Appendix IS-8

Hydrology and Water Quality Report

HYDROLOGY / WATER QUALITY REPORT

Oak Parking 1200 Getty Center Drive Los Angeles, California 90049 KPFF Job #1800239

March 09, 2022

OWNER:

PREPARED BY:

The J. Paul Getty Trust 1200 Getty Center Way, Suite 100 Los Angeles, CA 90049 **KPFF Consulting Engineers** 700 S. Flower St. Suite 2100 Los Angeles, California 90017 213.418.0201

TABLE OF CONTENTS

I. Introduction
A. Project Description1
B. Project Location
II. Drainage Concepts
A. Existing Drainage Patterns1
B. Proposed Drainage Patterns 1
C. Hydrology2
D. Peak Stormwater Runoff Discharge Rates
II. Best Management Practices (BMPs)
A. Non-structural BMPs
1. Open Paved Areas and Planter Areas
2. Education and Training4
3. Landscaping
4. Monitoring and Maintenance4
B. Structural BMPs4
1. EPIC System
C. Anticipated Potential Pollutants
D. Storm Drain Stenciling5
Appendix A - Design Calculations
Appendix B – Hydrology
Appendix C - LID Details
Appendix D - O&M

Exhibit 1 – LID Plan

Appendix A - Design Calculations Appendix B – Hydrology Appendix C - LID Details Appendix D - O&M

I. Introduction

A. Project Description

The project proposes construction of two surface parking lots located at the Getty Center in the City of Los Angeles. The Oak Parking project would be used in conjunction with the existing parking facilities at the Getty Center to accommodate overflow parking for visitors and staff. The project site comprised of proposed impervious parking lot, landscape areas, BMP planters, existing channel, and sloped pervious hillside. The total Project area is approximately 3.06 acres and would include 217 parking spaces. The proposed impervious area for purposes of this hydrology report is about 2.27 acres.¹

B. Project Location

The project site is located within the Brentwood community in the City of Los Angeles, approximately 16 miles west of downtown and 6 miles from the Pacific Ocean. The Oak Parking would be developed immediately adjacent to Interstate 405 (I-405) at Getty Center Drive. The site is situated within a small canyon tributary to Sepulveda Canyon in the Santa Monica Mountains and is bordered to the north, south and west by existing slopes and on the east by I-405.

II. Drainage Concepts

A. Existing Drainage Patterns

Based on site visits and aerial and existing topographic surveys, the existing site storm water appears to sheet flow from the northern to the southern limits of the Project site with average slope of 3%. At the same time, the runoff tends to sheet flow toward west at the lower elevated valley and be captured into the several existing debris basins. From the basins, the runoff is routed by several open channels with culverts and headwalls and below-ground RCP pipes that makes its way to the storm drain system per North Canyon Road I-405 Sepulveda Pass Widening Project.

For the purposes of this study, it is anticipated that the infiltration of stormwater is infeasible due to the location of the project in a hillside area.

B. Proposed Drainage Patterns

Infiltration is not possible due to the location of the project in a hillside area according to the Hillside Grading Ordinance per City of Los Angeles LID Manual. Thus, capture and reuse method will be used to treat stormwater runoff. The proposed parking lot will have several catch basins that capture the sheet flow based runoff. The stormwater is then directed to EPIC planters for the treatment and

¹ The project site includes approximately 2.15 acres of paving and approximately 0.91 acres of landscape. However, for purposes of this hydrology report approximately 0.12 acres of the landscape area is analyzed as impervious area.

storage of the runoff volume. The overflow of this EPIC system will be discharged to the existing channel and existing 48" RCP storm drain pipe.

C. Hydrology

For purpose of this report the existing hydrology, proposed hydrology and the hydrology of the major storm drain systems will be considered. The 50-year Los Angeles County storm, also known as the capital storm event, will be considered. The calculations for the 25-year and 50-year Los Angeles County storms are presented in below Table 1 and 2.

Table 1: Comparison of Existing and Proposed Hydrology 25-yr Storm

Existing Condition

Drainage Area	Area Disturbed (Acres)	% Impervious	Time of Concentration (min)	Clear Peak Flow Rate (cfs)	
1	1.47	1.0%	5	3.56	
2	1.59	1.0%	5	3.84	
			Total	7.40	

Proposed Condition

Drainage Area	Area Disturbed (Acres)	% Impervious	Time of Concentration (min)	Clear Peak Flow Rate (cfs)
1	1.47	76%	5	4.90
2	1.59	73%	6	4.78
			Total	9.68

Table 2: Comparison of Existing and Proposed Hydrology 50-yr Storm

Existing Condition

Drainage Area	Area Disturbed (Acres)	% Impervious	Time of Concentration (min)	Clear Peak Flow Rate (cfs)
1	1.47	1.0%	5	4.28
2	1.59	1.0%	5	4.62
			Total	8.90

Proposed Condition

Drainage Area	Area Disturbed (Acres)	% Impervious	Time of Concentration (min)	Clear Peak Flow Rate (cfs)
1	1.47	76%	5	5.64
2	1.59	73%	5	6.04
			Total	11.68

D. Peak Stormwater Runoff Discharge Rates

As required by the most current Los Angeles County MS4 Permit, the entire post-development Stormwater Quality Design volume (SWQDv) must be treated for greater of the first quarter inch or 85%, 24-hour rain event. Based on these calculations, the structural and non-structural BMPs for the Project have been designed to treat storm water runoff from all storms up to and including the 85%, 24-hour storm event which is greater than the quarter inch discharge. The full calculations can be found in the Appendix B.

The required EPIC system surface area and storage to treat the runoff in the area of work is provided in Table 3. The full calculations for stormwater runoff and BMP sizing can be found in Appendix A and B. All BMPs meet the design criteria in Attachment H of the most current MS4 Permit. Input parameters and calculations for BMP sizing are shown in Appendix A.

Drainage Area	Area Disturbed (Acres)	Flow to be Treated (CFS)	Volume to be Treated (CF)	Epic Area (SF)	EPIC Storage Provided (CF)
1	1.47	0.40	4,338	2,007	8,522
2	1.59	0.36	4,474	1,995	6,866

 Table 3: Summary of EPIC System Calculations

II. Best Management Practices (BMPs)

Detailed operation and maintenance plans for structural BMPs will be developed.

A. Non-structural BMPs

1. Open Paved Areas and Planter Areas

- a. Regular sweeping of all open hardscape areas, at a minimum, on a weekly basis in order to prevent dispersal of pollutants that may collect on those surfaces.
- b. Regular pruning of the trees and shrubs in the planter areas to avoid formation of dried leaves and twigs, which are normally blown by the wind during windy days. These dried leaves are likely to clog the surface inlets of the drainage system when rain comes, which would result to flooding of the surrounding area due to reduced flow capacities of the inlets.

c. Trash and recycling containers shall be used such that, if they are to be located outside or apart from the principal structure, they are fully enclosed and watertight in order to prevent contact of storm water with waste matter, which can be a potential source of bacteria and other pollutants in runoff. These containers shall be emptied and the wastes disposed of properly on a regular basis.

2. Education and Training

The operation and maintenance crew of the proposed parking structure shall be made aware of the structural BMPs installed in the Project. Information materials, such as brochures, shall also be provided for their complete information. They shall also be briefed about proper methods of handling and disposal of wastes and should understand the on-site BMPs and their maintenance requirements.

3. Landscaping

Minimize the use of pesticides and fertilizers to the maximum extent practical. The Project includes the removal of the existing vegetation and the replacement of landscape vegetation with primarily drought tolerant, non-invasive trees and plants. Unpaved areas to be re-graded for construction activities shall be re-vegetated per landscape plans.

4. Monitoring and Maintenance

- a. All BMPs shall be operated, monitored, and maintained for the life of the Project and at a minimum, all structural BMPs shall be inspected, cleaned-out, and where necessary, repaired, at the following minimum frequencies: 1) prior to October 15th each year; 2) during each month between October 15th and April 15th of each year and, 3) at least twice during the dry season (between April 16 and October 14 of every year).
- b. Debris and other water pollutants removed from structural BMPs during cleanout shall be contained and disposed of in a proper manner.
- c. The drainage system and the associated structures and BMPs shall be maintained according to manufacturer's specification to ensure maximum pollutant removal efficiencies.

