Appendix G

Operational Noise Analysis

Calleguas Municipal Water District Lindero Pump Station Rehabilitation Project Thousand Oaks, CA

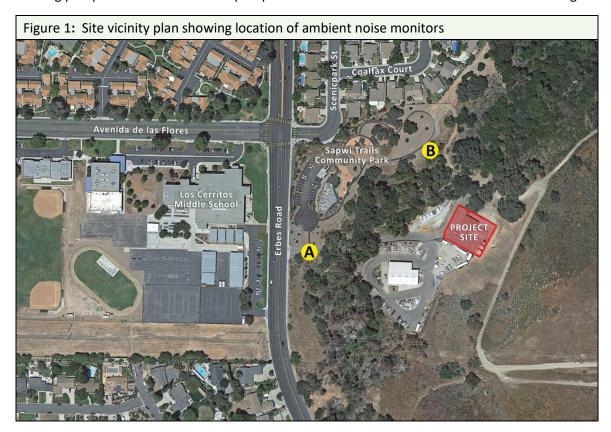
Noise Impact Analysis & Recommendations

May 10, 2021

Revised: June 24, 2021

Prepared for:

Kennedy Jenks 2775 North Ventura Road, Suite 100 Oxnard, CA 93036


By:

Steve Rogers Acoustics, LLC

Steve Rogers Principal

Background & Context

- a) The project includes replacement of existing pumps and installation of a new diesel back-up generator at the Calleguas Lindero Pump Station property in Thousand Oaks, CA.
- b) Calleguas has requested that an analysis of the noise generated by the project be performed to evaluate and potentially mitigate noise impact on sensitive uses nearby, including homes on Coalfax Court and Erbes Road, as well as the Los Cerritos Middle School.
- c) Existing ambient noise levels are mostly due to surface street traffic, particularly on Erbes Road and Avenida de las Flores. To establish baseline ambient noise levels, we monitored noise for a continuous 24-hour period between April 22 and 23, 2021 at two locations selected to represent conditions at the closest sensitive uses as shown in Figure 1. During this period, the existing pumps were not run so that pump noise would be excluded from the baseline readings.

d) Data collected by the two noise monitors is presented as hourly, A-weighted Equivalent Sound Pressure Level graphs in Appendix A to this report. The measured noise level range is summarized in Table 1:

Table 1: Measured a	Table 1: Measured ambient noise levels (Leq, 1-hour in dBA)									
Monitor Location	NIGHTTIME Minimum									
А	57.6	39.0								
В	54.6	38.3								

2. Applicable Noise Regulations

City of Thousand Oaks Noise Ordinance

Noise is regulated in the City of Thousand Oaks by Chapter 21 of the Municipal Code, also known as the City of Thousand Oaks Noise Ordinance. Emergency activities and equipment are exempt from the City's noise regulations, as stated in Section 5-21.04 which reads:

Sec. 5-21.04. Emergency activities exempted.

This chapter shall not apply to any public equipment, public vehicle, or public action taken by the City needed in order to protect the public health, safety and welfare.

While Calleguas is distinct from the City of Thousand Oaks, Lindero Pump Station serves the residents of the city and the proposed generator is needed to protect public health and welfare. We therefore infer that the emergency activities exemption would apply to the generator proposed for this project – provided that the generator is for emergency use only.

For non-emergency equipment – such as the new pumps proposed for this project – the City's noise ordinance does not provide quantifiable (decibel) noise limits. Instead, Section 5-21.02 establishes the following qualitative noise limit:

Sec. 5-21.02. Powered equipment in residential areas.

Between the hours of 9:00 p.m. and 7:00 a.m. of the following day, no person shall operate any lawn mower, backpack blower, lawn edger, riding tractor, or any other machinery, equipment, or other mechanical or electrical device, or any hand tool which creates a loud, raucous or impulsive sound, within any residential zone or within any commercial zone which can be heard from any inhabited real property in a residential zone.

Many factors determine the audibility of the noise in a given context and the City's requirement for inaudibility between the hours of 9:00 PM and 7:00 AM cannot therefore be converted into a decibel noise limit with total certainty. However, as a general rule-of-thumb, we would typically expect that mechanical noise would need to be 10 dBA below the otherwise prevailing ambient noise level in order for the mechanical noise to be inaudible. This is a very stringent noise control standard, much more so than typical noise limits imposed by other cities in Southern California. For example, the nighttime noise limit for mechanical equipment prescribed by the City of Los Angeles noise ordinance is 45 dBA (or 40 dBA if the equipment exhibits tonal or impulsive noise characteristics).

3. Calleguas' Noise Control Goals for the Project

Calleguas believes that the City noise ordinance should not be applied to critical infrastructure facilities such as pump stations. In addition, noise produced by the existing pumps is audible in the neighborhood and yet Calleguas is not aware of any complaints or concerns from the City or local residents about noise from the pump station. In keeping with Calleguas' practice of considering the impact of noise on nearby sensitive land uses – Calleguas has proposed the following noise control goals for the project:

- Noise levels produced by the replacement pumps shall not exceed noise levels produced by the
 existing pumps.
- Noise produced by the new generator shall be limited to 60 dBA or less at the nearest residential use.

4. Generator & Pumps - Current Design Proposals

- a) Our noise evaluation is based on the description of the new emergency generator and replacement pump installations provided in the Preliminary Design Report (PDR) for the project dated April 7, 2021, which are summarized as follows:
- b) A new 3 MW diesel back-up generator with fuel tank is proposed for the north eastern corner of the pump station yard. For space and budget reasons, the generator set will not be housed in a building. Instead, a weatherproof, sound-attenuating enclosure will be provided.
- c) Three new 1,000 HP vertical turbine pumps are proposed. Each will replace an existing pump pair (train) and will be located in the same location to the southwest of the pumps station building. The pumps themselves will be located in below-grade steel pump barrels, leaving only the motors exposed above grade.
- d) An equipment canopy will be provided over the three new pumps, to provide some basic weather protection. The canopy will comprise a pitched roof at approximately 20-feet above grade. There will be no walls around the pumps; the canopy structure will be open on all four sides.

5. Noise Analysis & Modeling

- a) The noise impact of the project has been analyzed using SoundPLAN software to create a scale 3D computer model of the project site and its surroundings, including the topography of the area and presence of existing buildings. The model has allowed us to evaluate various scenarios by inserting noise sources including the existing pumps, new generator (with and without attenuation) and replacement pumps.
- b) Noise characteristics of the existing pumps were determined by direct noise measurements made at Lindero Pump Station on April 23, 2021, with the measurement microphone positioned at various points around pump Trains C and D as each operated in turn. Results of these measurements are summarized in Table 2.

