

Harley Knox Commerce Center ENERGY ANALYSIS CITY OF PERRIS

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Alyssa Barnett abarnett@urbanxroads.com

MARCH 31, 2022

14087-08 EA Report

TABLE OF CONTENTS

ı P	ARLE O	JF CONTENTS	
ΑF	PEND	DICES	II
LIS	ST OF	EXHIBITS	II
LIS	ST OF	TABLES	II
LIS	ST OF	ABBREVIATED TERMS	
EX	ECUTI	IVE SUMMARY	1
	ES.1	Summary of Findings	1
	ES.2	•	
1	IN [.]	TRODUCTION	3
	1.1	Site Location	3
	1.2	Project Description	
2	EX	CISTING CONDITIONS	7
	2.1	Overview	7
	2.2	Electricity	9
	2.3	Natural Gas	11
	2.4	Transportation Energy Resources	14
3	RE	GULATORY BACKGROUND	17
	3.1	Federal Regulations	17
	3.2	California Regulations	
4	PR	ROJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES	21
	4.1	Evaluation Criteria	21
	4.2	Methodology	21
	4.3	Construction Energy Demands	21
	4.4	Operational Energy Demands	
	4.5	Summary	33
5	CC	DNCLUSIONS	37
6	RE	FERENCES	40
7	CE	RTIFICATIONS	43

APPENDICES

APPENDIX 4.1: CALEEMOD PROJECT CONSTRUCTION MODEL OUTPUTS APPENDIX 4.2: CALEEMOD PROJECT OPERATIONAL MODEL OUTPUTS

APPENDIX 4.3: EMFAC2017

LIST OF EXHIBITS

EXHIBIT 1-A: LOCATION MAPEXHIBIT 1-B: SITE PLAN	
LIST OF TABLES	
TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	1
TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2020)	8
TABLE 2-2: SCE 2020 POWER CONTENT MIX1	
TABLE 4-1: CONSTRUCTION DURATION2	2
TABLE 4-2: CONSTRUCTION POWER COST2	2
TABLE 4-3: CONSTRUCTION ELECTRICITY USAGE2	3
TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (1 OF 2)2	
TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (2 OF 2)2	4
TABLE 4-5: CONSTRUCTION EQUIPMENT FUEL CONSUMPTION ESTIMATES2	5
TABLE 4-6: CONSTRUCTION TRIPS AND VMT2	6
TABLE 4-7: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES – LDA2	7
TABLE 4-8: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES – LDT12	7
TABLE 4-9: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES – LDT22	8
TABLE 4-10: CONSTRUCTION VENDOR FUEL CONSUMPTION ESTIMATES – MHDT2	
TABLE 4-11: CONSTRUCTION VENDOR FUEL CONSUMPTION ESTIMATES – HHDT2	9
TABLE 4-12: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION (ALL VEHICLES)3:	1
TABLE 4-13: ELECTRICTY DEMAND FROM EV CHARGING STATIONS3	2
TABLE 4-14: VMT REDUCTION FROM EV CHARGING STATIONS3	2
TABLE 4-15: PROJECT ANNUAL OPERATIONAL ENERGY DEMAND SUMMARY3	2

LIST OF ABBREVIATED TERMS

% Percent (1) Reference

AQIA Harley Knox Commerce Center Air Quality Impact Analysis

BACM Best Available Control Measures

BTU British Thermal Units

CalEEMod California Emissions Estimator Model

CAPCOA California Air Pollution Control Officers Association

CARB California Air Resources Board
CCR California Code of Regulations
CEC California Energy Commission

CEQA California Environmental Quality Act

City City of Perris

CPEP Clean Power and Electrification Pathway
CPUC California Public Utilities Commission

DMV Department of Motor Vehicles

EIA Energy Information Administration

EPA Environmental Protection Agency

EMFAC EMissions FACtor

FERC Federal Energy Regulatory Commission

GHG Greenhouse Gas GWh Gigawatt Hour

HHDT Heavy-Heavy Duty Trucks
hp-hr-gal Horsepower Hours Per Gallon
IEPR Integrated Energy Policy Report
ISO Independent Service Operator

ISTEA Intermodal Surface Transportation Efficiency Act

ITE Institute of Transportation Engineers

kBTU Thousand-British Thermal Units

kWh Kilowatt Hour
LDA Light Duty Auto
LDT1/LDT2 Light-Duty Trucks

LHDT1/LHDT2 Light-Heavy Duty Trucks MDV Medium Duty Trucks

MHDT Medium-Heavy Duty Trucks
MMcfd Million Cubic Feet Per Day

mpg Miles Per Gallon

MPO Metropolitan Planning Organization

PG&E Pacific Gas and Electric

Project Harley Knox Commerce Center

PV Photovoltaic

PVCC SP Perris Valley Commerce Center Specific Plan

SCAB South Coast Air Basin

SCE Southern California Edison

SDAB San Diego Air Basin

sf Square Feet

SoCalGas Southern California Gas

TEA-21 Transportation Equity Act for the 21st Century

U.S. United States

VMT Vehicle Miles Traveled

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Harley Knox Commerce Center Energy Analysis* is summarized below based on the significance criteria in Section 5 of this report consistent with Appendix G of the 2020 California Environmental Quality Act (CEQA) Statute and Guidelines (*CEQA Guidelines*) (1). Table ES-1 shows the findings of significance for potential energy impacts under CEQA.

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

Anchusia	Report	Significance Findings		
Analysis	Section	Unmitigated	Mitigated	
Energy Impact #1: Would the Project result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?	5.0	Less Than Significant	n/a	
Energy Impact #2: Would the Project conflict with or obstruct a state or local plan for renewable energy or energy efficiency?	5.0	Less Than Significant	n/a	

ES.2 PROJECT REQUIREMENTS

The Project would be required to comply with regulations imposed by the federal and state agencies that regulate energy use and consumption through various means and programs. Those that are directly and indirectly applicable to the Project and that would assist in the reduction of energy usage include:

- Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA)
- The Transportation Equity Act for the 21st Century (TEA-21
- Integrated Energy Policy Report (IEPR)
- State of California Energy Plan
- California Code Title 24, Part 6, Energy Efficiency Standards
- California Code Title 24, Part 11, California Green Building Standards (CalGreen) Code
- AB 1493 Pavley Regulations and Fuel Efficiency Standards
- California's Renewable Portfolio Standard (RPS)
- Clean Energy and Pollution Reduction Act of 2015 (SB 350)

Consistency with the above regulations is discussed in detail in section 5 of this report.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the energy analysis prepared by Urban Crossroads, Inc., for the proposed Harley Knox Commerce Center Project (Project). The purpose of this report is to ensure that energy implication is considered by the City of Perris (Lead Agency), as the lead agency, and to quantify anticipated energy usage associated with construction and operation of the proposed Project, determine if the usage amounts are efficient, typical, or wasteful for the land use type, and to emphasize avoiding or reducing inefficient, wasteful, and unnecessary consumption of energy.

1.1 SITE LOCATION

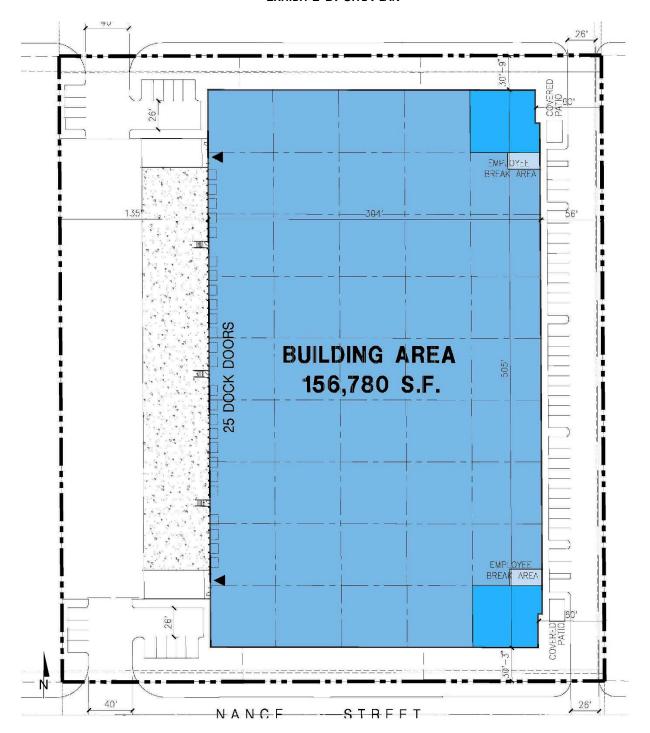
The proposed Harley Knox Commerce Center site is located at 220-280 East Nance Street east of Jason Court and north of Nance Street, within the City of Perris' PVCC SP as shown on Exhibit 1-A. The March Air Reserve Base/Inland Port Airport (MARB/IPA) is located approximately 1.5 miles northwest of the Project site boundary. According to the City of Perris General Plan, the Project site is located within the PVCC SP area. As per the PVCC SP, the Project site is designated for Light Industrial uses. The Light Industrial designation provides for light industrial uses and related activities including manufacturing, research, warehouse and distribution, assembly of non-hazardous materials and retail related to manufacturing (2). The Project site is located adjacent to the following uses:

North: Non-conforming residential land use with truck staging yard. South: Truck staging yard with a single non-conforming residence.

East: Industrial warehouse building.

West: Vacant with a single non-conforming residence.

1.2 PROJECT DESCRIPTION


Exhibit 1-B illustrates a preliminary site plan for the Project. The Project is proposed to consist of a 156,780-square-foot (sf) warehouse building. The currently proposed Project is less square footage however, for the purpose of this analysis, we have conservatively evaluated the site plan representing 156,780 sf. The Project is anticipated to be constructed in a single phase by the year 2022. This analysis is intended to describe energy usage associated with the expected operational activities at the Project site. This report assumes the Project would operate 24-hours daily for seven days per week. At the time this analysis was prepared, the future tenants of the proposed Project were unknown however any tenant would operate consistent with a warehouse.

Site

EXHIBIT 1-A: LOCATION MAP

EXHIBIT 1-B: SITE PLAN

This page intentionally left blank

2 EXISTING CONDITIONS

This section provides an overview of the existing energy conditions in the Project region.

2.1 OVERVIEW

The most recent data for California's estimated total energy consumption and natural gas consumption is from 2019, released by the United States (U.S.) Energy Information Administration's (EIA) California State Profile and Energy Estimates in 2021 and included (3):

- As of 2019, approximately 7,802 trillion British Thermal Unit (BTU) of energy was consumed
- As of 2019, approximately 662 million barrels of petroleum
- As of 2019, approximately 2,144 billion cubic feet of natural gas
- As of 2019, approximately 1 million short tons of coal

The California Energy Commission's (CEC) Transportation Energy Demand Forecast 2018-2030 was released in order to support the 2017 Integrated Energy Policy Report. The Transportation energy Demand Forecast 2018-2030 lays out graphs and data supporting their projections of California's future transportation energy demand. The projected inputs consider expected variable changes in fuel prices, income, population, and other variables. Predictions regarding fuel demand included:

- Gasoline demand in the transportation sector is expected to decline from approximately 15.8 billion gallons in 2017 to between 12.3 billion and 12.7 billion gallons in 2030 (4)
- Diesel demand in the transportation sector is expected to rise, increasing from approximately 3.7 billion diesel gallons in 2015 to approximately 4.7 billion in 2030 (4)
- Data from the Department of Energy states that approximately 3.9 billion gallons of diesel fuel were consumed in 2019 (5)

The most recent data provided by the EIA for energy use in California by demand sector is from 2018 and is reported as follows:

- Approximately 39.3% transportation
- Approximately 23.2% industrial
- Approximately 18.7% residential
- Approximately 18.9% commercial (6)

In 2020, total system electric generation for California was 272,576 gigawatt hours (GWh). California's massive electricity in-state generation system generated approximately 190,913 GWh which accounted for approximately 70% of the electricity it uses; the rest was imported from the Pacific Northwest (15%) and the U.S. Southwest (15%) (7). Natural gas is the main source for electricity generation at 42.97% of the total in-state electric generation system power as shown in Table 2-1.

TABLE 2-1: TOTAL ELECRICITY SYSTEM POWER (CALIFORNIA 2020)

Fuel Type	California In-State Generation (GWh)	% of California In- State Generation	Northwest Imports (GWh)	Southwest Imports (GWh)	Total Imports (GWh)	% of Imports	Total California Energy Mix	Total California Power Mix
Coal	317	0.17%	194	6,963	7,157	8.76%	7,474	2.74%
Natural Gas	92,298	48.35%	70	8,654	8,724	10.68%	101,022	37.06%
Oil	30	0.02%	-	-	0	0.00%	30	0.01%
Other (Waste Heat/Petroleum Coke)	384	0.20%	125	9	134	0.16%	518	0.19%
Nuclear	16,280	8.53%	672	8,481	9,154	11.21%	25,434	9.33%
Large Hydro	17,938	9.40%	14,078	1,259	15,337	18.78%	33,275	12.21%
Unspecified	-	0.00%	12,870	1,745	14,615	17.90%	14,615	5.36%
Non-Renewable and Unspecified Totals	127,248	66.65%	28,009	27,111	55,120	67.50%	182,368	66.91%
Biomass	5,680	2.97%	975	25	1,000	1.22%	6,679	2.45%
Geothermal	11,345	5.94%	166	1,825	1,991	2.44%	13,336	4.89%
Small Hydro	3,476	1.82%	320	2	322	0.39%	3,798	1.39%
Solar	29,456	15.43%	284	6,312	6,596	8.08%	36,052	13.23%
Wind	13,708	7.18%	11,438	5,197	16,635	20.37%	30,343	11.13%
Renewable Totals	63,665	33.35%	13,184	13,359	26,543	32.50%	90,208	33.09%
System Totals	190,913	100.00%	41,193	40,471	81,663	100.00%	272,576	100.00%

Source: CECs 2020 Total System Electric Generation

An updated summary of, and context for energy consumption and energy demands within the State is presented in "U.S. Energy Information Administration, California State Profile and Energy Estimates, Quick Facts" excerpted below (8):

- California was the seventh-largest producer of crude oil among the 50 states in 2019, and, as of
 January 2020, it ranked third in oil refining capacity. Foreign suppliers, led by Saudi Arabia, Iraq,
 Ecuador, and Colombia, provided more than half of the crude oil refined in California in 2019.
- California is the largest consumer of both jet fuel and motor gasoline among the 50 states and accounted for 17% of the nation's jet fuel consumption and 11% of motor gasoline consumption in 2019. The state is the second-largest consumer of all petroleum products combined, accounting for 10% of the U.S. total. In 2018, California's energy consumption was the second highest among the states, but its per capita energy consumption was the fourth-lowest due in part to its mild climate and its energy efficiency programs.
- In 2019, California was the nation's top producer of electricity from solar, geothermal, and biomass energy and the state was second in the nation in conventional hydroelectric power generation.
- In 2019, California was the fourth largest electricity producer in the nation, but the state was also the nation's largest importer of electricity and received about 28% of its electricity supply from generating facilities outside of California, including imports from Mexico.

As indicated above, California is one of the nation's leading energy-producing states, and California's per capita energy use is among the nation's most efficient. Given the nature of the Project, the remainder of this discussion will focus on the three sources of energy that are most relevant to the Project—namely, electricity, natural gas, and transportation fuel for vehicle trips associated with the uses planned for the Project.

2.2 ELECTRICITY

The usage associated with electricity use were calculated using the California Emissions Estimator Model (CalEEMod) Version 2020.4.0. The Southern California region's electricity reliability has been of concern for the past several years due to the planned retirement of aging facilities that depend upon once-through cooling technologies, as well as the June 2013 retirement of the San Onofre Nuclear Generating Station (San Onofre). While the once-through cooling phase-out has been ongoing since the May 2010 adoption of the State Water Resources Control Board's once-through cooling policy, the retirement of San Onofre complicated the situation. California ISO studies revealed the extent to which the South California Air Basin (SCAB) and the San Diego Air Basin (SDAB) region were vulnerable to low-voltage and post-transient voltage instability concerns. A preliminary plan to address these issues was detailed in the 2013 Integrative Energy Policy Report (IEPR) after a collaborative process with other energy agencies, utilities, and air districts (9). Similarly, the subsequent 2021 IEPR's provides information and policy recommendations on advancing a clean, reliable, and affordable energy system.

Electricity is currently provided to the Project by Southern California Edison (SCE). SCE provides electric power to more than 15 million persons in 15 counties and in 180 incorporated cities, within a service area encompassing approximately 50,000 square miles. Based on SCE's 2018 Power Content Label Mix, SCE derives electricity from varied energy resources including: fossil fuels, hydroelectric generators, nuclear power plants, geothermal power plants, solar power generation, and wind farms. SCE also purchases from independent power producers and utilities, including out-of-state suppliers (10).

