

PRELIMINARY HYDROLOGY CALCULATIONS

FOR

NEVADA STREET INDUSTRIAL DEVELOPMENT

COUNTY OF SAN BERNARDINO, CALIFORNIA

PREPARED FOR

LDC INDUSTRIAL REALTY LLC

555 N. El Camino Real Suite A456 San Clemente, CA 92672 (949) 226-4601

DECEMBER 17, 2021

JOB NO. 4013

PREPARED BY

THIENES ENGINEERING 14349 FIRESTONE BOULEVARD LA MIRADA, CALIFORNIA 90638 P. (714) 521-4811 FAX. (714) 521-4173

PRELIMINARY HYDROLOGY CALCULATIONS

FOR

NEVADA STREET INDUSTRIAL DEVELOPMENT

PREPARED UNDER THE SUPERVISION OF

REINHARD STENZEL

DATE:

R.C.E. 56155

EXP. 12/31/2022

INTRODUCTION

A: PROJECT LOCATION

The project site is located on the east side of Nevada Street south of the Santa Ana River in the County of San Bernardino. Please see figure 1 for vicinity map.

B: STUDY PURPOSE

The purpose of this study is to determine the 100-year peak flow rate for the project site that will drain to the existing 84" storm drain in Nevada Street.

C: PROJECT STAFF:

Thienes Engineering staff involved in this study include:

Reinhard Stenzel James Wickenhaueser

VICINITY MAP

FOR

NEVADA STREET INDUSTRIAL DEVELOPMENT COUNTY OF SAN BERNARDINO

DISCUSSION

Project Description

The project site encompasses approximately 17.70 acres. Proposed improvements include one warehouse type building that is approximately 378,540 square feet. There is a truck yard on the north side of the building and vehicle parking along the east, south, and west side. There will be landscaping throughout the project.

Existing Condition

The site is undeveloped with general slopes to the northwest. The site sheet flows into Nevada Street. Nevada Street is partially improved with asphalt curbs. There is a small existing catch basin in Nevada Street north of the project site which collects some runoff from the street. The majority of flows surface drain towards the Santa Ana River. The 100-year peak flow rate from the existing condition of the project site is approximately 21.4 cfs.

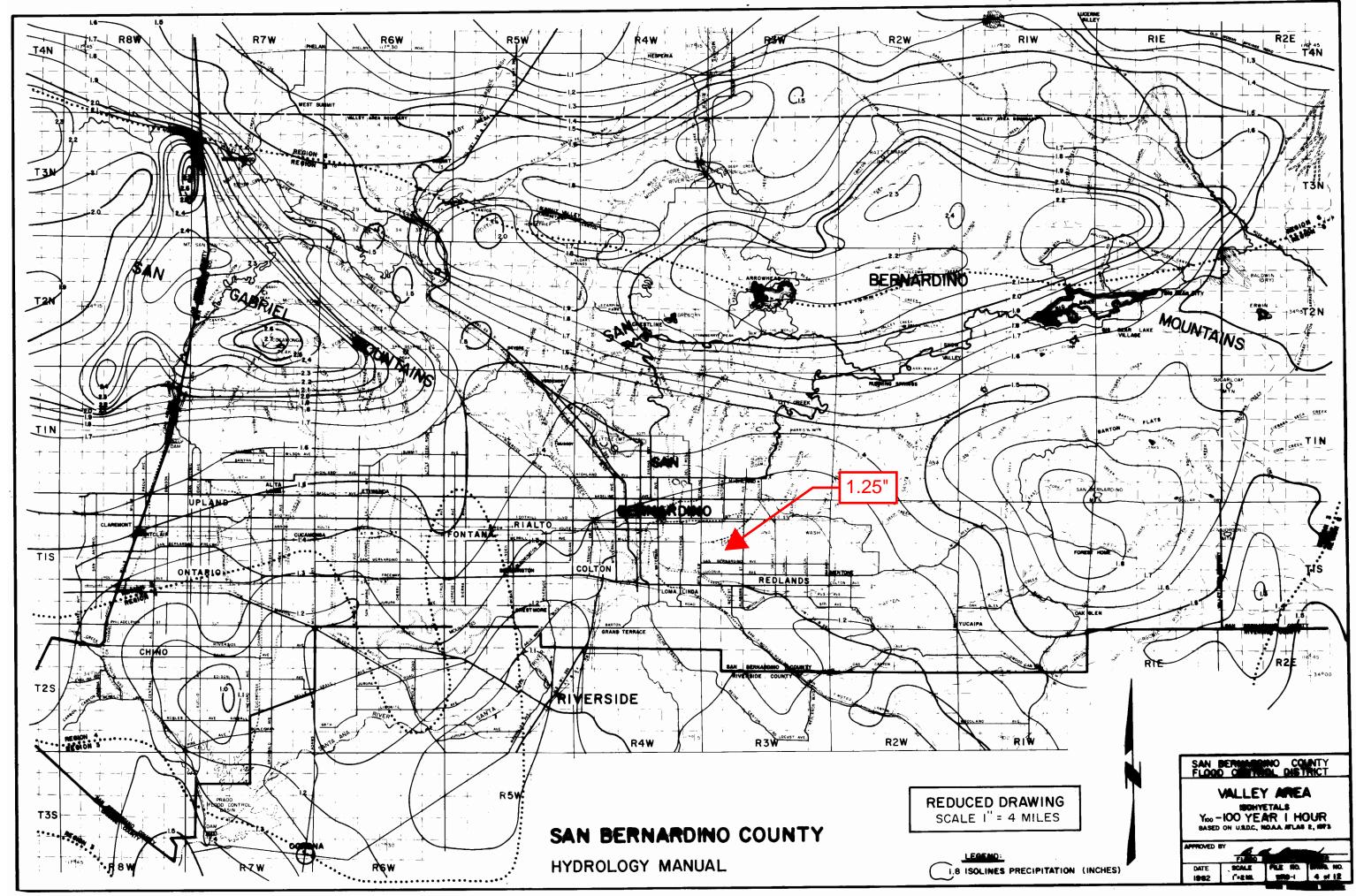
There is an existing 84" storm drain in Nevada Street flowing northerly towards the Santa Ana River. This is a 100-year drain designed to carry the developed condition runoff. The proposed project spans subarea A-20.2 and a portion of A-20.1 as defined in the Ultimate Hydrology Map prepared by Webb (see appendix B).

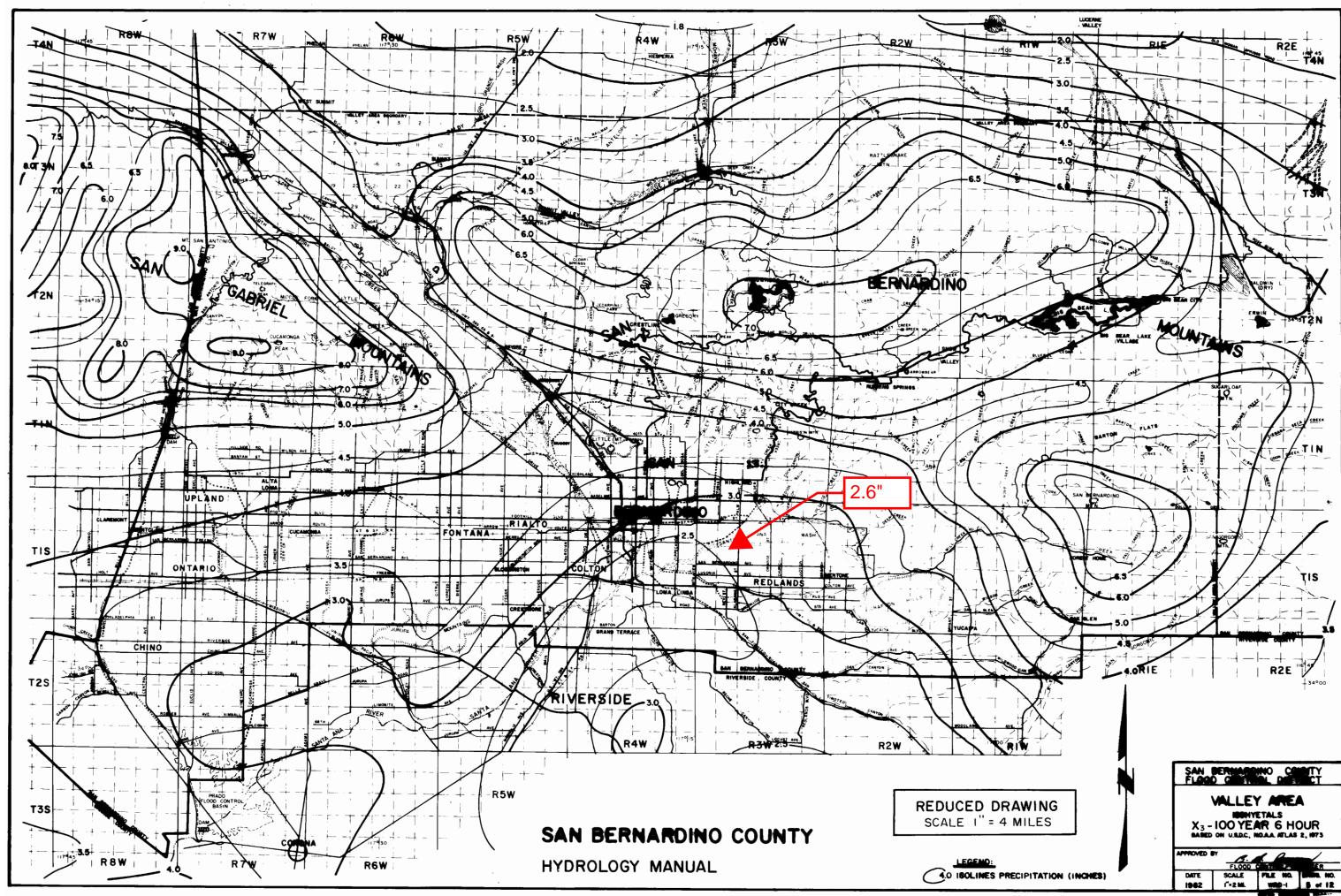
See Appendix "B" for existing condition hydrology calculations and Appendix "C" for existing condition hydrology map.