Table 2: Existing pump noise levels										
	So	ound Pi	ressure	Level (dB re 2	0 micro	oPascal	s)		
		at Oc	tave Ba	and Cer	nter Fre	quenc	y (Hz)			
	63	125	250	500	1k	2k	4k	8k	dBA	
Pump C-1 (measured at 6-ft)	61.0	67.5	62.4	61.4	68.6	64.6	59.0	47.7	71.1	
Pump C-2 (measured at 6-ft)	57.5	74.7	62.3	60.8	70.5	67.2	57.5	46.5	73.0	
Motor C-1 (measured at 6-ft)	60.1	70.6	65.6	65.9	78.5	75.8	69.5	59.6	81.2	
Motor C-2 (measured at 6-ft)	61.2	68.9	65.8	64.8	76.6	73.5	61.6	50.7	78.9	
Pump D-1 (measured at 10-ft)	73.7	78.4	71.9	70.6	71.6	71.7	65.0	59.1	76.7	
Pump D-2 (measured at 10-ft)	75.8	82.1	73.5	72.4	70.7	70.7	62.4	58.8	76.5	
Motor D-1 (measured at 10-ft)	75.9	83.5	75.1	72.9	76.0	76.7	68.8	61.0	80.2	
Motor D-2 (measured at 10-ft)	76.9	80.0	74.4	72.2	74.9	76.2	66.5	61.3	81.1	

- c) We noticed a high-pitched "whine" from motor C-1, which may have been produced by a worn bearing. This resulted in elevated high-frequency noise levels (especially in the 4 kHz octave band) and overall dBA level for motor C-1.
- d) Existing pump Train B is currently non-operational and was not included in our noise measurements.
- e) Data provided by Kohler and Caterpillar (copies of data sheets attached in Appendix C) has been used to establish composite noise spectra which are attributed to the generator engine and exhaust in the noise model. We have assumed a worst-case condition of 100% load.
- f) Data provided by US Motors (copy of data sheet attached in Appendix C) has been used to represent the noise spectrum of each pump motor. For the purposes of our analysis, we have assumed that there will be no significant noise contributions from the pumps themselves, because they will be enclosed and located underground. The 3D nature of the SoundPLAN model has allowed us to accurately represent the effect of the pump canopy with noise radiating from the open sides rather than relying on a simple "point source" calculation. We have assumed a worst-case scenario of all three pumps operating simultaneously.
- g) In our analysis, we have focused on three receiver points around the project site, selected to represent the closest residential uses, as shown in Figure 2. In each case, we have considered a receiver 5-feet above the ground. In addition, we have used the SoundPLAN software to generate noise maps for the various noise sources scenarios, which are attached as Appendix B to this report.

6. Noise Impact of New vs Existing Pumps

a) Noise Map 1 shows noise contours calculated by SoundPLAN for a present-day scenario in which pump Trains C and D are operating simultaneously. Table 3 summarizes the received noise levels for this scenario.

Tab	Table 3: Present-day noise levels when pump Trains C & D operate simultaneously								
Rec	eiver Location	Noise Level (dBA)							
1	Homes on Coalfax Court	50.2							
2	Homes at corner of Avenida de las Flores and Erbes Road	46.6							
3	Homes on Erbes Road	44.3							

b) Noise Map 2 shows noise contours calculated by SoundPLAN for a future scenario where all three new pumps are operating simultaneously. Table 4 summarizes the received noise levels for this scenario.

Tab	Table 4: Future noise levels when all three new pumps are operating simultaneously								
Rec	eiver Location	Noise Level (dBA)							
1	Homes on Coalfax Court	46.1							
2	Homes at corner of Avenida de las Flores and Erbes Road	44.0							
3	Homes on Erbes Road	42.5							

c) As Table 4 shows, predicted noise levels when all three new pumps operate simultaneously are lower than those when existing pump trains C and D are operating. This is consistent with Calleguas' noise control goal for the new pumps.

7. Noise Impact of the New Generator

a) Noise Map 3 in Appendix B shows noise contours calculated by SoundPLAN for a future scenario in which the new generator and all three new pumps are operating simultaneously. In this scenario, the generator engine is exposed and there is no silencer on the exhaust. Table 5 summarizes the overall dBA levels at the closest residential receivers.

Table !	Table 5: Received noise levels due to the future generator + pumps (NO ATTENUATION)									
Receiv	er Location	Noise Level (dBA)								
1	Homes on Coalfax Court	82.4								
2	Homes at corner of Avenida de las Flores and Erbes Road	77.1								
3	Homes on Erbes Road	74.7								

b) As Table 6 shows, without an enclosure for the engine or a silencer on the exhaust, the generator would result in noise levels at the nearby homes that significantly exceed Calleguas' proposed 60 dBA limit.

c) Noise Map 2 shows noise contours for a scenario in which the engine of the new generator is enclosed in a sound-attenuating enclosure (including attenuated air inlet and outlet openings, sealed doors etc.) and the exhaust is fitted with a "super-critical" grade silencer. Table 6 summarizes the overall dBA levels in this scenario at the closest residential receivers and shows that the attenuated generator set meets Calleguas' self-imposed 60 dBA noise limit at all three receiver locations.

Tab	Table 6: Received noise levels due to the future generator in a sound enclosure, exhaust fitted with super-critical grade silencer							
Rec	eiver Location	Noise Level (dBA)						
1	Homes on Coalfax Court	59.3						
2	Homes at corner of Avenida de las Flores and Erbes Road	54.1						
3	Homes on Erbes Road	52.2						

d) Performance specifications for the generator enclosure are provided in the Conclusions section of this report.

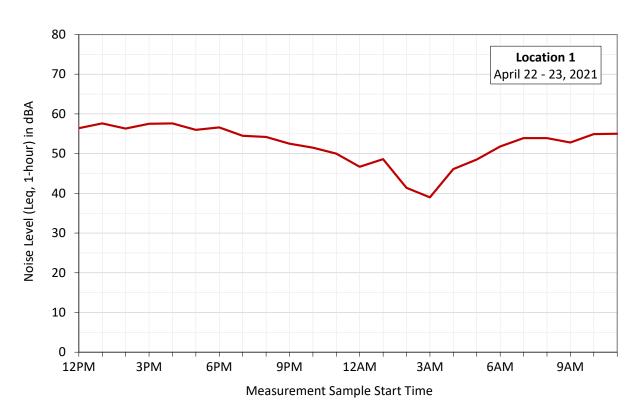
8. Conclusions & Recommendations

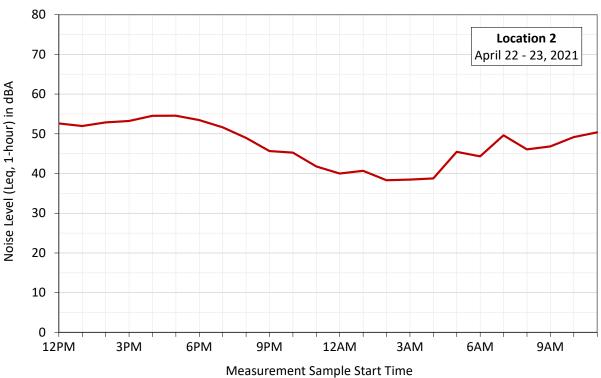
a) Replacement Pumps

Based on the available manufacturer's noise data, we predict that the proposed pumps and open-sided equipment canopy would also result in noise levels at the neighboring homes that are lower than those produced by existing pumps. We therefore conclude that the replacement pump portion of the project – as currently designed – meets Calleguas' noise control goal and no additional noise mitigation measures are required to meet that goal.

