

Hydrology-Hydraulics Study

For

Seaton Avenue Warehouses

Unincorporated Perris, County of Riverside, CA

APN 0314-091-005

Prepared For:

Dedeaux Properties 1430 S. Eastman Avenue Los Angeles, CA 90023 (909) 730-0186

June 18, 2021

Douglas L. Goodman

Table of Contents

1.	INTROD	UCTION	2
1.1	. Projec	t Description	2
1.2	. Purpo	se of the Study	2
2.	PRE-DE	VELOPMENT CONDITION	3
3.	POST-D	EVELOPMENT CONDITION HYDROLOGY	4
3.1	. Post-D	Development Conditions	4
3.2	. Metho	dology of Hydrology Study	4
3.3	. Hydro	logy Calculations	4
3.4	. Result	of Post-Development Hydrology Calculations	4
4. CO		RISON OF POST-DEVELOPMENT AND PRE-DEVELOPMENT HYDROLOGIC	5
5.	HYDRAU	JLICS CALCULATIONS	6
5.1	. Hydra	ulic Calculations Methodology	6
5.2	. Result	s of Hydraulic Calculations	6
6.	CONCLU	JSIONS	6
7.	EXHIBIT	S	7
E	xhibit A	Location Map	8
E	xhibit B	Hydrologic Soil Group	9
E	xhibit C	Precipitation Maps	10
E	xhibit D	Post-Development Hydrology Map	11
8.	APPEND	DICES	12
A	ppendix '	County Master Plan Excerpts	13
A	Appendix 3	B Hydrology Calculations	14
A	Appendix 3	3 Hydraulic Calculations	15

- 1 -

1. INTRODUCTION

1.1. Project Description

The proposed project is for the construction of two warehouse buildings with truck loading docks and associated parking on 9 acres. The project is located on Seaton Avenue, extending westerly to Beck Street, between Perry Street and Markham Street, in the unincorporated Perris Area, County of Riverside. Access to the proposed site building will be from two driveway entrances off of Seaton Avenue on the east side of the site.

1.2. Purpose of the Study

This drainage report is for assessing the drainage facility requirements for the proposed development as shown on the grading plan. Goodman & Associates shall not be held responsible for any unauthorized application of this report and the contents herein. The opinions expressed in this report have been derived in accordance with current standards of civil engineering practice. No other warranty is expressed or implied.

2. PRE-DEVELOPMENT CONDITION

The existing vacant property generally slopes from west to east at approximately 3%. Per the County's Perris Valley Area Drainage Plan, the site is part of the area tributary to Lateral F-1, with approximately 60 acres of upstream off-site area that is tributary to the site. Existing drainage sheet flows through and across the site, discharging to an existing inlet structure at the northeast corner of the site. There is an existing 48" storm drain pipe in Seaton Avenue, constituting the current upstream end of Lateral F-1.

3. POST-DEVELOPMENT CONDITION HYDROLOGY

3.1. Post-Development Conditions

The proposed project will consist of two buildings, each on a dedicated parcel. Each parcel will have a dedicated LID BMP, proposed to be a CDS clarifier for pre-treatment ahead of an underground infiltration system. Each system is proposed to be situated to the east of each building. Over-flows in excess of water quality capture volume requirements will be directed to the aforementioned Lateral F-1 for conveyance off-site. Please see separate Project-Specific Water Quality Management Plan (WQMP) for more information.

The project will be required to extend Lateral F-1 to the west side in order to collect off-site runoff. There is also existing runoff from properties to the south that will be collected by a proposed on-site system and conveyed directly to Lateral F-1. No run-on from off-site areas will surface drain through the site.

3.2. Methodology of Hydrology Study

To obtain peak flow rates, the hydrologic conditions of the site for the 100-year storm was analyzed using the Rational Method as described in Section D of the *County of Riverside Hydrology Manual*, using the following parameters:

3.3. Hydrology Calculations

AMC II

Soil Group: A, C, D

Storm Drain designed per GP/Zoning usage (commercial)

Pct. Pervious Cover, Ap (Proposed Condition): 10%

100-year, 1-hour rainfall: 1.12 inches (RCFC&WCD Hydrology Manual)

Log-Log Slope: 0.49

3.4. Result of Post-Development Hydrology Calculations

Per the ADP, 100-year peak flows at the downstream end of the project were calculated to be 107.7 cfs. Contained herein are "duplicate" master plan calculations, with a peak flow of 106.9 cfs in order to ensure the revised calculations are appropriately calibrated. This calculation was then adjusted to reflect the proposed change in land use for the subject site, calculated per the ADP as half-acre single-family residential, and now industrial, and the peak flow increased to 109.1 cfs.

