GEOTECHNICAL INVESTIGATION

Proposed Warehouse Development 220 to 280 East Nance Street Perris, California

Harley Knox 2021 LLC c/o Proficiency Capital, LLC 11777 San Vicente Blvd, No. 780 Los Angeles, California 90049

Project Number 22387-21 March 24, 2021 Revised June 10, 2021

NorCal Engineering SOILS AND GEOTECHNICAL CONSULTANTS 10641 HUMBOLT STREET LOS ALAMITOS, CA 90720 (562)799-9469 FAX (562)799-9459

March 24, 2021 Revised June 10, 2021 Project Number 22387-21

Harley Knox 2021 LLC c/o Proficiency Capital, LLC 11777 San Vicente Blvd, No. 780 Los Angeles, California 90049

RE: GEOTECHNICAL INVESTIGATION - Proposed Warehouse Development - Located at 220 to 280 East Nance Street, in the City of Perris, California

Dear Mr. Englhard:

Pursuant to your request, this firm has performed this Geotechnical Investigation for the above referenced project. The purpose of this investigation is to evaluate the geotechnical conditions of subject property and to provide recommendations for the proposed development. This geotechnical engineering report presents the findings of our study along with conclusions and recommendations for development.

1.0 STRUCTURAL CONSIDERATIONS

1.1 Proposed Development

It is currently proposed to construct a new concrete tilt-up structures totaling 156,780 square feet on the 6.4-acre property. Asphaltic and concrete pavement areas and landscaping will also be installed. Grading for the development will include cut and fill procedures. Final building plans shall be reviewed by this firm prior to submittal for city approval to determine the need for any additional study and revised recommendations pertinent to the proposed development, if necessary.

2.0 SITE DESCRIPTION

- 2.1 Location: The property is located at 220 to 280 East Nance Street, in the City of Perris, Harley Knox Boulevard borders the north side of property as shown on the Vicinity Map, Figure 1.
- 2.2 **Existing Improvements:** The property is currently undeveloped and contains some small vegetation scattered across the site with some large trees on the southern portion of the property. An existing chain link extends across the site in a north to south direction and there are reportedly concrete foundations from a previous building that remain on-site.
- 2.3 **Drainage:** The site topography is generally flat and drainage pattern is not readily discernible.

3.0 SEISMICITY EVALUATION

The proposed development lies outside of any Alquist Priolo Special Studies Zone and the potential for damage due to direct fault rupture is considered unlikely.

The following seismic design parameters are provided and are in accordance with the 2019 California Building Code (CBC) as determined using the ASCE 7 Hazard Tool (<u>https://asce7hazardtool.online/</u>) for the referenced project. Complete printout from the source is included in Appendix A.

Seismic Design Parameters

Site Location	Latitude 33.856419° Longitude -117.220632	0
Site Class	D	
Risk Category	11	
Maximum Spectral Response Acceleration	S _s 1.500g	
	S ₁ 0.600g	
Adjusted Maximum Acceleration	S _{MS} 1.500g	
Design Spectral Response Acceleration Parameters	S _{DS} 1.000g	

Use of these values is dependent on requirements of ASCE 7-16, 11-4.8, Exception 2 that requires the value of the seismic response coefficient C_s be determined by Equation 12.8.2 for values of T \leq 1.5T_s and taken as equal to 1.5 times the value computed in accordance with either 12.8-3 for T_L \geq T \geq 1.5T_s or Equation 12.8-4 for T>T_L. Computations and verification of these conditions is referred to the structural engineer.

The San Jacinto (San Jacinto Valley) Fault zone is located approximately 12 kilometers from the site and is capable of producing a Magnitude 6.9 earthquake and a PGA_M of 0.589g. Ground shaking originating from earthquakes along other active faults in the region is expected to induce lower horizontal accelerations due to smaller anticipated earthquakes and/or greater distances to other faults.

4.0 FIELD INVESTIGATION

4.1 Site Exploration

The investigation consisted of the placement of four (4) subsurface exploratory boring by hollow-stem auger drill rig and eight (8) excavations by backhoe. Explorations extended to a maximum depth of 51.5 feet below current ground elevations. The explorations were placed at accessible locations throughout the site.

The explorations were visually classified and logged by a field engineer with locations of the subsurface excavations are shown on the attached Figure 2. Detailed descriptions of the subsurface conditions are listed on the logs in Appendix B. It should be noted that the transition from one soil type to another as shown on the logs is approximate and may in fact be a gradual transition. The soils encountered are described as follows:

Fill/Disturbed Top Soils— Fill and disturbed top soils classifying as silty SAND to sandy SILT, some minor debris and roots were encountered in the explorations to depths ranging from 1 to 1½ feet. These soils were noted to be soft to firm and damp to moist.

Native Soils – Native soils classifying as sandy SILT to clayey SAND were encountered beneath the upper fill soils. These soils were noted to be medium stiff to stiff and damp to moist. Sand, silt and clay content varied with depth of exploration.

4.2 Groundwater

Groundwater was encountered at a depth of approximately 23 feet at the site.

5.0 LABORATORY TESTS

Relatively undisturbed samples of the subsurface soils were obtained to perform laboratory testing and analysis for direct shear, consolidation tests, and to determine in-place moisture/densities. These relatively undisturbed ring samples were obtained by driving a thin-walled steel sampler lined with one-inch-long brass rings with an inside diameter of 2.42 inches into the undisturbed soils.

Bulk bag samples were obtained in the upper soils for expansion index tests, corrosion tests, resistance value and maximum density tests. Wall loadings on the order of 4,000 lbs./lin.ft. and maximum compression loads on the order of 100 kips were utilized for testing and design purposes. All test results are included in Appendix C, unless otherwise noted.

- 5.1 **Field moisture content** (ASTM:D 2216-10) and the dry density of the ring samples were determined in the laboratory. This data is listed on the logs of explorations.
- 5.2 **Maximum density tests** (ASTM: D-1557-12) were performed on typical samples of the upper soils. Results of these tests are shown on Table I.
- 5.3 **Expansion index tests** (ASTM: D-4829-11) were performed on remolded samples of the upper soils to determine the expansive characteristics and to provide any necessary recommendations for reinforcement of the slabs-on-grade and the foundations. Results of these tests are provided on Table II and are discussed later in this report.
- 5.4 **Sieve analyses** and the percent by weight of soil finer than the No. 200 sieve (ASTM: 1140-00) were performed on selected soil samples. These results are detailed later in this report along with discussion of the liquefaction potential at the site.
- 5.5 Atterberg Limits (ASTM: D 4318-10) consisting of liquid limit, plastic limit and plasticity index were performed on selected soil samples. Results are shown on Table III.
- 5.6 **Direct shear tests** (ASTM: D-3080-11) were performed on undisturbed and/or remolded samples of the subsurface soils. These tests were performed to determine parameters for the calculation of the allowable soil bearing capacity. The test is performed under saturated conditions at loads of 1,000 lbs./sq.ft., 2,000 lbs./sq.ft., and 3,000 lbs./sq.ft. with results shown on Plates A B.
- 5.7 **Consolidation tests** (ASTM: D-2435-11) were performed on undisturbed samples to determine the differential and total settlement which may be anticipated based upon the proposed loads. Water was added to the samples at a surcharge of one KSF and the settlement curves are plotted on Plates C E.

- 5.8 Soluble sulfate, pH, Resistivity and Chloride tests to determine potential corrosive effects of soils on concrete and metal structures were performed in the laboratory. Test results are given in Tables IV VII and are discussed later in this report.
- 5.9 **Resistance 'R' Value tests** (CA 301) were conducted on a representative soil sample to determine preliminary pavement section design for the proposed pavement areas. Test results are provided in Table VIII and recommended pavement sections are provided later within the text of this report.

6.0 LIQUEFACTION EVALUATION

The property lies within areas mapped as potentially liquefiable by the County of Riverside Safety Element. The site is expected to experience ground shaking and earthquake activity that is typical of Southern California area. It is during severe ground shaking that loose, granular soils below the groundwater table can liquefy. A review of the exploratory boring log and the laboratory test results on selected soil samples obtained indicate the following soil classifications, field blow counts and amounts of fines passing through the No. 200 sieve.

Boring No.	Classification	Blowcounts (blows/ft)	Relative Density	% Passing No. 200 Sieve
B-1 @ 5'	SC	18	Very Dense	47
B-1 @ 10'	ML	20	Very Stiff	71
B-1 @ 15'	SM	35	Very Dense	19
B-1 @ 20'	SW	25	Very Dense	10
B-1 @ 25'	SM	16	Medium Dense	37
B-1 @ 30'	ML	9	Medium Stiff	63
B-1 @ 35'	CL	13	Medium Stiff	71
B-1 @ 40'	ML	8	Firm	88
B-1 @ 45'	ML	10	Firm	66
B-1 @ 50'	SC	42	Very Dense	45

Field Blowcounts and Gradation Data

Our liquefaction evaluation utilized the nearest mode of predominate Magnitude 6.9 Mw earthquake. The analysis indicates the potential for liquefaction at this site to be moderate based upon a historic groundwater depth of 19 feet deep and a Peak Ground Acceleration (PGA_M) of 0.5891g. The associated seismic-induced settlements would be on the order of 2.5 inches and would occur rather uniformly across the site. The historical high groundwater depth of 19 feet is based on review of ground water maps of the Upper Santa Ana River Basin. (Carson and Matti, 1973-1979).

Differential settlements would be on the order of 1.5 inches over a 50-foot (horizontal) distance. Our seismic settlement calculations are included in Appendix D.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon our evaluations, the proposed development is acceptable from a geotechnical engineering standpoint. By following the recommendations and guidelines set forth in our report, the structures and grading will be safe from excessive settlements under the anticipated design loadings and conditions. The proposed grading and development shall meet all requirements of the City Building Ordinance and will not impose any adverse effect on existing adjacent land or structures.

The following recommendations are based upon soil conditions encountered in our field investigation; these near-surface soil conditions could vary across the site. Variations in the soil conditions may not become evident until the commencement of grading operations for the proposed development and revised recommendations from the soils engineer may be necessary based upon the conditions encountered.

7.1 Site Grading Recommendations

It is recommended that site inspections be performed by a representative of this firm during all grading and construction of the development to verify the findings and recommendations documented in this report. Any unusual conditions which may be encountered in the course of the project development may require the need for additional study and revised recommendations. Excavation depths during grading will be determined once grading and structural plans are approved.

Any vegetation and organic laden soils shall be removed and hauled from proposed grading areas prior to and during the grading operations if encountered. Existing vegetation shall not be mixed or disced into the soils. Any removed soils may be reutilized as compacted fill once any deleterious material or oversized materials (in excess of eight inches) is removed. Grading operations shall be performed in accordance with the attached *Specifications for Placement of Compacted Fill.*

7.1.1 Removal and Recompaction Recommendations

The upper existing fill soils (1 to 1½ feet) shall be removed to competent native materials, the exposed surface scarified to a depth of 8 inches, brought to approximately 2% above optimum moisture content and compacted to a minimum of 90% of the laboratory standard (ASTM: D-1557) prior to placement of any additional compacted fill soils and pavement.

<u>The upper 12 inches of soils beneath building pad and concrete paving shall</u> <u>be compacted to a minimum of 95%</u>. Grading shall extend a minimum of 5 horizontal feet outside the edges of foundations or equidistant to the depth of fill placed, whichever is greater.

Care should be taken to provide or maintain adequate lateral support for all adjacent improvements and structures at all times during the grading operations and construction phase.

Adequate drainage away from the structures, pavement and slopes should be provided at all times.

It is likely that isolated areas of undiscovered fill not described in this report or materials disturbed during demolition operations will be encountered on site; if found, these areas should be treated as discussed earlier. A diligent search shall also be conducted during grading operations in an effort to uncover any underground structures, irrigation or utility lines. If encountered, these structures and lines shall be either removed or properly abandoned prior to the proposed construction. Abandonment procedures will be provided once underground structures are encountered.

If placement of slabs-on-grade and pavement is not performed immediately upon completion of grading operations, additional testing and grading of the areas may be necessary prior to continuation of construction operations. Likewise, if adverse weather conditions occur which may damage the subgrade soils, additional assessment by the soils engineer as to the suitability of the supporting soils may be needed.

7.1.2 Fill Blanket Recommendations

Due to the potential for differential settlement of structures supported on both compacted fill and native soils, it is recommended that all foundations be underlain by a uniform compacted fill blanket at least 2 feet in thickness. The fill blanket shall extend a minimum of 5 horizontal feet outside the edges of foundations or equidistant to the depth of fill placed, whichever is greater.

Building floor slabs should also be underlain by a minimum of 2 feet of compacted fill soils.