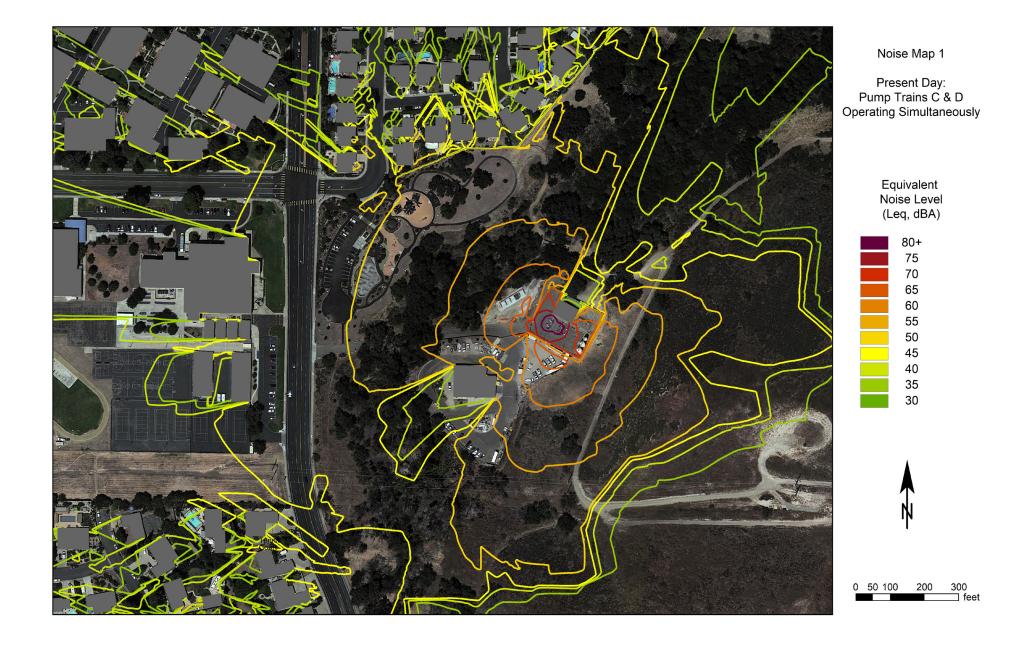
b) New Generator

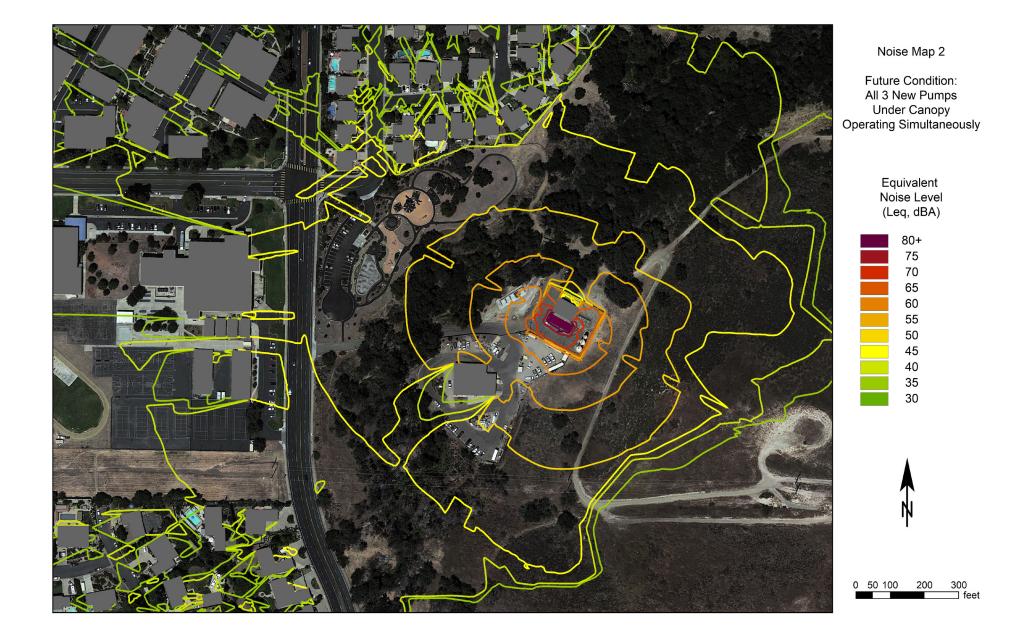
For the new back-up generator, Calleguas' has set a noise control goal of 60 dBA or less at the surrounding residential uses. In order to meet the 60 dBA goal, the new generator will require a sound-attenuating enclosure for the engine, in addition to a critical-class silencer for the exhaust.


We recommend that the generator enclosure be designed and constructed in such a way as to limit noise levels when the generator is running under 100% load to the values in Table 7. These noise limits apply at a distance of 23-feet (7 meters) from the generator in all directions — including above — and meeting them will require specially treated ventilation openings and sealed acoustical doors as well as wall and roof assemblies capable of the required level sound-attenuation.


Table 7: GENERATOR ENCLOSURE										
Recommended noise limits measured at a distance of 23-feet (7m) from the enclosed										
generator, over a reflective plane, in all directions - including above										
Maximum Unweighted Sound Pressure Level (dB re 20 microPascals)										
at Octave Band Center Frequency (Hz) Maximum										
63	125	250	500	1k	2k	4k	8k	dBA Level		
87	91	86	76	71	68	67	67	81		
87	91	86	76	/1	68	67	67	81		

The critical-class silencer for the exhaust should deliver the minimum insertion loss values shown in Table 8. Suitable critical-class silencers are available from GT Exhaust/Silex; a data sheet for a suitable silencer selection is included in Appendix C.


Table 8: SI	Table 8: SUPER-CRITICAL EXHAUST SILENCER										
R	Recommended insertion loss performance										
Minimum Insertion Loss (dB re 20 microPascals) at Octave Band Center Frequency (Hz)											
63	63 125 250 500 1k 2k 4k 8k										
32	32 42 39 39 36 34 36 38										





APPENDIX B: SoundPLAN Noise Maps

PACKAGE DATA [DM8448]

NOVEMBER 02, 2020

For Help Desk Phone Numbers Click here

Feature Code:175DRB5Rating Type:STANDBYSales model Package:C175-16Engine Sales Model:C175Engine Arrangement Number:5683569Hertz:60

EKW W/F: 3000.0 Noise Reduction: 0 dBA Back Pressure: 26.92 inH2O

Engine Package Information

Engine Package Data

Package Cooling Information

This is mechanical sound with exhaust isolated

Data not available.

