Appendix A: Construction Community Risk Assessment

# 171-175 MONROE STREET SINGLE-FAMILY HOMES CONSTRUCTION COMMUNITY RISK ASSESSMENT

## Santa Clara, California

### September 1, 2021

**Prepared for:** 

**Connor Tutino** Assistant Project Manager David J. Powers & Associates, Inc. 1736 Franklin Street, Suite 300 Oakland, CA 94612

**Prepared by:** 

Zachary Palm & Casey Divine

### ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

**I&R Project#: 21-095** 

#### Introduction

The purpose of this report is to address the potential community risk impacts associated with the construction of the proposed single-family homes located at 171-175 Monroe Street in Santa Clara, California. The air quality impacts from this project would be associated with construction of the new buildings. Air pollutant emissions associated with construction of the project were predicted using appropriate computer models. In addition, the potential project construction health risk impacts and the impact of existing toxic air contaminant (TAC) sources affecting the nearby and proposed sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).<sup>1</sup> BAAQMD recommends using a 1,000-foot screening radius around the project site for purposes of identifying community health risk from existing sources of TACs.

#### **Project Description**

The approximately 0.4-acre project site is currently occupied by two single family homes and a detached garage. The project proposes to demolish the existing houses and garage to construct eight single-family homes with enclosed garages. Construction is proposed to begin in October 2021 and be completed by August 2022.

#### Setting

The project is located in Santa Clara County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>).

#### Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO<sub>x</sub>). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM<sub>10</sub>) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM<sub>2.5</sub>). Elevated concentrations of PM<sub>10</sub> and PM<sub>2.5</sub> are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

<sup>&</sup>lt;sup>1</sup> Bay Area Air Quality Management District, *CEQA Air Quality Guidelines*, May 2017.

#### Toxic Air Contaminants

Toxic air contaminants (TAC) are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs.

#### Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are in the single and multi-family residences to the north, south, and east of the project site. Washington Elementary School and Buchser Middle School are also near the project site. This project would introduce new sensitive receptors (i.e., residents) to the area.

#### Regulatory Setting

#### Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. California also has the ability to set motor vehicle emission standards and standards for fuel used in California, as long as they are the same or more stringent than the federal standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel

engines are a significant source of NO<sub>X</sub> and particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel onroad vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO<sub>X</sub> emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.<sup>2</sup>

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The new standards reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultra-low sulfur diesel (ULSD), is currently required for use by all vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

#### State Regulations

To address the issue of diesel emissions in the state, CARB developed the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.<sup>3</sup> In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM<sub>2.5</sub> emissions. This regulation will substantially reduce these emissions between 2013 and 2023. While new trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

<sup>&</sup>lt;sup>2</sup> USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

<sup>&</sup>lt;sup>3</sup> California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

CARB has also adopted and implemented regulations to reduce DPM and NO<sub>x</sub> emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NO<sub>x</sub> exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleetaveraged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NO<sub>x</sub>.

#### Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.<sup>4</sup> The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is being implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses will be used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. The BAAQMD has identified six communities as impacted: Concord, Richmond/San Pablo, Western Alameda County, San José, Redwood City/East Palo Alto, and Eastern San Francisco. The project site is within the San José CARE area.

The BAAQMD California Environmental Quality Act (*CEQA*) Air Quality Guidelines<sup>5</sup> were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts

<sup>&</sup>lt;sup>4</sup> See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>, accessed 2/18/2021.

<sup>&</sup>lt;sup>5</sup> Bay Area Air Quality Management District, 2017. *CEQA Air Quality Guidelines*. May.

during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for air toxics, odors, and greenhouse gas emissions. *Attachment 1* includes detailed community risk modeling methodology.

City of Santa Clara 2010 – 2035 General Plan.

On November 16, 2010, the City of Santa Clara adopted the *City of Santa Clara 2010 – 2035 General Plan.*<sup>6</sup> The general plan includes goals, policies, and actions to reduce air pollutants and exposure to toxic air containments. The following goals, policies, and actions are applicable to the proposed project and this assessment:

| 5.10.2 Air Qualit | y Goals                                                                                                                             |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 5.10.2-G1         | Improved air quality in Santa Clara and the region.                                                                                 |
| 5.10.2-G2         | Reduced greenhouse gas emissions that meet the State and regional goals<br>and requirements to combat climate change.               |
| 5.10.2 Air Qualit | y Policies                                                                                                                          |
| 5.10.2-P3         | Encourage implementation of technological advances that minimize public health hazards and reduce the generation of air pollutants. |
| 5.10.2-P4         | Encourage measures to reduce greenhouse gas emissions to reach 30 percent below 1990 levels by 2020.                                |
| 5.10.2-P6         | Require "Best Management Practices" for construction dust abatement.                                                                |

#### Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 CEQA Air Quality Guidelines. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated the CEQA Air Quality Guidelines in 2017 to include the latest significance thresholds, which were used in this analysis and are summarized in Table 1. Impacts above these thresholds are considered potentially significant.

<sup>&</sup>lt;sup>6</sup> City of Santa Clara, 2010. *City of Santa Clara 2010 – 2035 General Plan*. November. Web: https://www.santaclaraca.gov/home/showdocument?id=56139

|                                      | <b>Construction Thresholds</b>                                       | <b>Operational Thresholds</b>                          |                                                        |  |
|--------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|
| Criteria Air Pollutant               | Average Daily Emissions<br>(lbs./day)                                | Average Daily<br>Emissions<br>(lbs./day)               | Annual Average<br>Emissions (tons/year)                |  |
| ROG                                  | 54                                                                   | 54                                                     | 10                                                     |  |
| NO <sub>x</sub>                      | 54                                                                   | 54                                                     | 10                                                     |  |
| PM <sub>10</sub>                     | 82 (Exhaust)                                                         | 82                                                     | 15                                                     |  |
| PM <sub>2.5</sub>                    | 54 (Exhaust)                                                         | 54                                                     | 10                                                     |  |
| со                                   | Not Applicable                                                       | 9.0 ppm (8-hour average) or 20.0 ppm (1-ho<br>average) |                                                        |  |
| Fugitive Dust                        | Construction Dust Ordinance<br>or other Best Management<br>Practices |                                                        |                                                        |  |
| Health Risks and<br>Hazards          | Single Sources Within<br>1,000-foot Zone of<br>Influence             |                                                        | ces (Cumulative from all<br>00-foot zone of influence) |  |
| Excess Cancer Risk                   | 10 per one million                                                   | 100 g                                                  | per one million                                        |  |
| Hazard Index                         | 1.0                                                                  |                                                        | 10.0                                                   |  |
| Incremental annual PM <sub>2.5</sub> | 0.3 µg/m <sup>3</sup>                                                |                                                        | 0.8 μg/m <sup>3</sup>                                  |  |

 Table 1.
 BAAQMD CEQA Significance Thresholds

### **Construction Community Risk Impacts and Mitigation Measures**

Project impacts related to increased community risk can occur either by generating emissions of TACs and air pollutants and by introducing a new sensitive receptor in proximity to an existing source of TACs. Temporary project construction activity would generate emissions of DPM from equipment and trucks and also generate dust on a temporary basis that could affect nearby sensitive receptors. A construction community health risk assessment was prepared to address project construction impacts on the surrounding off-site sensitive receptors.

Additionally, the project could introduce new residents that are sensitive receptors, who would be exposed to existing sources of TACs and localized air pollutants in the vicinity of the project. Therefore, the impact of the existing sources of TAC upon the existing sensitive receptors and new incoming sensitive receptors was assessed.

Community risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM<sub>2.5</sub> concentrations, and computing the Hazard Index (HI) for non-cancer health risks. Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust emissions pose health risks for sensitive receptors such as surrounding residents. The primary community risk impact issues associated with construction emissions are cancer risk and exposure to PM<sub>2.5</sub>. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and PM<sub>2.5</sub>.<sup>7</sup> This assessment included dispersion modeling to predict the offsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated. The methodology for computing community risks impacts is contained in *Attachment 1*.

#### **Construction Period Emissions**

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to CalEEMod. The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks.<sup>8</sup> The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

#### CalEEMod Modeling

#### Land Use Inputs

The proposed project land uses were entered into CalEEMod as described in Table 2.

<sup>&</sup>lt;sup>7</sup> DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

<sup>&</sup>lt;sup>8</sup> See CARB's EMFAC2021 Emissions Inventory at <u>https://arb.ca.gov/emfac/emissions-inventory</u>.

| Project Land Uses          | Size | Units         | Square Feet (sf) | Acreage |
|----------------------------|------|---------------|------------------|---------|
| Single Family Housing      | 8    | Dwelling Unit | 15,494           | 0.4     |
| Enclosed Parking Structure | 18   | Parking Space | 3,432            | 0.4     |

Table 2.Summary of Project Land Use Inputs

#### Construction Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario for both phases, including equipment list and schedule, were based on information provided by the project applicant.

The construction equipment worksheets provided by the applicant included the schedule for each phase. Within each phase, the quantity of equipment to be used along with the average hours per day and total number of workdays was provided. Since different equipment would have different estimates of the working days per phase, the hours per day for each phase was computed by dividing the total number of hours that the equipment would be used by the total number of days in that phase. The construction schedule assumed that the earliest possible start date would be October 2021 and would be built out over a period of approximately 10 months, or 213 construction workdays. The earliest year of full operation was assumed to be 2023.

#### Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of demolition material to be exported, soil material imported and/or exported to the site, and the estimate of cement and asphalt truck trips. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for demolition and grading were estimated from the provided demolition and grading volumes by assuming each truck could carry 10 tons per load. The number of concrete and asphalt total round haul trips were provided for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2017 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model; however, CalEEMod has not been updated to include EMFAC2021. Therefore, the construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod default assumptions, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1 and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including cement trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod

default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (soil import/export). Since CalEEMod does not address cement trucks, these were treated as vendor travel distances. Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On road emissions in Santa Clara County for 2021 were used in these calculations. Table 3 provides the traffic inputs that were combined with the EMFAC2021 emission database to compute vehicle emissions.

| CalEEMod Run/Land                        |                                                                                                                                                                                                                                                                                                                         | Trips by Tri                 |                            |                                                                                                                     |  |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Uses and Construction<br>Phase           | <b>Total</b><br>Worker <sup>1</sup>                                                                                                                                                                                                                                                                                     | Total<br>Vendor <sup>1</sup> | Total<br>Haul <sup>2</sup> | Notes                                                                                                               |  |  |  |  |  |
| Vehicle mix <sup>1</sup>                 | 50% LDA<br>25% LDT1<br>25% LDT2                                                                                                                                                                                                                                                                                         | 50% MHDT<br>50% HHDT         | 100% HHDT                  |                                                                                                                     |  |  |  |  |  |
| Trip Length (miles)                      | 10.8                                                                                                                                                                                                                                                                                                                    | 7.3                          | 20.0                       | CalEEMod default distance with 5-min truck idle time.                                                               |  |  |  |  |  |
| Demolition                               | 15                                                                                                                                                                                                                                                                                                                      | -                            | 20                         | 2,200 sq-ft existing building<br>and 200 tons pavement<br>building demolition.<br>CalEEMod default worker<br>trips. |  |  |  |  |  |
| Site Preparation                         | 24                                                                                                                                                                                                                                                                                                                      | -                            | 1                          | 10-cy soil export.<br>CalEEMod default worker<br>trips.                                                             |  |  |  |  |  |
| Grading                                  | 120                                                                                                                                                                                                                                                                                                                     | -                            | 10                         | 80-cy soil export.<br>CalEEMod default worker<br>trips.                                                             |  |  |  |  |  |
| Trenching                                | 65                                                                                                                                                                                                                                                                                                                      | -                            | -                          | CalEEMod default worker<br>trips.                                                                                   |  |  |  |  |  |
| Building Construction                    | 480                                                                                                                                                                                                                                                                                                                     | 120                          | 138                        | 69 cement round trips.<br>CalEEMod default worker<br>and vendor trips.                                              |  |  |  |  |  |
| Architectural Coating                    | 47                                                                                                                                                                                                                                                                                                                      | -                            | -                          | CalEEMod default worker<br>trips                                                                                    |  |  |  |  |  |
| Paving                                   | 70                                                                                                                                                                                                                                                                                                                      | -                            | 7                          | 3 asphalt round trips.<br>CalEEMod default worker<br>trips.                                                         |  |  |  |  |  |
| <sup>2</sup> Includes demolition and gra | trips.         Notes: <sup>1</sup> Based on 2021 EMFAC2021 light-duty vehicle fleet mix for Santa Clara County. <sup>2</sup> Includes demolition and grading trips estimated by CalEEMod based on amount of material to be removed.         Cement and asphalt trips estimated based on data provided by the applicant. |                              |                            |                                                                                                                     |  |  |  |  |  |

 Table 3.
 Construction Traffic Data Used for EMFAC2021 Model Runs

#### Summary of Computed Construction Period Emissions

Average daily emissions were computed by dividing the total construction emissions by the number of active construction workdays (213 days). Table 4 shows the average daily construction emissions of ROG, NO<sub>X</sub>, PM<sub>10</sub> exhaust, and PM<sub>2.5</sub> exhaust during construction of the project. As indicated in Table 4, predicted project construction emissions would not exceed the BAAQMD significance thresholds during construction.

| Year                                          | ROG         | NOx         | PM <sub>10</sub><br>Exhaust | PM <sub>2.5</sub><br>Exhaust |
|-----------------------------------------------|-------------|-------------|-----------------------------|------------------------------|
| Total Construction Emissions (tons)           | 0.15        | 0.35        | 0.01                        | 0.01                         |
| Average daily emissions (pounds) <sup>1</sup> | 1.40        | 3.29        | 0.14                        | 0.13                         |
| BAAQMD Thresholds (pounds per day)            | 54 lbs./day | 54 lbs./day | 82 lbs./day                 | 54 lbs./day                  |
| Exceed Threshold?                             | No          | No          | No                          | No                           |

Table 4.Construction Period Emissions

Notes: <sup>1</sup>Assumes 213 workdays.

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM<sub>10</sub> and PM<sub>2.5</sub>. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions. *Recommended Measure AQ-1 would implement BAAQMD-recommended enhanced best management practices*.

## Mitigation Measure AQ-1: Include measures to control dust and exhaust during construction.

During any construction period ground disturbance, the applicant shall ensure that the project contractor implement measures to control dust and exhaust. Implementation of the measures recommended by BAAQMD and listed below would reduce the air quality impacts associated with grading and new construction to a less-than-significant level. Additional measures are identified to reduce construction equipment exhaust emissions. The contractor shall implement the following best management practices that are required of all projects:

- 1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.

- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

#### Effectiveness of Recommended Measure AQ-1

The measures above are consistent with BAAQMD-recommended basic control measures for reducing fugitive particulate matter that are contained in the BAAQMD CEQA Air Quality Guidelines.

#### **Community Health Risk from Project Construction**

#### Construction Emissions

The CalEEMod model and EMFAC2021 emissions provided total annual  $PM_{10}$  exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from onroad vehicles, with total emissions from all construction stages as 0.01 tons (28 pounds). The onroad emissions are a result of haul truck travel during grading activities, worker travel, and vendor deliveries during construction. A trip length of one mile was used to represent vehicle travel while at or near the construction site. It was assumed that these emissions from on-road vehicles traveling at or near the site would occur at the construction site. Fugitive  $PM_{2.5}$  dust emissions were calculated by CalEEMod as 0.001 tons (2 pounds) for the overall construction period.

#### **Dispersion Modeling**

The U.S. EPA AERMOD dispersion model was used to predict concentrations of DPM and PM<sub>2.5</sub> concentrations at sensitive receptors in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types of emission activities for CEQA projects.<sup>9</sup> Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM<sub>2.5</sub> dust emissions.

#### **Construction Sources**

Combustion equipment DPM exhaust emissions were modeled as a series of point sources with a nine-foot release height (construction equipment exhaust stack height) placed at 23 feet (7 meter) intervals throughout the construction site. This resulted in 35 individual point sources being used to represent mobile equipment DPM exhaust emissions in the respective construction area, with DPM emissions occurring throughout the project construction site. In addition, the following stack

<sup>&</sup>lt;sup>9</sup> Bay Area Air Quality Management District (BAAQMD), 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May.

parameters were used: a vertical release, a stack diameter of 2.5 inches, an exhaust temperature of 918°F, and an exit velocity of 309 feet per second. Since these are point sources plume rise is calculated by the AERMOD dispersion model. Emissions from vehicle travel on- and off-site were also distributed among the point sources throughout the site. The locations of the point sources used for the modeling are identified in Figure 1.

For modeling fugitive PM<sub>2.5</sub> emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources.

#### AERMOD Inputs and Meteorological Data

The modeling used a five-year data set (2013 - 2017) of hourly meteorological data from the San Jose International Airport prepared for use with the AERMOD model by BAAQMD. Construction emissions were modeled as occurring daily between 7:00 a.m. to 5:00 p.m., when the majority of construction activity is expected to occur as provided by the applicant. Annual DPM and PM<sub>2.5</sub> concentrations from construction activities during the 2021-2022 period were calculated using the model. DPM and PM<sub>2.5</sub> concentrations were calculated at nearby sensitive receptors. Receptor heights of 5 feet (1.5 meters) and 15 feet (4.5 meters) were used to represent the breathing height on the first and second floor of nearby single-family and multi-family residences.<sup>10</sup> A receptor height of 3 feet (1 meter) was used to represent the breathing height of children at the nearby elementary and middle schools.

