

Type of Services

Geotechnical Investigation

Project Name

Concourse San Jose

Location

1953 – 1965 Concourse Drive

San Jose, California

Client

Overton Moore Properties

Client Address

19700 S. Vermont Avenue, Suite 101

Torrance, California 90502

Project Number

681-4-1

Date

September 14, 2020

Prepared by

Renee S. Morales, P.E.

Senior Project Engineer Geotechnical Project Manager

Danh T. Tran, P.E.

Senior Principal Engineer Quality Assurance Reviewer

TABLE OF CONTENTS

SECTION	ON 1: INTRODUCTION	
1.1	Project Description	
1.2	Scope of Services	
1.3	Exploration Program	
1.4	Laboratory Testing Program	2
1.5	Corrosion Evaluation	2
1.6	Environmental Services	2
SECTION	ON 2: REGIONAL SETTING	
2.1	Geological Setting	2
2.2	Regional Seismicity	3
Tabl	e 1: Approximate Fault Distances	.3
SECTION	ON 3: SITE CONDITIONS	
3.1	Surface Description	3
3.2	Subsurface Conditions	4
3.2.1	Plasticity/Expansion Potential	.4
3.2.2		
3.3	Groundwater	
Tabl	e 2: Depth t <mark>o</mark> Groundwater	
3.4	Corrosion Screening	
Tabl	e 3A: Summary of Corrosion Test Results	.5
3.5.1	Preliminary Soil Corrosion Screening	.6
Tabl	e 3B: ACI 318-14 Table 19.3.1.1 Exposure Categories and Classes	. 6
Tabl	e 3C: ACI 318-14 Table 19.3.2.1 Requirements for Concrete by Exposure Class	.6
SECTION	ON 4: GEOLOGIC HAZARDS	.6
4.1	Fault Rupture	
4.2	Estimated Ground Shaking	7
4.3	Liquefaction Potential	7
4.3.1	Background	.7
4.3.2	2 Analysis	.7
4.3.3	S Summary	.8
4.3.4	Ground Rupture Potential	.8
4.4	Lateral Spreading	8
4.5	Seismic Settlement/Unsaturated Sand Shaking	9
4.6	Tsunami/Seiche	_
4.7	Flooding	9

SECTI	ON 5: CONCLUSIONS	10
5.1	Summary	10
5.1.	1 Presence of Undocumented Fill and Low Strength Soil	10
5.1.2	Potential for Liquefaction-Induced and Seismic Settlements	10
5.1.3	3 Expansive Soils	11
5.1.4	4 Shallow Groundwater	11
5.1.	5 Soil Corrosion Potential	11
5.2	Plans and Specifications Review	11
5.3	Construction Observation and Testing	11
SECTI	ON 6: EARTHWORK	12
6.1	Site Demolition	12
6.1.	1 Demolition of Existing Slabs, Foundations and Pavements	12
6.1.2	2 Abandonment of Existing Utilities	12
6.2	Site Clearing and Preparation	13
6.2.	1 Site Stripping	13
6.2.2	2 Tree and Shrub Removal	13
6.3	Removal of Existing Fills	13
6.4	Temporary Cut and Fill Slopes	14
6.5	Subgrade Preparation	14
6.6	Subgrade StabiliZation Measures	14
6.6.		14
6.6.2	2 Removal and Replacement	14
6.6.3	3 Chemical Treatment	15
6.7	Material for Fill	15
6.7.	1 Re-Use of On-site Soils	15
6.7.2	2 Re-Use of On-Site Site Improvements	15
6.7.3	3 Potential Import Sources	15
6.7.4	4 Non-Expansive Fill Using Chemical Treatment	16
6.8	Compaction Requirements	16
Tab	le 4: Compaction Requirements	17
6.8.	1 Construction Moisture Conditioning	17
6.9	Trench Backfill	17
6.10	Site Drainage	
6.11	Low-Impact Development (LID) Improvements	18
6.11	y	
6.12	Landscape Considerations	21
SECTI	ON 7: 2019 CBC SEISMIC DESIGN CRITERIA	21

7.1 Site Location and Provided Data for 2019 CBC Seism	ic Design21
7.2 Site Classification – Chapter 20 of ASCE 7-16	_
7.3 Code-Based Seismic Design Parameters	
Table 5: Site Class D: 2019 CBC Site Categorization and S	Site Coefficients23
7.4 Site-Specific Ground Motion Hazard Analysis	
7.4.1 Probabilistic MCE _R	
7.4.2 Deterministic MCE _R	24
7.4.3 Site-Specific MCE _R	24
Table 6: Development of Site-Specific MCE _R Spectrum	25
7.4.4 Design Response Spectrum	25
Table 7: Development of Site-Specific Design Response S	
7.5 Design Acceleration Parameters	
Table 8: Site-Specific Design Acceleration Parameters	
7.6 Site-Specific MCE _G Peak Ground Acceleration	
SECTION 8: FOUNDATIONS	27
8.1 Summary of Recommendations	27
8.2 Shallow Foundations	
8.2.1 Spread Footings	27
8.2.1 Spread Footings 8.2.2 Footing Settlement	28
Table 9: Assumed Structural Loading	
8.2.3 Lateral Loading	
8.2.4 Spread Footing Construction Considerations	29
SECTION 9: CONCRETE SLABS AND PEDESTRIAN PAVEM	
9.1 Interior Slabs-on-Grade	29
9.2 Warehouse Slabs-on-Grade	29
9.3 Interior Slabs Moisture Protection Considerations	30
9.4 Exterior Flatwork	31
SECTION 10: VEHICULAR PAVEMENTS	31
10.1 Asphalt Concrete	31
Table 10: Asphalt Concrete Pavement Recommendations	(Untreated Subgrade)32
Table 11: Asphalt Concrete Pavement Recommendations	
	• •
10.2 Portland Cement Concrete	33
Table 12: PCC Pavement Recommendations (Untreated S	ubgrade)34
Table 13: PCC Pavement Recommendations (Chemical-Ti	
10.3 Pavement Cutoff	•
SECTION 11: RETAINING WALLS	35

11.1	Static Lateral Earth Pressures	35
Tal	ıble 14: Recommended Lateral Earth Pressures	35
11.2	Seismic Lateral Earth Pressures	35
11.3	Wall Drainage	35
11.4	Backfill	36
11.5	Foundations	36
SEC1	TION 12: LIMITATIONS	36
SEC1	TION 13: REFERENCES	37

FIGURE 1: VICINITY MAP FIGURE 2: SITE PLAN

FIGURE 3: REGIONAL FAULT MAP

FIGURE 4A TO 4F: LIQUEFACTION ANALYSIS SUMMARY - CPT-01 TO CPT-06

APPENDIX A: FIELD INVESTIGATION

APPENDIX B: LABORATORY TEST PROGRAM

APPENDIX C: LIQUEFACTION ANALYSES CALCULATIONS

Type of Services
Project Name
Location

Geotechnical Investigation Concourse San Jose 1953 – 1965 Concourse Drive San Jose, California

SECTION 1: INTRODUCTION

This geotechnical report was prepared for the sole use of Overton Moore Properties for the Concourse project in San Jose, California. The location of the site is shown on the Vicinity Map, Figure 1. For our use, we were provided with the following documents:

 A conceptual site plan titled, "Overton Moore Properties, San Jose, Concourse Dr., Alternate 1," prepared by HPA Architecture, dated August 8, 2020.

1.1 PROJECT DESCRIPTION

The project will consist of redeveloping the approximately 7-acre site for a new commercial/industrial warehouse/distribution facility. The new building will total about 103,000 square feet including about 2,500 square feet of office (mezzanine) in plan. We anticipate the building will be single-story with interior clear height of 36 to 38 feet and consist of concrete tilt-up construction. Loading docks will be located along the southeast side of the building. Appurtenant trailer parking, utilities, landscaping, stormwater management areas, and other improvements necessary for overall site development will also be planned.

Building loads are expected to be typical of this type of construction. Site grading with cuts and fills on the order of 2 to 5 feet are estimated.

1.2 SCOPE OF SERVICES

Our scope of services was presented in our proposal dated August 11, 2020 and consisted of field and laboratory programs to evaluate physical and engineering properties of the subsurface soils, engineering analysis to prepare recommendations for site work and grading, building foundations, flatwork, retaining walls, and pavements, and preparation of this report. Brief descriptions of our exploration and laboratory programs are presented below.

1.3 EXPLORATION PROGRAM

Field exploration consisted of five borings drilled on August 27, 2020 and September 3, 2020 with track-mounted, hollow-stem auger drilling equipment and six Cone Penetration Tests (CPTs) advanced on August 20, 2020. The borings were drilled to depths of approximately 25 to 31½ feet; the CPTs were advanced to depths of approximately 50 to 150 feet. Seismic shear wave velocity measurements were collected from CPT-3. Borings EB-1, EB-2, EB-4, and EB-5 were advanced adjacent to CPT-1, CPT-6, CPT-4, and CPT-5, respectively, for direct evaluation of physical samples to correlated soil behavior.

The borings and CPTs were backfilled with cement grout in accordance with local requirements; exploration permits were obtained as required by local jurisdictions.

The approximate locations of our exploratory borings are shown on the Site Plan, Figure 2. Details regarding our field program are included in Appendix A.

1.4 LABORATORY TESTING PROGRAM

In addition to visual classification of samples, the laboratory program focused on obtaining data for foundation design and seismic ground deformation estimates. Testing included moisture contents, dry densities, washed sieve analyses, Plasticity Index tests, triaxial compression tests, consolidation tests, and corrosivity testing. Details regarding our laboratory program are included in Appendix B.

1.5 CORROSIONEVALUATION

Two samples from our borings at depths of $3\frac{1}{2}$ and $5\frac{1}{2}$ feet was tested for saturated resistivity, pH, and soluble sulfates and chlorides. Based on our site screening, the on-site soils can be characterized as moderately corrosive to buried metal, and non-corrosive to buried concrete. Please refer to Section 3.4 for additional recommendations.

1.6 ENVIRONMENTAL SERVICES

Environmental services were not requested for this project. If environmental concerns are determined to be present during future evaluations, the project environmental consultant should review our geotechnical recommendations for compatibility with the environmental concerns.

SECTION 2: REGIONAL SETTING

2.1 GEOLOGICAL SETTING

The site is located within the Santa Clara Valley, which is a broad alluvial plane between the Santa Cruz Mountains to the southwest and west, and the Diablo Range to the northeast. The San Andreas Fault system, including the Monte Vista-Shannon Fault, exists within the Santa Cruz Mountains and the Hayward and Calaveras Fault systems exist within the Diablo Range. Alluvial soil thicknesses in the area range from about 500 to 700 feet (Rogers & Williams, 1974).

2.2 REGIONAL SEISMICITY

The San Francisco Bay area region is one of the most seismically active areas in the Country. While seismologists cannot predict earthquake events, the U.S. Geological Survey's Working Group on California Earthquake Probabilities 2015 revises earlier estimates from their 2008 (2008, UCERF2) publication. Compared to the previous assessment issued in 2008, the estimated rate of earthquakes around magnitude 6.7 (the size of the destructive 1994 Northridge earthquake) has gone down by about 30 percent. The expected frequency of such events statewide has dropped from an average of one per 4.8 years to about one per 6.3 years. However, in the new study, the estimate for the likelihood that California will experience a magnitude 8 or larger earthquake in the next 30 years has increased from about 4.7 percent for UCERF2 to about 7.0 percent for UCERF3.

UCERF3 estimates that each region of California will experience a magnitude 6.7 or larger earthquake in the next 30 years. Additionally, there is a 63 percent chance of at least one magnitude 6.7 or greater earthquake occurring in the Bay Area region between 2007 and 2036.

The faults considered capable of generating significant earthquakes are generally associated with the well-defined areas of crustal movement, which trend northwesterly. The table below presents the State-considered active faults within 25 kilometers of the site.

Table 1: Approximate	Fault Distances
----------------------	-----------------

	Distance		
Fault N <mark>a</mark> me	(miles)	(kilomete <mark>rs</mark>)	
Hayward (Total Length)	3.6	5.8	
Calaveras	5.8	9.3	
Hayward (Southeast Extension)	6.5	10.4	
San Andreas (1906)	14.7	23.6	

A regional fault map is presented as Figure 3, illustrating the relative distances of the site to significant fault zones.

SECTION 3: SITE CONDITIONS

3.1 SURFACE DESCRIPTION

The site is bounded by commercial development to the north, east and west and by Concourse Drive to the south. The site is currently occupied by a commercial office building that occupies most of the site. The existing building is surrounded by asphalt concrete pavement including drive isles. The site is relatively level, but graded to drain to storm drainage facilities.

Surface pavements generally consisted of $2\frac{1}{2}$ to 6 inches of asphalt concrete over 4 to $8\frac{1}{2}$ inches of aggregate base. Based on visual observations, the existing pavements are in fair to poor condition.

3.2 SUBSURFACE CONDITIONS

Below the surface pavements, our explorations encountered undocumented fill at Boring EB-1, EB-4, and EB-5 to depths of about 2 to 3½ feet below the existing ground surface. The fill consisted of clay with variable amounts of sand and silty sand. Beneath the fill, our borings encountered soft to very stiff lean clay with variable amounts of sand interbedded with loose silty sand, medium stiff sandy silt, loose to medium dense clayey sand, and loose medium dense poorly graded sand to 31½ feet below ground surface. Our CPT data generally correlates to our borings and subsurface conditions to the maximum depth explored of 150 feet below the current ground surface.

3.2.1 Plasticity/Expansion Potential

We performed one Plasticity Index (PI) tests on representative samples. Test results were used to evaluate expansion potential of surficial soils. The results of the surficial PI test indicated a PI of 18, indicating moderate expansion potential to wetting and drying cycles.

3.2.2 In-Situ Moisture Contents

Laboratory testing indicated that the in-situ moisture contents within the upper 10 feet range from 6 to 32 percent moisture. In our opinion, we estimate this corresponds to about near optimum to 10 percent above the estimated optimum moisture content.

3.3 GROUNDWATER

Groundwater was encountered in our borings at depths ranging from 9½ to 18 feet below existing grades. Groundwater was estimated at depths of approximately 5 to 33 feet below current grades based on pore pressure dissipation tests at our CPT's. All measurements were taken at the time of drilling and may not represent the stabilized levels that can be higher than the initial levels encountered.

Historic high groundwater levels in the vicinity are mapped at a depth of approximately 10 feet below existing site grades (CGS, Milpitas 7.5-Minute Quadrangle, 2001). Fluctuations in groundwater levels occur due to many factors including seasonal fluctuation, underground drainage patterns, regional fluctuations, and other factors. Based on the above information and our experience in the site vicinity, we recommend a groundwater depth of 10 feet be used for design and evaluation of liquefaction potential.

Table 2: Depth to Groundwater

Boring/CPT Number	Date Drilled	Depth to Groundwater (feet)	Depth of Boring/CPT (feet)
EB-1	8/27/20	9½	31½
EB-2	9/3/20	13	25
EB-3	8/27/20	12	25
EB-4	9/3/20	14	25
EB-5	8/27/20	18	30
CPT-1	8/20/20	33	50.4
CPT-2	8/20/20	8.4	50.7
CPT-3	8/20/20	6.6	150.7
CPT-4	8/20/20	Not Measured	51.0
CPT-5	8/20/20	26.9	50.5
CPT-6	8/20/20	5	50.8

3.4 CORROSION SCREENING

We tested two samples collected at depths of 3½ and 5½ feet for resistivity, pH, soluble sulfates, and chlorides. The laboratory test results are summarized in Table 3A.

Table 3A: Summary of Corrosion Test Results

Sample Location	Depth (feet)	Soil pH¹	Resistivity ² (ohm-cm)	Chloride ³ (mg/kg)	Sulfate ^{4,5} (mg/kg)
EB-3	3½	7.8	2,826	14	404
EB-4	5½	8.1	2,446	30	92

Notes: ¹ASTM G51

²ASTM G57 - 100% saturation

³ASTM D3427/Cal 422 Modified

⁴ASTM D3427/Cal 417 Modified

Many factors can affect the corrosion potential of soil including moisture content, resistivity, permeability, and pH, as well as chloride and sulfate concentration. Typically, soil resistivity, which is a measurement of how easily electrical current flows through a medium (soil and/or water), is the most influential factor. In addition to soil resistivity, chloride and sulfate ion concentrations, and pH also contribute in affecting corrosion potential.

 $^{^{5}}$ 1 mg/kg = 0.0001 % by dry weight

3.5.1 Preliminary Soil Corrosion Screening

Based on the laboratory test results summarized in Table 3A and published correlations between resistivity and corrosion potential, the soils may be considered moderately corrosive to buried metallic improvements (Chaker and Palmer, 1989).

In accordance with the 2016 CBC Section 1904A.1, alternative cementitious materials for different exposure categories and classes shall be determined in accordance with ACI 318-14 Table 19.3.1.1, Table R19.3.1, and Table 19.3.2.1. Based on the laboratory sulfate test results, a cement type restriction is (not) required, although, in our opinion, it is generally a good idea to include some sulfate resistance and to maintain a relatively low water-cement ratio. We have summarized applicable exposure categories and classes from ACI 318-14, Table 19.3.1.1 below in Table 3B.

Table 3B: ACI 318-14 Table 19.3.1.1 Exposure Categories and Classes

Freezing and Thawing (F)	Sulfate (S, soil)	In Contact with Water (W)	Corrosion Protection of Reinforcement (C)
F0¹	S0 ²	W1³	C1⁴

^{1 (}F0) "Concrete not exposed to freezing-and-thawing cycles" (ACI 318-14)

In addition, ACI 318-14, Table 19.3.2.1 provides requirements for concrete by exposure class. Table 3C below indicates different requirements that we recommend be followed for the concrete design.

Table 3C: ACI 318-14 Table 19.3.2.1 Requirements for Concrete by Exposure Class

Exposure Class	Maximum water:cement ratio	Minimum Compressive Strength (psi)	Maximum Water-Soluble Chloride Ion Content (% wt)
F0	N/A	2,500	N/A
S0 (soil)	N/A	2,500	N/A
W1	0.50	4,000	N/A
C1	N/A	2,500	0.30 (0.06) ¹

¹ Maximum water-soluble chloride ion content for non-pre-stressed concrete,

We recommend the structural engineer and a corrosion engineer be retained to confirm the information provided and for additional recommendations, as required.

SECTION 4: GEOLOGIC HAZARDS

4.1 FAULT RUPTURE

As discussed above several significant faults are located within 25 kilometers of the site. The site is not located within a State-designated Alquist Priolo Earthquake Fault Zone. Based on

^{2 (}S0) "Water soluble sulfate in soil, percent by mass" is less than 0.10 (ACI 318-14)

^{3 (}W1) "Concrete in contact with water and low permeability is required" (ACI 318-14)

^{4 (}C1) "Concrete exposed to moisture but not to an external source of chlorides" (ACI 318-14)

review of geologic maps as summarized in Figure 3, no known surface expression of fault traces is thought to cross the site; therefore, fault rupture hazard is not a significant geologic hazard at the site.

4.2 ESTIMATED GROUND SHAKING

Moderate to severe (design-level) earthquakes can cause strong ground shaking, which is the case for most sites within the Bay Area. A peak ground acceleration (PGA_M) was estimated following the ground motion hazard analysis procedure presented in Chapter 21, Section 21.2 of ASCE 7-16 and Supplement No. 1 and determined in accordance with Section 21.5 of ASCE 7-16. For our liquefaction analysis we used a PGA_M of 0.908g.

4.3 LIQUEFACTION POTENTIAL

The site is within a State-designated Liquefaction Hazard Zone (CGS, Milpitas Quadrangle, 2004). Our field and laboratory programs addressed this issue by testing and sampling potentially liquefiable layers to depths of at least 50 feet, performing visual classification on sampled materials, evaluating CPT data, and performing various tests to further classify soil properties.

4.3.1 Background

During strong seismic shaking, cyclically induced stresses can cause increased pore pressures within the soil matrix that can result in liquefaction triggering, soil softening due to shear stress loss, potentially significant ground deformation due to settlement within sandy liquefiable layers as pore pressures dissipate, and/or flow failures in sloping ground or where open faces are present (lateral spreading) (NCEER 1998). Limited field and laboratory data is available regarding ground deformation due to settlement; however, in clean sand layers settlement on the order of 2 to 4 percent of the liquefied layer thickness can occur. Soils most susceptible to liquefaction are loose, non-cohesive soils that are saturated and are bedded with poor drainage, such as sand and silt layers bedded with a cohesive cap.

4.3.2 Analysis

As discussed in the "Subsurface" section above, several sand layers were encountered below the design groundwater depth of 10 feet. Following the liquefaction analysis framework in the 2008 monograph, *Soil Liquefaction During Earthquakes* (Idriss and Boulanger, 2008), incorporating updates in *CPT and SPT Based Liquefaction Triggering Procedures* (Boulanger and Idriss, 2014), and in accordance with CDMG Special Publication 117A guidelines (CDMG, 2008) for quantitative analysis, these layers were analyzed for liquefaction triggering and potential post-liquefaction settlement. These methods compare the ratio of the estimated cyclic shaking (Cyclic Stress Ratio - CSR) to the soil's estimated resistance to cyclic shaking (Cyclic Resistance Ratio - CRR), providing a factor of safety against liquefaction triggering. Factors of safety less than or equal to 1.3 are considered to be potentially liquefiable and capable of post-liquefaction re-consolidation (i.e. settlement).

The CSR for each layer quantifies the stresses anticipated to be generated due to a design-level seismic event, is based on the peak horizontal acceleration generated at the ground surface discussed in the "Estimated Ground Shaking" section above, and is corrected for overburden and stress reduction factors as discussed in the procedure developed by Seed and Idriss (1971) and updated in the 2008 Idriss and Boulanger monograph.

The soil's CRR is estimated from the in-situ measurements from CPTs and laboratory testing on samples retrieved from our borings. SPT "N" values obtained from hollow-stem auger borings were not used in our analyses, as the "N" values obtained are less reliable in sands below groundwater. The tip pressures are corrected for effective overburden stresses, taking into consideration both the groundwater level at the time of exploration and the design groundwater level, and stress reduction versus depth factors. The CPT method utilizes the soil behavior type index (I_C) to estimate the plasticity of the layers.

The results of our CPT analyses (CPT-1 through CPT-6) are presented on Figures 4A through 4F of this report. Calculations for these CPTs are attached as Appendix C.

4.3.3 Summary

Our analyses indicate that several layers could potentially experience liquefaction triggering that could result in post-liquefaction total settlement at the ground surface of up to about ½ inch based on the Yoshimine (2006) method. As discussed in SP 117A, differential movement for level ground sites over deep soil sites will be up to about two-thirds of the total settlement between independent foundation elements. In our opinion, differential settlements are anticipated to be on the order of ¼ inch over a horizontal distance of 50 to 60 feet.

4.3.4 Ground Rupture Potential

The methods used to estimate liquefaction settlements assume that there is a sufficient cap of non-liquefiable material to prevent ground rupture or sand boils. For ground rupture to occur, the pore water pressure within the liquefiable soil layer will need to be great enough to break through the overlying non-liquefiable layer, which could cause significant ground deformation and settlement. The work of Youd and Garris (1995) indicates that the 10-foot thick layer of non-liquefiable cap is sufficient to prevent ground rupture; therefore the above total settlement estimates are reasonable.

4.4 LATERAL SPREADING

Lateral spreading is horizontal/lateral ground movement of relatively flat-lying soil deposits towards a free face such as an excavation, channel, or open body of water; typically lateral spreading is associated with liquefaction of one or more subsurface layers near the bottom of the exposed slope. As failure tends to propagate as block failures, it is difficult to analyze and estimate where the first tension crack will form.

There are no open faces within a distance considered susceptible to lateral spreading; therefore, in our opinion, the potential for lateral spreading to affect the site is low.

4.5 SEISMIC SETTLEMENT/UNSATURATED SAND SHAKING

Loose to medium dense unsaturated sandy soils can settle during strong seismic shaking. We evaluated the potential for seismic compaction of the loose unsaturated sands based on the work by Pradell (1998). Our analyses indicate that loose unsaturated sands could experience up to 1 inch of seismic settlement during a design earthquake.

4.6 TSUNAMI/SEICHE

The terms tsunami or seiche are described as ocean waves or similar waves usually created by undersea fault movement or by a coastal or submerged landslide. Tsunamis may be generated at great distance from shore (far field events) or nearby (near field events). Waves are formed, as the displaced water moves to regain equilibrium, and radiates across the open water, similar to ripples from a rock being thrown into a pond. When the waveform reaches the coastline, it quickly raises the water level, with water velocities as high as 15 to 20 knots. The water mass, as well as vessels, vehicles, or other objects in its path create tremendous forces as they impact coastal structures.

Tsunamis have affected the coastline along the Pacific Northwest during historic times. The Fort Point tide gauge in San Francisco recorded approximately 21 tsunamis between 1854 and 1964. The 1964 Alaska earthquake generated a recorded wave height of 7.4 feet and drowned eleven people in Crescent City, California. For the case of a far-field event, the Bay area would have hours of warning; for a near field event, there may be only a few minutes of warning, if any.

A tsunami or seiche originating in the Pacific Ocean would lose much of its energy passing through San Francisco Bay. Based on the study of tsunami inundation potential for the San Francisco Bay Area (Ritter and Dupre, 1972), areas most likely to be inundated are marshlands, tidal flats, and former bay margin lands that are now artificially filled, but are still at or below sea level, and are generally within 1½ miles of the shoreline. The site is approximately 9 miles inland from the San Francisco Bay shoreline, and is approximately 50 to 52 feet above mean sea level. Additionally, the site is also located outside of the tsunami inundation area, according to the Tsunami Inundation Maps for Emergency Planning by the California Geologic Survey. Therefore, the potential for inundation due to tsunami or seiche is considered low.

4.7 FLOODING

Based on our internet search of the Federal Emergency Management Agency (FEMA) flood map public database, the site is located within Zone D, an area of undetermined, but possible flood hazard. We recommend the project civil engineer be retained to confirm this information and verify the base flood elevation, if appropriate.

SECTION 5: CONCLUSIONS

5.1 SUMMARY

From a geotechnical viewpoint, the project is feasible provided the concerns listed below are addressed in the project design. Descriptions of each concern with brief outlines of our recommendations follow the listed concerns.

- Presence of undocumented fill and low strength soil
- Potential for liquefaction-induced and seismic settlements
- Presence of moderately expansive soils
- Shallow groundwater
- Soil corrosion potential

5.1.1 Presence of Undocumented Fill and Low Strength Soil

The site is currently developed. Potential issues that are often associated with redeveloping sites include demolition of existing improvements, abandonment of existing utilities, and undocumented fill. As previously discussed, undocumented fill was encountered in borings EB-1, EB-4, and EB-5 to depths ranging from 2 to 3½ feet below existing ground surface. The fill consisted of clay with variable amounts of sand and silty sand. Undocumented fills are expected to vary in thickness and consistency across the site. Additionally, medium stiff native clays with a low bearing capacity were encountered in EB-3 to depths of approximately 6 feet below existing ground surface. Due to the undocumented fill and medium stiff native clays, we recommend overexcavation to a minimum depth of 4 feet within the proposed building pad to remove all undocumented fill and improve the bearing capacity of low strength soils. Detailed grading recommendations are presented in Section 6.3 below.

5.1.2 Potential for Liquefaction-Induced and Seismic Settlements

As discussed, our liquefaction analysis indicates that there is a potential for liquefaction of localized sand layers during a significant seismic event. Although the potential for liquefied sands to vent to the ground surface through cracks in the surficial soils is low, our analysis indicates that liquefaction-induced settlement up to ½ inch could occur. Additionally, our analyses indicate that loose unsaturated sands could experience up to 1 inch of seismic settlement during a design earthquake, resulting in differential settlement up to ¾ inch. Foundations should be designed to tolerate total and differential settlement due to static loads and liquefaction-induced settlement. Detailed foundation recommendations are presented in the "Foundations" section.

5.1.3 Expansive Soils

Moderately expansive surficial soils generally blanket the site. Expansive soils can undergo significant volume change with changes in moisture content. They shrink and harden when dried and expand and soften when wetted. To reduce the potential for damage to the planned structures, slabs-on-grade should have sufficient reinforcement and be supported on a layer of non-expansive fill; footings should extend below the zone of seasonal moisture fluctuation. In addition, it is important to limit moisture changes in the surficial soils by using positive drainage away from buildings as well as limiting landscaping watering. Detailed grading and foundation recommendations addressing this concern are presented in the following sections.

5.1.4 Shallow Groundwater

Shallow groundwater was measured at depths ranging from approximately 9½ to 18 feet below the existing ground surface. Our experience with similar sites in the vicinity indicates that shallow groundwater could significantly impact grading and underground construction. These impacts typically consist of potentially wet and unstable pavement subgrade, difficulty achieving compaction, and difficult underground utility installation. Dewatering and shoring of utility trenches may be required in some isolated areas of the site. Detailed recommendations addressing this concern are presented in the "Earthwork" section of this report.

5.1.5 Soil Corrosion Potential

The laboratory test results indicate that the corrosion potential for buried metallic structures, such as metal pipes, is considered moderately corrosive. Based on the laboratory test results, no cement type restriction is required, although, in our opinion, it is generally a good idea to include some sulfate resistance and to maintain a relatively low water-cement ratio.

5.2 PLANS AND SPECIFICATIONS REVIEW

We recommend that we be retained to review the geotechnical aspects of the project structural, civil, and landscape plans and specifications, allowing sufficient time to provide the design team with any comments prior to issuing the plans for construction.

5.3 CONSTRUCTION OBSERVATION AND TESTING

As site conditions may vary significantly between the small-diameter borings performed during this investigation, we also recommend that a Cornerstone representative be present to provide geotechnical observation and testing during earthwork and foundation construction. This will allow us to form an opinion and prepare a letter at the end of construction regarding contractor compliance with project plans and specifications, and with the recommendations in our report. We will also be allowed to evaluate any conditions differing from those encountered during our investigation, and provide supplemental recommendations as necessary. For these reasons, the recommendations in this report are contingent of Cornerstone providing observation and testing during construction. Contractors should provide at least a 48-hour notice when scheduling our field personnel.

SECTION 6: EARTHWORK

6.1 SITE DEMOLITION

All existing improvements not to be reused for the current development, including all foundations, flatwork, pavements, utilities, and other improvements should be demolished and removed from the site. Recommendations in this section apply to the removal of these improvements, which are currently present on the site, prior to the start of mass grading or the construction of new improvements for the project.

Cornerstone should be notified prior to the start of demolition, and should be present on at least a part-time basis during all backfill and mass grading as a result of demolition. Occasionally, other types of buried structures (wells, cisterns, debris pits, etc.) can be found on sites with prior development. If encountered, Cornerstone should be contacted to address these types of structures on a case-by-case basis.

6.1.1 Demolition of Existing Slabs, Foundations and Pavements

All slabs, foundations, and pavements should be completely removed from within planned building areas.

Special care should be taken during the demolition and removal of existing floor slabs, foundations, utilities and pavements to minimize disturbance of the subgrade. Excessive disturbance of the subgrade, which includes either native or previously placed engineered fill, resulting from demolition activities can have serious detrimental effects on planned foundation and paving elements.

Existing foundations are typically mat-slabs, shallow footings, or piers/piles. If slab or shallow footings are encountered, they should be completely removed. If drilled piers are encountered, they should be cut off at an elevation at least 60 inches below proposed footings or the final subgrade elevation, whichever is deeper. The remainder of the drilled pier could remain in place. Foundation elements to remain in place should be surveyed and superimposed on the proposed development plans to determine the potential for conflicts or detrimental impacts to the planned construction. Following review, additional mitigation or planned foundation elements may need to be modified.

6.1.2 Abandonment of Existing Utilities

All utilities should be completely removed from within planned building areas. For any utility line to be considered acceptable to remain within building areas, the utility line must be completely backfilled with grout or sand-cement slurry (sand slurry is not acceptable), the ends outside the building area capped with concrete, and the trench fills either removed and replaced as engineered fill with the trench side slopes flattened to at least 1:1, or the trench fills are determined not to be a risk to the structure. The assessment of the level of risk posed by the particular utility line will determine whether the utility may be abandoned in place or needs to be

completely removed. The contractor should assume that all utilities will be removed from within building areas unless provided written confirmation from both the owner and the geotechnical engineer.