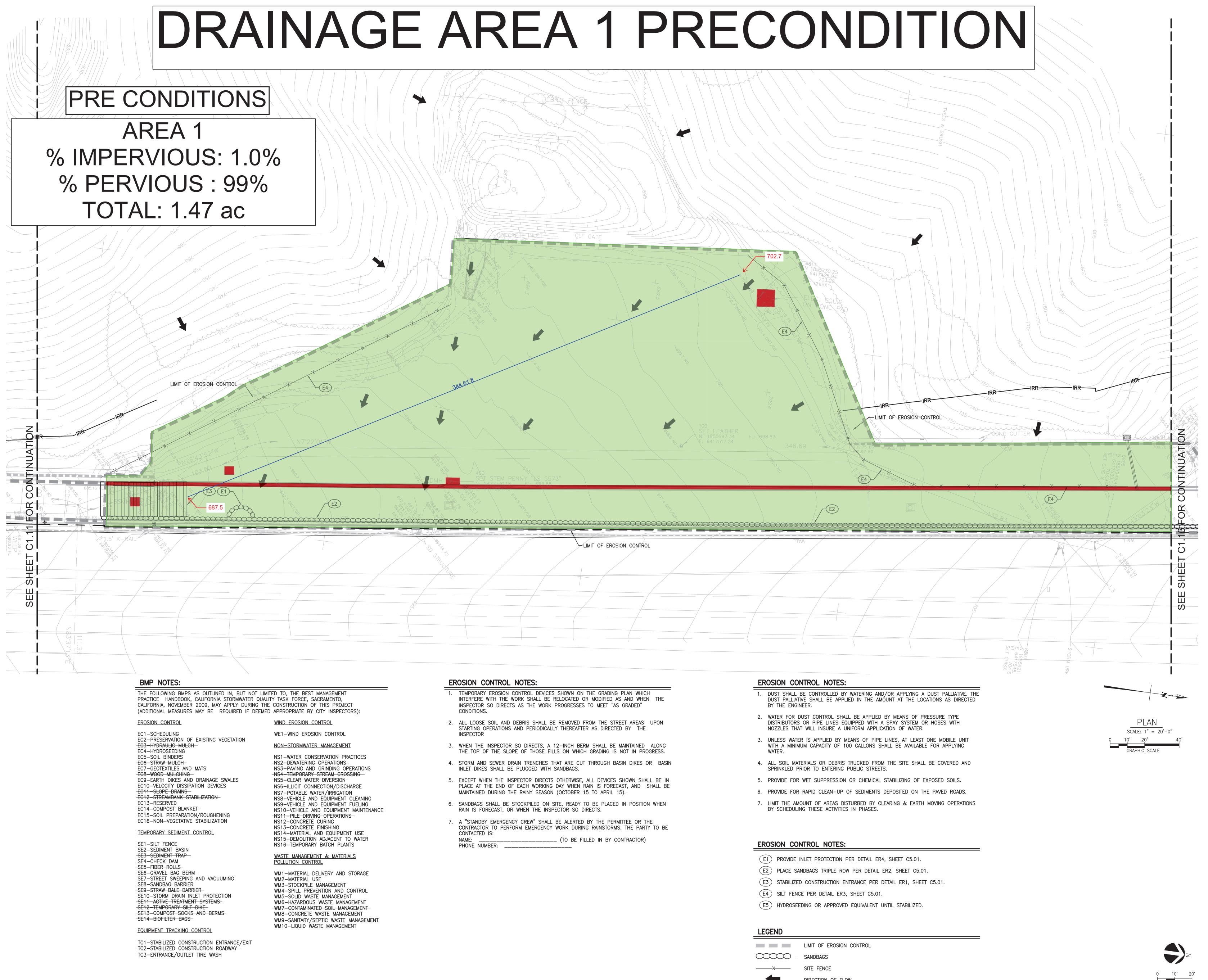
B. Structural BMPs

1. EPIC System

The Epic System is proposed to capture and re-use the stormwater runoff from the new and altered impervious areas. From ECS, "Water is introduced directly to the roots of the plants. As water is transpired by the plant, new water is automatically replaced upward into the root zone by capillary action from the sub-surface reservoir. The water film from capillary rise and high oxygen levels among the sand voids provide an ideal growing environment for plant growth". A storm tank below the EPIC system is also proposed to meet minimum the storage volume.

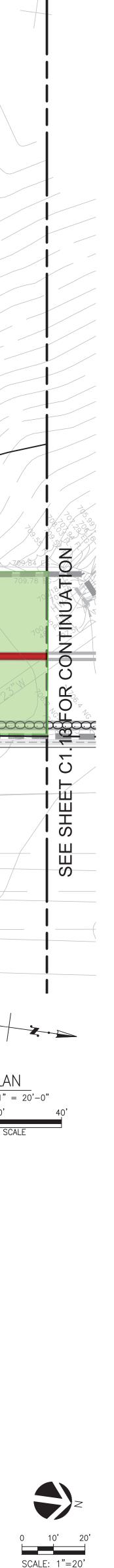
Complete sizing calculations are attached in Appendix A and are based on the City of Los Angeles Low Impact Development Manual.

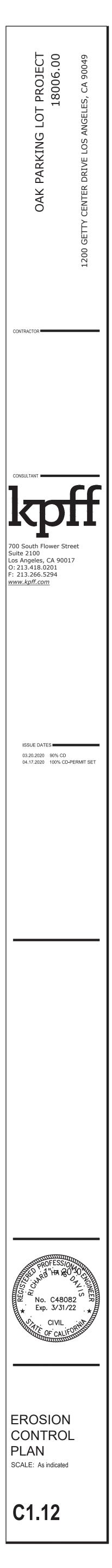
Maintenance procedures and recommendations outlined in Appendix D shall be followed by the owner to ensure proper performance of the stormwater treatment areas. These procedures include keeping maintenance records, regular sweeping and removal of debris, regular and visual inspections, and replacement/proper disposal/replenishment of adsorbent material.

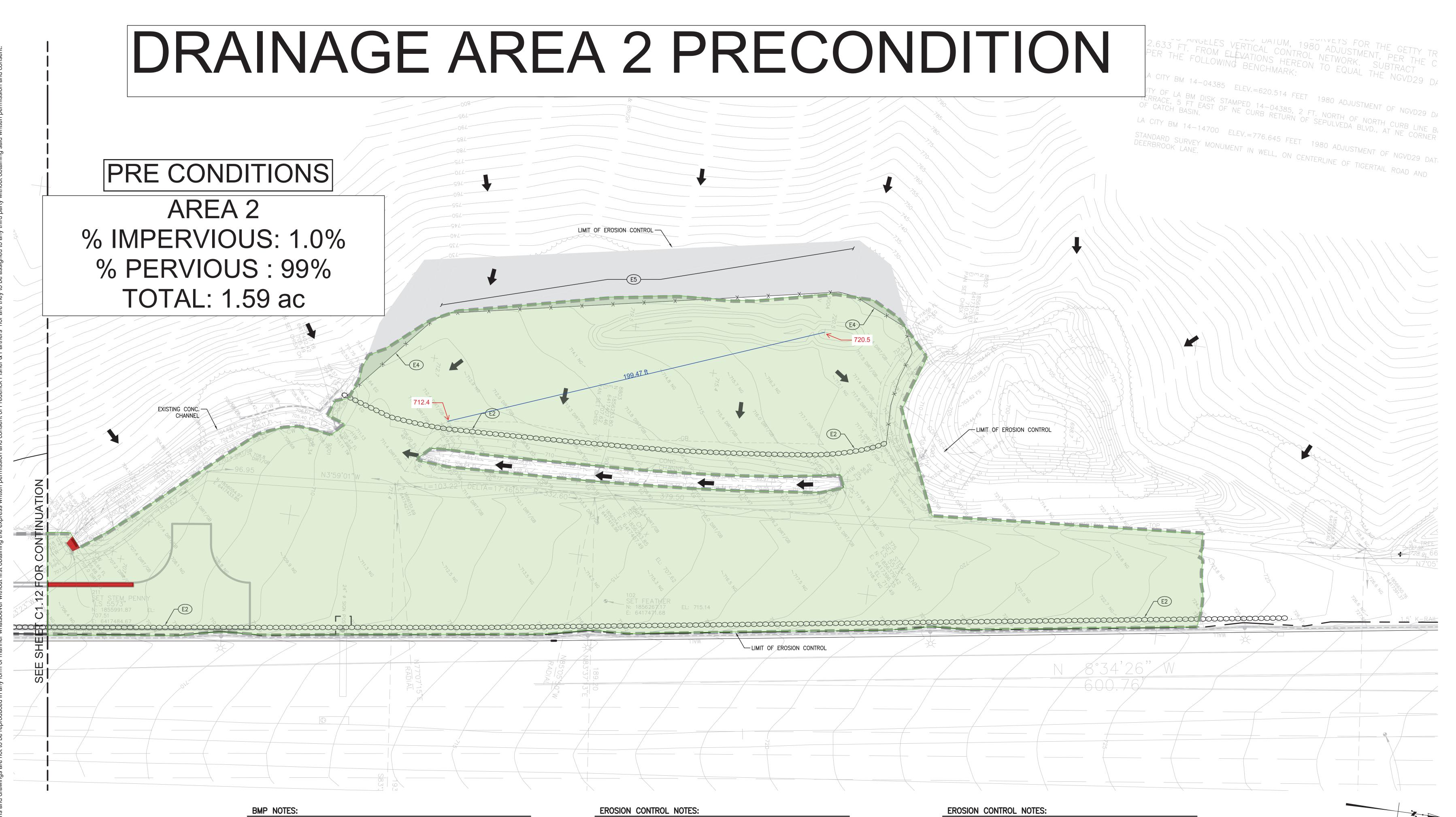

C. Anticipated Potential Pollutants

The proposed renovated parking structure and the onsite roadways (and parking) have the potential for suspended sediments, floatable trash, minimal pesticides and nutrients, oil and grease, and gasoline entering the storm runoff system. As mentioned, storm water will discharge to and be treated by the vegetated swale which is to be properly maintained for adequate treatment.

D. Storm Drain Stenciling


Catch basins on site shall be stenciled to indicate that no substance other than storm water is to be collected by the storm drain system. The legibility of the stencils is to be maintained by the above mentioned party. Stencils shall be redrawn as necessary.


Exhibit 1 – LID Plan



CALIFORNIA, NOVEMBER 2009, MAY APPLY DURING THE (ADDITIONAL MEASURES MAY BE REQUIRED IF DEEMED	
EROSION CONTROL	WIND E
EC1-SCHEDULING EC2-PRESERVATION OF EXISTING VEGETATION -EC3-HYDRAULIC MULCH-	WE1-WI
EC2-FRESERVATION OF EXISTING VEGETATION EC3-HYDRAULIC MULCH EC4-HYDROSEEDING	<u>NON-ST</u>
EC1-SCHEDULING EC2-PRESERVATION OF EXISTING VEGETATION EC3-HYDRAULIC MULCH EC4-HYDROSEEDING EC5-SOIL BINDERS EC6-STRAW MULCH EC7-GEOTEXTILES AND MATS EC8-WOOD MULCHING EC9-EARTH DIKES AND DRAINAGE SWALES EC10-VELOCITY DISSIPATION DEVICES EC11-SLOPE DRAINS EC12-STREAMBANK STABILIZATION EC12-STREAMBANK STABILIZATION- EC13-RESERVED EC14-COMPOST BLANKET EC15-SOIL PREPARATION/ROUGHENING EC16-NON-VEGETATIVE STABILIZATION <u>TEMPORARY SEDIMENT CONTROL</u> SE1-SILT FENCE SE2-SEDIMENT BASIN SE3-SEDIMENT TRAP SE4-CHECK DAM SE5-FIBER ROLLS - SE6-GRAVEL BAG BERM - SE7-STREET SWEEPING AND VACUUMING SE8-SANDBAG BARRIER SE3-SANDBAG BARRIER	NS1-WA -NS2-DE NS3-PA -NS4-TE -NS5-CL
EC10-VELOCITY DISSIPATION DEVICES <u>EC11-SLOPE DRAINS</u> <u>EC12-STREAMBANK STABILIZATION</u> EC13-RESERVED <u>EC14-COMPOST_BLANKET</u>	NS6-ILL NS7-PC NS8-VE NS9-VE
EC15-SOIL PREPARATION/ROUGHENING EC16-NON-VEGETATIVE STABILIZATION	NS10-V -NS11-F NS12-C
TEMPORARY SEDIMENT CONTROL	NS13-0 NS14-N NS15-D
SE1-SILT FENCE SE2-SEDIMENT BASIN	NS16-T
- SE3—SEDIMENT_TRAP SE4—CHECK_DAM - SE5—FIBER_ROLLS -	<u>WASTE</u> POLLUTI
SEG-GRAVEL BAG BERM SE7-STREET SWEEPING AND VACUUMING SE8-SANDBAG BARRIER	WM1-M WM2-M WM3-S1

