 | 0.48 | #### **Trips and VMT** | Phase Name | Offroad Equipment
Count | Worker Trip
Number | Vendor Trip
Number | Hauling Trip
Number | Worker Trip
Length | Vendor Trip
Length | Hauling Trip
Length | Worker Vehicle
Class | Vendor
Vehicle Class | Hauling
Vehicle Class | |-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------| | Grading | 11 | 28.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Building Construction | 14 | 807.00 | 313.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Paving | 6 | 15.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | | Architectural Coating | 1 | 161.00 | 0.00 | 0.00 | 14.70 | 6.90 | 20.00 | LD_Mix | HDT_Mix | HHDT | #### **3.1 Mitigation Measures Construction** Water Exposed Area Reduce Vehicle Speed on Unpaved Roads CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.2 Grading - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Fugitive Dust | | | | | 0.5212 | 0.0000 | 0.5212 | 0.2265 | 0.0000 | 0.2265 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.1465 | 1.5310 | 1.1555 | 2.6400e-
003 | | 0.0631 | 0.0631 | | 0.0581 | 0.0581 | 0.0000 | 231.6424 | 231.6424 | 0.0749 | 0.0000 | 233.5154 | | Total | 0.1465 | 1.5310 | 1.1555 | 2.6400e-
003 | 0.5212 | 0.0631 | 0.5843 | 0.2265 | 0.0581 | 0.2846 | 0.0000 | 231.6424 | 231.6424 | 0.0749 | 0.0000 | 233.5154 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /уг | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 3.1200e-
003 | 2.3300e-
003 | 0.0292 | 8.0000e-
005 | 9.8200e-
003 | 5.0000e-
005 | 9.8700e-
003 | 2.6100e-
003 | 5.0000e-
005 | 2.6500e-
003 | 0.0000 | 7.6730 | 7.6730 | 2.0000e-
004 | 2.1000e-
004 | 7.7401 | | Total | 3.1200e-
003 | 2.3300e-
003 | 0.0292 | 8.0000e-
005 | 9.8200e-
003 | 5.0000e-
005 | 9.8700e-
003 | 2.6100e-
003 | 5.0000e-
005 | 2.6500e-
003 | 0.0000 | 7.6730 | 7.6730 | 2.0000e-
004 | 2.1000e-
004 | 7.7401 | CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.2 Grading - 2023 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Fugitive Dust |
 | | | | 0.2033 | 0.0000 | 0.2033 | 0.0883 | 0.0000 | 0.0883 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 0.1465 | 1.5310 | 1.1555 | 2.6400e-
003 | | 0.0631 | 0.0631 | | 0.0581 | 0.0581 | 0.0000 | 231.6421 | 231.6421 | 0.0749 | 0.0000 | 233.5151 | | Total | 0.1465 | 1.5310 | 1.1555 | 2.6400e-
003 | 0.2033 | 0.0631 | 0.2664 | 0.0883 | 0.0581 | 0.1464 | 0.0000 | 231.6421 | 231.6421 | 0.0749 | 0.0000 | 233.5151 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 3.1200e-
003 | 2.3300e-
003 | 0.0292 | 8.0000e-
005 | 9.8200e-
003 | 5.0000e-
005 | 9.8700e-
003 | 2.6100e-
003 | 5.0000e-
005 | 2.6500e-
003 | 0.0000 | 7.6730 | 7.6730 | 2.0000e-
004 | 2.1000e-
004 | 7.7401 | | Total | 3.1200e-
003 | 2.3300e-
003 | 0.0292 | 8.0000e-
005 | 9.8200e-
003 | 5.0000e-
005 | 9.8700e-
003 | 2.6100e-
003 | 5.0000e-
005 | 2.6500e-
003 | 0.0000 | 7.6730 | 7.6730 | 2.0000e-
004 | 2.1000e-
004 | 7.7401 | CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2023 #### **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.2328 | 2.1022 | 2.2875 | 3.9500e-
003 | | 0.0999 | 0.0999 |]
 | 0.0945 | 0.0945 | 0.0000 | 338.3202 | 338.3202 | 0.0749 | 0.0000 | 340.1932 | | Total | 0.2328 | 2.1022 | 2.2875 | 3.9500e-
003 | | 0.0999 | 0.0999 | | 0.0945 | 0.0945 | 0.0000 | 338.3202 | 338.3202 | 0.0749 | 0.0000 | 340.1932 | ### **Unmitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0307 | 1.0047 | 0.4067 | 4.8800e-
003 | 0.1717 | 7.1900e-
003 | 0.1789 | 0.0496 | 6.8800e-
003 | 0.0565 | 0.0000 | 474.5901 | 474.5901 | 0.0124 | 0.0701 | 495.7994 | | Worker | 0.2447 | 0.1826 | 2.2845 | 6.4800e-
003 | 0.7698 | 3.8800e-
003 | 0.7737 | 0.2045 | 3.5700e-
003 | 0.2080 | 0.0000 | 601.2408 | 601.2408 | 0.0158 | 0.0163 | 606.4966 | | Total | 0.2754 | 1.1873 | 2.6912 | 0.0114 | 0.9416 | 0.0111 | 0.9526 | 0.2540 | 0.0105 | 0.2645 | 0.0000 | 1,075.830
9 | 1,075.830
9 | 0.0281 | 0.0865 | 1,102.296
0 | CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2023 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.2328 | 2.1022 | 2.2875 | 3.9500e-
003 | | 0.0999 | 0.0999 |]
 | 0.0945 | 0.0945 | 0.0000 | 338.3198 | 338.3198 | 0.0749 | 0.0000 | 340.1928 | | Total | 0.2328 | 2.1022 | 2.2875 | 3.9500e-
003 | | 0.0999 | 0.0999 | | 0.0945 | 0.0945 | 0.0000 | 338.3198 | 338.3198 | 0.0749 | 0.0000 | 340.1928 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0307 | 1.0047 | 0.4067 | 4.8800e-
003 | 0.1717 | 7.1900e-
003 | 0.1789 | 0.0496 | 6.8800e-
003 | 0.0565 | 0.0000 | 474.5901 | 474.5901 | 0.0124 | 0.0701 | 495.7994 | | Worker | 0.2447 | 0.1826 | 2.2845 | 6.4800e-
003 | 0.7698 | 3.8800e-
003 | 0.7737 | 0.2045 | 3.5700e-
003 | 0.2080 | 0.0000 | 601.2408 | 601.2408 | 0.0158 | 0.0163 | 606.4966 | | Total | 0.2754 | 1.1873 | 2.6912 | 0.0114 | 0.9416 | 0.0111 | 0.9526 | 0.2540 | 0.0105 | 0.2645 | 0.0000 | 1,075.830