Utilities extending beyond the building area may be abandoned in place provided the ends are plugged with concrete, they do not conflict with planned improvements, and that the trench fills do not pose significant risk to the planned surface improvements.

The risk for owners associated with abandoning utilities in place include the potential for future differential settlement of existing trench fills, and/or partial collapse and potential ground loss into utility lines that are not completely filled with grout.

6.2 SITE CLEARING AND PREPARATION

6.2.1 Site Stripping

The site should be stripped of all surface vegetation, and surface and subsurface improvements to be removed within the proposed development area. Demolition of existing improvements is discussed in the prior paragraphs. Surface vegetation and topsoil should be stripped to a sufficient depth to remove all material greater than 3 percent organic content by weight. Based on our site observations, surficial stripping should extend about 3 to 6 inches below existing grade in localized landscape areas.

6.2.2 Tree and Shrub RemoVal

Trees and shrubs designated for removal should have the root balls and any roots greater than ½-inch diameter removed completely. Mature trees are estimated to have root balls extending to depths of 2 to 4 feet, depending on the tree size. Significant root zones are anticipated to extend to the diameter of the tree canopy. Grade depressions resulting from root ball removal should be cleaned of loose material and backfilled in accordance with the recommendations in the "Compaction" section of this report.

6.3 REMOVAL OF EXISTING FILLS

All fills and low strength soil should be completely removed and overexcavated to a minimum depth of 4 feet from within building areas and to a lateral distance of at least 5 feet beyond the building footprint or to a lateral distance equal to fill depth below the perimeter footing, whichever is greater. Provided the fills meet the "Material for Fill" requirements below, the fills may be reused when backfilling the excavations. Based on review of the samples collected from our borings, it appears that the fill may be reused. If materials are encountered that do not meet the requirements, such as debris, wood, trash, those materials should be screened out of the remaining material and be removed from the site. Backfill of excavations should be placed in lifts and compacted in accordance with the "Compaction" section below.

Fills extending into planned pavement and flatwork areas may be left in place provided they are determined to be a low risk for future differential settlement and that the upper 12 to 18 inches

of fill below pavement subgrade is re-worked and compacted as discussed in the "Compaction" section below.

6.4 TEMPORARY CUT AND FILL SLOPES

The contractor is responsible for maintaining all temporary slopes and providing temporary shoring where required. Temporary shoring, bracing, and cuts/fills should be performed in accordance with the strictest government safety standards. On a preliminary basis, the upper 10 feet at the site may be classified as OSHA Site C materials.

Excavations performed during site demolition and fill removal should be sloped at 3:1 (horizontal:vertical) within the upper 5 feet below building subgrade. Excavations extending more than 5 feet below building subgrade and excavations in pavement and flatwork areas should be sloped in accordance with the OSHA soil classification.

6.5 SUBGRADE PREPARATION

After site clearing and demolition is complete, and prior to backfilling any excavations resulting from fill removal or demolition, the excavation subgrade and subgrade within areas to receive additional site fills, slabs-on-grade and/or pavements should be scarified to a depth of 6 inches, moisture conditioned, and compacted in accordance with the "Compaction" section below.

6.6 SUBGRAD ESTABILIZATION MEASURES

Soil subgrade and fill materials, especially soils with high fines contents such as clays and silty soils, can become unstable due to high moisture content, whether from high in-situ moisture contents or from winter rains. As the moisture content increases over the laboratory optimum, it becomes more likely the materials will be subject to softening and yielding (pumping) from construction loading or become unworkable during placement and compaction.

There are several methods to address potential unstable soil conditions and facilitate fill placement and trench backfill. Some of the methods are briefly discussed below. Implementation of the appropriate stabilization measures should be evaluated on a case-by-case basis according to the project construction goals and the particular site conditions.

6.6.1 Scarification and Drying

The subgrade may be scarified to a depth of 12 to 18 inches and allowed to dry to near optimum conditions, if sufficient dry weather is anticipated to allow sufficient drying. More than one round of scarification may be needed to break up the soil clods.

6.6.2 Removal and Replacement

As an alternative to scarification, the contractor may choose to over-excavate the unstable soils and replace them with dry on-site or import materials. A Cornerstone representative should be present to provide recommendations regarding the appropriate depth of over-excavation,

whether a geosynthethic (stabilization fabric or geogrid) is recommended, and what materials are recommended for backfill.

6.6.3 Chemical Treatment

Where the unstable area exceeds about 5,000 to 10,000 square feet and/or site winterization is desired, chemical treatment may be more cost-effective than removal and replacement. Recommended chemical treatment depths will typically range from 12 to 18 inches depending on the magnitude of the instability.

6.7 MATERIAL FOR FILL

6.7.1 Re-Use of On-site Soils

On-site soils with an organic content less than 3 percent by weight may be reused as general fill. General fill should not have lumps, clods or cobble pieces larger than 6 inches in diameter; 85 percent of the fill should be smaller than $2\frac{1}{2}$ inches in diameter. Minor amounts of oversize material (smaller than 12 inches in diameter) may be allowed provided the oversized pieces are not allowed to nest together and the compaction method will allow for loosely placed lifts not exceeding 12 inches.

6.7.2 Re-Use of Ch-Site Site ImproVements

We anticipate that significant quantities of asphalt concrete (AC) grindings and aggregate base (AB) and Portland Cement Concrete (PCC) will be generated during site demolition. If the AC grindings are mixed with the underlying AB to meet Class 2 AB specifications, they may be reused within the new pavement and flatwork structural sections. AC/AB grindings may not be reused within the building areas. Laboratory testing will be required to confirm the grindings meet project specifications.

If the site area allows for on-site pulverization of PCC and provided the PCC is pulverized to meet the "Material for Fill" requirements of this report, it may be used as select fill within the building areas, excluding the capillary break layer; as typically pulverized PCC comes close to or meets Class 2 AB specifications, the recycled PCC may likely be used within the pavement structural sections. PCC grindings also make good winter construction access roads, similar to a cement-treated base (CTB) section.

6.7.3 Potential Import Sources

Imported and non-expansive material should be inorganic with a Plasticity Index (PI) of 15 or less, and not contain recycled asphalt concrete where it will be used within the building areas. To prevent significant caving during trenching or foundation construction, imported material should have sufficient fines. Samples of potential import sources should be delivered to our office at least 10 days prior to the desired import start date. Information regarding the import source should be provided, such as any site geotechnical reports. If the material will be derived from an excavation rather than a stockpile, potholes will likely be required to collect samples

from throughout the depth of the planned cut that will be imported. At a minimum, laboratory testing will include PI tests. Material data sheets for select fill materials (Class 2 aggregate base, ¾-inch crushed rock, quarry fines, etc.) listing current laboratory testing data (not older than 6 months from the import date) may be provided for our review without providing a sample. If current data is not available, specification testing will need to be completed prior to approval.

Environmental and soil corrosion characterization should also be considered by the project team prior to acceptance. Suitable environmental laboratory data to the planned import quantity should be provided to the project environmental consultant; additional laboratory testing may be required based on the project environmental consultant's review. The potential import source should also not be more corrosive than the on-site soils, based on pH, saturated resistivity, and soluble sulfate and chloride testing.

6.7.4 Non-Expansive Fill Using Chemical Treatment

As discussed above, non-expansive fill should have a Plasticity Index (PI) of 15 or less. Due to the high clay content and PI of the on-site soil materials, it is not likely that sufficient quantities of non-expansive fill would be generated from cut materials. As an alternative to importing non-expansive fill, chemical treatment can be considered to create non-expansive fill. If this option is considered, additional laboratory tests should be performed during initial site grading to further evaluate the optimum percentage of quicklime required.

6.8 COMPACTION REQUIREMENTS

All fills, and subgrade areas where fill, slabs-on-grade, and pavements are planned, should be placed in loose lifts 8 inches thick or less and compacted in accordance with ASTM D1557 (latest version) requirements as shown in the table below. In general, clayey soils should be compacted with sheepsfoot equipment and sandy/gravelly soils with vibratory equipment; open-graded materials such as crushed rock should be placed in lifts no thicker than 18 inches consolidated in place with vibratory equipment. Each lift of fill and all subgrade should be firm and unyielding under construction equipment loading in addition to meeting the compaction requirements to be approved. The contractor (with input from a Cornerstone representative) should evaluate the in-situ moisture conditions, as the use of vibratory equipment on soils with high moistures can cause unstable conditions. General recommendations for soil stabilization are provided in the "Subgrade Stabilization Measures" section of this report. Where the soil's Pl is 20 or greater, the expansive soil criteria should be used.

Table 4: Compaction Requirements

Description	Material Description	Minimum Relative ¹ Compaction (percent)	Moisture ² Content (percent)
General Fill	On-Site Expansive Soils	87 – 92	>3
(within upper 5 feet)	Low Expansion Soils	90	>1
General Fill	On-Site Expansive Soils	95	>3
(below a depth of 5 feet)	Low Expansion Soils	95	>1
Trench Backfill	On-Site Expansive Soils	87 – 92	>3
Trench Backfill	Low Expansion Soils	90	>1
Trench Backfill (upper 6 inches of subgrade)	On-Site Low Expansion Soils	95	>1
Crushed Rock Fill	¾-inch Clean Crushed Rock	Consolidate In-Place	NA
Non-Expansive Fill	Imported Non-Expansive Fill	90	Optimum
Flatwork Subgrade	On-Site Expansive Soils	87 – 92	>3
Flatwork Subgrade	Low Expansion Soils	90	>1
Flatwork Aggregate Base	Class 2 Aggregate Base ³	90	Optimum
Pavemen <mark>t S</mark> ubgrade	On-Site Expansive Soils	87 – 92	>3
Pavemen <mark>t S</mark> ubgrade	Low Expansion Soils	95	>1
Pavement A <mark>gg</mark> regate <mark>Ba</mark> se	Class 2 Aggregate Base ³	95	Optimum
Asphalt Concrete	Asphalt Concrete	95 (Marshall)	NA

- 1 Relative compaction based on maximum density determined by ASTM D1557 (latest version)
- 2 Moisture content based on optimum moisture content determined by ASTM D1557 (latest version)
- 3 Class 2 aggregate base shall conform to Caltrans Standard Specifications, latest edition, except that the relative compaction should be determined by ASTM D1557 (latest version)
- 4 Using light-weight compaction or walls should be braced

6.8.1 Construction Moisture Conditioning

Expansive soils can undergo significant volume change when dried then wetted. The contractor should keep all exposed expansive soil subgrade (and also trench excavation side walls) moist until protected by overlying improvements (or trenches are backfilled). If expansive soils are allowed to dry out significantly, re-moisture conditioning may require several days of re-wetting (flooding is not recommended), or deep scarification, moisture conditioning, and re-compaction.

6.9 TRENCH BACKFILL

Utility lines constructed within public right-of-way should be trenched, bedded and shaded, and backfilled in accordance with the local or governing jurisdictional requirements. Utility lines in private improvement areas should be constructed in accordance with the following requirements unless superseded by other governing requirements.

All utility lines should be bedded and shaded to at least 6 inches over the top of the lines with crushed rock (%-inch-diameter or greater) or well-graded sand and gravel materials conforming to the pipe manufacturer's requirements. Open-graded shading materials should be consolidated in place with vibratory equipment and well-graded materials should be compacted to at least 90 percent relative compaction with vibratory equipment prior to placing subsequent backfill materials.

General backfill over shading materials may consist of on-site native materials provided they meet the requirements in the "Material for Fill" section, and are moisture conditioned and compacted in accordance with the requirements in the "Compaction" section.

Where utility lines will cross perpendicular to strip footings, the footing should be deepened to encase the utility line, providing sleeves or flexible cushions to protect the pipes from anticipated foundation settlement, or the utility lines should be backfilled to the bottom of footing with sand-cement slurry or lean concrete. Where utility lines will parallel footings and will extend below the "foundation plane of influence," an imaginary 1:1 plane projected down from the bottom edge of the footing, either the footing will need to be deepened so that the pipe is above the foundation plane of influence or the utility trench will need to be backfilled with sand-cement slurry or lean concrete within the influence zone. Sand-cement slurry used within foundation influence zones should have a minimum compressive strength of 75 psi.

On expansive soils sites it is desirable to reduce the potential for water migration into building and pavement areas through the granular shading materials. We recommend that a plug of low-permeability clay soil, sand-cement slurry, or lean concrete be placed within trenches just outside where the trenches pass into building and pavement areas.

6.10 SITE DRAINAGE

Ponding should not be allowed adjacent to building foundations, slabs-on-grade, or pavements. Hardscape surfaces should slope at least 2 percent towards suitable discharge facilities; landscape areas should slope at least 3 percent towards suitable discharge facilities. Roof runoff should be directed away from building areas in closed conduits, to approved infiltration facilities, or on to hardscaped surfaces that drain to suitable facilities. Retention, detention or infiltration facilities should be spaced at least 10 feet from buildings, and preferably at least 5 feet from slabs-on-grade or pavements. However, if retention, detention or infiltration facilities are located within these zones, we recommend that these treatment facilities meet the requirements in the Storm Water Treatment Design Considerations section of this report.

6.11 LOW-IMPACT DEVELOPMENT (LID) IMPROVEMENTS

The Municipal Regional Permit (MRP) requires regulated projects to treat 100 percent of the amount of runoff identified in Provision C.3.d from a regulated project's drainage area with low impact development (LID) treatment measures onsite or at a joint stormwater treatment facility. LID treatment measures are defined as rainwater harvesting and use, infiltration, evapotranspiration, or biotreatment. A biotreatment system may only be used if it is infeasible to implement harvesting and use, infiltration, or evapotranspiration at a project site.

Technical infeasibility of infiltration may result from site conditions that restrict the operability of infiltration measures and devices. Various factors affecting the feasibility of infiltration treatment may create an environmental risk, structural stability risk, or physically restrict infiltration. The presence of any of these limiting factors may render infiltration technically infeasible for a proposed project. To aid in determining if infiltration may be feasible at the site, we provide the following site information regarding factors that may aid in determining the feasibility of infiltration facilities at the site.

- The near-surface soils at the site are clayey, and categorized as Hydrologic Soil Group D, and is expected to have infiltration rates of less than 0.2 inches per hour. In our opinion, these clayey soils will significantly limit the infiltration of stormwater.
- Locally, seasonal high groundwater is mapped at a depth of 10 feet, and therefore is expected to be within 10 feet of the base of the infiltration measure.
- In our opinion, infiltration locations within 10 feet of the buildings would create a geotechnical hazard.

6.11.1 Storm Water Treatment Design Considerations

If storm water treatment improvements, such as shallow bio-retention swales, basins or pervious pavements, are required as part of the site improvements to satisfy Storm Water Quality (C.3) requirements, we recommend the following items be considered for design and construction.

6.11.1.1 General Bioswale Design Guidelines

- If possible, avoid placing bioswales or basins within 10 feet of the building perimeter or within 5 feet of exterior flatwork or pavements. If bioswales must be constructed within these setbacks, the side(s) and bottom of the trench excavation should be lined with 10-mil visqueen to reduce water infiltration into the surrounding expansive clay.
- Bioswales constructed within 3 feet of proposed buildings may be within the foundation zone of influence for perimeter wall loads. Therefore, where bioswales will parallel foundations and will extend below the "foundation plane of influence," an imaginary 1:1 plane projected down from the bottom edge of the foundation, the foundation will need to be deepened so that the bottom edge of the bioswale filter material is above the foundation plane of influence.
- The bottom of bioswale or detention areas should include a perforated drain placed at a low point, such as a shallow trench or sloped bottom, to reduce water infiltration into the surrounding soils near structural improvements, and to address the low infiltration capacity of the on-site clay soils.

6.11.1.2 Bioswale Infiltration Material

- Gradation specifications for bioswale filter material, if required, should be specified on the grading and improvement plans.
- Compaction requirements for bioswale filter material in non-landscaped areas or in pervious pavement areas, if any, should be indicated on the plans and specifications to satisfy the anticipated use of the infiltration area.
- If required, infiltration (percolation) testing should be performed on representative samples of potential bioswale materials prior to construction to check for general conformance with the specified infiltration rates.
- It should be noted that multiple laboratory tests may be required to evaluate the properties of the bioswale materials, including percolation, landscape suitability and possibly environmental analytical testing depending on the source of the material. We recommend that the landscape architect provide input on the required landscape suitability tests if bioswales are to be planted.
- If bioswales are to be vegetated, the landscape architect should select planting materials that do not reduce or inhibit the water infiltration rate, such as covering the bioswale with grass sod containing a clayey soil base.
- If required by governing agencies, field infiltration testing should be specified on the grading and improvement plans. The appropriate infiltration test method, duration and frequency of testing should be specified in accordance with local requirements.
- Due to the relatively loose consistency and/or high organic content of many bioswale filter materials, long-term settlement of the bioswale medium should be anticipated. To reduce initial volume loss, bioswale filter material should be wetted in 12 inch lifts during placement to pre-consolidate the material. Mechanical compaction should not be allowed, unless specified on the grading and improvement plans, since this could significantly decrease the infiltration rate of the bioswale materials.
- It should be noted that the volume of bioswale filter material may decrease over time depending on the organic content of the material. Additional filter material may need to be added to bioswales after the initial exposure to winter rains and periodically over the life of the bioswale areas, as needed.

6.11.1.3 Bioswale Construction Adjacent to Pavements

If bio-infiltration swales or basins are considered adjacent to proposed parking lots or exterior flatwork, we recommend that mitigative measures be considered in the design and construction of these facilities to reduce potential impacts to flatwork or pavements. Exterior flatwork, concrete curbs, and pavements located directly adjacent to bio-swales may be susceptible to settlement or lateral movement, depending on the configuration of the bioswale and the setback

between the improvements and edge of the swale. To reduce the potential for distress to these improvements due to vertical or lateral movement, the following options should be considered by the project civil engineer:

- Improvements should be setback from the vertical edge of a bioswale such that there is at least 1 foot of horizontal distance between the edge of improvements and the top edge of the bioswale excavation for every 1 foot of vertical bioswale depth, or
- Concrete curbs for pavements, or lateral restraint for exterior flatwork, located directly adjacent to a vertical bioswale cut should be designed to resist lateral earth pressures in accordance with the recommendations in the "Retaining Walls" section of this report, or concrete curbs or edge restraint should be adequately keyed into the native soil or engineered to reduce the potential for rotation or lateral movement of the curbs.

6.12 LANDSCAPE CONSIDERATIONS

Since the near-surface soils are moderately expansive, we recommend greatly reducing the amount of surface water infiltrating these soils near foundations and exterior slabs-on-grade. This can typically be achieved by:

- Using drip irrigation
- Avoiding open planting within 3 feet of the building perimeter or near the top of existing slopes
- Regulating the amount of water distributed to lawns or planter areas by using irrigation timers
- Selecting landscaping that requires little or no watering, especially near foundations.

We recommend that the landscape architect consider these items when developing landscaping plans.

SECTION 7: 2019 CBC SEISMIC DESIGN CRITERIA

We developed site-specific design parameters in accordance with Chapter 16, Chapter 18 and Appendix J of the 2019 California Building Code (CBC) and Chapters 11, 12, 20 and 21 and Supplement No. 1 of ASCE 7-16.

7.1 SITE LOCATION AND PROVIDED DATA FOR 2019 CBC SEISMIC DESIGN

The project is located at latitude 37.398158° and longitude -121.894365° , which is based on Google Earth (WGS84) coordinates at the center of the site at 1953-1965 Concourse Drive in San Jose, California. We have assumed that a Seismic Importance Factor (I_e) of 1.00 has been assigned to the structure in accordance with Table 1.5-2 of ASCE 7-16 for structures classified

as Risk Category II. The building period has not been provided by the project structural engineer.

7.2 SITE CLASSIFICATION – CHAPTER 20 OF ASCE 7-16

Code-based site classification and ground motion attenuation relationships are based on the time-weighted average shear wave velocity of the top approximately 100 feet (30 meters) of the soil profile, or V_{S30} .

As discussed in Section 3, our explorations generally encountered soft to very stiff lean clay and loose to medium dense sands to a depth of 150 feet, the maximum depth explored. Shear wave velocity (V_S) measurements were performed while advancing CPT-3, resulting in a time-averaged shear wave velocity for the top 30 meters (V_{S30}) of 769 feet per second (or 234 meters per second). In accordance with Table 20.3-1 of ASCE 7-16, we recommend the site be classified as Soil Classification D, which is described as a "stiff soil" profile. Because we used site specific data from our explorations and laboratory testing, the site class should be considered as "determined" for the purposes of estimating the seismic design parameters from the code outlined below. Our site-specific ground motion hazard analysis considered a V_{S30} of 234 m/s (769 ft/s).

7.3 CODE-BASED SEISMIC DESIGN PARAMETERS

Code-based spectral acceleration parameters were determined based on mapped acceleration response parameters adjusted for the specific site conditions. Mapped Risk-Adjusted Maximum Considered Earthquake (MCE_R) spectral acceleration parameters (S_S and S₁) were determined using the ATC Hazards by Location website (https://hazards.atcouncil.org).

The mapped acceleration parameters were adjusted for local site conditions based on the average soil conditions for the upper 100 feet (30 meters) of the soil profile. Code-based MCE_R spectral response acceleration parameters adjusted for site effects (S_{MS} and S_{M1}) and design spectral response acceleration parameters (S_{DS} and S_{D1}) are presented in Table 5.

In accordance with Section 11.4.8 of ASCE 7-16, structures on Site Class D sites with mapped 1-second period spectral acceleration (S₁) values greater than or equal to 0.2 require a site-specific ground motion hazard analysis be performed in accordance with Section 21.2 of ASCE 7-16. Design site-specific seismic parameters determined by performing a Ground Motion Hazard Analysis per Section 21.2 of ASCE 7-16 are are presented in Table 8, Section 7.5. The values in Table 5 should not be used for design unless in the judgement of the structural engineer an exception can be taken in accordance with Section 11.4.8 of ASCE 7-16. Values summarized in Table 5 are only used to determine Seismic Design Category and comparison with minimum code requirements in our site-specific ground motion hazard analysis (Section 7.4 to follow).

Table 5: Site Class D: 2019 CBC Site Categorization and Site Coefficients

Classification/Coefficient	Design Value
Site Class	D
Site Latitude	37.398158°
Site Longitude	-121.894365°
Risk Category	II*
0.2-second Period Mapped Spectral Acceleration ¹ , Ss	1.772
1-second Period Mapped Spectral Acceleration ¹ , S ₁	0.673
Short-Period Site Coefficient – Fa	1
Long-Period Site Coefficient – Fv	* null
0.2-second Period, Maximum Considered Earthquake Spectral Response Acceleration Adjusted for Site Effects - $S_{\rm MS}$	1.772
1-second Period, Maximum Considered Earthquake Spectral Response Acceleration Adjusted for Site Effects – S _{M1}	* null
0.2-second Period, Design Earthquake Spectral Response Acceleration – S _{DS}	1.181
1-second Period, Design Earthquake Spectral Response Acceleration – S _{D1}	* null
Long-Period Transition – T	12
Mapped MCEG Peak Ground Acceleration – PGA	0.745
Site Coefficient – FPGA	1.1
MCEG Mapped Adjusted for Site Effects – PGA _M	0.820

^{*}Assumed, to be confirmed by Structural Engineer

7.4 SITE-SPECIFIC GROUND MOTION HAZARD ANALYSIS

Following Section 11.4.8 of ASCE 7-16, we performed a ground motion hazards analysis (GMHA) in accordance with Chapter 21, Section 21.2 of ASCE 7-16. Following the methodology outlined in Section 21.2, we evaluated both Probabilistic MCE_R Ground Motions in accordance with Method 1 and Deterministic MCE_R Ground Motions to generate our recommended design response spectrum for the project.

Our analyses were performed using the USGS interface Unified Hazard Tool (UHT) based on the UCERF 3 Data Set, Business Seismic Safety Council (BSSC) Scenario Catalog 2014 event set (BSSC 2014), and the 2014 National Seismic Hazard Maps – Source Parameters (NSHMP deterministic event set). Additionally, we utilized the USGS program Response Spectra Plotter with combined models (Combined: WUS 2014 (4.1)).

Our analysis utilized the mean ground motions predicted by four of the Next Generation Attenuation West 2 (NGA-West 2) relationships: Boore-Atkinson (2013), Campbell-Bozognia (2013), Chiou-Youngs (2013), and Abrahamson-Silva (2013). Rotation factors (scale factors) were determined as specified in ASCE 7-16 Chapter 21, Section 21.2, to calculate the maximum rotated component of ground motions (ASCE, 2016).

7.4.1 Probabilistic MCE_R

We performed a probabilistic seismic hazard analysis (PSHA) in accordance with ASCE 7-16 Section 21.2.1. The probabilistic MCE acceleration response spectrum is defined as the 5 percent damped acceleration response spectrum having a 2 percent probability of exceedance in a 50 year period (2,475-year return period). The probabilistic MCE spectrum was multiplied by Risk Coefficients (C_R) to determine the probabilistic MCE_R. We used Risk Coefficients (C_{RS} and C_{R1}) of 0.941 and 0.919, respectively, based on ASCE 7-16 Section 21.2.1.1 - Method 1 and the ATC website. Risk coefficients for the various periods are presented in Table 6, Column 3.

The resulting probabilistic MCE_R for site class D are presented on Figure 5 (red line). Spectral ordinates are tabulated in Table 6, Column 6.

7.4.2 Deterministic MCE_R

We performed deterministic seismic hazard analyses in accordance with ASCE 7-16 Section 21.2.2 and ASCE 7-16 Supplement No. 1. The deterministic MCE_R acceleration response spectrum is calculated as the largest 84th percentile ground motion in the direction of maximum horizontal response for each period for characteristic earthquakes on all known active faults within the region. The largest deterministic ground motion resulted from a M_w 7.58 earthquake on the Hayward Fault (RC+HN+HS+HE segments), located at a distance of approximately 5.77 km from the site.

In accordance with Supplement No.1 of ASCE 7-16, when the largest spectral response acceleration of the resulting deterministic ground motion response spectrum is less than 1.5F_a then the largest 84th percentile rotated response spectrum (Table 6, Column 4) shall be scaled by a single factor such that the maximum response spectral acceleration equals 1.5F_a. For Site Classes A, B, C and D, F_a is determined using Table 11.4.1 with the value of S_s taken as 1.5; for Site Class E, F_a shall be taken as 1.0. When the largest spectral response acceleration of the probabilistic ground motion response of 21.2.1 is less than 1.2F_a, the deterministic ground motion response spectrum does not need to be calculated.

As the largest probabilistic spectral response acceleration was determined to be 2.327 which is greater than $1.2F_a$, where F_a is taken as 1.000 from Table 11.4-1 in ASCE 7-16 Supplement No.1, the 84^{th} percentile rotated response spectrum was calculated as part of the deterministic analyses. The maximum spectral acceleration from the 84^{th} percentile rotated response spectrum was then compared to $1.5F_a$ to determine if a scale factor needed to be applied. The deterministic MCE spectrum are tabulated in Table 6, Column 5. The deterministic MCE_R is presented graphically on Figure 5 (blue line).

7.4.3 Site-Specific MCE_R

The site-specific MCE_R is defined by ASCE 7-16 Section 21.2.3 as the lesser of the deterministic and probabilistic MCE_R's at each period. The site-specific MCE_R spectrum was calculated by taking the lesser of the deterministic MCE_R and the probabilistic MCE_R. Spectral

ordinates for the site-specific MCE_R for Site Class D are tabulated in Table 6, Column 7 and shown graphically on Figure 5 and 6 (dashed black line), respectively.

Table 6: Development of Site-Specific MCE_R Spectrum

Period (seconds)	CBC General Spectrum (g)	Risk Coefficient	Det. 84th Percentile Rotated	Deterministic MCE _R (g)	Probabilistic MCE _R (g)	Site- Specific MCE _R (g)
0.000	0.473	0.941	1.100	0.998	1.094	0.998
0.050	0.659	0.941	1.100	1.022	1.464	1.022
0.100	0.846	0.941	1.100	1.477	1.834	1.477
0.150	1.032	0.941	1.100	1.815	2.116	1.815
0.190	1.181	0.941	1.100	1.959	2.341	1.959
0.200	1.181	0.941	1.100	1.995	2.398	1.995
0.250	1.181	0.940	1.113	2.131	2.597	2.131
0.300	1.181	0.938	1.125	2.207	2.797	2.207
0.400	1.181	0.936	1.150	2.308	2.864	2.308
0.500	1.181	0.933	1.175	2.327	2.931	2.327
0.750	1.181	0.926	1.238	2.019	2.588	2.019
0.949	1 <mark>.1</mark> 81	0.920	1.287	1.842	2.341	1.842
1.000	1.122	0.919	1.300	1.797	2.277	1.797
2.000	0.561	0.919	1.350	1.034	1.306	1.034
3.000	0.374	0.919	1.400	0.711	0.878	0.711
4.000	0.280	0.919	1.450	0.507	0.626	0.507
5.000	0.224	0.919	1.500	0.390	0.479	0.390

7.4.4 Design Response Spectrum

The Design Response Spectrum (DRS) is defined in ASCE 7-16 Section 21.3 as two-thirds of the site-specific MCE $_{\rm R}$, but not less than 80% of the general design response spectrum. Spectral accelerations corresponding to two-thirds of the MCE $_{\rm R}$ are tabulated in Table 7, Column 2. Ordinates corresponding to 80% of the general Site Class D response spectrum are tabulated below in Table 7, Column 3. Ordinates of the site-specific DRS are tabulated in Table 7, Column 4. Development of the site-specific DRS is presented graphically on Figure 6 (dashed black line).

Table 7: Development of Site-Specific Design Response Spectrum

Period (seconds)	2/3 Site- Specific MCE _R (g)	80% CBC Site Class C Spectrum (g)	Design Response Spectrum (g)	
0.000	0.666	0.378	0.666	
0.050	0.681	0.527	0.681	
0.100	0.985	0.677	0.985	
0.150	1.210	0.826	1.210	
0.190	1.306	0.945	1.306	
0.200	1.330	0.945	1.330	
0.250	1.420	0.945	1.420	
0.300	1.471	0.945	1.471	
0.400	1.538	0.945	1.538	
0.500	1.551	0.945	1.551	
0.750	1.346	0.945	1.346	
0.949	1.228	0.945	1.228	
1.000	1.198	0.897	1.198	
2.000	0.689	0.449	0.689	
3.000	0.474	0.299	0.474	
4.000	0.338	0.224	0.338	
5.000	0.260	0.179	0.260	

7.5 DESIGN ACCELERATION PARAMETERS

Design acceleration parameters (S_{DS} and S_{D1}) were determined in accordance with Section 21.4 of ASCE 7-16. S_{DS} is defined as the design spectral acceleration at 90% of the maximum spectral acceleration, S_a , obtained from the site-specific spectrum, at any period within the range from 0.2 and 5 seconds, inclusive. S_{D1} is defined as maximum value of the product, TS_a , for periods from 1 to 2 seconds for sites with $v_{s,30} > 1,200$ ft/s ($v_{s,30} > 365.76$ m/s) and for periods from 1 to 5 seconds for sites with $v_{s,30} \le 1,200$ ft/s ($v_{s,30} \le 365.76$ m/s).

Site-specific MCE_R spectral response acceleration parameters (S_{MS} and S_{M1}) are calculated as 1.5 times the S_{DS} and S_{D1} values, respectively, but not less than 80% of the code-based values presented in Table 5. Site-specific design acceleration parameters are summarized in Table 8.

When using the Equivalent Lateral Force Procedure, ASCE 7-16 Section 21.4 allows using the spectral acceleration at any period (T) in lieu of S_{D1}/T in Eq. 12.8-3 and $S_{D1}T_L/T^2$ in Eq. 12.8-4. The site-specific spectral acceleration at any period may be calculated by interpolation of the spectral ordinates in Table 7, Column 4.