California's electricity industry is an organization of traditional utilities, private generating companies, and state agencies, each with a variety of roles and responsibilities to ensure that electrical power is provided to consumers. The California Independent Service Operator (ISO) is a nonprofit public benefit corporation and is the impartial operator of the State's wholesale power grid and is charged with maintaining grid reliability, and to direct uninterrupted electrical energy supplies to California's homes and communities. While utilities still own transmission assets, the ISO routes electrical power along these assets, maximizing the use of the transmission system and its power generation resources. The ISO matches buyers and sellers of electricity to ensure that enough power is available to meet demand. To these ends, every five minutes the ISO forecasts electrical demands, accounts for operating reserves, and assigns the lowest cost power plant unit to meet demands while ensuring adequate system transmission capacities and capabilities (11).

Part of the ISO's charge is to plan and coordinate grid enhancements to ensure that electrical power is provided to California consumers. To this end, utilities file annual transmission expansion/modification plans to accommodate the State's growing electrical needs. The ISO reviews and either approves or denies the proposed additions. In addition, and perhaps most importantly, the ISO works with other areas in the western United States electrical grid to ensure that adequate power supplies are available to the State. In this manner, continuing reliable and affordable electrical power is assured to existing and new consumers throughout the State.

Tables 2-2 identifies SCE's specific proportional shares of electricity sources in 2020. As indicated in Table 2-2, the 2020 SCE Power Mix has renewable energy at 30.9% of the overall energy resources. Geothermal resources are at 5.5%, wind power is at 9.4%, large hydroelectric sources are at 3.3%, solar energy is at 15.1%, and coal is at 0% (12).

TABLE 2-2: SCE 2020 POWER CONTENT MIX

Energy Resources	2020 SCE Power Mix
Eligible Renewable	30.9%
Biomass & Waste	0.1%
Geothermal	5.5%
Eligible Hydroelectric	0.8%
Solar	15.1%
Wind	9.4%
Coal	0.0%
Large Hydroelectric	3.3%
Natural Gas	15.2%
Nuclear	8.4%
Other	0.3%
Unspecified Sources of power*	42.0%
Total	100%

^{* &}quot;Unspecified sources of power" means electricity from transactions that are not traceable to specific generation sources

2.3 NATURAL GAS

The following summary of natural gas customers and volumes, supplies, delivery of supplies, storage, service options, and operations is excerpted from information provided by the California Public Utilities Commission (CPUC).

"The CPUC regulates natural gas utility service for approximately 10.8 million customers that receive natural gas from Pacific Gas and Electric (PG&E), Southern California Gas (SoCalGas), San Diego Gas & Electric (SDG&E), Southwest Gas, and several smaller natural gas utilities. The CPUC also regulates independent storage operators: Lodi Gas Storage, Wild Goose Storage, Central Valley Storage and Gill Ranch Storage.

California's natural gas utilities provide service to over 11 million gas meters. SoCalGas and PG&E provide service to about 5.9 million and 4.3 million customers, respectively, while SDG&E provides service to over 800, 000 customers. In 2018, California gas utilities forecasted that they would deliver about 4740 million cubic feet per day (MMcfd) of gas to their customers, on average, under normal weather conditions.

The overwhelming majority of natural gas utility customers in California are residential and small commercials customers, referred to as "core" customers. Larger volume gas customers, like electric generators and industrial customers, are called "noncore" customers. Although very small in number relative to core customers, noncore customers consume about 65% of the natural gas delivered by the state's natural gas utilities, while core customers consume about 35%.

A significant amount of gas (about 19%, or 1131 MMcfd, of the total forecasted California consumption in 2018) is also directly delivered to some California large volume consumers, without being transported over the regulated utility pipeline system. Those customers, referred to as "bypass" customers, take service directly from interstate pipelines or directly from California producers.

SDG&E and Southwest Gas' southern division are wholesale customers of SoCalGas, i.e., they receive deliveries of gas from SoCalGas and in turn deliver that gas to their own customers. (Southwest Gas also provides natural gas distribution service in the Lake Tahoe area.) Similarly, West Coast Gas, a small gas utility, is a wholesale customer of PG&E. Some other wholesale customers are municipalities like the cities of Palo Alto, Long Beach, and Vernon, which are not regulated by the CPUC.

Natural gas from out-of-state production basins is delivered into California via the interstate natural gas pipeline system. The major interstate pipelines that deliver out-of-state natural gas to California gas utilities are Gas Transmission Northwest Pipeline, Kern River Pipeline, Transwestern Pipeline, El Paso Pipeline, Ruby Pipeline, Mojave Pipeline, and Tuscarora. Another pipeline, the North Baja - Baja Norte Pipeline takes gas off the El Paso Pipeline at the California/Arizona border and delivers that gas through California into Mexico. While the Federal Energy Regulatory Commission (FERC) regulates the transportation of natural gas on the interstate pipelines, and authorizes rates for that service, the California Public Utilities Commission may participate in FERC regulatory proceedings to represent the interests of California natural gas consumers.

The gas transported to California gas utilities via the interstate pipelines, as well as some of the California-produced gas, is delivered into the PG&E and SoCalGas intrastate natural gas transmission pipelines systems (commonly referred to as California's "backbone" pipeline system). Natural gas on the utilities' backbone pipeline systems is then delivered to the local transmission and distribution pipeline systems, or to natural gas storage fields. Some large volume noncore customers take natural gas delivery directly off the high-pressure backbone and local transmission pipeline systems, while core customers and other noncore customers take delivery off the utilities' distribution pipeline systems. The state's natural gas utilities operate over 100,000 miles of transmission and distribution pipelines, and thousands more miles of service lines.

Bypass customers take most of their deliveries directly off the Kern/Mojave pipeline system, but they also take a significant amount of gas from California production.

PG&E and SoCalGas own and operate several natural gas storage fields that are located within their service territories in northern and southern California, respectively. These storage fields, and four independently owned storage utilities - Lodi Gas Storage, Wild Goose Storage, Central Valley Storage, and Gill Ranch Storage - help meet peak seasonal and daily natural gas demand and allow California natural gas customers to secure natural gas supplies more efficiently. PG&E is a 25% owner of the Gill Ranch Storage field. These storage fields provide a significant amount of infrastructure capacity to help meet

California's natural gas requirements, and without these storage fields, California would need much more pipeline capacity in order to meet peak gas requirements.

Prior to the late 1980s, California regulated utilities provided virtually all natural gas services to all their customers. Since then, the Commission has gradually restructured the California gas industry in order to give customers more options while assuring regulatory protections for those customers that wish to, or are required to, continue receiving utility-provided services.

The option to purchase natural gas from independent suppliers is one of the results of this restructuring process. Although the regulated utilities procure natural gas supplies for most core customers, core customers have the option to purchase natural gas from independent natural gas marketers, called "core transport agents" (CTA). Contact information for core transport agents can be found on the utilities' web sites. Noncore customers, on the other hand, make natural gas supply arrangements directly with producers or with marketers.

Another option resulting from the restructuring process occurred in 1993, when the Commission removed the utilities' storage service responsibility for noncore customers, along with the cost of this service from noncore customers' transportation rates. The Commission also encouraged the development of independent storage fields, and in subsequent years, all the independent storage fields in California were established. Noncore customers and marketers may now take storage service from the utility or from an independent storage provider (if available), and pay for that service, or may opt to take no storage service at all. For core customers, the Commission assures that the utility has adequate storage capacity set aside to meet core requirements, and core customers pay for that service.

In a 1997 decision, the Commission adopted PG&E's "Gas Accord", which unbundled PG&E's backbone transmission costs from noncore transportation rates. This decision gave customers and marketers the opportunity to obtain pipeline capacity rights on PG&E's backbone transmission pipeline system, if desired, and pay for that service at rates authorized by the Commission. The Gas Accord also required PG&E to set aside a certain amount of backbone transmission capacity in order to deliver gas to its core customers. Subsequent Commission decisions modified and extended the initial terms of the Gas Accord. The "Gas Accord" framework is still in place today for PG&E's backbone and storage rates and services and is now simply referred to as PG&E Gas Transmission and Storage (GT&S).

In a 2006 decision, the Commission adopted a similar gas transmission framework for Southern California, called the "firm access rights" system. SoCalGas and SDG&E implemented the firm access rights (FAR) system in 2008, and it is now referred to as the backbone transmission system (BTS) framework. As under the PG&E backbone transmission system, SoCalGas backbone transmission costs are unbundled from noncore transportation rates. Noncore customers and marketers may obtain, and pay for, firm backbone transmission capacity at various receipt points on the SoCalGas system. A

certain amount of backbone transmission capacity is obtained for core customers to assure meeting their requirements.

Many if not most noncore customers now use a marketer to provide for several of the services formerly provided by the utility. That is, a noncore customer may simply arrange for a marketer to procure its supplies, and obtain any needed storage and backbone transmission capacity, in order to assure that it will receive its needed deliveries of natural gas supplies. Core customers still mainly rely on the utilities for procurement service, but they have the option to take procurement service from a CTA. Backbone transmission and storage capacity is either set aside or obtained for core customers in amounts to assure very high levels of service.

In order properly operate their natural gas transmission pipeline and storage systems, PG&E and SoCalGas must balance the amount of gas received into the pipeline system and delivered to customers or to storage fields. Some of these utilities' storage capacity is dedicated to this service, and under most circumstances, customers do not need to precisely match their deliveries with their consumption. However, when too much or too little gas is expected to be delivered into the utilities' systems, relative to the amount being consumed, the utilities require customers to more precisely match up their deliveries with their consumption. And, if customers do not meet certain delivery requirements, they could face financial penalties. The utilities do not profit from these financial penalties the amounts are then returned to customers as a whole. If the utilities find that they are unable to deliver all the gas that is expected to be consumed, they may even call for a curtailment of some gas deliveries. These curtailments are typically required for just the largest, noncore customers. It has been many years since there has been a significant curtailment of core customers in California." (13)

As indicated in the preceding discussions, natural gas is available from a variety of in-state and out-of-state sources and is provided throughout the state in response to market supply and demand. Complementing available natural gas resources, biogas may soon be available via existing delivery systems, thereby increasing the availability and reliability of resources in total. The CPUC oversees utility purchases and transmission of natural gas to ensure reliable and affordable natural gas deliveries to existing and new consumers throughout the State.

2.4 Transportation Energy Resources

The Project would generate additional vehicle trips with resulting consumption of energy resources, predominantly gasoline and diesel fuel. The Department of Motor Vehicles (DMV) identified 36.2 million registered vehicles in California (14), and those vehicles consume an estimated 17.2 billion gallons of fuel each year¹. Gasoline (and other vehicle fuels) are commercially provided commodities and would be available to the Project patrons and employees via commercial outlets.

_

¹ Fuel consumptions estimated utilizing information from EMFAC2017.

California's on-road transportation system includes 396,616 lane miles, more than 26.6 million passenger vehicles and light trucks, and almost 9.0 million medium- and heavy-duty vehicles (14). While gasoline consumption has been declining since 2008 it is still by far the dominant fuel. California is the second-largest consumer of petroleum products, after Texas, and accounts for 10% of the nation's total consumption. The state is the largest U.S. consumer of motor gasoline and jet fuel, and 85% of the petroleum consumed in California is used in the transportation sector (15).

California accounts for less than 1% of total U.S. natural gas reserves and production. As with crude oil, California's natural gas production has experienced a gradual decline since 1985. In 2019, about 37% of the natural gas delivered to consumers went to the state's industrial sector, and about 28% was delivered to the electric power sector. Natural gas fueled more than two-fifths of the state's utility-scale electricity generation in 2019. The residential sector, where two-thirds of California households use natural gas for home heating, accounted for 22% of natural gas deliveries. The commercial sector received 12% of the deliveries to end users and the transportation sector consumed the remaining 1% (15).

This page intentionally left blank

3 REGULATORY BACKGROUND

Federal and state agencies regulate energy use and consumption through various means and programs. On the federal level, the United States Department of Transportation, the United States Department of Energy, and the United States Environmental Protection Agency (EPA) are three federal agencies with substantial influence over energy policies and programs. On the state level, the CPUC and the CEC are two agencies with authority over different aspects of energy. Relevant federal and state energy-related laws and plans are summarized below.

3.1 FEDERAL REGULATIONS

3.1.1 INTERMODAL SURFACE TRANSPORTATION EFFICIENCY ACT OF 1991 (ISTEA)

The ISTEA promoted the development of inter-modal transportation systems to maximize mobility as well as address national and local interests in air quality and energy. ISTEA contained factors that Metropolitan Planning Organizations (MPOs) were to address in developing transportation plans and programs, including some energy-related factors. To meet the new ISTEA requirements, MPOs adopted explicit policies defining the social, economic, energy, and environmental values guiding transportation decisions.

3.1.2 THE TRANSPORTATION EQUITY ACT FOR THE 21ST CENTURY (TEA-21)

The TEA-21 was signed into law in 1998 and builds upon the initiatives established in the ISTEA legislation, discussed above. TEA-21 authorizes highway, highway safety, transit, and other efficient surface transportation programs. TEA-21 continues the program structure established for highways and transit under ISTEA, such as flexibility in the use of funds, emphasis on measures to improve the environment, and focus on a strong planning process as the foundation of good transportation decisions. TEA-21 also provides for investment in research and its application to maximize the performance of the transportation system through, for example, deployment of Intelligent Transportation Systems, to help improve operations and management of transportation systems and vehicle safety.

3.2 CALIFORNIA REGULATIONS

3.2.1 Integrated Energy Policy Report (IEPR)

Senate Bill 1389 (Bowen, Chapter 568, Statutes of 2002) requires the CEC to prepare a biennial integrated energy policy report that assesses major energy trends and issues facing the state's electricity, natural gas, and transportation fuel sectors and provides policy recommendations to conserve resources; protect the environment; ensure reliable, secure, and diverse energy supplies; enhance the state's economy; and protect public health and safety (Public Resources Code § 25301[a]). The CEC prepares these assessments and associated policy recommendations every two years, with updates in alternate years, as part of the Integrated Energy Policy Report.

The 2021 IEPR was adopted February 22, 2022, and continues to work towards improving electricity, natural gas, and transportation fuel energy use in California. The 2021 IEPR provides

the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the state is to meet its climate, energy, air quality, and other environmental goals while maintaining reliability and controlling costs. Additionally, the 2021 IEPR provides the results of the CEC's assessments of a variety of energy issues facing California. Many of these issues will require action if the state is to meet its climate, energy, air quality, and other environmental goals while maintaining reliability and controlling costs (16).

3.2.2 STATE OF CALIFORNIA ENERGY PLAN

The CEC is responsible for preparing the State Energy Plan, which identifies emerging trends related to energy supply, demand, conservation, public health and safety, and the maintenance of a healthy economy. The Plan calls for the state to assist in the transformation of the transportation system to improve air quality, reduce congestion, and increase the efficient use of fuel supplies with the least environmental and energy costs. To further this policy, the plan identifies several strategies, including assistance to public agencies and fleet operators and encouragement of urban designs that reduce vehicle miles traveled (VMT) and accommodate pedestrian and bicycle access.

3.2.3 CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS

California Code of Regulations (CCR) Title 24 Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings, was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas (GHG) emissions. The 2019 version of Title 24 was adopted by the CEC and became effective on January 1, 2020. The 2019 Title are applicable to building permit applications submitted on or after January 1, 2020. The 2019 Title 24 standards require solar photovoltaic systems for new homes, establish requirements for newly constructed healthcare facilities, encourage demand responsive technologies for residential buildings, and update indoor and outdoor lighting standards for nonresidential buildings. The CEC anticipates that nonresidential buildings will use approximately 30% less energy due to lighting upgrades compared to the prior code (17).

3.2.4 AB 1493 Pavley Regulations and Fuel Efficiency Standards

California AB 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations that reduce GHGs emitted by passenger vehicles and light duty trucks. Under this legislation, CARB adopted regulations to reduce GHG emissions from non-commercial passenger vehicles (cars and light-duty trucks). Although aimed at reducing GHG emissions, specifically, a co-benefit of the Pavley standards is an improvement in fuel efficiency and consequently a reduction in fuel consumption.

3.2.5 CALIFORNIA'S RENEWABLE PORTFOLIO STANDARD (RPS)

First established in 2002 under Senate Bill (SB) 1078, California's Renewable Portfolio Standards (RPS) requires retail sellers of electric services to increase procurement from eligible renewable resources to 33% of total retail sales by 2020 (18).

3.2.6 CLEAN ENERGY AND POLLUTION REDUCTION ACT OF 2015 (SB 350)

In October 2015, the legislature approved, and the Governor signed SB 350, which reaffirms California's commitment to reducing its GHG emissions and addressing climate change. Key provisions include an increase in the renewables portfolio standard (RPS), higher energy efficiency requirements for buildings, initial strategies towards a regional electricity grid, and improved infrastructure for electric vehicle charging stations. Specifically, SB 350 requires the following to reduce statewide GHG emissions:

- Increase the amount of electricity procured from renewable energy sources from 33% to 50% by 2030, with interim targets of 40% by 2024, and 25% by 2027.
- Double the energy efficiency in existing buildings by 2030. This target will be achieved through the California Public Utility Commission (CPUC), the CEC, and local publicly owned utilities.
- Reorganize the Independent System Operator (ISO) to develop more regional electrify transmission markets and to improve accessibility in these markets, which will facilitate the growth of renewable energy markets in the western United States (California Leginfo 2015).

