LANDS OF BUTLER

New Vineyard Development Hydrologic Analysis

Property Information:
Owner: Jeff Butler
Parcel No.: 033-190-006

Report Preparer Information:
Civil Engineer: Omar Reveles, PE R.C.E. 74723
Acme Engineering Inc.
Contact: 1700 Soscol Avenue, Suite 9
Napa, CA 94559
(707) 253-2263

Date: November 5, 2020

This page left intentionally blank.

Project Narrative

Introduction and Scope of Project

This project proposes the development of approximately 5.1 acres of vineyard (comprised of 3.3 acres of vineyard and 1.8 acres of vineyard avenues) at APN: 033-190-006 in Napa, CA. The property is owned by Jeff Butler and measures approximately 10.1 acres. Vineyard development activities shall consist of: land clearing and tree removal, ripping, incorporation of soil amendments, disking, installation of deer fence, vineyard planting, trellising, installation of a drip irrigation system and cover cropping. The proposed development activities shall begin upon approval from the Napa County Department of Planning, Building \& Environmental Services and shall be completed by October 15, 2021.

Existing Conditions

The project site is located within the Suisun Creek watershed. The project site lies immediately east and west of Twin Sisters Road. The project site currently consists mostly of oak woodland and non-native grassland. Portions of the property in the immediate vicinity consist mostly of trees, grasses and herbaceous weeds. The project site consists of moderate to strong sloping terrain (13-26\%). Slopes surrounding the development areas are similar to those inside.

The project site is part of an overall watershed (watersheds A-H) that measures approximately 8.54 acres and consists of approximately 2.52 acres of tree canopy, approximately 5.77 acres of grass/weeds, and approximately 0.25 acres of gravel roadways. The overall watershed consists of three sub-watersheds that combine and drain into a seasonal drainage path downslope from the proposed development area. The remaining five watersheds leave the overall watershed separately, either as sheet flow, shallow concentrated flow or through existing culverts. Eventually runoff from the overall watershed makes its way to Wooden Valley Creek, then to Suisun Creek and finally drains into Suisun Marsh.

In watersheds A, B, C, E and F, runoff occurs as sheet flow, shallow concentrated flow and channel flow. Additionally, in watersheds D, G, and H, runoff occurs as sheet flow and shallow concentrated flow only. The runoff from watersheds A and F leaves through existing culverts. The runoff from watersheds D and H leaves the site as shallow concentrated flow. The runoff from watershed G leaves the site as sheet flow. The runoff from watersheds B, C and E combine and leave the site as channel flow.

Methodologies

In order to evaluate the hydrologic impact of the proposed development, two watershed runoff models were developed using the NRCS United States Department of Agriculture (USDA) Technical Release 55 (TR-55) methodology (USDA-NRCS 2003). WinTR-55 is single-event rainfall-runoff, small watershed hydrologic model. The model generates hydrographs from both urban and agricultural areas and at selected points along the stream system. Hydrographs are routed downstream through channels and/or reservoirs. Multiple sub-areas can be modeled within the watershed. The WinTR-55 methodology was used to generate peak flow estimates for the project site.

TR-55 only allows the modeling of reaches with trapezoidal flow areas. In order to model the drainage mainline addition, the bottom width and average side slopes for Reach 2 were modified such that the flow velocity at 0.5 ft depth matched the velocity of a $12^{\prime \prime}$ corrugated plastic pipe with a flow depth of 0.5 ft .

This methodology was applied to the entire effective watersheds. It was used to determine the predevelopment and post-development peak flow rates for the $2,5,10,25,50$ and 100 year return period 24 hour storm events.

Assumptions

As previously mentioned there are several existing drainage swales and culverts along Twin Sisters Road. The intent of this project is to maintain the existing flow regimes to the maximum extent practicable. As a result all existing drainage swales and culverts shall be maintained or replaced if needed.

Hydrologic soil groups are based on estimates of runoff potential. This parameter is based on the type of soil encountered. Based on the interactive web soil survey found at: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm there is only one soil type within the project site. The soil type present is Hambright Loam (HaFso). Hambright Loam is classified as a soil in hydrologic group "D". Additionally, within the overall watershed boundaries there is an additional soil type present. This soil type is Sobrante Loam. Sobrante Loam is classified as a soil in hydrologic group "C". In an effort to simplify the analysis, hydrologic soil group " D " was used for the overall watershed, including the small portion that extends into the Sobrante Loam. This assumption is justified because the area in question is outside of the proposed development boundary and will remain unchanged between pre and post development conditions.

The determination of the hydrologic soil conditions was based on the observed canopy and surface cover conditions. For watersheds A, B, C and D a "good" hydrologic soil condition was selected for "pasture, grasslands or range" and "woods - grass combination" within the areas that are currently not developed. For watersheds E, F, G and H a "fair" hydrologic soil condition was selected for "pasture, grasslands or range" and "woods - grass combination" within the areas that are currently not developed. A "good" hydrologic soil condition was selected for "pasture, grasslands or range" within the areas of the proposed vineyard. A good hydrologic soil condition for the proposed and existing vineyard is justified by all the land preparation, cover cropping and straw mulching associated with the proposed development.

Finally, based on the hydrologic soil-cover complex definitions: "pasture, grasslands or range" land use was selected for the proposed vineyard areas. The selected land use is the one that most closely resembles the proposed cover crop seed mix and anticipated farming practices.

Impacts

The proposed development project shall not have any negative impacts on the project site. This is due to the fact that the proposed development shall not adversely affect any of the hydrologic characteristics. Currently, runoff flows across the project site as sheet flow, shallow concentrated flow and channel flow.

Currently, a culvert conveys runoff from watersheds B to watershed C and an additional culvert conveys runoff from watersheds B and C under Twin Sisters Road and discharges as shallow concentrated flow at watershed E . There is not any evidence of erosive cutting within the proposed development area. In order to prevent any long term erosion, a $12^{\prime \prime}$ S/W CPP pipe shall be installed to convey this runoff through the proposed vineyard. The installation of this drainage mainline shall result in no net increase in peak flow rates at the outfall of watersheds B, C and E or at the inlets of any of the existing culverts.

Finally, with all the land preparation, cover cropping and straw mulching associated with the proposed vineyard development, the hydrologic condition at the project site will actually improve at watersheds E,

G and H . The enhancement of hydrologic soil condition within the proposed development boundaries will result in no net increase in peak flow rates.

While the proposed vineyard development could potentially lead to pollutants entering the nearby waterways, the project incorporates several measures to minimize the potential for erosion and transport of pollutants during and after the proposed vineyard development. These measures include:

1. Establishment of a 75% minimum ground cover, by means of a tilled cover crop in combination with straw roll installation and straw mulch, will minimize the amount of sediment leaving the project site during the soil building period. This will also maintain the volume and probability of rainfall generated runoff at or below pre-development conditions.
2. A no-till cover crop on all vineyard blocks will minimize the amount of sediment leaving the project site throughout the life of the proposed vineyard. This will also maintain the volume and probability of rainfall generated runoff at or below pre-development conditions.
3. Incorporation of setbacks to the nearby streams, and the use of grassy turnaround avenues shall help filter sediment from surface runoff before it enters the streams. These setbacks and grassy turnaround avenues shall also trap and hold dust and fertilizers (from vineyard operations), before they can enter the streams.
4. Proposed outfall locations shall have a rock apron installed to minimize erosion and ensure that runoff exits the project site as surface sheet flow.