#### Summary of Construction Community Risk Impacts

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the Office of Environmental Health Hazard Assessment (OEHHA) guidance for age sensitivity factors and exposure parameters as recommended by BAAQMD (see *Attachment 1*). Non-cancer health hazards and maximum PM<sub>2.5</sub> concentrations were also calculated and identified. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Third trimester, infant, child, and adult exposures were assumed to occur at all residences during the entire construction period. Students at the elementary and middle schools were assumed to be five years and older. The child (ages 2 through 16 years old) cancer risk parameters were used to calculate the increased cancer risk for the school students.

<sup>&</sup>lt;sup>10</sup> Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: <u>https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en</u>

The maximum modeled annual  $PM_{2.5}$  concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation referce exposure level of 5  $\mu$ g/m<sup>3</sup>.

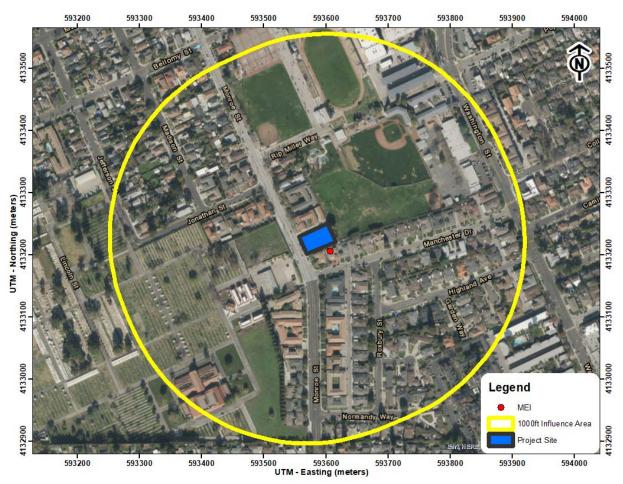
The maximum modeled annual DPM and PM<sub>2.5</sub> concentrations, which includes both the DPM and fugitive PM<sub>2.5</sub> concentrations, were identified at nearby sensitive receptors (as shown in Figure 1) to find the maximally exposed individuals (MEI). Results of this assessment indicated that the construction MEI was located on the second floor (15 feet above ground) of a multi-family home south of the project site. Table 5 summarizes the maximum cancer risks, PM<sub>2.5</sub> concentrations, and health hazard indexes for project related construction activities affecting the construction MEI. *Attachment 4* to this report includes the emission calculations used for the construction area source modeling and the cancer risk calculations.

Additionally, modeling was conducted to predict the cancer risks, non-cancer health hazards, and maximum PM<sub>2.5</sub> concentrations associated with construction activities at the nearby schools. The maximum increased cancer risks were adjusted using child exposure parameters. The uncontrolled cancer risk, PM<sub>2.5</sub> concentration, and HI at the nearby schools do not exceed their respective BAAQMD single-source significance thresholds, as shown in Table 5.

| Table 5. Construction MSK Impacts at the OII-site WILL |                                       |                              |                                                  |                 |  |  |  |  |
|--------------------------------------------------------|---------------------------------------|------------------------------|--------------------------------------------------|-----------------|--|--|--|--|
|                                                        | Source                                | Cancer Risk<br>(per million) | Annual PM <sub>2.5</sub><br>(µg/m <sup>3</sup> ) | Hazard<br>Index |  |  |  |  |
|                                                        |                                       |                              |                                                  |                 |  |  |  |  |
| Project Construction                                   | Unmitigated                           | 12.90 (infant)               | 0.08                                             | 0.02            |  |  |  |  |
|                                                        | Mitigated*                            | 2.81 (infant)                | 0.02                                             | < 0.01          |  |  |  |  |
|                                                        | BAAQMD Single-Source Threshold        | 10                           | 0.3                                              | 1.0             |  |  |  |  |
| Exceed Threshold?                                      | Unmitigated                           | Yes                          | No                                               | No              |  |  |  |  |
|                                                        | Mitigated*                            | No                           | No                                               | No              |  |  |  |  |
|                                                        | Most Affected Nearby School – Washing | ton Elementary S             | chool                                            |                 |  |  |  |  |
| Project Construction                                   | Uncontrolled                          | 0.01 (child)                 | < 0.01                                           | < 0.01          |  |  |  |  |
|                                                        | BAAQMD Single-Source Threshold        | 10.0                         | 0.3                                              | 1.0             |  |  |  |  |
| Exceed Threshold?                                      | Uncontrolled                          | No                           | No                                               | No              |  |  |  |  |

| Table 5.Construction Risk Impacts at the Off-site |
|---------------------------------------------------|
|---------------------------------------------------|

\* Construction equipment with Tier 4 interim engines and Best Management Practices as Mitigation.


Figure 1. Locations of Project Construction Site, Off-Site Sensitive Receptors, and Maximum TAC Impact



Cumulative Community Risks of all TAC Sources at the Offsite Project MEI

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of a project site (i.e., influence area). These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

A review of the project area and based on provided traffic information indicated that no roadways within the influence area would have traffic exceeding 10,000 vehicles per day. A review of BAAQMD's stationary source geographic information systems (GIS) map tool identified no stationary sources with the potential to affect the project site and MEI. Figure 2 shows the project area included within the influence area and the location of the MEI. Details of the modeling and community risk calculations are included in *Attachment 5*.



#### Figure 2. Project Site and Nearby TAC and PM<sub>2.5</sub> Sources

#### BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2018* GIS website,<sup>11</sup> which identifies the location of nearby stationary sources and their estimated risk and hazard impacts, including emissions and adjustments to account for new OEHHA guidance. No sources within the project's 1000-foot influence area were identified using this tool.

#### Summary of Cumulative Health Risk Impact at Construction MEI

Table 6 reports both the project and cumulative community risk impacts at the sensitive receptors most affected by construction (i.e., the MEI). The project would have an exceedance with respect to community risk caused by project construction activities, since the maximum unmitigated cancer risk exceeds the BAAQMD single-source threshold. With the implementation of *Mitigation Measure AQ-1 and AQ-2*, the project's cancer risks would be lowered to a level below the single-

<sup>11</sup> BAAQMD,

https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=2387ae674013413f987b1071715daa65

source thresholds. The HI and annual PM<sub>2.5</sub> concentrations, unmitigated and mitigated, do not exceed their cumulative threshold.

|                          | Source                             | Cancer Risk<br>(per million) | Annual PM <sub>2.5</sub><br>(µg/m <sup>3</sup> ) | Hazard<br>Index |
|--------------------------|------------------------------------|------------------------------|--------------------------------------------------|-----------------|
|                          | Project Impacts                    |                              |                                                  |                 |
| Project Construction     | Unmitigated                        | 12.90 (infant)               | 0.08                                             | 0.02            |
|                          | Mitigated                          | 2.81 (infant)                | 0.02                                             | < 0.01          |
|                          | BAAQMD Single-Source Threshold     | 10                           | 0.3                                              | 1.0             |
| Exceed Threshold?        | Unmitigated                        | Yes                          | No                                               | No              |
|                          | Mitigated                          | No                           | No                                               | No              |
|                          | BAAQMD Cumulative Source Threshold | 100                          | 0.8                                              | 10.0            |
| <b>Exceed Threshold?</b> | Unmitigated                        | No                           | No                                               | No              |
|                          | Mitigated                          | No                           | No                                               | No              |

Table 6.Impacts from Combined Sources at Project MEI

## *Mitigation Measure AQ-2:* Use construction equipment that has low diesel particulate matter exhaust to minimize emissions

A feasible plan to reduce emissions such that increased cancer risk and annual PM<sub>2.5</sub> concentrations from construction would be reduced below significance levels is as follows:

- 1. All construction equipment larger than 25 horsepower used at the site for more than two continuous days or 20 hours total shall meet U.S. EPA Tier 4 emission standards for particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), if feasible, otherwise,
  - a. If use of Tier 4 equipment is not available, alternatively use equipment that meets U.S. EPA emission standards for Tier 2 or 3 engines and include particulate matter emissions control equivalent to CARB Level 3 verifiable diesel emission control devices that altogether achieve an 25 percent reduction in particulate matter exhaust in comparison to uncontrolled equipment; alternatively (or in combination).
  - b. Use of electrical or non-diesel fueled equipment.

Alternatively, the applicant could develop a separate feasible plan that reduces on- and near-site construction diesel particulate matter emissions by 25 percent or greater. Such a plan would have to be reviewed and approved by the City.

#### Effectiveness of Mitigation Measure AQ-1 and AQ-2

CalEEMod was used to compute emissions associated with this mitigation measure assuming that all equipment met U.S. EPA Tier 4 interim engines standards and BAAQMD best management practices for construction were included. With these implemented, the project's construction cancer risk impact, assuming infant exposure, would be reduced by 79 percent to 2.81 per million. A plan that reduces DPM emissions by 25 percent would reduce cancer risk to about 9.7 chances per million. As a result, the project's construction cancer risk would be reduced below the BAAQMD single-source threshold.

#### **On-Site Community Health Risk Impacts – New Project Residents**

A health risk assessment would have been completed to assess the impact existing TAC sources would have on the new proposed sensitive receptors (residents) that that project would introduce. However, there are no existing TAC sources (i.e., roadways with over 10,000 daily vehicles or permitted BAAQMD stationary sources) within 1,000 feet of the project site. Therefore, an on-site community health risk impact was not conducted.

#### **Supporting Documentation**

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute lifetime cancer risk from exposure to project emissions.

*Attachment 2* includes the CalEEMod output for project construction emissions. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling. The input files for these calculations are voluminous and are available upon request in digital format.

Attachment 4 is the construction health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction. AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format

*Attachment 5* includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the construction MEIs and project site receptors.

#### **Attachment 1: Health Risk Calculation Methodology**

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015.<sup>12</sup> These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods.<sup>13</sup> This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants.<sup>14</sup> Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

#### Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95<sup>th</sup> percentile breathing rates are used for the third trimester and infant exposures. BAAQMD recommends using the 95<sup>th</sup> percentile 8-hour breathing rates. Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of

<sup>&</sup>lt;sup>12</sup> OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

<sup>&</sup>lt;sup>13</sup> CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

<sup>&</sup>lt;sup>14</sup> BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) = *CPF x Inhalation Dose x ASF x ED/AT x FAH x 10*<sup>6</sup> Where: CPF = Cancer potency factor (mg/kg-day)<sup>-1</sup> ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless) Inhalation Dose =  $C_{air} x DBR^* x A x (EF/365) x 10^{-6}$ Where: Cair = concentration in air (µg/m<sup>3</sup>) DBR = daily breathing rate (L/kg body weight-day) 8HrBR = 8-hour breathing rate (L/kg body weight-8 hours) A = Inhalation absorption factor EF = Exposure frequency (days/year) 10<sup>-6</sup> = Conversion factor

The health risk parameters used in this evaluation are summarized as follows:

|                                | Exposure Type $\rightarrow$         | Infa            | nt       | Child    | Adult   |
|--------------------------------|-------------------------------------|-----------------|----------|----------|---------|
| Parameter                      | Age Range →                         | 3 <sup>rd</sup> | 0<2      | 2 < 16   | 16 - 30 |
|                                |                                     | Trimester       |          |          |         |
| DPM Cancer Potency Factor (n   | 1.10E+00                            | 1.10E+00        | 1.10E+00 | 1.10E+00 |         |
| Daily Breathing Rate (L/kg-day | y) 80 <sup>th</sup> Percentile Rate | 273             | 758      | 572      | 261     |
| Daily Breathing Rate (L/kg-day | 361                                 | 1,090           | 745      | 335      |         |
| 8-hour Breathing Rate (L/kg-8  | -                                   | 1,200           | 520      | 240      |         |
| Inhalation Absorption Factor   |                                     | 1               | 1        | 1        | 1       |
| Averaging Time (years)         |                                     | 70              | 70       | 70       | 70      |
| Exposure Duration (years)      |                                     | 0.25            | 2        | 14       | 14*     |
| Exposure Frequency (days/yea   | 350                                 | 350             | 350      | 350*     |         |
| Age Sensitivity Factor         | 10                                  | 10              | 3        | 1        |         |
| Fraction of Time at Home (FA   | 0.85-1.0                            | 0.85-1.0        | 0.72-1.0 | 0.73*    |         |
| * An 8-hour breathing rate (8H | IrBR) is used for worker and        | school child ex | posures. |          |         |

#### Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ( $\mu g/m^3$ ).

#### Annual PM2.5 Concentrations

While not a TAC, fine particulate matter (PM<sub>2.5</sub>) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM<sub>2.5</sub> (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM<sub>2.5</sub> impacts, the contribution from all sources of PM<sub>2.5</sub> emissions should be included. For projects with potential impacts from nearby local roadways, the PM<sub>2.5</sub> impacts should include those from vehicle exhaust emissions, PM<sub>2.5</sub> generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

Attachment 2: CalEEMod Modeling Inputs and Outputs

| F        | Project Name:                              |                | 171-175 Mon            | iroe Street, Sant | a Clara, CA          |                       |                                                                   |                                          |           |        |
|----------|--------------------------------------------|----------------|------------------------|-------------------|----------------------|-----------------------|-------------------------------------------------------------------|------------------------------------------|-----------|--------|
| P        | Project Size                               | 8              | Dwelling Units         | 0.395             | Acres disturbed      |                       |                                                                   |                                          |           |        |
|          |                                            | 15,494         | s.f. residential       | 0                 | s.f. retail          |                       |                                                                   |                                          |           |        |
|          |                                            |                | s.f. office/commercial |                   |                      |                       |                                                                   |                                          |           |        |
|          |                                            |                |                        |                   | s.i. other, specify. | -                     |                                                                   |                                          |           |        |
|          |                                            |                | s.f. other, specify:   | Common Areas      |                      |                       |                                                                   |                                          |           |        |
|          |                                            | 3,432          | s.f. parking garage    | 18                | spaces               |                       |                                                                   |                                          |           |        |
|          |                                            | 0              | s.f. parking lot       |                   | spaces               |                       |                                                                   |                                          |           |        |
| C        | Construction Hours                         | 7:00           | am to                  | 5:00              | pm                   |                       |                                                                   |                                          |           |        |
| Qty      | Description                                | HP             | Load Factor            | Hours/day         | Total Work Days      | Avg. Hours<br>per day | Comments                                                          |                                          |           |        |
|          |                                            |                |                        |                   |                      |                       |                                                                   | Typical Equipment Type &                 |           | Load   |
| D        | emolition                                  | Start Date:    | 10/16/2021             | Total phase:      | 5                    |                       | Overall Import/Export Volumes                                     | OFFROAD Equipment Type                   | HP        | Factor |
|          |                                            | End Date:      | 10/22/2021             |                   |                      |                       |                                                                   | Aerial Lifts                             | 62        | 0.31   |
|          | Concrete/Industrial Saws                   | 81<br>162      | 0.73 0.38              | 8                 | 10                   | 16                    | Demolition Volume<br>Square footage of buildings to be demolished | Air Compressors<br>Bore/Drill Rigs       | 78<br>205 | 0.48   |
|          | Rubber-Tired Dozers                        | 255            | 0.4                    |                   |                      | 0                     | (or total tons to be hauled)                                      | Cement and Mortar Mixers                 | 203       | 0.56   |
|          | ractors/Loaders/Backhoes                   | 97             | 0.37                   |                   |                      | 0                     | 2200 square feet or ex Building                                   | Concrete/Industrial Saws                 | 81        | 0.73   |
|          |                                            |                |                        |                   |                      |                       | 0 Hauling volume (tons)                                           | Cranes                                   | 226       | 0.29   |
| S        | ite Preperation                            | Start Date:    | 10/21/2021             | Total phase:      | 8                    |                       | Any pavement demolished and hauled? 200 tons                      | Crawler Tractors                         | 208       | 0.43   |
|          |                                            | End Date:      | 11/01/2021             |                   | 0                    |                       | Soil Hauling Volume                                               | Crushing/Proc. Equipment                 | 85        | 0.78   |
|          | Graders<br>Rubber Tired Dozers             | 174<br>145     | 0.41                   | 0                 | 0                    | 0                     | Export volume = <u>10</u> cubic yards                             | Dumpers/Tenders                          | 16<br>162 | 0.38   |
|          | ractors/Loaders/Backhoes                   | 97             | 0.4                    | 6                 | 3.3                  | 2.5                   | Import volume = 0 cubic yards                                     | Excavators<br>Forklifts                  | 89        | 0.38   |
| <u> </u> | Tactora/Loadera/Dackhoes                   | 51             | 0.51                   | 0                 | 0.0                  | 2.5                   |                                                                   | Generator Sets                           | 84        | 0.2    |
| G        | irading / Excavation                       | Start Date:    | 10/29/2021             | Total phase:      | 15                   |                       |                                                                   | Graders                                  | 174       | 0.41   |
|          |                                            | End Date:      | 11/18/2021             |                   |                      |                       | Soil Hauling Volume                                               | Off-Highway Tractors                     | 122       | 0.44   |
| 1 S      | crapers                                    | 361            | 0.48                   |                   |                      | 0                     | •                                                                 | Off-Highway Trucks                       | 400       | 0.38   |
| 1 E      | xcavators                                  | 55             | 0.38                   | 8                 | 20                   | 10.7                  | Export volume = <u>80</u> cubic yards                             | Other Construction Equipment             | 171       | 0.42   |
|          | Graders                                    | 60             | 0.41                   |                   |                      | 0                     | Import volume = <u>0</u> cubic yards                              | Other General Industrial Equipment       | 150       | 0.34   |
|          | Rubber Tired Dozers                        | 255            | 0.4                    |                   | 45                   | 0                     |                                                                   | Other Material Handling Equipment        | 167       | 0.4    |
|          | iractors/Loaders/Backhoes Other Equipment? | 97             | 0.37                   | 8                 | 15                   | 8                     |                                                                   | Pavers                                   | 125       | 0.42   |
|          | Siner Equipment?                           | _              |                        |                   |                      |                       |                                                                   | Paving Equipment<br>Plate Compactors     | 130       | 0.36   |
| т        | renching / Ground Improvement              | Start Date:    | 11/15/2021             | Total phase:      | 13                   |                       |                                                                   | Pressure Washers                         | 13        | 0.45   |
|          |                                            | End Date:      | 12/1/2021              |                   |                      |                       |                                                                   | Pumps                                    | 84        | 0.74   |
| 1 T      | ractor/Loader/Backhoe                      | 77             | 0.37                   | 8                 | 5                    | 3.1                   |                                                                   | Rollers                                  | 80        | 0.38   |
|          | xcavators                                  | NA             |                        |                   |                      | 0                     |                                                                   | Rough Terrain Forklifts                  | 100       | 0.4    |
| C        | Crane for Caisons                          | NA             | 0                      | 0                 | 0                    | 0                     |                                                                   | Rubber Tired Dozers                      | 255       | 0.4    |
|          |                                            |                |                        |                   |                      |                       | - · · · ·                                                         | Rubber Tired Loaders                     | 199       | 0.36   |
| В        | Building Structure / Exterior              | Start Date:    | 12/1/2021              | Total phase:      | 120                  |                       | Cement trucks                                                     | Scrapers                                 | 361       | 0.48   |
| 14 C     | Cement trucks                              | End Date:<br>9 | 5/17/2022<br>0.56      | 4                 | 8                    | 0.3                   | Electric Crane                                                    | Signal Boards<br>Skid Steer Loaders      | 6<br>64   | 0.82   |
|          | Cranes                                     | 226            | 0.29                   | 7                 | 0                    | 0.3                   | Lieotilo Grane                                                    | Skid Steer Loaders<br>Skid Steer Loaders | 64        | 0.37   |
|          | orklifts                                   | 89             | 0.2                    | 4                 | 16                   | 0.5                   | Diesel                                                            | Surfacing Equipment                      | 253       | 0.3    |
|          | Generator Sets                             | 84             | 0.74                   |                   |                      |                       |                                                                   | Sweepers/Scrubbers                       | 64        | 0.46   |
| т        | ractors/Loaders/Backhoes                   | 97             | 0.37                   |                   |                      | 0                     |                                                                   | Tractors/Loaders/Backhoes                | 97        | 0.37   |
|          | Velders                                    | 46             | 0.45                   | 0                 | 0                    | 0                     |                                                                   | Trenchers                                | 80        | 0.5    |
| C        | Other Equipment?                           |                |                        |                   |                      | 0                     |                                                                   | Welders                                  | 46        | 0.45   |
|          | Building - Interior/Architectural Coating  | Start Date:    | 5/17/2022              | Total phase:      | 47                   | <u> </u>              | concurent                                                         |                                          |           |        |
|          | suliding - Interior/Architectural Coating  | End Date:      | 7/20/2022              | l otal phase:     | 4/                   |                       | concurent                                                         |                                          |           |        |
| 3 A      | ir Compressors                             | 78             | 0.48                   | 4                 | 25                   | 2.1                   | All Electric Equipment                                            |                                          |           |        |
| 2 A      | erial Lift                                 | 62             |                        |                   |                      |                       | · · ·                                                             |                                          |           |        |
| N        | 1an lift                                   | 20             |                        |                   |                      |                       |                                                                   |                                          |           |        |
| -        |                                            |                |                        |                   |                      |                       |                                                                   |                                          |           |        |
| C        | OffSite /Onsite Improvements               | Start Date:    | 7/20/2022              | Total phase:      | 14                   |                       |                                                                   |                                          |           |        |
|          | Cement and Mortar Mixers                   | End Date:<br>9 | 8/8/2022<br>0.56       |                   |                      |                       |                                                                   |                                          |           |        |
|          | ement and Mortar Mixers<br>avers           | 9<br>NA        | 0.56                   |                   |                      | +                     |                                                                   |                                          |           |        |
|          | aving Equipment                            | 130            | 0.36                   | 6                 | 5                    | 2.1                   |                                                                   |                                          |           |        |
|          | Rollers                                    | 80             | 0.38                   |                   |                      |                       |                                                                   |                                          |           |        |
| R        |                                            |                |                        |                   |                      |                       |                                                                   |                                          |           |        |
| 1 T      | ractors/Loaders/Backhoes Other Equipment?  |                |                        | 8                 | 5                    | 2.9                   |                                                                   |                                          |           |        |