This page intentionally left blank

4 PROJECT ENERGY DEMANDS AND ENERGY EFFICIENCY MEASURES

4.1 EVALUATION CRITERIA

In compliance with Appendix G of the *State CEQA Guidelines* (1), this report analyzes the project's anticipated energy use during construction and operations to determine if the Project would:

- Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation; or
- Conflict with or obstruct a state or local plan for renewable energy or energy efficiency

4.2 METHODOLOGY

Information from the CalEEMod Version 2020.4.0 outputs for the *Harley Knox Commerce Center Air Quality Impact Analysis* (AQIA) (19) was utilized in this analysis, detailing Project related construction equipment, transportation energy demands, and facility energy demands.

4.2.1 CALEEMOD

In May 2021, the SCAQMD, in conjunction with the California Air Pollution Control Officers Association (CAPCOA) and other California air districts, released the latest version of the CalEEMod Version 2020.4.0. The purpose of this model is to calculate construction-source and operational-source criteria pollutants and GHG emissions from direct and indirect sources as well as energy usage (20). Accordingly, the latest version of CalEEMod has been used to determine the proposed Project's anticipated transportation and facility energy demands. Output from the annual construction model runs is provided in Appendix 4.1 and Appendix 4.2 for annual operational emissions.

4.2.2 EMISSION FACTORS MODEL

On August 19, 2019, the EPA approved the 2017 version of the EMissions FACtor model (EMFAC) web database for use in State Implementation Plan and transportation conformity analyses. EMFAC2017 is a mathematical model that was developed to calculate emission rates, fuel consumption, VMT from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the CARB to project changes in future emissions from onroad mobile sources (21). This energy study utilizes the different fuel types for each vehicle class from the annual EMFAC2017 emission inventory in order to derive the average vehicle fuel economy which is then used to determine the estimated annual fuel consumption associated with vehicle usage during Project construction and operational activities. For purposes of analysis, the 2021 and 2022 analysis years were utilized to determine the average vehicle fuel economy used throughout the duration of the Project.

4.3 Construction Energy Demands

The focus within this section is the energy implications of the construction process, specifically the power cost from on-site electricity consumption during construction of the proposed Project.

4.3.1 CONSTRUCTION POWER COST

The total Project construction power costs is the summation of the products of the area (sf) by the construction duration and the typical power cost.

CONSTRUCTION DURATION

For purposes of analysis, construction of Project is expected to commence in October 2021 and would last through November 2022 (19). The construction schedule utilized in the analysis, shown in Table 4-1, represents a "worst-case" analysis scenario. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines* (22).

TABLE 4-1: CONSTRUCTION DURATION

Phase Name	Start Date	End Date	Days
Site Preparation	10/04/2021	10/15/2021	10
Grading	10/16/2021	11/12/2021	20
Building Construction	11/13/2021	09/30/2022	230
Storm Drain Construction	01/03/2022	03/11/2022	50
Paving	10/01/2022	10/28/2022	20
Architectural Coating	10/29/2022	11/25/2022	20

PROJECT CONSTRUCTION POWER COST

The 2021 National Construction Estimator identifies a typical power cost per 1,000 sf of construction per month of \$2.37, which was used to calculate the Project's total construction power cost (23). As shown on Table 4-2, the total power cost of the on-site electricity usage during the construction of the Project is estimated to be approximately \$8,634.14.

TABLE 4-2: CONSTRUCTION POWER COST

Land Use	Power Cost (per 1,000 SF of construction per month) Size (1,000 SF)		Construction Duration (months)	Project Construction Power Cost
Warehouse	\$2.37	156.780	13	\$4,830.39
Parking	\$2.37	9.405	13	\$289.77
City Park	\$2.37	35.786	13	\$1,102.57
Other Asphalt Surfaces	\$2.37	78.267	13	\$2,411.41
	\$8,634.14			

4.3.2 CONSTRUCTION ELECTRICITY USAGE

The total Project construction electricity usage is the summation of the products of the power cost (estimated in Table 4-2) by the utility provider cost per kilowatt hour (kWh) of electricity.

PROJECT CONSTRUCTION ELECTRICITY USAGE

The SCE's general service rate schedule were used to determine the Project's electrical usage. As of May 1, 2021, SCE's general service rate is \$0.11 per kilowatt hours (kWh) of electricity for industrial services (24). As shown on Table 4-3, the total electricity usage from on-site Project construction related activities is estimated to be approximately 77,367 kWh.

Project Construction Cost per kWh **Land Use Electricity Usage (kWh)** 43,283 Warehouse \$0.11 2,596 **Parking** \$0.11 9,880 City Park \$0.11 21,608 **Other Asphalt Surfaces** \$0.11 77,367 CONSTRUCTION ELECTRICITY USAGE

TABLE 4-3: CONSTRUCTION ELECTRICITY USAGE

4.3.3 CONSTRUCTION EQUIPMENT FUEL ESTIMATES

Fuel consumed by construction equipment would be the primary energy resource expended over the course of Project construction.

CONSTRUCTION EQUIPMENT

Consistent with industry standards and typical construction practices, each piece of equipment listed in Table 4-4 would operate up to a total of eight (8) hours per day, or more than two-thirds of the period during which construction activities are allowed pursuant to the code. It should be noted that most pieces of equipment would likely operate for fewer hours per day. A summary of construction equipment assumptions by phase is provided at Table 4-4.

Phase Name	Equipment	Amount	Hours Per Day
Cita Duana anatian	Crawler Tractors	4	8
Site Preparation	Rubber Tired Dozers	3	8
	Crawler Tractors	3	8
	Excavators	1	8
Grading	Graders	1	8
	Rubber Tired Dozers	1	8

TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (1 OF 2)

TABLE 4-4: CONSTRUCTION EQUIPMENT ASSUMPTIONS (2 OF 2)

Phase Name	Equipment	Amount	Hours Per Day
	Cranes	1	8
	Crawler Tractors	3	8
Building Construction	Forklifts	3	8
	Generator Sets	1	8
	Welders	1	8
	Air Compressors	1	8
	Cranes	1	8
	Loader	1	8
Storm Drain Construction	Pump	1	8
	Soil Compactor	1	8
	Trench Digger	2	8
	Pavers	2	8
Paving	Paving Equipment	2	8
	Rollers	2	8
Architectural Coating	Air Compressors	1	8

PROJECT CONSTRUCTION EQUIPMENT FUEL CONSUMPTION

Project construction activity timeline estimates, construction equipment schedules, equipment power ratings, load factors, and associated fuel consumption estimates are presented in Table 4-5. The aggregate fuel consumption rate for all equipment is estimated at 18.5 horsepower hour per gallon (hp-hr-gal.), obtained from CARB 2018 Emissions Factors Tables and cited fuel consumption rate factors presented in Table D-24 of the Moyer guidelines (25). For the purposes of this analysis, the calculations are based on all construction equipment being diesel-powered which is consistent with industry standards. Diesel fuel would be supplied by existing commercial fuel providers serving the Project area and region². As presented in Table 4-5, Project construction activities would consume an estimated 63,429 gallons of diesel fuel.

Project construction would represent a "single-event" diesel fuel demand and would not require on-going or permanent commitment of diesel fuel resources for this purpose.

_

² Based on Appendix A of the CalEEMod User's Guide, Construction consists of several types of off-road equipment. Since the majority of the off-road construction equipment used for construction projects are diesel fueled, CalEEMod assumes all of the equipment operates on diesel fuel.

TABLE 4-5: CONSTRUCTION EQUIPMENT FUEL CONSUMPTION ESTIMATES

Phase Name	Duration (Days)	Equipment	HP Rating	Quantity	Usage Hours	Load Factor	HP- hrs/day	Total Fuel Consumption
Cita Duana vation	10	Crawler Tractors	212	4	8	0.43	2,917	1,577
Site Preparation	10	Rubber Tired Dozers	247	3	8	0.40	2,371	1,282
		Crawler Tractors	212	3	8	0.43	2,188	2,365
	20	Excavators	158	1	8	0.38	480	519
Grading	20	Graders	187	1	8	0.41	613	663
		Rubber Tired Dozers	247	1	8	0.40	790	854
		Cranes	231	1	8	0.29	536	6,663
		Crawler Tractors	212	3	8	0.43	2,188	27,200
Building Construction	230	Forklifts	89	3	8	0.20	427	5,311
		Generator Sets	84	1	8	0.74	497	6,182
		Welders	46	1	8	0.45	166	2,059
		Air Compressors	78	1	8	0.48	300	810
		Cranes	231	1	8	0.29	536	1,448
Storm Drain Construction	50	Plate Compactors	8	1	8	0.43	28	74
Storm Drain Construction	50	Pumps	84	1	8	0.74	497	1,344
		Tractors/Loaders/Backhoes	97	1	8	0.37	287	776
		Trenchers	78	2	8	0.50	624	1,686
		Pavers	130	2	8	0.42	874	944
Paving	20	Paving Equipment	132	2	8	0.36	760	822
		Rollers	80	2	8	0.38	486	526
Architectural Coating	20	Air Compressors	78	1	8	0.48	300	324
			CONSTRUCT	ION FUEL D	EMAND (C	GALLONS DI	ESEL FUEL)	63,429

4.3.4 CONSTRUCTION TRIPS AND VMT

Construction generates on-road vehicle emissions from vehicle usage for workers and vendors commuting to and from the site. The number of workers and vendor trips are presented below in Table 4-6. It should be noted that for vendor trips, specifically, CalEEMod only assigns Vendor Trips to the Building Construction phase. Vendor trips would likely occur during all phases of construction. As such, the CalEEMod defaults for vendor trips (other than Vendor trips related to Storm Drain Construction activities) have been adjusted based on a ratio of the total vendor trips to the number of days of each subphase of activity.

Vendor Trips Worker Trips Hauling Trips Phase Name Per Day **Per Day** Per Day 2 Site Preparation 18 0 Grading 15 3 0 **Building Construction** 35 0 118 Storm Drain Construction 118 46 0 3 **Paving** 15 0 24 3 0 **Architectural Coating**

TABLE 4-6: CONSTRUCTION TRIPS AND VMT

4.3.5 CONSTRUCTION WORKER FUEL ESTIMATES

With respect to estimated VMT for the Project, the construction worker trips would generate an estimated 509,062 VMT during the 13 months of construction (19). Based on CalEEMod methodology, it is assumed that 50% of all worker trips are from light-duty-auto vehicles (LDA), 25% are from light-duty-trucks (LDT1³), and 25% are from light-duty-trucks (LDT2⁴). Data regarding Project related construction worker trips were based on CalEEMod defaults utilized within the AQIA.

Vehicle fuel efficiencies for LDA, LDT1, and LDT2 were estimated using information generated within the 2017 version of the EMFAC developed by CARB. EMFAC2017 is a mathematical model that was developed to calculate emission rates, fuel consumption, and VMT from motor vehicles that operate on highways, freeways, and local roads in California and is commonly used by the CARB to project changes in future emissions from on-road mobile sources (21). EMFAC2017 was run for the LDA, LDT1, and LDT2 vehicle classes within the California sub-area for the 2021 through 2022 calendar years. Data from EMFAC2017 is shown in Appendix 4.3.

Table 4-7 provides an estimated annual fuel consumption resulting from LDAs related to the Project construction worker trips. Based on Table 4-7, it is estimated that 7,630 gallons of fuel would be consumed related to construction worker trips during full construction of the Project.

_

³ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

 $^{^4}$ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

TABLE 4-7: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES – LDA

Phase Name	Duration (Days)	Worker Trips / Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)
2021						
Site Preparation	10	9	14.7	1,323	32.26	41
Grading	20	8	14.7	2,352	32.26	73
Building Construction	35	59	14.7	30,356	32.26	941
			2022			
Building Construction	195	59	14.7	169,124	33.21	5,092
Storm Drain Construction	50	59	14.7	43,365	33.21	1,306
Paving	20	8	14.7	2,352	33.21	71
Architectural Coating	20	12	14.7	3,528	33.21	106
	PRO	DJECT CONSTR	UCTION WOR	KER (LDA) FUE	L CONSUMPTION	7,630

Table 4-8 provides an estimated annual fuel consumption resulting from LDT1s related to the Project construction worker trips. Based on Table 4-8, it is estimated that 4,621 gallons of fuel would be consumed related to construction worker trips during full construction of the Project.

TABLE 4-8: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES - LDT1

Phase Name	Duration (Days)	Worker Trips / Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)	
			2021				
Site Preparation	10	5	14.7	735	27.10	27	
Grading	20	4	14.7	1,176	27.10	43	
Building Construction	35	30	14.7	15,435	27.10	570	
2022							
Building Construction	195	30	14.7	85,995	27.88	3,085	
Storm Drain Construction	50	30	14.7	22,050	27.88	791	
Paving	20	4	14.7	1,176	27.88	42	
Architectural Coating	20	6	14.7	1,764	27.88	63	
PROJECT CONSTRUCTION WORKER (LDT1) FUEL CONSUMPTION						4,621	

Table 4-9 provides an estimated annual fuel consumption resulting from LDT2s related to the Project construction worker trips. Based on Table 4-9, it is estimated that 4,902 gallons of fuel would be consumed related to construction worker trips during full construction of the Project.

TABLE 4-9: CONSTRUCTION WORKER FUEL CONSUMPTION ESTIMATES – LDT2

Phase Name	Duration (Days)	Worker Trips / Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)	
			2021				
Site Preparation	10	5	14.7	735	25.36	29	
Grading	20	4	14.7	1,176	25.36	46	
Building Construction	35	30	14.7	15,435	25.36	609	
2022							
Building Construction	195	30	14.7	85,995	26.31	3,268	
Storm Drain Construction	50	30	14.7	22,050	26.31	838	
Paving	20	4	14.7	1,176	26.31	45	
Architectural Coating	20	6	14.7	1,764	26.31	67	
PROJECT CONSTRUCTION WORKER (LDT2) FUEL CONSUMPTION						4,902	

It should be noted that construction worker trips would represent a "single-event" gasoline fuel demand and would not require on-going or permanent commitment of fuel resources for this purpose.

4.3.6 CONSTRUCTION VENDOR FUEL ESTIMATES

With respect to estimated VMT, the construction vendor trips (vehicles that deliver materials to the site during construction) would generate an estimated 74,796 VMT along area roadways for the Project over the duration of construction activity (19). It is assumed that 50% of all vendor trips are from medium-heavy duty trucks (MHDT) and 50% are from heavy-heavy duty trucks (HHDT). These assumptions are consistent with the CalEEMod defaults utilized within the within the AQIA (19). Vehicle fuel efficiencies for MHDTs and HHDTs were estimated using information generated within EMFAC2017. EMFAC2017 was run for the MHDT and HHDT vehicle classes within the California sub-area for the 2021 through 2022 calendar years. Data from EMFAC2017 is shown in Appendix 4.3.

Based on Table 4-10, it is estimated that 3,632 gallons of fuel would be consumed related to construction vendor trips (MHDTs) during full construction of the Project.

TABLE 4-10: CONSTRUCTION VENDOR FUEL CONSUMPTION ESTIMATES – MHDT

Phase Name	Duration (Days)	Vendor Trips / Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)	
	2021						
Site Preparation	10	1	6.9	69	10.02	7	
Grading	20	2	6.9	276	10.02	28	
Building Construction	35	18	6.9	4,347	10.02	434	
2022							
Building Construction	195	18	6.9	24,219	10.34	2,342	
Storm Drain Construction	50	23	6.9	7,935	10.34	767	
Paving	20	2	6.9	276	10.34	27	
Architectural Coating	20	2	6.9	276	10.34	27	
PROJECT CONSTRUCTION VENDOR (MHDT) FUEL CONSUMPTION						3,632	

Tables 4-11 shows the estimated fuel economy of HHDTs accessing the Project site. Based on Tables 4-11, fuel consumption from construction vendor trips (HHDTs) would total approximately 5,314 gallons.

TABLE 4-11: CONSTRUCTION VENDOR FUEL CONSUMPTION ESTIMATES - HHDT

Phase Name	Duration (Days)	Vendor Trips / Day	Trip Length (miles)	VMT	Average Vehicle Fuel Economy (mpg)	Estimated Fuel Consumption (gallons)	
			2021				
Site Preparation	10	1	6.9	69	6.88	10	
Grading	20	2	6.9	276	6.88	40	
Building Construction	35	18	6.9	4,347	6.88	631	
2022							
Building Construction	195	18	6.9	24,219	7.06	3,431	
Storm Drain Construction	50	23	6.9	7,935	7.06	1,124	
Paving	20	2	6.9	276	7.06	39	
Architectural Coating	20	2	6.9	276	7.06	39	
PROJECT CONSTRUCTION VENDOR (HHDT) FUEL CONSUMPTION						5,314	

It should be noted that Project construction vendor trips would represent a "single-event" diesel fuel demand and would not require on-going or permanent commitment of diesel fuel resources for this purpose.