7.1.3 Shrinkage and Subsidence

Results of our in-place density tests reveal that the soil shrinkage will be on the order of 8 to 10% due to excavation and recompaction, based upon the assumption that the fill is compacted to 92% of the maximum dry density per ASTM standards. Subsidence should be 0.08 feet due to earthwork operations. The volume change does not include any allowance for vegetation or organic stripping, removal of subsurface improvements or topographic approximations.

Although these values are only approximate, they represent our best estimate of shrinkage values which will likely occur during grading. If more accurate shrinkage and subsidence factors are needed, it is recommended that field testing using the actual equipment and grading techniques should be conducted.

7.2 Temporary Excavations and Shoring Design

Temporary unsurcharged excavations less than 4 feet in height may be excavated at vertical inclinations. Excavations over 4 feet in height in the existing site materials may be trimmed at a 1 to 1 (horizontal to vertical) gradient for the entire height of the cut. In areas where soils with little or no binder are encountered, where adverse geological conditions are exposed, or where excavations are adjacent to existing structures, shoring, slot cutting, or flatter excavations may be required.

The temporary cut slope gradients given above do not preclude local raveling and sloughing. All excavations shall be made in accordance with the requirements of the soils engineer, CAL-OSHA and other public agencies having jurisdiction.

Temporary shoring design may utilize an active earth pressure of 25 pcf without any surcharge due to adjacent traffic, equipment or structures. The passive fluid pressures of 250 pcf may be doubled to 500 pcf for temporary design.

7.3 Foundation Design

All foundations may be designed utilizing the following allowable soil bearing capacities for an embedded depth of 24 inches into approved compacted fill materials with the corresponding widths. Footings shall not traverse from compacted fill to native soils due to the potential for differential settlement of structures.

Anowable oon bearing capacity (psi)					
<u>Width (ft)</u>	Continuous Foundation	Isolated Foundation			
1.5 2.0 4.0 6.0	2000 2075 2375 2675	2500 2575 2875 3175			

Allowable Soil Bearing Capacity (psf)

The bearing value may be increased by 500 psf for each additional foot of depth in excess of the 24-inch minimum depth, up to a maximum of 4,000 psf. Property line screen wall foundations where proper overexcavation and recompaction is not possible due to property line restrictions may be designed using a reduced allowable soil bearing capacity of 1,800 psf for foundations a minimum of 24 inches in depth <u>and</u> at least 8 inches into the underlying competent native soils. A one-third increase may be used when considering short-term loading from wind and seismic forces.

All continuous foundations shall be reinforced with a minimum of two #4 steel bars top and bottom. Isolated pad foundations shall be reinforced at the discretion of the project structural engineer. Additional reinforcement may be necessary due to soil expansion or proposed loadings and shall be further evaluated by the project engineers and/or architect. A representative of this firm shall observe foundation excavations prior placement of steel reinforcement and concrete.

7.4 Settlement Analysis

Resultant pressure curves for the consolidation tests are shown on Plates C-E. Computations utilizing these curves and the recommended allowable soil bearing capacities reveal that the foundations will experience normal settlements on the order of ³/₄ inch and differential settlements of less than ¹/₄ inch.

7.5 Lateral Resistance

The following values may be utilized in resisting lateral loads imposed on the structure. Requirements of the California Building Code should be adhered to when the coefficient of friction and passive pressures are combined.

Coefficient of Friction - 0.35 Equivalent Passive Fluid Pressure = 200 lbs./cu.ft. Maximum Passive Pressure = 2,000 lbs./cu.ft.

The passive pressure recommendations are valid only for approved compacted fill soils or competent native ground.

7.6 Retaining Wall Design Parameters

Active earth pressures against retaining walls will be equal to the pressures developed by the following fluid densities. These values are for **granular backfill material** placed behind the walls at various ground slopes above the walls.

Equivalent Fluid
Density (lb./cu.ft.)
30
35
38
40
45

Any applicable short-term construction surcharges and seismic forces should be added to the above lateral pressure values. All walls shall be waterproofed as needed and protected from hydrostatic pressure by a reliable permanent subdrain system.

During a local Magnitude 6.9 earthquake along the San Jacinto fault zone, additional lateral pressures will occur along the back of walls retaining more than 6 feet of soil. The seismic-induced lateral soil pressure may be computed using a triangular pressure distribution with the maximum value at the top of the wall. The maximum lateral pressure of (20 pcf) H where H is the height of the retained soils above the wall footing should be used in final design of retaining walls.

Sliding resistance values and passive fluid pressure values given in our previous report may be increased by 1/3 during short-term wind and seismic loading conditions.

7.7 Floor Slab Design

Concrete floor slabs-on-grade shall be a minimum of 5 and 6 inches in thickness in office and warehouse areas, respectively, and may be placed upon fill soils compacted to a minimum of 95% relative compaction and brought to 3% above optimum moisture contents to a depth of 18 inches, as verified by the soil engineer. Slabs should be reinforced with a minimum of #3 steel bars, placed at 18 inches on-center in each direction, positioned mid-height in the slab. Additional reinforcement requirements and an increase in thickness of the slabs-on-grade may be necessary based upon soils expansion potential and proposed loading conditions in the structures and should be evaluated further by the project engineers and/or architect.

A vapor retarder should be utilized in areas which would be sensitive to the infiltration of moisture. This retarder shall meet requirements of ASTM E 96, *Water Vapor Transmission of Materials* and ASTM E 1745, *Standard Specification for Water Vapor Retarders used in Contact with Soil or Granular Fill Under Concrete Slabs.*

The vapor retarder shall be installed in accordance with procedures stated in ASTM E 1643, Standard practice for Installation of Water Vapor Retarders used in Contact with Earth or Granular Fill Under Concrete Slabs.

The moisture retarder may be placed upon 4 inches of sand or gravel. The surface upon which the retarder is placed shall be smooth and free of rocks, gravel or other protrusions which may damage the retarder. Use of sand above the retarder is under the purview of the structural engineer; if sand is used over the retarder, it should be placed in a dry condition.

All concrete slab areas to receive floor coverings should be moisture tested to meet all manufacturer requirements prior to placement.

7.8 Expansive Soil

The upper five (5) feet soils at the site are low (Expansion Index = 21-50) in expansion potential. Sites with expansive soils (Expansion Index >20) require special attention during project design and maintenance. The attached *Expansive Soil Guidelines* should be reviewed by the engineers, architects, owner, maintenance personnel and other interested parties and considered during the design of the project and future property maintenance.

7.9 Utility Trench and Excavation Backfill

Trenches from installation of utility lines and other excavations may be backfilled with on-site soils or approved imported soils compacted to a minimum of 90% relative compaction. All utility lines shall be properly bedded and shaded with clean sand having a sand equivalency rating of 30 or more. This material shall be thoroughly water jetted around the pipe structure prior to placement of compacted backfill soils.

7.10 Corrosion Design Criteria

Representative samples of the surficial soils revealed negligible sulfate concentrations and no special concrete design recommendations are deemed necessary at this time. It is recommended that additional sulfate tests be performed at the completion of rough grading to assure that the as graded conditions are consistent with the recommendations stated in this design. Sulfate test results may be found on the attached Table IV.

Tests were also conducted on a random representative sample of soils to determine the potential corrosive effects on buried metallic structures. Tests for pH, resistivity and chloride are included on Tables V – VII. Soil pH indicates a slightly acidic condition. Resistivity is representative of moderately corrosive soils and metallic structures should be protected as necessary. Chloride content measured 178 ppm.

7.11 Preliminary Pavement Design

The table below provides a preliminary pavement design based upon a tested R-Value of 54 for the proposed pavement areas. Final pavement design should be based on R-Value testing of the subgrade soils near the conclusion of rough grading to assure that the as-graded conditions are consistent with those used in this preliminary design.

Type of <u>Traffic</u>	Traffic <u>Index</u>	Inches <u>Asphalt</u>	Inches <u>Base</u>	
Auto Parking/Circulation	5.0	3.0	3.0	
Truck	7.0	4.0	3.0	
Heavy Truck	8.0	5.0	5.0	

On-Site Flexible (Asphaltic) Pavement Section Design

Subgrade soils to receive base material shall be compacted to a minimum of 90% relative compaction; base material shall be compacted to at least 95%. Any concrete slab-on-grade in pavement areas shall be a minimum of 6 inches in thickness and may be placed on subgrade soils compacted to at least 95% relative compaction and brought to 3% above optimum moisture levels to a depth of 18 inches, as verified by the soil engineer. An increase in slab thickness and placement of steel reinforcement due to loading conditions and soil expansion may be necessary and should be reviewed by the structural engineer.

<u>The above recommendations are based upon estimated traffic loadings.</u> <u>Client should submit anticipated traffic loadings for the pavement areas to</u> <u>the soils engineer, when available, so that pavement sections may be</u> <u>reviewed to determine adequacy to support the proposed loadings.</u>

8.0 INFILTRATION TESTING

Two test locations (T-1 and T-2) were excavated to determine the infiltration rate of the proposed infiltration/bio-retention systems. The test locations were excavated by backhoe to depths of 5 to 10 feet below existing ground surface (bgs). Excavations were trimmed at 1:1 (horizontal to vertical) inclinations in order to provide safe entry into the excavations. No significant caving occurred to the depths of these test excavations

The infiltration test consisted of the double ring infiltration test per ASTM Method D 3385. The double ring infiltrometer method consists of driving two open cylinders, one inside the other, into the ground, partially filling the ring with water, and then maintaining the liquid at a constant level. The volume of liquid added to the inner ring, to maintain the liquid level constant is the measure of the volume of liquid that infiltrates into the soil.

The volume infiltrated during timed intervals is converted to an incremental infiltration velocity, usually expressed in centimeters per hour or inches per hour and plotted verses elapsed time. The maximum-steady state or average incremental infiltration velocity, depending on the purpose/application of the test is equivalent to the infiltration rate.

Water levels were maintained at a constant level in both the inner ring and annular space between rings throughout the test, to prevent flow of water from one ring to the other.

The volume of liquid used during each measured time interval was converted into an incremental infiltration velocity of both the inner ring in the annular space using the following equations:

For the inner ring calculated as follows:

 $Vir=\Delta Vir/(Air\Delta t)$

where:

Vir = inner ring incremental infiltration velocity, cm/hr

 Δ Vir = volume of water used during time interval to maintain constant head in the inner ring, cm³

Air = internal area of the inner ting, cm²

 Δt = time interval, hr

Three additional Infiltration tests were performed to provide additional preliminary infiltration rates for the purpose of planning and design of an on-site water disposal system. A truck mounted Simco 2800 Drill Rig equipped with a hollow stem auger was used to excavate the additional exploratory borings to depths of 13 below existing ground surface.

The borings consisted of six-inch diameter test holes. A three-inch diameter perforated PVC casing with solid end cap was installed in the borings and then surrounded with gravel materials to prevent caving.

The infiltration holes were carefully filled with clean water and refilled after two initial readings. Based upon the initial rates of infiltration at each location, test measurements were measured at selected maximum intervals thereafter. Measurements were obtained by using an electronic tape measure with 1/16-inch divisions and timed with a stopwatch. The field infiltration rate was computed using a reduction factor – Rf based on the field measurements with our calculations given in Appendix D.

Based upon the results of our testing, the soils encountered in the planned onsite drainage disposal system area exhibit the following infiltration rates.

The correction factors CFt, CFv and CFs are given below based on soils at 13 feet from our field tests.

- a) CFt = Rf =5.8 for our three infiltration test holes.
- b) CFv = 1.0 based on uniform soils encountered in two borings for infiltration tests.
- c) CFs = 2.0 for long-term siltation, plugging and maintenance. The subsurface soils are likely to have some plugging and regular maintenance of storm water discharge devices is required.

An average of the final readings obtained was used for design purposes in each of the basins. The testing data sheets are attached in Appendix E and summarized below.

The <u>field</u> infiltration rates given below may be utilized in the final basin design with a safety factor of 3.0 or greater in compliance with the County of Riverside "Low Impact Development BMP Design" guidelines.

			Infiltration	Rate
<u>Test No.</u>	Depth (feet bgs) <u>Soil Type</u>	<u>(cm/hr)</u>	<u>(in/hr)</u>
T-1	5.0	clayey sandy SILT	1.6	0.64
T-2	10.0	clayey SAND	4.0	1.6
B-2	13.0	clayey SILT		1.3
B-3	13.0	clayey SILT		3.1
B-4	13.0	clayey SAND		3.6

Based upon the soils encountered in our test locations T-2, B-2, B-3 and B-4, the use of an on-site disposal system by means of a retention/infiltration basin appears to be geotechnically feasible for future development. All systems must meet the latest city and/or county specifications and the California Regional Water Quality Control Board (CRWQCB) requirements. It is recommended that foundations shall be setback a minimum distance of 10 feet from the drainage disposal system and the bottom of footing shall be a minimum of 10 feet from the expected zone of saturation.