Package Sound Information

Sound Comments:

Open Sound Data

Distance: 3.3 Feet

EKW W/F	% LOAD	OVERALL SOUND DB(A)	63HZ	125HZ	250HZ	500HZ	OBCF 1000HZ DB			
3000.0	100.0	110.69	95.36	106.1	105.58	106.5	102.86	102.07	98.02	103.38
2250.0	75.0	108.63	95.51	106.0	105.18	105.88	102.32	100.41	96.83	103.1
1500.0	50.0	107.51	95.85	105.25	105.08	106.32	101.55	99.12	95.64	96.51
750.0	25.0	106.81	95.53	106.02	104.73	105.76	101.12	98.12	94.41	94.56

Distance: 23.0 Feet

EKW W/F	% LOAD	OVERALL SOUND DB(A)		125HZ			OBCF 1000HZ DB			OBCF 8000HZ DB
3000.0	100.0	101.44	90.21	99.76	95.51	95.02	93.98	93.82	88.22	93.74
2250.0	75.0	98.85	90.7	98.39	94.76	94.44	92.65	92.11	87.38	93.08
1500.0	50.0	97.82	91.09	98.35	94.61	94.06	92.44	91.12	86.7	85.9
750.0	25.0	96.49	90.29	98.23	94.07	93.66	91.44	88.85	84.75	82.36

Distance: 49.2 Feet

EKW W/F	% LOAD	OVERALL SOUND DB(A)								OBCF 8000HZ DB
3000.0	100.0	96.43	85.81	95.82	92.07	93.5	89.1	87.21	82.28	87.89
2250.0	75.0	94.54	85.61	94.89	91.97	94.17	87.93	85.8	81.25	86.27
1500.0	50.0	93.49	85.95	93.51	91.26	93.41	87.32	84.62	80.55	80.06
750.0	25.0	92.9	85.53	93.35	91.04	93.32	86.39	83.64	79.46	76.66

Caterpillar Confidential: Green

Content Owner: Commercial Processes Division Web Master(s): <u>PSG Web Based Systems Support</u>

Current Date: 11/2/2020, 6:22:33 PM © Caterpillar Inc. 2020 All Rights Reserved.

Data Privacy Statement.

This data is for exhaust only - does not include radiator

PERFORMANCE DATA [DM8448]

MARCH 12, 2015 For Help Desk Phone Numbers Click here

Perf No: DM8448							Change Level: 0
General	Heat Rejection	Sound En	ssions	Regulatory	Albitude Derate	Cress Reference	Perf Param Ref
View PDF		TV					*
SALES MODEL:		C175-16	сомв	ustion:			DI
ENGINE POWER (BHF	P):	4,423	ENGI	NE SPEED (RPM):			1,800
GEN POWER WITH FA	AN (EKW):	3,000.0	HERT				60
COMPRESSION RATIO	D:	15.3	FAN P	OWER (HP):			187.7
RATING LEVEL:		STANDBY		RATION:			TA
PUMP QUANTITY:		2	AFTER	COOLER TYPE:			SCAC
FUEL TYPE:		DIESEL	AFTER	COOLER CIRCUIT TY	PE:		JW+0C+1AC, 2AC
MANIFOLD TYPE:		DRY		COOLER TEMP (F):			115
GOVERNOR TYPE:		ADEM4		T WATER TEMP (F):			210.2
ELECTRONICS TYPE:		ADEM4		CONFIGURATION:			PARALLEL
CAMSHAFT TYPE:		STANDARD	TURBO	QUANTITY:			4
IGNITION TYPE:		CI	TURBO	CHARGER MODEL:			GTB6251BN-48T-1.38
INJECTOR TYPE:		CR	CERTI	FICATION YEAR:			2008
FUEL INJECTOR:		3198470	CRANI	CASE BLOWBY RATI	(FT3/HR):		2,436,4
REF EXH STACK DIAM	ETER (IN):	14		RATE (RATED RPM) N			25.1
			PISTO	N SPD @ RATED ENG	SPD (FT/MIN):		2,598.4
INDUSTRY		SUB IND	USTRY			APPLICATION	
ELECTRIC POWER		STANDARI	0			PACKAGED GENSET	

General Performance Data Top

GENSET POWER WITH FAN	PERCENT LOAD	ENGINE POWER	BRAKE MEAN EFF PRES (BMEP)	BRAKE SPEC FUEL CONSUMPTN (BSFC)	VOL FUEL CONSUMPTN (VFC)	INLET MFLD PRES	INLET MFLD TEMP	EXH MFLD	EXH MFLD PRES	ENGINE OUTLET
EKW	%e	ВНР	PSI	LB/BHP-HR	GAL/HR	IN-HG	DEG F	DEG F	IN-HG	DEG F
3,000.0	100	4,423	377	0.339	214.2	91.5	131.3	1.229.8	64.3	891.9
2,700.0	90	3,999	341	0.338	192.9	81.4	129.6	1,193.4	56.5	879.2
2,400.0	80	3,576	305	0,340	173.9	73.0	128,3	1,163,0	50.0	869,4
2,250.0	75	3,364	286	0.344	165.3	69.5	127.8	1,150.7	47.5	865.8
2,100.0	70	3,152	268	0.351	158.2	67.1	127.6	1,142.6	45.8	864.2
0,008,1	60	2,729	232	0.371	144.5	62.7	127.3	1,127.7	42.8	861.6
1,500.0	50	2,305	196	0.396	130.4	57.5	126.9	1,109.9	39.5	858.0
,200.0	40	1,882	160	0.417	112.2	46.4	125.8	1,083.9	32.9	848,4
0.00	30	1,458	124	0,440	91.6	34.8	124.5	1,041.6	25.3	834.7
750.0	25	1,246	106	0.453		29.0	123,8	1,014.2	21.3	826.5
0.00	20	1,035	88	0.467		23.2	123.2	961.6	17.6	797.3
300.0	10	611	52	0.514		11.7	122.1	752.4	10.6	649.3

GENSET POWER WITH FAN	PERCENT LOAD	ENGINE POWER	COMPRESSOR OUTLET PRES	COMPRESSOR OUTLET TEMP	WET INLET AIR VOL FLOW RATE	ENGINE OUTLET WET EXH GAS VOL FLOW RATE	WET INLET AIR MASS FLOW RATE	WET EXH GAS MASS FLOW RATE	WET EXH VOL FLOW RATE (32 DEG F AND 29.98 IN HG)	DRY EXH VOL FLOW RATE (32 DEG F AND 29.98 IN HG)
EKW	%	BHP	IN-HG	DEG F	CFM	CFM	LB/HR	LB/HR	FT3/MIN	FT3/MIN
3,000.0	100	4,423	92	451.5	9,772.2	25,620.0	42,761,1	44,259.6	9,320,0	8,667.2
2,700.0	90	3,999	82	414.6	8,943.0	23,086.1	38,888.2	40,238.8	8,477.9	7,889.0
2,400.0	80	3,576	74	384.7	8,243.6	20,980.8	35,642.2	36,860.0	7,761.6	7,230.7
2,250.0	75	3,364	70	373.0	7,953.8	20,121.0	34,304.6	35,462.7	7,463.6	6,958.6
2,100.0	70	3,152	68	366,1	7,753.3	19,531.3	33,379.1	34,486.9	7,254.0	6,770.2
0.008,	60	2,729	65	354.0	7,382.3	18,480.5	31,695,8	32,707.6	6,876.9	6,433.3
,500.0	50	2,305	60	339.0	6,952.0	17,314.7	29,788.0	30,700,3	6,460,8	6,059,1
,200.0	40	1,882	50	308.0	6,076.8	15,264.4	25,920.8	26,704.4	5,737.4	5,392.5
0.00	30	1,458	39	267.2	5,160.3	12,786.8	21,909.9	22,550.1	4,857.0	4,574.5
50.0	25	1,246	33	243.5	4,701.8	11,409.7	19,919.4	20,483.0	4,361,8	4,112.2
0.00	20	1,035	27	217,8	4,243.2	9,954.4	17,938.9	18,422.6	3,897,7	3,682.5
0.00	10	611	14	160.9	3,325.6	6,901.7	14,007.7	14,322.1	3,060.0	2,917.8