4.3.7 CONSTRUCTION ENERGY EFFICIENCY/CONSERVATION MEASURES

Starting in 2014, CARB adopted the nation's first regulation aimed at cleaning up off-road construction equipment such as bulldozers, graders, and backhoes. These requirements ensure fleets gradually turnover the oldest and dirtiest equipment to newer, cleaner models and prevent fleets from adding older, dirtier equipment. As such, the equipment used for Project construction would conform to CARB regulations and California emissions standards. It should also be noted that there are no unusual Project characteristics or construction processes that would require the use of equipment that would be more energy intensive than is used for comparable activities; or equipment that would not conform to current emissions standards (and related fuel efficiencies). Equipment employed in construction of the Project would therefore not result in inefficient wasteful, or unnecessary consumption of fuel.

Construction contractors would be required to comply with applicable CARB regulation regarding retrofitting, repowering, or replacement of diesel off-road construction equipment. Additionally, CARB has adopted the Airborne Toxic Control Measure to limit heavy-duty diesel motor vehicle idling in order to reduce public exposure to diesel particulate matter and other Toxic Air Contaminants. Compliance with anti-idling and emissions regulations would result in a more efficient use of construction-related energy and the minimization or elimination of wasteful or unnecessary consumption of energy. Idling restrictions and the use of newer engines and equipment would result in less fuel combustion and energy consumption.

Additional construction-source energy efficiencies would occur due to required California regulations and best available control measures (BACM). For example, CCR Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than five minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. In this manner, construction equipment operators are required to be informed that engines are to be turned off at or prior to five minutes of idling. Enforcement of idling limitations is realized through periodic site inspections conducted by City building officials, and/or in response to citizen complaints.

A full analysis related to the energy needed to form construction materials is not included in this analysis due to a lack of detailed Project-specific information on construction materials. At this time, an analysis of the energy needed to create Project-related construction materials would be extremely speculative and thus has not been prepared.

In general, the construction processes promote conservation and efficient use of energy by reducing raw materials demands, with related reduction in energy demands associated with raw materials extraction, transportation, processing, and refinement. Use of materials in bulk reduces energy demands associated with preparation and transport of construction materials as well as the transport and disposal of construction waste and solid waste in general, with corollary reduced demands on area landfill capacities and energy consumed by waste transport and landfill operations.

4.4 OPERATIONAL ENERGY DEMANDS

Energy consumption in support of or related to Project operations would include transportation energy demands (energy consumed by passenger car and truck vehicles accessing the Project site) and facilities energy demands (energy consumed by building operations and site maintenance activities).

4.4.1 Transportation Energy Demands

Energy that would be consumed by Project-generated traffic is a function of total VMT and estimated vehicle fuel economies of vehicles accessing the Project site. The VMT per vehicle class can be determined by evaluated in the vehicle fleet mix and the total VMT.

As with worker and vendors trips, operational vehicle fuel efficiencies were estimated using information generated within EMFAC2017 developed by CARB (21). EMFAC2017 was run for the Riverside County area for the 2021 and 2022 calendar years. Data from EMFAC2017 is shown in Appendix 4.3.

As summarized on Table 4-12 the Project would result in 1,574,351 annual VMT and an estimated annual fuel consumption of 141,926 gallons of fuel.

TABLE 4-12: TOTAL PROJECT-GENERATED TRAFFIC ANNUAL FUEL CONSUMPTION (ALL VEHICLES)

Vehicle Type	Annual VMT	Average Vehicle Fuel Economy (mpg)	Estimated Annual Fuel Consumption (gallons)
LDA	316,140	33.21	9,518
LDT1	33,220	27.88	1,192
LDT2	102,419	26.31	3,893
MDV	85,588	20.93	4,090
MCY	14,458	38.12	379
LHDT1	134,053	14.39	9,315
LHDT2	36,402	15.08	2,414
MHDT	212,992	10.34	20,597
HHDT	639,079	7.06	90,528
TOTAL (ALL VEHICLES)	OTAL (ALL VEHICLES) 1,574,351		141,926

4.4.2 FACILITY ENERGY DEMANDS

CALGREEN STANDARDS

Pursuant to Section 5.106.5.3.2 of the CALGreen Code, seven parking spaces will provide conduits for the charging of electric vehicles; however, this analysis conservatively assumes that four EV spaces would be provided. As shown in Table 4-13, in the event that four EV parking spaces are installed, this will result in a 28,224 kWh/year. However, as shown in Table 4-14, though the Project's energy usage will be increased with the installation of the EV parking spaces, there will

be a decrease in annual VMT of 112,896 miles/yr and thus an overall savings in fuel demand of 3,399 gallons.

TABLE 4-13: ELECTRICTY DEMAND FROM EV CHARGING STATIONS

Parameters	Amount	Unit
Annual Energy Delivery per Parking Space ¹	7,056	kWh/charging station/year
Number of Parking Spaces Provided Chargers	4	charging stations
ANNUAL EV CHARGING STATION ELECTRICITY DEMAND ²	28,224	kWh/year

¹ Annual Energy Delivery and VMT reduction based on an average monthly energy delivery of 588 kWh per charging station for conventional Level 2 chargers, as estimated by the CEC.

TABLE 4-14: VMT REDUCTION FROM EV CHARGING STATIONS

Parameters	Amount	Unit
Fuel Economy of Electric Vehicle ¹	0.25	kWh/miles
Annual VMT Reduction per Parking Space ²	28,224	miles/charging station/yr
Annual VMT Reduction from All Stations ³	112,896	miles/yr
Average Vehicle Fuel Economy	33.21	Мрд
Estimated Annual Fuel Consumption	3,399	gallons

¹ U.S. Department of Energy, 2013. Benefits and Considerations of Electricity as a Vehicle Fuel. Available at: https://afdc.energy.gov/fuels/electricity_benefits.html

Project building operations activities would result in the consumption of electricity. Electricity would be supplied to the Project by SCE. Annual electricity demands of the Project are summarized in Table 4-13 and provided in Appendix 4.2. Based on information provided by the Project Applicant, the Project would not use natural gas. As such, natural gas consumption has not been analyzed in this study.

TABLE 4-15: PROJECT ANNUAL OPERATIONAL ENERGY DEMAND SUMMARY

Electricity Demand	kWh/year
Warehouse	363,730
Parking	3,292
EV Charging	28,224
TOTAL PROJECT ELECTRICITY DEMAND	395,246

kBTU - kilo-British Thermal Units

Available at: https://www.energy.ca.gov/2018publications/CEC-500-2018-020/CEC-500-2018-020.pdf.

² Annual EV charging station electricity demand calculated by multiplying the Annual Energy Delivery per Parking Space by the Number of Parking Spaces Provided Chargers.

 $A vailable\ at: https://www.energy.ca.gov/2018 publications/CEC-500-2018-020/CEC-500-2018-020.pdf.$

 $^{^{2}}$ Annual VMT reduction calculated as the annual energy delivery divided by the fuel economy of an EV.

³ Calculated by multiplying the Annual VMT Reductions per Parking Space and Number of Parking Spaces Provided Chargers.

4.4.3 OPERATIONAL ENERGY EFFICIENCY/CONSERVATION MEASURES

Energy efficiency/energy conservation attributes of the Project would be complemented by increasingly stringent state and federal regulatory actions addressing vehicle fuel economies and vehicle emissions standards; and enhanced building/utilities energy efficiencies mandated under California building codes (e.g., Title 24, California Green Building Standards Code).

ENHANCED VEHICLE FUEL EFFICIENCIES

Project annual fuel consumption estimates presented previously in Table 4-12 represent likely potential maximums that would occur for the Project. Under subsequent future conditions, average fuel economies of vehicles accessing the Project site can be expected to improve as older, less fuel-efficient vehicles are removed from circulation, and in response to fuel economy and emissions standards imposed on newer vehicles entering the circulation system.

Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands.

4.5 SUMMARY

4.5.1 CONSTRUCTION ENERGY DEMANDS

The estimated power cost of on-site electricity usage during the construction of the Project is assumed to be approximately \$8,634.14. Additionally, based on the assumed power cost, it is estimated that the total electricity usage during construction, after full Project build-out, is calculated to be approximately 77,367 kWh.

Construction equipment used by the Project would result in single event consumption of approximately 63,429 gallons of diesel fuel. Construction equipment use of fuel would not be atypical for the type of construction proposed because there are no aspects of the Project's proposed construction process that are unusual or energy-intensive, and Project construction equipment would conform to the applicable CARB emissions standards, acting to promote equipment fuel efficiencies.

CCR Title 13, Title 13, Motor Vehicles, section 2449(d)(3) Idling, limits idling times of construction vehicles to no more than 5 minutes, thereby precluding unnecessary and wasteful consumption of fuel due to unproductive idling of construction equipment. BACMs inform construction equipment operators of this requirement. Enforcement of idling limitations is realized through periodic site inspections conducted by City building officials, and/or in response to citizen complaints.

Construction worker trips for full construction of the Project would result in the estimated fuel consumption of 17,153 gallons of fuel. Additionally, fuel consumption from construction vendor trips (MHDTs and HHDTs) would total approximately 8,946 gallons. Diesel fuel would be supplied by City and regional commercial vendors. Indirectly, construction energy efficiencies and energy

conservation would be achieved using bulk purchases, transport and use of construction materials. The 2021 IEPR released by the CEC has shown that fuel efficiencies are getting better within on and off-road vehicle engines due to more stringent government requirements (26). As supported by the preceding discussions, Project construction energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary.

4.5.2 OPERATIONAL ENERGY DEMANDS

TRANSPORTATION ENERGY DEMANDS

Annual vehicular trips and related VMT generated by the operation of the Project would result in a fuel demand of 141,926 gallons of fuel.

Fuel would be provided by current and future commercial vendors. Trip generation and VMT generated by the Project are consistent with other industrial uses of similar scale and configuration, as reflected respectively in the Institute of Transportation Engineers (ITE) Trip Generation Manual (10th Ed., 2017); and CalEEMod. As such, Project operations would not result in excessive and wasteful vehicle trips and VMT, nor excess and wasteful vehicle energy consumption compared to other industrial uses.

It should be noted that the state strategy for the transportation sector for medium and heavy-duty trucks is focused on making trucks more efficient and expediting truck turnover rather than reducing VMT from trucks. This is in contrast to the passenger vehicle component of the transportation sector where both per-capita VMT reductions and an increase in vehicle efficiency are forecasted to be needed to achieve the overall state emissions reductions goals.

Heavy duty trucks involved in goods movements are generally controlled on the technology side and through fleet turnover of older trucks and engines to newer and cleaner trucks and engines. The first battery-electric heavy-heavy duty trucks are being tested this year and SCAQMD is looking to integrate this new technology into large-scale truck operations. The following state strategies reduce GHG emissions from the medium and heavy-duty trucks:

- CARB's Mobile Source Strategy focuses on reducing GHGs through the transition to zero and low emission vehicles and from medium-duty and heavy-duty trucks.
- CARB's Sustainable Freight Action Plan establishes a goal to improve freight efficiency by 25
 percent by 2030, deploy over 100,000 freight vehicles and equipment capable of zero emission
 operation and maximize both zero and near-zero emission freight vehicles and equipment
 powered by renewable energy by 2030.
- CARB's Emissions Reduction Plan for Ports and Goods Movement (Goods Movement Plan) in California focuses on reducing heavy-duty truck-related emissions focus on establishment of emissions standards for trucks, fleet turnover, truck retrofits, and restriction on truck idling (CARB 2006). While the focus of Goods Movement Plan is to reduce criteria air pollutant and air toxic emissions, the strategies to reduce these pollutants would also generally have a beneficial effect in reducing GHG emissions.
- CARB's On-Road Truck and Bus Regulation (2010) requires diesel trucks and buses that operate in California to be upgraded to reduce emissions. Newer heavier trucks and buses must meet particulate matter filter requirements beginning January 1, 2012. Lighter and older heavier trucks

- must be replaced starting January 1, 2015. By January 1, 2023 nearly all trucks and buses would need to have 2010 model year engines or equivalent (27).
- CARB's Heavy-Duty (Tractor-Trailer) GHG Regulation requires SmartWay tractor trailers that include idle-reduction technologies, aerodynamic technologies, and low-rolling resistant tires that would reduce fuel consumption and associated GHG emissions.

Enhanced fuel economies realized pursuant to federal and state regulatory actions, and related transition of vehicles to alternative energy sources (e.g., electricity, natural gas, biofuels, hydrogen cells) would likely decrease future gasoline fuel demands per VMT. Location of the Project proximate to regional and local roadway systems tends to reduce VMT within the region, acting to reduce regional vehicle energy demands. The Project would implement sidewalks, facilitating and encouraging pedestrian access. Facilitating pedestrian and bicycle access would reduce VMT and associated energy consumption. In compliance with the California Green Building Standards Code and City requirements, the Project would promote the use of bicycles as an alternative mean of transportation by providing short-term and/or long-term bicycle parking accommodations. As supported by the preceding discussions, Project transportation energy consumption would not be considered inefficient, wasteful, or otherwise unnecessary.

FACILITY ENERGY DEMANDS

Project facility operational energy demands are estimated at: 395,246 kWh/year of electricity. Electricity would be supplied by SCE. The Project proposes conventional industrial uses reflecting contemporary energy efficient/energy conserving designs and operational programs. The Project does not propose uses that are inherently energy intensive and the energy demands in total would be comparable to other industrial uses of similar scale and configuration.

Lastly, the Project would comply with the applicable Title 24 standards. Compliance itself with applicable Title 24 standards would ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary.

This page intentionally left blank

5 CONCLUSIONS

5.1 ENERGY IMPACT 1

Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation.

As supported by the preceding analyses, Project construction and operations would not result in the inefficient, wasteful, or unnecessary consumption of energy. The Project would therefore not cause or result in the need for additional energy producing or transmission facilities. The Project would not engage in wasteful or inefficient uses of energy and aims to achieve energy conservations goals within the State of California.

5.2 ENERGY IMPACT 2

Conflict with or obstruct a state or local plan for renewable energy or energy efficiency.

The Project's consistency with the applicable state and local plans is discussed below.

CONSISTENCY WITH ISTEA

Transportation and access to the Project site is provided by the local and regional roadway systems. The Project would not interfere with, nor otherwise obstruct intermodal transportation plans or projects that may be realized pursuant to the ISTEA because SCAG is not planning for intermodal facilities on or through the Project site.

CONSISTENCY WITH TEA-21

The Project site is located along major transportation corridors with proximate access to the Interstate freeway system. The site selected for the Project facilitates access, acts to reduce vehicle miles traveled, takes advantage of existing infrastructure systems, and promotes land use compatibilities through collocation of similar uses. The Project supports the strong planning processes emphasized under TEA-21. The Project is therefore consistent with, and would not otherwise interfere with, nor obstruct implementation of TEA-21.

CONSISTENCY WITH IEPR

Electricity would be provided to the Project by SCE. SCE's *Clean Power and Electrification Pathway* (CPEP) white paper builds on existing state programs and policies. As such, the Project is consistent with, and would not otherwise interfere with, nor obstruct implementation the goals presented in the 2021 IEPR.

Additionally, the Project will comply with the applicable Title 24 standards which would ensure that the Project energy demands would not be inefficient, wasteful, or otherwise unnecessary. As such, development of the proposed Project would support the goals presented in the 2021 IEPR.

CONSISTENCY WITH STATE OF CALIFORNIA ENERGY PLAN

The Project site is located along major transportation corridors with proximate access to the Interstate freeway system. The site selected for the Project facilitates access and takes advantage of existing infrastructure systems. The Project therefore supports urban design and planning processes identified under the State of California Energy Plan, is consistent with, and would not otherwise interfere with, nor obstruct implementation of the State of California Energy Plan.

CONSISTENCY WITH CALIFORNIA CODE TITLE 24, PART 6, ENERGY EFFICIENCY STANDARDS

The 2019 version of Title 24 was adopted by the CEC and became effective on January 1, 2020. It should be noted that the analysis herein assumes compliance with the 2019 Title 24 Standards. It should be noted that the CEC anticipates that nonresidential buildings would use approximately 30% less energy compared to the prior code (17). As such, the CalEEMod defaults for Title 24 – Electricity and Lighting Energy were reduced by 30% in order to reflect consistency with the 2019 Title 24 standard.

CONSISTENCY WITH AB 1493

AB 1493 is not applicable to the Project as it is a statewide measure establishing vehicle emissions standards. No feature of the Project would interfere with implementation of the requirements under AB 1493.

CONSISTENCY WITH RPS

California's RPS is not applicable to the Project as it is a statewide measure that establishes a renewable energy mix. No feature of the Project would interfere with implementation of the requirements under RPS.