Conclusions and statement addressing adequacy of design

Based on the results from TR-55, the proposed development will not have any adverse effects on the existing hydrology of the watershed. The majority of the runoff shall leave the project as sheet flow or through existing culverts, which shall be maintained and/or replaced. The proposed drainage improvement shall divert potential runoff away from the proposed vineyard area and direct it to more stabilized outfall location. This outfall location shall have rock outlet protection installed to minimize erosion and ensure that runoff exits the project site as surface sheet flow. The proposed cover crop, farming practices and drainage improvements shall maintain peak runoff flow rates at or below predevelopment conditions.

References

See the attached TR-55 report print outs for watersheds A-H pre-development and post-development.
See the attached sheets labeled "Pre-Development Site Plan and Curve Numbers" and "Post-Development Site Plan and Curve Numbers" for references to watershed areas and features mentioned in this report.

Land use selection was based on "Hydrologic Soil-Cover Complexes" National Engineering Handbook (NEH), Part 650, (EFH), Amend. IA50, Nov. 2007.

Hydrologic soil conditions are based on a field visits conducted by Omar Reveles of Acme Engineering, Inc. on March 20, 2019, April 1, 2019, and August 6, 2020.

Manning's roughness coefficients were obtained from Civil Engineering Reference Manual Appendix 19A and ADS product literature.

WinTR-55 Current Data Description

--- Identification Data ---

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
A	Outlet	2.21	80	0.1	
D	Outlet	0.42	80	0.1	
F	Outlet	0.62	83	0.1	
G	Outlet	0.63	82	0.1	
H	Outlet	0.6	84	0.1	
Total area: $4.48(\mathrm{ac})$					

--- Storm Data --
Rainfall Depth by Rainfall Return Period

Storm Data

Rainfall Depth by Rainfall Return Period

$\begin{aligned} & 1-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 2-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 5-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 10-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 25-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 50-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 100-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$
3.08	4.05	5.29	6.28	7.6	8.6	9.61
Storm Data Source: Rainfall Distribution Type: Dimensionless Unit Hydrograph:			User-provided custom storm data Type IA <standard>			

0. Reveles	Butler Vineyards Pre-Development Napa County, California Watershed Peak Table						
Sub-Area or Reach Identifier	$\begin{aligned} & 1-\mathrm{Yr} \\ & (\mathrm{cfs}) \end{aligned}$	Flow by $2-\mathrm{Yr}$ (cfs)	$\begin{gathered} \text { Rainfall } \\ 5-\mathrm{Yr} \\ (\mathrm{cfs}) \end{gathered}$	$\begin{gathered} \text { Return } \mathrm{Pe} \\ 10-\mathrm{Yr} \\ (\mathrm{cfs}) \end{gathered}$	$\begin{aligned} & 25-\mathrm{Yr} \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{aligned} & 50-\mathrm{Yr} \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{array}{r} 100-\mathrm{Yr} \\ (\mathrm{cfs}) \end{array}$
SUBAREAS A	0.64	1.10	1.74	2.27	3.00	3.56	4.12
D	0.12	0.21	0.33	0.43	0.57	0.68	0.79
F	0.22	0.36	0.55	0.70	0.91	1.06	1.22
G	0.21	0.34	0.53	0.69	0.89	1.05	1.21
H	0.23	0.36	0.55	0.70	0.90	1.05	1.20
REACHES							
OUTLET	1.41	2.37	3.69	4.79	6.27	7.40	8.55

REACHES

OUTLET
1.41
2.37
3.69
4.79
6.27
7.40
8.55
$\left.\begin{array}{llll}\text { 0. Reveles } & \begin{array}{c}\text { Butler Vineyards } \\ \text { Pre-Development }\end{array} \\ & \text { Napa County, California }\end{array}\right]$

0. Reveles	Butler Vineyards Pre-Development Napa County, California				
	Sub-Area Land Use and Curve Number Details				
Sub-Area Identifier	r Land Use		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
A	Pasture, grassland or range Woods - grass combination	(good) (good)	$\begin{aligned} & \text { D } \\ & \text { D } \end{aligned}$	$\begin{array}{r} 1.74 \\ .47 \end{array}$	$\begin{aligned} & 80 \\ & 79 \end{aligned}$
	Total Area / Weighted Curve Number			$\stackrel{2.21}{=}=$	80 $=$
D	Gravel (w/ right-of-way) Pasture, grassland or range Woods - grass combination	(good) (good)	$\begin{aligned} & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & .01 \\ & .27 \\ & .14 \end{aligned}$	$\begin{aligned} & 91 \\ & 80 \\ & 79 \end{aligned}$
	Total Area / Weighted Curve Number			. 42	80 $=$ $=$
F	Pasture, grassland or range Woods - grass combination	(fair) (fair)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & .38 \\ & .24 \end{aligned}$	84 82
	Total Area / Weighted Curve Number			. 62	$\stackrel{83}{=}$
G	Pasture, grassland or range Woods - grass combination	(fair) (fair)	$\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & .12 \\ & .51 \end{aligned}$	84 82
	Total Area / Weighted Curve Number			. 63	82 $=$ $=$
H	Gravel (w/ right-of-way) Pasture, grassland or range Woods - grass combination	(fair) (fair)	$\begin{aligned} & \text { D } \\ & \text { D } \\ & \text { D } \end{aligned}$	$\begin{aligned} & .01 \\ & .53 \\ & .06 \end{aligned}$	$\begin{aligned} & 91 \\ & 84 \\ & 82 \end{aligned}$
	Total Area / Weighted Curve Number			. $=$	$\begin{aligned} & 84 \\ & == \end{aligned}$

WinTR-55 Current Data Description

--- Identification Data ---

User:	O. Reveles	Date:
Project:	Butler Vineyards	Units:
SubTitle:	Pre-Development	English
State:	California	
County:	Napa	
Filename:	Z: \backslash Jobs $2018 \backslash 180901$	Butler Vineyards $\backslash 0121$ New Vineyard Development ECP $\backslash C a l c \backslash 01 \backslash T R-55 \backslash B u t l e r ~ P r e ~$

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
B	Reach	1	1.31	80	0.1
C	Reach 2	0.38	81	0.1	
E	Reach 3	2.37	84	0.1	

--- Storm Data --
Rainfall Depth by Rainfall Return Period

1-Yr	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
(in)						
3.08	4.05	5.29	6.28	7.6	8.6	9.61

Storm Data Source: User-provided custom storm data
Rainfall Distribution Type: Type IA
Dimensionless Unit Hydrograph: <standard>

Storm Data

Rainfall Depth by Rainfall Return Period

$\begin{aligned} & 1-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 2-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 5-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 10-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 25-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 50-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 100-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$
3.08	4.05	5.29	6.28	7.6	8.6	9.61
Storm Data Source: Rainfall Distribution Type: Dimensionless Unit Hydrograph:			User-provided custom storm data Type IA <standard>			