Table 8: Site-Specific Design Acceleration Parameters

Parameter	Value
S_{DS}	1.396
S _{D1}	1.422
S _{MS}	2.094
S _{M1}	2.133

7.6 SITE-SPECIFIC MCE_G PEAK GROUND ACCELERATION

We calculated the Site-Specific MCE_G Peak Ground Acceleration (PGA_M) in accordance with ASCE 7-16 Section 21.5. The Site-Specific PGA_M is calculated as the lesser of probabilistic and deterministic geometric mean PGA. The 2% in 50-year probabilistic geometric mean PGA is 1.057g. The deterministic PGA is considered the greater of the largest 84th percentile deterministic geometric mean PGA (0.908g) or one-half of the tabulated F_{PGA} value from ASCE 7-16 Table 11.8.1 with the value of PGA taken as 0.5g. For the site, F_{PGA} is 1.100 and one-half of the F_{PGA} is 0.55g; therefore, the deterministic PGA is 0.908g. Additionally, the Site-Specific PGA_M may not be less than 80% of the mapped PGA_M determined from ASCE 7-16 Equation 11.8-1. The mapped PGA_M for the site is 0.82g; 80% of PGA_M is 0.656g. Therefore, the Site-Specific PGA_M for the site is 0.908g.

SECTION 8: FOUNDATIONS

8.1 SUMMARY OF RECOMMENDATIONS

In our opinion, the proposed structures may be supported on shallow foundations provided the recommendations in the "Earthwork" section and the sections below are followed.

8.2 SHALLOW FOUNDATIONS

8.2.1 Spread Footings

Spread footings should bear entirely on natural, undisturbed soil or engineered fill, be at least 15 inches wide, and extend at least 18 inches below the lowest adjacent grade. Lowest adjacent grade is defined as the deeper of the following: 1) bottom of the adjacent interior slab-on-grade, or 2) finished exterior grade, excluding landscaping topsoil. The deeper footing embedment is due to the presence of moderately expansive soils, and is intended to embed the footing below the zone of significant seasonal moisture fluctuation, reducing the potential for differential movement.

Footings constructed to the above dimensions and in accordance with the "Earthwork" recommendations of this report are capable of supporting maximum allowable bearing pressures of 2,000 psf for dead loads, 3,000 psf for combined dead plus live loads, and 4,000

psf for all loads including wind and seismic. These pressures are based on factors of safety of 3.0, 2.0, and 1.5 applied to the ultimate bearing pressure for dead, dead plus live, and all loads, respectively. These pressures are net values; the weight of the footing may be neglected for the portion of the footing extending below grade (typically, the full footing depth). Top and bottom mats of reinforcing steel should be included in continuous footings to help span irregularities and differential settlement.

8.2.2 Footing Settlement

Structural loads were not provided to us at the time this report was prepared; therefore, we assumed the typical loading in the following table.

Table 9: Assumed Structural Loading

Foundation Area	Range of Assumed Loads
Interior Isolated Column Footing	100 to 150 kips
Exterior Isolated Column Footing	50 to 75 kips
Perimeter Strip Footing	4 to 6 kips per lineal foot

Based on the above loading and the allowable bearing pressures presented above, we estimate that the total static footing settlement will be on the order of $\frac{3}{4}$ inch, with about $\frac{1}{2}$ inch of post-construction differential settlement between adjacent foundation elements. In addition we estimate that differential seismic movement will be on the order of up to $\frac{3}{4}$ inch over a horizontal distance of 50 to 60 feet, resulting in a total estimated differential footing movement of $\frac{1}{4}$ inch between foundation elements, assumed to be on the order of 50 to 60 feet. As our footing loads were assumed, we recommend we be retained to review the final footing layout and loading, and verify the settlement estimates above.

Approximately ¼-inch of the total settlement discussed above is due to primary consolidation of saturated clay layers. The time to the achieve about 85 to 90 percent of the primary consolidation is anticipated to take several months to a year after all the dead and live loads are in place based on the encountered alluvial conditions. The contractor should take this into consideration when scheduling the construction of sensitive finishes.

8.2.3 Lateral Loading

Lateral loads may be resisted by friction between the bottom of footing and the supporting subgrade, and also by passive pressures generated against footing sidewalls. An ultimate frictional resistance of 0.35 applied to the footing dead load, and an ultimate passive pressure based on an equivalent fluid pressure of 350 pcf may be used in design. The structural engineer should apply an appropriate factor of safety (such as 1.5) to the ultimate values above. Where footings are adjacent to landscape areas without hardscape, the upper 12 inches of soil should be neglected when determining passive pressure capacity.

8.2.4 Spread Footing Construction Considerations

Where utility lines will cross perpendicular to strip footings, the footing should be deepened to encase the utility line, providing sleeves or flexible cushions to protect the pipes from anticipated foundation settlement, or the utility lines should be backfilled to the bottom of footing with sand-cement slurry or lean concrete. Where utility lines will parallel footings and will extend below the "foundation plane of influence," an imaginary 1:1 plane projected down from the bottom edge of the footing, either the footing will need to be deepened so that the pipe is above the foundation plane of influence or the utility trench will need to be backfilled with sand-cement slurry or lean concrete within the influence zone. Sand-cement slurry used within foundation influence zones should have a minimum compressive strength of 75 psi.

Footing excavations should be filled as soon as possible or be kept moist until concrete placement by regular sprinkling to prevent desiccation. A Cornerstone representative should observe all footing excavations prior to placing reinforcing steel and concrete. If there is a significant schedule delay between our initial observation and concrete placement, we may need to re-observe the excavations.

SECTION 9: CONCRETE SLABS AND PEDESTRIAN PAVEMENTS

9.1 INTERIOR SLABS-CN-GRADE

As the Plasticity Index (PI) of the surficial soils ranges up to 18, the proposed slabs-on-grade should be supported on at least 6 inches of non-expansive fill (NEF) to reduce the potential for slab damage due to soil heave. The NEF layer should be constructed over subgrade prepared in accordance with the recommendations in the "Earthwork" section of this report. If moisture-sensitive floor coverings are planned, the recommendations in the "Interior Slabs Moisture Protection Considerations" section below may be incorporated in the project design if desired. If significant time elapses between initial subgrade preparation and NEF construction, the subgrade should be proof-rolled to confirm subgrade stability, and if the soil has been allowed to dry out, the subgrade should be re-moisture conditioned to at least 2 percent over the optimum moisture content.

The structural engineer should determine the appropriate slab reinforcement for the loading requirements and considering the expansion potential of the underlying soils. For unreinforced concrete slabs, ACI 302.1R recommends limiting control joint spacing to 24 to 36 times the slab thickness in each direction, or a maximum of 18 feet.

9.2 WAREHOUSE SLABS-ON-GRADE

Warehouse slabs-on-grade should be at least 6 inches thick should have a minimum compressive strength of 3,500 psi. The warehouse slab should also be supported on at least 6 inches of non-expansive, crushed granular base having an R-value of at least 50 and no more than 10 percent passing the No. 200 sieve, such as Class 2 aggregate base. All base and subbase materials should be placed and compacted in accordance with the "Compaction" section of this report. If there will be areas within the warehouse that are moisture sensitive, such as

equipment and elevator rooms, a vapor barrier may be placed over the upper granular base prior to slab construction. Please refer to the recommendations in the "Interior Slabs Moisture Protection Considerations" section for vapor barrier construction. Consideration should be given to limiting the control joint spacing to a maximum of about 2 feet in each direction for each inch of concrete thickness.

9.3 INTERIOR SLABS MOISTURE PROTECTION CONSIDERATIONS

The following general guidelines for concrete slab-on-grade construction where floor coverings are planned are presented for the consideration by the developer, design team, and contractor. These guidelines are based on information obtained from a variety of sources, including the American Concrete Institute (ACI) and are intended to reduce the potential for moisture-related problems causing floor covering failures, and may be supplemented as necessary based on project-specific requirements. The application of these guidelines or not will not affect the geotechnical aspects of the slab-on-grade performance.

Place a minimum 10-mil vapor retarder conforming to ASTM E 1745, Class C requirements or better directly below the concrete slab; the vapor retarder should extend to the slab edges and be sealed at all seams and penetrations in accordance with manufacturer's recommendations and ASTM E 1643 requirements. A 4-inch-thick capillary break, consisting of crushed rock should be placed below the vapor retarder and consolidated in place with vibratory equipment. The mineral aggregate shall be of such size that the percentage composition by dry weight as determined by laboratory sieves will conform to the following gradation:

Sieve Size	Percentage Passing Sieve
1"	100
3/4"	90 – 100
No. 4	0 - 10

The capillary break rock may be considered as the upper 4 inches of the non-expansive fill previously recommended.

- The concrete water:cement ratio should be 0.45 or less. Mid-range plasticizers may be used to increase concrete workability and facilitate pumping and placement.
- Water should not be added after initial batching unless the slump is less than specified and/or the resulting water:cement ratio will not exceed 0.45.
- Polishing the concrete surface with metal trowels is not recommended.
- Where floor coverings are planned, all concrete surfaces should be properly cured.
- Water vapor emission levels and concrete pH should be determined in accordance with ASTM F1869-98 and F710-98 requirements and evaluated against the floor covering manufacturer's requirements prior to installation.

9.4 EXTERIOR FLATWORK

Exterior concrete flatwork subject to pedestrian loading only should be at least 4 inches thick and supported on at least 4 inches of Class 2 aggregate base overlying subgrade prepared in accordance with the "Earthwork" recommendations of this report. Flatwork that will be subject to heavier or frequent vehicular loading should be designed in accordance with the recommendations in the "Vehicular Pavements" section below. To help reduce the potential for uncontrolled shrinkage cracking, adequate expansion and control joints should be included. Consideration should be given to limiting the control joint spacing to a maximum of about 2 feet in each direction for each inch of concrete thickness. Flatwork should be isolated from adjacent foundations or retaining walls except where limited sections of structural slabs are included to help span irregularities in retaining wall backfill at the transitions between at-grade and on-structure flatwork.

SECTION 10: VEHICULAR PAVEMENTS

10.1 ASPHALT CONCRETE

The following asphalt concrete pavement recommendations tabulated below are based on the Procedure 608 of the Caltrans Highway Design Manual, estimated traffic indices for various pavement-loading conditions, and an assumed R-value of 5. The design R-value was chosen based on engineering judgement considering the proposed pavement areas and potential variable surface conditions following site grading. We have also included pavement structural section alternatives for chemical-treated (lime/cement) subgrade soil with an estimated design R-value of 50 for your consideration. If it is desired to chemical-treat, we recommend that the upper 12 inches of subgrade soil be treated. Additional testing will need to be performed to determine the appropriate lime/cement percentage to be mixed with the subgrade soil.

Table 10: Asphalt Concrete Pavement Recommendations (Untreated Subgrade)

Design Traffic Index (TI)	Asphalt Concrete (inches)	Class 2 Aggregate Base* (inches)	Total Pavement Section Thickness (inches)
4.0	2.5	7.5	10.0
4.5	2.5	9.5	12.0
5.0	3.0	10.0	13.0
5.5	3.0	12.0	15.0
6.0	3.5	13.0	16.5
6.5	4.0	14.0	18.0
7.0	4.0	16.0	20.0
7.5	4.5	17.0	21.5
8.0	5.0	18.0	23.0
8.5	5.0	20.0	25.0
9.0	5.5	21.0	26.5
9.5	6.0	22.0	28.0
10.0	6.5	23.0	29.5
10.5	6.5	25.0	31.5
11.0	7.0	26.0	33.0

^{*}Caltrans Class 2 aggregate base; minimum R-value of 78.

Table 11: Asphalt Concrete Pavement Recommendations (Chemical-Treated Subgrade)

Design Traffic Index (TI)	Asphalt Concrete (inches)	Class 2 Aggregate Base* (inches)	Total Pavement Section Thickness (inches)
4.0/4.5	2.5	4.0	6.5
5.0/5.5	3.0	4.0	7.0
6.0	3.5	4.0	7.5
6.5	4.0	4.0	8.0
7.0	4.0	4.5	8.5
7.5	4.5	5.0	9.5
8.0	5.0	5.0	10.0
8.5	5.0	6.5	11.5
9.0	5.5	6.5	12.0
9.5	6.0	7.0	13.0
10.0	6.5	7.5	14.0
10.5	6.5	8.5	15.0
11.0	7.0	8.5	15.5

^{*}Caltrans Class 2 aggregate base with minimum R-value of 78; minimum chemical-treated subgrade R-value assumed to be 50

Frequently, the full asphalt concrete section is not constructed prior to construction traffic loading. This can result in significant loss of asphalt concrete layer life, rutting, or other pavement failures. To improve the pavement life and reduce the potential for pavement distress through construction, we recommend the full design asphalt concrete section be constructed prior to construction traffic loading. Alternatively, a higher traffic index may be chosen for the areas where construction traffic will be using the pavements.

Asphalt concrete pavements constructed on expansive subgrade where the adjacent areas will not be irrigated for several months after the pavements are constructed may experience longitudinal cracking parallel to the pavement edge. These cracks typically form within a few feet of the pavement edge and are due to seasonal wetting and drying of the adjacent soil. The cracking may also occur during construction where the adjacent grade is allowed to significantly dry during the summer, pulling moisture out of the pavement subgrade. Any cracks that form should be sealed with bituminous sealant prior to the start of winter rains. One alternative to reduce the potential for this type of cracking is to install a moisture barrier at least 24 inches deep behind the pavement curb.

10.2 PORTLAND CEMENT CONCRETE

The exterior Portland Cement Concrete (PCC) pavement recommendations tabulated below are based on methods presented in the Portland Cement Association (PCA) design manual (PCA, 1984). We have provided a few pavement alternatives as an anticipated Average Daily Truck

Traffic (ADTT) was not provided. An allowable ADTT should be chosen that is greater than what is expected for the development. PCC alternatives for chemical-treated (lime/cement) subgrade are also provided in the tables below.

Table 12: PCC Pavement Recommendations (Untreated Subgrade)

Allowable ADTT	Minimum PCC Thickness (inches)	
13	5.5	
130	6.0	

Table 13: PCC Pavement Recommendations (Chemical-Treated Subgrade)

Allowable ADTT	Minimum PCC Thickness (inches)	
13	5.0	
150	5.5	

The PCC thicknesses above are based on a concrete compressive strength of at least 3,500 psi, supporting the PCC on at least 6 inches of Class 2 aggregate base compacted as recommended in the "Earthwork" section, and laterally restraining the PCC with curbs or concrete shoulders. Adequate expansion and control joints should be included. Consideration should be given to limiting the control joint spacing to a maximum of about 2 feet in each direction for each inch of concrete thickness. Due to the expansive surficial soils present, we recommend that the construction and expansion joints be dowelled.

10.2.1 Stress Pads for Trash Enclosures

Pads where trash containers will be stored, and where garbage trucks will park while emptying trash containers, should be constructed on Portland Cement Concrete. We recommend that the trash enclosure pads and stress (landing) pads where garbage trucks will store, pick up, and empty trash be increased to a minimum PCC thickness of 7 inches. The compressive strength, underlayment, and construction details should be consistent with the above recommendations for PCC pavements.

10.3 PAVEMENT CUTOFF

Surface water penetration into the pavement section can significantly reduce the pavement life, due to the native expansive clays. While quantifying the life reduction is difficult, a normal 20-year pavement design could be reduced to less than 10 years; therefore, increased long-term maintenance may be required.

It would be beneficial to include a pavement cut-off, such as deepened curbs, redwood-headers, or "Deep-Root Moisture Barriers" that are keyed at least 4 inches into the pavement subgrade. This will help limit the additional long-term maintenance.

SECTION 11: RETAINING WALLS

11.1 STATIC LATERAL EARTH PRESSURES

The structural design of any site retaining wall should include resistance to lateral earth pressures that develop from the soil behind the wall, any undrained water pressure, and surcharge loads acting behind the wall. Provided a drainage system is constructed behind the wall to prevent the build-up of hydrostatic pressures as discussed in the section below, we recommend that the walls with level backfill be designed for the following pressures:

Table 14: Recommended Lateral Earth Pressures

Wall Condition	Lateral Earth Pressure*	Additional Surcharge Loads
Unrestrained – Cantilever Wall	45 pcf	⅓ of vertical loads at top of wall
Restrained – Braced Wall	45 pcf + 8H** psf	½ of vertical loads at top of wall

^{*} Lateral earth pressures are based on an equivalent fluid pressure for level backfill conditions

If adequate drainage cannot be provided behind the wall, an additional equivalent fluid pressure of 40 pcf should be added to the values above for both restrained and unrestrained walls for the portion of the wall that will not have drainage. Damp proofing or waterproofing of the walls may be considered where moisture penetration and/or efflorescence are not desired.

11.2 SEISMIC LATERAL EARTH PRESSURES

The 2019 CBC states that lateral pressures from earthquakes should be considered in the design of basements and retaining walls. At this time, we are not aware of any retaining walls for the project. However, minor landscaping walls (i.e. walls 6 feet or less in height) may be proposed. In our opinion, design of these walls for seismic lateral earth pressures in addition to static earth pressures is not warranted.

11.3 WALL DRAINAGE

Adequate drainage should be provided by a subdrain system behind all walls. This system should consist of a 4-inch minimum diameter perforated pipe placed near the base of the wall (perforations placed downward). The pipe should be bedded and backfilled with Class 2 Permeable Material per Caltrans Standard Specifications, latest edition. The permeable backfill should extend at least 12 inches out from the wall and to within 2 feet of outside finished grade. Alternatively, ½-inch to ¾-inch crushed rock may be used in place of the Class 2 Permeable Material provided the crushed rock and pipe are enclosed in filter fabric, such as Mirafi 140N or

^{**} H is the distance in feet between the bottom of footing and top of retained soil

approved equivalent. The upper 2 feet of wall backfill should consist of compacted on-site soil. The subdrain outlet should be connected to a free-draining outlet or sump.

Miradrain, Geotech Drainage Panels, or equivalent drainage matting can be used for wall drainage as an alternative to the Class 2 Permeable Material or drain rock backfill. Horizontal strip drains connecting to the vertical drainage matting may be used in lieu of the perforated pipe and crushed rock section. The vertical drainage panel should be connected to the perforated pipe or horizontal drainage strip at the base of the wall, or to some other closed or through-wall system such as the TotalDrain system from AmerDrain. Sections of horizontal drainage strips should be connected with either the manufacturer's connector pieces or by pulling back the filter fabric, overlapping the panel dimples, and replacing the filter fabric over the connection. At corners, a corner guard, corner connection insert, or a section of crushed rock covered with filter fabric must be used to maintain the drainage path.

Drainage panels should terminate 18 to 24 inches from final exterior grade. The Miradrain panel filter fabric should be extended over the top of and behind the panel to protect it from intrusion of the adjacent soil.

11.4 BACKFILL

Where surface improvements will be located over the retaining wall backfill, backfill placed behind the walls should be compacted to at least 95 percent relative compaction using light compaction equipment. Where no surface improvements are planned, backfill should be compacted to at least 90 percent. If heavy compaction equipment is used, the walls should be temporarily braced.

11.5 FOUNDATIONS

Retaining walls may be supported on a continuous spread footing designed in accordance with the recommendations presented in the "Foundations" section of this report.

SECTION 12: LIMITATIONS

This report, an instrument of professional service, has been prepared for the sole use of Overton Moore Properties specifically to support the design of the Concourse Drive project in San Jose, California. The opinions, conclusions, and recommendations presented in this report have been formulated in accordance with accepted geotechnical engineering practices that exist in Northern California at the time this report was prepared. No warranty, expressed or implied, is made or should be inferred.

Recommendations in this report are based upon the soil and groundwater conditions encountered during our subsurface exploration. If variations or unsuitable conditions are encountered during construction, Cornerstone must be contacted to provide supplemental recommendations, as needed.

Overton Moore Properties may have provided Cornerstone with plans, reports and other documents prepared by others. Overton Moore Properties understands that Cornerstone reviewed and relied on the information presented in these documents and cannot be responsible for their accuracy.

Cornerstone prepared this report with the understanding that it is the responsibility of the owner or his representatives to see that the recommendations contained in this report are presented to other members of the design team and incorporated into the project plans and specifications, and that appropriate actions are taken to implement the geotechnical recommendations during construction.

Conclusions and recommendations presented in this report are valid as of the present time for the development as currently planned. Changes in the condition of the property or adjacent properties may occur with the passage of time, whether by natural processes or the acts of other persons. In addition, changes in applicable or appropriate standards may occur through legislation or the broadening of knowledge. Therefore, the conclusions and recommendations presented in this report may be invalidated, wholly or in part, by changes beyond Cornerstone's control. This report should be reviewed by Cornerstone after a period of three (3) years has elapsed from the date of this report. In addition, if the current project design is changed, then Cornerstone must review the proposed changes and provide supplemental recommendations, as needed.

An electronic transmission of this report may also have been issued. While Cornerstone has taken precautions to produce a complete and secure electronic transmission, please check the electronic transmission against the hard copy version for conformity.

Recommendations provided in this report are based on the assumption that Cornerstone will be retained to provide observation and testing services during construction to confirm that conditions are similar to that assumed for design, and to form an opinion as to whether the work has been performed in accordance with the project plans and specifications. If we are not retained for these services, Cornerstone cannot assume any responsibility for any potential claims that may arise during or after construction as a result of misuse or misinterpretation of Cornerstone's report by others. Furthermore, Cornerstone will cease to be the Geotechnical-Engineer-of-Record if we are not retained for these services.

SECTION 13: REFERENCES

ATC Hazards by Location, Hazards by Location, 2020, https://hazards.atcouncil.org/

Association of Bay Area Governments (ABAG), 2011, Interactive Liquefaction Hazard Map: http://quake.abaq.ca.gov/liquefaction/

Boulanger, R.W. and Idriss, I.M., 2004, Evaluating the Potential for Liquefaction or Cyclic Failure of Silts and Clays, Department of Civil & Environmental Engineering, College of Engineering, University of California at Davis.

Boulanger, R.W. and Idriss, I.M., 2014, CPT and SPT Based Liquefaction Triggering Procedures, Department of Civil & Environmental Engineering, College of Engineering, University of California at Davis, Report No. UCD/GCM-14/01, April 2014

California Building Code, 2019, Structural Engineering Design Provisions, Vol. 2.

California Department of Conservation Division of Mines and Geology, 1998, Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada, International Conference of Building Officials, February, 1998.

California Division of Mines and Geology (2008), "Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117A, September.

California Geological Survey, 2001, State of California Seismic Hazard Zones, Milpitas 7.5-Minute Quadrangle, California: Seismic Hazard Zone Report 051.

Federal Emergency Management Administration (FEMA), 2009, FIRM City of San Jose, California, Community Panel #06085C0069H.

GitHub, *usgs/shakemap-scenarios*, 2020, https://github.com/usgs/shakemap-scenarios/tree/master/rupture_sets/BSSC2014

Idriss, I.M., and Boulanger, R.W., 2008, Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute, Oakland, CA, 237 p.

Ishihara, K., 1985, Stability of Natural Deposits During Earthquakes: Proceedings Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco.

Ishihara, K. and Yoshimine, M., 1992, Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes, Soils and Foundations, 32 (1): 173-188.

Knudsen et al., 2000, Preliminary Maps of Quaternary Deposits and Liquefaction Susceptibility, Nine-County San Francisco Bay Region, California.

Lew, M. et al, 2010, Seismic Earth Pressures on Deep Building Basements, Proceedings, SEAOC Convention, Indian Wells, CA.

Portland Cement Association, 1984, Thickness Design for Concrete Highway and Street Pavements: report.

Pradell, D., 1988, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, Journal of Geotechnical and Environmental Engineering, April 1998, p. 364 – 368 and Errata October 1998 p. 1048.

Ritter, J.R., and Dupre, W.R., 1972, Map Showing Areas of Potential Inundation by Tsunamis in the San Francisco Bay Region, California: San Francisco Bay Region Environment and Resources Planning Study, USGS Basic Data Contribution 52, Misc. Field Studies Map MF-480.

Rogers, T.H., and J.W. Williams, 1974 Potential Seismic Hazards in Santa Clara County, California, Special Report No. 107: California Division of Mines and Geology.

Schwartz, D.P. 1994, New Knowledge of Northern California Earthquake Potential: in Proceedings of Seminar on New Developments in Earthquake Ground Motion Estimation and Implications for Engineering Design Practice, Applied Technology Council 35-1.

Seed, H.B. and I.M. Idriss, 1971, A Simplified Procedure for Evaluation soil Liquefaction Potential: JSMFC, ASCE, Vol. 97, No. SM 9, pp. 1249 – 1274.

Seed, H.B. and I.M. Idriss, 1982, Ground Motions and Soil Liquefaction During Earthquakes: Earthquake Engineering Research Institute.

Seed, Raymond B., Cetin, K.O., Moss, R.E.S., Kammerer, Ann Marie, Wu, J., Pestana, J.M., Riemer, M.F., Sancio, R.B., Bray, Jonathan D., Kayen, Robert E., and Faris, A., 2003, Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework., University of California, Earthquake Engineering Research Center Report 2003-06.

Southern California Earthquake Center (SCEC), 1999, Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California, March.

State of California Department of Transportation, 2018, Highway Design Manual, Sixth Edition, December 14, 2018.

Tokimatsu, K., and Seed, H. Bolton, 1987, Evaluation of Settlements in Sands due to Earthquake Shaking, ASCE Journal of Geotechnical Engineering, Vol. 113, August 1987, pp. 861-878.

Townley, S.D. and M.W. Allen, 1939, Descriptive Catalog of Earthquakes of the Pacific Coast of the United States, 1769 to 1928: Bulletin of the Seismological Society of America, Vol. 29, No. 1, pp. 1247-1255.

U.S. Geological Survey, *Building Seismic Safety Council 2014 Event Set*, ArcGIS Web Application, 2020,

https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=14d2f75c7c4f4619936dac0d14e1e468

U.S. Geological Survey, *USGS Earthquake Hazards Program*, 2020, https://earthquake.usgs.gov/nshmp-haz-ws/apps/spectra-plot.html

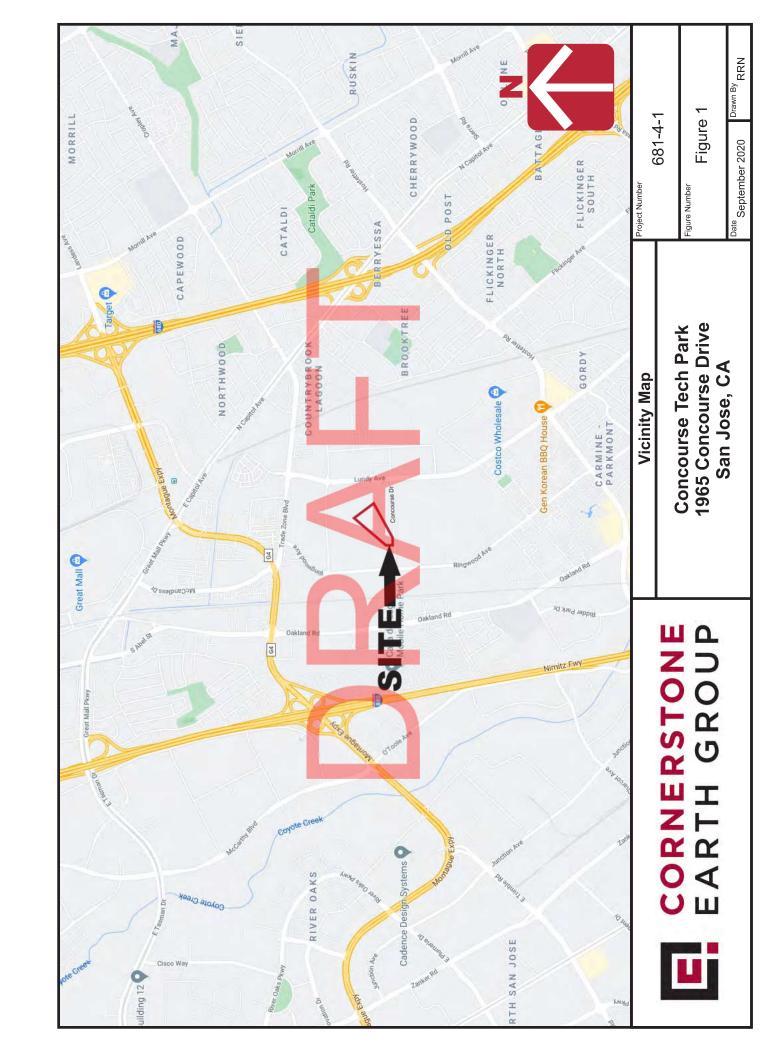
U.S. Geological Survey, *Unified Hazard Tool*, 2020, https://earthquake.usgs.gov/hazards/interactive/

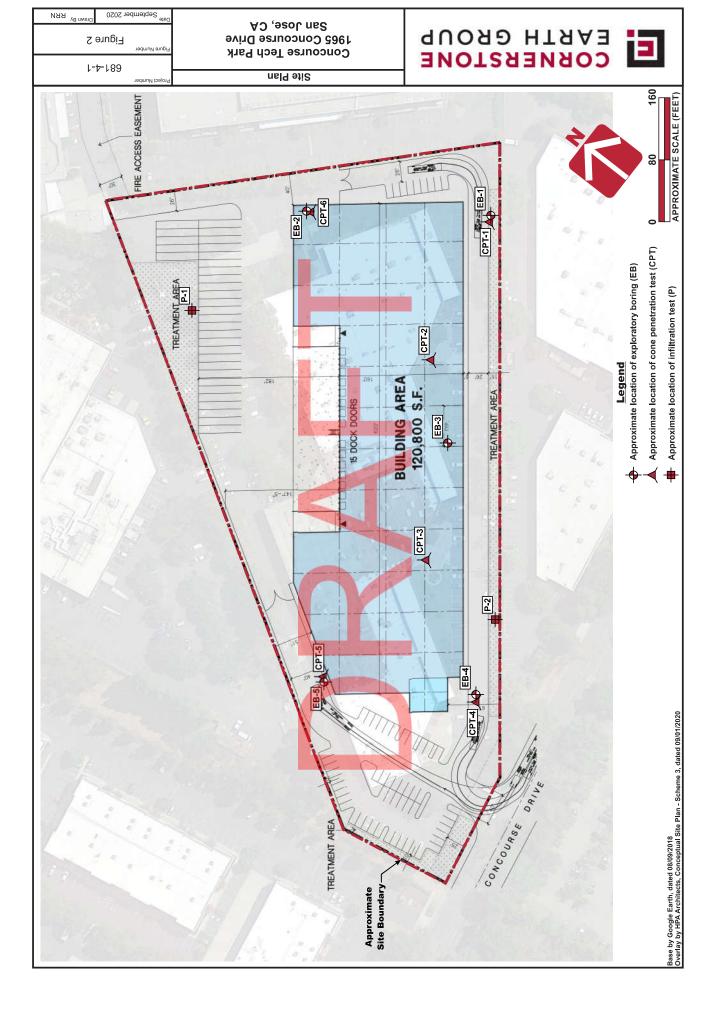
Witter, R.C., Knudsen, K.L., Sowers, J.M., Wentworth, C.M., Koehler, R.D., Randolph, C.E., Brooks, S, K. and Gans, K.D., 2006, Maps of Quaternary deposits and liquefaction susceptibility in the central San Francisco Bay region, California: U.S. Geological Survey, Open-File Report OF-2006-1037, scale 1:200000.

Working Group on California Earthquake Probabilities, 2007, The Uniform Earthquake Rupture Forecast, Version 2 (UCRF 2), U.S.G.S. Open File Report 2007-1437.

Working Group on California Earthquake Probabilities, 2013, The Uniform Earthquake Rupture Forecast, Version 3 (UCRF 3), U.S.G.S. Open File Report 2013-1165.

Yoshimine, M., Nishizaki, H., Amano, KI, and Hosono, Y., 2006, Flow Deformation of Liquefied Sand Under Constant Shear Load and Its Application to Analysis of Flow Slide in Infinite Slope, Soil Dynamics and Earthquake Eng. 26, 253-264.