Heat Rejection Data Top

PUMP POWER IS	INCLUDED IN	HEAT REJEC	CTION BALANCE, BUT	IS NOT SHOWN.							
GENSET POWER WITH FAN	PERCENT LOAD	ENGINE POWER	REJECTION TO JACKET WATER	REJECTION TO ATMOSPHERE	REJECTION TO	EXHUAST RECOVERY TO 350F	FROM OIL	FROM 2ND STAGE AFTERCOOLER	WORK ENERGY	LOW HEAT VALUE ENERGY	HIGH HEAT VALUE ENERG
EKW	%	ВНР	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN	BTU/MIN
3,000.0	100	4,423	78,436	8,336	179,063	101,475	24,486	28,224	187,548	459,719	489,716
2,700.0	90	3,999	70,525	7,773	161,695	89,988	22,085	23,040	169,590	414,639	441,694
2,400.0	80	3,576	63,777	7,308	147,071	80,799	19,915	18,972	151,631	373,899	398,296
2,250.0	75	3,364	60,840	7,112	140,788	77,146	18,917	17,358	142,651	355,157	378,331
2,100.0	70	3,152	58,599	6,984	136,398	74,726	18,070	16,328	133,672	339,264	361,402
1,800.0	60	2,729	54,754	6,750	128,972	70,419	16,496	14,928	115,714	309,709	329,917
,500.0	50	2,305	50,870	6,524	120,720	65,533	14,875	13,738	97,755	279,270	297,493
1,200.0	40	1,882	45,639	6,304	106,679	55,828	12,823	11,188	79,796	240,744	256,453
0.000	30	1,458	38,952	6,092	88,655	45,754	10,475	8,227	61,838	196,664	209,497
50.0	25	1,246	35,102	5,988	78,431	40,805	9,211	6,848	52,858	172,945	184,229
0.00	20	1,035	30,773	5,789	67,509	34,336	7,896	5,681	43,879		157,927
0,008	10	611	20,277	4,828	43,873	17,588	5,132	4,028	25,920	96,361	102,649

Note(s)														
SOUND DATA REPRESENTATIV	E OF NOISE PRODUCED	BY THE "ENGINE ONL	Y"											
EXHAUST: Sound F	ower (1/3 Octa	ve Frequencies)												
GENSET POWER WITH FAN	PERCENT LOA	D ENGINE POWE	R OVE	RALL SOUN	D 100 i	HZ 125 H	2 160 HZ	200 HZ	250 HZ	315 HZ	400 HZ	500 H	Z 630 I	HZ 800 H2
EKW	%	ВНР	dB(A)	d8(A)		dB(A)	dB(A)	dE(A)	dB(A)	dB(A)	dB(A)	dB(A)	
3,000.0	100	4,423	134.5	5	109.7		113.7	115.5	116.0	119.0	119.9	121.5	120.4	
2,700.0	90	3,999	133.2	2	110.2		112.6	114.3	114.5	117.3	118,4	120,1	118.3	
2,400.0	80	3,576	132.0)	111.6	116.6	111.0	112.7	113.0	115.6	116.9	118.4	116.5	0.0000000
2,250.0	75	3,364	131.4	1	112.4	116.8	110.2	111.9	112.3	114.8	116.2	117.6	115.6	
2,100.0	70	3,152	130.7	•	113.2	117.1	109.3	111.1	111.6	114.0	115.5	116.8	114.7	115.9
1,800.0	60	2,729	129.5	i	114.8	117.6	107.5	109.4	110.2	112.3	114.1	115.1	113.0	
1,500.0	50	2,305	128.2		116.3	118,1	105.8	107.8	108.7	110.6	112,6	113.4	111.2	
1,200.0	40	1,882	127,0		117.9	118.6	104.1	106.1	107.3	108.9	111.2	111.8	109.5	
0,000	30	1,458	125.7		119.5	119.1	102,3	104.4	105.9	107.3	109.8	110.1	107.7	108.5
750.0 500.0	25	1,246	125.1		120.2	119.3	101.4	103.6	105.2	106.4	109.1	109.3	106,8	107.6
800.0	20	1,035	124.4		121.0		100.5	102.8	104,5	105.6	108,4	108.4	105.9	106,7
	10	611	123.2		122.6	120.0	98.8	101.1	103.0	103.9	106.9	106.8	104.2	104.8
EXHAUST: Sound P	ower (1/3 Octav	e Frequencies)												
GENSET POWER WITH FAN	PERCENT LOAD	ENGINE POWER	1000 HZ	1250 Hz	2 1600 HZ	2000 HZ	2500 HZ	3150 H	Z 4000	HZ 5000	H7 630	O HZ 8	000 HZ	10000 HZ
:KW	%	ВНР	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A			
,000.0	100	4,423	122.2	122.6	123.5	124.9	124.7	123.1	122.4	121.6	120.	50 XX	19.0	dB(A) 123.4
,700.0	90	3,999	120,7	121.0	122.2	123.5	123.2	121.5	120.8	120.0	118.		17.8	123.4
,400.0	80	3,576	119.4	119.7	120.8	122.5	121.9	120.4	119.8	119.0	117.		17.1	123.5
.250.0	75	3,364	118.8	119.1	120.1	122.0	121.3	119.9	119.4	118.6	117.	0.00	16.8	123.3
,100.0	70	3,152	118.1	118.5	119.4	121.5	120.6	119.3	119.0	118.2	116.		16.5	123.1
,800.0	60	2,729	116.9	117.3	118.0	120.4	119.4	118.3	118.1	117.3	115.		15.9	122.6
,500.0	50	2,305	115.6	116.2	116.6	119,4	118.1	117.3	117.2	116.4	114,	_	15.3	122.1
,200,0	40	1,882	114.3	115.0	115.1	118.4	116.8	116.3	116.4	115.6	113.	M 50	14.7	121.6
00.0	30	1,458	113.1	113.8	113,7	117.4	115,6	115.3	115.5	114.7	112.		14.1	121.1
50.0 00.0	25	1,246	112.4	113.2	113.0	116.9	114.9	114.8	115.1	114.3	112.		13.8	120.9
00.0	20	1,035	111.8	112.6	112.3	116.4	114.3	114.2	114.7	113.9	111.	6 1:	13.5	120.7
	10	611	110.5	111.4	110.9	115,406	113,9	113.2	143.85	3 ^{113.9}	110.	6 /1+	2.93	120.2
MECHANICAL: Soun	d Power (1/3 Oc	tave Frequencie	es)			100	14		110	シフ		111		
ENSET POWER WITH FAN	PERCENT LOAD	ENGINE POWER	OVER	ALL SOUND	100 H	2 12 HZ	160 HZ	200 HZ	25 HZ	315 HZ	400 HZ	500 HZ	*****	
KW	%	ВНР	dB(A)		dB(A)	dB(A)	dB(A)	dB(A)	dB(A)				630 H	2 2 2 2 2 2 2 2 2
0.000	100	4,423	125.9		89.8	105.6	98.4	100.5	104.5		dB(A) 111.6	dB(A)	dB(A)	dB(A)
700,0	90	3,999	125.8		89.4	105.5	97.9	100.9	103.3		111.1	113.3	112.5	114.1
400.0	80	3,576	126.0		89.0	105.0	97.8	99.8	102.4		111.0	111.8	111.9	113.8
250.0	75	3,364	126.1		88.8	104.7	97.8	99.1	102.1		111.0	111.3	111.7	112.6
100.0	70	3,152	126.2		88.5	104.3	97.8	98.4	101.7			110.8	111.6	
800.0	60	2,729	126.5		88.1	103.7	97.8	96.9	100.9		111.0	109.8	111.0	112.2
500.0	50	2,305	126.7		87.7	103.0	97.8	95,4	100.2			108.8	110.9	110.5
200.0	40	1,882	127.0		87.3	102.4	97.7	94.0	99.4			107.8	110.6	100.5
0.0	30	1,458	127.2		86,9	101.7	97.7		98,6			106.8	110.2	108.9
50.0	25	1,246	127.3		86.7	101.4	97.7		98.2			106.3	110.1	108.5
0.0	20	1,035	127.4		86.4	101.0	97.7	91.0	97.9			105.8	109.9	108.1
0.0	10	611	127.7//	2,3	86.0	100.4	97.7	89.6		A01.2 1		104.8	109.6	
MECHANICAL: Sound	Power (1/3 0c	tave Frequencie	s) 110	100		. 1/9	7.7		116	0.6		- /	20	307.2
NSET POWER WITH FAN	PERCENT LOAD	ENGINE POWER	1000 HZ	1250 HZ	1600 HZ	2000 HZ	2500 HZ	3150 HZ	4000 H				/	
N	%	ВНР	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)							10000 HZ
00.0	100	4,423	112.7	113.9	114.6	115.3	115.0	dB(A)	dB(A)	dB(A)	dB(A)	dB		dB(A)
0,00	90	3,999	112.5	113.7	114.5	115.3	115.0	112.7	110.9	111.9	114.3	113		117.8
00.0	80	3,576	112.2	113.2	113.8	114.4	114.2	111.9	110.4	111.1 110.7	113.6	117		119.2
50.0	75	3,364	112.0	112.9	113.4	114.0	114.2	111.7	100.0	110.7	113.2	112		121.4
00.0	70	3,152	111.8	112.6	113.0	113.7	114.1	111.4	109.8	110.5	112.9	112		122.6
00.0	60	2,729	111.3	112.1	112.2	113.7	113.9	111.4	109.6	110.3	112.7	112		123.8
00.0	50	2,305	110.9	111.5	111.4	112.4	113.7	110.6	109.3	100.0	112.3	112	HT. 25	126.2
0.00	40	1,882	110.5	110.9	110.5	111.7	113.5	110.2	108.6	109.5	111.5	112		28.6
.0	30	1,458	110.1	110.3	109,7	111.1	113.4	109.8	108.3	109.0	111.0	111		31.0 33.4
.0	25	1,246	109.9	110.0	109.3	110.7	113.3	109.6	108.1	108.8	110.8	111		.33,4
0.0	20	1,035	109.7	109.7	108.9	110,4	113.2	109.3	107.9	108.6	110.6	111		35.8
.0	10	611	109.3	109.2		109.7	113.0	108.9	107.6	108.3	110.2	111		38.2
nissions Data	Гор				l	Jnits Filte	er All Uni	ts 🗸	***				***************************************	
RATED SPEED POTE	NTIAL SITE VAR	IATION: 1800 R	РМ				,							
NSET POWER WITH FAN IGINE POWER RCENT LOAD					EKW BHP %	3, 4, 10	000.0 123 0	2,25 3,36 75		1,500 2,305 50		750 1,2-		300.0 611 10
TAL NOX (AS NO2) TAL CO					G/HR	32,	004	21,4	29	9,376		3,79		3,518
TAL HC					G/HR G/HR	5,7 64	43	6,47 597	y	3,534 1,048		5,48 1,03	9	3,566
RT MATTER TAL NOX (AS NO2)		(0000 5	% 02)		G/HR	21	0.2	221.		203.5		409.	7	1,300 343.1
TAL CO		(CORR 5 (CORR 5	% O2)		MG/NM3 MG/NM3	3,7 586	36.7 5.2	3,32 854.	9.4 4	1,866. 602.3	7	1,26	3.6	2,259.3
TAL HC RT MATTER		(CORR 5	% O2)		MG/NM3	54.	2	69.1		157.2		1,59 265.	0	1,701.1 625.2
TAL NOX (AS NO2)		(CORR 5	% 02)		MG/NM3 PPM	18.		25.6 1,62		31.4 909		103.	5	158.0
FAL CO FAL HC		(CORR 5	% 02)		PPM	469	1	684	•	909 482		616 1,27	5	1,101
TAL NOX (AS NO2)		(CORR 5	70 (12)		PPM G/HP-HR	101 7.2		129 6.40		294		495		1,167
AL CO					G/HP-HR	1.3	1	1.93		4.08 1.54		3.05 4.41		5.76 5.84
T MATTER					G/HP-HR G/HP-HR	0.1	5	0.18		0.46		0.83		2.13
TAL NOX (AS NO2) TAL CO					LB/HR	70.	56	47.24		20.67		0.33 8.37		0.56 7.75
					LB/HR	12.	56	14.28		7.79		12.10	1	7.86
AL HC T MATTER					LB/HR	1.4	3	1.32		2.31		2.27		2.87