9.0 CLOSURE

The recommendations and conclusions contained in this report are based upon the soil conditions uncovered in our test excavations. No warranty of the soil condition between our excavations is implied. NorCal Engineering should be notified for possible further recommendations if unexpected to unfavorable conditions are encountered during construction phase. It is the responsibility of the owner to ensure that all information within this report is submitted to the Architect and appropriate Engineers for the project.

This firm should have the opportunity to review the final plans (72 hours for review required) to verify that all our recommendations are incorporated. This report and all conclusions are subject to the review of the controlling authorities for the project.

A preconstruction conference should be held between the developer, general contractor, grading contractor, city inspector, architect, and soil engineer to clarify any questions relating to the grading operations and subsequent construction. Our representative should be present during the grading operations and construction phase to certify that such recommendations are complied within the field.

This geotechnical investigation has been conducted in a manner consistent with the level of care and skill exercised by members of our profession currently practicing under similar conditions in the Southern California area. No other warranty, expressed or implied is made.

March 24, 2021 Revised June 10, 2021 Page 22

We appreciate this opportunity to be of service to you. If you have any further questions, please do not hesitate to contact the undersigned.

Respectfully submitted, NORCAL ENGINEERING

Exp. 12/31/2022 Keith D. Tucker **Project Engineer** R.G.E. 841

Mike Barone Project Manager

SPECIFICATIONS FOR PLACEMENT OF COMPACTED FILL

Excavation

Any existing low-density soils and/or saturated soils shall be removed to competent natural soil under the inspection of the Soils Engineering Firm. After the exposed surface has been cleansed of debris and/or vegetation, it shall be scarified until it is uniform in consistency, brought to the proper moisture content and compacted to a minimum of 90% relative compaction (in accordance with ASTM: D-1557-12).

In any area where a transition between fill and native soil or between bedrock and soil are encountered, additional excavation beneath foundations and slabs will be necessary in order to provide uniform support and avoid differential settlement of the structure. Verification of elevations during grading operations will be the responsibility of the owner or his designated representative.

Material For Fill

The on-site soils or approved import soils may be utilized for the compacted fill provided they are free of any deleterious materials and shall not contain any rocks, brick, asphaltic concrete, concrete or other hard materials greater than eight inches in maximum dimensions. Any import soil must be approved by the Soils Engineering firm a minimum of 72 hours prior to importation of site.

Placement of Compacted Fill Soils

The approved fill soils shall be placed in layers not excess of six inches in thickness. Each lift shall be uniform in thickness and thoroughly blended. The fill soils shall be brought to within 2% of the optimum moisture content, unless otherwise specified by the Soils Engineering firm. Each lift shall be compacted to a minimum of 90% relative compaction (in accordance with ASTM: D-1557-12) and approved prior to the placement of the next layer of soil. Compaction tests shall be obtained at the discretion of the Soils Engineering firm but to a minimum of one test for every 500 cubic yards placed and/or for every 2 feet of compacted fill placed.

The minimum relative compaction shall be obtained in accordance with accepted methods in the construction industry. The final grade of the structural areas shall be in a dense and smooth condition prior to placement of slabs-on-grade or pavement areas. No fill soils shall be placed, spread or compacted during unfavorable weather conditions. When the grading is interrupted by heavy rains, compaction operations shall not be resumed until approved by the Soils Engineering firm.

Grading Observations

The controlling governmental agencies should be notified prior to commencement of any grading operations. This firm recommends that the grading operations be conducted under the observation of a Soils Engineering firm as deemed necessary. A 24-hour notice must be provided to this firm prior to the time of our initial inspection.

Observation shall include the clearing and grubbing operations to assure that all unsuitable materials have been properly removed; approve the exposed subgrade in areas to receive fill and in areas where excavation has resulted in the desired finished grade and designate areas of overexcavation; and perform field compaction tests to determine relative compaction achieved during fill placement. In addition, all foundation excavations shall be observed by the Soils Engineering firm to confirm that appropriate bearing materials are present at the design grades and recommend any modifications to construct footings.

EXPANSIVE SOIL GUIDELINES

The following expansive soil guidelines are provided for your project. The intent of these guidelines is to inform you, the client, of the importance of proper design and maintenance of projects supported on expansive soils. You, as the owner or other interested party, should be warned that you have a duty to provide the information contained in the soil report including these guidelines to your design engineers, architects, landscapers and other design parties in order to enable them to provide a design that takes into consideration expansive soils.

In addition, you should provide the soil report with these guidelines to any property manager, lessee, property purchaser or other interested party that will have or assume the responsibility of maintaining the development in the future.

Expansive soils are fine-grained silts and clays which are subject to swelling and contracting. The amount of this swelling and contracting is subject to the amount of fine-grained clay materials present in the soils and the amount of moisture either introduced or extracted from the soils. Expansive soils are divided into five categories ranging from "very low" to "very high". Expansion indices are assigned to each classification and are included in the laboratory testing section of this report. *If the expansion index of the soils on your site, as stated in this report, is 21 or higher, you have expansive soils.* The classifications of expansive soils are as follows:

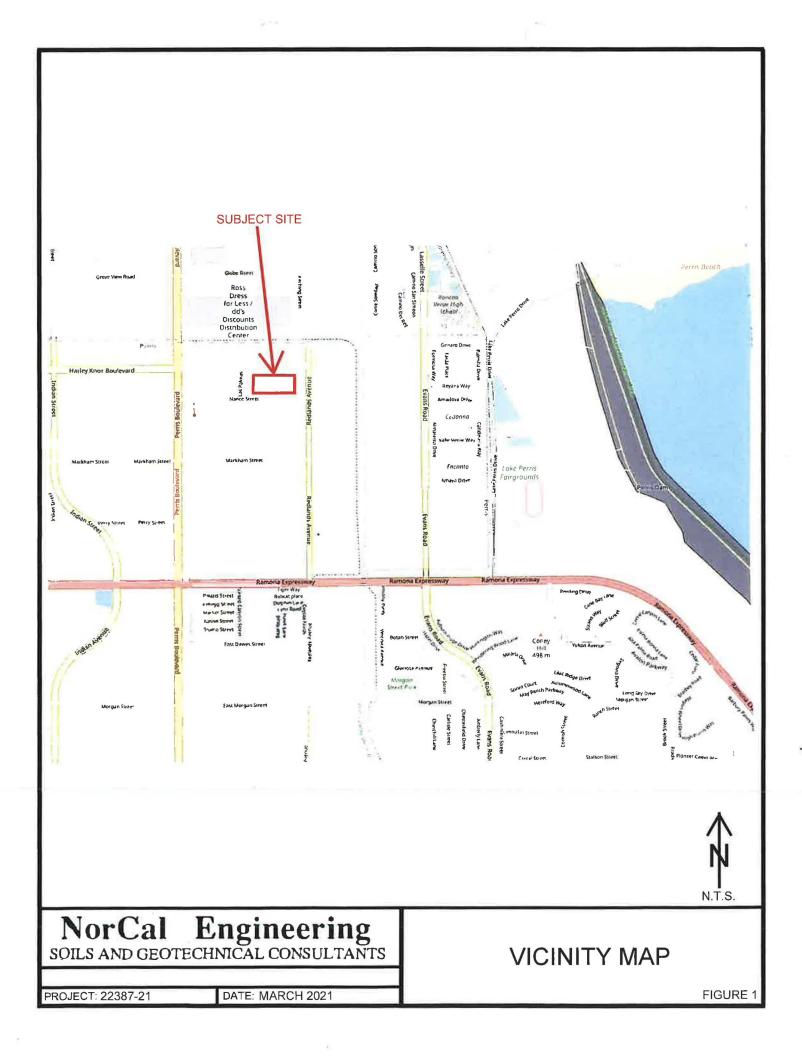
of Expansive Soll"
Potential Expansion
Very Low
Low
Medium
High
Very High

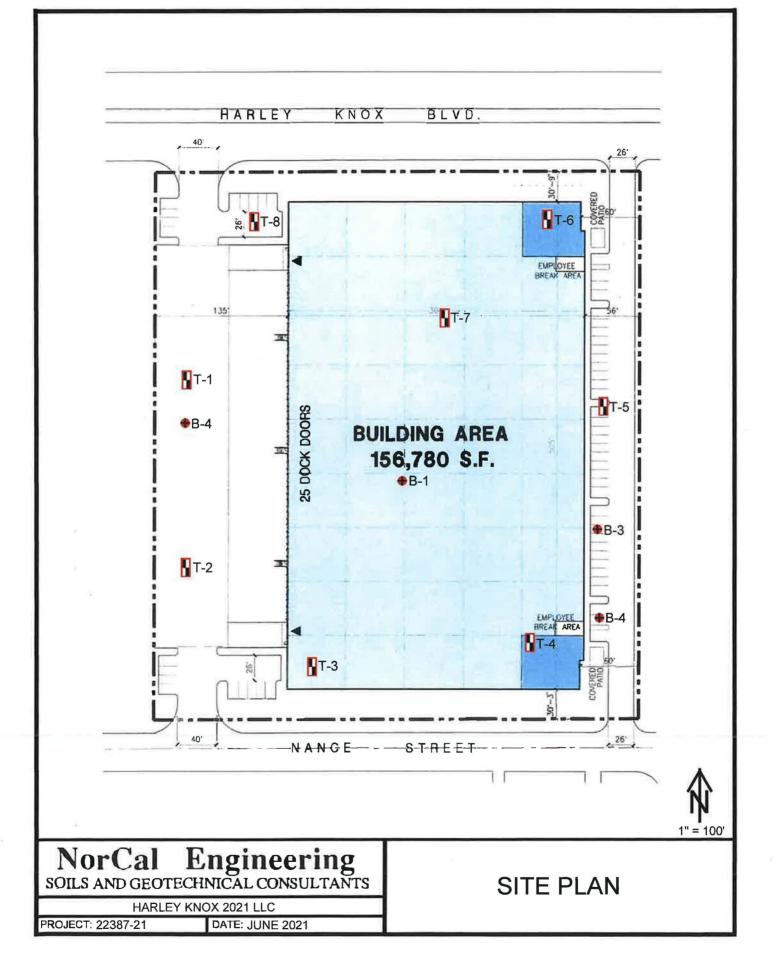
Classification of Expansive Soil*

*From Table 18A-I-B of California Building Code (1988)

When expansive soils are compacted during site grading operations, care is taken to place the materials at or slightly above optimum moisture levels and perform proper compaction operations. Any subsequent excessive wetting and/or drying of expansive soils will cause the soil materials to expand and/or contract. These actions are likely to cause distress of foundations, structures, slabs-on-grade, sidewalks and pavement over the life of the structure. It is therefore imperative that even after construction of improvements, the moisture contents are maintained at relatively constant levels, allowing neither excessive wetting of soils.

March 24, 2021 Revised June 10, 2021 Page 26


Evidence of excessive wetting of expansive soils may be seen in concrete slabs, both interior and exterior. Slabs may lift at construction joints producing a trip hazard or may crack from the pressure of soil expansion. Wet clays in foundation areas may result in lifting of the structure causing difficulty in the opening and closing of doors and windows, as well as cracking in exterior and interior wall surfaces. In extreme wetting of soils to depth, settlement of the structure may eventually result. Excessive wetting of soils in landscape areas adjacent to concrete or asphaltic pavement areas may also result in expansion of soils beneath pavement and resultant distress to the pavement surface.


Excessive drying of expansive soils is initially evidenced by cracking in the surface of the soils due to contraction. Settlement of structures and on-grade slabs may also eventually result along with problems in the operation of doors and windows.

Projects located in areas of expansive clay soils will be subject to more movement and "hairline" cracking of walls and slabs than similar projects situated on non-expansive sandy soils. There are, however, measures that developers and property owners may take to reduce the amount of movement over the life the development. The following guidelines are provided to assist you in both design and maintenance of projects on expansive soils:

- Drainage away from structures and pavement is essential to prevent excessive wetting of expansive soils. Grades of at least 3% should be designed and maintained to allow flow of irrigation and rain water to approved drainage devices or to the street. Any "ponding" of water adjacent to buildings, slabs and pavement after rains is evidence of poor drainage; the installation of drainage devices or regrading of the area may be required to assure proper drainage. Installation of rain gutters is also recommended to control the introduction of moisture next to buildings. Gutters should discharge into a drainage device or onto pavement which drains to roadways.
- Irrigation should be strictly controlled around building foundations, slabs and pavement and may need to be adjusted depending upon season. This control is essential to maintain a relatively uniform moisture content in the expansive soils and to prevent swelling and contracting. Over-watering adjacent to improvements may result in damage to those improvements. NorCal Engineering makes no specific recommendations regarding landscape irrigation schedules.

