

Appendix C Energy Impact Analysis

Yorba Linda 2021-2029 Housing Element Implementation Programs ENERGY ANALYSIS CITY OF YORBA LINDA

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Ali Dadabhoy adadabhoy@urbanxroads.com

MAY 27, 2022

13763-02 EA Report

TABLE OF CONTENTS

TA	BLE O	OF CONTENTS	1				
AF	APPENDICESII						
-	LIST OF EXHIBITS II						
-	-	TABLES					
		ABBREVIATED TERMS					
EX	ECUTIV	IVE SUMMARY					
	ES.1	Summary of Findings					
	ES.2	Project Requirements					
1	INT	TRODUCTION					
	1.1	Site Location	Error! Bookmark not defined.				
	1.2	Project Description	Error! Bookmark not defined.				
2	EXI	ISTING CONDITIONS	7				
	2.1	Overview	7				
	2.2	Electricity	9				
	2.3	Natural Gas					
	2.4	Transportation Energy Resources					
3	RE	GULATORY BACKGROUND					
	3.1	Federal Regulations					
	3.2	California Regulations					
4	PR	OJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASU	RES 23				
	4.1	Evaluation Criteria					
	4.2	Methodology					
	4.3	Construction Energy Demands					
	4.4	Operational Energy Demands					
	4.5	Summary					
5	СО	DNCLUSIONS					
6		FERENCES	_				
7	CEI	CERTIFICATIONS					

APPENDICES

APPENDIX 4.1: CALEEMOD EMISSIONS MODEL OUTPUTS APPENDIX 4.2: EMFAC2021

LIST OF EXHIBITS

LIST OF TABLES

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	1
TABLE 1-1: SUMMARY OF HOUSING ELEMENT UNITS PER SITE	5
TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2020)	
TABLE 2-2: SCE 2019 POWER CONTENT MIX	
TABLE 4-1: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION	24
TABLE 4-2: PROJECT ANNUAL OPERATIONAL NATURAL GAS DEMAND SUMMARY	25

LIST OF ABBREVIATED TERMS

(1)ReferenceAQIAYorba Linda 2021-2029 Housing Element Implementation Programs Air Quality Impact AnalysisBACMBest Available Control MeasuresBTUBritish Thermal UnitsCalEEModCalifornia Emissions Estimator ModelCAPCOACalifornia Air Pollution Control Officers AssociationCARBCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Energy CommissionCEQACalifornia Public Utilities CommissionCEQACalifornia Public Utilities CommissionCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation Efficiency ActITELight Duty AutoLDALight Duty AutoLDALight Duty AutoMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty TrucksMHDTMedium Duty TrucksMHDTMedium Heavy Duty Trucks	%	Percent			
BACMBest Available Control MeasuresBTUBritish Thermal UnitsCalEEModCalifornia Emissions Estimator ModelCAPCOACalifornia Air Pollution Control Officers AssociationCARBCalifornia Code of RegulationsCCRCalifornia Energy CommissionCECCalifornia Energy CommissionCEQACalifornia Energy CommissionCEQACalifornia Public Utilities CommissionCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation Efficiency ActITELight Duty AutoLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	(1)	Reference			
BACMBest Available Control MeasuresBTUBritish Thermal UnitsCalEEModCalifornia Emissions Estimator ModelCAPCOACalifornia Air Pollution Control Officers AssociationCARBCalifornia Air Resources BoardCCRCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation Efficiency ActITEInstitute of Transportation Efficiency ActITEIngth Duty AutoLDALight Duty AutoLDALight Duty AutoLDALight Duty AutoLDALight Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	AQIA	Yorba Linda 2021-2029 Housing Element Implementation			
BTUBritish Thermal UnitsCalEEModCalifornia Emissions Estimator ModelCAPCOACalifornia Air Pollution Control Officers AssociationCARBCalifornia Air Resources BoardCCRCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMOVMedium Duty Trucks	Programs Aiı	Quality Impact Analysis			
CalEEModCalifornia Emissions Estimator ModelCAPCOACalifornia Air Pollution Control Officers AssociationCARBCalifornia Air Resources BoardCCRCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	BACM	Best Available Control Measures			
CAPCOACalifornia Air Pollution Control Officers AssociationCARBCalifornia Air Resources BoardCCRCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksHARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	BTU	British Thermal Units			
CARBCalifornia Air Resources BoardCCRCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CalEEMod	California Emissions Estimator Model			
CCRCalifornia Code of RegulationsCECCalifornia Energy CommissionCEQACalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CAPCOA	California Air Pollution Control Officers Association			
CECCalifornia Energy CommissionCEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CARB	California Air Resources Board			
CEQACalifornia Environmental Quality ActCityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CCR	California Code of Regulations			
CityCity of OntarioCPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CEC	California Energy Commission			
CPEPClean Power and Electrification PathwayCPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CEQA	California Environmental Quality Act			
CPUCCalifornia Public Utilities CommissionDMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	City	City of Ontario			
DMVDepartment of Motor VehiclesEIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CPEP	Clean Power and Electrification Pathway			
EIAEnergy Information AdministrationEPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorITEInstitute of Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	CPUC	California Public Utilities Commission			
EPAEnvironmental Protection AgencyEMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksHARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	DMV	Department of Motor Vehicles			
EMFACEMissions FACtorFERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksHARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	EIA	Energy Information Administration			
FERCFederal Energy Regulatory CommissionGHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	EPA	Environmental Protection Agency			
GHGGreenhouse GasGWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	EMFAC	EMissions FACtor			
GWhGigawatt HourHHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	FERC	Federal Energy Regulatory Commission			
HHDTHeavy-Heavy Duty Truckshp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	GHG	Greenhouse Gas			
hp-hr-galHorsepower Hours Per GallonIEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	GWh	Gigawatt Hour			
IEPRIntegrated Energy Policy ReportISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	HHDT	Heavy-Heavy Duty Trucks			
ISOIndependent Service OperatorISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	hp-hr-gal	Horsepower Hours Per Gallon			
ISTEAIntermodal Surface Transportation Efficiency ActITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	IEPR	Integrated Energy Policy Report			
ITEInstitute of Transportation EngineerskBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	ISO	Independent Service Operator			
kBTUThousand-British Thermal UnitskWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	ISTEA	Intermodal Surface Transportation Efficiency Act			
kWhKilowatt HourLDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	ITE	Institute of Transportation Engineers			
LDALight Duty AutoLDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	kBTU	Thousand-British Thermal Units			
LDT1/LDT2Light-Duty TrucksLHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	kWh	Kilowatt Hour			
LHDT1/LHDT2Light-Heavy Duty TrucksMARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	LDA	Light Duty Auto			
MARB/IPAMarch Air Reserve Base/Inland Port AirportMDVMedium Duty Trucks	LDT1/LDT2	Light-Duty Trucks			
MDV Medium Duty Trucks	LHDT1/LHDT2	Light-Heavy Duty Trucks			
	MARB/IPA	March Air Reserve Base/Inland Port Airport			
MHDT Medium-Heavy Duty Trucks	MDV	Medium Duty Trucks			
	MHDT	Medium-Heavy Duty Trucks			

MMcfd	Million Cubic Feet Per Day
mpg	Miles Per Gallon
MPO	Metropolitan Planning Organization
PG&E	Pacific Gas and Electric
Project	Yorba Linda 2021-2029 Housing Element Implementation
	Programs
PV	Photovoltaic
SCAB	South Coast Air Basin
SCE	Southern California Edison
SDAB	San Diego Air Basin
sf	Square Feet
SoCalGas	Southern California Gas
TEA-21	Transportation Equity Act for the 21 st Century
U.S.	United States
VMT	Vehicle Miles Traveled

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Yorba Linda 2021-2029 Housing Element Implementation Programs Energy Analysis* is summarized below based on the significance criteria in Section 5 of this report consistent with Appendix G of the 2020 California Environmental Quality Act (CEQA) Statute and Guidelines (*CEQA Guidelines*) (1). Table ES-1 shows the findings of significance for potential energy impacts under CEQA.

Analysis	Report	Significance Findings		
Analysis	Section	Unmitigated	Mitigated	
Energy Impact #1: Would the Project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	5.0	Less Than Significant	n/a	
Energy Impact #2: Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?	5.0	Less Than Significant	n/a	

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

ES.2 PROJECT REQUIREMENTS

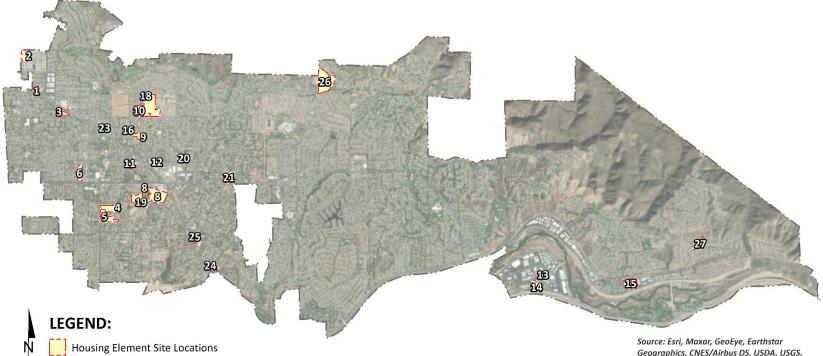
The Project would be required to comply with regulations imposed by the federal and state agencies that regulate energy use and consumption through various means and programs. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of energy usage include:

- Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA)
- The Transportation Equity Act for the 21st Century (TEA-21
- Integrated Energy Policy Report (IEPR)
- State of California Energy Plan
- California Code Title 24, Part 6, Energy Efficiency Standards
- California Code Title 24, Part 11, California Green Building Standards Code (CALGreen)
- AB 1493 Pavley Regulations and Fuel Efficiency Standards
- California's Renewable Portfolio Standard (RPS)
- Clean Energy and Pollution Reduction Act of 2015 (SB 350)

Consistency with the above regulations is discussed in detail in section 5 of this report.

This page intentionally left blank

1 INTRODUCTION


This report presents the results of the energy analysis prepared by Urban Crossroads, Inc., for the proposed Yorba Linda 2021-2029 Housing Element Implementation Programs Project (Project). The purpose of this report is to ensure that energy implications are considered by the City of Yorba Linda (Lead Agency), as the lead agency; to quantify anticipated energy usage associated with construction and operation of the proposed Project; determine if the usage amounts are efficient, typical, or wasteful for the land use type; and to emphasize avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy.