| Construction Criteria Air Pollutants |                        |                |                   |               |       |        |  |  |
|--------------------------------------|------------------------|----------------|-------------------|---------------|-------|--------|--|--|
| Unmitigated                          | ROG                    | NOX            | PM10 Exhaust      | PM2.5 Exhaust | CO2e  |        |  |  |
| Year                                 |                        |                | Tons              |               | MT    |        |  |  |
|                                      | Construction Equipment |                |                   |               |       |        |  |  |
| 2021 - 2022                          | 0.15                   | 0.33           | 0.01              | 0.01          | 69.48 |        |  |  |
|                                      |                        |                | EMFAC             |               |       |        |  |  |
| 2021 - 2022                          | 0.00                   | 0.02           | 0.00              | 0.00          | 10.64 |        |  |  |
|                                      | -                      | otal Construct | tion Emissions by | Year          |       |        |  |  |
| 2021 - 2022                          | 0.15                   | 0.35           | 0.01              | 0.01          | 80.12 |        |  |  |
|                                      |                        | Total Const    | ruction Emissions |               |       |        |  |  |
| Tons                                 | 0.15                   | 0.35           | 0.01              | 0.01          | 80.12 |        |  |  |
| Pounds/Workdays                      |                        | Average I      | Daily Emissions   |               | Worl  | kdays  |  |  |
| 2021 - 2022                          | 1.40                   | 3.29           | 0.14              | 0.13          |       | 213    |  |  |
| Threshold - lbs/day                  | 54.0                   | 54.0           | 82.0              | 54.0          |       |        |  |  |
|                                      |                        | Total Const    | ruction Emissions |               |       |        |  |  |
| Pounds                               | 1.40                   | 3.29           | 0.14              | 0.13          | 0.00  |        |  |  |
| Average                              | 1.40                   | 3.29           | 0.14              | 0.13          | 0.00  | 213.00 |  |  |
| Threshold - lbs/day                  | 54.0                   | 54.0           | 82.0              | 54.0          |       |        |  |  |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

21-095 175 Monroe St Santa Clara County, Annual

#### **1.0 Project Characteristics**

#### 1.1 Land Usage

| Land Uses                  | Size  | Metric        | Lot Acreage | Floor Surface Area | Population |
|----------------------------|-------|---------------|-------------|--------------------|------------|
| Single Family Housing      | 8.00  | Dwelling Unit | 0.40        | 15,494.00          | 23         |
| Enclosed Parking Structure | 18.00 | Space         | 0.00        | 3,432.00           | 0          |

#### **1.2 Other Project Characteristics**

| Urbanization               | Urban | Wind Speed (m/s)           | 2.2 | Precipitation Freq (Days)  | 58   |
|----------------------------|-------|----------------------------|-----|----------------------------|------|
| Climate Zone               | 4     |                            |     | Operational Year           | 2023 |
| Utility Company            |       |                            |     |                            |      |
| CO2 Intensity<br>(Ib/MWhr) | 0     | CH4 Intensity<br>(Ib/MWhr) | 0   | N2O Intensity<br>(Ib/MWhr) | 0    |

#### 1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Unit amount, acreage, and square footage provided by applicant Construction Phase - Phase start dates and lengths provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant Off-road Equipment - Construction equipment information provided by applicant

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Demolition -

#### Trips and VMT - All trips entered into EMFAC2021

#### Construction Off-road Equipment Mitigation - All equipment t4i, BMP

| Table Name              | Column Name                  | Default Value | New Value      |
|-------------------------|------------------------------|---------------|----------------|
| tblConstDustMitigation  | WaterUnpavedRoadVehicleSpeed | 0             | 15             |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 3.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 2.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 3.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 14.00          |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 1.00           |
| tblConstEquipMitigation | NumberOfEquipmentMitigated   | 0.00          | 4.00           |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstEquipMitigation | Tier                         | No Change     | Tier 4 Interim |
| tblConstructionPhase    | NumDays                      | 5.00          | 47.00          |
| tblConstructionPhase    | NumDays                      | 100.00        | 120.00         |
| tblConstructionPhase    | NumDays                      | 10.00         | 5.00           |
| tblConstructionPhase    | NumDays                      | 2.00          | 15.00          |
| tblConstructionPhase    | NumDays                      | 5.00          | 14.00          |
| tblConstructionPhase    | NumDays                      | 1.00          | 8.00           |
| tblConstructionPhase    | PhaseEndDate                 | 4/6/2022      | 7/20/2022      |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|                      | -                          |                           | ,                         |
|----------------------|----------------------------|---------------------------|---------------------------|
| tblConstructionPhase | PhaseEndDate               | 3/23/2022                 | 5/17/2022                 |
| tblConstructionPhase | PhaseEndDate               | 10/29/2021                | 10/22/2021                |
| tblConstructionPhase | PhaseEndDate               | 11/3/2021                 | 11/18/2021                |
| tblConstructionPhase | PhaseEndDate               | 3/30/2022                 | 8/8/2022                  |
| tblConstructionPhase | PhaseStartDate             | 3/31/2022                 | 5/17/2022                 |
| tblConstructionPhase | PhaseStartDate             | 11/4/2021                 | 12/1/2021                 |
| tblConstructionPhase | PhaseStartDate             | 11/2/2021                 | 10/29/2021                |
| tblConstructionPhase | PhaseStartDate             | 3/24/2022                 | 7/20/2022                 |
| tblConstructionPhase | PhaseStartDate             | 10/30/2021                | 10/21/2021                |
| tblGrading           | MaterialExported           | 0.00                      | 80.00                     |
| tblLandUse           | LandUseSquareFeet          | 14,400.00                 | 15,494.00                 |
| tblLandUse           | LandUseSquareFeet          | 7,200.00                  | 3,432.00                  |
| tblLandUse           | LotAcreage                 | 2.60                      | 0.40                      |
| tblLandUse           | LotAcreage                 | 0.16                      | 0.00                      |
| tblOffRoadEquipment  | LoadFactor                 | 0.31                      | 0.31                      |
| tblOffRoadEquipment  | LoadFactor                 | 0.38                      | 0.38                      |
| tblOffRoadEquipment  | LoadFactor                 | 0.37                      | 0.37                      |
| tblOffRoadEquipment  | LoadFactor                 | 0.36                      | 0.36                      |
| tblOffRoadEquipment  | OffRoadEquipmentType       |                           | Aerial Lifts              |
| tblOffRoadEquipment  | OffRoadEquipmentType       |                           | Excavators                |
| tblOffRoadEquipment  | OffRoadEquipmentType       |                           | Tractors/Loaders/Backhoes |
| tblOffRoadEquipment  | OffRoadEquipmentType       | Graders                   | Scrapers                  |
| tblOffRoadEquipment  | OffRoadEquipmentType       | Pavers                    | Paving Equipment          |
| tblOffRoadEquipment  | OffRoadEquipmentType       | Rubber Tired Dozers       | Excavators                |
| tblOffRoadEquipment  | OffRoadEquipmentType       | Rubber Tired Dozers       | Excavators                |
| tblOffRoadEquipment  | OffRoadEquipmentType       | Tractors/Loaders/Backhoes | Off-Highway Trucks        |
| tblOffRoadEquipment  | OffRoadEquipmentUnitAmount | 1.00                      | 3.00                      |
| tblOffRoadEquipment  | OffRoadEquipmentUnitAmount | 2.00                      | 1.00                      |
| tblOffRoadEquipment  | UsageHours                 | 6.00                      | 2.10                      |
|                      | 1                          |                           | 1                         |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| tblOffRoadEquipment | UsageHours        | 6.00  | 0.50 |
|---------------------|-------------------|-------|------|
| tblOffRoadEquipment | UsageHours        | 7.00  | 8.00 |
| tblOffRoadEquipment | UsageHours        | 7.00  | 2.90 |
| tblOffRoadEquipment | UsageHours        | 8.00  | 2.50 |
| tblTripsAndVMT      | HaulingTripNumber | 10.00 | 0.00 |
| tblTripsAndVMT      | HaulingTripNumber | 10.00 | 0.00 |
| tblTripsAndVMT      | VendorTripNumber  | 1.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 3.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 3.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 8.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 4.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 5.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 1.00  | 0.00 |
| tblTripsAndVMT      | WorkerTripNumber  | 5.00  | 0.00 |

#### 2.0 Emissions Summary

#### 2.1 Overall Construction

Unmitigated Construction

|         | ROG    | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|---------|--------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Year    |        |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | MT        | /yr             |        |         |
| 2021    | 0.0160 | 0.1606 | 0.1580 | 3.1000e-004 | 7.0500e-<br>003  | 7.0800e-<br>003 | 0.0141      | 8.1000e-<br>004   | 6.5100e-<br>003  | 7.3200e-003 | 0.0000   | 27.4480   | 27.4480   | 8.8800e-<br>003 | 0.0000 | 27.6699 |
| 2022    | 0.1311 | 0.1737 | 0.1952 | 5.1000e-004 | 0.0000           | 6.8100e-<br>003 | 6.8100e-003 | 0.0000            | 6.4300e-<br>003  | 6.4300e-003 | 0.0000   | 44.4863   | 44.4863   | 0.0128          | 0.0000 | 44.8053 |
| Maximum | 0.1311 | 0.1737 | 0.1952 | 5.1000e-004 | 7.0500e-<br>003  | 7.0800e-<br>003 | 0.0141      | 8.1000e-<br>004   | 6.5100e-<br>003  | 7.3200e-003 | 0.0000   | 44.4863   | 44.4863   | 0.0128          | 0.0000 | 44.8053 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

#### **Mitigated Construction**

|         | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|---------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Year    |                 |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |         |
| 2021    | 4.8800e-<br>003 | 0.1084 | 0.1994 | 3.1000e-004 | 3.1700e-<br>003  | 5.1000e-<br>004 | 3.6900e-003 | 3.6000e-<br>004   | 5.1000e-<br>004  | 8.8000e-004 | 0.0000   | 27.4479   | 27.4479   | 8.8800e-<br>003 | 0.0000 | 27.6699 |
| 2022    | 0.1189          | 0.1675 | 0.2982 | 5.1000e-004 | 0.0000           | 2.4800e-<br>003 | 2.4800e-003 | 0.0000            | 2.4800e-<br>003  | 2.4800e-003 | 0.0000   | 44.4862   | 44.4862   | 0.0128          | 0.0000 | 44.8052 |
| Maximum | 0.1189          | 0.1675 | 0.2982 | 5.1000e-004 | 3.1700e-<br>003  | 2.4800e-<br>003 | 3.6900e-003 | 3.6000e-<br>004   | 2.4800e-<br>003  | 2.4800e-003 | 0.0000   | 44.4862   | 44.4862   | 0.0128          | 0.0000 | 44.8052 |

|                      | ROG   | NOx      | CO     | SO2   | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2     | NBio-CO2    | Total CO2    | CH4  | N20  | CO2e |
|----------------------|-------|----------|--------|-------|------------------|-----------------|--------------|-------------------|------------------|----------------|--------------|-------------|--------------|------|------|------|
| Percent<br>Reduction | 15.83 | 17.49    | -40.90 | 0.00  | 55.04            | 78.47           | 70.53        | 55.56             | 76.89            | 75.56          | 0.00         | 0.00        | 0.00         | 0.00 | 0.00 | 0.00 |
| Quarter              | Sta   | art Date | End    | Date  | Maxim            | um Unmitiga     | ated ROG + N | OX (tons/qua      | arter)           | Maxi           | mum Mitigate | ed ROG + NC | X (tons/quar | ter) |      |      |
| 1                    | 10-   | -16-2021 | 1-15   | -2022 | 0.1873 0.1219    |                 |              |                   |                  |                |              |             |              |      |      |      |
| 2                    | 1-1   | 16-2022  | 4-15   | -2022 | 0.0790 0.0637    |                 |              |                   |                  |                |              |             |              |      |      |      |
| 3                    | 4-'   | 16-2022  | 7-15   | -2022 | 0.1899 0.1898    |                 |              |                   | 0.1899 0.1898    |                |              |             |              |      |      |      |
| 4                    | 7-'   | 16-2022  | 9-30-  | -2022 | 0.0218 0.0210    |                 |              |                   | 0.0218 0.0210    |                |              |             |              |      |      |      |
|                      |       |          | Hig    | hest  | 0.1899           |                 |              |                   |                  | 0.1898         |              |             |              |      |      |      |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|          | ROG             | NOx         | СО              | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O         | CO2e    |
|----------|-----------------|-------------|-----------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------|
| Category |                 |             |                 |             | tor              | ns/yr           |             |                   |                  | МТ          | /yr      |           |           |                 |             |         |
| Area     | 0.1207          | 1.7200e-003 | 0.1281          | 1.4000e-004 |                  | 0.0102          | 0.0102      |                   | 0.0102           | 0.0102      | 1.0169   | 0.3470    | 1.3639    | 2.0200e-<br>003 | 6.0000e-005 | 1.4316  |
| Energy   | 1.1500e-<br>003 | 9.8200e-003 | 4.1800e-<br>003 | 6.0000e-005 |                  | 7.9000e-<br>004 | 7.9000e-004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-<br>004 | 2.1000e-004 | 11.4360 |
| Mobile   | 0.0304          | 0.0336      | 0.2882          | 5.9000e-004 | 0.0637           | 4.3000e-<br>004 | 0.0641      | 0.0170            | 4.0000e-<br>004  | 0.0174      | 0.0000   | 55.2289   | 55.2289   | 3.5900e-<br>003 | 2.6100e-003 | 56.0970 |
| Waste    |                 |             |                 |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 1.9609   | 0.0000    | 1.9609    | 0.1159          | 0.0000      | 4.8580  |
| Water    |                 |             |                 |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.1654   | 0.0000    | 0.1654    | 0.0170          | 4.0000e-004 | 0.7095  |
| Total    | 0.1522          | 0.0451      | 0.4206          | 7.9000e-004 | 0.0637           | 0.0114          | 0.0751      | 0.0170            | 0.0114           | 0.0284      | 3.1431   | 66.9444   | 70.0875   | 0.1387          | 3.2800e-003 | 74.5321 |