- Planting schemes for landscaping around structures and pavement should be analyzed carefully. Plants (including sod) requiring high amounts of water may result in excessive wetting of soils. Trees and large shrubs may actually extract moisture from the expansive soils, thus causing contraction of the fine-grained soils.
- Thickened edges on exterior slabs will assist in keeping excessive moisture from entering directly beneath the concrete. A six-inch thick or greater deepened edge on slabs may be considered. Underlying interior and exterior slabs with 6 to 12 inches or more of non-expansive soils and providing presaturation of the underlying clayey soils as recommended in the soil report will improve the overall performance of on-grade slabs.
- Increase the amount of steel reinforcing in concrete slabs, foundations and other structures to resist the forces of expansive soils. The precise amount of reinforcing should be determined by the appropriate design engineers and/or architects.
- Recommendations of the soil report should always be followed in the development of the project. Any recommendations regarding presaturation of the upper subgrade soils in slab areas should be performed in the field and verified by the Soil Engineer.

March 24, 2021 Revised June 10, 2021 Page 28

List of Appendices

(in order of appearance)

Appendix A – Seismic Design Report

Appendix B – Log of Excavations

Log of Borings B-1 to B-4 Log of Test Excavations T-1 to T-8

Appendix C – Laboratory Tests

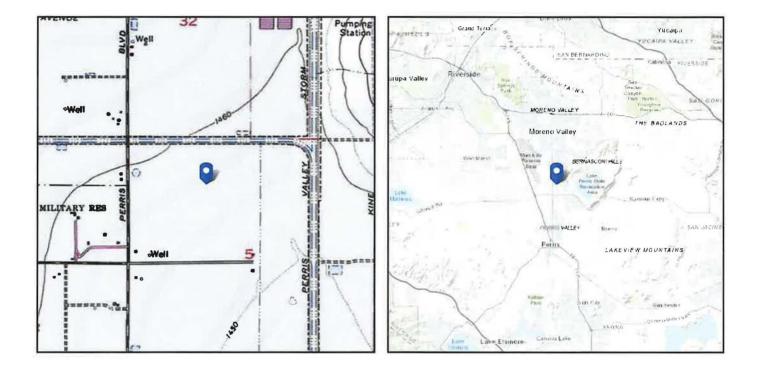
Table I -- Maximum Dry Density Table II - Expansion Index Test Table III – Atterberg Limits Test Table IV - Sulfate Tests Table V - pH Tests Table VI – Resistivity Tests Table VII - Chloride Tests Table VIII - Resistance "R" Value Tests

> Plate A and B – Direct Shear Plates C and D - Consolidation

Appendix D – Liquefaction Calculations

Appendix E – Soil Infiltration Data

March 24, 2021 Revised June 10, 2021 Page 29


Appendix A Seismic Design Report

ASCE 7 Hazards Report

Address: No Address at This Location Standard:ASCE/SEI 7-16Risk Category:IISoil Class:D - Stiff Soil

Elevation: 1459.54 ft (NAVD 88) Latitude: 33.856419 Longitude: -117.220632

Site Soil Class:	D - Stiff Soil			
Results:				
S _s :	1.5	S _{D1} :	N/A	
S ₁ :	0.6	T_L :	8	
Fa:	1	PGA :	0.536	
F _v :	N/A	PGA M:	0.589	
S _{MS} :	1.5	F _{PGA} :	1.1	
S _{M1} :	N/A	l _e :	1	
S _{DS} :	1	C _v :	1.4	
Ground motion hazard and	alysis may be required	d. See ASCE/SEI 7-16 Se	ection 11.4.8.	
Data Accessed:	Thu Mar 18	2021		
Date Source:	USGS Seism	nic Design Maps		

1

.

•

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

March 24, 2021 Revised June 10, 2021 Page 30

Appendix B Log of Excavations

M	IAJOR DIVISION				TYPICAL DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS	0°0	GW	WELL-GRADED GRAVELS, GRAVEL, SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES
	SAND	CLEAN SAND		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN 50% OF MATERIAL	SANDY SOILS	FINES)		SP	POORLY-GRADED SANDS, GRAVEL- LY SANDS, LITTLE OR NO FINES
IS <u>LARGER</u> THAN NO. 200 SIEVE SIZE	MORE THAN 50% OF COARSE	SANDS WITH		SM	SILTY SANDS, SAND-SILT MIXTURES
	FRACTION <u>PASSING</u> ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND-CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
50% OF MATERIAL S <u>SMALLER</u> THAN NO. 200 SIEVE	SILTS AND CLAYS	LIQUID LIMIT <u>GREATER</u> THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
SIZE				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
H	GHLY ORGANIC S	OILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

UNIFIED SOIL CLASSIFICATION SYSTEM

KEY: Indicates 2.5-inch Inside Diameter. Ring Sample. Indicates 2-inch OD Split Spoon Sample (SPT). X Indicates Shelby Tube Sample. Indicates No Recovery. Ш Indicates SPT with 140# Hammer 30 in. Drop. M Indicates Bulk Sample. Indicates Small Bag Sample. Indicates Non-Standard X Indicates Core Run.

COMPONENT DEFINITIONS

COMPONENT	SIZE RANGE	And	
Boulders	Larger than 12 in	мо	ISTU
Cobbles Gravel	3 in to 12 in 3 in to No 4 (4.5mm) 3 in to 3/4 in	DRY	Abse
Coarse gravel Fine gravel Sand	3/4 in to No 4 (4.5mm) No. 4 (4.5mm) to No. 200 (0.074mm)	DAMP	dry to Some
Coarse sand Medium sand	No. 4 (4.5 mm) to No. 10 (2.0 mm) No. 10 (2.0 mm) to No. 40 (0.42 mm)	MOIST	No vi moist
Fine sand Silt and Clay	No. 40 (0.42 mm) to No. 200 (0.074 mm) Smaller than No. 200 (0.074 mm)	WET	Visibi soil is

COMPONENT PROPORTIONS

RANGE OF PROPORTION

1-5% 5 - 10% 10 - 20%

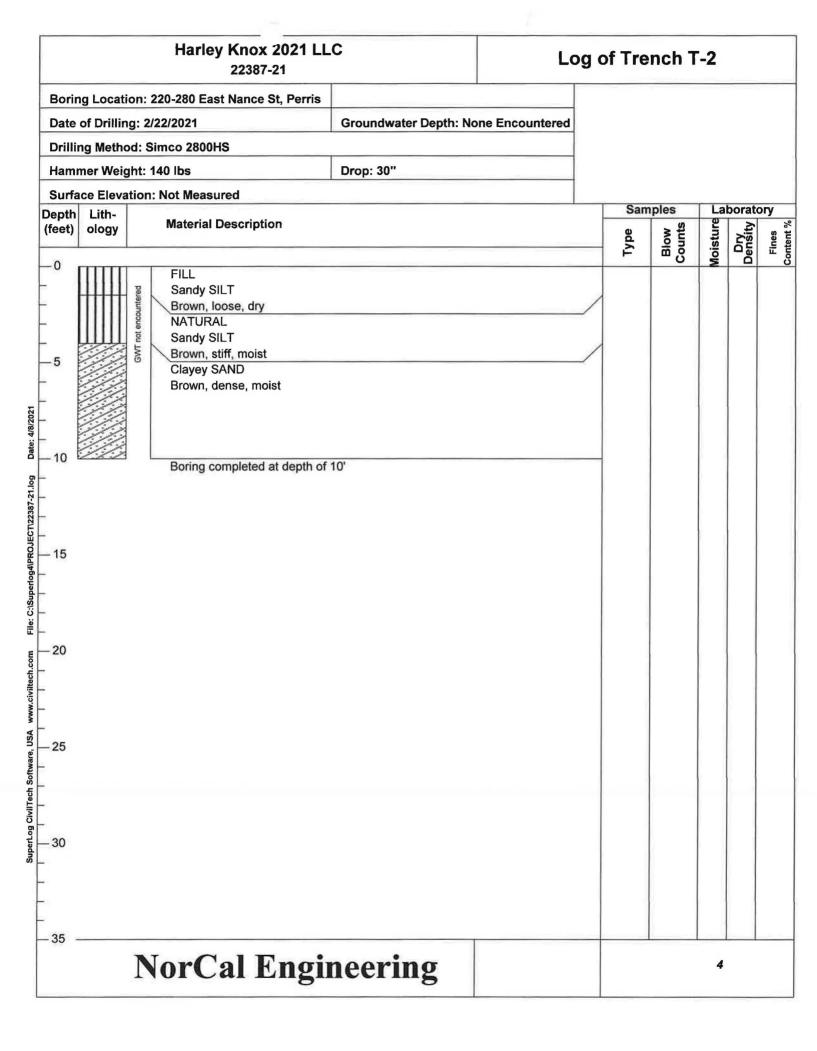
20 - 35% 35 - 50%

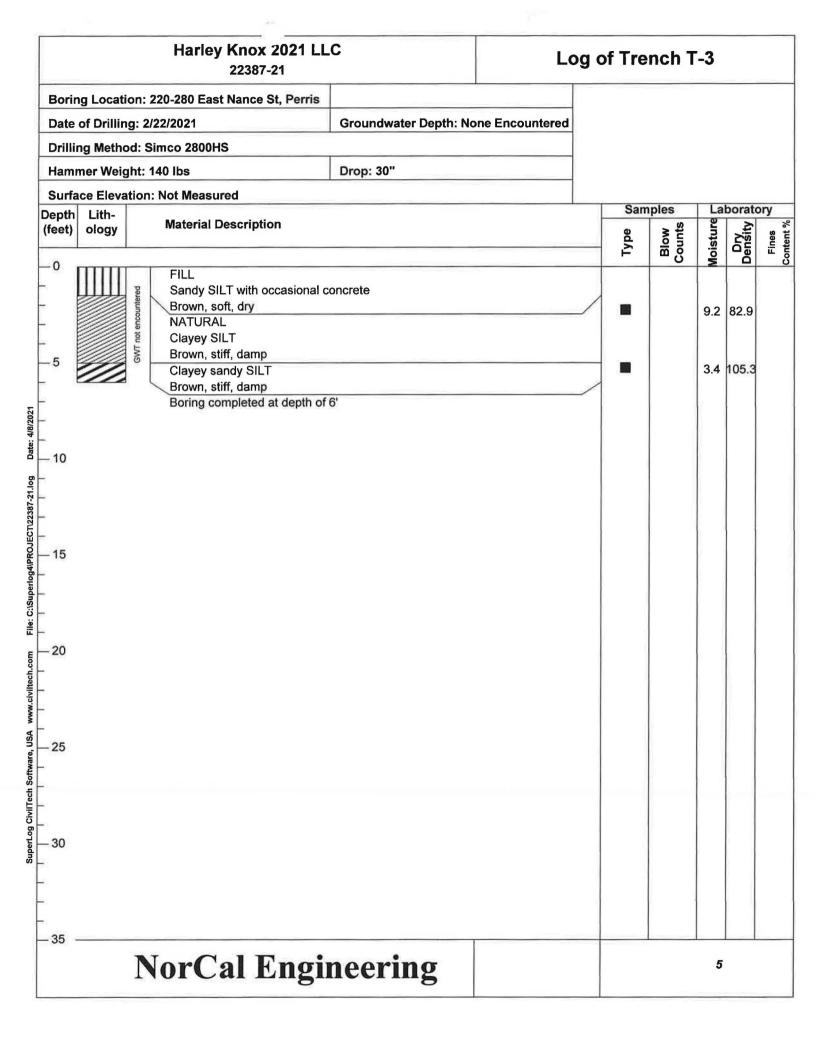
DESCRIPTIVE TERMS

Trace

Few Little

MC	MOISTURE CONTENT					
DRY	Absence of moisture, dusty, dry to the louch.					
DAMP	Some perceptible moisture; below optimum					
MOIST	No visible water; near optimum moisture content					
WET	Visible free water, usually soil is below water table.					