1.1 **PROJECT DESCRIPTION**

To address the City of Yorba Linda's regional housing needs assessment (RHNA) allocation, the Housing Element proposes a rezoning program of 27 vacant or underutilized sites for multifamily residential use at densities of 10 to 35 units to the acre. The Yorba Linda 2021 – 2029 Housing Element will revise the General Plan land use and development intensities for the 27 sites to accommodate approximately 2,100 additional dwelling units for a total of 2,410 dwelling units (including the existing zoning).

The Energy Analysis will evaluate the proposed development intensities expected for the 27 sites and assess the potential impacts that result from the implementation of the rezoning and changes to land use. Exhibit 1-A identifies the locations of each of the Housing Element sites summarized on Table 1-1.

EXHIBIT 1-A: HOUSING ELEMENT SITE LOCATION MAP

Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

#	HE Site ID	Site	Current Zoning	Proposed Zoning	Acres	Total Net Unit Potential
1	S1-021	W. of 16951 Imperial Highway	CG	Commercial Mixed Use Overlay	1.76	62
2	S1-200	SEC Rose Dr. & Blake Rd.	RE	RM-20 w/ Affordable Overlay	5.94	208
3	S2-008	17151 Bastanchury Rd.	RE	Congregational Land Overlay	4.92	60
4	S3-012	5320 Richfield Rd.	RU	Congregational Land Overlay	9.48	55
5	S3-207	5300-5392 Richfield Rd.	RU	RM-20 w/ Affordable Overlay	9.7	340
6	S2-013	4861 Liverpool St.	RU	Congregational Land Overlay	6.2	40
7	S3-074	18132 Yorba Linda Bl.	CG	RM-20 w/ Affordable Overlay	0.42	15
8	S3-024	Friends Church Overflow Parking	RE	Congregational Land Overlay	17.45	48
9	S3-033	4382 Eureka Av.	RS	Congregational Land Overlay	3.88	30
10	S3-210	18111 Bastanchury Rd.	PD-26	Congregational Land Overlay	9.23	105
11	S3-082	4791 & 4811 Eureka Av.	CG	RM-20 w/ Affordable Overlay	1.75	61
12	S4-075	4742 Plumosa Dr.	CG	RM-20 w/ Affordable Overlay	1.62	57
13	S6-015	22722 Old Canal Rd.	PD	Affordable Housing Overlay	2.56	89
14	S6-020	22711 Oak Crest Circle	PD	RM-20 w/ Affordable Housing Overlay	10.35	143
15	S7-001	Bryant Ranch Shopping Center	CG	Commercial Mixed Use Overlay	9.15	320
16	S3-034	4341 Eureka Av.	RS	RM	2.19	22
18	S3-203	18101-18251 Bastanchury Rd.	PD	PD	22.83	228
19	S3-205A	5225 & 5227 Highland Av.	RE	RM	7.08	71
20	S4-200	18597-18602 Altrudy Ln.	RS	RM-20	2	40
21	S4-204A	19045 Yorba Linda Bl.	RE	Congregational Land Overlay	1.85	17
	S4-204B	19081-19111 Yorba Linda Bl.	RE	RM-20	3.9	78
23	S3-211	17651 Imperial Highway	RS	RM	2.32	23
24	S4-053	SWC of Kellogg Dr. & Grandview Av.	RE	RM	0.98	10
25	S4-060	5541 S. Ohio St.	RE	RM	0.96	10
	S4-201	5531 S. Ohio St.	RE	RM	1.82	18
26	S5-008	Fairmont Bl.	PD	RM	23.01	230
27	S7-005	NEC of Camino del Bryant & Meadowland	RU	RM	3.06	30
				TOTAL	166.41	2,410

TABLE 1-1: SUMMARY OF HOUSING ELEMENT UNITS PER SITE

This page intentionally left blank

2 EXISTING CONDITIONS

This section provides an overview of the existing energy conditions in the Project region.

2.1 OVERVIEW

The most recent data for California's estimated total energy consumption and natural gas consumption is from 2019, released by the United States (U.S.) Energy Information Administration's (EIA) California State Profile and Energy Estimates in 2021 and included (2):

- As of 2019, approximately 7,802 trillion British Thermal Unit (BTU) of energy was consumed
- As of 2019, approximately 662 million barrels of petroleum
- As of 2019, approximately 2,144 billion cubic feet of natural gas
- As of 2019, approximately 1 million short tons of coal

The California Energy Commission's (CEC) Transportation Energy Demand Forecast 2018-2030 was released in order to support the 2017 Integrated Energy Policy Report. The Transportation energy Demand Forecast 2018-2030 lays out graphs and data supporting their projections of California's future transportation energy demand. The projected inputs consider expected variable changes in fuel prices, income, population, and other variables. Predictions regarding fuel demand included:

- Gasoline demand in the transportation sector is expected to decline from approximately 15.8 billion gallons in 2017 to between 12.3 billion and 12.7 billion gallons in 2030 (3)
- Diesel demand in the transportation sector is expected to rise, increasing from approximately 3.7 billion diesel gallons in 2015 to approximately 4.7 billion in 2030 (3)
- Data from the Department of Energy states that approximately 3.9 billion gallons of diesel fuel were consumed in 2019 (4)

The most recent data provided by the EIA for energy use in California by demand sector is from 2018 and is reported as follows:

- Approximately 39.3% transportation
- Approximately 23.2% industrial
- Approximately 18.7% residential
- Approximately 18.9% commercial (5)

In 2020, total system electric generation for California was 272,576 gigawatt hours (GWh). California's massive electricity in-state generation system generated approximately 190,913 GWh which accounted for approximately 70% of the electricity it uses; the rest was imported from the Pacific Northwest (15%) and the U.S. Southwest (15%) (6). Natural gas is the main source for electricity generation at 42.97% of the total in-state electric generation system power as shown in Table 2-1.

Fuel Type	California In-State Generation (GWh)	Percent of California In-State Generation	Northwest Imports (GWh)	Southwest Imports (GWh)	Total Imports (GWh)	Percent of Imports	Total California Energy Mix	Total California Power Mix
Coal	317	0.17%	194	6,963	7,157	8.76%	7,474	2.74%
Natural Gas	92,298	48.35%	70	8,654	8,724	10.68%	101,022	37.06%
Oil	30	0.02%	-	-	0	0.00%	30	0.01%
Other (Waste Heat/Petroleum Coke)	384	0.20%	125	9	134	0.16%	518	0.19%
Nuclear	16,280	8.53%	672	8,481	9,154	11.21%	25,434	9.33%
Large Hydro	17,938	9.40%	14,078	1,259	15,337	18.78%	33,275	12.21%
Unspecified	-	0.00%	12,870	1,745	14,615	17.90%	14,615	5.36%
Non-Renewable and Unspecified Totals	127,248	66.65%	28,009	27,111	55,120	67.50%	182,368	66.91%
Biomass	5,680	2.97%	975	25	1,000	1.22%	6,679	2.45%
Geothermal	11,345	5.94%	166	1,825	1,991	2.44%	13,336	4.89%
Small Hydro	3,476	1.82%	320	2	322	0.39%	3,798	1.39%
Solar	29,456	15.43%	284	6,312	6,596	8.08%	36,052	13.23%
Wind	13,708	7.18%	11,438	5,197	16,635	20.37%	30,343	11.13%
Renewable Totals	63,665	33.35%	13,184	13,359	26,543	32.50%	90,208	33.09%
System Totals	190,913	100.00%	41,193	40,471	81,663	100.00%	272,576	100.00%

TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2020)

Source: California Energy Commission's 2020 Total System Electric Generation

An updated summary of, and context for energy consumption and energy demands within the State is presented in "U.S. Energy Information Administration, California State Profile and Energy Estimates, Quick Facts" excerpted below (7):

- California was the seventh-largest producer of crude oil among the 50 states in 2019, and, as of January 2020, it ranked third in oil refining capacity. Foreign suppliers, led by Saudi Arabia, Iraq, Ecuador, and Colombia, provided more than half of the crude oil refined in California in 2019.
- California is the largest consumer of both jet fuel and motor gasoline among the 50 states and accounted for 17% of the nation's jet fuel consumption and 11% of motor gasoline consumption in 2019. The state is the second-largest consumer of all petroleum products combined, accounting for 10% of the U.S. total. In 2018, California's energy consumption was the second highest among the states, but its per capita energy consumption was the fourth-lowest due in part to its mild climate and its energy efficiency programs.
- In 2019, California was the nation's top producer of electricity from solar, geothermal, and biomass energy and the state was second in the nation in conventional hydroelectric power generation.
- In 2019, California was the fourth largest electricity producer in the nation, but the state was also the nation's largest importer of electricity and received about 28% of its electricity supply from generating facilities outside of California, including imports from Mexico.

As indicated above, California is one of the nation's leading energy-producing states, and California's per capita energy use is among the nation's most efficient. Given the nature of the Project, the remainder of this discussion will focus on the three sources of energy that are most relevant to the project—namely, electricity, natural gas, and transportation fuel for vehicle trips associated with the uses planned for the Project.

2.2 ELECTRICITY

The Project's proposed electricity usage was calculated using the California Emissions Estimator Model (CalEEMod) Version 2022.1. The Southern California region's electricity reliability has been of concern for the past several years due to the planned retirement of aging facilities that depend upon once-through cooling technologies, as well as the June 2013 retirement of the San Onofre Nuclear Generating Station (San Onofre). While the once-through cooling phase-out has been ongoing since the May 2010 adoption of the State Water Resources Control Board's oncethrough cooling policy, the retirement of San Onofre complicated the situation. California ISO studies revealed the extent to which the South California Air Basin (SCAB) and the San Diego Air Basin (SDAB) region were vulnerable to low-voltage and post-transient voltage instability concerns. A preliminary plan to address these issues was detailed in the 2013 Integrative Energy Policy Report (IEPR) after a collaborative process with other energy agencies, utilities, and air districts (8). Similarly, the subsequent 2021 IEPR provides information and policy recommendations on advancing a clean, reliable, and affordable energy system.

Electricity is currently provided to the Project by Southern California Edison (SCE). SCE provides electric power to more than 15 million persons in 15 counties and in 180 incorporated cities, within a service area encompassing approximately 50,000 square miles. Based on SCE's 2018 Power Content Label Mix, SCE derives electricity from varied energy resources including: fossil fuels, hydroelectric generators, nuclear power plants, geothermal power plants, solar power generation, and wind farms. SCE also purchases from independent power producers and utilities, including out-of-state suppliers (9).