- DIRECTION OF FLOW

•	BMP NOTES:	
	THE FOLLOWING BMPS AS OUTLINED IN, BUT NOT LIMIT PRACTICE HANDBOOK, CALIFORNIA STORMWATER QUALIT CALIFORNIA, NOVEMBER 2009, MAY APPLY DURING THE (ADDITIONAL MEASURES MAY BE REQUIRED IF DEEMED	Y TASK FORC
	EROSION CONTROL	WIND EROSI
	EC1-SCHEDULING	WE1-WIND
	EC2-PRESERVATION OF EXISTING VEGETATION -EC3-HYDRAULIC MULCH EC4-HYDROSEEDING	NON-STORM
	EC7-GEOTEXTILES AND MATS EC8-WOOD MULCHING EC9-EARTH DIKES AND DRAINAGE SWALES EC10-VELOCITY DISSIPATION DEVICES EC11-SLOPE DRAINS- EC12-STREAMBANK STABILIZATION- EC13-RESERVED EC14-COMPOST BLANKET- EC15-SOIL PREPARATION/ROUGHENING EC16-NON-VEGETATIVE STABILIZATION TEMPORARY SEDIMENT CONTROL SE1-SILT FENCE SE2-SEDIMENT BASIN SE3-SEDIMENT TRAP- SE4-CHECK DAM	NS2-DEWATH NS3-PAVING NS4-TEMPOI NS5-CLEAR NS6-ILLICIT NS7-POTABI NS8-VEHICL NS9-VEHICL NS10-VEHIC NS10-VEHIC NS12-CONC NS13-CONC NS13-CONC NS14-MATEF NS15-DEMO NS16-TEMPO WASTE MANA POLLUTION (
	SE6-GRAVEL BAG BERM SE7-STREET SWEEPING AND VACUUMING SE8-SANDBAG BARRIER SE9-STRAW BALE BARRIER SE10-STORM DRAIN INLET PROTECTION SE11-ACTIVE TREATMENT SYSTEMS	WM1-MATER WM2-MATER WM3-STOCK WM4-SPILL WM5-SOLID WM6-HAZAR WM7-CONTA WM8-CONCF WM9-SANITA WM10-LIQUI

EQUIPMENT TRACKING CONTROL TC1-STABILIZED CONSTRUCTION ENTRANCE/EXIT TC2-STABILIZED CONSTRUCTION ROADWAY TC3-ENTRANCE/OUTLET TIRE WASH

BEST MANAGEMENT RCE, SACRAMENTO, TION OF THIS PROJECT

ATE BY CITY INSPECTORS):

SION CONTROL EROSION CONTROL

MWATER MANAGEMENT

CONSERVATION PRACTICES FERING OPERATIONS IG AND GRINDING OPERATIONS ORARY STREAM CROSSING

WATER DIVERSION CONNECTION/DISCHARGE BLE WATER/IRRIGATION

LE AND EQUIPMENT CLEANING LE AND EQUIPMENT FUELING ICLE AND EQUIPMENT MAINTENANCE DRIVING OPERATIONS

CRETE CURING CRETE FINISHING ERIAL AND EQUIPMENT USE OLITION ADJACENT TO WATER

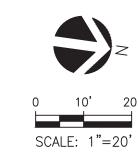
PORARY BATCH PLANTS

NAGEMENT & MATERIALS CONTROL

RIAL DELIVERY AND STORAGE RIAL USE KPILE MANAGEMENT PREVENTION AND CONTROL WASTE MANAGEMENT ARDOUS WASTE MANAGEMENT AMINATED SOIL MANAGEMENT CRETE WASTE MANAGEMENT

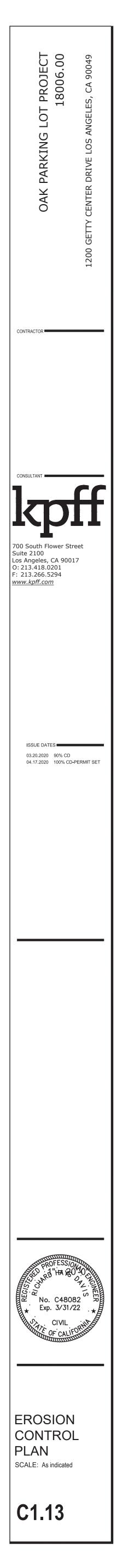
TARY/SEPTIC WASTE MANAGEMENT UID WASTE MANAGEMENT

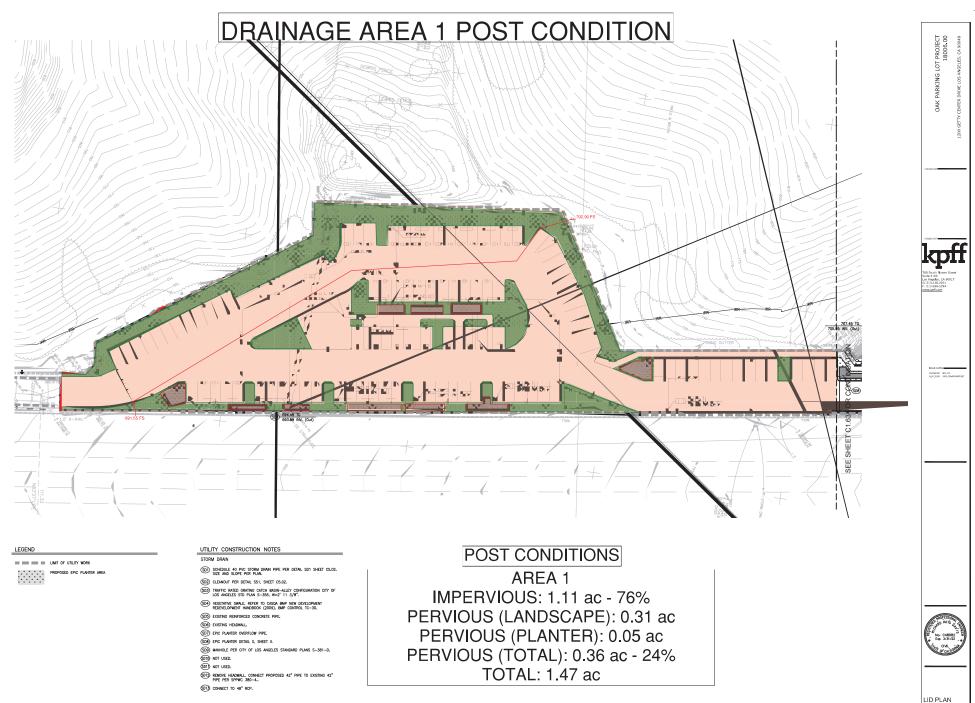
- TEMPORARY EROSION CONTROL DEVICES SHOWN ON THE GRADING PLAN WHICH INTERFERE WITH THE WORK SHALL BE RELOCATED OR MODIFIED AS AND WHEN THE INSPECTOR SO DIRECTS AS THE WORK PROGRESSES TO MEET "AS GRADED" CONDITIONS.
- 2. ALL LOOSE SOIL AND DEBRIS SHALL BE REMOVED FROM THE STREET AREAS UPON STARTING OPERATIONS AND PERIODICALLY THEREAFTER AS DIRECTED BY THE INSPECTOR
- 3. WHEN THE INSPECTOR SO DIRECTS, A 12-INCH BERM SHALL BE MAINTAINED ALONG THE TOP OF THE SLOPE OF THOSE FILLS ON WHICH GRADING IS NOT IN PROGRESS.
- 4. STORM AND SEWER DRAIN TRENCHES THAT ARE CUT THROUGH BASIN DIKES OR BASIN INLET DIKES SHALL BE PLUGGED WITH SANDBAGS.
- 5. EXCEPT WHEN THE INSPECTOR DIRECTS OTHERWISE, ALL DEVICES SHOWN SHALL BE IN PLACE AT THE END OF EACH WORKING DAY WHEN RAIN IS FORECAST, AND SHALL BE MAINTAINED DURING THE RAINY SEASON (OCTOBER 15 TO APRIL 15).
- 6. SANDBAGS SHALL BE STOCKPILED ON SITE, READY TO BE PLACED IN POSITION WHEN RAIN IS FORECAST, OR WHEN THE INSPECTOR SO DIRECTS. 7. A "STANDBY EMERGENCY CREW" SHALL BE ALERTED BY THE PERMITTEE OR THE
- CONTRACTOR TO PERFORM EMERGENCY WORK DURING RAINSTORMS. THE PARTY TO BE CONTACTED IS: _____ (TO BE FILLED IN BY CONTRACTOR) NAME: _____ PHONE NUMBER: _____