9 | 1,075.830
9 | 0.0281 | 0.0865 | 1,102.296
0 | CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2024 ## **Unmitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.3279 | 2.9588 | 3.4247 | 5.9500e-
003 | | 0.1321 | 0.1321 | 1
1
1 | 0.1248 | 0.1248 | 0.0000 | 509.5013 | 509.5013 | 0.1120 | 0.0000 | 512.3004 | | Total | 0.3279 | 2.9588 | 3.4247 | 5.9500e-
003 | | 0.1321 | 0.1321 | | 0.1248 | 0.1248 | 0.0000 | 509.5013 | 509.5013 | 0.1120 | 0.0000 | 512.3004 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0452 | 1.5263 | 0.6023 | 7.2400e-
003 | 0.2586 | 0.0107 | 0.2693 | 0.0746 | 0.0102 | 0.0848 | 0.0000 | 704.7740 | 704.7740 | 0.0180 | 0.1041 | 736.2565 | | Worker | 0.3426 | 0.2439 | 3.2064 | 9.4700e-
003 | 1.1592 | 5.6100e-
003 | 1.1648 | 0.3079 | 5.1600e-
003 | 0.3130 | 0.0000 | 886.0416 | 886.0416 | 0.0215 | 0.0228 | 893.3616 | | Total | 0.3878 | 1.7702 | 3.8088 | 0.0167 | 1.4177 | 0.0163 | 1.4340 | 0.3825 | 0.0154 | 0.3979 | 0.0000 | 1,590.815
6 | 1,590.815
6 | 0.0396 | 0.1269 | 1,629.618
1 | CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2024 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.3279 | 2.9588 | 3.4247 | 5.9500e-
003 | | 0.1321 | 0.1321 |]
 | 0.1248 | 0.1248 | 0.0000 | 509.5007 | 509.5007 | 0.1120 | 0.0000 | 512.2998 | | Total | 0.3279 | 2.9588 | 3.4247 | 5.9500e-
003 | | 0.1321 | 0.1321 | | 0.1248 | 0.1248 | 0.0000 | 509.5007 | 509.5007 | 0.1120 | 0.0000 | 512.2998 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0452 | 1.5263 | 0.6023 | 7.2400e-
003 | 0.2586 | 0.0107 | 0.2693 | 0.0746 | 0.0102 | 0.0848 | 0.0000 | 704.7740 | 704.7740 | 0.0180 | 0.1041 | 736.2565 | | Worker | 0.3426 | 0.2439 | 3.2064 | 9.4700e-
003 | 1.1592 | 5.6100e-
003 | 1.1648 | 0.3079 | 5.1600e-
003 | 0.3130 | 0.0000 | 886.0416 | 886.0416 | 0.0215 | 0.0228 | 893.3616 | | Total | 0.3878 | 1.7702 | 3.8088 | 0.0167 | 1.4177 | 0.0163 | 1.4340 | 0.3825 | 0.0154 | 0.3979 | 0.0000 | 1,590.815
6 | 1,590.815
6 | 0.0396 | 0.1269 | 1,629.618
1 | CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2025 <u>Unmitigated Construction On-Site</u> #### ROG NOx CO SO2 Fugitive PM10 PM10 Fugitive PM2.5 PM2.5 Bio- CO2 NBio- CO2 Total CO2 CH4 N2O CO2e Exhaust Exhaust PM10 PM2.5 Total Total MT/yr Category tons/yr 0.0769 0.8580 0.0288 0.0288 0.0272 0.0000 128.3789 128.3789 0.0280 Off-Road 0.6919 1.5000e-0.0272 0.0000 129.0789 003 0.0769 0.6919 0.8580 1.5000e-0.0288 0.0288 0.0272 0.0272 0.0000 128.3789 128.3789 0.0280 0.0000 129.0789 Total 003 ### **Unmitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0112 | 0.3822 | 0.1494 | 1.7900e-
003 | 0.0651 | 2.6800e-
003 | 0.0678 | 0.0188 | 2.5700e-
003 | 0.0214 | 0.0000 | 174.0886 | 174.0886 | 4.4100e-
003 | 0.0257 | 181.8595 | | Worker | 0.0804 | 0.0548 | 0.7507 | 2.3000e-
003 | 0.2920 | 1.3400e-
003 | 0.2933 | 0.0776 | 1.2400e-
003 | 0.0788 | 0.0000 | 217.7312 | 217.7312 | 4.8900e-
003 | 5.3300e-
003 | 219.4430 | | Total | 0.0916 | 0.4370 | 0.9000 | 4.0900e-
003 | 0.3571 | 4.0200e-
003 | 0.3612 | 0.0964 | 3.8100e-
003 | 0.1002 | 0.0000 | 391.8198 | 391.8198 | 9.3000e-
003 | 0.0310 | 401.3025 | CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model
Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.3 Building Construction - 2025 #### **Mitigated Construction On-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | | 0.0769 | 0.6919 | 0.8580 | 1.5000e-
003 | | 0.0288 | 0.0288 | 1
1
1 | 0.0272 | 0.0272 | 0.0000 | 128.3788 | 128.3788 | 0.0280 | 0.0000 | 129.0787 | | Total | 0.0769 | 0.6919 | 0.8580 | 1.5000e-
003 | | 0.0288 | 0.0288 | | 0.0272 | 0.0272 | 0.0000 | 128.3788 | 128.3788 | 0.0280 | 0.0000 | 129.0787 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0112 | 0.3822 | 0.1494 | 1.7900e-
003 | 0.0651 | 2.6800e-
003 | 0.0678 | 0.0188 | 2.5700e-
003 | 0.0214 | 0.0000 | 174.0886 | 174.0886 | 4.4100e-
003 | 0.0257 | 181.8595 | | Worker | 0.0804 | 0.0548 | 0.7507 | 2.3000e-
003 | 0.2920 | 1.3400e-
003 | 0.2933 | 0.0776 | 1.2400e-
003 | 0.0788 | 0.0000 | 217.7312 | 217.7312 | 4.8900e-
003 | 5.3300e-
003 | 219.4430 | | Total | 0.0916 | 0.4370 | 0.9000 | 4.0900e-
003 | 0.3571 | 4.0200e-
003 | 0.3612 | 0.0964 | 3.8100e-
003 | 0.1002 | 0.0000 | 391.8198 | 391.8198 | 9.3000e-
003 | 0.0310 | 401.3025 | CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.4 Paving - 2025 Unmitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|---------------------|------------------|-----------------|------------------|-----------------|---------------|---------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.0302 | 0.2832 | 0.4811 | 7.5000e-
004 | | 0.0138 | 0.0138 | | 0.0127 | 0.0127 | 0.0000 | 66.0635 | 66.0635 | 0.0214 | 0.0000 | 66.5977 | | Paving | 0.0191 |