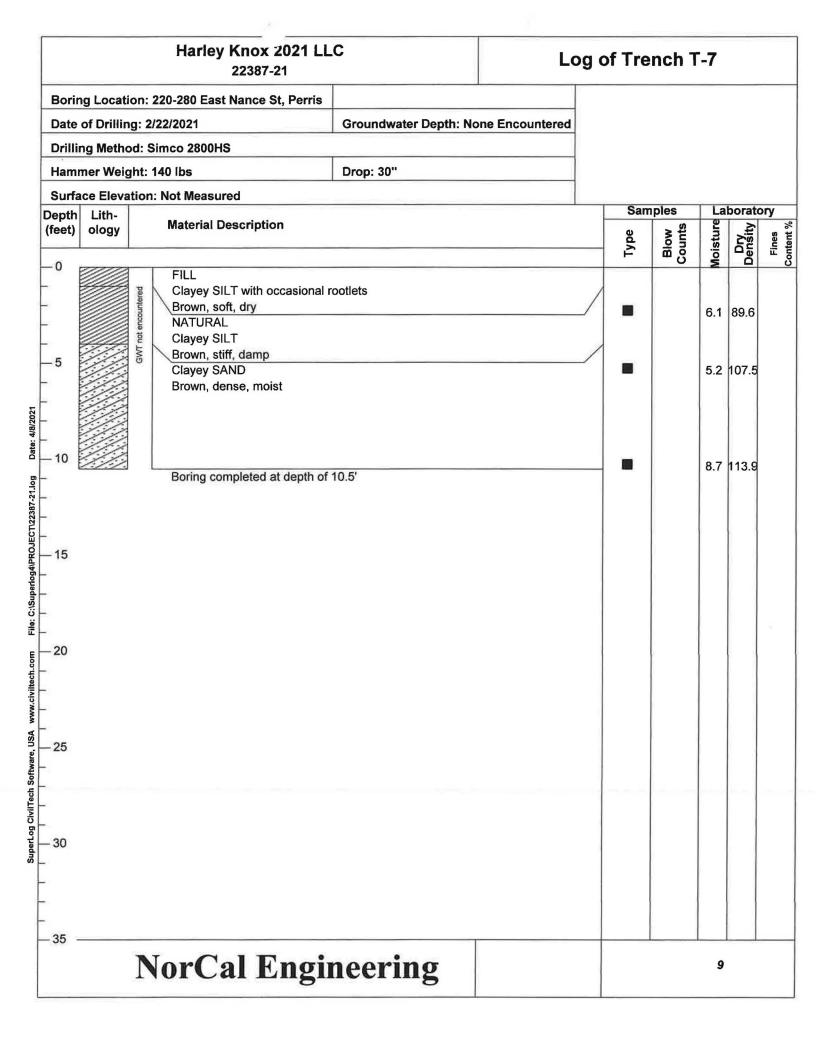

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N -VALUE

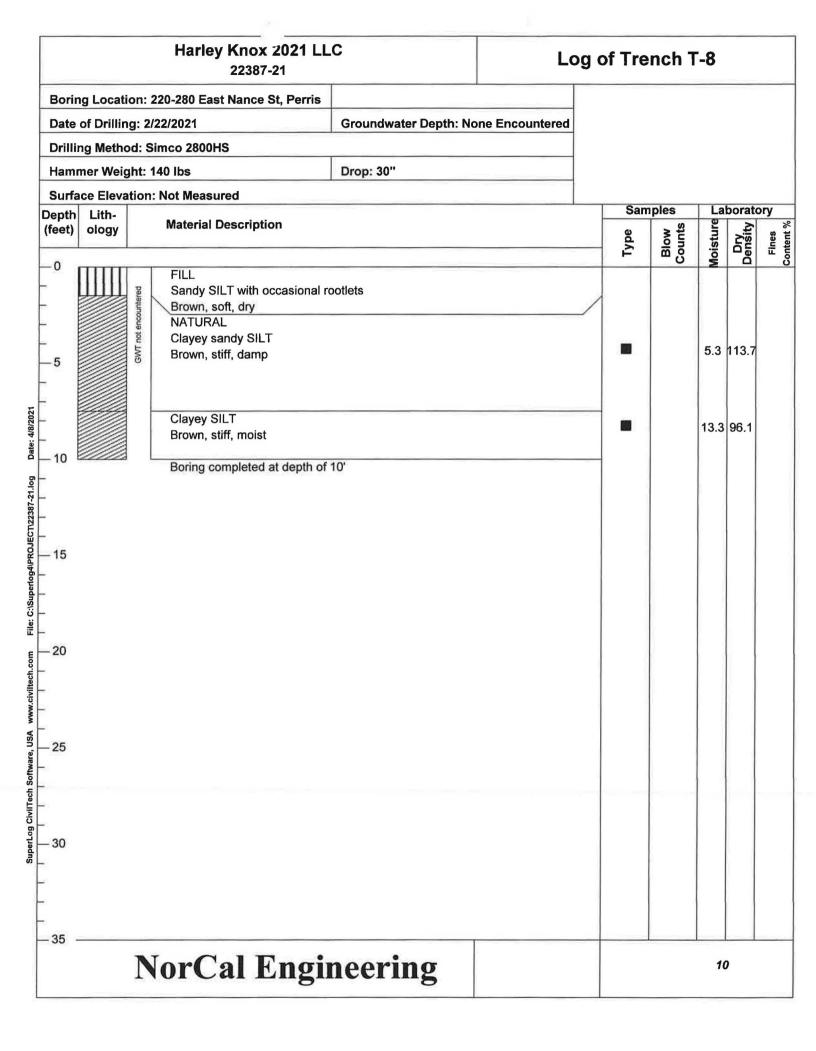

COHESIC	ONLESS SOILS		COHESIVE SO	LS
Density	N (blows/ft)	Consistency	N (blows/ft)	Approximate Undrained Shear Strength (psf)
Very Loose Loose Medium Dense Dense Very Dense	0 to 4 4 to 10 10 to 30 30 to 50 over 50	Very Soft Soft Medium Sliff Stiff Very Stiff Hard	0 to 2 2 to 4 4 to 8 8 to 15 15 to 30 over 30	< 250 250 - 500 500 - 1000 1000 - 2000 2000 - 4000 > 4000

Boring Location: 220-280 East Nance St, Perris Groundwater Depth: 23' Date of Drilling: 2/2/2021 Groundwater Depth: 23' Drilling Method: Simco 2800HS Drop: 30" Hammer Weight: 140 lbs Drop: 30" Surface Elevation: Not Measured Depth Lift Opth Lift Sandy SiLT Brown, loose, damp NATURAL Sandy SiLT Brown, dense, damp Image: Clayey SAND Sifty SAND Sifty SAND Brown, dense, moist to wet Sifty SAND Brown, dense, saturated Sifty SAND Sifty SAND Clayey SAND Brown, dense, saturated Oright Lift Clayey SAND Brown, dense, moist to wet Image: Sifty Sand Clayey SILT Brown, dense, saturated Sifty SAND Sifty Sand Brown, medium dense, saturated Image: Sifty Sand Sifty SAND Sifty Sand Brown, medium dense, saturated Image: Sifty Sand Sifty Sand Sifty Sand Brown, medium dense, saturated Image: Sifty Sand Sifty Sand Sifty Sand Brown, medium dense, saturated Image: Sifty Sand <th></th>	
Date of Drilling: 2/22/2021 Groundwater Depth: 23' Drilling Method: Simco 2800HS Hammer Weight: 140 ibs Drop: 30" Surface Elevation: Not Measured Depth (reet) Lith- Ith- Sandy SiLT Brown, loose, damp NATURAL Samyles Brown, stiff, damp Clayey SILT Brown, stiff, moist Sitty SAND Brown, dense, moist to wet Difference Sitty SAND Brown, dense, saturated Clayey SILT Brown, medium dense, saturated Clayey SILT Brown, medium dense, saturated Starty SILT Brown, medium dense, saturated	
Drilling Method: Simco 2800HS Hammer Weight: 140 lbs Drop: 30" Surface Elevation: Not Measured Samples Lat Depth Lith- (feet) Material Description Samples Lat -0 Fill. Sandy SiLT Brown, loose, damp NATURAL Sandy SiLT -5 Brown, loose, damp NATURAL Sandy SiLT Brown, siff, damp I/// Sandy SiLT -5 Clayey SiLT Brown, dense, damp I// Sandy SiLT Sandy SiLT Sandy SiLT -5 Brown, dense, damp I// Sandy SiLT Sandy SiLT Sandy SiLT Sandy SiLT -5 Clayey SiLT Brown, dense, damp I// Sandy SiLT Sandy SiLT Sandy SiLT -10 Clayey SiLT Brown, dense, damp I// Sandy SiLT Sandy SiLT Sandy SiLT -10 Clayey SiLT Brown, dense, moist to wet I// Sandy SiLT I// Sandy SiLT I// Sandy SiLT -20 Clayey SAND Erown, dense, saturated I// Sandy SiT Sandy SiT Sandy SiT -21 Clayey SAND Erown, medium dense, saturated I// Sandy SiT Sandy SiT Sandy SiT	
Surface Elevation: Not Measured Depth (reet) Lith- ology Material Description Samples Lather state 0 FILL Sandy SiLT Brown, loose, damp NATURAL Sandy SiLT Brown, stiff, damp Clayey SAND Interpretation in the state i	
Depth (feet) Lith-(feet) Material Description Samples La 9 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 8.0 10/9/9 10/9/9 8.0 10/9/9	
Image: Second	
FILL Sandy SILT Sandy SILT Brown, loose, damp NATURAL Sandy SILT Brown, stiff, damp I/// 10/9/9 Clayey SAND Brown, dense, damp Image: Silt of the silt	oratory
FILL Sandy SILT Brown, loose, damp NATURAL Sandy SILT Brown, loose, damp NATURAL Sandy SILT Brown, stiff, damp I/// 10/9/9 Clayey SAND Brown, dense, damp Clayey SILT Brown, stiff, moist Sitty SAND I// 9/9/11 Brown, dense, moist to wet I// 9/11/22 Sitty SAND Brown, dense, moist to wet Clayey SAND I// 14/13/12 Sitty SAND Brown, dense, moist to wet Clayey SAND I// 14/13/12 Clayey SAND I// 14/13/12 Clayey SAND I// 14/13/12 Brown, medium dense, saturated I// 14/13/12 Clayey SILT I// 14/13/12 Clayey SILT I// 14/13/12 Clayey SILT I// 14/13/12 Clayey SILT I// 14/13/12	Density Fines
Sandy SILT Brown, loose, damp NATURAL Sandy SILT Brown, soles, damp I/10/9/9 10 Clayey SAND Brown, dense, damp I/10/9/9 10 Clayey SILT Brown, stiff, moist I/1 15 Silty SAND Brown, dense, moist to wet I/1 20 I/1 21 Clayey SAND Brown, dense, moist to wet I/1 22 Clayey SAND Brown, dense, saturated I/1/1/1/1 230 Clayey SILT	
Brown, loose, damp -5 -5 -5 -6 -7 -	
-5 NATURAL Sandy SILT Brown, stiff, damp Clayey SAND Brown, dense, damp 10/9/9 8.0 -10 Clayey SILT Brown, stiff, moist 9/9/11 15.8 -15 Sitty SAND Brown, dense, moist to wet 9/9/11 15.8 -20 Clayey SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Clayey SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Clayey SAND Brown, dense, moist to wet 9/13/22 7.0 -21 Clayey SAND Brown, medium dense, saturated 9/9/11 14/13/12 13.3 -230 Clayey SILT 9/9/11 14/13/12 13.3	
-5 Brown, stiff, damp Clayey SAND Brown, dense, damp IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
-3 Clayey SAND Brown, dense, damp 10/9/9 8.0 -10 Clayey SILT Brown, stiff, moist 9/9/11 15.8 -15 Sitty SAND Brown, dense, moist to wet 9/9/11 15.8 -20 Sitty SAND Brown, dense, moist to wet 9/13/22 7.0 -21 Clayey SAND Brown, dense, moist to wet 14/13/12 13.3 -25 Clayey SAND Brown, medium dense, saturated 14/13/12 13.3 -30 Clayey SILT 5/9/7 20.4	
Brown, dense, damp Image: 1009/9 8.0 10 Clayey SILT Brown, stiff, moist Image: 909/11 15.8 15 Sitty SAND Brown, dense, moist to wet Image: 909/11 15.8 -20 Image: 909/11 15.8 -21 Clayey SILT Brown, dense, moist to wet Image: 90/13/22 7.0 -20 Image: 90/14 Image: 90/13/22 7.0 -21 Image: 90/14 Image: 90/13/22 7.0 -25 Image: 90/14 Image: 90/13/22 7.0 -26 Image: 90/14 Image: 90/13/22 7.0 Image: 90/14 Image: 90/14 Image: 90/14 Image: 90/14 -27 Image: 90/14 Image: 90/14 Image: 90/14 Image: 90/14 -30 Image: 90/14 Image: 90/14 Image: 90/14 Image: 90/14 Image: 90/14 -30 Image:	
-10 Clayey SILT Brown, stiff, moist 9/9/11 15.8 -15 Silty SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, medium dense, saturated 9/13/22 7.0 -21 Image: Clayey SAND Brown, medium dense, saturated 14/13/12 13.3 -20 Clayey SAND Brown, medium dense, saturated 15/9/7 20.4	47
-15 Clayey SIL1 9/9/11 15.8 -15 Silty SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, medium dense, saturated Image: Clayey SILT Silty SAND Silty SAND Image: Clayey SILT <	
-15 Clayey SiL1 Brown, stiff, moist 9/9/11 15.8 -15 Silty SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, medium dense, saturated Image: Clayey SILT Silty SAND Silty SAND 30 Clayey SILT Image: Clayey SILT Image: Clayey SILT Image: Clayey SILT	
-15 Clayey SIL1 9/9/11 15.8 -15 Silty SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, medium dense, saturated Image: Clayey SILT Silty SAND Silty SAND Image: Clayey SILT <	
-15 Brown, stiff, moist 9/9/11 15.8 -15 Silty SAND Brown, dense, moist to wet 9/13/22 7.0 -20 Image: Clayey SAND Brown, medium dense, saturated Image: Clayey SAND Brown, medium dense, saturated Image: Clayey SILT 5/9/7 20.4	
-15 Silty SAND Brown, dense, moist to wet Ø 9/13/22 7.0 -20 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	71
20 Sitty SAND 20 Brown, dense, moist to wet 21 Id/13/12 25 Clayey SAND 26 Clayey SAND 30 Clayey SAND 30 Clayey SILT	
-20 Image: Shifty SAND Brown, dense, moist to wet Image: Shifty SAND Brown, dense, moist to wet Image: Shifty SAND Image: Shifty SAND Image: Shifty SAND Image: Shifty SAND Clayey SAND Brown, medium dense, saturated Image: Shifty SAND Image: Shif	
-20 Image: Shifty SAND Brown, dense, moist to wet Image: Shifty SAND Brown, dense, moist to wet Image: Shifty SAND Image: Shif	
-20 Image: Shify SAND Brown, dense, moist to wet Image: Shify SAND Brown, dense, moist to wet Image: Shify SAND Brown, dense, moist to wet Image: Shify SAND Brown, dense, saturated Image: Shify SAND Brown, medium dense, saturated Image: Shify SAND Brown, mediu	
-20 -25 -25 Clayey SAND Brown, medium dense, saturated Clayey SILT Clayey SILT	19
-25 Clayey SAND Brown, medium dense, saturated -30 Clayey SILT Clayey SILT Clayey SILT 21.3 20.4 21.4 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.4 21.3 20.4 21.4 21.4 21.3 20.4 21	
-25 Clayey SAND Brown, medium dense, saturated -30 Clayey SILT Clayey SILT Clayey SILT -30 Clayey SILT	
-25 Clayey SAND Brown, medium dense, saturated -30 Clayey SILT Clayey SILT Clayey SILT 21.3 20.4 21.4 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.3 20.4 21.4 21.3 20.4 21.4 21.4 21.3 20.4 21	
-25 Clayey SAND Brown, medium dense, saturated -30 Clayey SILT Clayey SILT Clayey SILT -30 Clayey SILT	
-25 Clayey SAND Brown, medium dense, saturated 30 Clayey SILT 20.4 20.4 20.4	10
-30 Clayey SILT 5/9/7 20.4	
-30 Clayey SILT	37
Brown, medium stiff, saturated	63
	03
	1
25	
-35	
NorCal Engineering	