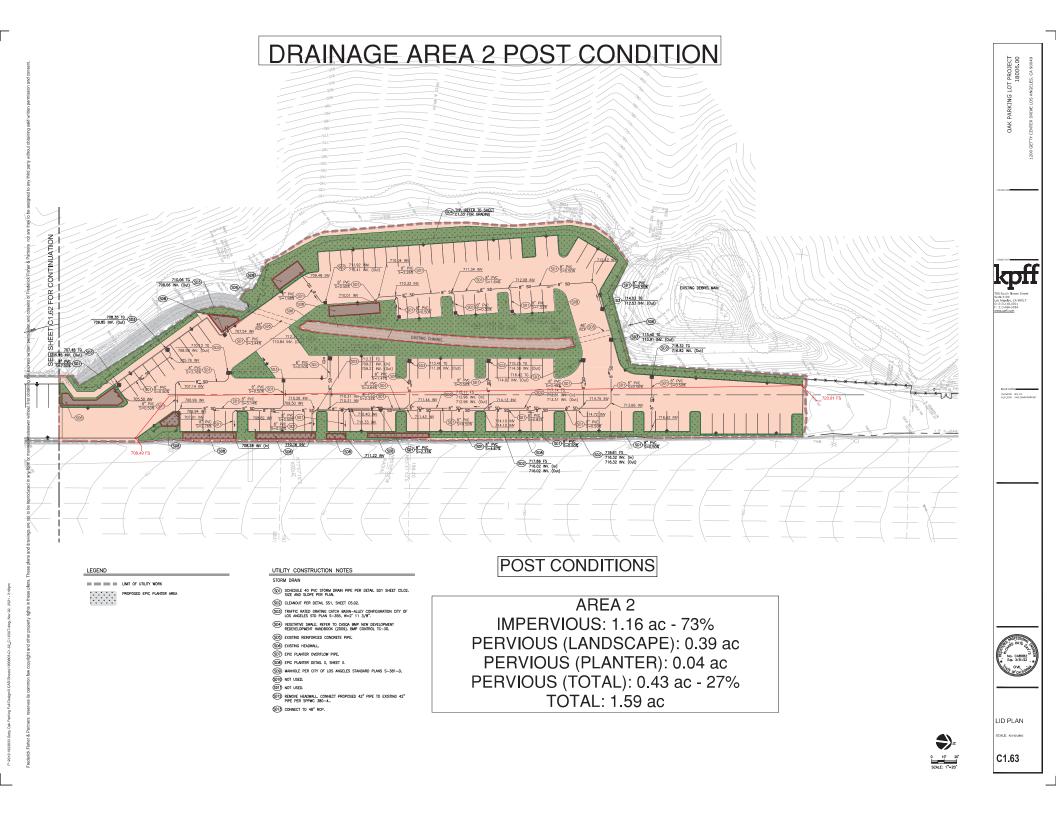

- 1. DUST SHALL BE CONTROLLED BY WATERING AND/OR APPLYING A DUST PALLIATIVE. THE DUST PALLIATIVE SHALL BE APPLIED IN THE AMOUNT AT THE LOCATIONS AS DIRECTED BY THE ENGINEER.
- WATER FOR DUST CONTROL SHALL BE APPLIED BY MEANS OF PRESSURE TYPE DISTRIBUTORS OR PIPE LINES EQUIPPED WITH A SPAY SYSTEM OR HOSES WITH NOZZLES THAT WILL INSURE A UNIFORM APPLICATION OF WATER. 3. UNLESS WATER IS APPLIED BY MEANS OF PIPE LINES, AT LEAST ONE MOBILE UNIT
- WITH A MINIMUM CAPACITY OF 100 GALLONS SHALL BE AVAILABLE FOR APPLYING WATER.
- 4. ALL SOIL MATERIALS OR DEBRIS TRUCKED FROM THE SITE SHALL BE COVERED AND SPRINKLED PRIOR TO ENTERING PUBLIC STREETS.
- 5. PROVIDE FOR WET SUPPRESSION OR CHEMICAL STABILIZING OF EXPOSED SOILS.
- 6. PROVIDE FOR RAPID CLEAN-UP OF SEDIMENTS DEPOSITED ON THE PAVED ROADS.
- 7. LIMIT THE AMOUNT OF AREAS DISTURBED BY CLEARING & EARTH MOVING OPERATIONS BY SCHEDULING THESE ACTIVITIES IN PHASES.

EROSION CONTROL NOTES:

- (E1) PROVIDE INLET PROTECTION PER DETAIL ER4, SHEET C5.01.
- (E2) PLACE SANDBAGS TRIPLE ROW PER DETAIL ER2, SHEET C5.01.
- (E3) STABILIZED CONSTRUCTION ENTRANCE PER DETAIL ER1, SHEET C5.01.
- (E4) SILT FENCE PER DETAIL ER3, SHEET C5.01.
- (E5) HYDROSEEDING OR APPROVED EQUIVALENT UNTIL STABILIZED.


LEGEND


	LIMIT OF EROSION CONTROL
	SANDBAGS
X	SITE FENCE


PLAN

0 10' 20' SCALE: 1"=20' SCALE Asinoodad

Appendix A - Design Calculations

EPIC[™] System Planter with Surge Tank - Calculation

PROJECT NAME: Getty Oak Parking PROJECT ADDRESS: 1200 Getty Center Drive CONSULTANT: KPFF Consultants

PROJECT NO.: 1900803

DATE: 2	022-0)2-28
---------	-------	-------

AREA:

A1

Mitigation Volume Calculation

Mitigation Volume (V _m)	33,754 GAL R _{85th} * [(A _I * 0.9) + (A _P * 0.1) + (A _E * 1.0)] * 7.48		
85th Percentile, 24-hr rainfall (R_{85th})	1.15 IN or 0.0958 FT		
Proposed EPIC [™] Area (A _E)	2,007 SF [Enter EPIC planter area or total combined area of hydraulically connected EPIC planters]		
Pervious Area (A _P)	13,660 SF [Enter total pervious area tributary to EPIC]		
Impervious Area (A _I)	48,571 SF [Enter total impervious area tributary to EPIC]		
Total Tributary Area (A _T)	64,238 SF [Calculated total tributary area]		

Rainfall data can be obtained from Los Angeles County DPW at http://www.dpw.lacounty.gov/wrd/hydrologygis/ EPIC[™]-specific, modified calculations based on City of Los Angeles Development BMP Handbook, LID Manual, June 2011, Part B: Planning Activities, 4th Ed. and Los Angeles County Department of Public Works Low Impact Development Standards Manual, February 2014 and Los Angeles County Department of Public Works Hydrology Manual, January 2006.

EPIC[™] System and Applicable Addition	Planter No.: 1	
EPIC [™] Area Recommended (A _{EPIC})	12,982 SF [V _m /2.6	GAL per SF]
Proposed EPIC [™] Area (A _E) from above	2,007 SF ET _V / V	m = 1.31
Chamber Density: One chamber per		must be > 1.00
○ 15 SF	0 for a total of 10	0_chambers
EPIC [™] Design Capacity (V _{Edesign})	5,218 GAL [Based on I	EPIC area & chamber density]
Min. Additional Storage Required (V _{AS})	28,535 GAL or	3,815 CF [V _m - V _{Edesign}]
Additional Storage Provided (V _{DS})	7,824 OGAL •	CF [Select Units]
Storage type, manufacturer and model	ECO-RAIN DOUBLE+HA	LF TANK ET-1502.5
TOTAL System Capacity	63,742 GAL or	8,522 CF [V _{DS} + V _{Edesign}]

EPIC[™] System Planter with Surge Tank - Calculation

PROJECT NAME: Getty Oak Parking PROJECT ADDRESS: 1200 Getty Center Drive CONSULTANT: KPFF Consultants

PROJECT NO.: 1900803

DATE: 2	022-0)2-28
---------	-------	-------

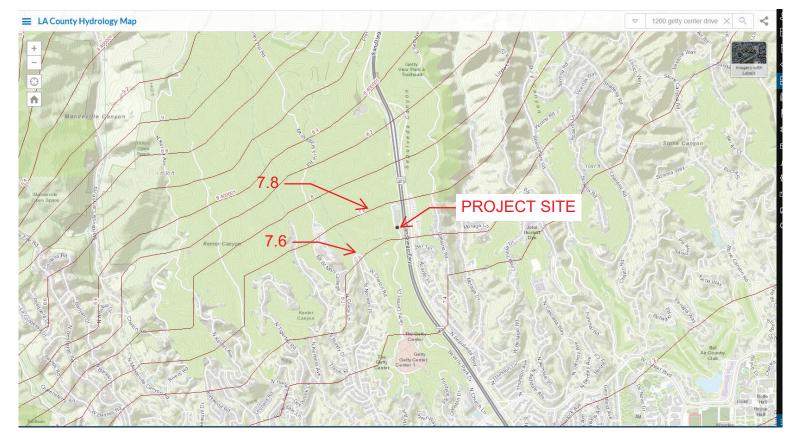
AREA:

A2

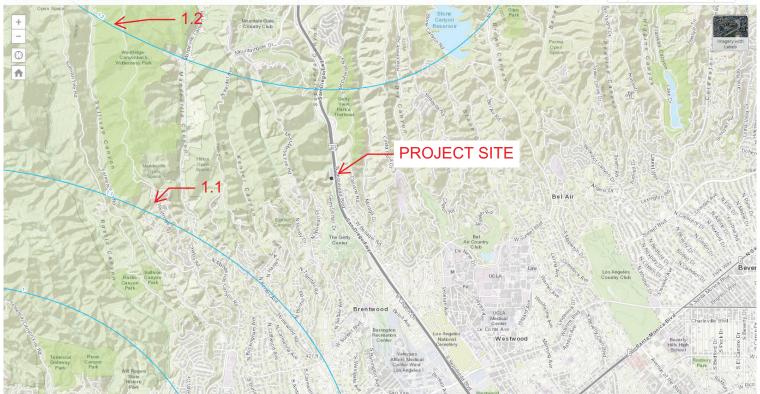
Mitigation Volume Calculation

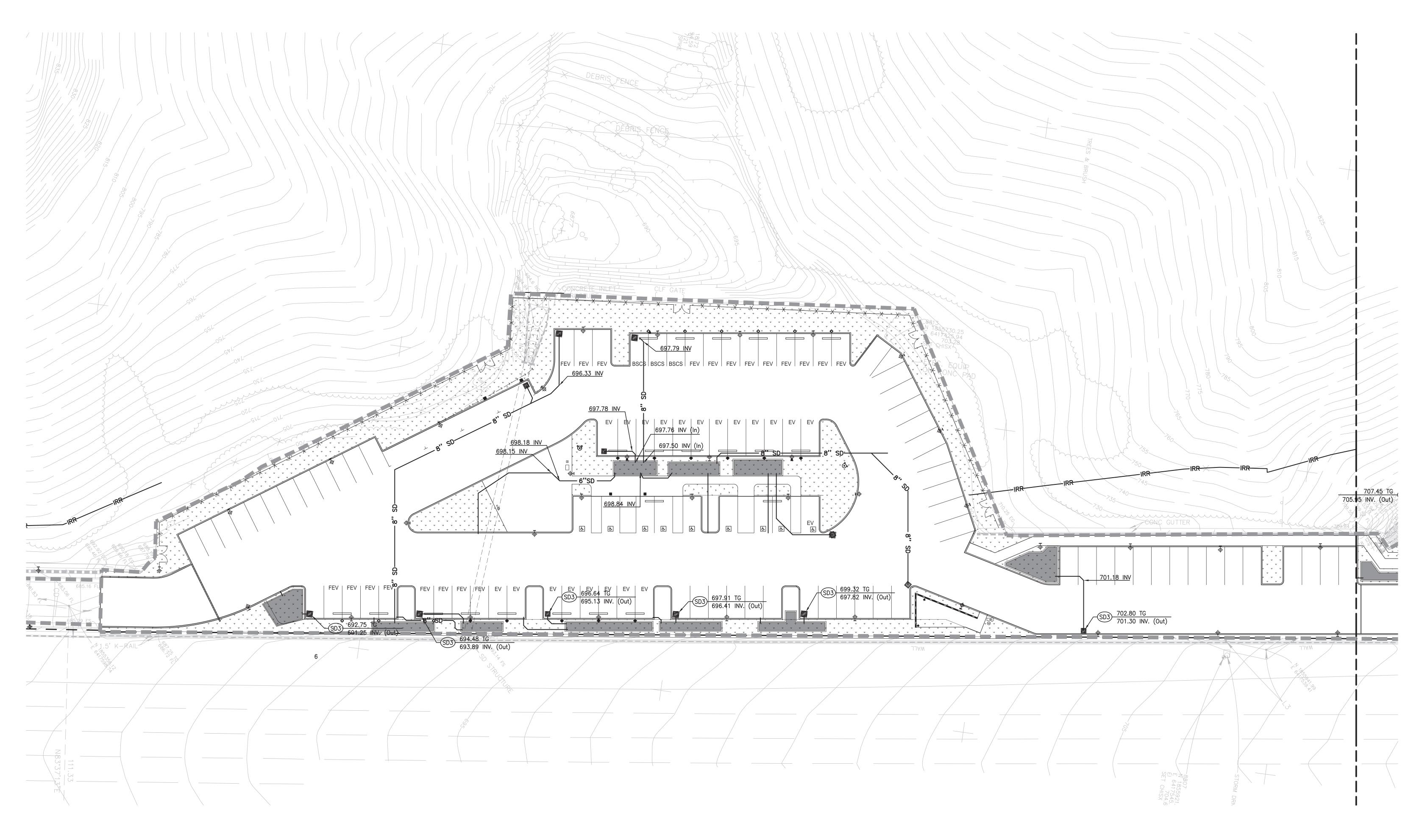
Mitigation Volume (V _m)	35,092 GAL R _{85th} * [(A _I * 0.9) + (A _P * 0.1) + (A _E * 1.0)] * 7.48
85th Percentile, 24-hr rainfall (R _{85th})	1.15 IN or 0.0958 FT
Proposed EPIC [™] Area (A _E)	1,995 SF ^[Enter EPIC planter area or total combined area of hydraulically connected EPIC planters]
Pervious Area (A _P)	16,816 SF [Enter total pervious area tributary to EPIC]
Impervious Area (A _I)	50,308 SF [Enter total impervious area tributary to EPIC]
Total Tributary Area (A _T)	69,119 SF [Calculated total tributary area]

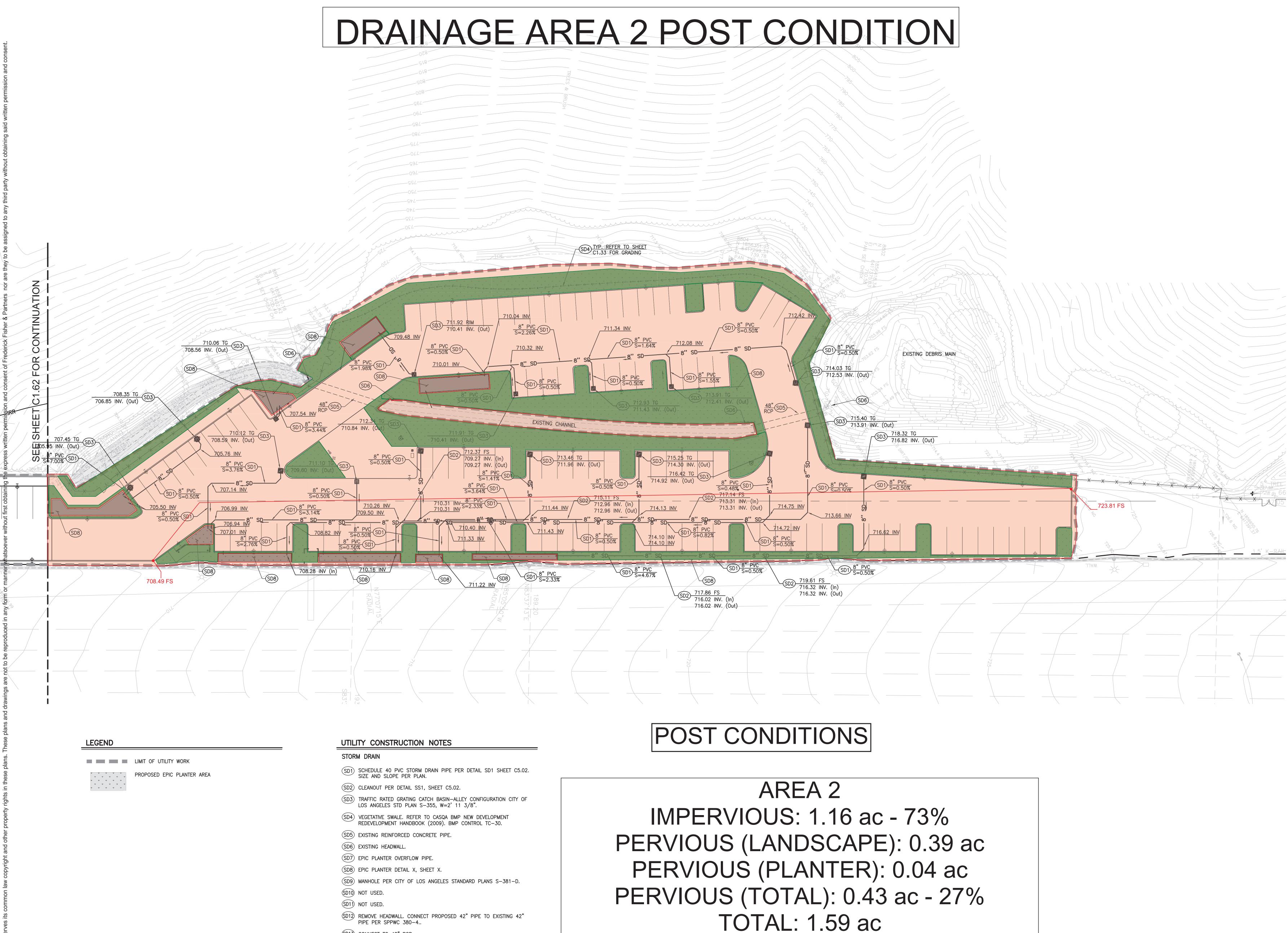
Rainfall data can be obtained from Los Angeles County DPW at http://www.dpw.lacounty.gov/wrd/hydrologygis/ EPIC[™]-specific, modified calculations based on City of Los Angeles Development BMP Handbook, LID Manual, June 2011, Part B: Planning Activities, 4th Ed. and Los Angeles County Department of Public Works Low Impact Development Standards Manual, February 2014 and Los Angeles County Department of Public Works Hydrology Manual, January 2006.


EPIC[™] System and Applicable Addition	al Storage Calculation	Planter No.: 2
EPIC [™] Area Recommended (A _{EPIC})	13,497 SF [V _m /2.6	GAL per SF]
Proposed EPIC [™] Area (A _E) from above	1,995 SF ET _V / V	m = 1.25
Chamber Density: One chamber per		must be > 1.00
○ 15 SF	0 for a total of 10	0_chambers
EPIC [™] Design Capacity (V _{Edesign})	5,187 GAL [Based on I	EPIC area & chamber density]
Min. Additional Storage Required (V _{AS})	29,905 GAL or	3,998 CF [V _m - V _{Edesign}]
Additional Storage Provided (V _{DS})	6,184 OGAL O	CF [Select Units]
Storage type, manufacturer and model	ECO-RAIN DOUBLE+HA	LF TANK ET-1502.5
TOTAL System Capacity	51,443 GAL or	6,877 CF [V _{DS} + V _{Edesign}]

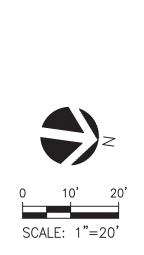
Appendix B – Hydrology

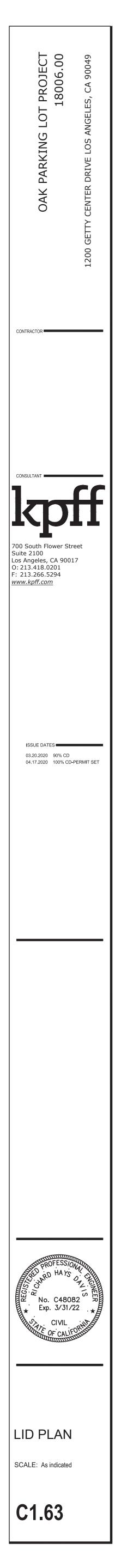

PROJECT SITE - SOIL TYPE


PROJECT SITE - 50YR STORM


1200 GETTY CENTER I X

≡ LA County Hydrology Map




PROJECT SITE - 85TH PERCENTILE STORM

(SD13) CONNECT TO 48" RCP.