California's electricity industry is an organization of traditional utilities, private generating companies, and state agencies, each with a variety of roles and responsibilities to ensure that electrical power is provided to consumers. The California Independent Service Operator (ISO) is a nonprofit public benefit corporation and is the impartial operator of the State's wholesale power grid and is charged with maintaining grid reliability, and to direct uninterrupted electrical energy supplies to California's homes and communities. While utilities still own transmission assets, the ISO routes electrical power along these assets, maximizing the use of the transmission system and its power generation resources. The ISO matches buyers and sellers of electricity to ensure that enough power is available to meet demand. To these ends, every five minutes the ISO forecasts electrical demands, accounts for operating reserves, and assigns the lowest cost power plant unit to meet demands while ensuring adequate system transmission capacities and capabilities (10).

Part of the ISO's charge is to plan and coordinate grid enhancements to ensure that electrical power is provided to California consumers. To this end, utilities file annual transmission expansion/modification plans to accommodate the State's growing electrical needs. The ISO reviews and either approves or denies the proposed additions. In addition, and perhaps most importantly, the ISO works with other areas in the western United States electrical grid to ensure that adequate power supplies are available to the State. In this manner, continuing reliable and affordable electrical power is assured to existing and new consumers throughout the State.

Tables 2-2 identifies SCE's specific proportional shares of electricity sources in 2019. As indicated in Table 2-2, the 2019 SCE Power Mix has renewable energy at 35.1% of the overall energy resources. Geothermal resources are at 5.9%, wind power is at 11.5%, large hydroelectric sources are at 7.9%, solar energy is at 16.0%, and coal is at 0% (11).

Energy Resources	2019 SCE Power Mix		
Eligible Renewable	35.1%		
Biomass & Waste	0.6%		
Geothermal	5.9%		
Eligible Hydroelectric	1.0%		
Solar	16.0%		
Wind	11.5%		
Coal	0.0%		
Large Hydroelectric	7.9%		
Natural Gas	16.1%		
Nuclear	8.2%		
Other	0.1%		
Unspecified Sources of power*	32.6%		
Total	100%		

TABLE 2-2: SCE 2019 POWER CONTENT MIX

* "Unspecified sources of power" means electricity from transactions that are not traceable to specific generation sources

2.3 NATURAL GAS

The following summary of natural gas customers and volumes, supplies, delivery of supplies, storage, service options, and operations is excerpted from information provided by the California Public Utilities Commission (CPUC).

"The CPUC regulates natural gas utility service for approximately 10.8 million customers that receive natural gas from Pacific Gas and Electric (PG&E), Southern California Gas (SoCalGas), San Diego Gas & Electric (SDG&E), Southwest Gas, and several smaller natural gas utilities. The CPUC also regulates independent storage operators: Lodi Gas Storage, Wild Goose Storage, Central Valley Storage and Gill Ranch Storage.

California's natural gas utilities provide service to over 11 million gas meters. SoCalGas and PG&E provide service to about 5.9 million and 4.3 million customers, respectively, while SDG&E provides service to over 800, 000 customers. In 2018, California gas utilities forecasted that they would deliver about 4740 million cubic feet per day (MMcfd) of gas to their customers, on average, under normal weather conditions.

The overwhelming majority of natural gas utility customers in California are residential and small commercials customers, referred to as "core" customers. Larger volume gas customers, like electric generators and industrial customers, are called "noncore" customers. Although very small in number relative to core customers, noncore customers consume about 65% of the natural gas delivered by the state's natural gas utilities, while core customers consume about 35%.

A significant amount of gas (about 19%, or 1131 MMcfd, of the total forecasted California consumption in 2018) is also directly delivered to some California large volume consumers, without being transported over the regulated utility pipeline system. Those customers, referred to as "bypass" customers, take service directly from interstate pipelines or directly from California producers.

SDG&E and Southwest Gas' southern division are wholesale customers of SoCalGas, i.e., they receive deliveries of gas from SoCalGas and in turn deliver that gas to their own customers. (Southwest Gas also provides natural gas distribution service in the Lake Tahoe area.) Similarly, West Coast Gas, a small gas utility, is a wholesale customer of PG&E. Some other wholesale customers are municipalities like the cities of Palo Alto, Long Beach, and Vernon, which are not regulated by the CPUC.

Natural gas from out-of-state production basins is delivered into California via the interstate natural gas pipeline system. The major interstate pipelines that deliver out-of-state natural gas to California gas utilities are Gas Transmission Northwest Pipeline, Kern River Pipeline, Transwestern Pipeline, El Paso Pipeline, Ruby Pipeline, Mojave Pipeline, and Tuscarora. Another pipeline, the North Baja - Baja Norte Pipeline takes gas off the El Paso Pipeline at the California/Arizona border and delivers that gas through California into Mexico. While the Federal Energy Regulatory Commission (FERC) regulates the transportation of natural gas on the interstate pipelines, and authorizes rates for that service, the California Public Utilities Commission may participate in FERC regulatory proceedings to represent the interests of California natural gas consumers.

The gas transported to California gas utilities via the interstate pipelines, as well as some of the California-produced gas, is delivered into the PG&E and SoCalGas intrastate natural gas transmission pipelines systems (commonly referred to as California's "backbone" pipeline system). Natural gas on the utilities' backbone pipeline systems is then delivered to the local transmission and distribution pipeline systems, or to natural gas storage fields. Some large volume noncore customers take natural gas delivery directly off the high-pressure backbone and local transmission pipeline systems, while core customers and other noncore customers take delivery off the utilities' distribution pipeline systems. The state's natural gas utilities operate over 100,000 miles of transmission and distribution pipelines, and thousands more miles of service lines.

Bypass customers take most of their deliveries directly off the Kern/Mojave pipeline system, but they also take a significant amount of gas from California production.

PG&E and SoCalGas own and operate several natural gas storage fields that are located within their service territories in northern and southern California, respectively. These storage fields, and four independently owned storage utilities - Lodi Gas Storage, Wild Goose Storage, Central Valley Storage, and Gill Ranch Storage - help meet peak seasonal and daily natural gas demand and allow California natural gas customers to secure natural gas supplies more efficiently. PG&E is a 25% owner of the Gill Ranch Storage field. These storage fields provide a significant amount of infrastructure capacity to help meet

California's natural gas requirements, and without these storage fields, California would need much more pipeline capacity in order to meet peak gas requirements.

Prior to the late 1980s, California regulated utilities provided virtually all natural gas services to all their customers. Since then, the Commission has gradually restructured the California gas industry in order to give customers more options while assuring regulatory protections for those customers that wish to, or are required to, continue receiving utilityprovided services.

The option to purchase natural gas from independent suppliers is one of the results of this restructuring process. Although the regulated utilities procure natural gas supplies for most core customers, core customers have the option to purchase natural gas from independent natural gas marketers, called "core transport agents" (CTA). Contact information for core transport agents can be found on the utilities' web sites. Noncore customers, on the other hand, make natural gas supply arrangements directly with producers or with marketers.

Another option resulting from the restructuring process occurred in 1993, when the Commission removed the utilities' storage service responsibility for noncore customers, along with the cost of this service from noncore customers' transportation rates. The Commission also encouraged the development of independent storage fields, and in subsequent years, all the independent storage fields in California were established. Noncore customers and marketers may now take storage service from the utility or from an independent storage provider (if available), and pay for that service, or may opt to take no storage service at all. For core customers, the Commission assures that the utility has adequate storage capacity set aside to meet core requirements, and core customers pay for that service.

In a 1997 decision, the Commission adopted PG&E's "Gas Accord", which unbundled PG&E's backbone transmission costs from noncore transportation rates. This decision gave customers and marketers the opportunity to obtain pipeline capacity rights on PG&E's backbone transmission pipeline system, if desired, and pay for that service at rates authorized by the Commission. The Gas Accord also required PG&E to set aside a certain amount of backbone transmission capacity in order to deliver gas to its core customers. Subsequent Commission decisions modified and extended the initial terms of the Gas Accord. The "Gas Accord" framework is still in place today for PG&E's backbone and storage rates and services and is now simply referred to as PG&E Gas Transmission and Storage (GT&S).

In a 2006 decision, the Commission adopted a similar gas transmission framework for Southern California, called the "firm access rights" system. SoCalGas and SDG&E implemented the firm access rights (FAR) system in 2008, and it is now referred to as the backbone transmission system (BTS) framework. As under the PG&E backbone transmission system, SoCalGas backbone transmission costs are unbundled from noncore transportation rates. Noncore customers and marketers may obtain, and pay for, firm backbone transmission capacity at various receipt points on the SoCalGas system. A

certain amount of backbone transmission capacity is obtained for core customers to assure meeting their requirements.

Many if not most noncore customers now use a marketer to provide for several of the services formerly provided by the utility. That is, a noncore customer may simply arrange for a marketer to procure its supplies, and obtain any needed storage and backbone transmission capacity, in order to assure that it will receive its needed deliveries of natural gas supplies. Core customers still mainly rely on the utilities for procurement service, but they have the option to take procurement service from a CTA. Backbone transmission and storage capacity is either set aside or obtained for core customers in amounts to assure very high levels of service.

In order properly operate their natural gas transmission pipeline and storage systems, PG&E and SoCalGas must balance the amount of gas received into the pipeline system and delivered to customers or to storage fields. Some of these utilities' storage capacity is dedicated to this service, and under most circumstances, customers do not need to precisely match their deliveries with their consumption. However, when too much or too little gas is expected to be delivered into the utilities' systems, relative to the amount being consumed, the utilities require customers to more precisely match up their deliveries with their consumption. And, if customers do not meet certain delivery requirements, they could face financial penalties. The utilities do not profit from these financial penalties - the amounts are then returned to customers as a whole. If the utilities find that they are unable to deliver all the gas that is expected to be consumed, they may even call for a curtailment of some gas deliveries. These curtailments are typically required for just the largest, noncore customers. It has been many years since there has been a significant curtailment of core customers in California." (12)

As indicated in the preceding discussions, natural gas is available from a variety of in-state and out-of-state sources and is provided throughout the state in response to market supply and demand. Complementing available natural gas resources, biogas may soon be available via existing delivery systems, thereby increasing the availability and reliability of resources in total. The CPUC oversees utility purchases and transmission of natural gas to ensure reliable and affordable natural gas deliveries to existing and new consumers throughout the State.