4. COMPARISON OF POST-DEVELOPMENT AND PRE-DEVELOPMENT HYDROLOGIC CONDITIONS

Because there is a master-planned storm drain serving the site, developed runoff does not need to be mitigated down to the existing condition. Instead, a comparison between the master-planned condition and the proposed condition is necessary. As shown in Section 3.4 above, the increase in the proposed condition over the master plan is 2.2 cfs, or about 2%. Therefore it is our opinion that mitigation beyond what is proposed in the WQMP is not warranted.

5. HYDRAULICS CALCULATIONS

5.1. Hydraulic Calculations Methodology

Pipe hydraulic calculations for the extension of Lateral F-1 utilizing the WSPGW computer program will be provided during final engineering. Private and on-site pipe hydraulic calculations utilizing normal depth flow analyzed utilizing standard engineering formulas will also be provided during final engineering.

5.2. Results of Hydraulic Calculations

Hydraulic calculations will be provided during final engineering. For the purpose of sizing the storm drains that will intercept off-site runoff, see the included hydrology calculations for peak flows. Runoff to the proposed inlet on Beck Street will include the first to subareas, plus a split of the southerly subarea.

For the inlet on Beck Street, the 10-year storm is (35.5+25.13/2) 48 cfs, and for the 100 year storm, (54.8+38.3/2) 74 cfs.

For the southerly v-gutter, the 10-year storm is (25.13/2) 12.6 cfs, and for the 100-year storm (38.3/2) 19.2 cfs

6. CONCLUSIONS

The calculations above, and in the appendix, show that runoff from the site will be adequately collected and conveyed through the site to the existing master plan storm drain facility.

The results above are derived from standard hydraulic models and calculation methods, and are subject to the limitations of those methods.