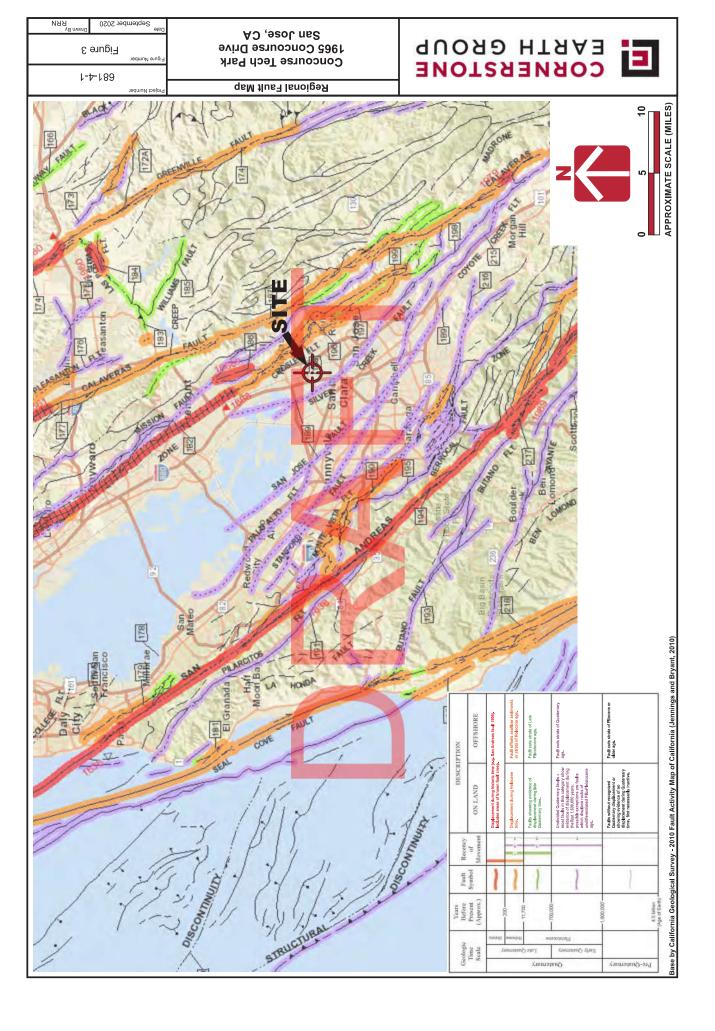

Youd, T.L. and C.T. Garris, 1995, Liquefaction-Induced Ground-Surface Disruption: Journal of Geotechnical Engineering, Vol. 121, No. 11, pp. 805 - 809.

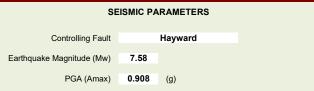

Youd, T.L. and Idriss, I.M., et al. 1997, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils: National Center for Earthquake Engineering Research, Technical Report NCEER - 97-0022, January 5, 6, 1996.

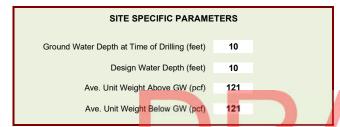
Youd et al., 2001, "Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vo. 127, No. 10, October, 2001.

Youd, T. Leslie, Hansen, Corbett M., and Bartlett, Steven F., 2002, Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement: ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, December 2002, p 1007-1017.

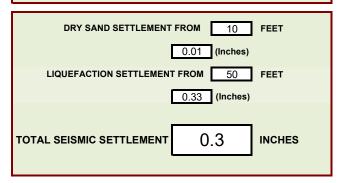
Youd, T.L. and Hoose, S.N., 1978, Historic Ground Failures in Northern California Triggered by Earthquakes, United States Geologic Survey Professional Paper 993.

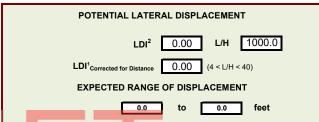




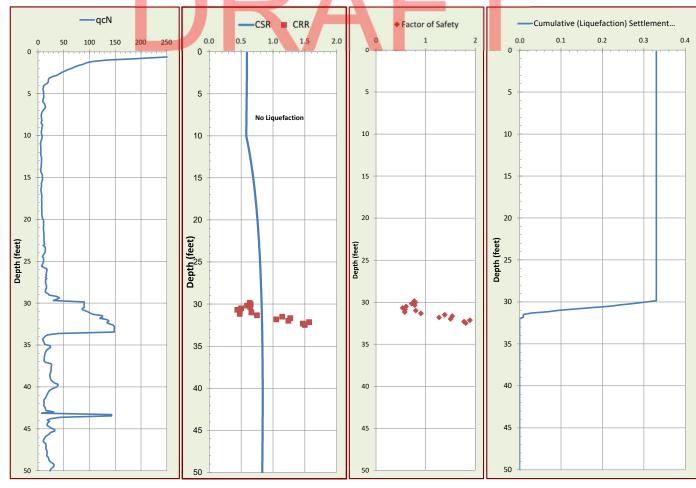

FIGURE 4A

CPT NO. 1


© 2014 Cornerstone Earth Group, Inc.


PROJECT/CPT DATA Project Title 1965 Concourse Drive Project No. 681-4-1 Project Manager RSM

CPT ANALYSIS RESULTS



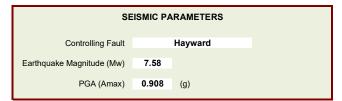
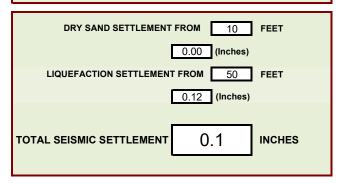
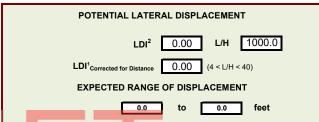


FIGURE 4B

CPT NO. 2


© 2014 Cornerstone Earth Group, Inc.


PROJECT/CPT DATA Project Title 1965 Concourse Drive Project No. 681-4-1 Project Manager RSM

CPT ANALYSIS RESULTS

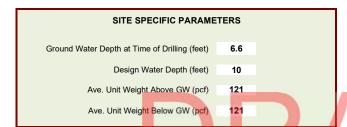
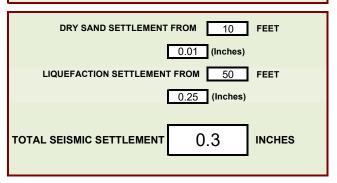
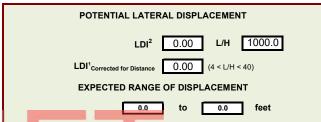



FIGURE 4C

CPT NO. 3


PROJECT/CPT DATA Project Title 1965 Concourse Drive Project No. 681-4-1 Project Manager RSM SEISMIC PARAMETERS Controlling Fault Hayward Earthquake Magnitude (Mw) 7.58



0.908

PGA (Amax)

CPT ANALYSIS RESULTS

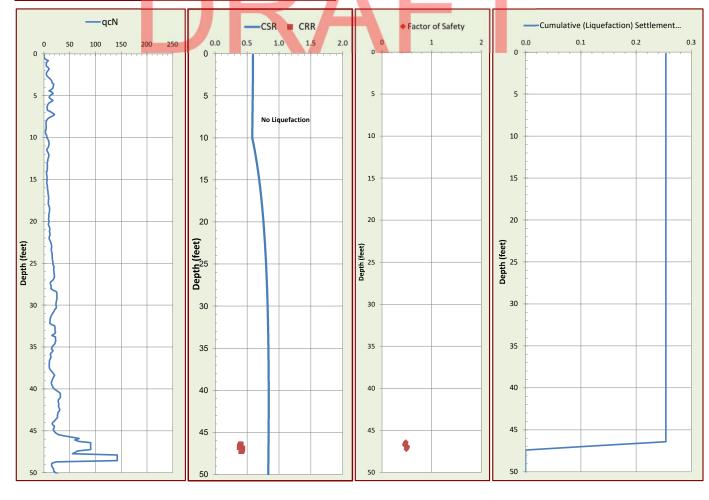
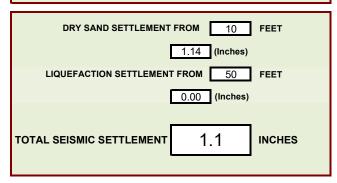
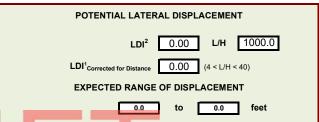


FIGURE 4D

CPT NO. 4


© 2014 Cornerstone Ea	© 2014 Cornerstone Earth Group, Inc.				
PROJECT/CPT DATA					
Project Title	1965 Co	oncour	se Drive		
Project No.	681-4-1	681-4-1			
Project Manager	RSM				
SEISMIC PARAMETERS					
Controll	Controlling Fault Hayward				
Earthquake Magnitude (Mw)		7.58			

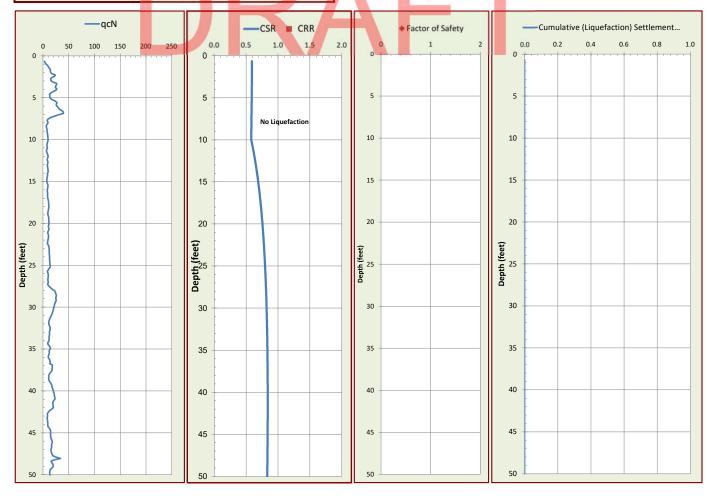

SITE SPECIFIC PARAMETERS		
Ground Water Depth at Time of Drilling (feet)	10	
Design Water Depth (feet)	10	
Ave. Unit Weight Above GW (pcf)	121	
Ave. Unit Weight Below GW (pcf)	121	

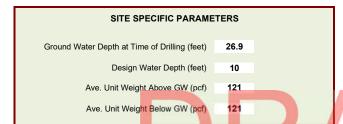
0.908 (g)

PGA (Amax)

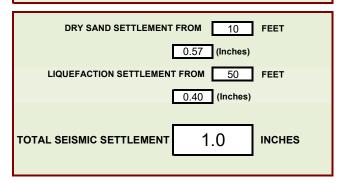
CPT ANALYSIS RESULTS

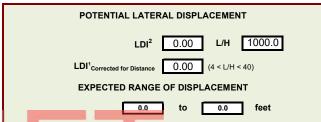
Not Valid for L/H Values < 4 and > 40.
LDI Values Only Summed to 2H Below Grade.




FIGURE 4E

CPT NO. 5


© 2014 Cornerstone Earth Group, Inc.


PROJECT/CPT DATA Project Title 1965 Concourse Drive Project No. 681-4-1 Project Manager RSM

SEISMIC PARAMETERS Controlling Fault Hayward Earthquake Magnitude (Mw) 7.58 PGA (Amax) 0.908 (g)

CPT ANALYSIS RESULTS

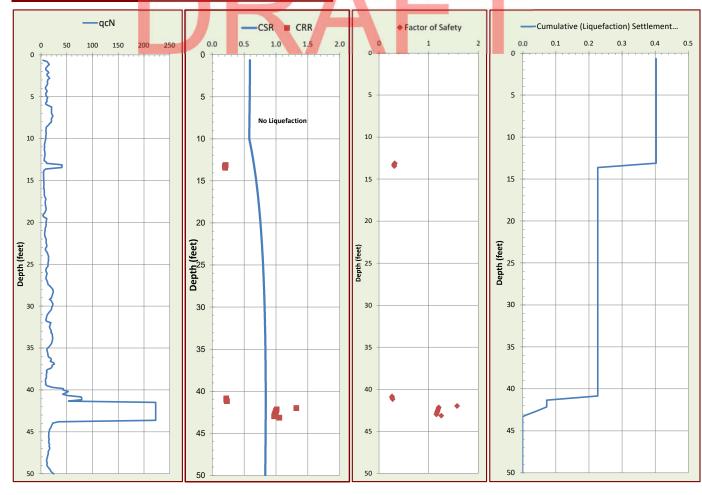
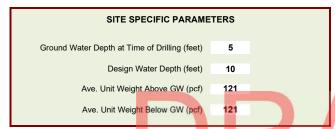
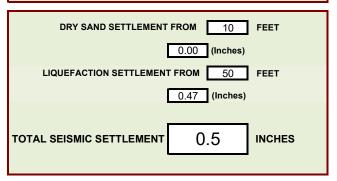
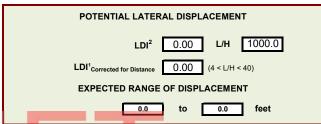
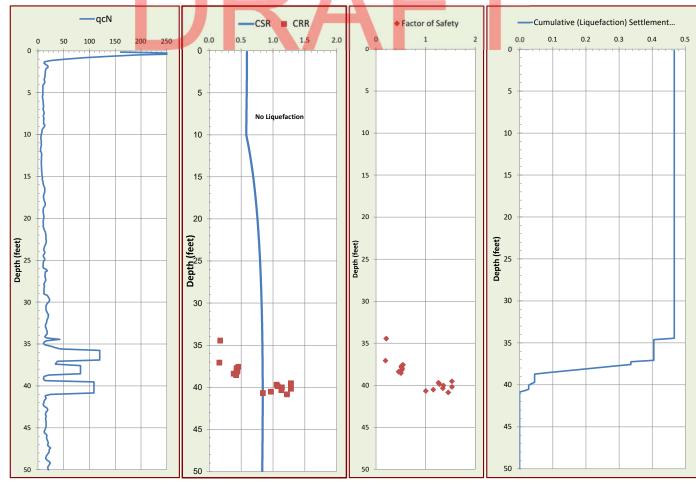
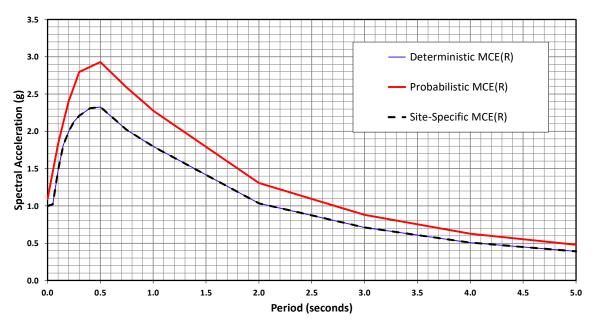



FIGURE 4E CPT NO.


PGA (Amax)


© 2014 Cornerstone Earth Group, Inc. PROJECT/CPT DATA 1965 Concourse Drive Project Title Project No. 681-4-1 RSM Project Manager SEISMIC PARAMETERS Controlling Fault Hayward Earthquake Magnitude (Mw) 7.58


0.908

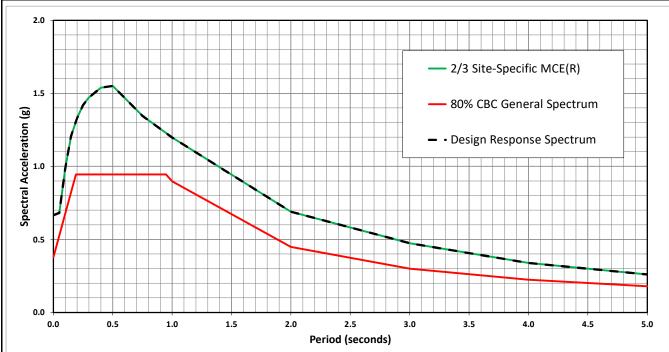

CPT ANALYSIS RESULTS

Not Valid for L/H Values < 4 and > 40. 'LDI Values Only Summed to 2H Below Grade.

The Site-Specific Maximum Considered Earthquake (MCE $_{\rm R}$) is defined as the lesser of the following at all periods:

- Deterministic MCE_R maximum 84th percentile deterministic, or
- \blacksquare Probabilistic $\mbox{ MCE}_{\mbox{\tiny R}}$ defined as the 2,475–year ground motion.

Site-Specific MCE _R		
	Spe <mark>ctral</mark>	
Period	Acceleration	
(Seconds)	(g)	
0.00	0.998	
0.05	1.022	
0.10	1.477	
0.15	1.815	
0.19	1.959	
0.20	1.995	
0.25	2.131	
0.30	2.207	
0.40	2.308	
0.50	2.327	
0.75	2.019	
0.95	1.842	
1.00	1.797	
2.00	1.034	
3.00	0.711	
4.00	0.507	
5.00	0.390	


RAFT

References:

ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Strutures with Supplement No. 1. 2019 California Building Code, Title 24, Part 2, Volume 2

MCE _R RESPONSE SPECTRA	FIGURE 5		
Concourse San Jose GI 1953 - 1965 Concourse Drive	PROJECT NO. 681-4-1		
San Jose, CA	September 14, 2020	RSM	

The Site-Specific Design Response Spectrum per Section 21.2, 21.3 and 21.4 of ASCE 7-16 is defined as the greater of the following at all periods:

- 2/3 of the Site-Specific MCE_R, or
- 80% of the CBC General Spectrum.

Design Response Spectra			
	Spe <mark>ctral</mark>		
Period	Acceleration		
(Seconds)	(g)		
0.00	0.666		
0.05	0.681		
0.10	0.985		
0.15	1.210		
0.19	1.306		
0.20	1.330		
0.25	1.420		
0.30	1.471		
0.40	1.538		
0.50	1.551		
0.75	1.346		
0.95	1.228		
1.00	1.198		
2.00	0.689		
3.00	0.474		
4.00	0.338		
5.00	0.260		

Site Design	Design Values
Site Class (Per Chapter 20 ASCE 7-16)	D
Shear Wave Velocity, V _{S30} (m/sec)	234
Site Latitude (degrees)	37.398158
Site Longitude (degrees)	-121.894365
Risk Category	II
Building Period (sec)	Unknown
Importance Factor, I _e	1
¹ Site Specific PGA _M (g)	0.91
1 Lower of Deterministic and Probabilistic, but not less than 80% of	f annual value of EAA v

Design Acceleration Parameters ¹		
S _{DS}	1.396	
S _{D1} 1.422		
S _{MS} 2.094		
S _{M1} 2.133		

References:

ASCE/SEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Strutures with Supplement No. 1. 2019 California Building Code, Title 24, Part 2, Volume 2

DESIGN RESPONSE SPECTRA	FIGURI	E 6
Concourse San Jose GI 1953 - 1965 Concourse Drive	PROJECT NO.	681-4-1
San Jose, CA	September 14, 2020	RSM

 $^{^1}$ Lower of Deterministic and Probabilistic, but not less than 80% of mapped value of FM x PGA, determined in accordance with Section 21.5 of ASCE 7-16.

APPENDIX A: FIELD INVESTIGATION

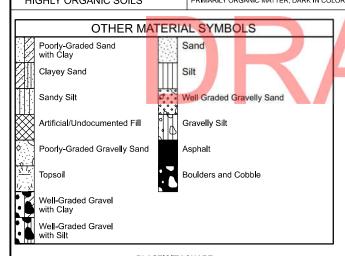
The field investigation consisted of a surface reconnaissance and a subsurface exploration program using track-mounted, hollow-stem auger drilling equipment and 20-ton truck-mounted Cone Penetration Test equipment. Five 6½-inch-diameter exploratory borings were drilled on August 27, 2020 and September 3, 2020 to depths of approximately 25 to 31½ feet. Six CPT soundings were also performed in accordance with ASTM D 5778-95 (revised, 2002) on August 20, 2020, to depths ranging from approximately 50 to 150 feet. The approximate locations of exploratory borings and CPTs are shown on the Site Plan, Figure 2. The soils encountered were continuously logged in the field by our representative and described in accordance with the Unified Soil Classification System (ASTM D2488). Boring logs, as well as a key to the classification of the soil and, are included as part of this appendix.

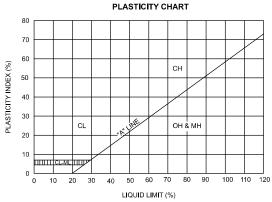
Boring and CPT locations were approximated using existing site boundaries and other site features as references. Boring and CPT elevations were not determined. The locations of the borings and CPTs should be considered accurate only to the degree implied by the method used.

Representative soil samples were obtained from the borings at selected depths. All samples were returned to our laboratory for evaluation and appropriate testing. The standard penetration resistance blow counts were obtained by dropping a 140-pound hammer through a 30-inch free fall. The 2-inch O.D. split-spoon sampler was driven 18 inches and the number of blows was recorded for each 6 inches of penetration (ASTM D1586). 2.5-inch I.D. samples were obtained using a Modified California Sampler driven into the soil with the 140-pound hammer previously described. Relatively undisturbed samples were also obtained with 2.875-inch I.D. Shelby Tube sampler which were hydraulically pushed. Unless otherwise indicated, the blows per foot recorded on the boring log represent the accumulated number of blows required to drive the last 12 inches. The various samplers are denoted at the appropriate depth on the boring logs.

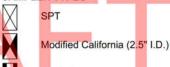
The CPT involved advancing an instrumented cone-tipped probe into the ground while simultaneously recording the resistance at the cone tip (q_c) and along the friction sleeve (f_s) at approximately 5-centimeter intervals. Based on the tip resistance and tip to sleeve ratio (R_f) , the CPT classified the soil behavior type and estimated engineering properties of the soil, such as equivalent Standard Penetration Test (SPT) blow count, internal friction angle within sand layers, and undrained shear strength in silts and clays. A pressure transducer behind the tip of the CPT cone measured pore water pressure (u_2) . Graphical logs of the CPT data is included as part of this appendix.

Field tests included an evaluation of the unconfined compressive strength of the soil samples using a pocket penetrometer device. The results of these tests are presented on the individual boring logs at the appropriate sample depths.


Attached boring and CPT logs and related information depict subsurface conditions at the locations indicated and on the date designated on the logs. Subsurface conditions at other locations may differ from conditions occurring at these boring and CPT locations. The passage of time may result in altered subsurface conditions due to environmental changes. In addition,



any stratification lines on the logs represent the approximate boundary between soil types and the transition may be gradual.



UNIFIED SOIL CLASSIFICATION (ASTM D-2487-10) MATERIAL GROUP CRITERIA FOR ASSIGNING SOIL GROUP NAMES SOIL GROUP NAMES & LEGEND SYMBOL **TYPES** Cu>4 AND 1<Cc<3 GW WELL-GRADED GRAVEL **GRAVELS CLEAN GRAVELS** <5% FINES Cu>4 AND 1>Cc>3 GΡ POORLY-GRADED GRAVEL >50% OF COARSE COARSE-GRAINED SOIL >50% RETAINED ON NO. 200 SIEVE FRACTION RETAINED ON NO 4. SIEVE FINES CLASSIFY AS ML OR CL GM SILTY GRAVEL GRAVELS WITH FINES >12% FINES **CLAYEY GRAVEL** FINES CLASSIFY AS CL OR CH GC WELL-GRADED SAND Cu>6 AND 1<Cc<3 SW SANDS **CLEAN SANDS** <5% FINES Cu>6 AND 1>Cc>3 SP POORLY-GRADED SAND >50% OF COARSE FRACTION PASSES FINES CLASSIFY AS ML OR CL SM SILTY SAND SANDS AND FINES ON NO 4. SIEVE >12% FINES FINES CLASSIFY AS CL OR CH SC **CLAYEY SAND** CL LEAN CLAY SILTS AND CLAYS PI>7 AND PLOTS>"A" LINE FINE-GRAINED SOILS >50% PASSES NO. 200 SIEVE **INORGANIC** PI>4 AND PLOTS<"A" LINE ML SILT LIQUID LIMIT<50 **ORGANIC** ORGANIC CLAY OR SILT LL (oven dried)/LL (not dried)<0.75 OL PI PLOTS >"A" LINE СН **FAT CLAY** SILTS AND CLAYS **INORGANIC ELASTIC SILT** LIQUID LIMIT>50 PI PLOTS <"A" LINE MH ORGANIC LL (oven dried)/LL (not dried)<0.75 OH ORGANIC CLAY OR SILT HIGHLY ORGANIC SOILS PRIMARILY ORGANIC MATTER, DARK IN COLOR, AND ORGANIC ODOR PT **PEAT**

Shelby Tube No Recovery

ы

SW

TC

TV

Grab Sample

ADDITIONAL TESTS

CHEMICAL ANALYSIS (CORROSIVITY) CONSOLIDATED DRAINED TRIAXIAL CD

CN CONSOLIDATION

CU CONSOLIDATED UNDRAINED TRIAXIAL

Rock Core

DS DIRECT SHEAR

POCKET PENETROMETER (TSF)

(3.0) (WITH SHEAR STRENGTH IN KSF)

RV

SIEVE ANALYSIS: % PASSING SA

WATER LEVEL

UNCONFINED COMPRESSION UC

(WITH SHEAR STRENGTH (1.5)

SWELL TEST

UNCONSOLIDATED UNDRAINED TRIAXIAL

PLASTICITY INDEX

CYCLIC TRIAXIAL

TORVANE SHEAR

PENETRATION RESISTANCE (RECORDED AS BLOWS / FOOT)								
SAND & G	GRAVEL		SILT & CLAY					
RELATIVE DENSITY	BLOWS/FOOT*	CONSISTENCY	BI OWS/FOOT*	STRENGTH** (KSF)				
VERY LOOSE	0 - 4	VERY SOFT	0 - 2	0 - 0.25				
LOOSE	4 - 10	SOFT	2 - 4	0.25 - 0.5				
MEDIUM DENSE	10 - 30	MEDIUM STIFF	4 - 8	0.5-1.0				
DENSE	30 - 50	STIFF	8 - 15	1.0 - 2.0				
VERY DENSE	OVER 50	VERY STIFF	15 - 30	2.0 - 4.0				
		HARD	OVER 30	OVER 4.0				

- NUMBER OF BLOWS OF 140 LB HAMMER FALLING 30 INCHES TO DRIVE A 2 INCH O.D. (1-3/8 INCH I.D.) SPLIT-BARREL SAMPLER THE LAST 12 INCHES OF AN 18-INCH DRIVE (ASTM-1586 STANDARD PENETRATION TEST).
- ** UNDRAINED SHEAR STRENGTH IN KIPS/SQ. FT. AS DETERMINED BY LABORATORY TESTING OR APPROXIMATED BY THE STANDARD PENETRATION TEST, POCKET

LEGEND TO SOIL DESCRIPTIONS

Figure Number A-1

BORING NUMBER EB-1 PAGE 1 OF 2

PROJECT NAME Concourse Tech Park

C	0	R	N	Ε	RS	T	0	N	E
E	A	R	T	Н	G	R	0	U	P

CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812.GDT - 9/8/20 14:10 - P\DRAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK.GPJ

		_		PROJECT NUMBER 681-4-1													
	PROJECT LOCATION San Jose,							Jose, C	CA								
DATE ST	ARTE	D _8	/27/20 DATE COMPLETED 8/27/20	GRO	OUND EL	EVATIO	N		ВО	RING I	DEPTH	I <u>31.</u>	5 ft.				
DRILLIN	G CON	ITRA	CTOR Cuesta Geoservices	LAT	ITUDE _	37.3980	35°		LONG	GITUDE	<u>-12</u>	<u>1.8931</u>	<u>104°</u>				
DRILLIN	G MET	HOD	MPP LAD Track Rig, 6½ inch Hollow-Stem Auger	GRO	OUND WA	ATER LE	VELS:										
LOGGED	BY _	BCG		$\sum_{i} f_{i}$	AT TIME	OF DRI	LLING _	9.5 ft.									
NOTES				<u> </u>	AT END	OF DRIL	LING _	9.5 ft.									
			This log is a part of a report by Cornerstone Earth Group, and should not be used as	_				%		UND	RAINED	SHEAR	STREN	GTH,			
ELEVATION (ft)	DEPTH (ft)	SYMBOL	a stand-alone document. This description applies only to the location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with time. The description presented is a simplification of actual conditions encountered. Transitions between soil types may be gradual.	N-Value (uncorrected) blows per foot	SAMPLES TYPE AND NUMBER	DRY UNIT WEIGHT PCF	NATURAL MOISTURE CONTENT	PLASTICITY INDEX, 9	PERCENT PASSING No. 200 SIEVE	→ HA	ND PEN PRVANE ICONFIN	ksf IETROME		ION			
_	0-		DESCRIPTION	Ż	F		MO	3	<u>a</u>	1 ""	RIAXIAL .0 2	.0 3	.0 4.	.0			
) <u>(</u>	2½ inches asphalt concrete over 5 inches														
-	_		aggregate base Sandy Lean Clay (CL) [Fill] hard, moist, gray and brown mottled, fine to medium sand, trace fine gravel, low plasticity	16	MC-1B	117	11							>4.5			
-	5-		Lean Clay with Sand (CL) very stiff, moist, dark gray with brown mottles, fine sand, low to moderate plasticity	13	MC-2B	107	19)				
			becomes stiff	9	MC-3B	105	22					b 1					
-	_			9	MC-4B	106	23				0						
	10		Sandy Lean Clay (CL) medium stiff, moist, gray brown, fine to coarse sand, low plasticity		ST-5	91	32			A O							
- - -	10-		Lean Clay with Sand (CL) medium stiff, moist, gray brown, fine to medium sand, trace gravel, moderate plasticity		V.,,,,,,,												
-	15-			5	MC-6B	99	27										
- - -	_				ST-7	94	27			0							
-	20-			5	мс-8в	95	28)						
- - -	- 25-		Lean Clay (CL) very stiff, moist, gray, some fine sand, moderate plasticity	11	MC-9B	102	24				()					
_		,,	Continued Next Page														

BORING NUMBER EB-1 PAGE 2 OF 2

	CO	RNE	RSTONE
르	EA	RTH	GROUP

PROJECT NAME Concourse Tech Park PROJECT NUMBER 681-4-1

					PRC	JECT L	OCATIO	N San	Jose, CA	4					
	ELEVATION (ft)	DEPTH (ft)	SYMBOL	This log is a part of a report by Cornerstone Earth Group, and should not be used as a stand-alone document. This description applies only to the location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with time. The description presented is a simplification of actual conditions encountered. Transitions between soil types may be gradual. DESCRIPTION	N-Value (uncorrected) blows per foot	SAMPLES TYPE AND NUMBER	DRY UNIT WEIGHT PCF	NATURAL MOISTURE CONTENT	PLASTICITY INDEX, %	PERCENT PASSING No. 200 SIEVE	→ HA	AND PEN DRVANE NCONFIN NCONSO RIAXIAL	NED COM	ETER MPRESSI	ION AINED
]													
		- - -		Sandy Lean Clay (CL) stiff, moist, gray, fine to coarse sand, some fine subrounded gravel, low plasticity											
		30-		Clayey Sand with Gravel (SC) loose to medium dense, moist, gray brown, fine to coarse sand, fine to coarse subangular to subrounded gravel	13	MC-10		17		21		D			
		- - -	**************************************	Bottom of Boring at 31.5 feet.		<u> </u>									
PJ		35	-												
ONCOURSE TECH PARK.GF				DRA											
FTING\GINT FILES\681-4-1 CO			-												
:\DRA		45-	1												
CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812.GDT - 9/8/20 14:10 - P.\DRAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK.GPJ			-												
IP2 - CORNERSTON		- 50 - 													
ARTH GROU		- - 55-	_												
ERSTONE E															
SORN															