2.4 TRANSPORTATION ENERGY RESOURCES

The Project would generate additional vehicle trips with resulting consumption of energy resources, predominantly gasoline and diesel fuel. The Department of Motor Vehicles (DMV) identified 35.8 million registered vehicles in California as of December 2020 (13), and those vehicles consume an estimated 17.4 billion gallons of fuel each year¹. Gasoline (and other vehicle fuels) are commercially provided commodities and would be available to the Project residents and employees via commercial outlets.

 $^{^{1}\,}$ Fuel consumptions estimated utilizing information from EMFAC2021.

California's on-road transportation system includes 394,383 land miles, more than 26.4 million passenger vehicles and light trucks, and almost 8.8 million medium- and heavy-duty vehicles (13). While gasoline consumption has been declining since 2008 it is still by far the dominant fuel. California is the second-largest consumer of petroleum products, after Texas, and accounts for 10% of the nation's total consumption. The state is the largest U.S. consumer of motor gasoline and jet fuel, and 85% of the petroleum consumed in California is used in the transportation sector (14).

California accounts for less than 1% of total U.S. natural gas reserves and production. As with crude oil, California's natural gas production has experienced a gradual decline since 1985. In 2019, about 37% of the natural gas delivered to consumers went to the state's industrial sector, and about 28% was delivered to the electric power sector. Natural gas fueled more than two-fifths of the state's utility-scale electricity generation in 2019. The residential sector, where two-thirds of California households use natural gas for home heating, accounted for 22% of natural gas deliveries. The commercial sector received 12% of the deliveries to end users and the transportation sector consumed the remaining 1% (14).

This page intentionally left blank

3 REGULATORY BACKGROUND

Federal and state agencies regulate energy use and consumption through various means and programs. On the federal level, the United States Department of Transportation, the United States Department of Energy, and the United States Environmental Protection Agency (EPA) are three federal agencies with substantial influence over energy policies and programs. On the state level, the CPUC and the CEC are two agencies with authority over different aspects of energy. Relevant federal and state energy-related laws and plans are summarized below.

3.1 FEDERAL REGULATIONS

3.1.1 INTERMODAL SURFACE TRANSPORTATION EFFICIENCY ACT OF 1991 (ISTEA)

The ISTEA promoted the development of inter-modal transportation systems to maximize mobility as well as address national and local interests in air quality and energy. ISTEA contained factors that Metropolitan Planning Organizations (MPOs) were to address in developing transportation plans and programs, including some energy-related factors. To meet the new ISTEA requirements, MPOs adopted explicit policies defining the social, economic, energy, and environmental values guiding transportation decisions.

3.1.2 THE TRANSPORTATION EQUITY ACT FOR THE 21ST CENTURY (TEA-21)

The TEA-21 was signed into law in 1998 and builds upon the initiatives established in the ISTEA legislation, discussed above. TEA-21 authorizes highway, highway safety, transit, and other efficient surface transportation programs. TEA-21 continues the program structure established for highways and transit under ISTEA, such as flexibility in the use of funds, emphasis on measures to improve the environment, and focus on a strong planning process as the foundation of good transportation decisions. TEA-21 also provides for investment in research and its application to maximize the performance of the transportation system through, for example, deployment of Intelligent Transportation Systems, to help improve operations and management of transportation systems and vehicle safety.

3.2 CALIFORNIA REGULATIONS

3.2.1 INTEGRATED ENERGY POLICY REPORT (IEPR)

Senate Bill 1389 (Bowen, Chapter 568, Statutes of 2002) requires the CEC to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the state's electricity, natural gas, and transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state's economy; and protect public health and safety (Public Resources Code § 25301[a]). The CEC prepares these assessments and associated policy recommendations every two years, with updates in alternate years, as part of the Integrated Energy Policy Report.

The 2021 IEPR was adopted March 23, 2020, and continues to work towards improving electricity, natural gas, and transportation fuel energy use in California. The 2021 IEPR identifies actions the

state and others can take to ensure a clean, affordable, and reliable energy system. California's innovative energy policies strengthen energy resiliency, reduce greenhouse gas (GHG) emissions that cause climate change, improve air quality, and contribute to a more equitable future (15).

3.2.2 STATE OF CALIFORNIA ENERGY PLAN

The CEC is responsible for preparing the State Energy Plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The Plan calls for the state to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies several strategies, including assistance to public agencies and fleet operators and encouragement of urban designs that reduce vehicle miles traveled (VMT) and accommodate pedestrian and bicycle access.

3.2.3 CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings, was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas (GHG) emissions. The 2019 version of Title 24 was adopted by the CEC and became effective on January 1, 2020. The 2019 Title are applicable to building permit applications submitted on or after January 1, 2020. The 2019 Title 24 standards require solar photovoltaic systems for new homes, establish requirements for newly constructed healthcare facilities, encourage demand responsive technologies for residential buildings, and update indoor and outdoor lighting standards for nonresidential buildings. The CEC anticipates that nonresidential buildings will use approximately 30% less energy due to lighting upgrades compared to the prior code (16).

Because the Project would be constructed after January 1, 2020, the 2019 CALGreen standards are applicable to the Project and require, among other items (17):

RESIDENTIAL MANDATORY MEASURES

- Electric vehicle (EV) charging stations. New construction shall comply with Section 4.106.4.1, 4.106.4.2, 4.106.4.3, to facilitate future installation and use of EV chargers. Electric vehicle supply equipment (EVSE) shall be installed in accordance with the *California Electrical Code*, Article 625. (4.106.4).
 - New one- and two-family dwellings and town-houses with attached private garages. For each dwelling unit, install a listed raceway to accommodate a dedicated 208/240-volt branch circuit. The raceway shall not be less than trade size 1 (nominal 1-inch inside diameter). The raceway shall originate at the main service or subpanel and shall terminate into a listed cabinet, box or other enclosure in close proximity to the proposed location of an EV charger. Raceways are required to be continuous at enclosed, inaccessible or concealed areas and spaces. The service panel and/or subpanel shall provide capacity to

install a 40-ampere 208/240-volt minimum dedicated branch circuit and space(s) reserved to permit installation of a branch circuit overcurrent protective device.

- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with Sections 4.303.1.1, 4.303.1.2, 4.303.1.3, and 4.303.1.4.
- Outdoor potable water use in landscape areas. Residential developments shall comply with a local water efficient landscape ordinance or the current California Department of Water Resource ' Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent.
- Operation and maintenance manual. At the time of final inspection, a manual, compact disc, webbased reference or other media acceptable to the enforcing agency which includes all of the following shall be placed in the building:
 - Directions to the owner or occupant that the manual shall remain with the building throughout the life cycle of the structure.
 - Operations and maintenance instructions for the following:
 - Equipment and appliances, including water-saving devices and systems, HVAC systems, photovoltaic systems, EV chargers, water-heating systems and other major appliances and equipment.
 - Roof and yard drainage, including gutter and downspouts.
 - Space conditioning systems, including condensers and air filters.
 - Landscape irrigation systems.
 - Water reuse systems.
 - Information from local utility, water and waste recovery providers on methods to future reduce resource consumption, including recycle programs and locations.
 - Public transportation and/or carpool options available in the area.
 - Educational material on the positive impacts of an interior relative humidity between 30-60% and what methods an occupants may use to maintain the relative humidity level in that range.
 - Information about water-conserving landscape and irrigation design and controllers which conserve water.
 - Instructions for maintaining gutters and downspouts and the importance of diverting water at least 5 feet away from the foundation.
 - Information about state solar energy and incentive programs available.
 - A copy of all special inspection verifications required by the enforcing agency of this code.
 - Information from CALFIRE on maintenance of defensible space around residential structures.
- Any installed gas fireplace shall be direct-vent sealed-combustion type. Any installed woodstove
 or pellet stove shall comply with U.S. EPA New Source Performance Standards (NSPS) emission
 limits as applicable, and shall have a permanent label indicating they are certified to meet the
 emission limits. Woodstoves, pellet stoves and fireplaces shall also comply with applicable local
 ordinances.
- Paints and coatings. Architectural paints and coatings shall comply with VOC limits in Table 1 of the CARB Architectural Suggested Control Measure, as shown in Table 4.504.3, unless more

stringent local limits apply. The VOC content limit for coatings that do not meet the definitions for the specialty coatings categories listed in Table 4.504.3 shall be determined by classifying the coating as a Flat, Nonflat, or Nonflat-high Gloss coating, based on its glass, as defined in subsections 4.21, 4.36, and 4.37 of the 2007 CARB, Suggested Control Measure, and the corresponding Flat, Nonflat, Nonflat-high Gloss VOC limit in Table 4.504.3 shall apply.

Additionally, under California's 2019 Title 24, Part 6 Building Energy Efficiency Standards, solar photovoltaic systems are required for newly constructed low-rise residential buildings² and shall be sized sufficient to offset the electricity use of the proposed building as if it was a mixed-fuel building.

3.2.4 AB 1493 PAVLEY REGULATIONS AND FUEL EFFICIENCY STANDARDS

California AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Under this legislation, CARB adopted regulations to reduce GHG emissions from non-commercial passenger vehicles (cars and light-duty trucks). Although aimed at reducing GHG emissions, specifically, a co-benefit of the Pavley standards is an improvement in fuel efficiency and consequently a reduction in fuel consumption.

3.2.5 CALIFORNIA'S RENEWABLE PORTFOLIO STANDARD (RPS)

First established in 2002 under Senate Bill (SB) 1078, California's Renewable Portfolio Standards (RPS) requires retail sellers of electric services to increase procurement from eligible renewable resources to 33% of total retail sales by 2020 (18).

3.2.6 CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350)

In October 2015, the legislature approved, and the Governor signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the renewables portfolio standard (RPS), higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for electric vehicle charging stations. Specifically, SB 350 requires the following to reduce statewide GHG emissions:

- Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027.
- Double the energy efficiency in existing buildings by 2030. This target will be achieved through the California Public Utility Commission (CPUC), the California Energy Commission (CEC), and local publicly owned utilities.
- Reorganize the Independent System Operator (ISO) to develop more regional electrify transmission markets and to improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States (California Leginfo 2015).

² Low-rise residential buildings are defined as three or less habitable stories according to the CEC.

This page intentionally left blank

4 PROJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES

4.1 EVALUATION CRITERIA

Per Appendix F of the *State CEQA Guidelines* (19), states that the means of achieving the goal of energy conservation includes the following:

- Decreasing overall per capita energy consumption;
- Decreasing reliance on fossil fuels such as coal, natural gas, and oil; and
- Increasing reliance on renewable energy sources.

