# Transportation Assessment 

## Fallbrook Point

City of Los Angeles, California
September 14, 2021

Prepared for:
SCIND Fallbrook Point LLC
11150 Santa Monica Boulevard, Suite 700
Los Angeles, CA 90025

LLG Ref. 5-21-0544-1


[^0]
## Table of Contents

SECTION Page
1.0 Introduction ..... 1
1.1 Transportation Assessment Overview ..... 1
1.2 Study Area ..... 3
2.0 Project Description ..... 4
2.1 Project Site Location ..... 4
2.2 Existing Project Site ..... 4
2.3 Project Description. ..... 4
2.4 Vehicular Project Site Access ..... 4
2.5 Pedestrian and Bicycle Project Site Access ..... 7
2.6 Project Parking ..... 7
2.7 Project Loading ..... 7
2.8 Project Traffic Generation and Distribution ..... 7
2.8.1 Project Traffic Generation ..... 7
2.8.2 Project Traffic Distribution and Assignment ..... 8
2.9 Project Transportation Demand Management ..... 10
2.9.1 Reduce Parking Supply ..... 10
2.9.2 Promotions and Marketing ..... 10
2.9.3 Include Bike Parking per Los Angeles Municipal Code ..... 10
3.0 Project Context ..... 15
3.1 Non-Vehicle Transport System ..... 15
3.1.1 Pedestrian Framework ..... 15
3.1.2 Bicycle Network ..... 18
3.2 Transit Framework ..... 18
3.3 Vehicle Network ..... 18
3.3.1 Regional Highway Access ..... 18
3.3.2 Local Roadway System ..... 23
3.3.3 Roadway Descriptions ..... 25
3.3.4 City of Los Angeles High Injury Network ..... 27
3.4 Traffic Counts ..... 29
3.5 Cumulative Development Projects ..... 32
3.5.1 Related Projects ..... 32
3.5.2 Ambient Traffic Growth ..... 37
4.0 CEQA Analysis of Transportation Impacts ..... 38
4.1 Conflicting with Plans, Programs, Ordinances, or Polices (Threshold T-1) ..... 38
4.1.1 Screening Criteria ..... 38
4.1.2 Impact Criteria and Methodology ..... 39
4.1.3 Review of Project Consistency ..... 40
4.1.4 Review of Cumulative Consistency ..... 40

## TABLE OF CONTENTS (continued)

SECTION Page
4.2 VMT Analysis (Threshold T-2.1) ..... 41
4.2.1 Impact Criteria and Methodology ..... 42
4.2.2 Summary of Project VMT Analysis ..... 43
4.2.3 Summary of Cumulative VMT Analysis ..... 45
4.3 Geometric Design (Threshold T-3) ..... 46
4.3.1 Screening Criteria ..... 46
4.3.2 Impact Criteria and Methodology ..... 47
4.3.3 Qualitative Review of Site Access Points ..... 48
4.4 Freeway Safety Analysis ..... 48
4.5 CEQA Transportation Measures ..... 49
4.5.1 Transportation Demand Management ..... 49
4.5.2 CEQA Transportation Summary ..... 49
5.0 Non-CEQA Analysis ..... 51
5.1 Pedestrian, Bicycle, and Transit Access ..... 51
5.1.1 Screening Criteria ..... 51
5.1.2 Evaluation Criteria ..... 52
5.1.3 Results of Qualitative Access Review ..... 53
5.2 Project Access and Circulation Review ..... 55
5.2.1 Screening Criteria ..... 55
5.2.2 Evaluation Criteria ..... 55
5.2.3 Operational and Passenger Loading Evaluation Methodology ..... 58
5.3 Project Construction Effect on Nearby Mobility ..... 64
5.3.1 Screening Criteria ..... 65
5.3.2 Evaluation Criteria and Methodology ..... 66
5.3.3 Recommended Project-Specific Action Items ..... 68
6.0 Conclusions ..... 71
LIST OF TABLES
Section-TAble\# ..... Page
2-1 Project Trip Generation. ..... 9
3-1 Existing Public Transit Routes ..... 21
3-2 Adjacent Buildings Trip Generation ..... 30
3-3 Related Projects List and Trip Generation ..... 34
4-1 City of Los Angeles VMT Impact Criteria ..... 44
5-1 Project Evaluation of Pedestrian, Bicycle, and Transit Access ..... 54
5-2 Summary of Delays, Levels of Service, and Vehicle Queuing ..... 56
5-3 Qualitative Review of Project Construction Activities ..... 69

## TABLE OF CONTENTS (continued)

LISt OF FIGURES
Section-Figure\# ..... Page
1-1 Vicinity Map ..... 2
2-1 Project Site Aerial ..... 5
2-2 Project Site Plan ..... 6
2-3 Project Trip Distribution ..... 11
2-4 Net New Project Traffic Volumes ..... 12
3-1 Pedestrian Attractors Inventory ..... 16
3-2 Facilities Inventory ..... 17
3-3 Neighborhood Enhanced Network ..... 19
3-4 Bicycle Network ..... 20
3-5 Existing Public Transit Routes ..... 22
3-6 Existing Lane Configurations ..... 24
3-7 Future Lane Configurations ..... 26
3-8 High Injury Network ..... 28
3-9 Adjacent Buildings Trip Distribution ..... 31
3-10 Existing Traffic Volumes ..... 33
3-11 Location of Related Projects ..... 35
3-12 Related Projects Traffic Volumes ..... 36
4-1 Net New Project Freeway Off-Ramp Traffic Volumes ..... 50
5-1 Existing with Project Traffic Volumes ..... 61
5-2 Future Cumulative Baseline Traffic Volumes ..... 62
5-3 Future Cumulative with Project Traffic Volumes ..... 63

## TABLE OF CONTENTS (continued)

## APPENDICES

## APPENDIX

A. Approved Transportation Assessment Memorandum of Understanding
B. LADOT VMT Calculator Output
C. Manual Traffic Count Data
D. Detailed Plans, Programs, Ordinances, and Policies Review
E. HCM and Levels of Service Explanation

HCM Data Worksheets - AM and PM Peak Hours

# Transportation Assessment <br> Fallbrook Point <br> City of Los Angeles, California <br> September 14, 2021 

### 1.0 INTRODUCTION

### 1.1 Transportation Assessment Overview

This transportation assessment has been conducted to identify and evaluate the potential transportation impacts of the proposed Fallbrook Point project (the "Project") located at 2281522825 Roscoe Boulevard (the "Project Site") on the surrounding street system. The Project Site is located in the Chatsworth-Porter Ranch Community Plan Area of the City of Los Angeles, California (the "City"). The Project Site is generally bounded by the neighboring Corporate Pointe at West Hills office park and associated surface parking to the north and west, Roscoe Boulevard to the south, and Fallbrook Avenue to the east. The Project Site location and general vicinity are shown in Figure 1-1.

The transportation analysis follows the Los Angeles Department of Transportation (LADOT) Transportation Assessment Guidelines ${ }^{1}$ (TAG). The City's TAG are focused on transportation metrics that promote: the reduction of greenhouse gas emissions, the development of multimodal networks and access to diverse land uses, as well as safety, sustainability and smart growth. In compliance with the California Environmental Quality Act (CEQA), the City's TAG identify vehicle miles traveled (VMT) as the primary metric for evaluating a project's transportation impacts along with whether the proposed project conflicts or is inconsistent with local plans and policies. In addition, the City's TAG require evaluation of non-CEQA mobility elements such as pedestrian, bicycle and transit access, project access and circulation, project construction, and the potential for residential street intrusion.

This transportation assessment presents (i) a CEQA assessment of whether the Project conflicts or is inconsistent with local transportation-related plans and policies, (ii) a CEQA assessment of Project-related VMT, (iii) a CEQA assessment of whether the Project increases hazards due to a geometric design feature or incompatible use, (iv), a CEQA freeway safety analysis, (v) a nonCEQA assessment of pedestrian, bicycle and transit access, (vi) a non-CEQA evaluation of Project access, safety and circulation, and (vii) a non-CEQA review of Project construction activities.

[^1]

### 1.2 Study Area

The CEQA and non-CEQA analysis criteria for this transportation assessment were identified in consultation with LADOT staff. The analysis criteria were determined based on the City's TAG, the proposed Project description and location, and the characteristics of the surrounding transportation system. As defined by the City as Lead Agency under CEQA, LADOT confirmed the appropriateness of the analysis criteria when it entered into a transportation assessment Memorandum of Understanding (MOU) for the Project on June 21, 2021. The approved MOU is contained in Appendix $\boldsymbol{A}$.

### 2.0 Project Description

### 2.1 Project Site Location

The Project Site is located at 22815-22825 Roscoe Boulevard in the Chatsworth-Porter Ranch Community Plan Area of the City. The Project Site is generally bounded by the neighboring Corporate Pointe at West Hills office park and associated surface parking to the north and west, Roscoe Boulevard to the south, and Fallbrook Avenue to the east. The Project Site location and general vicinity are shown in Figure 1-1.

### 2.2 Existing Project Site

The Project Site comprises approximately 7.014 acres and is currently utilized as a surface parking lot. Primary vehicular access to the existing Project Site is provided via one driveway along the west side of Fallbrook Avenue and one driveway along the north side of Roscoe Boulevard. Additional vehicular access to the existing Project Site is provided via one driveway along the north side of Roscoe Boulevard, opposite Lena Avenue. The Project Site is highlighted in an aerial photograph presented in Figure 2-1.

The Project Site is part of the larger Corporate Pointe at West Hills office park which has been developed over the years with a 2009 entitlement (CPC-2007-237-ZC-GPA-CU-SPR) approved for development in two phases. The most recent activity, in terms of entitlement, was a Q Clarification and T Amendment (DIR-2019-7507-ACI-CLQ) which redistributed Floor Area from one parcel identified in the 2009 entitlement to the Project Site. The Project is the second phase of the overall development.

### 2.3 Project Description

As currently proposed, the Project will construct three new two-story warehouse/manufacturing buildings providing a total of 23,500 square feet of office floor area, 19,000 square feet of manufacturing floor area, and 56,114 square feet of warehouse floor area. The southernmost building (Building 1) will provide 12,000 square feet of office floor area, 10,000 square feet of manufacturing floor area, and 27,892 square feet of warehouse floor area. The central building (Building 2) will provide 9,500 square feet of office floor area, 7,000 square feet of manufacturing floor area, and 14,669 square feet of warehouse floor area. The northernmost building (Building 3) will provide 2,000 square feet of office floor area, 2,000 square feet of manufacturing floor area, and 13,553 square feet of warehouse floor area. The Project proposes to provide 262 vehicular parking spaces within onsite surface parking areas. Construction and occupancy of the Project is proposed to be completed by the year 2023. The site plan for the Project is illustrated in Figure 2-2.

### 2.4 Vehicular Project Site Access

No new driveways are proposed as part of the Project. Primary vehicular access to the Project Site will continue to be provided via the existing driveway along the west side of Fallbrook Avenue and the existing driveway along the north side of Roscoe Boulevard. Additional


$\qquad$







vehicular access to the Project Site will continue to be provided via the existing driveway along the north side of Roscoe Boulevard, opposite Lena Avenue. The driveways serving the Project Site will continue to accommodate full vehicular access (i.e., left-turn and right-turn ingress and egress movements).

### 2.5 Pedestrian and Bicycle Project Site Access

Pedestrian access to the Project Site from the public right-of-way will continue to be provided via the existing driveways along Fallbrook Avenue and Roscoe Boulevard. Additionally, the Project proposes to provide pathways connecting Building 1 to Roscoe Boulevard and Building 3 to Fallbrook Avenue. The Project will provide access locations to ensure pedestrian safety in compliance with City standards (e.g., provide sidewalks and crosswalks, and other pedestrian traffic controls).

Bicycle access to the Project Site will continue to be provided via Fallbrook Avenue and Roscoe Boulevard. The Project will provide bicycle parking onsite for employees and visitors of the Project. Bicycle parking spaces will be installed in compliance with the Los Angeles Municipal Code (LAMC).

### 2.6 Project Parking

The Project will provide a total of 262 vehicular parking spaces within the onsite surface parking areas.

### 2.7 Project Loading

All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations will occur within loading docks internal to each of the three buildings. Additionally, each building will have its own covered trash/recycling enclosure. Service and delivery vehicles will utilize either Project driveway to access the loading docks and trash/recycling enclosures located within each of the three Project buildings.

### 2.8 Project Traffic Generation and Distribution

### 2.8.1 Project Traffic Generation

Traffic generation is expressed in vehicle trip ends, defined as one-way vehicular movements, either entering or exiting the generating land use. Traffic volumes expected to be generated by the Project during the weekday AM and PM peak hours were estimated using rates provided in the Institute of Transportation Engineers' (ITE) Trip Generation Manual. ${ }^{2}$ The following trip generation rates were used to forecast the traffic volumes expected to be generated by the Project:

[^2]- Office: ITE Land Use Code 710 (General Office Building) trip generation average rates were used to forecast the traffic volumes expected to be generated by the office component of the Project.
- Manufacturing: ITE Land Use Code 140 (Manufacturing) trip generation average rates were used to forecast the traffic volumes expected to be generated by the manufacturing component of the Project.
- Warehouse: ITE Land Use Code 150 (Warehousing) trip generation average rates were used to forecast the traffic volumes expected to be generated by the warehouse component of the Project.

The trip generation forecast for the Project was submitted for review and approval by LADOT staff. As presented in Table 2-1, the Project is expected to generate 50 net new vehicle trips ( 40 inbound trips and 9 outbound trips) during the AM peak hour. During the PM peak hour, the Project is expected to generate 51 net new vehicle trips ( 11 inbound trips and 40 outbound trips).

The daily vehicle trips expected to be generated by the Project were estimated using Version 1.3 of the City's VMT Calculator. Copies of the detailed VMT Calculator worksheets for the Project are contained in Appendix B. As indicated in the summary VMT Calculator worksheet, the Project is forecasted to generate 421 net new daily vehicle trips. The Project will incorporate transportation demand management (TDM) strategies as Project Design Features and Mitigation Measures. Further discussion of the TDM strategies is provided in Section 2.9. Further discussion of the VMT analysis is provided in Section 4.2.

### 2.8.2 Project Traffic Distribution and Assignment

Project traffic volumes both entering and exiting the Project Site have been distributed and assigned to the adjacent street system based on the following considerations:

- The Project Site's proximity to major traffic corridors (i.e., Fallbrook Avenue, Roscoe Boulevard, US-101 Freeway, SR-118 Freeway, etc.);
- Expected localized traffic flow patterns based on adjacent roadway channelization and presence of traffic signals;
- Existing intersection traffic volumes;
- Ingress/egress availability at the Project Site assuming the site access and circulation scheme described in Section 2.4;
- The location of proposed parking areas;
- Nearby population and employment; and
- Input from LADOT staff.

Table 2-1
PROJECT TRIP GENERATION [1]

| LAND USE | SIZE | AM PEAK HOUR VOLUMES [2] |  |  | PM PEAK HOUR VOLUMES [2] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| Proposed Project |  |  |  |  |  |  |  |
| Office [3] | 23,500 GSF | 23 | 4 | 27 | 4 | 23 | 27 |
| Manufacturing [4] | 19,000 GSF | 9 | 3 | 12 | 4 | 9 | 13 |
| Warehouse [5] | 56,114 GSF | 8 | $\underline{2}$ | $\underline{10}$ | $\underline{3}$ | 8 | $\underline{11}$ |
| Subtotal |  | 40 | 9 | 49 | 11 | 40 | 51 |
| NET INCREASE DRIVEWAY TRIPS |  | 40 | 9 | 49 | 11 | 40 | 51 |

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.
[2] Trips are one-way traffic movements, entering or leaving.
[3] ITE Land Use Code 710 (General Office Building) trip generation average rates.

- AM Peak Hour Trip Rate: 1.16 trips $/ 1,000$ SF of floor area; $86 \%$ inbound $/ 14 \%$ outbound - PM Peak Hour Trip Rate: 1.15 trips $/ 1,000$ SF of floor area; $16 \%$ inbound $/ 84 \%$ outbound [4] ITE Land Use Code 140 (Manufacturing) trip generation average rates.
- AM Peak Hour Trip Rate: 0.62 trips $/ 1,000$ SF of floor area; $77 \%$ inbound $/ 23 \%$ outbound - PM Peak Hour Trip Rate: 0.67 trips $/ 1,000 \mathrm{SF}$ of floor area; $31 \%$ inbound $/ 69 \%$ outbound
[5] ITE Land Use Code 150 (Warehousing) trip generation average rates.
- AM Peak Hour Trip Rate: 0.17 trips $/ 1,000$ SF of floor area; $77 \%$ inbound $/ 23 \%$ outbound
- PM Peak Hour Trip Rate: 0.19 trips/1,000 SF of floor area; $27 \%$ inbound $/ 73 \%$ outbound

The general, directional traffic distribution patterns for Project-related trips bound to the Project Site is presented in Figure 2-3. The forecast net new weekday AM and PM peak hour Project traffic volumes at the study intersections associated with the proposed Project are presented in Figure 2-4. The traffic volume assignments presented in Figure 2-4 reflect the traffic distribution characteristics shown in Figure 2-3, and the Project traffic generation forecast presented in Table 2-1.

### 2.9 Project Transportation Demand Management

The Project includes three TDM strategies as Mitigation Measures or Project Design Features. The TDM strategies are listed in Table 2.2-2 of the TAG. Further discussion of the TDM strategies is provided in the sections below. Section 4.2 .2 provides further discussion of the results on the VMT analysis. The TDM strategies have been incorporated into the VMT calculation prepared for the Project. Copies of the detailed VMT Calculator worksheets for the Project are contained in Appendix B.

### 2.9.1 Promotions and Marketing

As a Mitigation Measure, the Project will utilize promotional and marketing tools to educate and inform employees about alternative transportation options and the effects of their travel choices. Rather than two-way communication tools or tools that would encourage an individual to consider a different mode of travel at the time the trip is taken (i.e., smartphone application, daily email, etc.), this TDM strategy includes passive educational and promotional materials, such as posters, information boards, or a website with information that residents and employees can choose to read at their own leisure.

### 2.9.2 Ride-Share Program

As a Mitigation Measure, the Project will proactively aim to increase employee vehicle occupancy by providing ride-share matching services, designating preferred parking for rideshare participants, designing adequate passenger loading/unloading and waiting areas for rideshare vehicles, and providing a website or message board to connect riders and coordinate rides.

### 2.9.3 Include Bike Parking per Los Angeles Municipal Code

Table 12.21.A.16(a)(2) in the LAMC provides the required short-term and long-term bicycle parking spaces for the Project. The Project will provide the LAMC-required number of shortterm and long-term bicycle parking spaces onsite as a Project Design Feature.

The short-term bicycle parking ratios are as follows:

- Building 1
- Office ( 12,000 square feet):

1 space per 10,000 square feet ( 2 spaces $^{3}$ ).

[^3]

Date: 7/23/2021
Date: 7/23/2021
Time: 10:33 AM
$\xrightarrow[\text { engineers }]{\text { Mxara }}$
LINSCOTT
LAW \&
GREENSPAN

- Warehouse $\left(37,892\right.$ square feet $\left.{ }^{4}\right)$ : 1 space per 10,000 square feet ( 4 spaces).
- Building 2
- Office $(9,500$ square feet):
- Warehouse (21,669 square feet):
- Building 3
- Office (2,000 square feet):
- Warehouse ( 15,553 square feet):

The long-term bicycle parking ratios are as follows:

- Building 1
- Office (12,000 square feet):
- Warehouse $\left(37,892\right.$ square feet $\left.{ }^{7}\right)$ :
- Building 2
- Office (9,500 square feet):
- Warehouse (21,669 square feet):
- Building 3
- Office (2,000 square feet):
- Warehouse ( 15,553 square feet):

1 space per 5,000 square feet ( 2 spaces $^{8}$ ).
1 space per 10,000 square feet ( 2 spaces).

Based on the above, the Project is required to provide 14 short-term and 14 long-term bicycle parking spaces, for a total of 28 bicycle parking spaces. The Project Applicant will confirm the number of LAMC-required bicycle parking spaces needed for the Project.

[^4]The Project Applicant will comply with the City's existing TDM Ordinance in LAMC Section 12.26.J. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.

### 3.0 Project Context

### 3.1 Non-Vehicle Transport System

### 3.1.1 Pedestrian Framework

Public sidewalks and pedestrian facilities are provided along the Project Site frontage on Fallbrook Avenue and Roscoe Boulevard. Public sidewalks ranging in width from five feet to 10 feet are provided along the Fallbrook Avenue and Roscoe Boulevard property frontages. Potential pedestrian destinations located within an approximately one-quarter mile radius (i.e., 1,320 feet) from the Project Site are noted in Figure 3-1, per Section 3.2.4 of the TAG. Figure 3-2 shows the existing pedestrian and transit facilities within an approximately one-quarter mile radius (i.e., 1,320 feet) from the Project Site. As presented in Figure 3-2, the following pedestrian facilities currently are provided in the direct vicinity of the Project Site:

- American With Disabilities Act (ADA) access ramps, including some with the yellow truncated domes, are provided at the following intersections in the immediate vicinity of the Project Site:
- Lena Avenue / Roscoe Boulevard
- Roscoe Boulevard Driveway / Roscoe Boulevard
- Fallbrook Avenue / Eccles Street
- Fallbrook Avenue / Fallbrook Avenue Driveway
- Fallbrook Avenue / Schoenborn Street
- Fallbrook Avenue / Roscoe Boulevard
- Fallbrook Avenue / Baltar Street
- Traditional parallel bar or continental style pedestrian crosswalks with varying widths of between approximately 14 feet and 16 feet are provided at the following intersections in the immediate vicinity of the Project Site:
- Lena Avenue / Roscoe Boulevard
- Fallbrook Avenue / Roscoe Boulevard
- Pedestrian crossing signals and push buttons are presently included as part of the traffic signal controls at the nearby signalized intersections that are noted in Figure 3-2.

The Project has been designed to encourage pedestrian activity and walking as a transportation mode. Pedestrian access to the Project Site from the public right-of-way will be provided via pathways within landscaped buffer areas connecting Building 1 to Roscoe Boulevard and Building 3 to Fallbrook Avenue. The Project will provide access locations to ensure pedestrian


safety in compliance with City standards (e.g., provide sidewalks and crosswalks, and other pedestrian traffic controls).

The City's Mobility Plan $2035^{9}$ identifies a collection of streets, known as the Neighborhood Enhanced Network (NEN), that provide comfortable and safe routes for non-motorized modes of travel such as walking. Within the Project study area, Fallbrook Avenue north of Roscoe Boulevard has been identified within the NEN. Roadways within the NEN within one-quarter mile of the Project Site are presented in Figure 3-3.

### 3.1.2 Bicycle Network

Bicycle access to the Project Site is facilitated by the City's bicycle roadway network. Existing bicycle facilities (e.g., Class I Bicycle Path, Class II Bicycle Lanes, Class III Bicycle Routes, Bicycle Friendly Streets, etc.) identified in the City's 2010 Bicycle Plan are located within the immediate vicinity of the Project Site. ${ }^{10}$ The 2010 Bicycle Plan goals and policies have been folded into Mobility Plan 2035 to reflect a commitment to a balanced, multi-modal viewpoint.

Within the Project study area, Class II Bicycle Lanes are currently provided in each direction on Fallbrook Avenue and Roscoe Boulevard within the Project study area. The existing bicycle facilities within one-quarter mile of the Project Site are shown in Figure 3-4.

### 3.2 Transit Framework

The Project Site is currently served by local transit lines via stops located within convenient walking distance along Fallbrook Avenue and Roscoe Boulevard. Public transit service in the Project Site area is currently provided by the Los Angeles County Metropolitan Transit Authority (Metro). A summary of the existing transit service, including the transit route, destinations and peak hour headways is presented in Table 3-1. The existing public transit routes in the Project Site vicinity are illustrated in Figure 3-5.

### 3.3 Vehicle Network

### 3.3.1 Regional Highway Access

Regional vehicular access to the Project Site is primarily provided by the US-101 (Ventura) Freeway and SR-118 (Ronald Reagan) Freeway. Brief descriptions of the US-101 Freeway and SR-118 Freeway are provided in the following paragraphs.

US-101 (Ventura) Freeway is a north-south freeway that extends across Northern and Southern California. In the Project vicinity, four mixed-flow freeway lanes are provided in each direction on the US-101 Freeway. Northbound and southbound on-ramps are provided at Ventura Boulevard, which are located approximately 4.2 miles south of the Project Site. An additional

[^5]



Table 3-1
EXISTING PUBLIC TRANSIT ROUTES [1]
[1] Source: Los Angeles County Metropolitan Transportation Authority (Metro) website, 2021.






L

northbound on-ramp is provided at Burbank Boulevard, which is located approximately 4.2 miles south of the Project Site. Northbound off-ramps are provided at Shoup Avenue and Woodlake Avenue, which are located approximately 4.1 miles south of the Project Site. A southbound offramp is provided at Fallbrook Avenue, which is located approximately 3.9 miles south of the Project Site.

SR-118 (Ronald Regan) Freeway is an east-west oriented freeway that extends from the Pacoima area of the City to Moorpark. In the Project vicinity, five freeway lanes (four mixed-flow freeway lanes and one high-occupancy vehicle lane) are provided in each direction on the SR118 Freeway. Eastbound and westbound on- and off-ramps are provided at Topanga Canyon Boulevard, which are located approximately 5.2 miles north of the Project Site.

### 3.3.2 Local Roadway System

The following intersections were selected in consultation with LADOT staff for analysis of potential traffic operations deficiencies due to the Project:

1. Lena Avenue / Roscoe Boulevard
2. Roscoe Boulevard Driveway / Roscoe Boulevard
3. Fallbrook Avenue / Fallbrook Avenue Driveway
4. Fallbrook Avenue / Schoenborn Street
5. Fallbrook Avenue / Roscoe Boulevard

Two of the five study intersections are presently controlled by traffic signals. The existing Roscoe Boulevard and Fallbrook Avenue driveways are two-way stop-controlled intersections (i.e., a stop sign faces the outbound driveway approach). The Fallbrook Avenue / Schoenborn Street intersection is also a two-way stop-controlled intersection (i.e., stop sign faces the westbound Schoenborn Street approach). The existing lane configurations at the five study intersections are displayed in Figure 3-6.

A 2016 Letter of Clarification (DIR-2016-317-ACI-CLQ) provides a list of transportation improvement measures to be implemented as part of Phase 1. In the immediate vicinity of the Project Site, a raised landscaped median (or alternative improvements approved by LADOT, the Bureau of Engineering, and Council District No. 12) will be installed along Fallbrook Avenue north of Roscoe Boulevard to restrict vehicles from making southbound left-turns from Fallbrook Avenue onto either Schoenborn Street or Eccles Street. The 2016 Letter of Clarification provided improvements to be installed at the Fallbrook Avenue / Roscoe Boulevard intersection. The improvements included restriping Fallbrook Avenue approaches to provide dual left-turn lanes, two through lanes, and one right-turn lane in the northbound direction, and dual left-turn lanes, one through lane, and one right-turn lane in the southbound direction. Additionally, the 2016 Letter of Clarification stated that signal modification would be required to provide protected-only left-turn phasing in the northbound and southbound directions. However, bike

lanes have since been installed on Fallbrook Avenue, and the improvements (i.e., restriping the northbound and southbound Fallbrook Avenue approaches) stated in the 2016 Letter of Clarification are no longer feasible.

In August 2021, LADOT issued modifications ${ }^{11}$ to the improvements listed in the 2016 Letter of Clarification, which consist of the installation of protected-only left-turn phasing in the southbound direction of the Fallbrook Avenue / Roscoe Boulevard intersection. No left-turn phasing in the northbound direction was found to be warranted by the LADOT West Valley District Office. Further, no changes to the existing striping at intersection are required. The future lane configurations at the study intersections (i.e., reflecting the future prohibition of leftturns from southbound Fallbrook Avenue at the Schoenborn Street intersection) are displayed in Figure 3-7.

### 3.3.3 Roadway Descriptions

Immediate access to the Project Site is provided via Fallbrook Avenue and Roscoe Boulevard. A brief description ${ }^{12}$ of the roadways in the Project vicinity is provided in the following paragraphs.

Lena Avenue is a north-south oriented roadway located west of the Project Site. Within the Project study area, Lena Avenue is designated as a Collector south of Roscoe Boulevard by the City. North of Roscoe Boulevard, Lena Avenue is an undesignated private roadway which provides access to the existing Corporate Pointe at West Hills business park. One through travel lane is provided in each direction on Lena Avenue within the Project study area. A separate exclusive right-turn lane is provided in the southbound direction on Lena Avenue at the Roscoe Boulevard intersection. There is no speed limit posted on Lena Avenue within the Project study area, thus a prima facie speed limit of 25 miles per hour is assumed, consistent with California Vehicle Code Section 22352(b)(1).

Fallbrook Avenue is a north-south oriented roadway that that borders the Project Site to the east. Within the Project study area, Fallbrook Avenue is designated as an Avenue II north of Roscoe Boulevard and as a Boulevard II south of Roscoe Boulevard by the City. North of Roscoe Boulevard, one through travel lane is provided in the northbound direction and two through travel lanes are provided in the southbound direction on Fallbrook Avenue within the Project Study area. South of Roscoe Boulevard, two through travel lanes provided in each direction on Fallbrook Avenue within the Project study area. Separate exclusive left-turn lanes are provided in each direction on Fallbrook Avenue at major intersections. Separate exclusive right-turn lanes are provided in each direction on Fallbrook Avenue at the Roscoe Boulevard intersection. Fallbrook Avenue has a posted speed limit of 35 miles per hour north of Roscoe Boulevard and a posted speed limit of 45 miles per hour south of Roscoe Boulevard within the Project study area.

[^6]${ }^{12}$ For reference, the street descriptions provided include designations under Mobility Plan 2035.


Schoenborn Street is an east-west oriented roadway located east of the Project Site. Within the Project study area, Schoenborn Street is designated as a Local Street - Standard by the City. One through travel lane is provided in each direction on Schoenborn Street within the Project study area. There is no speed limit posted on Schoenborn Street within the Project study area, thus a prima facie speed limit of 25 miles per hour is assumed, consistent with California Vehicle Code Section 22352(b)(1).

Roscoe Boulevard is an east-west oriented roadway that that borders the Project Site to the south. Within the Project study area, Roscoe Boulevard is designated as a Boulevard II by the City. Two through travel lanes are provided in each direction on Roscoe Boulevard within the Project Study area. Separate exclusive left-turn lanes are provided in each direction on Roscoe Boulevard at major intersections. Roscoe Boulevard has a posted speed limit of 40 miles per hour within the Project study area.

### 3.3.4 City of Los Angeles High Injury Network

Vision Zero ${ }^{13}$ is a citywide initiative which prioritizes the safety of pedestrians and bicyclists on public streets, with the understanding that roads which are safe for vulnerable users will be safer for all users, in an effort to eliminate traffic fatalities. Key elements of the policy, such as reducing traffic speeds, are founded on the principles of engineering, education, enforcement, evaluation, and equity. Originating in Sweden, the policy has been adopted in numerous other North American cities, including California cities such as San Francisco and San Diego.

Mayor Eric Garcetti issued Executive Directive No. 10 in August 2015, formally launching the Vision Zero initiative in Los Angeles. Vision Zero is also a stated safety objective in the Mobility Plan 2035, which sets the goal of zero traffic deaths by 2035. Jointly directed by LADOT and the Police Department, Vision Zero takes a multi-disciplinary approach to identifying safety risk factors and implementing solutions on a citywide scale. Using a methodology originally developed by the San Francisco Public Health Department, the Vision Zero Task Force has identified streets where investments in safety will have the most impact in reducing severe injuries and traffic fatalities in the City. These roads are collectively known as the High Injury Network (HIN). The HIN will be reviewed by the LADOT's Vision Zero group for potential engineering re-design as well as educational and enforcement campaigns.

As shown in Figure 3-8, roadways in the immediate vicinity of the Project which have been identified on the HIN are noted below:

- Fallbrook Avenue, south of Roscoe Boulevard

If a proposed project results in significant transportation impacts, LADOT's Vision Zero group will review those specific locations and immediate vicinity for potential safety enhancements that are consistent with the City's Vision Zero initiative.