CONSISTENCY WITH SB 350

The proposed Project would use energy from SCE, which have committed to diversify their portfolio of energy sources by increasing energy from wind and solar sources. No feature of the Project would interfere with implementation of SB 350. Additionally, the Project would be designed and constructed to implement the energy efficiency measures for new industrial developments and would include several measures designed to reduce energy consumption.

As shown above, the Project would not conflict with any of the state or local plans. As such, a less than significant impact is expected.

This page intentionally left blank

6 REFERENCES

- 1. Association of Environmental Professionals. 2020 CEQA California Environmental Quality Act. 2020.
- 2. **City of Perris.** Perris Valley Commerce Center Amendment No. 9. [Online] 2018. https://www.cityofperris.org/Home/ShowDocument?id=2647.
- 3. **Administration, U.S. Energy Information.** California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/data.php?sid=CA#ConsumptionExpenditures.
- 4. California Energy Commission. Transportation Energy Demand Forecast 2018-2030. 2018.
- 5. Alternate Fuels Data Center. *U.S. Department of Energy.* [Online] https://afdc.energy.gov/states/ca.
- 6. U.S. Energy Information Administration. California Energy Consumption by End-Use Sector. California State Profile and Energy Estimates. [Online] https://www.eia.gov/state/?sid=CA#tabs-2.
- 7. California Energy Commission. 2020 Total System Electric Generation. *CA.gov.* [Online] https://www.energy.ca.gov/data-reports/energy-almanac/california-electricity-data/2020-total-system-electric-generation.
- 8. U.S. Energy Information Administration. California State Profile and Energy Estimates . [Online] https://www.eia.gov/state/?sid=CA.
- 9. California Energy Commission. 2013 Integrated Energy Policy Report. [Online] 2013. http://www.energy.ca.gov/2013publications/CEC-100-2013-001/CEC-100-2013-001-CMF.pdf.
- 10. —. California Energy Almanac. *Utility Energy Supply Plans from 2013*. [Online] https://www.energy.ca.gov/almanac/electricity_data/s-2_supply_forms_2013/.
- 11. California ISO. Understanding the ISO. [Online] http://www.caiso.com/about/Pages/OurBusiness/UnderstandingtheISO/default.aspx.
- 12. Southern Californai Edison. 2019 Power Content Label. *Southern California Edison*. [Online] https://www.sce.com/sites/default/files/inline-files/SCE_2019PowerContentLabel.pdf.
- 13. California Public Utilities Commission. Natural Gas and California. [Online] http://www.cpuc.ca.gov/general.aspx?id=4802.
- 14. Department of Motor Vehicles. State of California Department of Motor Vehicles Statistics For Publication January Through December 2021. 2021.
- 15. U.S. Energy Information Administration. California Analysis. *Energy Information Administration*. [Online] https://www.eia.gov/beta/states/states/ca/analysis.
- 16. California Energy Commission Staff. 2020 Integrated Energy Policy Report Update. [Online] 2020. file:///C:/Users/atamase/Downloads/TN237269_20210323T095732_Final%202020%20Integrated %20%20Energy%20Policy%20Report%20%20Update%20Volume%20III%20California%20E%20(1).p df.
- 17. The California Energy Commission. 2019 Building Energy Efficiency Standards . *California Energy Commission*. [Online] 2018. https://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf.
- 18. California Energy Commission. Renewables Portfolio Standard (RPS). [Online] 2002. http://www.energy.ca.gov/portfolio/.

- 19. Urban Crossroads, Inc. 220-280 East Nance Street Air Quality Impact Analysis. 2021.
- 20. California Air Pollution Control Officers Association (CAPCOA). California Emissions Estimator Model (CalEEMod). [Online] www.caleemod.com.
- 21. California Department of Transportation. EMFAC Software. [Online] http://www.dot.ca.gov/hq/env/air/pages/emfac.htm.
- 22. State of California. 2019 CEQA California Environmental Quality Act. 2019.
- 23. Pray, Richard. 2021 National Construction Estimator. Carlsbad: Craftsman Book Company, 2021.
- 24. Southern California Edison. Schedule GS-1 General Service. Regulatory Information Rates Pricing. [Online] https://library.sce.com/content/dam/sce-doclib/public/regulatory/tariff/electric/schedules/general-service-&-industrial-rates/ELECTRIC_SCHEDULES_GS-1.pdf.
- 25. California Air Resources Board. Methods to Find the Cost-Effectiveness of Funding Air Quality
 Projects For Evaluating Motor Vehicle Registration Fee Projects And Congestion Mitigation and Air
 Quality Improvement (CMAQ) Projects, Emission Factor Tables. 2018.
- 26. California Energy Commission Staff. 2019 Integrated Energy Policy Report Update. [Online] 2019. [Cited: March 26, 2020.] https://ww2.energy.ca.gov/2019_energypolicy/.
- 27. California Air Resources Board. Truck and Bus Regulation. [Online] https://ww2.arb.ca.gov/our-work/programs/truck-and-bus-regulation.

This page intentionally left blank

7 CERTIFICATIONS

The contents of this energy analysis report represent an accurate depiction of the environmental impacts associated with the proposed Harley Knox Commerce Center. The information contained in this energy analysis report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at hqueshi@urbanxroads.com.

Haseeb Qureshi
Associate Principal
Urban Crossroads, Inc.
hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011
Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008
Principles of Ambient Air Monitoring – California Air Resources Board • August 2007
AB2588 Regulatory Standards – Trinity Consultants • November 2006
Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 4.1:

CALEEMOD PROJECT CONSTRUCTION MODEL OUTPUTS

CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

220-280 East Nance Street (Construction - Unmitigated)

Riverside-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Urbanization

(lb/MWhr)

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	156.78	1000sqft	3.60	156,780.00	0
Parking Lot	55.00	Space	0.22	9,405.00	0
City Park	0.82	Acre	0.82	35,786.00	0
Other Asphalt Surfaces	78.27	1000sqft	1.80	78,267.00	0

Precipitation Freq (Days)

(lb/MWhr)

28

1.2 Other Project Characteristics

Urban

o i barrization	Ciban	Tima opoda (mro)	-	r rooipitation r roq (Dayo)	20
Climate Zone	10			Operational Year	2022
Utility Company	Southern California Ediso	n			
CO2 Intensity	516.36	CH4 Intensity	0.03	N2O Intensity	0.004

2.4

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for 2022

Land Use - Total Project Area is 6.4 acres

Construction Phase - Based on discussion with Project team, construction of the storm drain is anticipated to occur over a 3-month period concurrent with **Building Construction activities**

Off-road Equipment - Construction equipment based on equipment used for other storm drain projects

Wind Speed (m/s)

(lb/MWhr)

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment - Crawler Tractors used in lieu of Tractors/Loaders/Backhoes

Off-road Equipment -

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Off-road Equipment - Hours are based on an 8-hour workday

Grading - Analysis assumes that up to 5 acres will be disturbed per day

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, Building Construction, Paving, and Architectural Coating.

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Construction Off-road Equipment Mitigation - Rule 403

Table Name	Column Name	Default Value	New Value		
tblArchitecturalCoating	EF_Nonresidential_Exterior	100.00	50.00		
tblConstructionPhase	NumDays	230.00	50.00		
tblConstructionPhase	PhaseEndDate	12/23/2022	11/25/2022		
tblConstructionPhase	PhaseEndDate	10/28/2022	9/30/2022		
tblConstructionPhase	PhaseEndDate	12/10/2021	11/12/2021		
tblConstructionPhase	PhaseEndDate	11/25/2022	10/28/2022		
tblConstructionPhase	PhaseEndDate	11/12/2021	10/15/2021		
tblConstructionPhase	PhaseStartDate	11/26/2022	10/29/2022		
tblConstructionPhase	PhaseStartDate	12/11/2021	11/13/2021		
tblConstructionPhase	PhaseStartDate	11/13/2021	10/16/2021		
tblConstructionPhase	PhaseStartDate	10/29/2022	10/1/2022		
tblConstructionPhase	PhaseStartDate	10/30/2021	10/4/2021		
tblEnergyUse	LightingElect	0.35	0.00		
tblEnergyUse	LightingElect	1.17	0.00		
tblEnergyUse	NT24E	0.82	0.00		
tblEnergyUse	NT24NG	0.03	0.00		
tblEnergyUse	T24E	0.33	0.00		
tblEnergyUse	T24NG	1.98	0.00		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblGrading	AcresOfGrading	50.00	100.00
tblGrading	AcresOfGrading	35.00	50.00
tblLandUse	LandUseSquareFeet	22,000.00	9,405.00
tblLandUse	LandUseSquareFeet	35,806.32	35,786.00
tblLandUse	LotAcreage	0.49	0.22
tblOffRoadEquipment	LoadFactor	0.50	0.50
tblOffRoadEquipment	LoadFactor	0.43	0.43
tblOffRoadEquipment	LoadFactor	0.43	0.43
tblOffRoadEquipment	OffRoadEquipmentType		Air Compressors
tblOffRoadEquipment	OffRoadEquipmentType		Pumps
tblOffRoadEquipment	OffRoadEquipmentType		Plate Compactors
tblOffRoadEquipment	OffRoadEquipmentType		Trenchers
tblOffRoadEquipment	OffRoadEquipmentType	<u></u>	Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType	<u></u>	Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentType		Crawler Tractors
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.03
tblProjectCharacteristics	CO2IntensityFactor	531.98	516.36

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tb SolidWaste				
ItalTripsAnd/MT	tblSolidWaste	SolidWasteGenerationRate	0.07	0.00
IbiTripsAndVMT	tblSolidWaste	SolidWasteGenerationRate	147.37	0.00
IbiTripsAndVMT	tblTripsAndVMT	VendorTripNumber	0.00	2.00
tbTripsAndVMT VendorTripNumber 0.00 3.00 tbTripsAndVMT VendorTripNumber 0.00 3.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TTP 48.00 0.00 tbVehicleTrips CNW_TL 6.90 0.00 tbVehicleTrips CW_TTP 19.00 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TTP 16.60 0.00	tblTripsAndVMT	VendorTripNumber	0.00	3.00
tbITripsAndVMT VendorTripNumber 0.00 3.00 tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TL 8.40 0.00 tbVehicleTrips CC_TTP 48.00 0.00 tbVehicleTrips CNW_TL 6.90 0.00 tbVehicleTrips CNW_TTP 19.00 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TL 16.60 0.00 tbVehicleTrips CW_TTP 33.00 0.00 tbVehicleTrips CW_TTP 59.00 0.00 <t< td=""><td>tblTripsAndVMT</td><td>VendorTripNumber</td><td>46.00</td><td>35.00</td></t<>	tblTripsAndVMT	VendorTripNumber	46.00	35.00
tbl/vehicleTrips CC_TL 8.40 0.00 tbl/vehicleTrips CC_TL 8.40 0.00 tbl/vehicleTrips CC_TL 8.40 0.00 tbl/vehicleTrips CC_TL 8.40 0.00 tbl/vehicleTrips CC_TTP 48.00 0.00 tbl/vehicleTrips CNW_TL 6.90 0.00 tbl/vehicleTrips CNW_TTP 19.00 0.00 tbl/vehicleTrips CNW_TTP 19.00 0.00 tbl/vehicleTrips CW_TL 16.60 0.00 tbl/vehicleTrips CW_TL 16.60 0.00 tbl/vehicleTrips CW_TL 16.60 0.00 tbl/vehicleTrips CW_TL 16.60 0.00 tbl/vehicleTrips CW_TTP 33.00 0.00<	tblTripsAndVMT	VendorTripNumber	0.00	3.00
tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TTP 48.40 0.00 tbIVehicleTrips CC_TTP 48.00 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TTP 19.00 0.00 tbIVehicleTrips CNW_TTP 41.00 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TTP 33.00 0.00 tbIVehicleTrips CW_TTP 59.00 0.00 tbIVehicleTrips DV_TP 5.00 0.00 tbIVehicleTrips PB_TP 6.00 0.00	tblTripsAndVMT	VendorTripNumber	0.00	3.00
tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TTP 48.00 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TTP 19.00 0.00 tbIVehicleTrips CNW_TTP 41.00 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TTP 33.00 0.00 tbIVehicleTrips CW_TTP 59.00 0.00 tbIVehicleTrips DV_TP 28.00 0.00 tbIVehicleTrips DV_TP 5.00 0.00 tbIVehicleTrips PB_TP 5.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tbIVehicleTrips CC_TL 8.40 0.00 tbIVehicleTrips CC_TTP 48.00 0.00 tbIVehicleTrips CNW_TL 6.90 0.00 tbIVehicleTrips CNW_TTP 19.00 0.00 tbIVehicleTrips CNW_TTP 41.00 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TL 16.60 0.00 tbIVehicleTrips CW_TTP 33.00 0.00 tbIVehicleTrips CW_TTP 59.00 0.00 tbIVehicleTrips DV_TP 28.00 0.00 tbIVehicleTrips DV_TP 5.00 0.00 tbIVehicleTrips PB_TP 5.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tbl/VehicleTrips CC_TTP 48.00 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TL 6.90 0.00 tbl/VehicleTrips CNW_TTP 19.00 0.00 tbl/VehicleTrips CNW_TTP 41.00 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TTP 33.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00 tbl/VehicleTrips DV_TP 28.00 0.00 tbl/VehicleTrips DV_TP 5.00 0.00 tbl/VehicleTrips PB_TP 6.00 0.00 tbl/VehicleTrips PB_TP 6.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CC_TL	8.40	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CC_TTP	48.00	0.00
tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TL 6.90 0.00 tbl/ehicleTrips CNW_TTP 19.00 0.00 tbl/ehicleTrips CNW_TTP 41.00 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips DV_TP 28.00 0.00 tbl/ehicleTrips DV_TP 5.00 0.00 tbl/ehicleTrips PB_TP 6.00 0.00 tbl/ehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TL 6.90 0.00 tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 6.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TTP 19.00 0.00 tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tblVehicleTrips CNW_TTP 41.00 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CNW_TL	6.90	0.00
tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TL 16.60 0.00 tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips DV_TP 28.00 0.00 tbl/ehicleTrips DV_TP 5.00 0.00 tbl/ehicleTrips PB_TP 6.00 0.00 tbl/ehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CNW_TTP	19.00	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CNW_TTP	41.00	0.00
tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TL 16.60 0.00 tbl/VehicleTrips CW_TTP 33.00 0.00 tbl/VehicleTrips CW_TTP 59.00 0.00 tbl/VehicleTrips DV_TP 28.00 0.00 tbl/VehicleTrips DV_TP 5.00 0.00 tbl/VehicleTrips PB_TP 6.00 0.00 tbl/VehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tblVehicleTrips CW_TL 16.60 0.00 tblVehicleTrips CW_TTP 33.00 0.00 tblVehicleTrips CW_TTP 59.00 0.00 tblVehicleTrips DV_TP 28.00 0.00 tblVehicleTrips DV_TP 5.00 0.00 tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tbl/ehicleTrips CW_TTP 33.00 0.00 tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips DV_TP 28.00 0.00 tbl/ehicleTrips DV_TP 5.00 0.00 tbl/ehicleTrips PB_TP 6.00 0.00 tbl/ehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tbl/ehicleTrips CW_TTP 59.00 0.00 tbl/ehicleTrips DV_TP 28.00 0.00 tbl/ehicleTrips DV_TP 5.00 0.00 tbl/ehicleTrips PB_TP 6.00 0.00 tbl/ehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CW_TL	16.60	0.00
tbl/ehicleTrips DV_TP 28.00 0.00 tbl/ehicleTrips DV_TP 5.00 0.00 tbl/ehicleTrips PB_TP 6.00 0.00 tbl/ehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CW_TTP	33.00	0.00
tbl/VehicleTrips DV_TP 5.00 0.00 tbl/VehicleTrips PB_TP 6.00 0.00 tbl/VehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips PB_TP 6.00 0.00 tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	DV_TP	28.00	0.00
tblVehicleTrips PB_TP 3.00 0.00	tblVehicleTrips	DV_TP	5.00	0.00
<u>i</u>	tblVehicleTrips	PB_TP	6.00	0.00
	tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips PR_TP 66.00 0.00	tblVehicleTrips	PR_TP	66.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	1.96	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.19	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	0.78	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	36,255,375.00	0.00
tblWater	OutdoorWaterUseRate	977,014.71	0.00

2.0 Emissions Summary

CalEEMod Version: CalEEMod.2020.4.0 Page 6 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr										MT	/yr				
2021	0.1251	1.3394	0.6879	1.8200e- 003	0.2596	0.0560	0.3155	0.0993	0.0519	0.1511	0.0000	161.0890	161.0890	0.0391	2.3500e- 003	162.7648
2022	1.0446	3.7213	2.8598	7.3700e- 003	0.1924	0.1602	0.3525	0.0518	0.1497	0.2015	0.0000	653.9833	653.9833	0.1221	0.0156	661.6803
Maximum	1.0446	3.7213	2.8598	7.3700e- 003	0.2596	0.1602	0.3525	0.0993	0.1497	0.2015	0.0000	653.9833	653.9833	0.1221	0.0156	661.6803