0. Reveles	Butler Vineyards Pre-Development pa County, California Watershed Peak Table						
Sub-Area or Reach Identifier	$\begin{gathered} 1-\mathrm{Yr} \\ (\mathrm{cfs}) \end{gathered}$	Flow by $2-\mathrm{Yr}$ (cfs $)$	Rainfall $5-\mathrm{Yr}$ (cfs)	Return Per $10-\mathrm{Yr}$ (cfs)	$25-\mathrm{Yr}$ (cfs)	$\begin{aligned} & 50-\mathrm{Yr} \\ & \text { (cfs) } \end{aligned}$	$\begin{array}{r} 100-\mathrm{Yr} \\ (\mathrm{cfs}) \end{array}$
SUBAREAS B	0.38	0.65	1.03	1.35	1.78	2.11	2.45
C	0.12	0.20	0.31	0.40	0.53	0.62	0.72
E	0.89	1.43	2.15	2.74	3.53	4.14	4.74
REACHES							
Reach 1	0.38	0.65	1.03	1.35	1.78	2.11	2.45
Down	0.38	0.65	1.03	1.35	1.78	2.11	2.45
Reach 2	0.50	0.85	1.34	1.75	2.31	2.73	3.17
Down	0.50	0.85	1.34	1.75	2.31	2.73	3.17
Reach 3	1.39	2.28	3.49	4.49	5.84	6.87	7.91
Down	1.39	2.28	3.49	4.49	5.84	6.87	7.91
OUTLET	1.39	2.28	3.49	4.49	5.84	6.87	7.91

0. Reveles	Butler Vineyards Pre-Development						
	Hydrograph Peak/Peak Time Table						
Sub-Area	Peak	Flow and P	Peak Time	(hr) by Rai	nfall Ret	rn Period	
or Reach	1-Yr	$2-\mathrm{Yr}$	$5-\mathrm{Yr}$	10-Yr	$25-\mathrm{Yr}$	$50-\mathrm{Yr}$	$100-\mathrm{Yr}$
Identifier	(cfs)						
	(hr)						
SUBAREAS							
B	0.38	0.65	1.03	1.35	1.78	2.11	2.45
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
C	0.12	0.20	0.31	0.40	0.53	0.62	0.72
	8.00	7.94	7.93	7.93	7.92	7.92	7.92
E	0.89	1.43	2.15	2.74	3.53	4.14	4.74
	7.93	7.93	7.92	7.92	7.92	7.91	7.92
REACHES							
Reach 1	0.38	0.65	1.03	1.35	1.78	2.11	2.45
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
Down	0.38	0.65	1.03	1.35	1.78	2.11	2.45
	8.01	7.94	7.94	7.93	7.93	7.92	7.92
Reach 2	0.50	0.85	1.34	1.75	2.31	2.73	3.17
	8.01	7.94	7.93	7.93	7.93	7.92	7.92
Down	0.50	0.85	1.34	1.75	2.31	2.73	3.17
	8.02	7.95	7.94	7.94	7.94	7.93	7.93
Reach 3	1.39	2.28	3.49	4.49	5.84	6.87	7.91
	7.95	7.93	7.93	7.93	7.92	7.92	7.92
Down	1.39	2.28	3.49	4.49	5.84	6.87	7.91
	7.77	7.94	7.93	7.93	7.92	7.92	7.92
OUTLET	1.39	2.28	3.49	4.49	5.84	6.87	7.91

0. Reveles	Butler Vineyards Pre-Development Napa County, California				
	Sub-Area Summary Table				
Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
B	1.31	0.100	80	Reach 1	
C	. 38	0.100	81	Reach 2	
E	2.37	0.100	84	Reach 3	
Total Area:	4.06 (ac)				

```
0. Reveles Butler Vineyards
    Pre-Development
    Napa County, California
    Reach Summary Table
```



```
Reach 1 Reach 2 78 CHANNEL
Reach 2 Reach 3 333 CHANNEL
Reach 3 Outlet 1 CHANNEL
```

0. Reveles		Nap -Area T	Butler Vin Pre-Develop County, Ca ime of Conce	ards nent ifornia tration	Details		
Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	$\underset{\mathrm{n}}{\text { Mannings's }}$	$\begin{gathered} \text { End } \\ \text { Area } \\ (\mathrm{sq} \mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { Wetted } \\ & \text { Perimeter } \\ & (f t) \end{aligned}$	Velocity (ft/sec)	Travel Time (hr)
B							
SHEET	100	0.2200	0.130				0.050
SHALLOW	516	0.2200	0.050				0.019
CHANNEL	96	0.1300	0.035	2.00	4.47	8.889	0.003
					me of Conce	tration	0.1
C							
SHEET	100	0.2600	0.130				0.046
SHALLOW	400	0.2130	0.050				0.015
CHANNEL	78	0.1500	0.035	2.00	4.47	10.833	0.002
					me of Conce	tration	0.1
E							
SHEET	100	0.1600	0.130				0.056
SHALLOW	324	0.2400	0.050				0.011
					me of Conce	tration	0.1

0. Reveles	Butler Vineyar Pre-Developmen Napa County, Cali	ds ornia			
	Sub-Area Land Use and Curve	Number Details			
Sub-Area Identifier	Land Use		$\begin{aligned} & \text { Hydrologic } \\ & \text { Soil } \\ & \text { Group } \end{aligned}$	Sub-Area Area (ac)	Curve Number
B	Pasture, grassland or range Woods - grass combination	(good) (good)	$\begin{aligned} & \text { D } \\ & \text { D } \end{aligned}$	$\begin{array}{r} 1.17 \\ .14 \end{array}$	80 79
	Total Area / Weighted Curve Number			$\stackrel{1 .}{ }=\mathbf{}=$	$\stackrel{80}{=}$
C	Gravel (w/ right-of-way)		D	. 02	91
	Pasture, grassland or range	(good)	D	. 33	80
	Woods - grass combination	(good)	D	. 03	79
	Total Area / Weighted Curve Number			. 38	81
E	Gravel (w/ right-of-way)		D	. 21	91
	Pasture, grassland or range	(fair)	D	1.23	84
	Woods - grass combination	(fair)	D	. 93	82
	Total Area / Weighted Curve Number			2.37	84