Input Peremetere	
Input Parameters	
Project Name	GETTY PRECONDITIONS
Subarea ID	Subarea 1A
Area (ac)	1.47
Flow Path Length (ft)	344.6
Flow Path Slope (vft/hft)	0.04
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.01
Soil Type	21
Design Storm Frequency	25-yr
Fire Factor	0
LID	False
Output Results	
Modeled (25-yr) Rainfall Depth (in)	6.7606
Peak Intensity (in/hr)	4.0336
Undeveloped Runoff Coefficient (Cu)	0.5962
Developed Runoff Coefficient (Cd)	0.5993
Time of Concentration (min)	5.0
Time of Concentration (min)	
Clear Peak Flow Rate (cfs)	3.5534
Burned Peak Flow Rate (cfs)	3.5534
24-Hr Clear Runoff Volume (ac-ft)	0.1178
24-Hr Clear Runoff Volume (cu-ft)	5133.5346
4.0 Hydrograph (GETTY PRECONDITI	ONS: Subarea 1A)
3.5 -	-
3.0 -	-
2.5 -	
2.3	1
(sti	
(cts) 2.0 -	-
low	
1.5 -	-
1.0 -	
	1
0.5	
0.0 200 400 600 800 1	000 1200 1400 1600
	1200 1200 1400 1600
Time (minutes)	

Input Parameters	
Project Name	GETTY PRECONDITIONS
Subarea ID	Subarea 1A
Area (ac)	1.47
Flow Path Length (ft)	344.6
Flow Path Slope (vft/hft)	0.04
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.01
Soil Type	21
Design Storm Frequency	50-yr
Fire Factor	0
LID	False
Output Results	
Modeled (50-yr) Rainfall Depth (in)	7.7
Peak Intensity (in/hr)	4.594
Undeveloped Runoff Coefficient (Cu)	0.6304
Developed Runoff Coefficient (Cd)	0.6331
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	4.2753
Burned Peak Flow Rate (cfs)	4.2753
24-Hr Clear Runoff Volume (ac-ft)	0.1401
24-Hr Clear Runoff Volume (cu-ft)	6101.0666
Hudrograph (CETTY DECON	NITIONS: Subaras 14)
4.5 Hydrograph (GETTY PRECOND	
4.0	
3.5 -	-
3.0 -	_
<u>@</u> 2.5 -	
(sj) 2.5 Mol 2.0	
≥ 2.0 -	
ш 2.7	1
15	
1.5 -	1
4.0	
1.0 -	1
0.5 -	//
0.0	
0 200 400 600 800	1000 1200 1400 1600
Time (minutes	5)

Innut Deremetere	
Input Parameters	
Project Name	GETTY PRECONDITIONS
Subarea ID	Subarea 2A
Area (ac)	1.59
Flow Path Length (ft)	199.5
Flow Path Slope (vft/hft)	0.04
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.01
Soil Type	21
Design Storm Frequency	25-yr
Fire Factor	0
LID	False
Output Results	
Modeled (25-yr) Rainfall Depth (in)	6.7606
Peak Intensity (in/hr)	4.0336
Fear Intensity (III/III)	0.5962
Undeveloped Runoff Coefficient (Cu)	0.5993
Developed Runoff Coefficient (Cd)	
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	3.8434
Burned Peak Flow Rate (cfs)	3.8434
24-Hr Clear Runoff Volume (ac-ft)	0.1275
24-Hr Clear Runoff Volume (cu-ft)	5552.5987
4.0 Hydrograph (GETTY PRECONDIT	IONS: Subarea 2A)
3.5 -	-
3.0 -	1
2.5 -	
Llow (cfs)	
≥ 2.0	-
음	
	1
1.0 -	
0.5	
0.0	
0 200 400 600 800	1000 1200 1400 1600
Time (minutes)	

Input Parameters	
Project Name	GETTY PRECONDITIONS
Subarea ID	Subarea 2A
Area (ac)	1.59
Flow Path Length (ft)	199.5
Flow Path Slope (vft/hft)	0.04
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.01
Soil Type	21
Design Storm Frequency	
Fire Factor	50-yr
Fire Factor	0
LID	False
Output Results	
Modeled (50-yr) Rainfall Depth (in)	7.7
Peak Intensity (in/hr)	4.594
Undeveloped Runoff Coefficient (Cu)	0.6304
Developed Runoff Coefficient (Cd)	0.6331
Time of Concentration (min)	
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	4.6243
Burned Peak Flow Rate (cfs)	4.6243
24-Hr Clear Runoff Volume (ac-ft)	0.1515
24-Hr Clear Runoff Volume (cu-ft)	6599.1129
5 Hydrograph (GETTY PRECO	NDITIONS: Subarea ZA)
4 -	
3-	
3-	
3-	
- cts) Llow (cts)	
- cts) Llow (cts)	
- € Llow (cfs)	
- € Llow (cfs)	

Input Parameters	
Project Name	GETTY POSTCONDITIONS
Subarea ID	Subarea 1A
Area (ac)	1.47
Flow Þath Length (ft)	366.46
Flow Path Slope (vft/hft)	0.03
85th Percentile Rainfall Depth (in)	1.15
Percent Impervious	0.76
Soil Type	21
Design Storm Frequency	85th percentile storm
Fire Factor	
LID	True
	IIUe
Output Results	
Modeled (85th percentile storm) Rainfall Depth (in)	1.15
Peak Intensity (in/hr)	0.386
Undeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.708
Time of Concentration (min)	17.0
Clear Deak Flow Pote (ofe)	0.4018
Clear Peak Flow Rate (cfs)	
Burned Peak Flow Rate (cfs)	0.4018
24-Hr Clear Runoff Volume (ac-ft)	0.0989
24-Hr Clear Runoff Volume (cu-ft)	4308.7622
Hydrograph (GETTY POSTCONDIT	IONS: Subarea 1A)
0.45 Hydrograph (GETTY POSTCONDIT	IONS: Subarea 1A)
0.45 Hydrograph (GETTY POSTCONDIT	IONS: Subarea 1A)
0.45	IONS: Subarea 1A)
0.45	IONS: Subarea 1A)
0.40 - 0.35 -	IONS: Subarea 1A)
0.45	IONS: Subarea 1A)
0.40 0.40 0.35 - 0.30	IONS: Subarea 1A)
0.45 0.40 0.35 0.30 0.30 0.25 0.25 0.20 0.20	IONS: Subarea 1A)
0.40 - 0.35 - 0.30 -	IONS: Subarea 1A)
0.40 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.15	IONS: Subarea 1A)
0.45 0.40 0.35 0.30 0.30 0.25 0.25 0.20 0.20	IONS: Subarea 1A)
0.43 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.15	IONS: Subarea 1A)
0.43 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.10	IONS: Subarea 1A)
0.40 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.15	IONS: Subarea 1A)
0.43 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.10 0.05	IONS: Subarea 1A)
0.43 0.40 0.35 0.30 0.30 0.25 0.20 0.15 0.10 0.05 0.00	IONS: Subarea 1A)

Input Parameters	
Project Name	GETTY POSTCONDITIONS
Subarea ID	Subarea 1A
Area (ac)	1.47
Flow Path Length (ft)	366.46
Flow Path Slope (vft/hft)	0.03
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.76
	21
Soil Type	
Design Storm Frequency Fire Factor	25-yr
	0 Folos
LID	False
Output Results	
Modeled (25-yr) Rainfall Depth (in)	6.7606
	4.0336
Peak Intensity (in/hr)	
Undeveloped Runoff Coefficient (Cu)	0.5962
Developed Runoff Coefficient (Cd)	0.8271
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	4.9041
Burned Peak Flow Rate (cfs)	4.9041
24-Hr Clear Runoff Volume (ac-ft)	0.5886
24-Hr Clear Runoff Volume (cu-ft)	25637.9749
5Hydrograph (GETTY POSTCONDIT	IONS: Subarea 1A)
4	
*	1
3-	
Flow (cfs)	
2	
^{LL} 2	
1	
	/ 1
0 200 400 600 800 1	000 1200 1400 1600
Time (minutes)	

Input Parameters	
Project Name	GETTY POSTCONDITIONS
Subarea ID	Subarea 1A
Area (ac)	1.47
Flow Path Length (ft)	366.46
Flow Path Slope (vft/hft)	0.03
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.76
Soil Type	21
Design Storm Frequency	50-yr
Fire Factor	0
LID	False
	1 0150
Output Results	
Modeled (50-yr) Rainfall Depth (in)	7.7
Peak Intensity (in/hr)	4.594
Undeveloped Runoff Coefficient (Cu)	0.6304
Developed Runoff Coefficient (Cd)	0.8353
Time of Concentration (min)	5.0
Clear Peak Flow Rate (cfs)	5.6409
Burned Peak Flow Rate (cfs)	5.6409
24-Hr Clear Runoff Volume (ac-ft)	0.6718
24-Hr Clear Runoff Volume (ac-ft)	29262.0552
	29202.0332
e Hydrograph (GETTY POSTCONDI	ITIONS: Subarea 1A)
6	
5 -	-
4	
4	1
Elow (cfs)	
	-
<u> </u>	
2_	
4 F	1
1–	
1-	
1-	
1-	
	1000 1200 1400 1600