BORING NUMBER EB-2 PAGE 1 OF 1

PROJECT NAME Concourse Tech Park

C	0	R	N	Ε	RS	T	0	N	E
E	A	R	T	Н	G	R	0	U	P

	_			LAKTII OKOOF	PRO	IJΕ	CT NU	JMBER	681-4-	1						
					PRO	ΟJE	CT LC	CATIO	N San	Jose, CA	4					
	DATE ST	ARTE	D _9	/3/20 DATE COMPLETED 9/3/20	GRO	NUC	ID ELI	EVATIO	N		ВО	RING I	DEPTH	1 _25 f	t	
	DRILLING	G CON	NTRA	CTOR Cuesta Geoservices	LAT	ITU	DE _3	37.3985	94°		LONG	SITUDI	E <u>-12</u>	1.8935	502°	
	DRILLING	G MET	THOD	MPP LAD Track Rig, 6½ inch Hollow-Stem Auger	GRO	NUC	ID WA	TER LE	EVELS:							
	LOGGED	BY _	BCG		$\overline{\triangle}$	ΑТ	TIME	OF DRI	LLING _	13 ft.						
	NOTES				$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	ΑТ	END (OF DRIL	LING _							
ŀ				This log is a part of a report by Cornerstone Earth Group, and should not be used as a stand-alone document. This description applies only to the location of the	<u> </u>		m l		5	%	(0)	UND	RAINED	SHEAR	STREN	GTH,
	ELEVATION (ft)	DEPTH (ft)	SYMBOL	exploration at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with time. The description presented is a simplification of actual conditions encountered. Transitions between soil types may be gradual.	N-Value (uncorrected) blows per foot	0	SAMPLES TYPE AND NUMBER	DRY UNIT WEIGHT PCF	NATURAL MOISTURE CONTENT	PLASTICITY INDEX,	PERCENT PASSING No. 200 SIEVE	△ TC	ORVANE NCONFIN	ksf IETROME NED COM OLIDATED	//PRESSI	
	_	n-		DESCRIPTION	ż				M	7	<u> </u>		RIAXIAL .0 2	.0 3.	.0 4.	.0
			00 (3 inches asphalt concrete over 5 inches aggregate base	l											
	_	_		Lean Clay (CL) very stiff, moist, dark gray brown, some fine sand, moderate plasticity	11	X	MC-1B	102	23							
	-	5-		Lean Clay with Sand (CL) stiff, moist, gray with brown mottles, fine to medium sand, low to moderate plasticity	8	K	MC-2B	101	22				0			
ЗРJ					8	M	MC-3B	100	22				0			
\DRAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK GPJ	-	-														
CONCOUR	_ _	10-		Silty Sand (SM) loose, moist, gray brown, fine to medium sand	2	K	MC 4C	91 93	25		29	0				
FILES\681-4-1 (-	_		Sandy Lean Clay (CL) soft, moist, gray brown, fine to medium sand, low plasticity												
DRAFTING\GINT		15-		Lean Clay with Sand (CL) medium stiff, moist, gray with brown mottles, fine to medium sand, moderate plasticity	7	X	MC-5B	96	30) }			
8/20 14:10 - P:\	-	-		Lean Clay (CL)												
E 0812.GDT - 9/	_	- 20-		stiff, moist, gray, some fine sand, moderate plasticity	8	X	MC-6B	97	26				0			
CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812 GDT - 9/8/20 14:10 - P:	_	-														
RTH					15	M	MC-7B	99	26					ΡI		
RSTONE EA	_	25-		Bottom of Boring at 25.0 feet.												
ORNE						-			•							

BORING NUMBER EB-3 PAGE 1 OF 1

PROJECT NAME Concourse Tech Park

CO	RN	ER	ST	ONE
EA	RT	H (GR	OUP

13		_	LAKIII OKOOF	PRO	ΟJΕ	CT N	JMBER	681-4-	1								
				PRO	ΟJE	CT LC	CATIO	N San	Jose, CA	١							
DATE S	TARTE	D _8	<u>//27/20</u> DATE COMPLETED <u>8/27/20</u>	GROUND ELEVATION						ВО	RING I	DEPTH	1 _25 f	t.			
DRILLI	NG COI	NTRA	CTOR Cuesta Geoservices	LAT	ITU	IDE _	37.3977	49°		LONG	SITUDE	= <u>-12</u>	1.8940)49°			
DRILLI	NG MET	THOD	MPP LAD Track Rig, 6½ inch Hollow-Stem Auger	GROUND WATER LEVELS:													
LOGGE	D BY	BCG		∇	ΑТ	TIME	OF DRI	LLING	12 ft.								
NOTES								LING _									
			This log is a part of a report by Cornerstone Earth Group, and should not be used as	Ī	Т	~		 	%		UND	RAINED	SHEAR	STREN	IGTH,		
ELEVATION (ft)	DEPTH (ft)	SYMBOL	a stand-alone document. This description applies only to the location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with time. The description presented is a simplification of actual conditions encountered. Transitions between soil types may be gradual.	N-Value (uncorrected) blows per foot	1	SAMPLES TYPE AND NUMBER	DRY UNIT WEIGHT PCF	NATURAL MOISTURE CONTENT	PLASTICITY INDEX, ^o	PERCENT PASSING No. 200 SIEVE	△ TC	ORVANE	ksf IETROMI IED COM ILIDATED	1PRESS			
	0-		DESCRIPTION	Ż		-		×	곱	Ь		.0 2	.0 3.	0 4	.0		
			6 inches topsoil Lean Clay with Sand (CL) medium stiff, moist, dark gray with brown mottles, fine sand, moderate plasticity	6	X	MC-1B	108	21))					
			color changes to gray with brown mottles	7	X	MC-2B	106	20									
2	7 5-			7	V	MC-3B	110	17									
E TECH PARK.GF	 		Clayey Sand (SC) loose, moist, gray brown, fine to coarse sand, some fine to coarse subangular to subrounded gravel	2		NR.	113	17									
-1 CONCOURS	10-		Lean Clay with Sand (CL) stiff, moist, gray brown, fine sand, low to moderate plasticity	7	X	MC-4B	106	24				0					
CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812.GDT - 9/8/20 14:10 - P:\URAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK.GRU			Sandy Silt (ML)	. 6	X	MC-5B	99	27			0						
T - 9/8/20 14:10 - P:\DR	- 15- 		medium stiff, moist, gray brown, fine sand, low plasticity Lean Clay with Sand (CL) medium stiff, moist, gray with brown mottles, fine sand, low to moderate plasticity	2		SPT-6		32			0						
ERSTONE 0812.GD	- 20-			7	X	MC-7B	97	27			(
ARTH GROUP2 - CORNI	25-		Lean Clay (CL) stiff, moist, gray, some fine sand, moderate plasticity	10	X	MC-8B	94	30				0					
RSTONE E,			Bottom of Boring at 25.0 feet.														
ORNE B			1					I	ı		1						

BORING NUMBER EB-4 PAGE 1 OF 1

PROJECT NAME Concourse Tech Park

CO	R	N	Ε	RS	T	0	N	E
EA	R	T	Н	G	R	0	U	P

CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812.GDT - 9/8/20 14:10 - P\DRAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK.GPJ

DATE STARTED 9/3/20 DATE COMPLETED 9/3/20 GROUND ELEVAL DRILLING CONTRACTOR Cuesta Geoservices LATITUDE 37.39 DRILLING METHOD MPP LAD Track Rig, 6½ inch Hollow-Stem Auger GROUND WATER	r Levels: Drilling <u>14 ft.</u>								
DRILLING CONTRACTOR Cuesta Geoservices LATITUDE 37.39 DRILLING METHOD MPP LAD Track Rig, 6½ inch Hollow-Stem Auger GROUND WATER	397191° R LEVELS: DRILLING _14 ft.								
DRILLING METHOD MPP LAD Track Rig, 6½ inch Hollow-Stem Auger GROUND WATER	r Levels: Drilling <u>14 ft.</u>	LONGITUDE <u>-121.894917°</u>							
	DRILLING 14 ft.								
LOGGED BY BCG									
LOGGED BY BCG ¥ AT TIME OF I	DDU 1 110 44 6								
NOTES AT END OF D	DRILLING 14 ft.								
This log is a part of a report by Cornerstone Earth Group, and should not be used as a stand-alone document. This description applies only to the location of the	<u> </u>	UNDRAINED SHEAR STRENGTH,							
(#) NOTITE AND AS MORE THE PROPERTIES OF THE PROPERTY OF THE P	NATURAL MOISTURE CONTENT PLASTICITY INDEX, %	State Stat							
DESCRIPTION	, M J	1.0 2.0 3.0 4.0							
2½ Inches asphalt concrete over 8½ Inches aggregate base Silty Sand (SM) [Fill] moist, gray brown, fine to medium sand, fine to coarse subangular to subrounded gravel Sandy Silty Clay (CL-ML)	6 10								
moist, gray brown, fine to coarse sand, low plasticity GB-3 GB-4	12	50							
Poorly Graded Sand with Silt (SP-SM) moist, gray brown, fine to medium sand, some fine subangular to subrounded gravel	9	28							
medium stiff, moist, gray brown, fine to medium sand, low plasticity	00 25								
medium stiff, moist, gray with brown mottles, fine sand, low to moderate plasticity	96 27								
	98 25	0							
	98 27	•							
Bottom of Boring at 25.0 feet.									

BORING NUMBER EB-5 PAGE 1 OF 2

PROJECT NAME Concourse Tech Park

C	0	R	N	Ε	RS	T	0	N	E
E	A	R	T	Н	G	R	0	U	P

					PRO	IJΕ	CT N	JMBER	681-4-	1						
					PRO	IJΕ	CT LC	CATIO	N San	Jose, CA	١					
				/27/20 DATE COMPLETED 8/27/20	GR	1UC	ID EL	EVATIO	N		во	RING I	DEPTH	i 30 1	ft.	
	DRILLING	G CO	NTRA	CTOR Cuesta Geoservices	LAT	ITL	IDE _	37.3976	76°		LONG	SITUDI	E12	1.895	230°	
	DRILLING	G ME	THOD	MPP LAD Track Rig, 6½ inch Hollow-Stem Auger	GR	1UC	ID WA	ATER LE	EVELS:							
	LOGGED	BY	BCG		∇	ΑТ	TIME	OF DRI	LLING	18 ft.						
	NOTES	_							LING							
				This log is a part of a report by Cornerstone Earth Group, and should not be used as	1	Т			_			LIND	RAINED	SHEAR	STREN	IGTH
	ELEVATION (ft)	DEPTH (ft)	SYMBOL	a stand-alone document. This description applies only to the location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with time. The description presented is a simplification of actual conditions encountered. Transitions between soil types may be gradual.	N-Value (uncorrected) blows per foot	1	SAMPLES TYPE AND NUMBER	DRY UNIT WEIGHT PCF	NATURAL MOISTURE CONTENT	PLASTICITY INDEX, %	PERCENT PASSING No. 200 SIEVE	○ H/ △ TC	AND PEN ORVANE	ksf IETROM	ETER	
	ELEV	ᆷ	8	DESCRIPTION	N-Value blow	;	SA TYPE AI	DRY UN	NOISTUI	LASTIC	PERCEI No. 2	_ UI	NCONFIN NCONSC RIAXIAL			
	_	0-		DESCRIPTION 6 inches asphalt concrete over 4 inches	_				2	Δ.	_	1	.0 2	.0 3	.0 4	.0 I
	_			aggregate base	1	L										
	-			Sandy Lean Clay (CL) [Fill] moist, gray, fine to medium sand, some fine		m ₂	GB-1		16							
	-			\gravel, low to moderate plastcity/ Sandy Lean Clay (CL)		m	GB-2		15	18						
	_			moist, dark gray with brown mottles, fine sand, low plasticity		m ₂	GB-3		13							
ر ر	_	5		Liquid Limit = 34, Plastic Limit = 16 Sandy Silty Clay (CL-ML)												
H PARK.GF	-			very stiff, moist, gray with brown mottles, fine sand, low plasticity	12	X	MC-4B	104	17					0		
ICOURSE TEC	-			become <mark>s medium sti</mark> ff	4	X	MC-5B	98	17				0			
-4-1 CON	_	10		Lean Clay with Sand (CL) medium stiff, moist, gray with brown mottles,												
T FILES\681	_	_		fine sand, low plasticity	7	X	MC-6B	94	28			С)			
AFTING\GIN	_			becomes soft			ST-7	88	33			0				
4:10 - P:\DR	_	15														
T - 9/8/20 1	_ _	Z .		Lean Clay (CL)												
NE 0812.GD	-	20-		stiff, moist, gray, some fine sand, moderate plasticity	6	X	MC-8B	97	28				0			
CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812.GDT - 9/8/20 14:10 - P.\DRAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK.GPJ	-															
RTH GROUP2	-				12	K	MC-9B	99	27				0			
TONE EA	=	25														
ERS				Continued Next Page												
CORN																

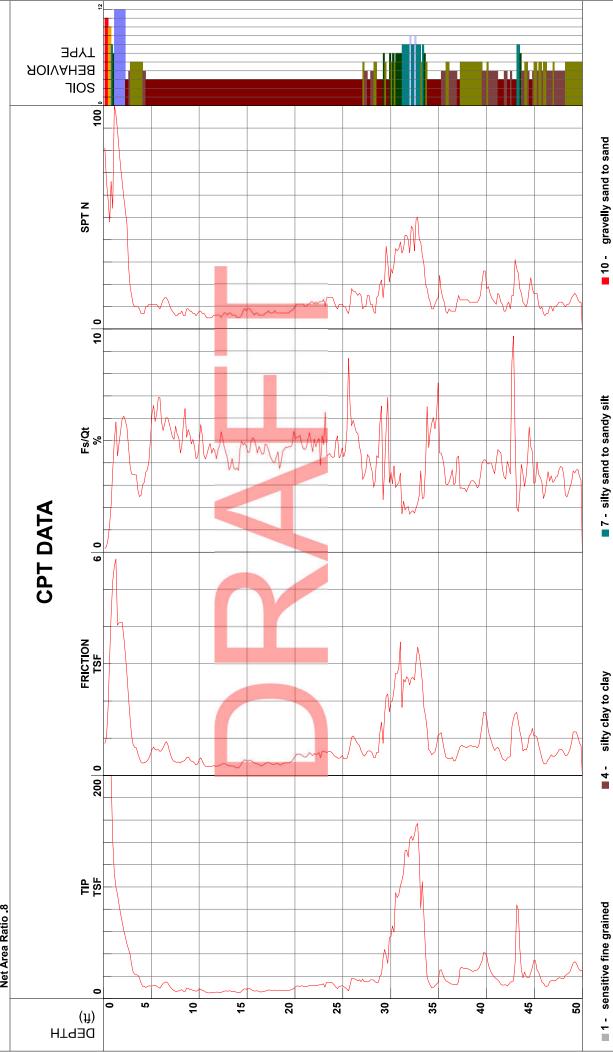
BORING NUMBER EB-5 PAGE 2 OF 2

COF	NE	RST	ONE
EAF	HTS	GR	OUP

PROJECT NAME Concourse Tech Park PROJECT NUMBER 681-4-1

					PRC	JECT LO	OCATIO	N San	Jose, CA	١					_
	ELEVATION (ft)	DEPTH (ft)	SYMBOL	This log is a part of a report by Cornerstone Earth Group, and should not be used as a stand-alone document. This description applies only to the location of the exploration at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with time. The description presented is a simplification of actual conditions encountered. Transitions between soil types may be gradual. DESCRIPTION	N-Value (uncorrected) blows per foot	SAMPLES TYPE AND NUMBER	DRY UNIT WEIGHT PCF	NATURAL MOISTURE CONTENT	PLASTICITY INDEX, %	PERCENT PASSING No. 200 SIEVE	O HA △ TC ● UN ▲ UN	AND PENDRVANE NCONFINICONSO	SHEAR ksf IETROMI NED COM DLIDATED	ETER MPRESS D-UNDR	ION
		30-		Lean Clay with Sand (CL) very stiff, moist, gray with brown mottles, fine sand, moderate plasticity Bottom of Boring at 30.0 feet.	18	MC-10B	113	19					0		
ONCOURSE TECH PARK.GPJ		35-	-	DRA											
P:\DRAFTING\GINT FILES\681-4-1 C		- 45-													
STONE 0812.GDT - 9/8/20 14:10 - F		- 50-	-												
CORNERSTONE EARTH GROUP2 - CORNERSTONE 0812.GDT - 9/8/20 14:10 - P.\DRAFTING\GINT FILES\681-4-1 CONCOURSE TECH PARK.GPJ			-												
ORNER															

1953-1965 Concourse Drive 681-4-1 Job Number Hole Number EST GW Depth During Test


Operator Cone Number Date and Time 7.00 ft

JM-AJ DDG1530 8/20/2020 12:54:42 PM

SDF(158).cpt

Filename GPS Maximum Depth

■ 11 - very stiff fine grained (*) ■ 12 - sand to clayey sand (*)

S*Soil behavior type and SPT based on data from UBC-1983

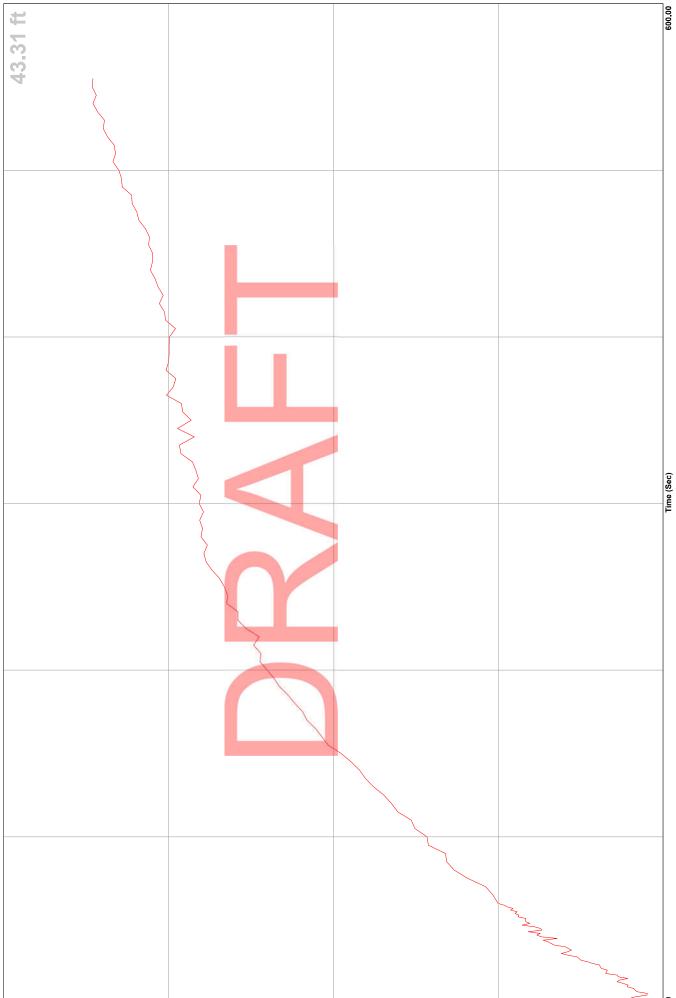
sand to silty sand

. 8

■ 6 - sandy silt to clayey silt ■ 5 - clayey silt to silty clay

Cone Size 15cm squared

organic material


2 -. შ

1953-196 Location 199 Job Number Hole Number Equilized Pressure

65 Concourse Drive	Operator
681-4-1	Cone Numbe
CPT-01	Date and Tin
4,4	EST GW Dep

CA-MC	lumber DDG1530	nd Time 8/20/2020 12:54:42 PN	N Depth During Test 33.0
		ω	During 7

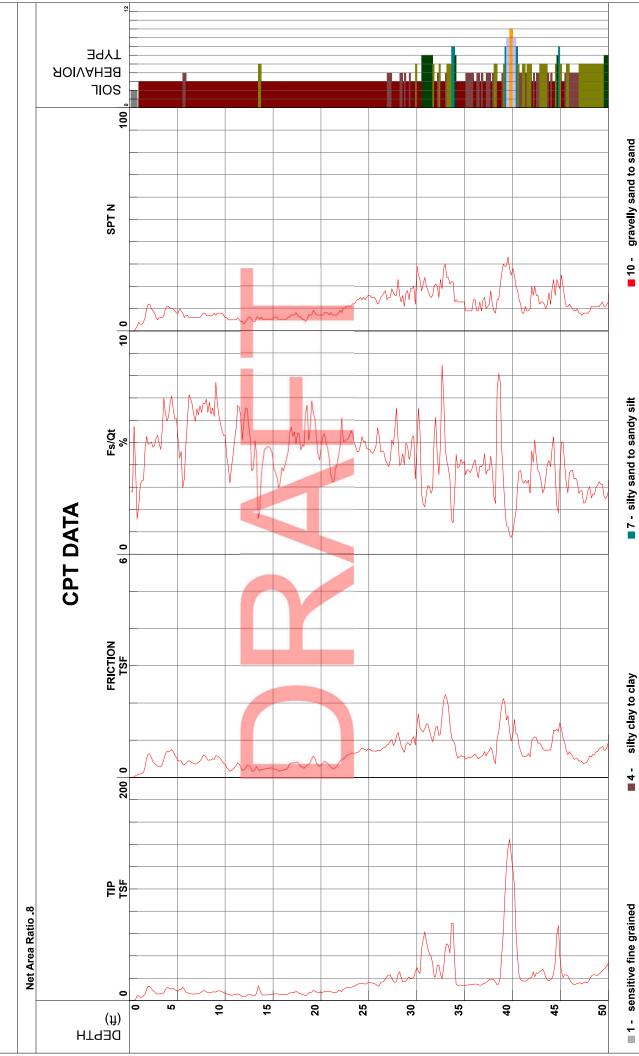
GPS

ISd

PRESSURE U2

Time (Sec)

1953-1965 Concourse Drive 681-4-1 Job Number Hole Number EST GW Depth During Test


Operator Cone Number Date and Time 8.40 ft

JM-AJ DDG1530 8/20/2020 12:07:45 PM

SDF(157).cpt

50.69 ft

■ 11 - very stiff fine grained (*) ■ 12 - sand to clayey sand (*)

S*Soil behavior type and SPT based on data from UBC-1983

sand to silty sand

. 8

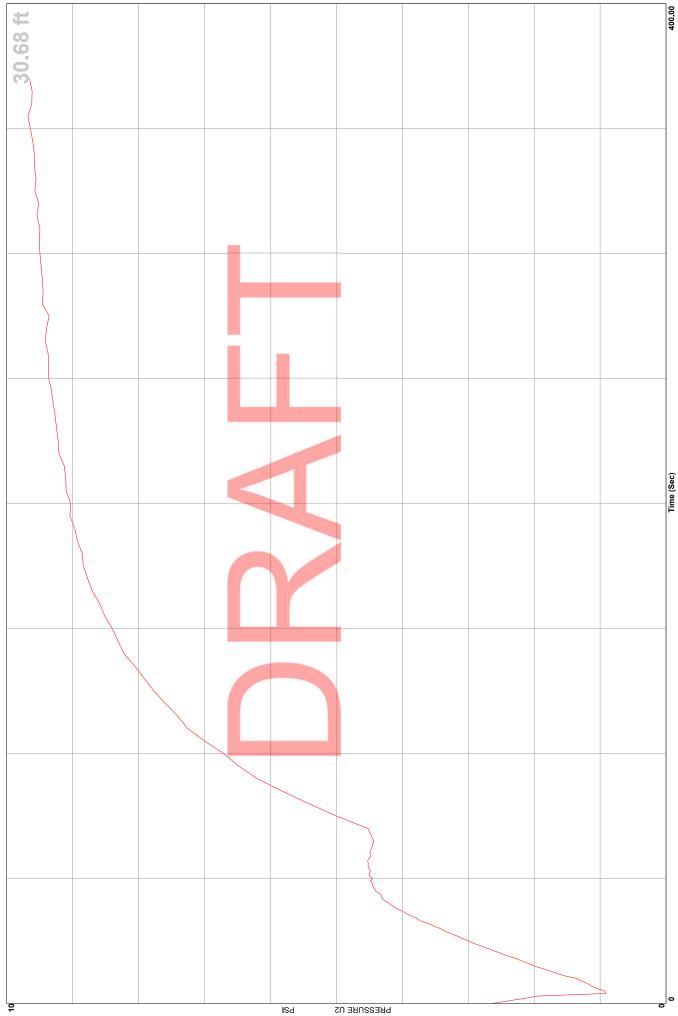
■ 6 - sandy silt to clayey silt ■ 5 - clayey silt to silty clay

Cone Size 15cm squared

organic material

2 -3-

1953-1965 Concourse Drive 681-4-1 CPT-02 sure 9.6 Location 19: Job Number Hole Number Equilized Pressure


 Operator
 JM-AJ

 Cone Number
 DDG1530

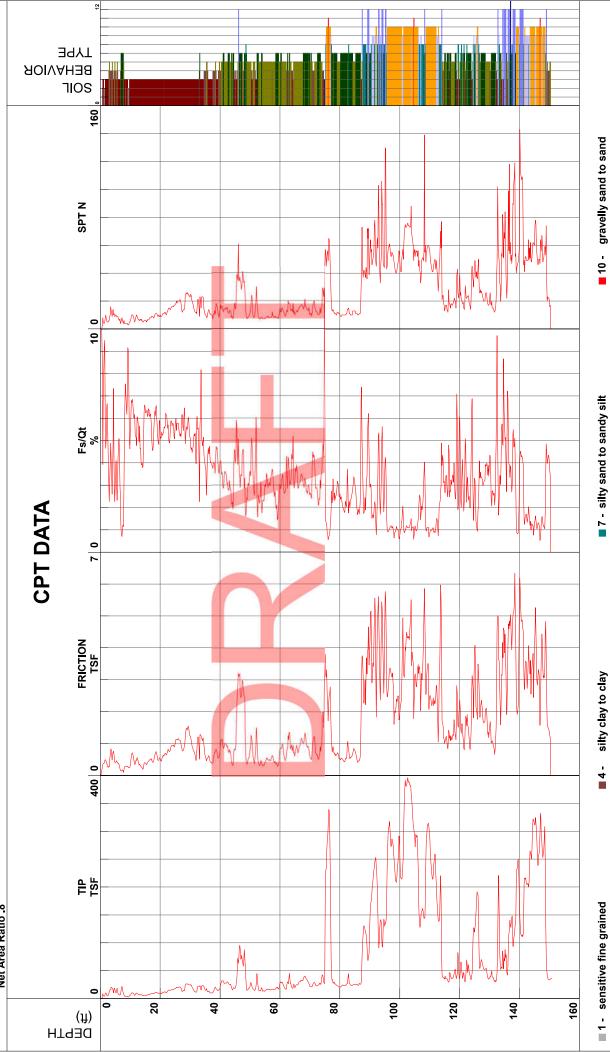
 Date and Time
 8/20/2020 12:07:45 PM

 EST GW Depth During Test
 8.4

GPS

Page 1 of 1

1953-1965 Concourse Drive 681-4-1 Job Number Hole Number EST GW Depth During Test


Operator Cone Number Date and Time 6.60 ft

JM-AJ DDG1530 8/20/2020 8:16:08 AM

Filename GPS Maximum Depth

SDF(156).cpt 150.75 ft

■ 11 - very stiff fine grained (*) ■ 12 - sand to clayey sand (*)

S*Soil behavior type and SPT based on data from UBC-1983

sand to silty sand

. 8

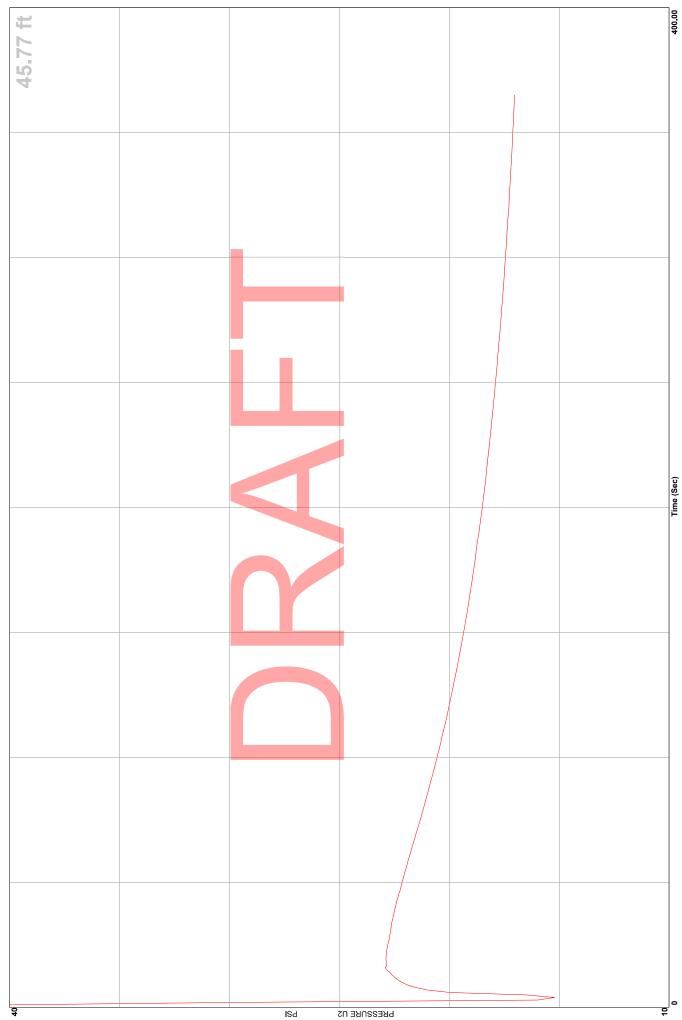
■ 6 - sandy silt to clayey silt ■ 5 - clayey silt to silty clay

Cone Size 15cm squared

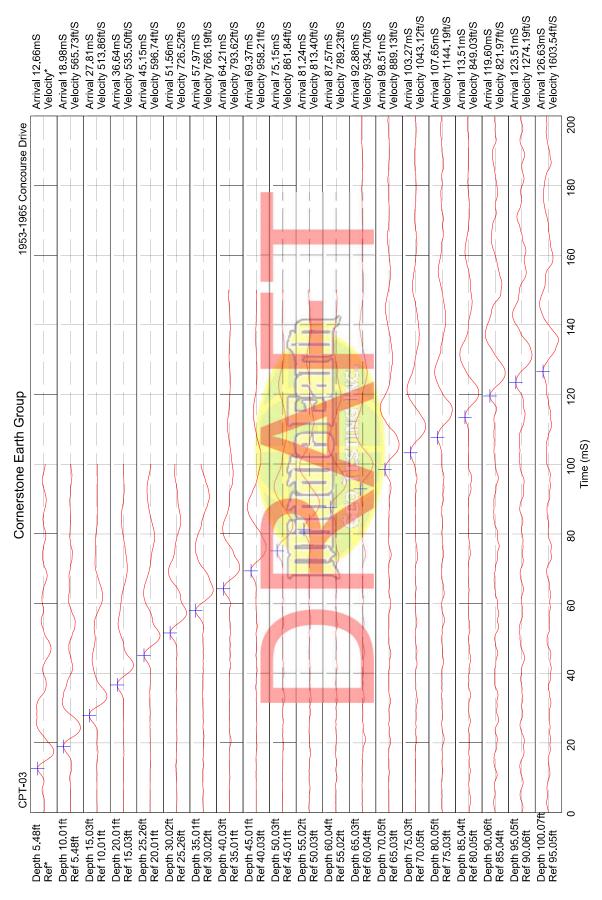
organic material

2 -. ლ

1953-1965 Concourse Drive 681-4-1 CPT-03 .ure 16.9 Location 19: Job Number Hole Number Equilized Pressure


 Operator
 JM-AJ

 Cone Number
 DDG1530


 Date and Time
 8/20/2020 8:16:08 AM

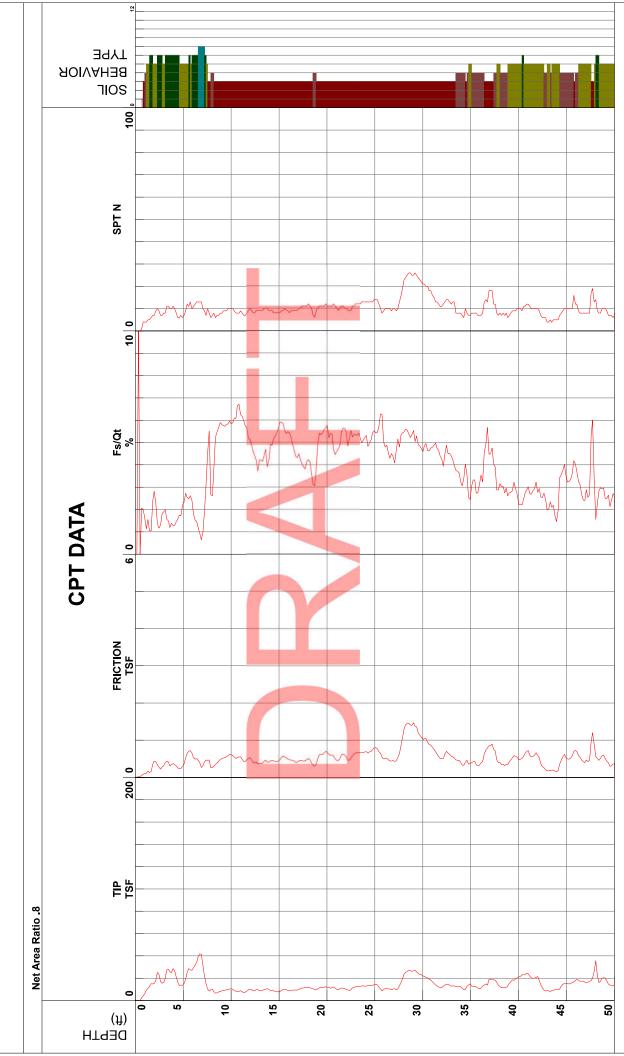
 EST GW Depth During Test
 6.6


GPS

Page 1 of 1

Hammer to Rod String Distance (ft): 5.83 * = Not Determined

1953-1965 Concourse Drive 681-4-1 Job Number Hole Number EST GW Depth During Test