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	r tons/yr									MT	/yr					
2021	0.1251	1.3394	0.6879	1.8200e- 003	0.1192	0.0560	0.1752	0.0435	0.0519	0.0954	0.0000	161.0889	161.0889	0.0391	2.3500e- 003	162.7647
2022	1.0446	3.7213	2.8598	7.3700e- 003	0.1924	0.1602	0.3525	0.0518	0.1497	0.2015	0.0000	653.9828	653.9828	0.1221	0.0156	661.6797
Maximum	1.0446	3.7213	2.8598	7.3700e- 003	0.1924	0.1602	0.3525	0.0518	0.1497	0.2015	0.0000	653.9828	653.9828	0.1221	0.0156	661.6797

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	31.06	0.00	21.01	36.90	0.00	15.80	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	10-4-2021	1-3-2022	1.4628	1.4628
2	1-4-2022	4-3-2022	1.6620	1.6620
3	4-4-2022	7-3-2022	1.1330	1.1330
4	7-4-2022	9-30-2022	1.1081	1.1081
		Highest	1.6620	1.6620

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category					ton	s/yr					MT/yr						
Area	0.6468	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003	
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Waste	y 		,			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water	y 		,			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total	0.6468	3.0000e- 005	3.7200e- 003	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003	

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category					ton	s/yr					MT/yr						
Area	0.6468	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003	
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Waste	1	,	,			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water	1 1 1 1	,	,			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Total	0.6468	3.0000e- 005	3.7200e- 003	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003	

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Storm Drain Construction	Building Construction	1/3/2022	3/11/2022	5	50	
2	Site Preparation	Site Preparation	10/4/2021	10/15/2021	5	10	
3	Grading	Grading	10/16/2021	11/12/2021	5	20	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

4	Building Construction	Building Construction	11/13/2021	9/30/2022	5	230	
5		Paving	10/1/2022	10/28/2022	5	20	
	Architectural Coating	Architectural Coating	10/29/2022	11/25/2022	5	20	

Acres of Grading (Site Preparation Phase): 50

Acres of Grading (Grading Phase): 100

Acres of Paving: 2.02

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 235,170; Non-Residential Outdoor: 78,390; Striped Parking Area: 5,260

(Architectural Coating - sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	1	8.00	78	0.48
Storm Drain Construction	Cranes	1	8.00	231	0.29
Building Construction	Cranes	1	8.00	231	0.29
Storm Drain Construction	Forklifts	0	8.00	89	0.20
Grading	Excavators	1	8.00	158	0.38
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Grading	Graders	1	8.00	187	0.41
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Storm Drain Construction	Generator Sets	0	8.00	84	0.74
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Site Preparation	Rubber Tired Dozers	3	8.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Building Construction	Welders	1	8.00	46	0.45
Storm Drain Construction	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Storm Drain Construction	Welders	0	8.00	46	0.45
Storm Drain Construction	Air Compressors	1	8.00	78	0.48
Storm Drain Construction	Pumps	1	8.00	84	0.74
Storm Drain Construction	Plate Compactors	1	8.00	8	0.43
Storm Drain Construction	Trenchers	2	8.00	78	0.50
Site Preparation	Crawler Tractors	4	8.00	212	0.43
Grading	Crawler Tractors	3	8.00	212	0.43
Building Construction	Crawler Tractors	3	8.00	212	0.43

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Storm Drain	7	118.00	46.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	7	18.00	2.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	6	15.00	3.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	118.00	35.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	3.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	24.00	3.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Storm Drain Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr										MT/yr					
	0.0483	0.4438	0.3929	6.7000e- 004		0.0255	0.0255	 	0.0240	0.0240	0.0000	57.8334	57.8334	0.0125	0.0000	58.1455
Total	0.0483	0.4438	0.3929	6.7000e- 004		0.0255	0.0255		0.0240	0.0240	0.0000	57.8334	57.8334	0.0125	0.0000	58.1455

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.8300e- 003	0.0510	0.0172	2.1000e- 004	7.2700e- 003	7.0000e- 004	7.9700e- 003	2.1000e- 003	6.7000e- 004	2.7700e- 003	0.0000	20.1385	20.1385	2.1000e- 004	2.9900e- 003	21.0343
Worker	0.0103	8.0300e- 003	0.1004	2.8000e- 004	0.0324	1.6000e- 004	0.0326	8.6100e- 003	1.5000e- 004	8.7600e- 003	0.0000	25.4742	25.4742	6.8000e- 004	7.1000e- 004	25.7028
Total	0.0121	0.0591	0.1176	4.9000e- 004	0.0397	8.6000e- 004	0.0406	0.0107	8.2000e- 004	0.0115	0.0000	45.6127	45.6127	8.9000e- 004	3.7000e- 003	46.7371

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.2 Storm Drain Construction - 2022 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0483	0.4438	0.3929	6.7000e- 004		0.0255	0.0255		0.0240	0.0240	0.0000	57.8333	57.8333	0.0125	0.0000	58.1455
Total	0.0483	0.4438	0.3929	6.7000e- 004		0.0255	0.0255		0.0240	0.0240	0.0000	57.8333	57.8333	0.0125	0.0000	58.1455

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
V On a G	1.8300e- 003	0.0510	0.0172	2.1000e- 004	7.2700e- 003	7.0000e- 004	7.9700e- 003	2.1000e- 003	6.7000e- 004	2.7700e- 003	0.0000	20.1385	20.1385	2.1000e- 004	2.9900e- 003	21.0343
Worker	0.0103	8.0300e- 003	0.1004	2.8000e- 004	0.0324	1.6000e- 004	0.0326	8.6100e- 003	1.5000e- 004	8.7600e- 003	0.0000	25.4742	25.4742	6.8000e- 004	7.1000e- 004	25.7028
Total	0.0121	0.0591	0.1176	4.9000e- 004	0.0397	8.6000e- 004	0.0406	0.0107	8.2000e- 004	0.0115	0.0000	45.6127	45.6127	8.9000e- 004	3.7000e- 003	46.7371

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Site Preparation - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust	 				0.1168	0.0000	0.1168	0.0525	0.0000	0.0525	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0267	0.3035	0.1091	2.8000e- 004		0.0132	0.0132		0.0122	0.0122	0.0000	25.0157	25.0157	8.0900e- 003	0.0000	25.2180
Total	0.0267	0.3035	0.1091	2.8000e- 004	0.1168	0.0132	0.1301	0.0525	0.0122	0.0647	0.0000	25.0157	25.0157	8.0900e- 003	0.0000	25.2180

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr MT/yr														
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	2.0000e- 005	5.4000e- 004	1.7000e- 004	0.0000	6.0000e- 005	1.0000e- 005	7.0000e- 005	2.0000e- 005	1.0000e- 005	3.0000e- 005	0.0000	0.1795	0.1795	0.0000	3.0000e- 005	0.1875
Worker	3.4000e- 004	2.8000e- 004	3.3400e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	9.9000e- 004	2.6000e- 004	0.0000	2.7000e- 004	0.0000	0.8021	0.8021	2.0000e- 005	2.0000e- 005	0.8097
Total	3.6000e- 004	8.2000e- 004	3.5100e- 003	1.0000e- 005	1.0500e- 003	2.0000e- 005	1.0600e- 003	2.8000e- 004	1.0000e- 005	3.0000e- 004	0.0000	0.9815	0.9815	2.0000e- 005	5.0000e- 005	0.9972

CalEEMod Version: CalEEMod.2020.4.0 Page 14 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.3 Site Preparation - 2021 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust) 				0.0456	0.0000	0.0456	0.0205	0.0000	0.0205	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0267	0.3035	0.1091	2.8000e- 004		0.0132	0.0132		0.0122	0.0122	0.0000	25.0157	25.0157	8.0900e- 003	0.0000	25.2179
Total	0.0267	0.3035	0.1091	2.8000e- 004	0.0456	0.0132	0.0588	0.0205	0.0122	0.0326	0.0000	25.0157	25.0157	8.0900e- 003	0.0000	25.2179

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr MT/yr															
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	2.0000e- 005	5.4000e- 004	1.7000e- 004	0.0000	6.0000e- 005	1.0000e- 005	7.0000e- 005	2.0000e- 005	1.0000e- 005	3.0000e- 005	0.0000	0.1795	0.1795	0.0000	3.0000e- 005	0.1875
Worker	3.4000e- 004	2.8000e- 004	3.3400e- 003	1.0000e- 005	9.9000e- 004	1.0000e- 005	9.9000e- 004	2.6000e- 004	0.0000	2.7000e- 004	0.0000	0.8021	0.8021	2.0000e- 005	2.0000e- 005	0.8097
Total	3.6000e- 004	8.2000e- 004	3.5100e- 003	1.0000e- 005	1.0500e- 003	2.0000e- 005	1.0600e- 003	2.8000e- 004	1.0000e- 005	3.0000e- 004	0.0000	0.9815	0.9815	2.0000e- 005	5.0000e- 005	0.9972

CalEEMod Version: CalEEMod.2020.4.0 Page 15 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Grading - 2021

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.1133	0.0000	0.1133	0.0388	0.0000	0.0388	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0338	0.3990	0.1636	4.4000e- 004		0.0161	0.0161		0.0148	0.0148	0.0000	38.5005	38.5005	0.0125	0.0000	38.8118
Total	0.0338	0.3990	0.1636	4.4000e- 004	0.1133	0.0161	0.1293	0.0388	0.0148	0.0536	0.0000	38.5005	38.5005	0.0125	0.0000	38.8118

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	7.0000e- 005	1.6200e- 003	5.1000e- 004	1.0000e- 005	1.9000e- 004	3.0000e- 005	2.2000e- 004	5.0000e- 005	3.0000e- 005	9.0000e- 005	0.0000	0.5385	0.5385	1.0000e- 005	8.0000e- 005	0.5625
Worker	5.7000e- 004	4.6000e- 004	5.5700e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.3367	1.3367	4.0000e- 005	4.0000e- 005	1.3494
Total	6.4000e- 004	2.0800e- 003	6.0800e- 003	2.0000e- 005	1.8400e- 003	4.0000e- 005	1.8800e- 003	4.9000e- 004	4.0000e- 005	5.4000e- 004	0.0000	1.8752	1.8752	5.0000e- 005	1.2000e- 004	1.9119

CalEEMod Version: CalEEMod.2020.4.0 Page 16 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.4 Grading - 2021

<u>Mitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/уг		
Fugitive Dust					0.0442	0.0000	0.0442	0.0151	0.0000	0.0151	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0338	0.3990	0.1636	4.4000e- 004		0.0161	0.0161		0.0148	0.0148	0.0000	38.5004	38.5004	0.0125	0.0000	38.8117
Total	0.0338	0.3990	0.1636	4.4000e- 004	0.0442	0.0161	0.0603	0.0151	0.0148	0.0299	0.0000	38.5004	38.5004	0.0125	0.0000	38.8117

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr MT/yr														
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vollage	7.0000e- 005	1.6200e- 003	5.1000e- 004	1.0000e- 005	1.9000e- 004	3.0000e- 005	2.2000e- 004	5.0000e- 005	3.0000e- 005	9.0000e- 005	0.0000	0.5385	0.5385	1.0000e- 005	8.0000e- 005	0.5625
Worker	5.7000e- 004	4.6000e- 004	5.5700e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.3367	1.3367	4.0000e- 005	4.0000e- 005	1.3494
Total	6.4000e- 004	2.0800e- 003	6.0800e- 003	2.0000e- 005	1.8400e- 003	4.0000e- 005	1.8800e- 003	4.9000e- 004	4.0000e- 005	5.4000e- 004	0.0000	1.8752	1.8752	5.0000e- 005	1.2000e- 004	1.9119

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Building Construction - 2021 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0545	0.5944	0.3184	7.5000e- 004		0.0258	0.0258		0.0241	0.0241	0.0000	65.3196	65.3196	0.0178	0.0000	65.7645
Total	0.0545	0.5944	0.3184	7.5000e- 004		0.0258	0.0258		0.0241	0.0241	0.0000	65.3196	65.3196	0.0178	0.0000	65.7645

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1 011401	1.3700e- 003	0.0332	0.0104	1.1000e- 004	3.8700e- 003	6.5000e- 004	4.5200e- 003	1.1200e- 003	6.2000e- 004	1.7400e- 003	0.0000	10.9940	10.9940	1.3000e- 004	1.6400e- 003	11.4846
	7.8000e- 003	6.3900e- 003	0.0767	2.0000e- 004	0.0227	1.2000e- 004	0.0228	6.0300e- 003	1.1000e- 004	6.1400e- 003	0.0000	18.4025	18.4025	5.3000e- 004	5.4000e- 004	18.5770
Total	9.1700e- 003	0.0396	0.0871	3.1000e- 004	0.0266	7.7000e- 004	0.0273	7.1500e- 003	7.3000e- 004	7.8800e- 003	0.0000	29.3965	29.3965	6.6000e- 004	2.1800e- 003	30.0616

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Building Construction - 2021

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
	0.0545	0.5944	0.3184	7.5000e- 004		0.0258	0.0258	 	0.0241	0.0241	0.0000	65.3195	65.3195	0.0178	0.0000	65.7644		
Total	0.0545	0.5944	0.3184	7.5000e- 004		0.0258	0.0258		0.0241	0.0241	0.0000	65.3195	65.3195	0.0178	0.0000	65.7644		

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
1 *************************************	1.3700e- 003	0.0332	0.0104	1.1000e- 004	3.8700e- 003	6.5000e- 004	4.5200e- 003	1.1200e- 003	6.2000e- 004	1.7400e- 003	0.0000	10.9940	10.9940	1.3000e- 004	1.6400e- 003	11.4846		
	7.8000e- 003	6.3900e- 003	0.0767	2.0000e- 004	0.0227	1.2000e- 004	0.0228	6.0300e- 003	1.1000e- 004	6.1400e- 003	0.0000	18.4025	18.4025	5.3000e- 004	5.4000e- 004	18.5770		
Total	9.1700e- 003	0.0396	0.0871	3.1000e- 004	0.0266	7.7000e- 004	0.0273	7.1500e- 003	7.3000e- 004	7.8800e- 003	0.0000	29.3965	29.3965	6.6000e- 004	2.1800e- 003	30.0616		

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Building Construction - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.2726	2.9020	1.7228	4.1900e- 003		0.1242	0.1242		0.1160	0.1160	0.0000	363.5787	363.5787	0.0986	0.0000	366.0448
Total	0.2726	2.9020	1.7228	4.1900e- 003		0.1242	0.1242		0.1160	0.1160	0.0000	363.5787	363.5787	0.0986	0.0000	366.0448

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	5.4200e- 003	0.1515	0.0510	6.2000e- 004	0.0216	2.0800e- 003	0.0236	6.2200e- 003	1.9900e- 003	8.2100e- 003	0.0000	59.7589	59.7589	6.3000e- 004	8.8700e- 003	62.4171		
Worker	0.0402	0.0313	0.3914	1.0800e- 003	0.1265	6.4000e- 004	0.1271	0.0336	5.9000e- 004	0.0342	0.0000	99.3494	99.3494	2.6700e- 003	2.7700e- 003	100.2409		
Total	0.0456	0.1828	0.4424	1.7000e- 003	0.1480	2.7200e- 003	0.1507	0.0398	2.5800e- 003	0.0424	0.0000	159.1082	159.1082	3.3000e- 003	0.0116	162.6580		

CalEEMod Version: CalEEMod.2020.4.0 Page 20 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.5 Building Construction - 2022

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.2726	2.9020	1.7228	4.1900e- 003		0.1242	0.1242		0.1160	0.1160	0.0000	363.5783	363.5783	0.0986	0.0000	366.0444
Total	0.2726	2.9020	1.7228	4.1900e- 003		0.1242	0.1242		0.1160	0.1160	0.0000	363.5783	363.5783	0.0986	0.0000	366.0444

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category	tons/yr										MT/yr							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Vendor	5.4200e- 003	0.1515	0.0510	6.2000e- 004	0.0216	2.0800e- 003	0.0236	6.2200e- 003	1.9900e- 003	8.2100e- 003	0.0000	59.7589	59.7589	6.3000e- 004	8.8700e- 003	62.4171		
Worker	0.0402	0.0313	0.3914	1.0800e- 003	0.1265	6.4000e- 004	0.1271	0.0336	5.9000e- 004	0.0342	0.0000	99.3494	99.3494	2.6700e- 003	2.7700e- 003	100.2409		
Total	0.0456	0.1828	0.4424	1.7000e- 003	0.1480	2.7200e- 003	0.1507	0.0398	2.5800e- 003	0.0424	0.0000	159.1082	159.1082	3.3000e- 003	0.0116	162.6580		

CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Paving - 2022

<u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0110	0.1113	0.1458	2.3000e- 004		5.6800e- 003	5.6800e- 003		5.2200e- 003	5.2200e- 003	0.0000	20.0276	20.0276	6.4800e- 003	0.0000	20.1895
Paving	2.6500e- 003	 				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0137	0.1113	0.1458	2.3000e- 004		5.6800e- 003	5.6800e- 003		5.2200e- 003	5.2200e- 003	0.0000	20.0276	20.0276	6.4800e- 003	0.0000	20.1895

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	5.0000e- 005	1.3300e- 003	4.5000e- 004	1.0000e- 005	1.9000e- 004	2.0000e- 005	2.1000e- 004	5.0000e- 005	2.0000e- 005	7.0000e- 005	0.0000	0.5254	0.5254	1.0000e- 005	8.0000e- 005	0.5487
Worker	5.2000e- 004	4.1000e- 004	5.1000e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.2953	1.2953	3.0000e- 005	4.0000e- 005	1.3069
Total	5.7000e- 004	1.7400e- 003	5.5500e- 003	2.0000e- 005	1.8400e- 003	3.0000e- 005	1.8700e- 003	4.9000e- 004	3.0000e- 005	5.2000e- 004	0.0000	1.8207	1.8207	4.0000e- 005	1.2000e- 004	1.8556

CalEEMod Version: CalEEMod.2020.4.0 Page 22 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.6 Paving - 2022

<u>Mitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0110	0.1113	0.1458	2.3000e- 004		5.6800e- 003	5.6800e- 003		5.2200e- 003	5.2200e- 003	0.0000	20.0275	20.0275	6.4800e- 003	0.0000	20.1895
Paving	2.6500e- 003	 				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0137	0.1113	0.1458	2.3000e- 004		5.6800e- 003	5.6800e- 003		5.2200e- 003	5.2200e- 003	0.0000	20.0275	20.0275	6.4800e- 003	0.0000	20.1895

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5.0000e- 005	1.3300e- 003	4.5000e- 004	1.0000e- 005	1.9000e- 004	2.0000e- 005	2.1000e- 004	5.0000e- 005	2.0000e- 005	7.0000e- 005	0.0000	0.5254	0.5254	1.0000e- 005	8.0000e- 005	0.5487
Worker	5.2000e- 004	4.1000e- 004	5.1000e- 003	1.0000e- 005	1.6500e- 003	1.0000e- 005	1.6600e- 003	4.4000e- 004	1.0000e- 005	4.5000e- 004	0.0000	1.2953	1.2953	3.0000e- 005	4.0000e- 005	1.3069
Total	5.7000e- 004	1.7400e- 003	5.5500e- 003	2.0000e- 005	1.8400e- 003	3.0000e- 005	1.8700e- 003	4.9000e- 004	3.0000e- 005	5.2000e- 004	0.0000	1.8207	1.8207	4.0000e- 005	1.2000e- 004	1.8556

CalEEMod Version: CalEEMod.2020.4.0 Page 23 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.7 Architectural Coating - 2022 <u>Unmitigated Construction On-Site</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.6480					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.7300e- 003	0.0188	0.0242	4.0000e- 005		1.0900e- 003	1.0900e- 003		1.0900e- 003	1.0900e- 003	0.0000	3.4043	3.4043	2.2000e- 004	0.0000	3.4099
Total	0.6508	0.0188	0.0242	4.0000e- 005		1.0900e- 003	1.0900e- 003		1.0900e- 003	1.0900e- 003	0.0000	3.4043	3.4043	2.2000e- 004	0.0000	3.4099

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	5.0000e- 005	1.3300e- 003	4.5000e- 004	1.0000e- 005	1.9000e- 004	2.0000e- 005	2.1000e- 004	5.0000e- 005	2.0000e- 005	7.0000e- 005	0.0000	0.5254	0.5254	1.0000e- 005	8.0000e- 005	0.5487
Worker	8.4000e- 004	6.5000e- 004	8.1600e- 003	2.0000e- 005	2.6400e- 003	1.0000e- 005	2.6500e- 003	7.0000e- 004	1.0000e- 005	7.1000e- 004	0.0000	2.0725	2.0725	6.0000e- 005	6.0000e- 005	2.0911
Total	8.9000e- 004	1.9800e- 003	8.6100e- 003	3.0000e- 005	2.8300e- 003	3.0000e- 005	2.8600e- 003	7.5000e- 004	3.0000e- 005	7.8000e- 004	0.0000	2.5978	2.5978	7.0000e- 005	1.4000e- 004	2.6398

CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

3.7 Architectural Coating - 2022 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
7 ii oriii. Codairig	0.6480		 - 			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	2.7300e- 003	0.0188	0.0242	4.0000e- 005		1.0900e- 003	1.0900e- 003		1.0900e- 003	1.0900e- 003	0.0000	3.4043	3.4043	2.2000e- 004	0.0000	3.4099
Total	0.6508	0.0188	0.0242	4.0000e- 005		1.0900e- 003	1.0900e- 003		1.0900e- 003	1.0900e- 003	0.0000	3.4043	3.4043	2.2000e- 004	0.0000	3.4099

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	5.0000e- 005	1.3300e- 003	4.5000e- 004	1.0000e- 005	1.9000e- 004	2.0000e- 005	2.1000e- 004	5.0000e- 005	2.0000e- 005	7.0000e- 005	0.0000	0.5254	0.5254	1.0000e- 005	8.0000e- 005	0.5487
Worker	8.4000e- 004	6.5000e- 004	8.1600e- 003	2.0000e- 005	2.6400e- 003	1.0000e- 005	2.6500e- 003	7.0000e- 004	1.0000e- 005	7.1000e- 004	0.0000	2.0725	2.0725	6.0000e- 005	6.0000e- 005	2.0911
Total	8.9000e- 004	1.9800e- 003	8.6100e- 003	3.0000e- 005	2.8300e- 003	3.0000e- 005	2.8600e- 003	7.5000e- 004	3.0000e- 005	7.8000e- 004	0.0000	2.5978	2.5978	7.0000e- 005	1.4000e- 004	2.6398

CalEEMod Version: CalEEMod.2020.4.0 Page 25 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

CalEEMod Version: CalEEMod.2020.4.0 Page 26 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759
Other Asphalt Surfaces	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759
Parking Lot	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759
Unrefrigerated Warehouse-No Rail	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2020.4.0 Page 27 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	7/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated						0.0000	0.0000	i i	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		tons/yr											MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr		tons/yr											MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 31 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

5.3 Energy by Land Use - Electricity

<u>Mitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 32 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr											МТ	-/yr			
Mitigated	0.6468	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003
Unmitigated	0.6468	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr												MT	/yr		
Architectural Coating	0.0739					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Products	0.5725				 	0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
' "	3.5000e- 004	3.0000e- 005	3.7200e- 003	0.0000	 	1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003
Total	0.6468	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003

CalEEMod Version: CalEEMod.2020.4.0 Page 33 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr												MT	/yr		
Coating	0.0739					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.5725		 			0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	3.5000e- 004	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003
Total	0.6468	3.0000e- 005	3.7200e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	7.2200e- 003	7.2200e- 003	2.0000e- 005	0.0000	7.6900e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Total CO2	CH4	N2O	CO2e						
Category	MT/yr									
		0.0000	0.0000	0.0000						
Unmitigated	0.0000	0.0000	0.0000	0.0000						

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
City Park	0/0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 35 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
City Park	0/0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Category/Year

	Total CO2	CH4	N2O	CO2e						
	MT/yr									
ga.ca	0.0000	0.0000	0.0000	0.0000						
Unmitigated	0.0000	0.0000	0.0000	0.0000						

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e					
Land Use	tons	MT/yr								
City Park	0	0.0000	0.0000	0.0000	0.0000					
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000					
Parking Lot	0	0.0000	0.0000	0.0000	0.0000					
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000					
Total		0.0000	0.0000	0.0000	0.0000					

Date: 6/23/2021 12:05 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day Hours/Year Horse Pov	ver Load Factor Fuel Type
--	---------------------------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

CalEEMod Version: CalEEMod.2020.4.0 Page 38 of 38 Date: 6/23/2021 12:05 PM

220-280 East Nance Street (Construction - Unmitigated) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Equipment Type Number

11.0 Vegetation

This page intentionally left blank

APPENDIX 4.2:

CALEEMOD PROJECT OPERATIONAL MODEL OUTPUTS

CalEEMod Version: CalEEMod.2020.4.0 Page 1 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

220-280 East Nance Street (Operations)

Riverside-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	156.78	1000sqft	3.60	156,780.00	0
User Defined Industrial	156.78	User Defined Unit	0.00	0.00	0
Other Asphalt Surfaces	78.27	1000sqft	1.80	78,267.00	0
Parking Lot	55.00	Space	0.22	9,405.00	0
City Park	0.82	Acre	0.82	35,786.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.4Precipitation Freq (Days)28Climate Zone10Operational Year2022

Utility Company Southern California Edison

 CO2 Intensity
 516.36
 CH4 Intensity
 0.03
 N20 Intensity
 0.004

 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)
 (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted based on the RPS for the 2022 Opening Year

Land Use - Total Project area is +/- 6.4 acres

Construction Phase - Operations run only

Off-road Equipment - Hours are based on an 8-hour workday

Off-road Equipment - Operations run only

Trips and VMT -

Grading -

Architectural Coating -

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Vehicle Trips - Trip characteristics based on information provided in the Traffic Assessment

Energy Use - Natural gas will not be used

Water And Wastewater -

Solid Waste -

Construction Off-road Equipment Mitigation -

Operational Off-Road Equipment - Based on SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results (2014)

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis

Table Name	Column Name	Default Value New Value					
tblConstructionPhase	NumDays	10.00	0.00				
tblEnergyUse	NT24NG	0.03	0.00				
tblEnergyUse	T24NG	1.98	0.00				
tblFleetMix	HHD	0.02	0.00				
tblFleetMix	HHD	0.02	0.63				
tblFleetMix	LDA	0.53	0.57				
tblFleetMix	LDA	0.53	0.00				
tblFleetMix	LDT1	0.06	0.06				
tblFleetMix	LDT1	0.06	0.00				
tblFleetMix	LDT2	0.17	0.19				
tblFleetMix	LDT2	0.17	0.00				
tblFleetMix	LHD1	0.03	0.00				
tblFleetMix	LHD1	0.03	0.13				
tblFleetMix	LHD2	7.4220e-003	0.00				
tblFleetMix	LHD2	7.4220e-003	0.04				
tblFleetMix	MCY	0.02	0.03				
tblFleetMix	MCY	0.02	0.00				
tblFleetMix	MDV	0.14	0.16				
tblFleetMix	MDV	0.14	0.00				
tblFleetMix	MH :	5.7590e-003	0.00				

Date: 3/28/2022 12:30 PM

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	MH	5.7590e-003	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	MHD	0.01	0.21
tblFleetMix	OBUS	6.3000e-004	0.00
tblFleetMix	OBUS	6.3000e-004	0.00
tblFleetMix	SBUS	1.1020e-003	0.00
tblFleetMix	SBUS	1.1020e-003	0.00
tblFleetMix	UBUS	3.2100e-004	0.00
tblFleetMix	UBUS	3.2100e-004	0.00
tblLandUse	LandUseSquareFeet	22,000.00	9,405.00
tblLandUse	LandUseSquareFeet	35,719.20	35,786.00
tblLandUse	LotAcreage	0.49	0.22
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG
tblOperationalOffRoadEquipment	OperHorsePower	97.00	200.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	4.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	1.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.03
tblProjectCharacteristics	CO2IntensityFactor	390.98	516.36
tblVehicleTrips	CC_TTP	48.00	0.00
tblVehicleTrips	CNW_TTP	19.00	0.00
tblVehicleTrips	CW_TL	16.60	40.00
tblVehicleTrips	CW_TTP	33.00	0.00
tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	DV_TP	28.00	0.00
tblVehicleTrips	PB_TP	6.00	0.00
tblVehicleTrips	PR_TP	66.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.96	0.00
tblVehicleTrips	ST_TR	1.74	0.10
tblVehicleTrips	ST_TR	0.00	0.05
tblVehicleTrips	SU_TR	2.19	0.00
tblVehicleTrips	SU_TR	1.74	0.04
tblVehicleTrips	SU_TR	0.00	0.02
tblVehicleTrips	WD_TR	0.78	0.00
tblVehicleTrips	WD_TR	1.74	1.12
tblVehicleTrips	WD_TR	0.00	0.61

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									MT/yr						
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr											MT	/yr			
2021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	I II a la a a 4	
1	Highest	
1		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	-/yr		
Area	0.6470	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	85.9626	85.9626	4.9900e- 003	6.7000e- 004	86.2859
Mobile	0.1442	2.6938	1.4339	0.0140	0.6554	0.0372	0.6926	0.1813	0.0355	0.2168	0.0000	1,343.220 9	1,343.220 9	0.0224	0.1771	1,396.569 1
Offroad	0.0223	0.2313	0.1384	5.8000e- 004		7.9800e- 003	7.9800e- 003		7.3400e- 003	7.3400e- 003	0.0000	50.7921	50.7921	0.0164	0.0000	51.2028
Waste	1					0.0000	0.0000		0.0000	0.0000	29.9290	0.0000	29.9290	1.7688	0.0000	74.1478
Water	y					0.0000	0.0000		0.0000	0.0000	11.5022	113.1118	124.6139	1.1880	0.0288	162.8866
Total	0.8134	2.9252	1.5781	0.0146	0.6554	0.0452	0.7006	0.1813	0.0429	0.2241	41.4312	1,593.098 5	1,634.529 7	3.0005	0.2066	1,771.104 0

CalEEMod Version: CalEEMod.2020.4.0 Page 7 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Area	0.6470	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	85.9626	85.9626	4.9900e- 003	6.7000e- 004	86.2859
Mobile	0.1442	2.6938	1.4339	0.0140	0.6554	0.0372	0.6926	0.1813	0.0355	0.2168	0.0000	1,343.220 9	1,343.220 9	0.0224	0.1771	1,396.569 1
Offroad	0.0223	0.2313	0.1384	5.8000e- 004		7.9800e- 003	7.9800e- 003		7.3400e- 003	7.3400e- 003	0.0000	50.7921	50.7921	0.0164	0.0000	51.2028
Waste	1 1 1 1	,				0.0000	0.0000		0.0000	0.0000	29.9290	0.0000	29.9290	1.7688	0.0000	74.1478
Water	1 1 1 1	,				0.0000	0.0000		0.0000	0.0000	11.5022	113.1118	124.6139	1.1880	0.0288	162.8866
Total	0.8134	2.9252	1.5781	0.0146	0.6554	0.0452	0.7006	0.1813	0.0429	0.2241	41.4312	1,593.098 5	1,634.529 7	3.0005	0.2066	1,771.104 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

	Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	!	Site Preparation	Site Preparation	10/4/2021	10/3/2021	5	0	

CalEEMod Version: CalEEMod.2020.4.0 Page 8 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 2.02

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural

Coating - sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Rubber Tired Dozers	0	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Site Preparation	0	0.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

CalEEMod Version: CalEEMod.2020.4.0 Page 9 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2021

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr												MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 10 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2021 Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/уг		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2020.4.0 Page 11 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.1442	2.6938	1.4339	0.0140	0.6554	0.0372	0.6926	0.1813	0.0355	0.2168	0.0000	1,343.220 9	1,343.220 9	0.0224	0.1771	1,396.569 1
Unmitigated	0.1442	2.6938	1.4339	0.0140	0.6554	0.0372	0.6926	0.1813	0.0355	0.2168	0.0000	1,343.220 9	1,343.220 9	0.0224	0.1771	1,396.569 1

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
City Park	0.00	0.00	0.00		
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	176.00	15.22	6.08	551,824	551,824
User Defined Industrial	96.00	8.29	3.32	1,022,527	1,022,527
Total	272.00	23.52	9.41	1,574,351	1,574,351

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
City Park	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

CalEEMod Version: CalEEMod.2020.4.0 Page 12 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Parking Lot	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-No	16.60	8.40	6.90	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	8.40	6.90	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
City Park	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759
Other Asphalt Surfaces	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759
Parking Lot	0.531022	0.055789	0.171983	0.143721	0.027315	0.007422	0.011813	0.018850	0.000630	0.000321	0.024273	0.001102	0.005759
Unrefrigerated Warehouse-No Rail	0.572900	0.060200	0.185600	0.155100	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.026200	0.000000	0.000000
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.131100	0.035600	0.208300	0.625000	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2020.4.0 Page 13 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Electricity Mitigated	 					0.0000	0.0000		0.0000	0.0000	0.0000	85.9626	85.9626	4.9900e- 003	6.7000e- 004	86.2859
Electricity Unmitigated	,,			, 		0.0000	0.0000	,	0.0000	0.0000	0.0000	85.9626	85.9626	4.9900e- 003	6.7000e- 004	86.2859
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	,	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	y	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	/yr		
City Park	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity <u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	-/yr	
City Park	0	0.0000	0.0000	0.0000	0.0000
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	3291.75	0.7710	4.0000e- 005	1.0000e- 005	0.7739
Unrefrigerated Warehouse-No Rail	363730	85.1916	4.9500e- 003	6.6000e- 004	85.5120
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		85.9626	4.9900e- 003	6.7000e- 004	86.2859