Input Parameters	
Project Name	GETTY POSTCONDITIONS
Subarea ID	Subarea 2A
Area (ac)	1.59
Flow Path Length (ft)	546.66
Flow Path Slope (vft/hft)	0.028
85th Percentile Rainfall Depth (in)	1.15
Percent Impervious	0.73
Soil Type	21
Design Storm Frequency	85th percentile storm
Fire Factor	
LID	True
LID	True
Output Results	
Modeled (85th percentile storm) Rainfall Depth (in)	1.15
Peak Intensity (in/hr)	0.3349
Undeveloped Runoff Coefficient (Cu)	0.1
Developed Runoff Coefficient (Cd)	0.684
Time of Concentration (min)	23.0
Time of Concentration (min)	0.3642
Clear Peak Flow Rate (cfs)	
Burned Peak Flow Rate (cfs)	0.3642
	0.1034
24-Hr Clear Runoff Volume (ac-ft)	
24-Hr Clear Runoff Volume (ac-ft) 24-Hr Clear Runoff Volume (cu-ft)	4502.5286
24-Hr Clear Runoff Volume (ac-ft) 24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT	4502.5286
24-Hr Clear Runoff Volume (cu-ft)	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 - 0.25 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 - 0.25 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 - 0.25 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 - 0.25 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 0.35 0.35 0.30 0.25 0.20 0.20 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 - 0.25 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 0.35 0.30 0.25 0.20 0.20 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 0.35 0.35 0.30 0.25 0.20 0.20 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 0.35 0.30 0.25 0.25 0.20 0.15 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 0.35 0.30 0.25 0.20 0.15 0.10	4502.5286
24-Hr Clear Runoff Volume (cu-ft) 0.40 Hydrograph (GETTY POSTCONDIT 0.35 - 0.30 - 0.25 - 0.25 - 0.15 -	4502.5286
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (GETTY POSTCONDIT 0.35 0.30 0.25 0.20 0.25 0.20 0.15 0.10 0.05	4502.5286
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (GETTY POSTCONDIT 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00	4502.5286
24-Hr Clear Runoff Volume (cu-ft) Hydrograph (GETTY POSTCONDIT 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00	4502.5286

Input Parameters	
Project Name	GETTY POSTCONDITIONS
Subarea ID	Subarea 2A
Area (ac)	1.59
Flow Path Length (ft)	546.66
Flow Path Slope (vft/hft)	0.028
50-yr Rainfall Depth (in)	7.7
Percent Impervious	0.73
Soil Type	21
Soli Type Design Storm Frequency	
Design Storm Frequency Fire Factor	25-yr
	0
LID	False
Output Results	
Modeled (25-yr) Rainfall Depth (in)	6.7606
Peak Intensity (in/hr)	3.7023
Indoveloped Pupeff Coefficient (Cu)	0.5685
Undeveloped Runoff Coefficient (Cu) Developed Runoff Coefficient (Cd)	0.8105
Time of Concentration (min)	6.0
Clear Deals Flow Data (ofa)	4.7711
Clear Peak Flow Rate (cfs)	
Burned Peak Flow Rate (cfs)	4.7711
24-Hr Clear Runoff Volume (ac-ft)	0.6161
24-Hr Clear Runoff Volume (cu-ft)	26838.0549
5 Hydrograph (GETTY POSTCON	DITIONS: Subarea 2A)
5 Hydrograph (GETTY POSTCON	DITIONS: Subarea 2A)
5 Hydrograph (GETTY POSTCON	DITIONS: Subarea 2A)
5	DITIONS: Subarea 2A)
5 Hydrograph (GETTY POSTCON	DITIONS: Subarea 2A)
5	DITIONS: Subarea 2A)
5	DITIONS: Subarea 2A)
4-	DITIONS: Subarea 2A)
3 4 - 3-	DITIONS: Subarea 2A)
3 4 - 3-	DITIONS: Subarea 2A)
3 4 - 3-	DITIONS: Subarea 2A)
3 4 (\$j) MOI	DITIONS: Subarea 2A)
4-	DITIONS: Subarea 2A)
3 4 (\$j) MOI	DITIONS: Subarea 2A)
3 - (sj) MO	DITIONS: Subarea 2A)
3 4 (\$j) MOI	DITIONS: Subarea 2A)
3 4 (\$j) MOI	DITIONS: Subarea 2A)
3 4 (sp) Mol 2 1 1	DITIONS: Subarea 2A)
3 4 (\$j) MOI	DITIONS: Subarea 2A)

Input Parameters				
Project Name	GETTY POSTCONDITIONS			
Subarea ID	Subarea 2A			
Area (ac)	1.59			
Flow Path Length (ft)	546.66			
Flow Path Slope (vft/hft)	0.028			
50-yr Rainfall Depth (in)	7.7			
Percent Impervious	0.73			
Soil Type	21			
Design Storm Frequency	50-yr			
Fire Factor	0			
LID	False			
Output Results				
Modeled (50-yr) Rainfall Depth (in)	7.7			
Peak Intensity (in/hr)	4.594			
Undeveloped Runoff Coefficient (Cu)	0.6304			
Developed Runoff Coefficient (Cd)	0.8272			
Time of Concentration (min)	5.0			
Clear Peak Flow Rate (cfs)	6.0423			
Burned Peak Flow Rate (cfs)	6.0423			
24-Hr Clear Runoff Volume (ac-ft)	0.7036			
24-Hr Clear Runoff Volume (cu-ft)	30648.7271			
Hydrograph (GETTY POSTCONDITIONS: Subarea 2A)				
7				
6-				
6 -				
6 - 5 -				
	-			
5 -				
5 -				
5 - (sjj) Mo				
5 - (sjj) Mo				
5 - (cts) Mol 2 - 3 -				
5 - (sj) No				
5 - (cts) Mol 2 - 3 -				
5 - (cts) Mo I I I I I				
5 - (st3) Mol 3 -				
5 - (cts) Mol 2 - 3 -				
5 - (sg) 4 - 2 - 1 -				
5 - (cts) Mo I I I I I				