7. EXHIBITS

Exhibit A Location Map

Source: GoogleEarth

Exhibit B Hydrologic Soil Group

Exhibit C Precipitation Maps

RAINFALL INTENSITY-INCHES PER HOUR

RCFC & WCD

STANDARD INTENSITY – DURATION CURVES DATA

MIRA	LOMA		MURRIETA & RANCHO	- TEME CALIFO	CUL A RNI A	NO	RCO		PALM	SPRING	s	PERRIS	VALLE	Y
DURATION MINUTES		UENCY	DURATION MINUTES	FREQ	UENCY	DURATION MINUTES	FREQ	UENCY	DURATION MINUTES	FREQ	UENCY	DURATION MINUTES	FREQ	UENC
	10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 YEAR		10 YEAR	100 Year		10 YEAR	10 YE
5	2.84	4.48	5	3.45	5.10	5	2.77	4.16	5	4.23	6.76	5	2.64	3.
6	2.58	4.07	6	3.12	4.61	6	2.53	3.79	6	3.80	6.08	6	2.41	3.
7	2.37	3.75	7	2.87	4.24	7	2.34	3.51	7	3.48	5.56	7	2.24	3.
8	2.21	3.49	8	2.67	3.94	8	2.19	3.29	8	3.22	5.15	l 8	2.09	3.
9	2.08	3.28	9	2.50	3.69	9	2.07	3.10	9	3.01	4.81	9	1.98	5.
10	1.96	3.10	10	2.36	3.48	10	1.96	2.94	10	2.83	4.52	10	1.88	2.
11	1.87	2.95	11	2.24	3.30	11	1.87	2.80	ii	2.67	4.28	1 11	1.79	2.
12	1.78	2.82	12	2.13	3.15	12	1.79	2.68	12	2.54	4.07	12	1.72	
13	1.71	2.70	13	2.04	3.01	13	1.72	2.58	13	2.43	3.88	13	1.65	2.
14	1.64	2.60	1 4	1.96	2.89	14	1.66	2.48	14	2.33	3.72	14	1.59	2.
15	1.58	2.50	15	1.89	2.79	15	1.60	2.40	15	2.23	3.58	15		_
16	1.53	2.42	16	1.82	2.69	16	1.55	2.32	16	2.15	3.44	16	1.54	2.
17	1.48	2.34	17	1.76	2.60	17	1.50	2.25	17	2.15		1	1.49	2 4
18	1.44	2.27	18	1.71	2.52	1 18	1.46	2.19	18	2.08	3.32 3.22	17 18	1.45	5.
19	1.40	2.21	19	1.66	2.45	19	1.42	2.13	19	1.95	3.12	19	1.41	2.
20	1.36	2.15	20	1.61	2.38	20	1.39	2.08	20	1 00				
55	1.29	2.04	55	1.53	2.26	22	1.32	1.98	22	1.89 1.79	3.03	20	1.34	1 4
24	1.24	1.95	24	1.46	2.15	24	1.26	1.90	24	1.79	2.86	22	1.28	1
26	1.18	1.87	26	1.39	2.06	26	1.22	1.82	26	1.62	2.72 2.60	24	1.22	1 4
28	1.14	1.80	28	1.34	1.98	28	1.17	1.76	28	1.56	2.49	26 28	1.18	1.
30	1.10	1.73	30	1.29	1.90	30	1.13	1.70	30	1				
32	1.06	1.67	32	1.24	1.84	32	1.10	1.64	32	1.49 1.44	2.39	30	1.10	1
34	1.03	1.62	34	1.20	1.78	34	1.06	1.59	34	1.39	2.30	32	1.06	1 .
36	1.00	1.57	36	1.17	1.72	36	1.03	1.55	36	1.34	2.22	34	1.03	1 -
38	.97	1.53	38	1.13	1.67	38	1.01	1.51	38	1.34	2.15 2.09	36 38	1.00	1
40	. 94	1.49	40	1.10	1.62	40	.98	1.47	40	1 27				
45	.89	1.40	45	1.03	1.52	45	.92	1.39	45	1.27	2.02	40	. 95	1
50	.84	1.32	50	•97	1.44	50	.88	1.31	50		1.89	45	.90	1
55	.80	1.26	55	• 92	1.36	55	.84	1.25	55	1.11	1.78	50	. 85	1
60	.76	1.20	60	. 88	1.30	60	.80	1.20	60	1.05	1.68 1.60	55 60	.81 .78	1
65	.73	1.15	65	. 84	1.24	65	.77	, ,,						1 (
70	.70	1.11	70	.81	1.19	70	.74	1.15	65	• 95	1.53	65	. 75	1 .
75	.68	1.07	75	.78	1.15	75	.72	1.11	70	•91	1.46	70	.72	1.
80	.65	1.03	80	• 75	1.11	80	.69	1.07	75	•88	1.41	75	.70	1.
85	.63	1.00	85	• 73	1.07	85	.67	1.01	80 85	•85 •82	1.35 1.31	80 85	•68 •66	
SLOPE	= .53	10	SLOPE	= .55	0	SLOPE	= . 5(00	SLOPE	= .58	30	SLOPE	= .4	

PLATE D-4.1 (4 of 6)