0. Reveles		Butle Pre-D Napa Coun Reach Chann	Vineyards elopment California Rating Detail		
```Reach Identifier```	Reach Length (ft)	Reach Manning's n	Friction Slope (ft/ft)	Bottom Width (ft)	Side   Slope
Reach 1   Reach 2   Reach 3	$\begin{aligned} & 78 \\ & 333 \end{aligned}$ $1$	$\begin{aligned} & 0.035 \\ & 0.035 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} 2 & : 1 \\ 10 & : 1 \\ 2 & : 1 \end{aligned}$
Reach Identifier	Stage (ft)	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \text { End } \\ \text { Area } \\ \text { (sq ft) } \end{gathered}$	Top Width (ft)	Friction Slope (ft/ft)
Reach 1	$\begin{array}{r} 0.0 \\ 0.5 \\ 1.0 \\ 2.0 \\ 5.0 \\ 10.0 \\ 20.0 \end{array}$	$\begin{array}{r} 0.006 \\ 2.966 \\ 18.708 \\ 118.382 \\ 1360.094 \\ 8630.154 \\ 54779.323 \end{array}$	$\begin{array}{r} 0 \\ 0.5 \\ 2 \\ 8 \\ 50.1 \\ 200.1 \\ 800.2 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 4 \\ 8 \\ 20 \\ 40 \\ 80 \end{array}$	0.14
Reach 2	$\begin{array}{r} 0.0 \\ 0.5 \\ 1.0 \\ 2.0 \\ 5.0 \\ 10.0 \\ 20.0 \end{array}$	$\begin{array}{r} 0.000 \\ 16.304 \\ 103.383 \\ 656.003 \\ 7549.275 \\ 47928.508 \\ 304306.748 \end{array}$	$\begin{array}{r} 0 \\ 2.5 \\ 10 \\ 40 \\ 250.1 \\ 1000.1 \\ 4000.2 \end{array}$	$\begin{array}{r} 0 \\ 10 \\ 20 \\ 40 \\ 100 \\ 200 \\ 400 \end{array}$	0.15
Reach 3	$\begin{array}{r} 0.0 \\ 0.5 \\ 1.0 \\ 2.0 \\ 5.0 \\ 10.0 \\ 20.0 \end{array}$	$\begin{array}{r} 0.000 \\ 3.070 \\ 19.364 \\ 122.537 \\ 1407.831 \\ 8933.058 \\ 56701.987 \end{array}$	$\begin{array}{r} 0 \\ 0.5 \\ 2 \\ 8 \\ 50.1 \\ 200.1 \\ 800.2 \end{array}$	$\begin{array}{r} 0 \\ 2 \\ 4 \\ 8 \\ 20 \\ 40 \\ 80 \end{array}$	0.15

## WinTR-55 Current Data Description

## --- Identification Data ---

User:	O. Reveles	Date:
Project:	Butler Vineyards	Units:
SubTitle:	Post-Development	English
State:	California	
County:	Napa	
Filename:	Z: UJobs $2018 \backslash 180901$	Butler Vineyards $\backslash 0121$ New Vineyard Development ECP $\backslash C a l c \backslash 01 \backslash T R-55 \backslash B u t l e r ~ P o s t ~$

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
A	Outlet	2.21	80	0.1	
D	Outlet	0.42	80	0.100	
F	Outlet	0.62	83	0.1	
G	Outlet	0.63	80	0.1	
H	Outlet	0.6	80	0.1	
Total area: $4.48(\mathrm{ac})$					

--- Storm Data --
Rainfall Depth by Rainfall Return Period


Storm Data

## Rainfall Depth by Rainfall Return Period

$\begin{aligned} & 1-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 2-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 5-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 10-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 25-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 50-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 100-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$
3.08	4.05	5.29	6.28	7.6	8.6	9.61
Storm Data Source:   Rainfall Distribution Type:   Dimensionless Unit Hydrograph:			User-provided custom storm data Type IA <standard>			

Butler Vineyards Post-Development Napa County, California Watershed Peak Table

Sub-Area		Flow	infa	urn Per			
or Reach	$1-\mathrm{Yr}$	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
Identifier	(cfs)						
SUBAREAS							
A	0.64	1.10	1.74	2.27	3.00	3.56	4.12
D	0.12	0.21	0.33	0.43	0.57	0.68	0.79
F	0.22	0.36	0.55	0.70	0.91	1.06	1.22
G	0.18	0.31	0.49	0.65	0.85	1.01	1.17
H	0.17	0.30	0.47	0.62	0.82	0.97	1.12

## REACHES

OUTLET	1.34	2.28	3.58	4.67	6.15	7.28	8.43

1.34
2.28
3.58
4.67
6.15
7.28
8.43

0. Reveles	Butler Vineyards Post-Development Napa County, Califor						
	Hydrograph Peak/Peak Time Table						
Sub-Area	Peak	Flow and	Peak Time	(hr) by Rai	nfall Retur	rn Period	
or Reach	1-Yr	$2-\mathrm{Yr}$	$5-\mathrm{Yr}$	10-Yr	$25-\mathrm{Yr}$	50-Yr	100-Yr
Identifier	(cfs)						
	(hr)						
SUBAREAS							
A	0.64	1.10	-1.74	2.27	3.00	3.56	4.12
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
D	0.12	0.21	10.33	0.43	0.57	0.68	0.79
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
F	0.22	0.36	- 0.55	0.70	0.91	1.06	1.22
	7.94	7.93	7.92	7.92	7.92	7.92	7.91
G	0.18	0.31	1 0.49	0.65	0.85	1.01	1.17
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
H	0.17	0.30	0.47	0.62	0.82	0.97	1.12
	8.00	7.93	7.93	7.93	7.93	7.92	7.92

## REACHES

OUTLET
1.34
2.28
3.58
4.67
6.15
7.28
8.43

0. Reveles	Butler Vineyards   Post-Development a County, Californ				
	Sub-Area Summary Table				
Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve   Number	Receiving Reach	Sub-Area Description
A	2.21	0.100	80	Outlet	
D	. 42	0.100	80	Outlet	
F	. 62	0.100	83	Outlet	
G	. 63	0.100	80	Outlet	
H	. 60	0.100	80	Outlet	
Total Area:	4.48 (ac)				


0. Reveles		Nap b-Area T	Butler Vin   Post-Develo   County, Ca   ime of Conce	ards ment ifornia   tration	Details		
Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	$\underset{\mathrm{n}}{\text { Mannings's }}$	End Area (sq ft)	Wetted Perimeter (ft)	Velocity   (ft/sec)	Travel Time (hr)
A							
SHEET	100	0.1700	0.130				0.055
SHALLOW	692	0.3000	0.050				0.022
CHANNEL	164	0.0500	0.035	2.00	4.47	5.694	0.008
				Ti	me of Conce	ration	0.1
D							
SHEET	100	0.2100	0.130				0.051
SHALLOW	302	0.2300	0.050				0.011
					me of Conce	ration	0.100
F							
SHEET	100	0.1700	0.130				0.055
SHALLOW	111	0.1600	0.050				0.005
CHANNEL	233	0.0900	0.035	2.00	4.47	7.191	0.009
					me of Conce	tration	0.1
G							
SHEET	100	0.2500	0.170				0.058
					me of Conce	ration	0.1
H							
SHEET	100	0.1900	0.170				0.065
SHALLOW	30	0.3000	0.050				0.001
					me of Conce	ration	0.1