#### Mitigated Operational

|          | ROG              | NOx         | СО              | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O         | CO2e    |
|----------|------------------|-------------|-----------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------|
| Category | Category tons/yr |             |                 |             |                  |                 |             |                   |                  |             |          |           | MT        | /yr             |             |         |
| Area     | 0.1207           | 1.7200e-003 | 0.1281          | 1.4000e-004 |                  | 0.0102          | 0.0102      |                   | 0.0102           | 0.0102      | 1.0169   | 0.3470    | 1.3639    | 2.0200e-<br>003 | 6.0000e-005 | 1.4316  |
| Energy   | 1.1500e-<br>003  | 9.8200e-003 | 4.1800e-<br>003 | 6.0000e-005 |                  | 7.9000e-<br>004 | 7.9000e-004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-<br>004 | 2.1000e-004 | 11.4360 |
| Mobile   | 0.0304           | 0.0336      | 0.2882          | 5.9000e-004 | 0.0637           | 4.3000e-<br>004 | 0.0641      | 0.0170            | 4.0000e-<br>004  | 0.0174      | 0.0000   | 55.2289   | 55.2289   | 3.5900e-<br>003 | 2.6100e-003 | 56.0970 |
| Waste    |                  |             |                 |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 1.9609   | 0.0000    | 1.9609    | 0.1159          | 0.0000      | 4.8580  |
| Water    |                  |             |                 |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.1654   | 0.0000    | 0.1654    | 0.0170          | 4.0000e-004 | 0.7095  |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Total | 0.1522 | 0.0451 | 0.4206 | 7.9000e-004 | 0.0637 | 0.0114 | 0.0751 | 0.0170 | 0.0114 | 0.0284 | 3.1431 | 66.9444 | 70.0875 | 0.1387 | 3.2800e-003 | 74.5321 |
|-------|--------|--------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|-------------|---------|
|       |        |        |        |             |        |        |        |        |        |        |        |         |         |        |             |         |
|       |        |        |        |             |        |        |        |        |        |        |        |         |         |        |             |         |

|                      | ROG  | NOx  | со   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00       | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

#### **3.0 Construction Detail**

#### **Construction Phase**

| Phase<br>Number | Phase Name            | Phase Type            | Start Date | End Date   | Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|-----------------------|------------|------------|------------------|----------|-------------------|
| 1               | Demolition            | Demolition            | 10/16/2021 | 10/22/2021 | 5                | 5        |                   |
| 2               | Site Preparation      | Site Preparation      | 10/21/2021 | 11/1/2021  | 5                | 8        |                   |
| 3               | Grading               | Grading               | 10/29/2021 | 11/18/2021 | 5                | 15       |                   |
| 4               | Building Construction | Building Construction | 12/1/2021  | 5/17/2022  | 5                | 120      |                   |
| 5               | Paving                | Paving                | 7/20/2022  | 8/8/2022   | 5                | 14       |                   |
| 6               | Architectural Coating | Architectural Coating | 5/17/2022  | 7/20/2022  | 5                | 47       |                   |
| 7               | Trenching             | Trenching             | 11/15/2021 | 12/1/2021  | 5                | 13       |                   |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 11.25

Acres of Paving: 0

Residential Indoor: 31,375; Residential Outdoor: 10,458; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 206

#### **OffRoad Equipment**

| Phase Name            | Offroad Equipment Type | Amount | Usage Hours | Horse Power | Load Factor |
|-----------------------|------------------------|--------|-------------|-------------|-------------|
| 5                     | Air Compressors        | 3      | 2.10        |             | 0.48        |
| Architectural Coating | Aerial Lifts           | 2      | 8.00        | 63          |             |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Trenching             | Excavators                | 1  | 8.00  | 158 | 0.38 |
|-----------------------|---------------------------|----|-------|-----|------|
| Trenching             | Tractors/Loaders/Backhoes | 1  | 3.10  | 97  | 0.37 |
| Building Construction | Forklifts                 | 1  | 0.50  | 89  | 0.20 |
| Grading               | Scrapers                  | 1  | 6.00  | 367 | 0.48 |
| Paving                | Paving Equipment          | 1  | 2.10  | 132 | 0.36 |
| Demolition            | Excavators                | 1  | 16.00 | 158 | 0.38 |
| Grading               | Excavators                | 1  | 10.70 | 158 | 0.38 |
| Building Construction | Off-Highway Trucks        | 14 | 0.30  | 402 | 0.38 |
| Grading               | Tractors/Loaders/Backhoes | 1  | 8.00  | 97  | 0.37 |
| 5                     | Tractors/Loaders/Backhoes | 1  | 2.90  | 97  | 0.37 |
| Site Preparation      | Tractors/Loaders/Backhoes | 1  | 2.50  | 97  | 0.37 |

#### Trips and VMT

| Phase Name            | Offroad Equipment<br>Count | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Worker Vehicle<br>Class | Vendor Vehicle<br>Class | Hauling Vehicle<br>Class |
|-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------|
| Demolition            | 1                          | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Site Preparation      | 1                          | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Grading               | 3                          | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Building Construction | 15                         | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Paving                | 2                          | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Architectural Coating | 5                          | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Trenching             | 2                          | 0.00                  | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |

#### 3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2021

**Unmitigated Construction On-Site** 

|               | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |  |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|--|
| Category      | tons/yr         |        |        |             |                  |                 |             |                   |                  |             | MT/yr    |           |           |                 |        |        |  |
| Fugitive Dust |                 |        |        |             | 1.0800e-<br>003  | 0.0000          | 1.0800e-003 | 1.6000e-<br>004   | 0.0000           | 1.6000e-004 | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |  |
| Off-Road      | 1.1500e-<br>003 | 0.0108 | 0.0164 | 3.0000e-005 |                  | 5.2000e-<br>004 | 5.2000e-004 |                   | 4.8000e-<br>004  | 4.8000e-004 | 0.0000   | 2.2688    | 2.2688    | 7.3000e-<br>004 | 0.0000 | 2.2872 |  |
| Total         | 1.1500e-<br>003 | 0.0108 | 0.0164 | 3.0000e-005 | 1.0800e-<br>003  | 5.2000e-<br>004 | 1.6000e-003 | 1.6000e-<br>004   | 4.8000e-<br>004  | 6.4000e-004 | 0.0000   | 2.2688    | 2.2688    | 7.3000e-<br>004 | 0.0000 | 2.2872 |  |

#### **Unmitigated Construction Off-Site**

|          | ROG     | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|---------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category | tons/yr |        |        |        |                  |                 |            |                   |                  | MT/yr       |          |           |           |        |        |        |
| Hauling  | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

#### **Mitigated Construction On-Site**

|               | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |  |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|--|
| Category      | tons/yr         |        |        |             |                  |                 |             |                   |                  |             | MT/yr    |           |           |                 |        |        |  |
| Fugitive Dust |                 |        |        |             | 4.9000e-<br>004  | 0.0000          | 4.9000e-004 | 7.0000e-<br>005   | 0.0000           | 7.0000e-005 | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |  |
| Off-Road      | 3.2000e-<br>004 | 0.0114 | 0.0196 | 3.0000e-005 |                  | 4.0000e-<br>005 | 4.0000e-005 |                   | 4.0000e-<br>005  | 4.0000e-005 | 0.0000   | 2.2688    | 2.2688    | 7.3000e-<br>004 | 0.0000 | 2.2872 |  |
| Total         | 3.2000e-<br>004 | 0.0114 | 0.0196 | 3.0000e-005 | 4.9000e-<br>004  | 4.0000e-<br>005 | 5.3000e-004 | 7.0000e-<br>005   | 4.0000e-<br>005  | 1.1000e-004 | 0.0000   | 2.2688    | 2.2688    | 7.3000e-<br>004 | 0.0000 | 2.2872 |  |

#### **Mitigated Construction Off-Site**

|          | ROG     | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|---------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category | tons/yr |        |        |        |                  |                 |            |                   |                  | MT/yr       |          |           |           |        |        |        |
| Hauling  | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

3.3 Site Preparation - 2021 Unmitigated Construction On-Site

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|               | ROG             | NOx             | СО          | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|---------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category      |                 |                 |             |        | tor              | is/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Fugitive Dust |                 |                 |             |        | 0.0000           | 0.0000          | 0.0000      | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
|               | 2.3000e-<br>004 | 2.3700e-<br>003 | 2.8300e-003 | 0.0000 |                  | 1.4000e-<br>004 | 1.4000e-004 |                   | 1.3000e-<br>004  | 1.3000e-004 | 0.0000   | 0.3412    | 0.3412    | 1.1000e-<br>004 | 0.0000 | 0.3440 |
| Total         | 2.3000e-<br>004 | 2.3700e-<br>003 | 2.8300e-003 | 0.0000 | 0.0000           | 1.4000e-<br>004 | 1.4000e-004 | 0.0000            | 1.3000e-<br>004  | 1.3000e-004 | 0.0000   | 0.3412    | 0.3412    | 1.1000e-<br>004 | 0.0000 | 0.3440 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|               | ROG             | NOx             | СО          | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|---------------|-----------------|-----------------|-------------|--------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category      |                 |                 |             |        | tor              | is/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Fugitive Dust |                 |                 |             |        | 0.0000           | 0.0000          | 0.0000      | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
|               | 9.0000e-<br>005 | 1.6900e-<br>003 | 2.9300e-003 | 0.0000 |                  | 1.0000e-<br>005 | 1.0000e-005 |                   | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 0.3412    | 0.3412    | 1.1000e-<br>004 | 0.0000 | 0.3440 |
| Total         | 9.0000e-<br>005 | 1.6900e-<br>003 | 2.9300e-003 | 0.0000 | 0.0000           | 1.0000e-<br>005 | 1.0000e-005 | 0.0000            | 1.0000e-<br>005  | 1.0000e-005 | 0.0000   | 0.3412    | 0.3412    | 1.1000e-<br>004 | 0.0000 | 0.3440 |

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|               | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Category      |                 |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |         |
| Fugitive Dust |                 |        |        |             | 5.9700e-<br>003  | 0.0000          | 5.9700e-003 | 6.4000e-<br>004   | 0.0000           | 6.4000e-004 | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Off-Road      | 8.9300e-<br>003 | 0.0960 | 0.0892 | 1.6000e-004 |                  | 4.2300e-<br>003 | 4.2300e-003 |                   | 3.8900e-<br>003  | 3.8900e-003 | 0.0000   | 14.0898   | 14.0898   | 4.5600e-<br>003 | 0.0000 | 14.2037 |
| Total         | 8.9300e-<br>003 | 0.0960 | 0.0892 | 1.6000e-004 | 5.9700e-<br>003  | 4.2300e-<br>003 | 0.0102      | 6.4000e-<br>004   | 3.8900e-<br>003  | 4.5300e-003 | 0.0000   | 14.0898   | 14.0898   | 4.5600e-<br>003 | 0.0000 | 14.2037 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|               | ROG             | NOx    | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|---------------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Category      |                 |        |        |             | tor              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |         |
| Fugitive Dust |                 |        |        |             | 2.6900e-<br>003  | 0.0000          | 2.6900e-003 | 2.9000e-<br>004   | 0.0000           | 2.9000e-004 | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Off-Road      | 2.5600e-<br>003 | 0.0555 | 0.1023 | 1.6000e-004 |                  | 2.6000e-<br>004 | 2.6000e-004 |                   | 2.6000e-<br>004  | 2.6000e-004 | 0.0000   | 14.0897   | 14.0897   | 4.5600e-<br>003 | 0.0000 | 14.2037 |
| Total         | 2.5600e-<br>003 | 0.0555 | 0.1023 | 1.6000e-004 | 2.6900e-<br>003  | 2.6000e-<br>004 | 2.9500e-003 | 2.9000e-<br>004   | 2.6000e-<br>004  | 5.5000e-004 | 0.0000   | 14.0897   | 14.0897   | 4.5600e-<br>003 | 0.0000 | 14.2037 |

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|          | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | ton              | is/yr           |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 3.7500e-<br>003 | 0.0326 | 0.0226 | 8.0000e-005 |                  | 1.2300e-<br>003 | 1.2300e-003 |                   | 1.1300e-<br>003  | 1.1300e-003 | 0.0000   | 7.0992    | 7.0992    | 2.3000e-<br>003 | 0.0000 | 7.1566 |
| Total    | 3.7500e-<br>003 | 0.0326 | 0.0226 | 8.0000e-005 |                  | 1.2300e-<br>003 | 1.2300e-003 |                   | 1.1300e-<br>003  | 1.1300e-003 | 0.0000   | 7.0992    | 7.0992    | 2.3000e-<br>003 | 0.0000 | 7.1566 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|          | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | ton              | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 1.3300e-<br>003 | 0.0215 | 0.0431 | 8.0000e-005 |                  | 1.3000e-<br>004 | 1.3000e-004 |                   | 1.3000e-<br>004  | 1.3000e-004 | 0.0000   | 7.0992    | 7.0992    | 2.3000e-<br>003 | 0.0000 | 7.1566 |
| Total    | 1.3300e-<br>003 | 0.0215 | 0.0431 | 8.0000e-005 |                  | 1.3000e-<br>004 | 1.3000e-004 |                   | 1.3000e-<br>004  | 1.3000e-004 | 0.0000   | 7.0992    | 7.0992    | 2.3000e-<br>003 | 0.0000 | 7.1566 |

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ıs/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

### 3.5 Building Construction - 2022

**Unmitigated Construction On-Site** 

|  | ROG | NOx | CO | SO2 | Fuaitive | Exhaust | PM10 Total | Fuaitive | Exhaust | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|--|-----|-----|----|-----|----------|---------|------------|----------|---------|-------------|----------|-----------|-----------|-----|-----|------|
|  |     | -   |    | -   | 5        |         | -          | 5        |         | -           |          |           |           | _   | _   |      |
|  |     |     |    |     | PM10     | PM10    |            | PM2.5    | PM2.5   |             |          |           |           |     |     | 1    |
|  |     |     |    |     |          |         |            |          |         |             |          |           |           |     |     | 1    |
|  |     |     |    |     |          |         |            |          |         |             |          |           |           |     |     |      |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Category |        |        |        |             | tons/yr         |             |                 |             |        | MT      | /yr     |                 |        |         |
|----------|--------|--------|--------|-------------|-----------------|-------------|-----------------|-------------|--------|---------|---------|-----------------|--------|---------|
| Off-Road | 0.0138 | 0.1054 | 0.0890 | 3.4000e-004 | 3.9300e-<br>003 | 3.9300e-003 | 3.6100e-<br>003 | 3.6100e-003 | 0.0000 | 29.9506 | 29.9506 | 9.6900e-<br>003 | 0.0000 | 30.1928 |
| Total    | 0.0138 | 0.1054 | 0.0890 | 3.4000e-004 | 3.9300e-<br>003 | 3.9300e-003 | 3.6100e-<br>003 | 3.6100e-003 | 0.0000 | 29.9506 | 29.9506 | 9.6900e-<br>003 | 0.0000 | 30.1928 |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### Mitigated Construction On-Site

|          | ROG | NOx | CO | SO2 | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|----------|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------|
| Category |     |     |    |     | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr |     |      |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Off-Road | 5.5900e-<br>003 | 0.0905 |        | 3.4000e-004 | 5.6000e-<br>004 | 5.6000e-004 |                 | 5.6000e-004 |        | 29.9506 | 29.9506 | 9.6900e-<br>003 | 0.0000 | 30.1927 |
|----------|-----------------|--------|--------|-------------|-----------------|-------------|-----------------|-------------|--------|---------|---------|-----------------|--------|---------|
| Total    | 5.5900e-<br>003 | 0.0905 | 0.1819 | 3.4000e-004 | 5.6000e-<br>004 | 5.6000e-004 | 5.6000e-<br>004 | 5.6000e-004 | 0.0000 | 29.9506 | 29.9506 | 9.6900e-<br>003 | 0.0000 | 30.1927 |

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### 3.6 Paving - 2022

**Unmitigated Construction On-Site** 

|          | ROG | NOx             | CO | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----|-----------------|----|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |     |                 |    |             | tor              | is/yr           |             |                   |                  | МТ          | /yr      |           |           |                 |        |        |
| Off-Road | 004 | 7.4000e-<br>003 |    | 2.0000e-005 |                  | 004             | 3.8000e-004 |                   | 004              | 3.5000e-004 |          | 1.3421    | 1.3421    | 4.3000e-<br>004 | 0.0000 | 1.3529 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Paving | 0.0000          |                 |        |             | 0.0000          | 0.0000      | 0.0000          | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000 | 0.0000 |
|--------|-----------------|-----------------|--------|-------------|-----------------|-------------|-----------------|-------------|--------|--------|--------|-----------------|--------|--------|
| Total  | 7.4000e-<br>004 | 7.4000e-<br>003 | 0.0103 | 2.0000e-005 | 3.8000e-<br>004 | 3.8000e-004 | 3.5000e-<br>004 | 3.5000e-004 | 0.0000 | 1.3421 | 1.3421 | 4.3000e-<br>004 | 0.0000 | 1.3529 |

#### Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### Mitigated Construction On-Site

|          | ROG | NOx             | CO | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----|-----------------|----|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |     |                 |    |             | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr             |        |        |
| Off-Road | 004 | 6.7000e-<br>003 |    | 2.0000e-005 |                  | 005             |            |                   | 005              | 3.0000e-005 |          | 1.3421    | 1.3421    | 4.3000e-<br>004 | 0.0000 | 1.3529 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Paving | 0.0000   |          |        |             |   | 0.0000   | 0.0000      | 0.0000   | 0.0000      | 0.0000 | 0.0000 | 0.0000 | 0.0000   | 0.0000 | 0.0000 |
|--------|----------|----------|--------|-------------|---|----------|-------------|----------|-------------|--------|--------|--------|----------|--------|--------|
| Total  | 2.7000e- | 6.7000e- | 0.0116 | 2.0000e-005 | = | 3.0000e- | 3.0000e-005 | 3.0000e- | 3.0000e-005 | 0.0000 | 1.3421 | 1.3421 | 4.3000e- | 0.0000 | 1.3529 |
|        | 004      | 003      |        |             |   | 005      |             | 005      |             |        |        |        | 004      |        |        |

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | is/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

# 3.7 Architectural Coating - 2022

**Unmitigated Construction On-Site** 

|                 | ROG    | NOx | СО | SO2 | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|-----------------|--------|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category        |        |     |    |     | tor              | is/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Archit. Coating | 0.1098 |     |    |     |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Off-Road | 6.7300e-<br>003 | 0.0609 | 0.0959 | 1.5000e-004 |    |                | 2.5000e-003 |                 | 2.4600e-003 |        | 13.1936 | 13.1936 | 2.6400e-<br>003 | 0.0000 | 13.2596 |
|----------|-----------------|--------|--------|-------------|----|----------------|-------------|-----------------|-------------|--------|---------|---------|-----------------|--------|---------|
| Total    | 0.1165          | 0.0609 | 0.0959 | 1.5000e-004 | 2. | .5000e-<br>003 | 2.5000e-003 | 2.4600e-<br>003 | 2.4600e-003 | 0.0000 | 13.1936 | 13.1936 | 2.6400e-<br>003 | 0.0000 | 13.2596 |

#### Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### Mitigated Construction On-Site

|                 | ROG    | NOx | CO | SO2 | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|-----------------|--------|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category        |        |     |    |     | tor              | is/yr           |            |                   |                  | MT          | /yr      |           |           |        |        |        |
| Archit. Coating | 0.1098 |     |    |     |                  | 0.0000          | 0.0000     |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Off-Road | 3.2800e-<br>003 | 0.0703 |        | 1.5000e-004 |                 | 1.9000e-003 |                 | 1.9000e-003 |        | 13.1936 | 13.1936 | 2.6400e-<br>003 | 0.0000 | 13.2596 |
|----------|-----------------|--------|--------|-------------|-----------------|-------------|-----------------|-------------|--------|---------|---------|-----------------|--------|---------|
| Total    | 0.1131          | 0.0703 | 0.1048 | 1.5000e-004 | 1.9000e-<br>003 | 1.9000e-003 | 1.9000e-<br>003 | 1.9000e-003 | 0.0000 | 13.1936 | 13.1936 | 2.6400e-<br>003 | 0.0000 | 13.2596 |

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### 3.8 Trenching - 2021

**Unmitigated Construction On-Site** 

|          | ROG             | NOx    | CO | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|----|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |    |             | tor              | is/yr           |             |                   |                  | MT          | /yr      |           |           |                 |        |        |
| Off-Road | 1.9700e-<br>003 | 0.0188 |    | 4.0000e-005 |                  | 004             | 9.6000e-004 |                   | 004              | 8.9000e-004 |          | 3.6490    | 3.6490    | 1.1800e-<br>003 | 0.0000 | 3.6785 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Total | 1.9700e- | 0.0188 | 0.0270 | 4.0000e-005 | 9.6000e- | 9.6000e-004 | 8.9000e- | 8.9000e-004 | 0.0000 | 3.6490 | 3.6490 | 1.1800e- | 0.0000 | 3.6785 |
|-------|----------|--------|--------|-------------|----------|-------------|----------|-------------|--------|--------|--------|----------|--------|--------|
|       | 003      |        |        |             | 004      |             | 004      |             |        |        |        | 003      |        | 1      |
|       |          |        |        |             |          |             |          |             |        |        |        |          |        |        |

#### **Unmitigated Construction Off-Site**

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | is/yr           |            |                   |                  |             |          |           | MT        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### Mitigated Construction On-Site

|          | ROG             | NOx    | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|--------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |        |        |             | ton              | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |        |        |
| Off-Road | 5.9000e-<br>004 | 0.0183 | 0.0315 | 4.0000e-005 |                  | 7.0000e-<br>005 | 7.0000e-005 |                   | 7.0000e-<br>005  | 7.0000e-005 | 0.0000   | 3.6490    | 3.6490    | 1.1800e-<br>003 | 0.0000 | 3.6785 |
| Total    | 5.9000e-<br>004 | 0.0183 | 0.0315 | 4.0000e-005 |                  | 7.0000e-<br>005 | 7.0000e-005 |                   | 7.0000e-<br>005  | 7.0000e-005 | 0.0000   | 3.6490    | 3.6490    | 1.1800e-<br>003 | 0.0000 | 3.6785 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

#### Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e   |
|----------|--------|--------|--------|--------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|--------|
| Category |        |        |        |        | tor              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr    |        |        |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Worker   | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total    | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000           | 0.0000          | 0.0000     | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

## 4.0 Operational Detail - Mobile

### 4.1 Mitigation Measures Mobile

|          | ROG | NOx | СО | SO2 | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4 | N2O | CO2e |
|----------|-----|-----|----|-----|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----|-----|------|
| Category |     |     |    |     | tor              | ns/yr           |            |                   |                  |             |          |           | МТ        | /yr |     |      |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Mitigated | 0.0304 | 0.0336 | 0.2882 | 5.9000e-004 | 0.0637 | 4.3000e- | 0.0641 | 0.0170 | 4.0000e- | 0.0174 | 0.0000 | 55.2289 | 55.2289 | 3.5900e- | 2.6100e-003 | 56.0970 |
|-----------|--------|--------|--------|-------------|--------|----------|--------|--------|----------|--------|--------|---------|---------|----------|-------------|---------|
|           |        |        |        |             |        | 004      |        |        | 004      |        |        |         |         | 003      |             |         |
|           | 0.0304 | 0.0336 |        | 5.9000e-004 |        | 4.3000e- | 0.0641 | 0.0170 | 4.0000e- | 0.0174 | 0.0000 | 55.2289 |         | 3.5900e- | 2.6100e-003 |         |
|           |        |        |        |             |        | 004      |        |        | 004      |        |        |         |         | 003      |             |         |

### 4.2 Trip Summary Information

|                            | Ave     | erage Daily Trip Ra | te     | Unmitigated | Mitigated  |
|----------------------------|---------|---------------------|--------|-------------|------------|
| Land Use                   | Weekday | Saturday            | Sunday | Annual VMT  | Annual VMT |
| Enclosed Parking Structure | 0.00    | 0.00                | 0.00   |             |            |
| Single Family Housing      | 75.52   | 76.32               | 68.40  | 172,336     | 172,336    |
| Total                      | 75.52   | 76.32               | 68.40  | 172,336     | 172,336    |

### 4.3 Trip Type Information

|                            |            | Miles      |             |            | Trip %     |             |         | Trip Purpos | e %     |
|----------------------------|------------|------------|-------------|------------|------------|-------------|---------|-------------|---------|
| Land Use                   | H-W or C-W | H-S or C-C | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted    | Pass-by |
| Enclosed Parking Structure | 9.50       | 7.30       | 7.30        | 0.00       | 0.00       | 0.00        | 0       | 0           | 0       |
| Single Family Housing      | 10.80      | 4.80       | 5.70        | 31.00      | 15.00      | 54.00       | 86      | 11          | 3       |

### 4.4 Fleet Mix

| Land Use                   | LDA   |     | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|----------------------------|-------|-----|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Enclosed Parking Structure | 0.571 | Ξ.  | 0.055403 | 0.188166 | 0.116095 | 0.020429 | 0.005041 | 0.007817 | 0.006362 | 0.000912 | 0.000389 | 0.024445 | 0.000927 | 0.002838 |
| Single Family Housing      | 0.571 | 175 | 0.055403 | 0.188166 | 0.116095 | 0.020429 | 0.005041 | 0.007817 | 0.006362 | 0.000912 | 0.000389 | 0.024445 | 0.000927 | 0.002838 |

### 5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

### Page 1 of 1

#### 21-095 175 Monroe St - Santa Clara County, Annual

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|                            | ROG             | NOx             | CO          | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O         | CO2e    |
|----------------------------|-----------------|-----------------|-------------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|---------|
| Category                   |                 |                 |             |             | tor              | ns/yr           |             |                   |                  |             |          |           | MT        | /yr             |             |         |
| Electricity Mitigated      |                 |                 |             |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000      | 0.0000  |
| Electricity<br>Unmitigated |                 |                 |             |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000      | 0.0000  |
| NaturalGas<br>Mitigated    | 1.1500e-<br>003 | 9.8200e-<br>003 | 4.1800e-003 | 6.0000e-005 |                  | 7.9000e-<br>004 | 7.9000e-004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-<br>004 | 2.1000e-004 | 11.4360 |
| NaturalGas<br>Unmitigated  | 1.1500e-<br>003 | 9.8200e-<br>003 | 4.1800e-003 | 6.0000e-005 |                  | 7.9000e-<br>004 | 7.9000e-004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-<br>004 | 2.1000e-004 | 11.4360 |

### 5.2 Energy by Land Use - NaturalGas

#### <u>Unmitigated</u>

|                               | NaturalGa<br>s Use | ROG             | NOx         | CO          | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total      | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4         | N2O             | CO2e    |
|-------------------------------|--------------------|-----------------|-------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-------------|-----------------|---------|
| Land Use                      | kBTU/yr            |                 |             |             |                 | tor              | is/yr           |                 |                   |                  |             |          |           | MT        | /yr         |                 |         |
| Enclosed Parking<br>Structure | 0                  | 0.0000          | 0.0000      | 0.0000      | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000      | 0.0000          | 0.0000  |
| Single Family<br>Housing      | 213036             | 1.1500e-<br>003 | 9.8200e-003 | 4.1800e-003 | 6.0000e-<br>005 |                  | 7.9000e-004     | 7.9000e-<br>004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-004 | 2.1000e-<br>004 | 11.4360 |
| Total                         |                    | 1.1500e-<br>003 | 9.8200e-003 | 4.1800e-003 | 6.0000e-<br>005 |                  | 7.9000e-004     | 7.9000e-<br>004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-004 | 2.1000e-<br>004 | 11.4360 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|                               | NaturalGa<br>s Use | ROG             | NOx         | CO          | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total      | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4         | N2O             | CO2e    |
|-------------------------------|--------------------|-----------------|-------------|-------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-------------|----------|-----------|-----------|-------------|-----------------|---------|
| Land Use                      | kBTU/yr            |                 |             |             |                 | tor              | is/yr           |                 |                   |                  |             |          |           | МТ        | /yr         |                 |         |
| Enclosed Parking<br>Structure | 0                  | 0.0000          | 0.0000      | 0.0000      | 0.0000          |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000      | 0.0000          | 0.0000  |
| Single Family<br>Housing      | 213036             | 1.1500e-<br>003 | 9.8200e-003 | 4.1800e-003 | 6.0000e-<br>005 |                  | 7.9000e-004     | 7.9000e-<br>004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-004 | 2.1000e-<br>004 | 11.4360 |
| Total                         |                    | 1.1500e-<br>003 | 9.8200e-003 | 4.1800e-003 | 6.0000e-<br>005 |                  | 7.9000e-004     | 7.9000e-<br>004 |                   | 7.9000e-<br>004  | 7.9000e-004 | 0.0000   | 11.3684   | 11.3684   | 2.2000e-004 | 2.1000e-<br>004 | 11.4360 |

# 5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

|                               | Electricity<br>Use | Total CO2 | CH4    | N2O    | CO2e   |
|-------------------------------|--------------------|-----------|--------|--------|--------|
| Land Use                      | kWh/yr             |           | MI     | ſ/yr   |        |
| Enclosed Parking<br>Structure | 18018              | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Single Family<br>Housing      | 62665.8            | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                         |                    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

#### **Mitigated**

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|                               | Electricity<br>Use | Total CO2 | CH4    | N2O    | CO2e   |
|-------------------------------|--------------------|-----------|--------|--------|--------|
| Land Use                      | kWh/yr             |           | MT     | /yr    |        |
| Enclosed Parking<br>Structure | 18018              | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Single Family<br>Housing      | 62665.8            | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Total                         |                    | 0.0000    | 0.0000 | 0.0000 | 0.0000 |

### 6.0 Area Detail

### 6.1 Mitigation Measures Area

|             | ROG    | NOx         | СО     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O         | CO2e   |
|-------------|--------|-------------|--------|-------------|------------------|-----------------|------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------|
| Category    |        |             |        |             | tons             | /yr             |            |                   |                  |             |          |           | МТ        | /yr             |             |        |
| Mitigated   |        | 1.7200e-003 |        | 1.4000e-004 |                  | 0.0102          | 0.0102     |                   | 0.0102           | 0.0102      | 1.0169   | 0.3470    | 1.3639    | 003             | 6.0000e-005 |        |
| Unmitigated | 0.1207 | 1.7200e-003 | 0.1281 | 1.4000e-004 |                  | 0.0102          | 0.0102     |                   | 0.0102           | 0.0102      | 1.0169   | 0.3470    | 1.3639    | 2.0200e-<br>003 | 6.0000e-005 | 1.4316 |

#### Page 1 of 1

#### 21-095 175 Monroe St - Santa Clara County, Annual

### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

|                          | ROG             | NOx         | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O         | CO2e   |
|--------------------------|-----------------|-------------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------|
| SubCategory              |                 |             |        |             | ton              | s/yr            |             |                   |                  |             |          |           | МТ        | /yr             |             |        |
| Architectural<br>Coating | 0.0110          |             |        |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000      | 0.0000 |
| Consumer<br>Products     | 0.0607          |             |        |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000      | 0.0000 |
| Hearth                   | 0.0472          | 1.0300e-003 | 0.0686 | 1.4000e-004 |                  | 9.8900e-<br>003 | 9.8900e-003 |                   | 9.8900e-<br>003  | 9.8900e-003 | 1.0169   | 0.2497    | 1.2666    | 1.9200e-<br>003 | 6.0000e-005 | 1.3319 |
| Landscaping              | 1.8100e-<br>003 | 6.9000e-004 | 0.0596 | 0.0000      |                  | 3.3000e-<br>004 | 3.3000e-004 |                   | 3.3000e-<br>004  | 3.3000e-004 | 0.0000   | 0.0974    | 0.0974    | 9.0000e-<br>005 | 0.0000      | 0.0997 |
| Total                    | 0.1207          | 1.7200e-003 | 0.1281 | 1.4000e-004 |                  | 0.0102          | 0.0102      |                   | 0.0102           | 0.0102      | 1.0169   | 0.3470    | 1.3639    | 2.0100e-<br>003 | 6.0000e-005 | 1.4316 |

#### **Mitigated**

|                          | ROG             | NOx         | CO     | SO2         | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10 Total  | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O         | CO2e   |
|--------------------------|-----------------|-------------|--------|-------------|------------------|-----------------|-------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-------------|--------|
| SubCategory              |                 |             |        |             | ton              | ns/yr           |             |                   |                  |             |          |           | МТ        | /yr             |             |        |
| Architectural<br>Coating | 0.0110          |             |        |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000      | 0.0000 |
| Consumer<br>Products     | 0.0607          |             |        |             |                  | 0.0000          | 0.0000      |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000      | 0.0000 |
| Hearth                   | 0.0472          | 1.0300e-003 | 0.0686 | 1.4000e-004 |                  | 9.8900e-<br>003 | 9.8900e-003 |                   | 9.8900e-<br>003  | 9.8900e-003 | 1.0169   | 0.2497    | 1.2666    | 1.9200e-<br>003 | 6.0000e-005 | 1.3319 |
| Landscaping              | 1.8100e-<br>003 | 6.9000e-004 | 0.0596 | 0.0000      |                  | 3.3000e-<br>004 | 3.3000e-004 |                   | 3.3000e-<br>004  | 3.3000e-004 | 0.0000   | 0.0974    | 0.0974    | 9.0000e-<br>005 | 0.0000      | 0.0997 |
| Total                    | 0.1207          | 1.7200e-003 | 0.1281 | 1.4000e-004 |                  | 0.0102          | 0.0102      |                   | 0.0102           | 0.0102      | 1.0169   | 0.3470    | 1.3639    | 2.0100e-<br>003 | 6.0000e-005 | 1.4316 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

#### 7.0 Water Detail

#### 7.1 Mitigation Measures Water

|             | Total CO2 | CH4    | N2O             | CO2e   |
|-------------|-----------|--------|-----------------|--------|
| Category    |           | M      | Г/yr            |        |
| Mitigated   | 0.1654    | 0.0170 | 4.0000e-<br>004 | 0.7095 |
| Unmitigated | 0.1654    | 0.0170 | 4.0000e-<br>004 | 0.7095 |

# 7.2 Water by Land Use <u>Unmitigated</u>

|                               | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O         | CO2e   |
|-------------------------------|------------------------|-----------|--------|-------------|--------|
| Land Use                      | Mgal                   |           | M      | ſ/yr        |        |
| Enclosed Parking<br>Structure | 0/0                    | 0.0000    | 0.0000 | 0.0000      | 0.0000 |
| Single Family<br>Housing      | 0.521232 /<br>0.328603 | 0.1654    | 0.0170 | 4.0000e-004 | 0.7095 |
| Total                         |                        | 0.1654    | 0.0170 | 4.0000e-004 | 0.7095 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