 | 1
1
1
1 | | | 0.0000 | 0.0000 |

 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0493 | 0.2832 | 0.4811 | 7.5000e-
004 | | 0.0138 | 0.0138 | | 0.0127 | 0.0127 | 0.0000 | 66.0635 | 66.0635 | 0.0214 | 0.0000 | 66.5977 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 1.4900e-
003 | 1.0200e-
003 | 0.0140 | 4.0000e-
005 | 5.4300e-
003 | 2.0000e-
005 | 5.4500e-
003 | 1.4400e-
003 | 2.0000e-
005 | 1.4600e-
003 | 0.0000 | 4.0471 | 4.0471 | 9.0000e-
005 | 1.0000e-
004 | 4.0789 | | Total | 1.4900e-
003 | 1.0200e-
003 | 0.0140 | 4.0000e-
005 | 5.4300e-
003 | 2.0000e-
005 | 5.4500e-
003 | 1.4400e-
003 | 2.0000e-
005 | 1.4600e-
003 | 0.0000 | 4.0471 | 4.0471 | 9.0000e-
005 | 1.0000e-
004 | 4.0789 | CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied 3.4 Paving - 2025 <u>Mitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|------------------|------------------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Off-Road | 0.0302 | 0.2832 | 0.4811 | 7.5000e-
004 | | 0.0138 | 0.0138 | | 0.0127 | 0.0127 | 0.0000 | 66.0635 | 66.0635 | 0.0214 | 0.0000 | 66.5976 | | Paving | 0.0191 | 1
1
1
1 | 1
1
1
1 | | | 0.0000 | 0.0000 |
 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Total | 0.0493 | 0.2832 | 0.4811 | 7.5000e-
004 | | 0.0138 | 0.0138 | | 0.0127 | 0.0127 | 0.0000 | 66.0635 | 66.0635 | 0.0214 | 0.0000 | 66.5976 | #### **Mitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | . 003 . | 1.0200e-
003 | 0.0140 | 4.0000e-
005 | 5.4300e-
003 | 2.0000e-
005 | 5.4500e-
003 | 1.4400e-
003 | 2.0000e-
005 | 1.4600e-
003 | 0.0000 | 4.0471 | 4.0471 | 9.0000e-
005 | 1.0000e-
004 | 4.0789 | | Total | 1.4900e-
003 | 1.0200e-
003 | 0.0140 | 4.0000e-
005 | 5.4300e-
003 | 2.0000e-
005 | 5.4500e-
003 | 1.4400e-
003 | 2.0000e-
005 | 1.4600e-
003 | 0.0000 | 4.0471 | 4.0471 | 9.0000e-
005 | 1.0000e-
004 | 4.0789 | CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.5 Architectural Coating - 2025 <u>Unmitigated Construction On-Site</u> | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Archit. Coating | 0.6366 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Off-Road | 6.4100e-
003 | 0.0430 | 0.0678 | 1.1000e-
004 | | 1.9300e-
003 | 1.9300e-
003 | | 1.9300e-
003 | 1.9300e-
003 | 0.0000 | 9.5747 | 9.5747 | 5.2000e-
004 | 0.0000 | 9.5878 | | Total | 0.6430 | 0.0430 | 0.0678 | 1.1000e-
004 | | 1.9300e-
003 | 1.9300e-
003 | | 1.9300e-
003 | 1.9300e-
003 | 0.0000 | 9.5747 | 9.5747 | 5.2000e-
004 | 0.0000 | 9.5878 | #### **Unmitigated Construction Off-Site** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|---------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0182 | 0.0124 | 0.1702 | 5.2000e-
004 | 0.0662 | 3.0000e-
004 | 0.0665 | 0.0176 | 2.8000e-
004 | 0.0179 | 0.0000 | 49.3617 |
49.3617 | 1.1100e-
003 | 1.2100e-
003 | 49.7498 | | Total | 0.0182 | 0.0124 | 0.1702 | 5.2000e-
004 | 0.0662 | 3.0000e-
004 | 0.0665 | 0.0176 | 2.8000e-
004 | 0.0179 | 0.0000 | 49.3617 | 49.3617 | 1.1100e-
003 | 1.2100e-
003 | 49.7498 | CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 3.5 Architectural Coating - 2025 Mitigated Construction On-Site | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------| | Category | | | | | ton | s/yr | | | | | | | МТ | -/yr | | | | Archit. Coating | 0.6366 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | ' ' ' ' | 6.4100e-
003 | 0.0430 | 0.0678 | 1.1000e-
004 | | 1.9300e-
003 | 1.9300e-
003 | | 1.9300e-
003 | 1.9300e-
003 | 0.0000 | 9.5747 | 9.5747 | 5.2000e-
004 | 0.0000 | 9.5878 | | Total | 0.6430 | 0.0430 | 0.0678 | 1.1000e-
004 | | 1.9300e-
003 | 1.9300e-
003 | | 1.9300e-
003 | 1.9300e-
003 | 0.0000 | 9.5747 | 9.5747 | 5.2000e-
004 | 0.0000 | 9.5878 | #### **Mitigated Construction Off-Site** | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|-----------------|---------| | Category | | | | | ton | s/yr | | | | | | | МТ | /yr | | | | Hauling | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Vendor | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Worker | 0.0182 | 0.0124 | 0.1702 | 5.2000e-
004 | 0.0662 | 3.0000e-
004 | 0.0665 | 0.0176 | 2.8000e-
004 | 0.0179 | 0.0000 | 49.3617 | 49.3617 | 1.1100e-
003 | 1.2100e-
003 | 49.7498 | | Total | 0.0182 | 0.0124 | 0.1702 | 5.2000e-
004 | 0.0662 | 3.0000e-
004 | 0.0665 | 0.0176 | 2.8000e-
004 | 0.0179 | 0.0000 | 49.3617 | 49.3617 | 1.1100e-
003 | 1.2100e-
003 | 49.7498 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 4.0 Operational Detail - Mobile #### **4.1 Mitigation Measures Mobile** **Increase Density** Improve Destination Accessibility Improve Pedestrian Network | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Mitigated | 0.2949 | 0.4486 | 2.9658 | 6.6200e-
003 | 0.7140 | 5.3200e-
003 | 0.7193 | 0.1907 | 4.9800e-