[^7]

### 3.4 Traffic Counts

In April 2020, LADOT issued guidance ${ }^{14}$ to transportation consultants related to traffic count data to be used in transportation assessments prepared in accordance with the City's TAG. Because traffic count data could not be collected at the study intersections due to the COVID-19 pandemic, LADOT has directed transportation consultants to use historical data, with appropriate modifications to represent current (pre-pandemic) traffic volume conditions. For this transportation assessment, the following techniques were used to estimate current year (2021) peak hour turning movement traffic volumes at the study intersections:

- Lena Avenue / Roscoe Boulevard: Historical traffic count data at this intersection was unavailable. Therefore, new weekday AM and PM peak hour traffic volume data was collected at this intersection on June 29, 2021.
- Roscoe Boulevard Driveway / Roscoe Boulevard: The traffic count data and subsequent adjustments approaching and departing the Lena Avenue / Roscoe Boulevard intersection were used to derive the eastbound and westbound through volumes during the weekday peak hours. Further, peak hour turning movements at the intersection were derived based on application of trip generation rates to the size of the buildings within the Corporate Pointe at West Hills office park adjacent to the Project Site. Trips associated with the existing buildings adjacent to the Project Site within the Corporate Pointe at West Hills office park were assigned to the existing driveways serving the office park, including the intersection. Table 3-2 presents the trip generation forecast for the buildings adjacent to the Project Site within the Corporate Pointe at West Hills office park. The general, directional traffic distribution patterns for the buildings adjacent to the Project Site within the Corporate Pointe at West Hills office park are presented in Figure 3-9.
- Fallbrook Avenue / Fallbrook Avenue Driveway: Peak hour traffic count collected at the Fallbrook Avenue / Eccles Street intersection to the north in 2017 were increased by a $1.0 \%$ annual traffic growth rate through the year 2021 to estimate current year traffic volumes at the Fallbrook Avenue driveway intersection. The traffic count data and subsequent adjustments approaching and departing the Fallbrook Avenue / Eccles Street intersection were used to derive the northbound and southbound through volumes at the Fallbrook Avenue driveway intersection. Turning movements at the intersection were derived based on application of trip generation rates to the size of the buildings within the Corporate Pointe at West Hills office park adjacent to the Project Site. Trips associated with the existing buildings adjacent to the Project Site within the Corporate Pointe at West Hills office park were assigned to the existing driveways serving the office park, including the intersection. Table 3-2 presents the trip generation forecast for the buildings adjacent to the Project Site within the Corporate Pointe at West Hills office park. The general, directional traffic distribution patterns for the buildings adjacent to the Project Site within the Corporate Pointe at West Hills office park are presented in Figure 3-9.

[^8]Table 3-2
ADJACENT BUILDINGS TRIP GENERATION [1] 8403 FALLBROOK AVENUE AND 22801-22951 ROSCOE BOULEVARD

| LAND USE | SIZE | AM PEAK HOUR VOLUMES [2] |  |  | PM PEAK HOUR VOLUMES [2] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| Existing Uses |  |  |  |  |  |  |  |
| Office [3] | 179,985 GSF | 180 | 29 | 209 | 33 | 174 | 207 |
| Subtotal |  | 180 | 29 | 209 | 33 | 174 | 207 |
| NET INCREASE DRIVEWAY TRIPS |  | 180 | 29 | 209 | 33 | 174 | 207 |

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.
[2] Trips are one-way traffic movements, entering or leaving.
[3] ITE Land Use Code 710 (General Office Building) trip generation average rates.

- AM Peak Hour Trip Rate: 1.16 trips $/ 1,000$ SF of floor area; $86 \%$ inbound $/ 14 \%$ outbound
- PM Peak Hour Trip Rate: 1.15 trips/ 1,000 SF of floor area; $16 \%$ inbound $/ 84 \%$ outbound

- Fallbrook Avenue / Schoenborn Street: Peak hour traffic count data collected at this intersection in 2006 were utilized for turning movements to and from Fallbrook Avenue. The traffic count data and subsequent adjustments approaching and departing the Fallbrook Avenue / Fallbrook Avenue Driveway intersection were used to derive the northbound and southbound through volumes on Fallbrook Avenue at the Schoenborn Street intersection.
- Fallbrook Avenue / Roscoe Boulevard: Historical traffic count data at this intersection was unavailable. Therefore, new weekday AM and PM peak hour traffic volume data was collected at this intersection on June 29, 2021.

The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are shown in Figure 3-10. Summary data worksheets of the manual traffic counts at the study intersections and the Fallbrook Avenue / Eccles Street intersection are contained in Appendix C.

### 3.5 Cumulative Development Projects

### 3.5.1 Related Projects

A forecast of on-street traffic conditions prior to occupancy of the Project was prepared by incorporating the potential trips associated with other known development projects (related projects) in the area. With this information, the potential impact of the Project can be evaluated within the context of the cumulative impact of all ongoing development. The related projects research was based on information on file at LADOT. Per the TAG, related projects within a radius of one-quarter mile from the farthest outlying study intersection should be included. Therefore, related projects within a 0.39 -mile radius (one-quarter mile past the farthest outlying study intersection, Lena Avenue / Roscoe Boulevard) of the Project Site were included. The list of related projects in the Project Site area is presented in Table 3-3. The location of the related projects is shown in Figure 3-11.

Traffic volumes expected to be generated by the related project were calculated using rates provided in the ITE Trip Generation Manual. The related projects' respective traffic generation for the weekday AM and PM peak hours, as well as on a daily basis for a typical weekday, is summarized in Table 3-3. The distribution of the related projects traffic volumes to the study intersections during the weekday AM and PM peak hours are displayed in Figure 3-12.

As noted in Section 3.4, the traffic count data used to derive the peak hour traffic volumes was collected at the Sedan Avenue / Roscoe Boulevard and the Fallbrook Avenue / Eccles Street intersections in 2015 and 2017, respectively. The related project listed in Table 3-3 has been completed. However, as noted in Section 3.4, peak hour traffic volume data was collected at the Sedan Avenue / Roscoe Boulevard and the Fallbrook Avenue / Eccles Street intersections in 2015 and 2017, respectively, and this project had yet to be completed. The completed project has been included in the cumulative baseline to provide a complete forecast of on-street traffic conditions prior to occupancy of the Project.

RELATED PROJECTS LIST AND TRIP GENERATION [1]

| $\begin{gathered} \text { MAP } \\ \text { No. } \\ \hline \end{gathered}$ | PROJECT NAME/ PROJECT NUMBER | $\begin{gathered} \text { PROJECT } \\ \text { STATUS } \\ \hline \end{gathered}$ | ADDRESS/ <br> LOCATION | LAND USE DATA |  | DAILY <br> TRIP ENDS [2] <br> VOLUMES | AM PEAK HOUR volumes [2] |  |  | PM PEAK HOURVOLUMES [2] |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | LAND-USE | SIZE |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| 1 | 90 Single-Family Detached Housing Units | Built | 8500 Fallbrook Avenue | Single-Family Homes | 90 DU | 858 | 17 | 51 | 68 | 57 | 33 | 90 |
| TOTAL |  |  |  |  |  | 858 | 17 | 51 | 68 | 57 | 33 | 90 |

[^9]


ル－モ コ．n6！！」
Location of Related Projects

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



Date: 81/6/2021 Time: : :21 PM


| - |
| :---: |

### 3.5.2 Ambient Traffic Growth

In order to account for unknown related projects not included in this analysis, the existing traffic volumes were increased at an annual rate of $1.0 \%$ per year to and including the year 2023 (i.e., the anticipated year of Project buildout). The ambient growth factor was based on general traffic growth factors provided in the 2010 Congestion Management Program for Los Angeles County ("CMP manual") and determined in consultation with LADOT staff. It is noted that based on review of the general traffic growth factors provided in the CMP manual for the Project Site area (i.e., Regional Statistical Area [RSA] 12, West San Fernando Valley, which includes the Project Site), it is anticipated that the existing traffic volumes are expected to increase at an annual rate of approximately $0.40 \%$ per year between the years 2015 and 2023. Thus, application of an annual growth factor of $1.0 \%$ annual growth results in a conservative, worst-case forecast of future traffic volumes in the area as it substantially exceeds the annual traffic growth rate published in the CMP manual. Furthermore, the CMP manual's traffic growth rate is intended to anticipate future traffic generated by development projects in the Project vicinity. Thus, the inclusion in this traffic analysis of a forecast of traffic generated by known related projects plus the use of an ambient growth traffic factor based on CMP traffic model data results in an even more conservative estimate of future traffic volumes at the study intersections.

### 4.0 CEQA Analysis of Transportation Impacts

### 4.1 Conflicting with Plans, Programs, Ordinances, or Policies (Threshold T-1)

The City aims to achieve an accessible and sustainable transportation system that meets the needs of all users. The City's adopted transportation-related plans and policies affirm that streets should be safe and convenient for all users of the transportation system, including pedestrians, bicyclists, motorists, public transit riders, disabled persons, senior citizens, children, and movers of commercial goods. Therefore, the transportation requirements for proposed developments should be generally consistent with the City's transportation-related plans and policies.

As stated in Section 2.1.1 of the TAG, proposed projects shall be analyzed to identify potential conflicts with adopted City plans and policies and, if there is a conflict, improvements that prioritize access for and improve the comfort of people walking, bicycling, and riding transit in order to provide safe and convenient streets for all users should be identified. Projects designed to encourage sustainable travel help to reduce vehicle miles traveled. This section provides a review of the screening criteria and a summary of the consistency of the Project with the City's adopted plans and policies.

### 4.1.1 Screening Criteria

Per Section 2.1.2 of the TAG, if the project requires a discretionary action, and the answer is yes to any of the following questions, further analysis is required to assess whether the Project would conflict with adopted City plans, programs, ordinances, or policies that establish the transportation planning framework for all travel modes:

- Does the project require a discretionary action that requires the decision maker to find that the decision substantially conforms to the purpose, intent, and provisions of the General Plan?
- Yes, the Project requires a discretionary action.
- Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?
- No, the Project is not known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety.
- Is the project proposing to, or required to make any voluntary or required modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?
- Yes, a five-foot dedication is required for Roscoe Boulevard along the Project Site.

As the answer is "yes" to two of the screening criteria questions, further analysis is required to assess whether the Project would conflict with adopted City plans, programs, ordinances, or policies.

### 4.1.2 Impact Criteria and Methodology

The impact criteria set forth in Appendix G to the State CEQA Guidelines, as well as Section 2.1.3 of the City's TAG, regarding conflicts with plans, programs, ordinances, or policies (referred to as Threshold T-1 in the TAG) are as follows:

- Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?

The threshold test is to assess whether a project would conflict with an adopted program, policy, plan, or ordinance that is adopted to protect the environment. In general, transportation policies or standards adopted to protect the environment are those that support multimodal transportation options and a reduction in VMT. Conversely, a project would not always have a significant impact merely based on whether or not it would implement a particular transportation-related program, plan, policy, or ordinance. Many of these programs must be implemented by the City itself over time, and over a broad area, and it is the intention of this threshold test to ensure that proposed development projects and plans do not preclude the City from implementing adopted programs, plans and policies.

The methodology for determining a project's transportation impact associated with conflicts with plans, programs, ordinances, or policies is describe in the TAG as follows:

- A project that generally conforms with and does not obstruct the City's development policies and standards will generally be considered to be consistent. The Project Applicant should review the documents and ordinances identified in the TAG (refer to Table 2.1-1 thereof) for City plans, policies, programs, ordinances and standards relevant to determining project consistency. TAG Attachment D: Plan Consistency Worksheet provides questions that must be answered in order to help guide whether the project conflicts with City circulation system policies. A "yes" or "no" answer to these questions does not determine a conflict. Rather, as indicated in TAG Attachment D, the Project Applicant must provide substantiating information to help determine whether the proposed project precludes the City's implementation of any adopted policy and/or program that was adopted to protect the environment. A mere conflict with adopted transportation related policies, or standards that require administrative relief or legislative change does not in itself constitute an impact.
- If vacation of a public right-of-way, or relief from a required street dedication is sought as part of a proposed project, an assessment should be made as to whether the right-ofway in question is necessary to serve a long-term mobility need, as defined in Mobility Plan 2035, transportation specific plan, or other planned improvement in the future.

Per Section 2.1.4 of the TAG, the analysis of cumulative impacts may be quantitative or qualitative. Each of the plans, ordinances, and policies reviewed to assess potential conflicts with proposed projects should be reviewed to assess cumulative impacts that may result from the proposed project in combination with other development projects in the study area. In addition,
the cumulative analysis should also consider planned transportation system improvements within the study area as identified in consultation with LADOT.

Related projects to be considered in the cumulative analysis are known development projects located within a one-half mile radius of the Project Site. Please refer to the list of related projects identified in Table 3-3 and Figure 3-11 for the location of the related projects in relation to the Project Site.

### 4.1.3 Review of Project Consistency

This section provides a summary of the consistency review that compares the characteristics of the Project and site design features (i.e., including the site access and circulation scheme) with the City's relevant plans and policies. Appendix D provides the Plans, Policies, and Programs Worksheet from the TAG, and provide additional detail regarding the plans, programs, ordinances, and policies review.

As confirmed in Appendix $D$, the Project would not conflict with the relevant City plans, policies and programs and does not include any features that would preclude the City from completing and complying with these guiding documents and policy objectives. The Project will not conflict with any plans or policies that govern the public right-of-way, such as LADOT's Manual of Policy and Procedures (MPP) Section 321, Driveway Design, and the Citywide Design Guidelines - Guideline 2. The Project has been found to be consistent with the greenhouse gas (GHG) reduction targets forecasted in the Southern California Association of Governments (SCAG) Region Transportation Plan/Sustainable Communities Strategy (RTP/SCS). Additionally, the Project has been found to be consistent with the transportation-related elements of the Plan for a Healthy Los Angeles (Healthy LA), Vision Zero, the Mobility Hubs Reader's Guide, the City's Walkability Checklist, and the Chatsworth-Porter Ranch Community Plan Community Plan.

Therefore, the Project would not conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities, and the impact would therefore be "less than significant". Furthermore, the Project Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance in LAMC Section 12.26.J) and other requirements pursuant to the LAMC. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.

### 4.1.4 Review of Cumulative Consistency

Per Section 2.1.4 of the TAG, the analysis of cumulative consistency requires consultation and confirmation with LADOT and the City's Department of City Planning (LADCP).

As with the Project, the completed related project at 8500 Fallbrook Avenue includes adequate bicycle facilities and includes new single-family homes in proximity to the nearby multimodal transportation facilities. The related project, as with the Project, would not conflict with adjacent
street designations and classifications. No street widenings would be necessary for these projects. Accordingly, there would be no significant cumulative impacts to which the Project, as well as other nearby related projects contribute to regarding transportation policies or standards adopted to protect the environment and support multimodal transportation options and a reduction in VMT.

Based on the discussion and conclusion in the preceding Section 4.1.3, the guiding language contained in the City's TAG, and review of related projects in the Project vicinity, this documentation is sufficient to demonstrate that there is also no cumulative inconsistency with the City's plans, policies, ordinances and programs, and therefore, the cumulative impacts of the Project would be less than significant. In addition, since the Project does not include any features that would preclude the City from completing and complying with these guiding documents and policy objectives, there is no cumulative inconsistency that can be determined.

### 4.2 VMT Analysis (Threshold T-2.1)

The State of California Governor's Office of Planning and Research (OPR) issued proposed updates to the CEQA Guidelines in November 2017 and an accompanying technical advisory guidance in April 2018 (OPR Technical Advisory) that amends the Appendix G question for transportation impacts to delete reference to vehicle delay and level of service and instead refer to Section 15064.3, subdivision (b)(1) of the CEQA Guidelines asking if the project will result in a substantial increase in vehicle miles traveled (VMT). Section 15064.3, subdivision (b)(1) states the following:

- Land Use Projects. Vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact. Generally, projects within one-half mile of either an existing major transit stop or a stop along an existing high-quality transit corridor should be presumed to cause a less than significant transportation impact. Projects that decrease vehicle miles traveled in the project area compared to existing conditions should be considered to have a less than significant transportation impact.

Comprehensive updates to the State CEQA Guidelines were certified and adopted by the California Natural Resources Agency in December 2018. Accordingly, the City adopted significance criteria for transportation impacts based on VMT for land use projects and plans in accordance with the amended Appendix G question:

- Threshold T-2.1: For a land use project, would the project conflict or be inconsistent with CEQA guidelines section 15064.3, subdivision (b)(1)?

For land use projects, the intent of this threshold is to assess whether a land use project causes substantial vehicle miles traveled. The City has developed the following screening and impact criteria to address this question. The criteria below are based on the OPR technical advisory but reflects local considerations.

If the project requires discretionary action, and the answer is no to either T-2.1-1 or T-2.1-2, further analysis will not be required for CEQA Threshold T-2.1, and a "no impact" determination can be made for that threshold:

- T-2.1-1: Would the land use project generate a net increase of 250 or more daily vehicle trips?

For purposes of screening the daily vehicle trips, a proposed project's daily vehicle trips should be estimated using the City's VMT Calculator tool or the most recent edition of the ITE Trip Generation Manual. TDM strategies should not be considered for the purposes of screening. If existing land uses are present on the project site or there were previously terminated land uses that meet the criteria for trip credits described in the trip generation methodology discussion (refer to Subsection 3.3.4.1 of the TAG), the daily vehicle trips generated by the existing or qualified terminated land uses can be estimated using the VMT Calculator tool and subtracted from the proposed project's daily vehicle trips to determine the net increase in daily vehicle trips.

- T-2.1-2: Would the project generate a net increase in daily VMT?

For the purpose of screening the VMT, a project's daily VMT should be estimated using the City's VMT Calculator tool or the City's Travel Demand Forecasting (TDF) model. TDM strategies should not be considered for the purpose of screening. If existing land uses are present on the project site or there were previously terminated land uses that meet the criteria for trip credits description in the trip generation methodology discussion (refer to Subsection 3.3.4.1 of the TAG), the daily VMT generated by the existing or qualified terminated land uses can be estimated using the City VMT Calculator tool and subtracted from the project's daily VMT to determine the net increase in daily VMT.

In addition to the above screening criteria, the portion of, or the entirety of a project that contains small-scale or local serving retail uses ${ }^{15}$ are assumed to have less than significant VMT impacts. If the answer to the following question is no, then that portion of the project meets the screening criteria, and a no impact determination can be made for the portion of the project that contains retail uses. However, if the retail project is part of a larger mixed-use project, then the remaining portion of the project may be subject to further analysis in accordance with the above screening criteria. Projects that include retail uses in excess of the screening criteria would need to evaluate the entirety of the project's VMT, as specified in Subsection 2.2.4 of the TAG.

- If the project includes retail uses, does the portion of the project that contain retail uses exceed a net 50,000 square feet?


### 4.2.1 Impact Criteria and Methodology

For development projects, the proposed project will have a potential VMT impact if the project meets the following:
${ }^{15}$ As noted in the TAG, the definition of retail for this purpose includes restaurant.

- For residential projects, the project would generate household VMT per capita exceeding $15 \%$ below the existing average household VMT per capita for the Area Planning Commission (APC) area in which the project is located.
- For office projects, the project would generate work VMT per employee exceeding $15 \%$ below the existing average work VMT per employee for the APC in which the project is located.
- For regional serving retail projects, the project would result in a net increase in VMT.
- For other land use types, measure VMT impacts for the work trip element using the criteria for office projects above.

Different VMT significance thresholds have been established for each APC boundary area as the characteristics of each are distinct in terms of land use, density, transit availability, employment, etc. The City's significance thresholds (i.e., provided on a daily household VMT per capita basis and a daily work VMT per employee basis) for each of the seven APC boundary areas are presented in Table 4-1. As the Project Site is located within the North Valley APC, the VMT impact criteria (i.e., $15 \%$ below the APC average) applicable to the Project is 15.0 Daily Work VMT per Employee.

The impact methodology set forth in the TAG for a mixed-use project such as the Project is as follows:

- Mixed-Use Projects. The project VMT impact should be considered significant if any one (or all) of the project land uses exceed the impact criteria for that particular land use, taking credit for internal capture. In such cases, mitigation options that reduce the VMT generated by any or all of the land uses could be considered.


### 4.2.2 Summary of Project VMT Analysis

The daily vehicle trips and VMT expected to be generated by the Project were forecast using Version 1.3 of the City's VMT Calculator tool. Copies of the detailed City of Los Angeles VMT Calculator worksheets for the proposed project are contained in Appendix B. As indicated in the summary VMT Calculator worksheet, the Project is forecast to generate the following:

- As described in Section 2.9 herein, the Project will include bicycle parking per LAMC as a Project Design Feature.
- The Project, with the inclusion of the bicycle parking per LAMC as a Project Design Feature, is estimated to generate a total of 454 daily vehicle trips.
- The estimated Daily Work VMT per Employee for the Project with the inclusion of the Project Design Feature is 16.8 Daily Work VMT per Employee, which is greater than the North Valley APC significance threshold of 15.0 Daily Work VMT per Employee.

Table 4-1
CITY OF LOS ANGELES VMT IMPACT CRITERIA [1]

| AREA PLANNING COMMISSION | 15\% BELOW APC CRITERIA [2] |  |
| :---: | :---: | :---: |
|  | $\begin{gathered} \hline \text { DAILY HOUSEHOLD VMT } \\ \text { PER CAPITA } \\ \hline \end{gathered}$ | DAILY WORK VMT PER EMPLOYEE |
| Central | 6.0 | 7.6 |
| East Los Angeles | 7.2 | 12.7 |
| Harbor | 9.2 | 12.3 |
| North Valley | 9.2 | 15.0 |
| South Los Angeles | 6.0 | 11.6 |
| South Valley | 9.4 | 11.6 |
| West Los Angeles | 7.4 | 11.1 |

[1] Source: LADOT Transportation Assessment Guidelines, July 2020.
[2] The development project will have a potential impact if the project meets the following:

- For residential projects, the project would generate household VMT per capita exceeding 15\% below the existing average household VMT per capita for the APC area in which the project (refer to above [source: Table 2.2-1 of the TAG]).
- For office projects, the project would generate work VMT per employee exceeding $15 \%$ below the existing average work VMT per employee for the APC in which the project is located (refer to above [source: Table 2.2-1 of the TAG]).
- For retail projects, the project would result in a net increase in VMT.
- For other land use types, measure VMT impacts for the work trip element using the criteria for office project above (source: Table 2.2-1 of the TAG).

Therefore, the Project would result in a significant Daily Work VMT per Employee impact prior to consideration of potential mitigation measures.

- Mitigation Measures have been identified to reduce the Daily Work VMT per Employee impact to a less than significant level. As described in Section 2.9, the Project will utilize: 1) promotions and marketing tools to educate and inform employees about alternative transportation options and the effects of their travel choices; and 2) implement a ride-share program as Mitigation Measures.
- The Project, with the inclusion of the Project Design Feature and Mitigation Measures described in Section 2.9 herein, is estimated to generate a total of 421 daily vehicle trips.
- The estimated Daily Work VMT per Employee for the Project with the inclusion of the Project Design Feature and Mitigation Measures is 14.5 Daily Work VMT per Employee, which is less than the North Valley APC significance threshold of 15.0 Daily Work VMT per Employee.

Based on the above, the Project, with inclusion of the TDM strategies as Project Design Features and Mitigation Measures, would not result in a significant Daily Work VMT per Employee impact. Therefore, no further mitigation is necessary as it relates to VMT.

### 4.2.3 Summary of Cumulative VMT Analysis

As stated in the City's TAG document (refer to Section 2.2.4 thereof), analyses should consider both short-term and long-term project effects on VMT. Short-term effects are evaluated in the detailed Project-level VMT analysis summarized above. Long-term, or cumulative, effects are determined through a consistency check with the Southern California Association of Government's (SCAG's) Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS). The RTP/SCS is the regional plan that demonstrates compliance with air quality conformity requirements and greenhouse gas (GHG) reduction targets. As such, projects that are consistent with this plan in terms of development, location, density, and intensity, are part of the regional solution for meeting air pollution and GHG goals. Projects that are deemed to be consistent would have a less than significant cumulative impact on VMT. Development in a location where the RTP/SCS does not specify any development may indicate a significant impact on transportation. However, as noted in the City's TAG document, for projects that do not demonstrate a project impact by applying an efficiency-based impact threshold (i.e., VMT per capita or VMT per employee) in the analysis, a less than significant project impact conclusion is sufficient in demonstrating there is no cumulative VMT impact. Projects that fall under the City's efficiency-based impact thresholds are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.

Based on the above Project-related VMT analysis and the conclusions reported in Section 4.2.2 (i.e., which conclude that the Project falls under the City's efficiency-based impact thresholds and thus are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS), the Project's cumulative VMT impact would be less than significant.

### 4.3 Geometric Design (Threshold T-3)

As stated in the City's TAG (refer to Section 2.4.1 thereof), impacts regarding the potential increase of hazards due to a geometric design feature generally relate to the design of access points to and from the project site, and may include safety, operational, or capacity impacts. Impacts can be related to vehicle/vehicle, vehicle/bicycle, or vehicle/pedestrian conflicts as well as to operational delays caused by vehicles slowing and/or queuing to access a project site. These conflicts may be created by the driveway configuration or through the placement of project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to busy or congested intersections. Evaluation of access impacts require details relative to project land use, size, design, location of access points, etc. These impacts are typically evaluated for permanent conditions after project completion but can also be evaluated for temporary conditions during project construction. Project access can be analyzed in qualitative and/or quantitative terms, and in conjunction with the review of internal site circulation and access to parking areas. All proposed site access points should be evaluated.

### 4.3.1 Screening Criteria

If the project requires a discretionary action, and the answer is "yes" to either of the following questions, further analysis will be required to assess whether the project would result in impacts due to geometric design hazards or incompatible uses:

- Is the project proposing new driveways, or introducing new vehicle access to the property from the public right-of-way?
- No, the Project proposes to utilize the existing driveways at northeasterly portion of the Project Site along the west side of Fallbrook Avenue and the southwesterly portion of the Project Site along the south side of Roscoe Boulevard.
- Is the project proposing to, or required to make any voluntary or required modifications to the public right-of-way (i.e., street dedications, reconfigurations of curb line, etc.)?

As stated in the City's TAG document (refer to Section 2.4.2 thereof), for the purpose of the screening for projects that are making physical changes to the public right-of-way, determine the street designation and improvement standard for any project frontage along streets classified as an Avenue or Boulevard (as designated in the City's General Plan) using the Mobility Plan 2035, or NavigateLA. If any street fronting the project site is an Avenue or Boulevard and it is determined that additional dedication, or physical modifications to the public right-of-way are proposed or required, the answer to this question is yes. For projects not subject to dedication and improvement requirements under the Los Angeles Municipal Code, though the project does propose dedications or physical modifications to the public right-of-way, the answer to this question is yes. Based on a review of the Project, the following answer is provided:

- Yes, a five-foot dedication is required for Roscoe Boulevard along the Project Site.

As the answer is "yes" to one of the two screening criteria questions, further analysis is required to assess whether the Project would result in impacts due to geometric design hazards or incompatible uses.

### 4.3.2 Impact Criteria and Methodology

The impact criteria set forth in Appendix G of the CEQA Guidelines, as well as the City's TAG for substantially increasing hazards due to a geometric design feature or incompatible use (referred to a Threshold T-3) is defined as follows:

- Threshold T-3: Would the project substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?
- No, the Project would not substantially increase hazards due to a geometric design feature. Primary access the Project Site will continue to be provided via existing driveways along Fallbrook Avenue and Roscoe Boulevard.

Preliminary project access plans are to be reviewed in light of commonly accepted traffic engineering design standards to ascertain whether any deficiencies are apparent in the site access plans which would be considered significant. The determination of significance shall be on a case-by-case basis, considering the following factors:

- The relative amount of pedestrian activity at project access points.
- Design features/physical configurations that affect the visibility of pedestrians and bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists.
- The type of bicycle facilities the project driveway(s) crosses and the relative level of utilization.
- The physical conditions of the site and surrounding area, such as curves, slopes, walks, landscaping or other barriers, that could result in vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts.
- The project location, or project-related changes to the public right-of-way, relative to proximity to the High Injury Network or a Safe Routes to School program area.
- Any other conditions, including the approximate location of incompatible uses that would substantially increase a transportation hazard.

With respect to vehicle, bicycle and pedestrian safety impacts, the City's TAG (refer to Section 2.4.4 thereof) indicate that a review of all project access points, internal circulation, and parking access from an operational and safety perspective (for example, turning radii, driveway queuing, line of sight for turns into and out of project driveway[s]) should be conducted. Where project
driveways would cross pedestrian facilities or bicycle facilities (bike lanes or bike paths), operational and safety issues related to the potential for vehicle/pedestrian and vehicle/bicycle conflicts and the severity of consequences that could result should be considered. In areas with moderate to high levels of pedestrian or bicycle activity, the collection of pedestrian or bicycle count data may be required.

### 4.3.3 Qualitative Review of Site Access Points

As discussed in Section 3.3.2 herein, the Project Site has frontage along Fallbrook Avenue, an Avenue II with a posted speed limit of 35 miles per hour, and Roscoe Boulevard, a Boulevard II with a posted speed limit of 40 miles per hour. As previously noted, the Project proposes to provide pathways connecting the Project Site to the sidewalks along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages. The pedestrian pathways will reduce the potential for vehicle/pedestrian conflicts at the driveways. Excellent line of sight is provided for all modes of travel (motorists, pedestrians, and bicyclists) at the Project Site driveways. The Project Site is located within convenient walking distance to signalized crossings at the Fallbrook Avenue / Roscoe Boulevard and Lena Avenue / Roscoe Boulevard frontages. The Project will utilize existing driveways and will not add site access points along the Project Site's Fallbrook Avenue or Roscoe Boulevard frontages. The Project Site and surrounding area are in good physical condition and the site access points are located on relatively flat terrain. The physical condition of the Project Site and proposed entry/exit points would be improved in conjunction with the Project, therefore, the potential for vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts would be reduced. Neither the Project Site's frontages along Fallbrook Avenue and Roscoe Boulevard are noted in the City's HIN. However, south of Roscoe Boulevard, Fallbrook Avenue is noted in the City's HIN. Given the existing physical conditions of the Project Site, no safety concerns related to geometric design are noted. The driveways would not require the removal or relocation of existing passenger transit stops and would be designed and configured to avoid or minimize potential conflicts with transit services and pedestrian traffic. No security gates or other parking control features are proposed along the Project Site driveways in close proximity to the public right-of-way. As discussed in a following section, no excessive vehicle queuing is anticipated at the Project Site driveways. The driveways will continue to meet City standards to ensure adequate maneuvering by vehicles entering and exiting the Project Site. Therefore, it can be determined that the Project would not substantially increase hazards due to a geometric design feature or incompatible use, and a less than significant impact determination can be reached.

### 4.4 Freeway Safety Analysis

It is noted that the City issued an interim guidance on the preparation of a freeway safety analysis for land use projects. ${ }^{16}$ If the answer is yes to the following question, a freeway safety analysis will be required to assess whether the project would lengthen a forecasted off-ramp queue and create speed differentials between vehicles exiting freeway off-ramps and vehicles operation on the freeway mainline:

[^10]- Does the land use project add 25 or more trips to any nearby freeway off-ramp serving the project site in either the morning or afternoon peak-hour?
- No, as shown in Figure 4-1, the Project does not add 25 or more trips to any nearby freeway off-ramp serving the Project Site in either the morning or afternoon peak hour.

As the answer is "no" to the screening criteria question (i.e., the Project will not add 25 or more trips to nearby freeway off-ramps serving the Project Site during either the AM of PM peak hour), a freeway safety analysis is not required, and both the Project would result in a less than significant freeway safety impact.

### 4.5 CEQA Transportation Measures

### 4.5.1 Transportation Demand Management

The Project includes three TDM strategies as Project Design Features and Mitigation Measures and are described in detail in Section 2.9 above. The TDM strategies include:

- Promotions and Marketing;
- Ride-Share Program; and
- Include Bike Parking per LAMC.

The Project Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.

### 4.5.2 CEQA Transportation Summary

Based on the findings above, it can be determined that the Project will not conflict with City plans, policies, ordinances and programs, will not result in a significant VMT impact, will not substantially increase hazards due to a geometric design feature, and will not cause a freeway safety impact. Therefore, a "less than significant" determination can be made as related to the CEQA analysis.



### 5.0 Non-CEQA ANALYSIS

The authority for requiring non-CEQA transportation analysis and potentially requiring improvements to address identified deficiencies lies in the City of Los Angeles' Site Plan Review authority as established in LAMC Section 16.05. As provided in Section 16.05:
> "The purposes of site plan review are to promote orderly development, evaluate and mitigate significant environmental impacts, and promote public safety and the general welfare by ensuring that development projects are properly related to their sites, surrounding properties, traffic circulation, sewers, other infrastructure and environmental setting; and to control or mitigate the development of projects which are likely to have a significant adverse effect on the environment as identified in the City's environmental review process, or on surrounding properties by reason of inadequate site planning or improvements."

Additional authority is found in other City ordinances, such as certain transportation specific plans. The impacts, also referred to as deficiencies, discussed in the City's TAG are not intended to be interpreted as thresholds of significance, or significance criteria for purposes of CEQA review unless otherwise specifically identified (refer to Section 4.0).

### 5.1 Pedestrian, Bicycle, and Transit Access

The assessment of pedestrian, bicycle, and transit facilities is intended to determine a project's potential effect on pedestrian, bicycle, and transit facilities in the vicinity of a project. The deficiencies could be physical (through removal, modification, or degradation of facilities) or demand-based (by adding pedestrian or bicycle demand to inadequate facilities).