In compliance with Appendix G of the *State CEQA Guidelines* (20), this report analyzes the project's anticipated energy use during construction and operations to determine if the Project would:

- Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation; or
- Conflict with or obstruct a state or local plan for renewable energy or energy efficiency

4.2 METHODOLOGY

Information from the CalEEMod Version 2022.1 outputs for the *Yorba Linda 2021-2029 Housing Element Implementation Programs Air Quality Impact Analysis* (AQIA) (21) were utilized in this analysis, detailing Project related transportation energy demands, and facility energy demands.

In May 2022 California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including SCAQMD, released the latest version of the CalEEMod Version 2022.1. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources as well as energy usage. (23). Accordingly, the latest version of CalEEMod has been used to determine the proposed Project's anticipated transportation and facility energy demands. Outputs from the annual model run is provided in Appendix 4.1.

4.3 CONSTRUCTION ENERGY DEMANDS

Future development within the Project would be required to comply with best management practices for construction activity and would incur additional CEQA review that may identify additional mitigation measures that would reduce construction energy demand.

4.4 **OPERATIONAL ENERGY DEMANDS**

Energy consumption in support of or related to Project operations would include transportation energy demands (energy consumed by passenger car and truck vehicles accessing the Project site) and facilities energy demands (energy consumed by building operations and site maintenance activities).

4.4.1 TRANSPORTATION ENERGY DEMANDS

Energy that would be consumed by Project-generated traffic is a function of total VMT and estimated vehicle fuel economies of vehicles accessing the Project site. The VMT per vehicle class can be determined by the vehicle fleet mix and the total VMT.

As with worker and vendors trips, operational vehicle fuel efficiencies were estimated using information generated within EMFAC2021 developed by CARB (24). EMFAC2021 was run for the San Bernardino Orange sub-area for the 2023 calendar years. Data from EMFAC2021 is shown in Appendix 4.2.

As summarized on Table 4-1 the Project will result in 63,832,385 annual VMT and an estimated annual fuel consumption of 2,680,177 gallons of fuel.

Vehicle Type	Annual Miles Traveled ¹	Average Vehicle Fuel Economy	Estimated Annual Fuel	
		(mpg)	Consumption (gallons)	
LDA	31.43	30,319,403	964,604	
LDT1	24.79	2,119,588	85,503	
LDT2	24.07	15,855,539	658,706	
MDV	19.70	9,516,086	483,110	
LHD1	15.46	1,988,567	128,597	
LHD2	14.64	565,399	38,610	
MHD	7.48	1,110,309	148,379	
HHD	5.92	494,526	83,540	
OBUS	6.10	35,457	5,817	
UBUS	3.73	29,652	7,949	
MCY	41.99	1,567,713	37,337	
SBUS	6.55	55,058	8,410	
МН	5.91	175,087	29,615	
TOTAL (ALL VEHICLES)	63,832,385		2,680,177	

TABLE 4-1: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION

¹ Total VMT may not match CalEEMod output due to rounding.

4.4.2 FACILITY ENERGY DEMANDS

Project building operations activities would result in the consumption of natural gas and electricity. Natural gas would be supplied to the Project by SoCalGas; electricity would be supplied to the Project by SCE. As previously stated, the analysis herein assumes compliance with the 2019 Title 24 and CALGreen standards. Annual natural gas and electricity demands of the Project are summarized in Table 4-2 and provided in Appendix 4.1.

Land Use	Natural Gas Demand (kBTU/year)	Electricity Demand (kWh/year)
Multifamily Housing (Mid Rise)	8,834,660	26,767,491
TOTAL PROJECT ENERGY DEMAND	8,834,660	26,767,491

TABLE 4-2: PROJECT ANNUAL OPERATIONAL NATURAL GAS DEMAND SUMMARY

kBTU – kilo-British Thermal Units

4.4.3 OPERATIONAL ENERGY EFFICIENCY/CONSERVATION MEASURES

Energy efficiency/energy conservation attributes of the Project would be complemented by increasingly stringent state and federal regulatory actions addressing vehicle fuel economies and vehicle emissions standards; and enhanced building/utilities energy efficiencies mandated under California building codes (e.g., Title24, California Green Building Standards Code).

ENHANCED VEHICLE FUEL EFFICIENCIES

Project annual fuel consumption estimates presented previously in Table 4-1 represent likely potential maximums that would occur for the Project. Under subsequent future conditions, average fuel economies of vehicles accessing the Project site can be expected to improve as older, less fuel-efficient vehicles are removed from circulation, and in response to fuel economy and emissions standards imposed on newer vehicles entering the circulation system.

Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands.

4.5 SUMMARY

4.5.1 OPERATIONAL ENERGY DEMANDS

TRANSPORTATION ENERGY DEMANDS

Annual vehicular trips and related VMT generated by the operation of the Project would result in a fuel demand of 2,680,177 gallons of fuel.

Fuel would be provided by current and future commercial vendors. Trip generation and VMT generated by the Project are consistent with other multi-family uses of similar scale and configuration, as reflected respectively in the Institute of Transportation Engineers (ITE) Trip Generation Manual (11th Ed., 2021); and CalEEMod. As such, Project operations would not result in excessive and wasteful vehicle trips and VMT, nor excess and wasteful vehicle energy consumption compared to similar uses.

It should be noted that the state strategy for the transportation sector for medium and heavyduty trucks is focused on making trucks more efficient and expediting truck turnover rather than reducing VMT from trucks. This is in contrast to the passenger vehicle component of the

transportation sector where both per-capita VMT reductions and an increase in vehicle efficiency are forecasted to be needed to achieve the overall state emissions reductions goals.

Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands. The Project would implement sidewalks, facilitating and encouraging pedestrian access. Facilitating pedestrian and bicycle access would reduce VMT and associated energy consumption. As supported by the preceding discussions, Project transportation energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary.

FACILITY ENERGY DEMANDS

Project facility operational energy demands are estimated at 8,834,660 kBTU/year of natural gas and 26,767,491 kWh/year of electricity. Natural gas would be supplied to the Project by SoCalGas; electricity would be supplied by SCE. The Project proposes conventional residential and educational reflecting contemporary energy efficient/energy conserving designs and operational programs. The Project does not propose uses that are inherently energy intensive and the energy demands in total would be comparable to other residential and educational uses of similar scale and configuration.

Lastly, the Project will comply with the applicable Title 24 standards. Compliance itself with applicable Title 24 standards will ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary.

This page intentionally left blank

5 CONCLUSIONS

5.1 ENERGY IMPACT 1

Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation.

As supported by the preceding analyses, Project operations would not result in the inefficient, wasteful, or unnecessary consumption of energy. The Project would therefore not cause or result in the need for additional energy producing or transmission facilities. The Project would not engage in wasteful or inefficient uses of energy and aims to achieve energy conservations goals within the State of California.

5.2 ENERGY IMPACT 2

Conflict with or obstruct a state or local plan for renewable energy or energy efficiency.

The Project's consistency with the applicable state and local plans is discussed below.

CONSISTENCY WITH ISTEA

Transportation and access to the Project site is provided by the local and regional roadway systems. The Project would not interfere with, nor otherwise obstruct intermodal transportation plans or projects that may be realized pursuant to the ISTEA because SCAG is not planning for intermodal facilities on or through the Project site.

CONSISTENCY WITH TEA-21

The Project site is located in an area with proximate access to the Interstate freeway system. The site selected for the Project facilitates access, acts to reduce vehicle miles traveled, takes advantage of existing infrastructure systems, and promotes land use compatibilities through collocation of similar uses. The Project supports the strong planning processes emphasized under TEA-21. The Project is therefore consistent with, and would not otherwise interfere with, nor obstruct implementation of TEA-21.

CONSISTENCY WITH IEPR

Electricity would be provided to the Project by SCE. SCE's *Clean Power and Electrification Pathway* (CPEP) white paper builds on existing state programs and policies. As such, the Project is consistent with, and would not otherwise interfere with, nor obstruct implementation the goals presented in the 2021 IEPR.

Additionally, the Project will comply with the applicable Title 24 standards which would ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary. As such, development of the proposed Project would support the goals presented in the 2021 IEPR.

CONSISTENCY WITH STATE OF CALIFORNIA ENERGY PLAN

The Project site is located in an area with proximate access to the Interstate freeway system. The sites selected are primarily infill development sites and take advantage of existing infrastructure systems. The Project therefore supports urban design and planning processes identified under the State of California Energy Plan, is consistent with, and would not otherwise interfere with, nor obstruct implementation of the State of California Energy Plan.

CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS

The 2019 version of Title 24 was adopted by the CEC and became effective on January 1, 2020. It should be noted that the analysis herein assumes compliance with the 2019 Title 24 Standards. It should be noted that the CEC anticipates that nonresidential buildings will use approximately 30% less energy and residential buildings will use 53% less energy compared to the prior code (16). Future development would be subject to the most recent Title 24 standards at the time development is proposed.

CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 11, CALGREEN

As previously stated, CCR, Title 24, Part 11: CALGreen is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on January 1, 2009, and is administered by the California Building Standards Commission. CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2019 California Green Building Code Standards that became effective January 1, 2020. Future development would be subject to the most recent CALGreen standards.

CONSISTENCY WITH AB 1493

AB 1493 is not applicable to the Project as it is a statewide measure establishing vehicle emissions standards. No feature of the Project would interfere with implementation of the requirements under AB 1493.

CONSISTENCY WITH RPS

California's RPS is not applicable to the Project as it is a statewide measure that establishes a renewable energy mix. No feature of the Project would interfere with implementation of the requirements under RPS.

CONSISTENCY WITH SB 350

The proposed Project would use energy from SCE, which have committed to diversify their portfolio of energy sources by increasing energy from wind and solar sources. No feature of the Project would interfere with implementation of SB 350. Additionally, future development may occur following implementation of the Project and would be designed and constructed to implement the energy efficiency measures for new residential development and would include several measures designed to reduce energy consumption.

INCREASING RELIANCE ON RENEWABLE ENERGY SOURCES

Pursuant to the 2019 Title 24 standards, future single-family and low-rise residential units

constructed as part of the Project would be required to implement photovoltaic solar to offset energy demand associated with the Project.

As shown above, the Project would not conflict with any of the state or local plans. As such, a less than significant impact is expected.