#### **Mitigated**

|                               | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O         | CO2e   |
|-------------------------------|------------------------|-----------|--------|-------------|--------|
| Land Use                      | Mgal                   |           | MI     | ſ/yr        |        |
| Enclosed Parking<br>Structure | 0/0                    | 0.0000    | 0.0000 | 0.0000      | 0.0000 |
| Single Family<br>Housing      | 0.521232 /<br>0.328603 | 0.1654    | 0.0170 | 4.0000e-004 | 0.7095 |
| Total                         |                        | 0.1654    | 0.0170 | 4.0000e-004 | 0.7095 |

### 8.0 Waste Detail

### 8.1 Mitigation Measures Waste

#### Category/Year

|             | Total CO2 | CH4    | N2O    | CO2e   |
|-------------|-----------|--------|--------|--------|
|             |           | M      | T/yr   |        |
| Mitigated   | 1.9609    | 0.1159 | 0.0000 | 4.8580 |
| Unmitigated | 1.9609    | 0.1159 | 0.0000 | 4.8580 |

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

# 8.2 Waste by Land Use

<u>Unmitigated</u>

|                               | Waste<br>Disposed | Total CO2 | CH4    | N2O    | CO2e   |
|-------------------------------|-------------------|-----------|--------|--------|--------|
| Land Use                      | tons              |           | MT     | /yr    |        |
| Enclosed Parking<br>Structure | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Single Family<br>Housing      | 9.66              | 1.9609    | 0.1159 | 0.0000 | 4.8580 |
| Total                         |                   | 1.9609    | 0.1159 | 0.0000 | 4.8580 |

#### **Mitigated**

|                               | Waste<br>Disposed | Total CO2 | CH4    | N2O    | CO2e   |
|-------------------------------|-------------------|-----------|--------|--------|--------|
| Land Use                      | tons              |           | MT     | /yr    |        |
| Enclosed Parking<br>Structure | 0                 | 0.0000    | 0.0000 | 0.0000 | 0.0000 |
| Single Family<br>Housing      | 9.66              | 1.9609    | 0.1159 | 0.0000 | 4.8580 |
| Total                         |                   | 1.9609    | 0.1159 | 0.0000 | 4.8580 |

### 9.0 Operational Offroad

#### EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

| Equipment Type                      | Number | Hours/Day      | Days/Year       | Horse Power   | Load Factor | Fuel Type |  |  |
|-------------------------------------|--------|----------------|-----------------|---------------|-------------|-----------|--|--|
| 10.0 Stationary Equipment           |        |                |                 |               |             |           |  |  |
| Fire Pumps and Emergency Generators |        |                |                 |               |             |           |  |  |
| Equipment Type                      | Number | Hours/Day      | Hours/Year      | Horse Power   | Load Factor | Fuel Type |  |  |
| Boilers                             |        |                |                 | -             |             |           |  |  |
| Equipment Type                      | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type   |           |  |  |
| User Defined Equipment              |        |                | -               | -             | _           |           |  |  |
| Equipment Type                      | Number |                |                 |               |             |           |  |  |
|                                     |        |                |                 |               |             |           |  |  |
| 11.0 Vegetation                     |        |                |                 |               |             |           |  |  |

Attachment 3: EMFAC2021 Calculations

| Pollutants<br>YEAR | ROG                                           | NOx    | со     | SO2    | Fugitive<br>PM10<br><i>Toi</i> | Exhaust<br>PM10<br>ns | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | NBio- CO2 | CH4<br>Metric 1 | N2O<br>Tons | CO2e    |
|--------------------|-----------------------------------------------|--------|--------|--------|--------------------------------|-----------------------|---------------|-------------------|------------------|----------------|-----------|-----------------|-------------|---------|
|                    |                                               |        |        |        |                                |                       | Criteria F    | Pollutants        |                  |                |           |                 |             |         |
| 2021 & 2022        | 0.0017                                        | 0.0162 | 0.0206 | 0.0001 | 0.0044                         | 0.0009                | 0.0053        | 0.0007            | 0.0004           | 0.0011         | 10.2471   | 0.0007          | 0.0013      | 10.6419 |
|                    | Toxic Air Contaminants (0.5 Mile Trip Length) |        |        |        |                                |                       |               |                   |                  |                |           |                 |             |         |
| 2021 & 2022        | 0.0013                                        | 0.0032 | 0.0068 | 0.0000 | 0.0004                         | 0.0001                | 0.0004        | 0.0001            | 0.0000           | 0.0001         | 1.0121    | 0.0002          | 0.0001      | 1.0595  |

### Summary of Construction Traffic Emissions (EMFAC2021)

#### CalEEMod Construction Inputs

|                       | CalEEMod<br>WORKER | CalEEMod<br>VENDOR | Total<br>Worker | Total<br>Vendor | CalEEMoo<br>HAULING |      | er Trip | Vendor Trip | Hauling Tri | p Worker Vehicle | Vendor Vehicle | Hauling Vehicle | Worker | Vendor | Hauling |
|-----------------------|--------------------|--------------------|-----------------|-----------------|---------------------|------|---------|-------------|-------------|------------------|----------------|-----------------|--------|--------|---------|
| Phase                 | TRIPS              | TRIPS              | Trips           | Trips           | TRIPS               | Leng | th .    | Length      | Length      | Class            | Class          | Class           | VMT    | VMT    | VMT     |
| Demolition            |                    | 3 (                | C               | 15              | 0                   | 20   | 10.8    | 7.3         | : 2         | 20 LD_Mix        | HDT_Mix        | HHDT            | 162    | 0      | 400     |
| Site Preparation      |                    | 3 (                | C               | 24              | 0                   | 1    | 10.8    | 7.3         | 2           | 20 LD_Mix        | HDT_Mix        | HHDT            | 259.2  | 0      | 20      |
| Grading               |                    | 8 (                | C               | 120             | 0                   | 10   | 10.8    | 7.3         | 2           | 20 LD_Mix        | HDT_Mix        | HHDT            | 1296   | 0      | 200     |
| Trenching/Foundation  |                    | 5 (                | C               | 65              | 0                   | 0    | 10.8    | 7.3         | 2           | 20 LD_Mix        | HDT_Mix        | HHDT            | 702    | 0      | 0       |
| Paving                |                    | 5 (                | C               | 70              | 0                   | 7    | 10.8    | 7.3         | 2           | 20 LD_Mix        | HDT_Mix        | HHDT            | 756    | 0      | 140     |
| Building Construction |                    | 4 :                | 1               | 480 12          | 20 1                | 138  | 10.8    | 7.3         | 2           | 20 LD_Mix        | HDT_Mix        | HHDT            | 5184   | 876    | 2760    |
| Architectural Coating |                    | 1 (                | C               | 47              | 0                   | 0    | 10.8    | 7.3         | 2           | 20 LD_Mix        | HDT_Mix        | HHDT            | 507.6  | 0      | 0       |

| Number of Days Per Year |                       |        |     |                    |
|-------------------------|-----------------------|--------|-----|--------------------|
| 2021 & 2022             | <mark>10/16/21</mark> | 8/8/22 | 297 | 213                |
|                         |                       |        | 297 | 213 Total Workdays |

| Phase                 | Start Date | End Date   | Days/Week | Workdays |
|-----------------------|------------|------------|-----------|----------|
| Demolition            | 10/16/2021 | 10/22/2021 | 5         | 5        |
| Site Preparation      | 10/21/2021 | 11/1/2021  | 5         | 8        |
| Grading               | 10/29/2021 | 11/18/2021 | 5         | 15       |
| Trenching/Foundation  | 11/15/2021 | 12/1/2021  | 5         | 13       |
| Paving                | 7/20/2022  | 8/8/2022   | 5         | 14       |
| Building Construction | 12/1/2021  | 5/17/2022  | 5         | 120      |
| Architectural Coating | 5/17/2022  | 7/20/2022  | 5         | 47       |

Source: EMFACR21 (V.L.D.) Emission Rates Region Syste County Region: Syste County Region: Syste Count Section: Annual White IC Count and EMFACR207 Categories White IC Count and EMFACR207 Categories White IC Count and EMFACR207 Categories