### 5.1.1 Screening Criteria

Per Section 3.2.2 of the TAG, if the answer is yes to all of the following questions, further analysis is required to assess whether the Project would negatively affect existing pedestrian, bicycle, or transit facilities:

- Does the land use project involve a discretionary action that would be under review by LADCP?
- Yes, the Project involved a discretionary action that would be under review by LADCP.
- Does the land use project include the construction, or addition of 50 dwelling units or guestrooms or combination thereof, or 50,000 square feet of non-residential space?
- Yes, the Project proposes the construction of three new two-story warehouse/manufacturing buildings providing a total of 23,500 square feet of office floor area, 19,000 square feet of manufacturing floor area, and 56,114 square feet of warehouse floor area.
- Would the project generate a net increase of 1,000 or more daily vehicle trips, or is the project's frontage along a street classified as an Avenue or Boulevard (as designated in the City General Plan), 250 linear feet or more, or is the project's building frontage encompassing an entire block along a street classified as an Avenue or Boulevard by the City's General Plan?
- Yes, the Project Site's frontage along Fallbrook Avenue, which is designated as an Avenue II by the City, is approximately 690 feet. The Project Site's frontage along Roscoe Boulevard, which is designated as a Boulevard II by the City, is approximately 520 feet. The Project will not generate a net increase 1,000 or more daily vehicle trips. As indicated on the Screening Tab of the City's VMT Calculator (Page 1 of Appendix B), the Project will generate 457 net new daily vehicle trips. The Project Site's frontage does not encompass an entire block.

As the answer is "yes" to all of the screening criteria, further analysis is required to assess whether the Project would negatively affect existing pedestrian, bicycle, or transit facilities.

### 5.1.2 Evaluation Criteria

Factors to consider when assessing a project's potential effect on pedestrian, bicycle and transit facilities, include, but are not limited to, the following:

- Would a project directly or indirectly result in a permanent removal or modification that would lead to the degradation of pedestrian, bicycle, or transit facilities, such as:
- Removal or degradation of existing sidewalks, crosswalks, pedestrian refuge islands, and/or curb extensions/bulbouts
- Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.)
- Removal or degradation of existing transit and/or local circulator facilities including stop, bench, shelter, concrete pad, bus lane, or other amenities
- Removal of other existing transportation system elements supporting sustainable mobility
- Increase street crossing distance for pedestrians; increase in number of travel/turning lanes; increase in turning radius or turning speeds
- Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way
- Removal or narrowing of existing sidewalk-street buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.)
- Would a project intensify use of existing pedestrian, bicycle, or transit facilities, such as:
- Increase in pedestrian or vehicle volume, and thereby increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting. Refer to the Guidelines for Marked Crosswalks Across Uncontrolled Locations, in LADOT's MPP Section 344, or Guidelines for Traffic Signals in MPP Section 353 to determine approval and warrant criteria for an additional crossing.
- Result in new pedestrian demand between project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.).
- Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, or unlit areas.

The locations and descriptions of pedestrian, bicycle and transit facilities in the Project Site vicinity that could be affected by Project-related traffic or by users traveling between the Project Site and nearby destinations is presented in Section 3.0 herein. Potential pedestrian destinations located within an approximately one-quarter mile (i.e., 1,320 feet) radius from the Project Site are noted in Figure 3-1. The existing pedestrian, bicycle, and transit facilities within a onequarter mile (i.e., 1,320 feet) radius from the Project Site are noted in Figure 3-2. The location of the City's NEN within the immediate Project Site vicinity and in the surrounding area is shown in Figure 3-3. The location of the existing bicycle facilities within the immediate Project Site vicinity is shown in Figure 3-4.

### 5.1.3 Results of Qualitative Access Review

Table 5-1 summarizes the City's criteria associated with the two guiding questions regarding the pedestrian, bicycle, and transit access assessment and the determination of potential Projectrelated effect on the subject facilities in the vicinity of the Project. The determination is based on whether the Project would create deficiencies that could be physical (through removal, modification, or degradation of facilities) or demand-based (by adding pedestrian or bicycle demand to inadequate facilities). As indicated in Table 5-1, it is determined the Project does not include any features that would permanently remove, adversely modify, or degrade pedestrian, bicycle, and transit facilities in the Project vicinity. As also noted in Table 5-1, it is determined that it is possible that the Project may intensify use of pedestrian, bicycle, and transit facilities in the Project vicinity, however, such use is not expected to result in a deficient condition caused by the Project. The Project has the potential to increase pedestrian activity to an existing unmarked crossing (e.g., across Fallbrook Avenue at the Fallbrook Avenue Driveway intersection and across Roscoe Boulevard at the Roscoe Boulevard Driveway intersection) but given the existing and sufficient pedestrian infrastructure available in the immediate Project Site vicinity, the increase in pedestrian activity across Fallbrook Avenue, Roscoe Boulevard, or any other roadway in the immediate Project Site vicinity is expected to be minimal and would not result in a deficient condition. Based on this analysis, no Project-specific actions or improvements are

Table 5-1
PROJECT EVALUATION OF PEDESTRIAN, BICYCLE, AND TRANSIT ACCESS

| CRITERIA | PROJECT RESPONSE | FURTHER QUANTITATIVE ASSESSMENT? |
| :---: | :---: | :---: |
| PERMANENT REMOVAL OR MODIFICATION OF FACILITIES |  |  |
| Removal or degradation of existing sidewalks, crosswalks, pedestrian refuge islands, and/or curb extensions/bulbouts. | No | No |
| Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.). | No | No |
| Removal or degradation of existing transit and/or local circulator facilities including stop, bench, shelter, concrete pad, bus lane, or other amenities. | No | No |
| Removal of other existing transportation system elements supporting sustainable mobility. | No | No |
| Increase street crossing distance for pedestrians; increase in number of travel/turning lanes; increase in turning radius or turning speeds. | No | No |
| Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way. | No | No |
| Removal or narrowing of existing sidewalk-street buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.). | No | No |
| INTENSIFY USE OF FACILITIES |  |  |
| Increase in pedestrian or vehicle volume, and thereby increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting. Refer to the Guidelines for Marked Crosswalks Across Uncontrolled Locations, in LADOT's Manual of Policies and Procedures (MPP) Section 344, or Guidelines for Traffic Signals in MPP Section 353 to determine approval and warrant criteria for an additional crossing. | The Project may nominally increase pedestrians attempting to cross Fallbrook Avenue and Rosoce <br> Boulevard at the respective site access points. <br> Signalized crossings are available approximately 690 feet south of the Fallbrook Avenue driveway the Fallbrook Avenue / Roscoe Boulevard intersection. Signalized crossings are available approximately 630 feet west of the Roscoe Boulevard driveway at the Lena Avenue / Roscoe Boulevard intersection, and 520 feet east of the Roscoe Boulevard driveway at the Fallbrook Avenue / Roscoe Boulevard intersection. Therefore, the need for a marked crosswalk is not warranted per LADOT MPP Section 344. | No |
| Result in new pedestrian demand between project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.). | The Project may nominally increase pedestrians walking to local destinations and/or transit stops. There are no observed missing pedestrian facilities in the Project vicinity. | No |
| Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, unshaded, or unlit areas. | The Project may nominally increase pedestrians walking to local transit stops. A northbound transit stop for Metro Line 152 is provided on Fallbrook Avenue, south of the Roscoe Boulevard intersection. Bus benches are provided at this stop. The Fallbrook Avenue / Roscoe Boulevard intersection is signalized and provides crosswalks with pedestrian phasing. | No |

recommended as it relates to pedestrian, bicycle, and transit access. It is noted that Fallbrook Avenue, south of Roscoe Boulevard within the direct vicinity of the Project Site (e.g., within one-quarter mile) has been identified within the HIN. If a proposed project results in significant transportation impacts, LADOT's Vision Zero group will review those specific locations and immediate vicinity for potential safety enhancements that are consistent with the City's Vision Zero initiative.

### 5.2 Project Access and Circulation Review

Project access and circulation constraints relate to the provision of access to and from the project site, and may include safety, operational, or capacity constraints. Constraints can be related to vehicular/vehicular, vehicular/bicycle, or vehicular/pedestrian constraints as well as to operational delays. These conflicts may be created by the driveway configuration or through the placement of Project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to an intersection or crosswalk. The Project access and circulation has been evaluated for permanent conditions after Project completion. Table 5-2 summarizes the vehicle queuing analysis prepared for each of the study locations for the representative intersection traffic movements for the weekday AM and PM peak hours. Appendix $\boldsymbol{E}$ contains the analysis data worksheets for the study intersections.

### 5.2.1 Screening Criteria

For land use projects, if the answer is yes to all of the following questions (refer to Section 3.3.2 of the TAG), further analysis will be required to assess whether the project would negatively affect project access and circulation:

- Does the land use project involve a discretionary action that would be under review by the Department of City Planning?
- Yes, the Project will require a discretionary action that would be under review by the Department of City Planning.
- Would the land use project generate a net increase of 250 or more daily vehicle trips?
- Yes, the Project will generate a net increase of 250 or more daily vehicle trips. As indicated on the Screening Tab of the VMT Calculator (Page 1 of Appendix B), the Project would generate 457 net new daily vehicle trips.

As the answer is "yes" to both of the screening criteria questions (i.e., the Project will require a discretionary action and the Project will generate more than 250 daily trips), further analysis is required to evaluate Project access, safety and circulation.

### 5.2.2 Evaluation Criteria

For operational evaluation of land use projects, the City's TAG requires a quantitative evaluation of the Project's expected access and circulation operations. Project access is considered constrained if the Project's traffic would contribute to unacceptable queuing on an Avenue or




|  | intersection | traffic movement | $\begin{aligned} & \text { PEAK } \\ & \text { Hour } \\ & \hline \end{aligned}$ | Year 2021 EXISTING |  |  | year 2021 Existing W/ Prouect |  |  |  | Year 2023 Future wo pronect |  |  | Year 2023 FUTURE W/ PRoJect |  |  |  | YEAR 2023 FUTURE W/ PROJECT + IM Provements |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. |  |  |  | DELAY[2] | $\operatorname{Loss}^{[3]}$ | QUEUE [4] | delay [2] | $\operatorname{Los}^{[3]}$ | Queve [4] |  | delay [2] | $\operatorname{LoS}^{[3]}$ | Queve [4] | DELAY [2] | $\operatorname{Los}^{[3]}$ | Queve (4] |  | DELAY [2] | $\operatorname{Lost}^{13]}$ | Queve [4] | ${ }_{\text {cuede }}$ |
| 5 | Fallbrook Aveue / Roscoe Boulevard (Signalized) | nB Left | AM | 15.3 | в | 25.7 | 15.4 | в | 26.8 | 1.1 | 22.7 | c | 33.9 | 22.8 | c | 35.3 | 1.4 | 37.2 | D | 48.0 | 14.1 |
|  |  |  | PM | 16.5 | в | 62.8 | 16.7 | в | 63.7 | 0.9 | 24.2 | c | 81.9 | 24.2 | c | 82.8 | 0.9 | 33.9 | c | 102.0 | 20.1 |
|  |  | NB Through | AM | 14.8 | в | 33.2 | 14.9 | в | 38.6 | 5.4 | 22.7 | c | 48.0 | 22.9 | c | 55.1 | 7.1 | 37.9 | D | 75.8 | 27.8 |
|  |  |  | PM | 14.7 | в | 28.4 | 14.7 | в | 30.0 | 1.6 | 22.8 | c | 50.1 | 22.8 | c | 52.3 | 2.2 | 31.7 | c | 64.4 | 14.3 |
|  |  | NB Right | am | 17.2 | ${ }^{\text {B }}$ | 145.7 | 17.2 | ${ }^{\text {B }}$ | 145.7 | 0.0 | 27.0 | c | 196.9 | 27.0 | c | 1969 | ${ }^{0.0}$ | 27.0 | c | 196.9 436.0 | 0.0 -354.1 |
|  |  | SB Left | PM AM | 27.2 15.7 | с | 374.6 19.4 | 27.2 15.9 | с | 374.6 20.7 | 0.0 1.3 | 177.9 39.6 | ${ }_{\text {F }}$ | 790.1 65.9 | 17.9 39.6 | D | 79.1 67.9 | 20.0 2.0 | 35.8 46.4 | D | 436.0 76.9 | -334.1 11.0 |
|  |  |  | PM | 16.1 | B | 42.6 | 16.3 | ${ }_{\text {B }}$ | 48.8 | 6.2 | 247.7 | ${ }_{\text {F }}$ | 515.7 | 274.1 | ${ }_{\text {F }}$ | 562.5 | 46.8 | 54.0 | D | 255.5 | -260.2 |
|  |  | SB Through | AM | 14.5 | ${ }^{\text {B }}$ | 15.9 | 14.5 | ${ }^{\text {B }}$ | 16.4 | 0.5 | 14.6 | ${ }^{\text {B }}$ | 20.1 | 14.6 | ${ }^{\text {B }}$ | 20.7 | 0.6 | 27.6 | c | 30.7 | 10.6 |
|  |  |  | PM | 14.6 | в | 23.4 | 14.7 | в | 26.1 | 2.7 | 14.7 | в | 26.6 | 14.7 | в | 29.3 | 2.7 | 17.8 | B | 33.0 | 6.4 |
|  |  | SB Right | AM | 14.4 | в | 11.0 | 14.4 | ${ }^{\text {B }}$ | 11.0 | 0.0 | 14.6 | ${ }^{\text {B }}$ | 19.0 | 14.6 | ${ }^{\text {B }}$ | 19.0 | 0.0 | 27.7 | c | 28.3 | 9.3 |
|  |  |  | PM | 14.5 | в | 15.2 | 14.5 | в | 15.2 | 0.0 | 14.6 | в | 21.2 | 14.6 | в | 21.2 | 0.0 | 17.7 | в | 23.9 | 2.7 |
|  |  | EB Left | AM | 23.9 | ${ }_{\text {c }}$ | ${ }^{4.6}$ | 23.9 | ${ }^{\text {c }}$ | ${ }^{4.6}$ | 0.0 | 22.0 | c | 7.9 | 22.0 | c | 7.9 | ${ }^{0.0}$ | ${ }^{15.5}$ | ${ }^{\text {B }}$ | ${ }^{6.3}$ | $-1.6$ |
|  |  |  | PM | 24.4 | c | 12.3 | 24.4 | c | 12.3 | 0.0 | 22.9 | c | 24.5 | 22.9 | c | 24.5 | 0.0 | 28.5 | c | 28.2 | 3.7 |
|  |  | EB Through | AM | 27.4 | c | 14.5 | 27.4 | c | 141.1 | 0.6 | 24.8 | c | 135.4 | 24.8 | c | 135.5 | ${ }^{0.1}$ | 17.3 | ${ }^{\text {B }}$ | 107.8 | -27.6 |
|  |  |  | PM | 30.1 | c | 219.5 | 30.2 | c | 22.1 | 2.6 | 27.1 | c | 212.5 | 27.2 | c | 215.0 | 2.5 | 36.1 | D | 245.5 | 33.0 |
|  |  | EB Right | am | 26.2 | c | 71.4 | 26.2 | c | 71.4 | 0.0 | 23.8 | c | 68.6 | 23.8 | c | 68.6 | 0.0 | 16.6 | ${ }^{\text {B }}$ | 54.4 | -14.2 |
|  |  |  | PM | 26.4 | c | 77.4 | 26.5 | c | 79.2 | 1.8 | 24.0 | c | 74.3 | 24.0 | c | 75.9 | 1.6 | 30.4 | c | 88.3 | 14.0 |
|  |  | wB Left | AM | 47.9 | D | 286.3 | 48.0 | D | 287.8 | 1.5 | 66.1 | E | 416.1 | 66.4 | E | 417.1 | 1.0 | 10.2 | B | 179.9 | -236.2 |
|  |  |  | PM | 54.8 | D | 273.8 | 56.0 | E | 277.7 | 3.9 | 82.8 | F | 404.6 | 84.7 | F | 409.4 | 4.8 | 23.4 | c | 250.0 | -154.6 |
|  |  | wB Through | AM | 16.7 | B | 136.1 | 16.7 | B | 137.6 | 1.5 | 16.7 | B | 139.1 | 16.8 | B | 1409 | 1.8 | 6.5 | A | 71.3 | -67.8 |
|  |  |  | PM | 16.6 | в | 134.6 | 16.6 | в | 134.9 | 0.3 | 16.7 | в | 137.6 | 16.7 | в | 138.2 | 0.6 | 13.5 | B | 119.9 | -17.7 |
|  |  | WB Right | AM | 15.5 | в | 57.7 | 15.6 | ${ }^{\text {B }}$ | 63.8 | 6.1 | 15.6 | ${ }^{\text {B }}$ | 63.2 | 15.8 | B | 69.5 | ${ }_{6} .3$ | 6.1 | A | 35.6 | -27.6 |
|  |  |  | PM | 14.5 | ${ }^{\text {B }}$ | 17.2 | 14.5 | ${ }^{\text {B }}$ | 18.8 | 1.6 | 14.8 | в | 30.6 | 14.8 | в | 32.4 | 1.8 | 12.0 | B | 28.2 | -2.4 |

[1] Pursuant to the LADOT Transporration Assessment Guidelines, July 2020 , the Highway Capacity Manual (HCM) methodology for signalized and unsignalized intersections was utilized to calculate vehicle quueuing.
[2] Control delay reported in seconds pervechicle.


Boulevard (as designated in the Mobility Plan 2035) at Project driveway(s) or would cause or substantially extend queuing at nearby signalized intersections. Unacceptable or extended queuing may be defined as follows:

- Spill over from turn pockets into through lanes.
- Block cross streets or alleys.
- Contribute to gridlock congestion. For the purposes of this section, "gridlock" is defined as the condition where traffic queues between closely spaced intersections and impedes the flow of traffic through upstream intersections.

The City's TAG acknowledges that demand for curbside space has substantially increased due to the continued expansion of driver-for-hire transportation network companies (TNCs) and shared mobility services. As such, the TAG states that a transportation assessment should characterize the onsite loading demand of the project frontage and answer the following questions:

- Would the project result in passenger loading demand that could not be accommodated within any proposed onsite passenger loading facility?
- Not Anticipated. It is envisioned that passenger loading at the Project Site will occur within the in the proposed onsite parking garage.
- Would accommodating the passenger loading demand create pedestrian or bicycle conflicts? Which curbside management options should be explored to better address passenger loading needs in the public right-of-way?
- No, as discussed in Section 2.7, passenger loading and unloading for the Project will occur within the onsite surface parking area. While passenger loading and unloading will occur internally to the Project Site, some intermittent curbside loading/unloading may occur along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages.


### 5.2.3 Operational and Passenger Loading Evaluation Methodology

Based on coordination with LADOT staff and as presented in the transportation assessment MOU, the following five study intersections were identified for operational evaluation of whether the Project's traffic would contribute to unacceptable queuing on an Avenue or Boulevard:

1. Lena Avenue / Roscoe Boulevard
2. Roscoe Boulevard Driveway / Roscoe Boulevard
3. Fallbrook Avenue / Fallbrook Avenue Driveway
4. Fallbrook Avenue / Schoenborn Street

## 5. Fallbrook Avenue / Roscoe Boulevard

The study locations were based on proximity to the Project Site and the importance of the intersections in terms of the Project's site access and circulation scheme.

The analysis was prepared based on the Highway Capacity Manual ${ }^{17}$ (HCM) operational analysis methodology pursuant to the City's TAG. Intersection analyses were prepared utilizing the HCS7 software package, which implements the Highway Capacity Manual operational methods. In addition, specifics such as traffic volume data, lane configurations, available vehicle storage lengths, crosswalk locations, posted speed limits, traffic signal timing and phasing for signalized locations, etc., were coded in the HCS7 software. The operational analysis was prepared utilizing the following data previously presented herein:

- Project Peak Hour Traffic Generation: Refer to Subsection 2.8.1
- Project Trip Distribution and Assignment: Refer to Subsection 2.8.2
- Existing Vehicle Network: Refer to Subsection 3.3
- Existing Weekday AM and PM Hour Traffic Count Data: Refer to Subsection 3.4
- Related Projects (i.e., within a 0.39 -mile radius) and Ambient Traffic Growth: Refer to Subsection 3.5

LADOT confirmed the appropriateness of the above data in the transportation assessment MOU it approved for the Project. The transportation assessment MOU is attached to this report in Appendix $A$.

The operational analysis of vehicle queuing at the study intersections was prepared for the following conditions:
(a) Existing (2021) conditions.
(b) Condition (a) with completion and occupancy of the Project.
(c) Condition (a) plus one $1.0 \%$ annual ambient traffic growth through year 2023 and with completion and occupancy of the related projects (i.e., Future Cumulative Baseline).
(d) Condition (c) with completion and occupancy of the Project.

Pursuant to the City's TAG, the HCM methodology for signalized and unsignalized intersections was utilized to calculate vehicle queuing. The operation analysis reports the control delay (in seconds), Levels of Service (LOS), and $95^{\text {th }}$ percentile queues (in feet) for all approaches for the signalized intersections and the minor street approaches for the unsignalized intersections. The

[^11]$95^{\text {th }}$ percentile queue is the maximum back of queue with $95^{\text {th }}$ percentile traffic volumes. The HCM $6^{\text {th }}$ Edition methodology worksheets report queues in number of vehicles. As such, an average vehicle length of 25 feet, which includes the length of the vehicle and spacing between vehicles, was assumed for analysis purposes. The reported queues therefore represent the calculated maximum back of queue in feet. The summary of the operational analysis of the study intersections is provided in Table 5-2. The HCM methodology worksheets for the analyzed intersections are contained in Appendix E.

The existing traffic volumes at the study intersections during the weekday AM and PM peak hours are displayed in Figure 3-10. The "Existing with Project" traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figure 5-1.

As discussed in Section 3.3.2 herein, improvements on Fallbrook Avenue will be installed in conjunction with Phase 1. Specifically, a raised landscaped median (or alternative improvements approved by LADOT, the Bureau of Engineering, and Council District No. 12) will be installed along Fallbrook Avenue north of Roscoe Boulevard to restrict vehicles from making southbound left-turns from Fallbrook Avenue onto either Schoenborn Street or Eccles Street. Additionally, protected-only left-turn phasing in the southbound direction will be installed at the Fallbrook Avenue / Roscoe Boulevard intersection by the developer of Phase 1. Therefore, all left-turn movements at the Fallbrook Avenue / Eccles Street and Fallbrook Avenue / Schoenborn Street intersection have been assumed to continue southbound on Fallbrook Avenue and make a leftturn at the improved Fallbrook Avenue / Roscoe Boulevard intersection.

The "Future Cumulative Baseline" (existing, ambient growth and related projects) traffic volumes at the study intersections during the weekday AM and PM peak hours are presented in Figure 5-2. The "Future Cumulative with Project" (existing, ambient growth, related projects, and Project) traffic volumes at the study intersections during the weekday AM and PM peak hours are illustrated in Figure 5-3.

As presented in Table 5-2, the Project would not cause or substantially extend vehicle queuing at any of the five study intersections during the weekday AM and PM peak hours. At these intersections, the change in queue length for individual traffic movements associated with the Project ranges from no change to a maximum of 46.8 feet (i.e., less than two vehicles). Furthermore, the Project is not expected to result in left-turn queues spilling over into adjacent through lanes.

While Project-related traffic would not cause or substantially extend vehicle queuing at any of the five study intersections during the weekday AM and PM peak hours, it is noted that forecast peak queues on multiple approaches at the Fallbrook Avenue / Roscoe Boulevard intersection are expected to exceed the available storage under "Future Cumulative Baseline" and "Future Cumulative with Project" conditions. The approaches include the northbound right-turn approach on Fallbrook Avenue (PM peak hour), the southbound left-turn approach on Fallbrook Avenue (PM peak hour), and the westbound left-turn approach on Roscoe Boulevard (AM and PM peak hours).


Date: 81/61/2021
Time: 11:25AM





While Project-related traffic is not the cause of the extended peak queues, potential improvements have been identified to reduce the forecast peak queues mentioned above at the Fallbrook Avenue / Roscoe Boulevard intersection. The improvements consist of changing the existing traffic signal equipment to provide a right-turn phase for northbound Fallbrook Avenue to overlap with the existing left-turn phase for westbound Roscoe Boulevard, as well as updating the traffic signal timing plan to allocate additional green time for the westbound Roscoe Boulevard left-turn approach. No striping changes would be needed as part of the improvement. As presented in Table 5-2, with the potential installation of the northbound right-turn overlap phase and modification to traffic signal timing, the change in the forecast peak vehicle queue lengths in the PM peak hour under "Future Cumulative with Project" conditions is reduced as follows:

- Northbound Fallbrook Avenue right-turn: From 790 feet to 436 feet
- Southbound Fallbrook Avenue left-turn: From 562 feet to 255 feet
- Westbound Roscoe Boulevard left-turn: From 409 feet to 250 feet

In summary, with the installation of the northbound right-turn overlap phase and updating of the traffic signal timing plan, the forecast peak queues on the southbound Fallbrook Avenue and westbound Roscoe Boulevard left-turn approaches would be expected to be accommodated by the available left-turn storage under "Future Cumulative with Project" conditions. Additionally, the forecast peak queues on the northbound Fallbrook Avenue right-turn approach under "Future Cumulative with Project" conditions would be drastically reduced when compared to "Future Cumulative Baseline" conditions. It is noted that the updating of the traffic signal timing plan may slightly increase the forecast peak queues on other approaches at the intersection. However, the forecast peak queues would be expected to be accommodated by the available left-turn and right-turn storage. LADOT would need to review the effects related to installing the right-turn overlap phasing and modifying the traffic signal timing at the intersection.

It is envisioned that passenger loading/unloading will occur within the onsite surface parking lot. No pedestrian or bicycle conflicts due to potential loading/unloading activities are anticipated to occur. While not currently proposed, appropriate signage and pavement/curb markings will be required by the City and installed by the Project Applicant for any curbside loading/unloading zones that may be proposed by the Project Applicant in the future. Any installations that fall within the City's (public) right-of-way will require prior review and approval by LADOT. Thus, it is envisioned that should any curbside loading/unloading zones be proposed by the Project Applicant, on-street parking along the direct Project frontages will not be allowed and some or most of the curbside space would be repurposed for loading/unloading operations.

### 5.3 Project Construction Effect on Nearby Mobility

The project construction evaluation addresses activity associated with project construction and major in-street construction of infrastructure projects.

### 5.3.1 Screening Criteria

For land use projects, if the answer is yes to any of the following questions, further analysis will be required to assess whether project construction would negatively affect pedestrian, bicycle, transit, or vehicle circulation:

- Would a project that requires construction activities to take place within the right-of-way of a Boulevard or Avenue (as designated in Mobility Plan 2035) which would necessitate temporary lane, alley, or street closures for more than one day (including day and evening hours, and overnight closures if on a residential street)?
- No. Construction activities are not planned to require the closure of any vehicle travel lanes. This is due primarily to the location of the Project Site away from the public right-of-way.
- Would a project require construction activities to take place within the right-of-way of a Collector or Local Street (as designated in the Mobility Plan 2035) which would necessitate temporary lane, alley, or street closures for more than seven days (including day and evening hours, and including overnight closures if on a residential street)?
- No. The Project Site does not have frontage along a Collector or Local Street.
- Would in-street construction activities result in the loss of regular vehicle, bicycle, or pedestrian access, including loss of existing bicycle parking to an existing land use for more than one day, including day and evening hours and overnight closures if access is lost to residential units?
- Yes. Temporary closures of the sidewalks along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontage may be required during portions of the construction period. However, signs would be posted advising pedestrians of temporary sidewalk closures and providing alternative routes. No bicycle routes/lanes in the Project study area would require temporary closure. A detailed Construction Staging and Traffic Management Plan (CSTMP) including the measures described herein will address temporary construction-related closures to minimize conflicts between construction activities and vehicular traffic, bicyclists, and pedestrians.
- Would in-street construction activities result in the loss of regular ADA pedestrian access to an existing transit station, stop, or facility (e.g., layover zone) during revenue hours?
- Yes. Temporary closures of the sidewalks adjacent to the Project Site on Fallbrook Avenue and Roscoe Boulevard may be required during portions of the construction period. However, signs would be posted advising pedestrians of temporary sidewalk closures and providing alternative ADA routes to nearby transit stops located near the Project Site on Fallbrook Avenue and Roscoe Boulevard. As noted above, the CSTMP will include measures to address temporary construction-related closures to
minimize conflicts between construction activities and vehicular traffic, bicyclists, and pedestrians.
- Would in-street construction activities result in the temporary loss for more than one day of an existing bus stop or rerouting of a bus route that serves the project site?
- No. Construction activities will not require the temporary closure or relocation of existing bus stops in the vicinity of the Project Site.
- Would construction activities result in the temporary removal and/or loss of on-street metered parking for more than 30 days?
- No. Parking is not permitted along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages.
- Would the project involve a discretionary action to construct new building of more than 1,000 square feet that require access for hauling construction materials and equipment from streets of less than 24 -feet wide in a hillside area?
- No. The Project Site is not located within a hillside area.

As the answer is "yes" to two of the screening criteria questions, further analysis is required to evaluate whether Project construction would negatively affect pedestrian, bicycle, transit, or vehicle circulation.

### 5.3.2 Evaluation Criteria and Methodology

The evaluation criteria for project construction are focused on whether the proposed project would adversely affect mobility in the project vicinity during the construction process. Specifically, the City's TAG asks the following question: "Would construction of a project substantially interfere with pedestrian, bicycle, transit, or vehicle circulation and accessibility to adjoining areas?" Factors to be considered are the location of the project site, the functional classification of the adjacent street(s), the availability of alternate routes or additional capacity, temporary loss of bicycle parking, temporary loss of bus stops or rerouting of transit lines, the duration of temporary loss of access, the affected land uses, and the magnitude of the temporary construction activities.

Factors to consider when assessing a project construction's potential effect on mobility in the project area include the following:

- Temporary transportation constraints:
- The length of time of temporary street closures or closures of two or more travel lanes;
- The classification of the street (major arterial, state highway) affected;
- The existing congestion levels on the affected street segments and intersections;
- Whether the affected street directly leads to a freeway on- or off-ramp or other state highway;
- Potential safety issues involved with street or lane closures; and
- The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street.
- Temporary loss of access:
- The length of time of any loss of pedestrian or bicycle circulation past a construction area;
- The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area;
- The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility;
- The availability of nearby vehicular or pedestrian access within $1 / 4$ mile of the lost access; and
- The type of land uses affected, and related safety, convenience, and/or economic issues.
- Temporary Loss of Bus Stops or Rerouting of Bus Lines:
- The length of time that an existing bus stop would be unavailable or that existing service would be interrupted;
- The availability of a nearby location (within one-quarter mile) to which the bus stop or route can be temporarily relocated;
- The existence of other bus stops or routes with similar routes/destinations within a $1 / 4-$ mile radius of the affected stops or routes; and
- Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s).

Descriptions of the Project location and physical setting are provided in Subsection 2.1, Project Site Location, and Section 3.0, Project Context, herein that apply to this analysis. The Project location and Project setting data items such as adjacent street classifications, public bicycle parking, inventory of existing transit lines, bus stops, etc. Per Section 3.4.4 of the TAG, the
evaluation of the Project construction includes a review of whether construction activity within the street right-of-way would require any of the following:

- Street, sidewalk, or lane closures.
- Block existing vehicle, bicycle, or pedestrian access along a street or to parcels fronting the street.
- Modification of access to transit stations, stops, or facilities during revenue hours.
- Closure or movement of an existing bus stop or rerouting of an existing bus line.
- Creation of transportation hazards.

The City's TAG notes that a comparison of the results to the evaluation criteria are to be provided in order to determine the level of impact. The summary of the Project construction evaluation criteria review in order to determine level of impact is provided in Table 5-3.

As presented in Table 5-3, it is concluded that Project construction would not result in the closure of any vehicle travel lanes, would not result in the temporary loss of bicycle access, would not require the relocation of an existing transit stop, and would not impede emergency access. However, Project construction may result in the temporary loss of regular pedestrian access along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages.

### 5.3.3 Recommended Project-Specific Action Items

Due to the short-term nature of construction activities and the variable characteristics and needs of a specific project's construction phase(s), it is recommended that a construction work site traffic control plan be submitted to LADOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of construction activity. The construction work site traffic control plan is required to identify the location of all temporary roadway lane and/or sidewalk closures needed during project construction. Additionally, if pedestrian detours and/or temporary travel lane closures are proposed, LADOT requires submission and approval of a traffic control/management plan prior to the issuance of building permits.