Appendix C - LID Details

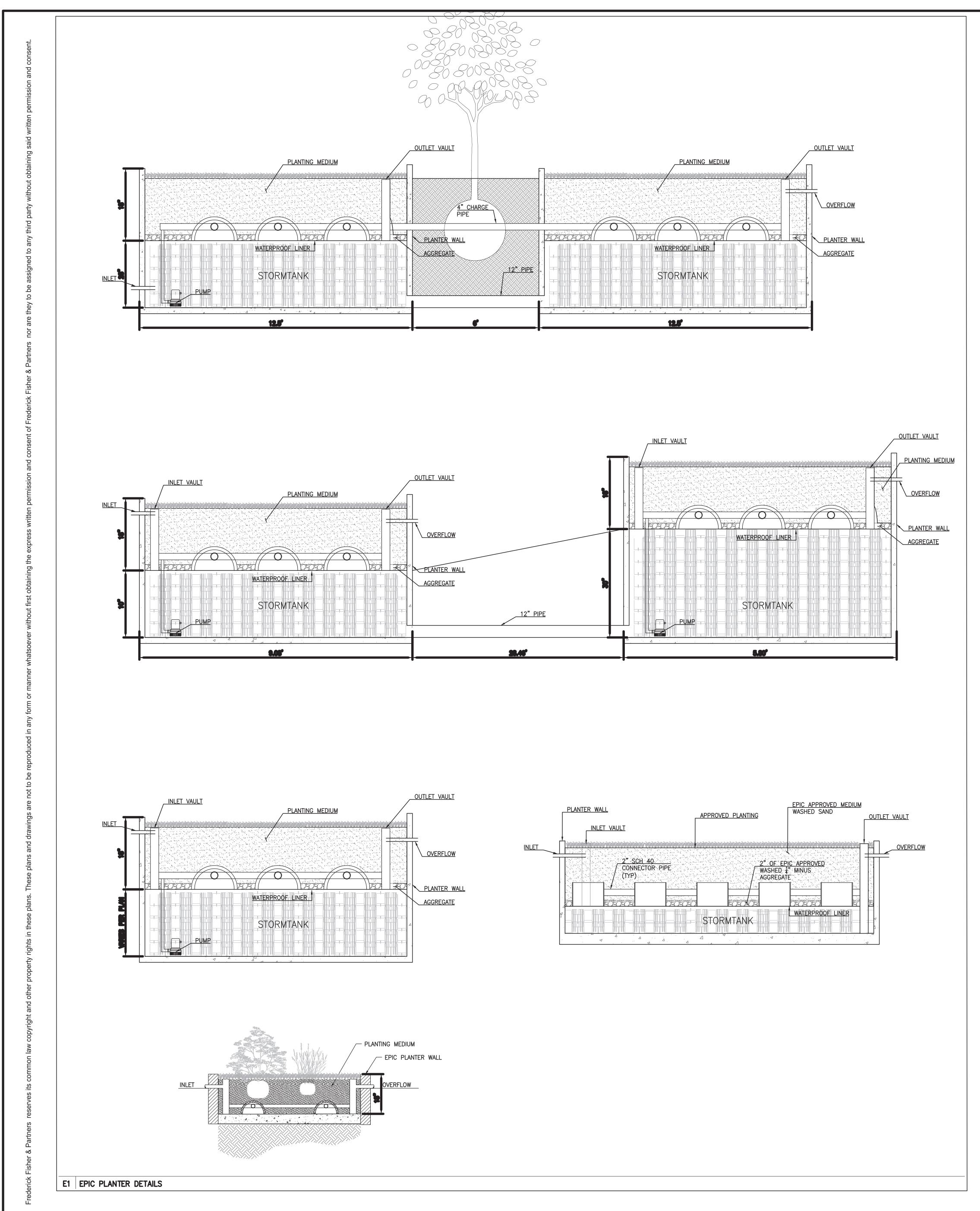
ECO-RAIN DOUBLE + HALF TANK SPECIFICATION SHEET

Smith-Emery Laboratories Report No. L-11-336

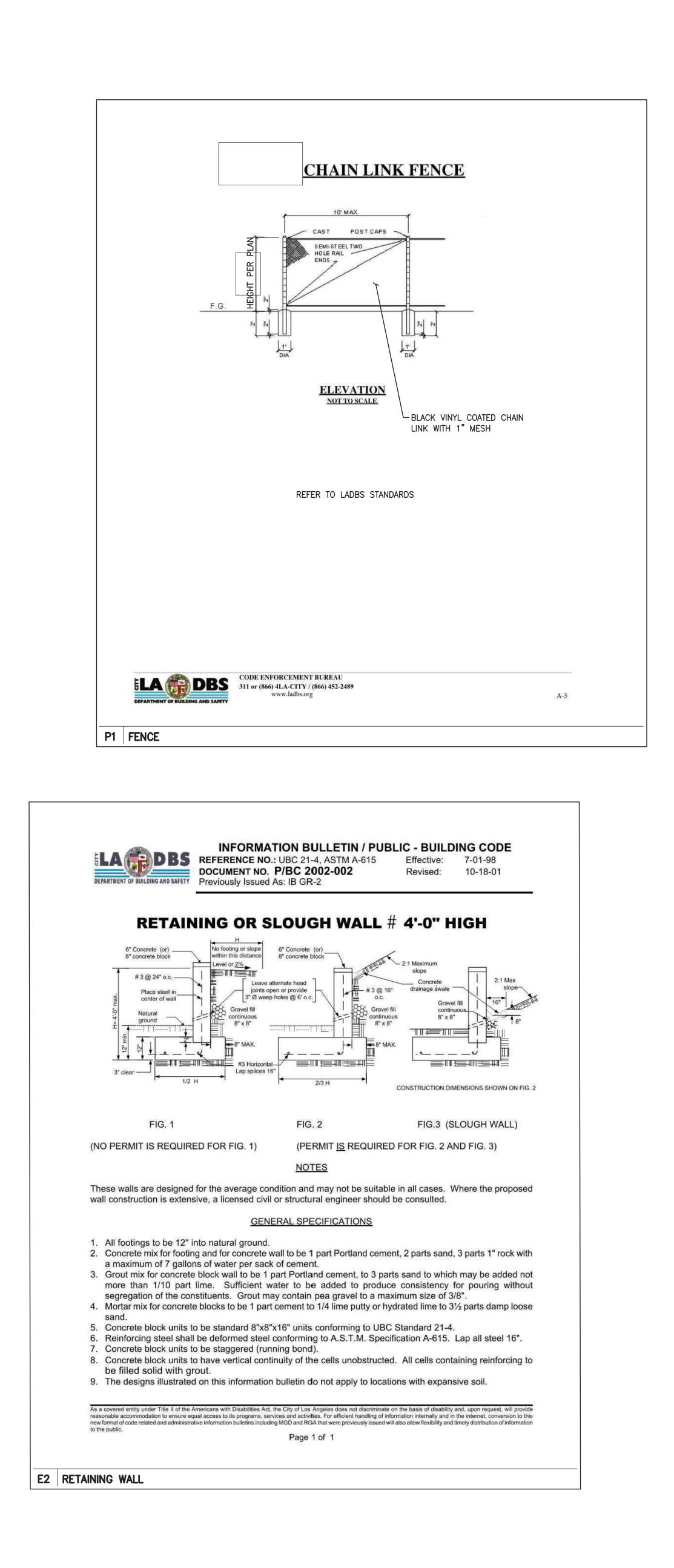
ICC Approved Report ESR-3356 (Formally Approved LA City Research Report # 5654)

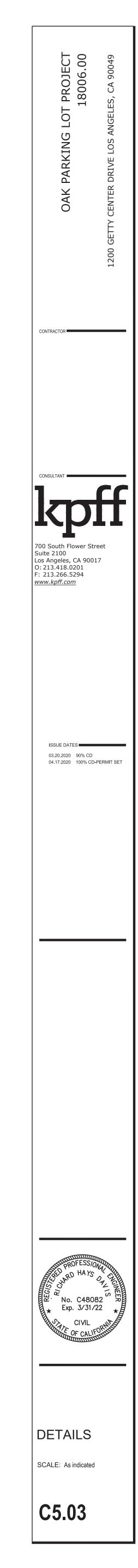
SIZE	1.34' wide x 2.25' long x 3.6' tall	16.06" wide x 26.97" long x 43" tall	408mm x 685mm x 1,092 mm
VOLUME	10.85 ft ³	81.16 gallons	307.24 liters

TEST	Standard Used	Imperial	Metric
Ultimate Load - H 25 Load Rated	AASHTO LRFD		
Displacement		.433″	11 mm
Temperature Parameter	Contraction of the second	46.4° - 57.2° F	8° - 14° C
Module Void Storage Area	a farte a	97% - 10.52 Cubic Feet Storage	
Surrounding Gravel Storage Area	Part and and	4	10%
Material		100% Recycle	ed Polypropylene
Biological & Chemical Resistance		Unaffected by moulds, algae, soil-borne chemicals, bacteria & bitumen	
Tempe <mark>rature</mark> Tolerance	The second	-22° to 248° F	-30° to 120° C
Flow Rate	ASTM D4716	.671 f ³ /second	.019 m ³ /second


NOTE: ECO-RAIN PRODUCTS & SYSTEMS ARE WORLDWIDE PATENT PENDING & DESIGN REGISTERED.

Safety Factors: Engineers, designers and geotechnical engineers should design and calculate safety factors to a serviceable limited state to suit specific project. If in doubt, consult distributor.


Disclaimer: All information provided in this publication is correct to the best knowledge of the company and is given out in good faith. This information is intended only as a general guide, no responsibility can be accepted for any errors, omissions or incorrect assumption. As each project is unique, and as Eco-Rain Tank Systems of America and its distributors and agents world-wide have no direct control over the methods employed by the user in specifying, installing or supervising of its products hence no responsibility is accepted by Eco-Rain Tank Systems of America and its distributors and agents world-wide. Users should satisfy themselves as to the suitability of the product for their purpose.



Eco-Rain Tank Systems of America, Inc.contact@ecoraintank.com1-818-501-0424www.ecoraintank.com

P:\2019\1900803 Getty Oak Parking Full Design\5 CAD\Sheets\1900803-C5.03DT.dwg, Nov 22, 2021 - 3:5

Appendix D - O&M

I. Components

The sequential primary components of the **EPIC™** System are: -Laser level subgrade, ½" tolerance, 90% Proctor Density

-4oz Non-Woven Geo-textile Felt Fabric (optional)

-45 mil EPDM Rubber Liner on sub-grade and upright perimeter wall

-EPIC Chambers w/ non-pressurized 2" PVC connectors

-2" of washed bridging gravel (ASTM C33 no.89)

-13" (+/-) washed concrete sand (ASTM F2396)

-Total average profile depth +/- 15"-16"

-Inlet vault / Drain Vault

-Recirculation Tank with float valve, pump, fertigation unit (optional) and 7-day electrical timer

II. Operation

Inlet Vault

Inlet vaults are the starting point of the EPIC cell flow patterns, and supplied from the submersible pump in the recirculation tank. Check inlet regularly to verify pump operation.

Drain Vault

Drain vaults are the end point of EPIC system. Check drain vault to verify water has reached the entire length of EPIC flow pattern. An extension inserted in the vertical 6" drain can raise sub-surface water levels during planting. Remove extension from outlet for normal operation.

Recirculation Tank

Houses the submersible pump, water Point of Connection (POC) to float valve, fertigation unit (optional) and within close proximity a 7-day electrical timer to control pump operation. 6" final drain overflow located in the tank reservoir which drains to the project outfall.

EPIC Weekly 24 hour irrigation cycle

Running the submersible pump too <u>long</u> per cycle (+24-48 hrs) will not create a problem. Running the pump too often / frequent every day non-stop can eventually cause a problem; too much water will not allow the system to fluctuate water levels to exchange $O_2 \& CO_2$.

III. Turf & Landscape Planting Establishment

Establishment Period Preparation

Smooth dry finish grade sand with drag mat. Begin "charging" pump operation at recirculation tank. Check the flow rates in the inlet vaults. Confirm_flow of water reaches the drain vaults. Verify capillary irrigation moisture has reached all areas of each flow pattern (day after charging). Apply establishing fertilizer nutrients granules on surface and/or fertigation in water. **Mulch**

Mulch around landscape plants and trees where applicable.

First Week

Remove excess soil from landscape plants root ball prior to transplant into sand. Compact sand around each planting. Hand water as *heat relief only* 2-3 times daily, at the hottest parts of the day, as the landscape / sod will be very stressed and can easily overheat until a new root system establishes into the sand. Hand water misting only in short durations. This practice only necessary above 75F. Operate pump 24/7 to maintain maximum saturation level.

Second Week

Use a USGA Standard Sized Golf Cup Cutter or a soil probe to check root growth (optional). Reduce pump inlet operation to EPIC system from 24/7 to 24/3.

Third Week.

Root growth should be well established, sod should not lift when pulled / tugged with hands. Use a USGA Standard Golf Cup Cutter or a soil probe to check root growth (optional). Once root growth reaches an average of 6", reduce pump operation program cycle to 24/1. Core aeration operation of the field is recommended with a piston driven core aerator.

Routine Maintenance

Mow frequently and keep mower blades sharp. Keep records and be observant of change. Be observant for harmful bugs or diseases and apply treatment as necessary.

Time	Material/Procedure	Rationale
All months	Maintain grass height to recommendation by sod grower for selected species	Mow at least once per week in the early and late months and <u>twice per week</u> during May, June, July, August with a sharp mower. Mow in alternating patterns.
All months	Maintain moisture levels	Normal operating level is operating the pump 24 hrs. / 1-2 times per week.
All Months	Fertility	Fertilize as needed from soil tests and visual plant inspections. *Sand-based fields will require a more comprehensive fertility program*
Seasonally	Aeration	Sand fields grow aggressively. Aeration is critical to avoid anaerobic conditions. Aerate every 8-12 weeks. Rake & remove aeration plugs and schedule nutrient and over-seed operations to follow aeration schedules.

IV. Agronomic Overview

Rely on testing semi-annual soil and water analysis, recommended every 4-6 months to establish the appropriate nutrient formula. Landscape maintenance is a matter of routine.

Water Management

The plants themselves determine the water uptake provided by sand capillary rise. EPIC System water will dry out from the top surface down. Moisture levels require periodic inspections.

Aerobic Conditions

Aerobic (oxygen sufficient) conditions must be available for respiration in roots, which in turn is necessary for plant growth. **Aeration is critical!**

Plant Essential Nutrients

Eight inorganic elements have been recognized as **essential nutrients** for plant growth, each with a specific function in plant physiology. These include Calcium, Iron, Magnesium, Manganese, Nitrogen, Potassium, Phosphorus, and Sulfur.

Agricultural Laboratories			
CLC Labs	Soil & Plant Lab		
325 Venture Dr., Westerville, OH 43081	352 Mathews, Santa Clara, CA 95050		
614-888-1663	408-727-0330		
Soil Horizons, Inc.	Wallace Labs		
865 Catalpa Place, Marysville, OH 43040	365 Coral Cir, El Segundo, CA 90245		
888-933-5501	(310) 615-0116		

Agricultural Laboratories