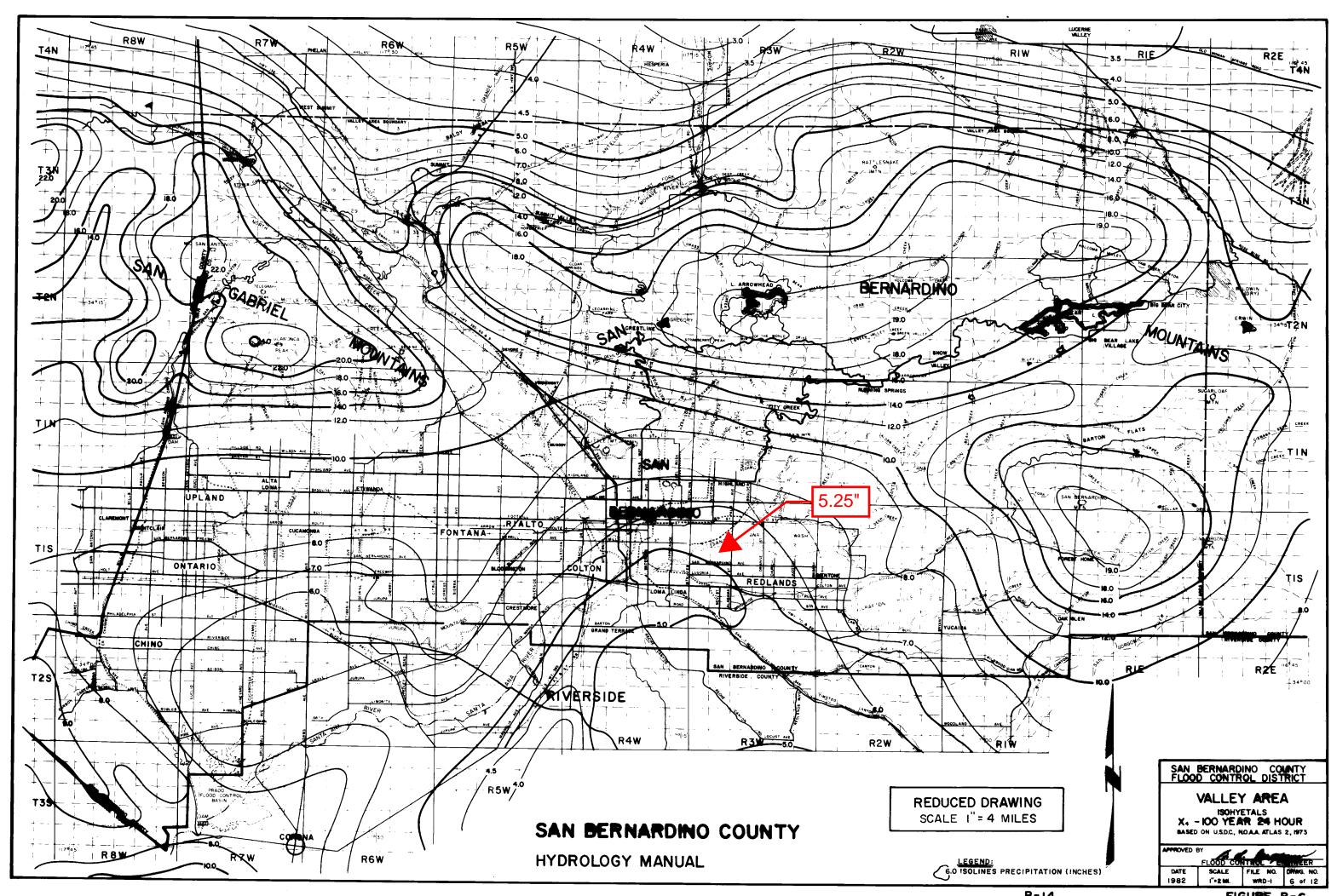
Proposed Condition

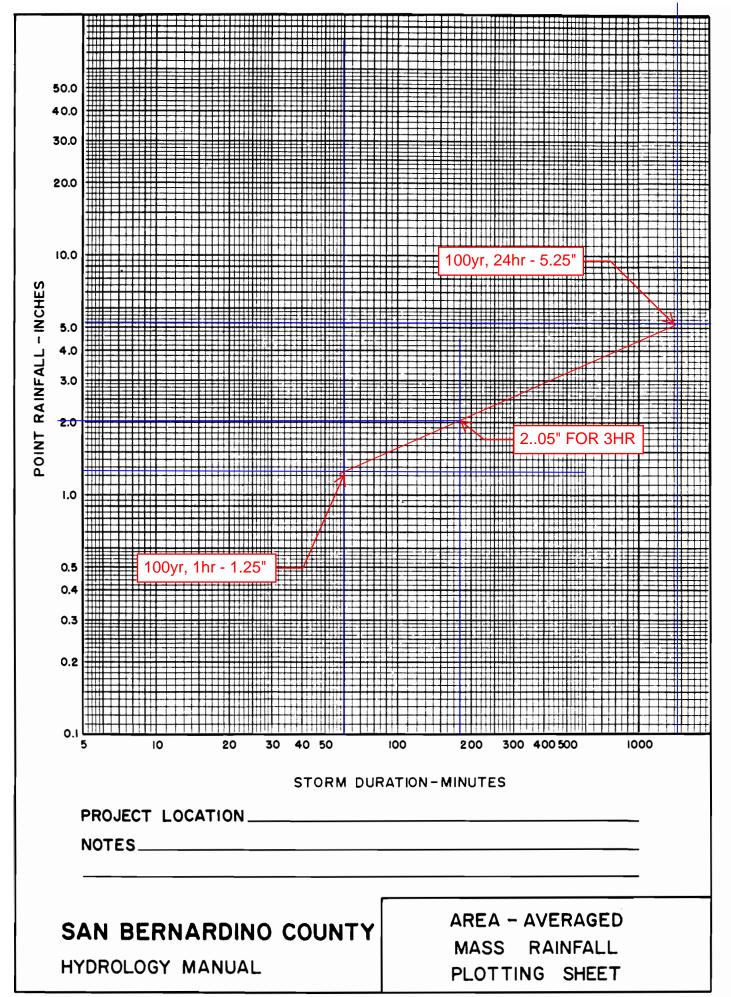
The southerly portion of the building and vehicle parking along the south property line will drain westerly through the auto parking area towards a catch basin in the parking area (nodes 100-102). Runoff will enter a private storm drain and continue westerly through the parking lot. The westerly portion of the parking lot will drain to a catch basin at the southwest corner of the property (node 103). The storm drain will convey storm water northerly through the auto drive isle towards the northwest driveway. Runoff from the westerly auto drive isle will be collected in catch basins and added to the drain (nodes 104-106).

Runoff from the northerly portion of the building, easterly auto parking area, and the truck yard will surface flow westerly through the truck yard towards a catch basin in the northwest corner of the truck yard (nodes 200-202). A storm drain will convey this runoff westerly towards the confluence with storm water from the southerly portion of the project. The combined flows will continue north towards and existing 36" stub built per plan SD 1867. This is a 100-year storm drain so no storm water detention will be required. The 100-year peak runoff will be approximately 43.1 cfs.