Consistent with LADOT's recommendation and requirements, the Project Applicant would prepare a detailed CSTMP, which would include any applicable street/lane/sidewalk closure information, a detour plan, haul route(s), and a staging plan. The plan would be based on the nature and timing of the Project's specific construction activities and would consider other projects under construction in the immediate vicinity of the Project Site. The CSTMP also would include features such as notification to adjacent project owners and occupants of upcoming construction activities, advance notification regarding any temporary transit stop relocations, and limitation of any potential roadway lane closure(s) to off-peak travel periods, to the extent feasible.
Table 5-3
QUALITATIVE REVIEW OF PROJECT CONSTRUCTION ACTIVITIES

| CRITERIA | PROJECT RESPONSE | DESCRIPTION |
| :---: | :---: | :---: |
| TEMPORARY TRANSPORTATION CONSTRAINTS |  |  |
| The length of time of temporary street closures or closures of two or more travel lanes. | N/A | Project construction will not require street closures or closures of two or more travel lanes. |
| The classification of the street (major arterial, state highway) affected. | Avenue II; Boulevard II | Fallbrook Avenue and Roscoe Boulevard are classified by the City as an Avenue II and a Boulevard II, respectively. |
| The existing congestion levels on the affected street segments and intersections. | N/A | Existing congestion levels are consistent with those experienced on major thoroughfares in the Project vicinity. |
| Whether the affected street directly leads to a freeway on- or off-ramp or other state highway. | N/A | N/A |
| Potential safety issues involved with street or lane closures. | N/A | While safety issues are not anticipated, the Project Applicant will prepare a Construction Staging and Traffic Management Plan (CSTMP) which would detail any potential safety issues. |
| The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street. | LAFD Station No. 106 | LAFD Station No. 106 is located on the south side of Roscoe Boulevard, west of Lena Avenue. Project construction will not impact emergency vehicles traveling to and from the nearby fire station. |
| TEMPORARY LOSS OF ACCESS |  |  |
| The length of time of any loss of pedestrian or bicycle circulation past a construction area. | Unknown | The Project Applicant will prepare a CSTMP which would detail any loss of pedestrian or bicycle circulation past the construction area. |
| The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area. | Unknown | The Project Applicant will prepare a CSTMP which would detail any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area. |
| The length of time of any loss of ADA pedestrian access to a transit station, stop, or facility. | Unknown | The Project Applicant will prepare a CSTMP which would detail any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area. |
| The availability of nearby vehicular or pedestrian access within one quarter-mile of the lost access. | Available | Signalized intersections with accommodations for pedestrian crossings are provided near the Project Site at Lena Avenue / Roscoe Boulevard and Fallbrook Avenue / Roscoe Boulevard. |
| The type of land uses affected, and related safety, convenience, and/or economic issues. | None | Access will be maintained for adjacent parcels in the Project vicinity. |

Table 5-3 (Continued)
QUALITATIVE REVIEW OF PROJECT CONSTRUCTION ACTIVITIES

| TEMPORARY LOSS OF BUS STOPS OR REROUTING OF BUS LINES |  |  |
| :---: | :---: | :---: |
| The length of time that an existing bus stop would be unavailable or that existing service would be interrupted. | N/A | No relocations proposed. |
| The availability of a nearby location (within one quarter-mile) to which the bus stop or route can be temporarily relocated. | N/A | N/A |
| The existence of other bus stops or routes with similar routes/destinations within a quarter-mile radius of the affected stops or routes. | N/A | N/A |
| Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s). | N/A | NA |

### 6.0 Summary and Conclusions

- Project Description - As currently proposed, the Project will construct three new twostory warehouse/manufacturing buildings providing a total of 23,500 square feet of office floor area, 19,000 square feet of manufacturing floor area, and 56,114 square feet of warehouse floor area. The southernmost building (Building 1) will provide 12,000 square feet of office floor area, 10,000 square feet of manufacturing floor area, and 27,892 square feet of warehouse floor area. The central building (Building 2) will provide 9,500 square feet of office floor area, 7,000 square feet of manufacturing floor area, and 14,669 square feet of warehouse floor area. The northernmost building (Building 3) will provide 2,000 square feet of office floor area, 2,000 square feet of manufacturing floor area, and 13,553 square feet of warehouse floor area. The Project proposes to provide 262 vehicular parking spaces within onsite surface parking areas. Construction and occupancy of the Project is proposed to be completed by the year 2023.
- Study Scope - This transportation assessment presents (i) a CEQA assessment of whether the Project conflicts or is inconsistent with local transportation-related plans and policies, (ii) a CEQA assessment of Project-related VMT, (iii) a CEQA assessment of whether the Project increases hazards due to a geometric design feature or incompatible use, (iv), a CEQA freeway safety analysis, (v) a non-CEQA assessment of pedestrian, bicycle and transit access, (vi) a non-CEQA evaluation of Project access, safety and circulation, and (vii) a non-CEQA review of Project construction activities. LADOT confirmed the appropriateness of the analysis criteria when it entered into a transportation assessment MOU for the Project.
- Project Trip Generation - The Project is expected to generate 49 net new vehicle trips (40 inbound trips and 9 outbound trips) during the weekday AM peak hour. During the weekday PM peak hour, the Project is expected to generate 51 net new vehicle trips (11 inbound trips and 40 outbound trips). The Project is expected to generate 421 net new daily vehicle trips.
- CEQA Analysis
- Project Consistency with Local Plans and Policies: The Project has been found to be consistent with the relevant City transportation plans, programs, ordinances, or policies, and does not include any features that would preclude the City from completing and complying with these guiding documents and policy objectives. Therefore, a determination of less than significant can be made for the Project with respect to consistency with transportation plans, programs, ordinances, or policies. Furthermore, the Project Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance) and the other requirements pursuant to the LAMC. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms
of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.
- VMT Analysis: As outlined in Section 2.9, the Project, with inclusion of bike parking per the LAMC as a Project Design Feature, would result in a significant VMT impact. Two TDM strategies to be incorporated as Mitigation Measures have been identified to reduce the VMT impact to a less than significant level. Furthermore, based on those TDM strategies, as well as the Project-related VMT analysis and the conclusions discussed in Section 4.2.3 (which demonstrate that the Project falls under the City's efficiency-based impact thresholds and thus are already shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS), cumulatively significant VMT impacts are not anticipated.
- Geometric Design Review: Given the existing physical condition of the Project Site, surrounding land uses, and planned pedestrian enhancements, no safety concerns related to geometric design are noted. It is noted that the Project proposes to maintain the existing Fallbrook Avenue and Roscoe Boulevard driveways. Additionally, it is noted that the Project is not along the City's HIN. Therefore, it can be determined that the Project will not substantially increase hazards due to a geometric design feature or incompatible use, resulting in a less than significant impact determination.
- Freeway Safety Analysis: Given that the Project would not add 25 or more net new vehicle trips to any nearby freeway off-ramp during either the AM or PM peak hours, the Project would not result in a significant freeway safety impact.


## - Non-CEQA Analysis

- Pedestrian, Bicycle, and Transit Access: It is determined the Project does not include any features that would permanently remove, adversely modify, or degrade pedestrian, bicycle, and transit facilities in the Project vicinity. As noted herein, it is determined that it is possible that the Project may intensify use of pedestrian, bicycle, and transit facilities in the Project vicinity, however, such use is not expected to result in a deficient condition caused by the Project.
- Project Access and Circulation Review: The Project's weekday AM and PM peak hour traffic volumes will not cause or substantially extend vehicle queuing at the any of the five study intersections analyzed (as discussed in Section 5.2.3 herein). At the Fallbrook Avenue / Roscoe Boulevard intersection, peak queues are expected to exceed available storage under "Future Cumulative Baseline" and "Future Cumulative with Project" conditions on the following approaches: northbound Fallbrook Avenue right-turn approach (PM peak hour); southbound Fallbrook Avenue left-turn approach (PM peak hour); and westbound Roscoe Boulevard leftturn approach (AM and PM peak hours). Installation of a right-turn traffic signal phase for northbound Fallbrook Avenue overlapping with the existing left-turn phase for westbound Roscoe Boulevard, as well as potential modifications to the existing
traffic signal timing plan at this intersection, have been identified and are shown to reduce the forecast peak vehicle queues at the approaches listed above. Any modifications to existing traffic signal equipment and signal timing would be implemented by LADOT at their discretion.
- Project Construction Effect on Nearby Mobility: It is concluded that Project construction would not result in the closure of any vehicle travel lanes, would not result in the temporary loss of regular bicycle access, would not require the temporary relocation of an existing bus transit stop or route, and would not impede emergency access. However, Project construction may result in the temporary loss of regular pedestrian access along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages. The Project Applicant will prepare a construction work site traffic control plan be submitted to LADOT's Citywide Temporary Traffic Control Section or Permit Plan Review Section for review and approval prior to the start of construction activity should any lane closure(s) be proposed. Consistent with LADOT's recommendation and requirements, the Project Applicant would also prepare a detailed CSTMP, which includes any applicable street/lane/sidewalk closure information, a detour plan, haul route(s), and a staging plan.


## Appendix A

## Approved Transportation Assessment Memorandum of Understanding

## Transportation Assessment Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

## I. PROJECT INFORMATION

Project Name: Fallbrook Point
Project Address: 22815-22825 Roscoe Boulevard
Project Description: Development of three warehouse/manufacturing buildings providing a total of 25,500 square feet of
office floor area, 20,500 square feet of manufacturing floor area, and 53,614 square feet of warehouse floor area.
LADOT Project Case Number: SFV-21-111390 Project Site Plan attached? (Required) 区 Yes $\square$ No

## II. TRANSPORTATION DEMAND MANAGEMENT (TDM) MEASURES

Select any of the following TDM measures, which may be eligible as a Project Design Feature ${ }^{1}$, that are being considered for this project:

|  | Reduced Parking Supply${ }^{2}$ | $x$ | Bicycle Parking and Amenities | Parking Cash Out |
| :--- | :--- | :--- | :--- | :--- | :--- |

List any other TDM measures (e.g. bike share kiosks, unbundled parking, microtransit service, etc.) below that are also being considered and would require LADOT staff's determination of its eligibility as a TDM measure. LADOT staff will make the final determination of the TDM measure's eligibility for this project.
1 Promotions and Marketing
4
2 Ride-Share Program
5
3 $\qquad$ 6 $\qquad$

## III. TRIP GENERATION

Trip Generation Rate(s) Source: ITE 10th Edition / Other ITE 10th Edition

| Trip Generation Adjustment <br> (Exact amount of credit subject to approval by LADOT) | Yes | No |
| :--- | :---: | :---: |
| Transit Usage | $\boxed{ }$ | $\square$ |
| Existing Active or Previous Land Use | $\square$ | $\boxtimes$ |
| Internal Trip | $\square$ | $\boxtimes$ |
| Pass-By Trip | $\square$ | $\boxtimes$ |
| Transportation Demand Management (See above) | $\square$ | $\boxtimes$ |

Trip generation table including a description of the existing and proposed land uses, rates, estimated morning and afternoon peak hour volumes (ins/outs/totals), proposed trip credits, etc. attached? (Required) 区 Yes $\square$ No

|  |  |  |  | NET Daily Vehicle Trips (DVT) |
| :---: | :---: | :---: | :---: | :---: |
|  | IN | OUT | TOTAL | 401 DVT (ITE 10 $0^{\text {th }} \mathrm{ed}$.) |
| AM Trips | 41 | 9 | 50 | 476 DVT (VMT Calculator ver. 1.3 ) |
| PM Trips | 12 | 40 | 52 |  |

[^12]
## IV．STUDY AREA AND ASSUMPTIONS

Project Buildout Year： 2023 Ambient Growth Rate： 1.0 \％Per Yr．
Related Projects List，researched by the consultant and approved by LADOT，attached？（Required）区 Yes $\square$ No STUDY INTERSECTIONS and／or STREET SEGMENTS：
（May be subject to LADOT revision after access，safety，and circulation evaluation．）
1 Lena Avenue／Roscoe Boulevard
4 Fallbrook Avenue／Schoenborn Street
2 Roscoe Boulevard Driveway／Roscoe Boulevard
5 Fallbrook Avenue／Roscoe Boulevard
3 Fallbrook Avenue／Fallbrook Avenue Driveway 6 $\qquad$

Provide a separate list if more than six study intersections and／or street segments．
Is this Project located on a street within the High Injury Network？$\square$ Yes $\mathbb{Q}$ No
If a study intersection is located within a $1 / 4$－mile of an adjacent municipality＇s jurisdiction，signature approval from said municipality is required prior to MOU approval．

## V．ACCESS ASSESSMENT

a．Does the project exceed 1,000 net DVT？$\square$ Yes $\boxtimes$ No
b．Is the project＇s frontage 250 linear feet or more along an Avenue or Boulevard as classified by the City＇s General Plan？区 Yes
c．Is the project＇s building frontage encompassing an entire block along an Avenue or Boulevard as classified by the City＇s General Plan？Yes $\mathrm{X}^{\mathrm{N}}$

## VI．ACCESS ASSESSMENT CRITERIA

If Yes to any of the above questions a．，b．，or c．，complete Attachment C．1：Access Assessment Criteria．

## VII．SITE PLAN AND MAP OF STUDY AREA

Please note that the site plan should also be submitted to the Department of City Planning for cursory review．

| Does the attached site plan and／or map of study area show | Yes | No | Not Applicable |
| :---: | :---: | :---: | :---: |
| Each study intersection and／or street segment | 区 | $\square$ | $\square$ |
| ＊Project Vehicle Peak Hour trips at each study intersection | 区 | $\square$ | $\square$ |
| ＊Project Vehicle Peak Hour trips at each project access point | 区 | $\square$ | $\square$ |
| ＊Project trip distribution percentages at each study intersection | 区 | $\square$ | $\square$ |
| Project driveways designed per LADOT MPP 321 （show widths and directions or lane assignment） | 区 | $\square$ | $\square$ |
| Pedestrian access points and any pedestrian paths | 区 | $\square$ | $\square$ |
| Pedestrian loading zones | $\square$ | $\square$ | 区 |
| Delivery loading zone or area | 区 | $\square$ | $\square$ |
| Bicycle parking onsite | 区 | $\square$ | $\square$ |
| Bicycle parking offsite（in public right－of－way） | $\square$ | $\square$ | 区 |

＊For mixed－use projects，also show the project trips and project trip distribution by land use category．
（One trip distribution assumed for all components．）

## VIII. FREEWAY SAFETY ANALYSIS SCREENING

Will the project add 25 or more trips to any freeway off-ramp in either the AM or PM peak hour? $\square$ Yes 区 No Provide a brief explanation or graphic identifying the number of project trips expected to be added to the nearby freeway off-ramps serving the project site. If Yes to the question above, a freeway ramp analysis is required.

## IX. CONTACT INFORMATION

| CONSULTANT | DEVELOPER |
| :---: | :---: |
| Name: Linscott, Law \& Greenspan, Engineers | SCIND Fallbrook Point LLC |
| Address: 20931 Burbank Boulevard, Suite C | 11150 Santa Monica Boulevard, Suite 700 |
| Woodland Hills, CA 91367 | Los Angeles, CA 90025 |
| Phone Number: (818) 835-8648 | (818) 716-2767 |
| E-Mail: jshender@llgengineers.com | heather@raa-inc.com |


| Approved by: | x Guashr | 6/2/2021 | x | Shiela Mhoraims | 6/21/2021 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Consultant's Representative | Date |  | LADOT Representative | **Date |
| Adjacent Municipality: |  | Approved by: <br> (if applicable) |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  | Representative | Date |

**MOUs are generally valid for two years after signing. If after two years a transportation assessment has not been submitted to LADOT, the developer's representative shall check with the appropriate LADOT office to determine if the terms of this MOU are still valid or if a new MOU is needed.





Figure 4-1


Table 2-1
PROJECT TRIP GENERATION [1]
01-Jun-21

| LAND USE | SIZE | DAILY <br> TRIP ENDS [2] <br> VOLUMES | $\begin{aligned} & \hline \text { AM PEAK HOUR } \\ & \text { VOLUMES [2] } \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} \hline \text { PM PEAK HOUR } \\ \text { VOLUMES [2] } \\ \hline \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | IN | OUT | TOTAL | IN | OUT | TOTAL |
| Proposed Project |  |  |  |  |  |  |  |  |
| Office [3] | 25,500 GSF | 248 | 26 | 4 | 30 | 5 | 24 | 29 |
| Manufacturing [4] | 20,500 GSF | 81 | 10 | 3 | 13 | 4 | 10 | 14 |
| Warehouse [5] | 53,614 GSF | $\underline{93}$ | 7 | 2 | $\underline{9}$ | $\underline{3}$ | 7 | 10 |
| Subtotal |  | 422 | 43 | 9 | 52 | 12 | 41 | 53 |
| Transit Trips [6] |  |  |  |  |  |  |  |  |
| Office (5\%) |  | (12) | (1) | 0 | (1) | 0 | (1) | (1) |
| Manufacturing (5\%) |  | (4) | (1) | 0 | (1) | 0 | (1) | (1) |
| Warehouse (5\%) |  | (5) | $\underline{0}$ | $\underline{0}$ | $\underline{0}$ | 0 | $\underline{0}$ | $\underline{0}$ |
| Subtotal |  | (21) | (2) | 0 | (2) | 0 | (1) | (1) |
| NET INCREASE DRIVEWAY TRIPS |  | 401 | 41 | 9 | 50 | 12 | 40 | 52 |

[1] Source: ITE Trip Generation Manual, 10th Edition, 2017.
[2] Trips are one-way traffic movements, entering or leaving.
[3] ITE Land Use Code 710 (General Office Building) trip generation average rates.

- Daily Trip Rate: 9.74 trips $/ 1,000 \mathrm{SF}$ of floor area; $50 \%$ inbound $/ 50 \%$ outbound
- AM Peak Hour Trip Rate: 1.16 trips/1,000 SF of floor area; $86 \%$ inbound $/ 14 \%$ outbound
- PM Peak Hour Trip Rate: 1.15 trips/1,000 SF of floor area; $16 \%$ inbound $/ 84 \%$ outbound
[4] ITE Land Use Code 140 (Manufacturing) trip generation average rates.
- Daily Trip Rate: 3.93 trips $/ 1,000 \mathrm{SF}$ of floor area; $50 \%$ inbound $/ 50 \%$ outbound
- AM Peak Hour Trip Rate: 0.62 trips $/ 1,000$ SF of floor area; $77 \%$ inbound $/ 23 \%$ outbound
- PM Peak Hour Trip Rate: 0.67 trips/1,000 SF of floor area; $31 \%$ inbound $/ 69 \%$ outbound
[5] ITE Land Use Code 150 (Warehousing) trip generation average rates.
- Daily Trip Rate: 1.74 trips $/ 1,000 \mathrm{SF}$ of floor area; $50 \%$ inbound $/ 50 \%$ outbound
- AM Peak Hour Trip Rate: 0.17 trips/1,000 SF of floor area; $77 \%$ inbound $/ 23 \%$ outbound
- PM Peak Hour Trip Rate: 0.19 trips/1,000 SF of floor area; $27 \%$ inbound $/ 73 \%$ outbound
[6] The transit reduction is based on the Project Site being located within one-quarter mile walking distance of Metro bus stops.
The trip reduction for transit trips has been applied to the proposed Project based on the LADOT Transportation
Assessment Guidelines, July 2020 for developments within one-quarter mile walking distance of a Metro bus stop.
Proposed

$$
\begin{gathered}
\text { Tier } 1 \text { Screening Criteria } \\
\text { Project will have less residential units compared }
\end{gathered}
$$

mile of a fixed-rail station.

$$
\text { Tier } 2 \text { Screening Criteria }
$$

The proposed project is required to perform VMT analysis.


## Version

it

$$
\text { ase in daily trips < } 250 \text { trips }
$$

The net increase in daily VMT $\leq 0$

The proposed project consists of onl.
land $\leq 50,000$ square feet total.

$$
\begin{aligned}
& \text { Proposed } \\
& \text { Project }
\end{aligned}
$$

$$
476
$$

$$
\begin{gathered}
476 \\
\text { Daily Vehicle Trips }
\end{gathered}
$$

$$
\begin{gathered}
\text { 4,592 } \\
\text { Daily VMT }
\end{gathered}
$$

$$
\text { Tier } 1 \text { Screening Criteria }
$$

$$
\begin{aligned}
& \text { Project will have less residential units compared } \\
& \text { to existing residential units \& is within one-half }
\end{aligned}
$$

$$
0 \text { trips }
$$

$$
0.000
$$ land uses $\leq 50,000$ square feet total. ksf ー

$\begin{array}{cc}\text { CITY OF LOS ANGELES VMT CALCULATOR } & \begin{array}{c}\text { Date: May 10, } 2021 \\ \text { Project Name: Fallbrook Point }\end{array} \\ \text { Report 1: Project \& Analysis Overview } & \begin{array}{c}\text { Project Scenario: Proposed Project } \\ \text { Project Address: } 22815 \text { W ROSCOE BLVD, } 91304\end{array}\end{array}$

| Analysis Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Total Employees: 130 |  |  |  |
| Total Population: 0 |  |  |  |
| Proposed Project |  | With Mitigation |  |
| $\begin{gathered} 473 \\ 4,563 \end{gathered}$ | Daily Vehicle Trips Daily VMT | $\begin{gathered} 438 \\ 4,174 \end{gathered}$ | Daily Vehicle Trips Daily VMT |
| 0 <br> 16.7 | Household VMT per Capita Work VMT per Employee | 0 <br> 14.4 | Household VMT per Capita <br> Work VMT per Employee |
| Significant VMT Impact? |  |  |  |
| APC: North Valley |  |  |  |
| Impact Threshold: 15\% Below APC Average <br> Household $=9.2$ <br> Work $=15.0$ |  |  |  |
| Proposed Project |  | With Mitigation |  |
| VMT Threshold | Impact | VMT Threshold | Impact |
| Household > 9.2 | No | Household > 9.2 | No |
| Work > 15.0 | Yes | Work > 15.0 | No |

CITY OF LOS ANGELES VMT CALCULATOR

| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Commute Trip Reductions | Required commute trip reduction program | Employees participating (\%) | 0\% | 0\% |
|  | Alternative Work Schedules and | Employees participating (\%) | 0\% | 0\% |
|  | Telecommute | Type of program | 0 | 0 |
|  | Employer sponsored vanpool or shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees eligible (\%) | 0\% | 0\% |
|  |  | Employer size (small, medium, large) | 0 | 0 |
|  | Ride-share program | Employees eligible (\%) | 0\% | 100\% |
| Shared Mobility | Car share | Car share project setting (Urban, Suburban, All Other) | 0 | 0 |
|  | Bike share | Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No) | 0 | 0 |
|  | School carpool program | Level of implementation (Low, Medium, High) | 0 | 0 |
| (cont. on following page) |  |  |  |  |



| CITY OF LOS ANGELES VMT <br> Report 3: TDM Outputs |  |  |  | Date: May 10, 2021 <br> Project Name: Fallbrook Point <br> Project Scenario: Proposed Project <br> Project Address: 22815 W ROSCOE BLVD, 91304 |  |  |  |  |  |  |  |  |  | Version 1.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TDM Adjustments by Trip Purpose \& Strategy <br> Place type: Suburban Center |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Parking | Reduce parking supply | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Parking sections 1-5 |
|  | Unbundle parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Parking cash-out | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Price workplace parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Residential area parking permits | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
| Transit | Reduce transit headways | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Transit sections 1-3 |
|  | Implement neighborhood shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Transit subsidies | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Education \& Encouragement | Voluntary travel behavior change program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Education \& Encouragement sections 1-2 |
|  | Promotions and marketing | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 0\% |  |
| Commute Trip Reductions | Required commute trip reduction program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Commute Trip Reductions sections 1-4 |
|  | Alternative Work <br> Schedules and <br> Telecommute Program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Employer sponsored vanpool or shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Ride-share program | 0\% | 0\% | 0\% | 10\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Shared Mobility | Car-share | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Shared Mobility sections 1-3 |
|  | Bike share | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
|  | School carpool program | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |



| Final Combined \& Maximum TDM Effect |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ased Work <br> action | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  |
| Mitigated | Proposed | Mitigated | Proposed | Mitigated | Proposed | Mitigated | Proposed | Mitigated |
| 14\% | 1\% | 5\% | 1\% | 5\% | 1\% | 5\% | 1\% | 1\% |
| 14\% | 1\% | 5\% | 1\% | 5\% | 1\% | 5\% | 1\% | 5\% |
| $\begin{gathered} =\text { Minimum }\left(X \%, 1-\left[(1-A)^{*}(1-B) . . .\right]\right) \\ \text { where } X \%= \end{gathered}$ |  |  |  |  |  |  |  |  |
| PLACE |  | urban |  | 75\% |  |  |  |  |
| TYPE |  | mpact inf |  | 40\% |  |  |  |  |
| MAX: |  | urban cen |  | 20\% |  |  |  |  |
|  |  | suburban |  | 15\% |  |  |  |  |

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined
effectiveness of TDM Strategies (e.g., A, B,...). See the TDM
Strategy Appendix (Transportation Assessment Guidelines
Attachment G) for further discussion of dampening.


## VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr \& Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr \& Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr \& Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr \& Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr \& Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr \& Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr \& Peers, or another third party, even if the City or Fehr \& Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr \& Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

| You, the User |  |
| :--- | :--- |
| By: | Sason Shender |
| Print Name: | Jash |
| Title: | $\underline{\text { Transportation Planner III }}$ |
| Company: | $\frac{\text { Linscott, Law \& Greenspan, Engineers }}{\text { 20931 Burbank Boulevard, Suite C }}$ |
| Address: | $\underline{\text { Woodland Hills, CA 91367 }}$ |
| Phone: | $\underline{(818) \text { 835-8648 }}$ |
| Email Address: | $\underline{\text { jshender@1lgengineers.com }}$ |
| Date: | $\underline{5 / 10 / 2021}$ |

## Appendix B

## LADOT VMT Calculator Output

Existing

$$
\begin{aligned}
& \text { Proposed } \\
& \text { Project }
\end{aligned}
$$

Proposed

$$
457
$$

4,399

$$
\text { Tier } 2 \text { Screening Criteria }
$$

Is $>1$
0000

$$
0
$$

$$
\begin{array}{c|c}
\hline \mathbf{0} & \mathbf{4 5 7} \\
\text { Daily vehicle Trips } & \text { Daily Vehicle Trips }
\end{array}
$$

$$
0
$$

$$
\begin{gathered}
\mathbf{0} \\
\text { Daily VMT }
\end{gathered}
$$

$$
\begin{gathered}
\qquad \text { Tier } 1 \text { Screening Criteria } \\
\hline \text { Project will have less residential units compared }
\end{gathered}
$$

$$
\text { Tier } 1 \text { Screening Criteria }
$$

$$
\begin{aligned}
& \text { Project will have less residential units compared } \\
& \text { to existing residential units \& is within one-half }
\end{aligned}
$$

mile of a fixed-rail station.
The proposed project is required to performVMT analysis.
VMT analysis.
$\Gamma$250 trips
The net increase in daily VMT $\leq 0$The proposed project consists of ond
land $\leq 50,000$ square feet total.

$$
457
$$

Analysis Results
With
Mitigation

Proposed
Proposed
454
Daily Vehicle Trips 4,371
Daily VMT
0.0
0.0
Houseshold $V 1$

Houseshold VMT 16.8


Significant VMT Impact?
Household: No


Work: No
 Household: No Threshold $=9.2$
15\% Below APC Work: Yes Threshold = 15.0
15\% Below APC


## CITY OF LOS ANGELES VMT CALCULATOR <br> Report 1: Project \& Analysis Overview

| Analysis Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Total Employees: 122 |  |  |  |
| Total Population: 0 |  |  |  |
| Proposed Project |  | With Mitigation |  |
| $\begin{gathered} 454 \\ 4,371 \end{gathered}$ | Daily Vehicle Trips Daily VMT | $\begin{gathered} \hline 421 \\ 4,000 \end{gathered}$ | Daily Vehicle Trips Daily VMT |
| 0 <br> 16.8 | Household VMT per Capita Work VMT per Employee | $\begin{gathered} 0 \\ 14.5 \end{gathered}$ | Household VMT per Capita <br> Work VMT per Employee |
| Significant VMT Impact? |  |  |  |
| APC: North Valley |  |  |  |
| Impact Threshold: 15\% Below APC Average <br> Household = 9.2 <br> Work $=15.0$ |  |  |  |
| Proposed Project |  | With Mitigation |  |
| VMT Threshold | Impact | VMT Threshold | Impact |
| Household > 9.2 | No | Household > 9.2 | No |
| Work > 15.0 | Yes | Work > 15.0 | No |



| TDM Adjustments by Trip Purpose \& Strategy Place type: Suburban Center |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Parking | Reduce parking supply | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Parking sections 1-5 |
|  | Unbundle parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Parking cash-out | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Price workplace parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Residential area parking permits | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
| Transit | Reduce transit headways | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Transit sections 1-3 |
|  | Implement neighborhood shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Transit subsidies | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Education \& Encouragement | Voluntary travel behavior change program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Education \& Encouragement sections 1-2 |
|  | Promotions and marketing | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 4\% | 0\% | 0\% |  |
| Commute Trip Reductions | Required commute trip reduction program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Commute Trip Reductions sections 1-4 |
|  | Alternative Work <br> Schedules and <br> Telecommute Program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Employer sponsored vanpool or shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Ride-share program | 0\% | 0\% | 0\% | 10\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Shared Mobility | Car-share | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Shared Mobility sections 1-3 |
|  | Bike share | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
|  | School carpool program | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |



| Final Combined \& Maximum TDM Effect |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ased Work <br> action | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  |
| Mitigated | Proposed | Mitigated | Proposed | Mitigated | Proposed | Mitigated | Proposed | Mitigated |
| 14\% | 1\% | 5\% | 1\% | 5\% | 1\% | 5\% | 1\% | 1\% |
| 14\% | 1\% | 5\% | 1\% | 5\% | 1\% | 5\% | 1\% | 5\% |
| $\begin{gathered} =\text { Minimum }\left(X \%, 1-\left[(1-A)^{*}(1-B) . . .\right]\right) \\ \text { where } X \%= \end{gathered}$ |  |  |  |  |  |  |  |  |
| PLACE |  | urban |  | 75\% |  |  |  |  |
| TYPE |  | ompact infi |  | 40\% |  |  |  |  |
| MAX: |  | burban cen |  | 20\% |  |  |  |  |
|  |  | suburban |  | 15\% |  |  |  |  |

Note: (1-[(1-A)* $(1-B)$ )...]) reflects the dampened combined
effectiveness of TDM Strategies (e.g., A, B,...). See the TDM
Strategy Appendix (Transportation Assessment Guidelines
Attachment G) for further discussion of dampening.


## VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr \& Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr \& Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr \& Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr \& Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr \& Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr \& Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr \& Peers, or another third party, even if the City or Fehr \& Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr \& Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

| You, the User |  |
| :--- | :--- |
| By: | Print Name: |
| Pason Shender, AICP |  |
| Title: | $\underline{\text { Transportation Planner III }}$ |
| Company: | $\frac{\text { Linscott, Law \& Greenspan, Engineers }}{\text { 20931 Burbank Boulevard, Suite C }}$ |
| Address: | $\underline{\text { Woodland Hills, CA 91367 }}$ |
| Phone: | $\underline{(818) \text { 835-8648 }}$ |
| Email Address: | $\underline{\text { jshender@llgengineers.com }}$ |
| Date: | $\underline{7 / 20 / 2021}$ |

## Appendix C

## Manual Traffic Count Data



| NORTHBOUND Approach |  |  |  |  | SOUTHBOUND Approach |  |  |  |  | TOTAL | XING S/L |  | XING N/L |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hours | Lt | Th | Rt | Total | Hours | Lt | Th | Rt | Total | N-S | Ped | Sch | Ped | Sch |
| 7-8 | 4 | 0 | 15 | 19 | 7-8 | 12 | 0 | 1 | 13 | 32 | 7 | 0 | 1 | 0 |
| 8-9 | 4 | 1 | 14 | 19 | 8-9 | 6 | 0 | 4 | 10 | 29 | 7 | 0 | 4 | 0 |
| 9-10 | 4 | 2 | 12 | 18 | 9-10 | 14 | 0 | 5 | 19 | 37 | 1 | 0 | 0 | 0 |
| 15-16 | 4 | 0 | 10 | 14 | 15-16 | 31 | 0 | 13 | 44 | 58 | 1 | 0 | 1 | 0 |
| 16-17 | 1 | 0 | 15 | 16 | 16-17 | 45 | 1 | 21 | 67 | 83 | 0 | 0 | 1 | 0 |
| 17-18 | 5 | 0 | 12 | 17 | 17-18 | 35 | 0 | 9 | 44 | 61 | 1 | 0 | 2 | 0 |
| TOTAL | 22 | 3 | 78 | 103 | TOTAL | 143 | 1. | 53 | 197 | 300 | 17 | 0 | 9 | 0 |
| EASTBOUND | pproac |  |  |  | WESTB | pproac |  |  |  | TOTAL | XING |  | XING E |  |
| Hours | Lt | Th | Rt | Total | Hours | Lt | Th | Rt T | Total | E-W | Ped | Sch | Ped | Sch |
| 7-8 | 11 | 381 | 3 | 395 | 7-8 | 9 | 355 | 37 | 401 | 796 | 1 | 0 | 4 | 0 |
| 8-9 | 9 | 452 | 7 | 468 | 8-9 | 8 | 448 | 27 | 483 | 951 | 0 | 0 | 1 | 0 |
| 9-10 | 9 | 435 | 6 | 450 | 9-10 | 20 | 413 | 19 | 452 | 902 | 1 | 0 | 0 | 0 |
| 15-16 | 6 | 521 | 6 | 533 | 15-16 | 14 | 478 | 13 | 505 | 1038 | 0 | 0 | 0 | 0 |
| 16-17 | 1 | 496 | 6 | 503 | 16-17 | 13 | 554 | 19 | 586 | 1089 | 0 | 0 | 0 | 0 |
| 17-18 | 8 | 548 | 9 | 565 | 17-18 | 24 | 558 | 13 | 595 | 1160 | 0 | 0 | 1 | 0 |
| TOTAL | 44 | 2833 | 37 | 2914 | TOTAL | 88 | 2806 | 128 | 3022 | 5936 | 2 | 0 | 6 | 0 |

## Lena Ave \& Roscoe Blvd

## Peak Hour Turning Movement Count

> ID: 21-020185-001 City: Canoga Park

Day: Tuesday
Date: 06/29/2021
SOUTHBOUND

| AM | 3 | 0 | 9 | 0 | 22 | AM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Noon | 0 | 0 | 0 | 0 | 0 | NOON |
| PM | 9 | 0 | 35 | 0 | 21 | PM |
|  |  | 1 |  |  | $\}$ |  |
|  | 1 | 1 | 0 | 0 |  |  |

National Data \& Surveying Services
Intersection Turning Movement Count



City Of Los Angeles
Department Of Transportation
MANUAL TRAFFIC COUNT SUMMARY
STREET:

| North/South | FALLBROOK AV |
| :--- | :--- |
| East/West | SCHOENBORN ST |

Day:
WEDNESDAY
Date: $\qquad$ Weather: CLEAR
Hours: 7-10AM 3-6PM
School Day: YES District: WEST VALLEY I/S CODE 2725066880

|  | N/B | S/B | E/B | W/B |
| :---: | :---: | :---: | :---: | :---: |
| DUAL- |  |  |  |  |
| WHEELED | 12 | 11 | 0 | 1 |
| BIKES | 0 | 0 | 0 | 0 |
| BUSES | 0 | 0 | 0 | 0 |


|  | N/B | TIME | S/B | TIME | E/B | TIME |  | W/B TIME |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AM PK 15 MIN | 120 | 8.00 | 51 | 8.15 |  | 0 | 7.00 | 33 | 8.00 |
| PM PK 15 MIN | 55 | 5.30 | 172 | 5.00 |  | 0 | 3.00 | 12 | 4.45 |
| AM PK HOUR | 407 | 7.45 | 143 | 7.45 |  | 0 | 7.00 | 106 | 7.45 |
| PM PK HOUR | 193 | 5.00 | 558 | 5.00 |  | 0 | 3.00 | 41 | 4.30 |


| NORTH | ND A | pproa |  |  | SOUTH | ND A | proa |  |  | TOTAL | XING | S/L | XING | N/L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hours | Lt | Th | Rt | Total | Hours | Lt | Th | Rt | Total | N -S | Ped | Sch | Ped | Sch |
| 7-8 | 0 | 268 | 8 | 276 | 7-8 | 0 | 72 | 0 | 72 | 348 | 0 | 0 | 1 | 0 |
| 8-9 | 0 | 338 | 24 | 362 | 8-9 | 0 | 141 | 0 | 141 | 503 | 0 | 0 | 0 | 0 |
| 9-10 | 0 | 164 | 10 | 174 | 9-10 | 0 | 89 | 0 | 89 | 263 | 0 | 0 | 0 | 0 |
| 3-4 | 0 | 104 | 17 | 121 | 3-4 | 15 | 149 | 0 | 164 | 285 | 0 | 0 | 0 | 0 |
| 4-5 | 0 | 105 | 20 | 125 | 4-5 | 20 | 212 | 0 | 232 | 357 | 0 | 0 | 0 | 0 |
| 5-6 | 0 | 156 | 37 | 193 | 5-6 | 89 | 469 | 0 | 558 | 751 | 0 | 0 | 0 | 0 |
| TOTAL | 0 | 1135 | 116 | 1251 | TOTAL | 124 | 1132 | 0 | 1256 | 2507 | 0 | 0 | 1 | 0 |
| EASTB | D Ap | proach |  | IONE | WEST | D Ap | roac |  |  | TOTAL | XING | W/L | XING |  |
| Hours | Lt | Th | Rt | Total | Hours | Lt | Th | Rt | Total | E-W | Ped | Sch | Ped | Sch |
| 7-8 | 0 | 0 | 0 | 0 | 7-8 | 35 | 0 | 40 | 75 | 75 | 0 | 0 | 2 | 0 |
| 8-9 | 0 | 0 | 0 | 0 | 8-9 | 23 | 0 | 70 | 93 | 93 | 0 | 0 | 3 | 0 |
| 9-10 | 0 | 0 | 0 | 0 | 9-10 | 15 | 0 | 2 | 17 | 17 | 0 | 0 | 2 | 0 |
| 3-4 | 0 | 0 | 0 | 0 | 3-4 | 18 | 0 | 0 | 18 | 18 | 0 | 0 | 0 | 0 |
| 4-5 | 0 | 0 | 0 | 0 | 4-5 | 25 | 0 | 2 | 27 | 27 | 0 | 0 | 2 | 0 |
| 5-6 | 0 | 0 | 0 | 0 | 5-6 | 33 | 0 | 3 | 36 | 36 | 0 | 0 | 4 | 0 |
| TOTAL | 0 | 0 | 0 | 0 | TOTAL | 149 | 0 | 117 | 266 | 266 | 0 | 0 | 13 | 0 |



| Hours | Lt | Th | Rt | Total |
| :---: | :---: | :---: | :---: | :---: |
| 7-8 | 38 | 68 | 233 | 339 |
| 8-9 | 63 | 41 | 270 | 374 |
| 9-10 | 58 | 36 | 293 | 387 |
| 15-16 | 88 | 52 | 404 | 544 |
| 16-17 | 98 | 65 | 455 | 618 |
| 17-18 | 112 | 56 | 533 | 701 |
| TOTAL | 457 | 318 | 2188 | 2963 |


| SOUTHBOUND Approach |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Hours | Lt | Th | Rt | Total |
| 7-8 | 36 | 53 | 10 | 99 |
| 8-9 | 37 | 54 | 14 | 105 |
| 9-10 | 29 | 59 | 12 | 100 |
| 15-16 | 65 | 80 | 19 | 164 |
| 16-17 | 100 | 95 | 14 | 209 |
| 17-18 | 75 | 89 | 29 | 193 |
| TOTAL | 342 | 430 | 98 | 870 |

TOTAL XING S/L XING N/L


| 3833 |  |
| :--- | :--- |
| 13 | 0 |

7

| EASTBOUND Approach |  |  |  |  | WESTBOUND Approach |  |  |  |  | TOTAL | XING W/L |  | XING E/L |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hours | Lt | Th | Rt | otal | Hours | Lt | Th | Rt T | tal | E-W | Ped | Sch | Ped | Sch |
| 7-8 | 4 | 323 | 84 | 411 | 7-8 | 387 | 391 | 117 | 895 | 1306 | 1 | 0 | 4 | 0 |
| 8-9 | 9 | 373 | 76 | 458 | 8-9 | 424 | 453 | 71 | 948 | 1406 | 0 | 0 | 3 | 1 |
| 9-10 | 9 | 395 | 69 | 473 | 9-10 | 342 | 410 | 59 | 811 | 1284 | 1 | 0 | 3 | 0 |
| 15-16 | 14 | 500 | 78 | 592 | 15-16 | 392 | 402 | 26 | 820 | 1412 | 0 | 0 | 6 | 0 |
| 16-17 | 12 | 509 | 70 | 591 | 16-17 | 394 | 479 | 29 | 902 | 1493 | 3 | 0 | 3 | 0 |
| 17-18 | 16 | 532 | 97 | 645 | 17-18 | 391 | 457 | 32 | 880 | 1525 | 1 | 0 | 1 | 0 |
| TOTAL | 64 | 2632 | 474 | 3170 | TOTAL | 2330 | 2592 | 334 | 5256 | 8426 | 6 | 0 | 20 | 1 |

## Fallbrook Ave \& Roscoe Blvd

## Peak Hour Turning Movement Count

> ID: 21-020185-002 City: Canoga Park

|  | 07:30 AM - 08:30 AM |
| :---: | :---: |
|  | NONE |
|  | 05:00 PM - 06:00 PM |

Day: Tuesday
Date: 06/29/2021

| 07:00 AM - 10:00 AM <br> NONE 03:00 PM - 06:00 PM |  |  | O 0 2 1 0 0 0 0 0 |
| :---: | :---: | :---: | :---: |
| PM | NOON | AM |  |
| 32 | 0 | 102 |  |
| 457 | 0 | $461 \geqslant$ |  |
| 391 | 0 | 447 ¢ | On |
| 0 | 0 | 0 O |  |
| 1140 | 0 | 634 |  |
| PM | NOON | AM |  |
| HT (AM) |  |  |  |



Cars (NOON)


Intersection Turning Movement Count
Location: Fallbrook Ave \& Roscoe Blvd
City: Canoga Park
Project ID: 21-020185-002
Control: Signalized Date: 6/29/2021


| PM | NORTHBOUND |  |  |  | SOUTHBOUND |  |  |  | EASTBOUND |  |  |  | WESTBOUND |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 1 \\ \text { NL } \end{gathered}$ | 1NT | $\begin{gathered} 1 \\ \text { NR } \end{gathered}$ | $\begin{gathered} 0 \\ \text { NU } \end{gathered}$ | $\begin{aligned} & 1 \\ & \mathrm{SL} \\ & \hline \end{aligned}$ | 2ST | $\begin{gathered} 1 \\ \mathrm{SR} \end{gathered}$ | $\begin{gathered} 0 \\ \text { SU } \end{gathered}$ | $\begin{gathered} 1 \\ \text { EL } \end{gathered}$ | 3ET | $\begin{gathered} 0 \\ \text { ER } \end{gathered}$ | $\begin{gathered} 0 \\ \text { EU } \end{gathered}$ | $\begin{gathered} 1 \\ \text { WL } \end{gathered}$ | $\begin{gathered} 3 \\ \text { WT } \end{gathered}$ | $\begin{gathered} 0 \\ \text { WR } \end{gathered}$ | $\begin{gathered} 0 \\ \text { WU } \end{gathered}$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3:00 PM | 25 | 18 | 94 | 0 | 15 | 16 | 3 | 0 | 3 | 116 | 16 | 0 | 80 | 97 | 8 | 0 | 491 |
| 3:15 PM | 14 | 14 | 102 | 0 | 14 | 18 | 3 | 0 | 4 | 123 | 23 | 0 | 87 | 95 | 6 | 0 | 503 |
| 3:30 PM | 26 | 7 | 108 | 0 | 17 | 24 | 7 | 0 | 4 | 137 | 19 | 0 | 118 | 100 | 6 | 0 | 573 |
| 3:45 PM | 23 | 13 | 100 | 0 | 19 | 22 | 6 | 0 | 3 | 124 | 20 | 0 | 107 | 110 | 6 | 0 | 553 |
| 4:00 PM | 22 | 21 | 118 | 0 | 23 | 19 | 2 | 0 | 4 | 133 | 15 | 0 | 96 | 114 | 5 | 0 | 572 |
| 4:15 PM | 21 | 14 | 102 | 0 | 19 | 32 | 4 | 0 | 4 | 137 | 16 | 0 | 95 | 128 | 9 | 1 | 582 |
| 4:30 PM | 28 | 11 | 122 | 0 | 30 | 30 | 4 | 0 | 2 | 127 | 17 | 0 | 100 | 124 | 7 | 0 | 602 |
| 4:45 PM | 27 | 19 | 113 | 0 | 28 | 14 | 4 | 0 | 2 | 112 | 22 | 0 | 102 | 113 | 8 | 0 | 564 |
| 5:00 PM | 43 | 13 | 121 | 0 | 20 | 23 | 8 | 0 | 6 | 145 | 31 | 0 | 100 | 103 | 12 | 0 | 625 |
| 5:15 PM | 16 | 18 | 138 | 0 | 20 | 21 | 5 | 0 | 6 | 134 | 19 | 0 | 110 | 96 | 6 | 0 | 589 |
| 5:30 PM | 32 | 11 | 127 | 0 | 22 | 25 | 7 | 0 | 1 | 132 | 27 | 1 | 92 | 132 | 6 | 0 | 615 |
| 5:45 PM | 21 | 14 | 147 | 0 | 13 | 20 | 9 | 0 | 2 | 121 | 20 | 0 | 89 | 126 | 8 | 0 | 590 |
|  | NL | NT | NR | NU | SL | ST | SR | SU | EL | ET | ER | EU | WL | WT | WR | WU | TOTAL |
| TOTAL VOLUMES : | 298 | 173 | 1392 | 0 | 240 | 264 | 62 | 0 | 41 | 1541 | 245 | 1 | 1176 | 1338 | 87 | 1 | 6859 |
| APPROACH \%'s : | 16.00\% | 9.29\% | 74.72\% | 0.00\% | 42.40\% | 46.64\% | 10.95\% | 0.00\% | 2.24\% | 84.30\% | 13.40\% | 0.05\% | 45.20\% | 51.42\% | 3.34\% | 0.04\% |  |
| PEAK HR : | 05:00 PM - 06:00 PM |  |  |  | $\begin{gathered} 75 \\ 0.852 \end{gathered}$ | 89 | 29 | $\begin{gathered} 0 \\ 0.000 \end{gathered}$ | $\begin{gathered} 15 \\ 0.625 \end{gathered}$ | 532 | $\begin{gathered} 97 \\ 0.782 \end{gathered}$ | $\begin{gathered} 1 \\ 0.250 \end{gathered}$ | $\begin{aligned} & 391 \\ & 0.889 \end{aligned}$ | 457 | 32 | 0 | $\begin{aligned} & \hline \text { TOTAL } \\ & 2419 \end{aligned}$ |
| PEAK HR VOL : | 112 | 56 | 533 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| PEAK HR FACTOR : | 0.651 | 0.778 | 0.906 | 0.000 |  | 0.890 | 0.806 |  |  | 0.917 |  |  |  | 0.866 | 0.667 | $0.000$ |  |
|  | 0.963 |  |  |  |  | 0.894 |  |  |  | 0.886 |  |  |  | 0.957 |  |  | 0.968 |



City Of Los Angeles
Department Of Transportation
MANUAL TRAFFIC COUNT SUMMARY
STREET:

| North/South | Fallbrook Ave |
| :--- | :--- |
| East/West | Eccles St |



## NORTHBOUND Approach

| Hours | Lt | Th | Rt | Total |
| :---: | :---: | :---: | :---: | :---: |
| 7-8 | 0 | 84 | 38 | 122 |
| 8-9 | 0 | 124 | 45 | 169 |
| 9-10 | 0 | 50 | 20 | 70 |
| 15-16 | 0 | 23 | 79 | 102 |
| 16-17 | 0 | 22 | 108 | 130 |
| 17-18 | 0 | 19 | 87 | 106 |
| TOTAL | 0 | 322 | 377 | 699 |

## EASTBOUND Approach

Hours
$7-8$
$8-9$
$9-10$
$15-16$
$16-17$
$17-18$

TOTAL

| Lt | Th | Rt | Total |
| ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

[^13]
## SOUTHBOUND Approach



## WESTBOUND Approach

Hours
$7-8$
$8-9$
$9-10$
$15-16$
$16-17$
$17-18$

| Lt | Th | Rt | Total |
| ---: | ---: | ---: | ---: |
| 221 | 0 | 15 | 236 |
| 98 | 0 | 23 | 121 |
| 43 | 0 | 20 | 63 |
| 45 | 0 | 5 | 50 |
| 50 | 0 | 10 | 60 |
| 66 | 0 | 4 | 70 |

TOTAL

| 523 | 0 | 77 | 600 |
| :--- | :--- | :--- | :--- |

TOTAL XING S/L

| N-S | Ped | Sch |
| ---: | ---: | ---: |
| 153 |  |  |
| 202 |  |  |
| 113 |  |  |
| 192 |  |  |
| 256 |  |  |
| 295 |  |  |
| 0 | 0 |  |
| 0 | 0 |  |
| 0 | 0 |  |
| 0 | 0 |  |
| 1 | 0 |  |


| Ped | Sch |
| ---: | ---: |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 2 | 0 |
| 1 | 1 |

$$
1211
$$

$\qquad$ 1) 0

| 3 | 1 |
| :--- | :--- |

TOTAL XING W/L
XING E/L

| E-W |
| ---: |
| 236 |
| 121 |
| 63 |
| 50 |
| 60 |
| 70 |


| Ped | Sch |
| ---: | ---: |
| 0 | 0 |
| 2 | 0 |
| 0 | 0 |
| 1 | 0 |
| 2 | 0 |
| 2 | 1 |


| Ped | Sch |
| ---: | ---: |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

600

| 7 | 1 |
| :--- | :--- |

National Data \& Surveying Services


Total Ins \& Outs


Total Volume Per Leg


# Intersection Turning Movement <br> Prepared by: <br> National Data \& Surveying Services 



CONTROL : 1-Way Stop (WB)

# Intersection Turning Movement <br> Prepared by: <br> National Data \& Surveying Services 



CONTROL : 1-Way Stop (WB)

## Appendix D

## Detalled Plans, Programs, Ordinances, and

 Policies Review
## Plans, Policies and Programs Consistency Worksheet

The worksheet provides a structured approach to evaluate the threshold T-1 question below, that asks whether a project conflicts with a program, plan, ordinance or policy addressing the circulation system. The intention of the worksheet is to streamline the project review by highlighting the most relevant plans, policies and programs when assessing potential impacts to the City's circulation system.

Threshold T-1: Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?

This worksheet does not include an exhaustive list of City policies, and does not include community plans, specific plans, or any area-specific regulatory overlays. The Department of City Planning project planner will need to be consulted to determine if the project would obstruct the City from carrying out a policy or program in a community plan, specific plan, streetscape plan, or regulatory overlay that was adopted to support multimodal transportation options or public safety. LADOT staff should be consulted if a project would lead to a conflict with a mobility investment in the Public Right of Way (PROW) that is currently undergoing planning, design, or delivery. This worksheet must be completed for all projects that meet the Section I. Screening Criteria. For description of the relevant planning documents, see Attachment D.1.

For any response to the following questions that checks the box in bold text ((i.e. Yes or No), further analysis is needed to demonstrate that the project does not conflict with a plan, policy, or program.

## I. SCREENING CRITERIA FOR POLICY ANALYSIS

If the answer is 'yes' to any of the following questions, further analysis will be required:
Does the project require a discretionary action that requires the decision maker to find that the project would substantially conform to the purpose, intent and provisions of the General Plan?

$$
x \text { Yes No }
$$

Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?

Yes $\times$ No
Is the project required to or proposing to make any voluntary modifications to the public right-of-way (i.e., dedications and/or improvements in the right-of-way, reconfigurations of curb line, etc.)?

$$
x \text { Yes } \square \text { No }
$$

## II. PLAN CONSISTENCY ANALYSIS

## A. Mobility Plan 2035 PROW Classification Standards for Dedications and Improvements

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 - Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 - Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 - People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions
A. 1 Does the project include additions or new construction along a street designated as a Boulevard I, and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone? x Yes No
A. 2 If A. 1 is yes, is the project required to make additional dedications or improvements to the Public Right of Way as demonstrated by the street designation. $x$ Yes $\square$ No N/A
A. 3 If A. 2 is yes, is the project making the dedications and improvements as necessary to meet the designated dimensions of the fronting street (Boulevard I, and II, or Avenue I, II, or III)?

$$
x \text { Yes } \square \text { No } \square \text { N/A }
$$

If the answer is to A. 1 or A. 2 is NO, or to A.1, A. 2 and A.3. is YES, then the project does not conflict with the dedication and improvement requirements that are needed to comply with the Mobility Plan 2035 Street Designations and Standard Roadway Dimensions.
A. 4 If the answer to A.3. is NO, is the project applicant asking to waive from the dedication standards?

$$
\text { Yes } \square \text { No } \times \text { N/A }
$$

Lists any streets subject to dedications or voluntary dedications and include existing roadway and sidewalk widths, required roadway and sidewalk widths, and proposed roadway and sidewalk width or waivers.

| Frontage 1 Existing PROW'/Curb' : Existing $50^{\prime} / 40^{\prime} \quad$ Required_ $\quad 55^{\prime} / 40^{\prime} \quad$ Proposed___ 55'/40' |
| :--- | :--- | :--- | Roscoe Boulevard (Boulevard II)

Frontage 2 Existing PROW'/Curb' : Existing $\qquad$ Required $\qquad$ Proposed $\qquad$

Frontage 3 Existing PROW'/Curb' : Existing $\qquad$ Required $\qquad$ Proposed $\qquad$

Frontage 4 Existing PROW'/Curb' : Existing $\qquad$ Required $\qquad$ Proposed $\qquad$

Plan, Policy, and Program Consistency Worksheet
If the answer to A. 4 is NO, the project is inconsistent with Mobility Plan 2035 street designations and must file for a waiver of street dedication and improvement.

If the answer to A. 4 is YES, additional analysis is necessary to determine if the dedication and/or improvements are necessary to meet the City's mobility needs for the next 20 years. The following factors may contribute to determine if the dedication or improvement is necessary:

Is the project site along any of the following networks identified in the City's Mobility Plan?

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network

To see the location of the above networks, see Transportation Assessment Support Map. ${ }^{1}$

Is the project within the service area of Metro Bike Share, or is there demonstrated demand for micromobility services?

If the project dedications and improvements asking to be waived are necessary to meet the City's mobility needs, the project may be found to conflict with a plan that is adopted to protect the environment.

## B. Mobility Plan 2035 PROW Policy Alignment with Project-Initiated Changes

## B. 1 Project-Initiated Changes to the PROW Dimensions

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 - Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 - Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 - People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.

Mobility Plan 2035 Policy 2.10 - Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

[^14]Plan, Policy, and Program Consistency Worksheet
B. 1 Does the project physically modify the curb placement or turning radius and/or physically alter the sidewalk and parkways space that changes how people access a property?

Examples of physical changes to the public right-of-way include:

- widening the roadway,
- narrowing the sidewalk,
- adding space for vehicle turn outs or loading areas,
- removing bicycle lanes, bike share stations, or bicycle parking
- modifying existing bus stop, transit shelter, or other street furniture
- paving, narrowing, shifting or removing an existing parkway or tree well

$$
\text { Yes } x \text { No }
$$

## B. 2 Driveway Access

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.10 - Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.

Mobility Plan 2035 Program PL.1. Driveway Access. Require driveway access to buildings from non-arterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines - Guideline 2: Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.

## Site Planning Best Practices:

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
- Minimize both the number of driveway entrances and overall driveway widths.
- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
- Orient vehicular access as far from street intersections as possible.
- Place drive-thru elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
- Ensure that loading areas do not interfere with on-site pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.
B. 2 Does the project add new driveways along a street designated as an Avenue or a Boulevard that conflict with LADOT's Driveway Design Guidelines (See Sec. 321 in the Manual of Policies and Procedures) by any of the following:
- locating new driveways for residential properties on an Avenue or Boulevard, and access is otherwise possible using an alley or a collector/local street, or
- locating new driveways for industrial or commercial properties on an Avenue or Boulevard and access is possible along a collector/local street, or
- the total number of new driveways exceeds 1 driveway per every 200 feet $^{2}$ along on the Avenue or Boulevard frontage, or
- locating new driveways on an Avenue or Boulevard within 150 feet from the intersecting street, or
- locating new driveways on a collector or local street within 75 feet from the intersecting street, or
- locating new driveways near mid-block crosswalks, requiring relocation of the mid-block crosswalk

Yes $x$ No

If the answer to B. 1 and B. 2 are both NO, then the project would not conflict with a plan or policies that govern the PROW as a result of the project-initiated changes to the PROW.

## Impact Analysis

If the answer to either B. 1 or B. 2 are YES, City plans and policies should be reviewed in light of the proposed physical changes to determine if the City would be obstructed from carrying out the plans and policies. The analysis should pay special consideration to substantial changes to the Public Right of Way that may either degrade existing facilities for people walking and bicycling (e.g., removing a bicycle lane), or preclude the City from completing complete street infrastructure as identified in the Mobility Plan 2035, especially if the physical changes are along streets that are on the High Injury Network (HIN). The analysis should also consider if the project is in a Transit Oriented Community (TOC) area, and would degrade or inhibit trips made by biking, walking and/ or transit ridership. The streets that need special consideration are those that are included on the following networks identified in the Mobility Plan 2035, or the HIN:

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network
- High Injury Network

To see the location of the above networks, see Transportation Assessment Support Map. ${ }^{3}$
Once the project is reviewed relevant to plans and policies, and existing facilities that may be impacted by the project, the analysis will need to answer the following two questions in concluding if there is an impact due to plan inconsistency.
B.2.1 Would the physical changes in the public right of way or new driveways that conflict with LADOT's Driveway Design Guidelines degrade the experience of vulnerable roadway users such as modify, remove, or otherwise negatively impact existing bicycle, transit, and/or pedestrian infrastructure?

$$
\text { Yes } \quad \text { No } x \text { N/A }
$$

[^15]B.2.2 Would the physical modifications or new driveways that conflict with LADOT's Driveway Design Guidelines preclude the City from advancing the safety of vulnerable roadway users?
$$
\text { Yes } \square \text { No } x \text { N/A }
$$

If either of the answers to either B.2.1 or B.2.2 are YES, the project may conflict with the Mobility Plan 2035, and therefore conflict with a plan that is adopted to protect the environment. If either of the answers to both B.2.1. or B.2.2. are NO, then the project would not be shown to conflict with plans or policies that govern the Public Right-of-Way.

## C. Network Access

## C. 1 Alley, Street and Stairway Access

These questions address potential conflict with:

Mobility Plan Policy 3.9 Increased Network Access: Discourage the vacation of public rights-ofway.
C.1.1 Does the project propose to vacate or otherwise restrict public access to a street, alley, or public stairway?

$$
\text { Yes } x \text { No }
$$

C.1.2 If the answer to C.1.1 is Yes, will the project provide or maintain public access to people walking and biking on the street, alley or stairway?

$$
\text { Yes } \square \text { No } \times \mathrm{N} / \mathrm{A}
$$

## C. 2 New Cul-de-sacs

These questions address potential conflict with:

Mobility Plan 2035 Policy 3.10 Cul-de-sacs: Discourage the use of cul-de-sacs that do not provide access for active transportation options.
C.2.1 Does the project create a cul-de-sac or is the project located adjacent to an existing cul-de-sac? Yes $x$ No
C.2.2 If yes, will the cul-de-sac maintain convenient and direct public access to people walking and biking to the adjoining street network?

$$
\text { Yes } \square \text { No }{ }^{x} \text { N/A }
$$

If the answers to either C.1.2 or C.2.2 are YES, then the project would not conflict with a plan or policies that ensures access for all modes of travel. If the answer to either C.1.2 or C.2.2 are NO, the project may conflict with a plan or policies that governs multimodal access to a property. Further analysis must assess to the degree that pedestrians and bicyclists have sufficient public access to the transportation network.

## D. Parking Supply and Transportation Demand Management

These questions address potential conflict with:

## Mobility Plan 2035 Policy 3.8-Bicycle Parking, Provide bicyclists with convenient, secure and well maintained bicycle parking facilities.

Mobility Plan 2035 Policy 4.8 - Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependence on single-occupancy vehicles.

Mobility Plan 2035 Policy 4.13 - Parking and Land Use Management: Balance on-street and offstreet parking supply with other transportation and land use objectives.
D. 1 Would the project propose a supply of onsite parking that exceeds the baseline amount ${ }^{4}$ as required in the Los Angeles Municipal Code or a Specific plan, whichever requirement prevails?

$x$ Yes No

D. 2 If the answer to D.1. is YES, would the project propose to actively manage the demand of parking by independently pricing the supply to all users (e.g. parking cash-out), or for residential properties, unbundle the supply from the lease or sale of residential units?

$$
\text { Yes }{ }^{\mathrm{X}} \text { No N/A }
$$

If the answer to D.2. is NO the project may conflict with parking management policies. Further analysis is needed to demonstrate how the supply of parking above city requirements will not result in additional (induced) drive-alone trips as compared to an alternative that provided no more parking than the baseline required by the LAMC or Specific Plan. If there is potential for the supply of parking to result in induced demand for drive-alone trips, the project should further explore transportation demand management (TDM) measures to further off-set the induced demands of driving and vehicle miles travelled (VMT) that may result from higher amounts of on-site parking. The TDM measures should specifically focus on strategies that encourage dynamic and context-sensitive pricing solutions and ensure the parking is efficiently allocated, such as providing real time information. Research has demonstrated that charging a user cost for parking or providing a 'cash-out' option in return for not using it is the most effective strategy to reduce the instances of drive-alone trips and increase non-auto mode share to further reduce VMT. To ensure the parking is efficiently managed and reduce the need to build parking for future uses, further strategies should include sharing parking with other properties and/or the general public.
D.3. Would the project provide the minimum on and off-site bicycle parking spaces as required by Section 12.21 A. 16 of the LAMC?

[^16]Plan, Policy, and Program Consistency Worksheet
D.4. Does the Project include more than 25,000 square feet of gross floor area construction of new nonresidential gross floor?

$x$ Yes No

D. 5 If the answer to D.4. is YES, does the project comply with the City's TDM Ordinance in Section 12.26 J of the LAMC?

$$
x \text { Yes } \square \text { No } \square \text { N/A }
$$

If the answer to D.3. or D.5. is NO the project conflicts with LAMC code requirements of bicycle parking and TDM measures. If the project includes uses that require bicycle parking (Section 12.21 A .16 ) or TDM (Section 12.26 J ), and the project does not comply with those Sections of the LAMC, further analysis is required to ensure that the project supports the intent of the two LAMC sections. To meet the intent of bicycle parking requirements, the analysis should identify how the project commits to providing safe access to those traveling by bicycle and accommodates storing their bicycle in locations that demonstrates priority over vehicle access.

Similarly, to meet the intent of the TDM requirements of Section 12.26 J of the LAMC, the analysis should identify how the project commits to providing effective strategies in either physical facilities or programs that encourage non-drive alone trips to and from the project site and changes in work schedule that move trips out of the peak period or eliminate them altogether (as in the case in telecommuting or compressed work weeks).

## E. Consistency with Regional Plans

This section addresses potential inconsistencies with greenhouse gas (GHG) reduction targets forecasted in the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) / Sustainable Communities Strategy (SCS).
E. 1 Does the Project or Plan apply one the City's efficiency-based impact thresholds (i.e. VMT per capita, VMT per employee, or VMT per service population) as discussed in Section 2.2.3 of the TAG?
E. 2 If the Answer to E. 1 is YES, does the Project or Plan result in a significant VMT impact?

$$
\text { Yes } x \text { No } \quad \text { N/A }
$$

E. 3 If the Answer to E. 1 is NO, does the Project result in a net increase in VMT?

$$
\text { Yes } \square \text { No } x / A
$$

If the Answer to E. 2 or E. 3 is NO, then the Project or Plan is shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.
E. 4 If the Answer to E. 2 or E. 3 is YES, then further evaluation would be necessary to determine whether such a project or land use plan would be shown to be consistent with VMT and GHG reduction goals of the SCAG RTP/SCS. For the purpose of making a finding that a project is consistent with the GHG reduction targets forecasted in the SCAG RTP/SCS, the project analyst should consult Section 2.2.4 of the Transportation Assessment Guidelines (TAG). Section 2.2.4 provides the methodology for evaluating a land use project's cumulative impacts to VMT, and the appropriate reliance on SCAG's most recently adopted RTP/SCS in reaching that conclusion.

## LADOT

Plan, Policy, and Program Consistency Worksheet
The analysis methods therein can further support findings that the project is consistent with the general use designation, density, building intensity, and applicable policies specified for the project area in either a sustainable communities strategy or an alternative planning strategy for which the State Air Resources Board, pursuant to Section 65080(b)(2)(H) of the Government Code, has accepted a metropolitan planning organization's determination that the sustainable communities strategy or the alternative planning strategy would, if implemented, achieve the greenhouse gas emission reduction targets.

## References

BOE Street Standard Dimensions S-470-1 http://eng2.lacity.org/techdocs/stdplans/s-400/s-4701 20151021 150849.pdf

LADCP Citywide Design Guidelines. https://planning.lacity.org/odocument/f6608be7-d5fe-4187-bea620618eec5049/Citywide Design Guidelines.pdf

LADOT Transportation Assessment Support Map https://arcg.is/fubbD

Mobility Plan 2035 https://planning.lacity.org/odocument/523f2a95-9d72-41d7-aba51972f84c1d36/Mobility Plan 2035.pdf

SCAG. Connect SoCal, 2020-2045 RTP/SCS, https://www.connectsocal.org/Pages/default.aspx

## ATTACHMENT D.1: CITY PLAN, POLICIES AND GUIDELINES

The Transportation Element of the City's General Plan, Mobility Plan 2035, established the "Complete Streets Design Guide" as the City's document to guide the operations and design of streets and other public rights-of-way. It lays out a vision for designing safer, more vibrant streets that are accessible to people, no matter what their mode choice. As a living document, it is intended to be frequently updated as City departments identify and implement street standards and experiment with different configurations to promote complete streets. The guide is meant to be a toolkit that provides numerous examples of what is possible in the public right-of-way and that provides guidance on context-sensitive design.

The Plan for A Healthy Los Angeles (March 2015) includes policies directing several City departments to develop plans that promote active transportation and safety.

The City of Los Angeles Community Plans, which make up the Land Use Element of the City's General Plan, guide the physical development of neighborhoods by establishing the goals and policies for land use. The 35 Community Plans provide specific, neighborhood-level detail for land uses and the transportation network, relevant policies, and implementation strategies necessary to achieve General Plan and community-specific objectives.

The stated goal of Vision Zero is to eliminate traffic-related deaths in Los Angeles by 2025 through a number of strategies, including modifying the design of streets to increase the safety of vulnerable road users. Extensive crash data analysis is conducted on an ongoing basis to prioritize intersections and corridors for implementation of projects that will have the greatest effect on overall fatality reduction. The City designs and deploys Vision Zero Corridor Plans as part of the implementation of Vision Zero. If a project is proposed whose site lies on the High Injury Network (HIN), the applicant should consult with LADOT to inform the project's site plan and to determine appropriate improvements, whether by funding their implementation in full or by making a contribution toward their implementation.