```
 Butler Vineyards
 Post-Development
 Napa County, California
 Sub-Area Land Use and Curve Number Details
```



## WinTR-55 Current Data Description

## --- Identification Data ---

User:	0. Reveles	Date:	9/11/2020
Project:	Butler Vineyards	Units:	English
SubTitle:	Post-Development	Areal Units:	Acres
State:	California		
County:	Napa		
Filename:	Z:\Jobs 2018\1809	21 New Vineya	ard Develop

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
B	Reach 1	1.31	80	0.100	
C	Reach 2	0.38	80	0.1	
E	Reach 4	2.37	81	0.1	
Total area: $4.06(a c)$					

--- Storm Data --
Rainfall Depth by Rainfall Return Period

1-Yr	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
(in)						
3.08	4.05	5.29	6.28	7.6	8.6	9.61

Storm Data Source: User-provided custom storm data
Rainfall Distribution Type: Type IA
Dimensionless Unit Hydrograph: <standard>

Storm Data

## Rainfall Depth by Rainfall Return Period

$\begin{aligned} & 1-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 2-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 5-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 10-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 25-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 50-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 100-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$
3.08	4.05	5.29	6.28	7.6	8.6	9.61
Storm Data Source:   Rainfall Distribution Type:   Dimensionless Unit Hydrograph:			User-provided custom storm data Type IA <standard>			



0. Reveles	Butler Vineyards Post-Development						
	Hydrograph Peak/Peak Time Table						
Sub-Area	Peak	Flow and P	Peak Time	(hr) by Rain	nfall Ret	rn Period	
or Reach	1-Yr	$2-\mathrm{Yr}$	5-Yr	10-Yr	$25-\mathrm{Yr}$	50-Yr	$100-\mathrm{Yr}$
Identifier	(cfs)						
	(hr)						
SUBAREAS							
B	0.38	0.65	1.03	1.35	1.78	2.11	2.45
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
C	0.11	0.19	0.30	0.39	0.51	0.61	0.70
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
E	0.73	1.24	1.94	2.51	3.30	3.90	4.50
	8.00	7.94	7.93	7.93	7.92	7.92	7.92
REACHES							
Reach 1	0.38	0.65	1.03	1.35	1.78	2.11	2.45
	8.00	7.93	7.93	7.93	7.93	7.92	7.92
Down	0.38	0.65	1.03	1.35	1.78	2.11	2.45
	8.01	7.94	7.94	7.93	7.93	7.92	7.92
Reach 2	0.49	0.84	1.33	1.74	2.29	2.72	3.15
	8.01	7.94	7.93	7.93	7.93	7.92	7.92
Down	0.49	0.84	1.33	1.74	2.29	2.72	3.15
	8.01	7.94	7.94	7.93	7.93	7.93	7.93
Reach 3	0.49	0.84	1.33	1.74	2.29	2.72	3.15
	8.01	7.94	7.94	7.93	7.93	7.93	7.93
Down	0.49	0.84	1.33	1.74	2.29	2.72	3.15
	8.02	7.95	7.94	7.93	7.93	7.93	7.93
Reach 4	1.22	2.08	3.26	4.25	5.59	6.62	7.65
	8.01	7.94	7.93	7.93	7.93	7.92	7.92
Down	1.22	2.08	3.26	4.25	5.59	6.62	7.65
	8.01	7.94	7.94	7.93	7.93	7.92	7.92
OUTLET	1.22	2.08	3.26	4.25	5.59	6.62	7.65


0. Reveles	Butler Vineyards Post-Development County, Californi				
	Sub-Area Summary Table				
Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
B	1.31	0.100	80	Reach 1	
C	. 38	0.100	80	Reach 2	
E	2.37	0.100	81	Reach 4	
Total Area:	4.06 (ac				


| 0. Reveles | Butler Vineyards <br> Post-Development <br> Napa County, California |  |
| :---: | :---: | :---: | :---: |
| Reach Summary Table |  |  |


0. Reveles		Nap b-Area T	Butler Vin   Post-Devel County, Ca   ime of Conce	ards   ment ifornia   tration	Details		
Sub-Area Identifier/	Flow Length (ft)	Slope   (ft/ft)	$\underset{\mathrm{n}}{\text { Mannings 's }}$	$\begin{gathered} \text { End } \\ \text { Area } \\ \text { (sq ft) } \end{gathered}$	Wetted Perimeter (ft)	Velocity   (ft/sec)	Travel Time (hr)
B							
SHEET	100	0.2200	0.130				0.050
SHALLOW	516	0.2200	0.050				0.019
CHANNEL	96	0.1300	0.035	2.00	4.47	8.889	0.003
					me of Conce	tration	0.100
C							
SHEET	100	0.2600	0.130				0.046
SHALLOW	400	0.2100	0.050				0.015
CHANNEL	78	0.1500	0.035	2.00	4.47	10.833	0.002
					me of Conce	tration	0.1
E							
SHEET	$100$	0.1600	0.170				0.070
SHALLOW	$324$	0.2400	0.050				0.011
					me of Conce	tration	0.1

```
 Butler Vineyards
 Post-Development
 Napa County, California
 Sub-Area Land Use and Curve Number Details
```

Sub-Area Identifier	Land Use		$\begin{aligned} & \text { Hydrologic } \\ & \text { Soil } \\ & \text { Group } \end{aligned}$	Sub-Area Area (ac)	Curve Number
B	Pasture, grassland or range	(good)	D	1.17	80
	Woods - grass combination	(good)	D	. 14	79
	Total Area / Weighted Curve Number			1.31	80
C	Pasture, grassland or range	(good)	D	. 35	80
	Woods - grass combination	(good)	D	. 03	79
	Total Area / Weighted Curve Number			. 38	80
E	Gravel (w/ right-of-way)		D	. 21	91
	Pasture, grassland or range	(fair)	D	. 13	84
	Pasture, grassland or range	(good)	D	1.72	80
	Woods - grass combination	(fair)	D	. 31	82
	Total Area / Weighted Curve Number			2.37	81


0. Reveles		Butler Vineyards   Post-Development Napa County, California   Reach Channel Rating Details			
```Reach Identifier```	Reach Length (ft)	Reach Manning's n	$\begin{gathered} \text { Friction } \\ \text { Slope } \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$	Bottom Width (ft)	Side Slope
Reach 1	78	0.035	0.14	0	2 :1
Reach 2	206	0.018	0.19	0.2	2.6:1
Reach 3	118	0.035	0.09	0	10 :1
Reach 4	1	0.035	0.15	0	2 :1
Reach Identifier	Stage (ft)	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	End Area $(\mathrm{sq} \mathrm{ft})$	Top Width (ft)	Friction Slope (ft/ft)
Reach 1	0.0	0.000	0	0	0.14
	0.5	2.966	0.5	2	
	1.0	18.708	2	4	
	2.0	118.382	8	8	
	5.0	1360.094	50.1	20	
	10.0	8630.154	200.1	40	
	20.0	54779.323	800.2	80	
Reach 2	0.0	0.000	0	0.2	0.19
	0.5	10.745	0.8	2.8	
	1.0	62.211	2.8	5.4	
	2.0	376.142	10.8	10.6	
	5.0	4200.856	66	26.2	
	10.0	26400.604	262	52.2	
	20.0	166767.272	1044	104.2	
Reach 3	0.0	0.000	0	0	0.09
	0.5	12.629	2.5	10	
	1.0	80.080	10	20	
	2.0	508.138	40	40	
	5.0	5847.643	250.1	100	
	10.0	37125.263	1000.1	200	
	20.0	235714.993	4000.2	400	
Reach 4	0.0	0.000	0	0	0.15
	0.5	3.070	0.5	2	
	1.0	19.364	2	4	
	2.0	122.537	8	8	
	5.0	1407.831	50.1	20	
	10.0	8933.058	200.1	40	
	20.0	56701.987	800.2	80	

* Sump shall be a runoff collector, therefore the whole circumference of the sump pipe shall funtion as a weir