003 | 0.1957 | 0.0000 | 627.1987 | 627.1987 | 0.0359 | 0.0314 | 637.4600 | | Unmitigated | 0.3144 | 0.4980 | 3.2981 | 7.5300e-
003 | 0.8149 | 6.0100e-
003 | 0.8209 | 0.2177 | 5.6300e-
003 | 0.2233 | 0.0000 | 713.2159 | 713.2159 | 0.0392 | 0.0350 | 724.6120 | #### **4.2 Trip Summary Information** | | Avei | age Daily Trip Ra | ite | Unmitigated | Mitigated | |----------------------------|---------|-------------------|--------|-------------|------------| | Land Use | Weekday | Saturday | Sunday | Annual VMT | Annual VMT | | Other Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Other Non-Asphalt Surfaces | 0.00 | 0.00 | 0.00 | | | | Single Family Housing | 632.48 | 632.48 | 632.48 | 2,161,280 | 1,893,686 | | Total | 632.48 | 632.48 | 632.48 | 2,161,280 | 1,893,686 | #### 4.3 Trip Type Information Date: 7/26/2021 2:50 PM #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | | Miles | | | Trip % | | | Trip Purpos | e % | |----------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------| | Land Use | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by | | Other Asphalt Surfaces | 16.60 | 8.40 | 6.90 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Other Non-Asphalt Surfaces | 16.60 | 8.40 | 6.90 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0 | | Single Family Housing | 14.70 | 5.90 | 8.70 | 40.20 | 19.20 | 40.60 | 86 | 11 | 3 | #### 4.4 Fleet Mix | Land Use | LDA | LDT1 | LDT2 | MDV | LHD1 | LHD2 | MHD | HHD | OBUS | UBUS | MCY | SBUS | MH | |----------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Other Asphalt Surfaces | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | | Other Non-Asphalt Surfaces | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | | Single Family Housing | 0.543085 | 0.056300 | 0.173085 | 0.134258 | 0.025645 | 0.007009 | 0.011926 | 0.017481 | 0.000552 | 0.000248 | 0.024848 | 0.000956 | 0.004606 | ## 5.0 Energy Detail Historical Energy Use: N #### **5.1 Mitigation Measures Energy** CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |----------------------------|-------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Electricity
Mitigated | | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 94.6373 | 94.6373 | 7.9900e-
003 | 9.7000e-
004 | 95.1255 | | Electricity
Unmitigated | ,
!
! | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 94.6373 | 94.6373 | 7.9900e-
003 | 9.7000e-
004 | 95.1255 | | NaturalGas
Mitigated | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 |
 | 7.0600e-
003 | 7.0600e-
003 |
 | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 101.1364 | 101.1364 | 1.9400e-
003 | 1.8500e-
003 | 101.7374 | | NaturalGas
Unmitigated | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 | | 7.0600e-
003 | 7.0600e-
003 | | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 101.1364 | 101.1364 | 1.9400e-
003 | 1.8500e-
003 | 101.7374 | ## 5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u> | | NaturalGa
s Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | | | | ton | s/yr | | | | | | | MT | -/yr | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 1.89522e
+006 | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 | | 7.0600e-
003 | 7.0600e-
003 | | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 101.1364 | 101.1364 | 1.9400e-
003 | 1.8500e-
003 | 101.7374 | | Total | | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 | | 7.0600e-
003 | 7.0600e-
003 | | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 101.1364 | 101.1364 | 1.9400e-
003 | 1.8500e-
003 | 101.7374 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### **5.2 Energy by Land Use - NaturalGas** #### **Mitigated** | | NaturalGa
s Use | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|--------------------|--------|---------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|----------| | Land Use | kBTU/yr | | tons/yr MT/yr | | | | | | | | | | | | | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 |
0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 1.89522e
+006 | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 | | 7.0600e-
003 | 7.0600e-
003 | | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 101.1364 | 101.1364 | 1.9400e-
003 | 1.8500e-
003 | 101.7374 | | Total | | 0.0102 | 0.0873 | 0.0372 | 5.6000e-
004 | | 7.0600e-
003 | 7.0600e-
003 | | 7.0600e-
003 | 7.0600e-
003 | 0.0000 | 101.1364 | 101.1364 | 1.9400e-
003 | 1.8500e-
003 | 101.7374 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 5.3 Energy by Land Use - Electricity Unmitigated | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | | | | |--------------------------------|--------------------|-----------|-----------------|-----------------|---------|--|--|--| | Land Use | kWh/yr | MT/yr | | | | | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Single Family