| Region Calendar Y Vehicle CatModel Yea Speed Fuel Population Total VMT CVMT EVMT Trips Energy ConNOx RUNENOx IDLEX NOx STRE: PM2.5 RU PM2.5 IDL PM2.5 | STEPM2.5 PM PM2.5 PM PM10 RUNPM10 IDLEPM10 STR PM10 PM10 PM10 PM1CO2 RUNECO2 IDLEXCO2 STREECH4 RUNECH4 IDLEXCH4 STREEN20 RUNEN2 | DIDEDN20 STREIROG RUNIROG IDLEXROG STREIROG HOTSROG RUNIROG DIURTOG RUNETOG IDLEXTOG STREITOG HOTSTOG RUNITOG DIUR NH3 RUNECO RUNEXCO IDLEX CO STREX SOX RUNESOX IDLEX SOX STREX           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Santa Clara 2021 HHDT Aggregate Aggregate Gasoline 4.911671 108.3321 108.3321 0 98.2727 0 12.52129 0 1.17477 0.00724 0 0.001                          | 73 0.005 0.038424 0.007874 0 0.001929 0.02 0.109784 2565.57 0 49.38815 0.549631 0 0.000108 0.290212                             | 0 0.031064 3.502409 0 0.00059 0.16728 1.506995 11.25307 5.110707 0 0.000646 0.16728 1.506995 11.25307 0.037857 118.2833 0 0.353757 0.025363 0 0.000488                                     |
| Santa Clara 2021 HHDT Aggregate Aggregate Diesel 7945.653 974275.6 974275.6 0 115958.9 0 2.842904 68.7602 2.347489 0.03733 0.061163                   | 0 0.008769 0.028367 0.039018 0.063929 0 0.035076 0.081048 1695.883 12693.22 0 0.002265 0.236268 0 0.267187 1.                   | 999821 0 0.048759 5.086789 0 0 0 0 0.055509 5.790922 0 0 0 0 0.19614 0.195075 67.59912 0 0.016059 0.120197 0                                                                               |
| Santa Clara 2021 HHDT Aggregate Aggregate Natural Ga 604.4858 44859.32 44859.32 0 5247.791 0 1.479487 13.79137 0 0.002003 0.021244                    | 0 0.009 0.047481 0.002179 0.023105 0 0.036 0.13566 1449.478 10245.18 0 2.851947 36.48951 0 0.295486 2.                          | 088546 0 0.068879 0.577467 0 0 0 0 2.94267 37.30415 0 0 0 0.853048 15.08309 73.72785 0 0 0 0                                                                                               |
| Santa Clara 2021 LDA Aggregate Aggregate Gasoline 606788 22328684 22328684 0 2819031 0 0.061526 0 0.306099 0.001307 0 0.002                           | 37 0.002 0.002656 0.001421 0 0.002324 0.008 0.007589 291.5075 0 74.80132 0.003309 0 0.086516 0.005874                           | 0 0.036086 0.013455 0 0.413042 0.102567 0.258475 1.575398 0.019625 0 0.452227 0.102567 0.258475 1.575398 0.031893 0.916686 0 3.92511 0.002882 0 0.000739                                   |
| Santa Clara 2021 LDA Aggregate Aggregate Diesel 2097.285 65438.93 0 9106.701 0 0.289351 0 0 0.021136 0                                                | 0 0.002 0.002681 0.022092 0 0 0.008 0.007659 237.7247 0 0 0.00159 0 0 0.037454                                                  | 0 0.034231 0 0 0 0 0.03897 0 0 0 0 0.0031 0.362693 0 0.0002253 0 0                                                                                                                         |
| Santa Clara 2021 LDA Aggregate Aggregate Electricity 45687.59 1848394 0 1848394 228454 713632.8 0 0 0 0 0 0                                           | 0 0.002 0.001529 0 0 0 0.008 0.00437 0 0 0 0 0 0 0 0                                                                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                    |
| Santa Clara 2021 LDA Aggregate Aggregate Plug-in Hyt 12325.75 549262.6 292344.2 256918.4 50966.97 77597.02 0.003493 0 0.11551 0.000782 0 0.002        | 36 0.002 0.001363 0.00085 0 0.002649 0.008 0.003895 148.3928 0 67.90667 0.00048 0 0.042861 0.00064                              | 0 0.021155 0.00151 0 0.173285 0.039575 0.034683 0.463886 0.002204 0 0.189725 0.039683 0.463886 0.01985 0.228959 0 1.339893 0.001467 0 0.000671                                             |
| Santa Clara 2021 LDT1 Aggregate Aggregate Gasoline 56250.2 1810349 1810349 0 251042.1 0 0.178236 0 0.45509 0.002102 0 0.003                           | 87 0.002 0.003233 0.002285 0 0.003465 0.008 0.009237 342.3532 0 92.17037 0.008673 0 0.128174 0.012178                           | 0 0.042157 0.039434 0 0.681062 0.191773 0.56032 3.038222 0.057483 0 0.745671 0.191773 0.56032 3.038222 0.035289 1.855747 0 6.610145 0.003385 0 0.000911                                    |
| Santa Clara 2021 LDT1 Aggregate Aggregate Diesel 32.08333 503.0685 503.0685 0 96.14776 0 1.666847 0 0 0.24162 0                                       | 0 0.002 0.003734 0.252545 0 0 0.008 0.010668 415.5911 0 0 0.014019 0 0 0.065477                                                 | 0 0.0301811 0 0 0 0 0.0343592 0 0 0 0 0 0.0031 1.617036 0 0.0003938 0 0                                                                                                                    |
| Santa Clara 2021 LDT1 Aggregate Aggregate Electricity 176.8774 5945.758 0 5945.758 835.4181 2295.553 0 0 0 0 0 0                                      | 0 0.002 0.001541 0 0 0 0.008 0.004403 0 0 0 0 0 0 0 0                                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                    |
| Santa Clara 2021 LDT1 Aggregate Aggregate Plug-in Hyt 10.82472 516.8071 263.2288 253.5783 44.7602 76.5882 0.003342 0 0.11551 0.000498 0 0.001         | i51 0.002 0.001365 0.000541 0 0.001795 0.008 0.0039 142.0049 0 74.72169 0.000461 0 0.043003 0.000616                            | 0 0.021287 0.001445 0 0.173285 0.026876 0.026052 0.339589 0.002109 0 0.189725 0.026876 0.026052 0.339589 0.021392 0.219103 0 1.339893 0.001404 0 0.000739                                  |
| Santa Clara 2021 LDT2 Aggregate Aggregate Gasoline 269286.1 9644865 9644865 0 1261291 0 0.099372 0 0.421535 0.001357 0 0.002                          | 17 0.002 0.003124 0.001476 0 0.002303 0.008 0.008925 364.8211 0 94.21995 0.003765 0 0.098308 0.007574                           | 0 0.041986 0.015421 0 0.472046 0.091479 0.236284 1.467935 0.022495 0 0.51683 0.091479 0.236284 1.467935 0.033775 1.034906 0 4.394297 0.003607 0 0.000931                                   |
| Santa Clara 2021 LDT2 Aggregate Aggregate Diesel 883.652 33892.89 33892.89 0 4258.527 0 0.053343 0 0 0.00583 0                                        | 0 0.002 0.003073 0.006094 0 0 0.008 0.00878 323.8235 0 0 0.000676 0 0 0.051019                                                  | 0 0 0.01456 0 0 0 0 0 0.016576 0 0 0 0 0 0.0031 0.133207 0 0 0.003068 0 0                                                                                                                  |
| Santa Clara 2021 LDT2 Aggregate Aggregate Electricity 295.5134 10300.33 0 10300.33 1512.362 3976.778 0 0 0 0 0 0                                      | 0 0.002 0.001524 0 0 0 0.008 0.004355 0 0 0 0 0 0 0 0 0                                                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                    |
| Santa Clara 2021 LDT2 Aggregate Aggregate Plug-in Hyt 845.8398 39165.03 20268.11 18896.92 3497.547 5707.433 0.003396 0 0.11551 0.000672 0 0.002       | 94 0.002 0.001364 0.000731 0 0.002386 0.008 0.003897 144.2823 0 81.05617 0.000467 0 0.042925 0.000624                           | 0 0.021215 0.001468 0 0.173285 0.027973 0.027304 0.362073 0.002143 0 0.189725 0.027973 0.027304 0.362073 0.021638 0.222617 0 1.339893 0.001426 0 0.000801                                  |
| Santa Clara 2021 LHDT1 Aggregate Aggregate Gasoline 18933.42 672783.1 672783.1 0 282079.8 0 0.256798 0.039718 0.701068 0.001752 0 0.000               | 85 0.002 0.0273 0.001905 0 0.000418 0.008 0.078 931.4507 122.4688 25.83191 0.012061 0.120812 0.03785 0.014272 0.                | 003066 0.053341 0.061014 0.454849 0.191678 0.056457 0.299122 3.116304 0.089031 0.663714 0.209863 0.056457 0.299122 3.116304 0.044832 1.411296 3.747334 2.989075 0.009208 0.001211 0.000255 |
| Santa Clara 2021 LHDT1 Aggregate Aggregate Diesel 9139.777 343382.9 343382.9 0 114966.9 0 2.358079 2.271347 0 0.04683 0.027404                        | 0 0.003 0.0273 0.048947 0.028643 0 0.012 0.078 643.496 136.5842 0 0.010209 0.005098 0 0.101383 0.                               | 0 0.219784 0.10976 0 0 0 0 0.25021 0.124954 0 0 0 0 0.146324 0.639056 0.909745 0 0.006097 0.001294 0                                                                                       |
| Santa Clara 2021 LHDT2 Aggregate Aggregate Gasoline 2466 87553.14 87553.14 0 36739.72 0 0.242157 0.039344 0.681173 0.001604 0 0.000                   | 16 0.002 0.03185 0.001745 0 0.000344 0.008 0.091 1035.79 141.0887 26.12054 0.009565 0.120729 0.036622 0.013821 0.               | 003071 0.05226 0.045738 0.450754 0.183893 0.052329 0.275873 2.879115 0.066741 0.657739 0.20134 0.052329 0.275873 2.879115 0.044945 1.150578 3.751518 3.098774 0.01024 0.001395 0.000258    |
| Santa Clara 2021 LHDT2 Aggregate Aggregate Diesel 4074.911 157442.8 157442.8 0 51257.26 0 1.819669 2.235115 0 0.039933 0.027151                       | 0 0.003 0.03185 0.041738 0.028379 0 0.012 0.091 781.4731 217.5251 0 0.008888 0.005098 0 0.123121 0.                             | 034271 0 0.191344 0.10976 0 0 0 0.217833 0.124954 0 0 0 0 0.165331 0.517738 0.909745 0 0.007405 0.002061 0                                                                                 |
| Santa Clara 2021 MCY Aggregate Aggregate Gasoline 27304.17 160382.2 160382.2 0 54608.34 0 0.626062 0 0.157064 0.001755 0 0.003                        | 126 0.001 0.0042 0.001872 0 0.003843 0.004 0.012 189.7631 0 52.22767 0.180174 0 0.199348 0.041922                               | 0 0.009146 1.214328 0 1.494194 3.559817 3.717016 3.986797 1.441721 0 1.623911 3.559817 3.717016 3.986797 0.008645 14.15601 0 8.172263 0.001876 0 0.000516                                  |
| Santa Clara 2021 MDV Aggregate Aggregate Gasoline 147596.4 5051242 5051242 0 682293.7 0 0.160894 0 0.57169 0.001434 0 0.002                           | 82 0.002 0.003201 0.001559 0 0.002589 0.008 0.009147 442.5348 0 114.8138 0.005886 0 0.129321 0.010684                           | 0 0.047954 0.026856 0 0.67693 0.1118 0.299795 1.785601 0.038387 0 0.741109 0.1118 0.299795 1.785601 0.033755 1.329778 0 5.04226 0.004375 0 0.001135                                        |
| Santa Clara 2021 MDV Aggregate Aggregate Diesel 2291.714 86017.73 86017.73 0 11013.96 0 0.063349 0 0 0.005706 0                                       | 0 0.002 0.00312 0.005964 0 0 0.008 0.008916 420.7053 0 0 0.000573 0 0 0.066282                                                  | 0 0.0.12335 0 0 0 0 0.0.14043 0 0 0 0 0.0031 0.203492 0 0.0.03986 0 0                                                                                                                      |
| Santa Clara 2021 MDV Aggregate Aggregate Electricity 256.699 9069.305 0 9069.305 1316.884 3501.5 0 0 0 0 0 0                                          | 0 0.002 0.001522 0 0 0 0.008 0.004349 0 0 0 0 0 0 0 0 0                                                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                    |
| Santa Clara 2021 MDV Aggregate Aggregate Plug-in Hyt 609.3868 26030.39 13830.97 12199.42 2519.814 3684.588 0.003487 0 0.11551 0.000845 0 0.002        |                                                                                                                                 | 0 0.020952 0.001508 0 0.173285 0.030476 0.030968 0.408082 0.0022 0 0.189725 0.030476 0.030968 0.408082 0.022316 0.228568 0 1.339893 0.001465 0 0.001003                                    |
| Santa Clara 2021 MH Aggregate Aggregate Gasoline 2769.699 23630.01 23630.01 0 277.0807 0 0.627675 0 0.395766 0.002059 0 0.000                         |                                                                                                                                 | 0 0.039426 0.120744 0 0.173868 15.32954 0.341293 5.193314 0.176189 0 0.190364 15.32954 0.341293 5.193314 0.04424 3.344602 0 3.937518 0.019281 0 0.00032                                    |
| Santa Clara 2021 MH Aggregate Aggregate Diesel 922.1828 8933.632 8933.632 0 92.21828 0 4.615076 0 0 0.111614 0                                        | 0 0.004 0.015675 0.116661 0 0 0.016 0.044785 1080.28 0 0 0.00602 0 0.0.170198                                                   | 0 0.129617 0 0 0 0 0.14756 0 0 0 0 0.137198 0.438429 0 0.010236 0 0                                                                                                                        |
| Santa Clara 2021 MHDT Aggregate Aggregate Gasoline 1442.735 67829.47 67829.47 0 28866.25 0 0.831489 0.087806 0.473646 0.001493 0 0.000                |                                                                                                                                 | 006525 0.031617 0.14124 1.002561 0.308525 0.045168 0.369912 3.607527 0.206097 1.462934 0.337796 0.045168 0.369912 3.607527 0.044883 3.016915 14.99869 6.909591 0.018275 0.005416 0.000487  |
| Santa Clara 2021 MHDT Aggregate Aggregate Diesel 10153.19 424633.4 424633.4 0 120691.4 0 1.894718 16.09448 1.444966 0.024213 0.051093                 | 0 0.003 0.015941 0.025308 0.053403 0 0.012 0.045546 1160.391 2338.117 0 0.002807 0.014388 0 0.18282 0.                          |                                                                                                                                                                                            |
| Santa Clara 2021 MHDT Aggregate Aggregate Natural Ga 78.33433 3644.537 3644.537 0 742.0488 0 0.16891 6.475626 0 0.000993 0.01576                      | 0 0.003 0.016009 0.00108 0.01714 0 0.012 0.04574 1007.079 5194.634 0 0.721288 18.08715 0 0.2053 1                               |                                                                                                                                                                                            |
| Santa Clara 2021 OBUS Aggregate Aggregate Gasoline 483.6838 22502.68 22502.68 0 9677.546 0 0.647154 0.064946 0.407221 0.000833 0 0.00                 |                                                                                                                                 |                                                                                                                                                                                            |
| Santa Clara 2021 OBUS Aggregate Aggregate Diesel 834.688 61084.28 61084.28 0 8576.673 0 1.576242 9.183516 1.420449 0.027062 0.016448                  | 0 0.003 0.018131 0.028286 0.017191 0 0.012 0.051804 1290.86 1635.121 0 0.003027 0.022612 0 0.203376 0.                          |                                                                                                                                                                                            |
| Santa Clara 2021 OBUS Aggregate Aggregate Natural Ga 5.469371 354.9737 354.9737 0 48.6774 0 0.296201 1.581355 0 0.000557 0.002851                     | 0 0.003 0.016148 0.000605 0.003101 0 0.012 0.046137 1044.502 1172.359 0 0.731981 4.779418 0 0.212928 0.                         |                                                                                                                                                                                            |
| Santa Clara 2021 SBUS Aggregate Aggregate Gasoline 153.6367 7565.4 7565.4 0 614.5466 0 0.533764 0.925451 0.67372 0.000841 0 0.00                      |                                                                                                                                 |                                                                                                                                                                                            |
| Santa Clara 2021 SBUS Aggregate Aggregate Diesel 657.6731 15431.13 15431.13 0 9523.107 0 4.438199 23.32594 0.434289 0.023358 0.024671                 | 0 0.003 0.015721 0.024414 0.025786 0 0.012 0.044917 1157.296 2254.332 0 0.00292 0.008308 0 0.182332 0.                          |                                                                                                                                                                                            |
| Santa Clara 2021 SBUS Aggregate Aggregate Natural Ga 21.69727 560.9301 560.9301 0 314.1765 0 0.631341 5.309646 0 0.003378 0.010433                    | 0 0.003 0.015721 0.003674 0.011347 0 0.012 0.044917 1293.196 4040.723 0 3.611806 15.73509 0 0.263627 0.                         |                                                                                                                                                                                            |
| Santa Clara 2021 UBUS Aggregate Aggregate Gasoline 45.675 4769.83 4769.83 0 182.7 0 0.032133 0 0.568854 0.000898 0 8.876                              |                                                                                                                                 | 0 0.08329 0.006763 0 0.198578 0.052994 0.093754 0.610126 0.009869 0 0.217418 0.052994 0.093754 0.610126 0.045 0.578479 0 5.701642 0.009638 0 0.00038                                       |
| Santa Clara 2021 UBUS Aggregate Aggregate Diesel 434.6269 48602.56 48602.56 0 1738.508 0 0.386258 0 0 0.007023 0                                      | 0 0.0083 0.0385 0.00734 0 0 0.033201 0.11 1100.519 0 0 0.003215 0 0 0.173387                                                    | 0 0.069208 0 0 0 0 0.078788 0 0 0 0 0.1877 0.079368 0 0 0.010428 0 0                                                                                                                       |
| Santa Clara 2021 UBUS Aggregate Aggregate Electricity 5.046757 199.0027 0 199.0027 20.18703 346.9103 0 0 0 0 0 0                                      | 0 0.009 0.01925 0 0 0 0.036 0.055 0 0 0 0 0 0 0 0                                                                               |                                                                                                                                                                                            |
| Santa Clara 2021 UBUS Aggregate Aggregate Natural Ga 41.43636 4737.889 4737.889 0 165.7455 0 0.058764 0 0 0.000282 0                                  | 0 0.00818 0.0385 0.000295 0 0 0.032718 0.11 1298.95 0 0 4.245038 0 0 0.264799                                                   | 0 0.060653 0 0 0 0 0.4.332372 0 0 0 0 0.97 49.03001 0 0 0 0 0                                                                                                                              |
|                                                                                                                                                       |                                                                                                                                 |                                                                                                                                                                                            |

# Attachment 4: Project Construction Emissions and Health Risk Calculations

#### 175 Monroe Street, Santa Clara, CA

#### DPM Construction Emissions and Modeling Emission Rates - Unmitigated

|              |              |            |        |         |         |            |          | Emissions    |
|--------------|--------------|------------|--------|---------|---------|------------|----------|--------------|
|              |              |            |        |         |         |            |          | per          |
| Construction |              | DPM        | Source | No.     | DI      | PM Emissio | ns       | Point Source |
| Year         | Activity     | (ton/year) | Туре   | Sources | (lb/yr) | (lb/hr)    | (g/s)    | (g/s)        |
| 2021 & 2022  | Construction | 0.0139     | Point  | 35      | 27.9    | 0.00763    | 9.62E-04 | 2.75E-05     |
| Total        |              | 0.0139     |        |         | 27.9    | 0.0076     | 0.0010   |              |

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 10 \quad (7am - 5pm)$ days/yr = 365hours/year = 3650

#### 175 Monroe Street, Santa Clara, CA

#### PM2.5 Fugitive Dust Construction Emissions for Modeling - Unmitigated

|   |              |              |         |            |         |           |          |         | DPM                |
|---|--------------|--------------|---------|------------|---------|-----------|----------|---------|--------------------|
|   |              |              |         |            |         |           |          | Modeled | Emission           |
|   | Construction |              | Area    |            | PM2.5   | Emissions |          | Area    | Rate               |
|   | Year         | Activity     | Source  | (ton/year) | (lb/yr) | (lb/hr)   | (g/s)    | $(m^2)$ | g/s/m <sup>2</sup> |
| ſ | 2021 & 2022  | Construction | CON_FUG | 6 0.0009   | 1.7     | 0.00047   | 5.93E-05 | 1583.2  | 3.74E-08           |
|   | Total        |              |         | 0.0009     | 1.7     | 0.0005    | 0.0001   |         |                    |

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 10 \quad (7am - 5pm)$  days/yr = 365hours/year = 3650

|              |              |            |        |         |         |            |          | Emissions           |
|--------------|--------------|------------|--------|---------|---------|------------|----------|---------------------|
| Construction |              | DPM        | Source | No.     | DI      | PM Emissio | ns       | per<br>Point Source |
| Year         | Activity     | (ton/year) | Туре   | Sources | (lb/yr) | (lb/hr)    | (g/s)    | (g/s)               |
| 2021 & 2022  | Construction | 0.0030     | Point  | 35      | 6.1     | 0.00166    | 2.09E-04 | 5.98E-06            |
| Total        |              | 0.0030     |        |         | 6.1     | 0.0017     | 0.0002   |                     |

#### DPM Construction Emissions and Modeling Emission Rates - With Mitigation

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 10 \quad (7am - 5pm)$ days/yr = 365

| uays/yr-     | 303  |
|--------------|------|
| hours/year = | 3650 |

#### PM2.5 Fugitive Dust Construction Emissions for Modeling - With Mitigation

|              |              |         |            |         |           |          |                   | DPM                |
|--------------|--------------|---------|------------|---------|-----------|----------|-------------------|--------------------|
|              |              |         |            |         |           |          | Modeled           | Emission           |
| Construction |              | Area    |            | PM2.5   | Emissions |          | Area              | Rate               |
| Year         | Activity     | Source  | (ton/year) | (lb/yr) | (lb/hr)   | (g/s)    | (m <sup>2</sup> ) | g/s/m <sup>2</sup> |
| 2021 & 2022  | Construction | CON_FUC | 6 0.0004   | 0.8     | 0.00022   | 2.82E-05 | 1583.2            | 1.78E-08           |
| Total        |              |         | 0.0004     | 0.8     | 0.0002    | 0.0000   |                   |                    |

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 10 \quad (7am - 5pm)$  days/yr = 365hours/year = 3650

### 175 Monroe Street, Santa Clara, CA Construction Health Impact Summary

### Maximum Impacts at MEI Location - Without Mitigation

|             | Maximum Conc         | entrations           |                                                    |      |                 | Maximum                       |
|-------------|----------------------|----------------------|----------------------------------------------------|------|-----------------|-------------------------------|
| Emissions   | Exhaust<br>PM10/DPM  | Fugitive<br>PM2.5    | Cancer Risk<br>(per million)<br>Infant/Child Adult |      | Hazard<br>Index | Annual PM2.5<br>Concentration |
| Year        | (µg/m <sup>3</sup> ) | (µg/m <sup>3</sup> ) |                                                    |      | (-)             | (µg/m <sup>3</sup> )          |
| 2021 - 2022 | 0.0726               | 0.0071               | 12.90                                              | 0.21 | 0.01            | 0.08                          |
| Total       | -                    | -                    | 12.90                                              | 0.21 |                 | -                             |
| Maximum     | 0.0726               | 0.0071               | -                                                  | -    | 0.01            | 0.08                          |

### Maximum Impacts at MEI Location - With Mitigation

|             | Maximum Conc         | entrations           |                    |         |        | Maximum       |
|-------------|----------------------|----------------------|--------------------|---------|--------|---------------|
|             | Exhaust Fugitive     |                      | Cancer             | · Risk  | Hazard | Annual PM2.5  |
| Emissions   | PM10/DPM             | PM2.5                | (per mi            | illion) | Index  | Concentration |
| Year        | (µg/m <sup>3</sup> ) | (µg/m <sup>3</sup> ) | Infant/Child Adult |         | (-)    | $(\mu g/m^3)$ |
| 2021 - 2022 | 0.0158               | 0.0034               | 2.81               | 0.05    | 0.00   | 0.02          |
| Total       | -                    | -                    | 2.81               | 0.05    | -      | -             |
| Maximum     | 0.0158               | 0.0034               | -                  | -       | 0.00   | 0.02          |

- Tier 4 Interim Engine and BMP Mitigation

#### Maximum Impacts at Washington Elementary School

|              |                             | Unmitigated Emissions |               |        |               |  |  |  |  |  |  |  |
|--------------|-----------------------------|-----------------------|---------------|--------|---------------|--|--|--|--|--|--|--|
|              | Maximum Conc                | centrations           |               |        | Maximum       |  |  |  |  |  |  |  |
|              | Exhaust                     | Fugitive              | Child         | Hazard | Annual PM2.5  |  |  |  |  |  |  |  |
| Construction | PM10/DPM                    | PM2.5                 | Cancer Risk   | Index  | Concentration |  |  |  |  |  |  |  |
| Year         | $(\mu g/m^3)$ $(\mu g/m^3)$ |                       | (per million) | (-)    | $(\mu g/m^3)$ |  |  |  |  |  |  |  |
| 2021 - 2022  | 0.0001                      | 0.0000                | 0.01          | 0.0000 | 0.000         |  |  |  |  |  |  |  |
| Total        | -                           | -                     | 0.01          | -      | -             |  |  |  |  |  |  |  |
| Maximum      | 0.0001                      | 0.0000                | -             | 0.0000 | 0.000         |  |  |  |  |  |  |  |

#### 175 Monroe Street, Santa Clara, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)<sup>-1</sup> ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose =  $C_{air} x DBR x A x (EF/365) x 10^{-6}$ 

Where:  $C_{air} = concentration in air (\mu g/m^3)$ 

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factorEF = Exposure frequency (days/year)

 $10^{-6}$  = Conversion factor

#### Values

|           |               | Adult    |          |          |
|-----------|---------------|----------|----------|----------|
| Age ->    | 3rd Trimester | 0 - 2    | 2 - 16   | 16-30    |
| Parameter |               |          |          |          |
| ASF =     | 10            | 10       | 3        | 1        |
| CPF =     | 1.10E+00      | 1.10E+00 | 1.10E+00 | 1.10E+00 |
| DBR* =    | 361           | 1090     | 572      | 261      |
| A =       | 1             | 1        | 1        | 1        |
| EF =      | 350           | 350      | 350      | 350      |
| AT=       | 70            | 70       | 70       | 70       |
| FAH=      | 1.00          | 1.00     | 1.00     | 0.73     |