Operator Cone Number Date and Time 7.00 ft

JM-AJ DDG1530 8/20/2020 4:40:50 PM

Filename GPS Maximum Depth

SDF(161).cpt

51.02 ft

organic material **2** -

■ 1 - sensitive fine grained

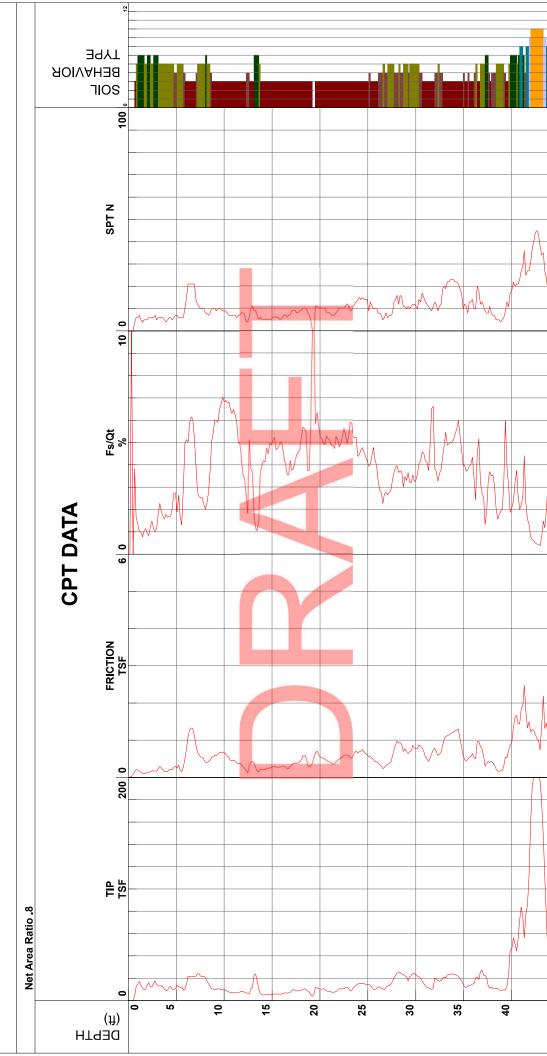
. შ

Cone Size 15cm squared

- 4 silty clay to clay
- 5 clayey silt to silty clay

■6 - sandy silt to clayey silt

- 7 silty sand to sandy silt 8 - sand to silty sand
- 10 gravelly sand to sand
- 11 very stiff fine grained (*)
- 12 sand to clayey sand (*)


1953-1965 Concourse Drive 681-4-1 Job Number Hole Number EST GW Depth During Test

Operator Cone Number Date and Time 7.00 ft

JM-AJ DDG1530 8/20/2020 3:29:54 PM

Filename GPS Maximum Depth

SDF(160).cpt

organic material

■ 1 - sensitive fine grained

20

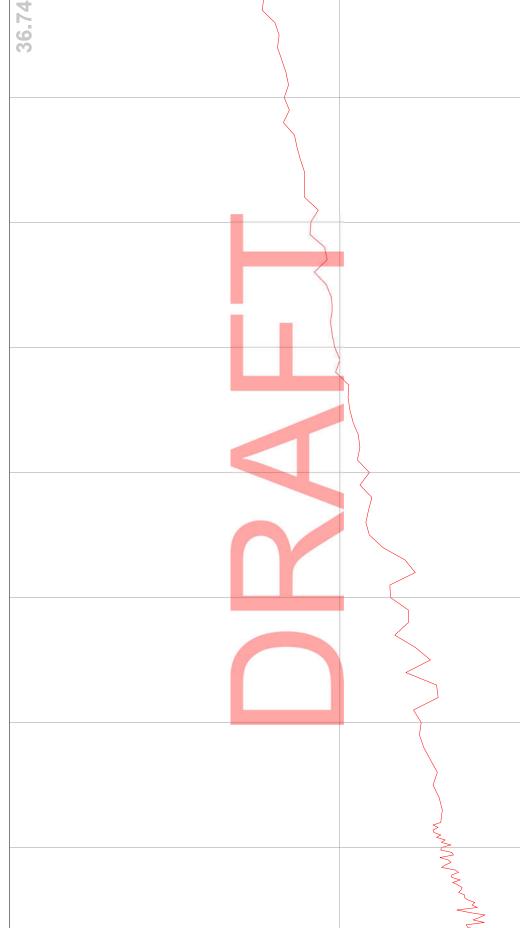
45

- **2** -3-
- 5 clayey silt to silty clay ■ 4 - silty clay to clay

■6 - sandy silt to clayey silt

- 7 silty sand to sandy silt 8 - sand to silty sand
- 11 very stiff fine grained (*) ■ 10 - gravelly sand to sand
- 12 sand to clayey sand (*)

 Location
 1953-1965 Concourse Drive


 Job Number
 681-4-1

 Hole Number
 CPT-05

 Equilized Pressure
 4.2

JM-AJ	DDG1530	8/20/2020 3:29:54 PM	ing Test 26.9
Operator	Cone Number	Date and Time	EST GW Depth During Test

GPS

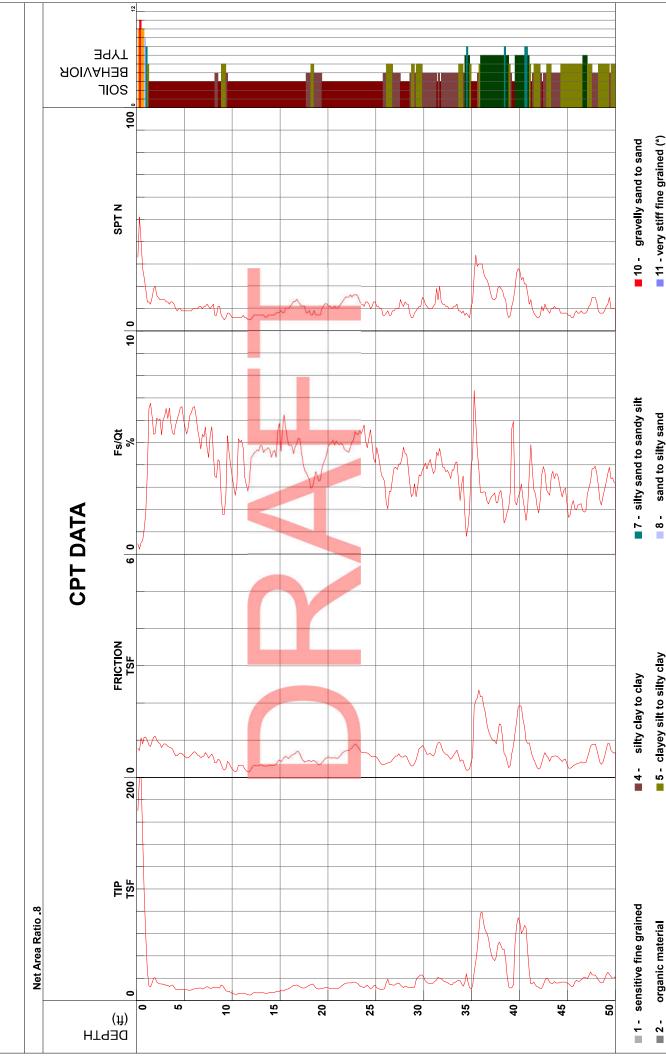
ISd

PRESSURE U2

Time (Sec)

400.00

1953-1965 Concourse Drive 681-4-1 Job Number Hole Number EST GW Depth During Test


Operator Cone Number Date and Time 5.00 ft

JM-AJ DDG1530 8/20/2020 1:46:59 PM

Filename GPS Maximum Depth

SDF(159).cpt

50.85 ft

■ 12 - sand to clayey sand (*)

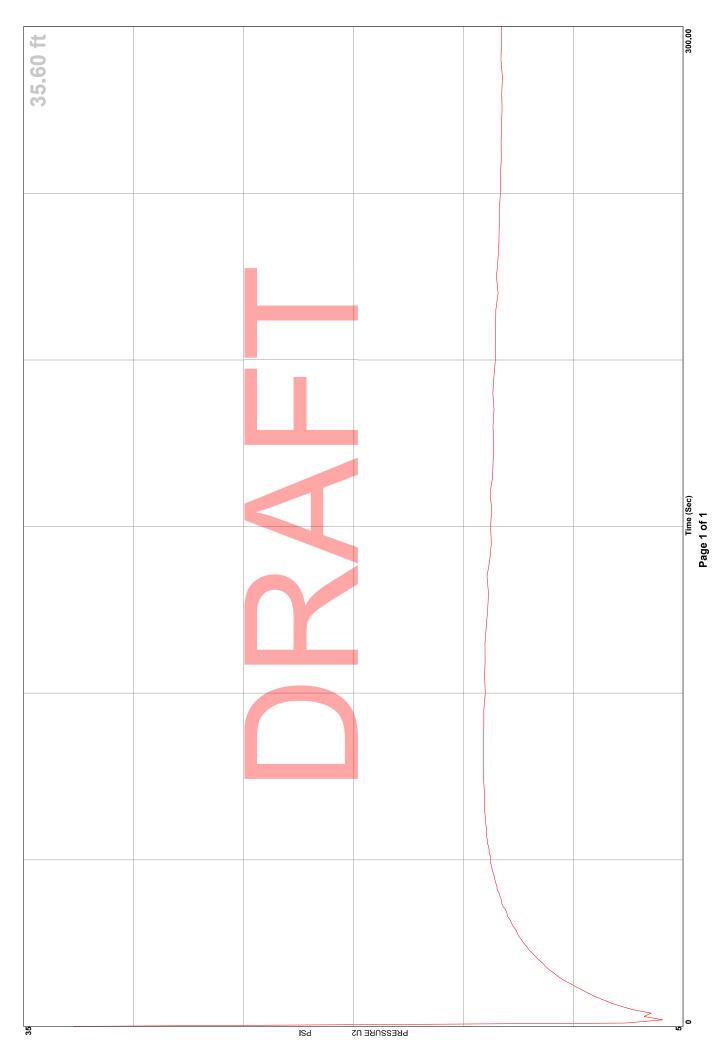
S*Soil behavior type and SPT based on data from UBC-1983

■6 - sandy silt to clayey silt

Cone Size 15cm squared

3-

1953-1965 Concourse Drive 681-4-1 CPT-06 sure 13.2 Location 196 Job Number Hole Number Equilized Pressure


 Operator
 JM-AJ

 Cone Number
 DDG1530

 Date and Time
 8/20/2020 1:46:59 PM

 EST GW Depth During Test
 5.0

GPS

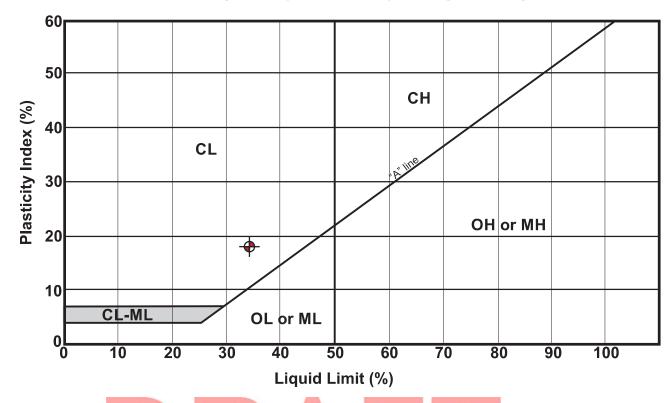
APPENDIX B: LABORATORY TEST PROGRAM

The laboratory testing program was performed to evaluate the physical and mechanical properties of the soils retrieved from the site to aid in verifying soil classification.

Moisture Content: The natural water content was determined (ASTM D2216) on 47 samples of the materials recovered from the borings. These water contents are recorded on the boring logs at the appropriate sample depths.

Dry Densities: In place dry density determinations (ASTM D2937) were performed on 36 samples to measure the unit weight of the subsurface soils. Results of these tests are shown on the boring logs at the appropriate sample depths.

Washed Sieve Analyses: The percent soil fraction passing the No. 200 sieve (ASTM D1140) was determined on four samples of the subsurface soils to aid in the classification of these soils. Results of these tests are shown on the boring logs at the appropriate sample depths.


Plasticity Index: One Plasticity Index determination (ASTM D4318) was performed on a sample of the subsurface soil to measure the range of water contents over which this material exhibits plasticity. The Plasticity Index was used to classify the soil in accordance with the Unified Soil Classification System and to evaluate the soil expansion potential. Results of this test are shown on the boring log at the appropriate sample depth.

Undrained-Unconsolidated TriaXal Shear Strength: The undrained shear strength was determined on one relatively undisturbed sample by unconsolidated-undrained triaxial shear strength testing (ASTM D2850). The results of this test are included as part of this appendix.

Consolidation: Two consolidation tests (ASTM D2435) were performed on relatively undisturbed samples of the subsurface clayey soils to assist in evaluating the compressibility property of this soil. Results of the consolidation tests are presented graphically in this appendix.

Corrosivity Testing: Two samples of the subsurface soils were tested for water soluble sulfate content (California Test Method No. 417-Modified), chloride content (ASTM D4327), pH (ASTM G51), and saturated resistivity (ASTM G57). Results of these tests are attached in this appendix.

Plasticity Index (ASTM D4318) Testing Summary

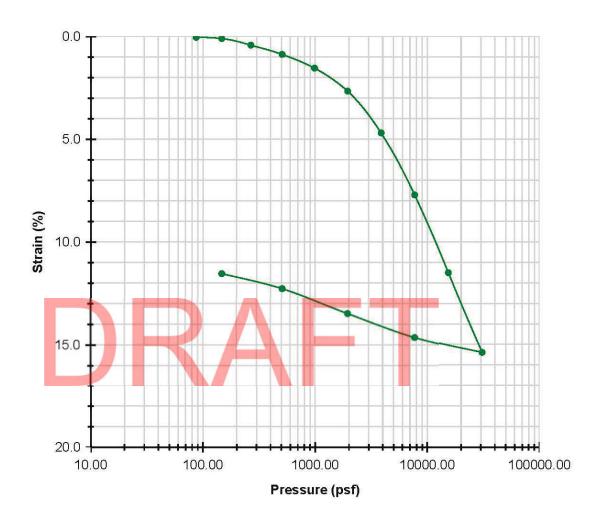
							, A	
Symbol	Boring No.	Depth (ft)	Natural Water Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index	Passing No. 200 (%)	Group Name (USCS - ASTM D2487)
 	EB-5	2.5	15	34	16	18		Sandy Lean Clay (CL)

CORNERSTONE
EARTH GROUP

Plasticity Index Testing Summary

Concourse Tech Park

Concourse Tech Park 1965 Concourse Drive San Jose, CA 681-4-1


Figure B1

September 2020 Prawn By

Consolidation Test ASTM D2435

Boring: EB-1 Sample: 7 Depth: 18.3'

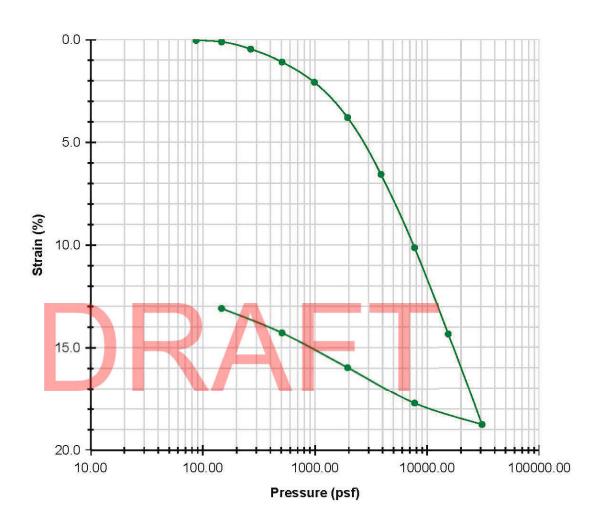
Description: Lean Clay with Sand (CL)

	BEFORE	AFTER
Moisture (%)	26.7	22.6
Dry Density (pcf)	94.2	105.1
Saturation (%)	90.6	100.0
Void Ratio	0.80	0.62

--- (A) Stress Strain Curve

Strain-Log Curve - EB-1 @ 18.3'

Concourse Tech Park 1965 Concourse Drive San Jose, CA 681**-**4-1


Figure B2

September 2020 FLL

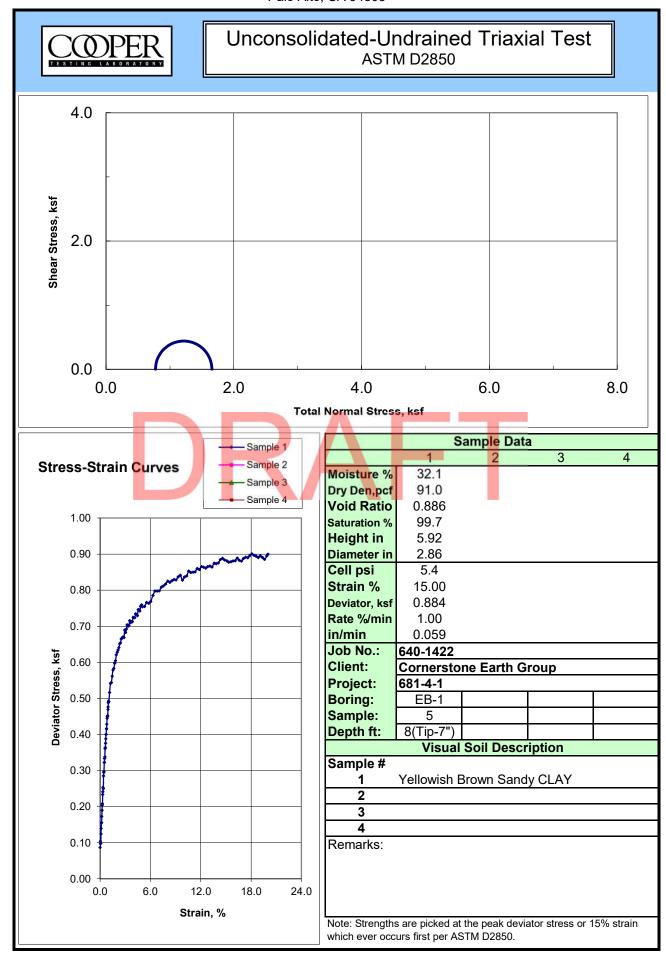
Consolidation Test ASTM D2435

Boring: EB-5 Sample: 7 Depth: 14.8'

Description: Lean Clay with Sand (CL)

	BEFORE	AFTER
Moisture (%)	32.8	26.5
Dry Density (pcf)	87.8	98.6
Saturation (%)	95.5	100.0
Void Ratio	0.93	0.72

--- (A) Stress Strain Curve


Strain-Log Curve - EB-5 @ 14.8'

Concourse Tech Park

1965 Concourse Drive San Jose, CA 681-4-1

Figure B3

September 2020 FLL

Corrositivity Tests Summary

Job Number	681-4-1	Date Tested	9/4/2020
Job Name	Concourse Tech Park	Tested By	FL, BBA
Location	San Jose		

S	ample I.D).		Moisture	рН	Temp.	Resistivity	(Ohm-cm)	Chloride	Sulfate
	No.	ft.	Soil Visual Description	Content		at Testing	Corrected	to 15.5 C°	Dry Wt.	Dry Wt.
Boring	Sample	Depth,	0011 110001 2 0001 ption	%		C°	As Received	Saturated	mg/kg	mg/kg
Во	Saı	De		ASTM D2216	ASTM G51		G57	ASTM G57	ASTM D4327	ASTM D4327
EB-3	2A	3.5	Gray Lean Clay with Sand (CL)	19.5	7.8	22.4	-	2,826	14	104
EB-4	4	5.5	Gray brown Sandy Silty Clay (CL-ML)	13.6	8.1	23.0	-	2,446	30	92

APPENDIX C: LIQUEFACTION ANALYSES CALCULATIONS

CORNERSTONE EARTH GROUP

CPT No.

PGA (A_{max}) 0

A_{max}) 0.91

Total Settlement: 0.33 (Inches)