		Harley Knox 2021 LL 22387-21	С	Log	of Bo	ring B	8-1		
Boring L	_ocation:	220-280 East Nance St, Perris							
Date of I	Drilling: 2	2/22/2021	Groundwater Depth: 23	5					
Drilling I	Method:	Simco 2800HS							
Hammer	Weight:	140 lbs	Drop: 30"						
		n: Not Measured							
	ith- logy	Material Description				nples		oorato ≳	ory %
					Type	Blow Counts	Moisture	Dry Density	Fines Content %
-35		Silty CLAY Brown, medium stiff, saturated	1		M	3/4/9	Š 34.3		71
-40		Clayey SILT Brown, medium stiff, saturated	1			4/4/4	40.0		88
						5/5/5	26.3		66
		Clayey SAND Brown, dense, saturated Boring completed at depth of 5	51.5'		Ø	14/20/22	14.5		45
- 55 - - -									
60 									
65									
—70 —	ľ	NorCal Engin	neering				2		

		Harley Knox 2021 LL 22387-21	С	Lo	g of	Tre	nch T	-1		
Boring	Locati	on: 220-280 East Nance St, Perris								
Date of	f Drillin	g: 2/22/2021	Groundwater Depth: No	one Encountered						
Drilling	g Metho	od: Simco 2800HS								
Hamme	er Weig	ht: 140 lbs	Drop: 30''							
Surface	e Eleva	tion: Not Measured								
	Lith- ology	Material Description				Sam		Lat	oorato	ory %
	ology				_	Type	Blow Counts	Moisture	Dry Density	Fines Content %
		FILL Sandy SILT Brown, stiff, damp NATURAL Sandy SILT Brown, medium stiff, damp Clayey sandy SILT Brown, stiff, damp Boring completed at depth of the Source of the second	6'							
		NorCal Engin	neering					3		





	Harley Knox 2021 LL 22387-21	c	Log of Tre	nch T	-4		
Boring Locat	tion: 220-280 East Nance St, Perris						
Date of Drillin	ng: 2/22/2021	Groundwater Depth: None Encountered	ed				
Drilling Meth	od: Simco 2800HS						
Hammer Wei	ght: 140 lbs	Drop: 30"					
Surface Eleva	ation: Not Measured						
Depth Lith- (feet) ology	Material Description			nples ທ	Lat 2	oorato ≳	
	FILL Clayey SILT with occasional m Brown, soft, moist NATURAL Clayey SILT with some sand Brown, medium stiff, moist Silty SAND Brown, dense, damp Clayey SILT Brown, medium stiff, moist Boring completed at depth of		Type	Blow Counts			
- - 25 - - 30 - 35	NorCal Engin	neering			6		

		Harley Knox 2021 LL 22387-21	С	Lo	g of	Tre	nch T	-5		
Boring	g Locati	ion: 220-280 East Nance St, Perris								
Date o	of Drillin	ıg: 2/22/2021	Groundwater Depth: N	Ione Encountered						
Drillin	ng Metho	od: Simco 2800HS								
Hamm	ner Weig	ght: 140 lbs	Drop: 30"							
		tion: Not Measured				-	-			
Depth (feet)	Lith- ology	Material Description				Sam		믿	borato	ory %
(,					_	Type	Blow Counts	Moisture	Density	Fines Content %
0 		FILL Sandy SILT with occasional g Brown, soft, dry NATURAL Clayey sandy SILT Brown, medium stiff, moist Boring completed at depth of						×		0
		NorCal Engin	neering					7		

		Harley Knox 2021 LL 22387-21	С	Log	ofTre	nch T	-6		
Borir	ng Locat	ion: 220-280 East Nance St, Perris							
Date	of D r illir	ng: 2/22/2021	Groundwater Depth: No	one Encountered					
Drilli	ng Meth	od: Simco 2800HS							
Ham	mer Weig	ght: 140 lbs	Drop: 30"						
		ation: Not Measured			- Com				
Depth (feet)		Material Description				nples		borato ≩	ory %
					Type	Blow Counts	Moisture	Density	Fines Content %
0		FILL Silty SAND with occasional gr Brown, loose, dry NATURAL Silty SAND Brown, dense, moist Silty (medium to coarse graine Brown, dense, moist Boring completed at depth of	ed) SAND				2.7	<u>а</u> 113.8 110.4	3
- 35 -		NorCal Engi	neering				8		

March 24, 2021 Revised June 10, 2021 Page 31

Appendix C Laboratory Tests

TABLE I MAXIMUM DENSITY TESTS

Sample	Classification	Optimum Moisture (%)	Maximum Dry Density (lbs/cu.ft)
T-4 @ 2'	Sandy SILT	12.0	126.0

TABLE II EXPANSION TESTS (ASTM D-4829)

Sample	Classification	Expansion Index
T-4 @ 2'	Sandy SILT	32

TABLE III ATTERBERG LIMITS

Sample	Liquid Limit	Plastic Limit	Plasticity Index		
B-1 @ 30'	32	19	13		
B-1 @ 40'	38	21	17		
B-1 @ 40'	57	25	32		
B-1 @ 45'	32	16	16		

TABLE IV SOLUBLE SULFATE TESTS (ASTM D-4318)

Sample	Sulfate (%)
T-6 @ 2'	N.D.