Equations Used:
Circular Riser Weir Flow Equation: $\mathrm{Qw}=9.73 \times \mathrm{dx} \mathrm{h}^{\wedge}(3 / 2)$ where $\quad \mathrm{Qw}=$ weir flow, in cfs $\mathrm{Qw}=$ weir flow, in cfs
$h=$ height of water above riser, in feet
rearranging terms, and solving for h, yields:
$\mathrm{h}=(\mathrm{Ow} /(9.73 \times \mathrm{d}))^{\wedge}(2 / 3)$
when only half of the circumference of the circular riser behaves as a weir $h=(Q w /(4.87 \times d))^{\wedge}(2 / 3)$
Setting the Circular Riser Weir Flow Equation equal to the Standard Weir Equation yields: $9.73 \times \mathrm{d} \times \mathrm{h}^{\wedge}(3 / 2)=\mathrm{C} \times \mathrm{b} \times \mathrm{h}^{\wedge}(3 / 2)$
substituting circumference ($\mathrm{m} \times \mathrm{d}$) for "b" yields:
$9.73 \times \mathrm{dxh}$ ^(3/2) $=\mathrm{C} \times(\mathrm{n} \times \mathrm{d}) \times \mathrm{h}^{\wedge}(3 / 2)$
simplifying the equation vields: $9.73=\mathrm{cx} \pi$
Solving for C yields: $\mathrm{C}=3.10$
Weir coefficient is on the conservative side of the acceptable range (3.0-3.9)

```
Standard Weir Equation: Qw = C x b x h^(3/2)
            where C = weir coefficient (3.0-3.9)
                            C= weir coefficient (3.0-3.9)
                        = height of water above weir, in feet
```

This equation calculates the flow in terms of the effective length of the weir and the height of the water above the weir. If a circular pipe riser is used, the effective weir length is equal to the circumference of that circular pipe

Subject:	Lands of Butler - New Vineyard Development
Project \#:	$180901-0121$
By:	Omar Reveles
Date:	$11 / 5 / 2020$

Drainage Mainline
Using Mannings Equation $\mathrm{Q}=\left(\left((1.49 / n) \times \mathrm{A} \times \mathrm{R}^{\wedge}(2 / 3)\right) \times \mathrm{s}^{\wedge}(1 / 2)\right)$

where: \quad| $\mathrm{Q}=$ flow, in cfs |
| :--- |
| $\mathrm{n}=$ Mannings Roughness Coefficient |
| $\mathrm{A}=$ area in flow, in square feet |
| $\mathrm{R}=$ hydraulic radius, in feet |
| $\mathrm{s}=$ slope, in $\mathrm{ft} / \mathrm{ft}$ |

From the previous illustration:
$\theta(R A D)=2 x \arccos ((D / 2-d) /(D / 2))$
Area $=1 / 8(\theta-\sin \theta) D^{\wedge} 2 \quad(\theta$ in radians $)$
Wetted Perimeter $=\theta \mathrm{D} / 2 \quad(\theta$ in radians $)$
Hydraulic Radius $=(1-(\sin (\theta) / \theta)) \times(D / 4) \quad(\theta$ in radians $)$

Drainage Mainline Sizing Table									
Section	$\begin{aligned} & \text { Spanned } \\ & \text { DI's } \end{aligned}$	Pipe Slope (ft/ft)	HDPE Pipe Size (inches)	HDPE Pipe S/W or D/W	Mannings "n" value	\% Full (d/D)	Flow Capacity (cfs)	Peak Anticipated Flow (cfs)	Notes
A	N/A	0.19	12	Single Wall	0.018	70\%	9.42	3.15	OK

Notes:
1.) Mannings roughness coefficients (n values) for smooth wall pipe were acquired from ADS product literature
2.) Peak anticipated flows were obtained from TR-55 hydrologic modeling for post-development conditions.

Subject:	Lands of Butler - New Vineyard Development
Project \#:	180901-0121
By:	Omar Reveles
Date:	$11 / 5 / 2020$

Energy Dissipater Sizing

NDTES

1. 'La' = LENGTH of APRON. DISTANCE 'La' Shall be of SUFFICIENT LENGTH

TO DISSIPATE ENERGY
2. APRON SHALL BE SET AT A ZERD GRADE AND ALIGNED STRAIGHT.
3. FILTER MATERIAL SHALL BE FILTER FABRIC OR 6° THICK GINN GRADED GRAVEL LAYER.

Pipe Geometry		
Diameter (in)	Diameter (ft)	Area (sq. ft.)
3	0.25	0.05
4	0.33	0.09
6	0.50	0.20
8	0.67	0.35
10	0.83	0.55
12	1.00	0.79
15	1.25	1.23
18	1.50	1.77
24	2.00	3.14

Channel Geometry (assuming 2:1 side slopes)				
Depth (in)	Depth (ft)	Width (ft)	Area (sq. ft.)	Equivalent Pipe Size (in)
4	0.33	1.33	0.22	8
6	0.50	2.00	0.50	10
8	0.67	2.67	0.89	15
10	0.83	3.33	1.39	18
12	1.00	4.00	2.00	24

Energy Dissipater Geometry								
Outfall Location	Outfall Type	Channel Depth (in)	Equivalent Pipe Size (in)	Min Apron Width "Wa" (ft)	Min Apron Length "La" (ft)	d50 Rock Size (in)	Largest Stone Size (in)	Rock Layer Depth "d" (in)
Reach 3	Pipe	-	12	4.0	4.5	6	9	14

HYDROLOGIC SOIL-COVER COMPLEXES

A combination of the effects of hydrologic soil group (soil) and the land use and treatment class (cover) is used to determine the runoff curve number (CN). The CN indicates the runoff potential of a soil-cover complex during periods when the soil is not frozen. The higher the CN , the higher the potential for runoff.

Land Use

Fallow is the land use with the highest potential for runoff because the land is kept as bare as possible to conserve moisture for use by a succeeding crop.

A row crop is any field crop planted in rows far enough apart that most of the soil surface is exposed to rainfall impact during the early growing season (i.e.: corn, soybeans, sorghum).

Small grain is planted in rows close enough together that the soil surface is not exposed except during planting and shortly thereafter.

Close-seeded legumes or rotation meadow are either planted in close rows or broadcast. This cover may be allowed to remain for more than a year so that year-round protection is given to the soil.

Pasture is a long term stand of forage plants which gives year-round protection to the soil.
Meadow is a field in which grass is continually grown, protected from grazing, and generally mowed for hay.

Woods are forested areas that have at least 30 percent canopy coverage as viewed by aerial photography.

Farmsteads include the area surrounding the farm headquarters including buildings, lots, driveways, etc.

Roads are improved travelways (not farm lanes). Hard surface roads include any type of asphalt or concrete paving. Road right-of-way is included in the total road area used to determine CN.

Treatment or Practice

Straight row fields are those farmed in straight rows either up and down hill or across the slope.

Contoured fields are those farmed as nearly as possible on the contour. The hydrologic effect of contouring is due to the surface storage provided by the furrows because the storage prolongs the time during which infiltration can take place. The magnitude of the storage depends not only on the dimensions of the furrows but also on the land slope, crop, and manner of planting and cultivation. See Contour Farming (330) in the Field Office Technical Guide for additional guidance.

The contoured and terraced condition is to be used for systems containing open-end level or graded terraces with grassed waterway outlets where all tillage is done on the contour between the terraces. The area above closed-end level terraces and terraces with tile outlets is to be included with the contoured area for runoff curve number computations.

Hydrologic Condition

Ratings as to "poor" or "good" are based largely on the proportion of dense vegetation in the rotation.