Housing | 533632 | 94.6373 | 7.9900e-
003 | 9.7000e-
004 | 95.1255 | | | | | Total | | 94.6373 | 7.9900e-
003 | 9.7000e-
004 | 95.1255 | | | | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## **5.3 Energy by Land Use - Electricity** #### **Mitigated** | | Electricity
Use | Total CO2 | CH4 | N2O | CO2e | | | | |--------------------------------|--------------------|-----------|-----------------|-----------------|---------|--|--|--| | Land Use | kWh/yr | MT/yr | | | | | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Single Family
Housing | 533632 | 94.6373 | 7.9900e-
003 | 9.7000e-
004 | 95.1255 | | | | | Total | | 94.6373 | 7.9900e-
003 | 9.7000e-
004 | 95.1255 | | | | #### 6.0 Area Detail ## **6.1 Mitigation Measures Area** CalEEMod Version: CalEEMod.2020.4.0 Page 28 of 34 Date: 7/26/2021 2:50 PM #### 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | ROG | NOx | CO | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|--------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------| | Category | | | | | ton | s/yr | | | | | | | MT | /yr | | | | Mitigated | 0.6422 | 0.0205 | 0.6962 | 1.2000e-
004 | | 4.8400e-
003 | 4.8400e-
003 | | 4.8400e-
003 | 4.8400e-
003 | 0.0000 | 15.6100 | 15.6100 | 1.3600e-
003 | 2.7000e-
004 | 15.7231 | | Unmitigated | 0.6422 | 0.0205 | 0.6962 | 1.2000e-
004 | | 4.8400e-
003 | 4.8400e-
003 | | 4.8400e-
003 | 4.8400e-
003 | 0.0000 | 15.6100 | 15.6100 | 1.3600e-
003 | 2.7000e-
004 | 15.7231 | #### 6.2 Area by SubCategory #### **Unmitigated** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |-------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------| | SubCategory | | tons/yr | | | | | | | | | MT/yr | | | | | | | Coating | 0.0637 | |
 | | | 0.0000 | 0.0000 |
 -
 - | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Products | 0.5563 | |
 | | | 0.0000 | 0.0000 |
 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Hearth | 1.4600e-
003 | 0.0125 | 5.3200e-
003 | 8.0000e-
005 | | 1.0100e-
003 | 1.0100e-
003 | ,
!
!
! | 1.0100e-
003 | 1.0100e-
003 | 0.0000 | 14.4803 | 14.4803 | 2.8000e-
004 | 2.7000e-
004 | 14.5663 | | Landscaping | 0.0208 | 7.9600e-
003 | 0.6908 | 4.0000e-
005 | | 3.8300e-
003 | 3.8300e-
003 | 1
1
1
1 | 3.8300e-
003 | 3.8300e-
003 | 0.0000 | 1.1297 | 1.1297 | 1.0800e-
003 | 0.0000 | 1.1568 | | Total | 0.6422 | 0.0205 | 0.6962 | 1.2000e-
004 | | 4.8400e-
003 | 4.8400e-
003 | | 4.8400e-
003 | 4.8400e-
003 | 0.0000 | 15.6100 | 15.6100 | 1.3600e-
003 | 2.7000e-
004 | 15.7231 | Date: 7/26/2021 2:50 PM #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 6.2 Area by SubCategory #### **Mitigated** | | ROG | NOx | СО | SO2 | Fugitive
PM10 | Exhaust
PM10 | PM10
Total | Fugitive
PM2.5 | Exhaust
PM2.5 | PM2.5
Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e | |--------------------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----------------|---------| | SubCategory | tons/yr | | | | | | | | | | | MT | /yr | | | | | Architectural
Coating | 0.0637 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Consumer
Products | 0.5563 | | | | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Hearth | 1.4600e-
003 | 0.0125 | 5.3200e-
003 | 8.0000e-
005 | | 1.0100e-
003 | 1.0100e-
003 | | 1.0100e-
003 | 1.0100e-
003 | 0.0000 | 14.4803 | 14.4803 | 2.8000e-
004 | 2.7000e-
004 | 14.5663 | | Landscaping | 0.0208 | 7.9600e-
003 | 0.6908 | 4.0000e-
005 | | 3.8300e-
003 | 3.8300e-
003 | | 3.8300e-
003 | 3.8300e-
003 | 0.0000 | 1.1297 | 1.1297 | 1.0800e-
003 | 0.0000 | 1.1568 | | Total | 0.6422 | 0.0205 | 0.6962 | 1.2000e-
004 | | 4.8400e-
003 | 4.8400e-
003 | | 4.8400e-
003 | 4.8400e-
003 | 0.0000 | 15.6100 | 15.6100 | 1.3600e-
003 | 2.7000e-
004 | 15.7231 | #### 7.0 Water Detail ## 7.1 Mitigation Measures Water Apply Water Conservation Strategy Use Water Efficient Irrigation System #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied | | Total CO2 | CH4 | N2O | CO2e | | | | | |-------------|-------------------|--------|-----------------|---------|--|--|--|--| | Category | MT/yr | | | | | | | | | Mitigated | 1 11.00 17
1 1 | 0.1149 | 2.8200e-
003 | 18.3099 | | | | | | Unmitigated | 10.0070 | 0.1436 | 3.5200e-
003 | 21.5247 | | | | | ## 7.2 Water by Land Use <u>Unmitigated</u> | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|------------------------|-----------|--------|-----------------|---------| | Land Use | Mgal | | MT | /yr | | | Other Asphalt
Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 4.36532 /
2.75205 | 16.8878 | 0.1436 | 3.5200e-
003 | 21.5247 | | Total | | 16.8878 | 0.1436 | 3.5200e-
003 | 21.5247 | #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 7.2 Water by Land Use #### **Mitigated** | | Indoor/Out