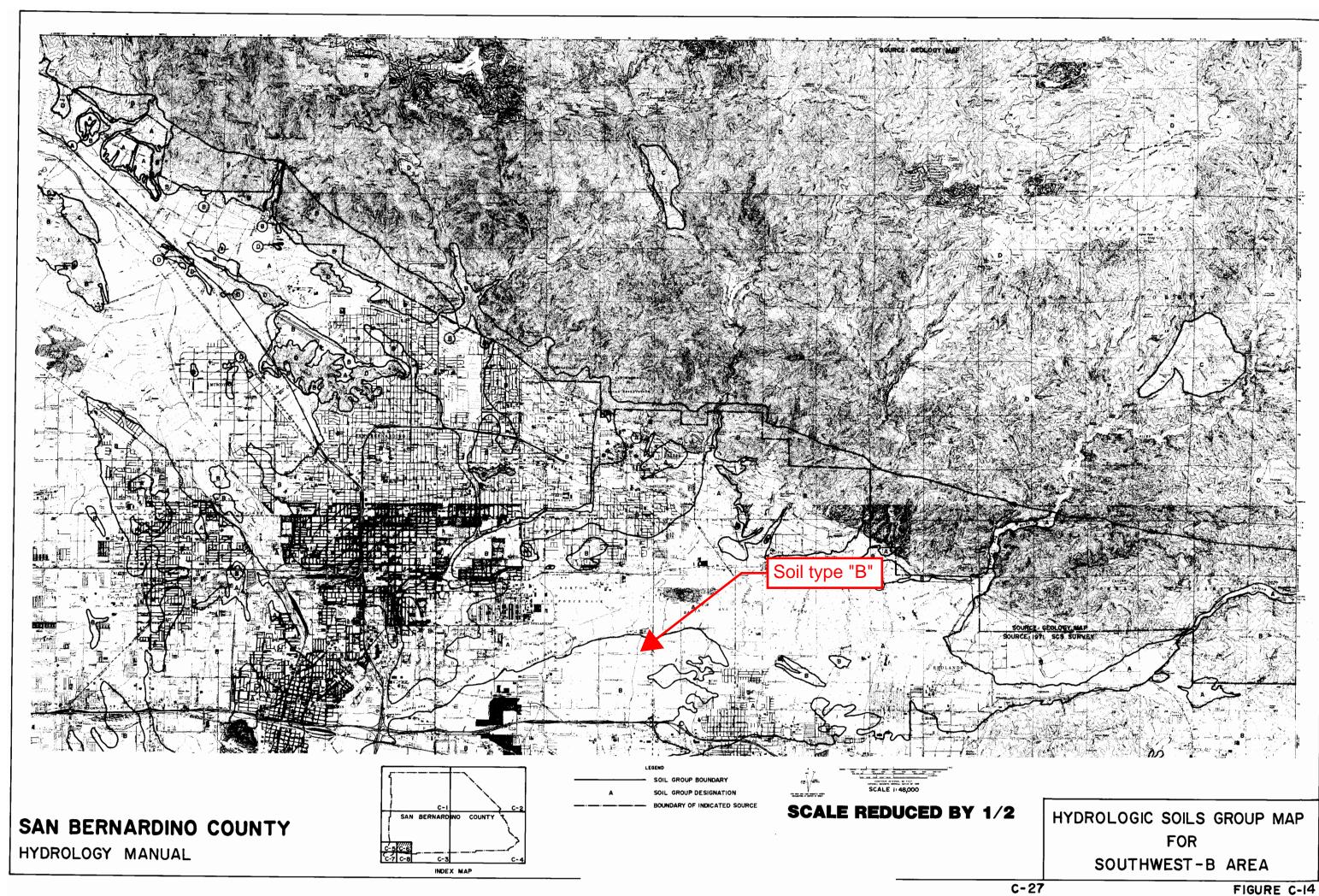

See Appendix "B" for proposed condition hydrology calculations and Appendix "C" for proposed condition hydrology map.

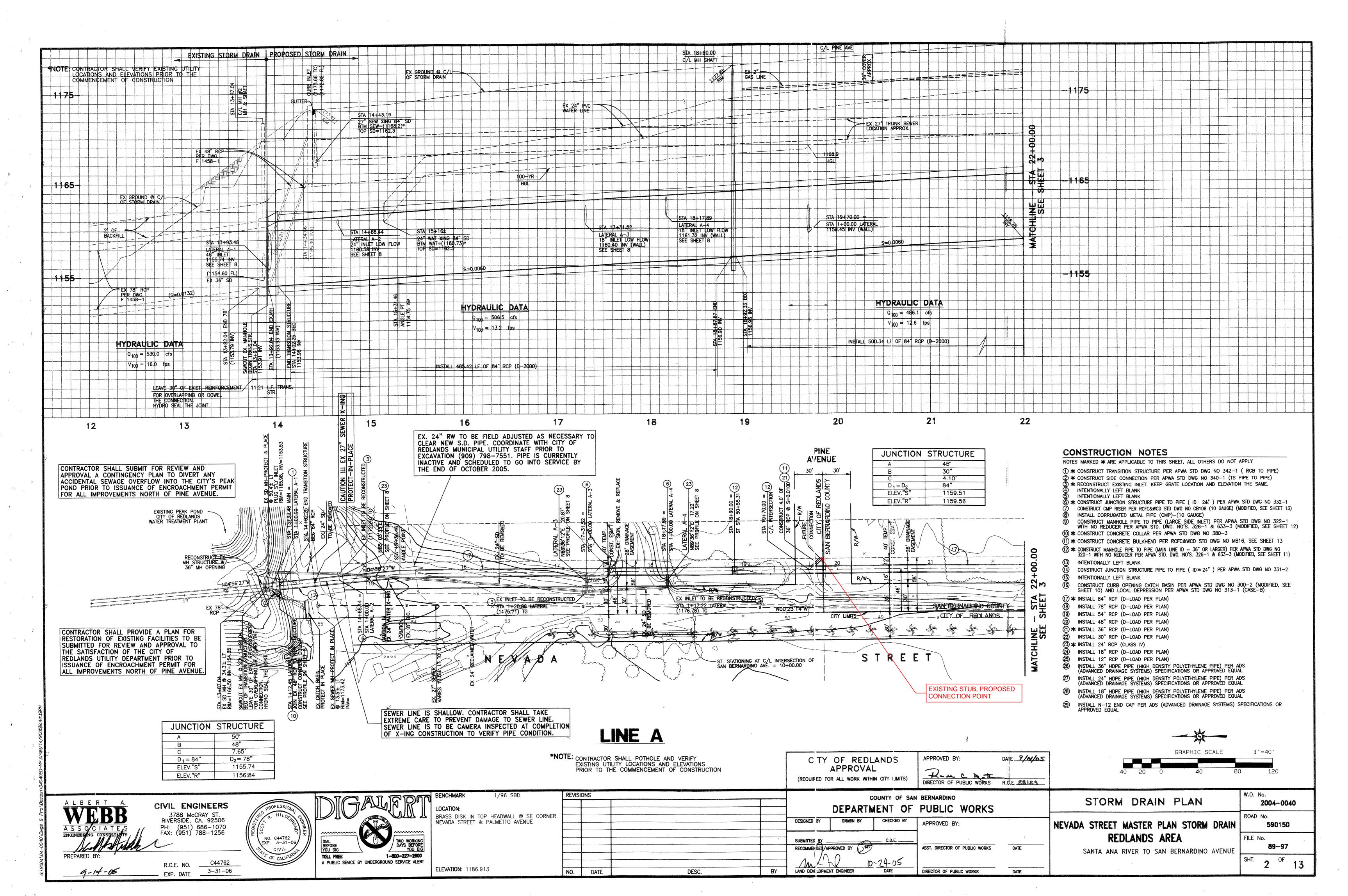

Methodology


Hydrology calculations were computed using the San Bernardino County Rational Method computer program (by AES Software). The site is soil type is "B" per the San Bernardino County Hydrology Manual. See Appendix "A" for reference materials.