Pasture is considered poor if it is heavily grazed and has no mulch or has plant cover on less than half of the area. Fair pasture has plant cover on 50 to 75 percent of the area. Heavily grazed pasture in lowa is generally considered to be fair pasture. Good pasture is lightly grazed and has plant cover on more than 75 percent of the area.

Poor woods are heavily grazed or are regularly burned and have no litter or new young growth. Fair woods are grazed but not burned. There may be some litter but these woods are not protected. Good woods are protected from grazing and have litter and shrubs covering the soil.

Table IA2-1 gives CN's for agricultural land uses and for selected suburban and urban land uses.

Effects of Conservation Tillage

Cropland with conservation tillage and residue management practices will be considered to be in good hydrologic condition.

RUNOFF CURVE NUMBERS ${ }^{1 /}$
TABLE IA2-1

TABLE IA2-1

COVER TYPE	LAND USE AND TREATMENT ${ }^{21}$	HYDROLOGIC CONDITION ${ }^{3 /}$	A	CN	B	CN	C	CN	D	CN
61	SR + Crop residue	poor		64		75		83		86
62	SR + Crop residue	good		60		72		80		84
63	Contoured (C)	poor		63		74		82		85
64	Contoured (C)	good		61		73		81		84
65	C + Crop residue	poor		62		73		81		84
66	C + Crop residue	good		60		72		80		83
67	Cont \& terraced (C\&T)	poor		61		72		79		82
68	Cont \& terraced (C\&T)	good		59		70		78		81
69	C\&T + Crop residue	poor		60		71		78		81
70	C\&T + Crop residue	good		58		69		77		80
71										
72	Close-seeded Straight Row	poor		66		77		85		89
73	legumes or Straight Row	good		58		72		81		85
74	rotation Contoured	poor		64		75		83		85
75	meadow Contoured	good		55		69		78		83
76	Cont \& terraced	poor		63		73		80		83
77	Cont \& terraced	good		51		67		76		80
78										
79	OTHER AGRICULTURAL LANDS									
80	Pasture, grassland or range ${ }^{4 /}$	poor		68		79		86		89
81	Pasture, grassland or range	fair		49		69		79		84
82	Pasture, grassland or range	good		39		61		74		80
83										
84	Meadow - cont. grass (non grazed)			30		58		71		78
85										
86	Brush - brush, weed, grass mix ${ }^{5 /}$	poor		48		67		77		83
87	Brush - brush, weed, grass mix	fair		35		56		70		77
88	Brush - brush, weed, grass mix	good		$30^{\text {br }}$		48		65		73
89										
90	Woods - grass combination ${ }^{\prime \prime}$	poor		57		73		82		86
91	Woods - grass combination	fair		43		65		76		82
92	Woods - grass combination	good		32		58		72		79
93										
94	Woods ${ }^{\text {8f }}$	poor		45		66		77		83
95	Woods	fair		36		60		73		79
96	Woods	good		30		55		70		77
97										
98	Farmsteads	-		59		74		82		86
99	Feedlots									
100	Earthen	-		90		90		90		90
101	Paved			98		98		98		98

${ }^{1 /}$ Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~s}$.
${ }^{2 /}$ Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.
${ }^{31}$ Hydrologic condition is based on combinations of factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good $\geq 20 \%$), and (e) degree of surface toughness.
Poor: factors impair infiltration and tend to increase runoff.
Good: Factors encourage average and better than average infiltration and tend to decrease runoff.
For conservation tillage poor hydrologic condition, 5 to 20% of the surface is covered with residue (less than 750 pounds per acre for row crops or 300 pounds per acre for small grain).
For conservation tillage good hydrologic condition, more than 20% of the surface is covered with residue (greater than 750 pounds per acre for row crops or 300
pounds per acre for small grain).
4 Poor: $\quad<50 \%$ ground cover or heavily grazed with no mulch.
Fair: $\quad 50$ to 75% ground cover and not heavily grazed.
Good: $\quad>75 \%$ ground cover and lightly or only occasionally grazed.
5 Poor: $\quad<50 \%$ ground cover.
Fair: $\quad 50$ to 75% ground cover.
Good: $\quad>75 \%$ ground cover.
${ }^{61}$ If actual curve number is less than 30 , use $\mathrm{CN}=30$ for runoff computation.
${ }^{71}$ CNs shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CNs for woods and pasture.
${ }^{8 /}$ Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.
Fair: Woods are grazed, but not burned, and some forest litter covers the soil.
Good: Woods are protected from grazing, and letter and brush adequately cover the soil.

APPENDIX 19.A

Manning's Roughness Coefficient ${ }^{a, b}$ (design use)

channel material	n
plastic (PVC and ABS)	0.009
clean, uncoated cast iron	0.013-0.015
clean, coated cast iron	0.012-0.014
dirty, tuberculated cast iron	0.015-0.035
riveted steel	0.015-0.017
lock-bar and welded steel pipe	0.012-0.013
galvanized iron	0.015-0.017
brass and glass	0.009-0.013
wood stave	
small diameter	0.011-0.012
large diameter	0.012-0.013
concrete	
average value used	0.013
typical commercial. ball and spigot rubber gasketed end connections	
- full (pressurized and wet)	0.010
- partially full	0.0085
with rough joints	0.016-0.017
dry mix, rough forms	0.015-0.016
wet mix, steel forms	0.012-0.014
very smooth, finished	0.011-0.012
vitrified sewer	$0.013-0.015$
common-clay drainage tile	0.012-0.014
asbestos	0.011
planed timber (flume)	0.012 (0.010-0.014)
canvas	0.012
unplaned timber (flume)	0.013 (0.011-0.015)
brick	0.016
rubble masonry	0.017
smooth earth	0.018
firm gravel	0.023
corrugated metal pipe (CMP).	0.024 (see App. 17.F)
natural channels, good condition	0.025
rip rap	0.035
natural chamnels with stones and weeds	0.035
very poor natural channels	0.060

[^0]Table 3-1
Conveyance Factors (Standard Units)