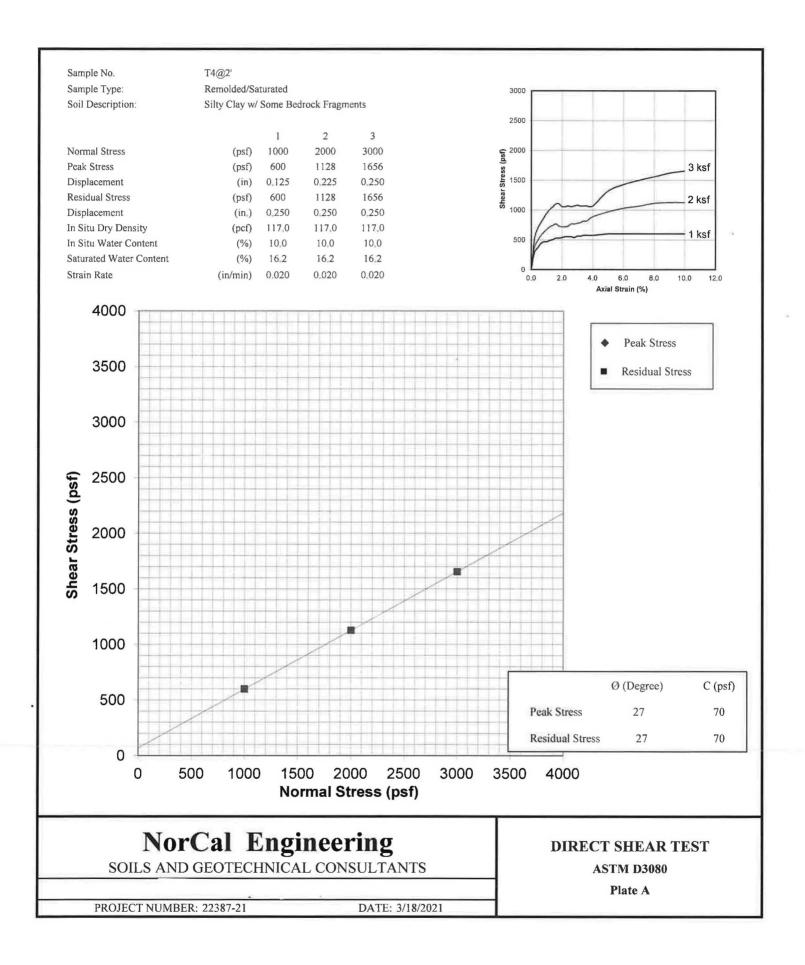
N.D. = Non-Detectible % by weight

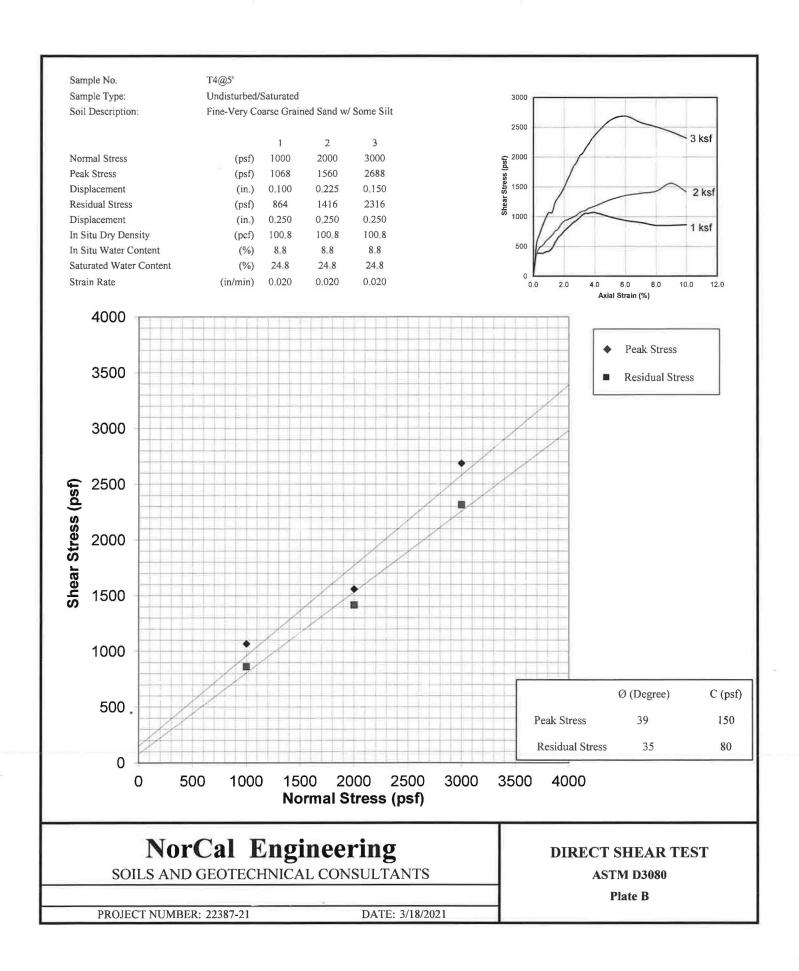
TABLE V pH TESTS

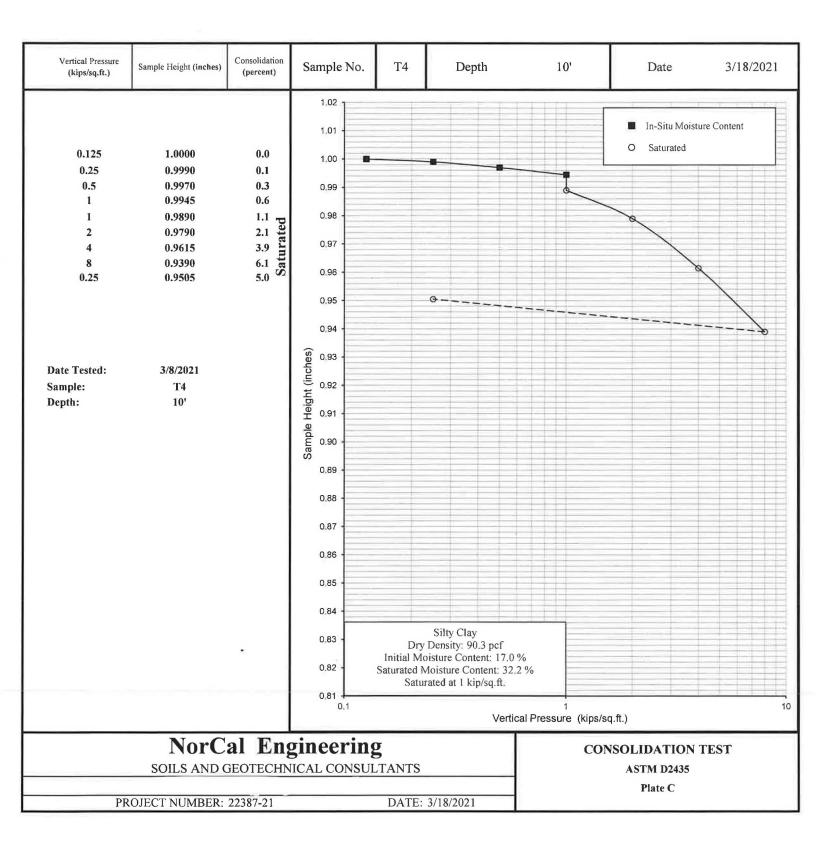
Sample	рН
T-6 @ 2'	6.9

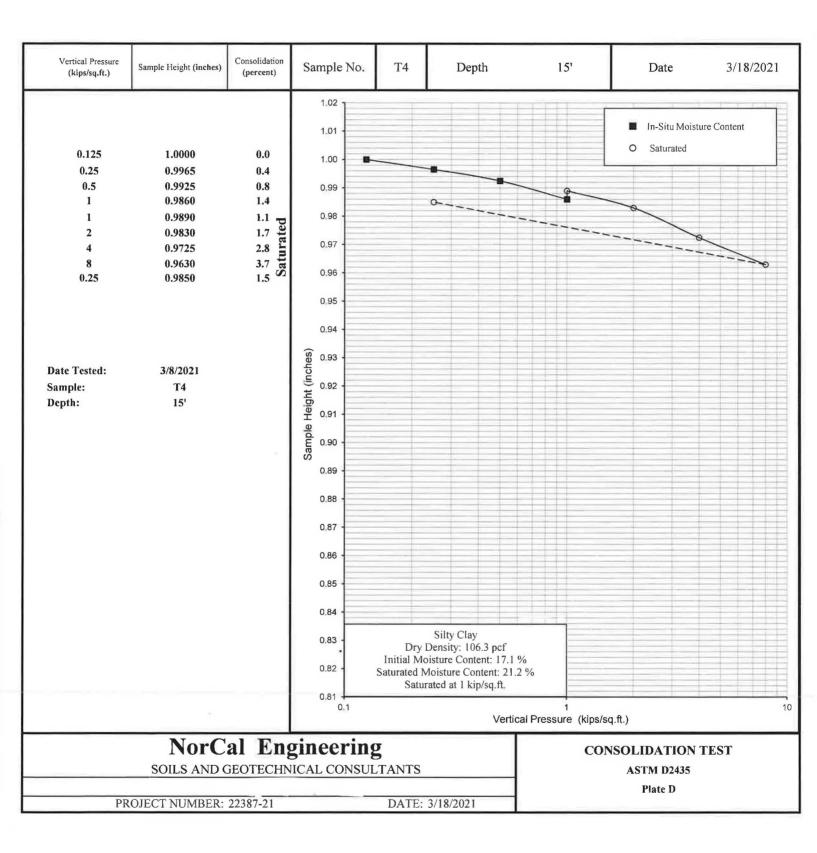
TABLE VI RESISTIVITY TESTS (CT 643)

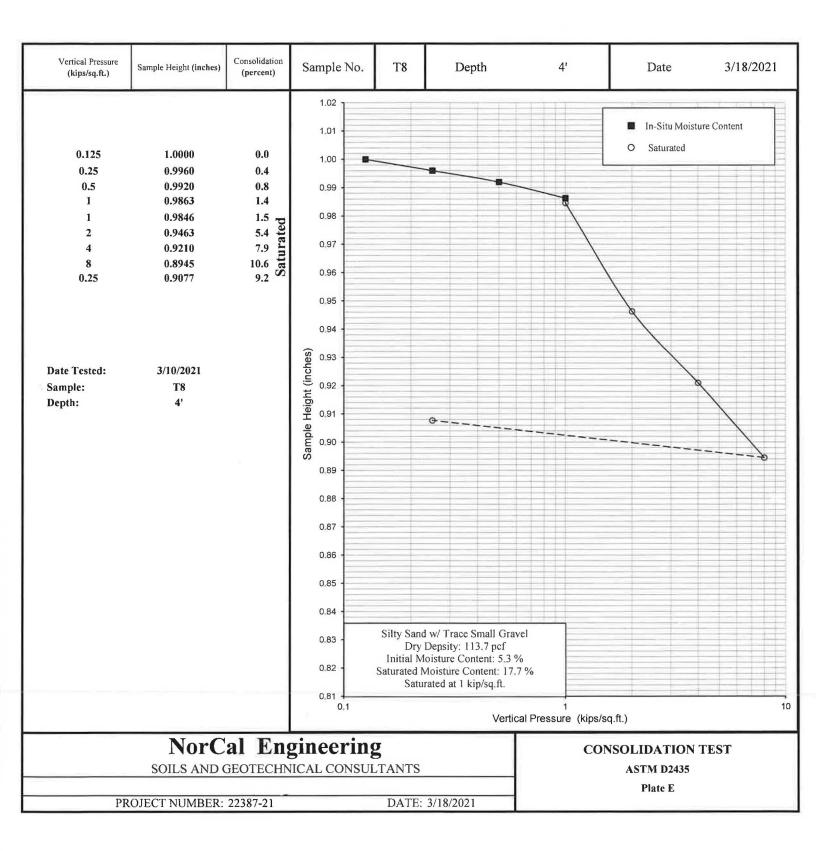
Sample	Resistivity (ohm-cm)
T-6 @ 2'	8718

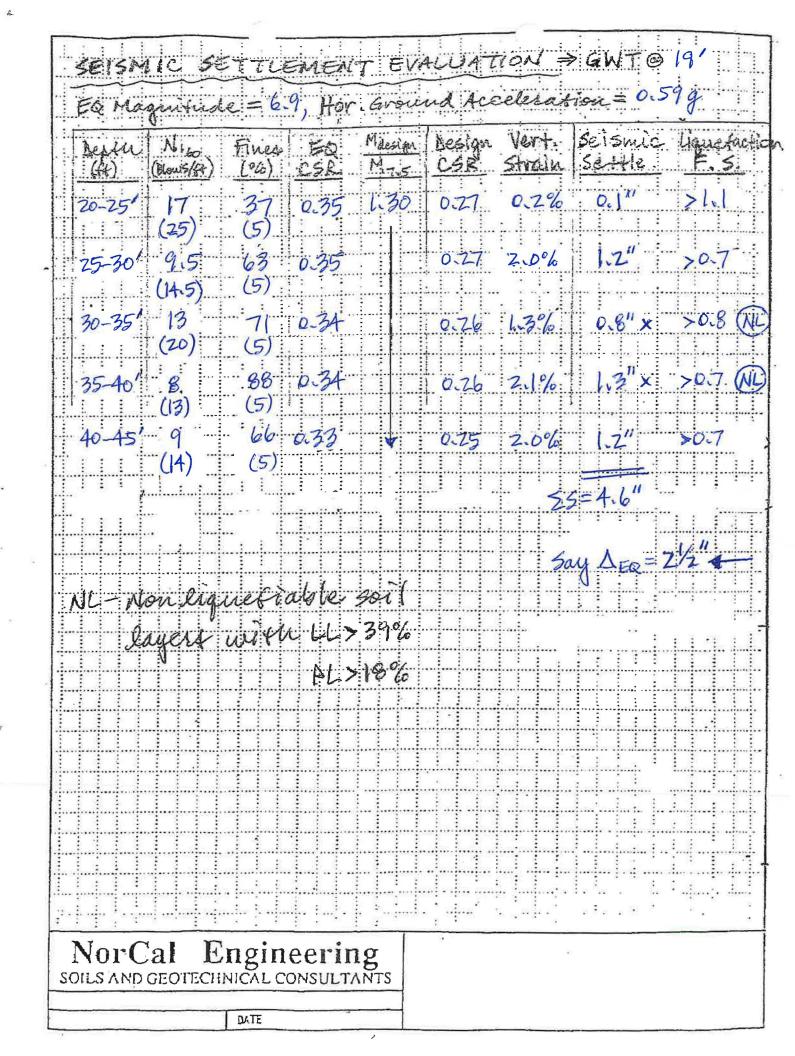

TABLE VII CHLORIDE TESTS (CT 422)


Sample	Concentration (ppm)
T-6 @ 2'	178


ppm – mg/kg


TABLE VIII RESISTANCE 'R' VALUE TESTS (CT 301)


Sample	'R' Value
T-1 @ 2'	54



March 24, 2021 Revised June 10, 2021 Page 34

Appendix D Liquefaction Calculations

site loc Geotechin Geology	ICAL REPO									, , , , , , , , , , , , , , , , , , ,				depth to earthqua pieak gro		TTEN =	6.0 # =6		
DEPTH BELOW FINAL GRADE (FEET)	MOIST DENSITY (PCF)	σ ₀ TOTAL STRESS (PSF)	0 EFFECTIVE STRESS (PSF)	σ ₉ (-)	r _d (-)	$\begin{array}{c} \mathbb{O} \\ \tau_{h_{f_{\overline{\sigma}_{0}}}} \\ (-) \end{array}$	N VALUE (BLOWS/ FT)	RELATIVE DEMSITY (%)	С _М	СЕ (-)	Св (-)	C _R (-)	C5 (-)	(N1)60 (Blows/ft)		CRR M=7.5	14 . T	CR.R. M=6.9;	
5	110	550	Same	1.00	p.99	0.38	18	90	>1.6	1.00	1.05	0:70	1.20	>25	47.	>0.50	1.3	>0.65	>1.7
10		1125	i		0.96	0.36	20	85	1.3			0-75		25.	71	>0.50		>0.65	>1.8
15	120	1725	*		0.97	0.35	35	>90	1.06			0.85		40	. 19	>0.50		>0.65	>69
20		2329	2263	1.03	0.387	0.34	25	80	0.94			0.90		27	10	0.40.		0.52	1.5
25	~	2925	2551	1.15	0.80	0.35	16	65	0.90'			0.95		17	37	>0.29		>0.38	FLT
30		3525	2839	1.24	0.74	0.35	9.	50	0.84			1.00		9.5	63	>0.18		>0.23	>0.7
35		4125	3127	1.32	0.68	0.34	13	55	0.80					13	71	>0.22		>0.29	>0.8
40	10	4725	3415	1.38	0.64	0.34	8	45	0.76.					8	88	salt		20.22:	>0.7
45		5325	3703	1.44	0.61	0.33	10	50	0.72					9	66.	>0.18		>0.23	>0.7
50								85	0.76	N.	4	V	1	40	45	20.50	V	>0.65	>2.0
A A	50 \checkmark 5925 3991 1.48 0.58 0.33 42 85 0.76 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 1 INDUCED CYCLIC STRESS RATIO = $\tau_{ave}/\overline{\sigma_0} = 0.65 \cdot \frac{\alpha_{max}}{g} \cdot \frac{\sigma_0}{\overline{\sigma_0}} \cdot r_d$ $C_E = Covr Energy Ratio = Energy Ratio/60%$ $C_B = Covr Bovehole Dia. = 1.15 for 8" dia. borehole$ Nor Cal Engineering									y Rat	L = 1.	0 51	auda	rdsa	inste				
$C_B = C$	Covr	Bovre Rod	hole D Lengt	ia h		lor	Cal	E) TECHN			erin	ıg	1	IALUATI		2 50	bucht	er vije	; UME
C5 = (Cov-r	san	Met	hod.	PROJE	CT			DATE	مەدەرىمىرىنى مەرسەرىر	na kenn diseraksia Ashiyi	a a a a a a a a a a a a a a a a a a a	i Laronsuseraaraa	1, da antista a como e como		مريان منتخبات ويادو او مرقعات	an a		eitang szereperent fatza

.