Post-Development Hydrology Map Exhibit D

P-WQMP PLAN EXIST. 481 RCP HIGHFLOW/OVERFLOW TO STORM DRAIN SEE GRADING/DRAINAGE PLAN FOR DETAIL S4 N3 EXTEND COUNTY STORM DRAIN - 36" RCP-- EXTEND COUNTY STORM DRAIN - 36" RCP N14 -HIGHFLOW/OYERFLOW TO STORM DRAIN SEE GRADING/DRAINAGE PLAN FOR DETAIL ON-SITE DRAINAGE SYSTEM TO BMP REMOVE EXIST. INLET STRUCTURE DA 2/B LANDSCAPE 33,940 SF DA 1/B LANDSCAPE 34,403 SF AVENUE BMP 1 UNDERGROUND INFILTRATION CHAMBER SYSTEM V- PROVIDED=7772 CF UNDERGROUND INFILTRATION CHAMBER SYSTEM V- PROVIDED=7937 CF CHANNEL DRAIN -CHANNEL DRAIN CONST. CATCH BASIN — AT LOW POINT SEE GRADING/DRAINAGE PLAN N15 4.76 AC 4.66 AC N14 SLOPE FINISH FLOOR 207,502 sf 84% lmp. SLOPE FINISH FLOOR 203,186 sf 83% lmp. DA 2/C BUILDING 49,680 SF DA 1/C BUILDING 49,680 SF STREE N15 7,809 cf 7,602 cf 0 DA 2/A PCC PAVEMENT 123,882 SF DA 1/A PCC PAVEMENT 119,103 SF SE, BECK $\langle S3 \rangle$ - CONST, 18" RCP TO CONVEY OFF-SITE DRAINAGE TO EXIST 48" RCP (S1) N14 S1 N14 PCC V-DITCH TO CONVEY OFF-SITE DRAINAGE - PCC Y-DITCH TO CONVEY OFF-SITE DRAINAGE **LEGEND** NON-STRUCTURAL SOURCE CONTROL BMPS N1 - EDUCATION N2 - ACTIVITY RESTRICTIONS DRAINAGE AREA DATA N3 - LANDSCAPE MANAGEMENT **BMP MAINTENANCE** DRAINAGE AREA LOCAL WATER QUALITY ORDINANCES 15.4 AC N7 - SPILL CONTINGENCY PLAN DMA AREA (ACRES) N8 - UNDERGROUND STORAGE TANK COMPLIANCE DMA AREA (SF) N9 - HAZARDOUS MATERIALS DISCLOSURE COMPLIANCE 90% Imp. DMA PERCENT IMPERVIOUS UNIFORM FIRE CODE IMPLEMENTATION LITTER/DEBRIS CONTROL PROGRAM DMA TREATMENT VOLUME (Vbmp) EMPLOYEE TRAINING CATCH BASIN INSPECTION PROGRAM VACUUM SWEEPING OF PARKING LOT COMPLIANCE WITH ALL OTHER APPLICABLE NPDES STANDARDS — I — I — DRAINAGE AREA (DA) BOUNDARY STRUCTURAL SOURCE CONTROL BMPS STORM DRAIN STENCILING WQMP BMP SUMMARY S3 TRASH STORAGE AREAS, SD-32 • 410,688 SF / 83% IMPERVIOUS • DCV = 15,411 CF EFFICIENT IRRIGATION, SD-12 PROVIDE 2 UNDERGROUND TYPICAL ALL LANDSCAPING SCALE 1"= 50' INFILTRATION SYSTEMS FG OF LANDSCAPE AREAS A MINIMUM OF 1" TO 2" BELOW TC, SIDEWALK, OR PAVEMENT. • V-PROVIDED = 15,709 CF TYPICAL ALL LANDSCAPE AREAS. DATE ENGR. CITY DATE COUNTY OF RIVERSIDE, PERRIS AREA REVISION DESCRIPTION **BENCHMARK**: 2079 SKY VIEW DRIVE Godman ASSOCIATES COLTON, CA 92324 RIV CO B.M. 600-40-68 RESET 1988 PRELIMINARY WQMP PLAN (909) 824-2775 SCALE: AS SHOWN PREPARED FOR DEDEAUX PROPERTIES ALUMINUM DISC IN CONC 7' N'LY OF VALVERDE AND EAST SIDE OF R/R & 1900' N'LY OF CAJALCO EXPRESSWAY SEATON AVENUE AND N/O PERRY STREET DATE: PPT210022 6/18/2021 **ELEVATION 1505.07** PERRIS, CA G&A JOB NO.: 1 DOUGLAS L. GOODMAN DATE APN 314-091-005 RCE 28500, 3-31-2022

8. APPENDICES

Appendix 1	County Master Plan Excerpts

RIVERSIDE COUNTY CALIFORNIA

PERRIS VALLEY AREA DRAINAGE PLAN

JULY 1987 REVISED JUNE 1991

Site is a portion of this area

FOR OFFICIAL	USE	ONLY	-	Riverside	County	Offices	-	S/N	433
--------------	-----	------	---	-----------	--------	---------	---	-----	-----