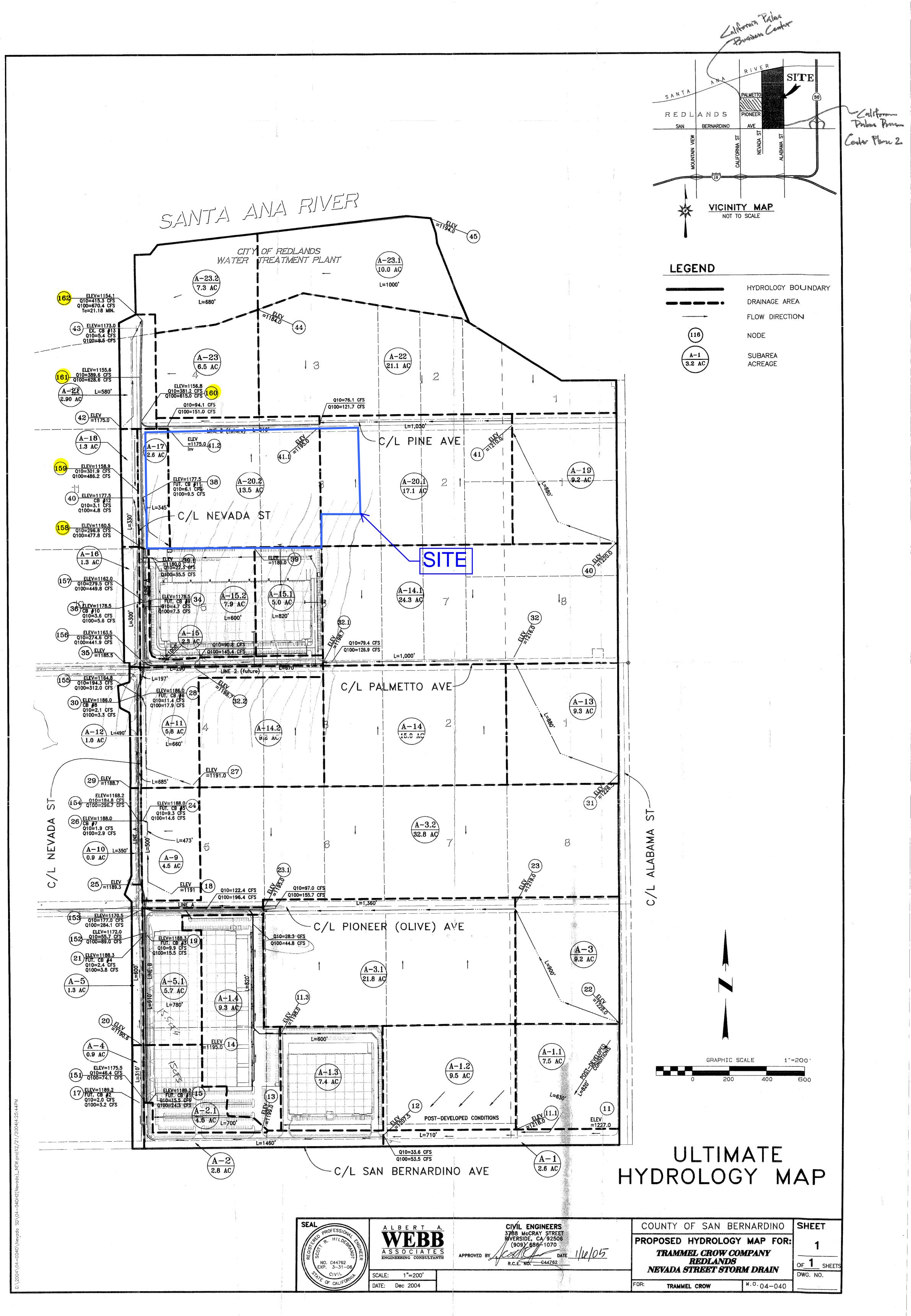

APPENDIX A


REFERENCE MATERIALS





HYDROLOGY MANUAL


CURVES CALCULATION SHEET

APPENDIX B

HYDROLOGY CALCULATIONS


```
Process from Point/Station 157.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.300(Ac.)
Runoff from this stream = 7.323 (CFS)
Time of concentration = 10.51 min.
Rainfall intensity = 3.611(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                            35.000 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 300.000(Ft.)
Top (of initial area) elevation = 1185.500(Ft.)
Bottom (of initial area) elevation = 1178.500(Ft.)
Difference in elevation = 7.000(Ft.)
Slope = 0.02333 \text{ s(%)} = 2.33
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.311 min.
Rainfall intensity = 4.905(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.887
Subarea runoff = 5.653 (CFS)
Total initial stream area =
                              1.300 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 157.000 to Point/Station 157.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 1.300(Ac.)
Runoff from this stream = 5.653 (CFS)
Time of concentration = 6.31 min.
Rainfall intensity = 4.905(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                   TC
                                Rainfall Intensity
        (CFS)
No.
                   (min)
                                       (In/Hr)
```

```
7.323 10.51
                                     3.611
3
       5.653
                 6.31
                                     4.905
Qmax(1) =
        1.000 * 1.000 * 441.866) + 0.691 * 1.000 * 7.323) + 0.506 * 1.000 * 5.653) + =
                                           449.780
Qmax(2) =
        1.448 * 0.548 * 441.866) +
1.000 * 1.000 * 7.323) +
0.732 * 1.000 * 5.653) +
                            5,653) + =
                                          361.916
Qmax(3) =
        1.978 * 0.329 * 441.866) +
        1.366 * 0.600 * 7.323) +
1.000 * 1.000 * 5.653) + = 298.953
Total of 3 streams to confluence:
Flow rates before confluence point:
     441.866 7.323
                          5.653
Maximum flow rates at confluence using above data:
     449.780 361.916 298.953
Area of streams before confluence:
     183.376 2.300 1.300
Effective area values after confluence:
     186.976 104.027 62.960
Results of confluence:
Total flow rate = 449.780(CFS)
Time of concentration = 19.200 min.
Effective stream area after confluence = 186.976(Ac.)
Stream Area average Pervious fraction(Ap) = 0.100
Stream Area average soil loss rate(Fm) = 0.073(In/Hr)
Study area (this main stream) = 186.98(Ac.)
Process from Point/Station 157.000 to Point/Station 158.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1162.000(Ft.)
Downstream point/station elevation = 1160.500(Ft.)
Pipe length = 300.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 449.780(CFS)
Nearest computed pipe diameter = 84.00(In.)
Calculated individual pipe flow = 449.780(CFS)
Normal flow depth in pipe = 68.53(In.)
Flow top width inside pipe = 65.12(In.)
Critical Depth = 66.87(In.)
Pipe flow velocity = 13.38(Ft/s)
Travel time through pipe = 0.37 min.
Time of concentration (TC) = 19.57 min.
Process from Point/Station 158.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 186.976(Ac.)
Runoff from this stream = 449.780 (CFS)
```

Time of concentration = 19.57 min.

```
Rainfall intensity = 2.487(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                              32.100 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio (Ap) = 0.1000 Max loss rate (Fm) = 0.073 (In/Hr)
Initial subarea data:
Initial area flow distance = 820.000(Ft.)
Top (of initial area) elevation = 1198.700(Ft.)
Bottom (of initial area) elevation = 1189.000(Ft.)
Difference in elevation = 9.700 (Ft.)
Slope = 0.01183 s(%) = 1.18
TC = k(0.304) * [(length^3) / (elevation change)]^0.2
Initial area time of concentration = 10.810 min.
Rainfall intensity = 3.551(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.881
Subarea runoff = 15.651(CFS)
Total initial stream area =
                                5.000(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 39.000 to Point/Station 39.100
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1189.000(Ft.)
Downstream point elevation = 1180.000(Ft.)
Channel length thru subarea = 600.000(Ft.)
Channel base width = 5.000(Ft.)
Slope or 'Z' of left channel bank = 50.000
Slope or 'Z' of right channel bank = 50.000
Estimated mean flow rate at midpoint of channel = 28.016(CFS)
Manning's 'N' = 0.015
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 28.016(CFS)
Depth of flow = 0.329(Ft.), Average velocity = 3.959(Ft/s)
Channel flow top width = 37.949(Ft.)
Flow Velocity = 3.96(Ft/s)
Travel time = 2.53 min.
Time of concentration = 13.34 min.
Critical depth = 0.408(Ft.)
Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
```

```
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Rainfall intensity = 3.131(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) (Q=KCIA) is C = 0.879
Subarea runoff = 19.848 (CFS) for 7.900 (Ac.)
Total runoff = 35.500 (CFS)
Effective area this stream = 12.90 (Ac.)
Total Study Area (Main Stream No. 1) = 201.20(Ac.)
Area averaged Fm value = 0.073(In/Hr)
Process from Point/Station 158.000 to Point/Station 158.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 12.900(Ac.)
Runoff from this stream = 35.500(CFS)
Time of concentration = 13.34 \text{ min.}
Rainfall intensity = 3.131(\text{In/Hr})
Area averaged loss rate (Fm) = 0.0734 (In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate TC No. (CFS) (min)
                                   Rainfall Intensity
                                          (In/Hr)
1 449.780 19.57
2 35.500 13.34
                                   2,487
                                   3.131
Qmax(1) =
        1.000 * 1.000 * 449.780) + 0.789 * 1.000 * 35.500) + =
Qmax(2) =
        1.267 * 0.681 * 449.780) +
        1.000 * 1.000 * 35.500) + = 423.685
Total of 2 streams to confluence:
Flow rates before confluence point:
    449.780 35.500
Maximum flow rates at confluence using above data:
     477.803 423.685
Area of streams before confluence:
     186.976 12.900
Effective area values after confluence:
     199.876 140.284
Results of confluence:
Total flow rate = 477.803(CFS)
Time of concentration = 19.573 min.
Effective stream area after confluence =
                                       199.876 (Ac.)
Stream Area average Pervious fraction(Ap) = 0.100
Stream Area average soil loss rate(Fm) = 0.073(In/Hr)
Study area (this main stream) = 199.88(Ac.)
Process from Point/Station 158.000 to Point/Station 159.000
```