This page intentionally left blank

6 **REFERENCES**

- 1. Association of Environmental Professionals. 2020 CEQA California Environmental Quality Act. 2020.
- 2. Administration, U.S. Energy Information. California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/data.php?sid=CA#ConsumptionExpenditures.
- 3. California Energy Commission. Transportation Energy Demand Forecast 2018-2030. 2018.
- 4. Alternate Fuels Data Center. U.S. Department of Energy. [Online] https://afdc.energy.gov/states/ca.
- 5. U.S. Energy Information Administration. California Energy Consumption by End-Use Sector. *California State Profile and Energy Estimates*. [Online] https://www.eia.gov/state/?sid=CA#tabs-2.
- 6. California Energy Commission. 2020 Total System Electric Generation. *CA.gov.* [Online] https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2020-total-system-electric-generation.
- 7. U.S. Energy Information Administration. California State Profile and Energy Estimates . [Online] https://www.eia.gov/state/?sid=CA.
- 8. California Energy Commission. 2013 Integrated Energy Policy Report. [Online] 2013. http://www.energy.ca.gov/2013publications/CEC-100-2013-001/CEC-100-2013-001-CMF.pdf.
- 9. —. California Energy Almanac. *Utility Energy Supply Plans from 2013.* [Online] https://www.energy.ca.gov/almanac/electricity_data/s-2_supply_forms_2013/.
- 10.
 California
 ISO.
 Understanding
 the
 ISO.
 [Online]

 http://www.caiso.com/about/Pages/OurBusiness/UnderstandingtheISO/default.aspx.
 ISO.
 [Online]
- 11. Southern Californai Edison. 2019 Power Content Label. *Southern California Edison.* [Online] https://www.sce.com/sites/default/files/inline-files/SCE_2019PowerContentLabel.pdf.
- 12. California Public Utilities Commission. Natural Gas and California. [Online] http://www.cpuc.ca.gov/general.aspx?id=4802.
- **13.** Department of Motor Vehicles. *State of California Department of Motor Vehicles Statistics For Publication January Through December 2020.* 2020.
- 14. U.S. Energy Information Administration. California Analysis. *Energy Information Administration.* [Online] https://www.eia.gov/beta/states/states/ca/analysis.
- 15. California Energy Commission Staff. 2020 Integrated Energy Policy Report Update. [Online] 2020. file:///C:/Users/atamase/Downloads/TN237269_20210323T095732_Final%202020%20Integrated %20%20Energy%20Policy%20Report%20%20Update%20Volume%20III%20California%20E%20(1).p df.
- 16. The California Energy Commission. 2019 Building Energy Efficiency Standards . *California Energy Commission.* [Online] 2018. https://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf.
- 17. Department of General Services. Building Standards Commission. *CALGreen.* [Online] https://codes.iccsafe.org/content/chapter/15778/.
- 18. California Energy Commission. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/.
- **19. State of California.** *California Environmental Quality Act Guideline, California Public Resources Code, Title 14, Division 6, Chapter 3,.*

- 20. Association of Environmental Professionals. 2019 CEQA California Environmental Quality Act. 2019.
- 21. Urban Crossroads, Inc. Subarea 29 Air Quality Impact Analysis. 2022.
- 22. State of California. 2019 CEQA California Environmental Quality Act. 2019.
- 23. California Air Pollution Control Officers Association (CAPCOA). California Emissions Estimator Model (CalEEMod). [Online] September 2016. www.caleemod.com.
- 24. California Department of Transportation. EMFAC Software. [Online] http://www.dot.ca.gov/hq/env/air/pages/emfac.htm.
- 25. Pray, Richard. 2021 National Construction Estimator. Carlsbad : Craftsman Book Company, 2021.
- 26. Southern California Edison. Regulatory Information Rates Pricing. [Online] https://www.sce.com/regulatory/tariff-books/rates-pricing-choices.
- 27. California Air Resources Board. Methods to Find the Cost-Effectiveness of Funding Air Quality Projects For Evaluating Motor Vehicle Registration Fee Projects And Congestion Mitigation and Air Quality Improvement (CMAQ) Projects, Emission Factor Tables. 2018.
- 28. —. Truck and Bus Regulation. [Online] https://ww2.arb.ca.gov/our-work/programs/truck-and-bus-regulation.
- 29. Southern California Edison. Schedule GS-1 General Service. Regulatory Information Rates Pricing. [Online] https://library.sce.com/content/dam/scedoclib/public/regulatory/tariff/electric/schedules/general-service-&-industrialrates/ELECTRIC_SCHEDULES_GS-1.pdf.
- **30.** Department of Motor Vehicles. *State of California Department of Motor Vehicles Statistics For Publication January Through December 2021.* 2021.

This page intentionally left blank

7 CERTIFICATIONS

The contents of this energy analysis report represent an accurate depiction of the environmental impacts associated with the proposed Yorba Linda 2021-2029 Housing Element Implementation Programs. The information contained in this energy analysis report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at <u>hqureshi@urbanxroads.com</u>.

Haseeb Qureshi Associate Principal Urban Crossroads, Inc. hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – California Air Resources Board • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 4.1:

CALEEMOD EMISSIONS MODEL OUTPUTS

13763-Yorba Linda Housing Element Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.2. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.2. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.2. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

5. Activity Data

- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
- 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
- 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
- 5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

- 5.16.1. Emergency Generators and Fire Pumps
- 5.16.2. Process Boilers
- 5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

- 5.18.1.1. Unmitigated
- 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures

- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	13763-Yorba Linda Housing Element
Lead Agency	
Land Use Scale	Plan/community
Analysis Level for Defaults	County
Windspeed (m/s)	1.80
Precipitation (days)	21.2
Location	Yorba Linda, CA, USA
County	Orange
City	Yorba Linda
Air District	South Coast AQMD
Air Basin	South Coast
TAZ	5759
EDFZ	7
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Apartments Mid Rise	2,410	Dwelling Unit	166	2,313,600	2,313,600	—	7,182	—

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-	_	-
Unmit.	128	175	67.9	526	1.38	3.88	50.8	54.6	3.87	8.96	12.8	496	173,370	173,865	56.1	4.44	44.0	176,636
Daily, Winter (Max)	_	-	_	-	_	-	-	-	_	—	_				_	_		-
Unmit.	119	166	68.8	360	1.33	3.83	50.8	54.6	3.81	8.96	12.8	496	168,575	169,071	56.2	4.61	17.3	171,868
Average Daily (Max)	_	-	—	-	_	_	_	_	_	_	-		_		_			-
Unmit.	116	165	35.5	434	1.08	1.14	48.3	49.4	1.13	8.52	9.64	496	122,254	122,749	55.3	4.40	27.8	125,471
Annual (Max)	_	_		_		_						_	_				_	_
Unmit.	21.2	30.1	6.48	79.3	0.20	0.21	8.81	9.01	0.21	1.55	1.76	82.1	20,241	20,323	9.15	0.73	4.61	20,773

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	_	-	-	_	_	_	_	_	-			-	_	_	-
Mobile	110	107	23.9	370	1.10	0.38	50.8	51.1	0.35	8.96	9.31	—	111,864	111,864	3.63	3.81	27.4	113,118
Area	16.8	67.5	37.2	153	0.24	2.96	_	2.96	2.97	_	2.97	0.00	46,036	46,036	0.88	0.09	_	46,084

Energy	0.79	0.40	6.76	2.88	0.04	0.55	_	0.55	0.55	_	0.55	_	14,891	14,891	1.56	0.11		14,963
Water	-	—	_	—	—	_	—	—	—	_	-	173	579	752	17.8	0.43	_	1,327
Waste	-	_	_	_	-	_	_	_	_	-	_	322	0.00	322	32.2	0.00	_	1,128
Refrig.	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	16.6	16.6
Total	128	175	67.9	526	1.38	3.88	50.8	54.6	3.87	8.96	12.8	496	173,370	173,865	56.1	4.44	44.0	176,636
Daily, Winter (Max)	_	_	_	_		_	-	_	-	_	_	-	_		_		_	_
Mobile	114	110	26.1	341	1.05	0.38	50.8	51.1	0.35	8.96	9.31	—	107,435	107,435	3.74	3.98	0.71	108,716
Area	4.21	55.6	36.0	15.3	0.23	2.91	_	2.91	2.91	-	2.91	0.00	45,670	45,670	0.86	0.09	_	45,717
Energy	0.79	0.40	6.76	2.88	0.04	0.55	—	0.55	0.55	-	0.55	—	14,891	14,891	1.56	0.11	_	14,963
Water	-	_	—	_	—	_	—	—	—	-	-	173	579	752	17.8	0.43	_	1,327
Waste	-	_	_	_	-	_	_	_	_	-	_	322	0.00	322	32.2	0.00	_	1,128
Refrig.	-	_	—	_	—	_	—	—	—	-	—	—	—	-	_	—	16.6	16.6
Total	119	166	68.8	360	1.33	3.83	50.8	54.6	3.81	8.96	12.8	496	168,575	169,071	56.2	4.61	17.3	171,868
Average Daily	_	-	-	-	—	-	-	-	-	—	—	—	—	_	-	—	-	—
Mobile	106	103	25.4	336	1.02	0.36	48.3	48.6	0.34	8.52	8.86	—	103,406	103,406	3.61	3.85	11.3	104,654
Area	8.88	61.8	3.33	95.2	0.02	0.23	—	0.23	0.24	-	0.24	0.00	3,378	3,378	0.07	0.01	_	3,383
Energy	0.79	0.40	6.76	2.88	0.04	0.55	—	0.55	0.55	-	0.55	—	14,891	14,891	1.56	0.11	_	14,963
Water	-	—	—	_	—	_	—	—	—	-	—	173	579	752	17.8	0.43	_	1,327
Waste	-	_	_	_	-	_	_	_	_	-	_	322	0.00	322	32.2	0.00	_	1,128
Refrig.	-	—	—	_	—	_	—	—	—	-	—	—	—	—	_	—	16.6	16.6
Total	116	165	35.5	434	1.08	1.14	48.3	49.4	1.13	8.52	9.64	496	122,254	122,749	55.3	4.40	27.8	125,471
Annual	-	—	—	_	—	_	—	—	—	-	—	—	—	—	_	—	_	—
Mobile	19.4	18.8	4.64	61.4	0.19	0.07	8.81	8.87	0.06	1.55	1.62	—	17,120	17,120	0.60	0.64	1.86	17,327
Area	1.62	11.3	0.61	17.4	< 0.005	0.04	_	0.04	0.04	-	0.04	0.00	559	559	0.01	< 0.005	_	560
Energy	0.14	0.07	1.23	0.52	0.01	0.10	_	0.10	0.10	-	0.10	_	2,465	2,465	0.26	0.02	_	2,477
Water	_	_	_	_	_	_	_	_	_	_	_	28.7	95.8	125	2.95	0.07	_	220

Waste	_	_	_	_	_	_	_	_	_	—	_	53.4	0.00	53.4	5.33	0.00	_	187
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	2.74	2.74
Total	21.2	30.1	6.48	79.3	0.20	0.21	8.81	9.01	0.21	1.55	1.76	82.1	20,241	20,323	9.15	0.73	4.61	20,773

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Mobile source emissions results are presented in Sections 2.6. No further detailed breakdown of emissions is available.