	7																														
Settlement (Inches)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	8 8 8	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.0	0.00	00000
Vertical Strain Ev	0.00	0.00	0 0 0	800	0 0	0.00	0.00	0.0	8 8 8	8 0 8	0.00	0000	000	00.0	0.00	0.00	000	0.00	800	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	00.0	0.00	0000	000000
Factor of Safety (CRR/CSR)	n.a. n.a.	n.a. n.a.	e e e	 	n.a. n.a.	n.a. n.a.	e e	 	. n. n.	e e :	n.a.			n a	n a n a		n.a. n.a.	n.a.	 	n a	n.a. n.a.	n a n a	n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a.	n a	e e	
CRR	n.a. n.a.	n.a.		n a	па	n a	a c	n e	a e e	. a .	n n	e e e		n a	n a n		n n n	n.a. n.a.		n a	n.a.	n a	n.a. n.a.	e e	n.a. n.a.	a n	n a	a c	n a	e e	
CRRM=7.5, σ'vc = 1 atm	n.a. n.a.	n.a.	Б. с. с.	n n	n.a.	n a	a a	e e	9 6 6	a a	a a	 		n a	n a n a		 	n.a.	. e. e.	n a	n a	n a	n.a.	a a	n.a. n.a.	a u	n a	n n	n n	. a.	
K _o for Sand	1.10 1.10 1.100	1.100	 6 0 6 8 0 8	9.1.	1 100	1,100	1.100	1.100	9 2 5	91.1	1,100	001.1	1,100	1.100	1,100	001.1	1.097	1.094	1.092	1.083	1.075 1.072	1.069	1.066	1.063	1.058 1.059	1.057 1.055	1.053	1.050	1.047 n.a.	e e	
CSR	0.590 0.590 0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.589	0.589	0.589	0.588	0.588	0.587	0.587	0.586	0.585	0.585	0.584	0.584	0.583	0.583	0.582	0.582	0.581	0.581	0.580	0.585	0.598 0.602 0.606 0.610
Stress Reduction Coeff, rd	6 6 7 0 0 0 0 0 0	1.00	5 5 8 8 8 8	8 8	6. 6. 8. 6.	0.1. 0.0.	9. 6.	8.8	8 6 8	8.6.8	38	888	8 8	00.1	1.00	66.0	0.99	0.99	66.0 66.0 66.0	0.99	0.99	0.99	0.99	66.0	0.99	0.99	96.0	0.98	96.0	0.98	86.0 86.0 86.0 86.0
q _{c1N-CS} F	819.13 663.90 489.42	405.93 330.25	270.20 254.56	217.68	206.63 195.13	185.26 171.43	160.22 147.37	137.39	109.92	94.50	92.15	87.55 78.50 74.18	74.40	73.07	75.48	77.25	74.63 73.27	76.99 80.93	83.93 81.68	77.20 73.51	70.76 69.10	66.81 67.18	67.85 68.45	69.13 66.56	66.07 71.26	70.58 68.82	68.29 67.35	66.62 65.72	66.63 n.a.	e e	
qcın	819.13 663.90 489.42												17,59	17.10	18.01	18.70	16.13 14.90	18.40 21.93	23.33 24.11 22.15	18.36	12.86 11.58	9.82 10.11	10.62 11.08	11.60 9.63	9.27 13.22	12.70 11.36	10.96	9.68	9.69 n.a.	n a	
Ő	1.70												2.5	1.70	1.70	1.70	1.70	1.70	68.5	1.67 1.67	1.66	1.63	1.59 1.57	1.55	1.52 1.49	1.48	1.45	143	1.40	51.1	5
Interpreted	481.84 390.53 287.89	38.78 94.26	134.16 106.48	88.24	79.06 71.25	65.09 57.84	52.32	41.88	28.83	20.52	9.77	7.53 3.32 0.36	0.35	0.06	09:01	11.25	9.49 8.76	10.82 12.90	3.73 3.20	10.96 9.12	7.76 7.04	6.02 6.28	6.68	7.50 6.27	6.09 8.88	8.61 7.75	7.55	6.79	6.93	7 99	6.36 5.77 5.19 4.91
Thin Layer Inte Factor (K _H)	4 8 9	3 €		,, ω		ω u)	40.4	4 6.	, (4 (NO										—											
dcN near interfaces (soft layer)		0.0	တတဖ	იო	စ ဖ	7 1	ထက	, , , o	n 	- ıs ı	2 2	40	- 22	77	3 5	96+	- 0 6	8 F (040	4 7	99.7 100.0	0.00	0.00	0.00	0.00	0.00	0.00	00	0.0	000	
Type Fines (%)	ated 0.0 ated 0.0 ated 0.0			d 31.3		ed 48.7	d 53.8			64.5	61.5	63.4	76.5	72.2	80.5	84.9	95.0	88.8	84.4 87.0	91.4 95.7	99.7			00	으 으			000	100.0	555	0.000
Flag Soil Type	t tra	# #	i i i	e e	# #	# #	e e	i i	ted i	ted i	ted bet	ted ted	ted	ted	pet	ted			e de de	ted ted	,						٠,		ted		
rer stic"	Unsaturated Unsaturated Unsaturated	Unsaturated Unsaturated	Unsaturated Unsaturated	Unsaturated	Unsaturate Unsaturate	Unsaturate Unsaturate	Unsaturated Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated			Unsaturated Unsaturated	Unsaturated Unsaturated	,						٠,		Unsaturated	Clay Clay	
Layer "Plastic" PI > 7	Unsa	Unsaturate Unsaturate	Unsaturated	Unsaturate Unsaturate	Unsaturate Unsaturate	Unsaturate Unsaturate	Unsaturate Unsaturate	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated			Unsaturated Unsaturated Unsaturated	Unsaturated Unsaturated	,						٠,		Unsaturated Clay	Clay Clay	Cay Cay Cay Cay
Lay Ic "Plas PI >											/						Unsaturated	Unsaturated Unsaturated			Unsaturated Unsaturated	Unsaturated 1 Unsaturated 1	Unsaturated 1 Unsaturated 1	Unsaturated 1 Unsaturated 1	Unsaturated 1 Unsaturated 1	Unsaturated 1 Unsaturated 1	Unsaturated Unsatu	Unsaturated			3.11 3.15 3.21 3.26 0.0ay 3.26 0.0ay
	0.50 0.61 1.02	1.37 1.63	1.92 2.10	2.13 2.10	2.18 2.26	2.32 2.36	2.38	2.38	2.40	2.52	2.48	2.50	2.67	2.61	2.72	2.77	2.90 Unsaturated	2.82 Unsaturated	2.73 2.80	2.85	2.96 Unsaturated 3.00 Unsaturated	3.09 Unsaturated 1	3.04 Unsaturated 1 2.99 Unsaturated 1	2.99 Unsaturated 1 3.12 Unsaturated 1	3.17 Unsaturated 1	3.04 Unsaturated 1	3.04 Unsaturated 3.08 Unsaturated	3.08 Unsaturated 3.08 Unsaturated	3.06	3.10	
<u>o</u>	0.169 0.50 0.248 0.61 0.594 1.02	1.262 1.37 2.096 1.63	3.674 1.92 4.989 2.10	5.632 2.19 4.331 2.10	4.908 2.18 5.465 2.26	5.985 2.32 6.106 2.36	5.902 2.38 5.584 2.40	4.695 2.38 3.848 2.35	3.520 2.40	3.512 2.49 3.497 2.52	2.818 2.48	2.50	3.201 2.67	3.789 2.61	5.227 2.72 6.429 2.79	6.761 2.81 6.027 2.77 6.400 2.83	7.178 2.90 Unsaturated 7.219 2.94 Unsaturated	6.051 2.82 Unsaturated 5.599 2.75 Unsaturated	5.909 2.70 6.185 2.77 6.185 2.80	5.959 2.85 5.694 2.91	5.440 2.96 Unsaturated 5.373 3.00 Unsaturated	6.059 3.09 Unsaturated 1 5.661 3.07 Unsaturated 1	5.478 3.04 Unsaturated 1 4.743 2.99 Unsaturated 1	5.062 2.99 Unsaturated 1 6.240 3.12 Unsaturated 1	6.958 3.17 Unsaturated 1 5.400 2.97 Unsaturated 1	5.766 3.01 Unsaturated 1 5.589 3.04 Unsaturated 1	5.143 3.04 Unsaturated 5.383 3.08 Unsaturated	5.069 3.08 Unsaturated 4.516 3.08 Unsaturated	4.573 3.06 5.268 3.05	6.061 3.10 5.590 3.12	3.11 3.21 3.26 3.26
Q F (%)	0.50 0.61 1.02	1228.920 1.262 1.37 896.898 2.096 1.63	566.487 3.674 1.92 414.985 4.989 2.10	303.035 4.331 2.10	257.874 4.908 2.18 221.754 5.465 2.26	193.608 5.985 2.32 165.396 6.106 2.36	143.893 5.902 2.38 122.503 5.584 2.40	107.814 4.695 2.38 92.858 3.848 2.35	69.778 3.520 2.40	52.074 3.512 2.49 46.948 3.497 2.52	43.066 2.818 2.48	37.297 2.518 2.50 37.160 2.581 2.50 27.948 3.092 2.65	27.113 3.201 2.67 36.311 3.671 2.61	37.315 3.789 2.61 38.412 4.150 2.63	36.660 5.227 2.72 35.662 6.429 2.79	35.358 6.027 2.77	27.91 7.178 2.90 Unsaturated 24.926 7.219 2.94 Unsaturated	6.051 2.82 Unsaturated 5.599 2.75 Unsaturated	36.996 6.185 2.77 33.310 6.185 2.80	26.828 5.959 2.85 21.625 5.694 2.91	17.795 5.440 2.96 Unsaturated 15.686 5.373 3.00 Unsaturated	12.946 6.059 3.09 Unsaturated 13.235 5.661 3.07 Unsaturated 1	13.849 5.478 3.04 Unsaturated 14.378 4.743 2.99 Unsaturated 1	14.985 5.062 2.99 Unsaturated 1 12.093 6.240 3.12 Unsaturated 1	11.479 6.958 3.17 Unsaturated 16.860 5.400 2.97 Unsaturated 1	15.995 5.766 3.01 Unsaturated 1 14.026 5.589 3.04 Unsaturated 1	13.371 5.143 3.04 Unsaturated 12.312 5.383 3.08 Unsaturated	11.479 5.069 3.08 Unsaturated 10.492 4.516 3.08 Unsaturated	11.313 4.573 3.06 13.009 5.268 3.05	12.844 6.061 3.10 11.283 5.590 3.12	4.704 3.11 4.574 3.15 4.861 3.21 5.219 3.26 5.421 3.26
Insitu Q F (%) Ic σ'να (psf)	19.4 5037.355 0.169 0.50 39.9 2842.764 0.248 0.61 59.3 1719.708 0.594 1.02	79.9 1228.920 1.262 1.37 99.2 896.898 2.096 1.63	118.6 566.487 3.674 1.92 139.2 414.985 4.989 2.10	156.5 544.442 5.632 2.19 179.1 303.035 4.331 2.10	198.4 257.874 4.908 2.18 217.8 221.754 5.465 2.26	238.4 193.608 5.985 2.32 257.7 165.396 6.106 2.36	278.3 143.893 5.902 2.38 297.7 122.503 5.584 2.40	317.0 107.814 4.695 2.38 337.6 92.858 3.848 2.35	357.0 69.778 3.520 2.40	396.9 46.948 3.972 2.52	436.8 43.066 2.818 2.48	456.2 37.297 2.518 2.50 476.7 37.160 2.581 2.50 406.1 27.948 3.092 2.65	516.7 27.113 3.201 2.67 536.0 36.314 3.677 2.67	555.4 37.315 3.789 2.61 576.0 38.412 4.150 2.63	595.3 36.660 5.227 2.72 615.9 35.662 6.429 2.79	635.3 35.647 6.761 2.81 654.6 35.358 6.027 2.77 675.2 31.843 6.400 2.83	694.5 27.911 7.178 2.90 Unsaturated 715.1 24.926 7.219 2.94 Unsaturated	734.5 30.179 6.051 2.82 Unsaturated 753.8 35.215 5.599 2.75 Unsaturated 753.8 35.2 5.75 5.75 5.75 5.75 5.75 5.75 5.75 5	7.4.4 30.326 3.309 2.70 7938 36.996 6.185 2.77 814.3 33.310 6.185 2.80	833.7 26.828 5.959 2.85 853.1 21.625 5.694 2.91	873.6 17.795 5.440 2.96 Unsaturated 893.0 15.686 5.373 3.00 Unsaturated	913.6 12.946 6.059 3.09 Unsaturated 1 932.9 13.235 5.661 3.07 Unsaturated 1	952.3 13.849 5.478 3.04 Unsaturated 1 972.8 14.378 4.743 2.99 Unsaturated 1	992.2 14.985 5.062 2.99 Unsaturated 1 1012.8 12.093 6.240 3.12 Unsaturated 1	1032.1 11.479 6.958 3.17 Unsaturated 1 1051.5 16.860 5.400 2.97 Unsaturated 1	1072.1 15.995 5.766 3.01 Unsaturated 1 1091.4 14.026 5.589 3.04 Unsaturated 1	1112.0 13.371 5.143 3.04 Unsaturated 1131.4 12.312 5.383 3.08 Unsaturated	1150.7 11.479 5.089 3.08 Unsaturated 1171.3 10.492 4.516 3.08 Unsaturated	1190.6 11.313 4.573 3.06 1210.6 13.009 5.268 3.05	1220.0 12.844 6.061 3.10 1229.3 11.283 5.590 3.12	10.1/5 4.704 3.11 8.737 4.704 3.11 7.683 4.861 3.21 7.163 5.219 3.26 7.195 5.421 3.26
Ovc (psf)	19.4 5037.355 0.169 0.50 39.9 2842.764 0.248 0.61 59.3 1719.708 0.594 1.02	79.9 79.9 1228.920 1.262 1.37 99.2 99.2 896.898 2.096 1.63	118.6 118.6 566.487 3.674 1.92 139.2 139.2 444.988 2.10	156.5 156.5 544.442 5.632 2.19 179.1 179.1 303.035 4.331 2.10	198.4 198.4 257.874 4.908 2.18 217.8 217.8 221.754 5.465 2.26	238.4 238.4 193.608 5.985 2.32 257.7 257.7 165.396 6.106 2.36	278.3 278.3 143.893 5.902 2.38 297.7 297.7 122.503 5.584 2.40	317.0 317.0 107.814 4.695 2.38 337.6 337.6 92.858 3.848 2.35	357.0 357.0 69.778 3.520 2.40	3/7.5 3/7.5 52.0/4 3.512 2.49 396.9 396.9 398.9 4.6948 3.497 2.52	436.8 436.8 43.066 2.818 2.48	456.2 456.2 37.297 2.518 2.50 476.7 476.7 37.160 2.581 2.50 466.1 466.1 27.948 3.092 2.55	516.7 516.7 27.113 3.201 2.67 536.0 536.0 36.311 36.71 2.67	555.4 555.4 37.315 576.0 576.0 38.412 4.150 2.63	595.3 595.3 36.660 5.227 2.72 615.9 615.9 35.662 6.429 2.79	635.3 35.647 6.761 2.81 654.6 35.358 6.027 2.77 675.2 31.843 6.400 2.83	6945. 6945. 27.911 7.178 2.90 Unsaturated 715.1 715.1 24.926 7.219 2.94 Unsaturated	734.5 734.5 30.179 6.051 2.82 Unsaturated 753.8 753.8 35.215 5.599 2.75 Unsaturated 753.8 753.8 754.5 5.599 2.75 Unsaturated 753.8 754.5 5.599 7.75	7.4.4 7.4.4 30.326 3.909 2.70 793.8 793.8 36.996 6.185 2.77 814.3 814.3 33.310 6.185 2.80	833.7 833.7 26.828 5.959 2.85 853.1 853.1 21.625 5.694 2.91	873.6 873.6 17.795 5.440 2.96 Unsaturated 893.0 893.0 15.686 5.373 3.00 Unsaturated	913.6 913.6 12.946 6.059 3.09 Unsaturated 1 932.9 932.9 13.235 5.661 3.07 Unsaturated 1	952.3 952.3 13.849 5.478 3.04 Unsaturated 1 972.8 972.8 14.378 4.743 2.99 Unsaturated 1	992.2 992.2 14.985 5.062 2.99 Unsaturated 1 1012.8 1012.8 12.093 6.240 3.12 Unsaturated 1	1032.1 1032.1 11.479 6.958 3.17 Unsaturated 1 1051.5 1051.5 16.860 5.400 2.97 Unsaturated 1	1072.1 1072.1 15.995 5.766 3.01 Unsaturated 1 1091.4 14.026 5.589 3.04 Unsaturated 1	1112.0 1112.0 13.371 5.143 3.04 Unsaturated 1131.4 1131.4 12.312 5.383 3.08 Unsaturated	1150,7 1150,7 11,479 5,069 3,08 Unsaturated 1171,3 1171,3 10,492 4,516 3,08 Unsaturated	1190.6 1190.6 11.313 4.573 3.06 1211.2 1210.6 13.009 5.268 3.05	1230.6 1220.0 12.844 6.061 3.10 1289.3 12.29.3	1239.3 10.173 4.704 3.11 1246.7 1683 4.861 3.21 1266.0 7.163 5.21 1277.4 7.195 5.421 3.26
$f_{S}(\text{stf}) \text{Gwe (psf)} \lim_{G' \text{we (psf)}} Q \text{F (%)} \text{Ic}$	0.859 19.4 19.4 5037.356 0.169 0.50 1.023 39.9 28.47.764 0.248 0.61 1.809 59.3 59.3 1719.708 0.594 1.02	3.188 79.9 79.9 1228,920 1.262 1.37 4.306 99.2 99.2 896.888 2.096 1.63	5.212 118.6 118.6 566.487 3.674 1.92 5.617 139.2 139.2 414.985 4.989 2.10	5.517 136.5 136.5 344.442 3.632 2.19 4.039 179.1 179.1 303.035 4.331 2.10	4.101 198.4 198.4 257.874 4.908 2.18 4.114 217.8 217.8 221.754 5.465 2.26	4.115 238.4 238.4 193.608 5.985 2.32 3.729 257.7 257.7 165.396 6.106 2.36	3.259 278.3 278.3 143.893 5.902 2.38 2.714 297.7 297.7 122.503 5.584 2.40	2.073 317.0 317.0 107.814 4.695 2.38 1.510 337.6 337.6 92.858 3.848 2.35	1.067 357.0 357.0 69.778 3.520 2.40	0.817 377.5 52.074 3.512 2.49 0.752 396.9 46.948 3.497 2.52	0.583 436.8 436.8 43.066 2.818 2.48	0.461 456.2 456.2 37.297 2.518 2.50 0.358 476.7 476.7 37.160 2.581 2.50 0.331 4.061 4.061 7.7 448 3.007 2.65	0.342 516.7 516.7 27.113 3.201 2.67	0.393 555.4 555.4 37.315 3.789 2.61 0.459 576.0 576.0 38.412 4.150 2.63	0.570 595.3 595.3 36.660 5.227 2.72 0.706 615.9 615.9 35.662 6.429 2.79	0.766 635.3 635.3 35.647 6.761 2.81 0.698 654.6 654.6 35.358 6.027 2.77 0.644 675.2 31.643 6.007 2.77	0.696 694.5 694.5 27.911 7.178 2.90 Unsaturated 0.643 715.1 715.1 24.926 7.219 2.94 Unsaturated	0.671 734.5 734.5 30.179 6.051 2.82 Unsaturated 0.743 753.8 753.8 35.215 5.599 2.75 Unsaturated 0.743 753.8	0.050 //4.4 //4.4 50.320 3.509 2.70 0.098 738 7938 36.996 6.185 2.77 0.839 814.3 814.3 33.310 6.185 2.80	0.666 833.7 833.7 26.828 5.959 2.85 0.525 853.1 853.1 21.625 5.694 2.91	0.423 873.6 873.6 17.795 5.440 2.96 Unsaturated 0.376 893.0 893.0 15.686 5.373 3.00 Unsaturated	0.358 913.6 913.6 12.946 6.059 3.09 Unsaturated 1 0.350 932.9 932.9 13.235 5.661 3.07 Unsaturated 1	0.361 952.3 952.3 13.849 5.478 3.04 Unsaturated 1 0.332 972.8 14.378 4.743 2.99 Unsaturated 1	0.376 992.2 992.2 14.985 5.062 2.99 Unsaturated 1 0.382 1012.8 1012.8 12.093 6.240 3.12 Unsaturated 1	0.412 1032.1 1032.1 11.479 6.958 3.17 Unsaturated 1 0.479 1051.5 1051.5 16.860 5.400 2.97 Unsaturated 1	0.494 1072.1 1072.1 15.995 5.766 3.01 Unsaturated 1 0.428 1091.4 1091.4 14.026 5.589 3.04 Unsaturated 1	0.382 1112.0 1112.0 13.371 5.143 3.04 Unsaturated 3.05 1131.4 12.312 5.383 3.08 Unsaturated	0.335 1150.7 1150.7 11.479 5.089 3.08 Unsaturated 0.278 1171.3 10.492 4.516 3.08 Unsaturated	0.308 1190.6 1190.6 11.313 4.573 3.06 0.415 1211.2 1210.6 13.009 5.268 3.05	0.475 1230.6 1220.0 12.844 6.061 3.10 0.38 1249 1229.3 11.283 5.590 3.12	0.257 (289.9 1248.7 8.73 4.704 3.11 0.256 (289.9 1248.7 8.73 4.554 3.15 0.23 (1310.4 1258.6 7.683 4.861 3.21 0.23 (132.8 128.0 7.153 5.219 3.26 0.249 (1349.2 1277.4 7.195 5.421)
Ovc (psf) O'vc (psf) Q F (%) Ic	19.4 19.4 5037.355 0.169 0.50 39.9 39.9 2842.764 0.248 0.61 59.3 59.3 1719.708 0.594 1.02	252.630 3.188 79.9 79.9 1228.920 1.262 1.37 205.530 4.306 99.2 99.2 896.898 2.096 1.63	141.940 5.212 118.6 118.6 566.48 3.674 1.92 112.660 5.617 139.2 139.2 414.985 4.989 2.10 00.00 5.017 4555 4.655 5.00	93.360 4.039 179.1 179.1 303.035 4.331 2.10	83.650 4.101 198.4 198.4 257.874 4.908 2.18 75.380 4.114 217.8 217.8 221.754 5.465 2.26	68.870 4.115 238.4 238.4 193.608 5.985 2.32 61.200 3.729 257.7 257.7 165.396 6.106 2.36	55.350 3.259 278.3 278.3 143.893 5.902 2.38 48.760 2.714 297.7 297.7 122.503 5.584 2.40	44.310 2.073 317.0 317.0 107.814 4.695 2.38 39.410 15.10 337.6 37.85 37.86 2.38	30.500 1.057 357.0 357.0 69.778 2.50 2.40	23400 0.817 377.5 377.5 32.074 3.512 2.49	20.920 0.583 436.8 436.8 43.066 2.818 2.48	18.550 0.461 456.2 37.297 2.518 2.50 14.090 0.358 476.7 476.7 37.160 2.56 10.060 0.31 406.1 4.06.1 27.048 3.002 2.65	10,950 0.342 516.7 27.13 3.201 2.67 10,000 0.357 5.36 0.36 311 3.671 2.61	10,640 0.393 555.4 555.4 37.315 3.789 2.61 11,350 0.459 576,0 576,0 38,412 4,150 2.63	11.210 0.570 595.3 595.3 36.660 5.227 2.72 11.290 0.706 615.9 615.9 35.662 6.429 2.79	11.640 0.766 635.3 635.4 635.4 6.761 2.81 11.900 0.088 664.6 654.6 55.388 6.027 2.77 11.000 0.84 675.2 675.2 31.643	10.040 0.696 694.5 694.5 77.911 7.178 2.90 Unsaturated 9.270 0.643 715.1 715.1 24.926 7.219 2.94 Unsaturated	11.450 0.671 734.5 734.5 30.179 6.051 2.82 Unsaturated 13.650 0.44 755.8 753.8 35.215 5.599 2.75 Unsaturated	14.350 0.500 //4.4 //4.4 50.350 3.359 2.77 15.080 0.908 733.8 733.8 36.996 6.185 2.77 13.970 0.839 814.3 814.3 33.310 6.185 2.80	11,600 0,666 833.7 833.7 26,828 5,959 2,85 9,650 0,525 853.1 853.1 21,625 5,694 2,91	8.210 0.423 873.6 873.6 17.795 5.440 2.96 Unsaturated 7.450 0.376 893.0 893.0 15.686 5.373 3.00 Unsaturated	6.370 0.358 913.6 913.6 12.946 6.059 3.09 Unsaturated 1 6.640 0.350 932.9 932.9 13.235 5.661 3.07 Unsaturated 1	7.070 0.361 952.3 952.3 13.849 5.478 3.04 Unsaturated 1 7.480 0.332 972.8 972.8 14.378 4.743 2.99 Unsaturated 1	7.930 0.376 992.2 992.2 14.985 5.062 2.99 Unsaturated 1 6.630 0.382 1012.8 1012.8 12.093 6.240 3.12 Unsaturated 1	6.440 0.412 1032.1 1032.1 11.479 6.958 3.17 Unsaturated 1 9.390 0.479 1051.5 1051.5 16.860 5.400 2.97 Unsaturated 1	9.110 0.494 1072.1 1072.1 15.995 5.766 3.01 Unsaturated 1 8.200 0.428 1091.4 1091.4 14.026 5.589 3.04 Unsaturated 1	7.990 0.382 1112.0 1112.0 13.371 5.143 3.04 Unsaturated 7.530 0.375 1131.4 1131.4 12.312 5.383 3.08 Unsaturated	7.180 0.335 1150.7 1150.7 11.479 5.089 3.08 Unsaturated 6.730 0.278 1171.3 10.492 4.516 3.08 Unsaturated	7.330 0.308 1190.6 1190.6 11.313 4.573 3.06 8.480 0.415 1211.2 1210.6 13.009 5.268 3.05	8.450 0.475 1230.6 1220.0 12.844 6.061 3.10 7.560 0.388 1499 1229.3 11.283 5.590 3.12	1289.9 1248.7 8.734 4.574 3.11 1289.9 1248.7 8.735 4.861 3.21 1310.4 1258.6 7.683 4.861 3.21 1329.8 1288.0 7.155 5.219 3.26 1349.2 1277.4 7.195 5.421 3.26

Page 1

PGA (A_{max})

_

0.91

(Inches) 0.33 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1962 | 1963 | CSR Stress Reduction Coeff, rd ŏ 5.5.45
5.5.45
5.5.45
5.5.45
5.5.45
5.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6.5.45
6. Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) Flag Soil Type Layer "Plastic" PI > 7 F (%) 7,7687
7,828
8,828
8,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,9202
9,92 Ø Insitu $\sigma'_{vc} \, (psf)$ 7.000 | 1,000 σvc (pst) 14089.1 14089.1 14089.1 14089.1 15089. ∫s (tsf) 0.0247 0.0254 0.0254 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0270 0.0370 0. qc (tsf) 5.5610 5.5710 5.5810 5.5810 6.5200 6.5200 6.5310 Depth (ft) 11.1870 11.1870 11.1870 12.2870 12.2870 13.287

PGA (Amax)

_

0.91

(Inches) 0.33 Total Settlement:

Factor of Safety (CRR/CSR) n n a m n a CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand n n a n n a n n a n n a n n a n n a n n a n n a n n a n n a n n a n n a n n a CSR Stress Reduction Coeff, rd $\frac{1}{2}$ 201111010111101011 ŏ 11.75
11.77
11.77
11.77
11.77
11.77
11.79
19.88
19.88
19.74
19.89
19.74
19.89
19.74
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89
19.89 Thin Layer Factor (K_H) qcn near interfaces (soft layer) 148.28 148.28 89.6 89.6 89.6 89.6 ines (%) Flag Soil Type Layer "Plastic" PI > 7 plastic F (%) 5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.468
5.5.46 10.0926 11.1.360 11.1.360 11.1.361 11.1 Ø Insitu o'vc (psf) 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.7 1 1990.8 1 199 σvc (pst) ∫s (tsf) 0.0577 0.0577 0.0583 0.0583 0.0584 0. qc (tsf) 111900
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470
112470 Depth (ft)

PGA (A_{max})

_

A (A_{max}) 0.91

Total Settlement: 0.33

(Inches)

Stress Reduction Coeff, rd 2715.55 27.55.50 27.55.5 148.28 Thin Layer Factor (K_H) ∞ ∞ qcn near interfaces (soft layer) 148.28 148.28 ines (%) 440 4
440 4
440 4
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6
440 6 Flag Soil Type Layer "Plastic" PI > 7 2.2448 2.2506 2.2506 2.2506 2.2506 2.2507 2. F (%) 9. 847 9. 13.15 9. 13.15 9. 10.15 Ø Insitu o'vc (psf) 2975.4
2284.8
2284.1
2284.1
2284.1
2284.1
2284.1
2284.1
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
2386.2
23 σvc (pst) 40029.3 44068.5 44068.6 44068. fs (tsf) 7.5.10 1.815 1.815 1.815 1.815 1.815 1.108 1 qc (tsf) 14.1456
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.1466
14.146 Depth (ft) 33.300
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400

Page 4

CPT No. CORNERSTONE EARTH GROUP

0.91 PGA (A_{max})

0.33 (Inches) Total Settlement:

Settlement (Inches)	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	8.0	0.00	0.00	0.00	000	00.0	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Vertical Strain &v	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	000	0.00	0.00	0.00	00.0	8 0	0.00	0.00	00.0	8.6	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Factor of Safety (CRR/CSR)	n.a.	n.a	n.a.	n.a	n.a.	n.a	n.a.	n.a.	e c	9 6	n.a.	n.a	n.a.	n.a	e e	e e	n.a.	n.a.	n.a.	, c	n e	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a.	n.a.	n.a.
CRR	n.a.	n.a.	па	пa	n.a.	n.a.	n.a.	па	e c	e e	па	n.a.	n.a.	n.a	n a	 	n.a.	па	n.a.	n (n a	n.a.	па	n.a.	пa	n.a.	n.a.	па	n.a.	n.a.	n.a.	n.a.
CRRM=7.5, σ'vc = 1 atm	n.a.	n.a.	n.a.	n a	n.a.	n.a.	n.a.	n.a.	e c	. c	n.a.	n.a.	n.a.	n.a.	n a	e e	n.a.	n a	n.a.	. c	a u	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
K _o for Sand	n.a.	n.a	a L	пa	n.a	n.a	пa	n.a	n a	. c	n.a	n.a	n u	n.a.	e d	 	n.a	пa	n's	e e	e u	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n,a,	n.a.	n.a.	n.a.
CSR	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.836	0.836	0.836	0.836	0.836	0.835	0.835	0.835	0.835	0.835	0.834	0.834	0.834	0.834	0.833	0.833	0.833	0.833	0.832	0.832	0.832	0.832	0.831
Stress Reduction Coeff, rd	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	280	0.84	0.84	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Qc1N-CS F	па	n a	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	e c	s e	n.a.	n a	n.a.	n.a.	e d	e e	n.a.	па	es i	e c	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n a
qc1N	n.a.	n.a.	n.a.	na	n.a.	n.a.	n.a.	n a	n a	, e	n.a.	n.a.	n.a.	n.a.	n a	n a	n.a.	па	n.a.	1.8.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ő	06.0	0.89	0.89	0.89	0.89	68.0	0.89	0.89	68.0	0.89	0.89	0.89	0.89	0.89	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.87	0.87	0.87	0.87
Interpreted	19.03	17.68	17.90	22.27	26.64	32.45	32.22	24.13	22.26	14.08	13.03	11.09	66.6	11.05	14.38	15.55	15.12	15.44	16.94	17.44	17,11	16.94	19.70	20.75	21.23	23.04	26.67	30.31	31.31	29.90	26.45	24.39
Thin Layer Factor (K _H)																																
qcN near interfaces (soft layer)																				Y			1			d						
Pines (%)	100.0	100.0	100.0	100.0	100.0	9.98	87.3	1000	100.0	1000	1000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.1	86.8	98.8	92.6	94.6	93.2	95.6	99.7	100.0
Ē	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Cas	Oay Oay	Clay	Clay	Clay	Clay	Clay		Clay	Clay	o d	Clay	Clay	Clay	Cley	Clay								
Flag Soil Type																																
Layer "Plastic" Flag So PI > 7																			9	4	100						Ė,			-		
	3.04	3.12	3.20	3.06	2.97	2.79	2.80	2.99	2.98	3.17	3.15	3.25	3.35	3.34	3.17	3.13	3.15	3.16	C. C	3.14	3.14	3.13	2.98	2.95	2.96	2.95	2.91	2.90	2.88	2.91	2.96	2.97
Layer "Plastic" PI > 7																3.766 3.13																
Layer Ic "Plastic" PI > 7	3 921	4.861	6.522	5.325	4.954	3,346	3.409	4.508	3.941	3.863	3,008	3,388	4.180	4 715	3.893		3.878	4.064	4.031	4 540	4.505	4.136	2.971	2.845	3.059	3,296	3.502	4.001	3.896	4.068	4.130	3.849
Q F (%) Ic "Plastic" PI > 7	10.841 3.921	9.922 4.861	10.029 6.522	12.839 5.325	15 635 4 954	19.343 3.346	19.131 3.409	13.862 4.508	12.615 3.941	7.312 3.863	6.616 3.008	5.356 3.388	4.642 4.180	5 290 4 715	7.362 3.893	3.766	7.748 3.878	7.919 4.064	8.818 4.031	9.209	8.832 4.505	8.696 4.136	10.355 2.971	10.959 2.845	11.217 3.059	12.282 3.296	14.437 3.502	16.588 4.001	17 138 3.896	16.236 4.068	14.123 4.130	12.849 3.849
Insitu Q F (%) Ic "Plastic" $\sigma'_{vc}(psf)$ PI > 7	3219.4 10.841 3.921	3229.4 9.922 4.861	3238.7 10.029 6.522	3248.1 12.839 5.325	3258.1 15.635 4.954	3267.4 19.343 3.346	3277.4 19.131 3.409	3286.8 13.862 4.508	3296.2 12.615 3.941 2206.4 40.0EE 2.000	3315.5 7.312 3.863	3325.5 6.616 3.008	3334.8 5.356 3.388	3344.2 4.642 4.180	3354.2 5.290 4.715	3363 6 7 362 3 893	8.041 3.766	3392.3 7.748 3.878	3402.2 7.919 4.064	3411.6 8.818 4.031	3430 9 0 066 4 540	3440.3 8.832 4.505	3450.3 8.696 4.136	3459.7 10.355 2.971	3469.6 10.959 2.845	3479.0 11.217 3.059	3488.4 12.282 3.296	3498.3 14.437 3.502	3507.7 16.588 4.001	3517.7 17.138 3.896	3527.0 16.236 4.068	3536.4 14.123 4.130	12.849 3.849
One (pst) Insitu Q F (%) Ic "Pleatic" PI > 7 PI > 7	5359.1 3219.4 10.841 3.921	5379.7 3229.4 9.922 4.861	5399.0 3238.7 10.029 6.522	5418.4 3248.1 12.839 5.325	5439.0 3258.1 15.635 4.954	5458.3 3267.4 19.343 3.346	5478.9 3277.4 19.131 3.409	5498.2 3286.8 13.862 4.508	5517.6 3296.2 12.615 3.941	5557.5 3315.5 7.312 3.863	5578.1 3325.5 6.616 3.008	5597.5 3334.8 5.356 3.388	5616.8 3344.2 4.642 4.180	5637 4 3354.2 5.290 4.715	5656.8 3363.6 7.362 3.893	3382.9 8.041 3.766	5716.0 3392.3 7.748 3.878	5736.6 3402.2 7.919 4.064	5756.0 3411.6 8.818 4.031	5795 9 3430 9 0.066 4.540	5815.3 3440.3 8.832 4.505	5835.8 3450.3 8.696 4.136	5855.2 3459.7 10.355 2.971	5875.8 3469.6 10.959 2.845	5895.1 3479.0 11.217 3.059	5914.5 3488.4 12.282 3.296	5935.1 3498.3 14.437 3.502	5954.4 3507.7 16.588 4.001	5975.0 3517.7 17.138 3.896	5994.3 3527.0 16.236 4.068	6013 7 3536 4 14 123 4.130	6034.3 3546.4 12.849 3.849
$\begin{array}{cccc} \text{Insitu} & Q & \text{F (\%)} & \text{Ic} & \text{"Plastic"} \\ \sigma'_{\text{vc}}(\text{psf}) & & & \text{Pl > 7} \end{array}$	0.684 5359.1 3219.4 10.841 3.921	0.779 5379.7 3229.4 9.922 4.861	1.059 5399.0 3238.7 10.029 6.522	1.110 5418.4 3248.1 12.839 5.325	1.262 5439.0 3258.1 15.635 4.954	1.057 5458.3 3267.4 19.343 3.346	1.069 5478.9 3277.4 19.131 3.409	0.027 5498.2 3286.8 13.862 4.508	0.819 5517.6 3296.2 12.615 3.941	0.468 5557.5 3315.5 7.312 3.863	0.331 5578.1 3325.5 6.616 3.008	0.303 5597.5 3334.8 5.356 3.388	0.324 5616.8 3344.2 4.642 4.180	0.418 5637.4 3354.2 5.290 4.715	0.482 5656.8 3363.6 7.362 3.893	5696.7 3382.9 8.041 3.766	0.510 5716.0 3392.3 7.748 3.878	0.548 5736.6 3402.2 7.919 4.064	0.606 5756.0 3411.6 8.818 4.031	0.706 5795 9 3430 9 0.066 4 540	0.684 5815.3 3440.3 8.832 4.505	0.621 5835.8 3450.3 8.696 4.136	0.532 5855.2 3459.7 10.355 2.971	0.541 5875.8 3469.6 10.959 2.845	0.597 5895.1 3479.0 11.217 3.059	0.706 5914.5 3488.4 12.282 3.296	0.884 5935.1 3498.3 14.437 3.502	1.164 5954.4 3507.7 16.588 4.001	1.174 5975.0 3517.7 17.138 3.896	1.165 5994.3 3527.0 16.236 4.068	1.031 6013.7 3536.4 14.123 4.130	0.877 6034.3 3546.4 12.849 3.849

CORNERSTONE EARTH GROUP

© 2014 Cornerstone Earth Group, Inc.

CPT No.

7

PGA (A_{max})