door Use | Total CO2 | CH4 | N2O | CO2e | | | | |--------------------------------|------------------------|-----------|--------|-----------------|---------|--|--|--| | Land Use | Mgal | MT/yr | | | | | | | | Other Asphalt
Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Other Non-
Asphalt Surfaces | 0/0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Single Family
Housing | 3.49226 /
2.75205 | 14.5947 | 0.1149 | 2.8200e-
003 | 18.3099 | | | | | Total | | 14.5947 | 0.1149 | 2.8200e-
003 | 18.3099 | | | | #### 8.0 Waste Detail ## 8.1 Mitigation Measures Waste Institute Recycling and Composting Services #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### Category/Year | | Total CO2 | CH4 | N2O | CO2e | | | | | |-------------|-----------|--------|--------|---------|--|--|--|--| | | MT/yr | | | | | | | | | | ı (| 0.2361 | 0.0000 | 9.8971 | | | | | | Unmitigated | 10.0700 | 0.9444 | 0.0000 | 39.5884 | | | | | ## 8.2 Waste by Land Use <u>Unmitigated</u> | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | | | |--------------------------------|-------------------|-----------|--------|--------|---------|--|--| | Land Use | tons | MT/yr | | | | | | | Other Asphalt
Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Single Family
Housing | 78.72 | 15.9795 | 0.9444 | 0.0000 | 39.5884 | | | | Total | | 15.9795 | 0.9444 | 0.0000 | 39.5884 | | | CalEEMod Version: CalEEMod.2020.4.0 Page 33 of 34 Date: 7/26/2021 2:50 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied #### 8.2 Waste by Land Use #### **Mitigated** | | Waste
Disposed | Total CO2 | CH4 | N2O | CO2e | |--------------------------------|-------------------|-----------|--------|--------|--------| | Land Use | tons | | MT | -/yr | | | Other Asphalt
Surfaces | 0 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | | Other Non-
Asphalt Surfaces | 0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | Single Family
Housing | 19.68 | 3.9949 | 0.2361 | 0.0000 | 9.8971 | | Total | | 3.9949 | 0.2361 | 0.0000 | 9.8971 | ## 9.0 Operational Offroad | Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type | |----------------|--------|-----------|-----------|-------------|-------------|-----------| #### **10.0 Stationary Equipment** #### **Fire Pumps and Emergency Generators** | Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type | |----------------|--------|-----------|------------|-------------|-------------|-----------| | | | | | | | | #### **Boilers** | Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type | |----------------|--------|----------------|-----------------|---------------|-----------| | | | | | | | #### **User Defined Equipment** | Equipment Type | Number | |----------------|--------| CalEEMod Version: CalEEMod.2020.4.0 Page 34 of 34 Date: 7/26/2021 2:50 PM 19208 Terracina at Redlands - San Bernardino-South Coast County, Annual #### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied ## 11.0 Vegetation | | Total CO2 | CH4 | N2O | CO2e | | | | | | |----------|-----------|--------|--------|----------|--|--|--|--|--| | Category | MT | | | | | | | | | | ı | 357.5400 | 0.0000 | 0.0000 | 357.5400 | | | | | | #### 11.2 Net New Trees **Species Class** | | Number of
Trees | Total CO2 | CH4 | N2O | CO2e | | | | | |---------------|--------------------|-----------|--------|--------|----------|--|--|--|--| | | | МТ | | | | | | | | | Miscellaneous | 505 | 357.5400 | 0.0000 | 0.0000 | 357.5400 | | | | | | Total | | 357.5400 | 0.0000 | 0.0000 | 357.5400 | | | | | Source: EMFAC2017 (v1.0.3) Emissions Inventory Region Type: Air District Region: South Coast AQMD Calendar Year: 2023 Season: Annual Vehicle Classification: EMFAC2007 Categories $Units: miles/day\ for\ VMT,\ trips/day\ for\ Trips,\ tons/day\ for\ Emissions,\ 1000\ gallons/day\ for\ Fuel\ Consumption$ | Region | Calendar Yı Vehicle | Cat Model Year | Speed | Fuel | Population | VMT | Trips | Fuel Consumption | Fuel Consumption | Total Fuel Consumption | VMT | Total VMT | Miles Per Gallon | Vehicle Class | |-----------|---------------------|----------------|-----------|-------------|-------------|----------|----------|------------------|------------------|------------------------|----------|-------------|------------------|--------------------| | South Coa | s 2023 HHDT | Aggregate | Aggregate | Gasoline | 75.10442936 | 8265.097 | 1502.689 | 1.936286145 | 1936.286145 | 1913466.474 | 8265.097 | 13656273.03 | | 7.14 HHD | | South Coa | s 2023 HHDT | Aggregate | Aggregate | Diesel | 109818.6753 | 13648008 | 1133618 | 1911.530188 | 1911530.188 | | 13648008 | | | | | South Coa | s 2023 LDA | Aggregate | Aggregate | Gasoline | 6635002.295 | 2.53E+08 | 31352477 | 7971.24403 | 7971244.03 | 8020635.698 | 2.53E+08 | 255180358.3 | 3 | 31.82 LDA | | South Coa | s 2023 LDA | Aggregate | Aggregate | Diesel | 62492.97958 | 2469816 | 297086.6 | 49.3916685 | 49391.6685 | | 2469816 | | | | | South Coa | s 2023 LDA | Aggregate | Aggregate | Electricity | 150700.3971 | 6237106 | 751566 | 0 | 0 | | 6237106 | | | | | South Coa | s 2023 LDT1 | Aggregate | Aggregate | Gasoline | 758467.6481 | 27812996 | 3504563 | 1023.913006 | 1023913.006 | 1024279.466 | 27812996 | 27821405.09 | | 27.16 LDT1 | | South Coa | s 2023 LDT1 | Aggregate | Aggregate | Diesel | 360.7799144 | 8408.618 | 1256.88 | 0.366459477 | 366.4594769 | | 8408.618 | | | | | South Coa | s 2023 LDT1 | Aggregate | Aggregate | Electricity | 7122.93373 | 303507.5 | 35798.19 | 0 | 0 | | 303507.5 | | | | | South Coa | s 2023 LDT2 | Aggregate | Aggregate | Gasoline | 2285150.139 | 85272416 | 10723315 | 3338.798312 | 3338798.312 | 3356536.438 | 85272416 | 85922778.34 | | 25.60 LDT2 | | South Coa | s 2023 LDT2 | Aggregate | Aggregate | Diesel | 15594.68309 | 650362.8 | 76635.83 | 17.73812611 | 17738.12611 | | 650362.8 | | | | | South Coa | s 2023 LDT2 | Aggregate | Aggregate | Electricity | 28809.63735 | 917592.8 | 145405.4 | 0 | 0 | | 917592.8 | | | | | South Coa | s 2023 LHDT1 | Aggregate | Aggregate | Gasoline | 174910.3847 | 6216643 | 2605904 | 583.3851736 | 583385.1736 | 811563.1022 | 6216643 | 11211395.79 | 3 | 13.81 LHDT1 | | South Coa | s 2023 LHDT1 | Aggregate | Aggregate | Diesel | 125545.0822 | 4994753 | 1579199 | 228.1779285 | 228177.9285 | | 4994753 | | | | | South Coa | s 2023 LHDT2 | Aggregate | Aggregate | Gasoline | 30102.75324 | 1034569 | 448486.2 | 111.5753864 | 111575.3864 | 209423.5025 | 1034569 | 2969599.008 | 3 | 14.18 LHDT2 | | South Coa | s 2023 LHDT2 | Aggregate | Aggregate | Diesel | 50003.13116 | 1935030 | 628976.5 | 97.84811618 | 97848.11618 | | 1935030 | | | | | South Coa | s 2023 MCY | Aggregate | Aggregate | Gasoline | 305044.5141 | 2104624 | 610089 | 57.849018 | 57849.018 | 57849.018 | 2104624 | 2104623.657 | 3 | 36.38 MCY | | South Coa | s 2023 MDV | Aggregate | Aggregate | Gasoline | 1589862.703 | 55684188 | 7354860 | 2693.883526 | 2693883.526 | 2744536.341 | 55684188 | 57109879.73 | | 20.81 MDV | | South Coa | s 2023 MDV | Aggregate | Aggregate | Diesel | 36128.1019 | 1425691 | 176566.9 | 50.65281491 | 50652.81491 | | 1425691 | | | | | South Coa | s 2023 MDV | Aggregate | Aggregate | Electricity | 16376.67653 | 537591.7 | 83475.95 | 0 | 0 | | 537591.7 | | | | | South Coa | s 2023 MH | Aggregate | Aggregate | Gasoline | 34679.50542 | 330042.9 | 3469.338 | 63.26295123 | 63262.95123 | 74893.26955 | 330042.9 | 454344.9436 | | 6.07 MH | | South Coa | s 2023 MH | Aggregate | Aggregate | Diesel | 13122.69387 | 124302 | 1312.269 | 11.63031832 | 11630.31832 | | 124302 | | | | | South Coa | s 2023 MHDT | Aggregate | Aggregate | Gasoline | 25624.3151 | 1363694 | 512691.3 | 265.2060557 | 265206.0557 | 989975.6425 | 1363694 | 9484317.768 | | 9.58 MHDT | | South Coa | s 2023 MHDT | Aggregate | Aggregate | Diesel | 122124.488 | 8120623 | 1221858 | 724.7695868 | 724769.5868 | | 8120623 | | | | | South Coa | s 2023 OBUS | Aggregate | Aggregate | Gasoline | 5955.291639 | 245774 | 119153.5 | 48.07750689 | 48077.50689 | 86265.88761 | 245774 | 579743.8353 | | 6.72 OBUS | | South Coa | s 2023 OBUS | Aggregate | Aggregate | Diesel | 4286.940093 | 333969.8 | 41558.29 | 38.18838072 | 38188.38072 | | 333969.8 | | | | | South Coa | s 2023 SBUS | Aggregate | Aggregate | Gasoline | 2783.643068 | 112189.6 | 11134.57 | 12.19474692 | 12194.74692 | 39638.85935 | 112189.6 | 323043.5203 | | 8.15 SBUS | | South Coa | s 2023 SBUS | Aggregate | Aggregate | Diesel | 6671.825716 | 210853.9 | 76991.94 | 27.44411242 | 27444.11242 | | 210853.9 | | | | | South Coa | s 2023 UBUS | Aggregate | Aggregate | Gasoline | 957.7686184 | 89782.63 | 3831.074 | 17.62416327 | 17624.16327 | 17863.66378 | 89782.63 | 91199.2533 | | 5.11 UBUS | | South Coa | s 2023 UBUS | Aggregate | Aggregate | Diesel | 13.00046095 | 1416.622 | 52.00184 | 0.239500509 | 239.5005093 | | 1416.622 | | | | | South Coa | s 2023 UBUS | Aggregate | Aggregate | Electricity | 16.11693886 | 1320.163 | 64.46776 | 0 | | | 1320.163 | | | | Calendar Year: 2025 Season: Annual Vehicle Classification: EMFAC2007 Categories Units: miles/day for VMT, trips/day for Trips, tons/day for Emissions, 1000 gallons/day for Fuel Consumption | Region | Calendar Year Vehicle C | Cat Model Year | Speed | Fuel | Population | Trips | 1 | Fuel Consumption | Fuel Consumption | Total Fuel Consumption | VMT | Total VMT | Miles Per Gall Vehicle Class | |------------------|-------------------------|----------------|-----------|-------------|------------|-------|-------------|------------------|------------------|------------------------|-------------|-------------|------------------------------| | South