									/								-1
Project	: PVLFOY.rrv					9		. 1	Page	1 C	alcul	ated I	By:				i
Study	Date: 03/04/91	Moistu	re Condi	tion(AMC): 2						Che	cked I	Ву:				i
	ar Storm 1 hour ra					ensity	Slope	= 0.490									İ
*****	*****	**** R	ATIO	NA	L H	YDRO	LOG	y -	RIV	ERSII) E (0 0 %	****	*****	*****	*****	*
Station/	Soil Type	Devel.	Area	I	C	L Elev	Q/	Q	Slope	Section	l V	L	Т [Tc	Hydra	aulics	1
Point No.	A,B,C,D	Type	(Acres)		1	1	(sub)	Total	v/hz	I	Fps	ft.	min.	min.	ori	notes	1
						j <i>-</i>											-1
						! /	,	L.	L.								-1
						<i>y</i>		L .	. 3							1	-1
2.00		SF 1ac			. /	4		[J					12.8			1
*****	Natural Channel	travel															-1
				' /				VI 46000000000000000000000000000000000000	The second second	Nat Ch	200000000000000000000000000000000000000				1 1		1
3.00																	-
	= 1 Pipe flow to																U
	A 0 B20 C79 D 1																٠,
	= 1 Pipe flow to								200000000000000000000000000000000000000				•				1
5.00								I .				1 0	•		•		1
	= 1 Pipe flow to							•					511	1	hgl=	2.8(Ft.)	1
	*****************	*******					-					l i	li .	1			1
4 00				1	•									1			
6,00	•	Pro-services	5.311031053	1.85	ı	1	154.8	(g) 19							•	n Summary	1
					ı	1		100 N	10			R 9					1
11.00	!	SE 100														CONTRACTOR OF THE PARTY OF THE	1
	Natural Channel					The second of the second								10.0 	20000	0.070 5.700	1
	P to the second control of the second control of									Nat Ch			1 2 7		dayda	= 16.82	1
12.00			•		•	•		5 3	ALC: U			1	2.7		qavg-		Ji.
	= 1 Pipe flow to	•			•		8	5.1				1 1 400	1 1 2				5
							r	A SO TO A	pomer a se son								-(1
9.00	i	i		1 2.30	Į.	i	25.1	. i		1				13.8	ı İStream	n Summary	1
					 												-
																	-
8.00	C-100%	SF 1ac	7.6	2.35	0.7535	1720.0	13.4							13.3			ľ
																	li
				1		1	10										- 1
		, 											Salada			/	+1
	Version 2.6		Come	الخارات	/-> n:	vilCADD,	(61		4000								

Time of Concentration Calculation

Per Riverside County FC&WCD Hydrology Manual

Slope of Intensity Line

0.49

Subbasin	Area (AC)	HP (ft)	LP (ft)	L (ft)	Lca (ft)	Basin Factor	S-Curve	Cover type	Hydrologic Soil Group	RI	Ap	Tc (min)
2	8.2	1765	1700	1000	500		Valley	1du/ac	С	68	80%	12.8
3	26.2	1700	1598	2000	1000		Valley	1du/ac	С	68	80%	17.8
4 (Site)	9.43	1598	1530	2550	1275		Valley	Com	С	66	10%	14.4
4 (S'ly)	26.27	1598	1530	2550	1275		Valley	2du/ac	С	66	60%	20.8

г

Encompass Associates, Inc.

Civil Engineers

5699 Cousins Place

Rancho Cucamonga, CA 91737 (909) 684-0093 Fax 586-6979

Job	DP Seator	n Ave Per	ris/RivCo
Sheet No.	1	of	1
Calculated by:	ats	Date	3/20/21
Checked by:		Date	
•		Scale	nts

Calibration Hydrology (duplicate hydrology from MDP)

RATIONAL METHOD CALCULATION FORM (Plate D-2 RCFC&WCD Manual)													
Drainage	Soil &	Α	1	С	DQ	SQ	Slope	Section	٧	L	Т	SI	Remarks
Area	Development	Acres	in/hr		CFS	CFS		inches	FPS	FT.	Min.	Min.	and Hydraulic Calculation Ref.
Initial->2	C-1du/ac	8.2	2.39	0.7534	14.77						12.8	12.8	
			•	•	•	14.77	0.05	nat	8.10	2000	4.1		
Node 2->3	C-1du/ac	26.2	2.08	0.7348	40.04					T		16.9	
			·		_	54.81	0.027	30	15.22	2550	2.8		Section: pipe size (inches)
Node 3->4	C-2du/ac	35.7	1.93	0.7558	52.08			1	1	T	1	19.7	_
ļ			T	1	1	106.88							
								1		ı	I		
				ı	1								٦
											l		
					1			ļ					٦
					1								<u></u>
								ļ					7
	<u> </u>			I									
								!					7
			I	<u> </u>									_
								I					
	- 4		-1										_
								•		•	•		7
	· · · · · · · · · · · · · · · · · · ·												_
					•								· -
]							

Encompass Associates, Inc.