RATED SPEED NOMINAL DATA: 1800 RPM

GENSET POWER WITH FAN ENGINE POWER		EKW BHP	3,000.0 4,423	2,250.0 3,364	1,500.0 2,305	750.0 1,246	300.0 611
PERCENT LOAD		%	100	75	50	25	10
TOTAL NOX (AS NO2) TOTAL CO TOTAL HC TOTAL CO TOTAL HC TOTAL CO TOTAL NOX (AS NO2) TOTAL CO TOTAL HC TOTAL NOX (AS NO2) TOTAL CO TOTAL NOX (AS NO2) TOTAL NOX (AS NO2) TOTAL CO TOTAL NOX (AS NO2) TOTAL CO TOTAL NOX (AS NO2)	(CORR 5% O2) (CORR 5% O2) (CORR 5% O2) (CORR 5% O2) (CORR 5% O2) (CORR 5% O2) (CORR 5% O2)	G/HR G/HR G/HR G/HR G/HR G/HR G/HR G/HR	26,870 3,190 486 2,143 1511 3,113,9 325,6 40,7 1,517 76 6,07 0,73 0,11 0,03 56,80 7,03 1,07 4,723 0,33 9,9 0,5 0,19	17,858 3,599 449 1,609 157.9 2,774.7 51.9 18.3 1,331 3,30 99 97 1,07 1,07 1,07 1,07 1,09 3,547 0,99 3,547 0,28	7,813 1,963 788 1,236 145,3 1,555,6 334,6 118,2 22,5 788 201 3,40 0,85 0,34 0,06 1,7,22 4,33 1,74 2,774 0,32 11,8 0,6	3,162 3,050 776 751 292.7 1,053.0 885.7 199.3 73.9 513 709 372 2,54 2,55 0,62 0,97 6,97 6,72 1,71 0,65 1,655 0,65 1,26 4,8 1,25	2,931 1,981 977 416 245.1 1,882.8 945.0 470.1 112.8 917 756 878 4.80 0.40 6.46 4.37 2.15 917 0.54 1.4.4 4.7