March 24, 2021 Revised June 10, 2021 Page 35

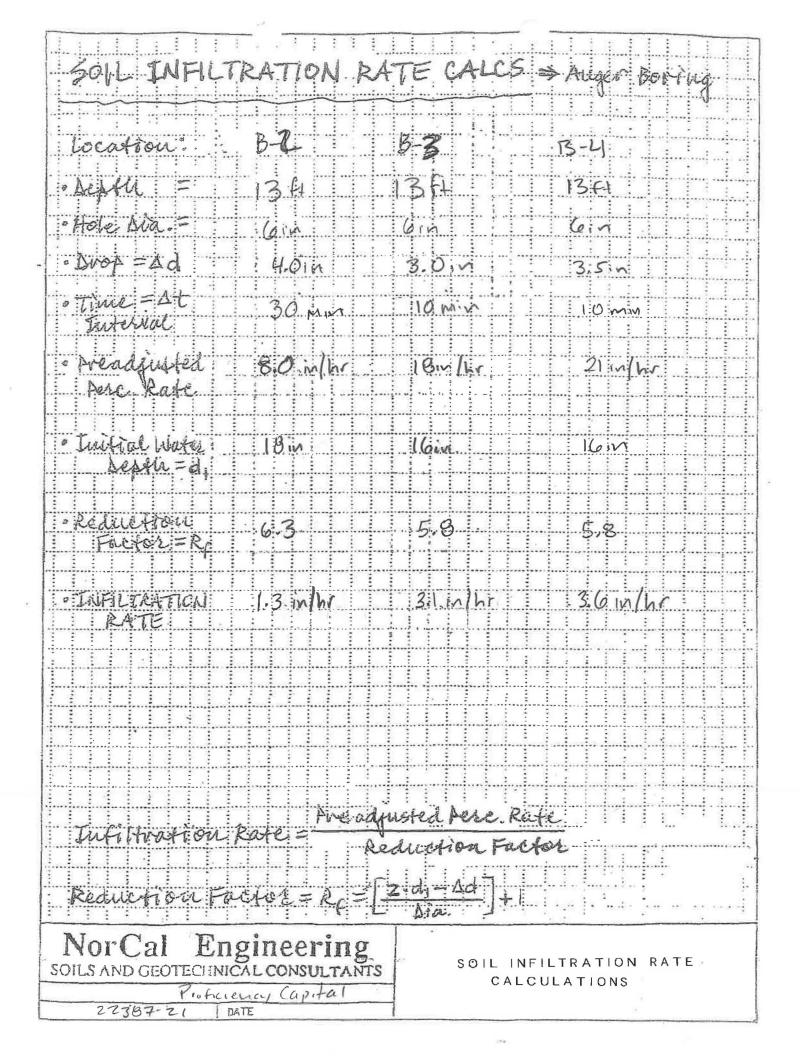
Appendix E Soil Infiltration Data

March 24, 2021 Page 33 Project Number 22387-21

Appendix E Soil Infiltration Data

Project: Harley Knox 2021 LLC	
Project No.: 22387-21	
Date: 2/24/2021	
Test No. T-1	
Depth: 5'	
Tested By: D.R.	

TIME (hr/min)	CHANGE TIME (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	INNER RING CHANGE	INNER RING FLOW (cc)	OUTER RING READING (cm)	OUTER RING CHANGE	OUTER RING FLOW (cc)	INNER RING INF RATE (cm/hr)	OUTER RING INF RATE (cm/hr)	INNER RING INF RATE (ft/hr)
8:03			106.5			42.1					
8:13	10	10	106.9	0.4		42.2	0.1				
8:13			106.9			42.2					
8:23	10	20	107.2	0.3		42.4	0.2				
8:23			107.2			42.4					
8:33	10	30	107.5	0.3		42.5	0.1				
8:33			107.5			42.5					
8:43	10	40	108.0	0.5		43.0	0.5				
8:43			108.0			43.0					
8:53	10	50	108.2	0.2		43.5	0.5				
8:53			108.2		0	43.5					
9:03	10	60	108.9	0.7		44.0	0.5				
9:03			108.9			44.0					
9:13	10	70	109.1	0.2		44.2	0.2		1.2	1.2	
9:13			109.1			44.2					
9:23	10	80	109.3	0.2		44.5	0.3		1.2	1.8	
9:23			109.3			44.5		1			
9:33	10	90	109.6	0.3		44.5	0.0		1.8	0.0	
9:33			109.6			44.5					-
9:43	10	100	110.0	0.4		45.0	0.5		2.4	3.0	
9:43			110.0			45.0					
9:53	10	110	110.3	0.3		45.5	0.5		1.8	3.0	
9:53			110.3			45.5					
10:03	10	120	110.5	0.2		46.0	0.5		1.2	3.0	


Average = 1.6 / 2.0 cm/hr

Project: Harley Knox 2021 LLC	
Project No.: 22387-21	
Date: 2/24/2021	
Test No. T-2	
Depth: 10'	
Tested By: D.R.	

TIME (hr/min)	CHANGE TIME (min)	CUMULATIVE TIME (min)	INNER RING READING (cm)	INNER RING CHANGE	INNER RING FLOW (cc)	OUTER RING READING (cm)	OUTER RING CHANGE	OUTER RING FLOW (cc)	INNER RING INF RATE (cm/hr)	OUTER RING INF RATE (cm/hr)	INNER RING INF RATE (ft/hr)
9:07			74.9			44.7					
9:17	10	10	76.0	1.1		46.1	1.4				
9:17			76.0			46.1					
9:27	10	20	77.8	1.8		47.5	1.4				
9:27			77.8			47.5					
9:37	10	30	78.8	1.0		48.7	1.2				
9:37			78.8			48.7					
9:47	10	40	79.8	1.0		49.5	1.8				
9:47			79.8			49.5					
9:57	10	50	80.5	0.7		50.5	1.0				
9:57			80.5			50.5					
10:07	10	60	81.5	1.0	(5	51.5	1.0				
10:07			81.5			51.5					
10:17	10	70	82.0	0.5		52.0	0.5		3.0	3.0	
10:17			78.5			49.5					
10:27	10	80	79.5	1.0		50.0	0.5		6.0	3.0	
10:27			79.5			50.0					
10:37	10	90	80.0	0.5		50.5	0.5		3.0	3.0	
10:37			80.0			50.5					
10:47	10	100	80.5	0.5		51.0	0.5		3.0	3.0	
10:47			80.5			51.0					
10:57	10	110	81.5	1.0		51.5	0.5		6.0	3.0	
10:57			81.5			51.5					
11:07	10	120	82.0	0.5		52.0	0.5		3.0	3.0	

Average = 4.0 / 3.0 cm/hr

PERCOLATION TEST DATA

Client: Harley Knox 2021 LLC	Date: 3/23/2021	
Project No.: 22387-21	Tested By: Mike P.	
Test Hole: B-2	USCS Soil Classification:	
Depth of Test Hole: 13'	Sides (if rectangular):	
Diameter of Test Hole: 6"	Length:	
Sandy Soil Criteria Test*:	Width:	

TRIAL NO.	START TIME	STOP TIME	TIME INTERVAL (MIN)	INITIAL DEPTH TO WATER (IN)	FINAL DEPTH TO WATER (IN)	CHANGE IN WATER LEVEL (IN)	GREATER THAN OR EQUAL TO 6"
1	7:50	8:15	25.0	136.0	140.0	4.0	N
2	8:15	8:40	25.0	140.0	144.0	4.0	N

*If two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Otherwise, pre-soak (fill) overnight. Obtain at least twelve measurements per hole over at least six hours (approximately 30-minute intervals) with a precision of at least 0.25".

TRIAL	START	STOP	ΔΤ ΤΙΜΕ	Do INITIAL	Df FINAL	ΔD CHANGE	PERCOLATION RATE
NO	TIME	TIME	INTERVAL	DEPTH TO	DEPTH TO	IN WATER	(MIN/IN)
			(MIN)	WATER (IN)	WATER (IN)	LEVEL (IN)	
1	7:03	7:33	30	136.0	142.0	6.0	
2	7:33	8:03	30	138.0	143.5	5.5	
3	8:03	8:33	30	139.0	144.0	5.0	
4	8:33	9:03	30	137.0	142.0	5.0	
5	9:03	9:33	30	137.0	141.5	4.5	
6	9:33	10:03	30	137.0	141.0	4.0	
7	10:03	10:33	30	137.0	141.5	4.5	
8	10:33	11:03	30	138.0	142.0	4.0	
9	11:03	11:33	30	138.0	142.0	4.0	
10	11:33	12:03	30	137.0	141.5	4.5	
11	12:03	12:33	30	138.0	142.0	4.0	
12	12:33	1:03	30	138.0	142.0	4.0	
13							
14							

PERCOLATION TEST DATA

Client: Harley Knox 2021 LLC	Date: 3/23/2021	
Project No.: 22387-21	Tested By: Mike P	
Test Hole: B-3	USCS Soil Classification:	
Depth of Test Hole: 13'	Sides (if rectangular):	
Diameter of Test Hole: 6"	Length:	
Sandy Soil Criteria Test*:	Width:	

TRIAL NO.	START TIME	STOP TIME	TIME INTERVAL (MIN)	INITIAL DEPTH TO WATER (IN)	FINAL DEPTH TO WATER (IN)	CHANGE IN WATER LEVEL (IN)	GREATER THAN OR EQUAL TO 6"
1	8:27	8:52	25	140.0	153.0	13.0	Y
2	8:52	9:17	25	140.5	147.5	7.0	Y

*If two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Otherwise, pre-soak (fill) overnight. Obtain at least twelve measurements per hole over at least six hours (approximately 30-minute intervals) with a precision of at least 0.25".

			ΔΤ	Do	Df	ΔD	PERCOLATION
TRIAL	START	STOP	TIME	INITIAL	FINAL	CHANGE	RATE
NO	TIME	TIME	INTERVAL	DEPTH TO	DEPTH TO	IN WATER	(MIN/IN)
			(MIN)	WATER	WATER	LEVEL (IN)	
				(IN)	(IN)		
1	9:17	9:27	10	140.0	143.0	3.0	
2	9:27	9:37	10	140.0	143.5	3.5	
3	9:37	9:47	10	140.0	143.0	3.0	
4	9:47	9:57	10	140.0	143.0	3.0	
5	9:57	10:07	10	140.0	143.0	3.0	
6	10:07	10:17	10	140.0	143.0	3.0	
7							
8							
9							
10							
11							
12							
13							
14							
15							
OMMENT	S:						

PERCOLATION TEST DATA

Client: Harley Knox 2021 LLC	Date: 3/23/2021		
Project No.: 22387-21	Tested By: Jimmy		
Test Hole: B-4	USCS Soil Classification:		
Depth of Test Hole: 13'	Sides (if rectangular):		
Diameter of Test Hole: 6"	Length:		
Sandy Soil Criteria Test*:	Width:		

TRIAL NO.	START TIME	STOP TIME	TIME INTERVAL (MIN)	INITIAL DEPTH TO WATER (IN)	FINAL DEPTH TO WATER (IN)	CHANGE IN WATER LEVEL (IN)	GREATER THAN OR EQUAL TO 6"
1	9:22	9:47	25	140.0	152.0	12.0	Y
2	9:47	10:12	25	140.0	152.0	12.0	Y

*If two consecutive measurements show that six inches of water seeps away in less than 25 minutes, the test shall be run for an additional hour with measurements taken every 10 minutes. Otherwise, pre-soak (fill) overnight. Obtain at least twelve measurements per hole over at least six hours (approximately 30-minute intervals) with a precision of at least 0.25".

TRIAL	START	STOP	ΔT TIME	Do INITIAL	Df FINAL	ΔD CHANGE	PERCOLATION RATE
NO	TIME	TIME	INTERVAL	DEPTH TO	DEPTH TO	IN WATER	(MIN/IN)
			(MIN)	WATER (IN)	WATER (IN)	LEVEL (IN)	
1	10:12	10:22	10	140.0	144.0	4.0	
2	10:22	10:32	10	140.0	144.0	4.0	
3	10:32	10:42	10	140.0	144.0	4.0	
4	10:42	10:52	10	140.0	143.5	3.5	
5	10:52	11:02	10	140.0	144.0	4.0	
6	11:02	11:12	10	140.0	144.0	3.5	
7							
8							
9							
10							-
11							
12							
13							
14							
15							