\* 95th percentile breathing rates for infants and 80th percentile for children and adults

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|               |             |            | Infant/Child | l - Exposure l | Information | Infant/Child  | Adult - Exp | osure Infor | mation      | Adult         |        |          |       |
|---------------|-------------|------------|--------------|----------------|-------------|---------------|-------------|-------------|-------------|---------------|--------|----------|-------|
|               | Exposure    |            |              |                | Age         | Cancer        | Model       | ed          | Age         | Cancer        |        | Maximum  |       |
| Exposure      | Duration    |            | DPM Conc     | (ug/m3)        | Sensitivity | Risk          | DPM Conc    | (ug/m3)     | Sensitivity | Risk          | Hazard | Fugitive | Total |
| Year          | (years)     | Age        | Year         | Annual         | Factor      | (per million) | Year        | Annual      | Factor      | (per million) | Index  | PM2.5    | PM2.5 |
| 0             | 0.25        | -0.25 - 0* | 2021 - 2022  | 0.0726         | 10          | 0.99          | 2021 - 2022 | 0.0726      | -           | -             |        |          |       |
| 1             | 1           | 0 - 1      | 2021 - 2022  | 0.0726         | 10          | 11.92         | 2021 - 2022 | 0.0726      | 1           | 0.21          | 0.015  | 0.007    | 0.08  |
| 2             | 1           | 1 - 2      |              | 0.0000         | 10          | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 3             | 1           | 2 - 3      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 4             | 1           | 3 - 4      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 5             | 1           | 4 - 5      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 6             | 1           | 5 - 6      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 7             | 1           | 6 - 7      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 8             | 1           | 7 - 8      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 9             | 1           | 8 - 9      |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 10            | 1           | 9 - 10     |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 11            | 1           | 10 - 11    |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 12            | 1           | 11 - 12    |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 13            | 1           | 12 - 13    |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 14            | 1           | 13 - 14    |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 15            | 1           | 14 - 15    |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 16            | 1           | 15 - 16    |              | 0.0000         | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 17            | 1           | 16-17      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 18            | 1           | 17-18      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 19            | 1           | 18-19      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 20            | 1           | 19-20      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 21            | 1           | 20-21      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 22            | 1           | 21-22      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 23            | 1           | 22-23      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 24            | 1           | 23-24      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 25            | 1           | 24-25      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 26            | 1           | 25-26      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 27            | 1           | 26-27      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 28            | 1           | 27-28      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 29            | 1           | 28-29      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 30            | 1           | 29-30      |              | 0.0000         | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| Total Increas | ed Cancer F | lisk       |              |                |             | 12.90         |             |             |             | 0.21          |        |          |       |

\* Third trimester of pregnancy

#### 175 Monroe Street, Santa Clara, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)<sup>-1</sup> ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

Inhalation Dose =  $C_{air} x DBR x A x (EF/365) x 10^{-6}$ 

Where:  $C_{air} = concentration in air (\mu g/m^3)$ 

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factorEF = Exposure frequency (days/year)

 $10^{-6}$  = Conversion factor

#### Values

|           |               | Adult    |          |          |
|-----------|---------------|----------|----------|----------|
| Age ->    | 3rd Trimester | 0 - 2    | 2 - 16   | 16-30    |
| Parameter |               |          |          |          |
| ASF =     | 10            | 10       | 3        | 1        |
| CPF =     | 1.10E+00      | 1.10E+00 | 1.10E+00 | 1.10E+00 |
| DBR* =    | 361           | 1090     | 572      | 261      |
| A =       | 1             | 1        | 1        | 1        |
| EF =      | 350           | 350      | 350      | 350      |
| AT=       | 70            | 70       | 70       | 70       |
| FAH=      | 1.00          | 1.00     | 1.00     | 0.73     |

\* 95th percentile breathing rates for infants and 80th percentile for children and adults

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|               |                  |            | Infant/Child | - Exposure l | Information | Infant/Child  | Adult - Exp | osure Infor | mation      | Adult         |        |          |       |
|---------------|------------------|------------|--------------|--------------|-------------|---------------|-------------|-------------|-------------|---------------|--------|----------|-------|
|               | <b>Expos ure</b> |            |              |              | Age         | Cancer        | Model       |             | Age         | Cancer        |        | Maximum  |       |
| Exposure      | Duration         |            | DPM Conc     | (ug/m3)      | Sensitivity | Risk          | DPM Conc    | (ug/m3)     | Sensitivity | Risk          | Hazard | Fugitive | Total |
| Year          | (years)          | Age        | Year         | Annual       | Factor      | (per million) | Year        | Annual      | Factor      | (per million) | Index  | PM2.5    | PM2.5 |
| 0             | 0.25             | -0.25 - 0* | 2021 - 2022  | 0.0300       | 10          | 0.41          | 2021 - 2022 | 0.0300      | -           | -             |        |          |       |
| 1             | 1                | 0 - 1      | 2021 - 2022  | 0.0300       | 10          | 4.93          | 2021 - 2022 | 0.0300      | 1           | 0.09          | 0.01   | 0.009    | 0.04  |
| 2             | 1                | 1 - 2      |              | 0.0000       | 10          | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 3             | 1                | 2 - 3      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 4             | 1                | 3 - 4      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 5             | 1                | 4 - 5      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 6             | 1                | 5 - 6      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 7             | 1                | 6 - 7      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 8             | 1                | 7 - 8      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 9             | 1                | 8 - 9      |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 10            | 1                | 9 - 10     |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 11            | 1                | 10 - 11    |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 12            | 1                | 11 - 12    |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 13            | 1                | 12 - 13    |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 14            | 1                | 13 - 14    |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 15            | 1                | 14 - 15    |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 16            | 1                | 15 - 16    |              | 0.0000       | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 17            | 1                | 16-17      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 18            | 1                | 17-18      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 19            | 1                | 18-19      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 20            | 1                | 19-20      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 21            | 1                | 20-21      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 22            | 1                | 21-22      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 23            | 1                | 22-23      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 24            | 1                | 23-24      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 25            | 1                | 24-25      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 26            | 1                | 25-26      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 27            | 1                | 26-27      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 28            | 1                | 27-28      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 29            | 1                | 28-29      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 30            | 1                | 29-30      |              | 0.0000       | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| Total Increas | ed Cancer R      | isk        |              |              |             | 5.34          |             |             |             | 0.09          |        |          |       |

Total Increased Cancer Risk \* Third trimester of pregnancy

#### 175 Monroe Street, Santa Clara, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 

- ASF = Age sensitivity factor for specified age group
- ED = Exposure duration (years)
- AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where:  $C_{air} = \text{concentration in air } (\mu g/m^3)$ 

- Car concentration in an ( $\mu$ m ) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
- $10^{-6}$  = Conversion factor

#### Values

|           | I             | Adult    |          |          |
|-----------|---------------|----------|----------|----------|
| Age>      | 3rd Trimester | 2 - 16   | 16 - 30  |          |
| Parameter |               |          |          |          |
| ASF =     | 10            | 10       | 3        | 1        |
| CPF =     | 1.10E+00      | 1.10E+00 | 1.10E+00 | 1.10E+00 |
| DBR* =    | 361           | 1090     | 572      | 261      |
| A =       | 1             | 1        | 1        | 1        |
| EF =      | 350           | 350      | 350      | 350      |
| AT =      | 70            | 70       | 70       | 70       |
| FAH =     | 1.00          | 1.00     | 1.00     | 0.73     |

\* 95th percentile breathing rates for infants and 80th percentile for children and adults

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|                      |             |            | Infant/Child | - Expos ure l | Information | Infant/Child  | Adult - Exp | osure Infor | mation      | Adult         |        |          |       |
|----------------------|-------------|------------|--------------|---------------|-------------|---------------|-------------|-------------|-------------|---------------|--------|----------|-------|
|                      | Exposure    |            |              |               | Age         | Cancer        | Model       |             | Age         | Cancer        |        | Maximum  |       |
| Expos ur e           | Duration    |            | DPM Conc     | (ug/m3)       | Sensitivity | Risk          | DPM Conc    | (ug/m3)     | Sensitivity | Risk          | Hazard | Fugitive | Total |
| Year                 | (years)     | Age        | Year         | Annual        | Factor      | (per million) | Year        | Annual      | Factor      | (per million) | Index  | PM2.5    | PM2.5 |
| 0                    | 0.25        | -0.25 - 0* | 2021 - 2022  | 0.0158        | 10          | 0.21          | 2021 - 2022 | 0.0158      | -           | -             |        |          |       |
| 1                    | 1           | 0 - 1      | 2021 - 2022  | 0.0158        | 10          | 2.59          | 2021 - 2022 | 0.0158      | 1           | 0.05          | 0.003  | 0.00     | 0.02  |
| 2                    | 1           | 1 - 2      |              | 0.0000        | 10          | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 3                    | 1           | 2 - 3      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 4                    | 1           | 3 - 4      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 5                    | 1           | 4 - 5      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 6                    | 1           | 5 - 6      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 7                    | 1           | 6 - 7      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 8                    | 1           | 7 - 8      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 9                    | 1           | 8 - 9      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 10                   | 1           | 9 - 10     |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 11                   | 1           | 10 - 11    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 12                   | 1           | 11 - 12    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 13                   | 1           | 12 - 13    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 14                   | 1           | 13 - 14    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 15                   | 1           | 14 - 15    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 16                   | 1           | 15 - 16    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 17                   | 1           | 16-17      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 18                   | 1           | 17-18      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 19                   | 1           | 18-19      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 20                   | 1           | 19-20      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 21                   | 1           | 20-21      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 22                   | 1           | 21-22      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 23                   | 1           | 22-23      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 24                   | 1           | 23-24      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 25                   | 1           | 24-25      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 26                   | 1           | 25-26      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 27                   | 1           | 26-27      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 28                   | 1           | 27-28      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 29                   | 1           | 28-29      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 30                   | 1           | 29-30      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| <b>Total Increas</b> | ed Cancer R | lisk       |              |               |             | 2.81          |             |             |             | 0.05          |        |          |       |

Total Increased Cancer Risk \* Third trimester of pregnancy

#### 175 Monroe Street, Santa Clara, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 

- ASF = Age sensitivity factor for specified age group
- ED = Exposure duration (years)
- AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)
- Inhalation Dose =  $C_{air} \times DBR \times A \times (EF/365) \times 10^{-6}$

Where:  $C_{air} = \text{concentration in air } (\mu g/m^3)$ 

- Car concentration in an ( $\mu$ m ) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)
- $10^{-6}$  = Conversion factor

#### Values

|           | I                   | Adult    |          |          |
|-----------|---------------------|----------|----------|----------|
| Age>      | 3rd Trimester 0 - 2 |          | 2 - 16   | 16 - 30  |
| Parameter |                     |          |          |          |
| ASF =     | 10                  | 10       | 3        | 1        |
| CPF =     | 1.10E+00            | 1.10E+00 | 1.10E+00 | 1.10E+00 |
| DBR* =    | 361                 | 1090     | 572      | 261      |
| A =       | 1                   | 1        | 1        | 1        |
| EF =      | 350                 | 350      | 350      | 350      |
| AT =      | 70                  | 70       | 70       | 70       |
| FAH =     | 1.00                | 1.00     | 1.00     | 0.73     |

\* 95th percentile breathing rates for infants and 80th percentile for children and adults

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|                      |             |            | Infant/Child | - Expos ure l | Information | Infant/Child  | Adult - Exp | osure Infor | mation      | Adult         |        |          |       |
|----------------------|-------------|------------|--------------|---------------|-------------|---------------|-------------|-------------|-------------|---------------|--------|----------|-------|
|                      | Exposure    |            |              |               | Age         | Cancer        | Model       |             | Age         | Cancer        |        | Maximum  |       |
| Expos ur e           | Duration    |            | DPM Conc     | (ug/m3)       | Sensitivity | Risk          | DPM Conc    | (ug/m3)     | Sensitivity | Risk          | Hazard | Fugitive | Total |
| Year                 | (years)     | Age        | Year         | Annual        | Factor      | (per million) | Year        | Annual      | Factor      | (per million) | Index  | PM2.5    | PM2.5 |
| 0                    | 0.25        | -0.25 - 0* | 2021 - 2022  | 0.0065        | 10          | 0.09          | 2021 - 2022 | 0.0065      | -           | -             |        |          |       |
| 1                    | 1           | 0 - 1      | 2021 - 2022  | 0.0065        | 10          | 1.07          | 2021 - 2022 | 0.0065      | 1           | 0.02          | 0.001  | 0.01     | 0.01  |
| 2                    | 1           | 1 - 2      |              | 0.0000        | 10          | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 3                    | 1           | 2 - 3      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 4                    | 1           | 3 - 4      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 5                    | 1           | 4 - 5      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 6                    | 1           | 5 - 6      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 7                    | 1           | 6 - 7      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 8                    | 1           | 7 - 8      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 9                    | 1           | 8 - 9      |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 10                   | 1           | 9 - 10     |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 11                   | 1           | 10 - 11    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 12                   | 1           | 11 - 12    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 13                   | 1           | 12 - 13    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 14                   | 1           | 13 - 14    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 15                   | 1           | 14 - 15    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 16                   | 1           | 15 - 16    |              | 0.0000        | 3           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 17                   | 1           | 16-17      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 18                   | 1           | 17-18      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 19                   | 1           | 18-19      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 20                   | 1           | 19-20      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 21                   | 1           | 20-21      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 22                   | 1           | 21-22      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 23                   | 1           | 22-23      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 24                   | 1           | 23-24      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 25                   | 1           | 24-25      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 26                   | 1           | 25-26      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 27                   | 1           | 26-27      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 28                   | 1           | 27-28      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 29                   | 1           | 28-29      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| 30                   | 1           | 29-30      |              | 0.0000        | 1           | 0.00          |             | 0.0000      | 1           | 0.00          |        |          |       |
| <b>Total Increas</b> | ed Cancer R | lisk       |              |               |             | 1.16          |             |             |             | 0.02          |        |          |       |

Total Increased Cancer Risk \* Third trimester of pregnancy

#### 175 Monroe Street, Santa Clara, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Washington Elementary School - 1 meter - Child Exposure

Student Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x 1.0E6

- Where:  $CPF = Cancer potency factor (mg/kg-day)^{-1}$ 
  - ASF = Age sensitivity factor for specified age group
  - ED = Exposure duration (years)
  - AT = Averaging time for lifetime cancer risk (years)

Inhalation Dose =  $C_{air} x SAF x 8$ -Hr BR x A x (EF/365) x 10<sup>-6</sup>

Where:  $C_{air} = concentration in air (\mu g/m^3)$ 

- SAF = Student Adjustment Factor (unitless)
  - = (24 hrs/9 hrs) x (7 days/5 days) = 3.73
- 8-Hr BR = Eight-hour breathing rate (L/kg body weight-per 8 hrs)
- A = Inhalation absorption factor
- EF = Exposure frequency (days/year)
- $10^{-6}$  = Conversion factor

#### Values

|            | School Infant | School Child | Adult    |
|------------|---------------|--------------|----------|
| Age>       | 0 - <2        | 2 - <16      | 16-30    |
| Parameter  |               |              |          |
| ASF =      | 10            | 3            | 1        |
| CPF =      | 1.10E+00      | 1.10E+00     | 1.10E+00 |
| 8-Hr BR* = | 1200          | 520          | 240      |
| A =        | 1             | 1            | 1        |
| EF =       | 250           | 250          | 250      |
| AT=        | 70            | 70           | 70       |
| SAF =      | 3.73          | 3.73         | 1.00     |

\* 95th percentile 8-hr breathing rates for moderate intensity activities

#### Construction Cancer Risk by Year - Maximum Impact Receptor Location

|                 |             |       | Child-    | Child - Exposure Information |             |               |
|-----------------|-------------|-------|-----------|------------------------------|-------------|---------------|
|                 | Exposure    |       |           |                              | Age*        | Cancer        |
| Exposure        | Duration    |       | DPM Cor   | nc (ug/m3)                   | Sensitivity | Risk          |
| Year            | (years)     | Age   | Year      | Annual                       | Factor      | (per million) |
| 1               | 1           | 5 - 6 | 2021-2022 | 0.0001                       | 3           | 0.0           |
| 2               | 1           |       | T         | 0.0000                       | 3           | 0.0           |
| 3               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| 4               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| 5               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| 6               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| 7               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| 8               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| 9               | 1           |       |           | 0.0000                       | 3           | 0.0           |
| Total Increased | Cancer Risk |       |           |                              |             | 0.01          |

|        | Maximur  | n     |
|--------|----------|-------|
| Hazard | Fugitive | Total |
| Index  | PM2.5    | PM2.5 |
| 0.0000 | 0.0000   | 0.000 |
|        |          |       |

\* Children assumed to be 5 years of age or older with +1 years of Construction Exposure

Attachment 5: Community Risk Modeling Information and Calculations



# Area of Interest (AOI) Information

Area : 3,686,655.34 ft<sup>2</sup>

Aug 27 2021 15:41:41 Eastern Daylight Time



Permitted Facilities 2018

City of San Jose, County of Santa Clara, Bureau of Land Management, Esn, HERE, Garmin, INCREMENT P, Intermap, USGS, METINASA, EPA, USDA

0.3 km

0.07

0

0.15

#### Summary

| Name                      | Count | Area(ft²) | Length(ft) |
|---------------------------|-------|-----------|------------|
| Permitted Facilities 2018 | 0     | N/A       | N/A        |

Note: The estimated risk and hazard impacts from these sources would be expected to be substantially lower when site specific Health Risk Screening Assessments are conducted.

The screening level map is not recommended for evaluating sensitive land uses such as schools, senior centers, day cares, and health facilities.

© Copyright 2018 Bay Area Air Quality Management District