Regulatory Information Top

			2006 - 2010	
SASEOUS EMISSIONS DAT	A MEASUREMENTS PROVIDE	D TO THE EPA ARE CONSISTE	NT WITH THOSE DESCRIBED IN EPA	40 CFR PART 89 SUBPART D AND ISO 8178 FOR MEASURING HC, CO, PM, AND NOX. THE "MA
LIMITS" SHOWN BELOW A	RE WEIGHTED CYCLE AVERA	GES AND ARE IN COMPLIANCE	WITH THE NON-ROAD REGULATION	
ocality	Agency	Regulation	Tier/Stage	Max Limits - G/BKW - HR
J.S. (INCL CALIF)	EPA	NON-ROAD	TIER 2	CO: 3.5 NOx + HC: 6.4 PM: 0.20
PA EMERGENCY STATIC	DNARY		2011	
SASEOUS EMISSIONS DAT	A MEASUREMENTS PROVIDE	D TO THE EPA ARE CONSISTED	NT WITH THOSE DESCRIBED IN EPA	40 CFR PART 60 SUBPART IIII AND ISO 8178 FOR MEASURING HC, CO, PM, AND NOX. THE
MAX LIMITS" SHOWN BELI	OW ARE WEIGHTED CYCLE	VERAGES AND ARE IN COMPL	IANCE WITH THE EMERGENCY STATI	DNARY REGULATIONS.
ocality	Agency	Regulation	Tier/Stage	Max Limits - G/BKW - HR
	EPA	STATIONARY	EMERGENCY STATIONARY	CO: 3.5 NOx + HC: 6.4 PM: 0.20

Altitude Derate Data Top

ALTITUDE DERATE DATA IS BASED ON THE JASUMPTION OF A 20 DEGREES CELSIUS(36 DEGREES FAHRENHEIT) DIFFERENCE BETWEEN AMBIENT OPERATING TEMPERATURE AND ENGINE INLET MANIFOLD TEMPERATURE (IMAT). AMBIENT OPERATING TEMPERATURE IS DEFINED AS THE AIR TEMPERATURE MEASURED AT THE TURBOCHARGER COMPRESSOR INLET.

AMBIENT OPERATING TEMP (F)	30	40	50	60	70	80	90	100	110	120	130	140	
ALTITUDE (FT)									***	150	130	140	NORMAL
3	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,413	4,423
,000	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,362	4,423
,000	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,423	4,382	4,323	4,233	4,423
,000	4,360	4,360	4,360	4,360	4,360	4,360	4,360	4,360	4,359	4,294	4,200	4,107	4,360
,000	4,185	4,185	4,185	4,185	4,185	4,185	4,184	4,182	4,181	4,139	4,080	4,021	4,185
,000	4,019	4,019	4,019	4,019	4,019	4,019	4,018	4,015	4,013	3,992	3,963	3,935	4,019
,000	3,867	3,867	3,867	3,867	3,867	3,867	3,866	3,862	3,858	3,853	3,846	3,839	3,867
,000	3,746	3,746	3,746	3,746	3,746	3,746	3,745	3,741	3,737	3,731	3,725	3,718	3,746
,000	3,626	3,626	3,626	3,626	3,626	3,626	3,624	3,620	3,615	3,610	3,604	3,597	3,626
,000	3,511	3,511	3,511	3,511	3,511	3,511	3,509	3,505	3,500	3,495	3,489	3,483	3,511
0,000	3,401	3,401	3,401	3,401	3,401	3,401	3,399	3,394	3.390	3,384	3,379	3,373	3,401
1,000	3,290	3,290	3,290	3,290	3,290	3,290	3,288	3,284	3,279	3,274	3,269	3,264	3,290
2,000	3,180	3,180	3,180	3,180	3,180	3,180	3,178	3,173	3,169	3,164	3,159	3,154	3,180
3,000	3,080	3,080	3,080	3,080	3,080	3,080	3,079	3,075	3,071	3,067	3,063	3,059	3,080
4,000	2,982	2,982	2,982	2,982	2,982	2,982	2,981	2,978	2,976	2,973	2,970	2,967	2,982
5,000	2,885	2,885	2,885	2,885	2,885	2,885	2,884	2,882	2,881	2,879	2,970	2,967	2,982

Cross Reference Top

			Engine Arr	angement		
Arrangement Number		Effective Serial Number	Eny Mo	gineering del	Engine Model Version	
3079788		W//B00001	GS2	265		
			Test Specific	cation Data		
Test Spec	Setting	Effective Serial Number	Engine Arrangement	Governor Type	Default Low Idle Speed	Default High Idle ≶peed
0K8532	LL6018	vv7800001	3079788	ADEM4	TA-110	

Performance Parameter Reference Top

Parameters Reference: DM9600 - 06 PERFORMANCE DEFINITIONS

PERFORMANCE DEFINITIONS DM9600

APPLICATION:
Engine performance tolerance values below are representative of a typical production engine tested in a calibrated dynamometer test cell at SAE J1995 standard reference conditions. Caterpillar maintains 1809001:2000 certified quality management systems for engine test Facilities to assure accurate calibration of test equipment. Engine test facilities to assure accurate calibration of test equipment, Engine test data is corrected in accordance with SAE J1995. Additional

TECHNICAL INFORMATION BULLETIN

Generator Set Sound Data Sheet

			Sound Pressure	e Data in dB(A)
Generator Set Model	Hz	Load	Raw Exhaust	Open Unit, Isolated Exhaust
KD2000	60	100% Load	120.4	99.1
KD3000	00	No Load	111.2	98.7

Note: Sound pressure data is the logarithmic average of eight perimeter measurement points at a distance of 7 m (23 ft.), except Raw Exhaust data which is a single measurement point at 1 m (3.3 ft.) from the mouth of a straight pipe exhaust.

K	03000	60 Hz															
<u>-</u>			•			S	ound Pr	essure l	_evels, c	IB(A)							
Load	Distance,		Measurement		(Octave B	and Cen	ter Frequ	iency (H	z)		Overall					
Load	m (ft)		Clock Position	63	125	250	500	1000	2000	4000	8000	Level					
			3:00	68.6	86.3	89.1	92.5	94.8	94.3	91.2	87.4	100.4					
			1:30	61.8	85.1	88.2	92.8	93.5	92.0	88.4	84.2	98.9					
		Onen Unit	Onen Unit	Open Unit	Open Unit.	Open Unit.	Open Unit,	12:00 - Engine	65.9	92.9	90.8	94.1	95.7	93.3	87.1	77.4	100.9
		Isolated Exhaust	10:30	62.9	91.9	92.2	94.0	95.1	93.7	89.1	84.4	101.0					
100%	7 (23)		9:00	71.7	88.1	87.9	90.9	93.2	92.3	89.4	85.7	98.9					
Load	Load (23)	7 (23)		ı	7:30	65.7	91.3	88.5	89.8	90.5	91.0	87.2	82.0	97.9			
				6:00 - Alternator	67.0	87.1	89.9	87.3	87.8	87.7	83.3	77.0	95.4				
			4:30	65.4	90.5	88.0	89.0	89.0	89.1	84.2	77.8	96.6					
			8 - pos. log avg.	67.2	89.9	89.6	91.9	93.2	92.1	88.1	83.5	99.1					

					s	ound Pr	essure l	_evels, c	iB(A)		
Load	Distance,	Exhaust		(Octave B	and Cen	ter Frequ	uency (H	z)		Overall
Load	m (ft)	Exhaust	63	125	250	500	1000	2000	4000	8000	Level
100% Load	1 (3.3)	Raw Exhaust (No Silencer)	90.1	113.1	112.9	111.9	111.1	111.0	112.7	108.9	120.4