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use		ROG				PM10E				PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—				—		—	—								—
Apartme nts Mid Rise		_					—	_	—	_	_		6,312	6,312	0.80	0.10		6,361
Total	—	—	—	—	—	—	—	—	—	—	—	—	6,312	6,312	0.80	0.10	—	6,361
Daily, Winter (Max)		_	_						—									_
Apartme nts Mid Rise		_							—				6,312	6,312	0.80	0.10		6,361
Total	_		_	_	_	_	_	_	_	_		_	6,312	6,312	0.80	0.10	_	6,361
Annual	_	_	_	_	_	_	_		_	_		_	_	_	_	_	_	_

Apartme Mid Rise	_	_	—	_	_	_		_				_	1,045	1,045	0.13	0.02		1,053
Total	—	—	—	—	—	—	—	—	—	—	—	—	1,045	1,045	0.13	0.02	—	1,053

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-	-	-	-	_	_	—	-	-	—	—	-	-	—	-	-
Apartme nts Mid Rise	0.79	0.40	6.76	2.88	0.04	0.55		0.55	0.55	-	0.55	_	8,579	8,579	0.76	0.02		8,602
Total	0.79	0.40	6.76	2.88	0.04	0.55	—	0.55	0.55	_	0.55	-	8,579	8,579	0.76	0.02	_	8,602
Daily, Winter (Max)	_	_	_	-	_	-		_	_	-	-	_	_	—	_	_	—	-
Apartme nts Mid Rise	0.79	0.40	6.76	2.88	0.04	0.55		0.55	0.55	—	0.55	_	8,579	8,579	0.76	0.02	_	8,602
Total	0.79	0.40	6.76	2.88	0.04	0.55	—	0.55	0.55	—	0.55	-	8,579	8,579	0.76	0.02	_	8,602
Annual	—	—	—	—	—	—	—	—	—	—	—	-	—	_	-	—	—	—
Apartme nts Mid Rise	0.14	0.07	1.23	0.52	0.01	0.10		0.10	0.10	-	0.10	_	1,420	1,420	0.13	< 0.005	_	1,424
Total	0.14	0.07	1.23	0.52	0.01	0.10	_	0.10	0.10	_	0.10	_	1,420	1,420	0.13	< 0.005	_	1,424

4.3. Area Emissions by Source

4.3.2. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	_	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_	-
Architect ural Coatings		69.8		_	_	_	-	_	_	_	_	_		_	_		_	_
Hearths	4.21	2.11	36.0	15.3	0.23	2.91	_	2.91	2.91	_	2.91	0.00	45,670	45,670	0.86	0.09	_	45,717
Consum er Products	_	49.5	_	-	-	-	-	-	-	-	-			-	-		-	-
Landsca pe Equipme nt	12.5	11.9	1.26	137	0.01	0.05	_	0.05	0.06	_	0.06	—	366	366	0.02	< 0.005	_	367
Total	16.8	133	37.2	153	0.24	2.96	—	2.96	2.97	—	2.97	0.00	46,036	46,036	0.88	0.09	—	46,084
Daily, Winter (Max)		_			_	-	-	-	-	-	-	_		-	_	_	-	-
Architect ural Coatings		69.8		_	_	_	-	_	_	_	_			_	_		_	-
Hearths	4.21	2.11	36.0	15.3	0.23	2.91	—	2.91	2.91	—	2.91	0.00	45,670	45,670	0.86	0.09	—	45,717
Consum er Products		49.5			_	_	-	-	_	-	-	_		-	_		-	_
Total	4.21	121	36.0	15.3	0.23	2.91	_	2.91	2.91	_	2.91	0.00	45,670	45,670	0.86	0.09	_	45,717
Annual	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	-	_	_
Architect ural Coatings		7.96		_	_	_	-	-	-	_	-			_	-		_	_
Hearths	0.05	0.03	0.45	0.19	< 0.005	0.04	_	0.04	0.04	_	0.04	0.00	518	518	0.01	< 0.005	_	518

Consum er Products	—	9.04																
Landsca pe Equipme nt	1.57	1.48	0.16	17.2	< 0.005	0.01		0.01	0.01		0.01		41.5	41.5	< 0.005	< 0.005		41.6
Total	1.62	18.5	0.61	17.4	< 0.005	0.04	_	0.04	0.04	-	0.04	0.00	559	559	0.01	< 0.005	—	560

4.4. Water Emissions by Land Use

4.4.2. Unmitigated

		(.,, j.		· /		o, e.e.j .e.	, ,		· · · ·		1			1		
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		_	-	_		_										_		-
Apartme nts Mid Rise	_	_	_	_	_	_						173	579	752	17.8	0.43		1,327
Total	—	—	—	—	—	—	_	_	_	_	_	173	579	752	17.8	0.43	_	1,327
Daily, Winter (Max)		_	_	_		_										_		-
Apartme nts Mid Rise	—	_	_	_		_						173	579	752	17.8	0.43		1,327
Total	—	—	—	—	—	—	—	—	—	—	—	173	579	752	17.8	0.43	—	1,327
Annual	_	_	_	-	—	—	—	—	_	—	—	—	—	—	—	_	—	—
Apartme nts Mid Rise		_	_	_		_				_		28.7	95.8	125	2.95	0.07	_	220

Total 28.7 95.8 125 2.95 0	0.07 — 22	220	_	_	,	0.07	2.00	120	95.8	28.7	_	_	_	_	_	_	_	_	_	_	_	Total	
----------------------------	-----------	-----	---	---	---	------	------	-----	------	------	---	---	---	---	---	---	---	---	---	---	---	-------	--

4.5. Waste Emissions by Land Use

4.5.2. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

			·	., . .			.,				 ,							
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	-	—	—	—	—	_	—	—	—	—	—	—	—	—	—
Apartme nts Mid Rise	—	—	—	-	—	_	_				_	322	0.00	322	32.2	0.00	_	1,128
Total	—	—	—	—	—	—	—	—	—	—	—	322	0.00	322	32.2	0.00	—	1,128
Daily, Winter (Max)	—	—	—	_		_	_				_				_	_		—
Apartme nts Mid Rise	—	—	_	-		_					_	322	0.00	322	32.2	0.00		1,128
Total	—	—	—	—	—	—	—	—	—	—	—	322	0.00	322	32.2	0.00	—	1,128
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Apartme nts Mid Rise	—	_		_		_					_	53.4	0.00	53.4	5.33	0.00		187
Total	—	—	—	—	—	—	—	—	_	—	—	53.4	0.00	53.4	5.33	0.00	—	187

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	-	—	—	—	—	—	—	—	—	—	—	—	—	-	—	—
Apartme nts Mid Rise	—		_	_	_	_		—	_		—	_	—		—	_	16.6	16.6
Total	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—	16.6	16.6
Daily, Winter (Max)	_	_	-	-	-	-	_	_	-	_	_	-	-	-	-	-	_	
Apartme nts Mid Rise	—		_	_	_	_			_			_				_	16.6	16.6
Total	-	-	_	_	-	-	—	—	—	—	—	-	—	—	—	—	16.6	16.6
Annual	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Apartme nts Mid Rise	_		-	_	_	_	_	_	_		_	_	_	_	_	_	2.74	2.74
Total	_	—	-	_	_	_	_	_	_	—	—	_	—	_	—	—	2.74	2.74

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Equipme	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Туре																		
Daily, Summer (Max)	_	—		—	_			_	—			_	—		—			—
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	-	-	_	_	_		_	_	_	_						_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—		—
Total	_	_	_	_	_	_	—	_	_	_	_	_	_	_	_	—		_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Туре																		
Daily, Summer (Max)			—	—		—				—		—						—
Total	_	_	_	—	_	_	—	—	—	_	—	—	_	_	—	_	—	_
Daily, Winter (Max)																		
Total	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_		_	_	_		_	_	_		_
Total		_	_	_	_	_	_	_		_	_	_		_	_	_		_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—	_	_	—	—	—	—	—	—	—	—	—	—	_	—	—
Total	—	—	—	-	_	—	—	—	—	—	—	—	—	—	—	-	—	—
Daily, Winter (Max)				_						_								—
Total	—	_	_	_	_	—	_	_	_	—	_	_	_	_	_	_	—	_
Annual		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	—	—	_	_	—	—	_	_	_	—	_	—	_	_	—	—	—	—

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n		ROG							PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	-	_	_	_	_	-	_	_	_	—	_	_	_		_	—
Total	_	—	—	—	—	—	—	—	—		—	—	—	—	—	_	—	—
Daily, Winter (Max)	_		_			_		_					_					
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_		—			_	_	_	_	_	_	_	_
Total		_	_	_	_	_		_			_	_	_	_	_	_		_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E			PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	—	—	_	_	—	—	—	—	-	—	—	—	—	—	_	—	_
Total	—	—	—	—	—	—	—	—	—	—	—	—	—		—	—	—	—
Daily, Winter (Max)	_	_	-	-	-	-	_	_		-		_	_		-	-	-	—
Total	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

		<u> </u>	.,	<i>, ,</i>					, ,,		· · · ·		1					1
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-
Subtotal	_	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-
Sequest ered	—	-	-	—	—	—	—	-	—	—	—	-	-	-	-	-	—	-
Subtotal	_	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	—	_
Remove d	_	_	-	-	_	_	_	_		_	_	_	_	_	-	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)		—				—		_		—		_	_					_
Avoided	_	—	_	—	—	—	—	—	—	—	—	—	—	_	—	_	—	—
Subtotal	_	—	_	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Sequest ered		—			—	—		—		—		—				—		—
Subtotal	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Remove d	—	—	—	—	—	—	—	—	_	—	_	_	—	—	_	—	—	—
Subtotal	_	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—
—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual		—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequest ered		—		—		—	—	—		—		—	—	—		—		—
Subtotal	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Remove d		—		—	—	—		—		—		—		_		—		—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	—	—	_	—	_	_	_	_	—	—	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Total all Land Uses	19,537	18,560	18,560	7,131,005	183,955	174,883	174,883	63,832,385
				18 / 28				