CalEEMod Version: CalEEMod.2020.4.0 Page 17 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.3 Energy by Land Use - Electricity

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e					
Land Use	kWh/yr	MT/yr								
City Park	0	0.0000	0.0000	0.0000	0.0000					
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000					
Parking Lot	3291.75	0.7710	4.0000e- 005	1.0000e- 005	0.7739					
Unrefrigerated Warehouse-No Rail	363730	85.1916	4.9500e- 003	6.6000e- 004	85.5120					
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000					
Total		85.9626	4.9900e- 003	6.7000e- 004	86.2859					

6.0 Area Detail

6.1 Mitigation Measures Area

CalEEMod Version: CalEEMod.2020.4.0 Page 18 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr								MT/yr							
Mitigated	0.6470	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118
Unmitigated	0.6470	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr								MT/yr							
Architectural Coating	0.0739					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.5725				 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	5.3000e- 004	5.0000e- 005	5.7200e- 003	0.0000	 	2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118
Total	0.6470	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118

CalEEMod Version: CalEEMod.2020.4.0 Page 19 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	tons/yr								MT/yr							
Architectural Coating	0.0739					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.5725				 	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	5.3000e- 004	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118
Total	0.6470	5.0000e- 005	5.7200e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	0.0111	0.0111	3.0000e- 005	0.0000	0.0118

7.0 Water Detail

7.1 Mitigation Measures Water

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	Total CO2	CH4	N2O	CO2e							
Category		MT/yr									
Jane	124.6139	1.1880	0.0288	162.8866							
Unmitigated	124.6139	1.1880	0.0288	162.8866							

7.2 Water by Land Use <u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e						
Land Use	Mgal	MT/yr									
City Park	0 / 0.977015	2.5423	1.5000e- 004	2.0000e- 005	2.5519						
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000						
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000						
Unrefrigerated Warehouse-No Rail	36.2554 / 0	122.0716	1.1878	0.0288	160.3347						
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000						
Total		124.6139	1.1880	0.0288	162.8866						

CalEEMod Version: CalEEMod.2020.4.0 Page 21 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	-/yr	
City Park	0 / 0.977015	2.5423	1.5000e- 004	2.0000e- 005	2.5519
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	36.2554 / 0	122.0716	1.1878	0.0288	160.3347
User Defined Industrial	0/0	0.0000	0.0000	0.0000	0.0000
Total		124.6139	1.1880	0.0288	162.8866

8.0 Waste Detail

8.1 Mitigation Measures Waste

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Category/Year

	Total CO2	CH4	N2O	CO2e							
	MT/yr										
wiiigatod	29.9290	1.7688	0.0000	74.1478							
Jgatea	29.9290	1.7688	0.0000	74.1478							

8.2 Waste by Land Use <u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
City Park	0.07	0.0142	8.4000e- 004	0.0000	0.0352
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	147.37	29.9148	1.7679	0.0000	74.1126
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000
Total		29.9290	1.7688	0.0000	74.1478

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e						
Land Use	tons	MT/yr									
City Park	0.07	0.0142	8.4000e- 004	0.0000	0.0352						
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000						
Parking Lot	0	0.0000	0.0000	0.0000	0.0000						
Unrefrigerated Warehouse-No Rail	147.37	29.9148	1.7679	0.0000	74.1126						
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000						
Total		29.9290	1.7688	0.0000	74.1478						

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Tractors/Loaders/Backhoes	1	4.00	365	200	0.37	CNG

CalEEMod Version: CalEEMod.2020.4.0 Page 24 of 24 Date: 3/28/2022 12:30 PM

220-280 East Nance Street (Operations) - Riverside-South Coast County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type	ype tons/yr								MT/yr							
Tractors/Loaders/ Backhoes		0.2313	0.1384	5.8000e- 004		7.9800e- 003	7.9800e- 003		7.3400e- 003	7.3400e- 003	0.0000	50.7921	50.7921	0.0164	0.0000	51.2028
Total	0.0223	0.2313	0.1384	5.8000e- 004		7.9800e- 003	7.9800e- 003		7.3400e- 003	7.3400e- 003	0.0000	50.7921	50.7921	0.0164	0.0000	51.2028

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Ed	quipment Type	Number Hours/Day		Hours/Year	Horse Power	Load Factor	Fuel Type	

Boilers

١.						
	Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type	Number
----------------	--------

11.0 Vegetation

This page intentionally left blank

APPENDIX 4.3:

EMFAC2017

Source: EMFAC2017 (v1.0.3) Emissions Inventory

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2021 Season: Winter

Vehicle Classification: EMFAC2007 Categories

 $Units: miles/year\ for\ VMT,\ trips/year\ for\ Trips,\ tons/year\ for\ Emissions,\ 1000\ gallons/year\ for\ Fuel\ Consumption$

Region	CalYr	VehClass	MdlYr	Speed	Fuel	Population	VMT	Fuel_Consumption	Fuel_Consumption	Total Fuel	VMT	Total VMT	Miles per Gallon	Vehicle Class
Riverside (SC)	2021	HHDT	Aggregate	Aggregate	Gasoline	7.215312711	156564.4198	38.25506831	38255.06831	86456701.59	156564.4198	595234164.3	6.88	HHDT
Riverside (SC)	2021	HHDT	Aggregate	Aggregate	Diesel	15357.01372	592157261.1	85166.90356	85166903.56		592157261.1			
Riverside (SC)	2021	HHDT	Aggregate	Aggregate	Natural Gas	230.6715024	2920338.82	1251.542953	1251542.953		2920338.82			
Riverside (SC)	2021	LDA	Aggregate	Aggregate	Gasoline	563361.5495	8083887120	254587.4737	254587473.7	256132822.5	8083887120	8263991595	32.26	LDA
Riverside (SC)	2021	LDA	Aggregate	Aggregate	Diesel	5219.69302	78581205.2	1545.348817	1545348.817		78581205.2			
Riverside (SC)	2021	LDA	Aggregate	Aggregate	Electricity	7550.910561	101523269.4	0	0		101523269.4			
Riverside (SC)	2021	LDT1	Aggregate	Aggregate	Gasoline	58475.42768	770308510	28547.75481	28547754.81	28556638.57	770308510	773746237.8	27.10	LDT1
Riverside (SC)	2021	LDT1	Aggregate	Aggregate	Diesel	30.15411229	225614.4333	8.883759846	8883.759846		225614.4333			
Riverside (SC)	2021	LDT1	Aggregate	Aggregate	Electricity	231.4028554	3212113.379	0	0		3212113.379			
Riverside (SC)	2021	LDT2	Aggregate	Aggregate	Gasoline	177423.7963	2452547570	97441.36737	97441367.37	97837012.39	2452547570	2481105146	25.36	LDT2
Riverside (SC)	2021	LDT2	Aggregate	Aggregate	Diesel	927.6206127	15067450.74	395.6450194	395645.0194		15067450.74			
Riverside (SC)	2021	LDT2	Aggregate	Aggregate	Electricity	1222.520063	13490125.47	0	0		13490125.47			
Riverside (SC)	2021	LHDT1	Aggregate	Aggregate	Gasoline	15655.58333	166883920.1	15602.6605	15602660.5	24100051.01	166883920.1	342797030.6	14.22	LHDT1
Riverside (SC)	2021	LHDT1	Aggregate	Aggregate	Diesel	15786.61692	175913110.5	8497.390505	8497390.505		175913110.5			
Riverside (SC)	2021	LHDT2	Aggregate	Aggregate	Gasoline	2249.730422	24253749.74	2591.391247	2591391.247	6178053.789	24253749.74	92197899.91	14.92	LHDT2
Riverside (SC)	2021	LHDT2	Aggregate	Aggregate	Diesel	6056.795838	67944150.17	3586.662541	3586662.541		67944150.17			
Riverside (SC)	2021	MCY	Aggregate	Aggregate	Gasoline	27861.54696	63622093.85	1666.906017	1666906.017	1666906.017	63622093.85	63622093.85	38.17	MCY
Riverside (SC)	2021	MDV	Aggregate	Aggregate	Gasoline	154248.8417	1970923413	98199.46781	98199467.81	99817045.52	1970923413	2022622293	20.26	MDV
Riverside (SC)	2021	MDV	Aggregate	Aggregate	Diesel	3020.678509	45224708.11	1617.577708	1617577.708		45224708.11			
Riverside (SC)	2021	MDV	Aggregate	Aggregate	Electricity	571.2528957	6474171.562	0	0		6474171.562			
Riverside (SC)	2021	MH	Aggregate	Aggregate	Gasoline	5071.35352	13145200.34	2572.146896	2572146.896	3059617.602	13145200.34	18410276.52	6.02	MH
Riverside (SC)	2021	MH	Aggregate	Aggregate	Diesel	1991.436876	5265076.177	487.4707059	487470.7059		5265076.177			
Riverside (SC)	2021	MHDT	Aggregate	Aggregate	Gasoline	1296.813166	17219367.21	3325.119913	3325119.913	24500998.03	17219367.21	245615667.4	10.02	MHDT
Riverside (SC)	2021	MHDT	Aggregate	Aggregate	Diesel	12035.08457	228396300.2	21175.87812	21175878.12		228396300.2			
Riverside (SC)	2021	OBUS	Aggregate	Aggregate	Gasoline	440.9352614	5121129.195	1006.036575	1006036.575	1527485.651	5121129.195	9637259.63	6.31	OBUS
Riverside (SC)	2021	OBUS	Aggregate	Aggregate	Diesel	224.3920222	4516130.435	521.4490754	521449.0754		4516130.435			
Riverside (SC)	2021	SBUS	Aggregate	Aggregate	Gasoline	406.9191801	4756170.117	539.4297178	539429.7178	1683942.288	4756170.117	13371616.2	7.94	SBUS
Riverside (SC)	2021	SBUS	Aggregate	Aggregate	Diesel	832.5656654	8615446.079	1144.512571	1144512.571		8615446.079			
Riverside (SC)	2021	UBUS	Aggregate	Aggregate	Gasoline	163.4848401	7526825.951	1221.774492	1221774.492	3288874.057	7526825.951	16276282.14	4.95	UBUS
Riverside (SC)	2021	UBUS	Aggregate	Aggregate	Diesel	1.105797941	19153.01246	2.147195041	2147.195041		19153.01246			
Riverside (SC)	2021	UBUS	Aggregate	Aggregate	Electricity	0.058469431	409.3068597	0	0		409.3068597			
Riverside (SC)	2021	UBUS	Aggregate	Aggregate	Natural Gas	202.9076535	8729893.87	2064.95237	2064952.37		8729893.87			

Source: EMFAC2017 (v1.0.3) Emissions Inventory

Region Type: Sub-Area Region: Riverside (SC) Calendar Year: 2022 Season: Winter

Vehicle Classification: EMFAC2007 Categories

 $Units: miles/year\ for\ VMT,\ trips/year\ for\ Trips,\ tons/year\ for\ Emissions,\ 1000\ gallons/year\ for\ Fuel\ Consumption$

Region	CalYr	VehClass	MdlYr	Speed	Fuel	Population	VMT	Fuel Consumption	Fuel Consumption	Total Fuel	VMT	Total VMT	Miles per Gallon	Vehicle Class
Riverside (SC)	2022	HHDT	Aggregate	Aggregate	Gasoline	6.576938112	153457.8614	36.38415183	36384.15183	86371003.18	153457.8614	609730316.4	7.06	HHDT
Riverside (SC)	2022	HHDT	Aggregate	Aggregate	Diesel	15714.36952	606232799.9	84926.15062	84926150.62		606232799.9			
Riverside (SC)	2022	HHDT	Aggregate	Aggregate	Natural Gas	263.7933161	3344058.656	1408.468403	1408468.403		3344058.656			
Riverside (SC)	2022	LDA	Aggregate	Aggregate	Gasoline	581991.6725	8224182944	252424.918	252424918	254020959.6	8224182944	8437175826	33.21	LDA
Riverside (SC)	2022	LDA	Aggregate	Aggregate	Diesel	5627.648407	83145410.99	1596.041638	1596041.638		83145410.99			
Riverside (SC)	2022	LDA	Aggregate	Aggregate	Electricity	9519.079074	129847470.9	0	0		129847470.9			
Riverside (SC)	2022	LDT1	Aggregate	Aggregate	Gasoline	60037.51621	784889608.4	28333.3267	28333326.7	28341435.49	784889608.4	790148273.6	27.88	LDT1
Riverside (SC)	2022	LDT1	Aggregate	Aggregate	Diesel	27.76404389	208778.8044	8.108788608	8108.788608		208778.8044			
Riverside (SC)	2022	LDT1	Aggregate	Aggregate	Electricity	356.2042589	5049886.408	0	0		5049886.408			
Riverside (SC)	2022	LDT2	Aggregate	Aggregate	Gasoline	182118.8677	2486397650	95398.35878	95398358.78	95823542.01	2486397650	2521171664	26.31	LDT2
Riverside (SC)	2022	LDT2	Aggregate	Aggregate	Diesel	1054.483634	16665909.69	425.1832295	425183.2295		16665909.69			
Riverside (SC)	2022	LDT2	Aggregate	Aggregate	Electricity	1677.633962	18108104.13	0	0		18108104.13			
Riverside (SC)	2022	LHDT1	Aggregate	Aggregate	Gasoline	15417.55767	163201148.4	15107.93372	15107933.72	23387252.71	163201148.4	336574881.3	14.39	LHDT1
Riverside (SC)	2022	LHDT1	Aggregate	Aggregate	Diesel	15837.49513	173373732.9	8279.318992	8279318.992		173373732.9			
Riverside (SC)	2022	LHDT2	Aggregate	Aggregate	Gasoline	2252.42518	24026208.75	2541.981315	2541981.315	6051705.316	24026208.75	91253583.76	15.08	LHDT2
Riverside (SC)	2022	LHDT2	Aggregate	Aggregate	Diesel	6123.275766	67227375.01	3509.724001	3509724.001		67227375.01			
Riverside (SC)	2022	MCY	Aggregate	Aggregate	Gasoline	28171.90267	62796448.34	1647.310432	1647310.432	1647310.432	62796448.34	62796448.34	38.12	MCY
Riverside (SC)	2022	MDV	Aggregate	Aggregate	Gasoline	154199.5457	1942294285	93915.8047	93915804.7	95572662.75	1942294285	2000039012	20.93	MDV
Riverside (SC)	2022	MDV	Aggregate	Aggregate	Diesel	3261.4865	47596581.84	1656.858052	1656858.052		47596581.84			
Riverside (SC)	2022	MDV	Aggregate	Aggregate	Electricity	916.717804	10148145.12	0	0		10148145.12			
Riverside (SC)	2022	MH	Aggregate	Aggregate	Gasoline	4849.122996	12414677.16	2406.265663	2406265.663	2875808.02	12414677.16	17521753.84	6.09	MH
Riverside (SC)	2022	MH	Aggregate	Aggregate	Diesel	1986.085476	5107076.677	469.5423575	469542.3575		5107076.677			
Riverside (SC)	2022	MHDT	Aggregate	Aggregate	Gasoline	1326.926938	17674320.91	3357.765795	3357765.795	24043525.74	17674320.91	248635402	10.34	MHDT
Riverside (SC)	2022	MHDT	Aggregate	Aggregate	Diesel	11907.6705	230961081.1	20685.75995	20685759.95		230961081.1			
Riverside (SC)	2022	OBUS	Aggregate	Aggregate	Gasoline	438.8357563	4993518.807	967.2151523	967215.1523	1483214.146	4993518.807	9603790.146	6.47	OBUS
Riverside (SC)	2022	OBUS	Aggregate	Aggregate	Diesel	222.2197269	4610271.339	515.9989934	515998.9934		4610271.339			
Riverside (SC)	2022	SBUS	Aggregate	Aggregate	Gasoline	417.9532809	4815312.165	544.3079433	544307.9433	1703031.585	4815312.165	13640990.38	8.01	SBUS
Riverside (SC)	2022	SBUS	Aggregate	Aggregate	Diesel	852.548169	8825678.217	1158.723641	1158723.641		8825678.217			
Riverside (SC)	2022	UBUS	Aggregate	Aggregate	Gasoline	164.4551683	7571499.764	1228.230604	1228230.604	3307605.898	7571499.764	16372886.42	4.95	UBUS
Riverside (SC)	2022	UBUS	Aggregate	Aggregate	Diesel	1.105797941	19153.01246	2.147195041	2147.195041		19153.01246			
Riverside (SC)	2022	UBUS	Aggregate	Aggregate	Electricity	0.058469431	409.3068597	0	0		409.3068597			
Riverside (SC)	2022	UBUS	Aggregate	Aggregate	Natural Gas	204.1188773	8781824.334	2077.2281	2077228.1		8781824.334			

This page intentionally left blank