**** PIPEFLOW TRAVEL TIME (Program estimated size) ****

```
Upstream point/station elevation = 1160.500(Ft.)
Downstream point/station elevation = 1158.900(Ft.)
Pipe length = 350.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 477.803(CFS)
Nearest computed pipe diameter = 87.00(In.)
Calculated individual pipe flow = 477.803 (CFS)
Normal flow depth in pipe = 71.91(In.)
Flow top width inside pipe = 65.89(In.)
Critical Depth = 68.38(In.)
Pipe flow velocity = 13.09(Ft/s)
Travel time through pipe = 0.45 min.
Time of concentration (TC) = 20.02 min.
Process from Point/Station 159.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 199.876(Ac.)
Runoff from this stream = 477.803(CFS)
Time of concentration = 20.02 min.
Rainfall intensity = 2.454(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                            39.100 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000
                          Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 345.000(Ft.)
Top (of initial area) elevation = 1180.000(Ft.)
Bottom (of initial area) elevation = 1177.500(Ft.)
Difference in elevation = 2.500(Ft.)
Slope = 0.00725 \text{ s(%)} =
                           0.72
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.433 min.
Rainfall intensity = 4.122(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.884
Subarea runoff =
                  9.474 (CFS)
Total initial stream area =
                               2.600 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 159.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
```

```
Stream flow area = 2.600(Ac.)
Runoff from this stream = 9.474(CFS)
Time of concentration = 8.43 min.
Rainfall intensity = 4.122(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station 39.100 to Point/Station 40.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 330.000(Ft.)
Top (of initial area) elevation = 1180.000(Ft.)
Bottom (of initial area) elevation = 1177.500(Ft.)
Difference in elevation = 2.500(Ft.)
Slope = 0.00758 \text{ s(\%)} = 0.76
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 8.211 min.
Rainfall intensity = 4.188(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.884
Subarea runoff = 4.815(CFS)
Total initial stream area =
                               1.300(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 159.000 to Point/Station 159.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 1.300(Ac.)
Runoff from this stream = 4.815(CFS)
Time of concentration = 8.21 min.
Rainfall intensity = 4.188(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                    TC
                                  Rainfall Intensity
        (CFS)
                   (min)
No.
                                        (In/Hr)
      477.803 20.02
                                  2.454
                8.43
      9.474
                                  4.122
       4.815
                8.21
                                   4.188
Qmax(1) =
       1.000 * 1.000 * 477.803) + 0.588 * 1.000 * 9.474) + 0.578 * 1.000 * 4.815) + =
                                        486,158
```

```
Qmax(2) =
        1.701 * 0.421 * 477.803) +
       1.000 * 1.000 * 9.474) +
0.984 * 1.000 * 4.815) + = 356.544
Qmax(3) = 
        1.729 * 0.410 * 477.803) +
        1.016 * 0.974 * 9.474) +
        1.000 * 1.000 *
                           4.815) + =
                                       352.988
Total of 3 streams to confluence:
Flow rates before confluence point:
    477.803 9.474 4.815
Maximum flow rates at confluence using above data:
     486.158 356.544 352.988
Area of streams before confluence:
     199.876 2.600 1.300
Effective area values after confluence:
     203.776 88.097 85.813
Results of confluence:
Total flow rate = 486.158(CFS)
Time of concentration = 20.019 min.
Effective stream area after confluence = 203.776(Ac.)
Stream Area average Pervious fraction(Ap) = 0.100
Stream Area average soil loss rate(Fm) = 0.073(In/Hr)
Study area (this main stream) = 203.78(Ac.)
Process from Point/Station 159.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1158.900(Ft.)
Downstream point/station elevation = 1156.800(Ft.)
Pipe length = 410.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 486.158(CFS)
Nearest computed pipe diameter = 84.00(In.)
Calculated individual pipe flow = 486.158(CFS)
Normal flow depth in pipe = 75.19(In.)
Flow top width inside pipe = 51.48(In.)
Critical Depth = 69.23(In.)
Pipe flow velocity = 13.38(Ft/s)
Travel time through pipe = 0.51 min.
Time of concentration (TC) = 20.53 \text{ min.}
Process from Point/Station 160.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 203.776(Ac.)
Runoff from this stream = 486.158(CFS)
Time of concentration = 20.53 \text{ min.}
Rainfall intensity = 2.417(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
```

```
Process from Point/Station
                              40.000 to Point/Station 41.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 880.000(Ft.)
Top (of initial area) elevation = 1220.000(Ft.)
Bottom (of initial area) elevation = 1210.000(Ft.)
Difference in elevation = 10.000(Ft.)
Slope = 0.01136 \text{ s(%)} =
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 11.209 min.
Rainfall intensity = 3.475(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.881
Subarea runoff = 28.165(CFS)
Total initial stream area =
                                 9.200 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 41.000 to Point/Station
**** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ****
Top of street segment elevation = 1210.000(Ft.)
End of street segment elevation = 1195.000(Ft.)
Length of street segment = 1030.000(Ft.)
Height of curb above gutter flowline =
Width of half street (curb to crown) = 32.000(Ft.)
Distance from crown to crossfall grade break = 30.000(Ft.)
Slope from gutter to grade break (v/hz) = 0.020
Slope from grade break to crown (v/hz) =
Street flow is on [2] side(s) of the street
Distance from curb to property line = 12.000(Ft.)
Slope from curb to property line (v/hz) = 0.025
Gutter width = 2.000(Ft.)
Gutter hike from flowline = 2.000(In.)
Manning's N in gutter = 0.0150
Manning's N from gutter to grade break = 0.0150
Manning's N from grade break to crown = 0.0150
Estimated mean flow rate at midpoint of street =
                                                  54.341 (CFS)
Depth of flow = 0.607(Ft.), Average velocity = 4.608(Ft/s)
Streetflow hydraulics at midpoint of street travel:
Halfstreet flow width = 24.020(Ft.)
Flow velocity = 4.61(Ft/s)
Travel time = 3.73 min.
                            TC = 14.93 \text{ min.}
Adding area flow to street
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
```

Decimal fraction soil group B = 1.000Decimal fraction soil group C = 0.000Decimal fraction soil group D = 0.000SCS curve number for soil (AMC 2) = 56.00

```
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Rainfall intensity = 2.925(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) (Q=KCIA) is C = 0.877
Subarea runoff = 39.342(CFS) for 17.100(Ac.)
Total runoff = 67.507(CFS)
Effective area this stream = 26.30(Ac.)
Total Study Area (Main Stream No. 1) = 231.40(Ac.)
Area averaged Fm value = 0.073(In/Hr)
Street flow at end of street = 67.507(CFS)
Half street flow at end of street = 33.754(CFS)
Depth of flow = 0.649(Ft.), Average velocity = 4.862(Ft/s)
Flow width (from curb towards crown) = 26.107(Ft.)
Process from Point/Station 41.000 to Point/Station 41.100
**** SUBAREA FLOW ADDITION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Time of concentration = 14.93 min.

Rainfall intensity = 2.925(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) (Q=KCIA) is C = 0.877
Subarea runoff = 54.160 (CFS) for 21.100 (Ac.)
Total runoff = 121.667(CFS)
Effective area this stream = 47.40(Ac.)
Total Study Area (Main Stream No. 1) = 252.50(Ac.)
Area averaged Fm value = 0.073(In/Hr)
Process from Point/Station 41.100 to Point/Station 41.200
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1189.000(Ft.)
Downstream point/station elevation = 1175.000(Ft.)
Pipe length = 810.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 121.667(CFS)
Nearest computed pipe diameter = 42.00(In.)
Calculated individual pipe flow = 121.667(CFS)
Normal flow depth in pipe = 31.73(In.)
Flow top width inside pipe = 36.10(In.)
Critical Depth = 39.13(In.)
Pipe flow velocity = 15.60(Ft/s)
Travel time through pipe = 0.87 min.
Time of concentration (TC) = 15.80 min.
Process from Point/Station 39.000 to Point/Station 41.200
**** SUBAREA FLOW ADDITION ****
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000
                           Max loss rate(Fm)=
                                                0.073(In/Hr)
Time of concentration = 15.80 min.
Rainfall intensity =
                      2.828(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) (Q=KCIA) is C = 0.877
Subarea runoff =
                  29.323(CFS) for
                                  13.500(Ac.)
Total runoff = 150.989(CFS)
Effective area this stream =
                              60.90(Ac.)
Total Study Area (Main Stream No. 1) = 266.00(Ac.)
Area averaged Fm value = 0.073(In/Hr)
Process from Point/Station 41.200 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1175.000(Ft.)
Downstream point/station elevation = 1156.800(Ft.)
Pipe length = 155.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 150.989(CFS)
Nearest computed pipe diameter = 33.00(In.)
Calculated individual pipe flow = 150.989(CFS)
Normal flow depth in pipe = 23.02(In.)
Flow top width inside pipe = 30.32(In.)
Critical depth could not be calculated.
Pipe flow velocity = 34.14(Ft/s)
Travel time through pipe = 0.08 min.
Time of concentration (TC) = 15.88 min.
Process from Point/Station 160.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 60.900(Ac.)
Runoff from this stream = 150.989(CFS)
Time of concentration = 15.88 min.
Rainfall intensity = 2.820(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream
        Flow rate
                     TC
                                 Rainfall Intensity
No.
         (CFS)
                    (min)
                                        (In/Hr)
      486.158
                20.53
                                  2.417
      150.989
                15.88
                                  2.820
Qmax(1) =
               1,000 * 486.158) +
       1.000 *
                 1.000 *
                          150.989) + =
       0.853 *
Qmax(2) =
```

```
1.172 * 0.773 * 486.158) +
        1.000 * 1.000 * 150.989) + = 591.598
Total of 2 streams to confluence:
Flow rates before confluence point:
     486.158 150.989
Maximum flow rates at confluence using above data:
     614.986 591.598
Area of streams before confluence:
     203.776 60.900
Effective area values after confluence:
     264.676 218.478
Results of confluence:
Total flow rate = 614.986 (CFS)
Time of concentration = 20.530 min.
Effective stream area after confluence = 264.676(Ac.)
Stream Area average Pervious fraction(Ap) = 0.100
Stream Area average soil loss rate(Fm) = 0.073(In/Hr)
Study area (this main stream) = 264.68(Ac.)
Process from Point/Station 160.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1156.800(Ft.)
Downstream point/station elevation = 1155.600(Ft.)
Pipe length = 250.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 614.986(CFS)
Nearest computed pipe diameter = 93.00(In.)
Calculated individual pipe flow = 614.986(CFS)
Normal flow depth in pipe = 82.50(In.)
Flow top width inside pipe = 58.86(In.)
Critical Depth = 76.07(In.)
Pipe flow velocity = 13.89(Ft/s)
Travel time through pipe = 0.30 min.
Time of concentration (TC) = 20.83 \text{ min.}
Process from Point/Station 161.000 to Point/Station 161.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 264.676(Ac.)
Runoff from this stream = 614.986 (CFS)
Time of concentration = 20.83 min.
Rainfall intensity = 2.396(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station 44.000 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
```