The Citywide Design Guidelines (October 24, 2019) includes sections relevant to development projects where improvements are proposed within the public realm. Specifically, Guidelines one through three provide building design strategies that support the pedestrian experience. The Guidelines provide best practices in designing that apply in three spatial categories of site planning, building design and public right of way. The Guidelines should be followed to ensure that the project design supports pedestrian safety, access and comfort as they access to and from the building and the immediate public right of way.

The City's Transportation Demand Management (TDM) Ordinance (LA Municipal Code 12.26.J) requires certain projects to incorporate strategies that reduce drive-alone vehicle trips and improve access to destinations and services. The ordinance is revised and updated periodically and should be reviewed for application to specific projects as they are reviewed.

The City's LAMC Section 12.37 (Waivers of Dedication and Improvement) requires certain projects to dedicate and/or implement improvements within the public right-of-way to meet the street designation standards of the Mobility Plan 2035.

The Bureau of Engineering (BOE) Street Standard Dimensions S-470-1 provides the specific street widths and public right of way dimensions associated with the City's street standards.

# Detailed Responses in Support of General Consistency with Transportation-Related Plans, Programs, Ordinances, or Policies (Adapted from Attachment D in LADOT Transportation Assessment Guidelines, July 2020) 

The items below correspond with the TAG Attachment D: Plan, Policy, and Program Consistency Worksheet. Defined terms below have the same meanings as in the Transportation Assessment.

## A. Mobility Plan 2035 (MP 2035) PROW Classification Standards for Dedications and Improvements

The Project does include additions or new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. The Project proposes new construction along Fallbrook Avenue and Roscoe Boulevard, which are designated as an Avenue II and Boulevard II, respectively, under the Mobility Plan 2035 Street Standards Plan. The Project Site is zoned [T][Q]M1-1 per the LAMC. The Project is required to and will make the required five-foot dedication along the Project Site's Roscoe Boulevard frontage. Along the Project Site, Fallbrook Avenue is included within the Neighborhood Enhanced Network (NEN) and Bicycle Lane Network (BLN) within the Mobility Plan 2035. Additionally, along the Project Site, Roscoe Boulevard is included within the Bicycle Enhanced Network (BEN) within the Mobility Plan 2035. The Project will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. Therefore, the Project does not conflict with any dedication and improvement requirements that are needed to comply with the Mobility Plan 2035 Street Designation and Standard Roadway Dimensions requirements.

Mobility Plan 2035 Policy 2.1 - Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

- The Project is required to and will make dedications or improvements to the public rightof way. Specifically, a five-foot dedication is required for Roscoe Boulevard. The Project will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

Mobility Plan 2035 Policy 2.3 - Pedestrian Infrastructure. Recognize walking as a component of every trip and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

- The Project will not alter pedestrian infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. The Project prioritizes pedestrian access and connectivity. Pedestrian access to the Project will continue to be provided via the existing driveways along Fallbrook Avenue and Roscoe Boulevard. Additionally, the Project proposes to provide pathways connecting the Project Site to the sidewalks along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages.

Mobility Plan 2035 Policy 3.2 - People with Disabilities. Accommodate the needs of people with disabilities when modifying of installing infrastructure within the public right-of-way.

- The Project will not alter existing ADA infrastructure or the right-of-way in a manner that would preclude or conflict with future changes by various City Departments. Pedestrian access from the public-right-of-way to the Project will be ADA compliant.


## Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

- The Project proposes new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. Fallbrook Avenue and Roscoe Boulevard are designated as an Avenue II and Boulevard II, respectively, under the Mobility Plan 2035 Street Standards Plan. The Project Site is zoned $[\mathrm{T}][\mathrm{Q}] \mathrm{M} 1-1$ per the LAMC.


## Mobility Plan 2035 Networks

- The Project Site has frontage along the following networks in MP 2035:
- Bicycle Enhanced Network: Roscoe Boulevard
- Bicycle Lane Network: Fallbrook Avenue
- Neighborhood Enhanced Network: Fallbrook Avenue

Mobility Plan 2035 Policy 2.4 - Neighborhood Enhanced Network. Provide a slow speed network of locally serving streets.

- Fallbrook Avenue has been designated within the City's NEN. Sidewalks and Class II Bicycle Lanes are provided in each direction on Fallbrook Avenue along the Project Site's frontage. The Project will not preclude or conflict with any potential modifications to Arizona Avenue as part of the NEN. The Project will not modify Arizona Boulevard in a manner that would substantially increase travel speed.

Mobility Plan 2035 Policy 2.6 - Bicycle Networks. Provide safe, convenient, and comfortable local and regional bicycling facilities for people of all types and abilities.

- Fallbrook Avenue has been designated within the City's BLN. Roscoe Boulevard has been designated within the City's BEN. Fallbrook Avenue and Roscoe Boulevard are improved with Class II Bicycle Lanes in each direction. The Project will not preclude or conflict with any potential improvements to Fallbrook Avenue or Roscoe Boulevard as part of the BLN or BEN.


## B. Mobility Plan 2035 (MP 2035) PROW Policy Alignment with Project-Initiated Changes

## B.1. Project-Initiated Changes to the PROW Dimensions

The Project will not physically modify the curb placement or turning radius, nor does it physically alter the sidewalk and parkways space, in a manner that would change how people access the Project Site. The Project complies with the MP 2035 policies outlined below.

Mobility Plan 2035 Policy 2.1 - Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

- The Project is required to and will make dedications or improvements to the public rightof way. Specifically, a five-foot dedication is required for Roscoe Boulevard. The Project will not alter adjacent streets or the right-of-way in a manner that would preclude or conflict future changes by various City Departments.

Mobility Plan 2035 Policy 2.3 - Pedestrian Infrastructure. Recognize walking as a component of every trip and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

- The Project will not alter pedestrian infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. The Project prioritizes pedestrian access and connectivity. Pedestrian access to the Project will be provided via pathways within landscaped buffer areas connecting Building 1 to Roscoe Boulevard and Building 3 to Fallbrook Avenue.

Mobility Plan 2035 Policy 3.2 - People with Disabilities. Accommodate the needs of people with disabilities when modifying of installing infrastructure within the public right-of-way.

- The Project will not alter existing ADA infrastructure or the right-of-way in a manner that would preclude or conflict future changes by various City Departments. Pedestrian access from the public-right-of-way to the Project will be ADA compliant.

Mobility Plan 2035 Policy 2.10 - Loading Areas. Facilitate the provision of on and off-site street loading areas.

- All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations will occur within loading docks internal to each of the three buildings. Additionally, each building will have its own covered trash/recycling enclosure. Service and delivery vehicles will utilize either Project driveway to access the loading docks and trash/recycling enclosures located within each of the three Project buildings.
- The Project proposes new construction along a street designated as a Boulevard I and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone. Fallbrook Avenue and Roscoe Boulevard are designated as an Avenue II and Boulevard II, respectively, under the Mobility Plan 2035 Street Standards Plan. The Project Site is zoned [T][Q]M1-1 per the LAMC.


## B.2. Driveway Access

The Project does not add new driveways along a street designated as an Avenue or a Boulevard, therefore, the Project does not conflict with LADOT Manual of Policy and Procedures (MPP), Section 321, Driveway Design. Primary vehicular access to the Project Site will continue to be provided via the existing driveways along the west side of Fallbrook Avenue and the south side of Roscoe Boulevard. Additional vehicular access to the Project Site will continue to be provided via the existing driveway along the north side of Roscoe Boulevard, opposite Lena Avenue. It is noted that Fallbrook Avenue and Roscoe Boulevard are designated as an Avenue II and Boulevard II, respectively, under the Mobility Plan 2035 Street Standards Plan.

Mobility Plan 2035 Policy 2.10 - Loading Areas. Facilitate the provision of on and off-site street loading areas.

- All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations will occur within loading docks internal to each of the three buildings. Additionally, each building will have its own covered trash/recycling enclosure. Service and delivery vehicles will utilize either Project driveway to access the loading docks and trash/recycling enclosures located within each of the three Project buildings.

Mobility Plan 2035 Program PL. 1. Driveway Access. Require driveway access to buildings from non-arterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

- The Project Site has frontage along Fallbrook Avenue and Roscoe Boulevard, which are designated as an Avenue II and Boulevard II, respectively, under the Mobility Plan 2035 Street Standards Plan. Vehicular access to the Project Site will be provided via the existing driveway along the west side of Fallbrook Avenue and the existing driveway along the south side of Roscoe Boulevard. The Project driveways are located at the northeastern and southwestern portions of the Project Site, away from major intersections. The Project has been designed to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines - Guideline 2. Carefully incorporate vehicular access such that it does not degrade the pedestrian experience, in accordance with the Site Planning Best Practices listed below.

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
- The Project prioritizes pedestrian access first. The Project will maintain the existing curb cuts along Fallbrook Avenue and Roscoe Boulevard and will not add new curb cuts within the public right-of-way. The Project will provide pathways within landscaped buffer areas connecting the Project Site to the sidewalks along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages. Parking for the Project will be located away from the public-right-of-way. The Fallbrook Avenue driveway is located approximately 300 feet north of the Schoenborn Street intersection and 430 feet south of the Eccles Street intersection. The Roscoe Boulevard driveway is located approximately 505 feet west of the Fallbrook Avenue intersection and 625 east of the Lena Avenue intersection.
- Minimize both the number of driveway entrances and overall driveway widths.
- The existing curb cuts along Fallbrook Avenue and Roscoe Boulevard will be maintained. The Project does not propose the addition of new curb cuts along the public right-of-way.
- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
- The Project does not propose any on-street drop-off/pick-up areas.
- Orient vehicular access as far from street intersections as possible.
- The Project will maintain the existing driveway along the west side of Fallbrook Avenue, as well as the existing driveway along the south side of Roscoe Boulevard. The Fallbrook Avenue driveway is located approximately 300 feet north of the Schoenborn Street intersection and 430 feet south of the Eccles Street intersection. The Roscoe Boulevard driveway is located approximately 505 feet west of the Fallbrook Avenue intersection and 625 east of the Lena Avenue intersection.
- Place drive-through elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
- The Project does not propose any drive-through elements.
- Ensure that loading areas do not interfere with onsite pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.
- All loading activities will occur off-street and internal to the Project Site. Loading activities associated with service and delivery operations will occur within loading docks internal to each of the three buildings. Additionally, each building will have its own covered trash/recycling enclosure. Service and delivery vehicles will utilize either Project driveway to access the loading docks and trash/recycling enclosures located within each of the three Project buildings.


## C. Network Access

## C.1. Alley, Street and Stairway Access

The Project does not conflict with Mobility Plan 2035 policy below because it will not vacate or otherwise restrict public access to a street, alley or public stairway.

Mobility Plan 2035 Policy 3.9 - Increased Network Access. Discourage the vacation of public rights-of-way.

- The Project will not vacate any public rights-of-way.


## C.2. New Cul-de-sacs

The Project does not conflict with the Mobility Plan 2035 policy below because it will not create a cul-de-sac, nor is the Project located adjacent to an existing cul-de-sac.

Mobility Plan 2035 Policy 3.10 - Cul-de-sacs. Discourage the use of cul-de-sacs that do not provide access for active transportation options.

- The Project Site is not located on a cul-de-sac.


## D. Parking Supply and Transportation Demand Management

The Project is consistent with the Mobility Plan 2035 polices below because while it provides vehicle parking in excess of the requirements of the LAMC, the Project properly balances parking and land use management. The Project will also provide short-term and long-term bicycle parking per LAMC requirements.

The Project Applicant will comply with the City's existing TDM Ordinance in LAMC Section 12.26.J. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.

Therefore, the Project does not conflict the LAMC vehicle and bicycle parking requirements or the City's TDM measures.

Mobility Plan 2035 Policy 3.8 - Bicycle Parking. Provide bicyclists with convenient, secure, and well-maintained bicycle parking facilities.

- The Project will provide short-term and long-term bicycle parking per the LAMC requirements.

Mobility Plan 2035 Policy 4.8 - Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependence on single-occupancy vehicles.

- As described in Section 2.9 of the Transportation Assessment, the Project will utilize three TDM strategies as Mitigation Measures or Project Design Features: Promotions and Marketing; Ride-Share Program; and Include Bike Parking per the LAMC. The Project Applicant will comply with existing applicable City ordinances (e.g., the City's existing TDM Ordinance, referred to in the LAMC Section 12.26.J) and the other requirements per the City's Municipal Code. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.

Mobility Plan 2035 Policy 4.13 - Parking and Land Use Management. Balance on-street and offstreet parking supply with other transportation and land use objectives.

- Upon completion of the Project, a total of 262 vehicular parking spaces will be provided. Additionally, the Project will provide bicycle parking per the LAMC requirements. Furthermore, the Project is within convenient walking distance to bus stops along Fallbrook Avenue and Roscoe Boulevard.

The Project would not conflict with the portion of Policy 4.13 that discourages utilizing land for parking that could have been used for other valuable uses since most of the onsite parking will be located along the perimeter of the Project's three buildings, as well along the edge of the Project Site boundary.

Parking requirements for the Project are per the State Enterprise Zone (two spaces per 1,000 square feet of floor area). While the Project would include parking in excess of the minimum requirements as determined by the LAMC, it would include features to encourage walking and bicycling and bicycle parking spaces per the LAMC requirements. Furthermore, the Project will implement a ride-share program to encourage highoccupancy vehicle trips to and from the Project Site. As discussed in Section 4.2 of the Transportation Assessment, the Project would be consistent with the applicable goals and objectives of the SCAG 2020-2045 RTP/SCS to locate jobs in infill locations served by public transportation. Therefore, the Project would not undermine broader regional goals of creating vibrant public spaces and a robust multi-modal transportation system.

Under CEQA, a project is considered consistent with an applicable plan if it is consistent with the overall intent of the plan and would not preclude the attainment of its primary goals. A project does not need to be in perfect conformity with each and every policy. Therefore, even though the Project's parking may exceed the minimum requirements as determined by the LAMC, the Project is consistent with the overall intent of Policy 4.13 and Mobility Plan 2035.

Moreover, any inconsistency with an applicable policy, plan, or regulation is only a significant impact under CEQA if the policy, plan, or regulation were adopted for the purpose of avoiding or mitigating an environmental effect and the inconsistency itself would result in a direct physical impact on the environment. The above policy is intended to implement broader regional goals, not to mitigate an environmental effect. Therefore, even if the Project's amount of parking was conservatively considered to be inconsistent with Policy 4.13, such inconsistency would not be considered to be a significant impact under CEQA.

## E. Consistency with Regional Plans

The Project applies two of the City's efficiency-based impact thresholds (i.e., VMT per Capita and VMT per Employee) as discussed in Section 4.2 of the Transportation Assessment. The Project's VMT analysis concludes that the Project will not result in a significant VMT impact. As the Project will not result in a significant VMT impact, the Project is shown to be consistent with the VMT and greenhouse gas (GHG) goals of the Southern California Association of Governments (SCAG) Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS).

## Additional Review

The following provides a review of the transportation-related goals listed in the Plan for a Healthy Los Angeles (Healthy LA).

- The Project supports the transportation-related goals listed in Healthy LA. The Project is designed in a manner that facilitates travel on foot between the Project Site and nearby destinations along the Fallbrook Avenue and Roscoe Boulevard corridors. Additionally, the Project proposes to provide pathways within landscaped buffer areas connecting the Project Site to the sidewalks along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages. The Project will provide the LAMC-required number of bicycle parking spaces. The Project would not conflict with, limit or preclude the City's ability to implement programs and policies in furtherance of Healthy LA.

The following provides a review of relevant policies within the LADOT MPP.

- The LADOT MPP, Section 321, Driveway Design, includes driveway design standards to minimize adverse effects on-street traffic. The Project Site has frontage along Fallbrook Avenue and Roscoe Boulevard, which are designated as an Avenue II and Boulevard II, respectively, under the Mobility Plan 2035 Street Standards Plan. Primary vehicular access to the Project Site will continue to be provided via the existing driveway along the west side of Fallbrook Avenue and the existing driveway along the south side of Roscoe Boulevard. Additional vehicular access to the existing Project Site is provided via one driveway along the north side of Roscoe Boulevard, opposite Lena Avenue. It is noted that the Project Site's frontage along Fallbrook Avenue is approximately 690 feet, while the Project Site's frontage along Roscoe Boulevard is approximately 520 feet. Per MPP, Section 321, two driveways are permitted along arterial frontage that spans between 200 and 400 feet. No guidance is provided in MPP, Section 321 for projects with arterial frontage greater than 400 feet. As the Project has one driveway along Fallbrook Avenue and Roscoe Boulevard, the Project would not conflict with the LADOT MPP.

The following provides a review of Vision Zero.

- Vision Zero is a plan that strives to eliminate traffic-related deaths in Los Angeles by 2025 through strategies, such as modifying streets to better serve vulnerable road users. Projects located in the HIN should make improvements or fund them. The Project Site's Fallbrook Avenue and Roscoe Boulevard frontages are not included within the HIN. It is noted that south of Roscoe Boulevard, Fallbrook Avenue is included within the HIN. The Project would not preclude or conflict with the implementation of future Vision Zero projects in the public right-of-way along Fallbrook Avenue, Roscoe Boulevard, or other roadways within the immediate vicinity of the Project Site.

The following provides a review of the Mobility Hubs Reader's Guide.

- The Mobility Hubs Reader's Guide specifically focuses on enhancing bicycle connections, providing vehicle sharing services, improving bus infrastructure, providing real-time transit and wayfinding information, and enhancing walkability and pedestrian connections. The Project would incorporate several components, including LAMC-required short-term and long-term bicycle parking that both facilitates and encourages residents, visitors, and employees to bicycle to and from the Project Site. Further, as part of the Project's TDM program, the Project will utilize promotional and marketing tools to educate and inform employees about alternative transportation options and the effects of their travel choices. promotion on available transit options. Lastly, the Project will proactively aim to increase employee vehicle occupancy by providing ride-share matching services, designating preferred parking for ride-share participants, designing adequate passenger loading/unloading and waiting areas for ride-share vehicles, and providing a website or message board to connect riders and coordinate rides. Pedestrian pathways within landscaped buffer areas connecting the Project to the sidewalks on Fallbrook Avenue and

Roscoe Boulevard are proposed. The Project would not conflict with the Mobility Hubs Reader's Guide.

The following provides a review of the City's Walkability Checklist.

- The Project would result in the retention and improvement of all sidewalks along the Project Site's Fallbrook Avenue and Roscoe frontages. The Project will not add additional curb cuts along the public right-of-way in order to provide a safe pedestrian connection between the Project Site and the nearby destinations along the Roscoe Boulevard and Fallbrook Avenue corridors. Additionally, the Project will add pedestrian pathways within landscaped buffer areas connecting the Project Site to the sidewalks along the Project Site's Fallbrook Avenue and Roscoe Boulevard frontages. These features support the Walkability Checklist recommendations and serve to enhance the pedestrian experience. The Project would not conflict with the Walkability Checklist.

The following provides a review of the transportation-related goals listed in the Chatsworth-Porter Ranch Community Plan ("Community Plan"). The Community Plan was adopted in 1993. It is anticipated that the City will begin a plan update process in 2021. The plan from 1993 is currently in effect and forms the basis for this review of potential conflicts relating to the transportation system.

From a transportation perspective, the Community Plan encourages the implementation of Transportation Management Plans (TMP) to provide vehicular alternatives to the automobile for efficiently transporting large numbers of people to local and regional destinations. As discussed in Section 2.9 of the Transportation Assessment, the Project will implement three TDM strategies as Mitigation Measures or Project Design Features: Promotions and Marketing; Ride-Share Program; and Include Bike Parking per LAMC. The Project Applicant will comply with the City's existing TDM Ordinance in LAMC Section 12.26.J. It is noted that the City's TDM Ordinance is currently being updated. Although not yet adopted, the Project Applicant will comply with the terms of the proposed TDM Ordinance update, which is expected be completed prior to the anticipated construction of the Project.

Additionally, the Project complies with the goals and objectives of the Community Plan as the Project will make the required five-foot dedication along the Project Site's Roscoe Boulevard frontage.

## Appendix E

hCM and Levels of Service Explanation hCM Data Worksheets - Weekday AM and PM Peak Hours

## LEVEL OF SERVICE FOR SIGNALIZED INTERSECTIONS

In the Highway Capacity Manual (HCM), published by the Transportation Research Board, 2010, level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, in the absence of geometric delay, in the absence of incidents, and when there are no other vehicles on the road. Only the portion of total delay attributed to the control facility is quantified. This delay is called control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for traffic signals are stated in terms of the average control delay per vehicle. Delay is a complex measure and is dependent on a number of variables, including the quality of progression, the cycle length, the green ratio, and the $v / c$ ratio for the lane group in question.

## Level of Service Criteria for Signalized Intersections

| Level of Service | Control Delay (Sec/Veh) |
| :---: | :---: |
| A | $\leq 10$ |
| B | $>10$ and $\leq 20$ |
| C | $>20$ and $\leq 35$ |
| D | $>35$ and $\leq 55$ |
| E | $>55$ and $\leq 80$ |
| F | $>80$ |

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize HCM criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle. This level of service occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay values.

LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

LOS C describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than 35 and up to 55 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high $v / c$ ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than 55 and up to 80 seconds per vehicle. This level is considered by many agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, and high $v / c$ ratios. Individual cycle failures are frequent occurrences.

LOS F describes operations with control delay in excess of 80 seconds per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the lane groups. It may also occur at high $v / c$ ratios with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing factors to such delay levels.

## LEVEL OF SERVICE FOR UNSIGNALIZED INTERSECTIONS

In the Highway Capacity Manual (HCM), published by the Transportation Research Board, 2010, level of service for unsignalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incidents, control, traffic, or geometric delay. Only the portion of total delay attributed to the traffic control measures, either traffic signals or stop signs, is quantified. This delay is called control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay.

Level of Service criteria for unsignalized intersections are stated in terms of the average control delay per vehicle. The level of service is determined by the computed or measured control delay and is defined for each minor movement. Average control delay for any particular minor movement is a function of the service time for the approach and the degree of utilization. (Level of service is not defined for the intersection as a whole for two-way stop controlled intersections.)

Level of Service Criteria for TWSC/AWSC Intersections

| Level of Service | Average Control Delay <br> (Sec/Veh) |
| :---: | :---: |
| A | $\leq 10$ |
| B | $>10$ and $\leq 15$ |
| C | $>15$ and $\leq 25$ |
| D | $>25$ and $\leq 35$ |
| E | $>35$ and $\leq 50$ |
| F | $>50$ |

Level of Service (LOS) values are used to describe intersection operations with service levels varying from LOS A (free flow) to LOS F (jammed condition). The following descriptions summarize HCM criteria for each level of service:

LOS A describes operations with very low control delay, up to 10 seconds per vehicle.

LOS B describes operations with control delay greater than 10 and up to 15 seconds per vehicle.
LOS C describes operations with control delay greater than 15 and up to 25 seconds per vehicle.
LOS D describes operations with control delay greater than 25 and up to 35 seconds per vehicle.
LOS E describes operations with control delay greater than 35 and up to 50 seconds per vehicle.
LOS F describes operations with control delay in excess of 50 seconds per vehicle. For two-way stop controlled intersections, LOS F exists when there are insufficient gaps of suitable size to allow side-street demand to safely cross through a major-street traffic stream. This level of service is generally evident from extremely long control delays experienced by side-street traffic and by queuing on the minor-street approaches.

HCS7 Signalized Intersection Results Summary

## General Information

Intersection Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |

Linscott, Law \& Greenspan

| Duration, h | 0.250 |
| :--- | :--- | :--- |


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 8 | 467 | 7 | 11 | 446 | 15 | 3 | 1 | 14 | 9 | 0 | 3 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 55.2 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 |  | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 |  |  | 2 |  |  | 4 |  |  | 8 |
| Case Number |  |  | 5.0 |  |  | 5.0 |  |  | 8.0 |  |  | 7.0 |
| Phase Duration, s |  |  | 60.0 |  |  | 60.0 |  |  | 30.0 |  |  | 30.0 |
| Change Period, ( $Y+R_{c}$ ), s |  |  | 4.8 |  |  | 4.8 |  |  | 5.3 |  |  | 5.3 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 4.4 |  |  | 4.4 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 2.8 |  |  | 2.4 |
| Green Extension Time ( $g_{\text {e }}$ ), s |  |  | 0.0 |  |  | 0.0 |  |  | 0.1 |  |  | 0.1 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.00 |  |  | 0.00 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 7 | 4 | 14 | 3 | 8 | 18 |
| Adjusted Flow Rate ( v ), veh/h | 8 | 492 | 7 | 12 | 469 | 16 |  | 19 |  |  | 9 | 3 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 938 | 1809 | 1610 | 919 | 1809 | 1610 |  | 1619 |  |  | 1420 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.4 | 5.5 | 0.2 | 0.5 | 5.2 | 0.3 |  | 0.0 |  |  | 0.0 | 0.1 |
| Cycle Queue Clearance Time ( $g$ c ), s | 5.6 | 5.5 | 0.2 | 6.0 | 5.2 | 0.3 |  | 0.8 |  |  | 0.4 | 0.1 |
| Green Ratio ( $g / C$ ) | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |  | 0.27 |  |  | 0.27 | 0.27 |
| Capacity ( $c$ ), veh/h | 601 | 2219 | 988 | 588 | 2219 | 988 |  | 491 |  |  | 470 | 442 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.014 | 0.222 | 0.007 | 0.020 | 0.212 | 0.016 |  | 0.039 |  |  | 0.020 | 0.007 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 3.3 | 84.3 | 2.3 | 4.6 | 79.9 | 4.9 |  | 13.5 |  |  | 6.7 | 2.2 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.1 | 3.4 | 0.1 | 0.2 | 3.2 | 0.2 |  | 0.5 |  |  | 0.3 | 0.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 |  |  | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 9.0 | 7.8 | 6.8 | 9.1 | 7.7 | 6.8 |  | 24.0 |  |  | 23.8 | 23.7 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.0 | 0.2 | 0.0 | 0.1 | 0.2 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Control Delay (d), s/veh | 9.0 | 8.0 | 6.8 | 9.2 | 7.9 | 6.8 |  | 24.0 |  |  | 23.9 | 23.7 |
| Level of Service (LOS) | A | A | A | A | A | A |  | C |  |  | C | C |
| Approach Delay, s/veh / LOS | 8.0 |  | A | 7.9 | A |  | 24.0 | C |  | 23.8 | C |  |
| Intersection Delay, s/veh / LOS |  | 8.5 |  |  |  |  | A |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 1.71 |  | B | 1.94 |  | B | 2.45 |  | B | 2.45 |  | B |
| Bicycle LOS Score / LOS | 0.91 |  | A | 0.90 |  | A | 0.52 |  | A | 0.51 |  | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | L |
| Project Description | F |

Linscott, Law \& Greenspan

| JAS |
| :--- |
| City of Los Angeles |
| Roscoe Boulevard |
| Lena / Roscoe |
| Fallbrook Point |


|  | Analysis Date | Aug 6, 2021 |
| :--- | :--- | :--- |
| Time Period | Existing with <br> Project - AM |  |
| Analysis Year | 2021 |  |
| File Name | 01 AM - Existing |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 12 | 475 | 7 | 11 | 448 | 15 | 3 | 1 | 14 | 9 | 0 | 4 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  | $\mid$ |
| Offset, s | 0 | Reference Point | End | Green |  | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 3 |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 7 |  |



Itsection Delay, s/veh / LOS

## 8.5

A

| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 1.71 | B | 1.94 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 0.92 | A | 0.90 | A | 0.52 | A | 0.51 | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |

Intersection Information

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 8 | 481 | 7 | 11 | 470 | 15 | 3 | 1 | 14 | 9 | 0 | 3 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  | $\square$ |
| Offset, s | 0 | Reference Point | End | Green | 55.2 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  | 6 |  | 2 |  | 4 |  | 8 |
| Case Number |  | 5.0 |  | 5.0 |  | 8.0 |  | 7.0 |
| Phase Duration, s |  | 60.0 |  | 60.0 |  | 30.0 |  | 30.0 |
| Change Period, ( $Y+R{ }_{c}$ ), s |  | 4.8 |  | 4.8 |  | 5.3 |  | 5.3 |
| Max Allow Headway ( MAH ), s |  | 0.0 |  | 0.0 |  | 4.4 |  | 4.4 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  | 2.8 |  | 2.4 |
| Green Extension Time ( $g_{e}$ ), s |  | 0.0 |  | 0.0 |  | 0.1 |  | 0.1 |
| Phase Call Probability |  |  |  |  |  | 1.00 |  | 1.00 |
| Max Out Probability |  |  |  |  |  | 0.00 |  | 0.00 |



| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 1.71 | B | 1.94 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 0.92 | A | 0.92 | A | 0.52 | A | 0.51 | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | L |
| Project Description | F |

Linscott, Law \& Greenspan

Intersection Information

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 12 | 489 | 7 | 11 | 472 | 15 | 3 | 1 | 14 | 9 | 0 | 4 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  | 3 | ${ }_{4}$ |
| Offset, s | 0 | Reference Point | End | Green | 55.2 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | ${ }^{3}$ |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 |  |  | 2 |  |  | 4 |  |  | 8 |
| Case Number |  |  | 5.0 |  |  | 5.0 |  |  | 8.0 |  |  | 7.0 |
| Phase Duration, s |  |  | 60.0 |  |  | 60.0 |  |  | 30.0 |  |  | 30.0 |
| Change Period, ( $Y+R_{\text {c }}$ ), s |  |  | 4.8 |  |  | 4.8 |  |  | 5.3 |  |  | 5.3 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 4.4 |  |  | 4.4 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 2.8 |  |  | 2.4 |
| Green Extension Time ( $g_{e}$ ), s |  |  | 0.0 |  |  | 0.0 |  |  | 0.1 |  |  | 0.1 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.00 |  |  | 0.00 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 7 | 4 | 14 | 3 | 8 | 18 |
| Adjusted Flow Rate ( v ), veh/h | 13 | 515 | 7 | 12 | 497 | 16 |  | 19 |  |  | 9 | 4 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 915 | 1809 | 1610 | 900 | 1809 | 1610 |  | 1619 |  |  | 1420 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.6 | 5.8 | 0.2 | 0.5 | 5.5 | 0.3 |  | 0.0 |  |  | 0.0 | 0.2 |
| Cycle Queue Clearance Time ( $g_{\mathrm{c}}$ ), s | 6.1 | 5.8 | 0.2 | 6.3 | 5.5 | 0.3 |  | 0.8 |  |  | 0.4 | 0.2 |
| Green Ratio ( g/C ) | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |  | 0.27 |  |  | 0.27 | 0.27 |
| Capacity ( c ), veh/h | 585 | 2219 | 988 | 574 | 2219 | 988 |  | 491 |  |  | 470 | 442 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.022 | 0.232 | 0.007 | 0.020 | 0.224 | 0.016 |  | 0.039 |  |  | 0.020 | 0.010 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 5 | 89 | 2.3 | 4.6 | 85.2 | 4.9 |  | 13.5 |  |  | 6.7 | 3 |
| Back of Queue ( $Q$ ), veh/ln ( 95 th percentile) | 0.2 | 3.6 | 0.1 | 0.2 | 3.4 | 0.2 |  | 0.5 |  |  | 0.3 | 0.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 |  |  | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 9.2 | 7.8 | 6.8 | 9.3 | 7.8 | 6.8 |  | 24.0 |  |  | 23.8 | 23.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 0.2 | 0.0 | 0.1 | 0.2 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 9.2 | 8.1 | 6.8 | 9.3 | 8.0 | 6.8 |  | 24.0 |  |  | 23.9 | 23.8 |
| Level of Service (LOS) | A | A | A | A | A | A |  | C |  |  | C | C |
| Approach Delay, s/veh / LOS | 8.1 |  | A | 8.0 |  | A | 24.0 |  | C | 23.8 |  | C |
| Intersection Delay, s/veh / LOS | 8.5 |  |  |  |  |  | A |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 1.71 | B | 1.94 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 0.93 | A | 0.92 | A | 0.52 | A | 0.51 | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| Linscott, Law \& Greenspan |  |
| :--- | :--- |
| JAS | An |
| City of Los Angeles |  |
| Roscoe Boulevard | An |
| Lena / Roscoe | F |
| Fallbrook Point |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 8 | 548 | 9 | 24 | 558 | 13 | 5 | 0 | 12 | 35 | 0 | 9 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |
| Offset, s | 0 | Reference Point | End | Green | 55.2 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 | 8 |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  | 6 |  | 2 |  | 4 |  | 8 |
| Case Number |  | 5.0 |  | 5.0 |  | 8.0 |  | 7.0 |
| Phase Duration, s |  | 60.0 |  | 60.0 |  | 30.0 |  | 30.0 |
| Change Period, ( $Y+R{ }_{c}$ ), s |  | 4.8 |  | 4.8 |  | 5.3 |  | 5.3 |
| Max Allow Headway ( MAH ), s |  | 0.0 |  | 0.0 |  | 4.3 |  | 4.3 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  | 2.7 |  | 3.8 |
| Green Extension Time ( $g_{e}$ ), s |  | 0.0 |  | 0.0 |  | 0.2 |  | 0.2 |
| Phase Call Probability |  |  |  |  |  | 1.00 |  | 1.00 |
| Max Out Probability |  |  |  |  |  | 0.00 |  | 0.00 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 7 | 4 | 14 | 3 | 8 | 18 |
| Adjusted Flow Rate ( v ), veh/h | 9 | 602 | 10 | 26 | 613 | 14 |  | 19 |  |  | 38 | 10 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 822 | 1809 | 1610 | 830 | 1809 | 1610 |  | 1581 |  |  | 1423 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.5 | 6.9 | 0.2 | 1.4 | 7.1 | 0.3 |  | 0.0 |  |  | 1.1 | 0.4 |
| Cycle Queue Clearance Time ( $g_{\mathrm{c}}$ ), s | 7.6 | 6.9 | 0.2 | 8.3 | 7.1 | 0.3 |  | 0.7 |  |  | 1.8 | 0.4 |
| Green Ratio ( $g / C$ ) | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |  | 0.27 |  |  | 0.27 | 0.27 |
| Capacity ( c ), veh/h | 519 | 2219 | 988 | 525 | 2219 | 988 |  | 486 |  |  | 471 | 442 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.017 | 0.271 | 0.010 | 0.050 | 0.276 | 0.014 |  | 0.038 |  |  | 0.082 | 0.022 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 3.7 | 106.9 | 3.1 | 11.3 | 109.7 | 4.4 |  | 13.3 |  |  | 27.9 | 7 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.1 | 4.3 | 0.1 | 0.5 | 4.4 | 0.2 |  | 0.5 |  |  | 1.1 | 0.3 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 |  |  | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 9.9 | 8.1 | 6.8 | 10.0 | 8.1 | 6.8 |  | 24.0 |  |  | 24.3 | 23.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 0.3 | 0.0 | 0.2 | 0.3 | 0.0 |  | 0.0 |  |  | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 9.9 | 8.4 | 6.8 | 10.2 | 8.4 | 6.8 |  | 24.0 |  |  | 24.4 | 23.9 |
| Level of Service (LOS) | A | A | A | B | A | A |  | C |  |  | C | C |
| Approach Delay, s/veh / LOS | 8.4 |  | A | 8.4 |  | A | 24.0 |  | C | 24.3 |  | C |
| Intersection Delay, s/veh / LOS | 9.2 |  |  |  |  |  | A |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 1.71 |  | B | 1.94 |  | B | 2.45 |  | B | 2.45 |  | B |
| Bicycle LOS Score / LOS | 1.00 |  | A | 1.03 |  | A | 0.52 |  | A | 0.57 |  | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | L |
| Project Description | F |