Conveyance Factors for Circular Pipe Flowing Full																		
Manning's "n" Values																		
Dia. (in.)	Area (sq. ft.)	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025
3	0.05	1.3	1.1	1.0	1.0	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5
4	0.09	2.7	2.5	2.2	2.1	1.9	1.8	1.6	1.5	1.5	1.4	1.3	1.2	1.2	1.1	1.1	1.0	1.0
6	0.20	8.1	7.3	6.6	6.1	5.6	5.2	4.9	4.6	4.3	4.1	3.8	3.6	3.5	3.3	3.2	3.0	2.9
8	0.35	17.5	15.7	14.3	13.1	12.1	11.2	10.5	9.8	9.2	8.7	8.3	7.9	7.5	7.1	6.8	6.5	6.3
10	0.55	31.6	28.5	25.9	23.7	21.9	20.3	19.0	17.8	16.8	15.8	15.0	14.2	13.6	12.9	12.4	11.9	11.4
12	0.79	51.5	46.3	42.1	38.6	35.6	33.1	30.9	28.9	27.2	25.7	24.4	23.2	22.1	21.1	20.1	19.3	18.5
15	1.23	93.3	84.0	76.3	70.0	64.6	60.0	56.0	52.5	49.4	46.7	44.2	42.0	40.0	38.2	36.5	35.0	33.6
18	1.77	151.7	136.6	124.1	113.8	105.0	97.5	91.0	85.3	80.3	75.9	71.9	68.3	65.0	62.1	59.4	56.9	54.6
21	2.41	228.9	206.0	187.3	171.6	158.4	147.1	137.3	128.7	121.2	114.4	108.4	103.0	98.1	93.6	89.6	85.8	82.4
24	3.14	326.8	294.1	267.3	245.1	226.2	210.1	196.1	183.8	173.0	163.4	154.8	147.0	140.0	133.7	127.9	122.5	117.6
27	3.98	447.3	402.6	366.0	335.5	309.7	287.6	268.4	251.6	236.8	223.7	211.9	201.3	191.7	183.0	175.0	167.8	161.0
30	4.91	592.5	533.2	484.7	444.3	410.2	380.9	355.5	333.3	313.7	296.2	280.6	266.6	253.9	242.4	231.8	222.2	213.3
33	5.94	763.9	687.5	625.0	572.9	528.9	491.1	458.3	429.7	404.4	382.0	361.9	343.8	327.4	312.5	298.9	286.5	275.0
36	7.07	963.4	867.1	788.2	722.6	667.0	619.3	578.0	541.9	510.0	481.7	456.4	433.5	412.9	394.1	377.0	361.3	346.8
42	9.62	1453.2	1307.9	1189.0	1089.9	1006.1	934.2	871.9	817.5	769.4	726.6	688.4	654.0	622.8	594.5	568.7	545.0	523.2
45	11.04	1746.8	1572.1	1429.2	1310.1	1209.3	1122.9	1048.1	982.6	924.8	873.4	827.4	786.1	748.6	714.6	683.5	655.0	628.8
48	12.57	2074.8	1867.4	1697.6	1556.1	1436.4	1333.8	1244.9	1167.1	1098.4	1037.4	982.8	933.7	889.2	848.8	811.9	778.1	746.9
54	15.90	2840.5	2556.4	2324.0	2130.4	1966.5	1826.0	1704.3	1597.8	1503.8	1420.2	1345.5	1278.2	1217.4	1162.0	1111.5	1065.2	1022.6
60	19.63	3762.0	3385.8	3078.0	2821.5	2604.4	2418.4	2257.2	2116.1	1991.6	1881.0	1782.0	1692.9	1612.3	1539.0	1472.1	1410.7	1354.3
72	28.27	6117.3	5505.6	5005.1	4588.0	4235.1	3932.6	3670.4	3441.0	3238.6	3058.7	2897.7	2752.8	2621.7	2502.5	2393.7	2294.0	2202.2

[^1]

water	Lend se			aces	${ }_{\text {comer }}^{\text {nember }}$
\cdots	Patue, essesmodr rame	${ }_{6000}$	${ }^{\circ}$	1.74	8
				${ }_{2}^{0.41}$	${ }_{\text {co }}^{19}$
${ }^{\text {B }}$,		
		${ }_{\substack{\text { cose } \\ \cos }}$	。	${ }_{\text {l }}^{1.14}$	${ }_{\substack{80 \\ 78 \\ \hline 8}}$
	Tostat			${ }_{1}^{1.19}$	${ }_{80}$
c			-	0.02	9
		${ }_{\text {com }}^{\text {com }}$	\bigcirc	${ }_{0}^{0.33}$	${ }^{80}$
	Totl	${ }^{\text {com }}$		${ }_{0}^{0.038}$	${ }_{81}^{19}$
-			0	0.01	${ }^{1}$
	Patue gesemodor rage	${ }^{\text {cood }}$		${ }_{0} 27$	${ }_{8}$
		${ }_{\text {cosed }}$	\bigcirc	${ }_{0.42}$	¢
E			。	${ }^{0.21}$	9
	Patue gesemotor raxe	far	\bigcirc	${ }^{123}$	${ }_{8}$
	Sex	${ }_{\text {rar }}$	-	${ }^{237}$	${ }_{8}^{82}$
				${ }^{237}$	
F	Pastue gesesend orame	${ }_{\text {far }}$	-	0.38	${ }_{8}$
	Wooss gass orm	far	-	${ }^{0.24}$	${ }_{8}^{82}$
	Total			0.62	
${ }^{6}$	Sueg gesendorame	far	\bigcirc	0.12	${ }_{8}^{84}$
	Woost qassomb	far		${ }_{\substack{0.51 \\ 0.05}}^{\text {a }}$	${ }_{82}^{82}$
н					
		${ }_{\text {sar }}$	$\stackrel{0}{\circ}$	${ }_{0}^{0.05}$	${ }_{84}$
	Weos gasasombtion	${ }_{\text {far }}$	-	0.06	${ }^{82}$
	Total			0.50	${ }_{84}$

waters	mandse			aces	nemmer
	Eastue gasamotr rane	${ }^{6000}$	${ }^{\circ}$	${ }^{1.74}$	${ }^{80}$
A		${ }_{\text {cood }}$	${ }^{\circ}$	${ }_{\substack{0.47 \\ 221}}$	${ }_{\substack{79 \\ 80}}$
	Total			${ }^{221}$	${ }^{\text {so }}$
	Rasue gasameror rave	${ }_{\text {cood }}$	\bigcirc	${ }_{1.17}^{1.7}$	${ }^{80}$
s	$\frac{\text { Noost } \text { gess om }}{\text { Total }}$			${ }_{\text {coin }}^{0.19}$	${ }_{80}^{79}$
c		${ }_{\substack{\text { caod } \\ \text { cood }}}^{\text {coser }}$	잉	${ }^{\frac{0}{0.35}} 0$	${ }_{\substack{80 \\ 79}}$
	Tootal			${ }_{0} 0.38$	${ }^{80}$
	Restue，gasesmotr rave	cood	－	0.28	${ }^{80}$
－	$\frac{\text { Woobs gase } \text { gom }}{\text { Total }}$	cood		${ }_{0}^{0.48}$	${ }_{\substack{79 \\ 80}}$
			。	${ }_{0} 021$	9
．	Stersas	far	\bigcirc		
ז	astue，osasharor orame		\bigcirc	${ }^{1,2}$	${ }_{8}^{80}$
	Tossil			${ }^{\frac{0}{237}}$	－${ }_{\text {81 }}^{81}$
	Satue gasemororam	${ }_{\text {far }}$	\bigcirc	${ }_{0}^{037}$	${ }_{8} 8$
F			－	${ }_{0}^{0.02}$	
	$\frac{\text { gosal }}{\text { Tosat }}$	${ }_{\text {far }}$			${ }^{82} 8$
		${ }_{\text {cood }}$	\bigcirc		
。	Toat			${ }_{0}^{0.05}$	${ }_{80}$
			。	${ }_{0}^{0.01}$	
н	Fasteregest	\％	\bigcirc	${ }_{0}^{0.01}$	${ }^{84}$
	Stue gasamodo rave	${ }_{\text {cose }}$	\bigcirc	${ }^{0.58}$	
	Toat			0.60	${ }^{\text {so }}$

[^0]: ${ }^{2}$ Compiled from various sources.
 ${ }^{b}$ Values outside these ranges have been observed, but these values are typical.

[^1]: * Corrugated Polyethylene Pipe Association (2000) "Hydraulic Considerations for Corrugated Polyethylene Pipe"
 ** "Lingedburg, Michael, "Civil Engineer Reference Manual" ${ }^{4}$