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

Hearth Type	Unmitigated (number)
Apartments Mid Rise	<u> </u>
Wood Fireplaces	0
Gas Fireplaces	2169
Propane Fireplaces	0
Electric Fireplaces	0
No Fireplaces	241

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
4685040	1,561,680	0.00	0.00	

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	250

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Apartments Mid Rise	8,834,660	261	0.0330	0.0040	26,767,491

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Apartments Mid Rise	90,436,817	36,648,477

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Apartments Mid Rise	598	0.00

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Apartments Mid Rise	Average room A/C & Other residential A/C and heat pumps	R-410A	2,088	< 0.005	2.50	2.50	10
Apartments Mid Rise	Household refrigerators and/or freezers	R-134a	1,430	0.12	0.60	0.00	1

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

13763-Yorba Linda Housing Element Detailed Report, 5/18/2022

	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
--	----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor

5.16.2. Process Boilers

	Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
--	----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
_	

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	12.7	annual days of extreme heat
Extreme Precipitation	4.90	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	3.88	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 feet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	0	0	N/A

Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	1	1	2
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack	N/A	N/A	N/A	N/A
Air Quality	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	-
AQ-Ozone	55.4
AQ-PM	84.0
AQ-DPM	62.6
Drinking Water	37.6
Lead Risk Housing	53.5
Pesticides	0.00
Toxic Releases	91.9
Traffic	47.5
Effect Indicators	—
CleanUp Sites	19.3
Groundwater	22.1
Haz Waste Facilities/Generators	51.7
Impaired Water Bodies	0.00
Solid Waste	55.7
Sensitive Population	—
Asthma	14.1
Cardio-vascular	45.8
Low Birth Weights	49.9
Socioeconomic Factor Indicators	-
Education	35.2
Housing	40.3

Linguistic	22.9
Poverty	36.8
Unemployment	29.4

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—
Above Poverty	70.13986911
Employed	55.33170794
Education	—
Bachelor's or higher	73.48902862
High school enrollment	13.78159887
Preschool enrollment	32.04157577
Transportation	_
Auto Access	14.11523162
Active commuting	58.07776209
Social	—
2-parent households	58.32157064
Voting	78.33953548
Neighborhood	_
Alcohol availability	36.72526626
Park access	36.99473887
Retail density	51.95688438
Supermarket access	69.54959579
Tree canopy	52.76530219
Housing	—

13763-Yorba Linda Housing Element Detailed Report, 5/18/2022

Homeownership	49.62145515
Housing habitability	30.32208392
Low-inc homeowner severe housing cost burden	58.55254716
Low-inc renter severe housing cost burden	45.54087001
Uncrowded housing	60.77248813
Health Outcomes	—
Insured adults	71.51289619
Arthritis	0.0
Asthma ER Admissions	80.7
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	52.2
Cognitively Disabled	29.3
Physically Disabled	32.1
Heart Attack ER Admissions	49.8
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	19.6
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	—
Binge Drinking	0.0

Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	64.0
Elderly	10.8
English Speaking	63.0
Foreign-born	35.1
Outdoor Workers	50.1
Climate Change Adaptive Capacity	_
Impervious Surface Cover	63.1
Traffic Density	32.6
Traffic Access	23.0
Other Indices	—
Hardship	36.6
Other Decision Support	—
2016 Voting	83.4

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	38.0
Healthy Places Index Score for Project Location (b)	53.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

13763-Yorba Linda Housing Element Detailed Report, 5/18/2022

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

Measure Title	Co-Benefits Achieved

7.5. Evaluation Scorecard

This table summarizes the points earned for each health and equity measure category, and the total possible points for each category. If N/A is selected for any measure(s), the total possible points in that category are reduced accordingly. The points for each category are then weighted on a 15-point scale to determine the score per category and a total weighted score.

Category	Number of Applicable Measures	Total Points Earned by Applicable Measures	Max Possible Points	Weighted Score		
Health and Equity Evaluation Scorecard not completed						

Based on the weighted score of 0 out of a total 15 possible points, your project qualifies for the Acorn equity award level.

8. User Changes to Default Data

Screen	Justification
	Per SCAQMD Rule 445 no wood burning devices Wood fireplaces added to gas fireplaces
Operations: Architectural Coatings	rule 1113

This page intentionally left blank

APPENDIX 4.2:

EMFAC2021

Source: EMFAC2021 (v1.0.2) Emissions Inventory Region Type: Sub-Area Region: Orange (SC) Calendar Year: 2023 Season: Annual Vehicle Classification: EMFAC2007 Categories

Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

Region	Calendar Y Vehicle Ca	at Model Yea: Speed	Fuel	Population	Total VMT	Fuel Consu	Fuel_Consumption	Total Fuel	VMT	Total VMT	Miles per Gallon	Vehicle Class
Orange (S	C 2023 HHDT	Aggregate Aggregate	Gasoline	8.731453	606.5489	0.147682	147.6817343	224709.1768	606.548947	1330192.502	5.92	HHDT
Orange (S	C 2023 HHDT	Aggregate Aggregate	Diesel	10709.41	1247785	210.5347	210534.7038		1247785.033			
Orange (S	C 2023 HHDT	Aggregate Aggregate	Electricity	8.085226	483.1236	0	0		483.123601			
Orange (S	C 2023 HHDT	Aggregate Aggregate	Natural Ga	1254.706	81317.8	14.02679	14026.79128	1485789.303	81317.79699	46701259.8	31.43	LDA
Orange (S	C 2023 LDA	Aggregate Aggregate	Gasoline	1076182	42528217	1445.762	1445761.525		42528216.69			
Orange (S	C 2023 LDA	Aggregate Aggregate	Diesel	3514.161	107965.3	2.54352	2543.520315		107965.2638			
Orange (S	C 2023 LDA	Aggregate Aggregate	Electricity	59474.27	2727828	0	0	143053.3158	2727828.291	3546246.185	24.79	LDT1
Orange (S	C 2023 LDA	Aggregate Aggregate	Plug-in Hył	28501.98	1337250	23.45747	23457.46615		1337249.552			
Orange (S	C 2023 LDT1	Aggregate Aggregate	Gasoline	99223.59	3533281	142.9517	142951.7238		3533281.003			
Orange (S	C 2023 LDT1	Aggregate Aggregate	Diesel	34.75929	542.0339	0.022729	22.72902472	885337.7545	542.0338996	21310742.66	24.07	LDT2
Orange (S	C 2023 LDT1	Aggregate Aggregate	Electricity	191.5906	7503.644	0	0		7503.643869			
Orange (S	C 2023 LDT1	Aggregate Aggregate	Plug-in Hył	92.38651	4919.504	0.078863	78.86289274		4919.504479			
Orange (S	C 2023 LDT2	Aggregate Aggregate	Gasoline	516653.8	20968860	879.7269	879726.8895	163947.1899	20968860.09	2535215.83	15.46	LHDT1
Orange (S	C 2023 LDT2	Aggregate Aggregate	Diesel	2003.36	85234.51	2.698305	2698.305306		85234.509			
Orange (S	C 2023 LDT2	Aggregate Aggregate	Electricity	2218.113	82315.88	0	0	42696.9695	82315.88053	625248.0383	14.64	LHDT2
Orange (S	C 2023 LDT2	Aggregate Aggregate	Plug-in Hył	3400.553	174332.2	2.91256	2912.55963		174332.1824			
Orange (S	C 2023 LHDT1	Aggregate Aggregate	Gasoline	41394.68	1651744	120.8832	120883.1513	7508.408221	1651744.117	315261.4897	41.99	MCY
Orange (S	C 2023 LHDT1	Aggregate Aggregate	Diesel	20789.39	883471.7	43.06404	43064.03864	654470.2298	883471.7136	12891471.75	19.70	MDV
Orange (S	C 2023 LHDT2	Aggregate Aggregate	Gasoline	6757.483	254111.7	21.16016	21160.16017		254111.7405			
Orange (S	C 2023 LHDT2	Aggregate Aggregate	Diesel	8706.571	371136.3	21.53681	21536.80933		371136.2979			
Orange (S	C 2023 MCY	Aggregate Aggregate		49410.96	315261.5		7508.408221	15209.26808	315261.4897	89918.06589	5.91	MH
Orange (S		Aggregate Aggregate	Gasoline		12520790		644939.2498		12520789.89			
Orange (S	C 2023 MDV	Aggregate Aggregate	Diesel	4630.544	185304.8	7.814915	7814.914508	210315.2706	185304.7669	1573775.154	7.48	MHDT
Orange (S		Aggregate Aggregate		2366.55	87987.32	0	0		87987.32368			
Orange (S		Aggregate Aggregate	Plug-in Hył		97389.77		1716.065464	12888.47555	97389.76861	78556.56335	6.10	OBUS
Orange (S		Aggregate Aggregate	Gasoline	6246.542			12273.38692		60121.11097			
Orange (S		Aggregate Aggregate		2943.826	29796.95		2935.881151	10013.24463	29796.95492	65555.21753	6.55	SBUS
Orange (S		Aggregate Aggregate		7581.401	413802.3	80.40932	80409.31741		413802.2854			
Orange (S		Aggregate Aggregate		27021.41		128.4773	128477.3186	40960.73586	1147551.627	152805.8919	3.73	UBUS
Orange (S		Aggregate Aggregate	-		397.084	0	0		397.0840496			
Orange (S		Aggregate Aggregate					1428.634579		12024.15799			
Orange (S		Aggregate Aggregate		876.9028		7.203304	7203.304301		37020.1996			
Orange (S		Aggregate Aggregate			36373.64		5100.718524		36373.63737			
Orange (S		Aggregate Aggregate					584.4527211		5162.726383			
Orange (S		Aggregate Aggregate			29787.08		3359.332103		29787.08397			
Orange (S		Aggregate Aggregate			17539.35		2386.688805		17539.34852			
Orange (S		Aggregate Aggregate	-	0.774914		0	0		8.998995356			
Orange (S		Aggregate Aggregate					4267.223725		18219.78605			
Orange (S		Aggregate Aggregate			42087.53		3656.17145		42087.53345			
Orange (S		Aggregate Aggregate			77.72006	0	0		77.72005682			
Orange (S	C 2023 UBUS	Aggregate Aggregate	Natural Ga	575.5609	110640.6	37.30456	37304.56442		110640.6384			