Linscott, Law \& Greenspan

| JAS |
| :--- |
| City of Los Angeles |
| Roscoe Boulevard |
| Lena / Roscoe |
| Fallbrook Point |


|  | Analysis Date | Aug 9, 2021 |
| :--- | :--- | :--- |
| Time Period | Existing with <br> Project - PM |  |
| Analysis Year | 2021 |  |
| File Name | 01 PM - Existing |  | Intersection Information


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 9 | 550 | 9 | 24 | 566 | 13 | 5 | 0 | 12 | 35 | 0 | 13 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  | \% |
| Offset, s | 0 | Reference Point | End | Green | 55. | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 3 |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |



| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 1.71 | B | 1.94 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 1.00 | A | 1.03 | A | 0.52 | A | 0.57 | A |

HCS7 Signalized Intersection Results Summary

## General Information

 Intersection Information| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |


| Linscott, Law \& Greenspan | D |  |  |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Aug 9, 2021 | A |
| City of Los Angeles | Time Period | Future - PM | PH |
| Roscoe Boulevard | Analysis Year | 2023 | An |
| Lena / Roscoe | File Name | 01PM - Future.xus |  |
| Fallbrook Point |  |  |  |


| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.250 |
| Area Type | Other |
| PHF | 0.91 |
| Analysis Period | $1>17: 00$ |
|  |  |




| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  | 6 |  | 2 |  | 4 |  | 8 |
| Case Number |  | 5.0 |  | 5.0 |  | 8.0 |  | 7.0 |
| Phase Duration, s |  | 60.0 |  | 60.0 |  | 30.0 |  | 30.0 |
| Change Period, ( $Y+R{ }_{c}$ ), s |  | 4.8 |  | 4.8 |  | 5.3 |  | 5.3 |
| Max Allow Headway ( MAH ), s |  | 0.0 |  | 0.0 |  | 4.3 |  | 4.3 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  | 2.7 |  | 3.9 |
| Green Extension Time ( $g_{e}$ ), s |  | 0.0 |  | 0.0 |  | 0.2 |  | 0.2 |
| Phase Call Probability |  |  |  |  |  | 1.00 |  | 1.00 |
| Max Out Probability |  |  |  |  |  | 0.00 |  | 0.00 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 7 | 4 | 14 | 3 | 8 | 18 |
| Adjusted Flow Rate ( $v$ ), veh/h | 9 | 633 | 10 | 26 | 636 | 14 |  | 19 |  |  | 40 | 10 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 804 | 1809 | 1610 | 807 | 1809 | 1610 |  | 1581 |  |  | 1423 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.5 | 7.4 | 0.2 | 1.4 | 7.4 | 0.3 |  | 0.0 |  |  | 1.1 | 0.4 |
| Cycle Queue Clearance Time ( $g$ c ) , s | 7.9 | 7.4 | 0.2 | 8.8 | 7.4 | 0.3 |  | 0.7 |  |  | 1.9 | 0.4 |
| Green Ratio ( $g / C$ ) | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |  | 0.27 |  |  | 0.27 | 0.27 |
| Capacity ( c ), veh/h | 507 | 2219 | 988 | 509 | 2219 | 988 |  | 486 |  |  | 471 | 442 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.017 | 0.285 | 0.010 | 0.052 | 0.287 | 0.014 |  | 0.038 |  |  | 0.084 | 0.022 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 3.7 | 113.7 | 3.1 | 11.5 | 114.7 | 4.4 |  | 13.3 |  |  | 28.7 | 7 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.1 | 4.5 | 0.1 | 0.5 | 4.6 | 0.2 |  | 0.5 |  |  | 1.1 | 0.3 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 |  |  | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 10.0 | 8.2 | 6.8 | 10.2 | 8.2 | 6.8 |  | 24.0 |  |  | 24.4 | 23.8 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 0.3 | 0.0 | 0.2 | 0.3 | 0.0 |  | 0.0 |  |  | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 10.1 | 8.5 | 6.8 | 10.4 | 8.5 | 6.8 |  | 24.0 |  |  | 24.4 | 23.9 |
| Level of Service (LOS) | B | A | A | B | A | A |  | C |  |  | C | C |
| Approach Delay, s/veh / LOS | 8.5 |  | A | 8.5 |  | A | 24.0 |  | C | 24.3 |  | C |
| Intersection Delay, s/veh / LOS | 9.3 |  |  |  |  |  | A |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 1.71 |  | B | 1.94 |  | B | 2.45 |  | B | 2.45 |  | B |
| Bicycle LOS Score / LOS | 1.03 |  | A | 1.05 |  | A | 0.52 |  | A | 0.57 |  | A |

HCS7 Signalized Intersection Results Summary

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | L |
| Project Description | F |

Linscott, Law \& Greenspan

Intersection Information

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 9 | 578 | 9 | 24 | 587 | 13 | 5 | 0 | 12 | 36 | 0 | 13 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  | 7 |
| Offset, s | 0 | Reference Point | End | Green | 55.2 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  | 3 |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 4.3 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 0.5 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |  | 5 | - | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 |  |  | 2 |  |  | 4 |  |  | 8 |
| Case Number |  |  | 5.0 |  |  | 5.0 |  |  | 8.0 |  |  | 7.0 |
| Phase Duration, s |  |  | 60.0 |  |  | 60.0 |  |  | 30.0 |  |  | 30.0 |
| Change Period, ( $Y+R_{c}$ ), s |  |  | 4.8 |  |  | 4.8 |  |  | 5.3 |  |  | 5.3 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 |  |  | 0.0 |  |  | 4.3 |  |  | 4.3 |
| Queue Clearance Time ( $g s$ ), s |  |  |  |  |  |  |  |  | 2.7 |  |  | 3.9 |
| Green Extension Time ( $\mathrm{e}_{\mathrm{e}}$ ), s |  |  | 0.0 |  |  | 0.0 |  |  | 0.2 |  |  | 0.2 |
| Phase Call Probability |  |  |  |  |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  |  |  |  |  |  | 0.00 |  |  | 0.00 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 7 | 4 | 14 | 3 | 8 | 18 |
| Adjusted Flow Rate ( v ), veh/h | 10 | 635 | 10 | 26 | 645 | 14 |  | 19 |  |  | 40 | 14 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 798 | 1809 | 1610 | 805 | 1809 | 1610 |  | 1581 |  |  | 1423 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.5 | 7.4 | 0.2 | 1.4 | 7.6 | 0.3 |  | 0.0 |  |  | 1.1 | 0.6 |
| Cycle Queue Clearance Time ( $g$ c ), s | 8.1 | 7.4 | 0.2 | 8.8 | 7.6 | 0.3 |  | 0.7 |  |  | 1.9 | 0.6 |
| Green Ratio ( g/C ) | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 |  | 0.27 |  |  | 0.27 | 0.27 |
| Capacity ( c ), veh/h | 502 | 2219 | 988 | 507 | 2219 | 988 |  | 486 |  |  | 471 | 442 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.020 | 0.286 | 0.010 | 0.052 | 0.291 | 0.014 |  | 0.038 |  |  | 0.084 | 0.032 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 4.2 | 114.5 | 3.1 | 11.5 | 116.7 | 4.4 |  | 13.3 |  |  | 28.7 | 10.2 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.2 | 4.6 | 0.1 | 0.5 | 4.7 | 0.2 |  | 0.5 |  |  | 1.1 | 0.4 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 |  |  | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 10.1 | 8.2 | 6.8 | 10.2 | 8.2 | 6.8 |  | 24.0 |  |  | 24.4 | 23.9 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 0.3 | 0.0 | 0.2 | 0.3 | 0.0 |  | 0.0 |  |  | 0.1 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  | 0.0 |  |  | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 10.2 | 8.5 | 6.8 | 10.4 | 8.5 | 6.8 |  | 24.0 |  |  | 24.4 | 23.9 |
| Level of Service (LOS) | B | A | A | B | A | A |  | C |  |  | C | C |
| Approach Delay, s/veh / LOS | 8.5 |  | A | 8.6 |  | A | 24.0 |  | C | 24.3 |  | C |
| Intersection Delay, s/veh / LOS | 9.3 |  |  |  |  |  | A |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 1.71 | B | 1.94 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 1.03 | A | 1.05 | A | 0.52 | A | 0.58 | A |


| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 9 / 2021$ | East/West Street | Roscoe Boulevard |
| Analysis Year | 2021 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Existing - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 36 | 454 |  |  |  | 466 | 36 |  |  |  |  |  | 6 |  | 6 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service

| Flow Rate, v (veh/h) | 39 |  |  |  |  |  |  |  |  |  |  |  |  | 13 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity, c (veh/h) | 1013 |  |  |  |  |  |  |  |  |  |  |  |  | 421 |  |
| v/c Ratio | 0.04 |  |  |  |  |  |  |  |  |  |  |  |  | 0.03 |  |
| 95\% Queue Length, $\mathrm{Q}_{95}$ (veh) | 0.1 |  |  |  |  |  |  |  |  |  |  |  |  | 0.1 |  |
| Control Delay (s/veh) | 8.7 |  |  |  |  |  |  |  |  |  |  |  |  | 13.8 |  |
| Level of Service (LOS) | A |  |  |  |  |  |  |  |  |  |  |  |  | B |  |
| Approach Delay (s/veh) |  | 0.6 |  |  |  |  |  |  |  |  |  |  |  | 13.8 |  |
| Approach LOS |  |  |  |  |  |  |  |  |  |  |  |  |  | B |  |


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/9/2021 | East/West Street | Roscoe Boulevard |
| Analysis Year | 2021 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Existing + Project - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |
|  | $7$ |  |  |

## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 44 | 454 |  |  |  | 466 | 44 |  |  |  |  |  | 8 |  | 8 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service


| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 9 / 2021$ | East/West Street | Roscoe Boulevard |
| Analysis Year | 2023 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Future - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 37 | 468 |  |  |  | 490 | 37 |  |  |  |  |  | 6 |  | 6 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service


| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 9 / 2021$ | East/West Street | Roscoe Boulevard |
| Analysis Year | 2023 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Future + Project - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 45 | 468 |  |  |  | 490 | 45 |  |  |  |  |  | 8 |  | 8 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service


| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 9 / 2021$ | East/West Street | Roscoe Boulevard |
| Analysis Year | 2021 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Existing - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 7 | 588 |  |  |  | 560 | 7 |  |  |  |  |  | 35 |  | 35 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/9/2021 | East/West Street | Roscoe Boulevard |
| Analysis Year | 2021 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Existing + Project - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |
|  | $7$ |  |  |

## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 9 | 588 |  |  |  | 560 | 9 |  |  |  |  |  | 43 |  | 43 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service


| General Information |  | Site Information |  |
| :--- | :--- | :--- | :--- |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 9 / 2021$ | East/West Street | Roscoe Boulevard |
| Analysis Year | 2023 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Future - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 7 | 617 |  |  |  | 581 | 7 |  |  |  |  |  | 36 |  | 36 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service

| Flow Rate, v (veh/h) | 8 |  |  |  |  |  |  |  |  |  |  |  |  | 78 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity, c (veh/h) | 934 |  |  |  |  |  |  |  |  |  |  |  |  | 357 |  |
| $\mathrm{v} / \mathrm{c}$ Ratio | 0.01 |  |  |  |  |  |  |  |  |  |  |  |  | 0.22 |  |
| 95\% Queue Length, $\mathrm{Q}_{95}$ (veh) | 0.0 |  |  |  |  |  |  |  |  |  |  |  |  | 0.8 |  |
| Control Delay (s/veh) | 8.9 |  |  |  |  |  |  |  |  |  |  |  |  | 17.9 |  |
| Level of Service (LOS) | A |  |  |  |  |  |  |  |  |  |  |  |  | C |  |
| Approach Delay (s/veh) |  | 0.1 |  |  |  |  |  |  |  |  |  |  |  | 17.9 |  |
| Approach LOS |  |  |  |  |  |  |  |  |  |  |  |  |  | C |  |


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Roscoe Dwy/Roscoe |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/9/2021 | East/West Street | Roscoe Boulevard |
| Analysis Year | 2023 | North/South Street | Roscoe Boulevard Dwy |
| Time Analyzed | Future + Project - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | East-West | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |
|  | $7$ |  |  |

## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |  | 7 | 8 | 9 |  | 10 | 11 | 12 |
| Number of Lanes | 0 | 1 | 2 | 0 | 0 | 0 | 2 | 1 |  | 0 | 0 | 0 |  | 0 | 1 | 0 |
| Configuration |  | L | T |  |  |  | T | R |  |  |  |  |  |  | LR |  |
| Volume (veh/h) | 0 | 9 | 617 |  |  |  | 581 | 9 |  |  |  |  |  | 44 |  | 44 |
| Percent Heavy Vehicles (\%) | 3 | 3 |  |  |  |  |  |  |  |  |  |  |  | 3 |  | 3 |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| Right Turn Channelized |  |  |  |  | No |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 4.1 |  |  |  |  |  |  |  |  |  |  |  | 7.5 |  | 6.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 4.16 |  |  |  |  |  |  |  |  |  |  |  | 6.86 |  | 6.96 |
| Base Follow-Up Headway (sec) | 2.2 |  |  |  |  |  |  |  |  |  |  |  | 3.5 |  | 3.3 |
| Follow-Up Headway (sec) | 2.23 |  |  |  |  |  |  |  |  |  |  |  | 3.53 |  | 3.33 |

Delay, Queue Length, and Level of Service

| Flow Rate, v (veh/h) | 10 |  |  |  |  |  |  |  |  |  |  |  |  | 96 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity, c (veh/h) | 932 |  |  |  |  |  |  |  |  |  |  |  |  | 355 |  |
| v/c Ratio | 0.01 |  |  |  |  |  |  |  |  |  |  |  |  | 0.27 |  |
| 95\% Queue Length, $\mathrm{Q}_{95}$ (veh) | 0.0 |  |  |  |  |  |  |  |  |  |  |  |  | 1.1 |  |
| Control Delay (s/veh) | 8.9 |  |  |  |  |  |  |  |  |  |  |  |  | 18.9 |  |
| Level of Service (LOS) | A |  |  |  |  |  |  |  |  |  |  |  |  | C |  |
| Approach Delay (s/veh) |  | 0.1 |  |  |  |  |  |  |  |  |  |  |  | 18.9 |  |
| Approach LOS |  |  |  |  |  |  |  |  |  |  |  |  |  | C |  |


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/5/2021 | East/West Street | Fallbrook Avenue Driveway |
| Analysis Year | 2021 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Existing - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 15 |  |  |  |  | 0 | 90 | 167 |  |  |  | 254 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/5/2021 | East/West Street | Fallbrook Avenue Driveway |
| Analysis Year | 2021 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Existing + Project - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 20 |  |  |  |  | 0 | 110 | 167 |  |  |  | 254 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/31/2021 | East/West Street | Fallbrook Avenue Driveway |
| Analysis Year | 2023 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Future - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 15 |  |  |  |  | 0 | 92 | 187 |  |  |  | 322 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



|  |  |  | HCS7 TwO-Way Stop-Control Report |
| :--- | :--- | :--- | :--- |
| General Information | JAS | Site Information |  |
| Analyst | Linscott, Law \& Greenspan | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | $8 / 31 / 2021$ | Jurisdiction | City of Los Angeles |
| Date Performed | 2023 | East/West Street | Falllbrook Avenue Driveway |
| Analysis Year | Future + Project - AM | North/South Street | Falllbrook Avenue |
| Time Analyzed | North-South | Peak Hour Factor | 0.92 |
| Intersection Orientation | Analysis Time Period (hrs) | 0.25 |  |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 20 |  |  |  |  | 0 | 112 | 187 |  |  |  | 322 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/5/2021 | East/West Street | Fallbrook Avenue Driveway |
| Analysis Year | 2021 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Existing - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 87 |  |  |  |  | 0 | 17 | 124 |  |  |  | 233 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



|  |  |  | HCS7 TwO-Way Stop-Control Report |
| :--- | :--- | :--- | :--- |
| General Information | JAS | Site Information |  |
| Analyst | Linscott, Law \& Greenspan | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | $8 / 5 / 2021$ | Jurisdiction | City of Los Angeles |
| Date Performed | 2021 | East/West Street | Falllbrook Avenue Driveway |
| Analysis Year | Existing + Project - PM | North/South Street | Falllbrook Avenue |
| Time Analyzed | North-South | Peak Hour Factor | 0.92 |
| Intersection Orientation | Analysis Time Period (hrs) | 0.25 |  |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 107 |  |  |  |  | 0 | 23 | 124 |  |  |  | 233 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/31/2021 | East/West Street | Fallbrook Avenue Driveway |
| Analysis Year | 2023 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Future - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 89 |  |  |  |  | 0 | 17 | 183 |  |  |  | 306 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

Delay, Queue Length, and Level of Service


|  |  |  | HCS7 TwO-Way Stop-Control Report |
| :--- | :--- | :--- | :--- |
| General Information | JAS | Site Information |  |
| Analyst | Linscott, Law \& Greenspan | Intersection | Fallbrook/Fallbrook Dwy |
| Agency/Co. | $8 / 31 / 2021$ | Jurisdiction | City of Los Angeles |
| Date Performed | 2023 | East/West Street | Falllbrook Avenue Driveway |
| Analysis Year | Future + Project - PM | North/South Street | Falllbrook Avenue |
| Time Analyzed | North-South | Peak Hour Factor | 0.92 |
| Intersection Orientation | Analysis Time Period (hrs) | 0.25 |  |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
| Configuration |  |  | LR |  |  |  |  |  |  | L | T |  |  |  | T | TR |
| Volume (veh/h) |  | 0 |  | 109 |  |  |  |  | 0 | 23 | 183 |  |  |  | 306 | 0 |
| Percent Heavy Vehicles (\%) |  | 3 |  | 3 |  |  |  |  | 3 | 3 |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) | 7.5 | 6.9 |  |  |  |  |  | 4.1 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) | 6.86 | 6.96 |  |  |  |  |  | 4.16 |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) | 3.5 | 3.3 |  |  |  |  |  | 2.2 |  |  |  |  |  |  |
| Follow-Up Headway (sec) | 3.53 | 3.33 |  |  |  |  |  | 2.23 |  |  |  |  |  |  |

## Delay, Queue Length, and Level of Service



|  |  |  |  |
| :--- | :--- | :--- | :--- |
| General Information | Site Information |  |  |
| Analyst | JAS | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 5 / 2021$ | East/West Street | Schoenborn Street |
| Analysis Year | 2021 | North/South Street | Falllbrook Avenue |
| Time Analyzed | Existing - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  | L | T |  |
| Volume (veh/h) |  |  |  |  |  | 23 |  | 70 |  |  | 187 | 24 |  | 0 | 269 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  | 3 |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  | 4.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  | 4.16 |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  | 2.2 |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  | 2.23 |  |  |

Delay, Queue Length, and Level of Service


|  |  |  | HCS7 TwO-Way Stop-Control Report |
| :--- | :--- | :--- | :--- |
| General Information | JAS | Site Information |  |
| Analyst | Linscott, Law \& Greenspan | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | $8 / 5 / 2021$ | Jurisdiction | City of Los Angeles |
| Date Performed | 2021 | East/West Street | Schoenborn Street |
| Analysis Year | Existing + Project - AM | North/South Street | Falllbrook Avenue |
| Time Analyzed | North-South | Peak Hour Factor | 0.92 |
| Intersection Orientation | Analysis Time Period (hrs) | 0.25 |  |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  | L | T |  |
| Volume (veh/h) |  |  |  |  |  | 23 |  | 70 |  |  | 207 | 24 |  | 0 | 274 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  | 3 |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  | 4.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  | 4.16 |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  | 2.2 |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  | 2.23 |  |  |

Delay, Queue Length, and Level of Service


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/31/2021 | East/West Street | Schoenborn Street |
| Analysis Year | 2023 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Future - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  |  | T |  |
| Volume (veh/h) |  |  |  |  |  | 23 |  | 71 |  |  | 208 | 24 |  |  | 337 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  |  |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  |  |  |  |

Delay, Queue Length, and Level of Service


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/31/2021 | East/West Street | Schoenborn Street |
| Analysis Year | 2023 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Future + Project - AM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  |  | T |  |
| Volume (veh/h) |  |  |  |  |  | 23 |  | 71 |  |  | 228 | 24 |  |  | 342 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  |  |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  |  |  |  |

Delay, Queue Length, and Level of Service


|  |  |  |  |
| :--- | :--- | :--- | :--- |
| General Information | Site Information |  |  |
| Analyst | JAS | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | $8 / 5 / 2021$ | East/West Street | Schoenborn Street |
| Analysis Year | 2021 | North/South Street | Falllbrook Avenue |
| Time Analyzed | Existing - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  | L | T |  |
| Volume (veh/h) |  |  |  |  |  | 33 |  | 3 |  |  | 138 | 37 |  | 89 | 231 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  | 3 |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  | 4.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  | 4.16 |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  | 2.2 |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  | 2.23 |  |  |

Delay, Queue Length, and Level of Service


|  |  |  | HCS7 TwO-Way Stop-Control Report |
| :--- | :--- | :--- | :--- |
| General Information | JAS | Site Information |  |
| Analyst | Linscott, Law \& Greenspan | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | $8 / 5 / 2021$ | Jurisdiction | City of Los Angeles |
| Date Performed | 2021 | East/West Street | Schoenborn Street |
| Analysis Year | Existing + Project - PM | North/South Street | Falllbrook Avenue |
| Time Analyzed | North-South | Peak Hour Factor | 0.92 |
| Intersection Orientation | Analysis Time Period (hrs) | 0.25 |  |
| Project Description | Fallbrook Point |  |  |

Lanes


## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  | L | T |  |
| Volume (veh/h) |  |  |  |  |  | 33 |  | 3 |  |  | 144 | 37 |  | 89 | 251 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  | 3 |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  | 4.1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  | 4.16 |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  | 2.2 |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  | 2.23 |  |  |

Delay, Queue Length, and Level of Service


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/31/2021 | East/West Street | Schoenborn Street |
| Analysis Year | 2023 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Future - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  |  | T |  |
| Volume (veh/h) |  |  |  |  |  | 34 |  | 3 |  |  | 198 | 38 |  |  | 486 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  |  |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  |  |  |  |

Delay, Queue Length, and Level of Service


| HCS7 Two-Way Stop-Control Report |  |  |  |
| :---: | :---: | :---: | :---: |
| General Information |  | Site Information |  |
| Analyst | JAS | Intersection | Fallbrook/Schoenborn |
| Agency/Co. | Linscott, Law \& Greenspan | Jurisdiction | City of Los Angeles |
| Date Performed | 8/31/2021 | East/West Street | Schoenborn Street |
| Analysis Year | 2023 | North/South Street | Fallbrook Avenue |
| Time Analyzed | Future + Project - PM | Peak Hour Factor | 0.92 |
| Intersection Orientation | North-South | Analysis Time Period (hrs) | 0.25 |
| Project Description | Fallbrook Point |  |  |
| Lanes |  |  |  |



## Vehicle Volumes and Adjustments

| Approach | Eastbound |  |  |  | Westbound |  |  |  | Northbound |  |  |  | Southbound |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | U | L | T | R | U | L | T | R | U | L | T | R | U | L | T | R |
| Priority |  | 10 | 11 | 12 |  | 7 | 8 | 9 | 1 U | 1 | 2 | 3 | 4 U | 4 | 5 | 6 |
| Number of Lanes |  | 0 | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 0 |
| Configuration |  |  |  |  |  |  | LR |  |  |  | T | R |  |  | T |  |
| Volume (veh/h) |  |  |  |  |  | 34 |  | 3 |  |  | 204 | 38 |  |  | 506 |  |
| Percent Heavy Vehicles (\%) |  |  |  |  |  | 3 |  | 3 |  |  |  |  |  |  |  |  |
| Proportion Time Blocked |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Percent Grade (\%) | 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Right Turn Channelized |  |  |  |  |  |  |  |  | No |  |  |  |  |  |  |  |
| Median Type \| Storage | Undivided |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Critical and Follow-up Headways

| Base Critical Headway (sec) |  |  |  |  |  | 7.5 |  | 6.2 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Critical Headway (sec) |  |  |  |  |  | 6.86 |  | 6.26 |  |  |  |  |  |  |  |  |
| Base Follow-Up Headway (sec) |  |  |  |  |  | 3.5 |  | 3.3 |  |  |  |  |  |  |  |  |
| Follow-Up Headway (sec) |  |  |  |  |  | 3.53 |  | 3.33 |  |  |  |  |  |  |  |  |

Delay, Queue Length, and Level of Service


## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Citt |
| Urban Street | Fo |
| Intersection | F |
| Project Description | F |

Project Description

Intersection Information


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 | 5 |  | 2 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 5.3 | 1.0 |  | 3.0 |  |  | 5.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 30.0 | 15.0 |  | 45.0 |  |  | 45.0 |  |  | 45.0 |
| Change Period, ( $Y+R \mathrm{c}$ ), s |  |  | 5.3 | 4.0 |  | 5.3 |  |  | 5.6 |  |  | 5.6 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 | 4.1 |  | 0.0 |  |  | 4.2 |  |  | 4.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  | 13.0 |  |  |  |  | 11.5 |  |  | 5.3 |
| Green Extension Time ( $g_{\text {e }}$ ), s |  |  | 0.0 | 0.0 |  | 0.0 |  |  | 1.9 |  |  | 1.9 |
| Phase Call Probability |  |  |  | 1.00 |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  | 1.00 |  |  |  |  | 0.00 |  |  | 0.00 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 6 | 363 | 93 | 461 | 475 | 105 | 51 | 67 | 255 | 36 | 63 | 22 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 933 | 1809 | 1610 | 1810 | 1809 | 1610 | 1360 | 1900 | 1610 | 1355 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.4 | 7.3 | 4.0 | 11.0 | 7.6 | 3.5 | 2.0 | 1.8 | 9.5 | 1.4 | 0.9 | 0.7 |
| Cycle Queue Clearance Time ( $g_{\mathrm{c}}$ ), s | 0.4 | 7.3 | 4.0 | 11.0 | 7.6 | 3.5 | 2.9 | 1.8 | 9.5 | 3.3 | 0.9 | 0.7 |
| Green Ratio ( g/C ) | 0.27 | 0.27 | 0.27 | 0.42 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 |
| Capacity ( c ), veh/h | 336 | 993 | 442 | 501 | 1596 | 710 | 662 | 832 | 705 | 645 | 1584 | 705 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.018 | 0.366 | 0.210 | 0.919 | 0.298 | 0.148 | 0.076 | 0.081 | 0.361 | 0.056 | 0.040 | 0.031 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 4.6 | 140.5 | 71.4 | 286.3 | 136.1 | 57.7 | 25.7 | 33.2 | 145.7 | 19.4 | 15.9 | 11 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.2 | 5.6 | 2.9 | 11.5 | 5.4 | 2.3 | 1.0 | 1.3 | 5.8 | 0.8 | 0.6 | 0.4 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 23.8 | 26.3 | 25.1 | 25.8 | 16.2 | 15.0 | 15.3 | 14.7 | 16.9 | 15.7 | 14.5 | 14.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 1.0 | 1.1 | 22.1 | 0.5 | 0.4 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{\text {s }}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 23.9 | 27.4 | 26.2 | 47.9 | 16.7 | 15.5 | 15.3 | 14.8 | 17.2 | 15.7 | 14.5 | 14.4 |
| Level of Service (LOS) | C | C | C | D | B | B | B | B | B | B | B | B |
| Approach Delay, s/veh / LOS | 27.1 |  | C | 30.4 | C |  | 16.5 |  | B | 14.9 | B |  |
| Intersection Delay, s/veh / LOS | 26.1 |  |  |  |  |  | C |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 2.30 |  | B | 2.301.35 |  | B | 2.45 |  | B | 2.45 |  | B |
| Bicycle LOS Score / LOS | 0.87 |  | A |  |  | A | 1.10 |  | A | 0.59 |  | A |

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | J |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | F |
| Project Description | F |

Linscott, Law \& Greenspan

| JAS |
| :--- |
| City of Los Angeles |
| Roscoe Boulevard |


| Analysis Date | Aug 31, 2021 |
| :--- | :--- |
| Time Period | Existing with | Project - AM

Analysis Year 2021 Fallbrook / Roscoe Fallbrook Point

Intersection Information

| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.250 |
| Area Type | Other |
| PHF | 0.97 |
|  |  |
|  | Analysis Period |
| with Project.xus | $1>7: 30$ |




| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 | 5 |  | 2 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 5.3 | 1.0 |  | 3.0 |  |  | 5.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 30.0 | 15.0 |  | 45.0 |  |  | 45.0 |  |  | 45.0 |
| Change Period, ( $Y+R_{\text {c }}$ ), s |  |  | 5.3 | 4.0 |  | 5.3 |  |  | 5.6 |  |  | 5.6 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 | 4.1 |  | 0.0 |  |  | 4.2 |  |  | 4.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  | 13.0 |  |  |  |  | 11.5 |  |  | 5.7 |
| Green Extension Time ( $g_{\text {e }}$ ), s |  |  | 0.0 | 0.0 |  | 0.0 |  |  | 1.9 |  |  | 1.9 |
| Phase Call Probability |  |  |  | 1.00 |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  | 1.00 |  |  |  |  | 0.00 |  |  | 0.00 |
| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 6 | 364 | 93 | 461 | 481 | 115 | 53 | 77 | 255 | 38 | 65 | 22 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 928 | 1809 | 1610 | 1810 | 1809 | 1610 | 1358 | 1900 | 1610 | 1343 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.4 | 7.3 | 4.0 | 11.0 | 7.7 | 3.9 | 2.1 | 2.1 | 9.5 | 1.5 | 0.9 | 0.7 |
| Cycle Queue Clearance Time ( $\mathrm{c}_{\mathrm{c}}$ ), s | 0.4 | 7.3 | 4.0 | 11.0 | 7.7 | 3.9 | 3.0 | 2.1 | 9.5 | 3.7 | 0.9 | 0.7 |
| Green Ratio ( g/C ) | 0.27 | 0.27 | 0.27 | 0.42 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 |
| Capacity ( $c$ ), veh/h | 335 | 993 | 442 | 501 | 1596 | 710 | 660 | 832 | 705 | 636 | 1584 | 705 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.018 | 0.367 | 0.210 | 0.920 | 0.302 | 0.163 | 0.080 | 0.093 | 0.361 | 0.060 | 0.041 | 0.031 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 4.6 | 141.1 | 71.4 | 287.8 | 137.6 | 63.8 | 26.8 | 38.6 | 145.7 | 20.7 | 16.4 | 11 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.2 | 5.6 | 2.9 | 11.5 | 5.5 | 2.6 | 1.1 | 1.5 | 5.8 | 0.8 | 0.7 | 0.4 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 23.8 | 26.3 | 25.1 | 25.8 | 16.2 | 15.1 | 15.3 | 14.8 | 16.9 | 15.9 | 14.5 | 14.4 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 1.0 | 1.1 | 22.3 | 0.5 | 0.5 | 0.1 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 23.9 | 27.4 | 26.2 | 48.0 | 16.7 | 15.6 | 15.4 | 14.9 | 17.2 | 15.9 | 14.5 | 14.4 |
| Level of Service (LOS) | C | C | C | D | B | B | B | B | B | B | B | B |
| Approach Delay, s/veh / LOS | 27.1 |  | C | 30.2 | C |  | 16.5 |  | B | 14.9 |  | B |
| Intersection Delay, s/veh / LOS | 26.0 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  |  | NB |  |  | SB |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Pedestrian LOS Score / LOS | 2.30 | B | 2.30 | B | 2.45 | B | 2.45 | B |  |  |
| Bicycle LOS Score / LOS | 0.87 | A | 1.36 | A | 1.12 | A | 0.59 | A |  |  |