Coast AQMD | 2025 HHDT | Aggregate | Aggregate | Gasoline | 73.9851807 | 5 | 1480.295497 | 2.008930562 | 2008.930562 | 1923335.59 | 9005.52904 | 14181370.9 | 7.37 HHD | | South Coast AQMD | 2025 HHDT | Aggregate | Aggregate | Diesel | 114510.075 | 8 | 1194128.743 | 1921.32666 | 1921326.66 | | 14172365.37 | | | | South Coast AQMD | 2025 LDA | Aggregate | Aggregate | Gasoline | 6805726.97 | 7 | 32143253.37 | 7565.468773 | 7565468.773 | 7615965.348 | 253145342.8 | 255801771.2 | 33.59 LDA | | South Coast AQMD | 2025 LDA | Aggregate | Aggregate | Diesel | 68721.9147 | 8 | 327385.003 | 50.49657501 | 50496.57501 | | 2656428.369 | | | | South Coast AQMD | 2025 LDA | Aggregate | Aggregate | Electricity | 205237.198 | 8 | 1020366.918 | 0 | 0 | | 8815934.14 | | | | South Coast AQMD | 2025 LDT1 | Aggregate | Aggregate | Gasoline | 800497.284 | 5 | 3705072.539 | 1005.884969 | 1005884.969 | 1006195.981 | 28711777.34 | 28719147.97 | 28.54 LDT1 | | South Coast AQMD | 2025 LDT1 | Aggregate | Aggregate | Diesel | 314.076359 | 9 | 1101.554527 | 0.311011752 | 311.0117521 | | 7370.62386 | | | | South Coast AQMD | 2025 LDT1 | Aggregate | Aggregate | Electricity | 11260.188 | 9 | 56475.75047 | 0 | 0 | | 498412.9596 | | | | South Coast AQMD | 2025 LDT2 | Aggregate | Aggregate | Gasoline | 2364308.55 | 3 | 11096373.45 | 3161.427108 | 3161427.108 | 3180111.929 | 86303467.33 | 87025617.91 | 27.37 LDT2 | | South Coast AQMD | 2025 LDT2 | Aggregate | Aggregate | Diesel | 18091.4044 | 2 | 88340.72944 | 18.68482079 | 18684.82079 | | 722150.5811 | | | | South Coast AQMD | 2025 LDT2 | Aggregate | Aggregate | Electricity | 43109.0799 | 2 | 216309.8691 | 0 | 0 | | 1316602.996 | | | | South Coast AQMD | 2025 LHDT1 | Aggregate | Aggregate | Gasoline | 173430.355 | 5 | 2583853.887 | 557.3606918 | 557360.6918 | 792510.5992 | 6082106.238 | 11386674.74 | 14.37 LHDT1 | | South Coast AQMD | 2025 LHDT1 | Aggregate | Aggregate | Diesel | 137399.580 | 7 | 1728313.877 |
235.1499073 | 235149.9073 | | 5304568.502 | | | | South Coast AQMD | 2025 LHDT2 | Aggregate | Aggregate | Gasoline | 30280.2592 | 4 | 451130.7451 | 107.8982218 | 107898.2218 | 209168.1313 | 1023279.202 | 3085084.93 | 14.75 LHDT2 | | South Coast AQMD | 2025 LHDT2 | Aggregate | Aggregate | Diesel | 55100.2721 | 7 | 693092.1078 | 101.2699095 | 101269.9095 | | 2061805.728 | | | | South Coast AQMD | 2025 MCY | Aggregate | Aggregate | Gasoline | 322405.118 | 2 | 644810.2364 | 59.60030235 | 59600.30235 | 59600.30235 | 2156492.828 | 2156492.828 | 36.18 MCY | | South Coast AQMD | 2025 MDV | Aggregate | Aggregate | Gasoline | 1610759.16 | 4 | 7459996.66 | 2511.049161 | 2511049.161 | 2563774.488 | 55349775.96 | 56914413.69 | 22.20 MDV | | South Coast AQMD | 2025 MDV | Aggregate | Aggregate | Diesel | 41295.1450 | 3 | 200455.1443 | 52.72532627 | 52725.32627 | | 1564637.726 | | | | South Coast AQMD | 2025 MDV | Aggregate | Aggregate | Electricity | 27149.642 | 9 | 137370.5198 | 0 | 0 | | 850200.5411 | | | | South Coast AQMD | 2025 MH | Aggregate | Aggregate | Gasoline | 33995.455 | 4 | 3400.905358 | 60.25102942 | 60251.02942 | 71903.34255 | 324472.9039 | 452164.5308 | 6.29 MH | | South Coast AQMD | 2025 MH | Aggregate | Aggregate | Diesel | 13797.4794 | 7 | 1379.747947 | 11.65231313 | 11652.31313 | | 127691.6269 | | | | South Coast AQMD | 2025 MHDT | Aggregate | Aggregate | Gasoline | 25990.8524 | 7 | 520024.9763 | 255.9964527 | 255996.4527 | 988002.6613 | 1355596.744 | 9800462.56 | 9.92 MHDT | | South Coast AQMD | 2025 MHDT | Aggregate | Aggregate | Diesel | 132892.775 | 5 | 1340366.128 | 732.0062086 | 732006.2086 | | 8444865.816 | | | | South Coast AQMD | 2025 OBUS | Aggregate | Aggregate | Gasoline | 5953.62638 | 1 | 119120.1566 | 45.04342637 | 45043.42637 | 83823.43363 | | 587532.3366 | 7.01 OBUS | | South Coast AQMD | 2025 OBUS | Aggregate | Aggregate | Diesel | 4685.13438 | 9 | 45454.12243 | 38.78000726 | 38780.00726 | | 349833.854 | | | | South Coast AQMD | 2025 SBUS | Aggregate | Aggregate | Gasoline | 3092.71469 | 5 | 12370.85878 | 12.97345284 | 12973.45284 | 40041.19183 | 121823.4096 | 335142.2087 | 8.37 SBUS | | South Coast AQMD | 2025 SBUS | Aggregate | Aggregate | Diesel | 6746.34593 | 4 | 77851.89673 | 27.06773898 | 27067.73898 | | 213318.799 | | | | South Coast AQMD | 2025 UBUS | Aggregate | Aggregate | Gasoline | 969.365999 | 2 | 3877.463997 | 16.68217368 | 16682.17368 | 16817.54794 | 90835.89881 | 91611.49371 | 5.45 UBUS | | South Coast AQMD | 2025 UBUS | Aggregate | Aggregate | Diesel | 6.36732219 | | 25.46928879 | 0.135374266 | 135.3742664 | | 775.5948993 | | | | South Coast AQMD | 2025 UBUS | Aggregate | Aggregate | Electricity | 16.1169388 | 5 | 64.46775545 | 0 | | | 1320.163255 | | | **GANDDINI GROUP INC.** 714.795.3100 | ganddini.com