Civil Engineers

5699 Cousins Place

Rancho Cucamonga, CA 91737 (909) 684-0093 Fax 586-6979

Job	DP	Seator	n Ave Per	ris/Ri	vCo
Sheet No.		1	of		1
Calculated by:	ats		Date		3/20/21
Checked by:			Date		
			Scale	nts	

<u>10-year</u> <u>Proposed Condition</u>

	Troposed Condition												
RATIONAL METHOD CALCULATION FORM (Plate D-2 RCFC&WCD Manual)													
Drainage	Soil &	Α		С	DQ	SQ	Slope	Section	V	L	Т	ST	Remarks
Area	Development	Acres	in/hr		CFS	CFS		inches	FPS	FT.	Min.	Min.	and Hydraulic Calculation Ref.
Initial->2*	C-1du/ac	8.2	1.66	0.7028	9.57						12.8	12.8	
						9.57	0.05	nat	8.10	2000	4.1		_
Node 2->3*	C-1du/ac	26.2	1.45	0.683	25.95							16.9	1
				•		35.51	0.027	30	13.90	2550	3.1		Section: pipe size (inches)
Node 3->4 (Site)	C-Com	9.43	1.34	0.8668	10.95							20	1
			•										_
Node 3->4 (S'ly)**	C-2du/ac	26.27	1.34	0.714	25.13		•			•	•	20	1
	•		•	•	•	71.60							_
													1
	•		•	•	•								_
								•					1
	•			•									_
													1
				1									_
													1
			!	ļ.									_
							1	•		1			1
		<u> </u>	<u> </u>	1	1								_
							ļ.	ļ	<u> </u>	!	!		1
<u>I</u>		<u> </u>	ı	I	ı								
													1
		<u> </u>	<u> </u>										_
							1	ı			<u> </u>		1
						1							_1

^{*} Runoff that is tributary to proposed inlet on Beck Street

^{**} Runoff that is split between Beck Street and v-gutter along the south side of the proposed project

Encompass Associates, Inc.

Civil Engineers

5699 Cousins Place

Rancho Cucamonga, CA 91737 (909) 684-0093 Fax 586-6979

Job	DP S	eator	Ave Per	ris/Ri	vCo
Sheet No.		1	of		1
Calculated by:	ats		Date		3/20/21
Checked by:			Date		
			Scale	nts	

<u>100-year</u> <u>Proposed Condition</u>

RATIONAL METHOD CALCULATION FORM (Plate D-2 RCFC&WCD Manual)													
Drainage	Soil &	Α	I	С	DQ	SQ	Slope	Section	V	L	T	ST	Remarks
Area	Development	Acres	in/hr		CFS	CFS		inches	FPS	FT.	Min.	Min.	and Hydraulic Calculation Ref.
Initial->2*	C-1du/ac	8.2	2.39	0.7534	14.77						12.8	12.8	
						14.77	0.05	nat	8.10	2000	4.1		
Node 2->3*	C-1du/ac	26.2	2.08	0.7348	40.04							16.9	
	,			•		54.81	0.027	30	15.22	2550	2.8		Section: pipe size (inches)
Node 3->4 (Site)	C-Com	9.43	1.93	0.8786	15.99							19.7	
	•		•										_
Node 3->4 (S'ly)**	C-2du/ac	26.27	1.93	0.7558	38.32		•	•		•	•	19.7	7
	•	•	•	•		109.12							_
													1
	 !			!	_!			I					_
						1					1		7
		<u> </u>	1	1		1				1		1	
					1		ļ.				ļ.		7
			<u> </u>	1									_
			I		1								٦
		<u> </u>	1	ļ	ļ			Τ				1	_
	1	1	ı		Τ	1	<u> </u>				<u> </u>	1	٦
			1					1		1			_
			Ī	1	1	1							٦
			<u> </u>	<u> </u>		<u> </u>	<u> </u>	1		1	<u> </u>	1	_
	1	l	1	T	1								٦
			<u> </u>					1		Γ			J
		<u> </u>	1	1	1								٦
	1	1			1							1	

^{*} Runoff that is tributary to proposed inlet on Beck Street

^{**} Runoff that is split between Beck Street and v-gutter along the south side of the proposed project

Appendix 3 Hydraulic Calculations
(Pending, final engineering)