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Citt |
| Urban Street | Fo |
| Intersection | F |
| Project Description | F |

Project Description

Intersection Information

Linscott, Law \& Greenspan

| Linscott, Law \& Greenspan |  |  | D |
| :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Aug 31, 2021 | Ar |
| City of Los Angeles | Time Period | Future - AM | P |
| Roscoe Boulevard | Analysis Year | 2023 | Ana |
| Fallbrook / Roscoe | File Name | 05 AM - Future.xus |  |
| Fallbrook Point |  |  |  |




## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | F |
| Project Description | F |

Intersection Information

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 11 | 360 | 92 | 456 | 476 | 121 | 52 | 81 | 252 | 70 | 79 | 36 |
| Signal Information |  |  |  |  |  |  | , |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 8.0 | 27.7 | 8.0 | 27.4 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 3.0 | 4.3 | 0.0 | 0.0 |  |  |  |  | ナ |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 |  | 5 | ${ }^{6}$ |  |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 | 5 |  | 2 |  |  | 8 | 7 |  | 4 |
| Case Number |  |  | 5.3 | 1.0 |  | 3.0 |  |  | 5.3 | 2.0 |  | 3.0 |
| Phase Duration, s |  |  | 33.0 | 12.0 |  | 45.0 |  |  | 33.0 | 12.0 |  | 45.0 |
| Change Period, ( $Y+R_{\text {c }}$ ), s |  |  | 5.3 | 4.0 |  | 5.3 |  |  | 5.6 | 4.0 |  | 5.6 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 | 4.1 |  | 0.0 |  |  | 4.2 | 3.1 |  | 4.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  | 10.0 |  |  |  |  | 14.0 | 5.4 |  | 3.2 |
| Green Extension Time ( $g_{\text {e }}$ ), s |  |  | 0.0 | 0.0 |  | 0.0 |  |  | 1.6 | 0.0 |  | 2.0 |
| Phase Call Probability |  |  |  | 1.00 |  |  |  |  | 1.00 | 1.00 |  | 1.00 |
| Max Out Probability |  |  |  | 1.00 |  |  |  |  | 0.03 | 1.00 |  | 0.00 |
| Movement Group Results EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 11 | 371 | 95 | 470 | 491 | 125 | 54 | 84 | 260 | 72 | 81 | 37 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 920 | 1809 | 1610 | 1810 | 1809 | 1610 | 1338 | 1900 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 0.8 | 7.1 | 3.9 | 8.0 | 7.9 | 4.2 | 2.6 | 2.9 | 12.0 | 3.4 | 1.2 | 1.2 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 0.8 | 7.1 | 3.9 | 8.0 | 7.9 | 4.2 | 2.6 | 2.9 | 12.0 | 3.4 | 1.2 | 1.2 |
| Green Ratio ( $g / C$ ) | 0.31 | 0.31 | 0.31 | 0.42 | 0.44 | 0.44 | 0.30 | 0.30 | 0.30 | 0.09 | 0.44 | 0.44 |
| Capacity ( $c$ ), veh/h | 363 | 1113 | 496 | 476 | 1596 | 710 | 487 | 578 | 490 | 161 | 1584 | 705 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.031 | 0.333 | 0.191 | 0.988 | 0.308 | 0.176 | 0.110 | 0.144 | 0.530 | 0.449 | 0.051 | 0.053 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 7.9 | 135.5 | 68.6 | 417.1 | 140.9 | 69.5 | 35.3 | 55.1 | 196.9 | 67.9 | 20.7 | 19 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.3 | 5.4 | 2.7 | 16.7 | 5.6 | 2.8 | 1.4 | 2.2 | 7.9 | 2.7 | 0.8 | 0.8 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 21.8 | 24.0 | 22.9 | 28.3 | 16.3 | 15.2 | 22.7 | 22.8 | 26.0 | 38.9 | 14.6 | 14.6 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.2 | 0.8 | 0.9 | 38.1 | 0.5 | 0.5 | 0.1 | 0.1 | 1.1 | 0.7 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 22.0 | 24.8 | 23.8 | 66.4 | 16.8 | 15.8 | 22.8 | 22.9 | 27.0 | 39.6 | 14.6 | 14.6 |
| Level of Service (LOS) | C | C | C | E | B | B | C | C | C | D | B | B |
| Approach Delay, s/veh / LOS | 24.6 |  | C | 38.1 | D |  | 25.6 | C |  | 24.1 |  | C |
| Intersection Delay, s/veh / LOS | 31.6 |  |  |  |  |  | C |  |  |  |  |  |

## Multimodal Results

Pedestrian LOS Score / LOS
Bicycle LOS Score / LOS

Linscott, Law \& Greenspan

| JAS | Analysis Date | Aug 31, 2021 |
| :--- | :--- | :--- |
| City of Los Angeles | Time Period | Future with <br> Project - AM |

Roscoe Boulevard Fallbrook / Roscoe Analysis Year 2023 Analysis Period $1>7: 30$
File Name $\quad 05 \mathrm{AM}$ - Future with Project.xus
Fallbrook Point

| Intersection Information |  |
| :--- | :--- |
| Duration, h | 0.250 |
| Area Type | Other |
| PHF | 0.97 |
|  | Analysis Period |



## General Information

| Agency | L |
| :--- | :--- |
| Analyst | Cit |
| Jurisdiction |  |
|  | Urban Street |
| Intersection | Fal |
| Project Description | F |

Linscott, Law \& Greenspan JAS City of Los Angeles

Roscoe Boulevard Fallbrook / Roscoe Fallbrook Point

Intersection Information

| Duration, h | 0.250 |
| :--- | :--- |
| Area Type | Other |

Future with Project + Improvements AM
Analysis Year
File Name

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 11 | 360 | 92 | 456 | 476 | 121 | 52 | 81 | 252 | 70 | 79 | 36 |
| Signal Information |  |  |  |  |  |  | , | , |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 17.0 | 37.7 | 6.0 | 10.4 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 3.0 | 4.3 | 0.0 | 0.0 |  |  |  |  | $\uparrow$ |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 |  |  |  |  |  |

## Timer Results

Assigned Phase
Case Number
Phase Duration, s
Change Period, ( $Y+R_{c}$ ), s
Max Allow Headway ( MAH ), s
Queue Clearance Time ( $g s$ ), s
Green Extension Time ( $g e$ ), s
Phase Call Probability
Max Out Probability

| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 11 | 371 | 95 | 470 | 491 | 125 | 54 | 84 | 260 | 72 | 81 | 37 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 920 | 1809 | 1610 | 1810 | 1809 | 1610 | 1338 | 1900 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s ), s | 0.7 | 6.0 | 3.3 | 11.7 | 4.9 | 2.6 | 3.3 | 3.7 | 10.4 | 3.5 | 1.6 | 1.6 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 0.7 | 6.0 | 3.3 | 11.7 | 4.9 | 2.6 | 3.3 | 3.7 | 10.4 | 3.5 | 1.6 | 1.6 |
| Green Ratio ( $g / C$ ) | 0.42 | 0.42 | 0.42 | 0.63 | 0.65 | 0.65 | 0.12 | 0.12 | 0.30 | 0.07 | 0.23 | 0.23 |
| Capacity ( c ), veh/h | 465 | 1515 | 674 | 784 | 2359 | 1050 | 235 | 220 | 490 | 121 | 820 | 365 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.024 | 0.245 | 0.141 | 0.600 | 0.208 | 0.119 | 0.229 | 0.380 | 0.530 | 0.598 | 0.099 | 0.102 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 6.3 | 107.8 | 54.4 | 179.9 | 71.3 | 35.6 | 48 | 75.8 | 196.9 | 76.9 | 30.7 | 28.3 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.3 | 4.3 | 2.2 | 7.2 | 2.9 | 1.4 | 1.9 | 3.0 | 7.9 | 3.1 | 1.2 | 1.1 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 15.4 | 16.9 | 16.1 | 9.0 | 6.3 | 5.9 | 36.7 | 36.8 | 26.0 | 40.8 | 27.5 | 27.5 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.1 | 0.4 | 0.4 | 1.3 | 0.2 | 0.2 | 0.5 | 1.1 | 1.1 | 5.6 | 0.1 | 0.1 |
| Initial Queue Delay ( $d_{\text {s }}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 15.5 | 17.3 | 16.6 | 10.2 | 6.5 | 6.1 | 37.2 | 37.9 | 27.0 | 46.4 | 27.6 | 27.7 |
| Level of Service (LOS) | B | B | B | B | A | A | D | D | C | D | C | C |
| Approach Delay, s/veh / LOS | 17.1 |  | B | 8.1 |  | A | 30.7 |  | C | 34.7 |  | C |
| Intersection Delay, s/veh / LOS | 16.6 |  |  |  |  |  | B |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 2.30 |  | B | 2.30 |  | B | 2.45 |  | B | 2.45 |  | B |
| Bicycle LOS Score / LOS | 0.88 |  | A | 1.38 |  | A | 1.14 |  | A | 0.64 |  | A |

## General Information

| Agency |
| :--- |
| Analyst |
| Jurisdiction |
| Urban Street |
| Intersection |
| Project Description |

Project Description

Intersection Information

| Linscott, Law \& Greenspan |
| :--- |
| JAS |


| Linscott, Law \& Greenspan |  |  | Intersection Information |  |
| :--- | :--- | :--- | :--- | :--- |
| JAS | Analysis Date | Aug 10, 2021 | Area Type | Other |
| City of Los Angeles | Time Period | Existing - PM | PHF | 0.97 |
| Roscoe Boulevard | Analysis Year | 2021 | Analysis Period | $1>17: 00$ |
| Fallbrook / Roscoe | File Name | 05PM - Existing.xus |  |  |
| Fallbrook Point |  |  |  |  |


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( v ), veh/h |  |  |  | 16 | 532 | 97 | 391 | 457 | 32 | 112 | 56 | 533 | 75 | 89 | 29 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 11.0 | 24.7 | 39.4 | 0.0 | 0.0 | 0.0 |  |  | 2 |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 4.3 | 0.0 | 0.0 | 0.0 |  |  |  |  | 个 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 | 0.0 |  |  | 6 | 7 |  |



## General Information

| Agency | L |
| :--- | :--- |
| Analyst | J |
| Jurisdiction | Cit |
| Urban Street | Ros |
| Intersection | F |
| Project Description | F |

Intersection Information

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 16 | 538 | 99 | 391 | 459 | 35 | 113 | 59 | 533 | 85 | 99 | 29 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 11.0 | 24.7 | 39.4 | 0.0 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 4.3 | 0.0 | 0.0 | 0.0 |  |  |  |  | t |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 | 0.0 |  | 5 | 6 | 7 |  |


| Timer Results | EBL |  | EBT | WBL |  | WBT | NBL |  | NBT | SBL |  | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  |  | 6 | 5 |  | 2 |  |  | 8 |  |  | 4 |
| Case Number |  |  | 5.3 | 1.0 |  | 3.0 |  |  | 5.0 |  |  | 5.0 |
| Phase Duration, s |  |  | 30.0 | 15.0 |  | 45.0 |  |  | 45.0 |  |  | 45.0 |
| Change Period, ( $Y+R_{\text {c }}$ ), s |  |  | 5.3 | 4.0 |  | 5.3 |  |  | 5.6 |  |  | 5.6 |
| Max Allow Headway ( MAH ), s |  |  | 0.0 | 4.1 |  | 0.0 |  |  | 4.2 |  |  | 4.2 |
| Queue Clearance Time ( $g s$ ), s |  |  |  | 13.0 |  |  |  |  | 28.2 |  |  | 7.3 |
| Green Extension Time ( $g_{e}$ ), s |  |  | 0.0 | 0.0 |  | 0.0 |  |  | 3.1 |  |  | 4.2 |
| Phase Call Probability |  |  |  | 1.00 |  |  |  |  | 1.00 |  |  | 1.00 |
| Max Out Probability |  |  |  | 1.00 |  |  |  |  | 0.25 |  |  | 0.00 |
| Movement Group Results EB |  |  |  | WB |  |  | NB |  |  | SB |  |  |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( $v$ ), veh/h | 16 | 555 | 102 | 403 | 473 | 36 | 116 | 61 | 549 | 88 | 102 | 30 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 935 | 1809 | 1610 | 1810 | 1809 | 1610 | 1313 | 1900 | 1610 | 1363 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 1.2 | 11.8 | 4.4 | 11.0 | 7.6 | 1.2 | 5.1 | 1.7 | 26.2 | 3.6 | 1.5 | 1.0 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 1.2 | 11.8 | 4.4 | 11.0 | 7.6 | 1.2 | 6.5 | 1.7 | 26.2 | 5.3 | 1.5 | 1.0 |
| Green Ratio ( g/C ) | 0.27 | 0.27 | 0.27 | 0.42 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 |
| Capacity ( c ), veh/h | 337 | 993 | 442 | 425 | 1596 | 710 | 633 | 832 | 705 | 651 | 1584 | 705 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.049 | 0.559 | 0.231 | 0.948 | 0.297 | 0.051 | 0.184 | 0.073 | 0.780 | 0.135 | 0.064 | 0.042 |
| Back of Queue ( $Q$ ), ft/ln ( 95 th percentile) | 12.3 | 222.1 | 79.2 | 277.7 | 134.9 | 18.8 | 63.7 | 30 | 374.6 | 48.8 | 26.1 | 15.2 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 0.5 | 8.9 | 3.2 | 11.1 | 5.4 | 0.8 | 2.5 | 1.2 | 15.0 | 2.0 | 1.0 | 0.6 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 24.1 | 28.0 | 25.3 | 25.4 | 16.2 | 14.4 | 16.5 | 14.7 | 21.6 | 16.2 | 14.6 | 14.5 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.3 | 2.3 | 1.2 | 30.6 | 0.5 | 0.1 | 0.1 | 0.0 | 5.6 | 0.1 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 24.4 | 30.2 | 26.5 | 56.0 | 16.6 | 14.5 | 16.7 | 14.7 | 27.2 | 16.3 | 14.7 | 14.5 |
| Level of Service (LOS) | C | C | C | E | B | B | B | B | C | B | B | B |
| Approach Delay, s/veh / LOS | 29.5 |  | C | 33.9 |  | C | 24.5 |  | C | 15.3 |  | B |
| Intersection Delay, s/veh / LOS | 28.4 |  |  |  |  |  | C |  |  |  |  |  |


| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.30 | B | 2.30 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 1.04 | A | 1.24 | A | 1.69 | B | 0.67 | A |

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JA |
| Jurisdiction | Citt |
| Urban Street | Fo |
| Intersection | F |
| Project Description | F |

Intersection Information

Linscott, Law \& Greenspan

| JAS | Analysis Date | Sep 1, 2021 | A |
| :--- | :--- | :--- | :--- |
| City of Los Angeles | Time Period | Future - PM | P |
| Roscoe Boulevard | Analysis Year | 2023 | A |
| Fallbrook / Roscoe | File Name | 05PM - Future.xus |  |
| Fallbrook Point |  |  |  |


| Duration, h | 0.250 |
| :--- | :--- |

Area Type $\quad$ Other
PHF 0.97
Analysis Period 1> 17:00

Fallbrook Point


| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 33 | 543 | 99 | 399 | 466 | 56 | 114 | 74 | 544 | 216 | 101 | 40 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 8.0 | 27.7 | 8.0 | 27.4 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 3.0 | 4.3 | 0.0 | 0.0 |  |  |  |  | + |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 |  |  |  |  |  |

## Timer Results

Assigned Phase
Case Number
Phase Duration, s
Change Period, ( $Y+R_{c}$ ), s
Max Allow Headway ( MAH ), s
Queue Clearance Time ( $g s$ ), s
Green Extension Time ( $g e$ ), s
Phase Call Probability
Max Out Probability

| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 34 | 560 | 102 | 411 | 480 | 58 | 118 | 76 | 561 | 223 | 104 | 41 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 929 | 1809 | 1610 | 1810 | 1809 | 1610 | 1311 | 1900 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s ), s | 2.4 | 11.4 | 4.2 | 8.0 | 7.7 | 1.9 | 6.2 | 2.6 | 27.4 | 8.0 | 1.5 | 1.3 |
| Cycle Queue Clearance Time ( $g_{\mathrm{c}}$ ), s | 2.4 | 11.4 | 4.2 | 8.0 | 7.7 | 1.9 | 6.2 | 2.6 | 27.4 | 8.0 | 1.5 | 1.3 |
| Green Ratio ( $g / C$ ) | 0.31 | 0.31 | 0.31 | 0.42 | 0.44 | 0.44 | 0.30 | 0.30 | 0.30 | 0.09 | 0.44 | 0.44 |
| Capacity ( c ), veh/h | 366 | 1113 | 496 | 397 | 1596 | 710 | 479 | 578 | 490 | 161 | 1584 | 705 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.093 | 0.503 | 0.206 | 1.036 | 0.301 | 0.081 | 0.245 | 0.132 | 1.144 | 1.384 | 0.066 | 0.059 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 24.5 | 212.5 | 74.3 | 404.6 | 137.6 | 30.6 | 81.9 | 50.1 | 790.1 | 515.7 | 26.6 | 21.2 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 1.0 | 8.5 | 3.0 | 16.2 | 5.5 | 1.2 | 3.3 | 2.0 | 31.6 | 20.6 | 1.1 | 0.8 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 22.4 | 25.5 | 23.0 | 28.1 | 16.2 | 14.6 | 23.9 | 22.7 | 31.3 | 41.0 | 14.6 | 14.6 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.5 | 1.6 | 0.9 | 54.7 | 0.5 | 0.2 | 0.3 | 0.1 | 86.6 | 206.7 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 22.9 | 27.1 | 24.0 | 82.8 | 16.7 | 14.8 | 24.2 | 22.8 | 117.9 | 247.7 | 14.7 | 14.6 |
| Level of Service (LOS) | C | C | C | F | B | B | C | C | F | F | B | B |
| Approach Delay, s/veh / LOS | 26.5 |  | C | 45.2 |  | D | 93.7 |  | F | 155.7 |  | F |
| Intersection Delay, s/veh / LOS | 68.4 |  |  |  |  |  | E |  |  |  |  |  |

Intersection Delay, s/veh / LOS
68.4

| Multimodal Results | EB |  | WB |  | NB |  | SB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pedestrian LOS Score / LOS | 2.30 | B | 2.30 | B | 2.45 | B | 2.45 | B |
| Bicycle LOS Score / LOS | 1.06 | A | 1.27 | A | 1.73 | B | 0.79 | A |

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | JAS |
| Jurisdiction | Cit |
| Urban Street | Ro |
| Intersection | F |
| Project Description | F |

Intersection Information

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 33 | 549 | 101 | 399 | 468 | 59 | 115 | 77 | 544 | 226 | 111 | 40 |
| Signal Information |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 8.0 | 27.7 | 8.0 | 27.4 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 3.0 | 4.3 | 0.0 | 0.0 |  |  |  |  | 个 |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 |  | 5 |  | 7 |  |


| Timer Results | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assigned Phase |  | 6 | 5 | 2 |  | 8 | 7 | 4 |
| Case Number |  | 5.3 | 1.0 | 3.0 |  | 5.3 | 2.0 | 3.0 |
| Phase Duration, s |  | 33.0 | 12.0 | 45.0 |  | 33.0 | 12.0 | 45.0 |
| Change Period, ( $Y+R_{\text {c }}$ ), s |  | 5.3 | 4.0 | 5.3 |  | 5.6 | 4.0 | 5.6 |
| Max Allow Headway ( MAH ), s |  | 0.0 | 4.1 | 0.0 |  | 4.2 | 3.1 | 4.2 |
| Queue Clearance Time ( $g s$ ), s |  |  | 10.0 |  |  | 29.4 | 10.0 | 3.7 |
| Green Extension Time ( $\mathrm{e}_{\mathrm{e}}$ ), s |  | 0.0 | 0.0 | 0.0 |  | 0.0 | 0.0 | 4.1 |
| Phase Call Probability |  |  | 1.00 |  |  | 1.00 | 1.00 | 1.00 |
| Max Out Probability |  |  | 1.00 |  |  | 1.00 | 1.00 | 0.00 |


| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 34 | 566 | 104 | 411 | 482 | 61 | 119 | 79 | 561 | 233 | 114 | 41 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 927 | 1809 | 1610 | 1810 | 1809 | 1610 | 1298 | 1900 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g s$ ), s | 2.4 | 11.6 | 4.3 | 8.0 | 7.7 | 2.0 | 6.3 | 2.7 | 27.4 | 8.0 | 1.7 | 1.3 |
| Cycle Queue Clearance Time ( $g_{c}$ ), s | 2.4 | 11.6 | 4.3 | 8.0 | 7.7 | 2.0 | 6.3 | 2.7 | 27.4 | 8.0 | 1.7 | 1.3 |
| Green Ratio ( g/C ) | 0.31 | 0.31 | 0.31 | 0.42 | 0.44 | 0.44 | 0.30 | 0.30 | 0.30 | 0.09 | 0.44 | 0.44 |
| Capacity ( c ), veh/h | 365 | 1113 | 496 | 395 | 1596 | 710 | 475 | 578 | 490 | 161 | 1584 | 705 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.093 | 0.508 | 0.210 | 1.042 | 0.302 | 0.086 | 0.249 | 0.137 | 1.144 | 1.449 | 0.072 | 0.059 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 24.5 | 215 | 75.9 | 409.4 | 138.2 | 32.4 | 82.8 | 52.3 | 790.1 | 562.5 | 29.3 | 21.2 |
| Back of Queue ( Q ), veh/ln ( 95 th percentile) | 1.0 | 8.6 | 3.0 | 16.4 | 5.5 | 1.3 | 3.3 | 2.1 | 31.6 | 22.5 | 1.2 | 0.8 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 22.4 | 25.6 | 23.1 | 28.1 | 16.2 | 14.6 | 24.0 | 22.7 | 31.3 | 41.0 | 14.7 | 14.6 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.5 | 1.7 | 1.0 | 56.6 | 0.5 | 0.2 | 0.3 | 0.1 | 86.6 | 233.1 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay ( $d$ ), s/veh | 22.9 | 27.2 | 24.0 | 84.7 | 16.7 | 14.8 | 24.2 | 22.8 | 117.9 | 274.1 | 14.7 | 14.6 |
| Level of Service (LOS) | C | C | C | F | B | B | C | C | F | F | B | B |
| Approach Delay, s/veh / LOS | 26.5 |  | C | 45.9 |  | D | 93.3 |  | F | 170.2 |  | F |
| Intersection Delay, s/veh / LOS | 71.1 |  |  |  |  |  |  |  |  |  |  |  |

## Multimodal Results

Pedestrian LOS Score / LOS
Bicycle LOS Score / LOS
71.1

E

## General Information

| Agency | L |
| :--- | :--- |
| Analyst | Cit |
| Jurisdiction |  |
|  | Urban Street |
| Intersection | Fal |
| Project Description | F |

Linscott, Law \& Greenspan

| JAS | An |
| :--- | :--- |
| City of Los Angeles | Tim |
|  | Roscoe Boulevard |
| Fallbrook / Roscoe | An |
| Fallbrook Point |  |

Intersection Information

| Duration, h | 0.250 |
| :--- | :--- |
| Area Type | Other |
| PHF | 0.97 |

PHF 0.97

Project + Improvements PM
Analysis Year
File Name $\quad$ 05PM - Future with Project + Improvements.xus

| Demand Information |  |  |  | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement |  |  |  | L | T | R | L | T | R | L | T | R | L | T | R |
| Demand ( $v$ ), veh/h |  |  |  | 33 | 549 | 101 | 399 | 468 | 59 | 115 | 77 | 544 | 226 | 111 | 40 |
| Signal Information |  |  |  |  |  |  | 10. |  |  |  |  |  |  |  |  |
| Cycle, s | 90.0 | Reference Phase | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Offset, s | 0 | Reference Point | End | Green | 20.0 | 20.7 | 14.0 | 16.4 | 0.0 | 0.0 |  |  |  |  |  |
| Uncoordinated | No | Simult. Gap E/W | On | Yellow | 3.0 | 4.3 | 3.0 | 4.3 | 0.0 | 0.0 |  |  |  |  | $\bigcirc$ |
| Force Mode | Fixed | Simult. Gap N/S | On | Red | 1.0 | 1.0 | 1.0 | 1.3 | 0.0 | 0.0 |  |  |  | 7 |  |

## Timer Results

Assigned Phase
Case Number
Phase Duration, s
Change Period, ( $Y+R_{c}$ ), s
Max Allow Headway ( MAH ), s
Queue Clearance Time ( $g s$ ), s
Green Extension Time ( $g e$ ), s
Phase Call Probability
Max Out Probability

| Movement Group Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Approach Movement | L | T | R | L | T | R | L | T | R | L | T | R |
| Assigned Movement | 1 | 6 | 16 | 5 | 2 | 12 | 3 | 8 | 18 | 7 | 4 | 14 |
| Adjusted Flow Rate ( v ), veh/h | 34 | 566 | 104 | 411 | 482 | 61 | 119 | 79 | 561 | 233 | 114 | 41 |
| Adjusted Saturation Flow Rate ( $s$ ), veh/h/ln | 927 | 1809 | 1610 | 1810 | 1809 | 1610 | 1298 | 1900 | 1610 | 1810 | 1809 | 1610 |
| Queue Service Time ( $g$ s), s | 2.6 | 12.9 | 4.8 | 13.9 | 7.0 | 1.8 | 7.4 | 3.2 | 16.4 | 11.2 | 1.8 | 1.5 |
| Cycle Queue Clearance Time ( $\mathrm{g}_{\mathrm{c}}$ ), s | 2.6 | 12.9 | 4.8 | 13.9 | 7.0 | 1.8 | 7.4 | 3.2 | 16.4 | 11.2 | 1.8 | 1.5 |
| Green Ratio ( g/C ) | 0.23 | 0.23 | 0.23 | 0.47 | 0.50 | 0.50 | 0.18 | 0.18 | 0.40 | 0.16 | 0.38 | 0.38 |
| Capacity ( c ), veh/h | 293 | 832 | 370 | 557 | 1797 | 800 | 317 | 346 | 651 | 281 | 1383 | 615 |
| Volume-to-Capacity Ratio ( $X$ ) | 0.116 | 0.680 | 0.281 | 0.739 | 0.269 | 0.076 | 0.374 | 0.229 | 0.861 | 0.828 | 0.083 | 0.067 |
| Back of Queue ( Q ), ft/ln ( 95 th percentile) | 28.2 | 245.5 | 88.3 | 250 | 119.9 | 28.2 | 102 | 64.4 | 436 | 255.5 | 33 | 23.9 |
| Back of Queue ( $Q$ ), veh/ln ( 95 th percentile) | 1.1 | 9.8 | 3.5 | 10.0 | 4.8 | 1.1 | 4.1 | 2.6 | 17.4 | 10.2 | 1.3 | 1.0 |
| Queue Storage Ratio ( $R Q$ ) ( 95 th percentile) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Uniform Delay ( $d_{1}$ ), s/veh | 27.7 | 31.6 | 28.5 | 18.2 | 13.2 | 11.8 | 33.1 | 31.4 | 24.5 | 36.8 | 17.7 | 17.6 |
| Incremental Delay ( $d_{2}$ ), s/veh | 0.8 | 4.5 | 1.9 | 5.2 | 0.4 | 0.2 | 0.7 | 0.3 | 11.4 | 17.2 | 0.0 | 0.0 |
| Initial Queue Delay ( $d_{3}$ ), s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Control Delay (d), s/veh | 28.5 | 36.1 | 30.4 | 23.4 | 13.5 | 12.0 | 33.9 | 31.7 | 35.8 | 54.0 | 17.8 | 17.7 |
| Level of Service (LOS) | C | D | C | C | B | B | C | C | D | D | B | B |
| Approach Delay, s/veh / LOS | 34.9 |  | C | 17.7 |  | B | 35.1 |  | D | 39.5 |  | D |
| Intersection Delay, s/veh / LOS | 29.7 |  |  |  |  |  | C |  |  |  |  |  |
| Multimodal Results | EB |  |  | WB |  |  | NB |  |  | SB |  |  |
| Pedestrian LOS Score / LOS | 2.30 |  | B | 2.30 |  | B | 2.45 |  | B | 2.45 |  | B |
| Bicycle LOS Score / LOS | 1.07 |  | A | 1.28 |  | A | 1.74 |  | B | 0.81 |  | A |


[^0]:    Linscott, Law \&
    Greenspan, Engineers
    20931 Burbank Boulevard
    Suite C
    Woodland Hills, CA 91367
    818.835.8648 т

[^1]:    ${ }^{1}$ Los Angeles Department of Transportation (LADOT) Transportation Assessment Guidelines, LADOT, July 2020.

[^2]:    ${ }^{2}$ Institute of Transportation Engineers, Trip Generation Manual, $10^{\text {th }}$ Edition, Washington, D.C., 2017.

[^3]:    ${ }^{3}$ While the calculation would yield a requirement of one short-term bicycle parking space, Table 12.21 A .16 (a)(2) states that a minimum of two short-term bicycle parking spaces are required for an office use.

[^4]:    ${ }^{4}$ For purposes of calculating the required number of short-term bicycle parking spaces, the Project's warehouse and manufacturing components have been combined into a singular use.
    ${ }^{5}$ While the calculation would yield a requirement of one short-term bicycle parking space, Table 12.21 A .16 (a)(2) states that a minimum of two short-term bicycle parking spaces are required for an office use.
    ${ }^{6}$ While the calculation would yield a requirement of one short-term bicycle parking space, Table 12.21 A.16(a)(2) states that a minimum of two short-term bicycle parking spaces are required for an office use.
    ${ }^{7}$ For purposes of calculating the required number of long-term bicycle parking spaces, the Project's warehouse and manufacturing components have been combined into a singular use.
    ${ }^{8}$ While the calculation would yield a requirement of one long-term bicycle parking space, Table 12.21 A.16(a)(2) states that a minimum of two long-term bicycle parking spaces are required for an office use.

[^5]:    ${ }^{9}$ Mobility Plan 2035, Los Angeles Department of City Planning, December 2015.
    ${ }^{10} 2010$ Bicycle Plan, Los Angeles Department of City Planning, Adopted March 1, 2011. As noted in Mobility Plan 2035, the 2010 Bicycle Plan and policies have been folded into the Mobility Plan to reflect a commitment to a balanced, multi-modal viewpoint.

[^6]:    ${ }^{11}$ Modifications of Transportation Improvements for Letter of Clarification for Proposed Development at 8401 North Fallbrook Avenue (DIR-2016-317-ACI-CLQ), LADOT, August 9, 2021.

[^7]:    ${ }^{13}$ Vision Zero Los Angeles 2015-2025, August 2015.

[^8]:    ${ }^{14}$ Pandemic-related updates to LADOT's Transportation Assessment Requirements, LADOT, April 17, 2020.

[^9]:    
    

[^10]:    ${ }^{16}$ LADOT Transportation Assessments - Interim Guidance for Freeway Safety Analysis, City of Los Angeles Department of Transportation, May 2020.

[^11]:    ${ }^{17}$ Highway Capacity Manual 6th Edition, Transportation Research Board of the National Academies of Sciences-Engineering-Medicine, 2016.

[^12]:    ${ }^{1}$ At this time Project Design Features are only those measures that are also shown to be needed to comply with a local ordinance, affordable housing incentive program, or State law.
    ${ }^{2}$ Select if reduced parking supply is pursued as a result of a parking incentive as permitted by the City's Bicycle Parking Ordinance, State Density Bonus Law, or the City's Transit Oriented Community Guidelines.

[^13]:    | 0 | 0 | 0 | 0 |
    | :--- | :--- | :--- | :--- |

[^14]:    ${ }^{1}$ LADOT Transportation Assessment Support Map https://arcg.is/fubbD

[^15]:    ${ }^{2}$ for a project frontage that exceeds 400 feet along an Avenue or Boulevard, the incremental additional driveway above 2 is more than 1 driveway for every 400 additional feet.
    ${ }^{3}$ LADOT Transportation Assessment Support Map https://arcg.is/fubbD

[^16]:    ${ }^{4}$ The baseline parking is defined here as the default parking requirements in section 12.21 A .4 of the Los Angeles Municipal Code or any applicable Specific Plan, whichever prevails, for each applicable use not taking into consideration other parking incentives to reduce the amount of required parking.