Decimal fraction soil group A = 0.000Decimal fraction soil group B = 1.000

```
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 770.000(Ft.)
Top (of initial area) elevation = 1184.000(Ft.)
Bottom (of initial area) elevation = 1174.000(Ft.)
Difference in elevation = 10.000(Ft.)
Slope = 0.01299 \text{ s(%)} =
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 10.346 min.
Rainfall intensity = 3.646(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.882
Subarea runoff = 20.901(CFS)
Total initial stream area =
                                6.500(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 161.000 to Point/Station 161.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 6.500(Ac.)
Runoff from this stream = 20.901(CFS)
Time of concentration = 10.35 min.
Rainfall intensity = 3.646(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
                                   Rainfall Intensity
Stream Flow rate
                     TC
                     (min)
         (CFS)
 No.
                                          (In/Hr)
     614.986
                20.83
      20.901
                10.35
                                    3.646
Qmax(1) =
        1.000 * 1.000 * 614.986) + 0.650 * 1.000 * 20.901) +
                           20.901) + =
Qmax(2) =
        1.538 * 0.497 * 614.986) +
        1.000 * 1.000 *
                            20.901) + = 490.773
Total of 2 streams to confluence:
Flow rates before confluence point:
    614.986 20.901
Maximum flow rates at confluence using above data:
     628.573 490.773
Area of streams before confluence:
     264.676 6.500
Effective area values after confluence:
     271.176 137.963
Results of confluence:
Total flow rate = 628.573 (CFS)
Time of concentration = 20.830 min.
Effective stream area after confluence = 271.176(Ac.)
```

```
Stream Area average soil loss rate(Fm) = 0.073(In/Hr)
Study area (this main stream) = 271.18(Ac.)
Process from Point/Station 161.000 to Point/Station 162.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 1155.600(Ft.)
Downstream point/station elevation = 1154.100(Ft.)
Pipe length = 300.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 628.573 (CFS)
Nearest computed pipe diameter = 93.00(In.)
Calculated individual pipe flow = 628.573 (CFS)
Normal flow depth in pipe = 82.88(In.)
Flow top width inside pipe = 57.93(In.)
Critical Depth = 76.80(In.)
Pipe flow velocity = 14.16(Ft/s)
Travel time through pipe = 0.35 min.
Time of concentration (TC) = 21.18 min.
Process from Point/Station 162.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 271.176(Ac.)
Runoff from this stream = 628.573 (CFS)
Time of concentration = 21.18 min.
Rainfall intensity = 2.372(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                            42.000 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 580.000(Ft.)
Top (of initial area) elevation = 1175.000(Ft.)
Bottom (of initial area) elevation = 1173.000(Ft.)
Difference in elevation = 2.000(Ft.)
Slope = 0.00345 \text{ s(%)} =
                          0.34
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 12.043 min.
Rainfall intensity = 3.329(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.880
Subarea runoff = 8.496 (CFS)
Total initial stream area = 2.900(Ac.)
```

Stream Area average Pervious fraction(Ap) = 0.100

```
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 162.000 to Point/Station 162.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 2.900(Ac.)
Runoff from this stream = 8.496(CFS)
Time of concentration = 12.04 min.
Rainfall intensity = 3.329(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station 45.000 to Point/Station 44.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Initial subarea data:
Initial area flow distance = 1000.000(Ft.)
Top (of initial area) elevation = 1194.000(Ft.)
Bottom (of initial area) elevation = 1184.000(Ft.)
Difference in elevation = 10.000(Ft.)
Slope = 0.01000 \text{ s(%)} =
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 12.102 min.
Rainfall intensity = 3.319(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.880
Subarea runoff = 29.208(CFS)
Total initial stream area =
                             10.000 (Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.073(In/Hr)
Process from Point/Station 44.000 to Point/Station 43.000
**** IMPROVED CHANNEL TRAVEL TIME ****
Upstream point elevation = 1184.000(Ft.)
Downstream point elevation = 1173.000(Ft.)
Channel length thru subarea = 680.000(Ft.)
Channel base width = 50.000(Ft.)
Slope or 'Z' of left channel bank = 100.000
Slope or 'Z' of right channel bank = 100.000
Estimated mean flow rate at midpoint of channel = 39.869(CFS)
Manning's 'N' = 0.030
Maximum depth of channel = 2.000(Ft.)
Flow(q) thru subarea = 39.869(CFS)
```

Depth of flow = 0.254(Ft.), Average velocity = 2.082(Ft/s)

```
Channel flow top width = 100.796(Ft.)
Flow Velocity = 2.08(Ft/s)
Travel time = 5.44 \text{ min.}
Time of concentration = 17.55 min.
Critical depth = 0.230(Ft.)
 Adding area flow to channel
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 1.000
Decimal fraction soil group C = 0.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 56.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm) = 0.073(In/Hr)
Rainfall intensity = 2.656(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area, (total area with modified
rational method) (Q=KCIA) is C = 0.875
Subarea runoff = 10.999 (CFS) for
                                      7.300 (Ac.)
Total runoff = 40.207 (CFS)
Effective area this stream =
                                 17.30 (Ac.)
Total Study Area (Main Stream No. 1) = 292.70(Ac.)
Area averaged Fm value = 0.073(In/Hr)
Process from Point/Station 162.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 3
Stream flow area = 17.300 (Ac.)
Runoff from this stream = 40.207(CFS)
Time of concentration = 17.55 \text{ min.}
Rainfall intensity = 2.656(In/Hr)
Area averaged loss rate (Fm) = 0.0734(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
        Flow rate
                      TC
                                    Rainfall Intensity
Stream
No.
          (CFS)
                      (min)
                                           (In/Hr)
      628.573
                21.18
                                     2.372
                  12.04
        8.496
                                     3.329
       40.207
                  17.55
                                     2.656
Qmax(1) =
        1.000 *
                 1.000 *
                           628.573) +
                1.000 *
1.000 *
        0.706 *
                           8.496) +
        0.890 *
                           40.207) + =
                                            670.361
Qmax(2) =
        1.416 * 0.569 *
1.000 * 1.000 *
1.261 * 0.686 *
                            628.573) +
                           8.496) +
        1.261 *
                            40.207) + =
                                            549.365
Qmax(3) =
        1.123 *
                0.828 *
                            628.573) +
        0.793 *
                1.000 *
                             8.496) +
        1.000 *
                 1.000 *
                            40.207) + =
                                           631.892
Total of 3 streams to confluence:
Flow rates before confluence point:
    628.573
            8.496 40.207
```

Maximum flow rates at confluence using above data:

670.361 549.365

631.892

Area of streams before confluence:

271.176 2.900

17.300

Effective area values after confluence:

291.376

168.943

Results of confluence:

Total flow rate = 670.361(CFS)

Time of concentration =

21.183 min. Effective stream area after confluence = 291.376 (Ac.)

Stream Area average Pervious fraction(Ap) = 0.100

Stream Area average soil loss rate(Fm) = 0.073(In/Hr)

Study area (this main stream) = 291.38(Ac.)

End of computations, Total Study Area = 292.70 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 56.0

```
*****************************
           RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
         (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
       (c) Copyright 1983-2016 Advanced Engineering Software (aes)
           Ver. 23.0 Release Date: 07/01/2016 License ID 1435
                       Analysis prepared by:
                      THIENES ENGINEERING, INC.
                        14349 FIRESTONE BLVD
                        LA MIRADA, CA 90638
                            714-521-4811
* TEI JOB 4013
 100-YEAR STORM
* 100-YEAR SIUNDI
* EXISTING CONDITION (NODES 100-102)
 FILE NAME: W:\4013\100X.DAT
 TIME/DATE OF STUDY: 12:12 09/07/2021
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
                 --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2500
  *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
     (FT)
            (FT)
                    SIDE / SIDE/ WAY (FT)
                                            (FT) (FT) (FT)
                                                             (n)
 1 30.0
            20.0
                    0.018/0.018/0.020 0.67
                                            2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
      as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
  *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
  *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
.....
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 788.00
 ELEVATION DATA: UPSTREAM(FEET) = 1200.00 DOWNSTREAM(FEET) = 1190.08
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 32.317
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.812
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                       SCS SOIL AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 NATURAL GOOD COVER
                         В
                                 7.70
                                          0.36
                                                  1.000
                                                              32.32
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) =
                       10.03
 TOTAL AREA(ACRÈS) =
                       7.70 PEAK FLOW RATE(CFS) =
```

```
>>>>COMPUTE NATURAL VALLEY CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
_____
  ELEVATION DATA: UPSTREAM(FEET) = 1190.08 DOWNSTREAM(FEET) = 1181.25
  CHANNEL LENGTH THRU SUBAREA(FEET) = 610.00 CHANNEL SLOPE = 0.0145
 CHANNEL FLOW THRU SUBAREA(CFS) =
                                      10.03
 CHANNEL FLOW THRU SUBAREA(CFS) = 10.03
FLOW VELOCITY(FEET/SEC) = 3.01 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
TRAVEL TIME(MIN.) = 3.38 Tc(MIN.) = 35.69
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1398.00 FEE
                                                            1398.00 FEET.
************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
 -----
 MAINLINE Tc(MIN.) = 35.69
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 1.707
 SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL
                      SCS SOIL AREA
                                             Fp
      LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
  NATURAL GOOD COVER
 "GRASS" B 10.00 0.36 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.36
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA AREA(ACRES) = 10.00 SUBAREA RUNOFF(CFS) = 12.09

EFFECTIVE AREA(ACRES) = 17.70 AREA-AVERAGED Fm(INCH/HR) = 0.36

AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 1.00

TOTAL AREA(ACRES) = 17.7 PEAK FLOW RATE(CFS) = 21.39
END OF STUDY SUMMARY:
                           17.7 TC(MIN.) = 35.69
17.70 AREA-AVERAGED Fm(INCH/HR)= 0.36
  TOTAL AREA(ACRES)
  EFFECTIVE AREA(ACRES) =
  AREA-AVERAGED Fp(INCH/HR) = 0.36 AREA-AVERAGED Ap = 1.000
                            21.39
 PEAK FLOW RATE(CFS) =
______
```