TIB-114 KD3000 60 Hz 12/17r

KOHLER CO., Kohler, Wisconsin 53044 USA Phone 920-457-4441, Fax 920-459-1646 For the nearest sales and service outlet in the US and Canada, phone 1-800-544-2444 KOHLERPower.com

Κ[D3000	60 Hz															
						Sc	ound Pre	essure L	evels, d	B(A)							
Lood	Distance,		Measurement		C	octave Ba	and Cent	er Frequ	ency (Hz	:)		Overall					
Load	m (ft)		Clock Position	63	125	250	500	1000	2000	4000	8000	Level					
			3:00	63.9	83.7	86.0	94.2	95.0	93.6	88.7	80.4	99.8					
		Onen Unit	1:30	59.5	86.4	86.2	93.4	93.7	91.3	86.2	77.2	98.6					
			Open Unit.	Open Unit.	Open Unit.	Open Unit,	Open Unit,	Open Unit,	Open Unit,	12:00 - Engine	63.0	94.0	89.9	93.8	96.0	93.1	86.8
		Isolated Exhaust	10:30	61.4	91.4	90.1	93.4	95.8	93.0	87.6	77.6	100.4					
No .	7 (23)		9:00	63.0	85.5	86.6	91.6	94.7	91.4	87.0	78.7	98.6					
Load	()		7:30	63.3	91.8	84.2	91.5	91.5	89.7	84.5	75.2	97.7					
				6:00 - Alternator	62.1	86.0	83.6	87.5	87.5	86.8	81.1	71.9	93.8				
			4:30	62.2	90.7	83.9	90.2	89.5	87.3	80.6	70.7	96.0					
			8 - pos. log avg.	62.5	90.0	87.0	92.4	93.8	91.4	86.1	76.9	98.7					

		Sound Pressure Levels, dB(A)									
Load	Distance, m (ft)	Exhaust	Octave Band Center Frequency (Hz)								Overall
			63	125	250	500	1000	2000	4000	8000	Level
No Load	1 (3.3)	Raw Exhaust (No Silencer)	81.8	104.7	103.8	103.0	104.5	103.0	98.5	90.6	111.2

Availability is subject to change without notice. Kohler Co. reserves the right to change the design or specifications without notice and without any obligation or liability whatsoever. Contact your local Kohler® generator set distributor for availability.

MOTOR NOISE QUOTATION

 MODEL NO.
 CATALOG NO.
 ORDER NO.
 LINE NO.
 PHASE
 TYPE
 FRAME

 1506575
 100
 3
 HVE4
 6808

OCTAVE BAND CENTER FREQUENCY (HERTZ)	SOUND PRESSURE LEVELS MEASURED REVERBERANT SOUND ROOM PER IEE CORRECTED TO FREE FIELD CONDITION REFERENCE: .0002 DYNES/CM2 WEIGHTING NETWORK 'A'	E 85,
	295159	MPI (Ref)
	900	HP
	6	POLES
	60	HZ
31.5		DECIBELS
63	45.0	DECIBELS
125	57.5	DECIBELS
250	69.9	DECIBELS
500	78.2	DECIBELS
1000	81.5	DECIBELS
2000	78.4	DECIBELS
4000	73.9	DECIBELS
8000	66.1	DECIBELS
OVERALL	85.0	DECIBELS

DISTANCE FROM MAJOR MOTOR SURFACES 1 Meter

DATA IS <u>TYPICAL</u> UNDER NO LOAD, IN A FREE FIELD PER ANSI S12.51 AND NEMA MG-1

DATE: <u>5/4/2021</u>

SUPER CRITICAL GRADE SILENCER

32 to 42 dBA Noise Reduction • EGSA Class 6

A201-6100

APPLICATION

Super critical grade silencer providing a premium level of performance where ambient noise levels are very low and optimal attenuation is mandatory. Recommended for all marine, stationary and mobile, power applications where noise attenuation is critical.

CONSTRUCTION

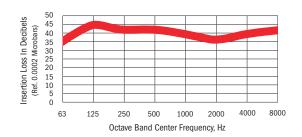
Sizes 6" and below come standard with ID Cuff/OD Tube connections. Sizes 6" and above come standard with ANSI pattern flanged connections. Additional connections available, consult factory for details.

FINISH AND OPTIONAL MATERIALS

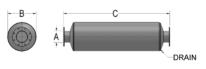
Standard aluminzed steel constructions with high temperature, oven cured black paint. Silencers also available in optional colors and stainless steel. Consult with Product Specialist for details.

OPTIONS

- Aluminized steel, 304L or 316L stainless steel
- Dual inlet or custom inlet/outlet configurations
- Thermal insulation blankets to suit all configurations
- · Mounting brackets, gussets and lifting lugs

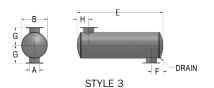

DIMENSIONS

Part Number	A Inlet Size	B Diameter	C OAL - 1	D OAL - 2	E 0AL - 3	F Min	F Max	G Flange Center	H Min	H Max	WT
SIZES 6" AND BELOW COME STANDARD WITH ID CUFF/OD TUBE CONNECTIONS											
A201-6102	2	10	30	27	24	4	8	8	4	7	33
A201-61025	2.5	10	42	39	36	5	15	8	5	11	46
A201-6103	3	12	43	40	37	5	15	9	5	11	58
A201-61035	3.5	14	55	52	49	6	21	10	6	16	92
A201-6104	4	14	55	52	49	6	21	11	6	16	92
A201-6105	5	16	62	58	54	7	23	12	7	17	118
A201-6106	6	20	75	71	67	8	30	14	8	22	184
SIZES 8" AND ABOVE COME STANDARD WITH ANSI PATTERN FLANGED CONNECTIONS											
A201-6108	8	24	76	72	68	10	30	16	10	21	283
A201-6110	10	28	100	96	93	11	42	18	11	22	499
A201-6112	12	36	102	99	95	14	40	22	14	33	749
A201-6114	14	36	138	135	132	15	61	22	15	46	1021
A201-6116	16	42	140	137	133	16	60	25	16	46	1325
A201-6118	18	48	142	139	135	18	59	29	18	46	1541
A201-6120	20	48	165	162	159	19	72	29	19	55	1773
A201-6122	22	54	166	163	161	21	71	32	21	52	2045
A201-6124	24	60	167	164	162	23	70	35	23	55	2335


All spatial dimensions are in inches. Inlet sizes available up to 30 inches.

Additional connections available. See silencer price book for breakdown of A200 part number. F MAX is for inlet only. H MAX is for outlet only. All weights are in pounds. All weights are approximate. Use diameter to find bracket sizes. Example: A201-6108 (24" dia) would require 3ACI-28-2400 brackets (or similar 29 brackets).

TYPICAL ATTENUATION CURVE



TYPICAL ORIENTATIONS

STYLE 1