END OF RATIONAL METHOD ANALYSIS

т

```
************************
           RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE
        (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
       (c) Copyright 1983-2016 Advanced Engineering Software (aes)
           Ver. 23.0 Release Date: 07/01/2016 License ID 1435
                       Analysis prepared by:
                      THIENES ENGINEERING, INC.
                        14349 FIRESTONE BLVD
                        LA MIRADA, CA 90638
                            714-521-4811
* TEI JOB 4013
 100-YEAR STORM EVENT
FILE NAME: W:\4013\100P.DAT
 TIME/DATE OF STUDY: 08:53 12/17/2021
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
                 --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2500
  *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
    HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO.
     (FT)
            (FT)
                    SIDE / SIDE/ WAY (FT)
                                            (FT) (FT) (FT)
                                                             (n)
 1 30.0
            20.0
                    0.018/0.018/0.020 0.67
                                            2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
      as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
  *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
  *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
************************
 FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
 -----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 605.00
 ELEVATION DATA: UPSTREAM(FEET) = 1195.31 DOWNSTREAM(FEET) = 1192.07
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.215
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.419
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                      SCS SOIL AREA
                                         Fp
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
                         В
                                0.95
                                         0.42
                                                  0.100
                                                              11.22
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                        2.89
 TOTAL AREA(ACRES) =
                       0.95 PEAK FLOW RATE(CFS) =
```

FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 91
>>>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA<

Page 1

```
UPSTREAM NODE ELEVATION(FEET) = 1192.07
 DOWNSTREAM NODE ELEVATION(FEÉT) = 1188.49
CHANNEL LENGTH THRU SUBAREA(FEET) = 530.00
 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125
PAVEMENT LIP(FEET) = 0.020 MANNING'S N = .0150
 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
 MAXIMUM DEPTH(FEET) = 0.50
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.866
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                      SCS SOIL
                                   AREA
      LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                          В
                                   3.25
                                           0.42
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.30

AVERAGE FLOW DEPTH(FEET) = 0.35 FLOOD WIDTH(FEET) = 23.73

"V" GUTTER FLOW TRAVEL TIME(MIN.) = 3.83 Tc(MIN.) = 15.05
 SUBAREA AREA(ACRES) = 3.25 SUBAREA RUNOFF(CFS) = 8.26 EFFECTIVE AREA(ACRES) = 4.20 AREA-AVERAGED Fm(INCH/HR) =
                                    AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED Ap = 0.10
  TOTAL AREA(ACRES) =
                           4.2
                                      PEAK FLOW RATE(CFS) =
 END OF SUBAREA "V" GUTTER HYDRAULICS:
 DEPTH(FEET) = 0.40 FLOOD WIDTH(FEET) = 28.58 FLOW VELOCITY(FEET/SEC.) = 2.49 DEPTH*VELOCITY(FT*FT/SEC) = 1.00 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 1135.00 FEET.
***********************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
 ELEVATION DATA: UPSTREAM(FEET) = 1183.45 DOWNSTREAM(FEET) = 1180.10
 FLOW LENGTH(FEET) = 400.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.88
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.67
 PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 16.02
 LONGEST FLOWPATH FROM NODE
                             100.00 TO NODE
                                               103.00 = 1535.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
MAINLINE Tc(MIN.) = 16.02
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.761
 SUBAREA LOSS RATE DATA(AMC III):
                     SCS SOIL
  DEVELOPMENT TYPE/
                                  ΔRFΔ
                                            Fp
     LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                  1.40
                           В
                                            0.42
                                                      0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
  SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) = 3.43
EFFECTIVE AREA(ACRES) = 5.60 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                          5.6
                                    PEAK FLOW RATE(CFS) =
*********************
 FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
 ______
 ELEVATION DATA: UPSTREAM(FEET) = 1180.10 DOWNSTREAM(FEET) = 1179.68
 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.21
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 13.70
PIPE TRAVEL TIME(MIN.) = 0.12
                                 Tc(MIN.) =
                                               16.13
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE
                                               104.00 =
                                                           1585.00 FEET.
```

```
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 16.13
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.749
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL
                                AREA
     LAND USE
                       GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                         В
                                0.10
                                         0.42
                                                  0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.24

EFFECTIVE AREA(ACRES) = 5.70 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED Ap = 0.10
                        5.7
 TOTAL AREA(ACRES) =
                                 PEAK FLOW RATE(CFS) =
FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
 ELEVATION DATA: UPSTREAM(FEET) = 1179.68 DOWNSTREAM(FEET) = 1175.90
```

FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

______ MAINLINE Tc(MIN.) = 17.17* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 2.648 SUBAREA LOSS RATE DATA(AMC III): SCS SOIL DEVELOPMENT TYPE/ AREA LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN COMMERCIAL 0.40 В 0.42 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100 SUBAREA AREA(ACRES) = 0.40 SUBAREA RUNOFF(CFS) = 0.94

EFFECTIVE AREA(ACRES) = 6.10 AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED Ap = 0.10 6.1 TOTAL AREA(ACRES) = PEAK FLOW RATE(CFS) =

FLOW PROCESS FROM NODE 105.00 TO NODE 203.00 IS CODE = 31

>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<>>>>
>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)

ELEVATION DATA: UPSTREAM(FEET) = 1175.90 DOWNSTREAM(FEET) = 1175.60 FLOW LENGTH(FEET) = 36.00 MANNING'S N = 0.012 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.22 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 14.30 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 17.26 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 203.00 = 2072.00 FEET.

>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE

TOTAL NUMBER OF STREAMS = 2

CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:

TIME OF CONCENTRATION(MIN.) = 17.26

RAINFALL INTENSITY(INCH/HR) = 2.64

AREA-AVERAGED Fm(INCH/HR) = 0.04

AREA-AVERAGED Fp(INCH/HR) = 0.42

```
AREA-AVERAGED AP = 0.10
EFFECTIVE STREAM AREA(ACRES) = 6.10
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       14.30
FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
-----
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 747.00
 ELEVATION DATA: UPSTREAM(FEET) = 1195.31 DOWNSTREAM(FEET) = 1187.77
 Tc = K^*[(LENGTH^{**} 3.00)/(ELEVATION CHANGE)]^{**}0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.750
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.507
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                             Fρ
                                                        Αp
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
      LAND USE
 COMMERCIAL
                           В
                                   5.00
                                            0.42
                                                      0.100
                                                               76
                                                                    10.75
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                          15.59
  TOTAL AREA(ACRES) =
                         5.00 PEAK FLOW RATE(CFS) = 15.59
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 91
.....
 >>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA
-----
 UPSTREAM NODE ELEVATION(FEET) = 1187.77

DOWNSTREAM NODE ELEVATION(FEET) = 1184.43

CHANNEL LENGTH THRU SUBAREA(FEET) = 390.00
 "V" GUTTER WIDTH(FEET) = 3.00 GUTTER HIKE(FEET) = 0.125
PAVEMENT LIP(FEET) = 0.020 MANNING'S N = .0150
 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.166
 SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL
                     SCS SOIL
                                   AREA
                                             Fp
      LAND USE
                         GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                           В
                                    5.75
                                            0.42
                                                      0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 23.67

TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.25

AVERAGE FLOW DEPTH(FEET) = 0.49 FLOOD WIDTH(FEET) = 37.65

"V" GUTTER FLOW TRAVEL TIME(MIN.) = 2.00 TC(MIN.) = 12.75

SUBAREA AREA(ACRES) = 5.75 SUBAREA RUNOFF(CFS) = 16.16

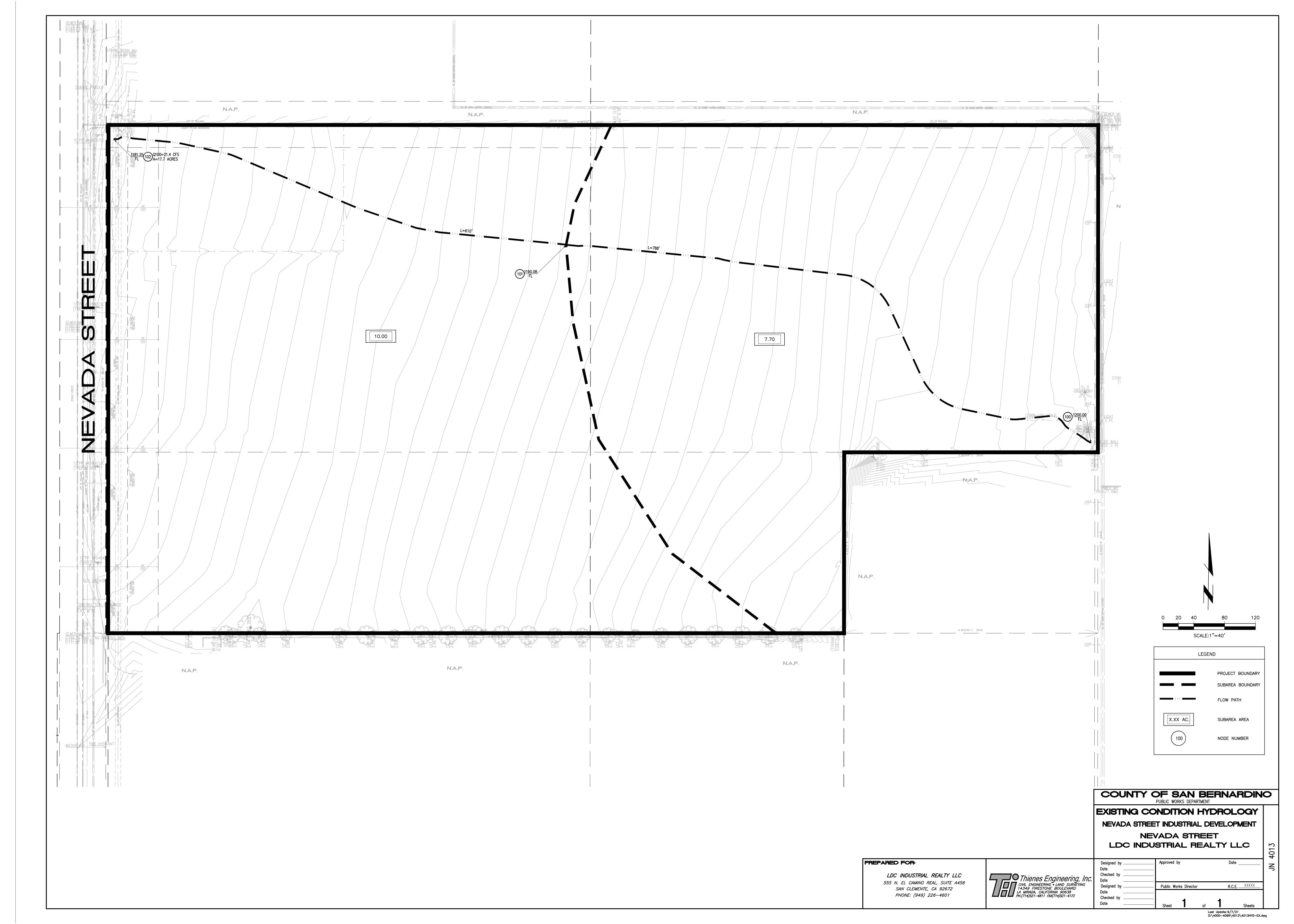
EFFECTIVE AREA(ACRES) = 10.75 AREA-AVERAGED Fm(INCH/HR) = AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED AP = 0.10
 TOTAL AREA(ACRES) =
                          10.8
                                      PEAK FLOW RATE(CFS) =
                                                                 30.22
 END OF SUBAREA "V" GUTTER HYDRAULICS:
 DEPTH(FEET) = 0.53 FLOOD WIDTH(FEET) = 41.49
 FLOW VELOCITY(FEET/SEC.) = 3.43 DEPTH*VELOCITY(FT*FT/SEC) = 1.82 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 1137.00 FEET.
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
 _____
 ELEVATION DATA: UPSTREAM(FEET) = 1178.09 DOWNSTREAM(FEET) = 1175.60
 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 20.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.50
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                          NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 30.22

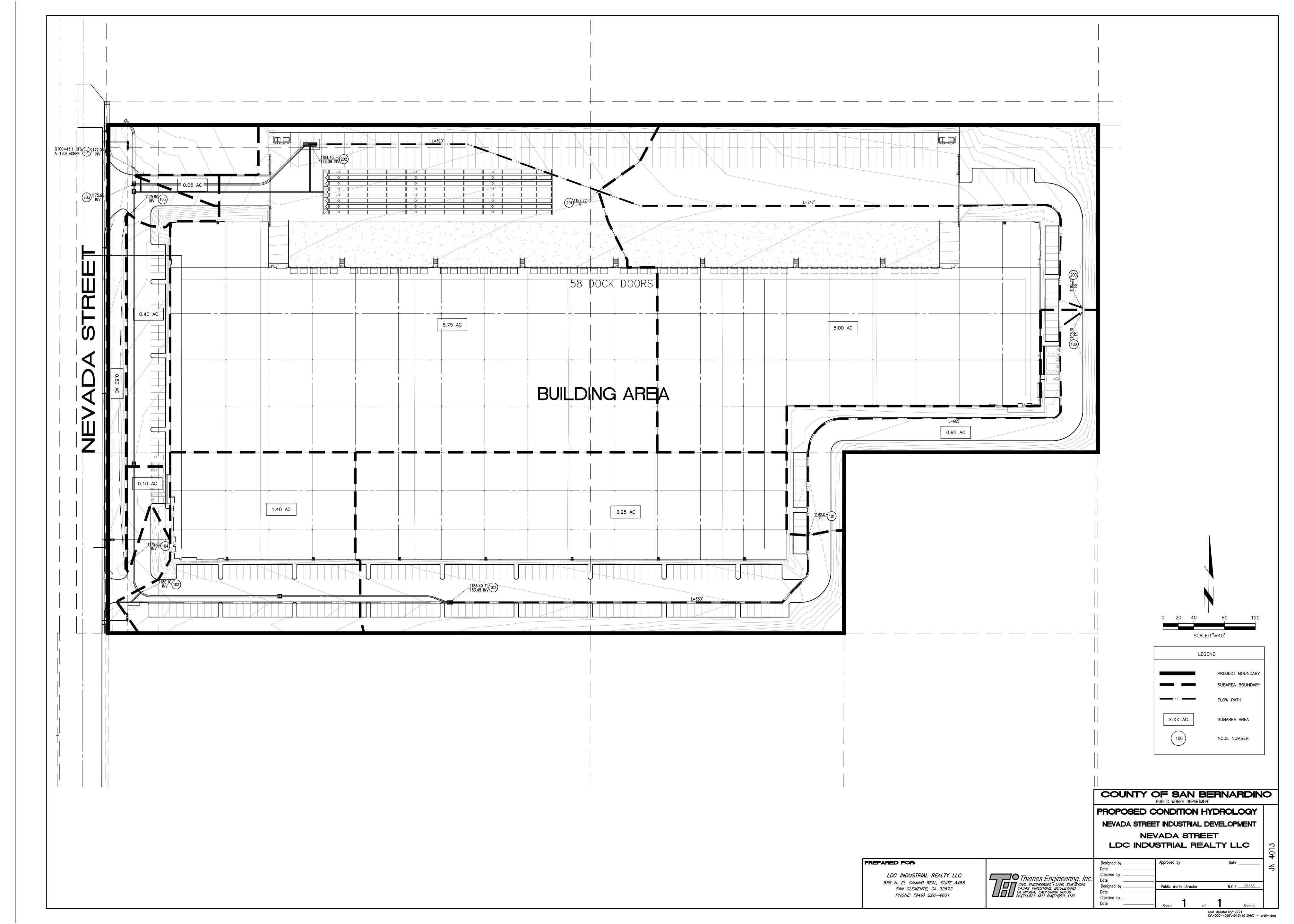
PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 13.17

LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 1377.00 FEET.
FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
_____
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.17
RAINFALL INTENSITY(INCH/HR) = 3.10
 AREA-AVERAGED Fm(INCH/HR) = 0.04
 AREA-AVERAGED Fp(INCH/HR) = 0.42
 AREA-AVERAGED Ap = 0.10
 EFFECTIVE STREAM AREA(ACRES) = 10
TOTAL STREAM AREA(ACRES) = 10.75
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
 ** CONFLUENCE DATA **
             Q Tc Intensity Fp(Fm)
(CFS) (MIN.) (INCH/HR) (INCH/HR)
                                                              HEADWATER
  STREAM
                                                Ap
                                                       Ae
                                                      (ACRES)
  NUMBER
                                                                NODE
                           2.640 0.42( 0.04) 0.10
3.105 0.42( 0.04) 0.10
     1
             14.30 17.26
30.22 13.17
                                                          6.1
                                                                  100.00
                                                         10.8
                                                                  200.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
                     Tc Intensity Fp(Fm)
              Q
                                                       Ae
                                                             HEADWATER
                                                Ар
             Q IC INCELSELY INCELSE
(CFS) (MIN.) (INCH/HR) (INCH/HR)
43.09 13.17 3.105 0.42( 0.04) 0.10
39.94 17.26 2.640 0.42( 0.04) 0.10
  NUMBER
                                                      (ACRES)
                                                                NODE
                                                         15.4
                                                                  200.00
     1
                                                         16.9
                                                                  100.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 43.09 Tc(MIN.) = 13.17
EFFECTIVE AREA(ACRES) = 15.41 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED Ap = 0.10
  TOTAL AREA(ACRES) = 16.9
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 203.00 = 2072.00 FEET.
FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 31
 ______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<><
ELEVATION DATA: UPSTREAM(FEET) = 1175.60 DOWNSTREAM(FEET) = 1172.04
 FLOW LENGTH(FEET) = 18.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 31.48
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                         NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 43.09
 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 13.18
LONGEST FLOWPATH FROM NODE 100.00 TO NODE 204.00 =
                                                         2090.00 FEET.
********************************
 FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.18
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.103
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                                  AREA
                        SCS SOIL
                                             Fn
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
                                  0.05
 COMMERCIAL
                          В
                                           0.42
                                                     0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.42
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA AREA(ACRES) = 0.05 SUBÁREA RUNOFF(CFS) = 0.14
EFFECTIVE AREA(ACRES) = 15.46 AREA-AVERAGED Fm(INCH/HR) = 0.04
AREA-AVERAGED Fp(INCH/HR) = 0.42 AREA-AVERAGED Ap = 0.10
  TOTAL AREA(ACRES) =
                         16.9
                                    PEAK FLOW RATE(CFS) =
 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE
_____
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                              16.9 TC(MIN.) =
                                                  13.18
 AREA-AVERAGED FP(INCH/HR) = 0.42 AREA-AVERAGED AP = 0.100
 PEAK FLOW RATE(CFS) =
                             43.09
 ** PEAK FLOW RATE TABLE **
```

100P


STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	43.09	13.18	3.103	0.42(0.04)	0.10	15.5	200.00
2	39.94	17.27	2.639	0.42(0.04)	0.10	16.9	100.00
=========		======			=====	=======	
=========							


END OF RATIONAL METHOD ANALYSIS

4

APPENDIX F

HYDROLOGY MAP