A (A_{max}) 0.91

_		=																																									
	Settlement (Inches)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	00.00	0.0	0.00	0.00	0.00	0.00	0.00
	Vertical Strain Ev	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00.00	0.0	0.00	0.00	0.00	00.00	00.0	0.00	0.00	0.00	00.0	0.00
	Factor of Safety (CRR/CSR)	n.a. n.a.	n.a.	n e	e u	. c	n.a.	a a	n.a.	e e	n e	e c	. e	па	n.a.	n.a.	e e	n.a.	n e	e c	a c	n.a.	n a	a c	e e	n.a.	n n	n.a.	n e	n.a	a e	c c	i e	e e	e e	i e	e e	6.0	i e	n a n a	n.a. n.a.	n a	9 9 9
	CRR	n.a. n.a.	n a	9 8	e u	. c	n.a.	e e	па	e e	a a	e c	. e	па	a u	n.a.	e e	n.a	a a	e e	a a	n a n	e e	a	e e	n.a.	n n	n.a	a a	n a	a e	c c	a	e e	e e	e u	e e	2 2	a e	a c	n a	e e	
	CRRM=7.5, σ'vc = 1 atm	n.a.	n a	. e	n a	. c	па		n.a.	e e	. c	e c	. c	n a	a a	n.a.	e e	n a	a a	e e	e e	n a n a	е е е	e e	e e	n a	a a	n a	a a	n a	a e	c c	e e	a a	 	e c	e e	. c. c	a e	a a	a a	n n	
	K _σ for Sand	1.100	1.10	100	1.100	- t 8 6	1.100	301	1.100	100	1 10	1,100	9 6	1.100	1.100	1,100	1.100	1.100	1.100	1.100	1.100	1.100	1.100	1.096	1.091	1.085	1.082	1.078	1.074	1.073	1.070	1.069	1.065	1.060	1.060	1.059	1.058	1.057	1.055	1.053 n.a.	n a	e e	
	CSR	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.590	0.589	0.589	0.589	0.588	0.588	0.588	0.587	0.587	0.587	0.586	0.586	0.585	0.585	0.585	0.584	0.584	0.584	0.583	0.583	0.582	0.582	0.582	0.581	0.580	0.580	0.585	0.594	0.602 0.606 0.610
	Stress Reduction Coeff, rd	1.00	9.5	9.0	8.5	9.0.	0.1	9 6	1.00	8.6	9.0	9:5	8.6	0.5	8.8	1.00	8 0	1.00	8.0.	1.00	1.00	0.99	0.99	0.99	66.0 66.0	0.99	0.99	0.99	66.0	0.99	0.99	0.00 00.00	0.99	0.99	0.99	0.99	66.0 0	0.98	0.98	0.98	0.98	0.98	0.98
	q _{c1N-CS}	54.02 54.29	54.25	56.33	58.63	59.72	61.01	72.38	77.11	73.92	70.81	67.36	64.65	65.19	65.27 66.18	86.79	73.38	75.61	74.90	74.96	71.42	71.12	72.91	72.64	69.42 68.71	67 18	66.71 66.21	66.61	66.29	67.26	69.63	71.35	68.73	67.00	67.95	68.58	67.98	69.92	68.37	66.82 n.a.	n.a.	a a	
	q _{c1N}	0.06	0.24	6.68	6.86	5.21	6.51	9.62 16.18	20.62	20.25	14.32	12.68	9.21	9.80	9.87	11.22	16.28	18.09	16.89	17.06	13.91	13.95	15.68	16.10	12.13	10.11	9.75	9.67	9.59 9.43	10.17	11.98	13.29	11.29	9.97	10.70	1.18	10.72	12.20	11.02	9.84 n.a.	n.a. n.a.	n n	า.a. ก.a.
	Š	1.70 1.70	2.70	2.5	1.70	1.70	1.70	5.5	1.70	1.70	1.70	1.70	2.7	1.70	1.70	1.70	2.7	1.70	1.2	1.70	1,70	1.70	1.70	1.70	2.1	1.70	5.5	1.70	2.7	1.67	1.62	1.59	1.57	1.54	1.52	1.50	1.50	1.48	1.47	1.19	1.18 1.18	1.18	111
I	Interpreted	0.04	0.14	3.93	4.04	3.06	3.83	5.66 9.52	12.13	11.91	8.42	7.46	5.42	5.77	5.80	6.60	9.57	10.64	9.93	10.04	8.19	9.67	9.22	9.47	7.14 6.64	5.95	5.51	5.69	5.55	6.08	7.39	8.34	7.21	6.49	7.02	7.43	7.16 8.02	8.26	7.51	6.72 6.11	5.79	4.92	4.76 5.03 5.39
	<u>-</u>	4																																									
	iin Layer ctor (K _H)																	4		1																							
	N near Thin Layer srfaces Factor (K _H)																																										
	qcN near interfaces (soft layer)	00.0	00.0	56.2	65.3	88.3	84.5	75.4	69.3	71.4	81.5	72.2	85.6	83.6	83.5 88.0	92,5	81.6	80.6	87.8	886.3	91.6	88.3	84.1	77.8	95.2 00.0	00.0	00.0	00.0	00.0	0.00	0.00	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0000	00.0	00.0	0.00	00.0
•	Fines dcN near (%) (soft layer)	saturated 100.0 saturated 100.0	•	,	-														87			saturated 88.3 saturated 80.6			saturated 95.2 saturated 100.0	- 1											saturated 100.0		,				
-	Fines GoN near Hag Soil Type (%) (soft layer)	Unsaturated 100.0 Unsaturated 100.0	Unsaturated 100.0	,	Unsaturated 65.3			Unsaturated 84.1 Unsaturated 75.4		Unsaturated 71.4 Unsaturated 76.8			Unsaturated 85.6		Unsaturated 83.5 Unsaturated 88.9		Unsaturated 81.6 Unsaturated 77.7			Unsaturated 85.3 Unsaturated 87.5		Unsaturated 88.3 Unsaturated 80.6	Unsaturated 84.1 Unsaturated 78.2		Unsaturated 95.2 Unsaturated 100.0	- 1	Unsaturated 100.0 Unsaturated 100.0		Unsaturated 100.0 Unsaturated 100.0	Unsaturated 100.0				Unsaturated 100.0 Unsaturated 100.0	Unsaturated 100.0		Unsaturated 100.0 Unsaturated 100.0		•	٠.		Clay 100.0	
	Fines dcN near (%) (soft layer)	Unsaturated Unsaturated Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated Unsaturated	Unsaturated	Unsaturated 1 Unsaturated 1	Unsaturated	Unsaturated 1	Unsaturated	Unsaturated 1	Unsaturated 1	Unsaturated	Unsaturated 1	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated Clay	Clay Clav	Clay Clay	Clay Clay Clay
	Layer Ic "Plastic" Flag Soil Type (%) interfaces PI > 7	3.47 Unsaturated 3.11 Unsaturated	3.54 Unsaturated	2.42 Unsaturated	2.53 Unsaturated	2.82 Unsaturated	2.77 Unsaturated	2.76 Unsaturated 2.65 Unsaturated	2.58 Unsaturated	2.60 Unsaturated	2.73 Unsaturated	2.62 Unsaturated	2.72 Unsaturated	2.76 Unsaturated	2.76 Unsaturated 2.92 Unsaturated	2.87 Unsaturated	2.73 Unsaturated	27.2 Unsaturated	2.79 Unsaturated	2.79 Unsaturated	2.86 Unsaturated	2.72 Unsaturated	2.76 Unsaturated	2.68 Unsaturated	2.90 Unsaturated 3.00 Unsaturated	3.10 Unsaturated	3.11 Unsaturated 1 3.12 Unsaturated 1	3.10 Unsaturated	3.14 Unsaturated 1	3.10 Unsaturated 1	3.05 Unsaturated 1	3.04 Unsaturated 1	3.11 Unsaturated	3.16 Unsaturated 1	3.11 Unsaturated 1	3.09 Unsaturated	3.17 Unsaturated 3.10 Unsaturated 3.10	3.07 Unsaturated	3.07 Unsaturated	3.11 Unsaturated 3.15 Clay	3.12 Clay 3.13 Clay	3.12 Clay	3.23 Clay 3.25 Clay
	Fines (%) Ic "Plastic" Flag Soi Type (%) (soft layer) (soft layer)	3.628 3.47 Unsaturated 3.066 3.11 Unsaturated	7.395 3.54 Unsaturated	1.601 2.42 Unsaturated	2.166 2.53 Unsaturated	3.382 2.82 Unsaturated	3.386 2.77 Unsaturated	4.821 2.76 Unsaturated 5.325 2.65 Unsaturated	4.965 2.58 Unsaturated	5.029 2.60 Unsaturated 5.076 2.67 Unsaturated	4.853 2.73 Unsaturated	4.950 2.62 Unsaturated	5.526 2.72 Unsaturated 5.471 2.78 Unsaturated	5.072 2.76 Unsaturated	4.824 2.76 Unsaturated 5.881 2.82 Unsaturated	7.185 2.87 Unsaturated	6.411 2.73 Unsaturated 6.106 2.68 Unsaturated	6.307 2.72 Unsaturated	7.272 2.81 Unsaturated	6.690 2.79 Unsaturated 6.253 2.81 Unsaturated	6.309 2.86 Unsaturated	5.322 2.82 Unsaturated 4.453 2.72 Unsaturated	4.744 2.76 Unsaturated 3.063 2.69 Unsaturated	3.491 2.68 Unsaturated	5.143 2.90 Unsaturated 6.450 3.00 Unsaturated	7.614 3.10 Unsaturated 1	7.209 3.12 Unsaturated 7.209 3.12 Unsaturated 1	6.681 3.10 Unsaturated 1	7.003 3.14 Unsaturated 1	6.689 3.10 Unsaturated 1	6.725 3.05 Unsaturated 1	7.135 3.04 Unsaturated 1 7.141 3.05 Unsaturated 1	7.400 3.11 Unsaturated	7.315 3.16 Unsaturated 7.315 3.15 3.15 3.15 3.15 3.15 3.15 3.15	6.721 3.11 Unsaturated 1	6.604 3.09 Unsaturated	8.243 3.17 Unsaturated 7.233 3.10 Unsaturated	6.629 3.07 Unsaturated	5.938 3.07 Unsaturated	5.770 3.11 Unsaturated 7 5.850 3.15 Clay	4.833 3.12 Clay 1 4.389 3.13 Clay	3.624 3.12 Clay 1 4.387 3.20 Clay 1	5.036 3.23 Clay 5.809 3.25 Clay 6.382 3.25 Clay
	Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	3.132 3.628 3.47 Unsaturated 7.515 3.066 3.11 Unsaturated	32 30 3 83 3 54 Unsaturated	33.086 1.601 2.42 Unsaturated	29.917 2.166 2.53 Unsaturated	17.902 3.201 2.01 Unsaturated 18.328 3.382 2.82 Unsaturated	21.086 3.386 2.77 Unsaturated	29.188 4.821 2.76 Unsaturated 46.243 5.325 2.65 Unsaturated	55.395 4.965 2.58 Unsaturated	5.029 2.60 Unsaturated 41.297 5.076 2.67 Unsaturated	32.684 4.853 2.73 Unsaturated	48.776 4.950 2.62 Unsaturated	37.351 3.328 2.72 Unsaturated 31.105 5.471 2.78 Unsaturated	31.316 5.072 2.76 Unsaturated	29.941 4.824 2.76 Unsaturated 29.223 5.881 2.82 Unsaturated	30.959 7.185 2.87 Unsaturated	43.413 6.411 2.73 Unsaturated 48.545 6.106 2.68 Unsaturated	44.394 6.307 2.72 Unsaturated	38.214 7.272 2.81 Unsaturated	37.243 6.690 2.79 Unsaturated 32.995 6.953 2.81 Unsaturated	28.094 6.309 2.86 Unsaturated	27.187 5.322 2.82 Unsaturated 31.208 4.453 2.72 Unsaturated	28.819 4.744 2.76 Unsaturated 24.544 3.063 2.69 Unsaturated	27.854 3.491 2.68 Unsaturated	20.116 5.143 2.90 Unsaturated 18.116 6.450 3.00 Unsaturated	15.688 7.614 3.10 Unsaturated	14.677 7.419 3.11 Unsaturated 1 13.690 7.209 3.12 Unsaturated 1	13.785 6.681 3.10 Unsaturated 1	13.322 0.404 3.10 Unsaturated 12.762 7.003 3.14 Unsaturated 1	13.720 6.689 3.10 Unsaturated 1	16.120 6.725 3.05 Unsaturated 1	17,909 7,135 3,04 Unsaturated 1 17,146 7,141 3,05 Unsaturated 1	14.686 7.400 3.11 Unsaturated	13.735 6.801 3.11 Unsaturated 12.567 7.315 3.16 Unsaturated 1	13.504 6.721 3.11 Unsaturated 13.788 7.014 3.11 Unsaturated 1	14.039 6.604 3.09 Unsaturated	13.345 8.243 3.17 Unsaturated 7	15.250 6.629 3.07 Unsaturated	13.495 5.938 3.07 Unsaturated	11.836 5.770 3.11 Unsaturated 7 10.541 5.850 3.15 Clay	9.847 4.833 3.12 Clay 1 9.004 4.389 3.13 Clay 1	8.030 3.624 3.12 Clay 1	7.568 5.036 3.23 Clay 7.970 5.809 3.25 Clay 8.535 6.382 3.25 Clay
	Insitu Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (%) (soft layer)	19.4 3.132 3.628 3.47 Unsaturated 39.9 7.515 3.066 3.11 Unsaturated	59.3 4.060 7.395 3.54 Unsaturated	99.2 33.086 1.601 2.42 Unsaturated	118.6 29.917 2.166 2.53 Unsaturated	159.2 17.002 3.201 2.01 Unsaturated 158.5 18.328 3.382 2.82 Unsaturated	179.1 21.086 3.386 2.77 Unsaturated	198.4 29.188 4.821 2.76 Unsaturated 217.8 46.243 5.325 2.65 Unsaturated	238.4 55.395 4.965 2.58 Unsaturated	257.7 51.460 5.029 2.60 Unsaturated 278.3 41.297 5.076 2.67 Unsaturated	297.7 32.684 4.853 2.73 Unsaturated	317.0 48.776 4.950 2.62 Unsaturated	357.0 31.105 5.471 2.78 Unsaturated	377.5 31.316 5.072 2.76 Unsaturated	396.9 29.941 4.824 2.76 Unsaturated 416.2 29.223 5.881 2.82 Unsaturated	436.8 30.959 7.185 2.87 Unsaturated	456.2 43.413 6.411 2.73 Unsaturated 476.7 48.545 6.106 2.68 Unsaturated	496.1 44.394 6.307 2.72 Unsaturated	536.0 38.214 7.272 2.81 Unsaturated	555.4 37.243 6.690 2.79 Unsaturated 576 0 32.995 6.553 2.81 Unsaturated	595.3 28.094 6.309 2.86 Unsaturated	615.9 27.187 5.322 2.82 Unsaturated 635.3 31.208 4.453 2.72 Unsaturated	654.6 28.819 4.744 2.76 Unsaturated 675.2 24.544 3.063 2.69 Unsaturated	694.5 27.854 3.491 2.68 Unsaturated	715.1 20.116 5.143 2.90 Unsaturated 734.5 18.116 6.450 3.00 Unsaturated '	753.8 15.688 7.614 3.10 Unsaturated 1	74.4 14.67 7.419 3.11 Unsaturated 7.93.8 13.690 7.209 3.12 Unsaturated 1	814.3 13.785 6.681 3.10 Unsaturated 1	853.1 12.762 7.003 3.14 Unsaturated 1	873.6 13.720 6.689 3.10 Unsaturated 1	913.6 16.120 6.725 3.05 Unsaturated 1	932.9 17.909 7.135 3.04 Unsaturated 1	972.8 14.686 7.400 3.11 Unsaturated	992.2 13.735 6.801 3.11 Unsaturated 1012.8 12.567 7.315 3.16 Unsaturated 1	1024.0 13.504 6.721 3.11 Unsaturated 1	1043.4 14.039 6.604 3.09 Unsaturated	1052.7 13.345 8.243 3.17 Unsaturated 7 1062.7 14.932 7.233 3.10 Unsaturated 7	1072.1 15.250 6.629 3.07 Unsaturated	1091.4 13.495 5.938 3.07 Unsaturated	1100.8 11.836 5.770 3.11 Unsaturated 7 1110.7 10.541 5.850 3.15 Clay	1120.1 9.847 4.833 3.12 Clay 1	1139.5 8.030 3.624 3.12 Clay 1148.8 7.460 4.387 3.20 Clay	1158.8 7.568 5.036 3.23 Gay 1168.2 7.970 5.809 3.25 Gay 1177.6 8.535 6.382 3.25 Gay
y	Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	19.4 3.132 3.628 3.47 Unsaturated 39.9 7.515 3.066 3.11 Unsaturated	59.3 4.060 7.395 3.54 Unsaturated	99.2 33.086 1.601 2.42 Unsaturated	118.6 29.917 2.166 2.53 Unsaturated	159.2 17.002 3.201 2.01 Unsaturated 158.5 18.328 3.382 2.82 Unsaturated	179.1 21.086 3.386 2.77 Unsaturated	198.4 29.188 4.821 2.76 Unsaturated 217.8 46.243 5.325 2.65 Unsaturated	238.4 55.395 4.965 2.58 Unsaturated	257.7 51.460 5.029 2.60 Unsaturated 278.3 41.297 5.076 2.67 Unsaturated	297.7 32.684 4.853 2.73 Unsaturated	317.0 48.776 4.950 2.62 Unsaturated	357.0 31.105 5.471 2.78 Unsaturated	377.5 31.316 5.072 2.76 Unsaturated	396.9 29.941 4.824 2.76 Unsaturated 416.2 29.223 5.881 2.82 Unsaturated	436.8 30.959 7.185 2.87 Unsaturated	456.2 43.413 6.411 2.73 Unsaturated 476.7 48.545 6.106 2.68 Unsaturated	496.1 44.394 6.307 2.72 Unsaturated	536.0 38.214 7.272 2.81 Unsaturated	555.4 37.243 6.690 2.79 Unsaturated 576 0 32.995 6.553 2.81 Unsaturated	595.3 28.094 6.309 2.86 Unsaturated	615.9 27.187 5.322 2.82 Unsaturated 635.3 31.208 4.453 2.72 Unsaturated	654.6 28.819 4.744 2.76 Unsaturated 675.2 24.544 3.063 2.69 Unsaturated	694.5 27.854 3.491 2.68 Unsaturated	715.1 20.116 5.143 2.90 Unsaturated 734.5 18.116 6.450 3.00 Unsaturated '	753.8 15.688 7.614 3.10 Unsaturated 1	74.4 14.67 7.419 3.11 Unsaturated 7.93.8 13.690 7.209 3.12 Unsaturated 1	814.3 13.785 6.681 3.10 Unsaturated 1	853.1 12.762 7.003 3.14 Unsaturated 1	873.6 13.720 6.689 3.10 Unsaturated 1	913.6 16.120 6.725 3.05 Unsaturated 1	932.9 17.909 7.135 3.04 Unsaturated 1	972.8 14.686 7.400 3.11 Unsaturated	992.2 13.735 6.801 3.11 Unsaturated 1012.8 12.567 7.315 3.16 Unsaturated 1	1024.0 13.504 6.721 3.11 Unsaturated 1	1043.4 14.039 6.604 3.09 Unsaturated	1052.7 13.345 8.243 3.17 Unsaturated 7 1062.7 14.932 7.233 3.10 Unsaturated 7	1072.1 15.250 6.629 3.07 Unsaturated	1091.4 13.495 5.938 3.07 Unsaturated	1100.8 11.836 5.770 3.11 Unsaturated 7 1110.7 10.541 5.850 3.15 Clay	1120.1 9.847 4.833 3.12 Clay 1	1139.5 8.030 3.624 3.12 Clay 1148.8 7.460 4.387 3.20 Clay	7.568 5.036 3.23 Clay 7.970 5.809 3.25 Clay 8.535 6.382 3.25 Clay
alti Gloup) ilic	Insitu Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (%) (soft layer)	19.4 19.4 3.132 3.628 3.47 Unsaturated 39.9 7.515 3.066 3.11 Unsaturated	59.3 59.3 4.060 7.395 3.54 Unsaturated	99.2 99.2 33.086 1.601 2.42 Unsaturated	118.6 118.6 29.917 2.166 2.53 Unsaturated of the contract of t	139.2 139.2 17.002 3.201 2.01 Unsaturated 158.5 158.5 18.328 3.382 2.82 Unsaturated	179.1 179.1 21.086 3.386 2.77 Unsaturated	198.4 198.4 29.188 4.821 2.76 Unsaturated 217.8 46.243 5.325 2.65 Unsaturated	238.4 238.4 55.395 4.965 2.58 Unsaturated	257.7 257.7 51.460 5.029 2.60 Unsaturated 278.3 278.3 41.297 5.076 2.67 Unsaturated	297.7 297.7 32.684 4.853 2.73 Unsaturated	317.0 317.0 48.776 4.950 2.62 Unsaturated	357.0 357.0 31.105 5.471 2.78 Unsaturated	377.5 377.5 31.316 5.072 2.76 Unsaturated	396.9 396.9 29.941 4.824 2.76 Unsaturated 416.2 29.223 5.881 2.82 Unsaturated	436.8 436.8 30.959 7.185 2.87 Unsaturated	456.2 456.2 43.413 6.411 2.73 Unsaturated 476.7 476.7 48.545 6.106 2.68 Unsaturated	496.1 496.1 44.394 6.307 2.72 Unsaturated	536.0 536.0 38.214 7.272 2.81 Unsaturated	555.4 555.4 37.243 6.690 2.79 Unsaturated 5760 5760 32.995 6.953 2.81 Unsaturated	595.3 595.3 28.094 6.309 2.86 Unsaturated	615.9 615.9 27.187 5.322 2.82 Unsaturated 635.3 635.3 31.208 4.453 2.72 Unsaturated	654.6 654.6 28.819 4.744 2.76 Unsaturated 675.2 675.2 24.544 3.063 2.69 Unsaturated	694.5 694.5 27.854 3.491 2.68 Unsaturated	715.1 715.1 20.116 5.143 2.90 Unsaturated 734.5 734.5 18.116 6.450 3.00 Unsaturated ′	753.8 753.8 15.688 7.614 3.10 Unsaturated 1	7/4.4 7/4.4 14.677 7.419 3.11 Unsaturated 7.93.8 793.8 13.690 7.209 3.12 Unsaturated 1	814.3 814.3 13.785 6.681 3.10 Unsaturated 1	853.1 853.1 12.762 7.003 3.14 Unsaturated 1	873.6 873.6 13.720 6.689 3.10 Unsaturated 1	913.6 913.6 16.120 6.725 3.05 Unsaturated 1	932.9 932.9 17.909 7.135 3.04 Unsaturated 1	972.8 972.1 14.886 7.400 3.11 Unsaturated	992.2 992.2 13.735 6.801 3.11 Unsaturated 1012.8 1012.8 12.567 7.315 3.16 Unsaturated 1	1032.1 1024.0 13.504 6.721 3.11 Unsaturated 1	1072.1 1043.4 14.039 6.604 3.09 Unsaturated	1091.4 1052.7 13.345 8.243 3.17 Unsaturated 7 1112.0 1062.7 14.932 7.233 3.10 Unsaturated 7	1131.4 1072.1 15.250 6.629 3.07 Unsaturated	11713 10914 13.495 5.938 3.07 Unsaturated	1190.6 1100.8 11.836 5.770 3.11 Unsaturated 1211.2 1110.7 10.541 5.850 3.15 Clay	1230.6 1120.1 9.847 4.833 3.12 Clay 1 1249.9 1129.5 9.004 4.389 3.13 Clay 1	1270.5 1139.5 8.030 3.624 3.12 Clay 1289.9 1148.8 7.460 4.387 3.20 Clay 1	1158.8 7.568 5.036 3.23 Gay 1168.2 7.970 5.809 3.25 Gay 1177.6 8.535 6.382 3.25 Gay
HEISTONE CALLET GLOUD, THE	Ove (psf) G've (psf) Q F (%) Ic "Plastic" Flag Soil Type (9%) soft layer (9%) (soft layer)	0.001 19.4 19.4 3.132 3.628 3.47 Unsaturated 0.005 39.9 39.9 7.515 3.066 3.11 Unsaturated	0.009 59.3 59.3 4.060 7.395 3.54 Unsaturated	0.066 99.2 99.2 33.086 1.601 2.42 Unsaturated	0.091 118.6 118.6 29.917 2.166 2.53 Unsaturated Unsaturated	0.107 158.5 158.5 18.328 3.382 2.82 Unsaturated	0.134 179.1 179.1 21.086 3.386 2.77 Unsaturated	0.284 198.4 198.4 29.188 4.821 2.76 Unsaturated 0.530 217.8 217.8 46.243 5.325 2.65 Unsaturated	0.631 238.4 238.4 55.395 4.965 2.58 Unsaturated	0.627 257.7 257.7 51.460 5.029 2.60 Unsaturated 0.536 278.3 278.3 41.297 5.076 2.67 Unsaturated	0.425 297.7 297.7 32.684 4.853 2.73 Unsaturated	0.383 317.0 317.0 48.776 4.950 2.62 Unsaturated	0.304 357.0 357.0 31.105 5.471 2.78 Unsaturated	0.300 377.5 37.75 31.316 5.072 2.76 Unsaturated	0.287 396.9 396.9 29.941 4.824 2.76 Unsaturated 0.358 416.2 416.2 29.223 5.881 2.82 Unsaturated	0.486 436.8 436.8 30.959 7.185 2.87 Unsaturated	0.635 456.2 456.2 43.413 6.411 2.73 Unsaturated 0.707 476.7 48.545 6.106 2.68 Unsaturated	0.695 496.1 496.1 44.394 8.307 2.72 Unsaturated	0.745 536.0 536.0 38.214 7.272 2.81 Unsaturated	0.692 555.4 555.4 37.243 6.690 2.79 Unsaturated 0.594 576.0 576.0 32.995 6.953 2.81 Unsaturated	0.528 595.3 595.3 28.094 6.309 2.86 Unsaturated	0.446 615.9 615.9 27.187 5.322 2.82 Unsaturated 0.441 635.3 635.3 31.208 4.453 2.72 Unsaturated	0.448 654.6 654.6 28.819 4.744 2.76 Unsaturated 0.358 675.2 24.544 3.063 2.69 Unsaturated	0.338 694.5 694.5 27.854 3.491 2.68 Unsaturated	0.370 715.1 715.1 20.116 5.143 2.90 Unsaturated 0.429 734.5 734.5 18.116 6.450 3.00 Unsaturated	0.450 753.8 753.8 15.688 7.614 3.10 Unsaturated	0.392 793.8 793.8 13.690 7.209 3.12 Unsaturated 1	0.375 814.3 814.3 13.785 6.681 3.10 Unsaturated 1	0.330 853.7 853.1 12.762 7.003 3.14 Unsaturated 1	0.401 873.6 873.6 13.720 6.689 3.10 Unsaturated 1	0.495 913.6 16.120 6.725 3.05 Unsaturated 1	0.596 932.9 932.9 17.909 7.135 3.04 Unsaturated 1	0.529 972.8 972.8 14.686 7.400 3.11 Unsaturated	0.465 992.2 992.2 13.735 0.801 3.11 Unsaturated 1 0.466 1012.8 1012.8 12.567 7.315 3.16 Unsaturated 1	0.465 1032.1 1024.0 13.504 6.721 3.11 Unsaturated 1 0.500 10515 1033.4 13.788 7.014 3.11 Unsaturated 1	0.484 1072.1 1043.4 14.039 6.604 3.09 Unsaturated	0.5/9 1091.4 1052.7 13.345 8.243 3.17 Unsaturated 7 0.574 1112.0 1062.7 14.932 7.233 3.10 Unsaturated 7	0.542 1131.4 1072.1 15.250 6.629 3.07 Unsaturated 0.502 1151.4 107.1 11.878 6.236 3.06 Unsaturated	0.437 1171.3 1091.4 13.495 5.938 3.07 Unsaturated	0.376 1190.6 1100.8 11.836 5.770 3.11 Unsaturated 0.343 1211.2 1110.7 10.541 5.850 3.15 Clay	0.267 1230.6 1120.1 9.847 4.833 3.12 Clay 1 0.223 1249.9 1129.5 9.004 4.389 3.13 Clay 1	0.166 1270.5 1139.5 8.030 3.624 3.12 Clay 1 0.188 1289.9 1148.8 7.460 4.387 3.20 Clay	1310.4 1158.8 7.568 5.036 3.23 Glay 1329.8 1168.2 7.577 5.809 3.25 Glay 1349.2 1177.6 8.535 6.382 3.25 Glay
© 2014 COLITIONIE L'ALLI GLOUP, INC.	$f_{\delta}(\text{tsf}) \sigma_{\text{vc}}(\text{psf}) \sigma_{\text{vc}}(\text{psf}) Q F(\%) \text{Ic} \text{"Plastic"} \text{Flag Soil Type} (\%) \text{interfaces} \text{pl.} \ 7$	0.040 0.001 19.4 19.4 3.132 3.628 3.47 Unsaturated 0.170 0.005 39.9 39.9 7.515 3.066 3.11 Unsaturated	0.150 0.009 59.3 59.3 4.060 7.395 3.54 Unsaturated	4.160 0.066 99.2 99.2 33.086 1.601 2.42 Unsaturated	4.270 0.091 118.6 118.6 29.917 2.166 2.53 Unsaturated of the control of the contr	3.240 0.107 158.5 158.5 18.328 3.382 2.82 Unsaturated	4.050 0.134 179.1 179.1 21.086 3.386 2.77 Unsaturated	5.990 0.284 198.4 198.4 29.188 4.821 2.76 Unsaturated 10.070 0.530 217.8 217.8 46.243 5.325 2.65 Unsaturated	12.830 0.631 238.4 238.4 55.395 4.965 2.58 Unsaturated	12.600 0.627 257.7 257.7 51.460 5.029 2.60 Unsaturated 10.700 0.536 278.3 278.3 41.297 5.076 2.67 Unsaturated	8.910 0.425 2977 2977 32.684 4.853 2.73 Unsaturated	7.890 0.383 317.0 317.0 48.776 4.950 2.62 Unsaturated	5.730 0.304 357.0 357.0 31.105 5.471 2.78 Unsaturated	6.100 0.300 377.5 377.5 31.316 5.072 2.76 Unsaturated	6.140 0.287 396.9 396.9 29.941 4.824 2.76 Unsaturated 6.290 0.358 416.2 416.2 29.223 5.881 2.82 Unsaturated	6.980 0.486 436.8 436.8 30.959 7.185 2.87 Unsaturated	10.130 0.635 456.2 456.2 43.413 6.411 2.73 Unsaturated 11.810 0.707 476.7 48.545 6.106 2.68 Unsaturated	11,260 0.695 496.1 496.1 44.394 6.307 2.72 Unsaturated	10.480 0.710 510.7 510.7 59.507 7.002 2.79 Unsaturated 10.510 0.745 536.0 536.0 38.214 7.272 2.81 Unsaturated	10.620 0.692 555.4 555.4 37.243 6.690 2.79 Unsaturated 9.790 0.594 5760 5760 32.995 6.253 2.81 Unsaturated	8.660 0.528 595.3 595.3 28.094 6.309 2.86 Unsaturated	8.680 0.446 615.9 615.9 27.187 5.322 2.82 Unsaturated 10.230 0.441 635.3 635.3 31.208 4.453 2.72 Unsaturated	9.760 0.448 654.6 654.6 28.819 4.744 2.76 Unsaturated 12.010 0.358 675.2 24.544 3.063 2.69 Unsaturated	10,020 0,338 694.5 694.5 27,854 3,491 2,68 Unsaturated	7.550 0.370 715.1 715.1 20.116 5.143 2.90 Unsaturated 7.020 0.429 734.5 734.5 18.116 6.450 3.00 Unsaturated	6.290 0.450 753.8 753.8 15.688 7.614 3.10 Unsaturated	6.070 0.422 7744 7744 14.677 7.419 3.11 Unsaturated 1 5.830 0.392 793.8 793.8 13.690 7.209 3.12 Unsaturated 1	6.020 0.375 814.3 814.3 13.785 6.681 3.10 Unsaturated 1	5.970 0.330 633.7 633.7 13.322 0.404 3.10 Unsaturated 1 5.870 0.381 853.1 853.1 12.762 7.003 3.14 Unsaturated 1	6.430 0.401 873.6 873.6 13.720 6.689 3.10 Unsaturated 1	7.820 0.495 913.6 913.6 16.120 6.725 3.05 Unsaturated	8.820 0.596 932.9 932.9 17.909 7.135 3.04 Unsaturated 1	7.630 0.529 972.8 972.8 14.686 7.400 3.11 Unsaturated	7.510 0.463 992.2 992.2 13.735 6.801 3.11 Unsaturated 1 6.870 0.466 1012.8 1012.8 12.567 7.315 3.16 Unsaturated 1	7.430 0.465 1032.1 1024.0 13.504 6.721 3.11 Unsaturated 1 7.650 0.500 1051.5 1033.4 13.788 7.014 3.11 Unsaturated 1	7.860 0.484 1072.1 1043.4 14.039 6.604 3.09 Unsaturated	7.570 0.579 1091.4 1052.7 13.345 8.243 3.17 Unsaturated 7 8.490 0.574 1112.0 1062.7 14.932 7.233 3.10 Unsaturated 7	8.740 0.542 1131.4 1072.1 15.250 6.629 3.07 Unsaturated	7.950 0.437 11713 10914 13.495 5.938 3.07 Unsaturated	7.110 0.376 1190.6 1100.8 11.836 5.770 3.11 Unsaturated 7 6.460 0.343 1211.2 1110.7 10.541 5.850 3.15 Clay	6.130 0.267 1230.6 1120.1 9.847 4.833 3.12 Clay 1 5.710 0.223 1249.9 1129.5 9.004 4.389 3.13 Clay 1	5.210 0.166 1270.5 1139.5 8.030 3.624 3.12 Clay 14.930 0.188 1289.9 1148.8 7.460 4.387 3.20 Clay 1	0.221 1310.4 1158.8 7.568 5.036 3.23 Clay 0.270 1329.8 1168.2 7.370 5.899 3.25 Clay 0.321 1349.2 1177.8 8.535 6.382 3.25 Clay

7

0.91 PGA (Amax)

(Inches) 0.12 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1962 | 1963 | CSR Stress Reduction Coeff, rd ŏ 5.567 5.087 6.087 6. Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) Flag Soil Type Layer "Plastic" PI > 7 F (%) 7.7462 7. Ø Insitu $\sigma'_{vc} \, (psf)$ 11187.0 1206.0 1206.0 1207.0 1207.0 1307.0 1 σvc (pst) 1409.0 14 ∫s (tsf) 0.0.397 0.0.284 0.0.284 0.0.285 0.0 qc (tsf) 6.000
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3470
3.3 Depth (ft) 11.1860 11.186

PGA (/

7

PGA (A_{max}) 0.91

Total Settlement: 0.12

(Inches)

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand 7.77 (2.77 (CSR Stress Reduction Coeff, rd праводения ŏ 9.9.39 10.00000 10.0000 10. Thin Layer Factor (K_H) 99 99 99 99 qcn near interfaces (soft layer) 58.3 58.3 58.3 58.3 58.3 ines (%) Flag Soil Type Layer "Plastic" PI > 7 11.10 F (%) 9,9370 11,1280 11,1280 12,1280 13,1280 14,1080 16,1080 16,1 Ø Insitu o'vc (psf) 1891.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
1890.0
18 σvc (pst) 27718.9.3
27718.9.3
27718.9.3
27718.9.3
27718.9.3
27779.8.4
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8.7
277779.8
277779.8
277779.8
277779.8
277779.8
277779.8
277779.8
277779.8
277779.8
27 fs (tsf) 0.0499
0.0534
0.0534
0.0534
0.0554
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0.0557
0. qc (tsf) 9.999 11.1580 Depth (ft)

PGA (Amax)

7

CPT No.

0.91

(Inches) 0.12 Total Settlement:

Factor of Safety (CRR/CSR) 101061235 520.04 89.36 4.20 4.20 4.20 5.27 5.530.75 5.530.75 5.630.76 5.630 CRRM=7.5, \(\sigma'vc = 1 \) atm na.
na.
ma.
mm.
mm.
mm.
42140.006
277.097
277.34
1.734
1.734
1.641
22.123
2322.417
mm.
ma.
na.
na.
na.
na. Stress Reduction Coeff, rd ŏ 46.82
117.82
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83
117.83 Thin Layer Factor (K_H) ∞ ∞ qcN near interfaces (soft layer) 136.4 136.4 136.4 136.4 136.4 ines (%) 773.0
773.0
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6
773.6 Flag Soil Type Layer "Plastic" PI > 7 CORNERSTONE EARTH GROUP F (%) 4.033 4.033 4.033 4.034 4. 88.396
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366
9.366 Ø Insitu o'vc (psf) 2475.2
2484.9
2484.9
2484.9
2484.9
2584.3
2584.3
2584.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2585.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2586.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
2686.3
26 σvc (pst) 40029.3 44068.5 44068.6 44068. fs (tsf) 1.439 (1. qc (tsf) 45.240 47.240 Depth (ft) 33.300
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400
33.3400

CPT No. CORNERSTONE EARTH GROUP

0.91 PGA (A_{max})

7

Total Settlement:

(Inches)

0.12

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'\txxc = 1\) atm K_o for Sand) 837) 837) 837) 837) 837) 837) 838) CSR Stress Reduction Coeff, rd 0.085 0.085 0.085 0.085 0.084 ő Thin Layer Factor (K_H) ∞ ∞ qcN near interfaces (soft layer) Fines (%) 100.0 10 Flag Soil Type Layer "Plastic" PI > 7 5.897 3.3954 1.918 3.3954 5.3978 5.770 5.770 5.770 5.770 7.895 F (%) Ø Insitu o'vc (psf) σvc (pst) 5559.1 5599.1 5418.4 5418.4 5418.5 fs (tsf) 1,1266 1,1239 1,1239 1,1053 0,730 0,615 0,615 0,615 0,615 0,623 0,649 0,448 0,448 0,448 0,448 0,489 0,389 0,567 0,389 0,657 0,657 0,657 0,657 0,657 0,658 0,657 0,658 0, qc (tsf) 28,4140 29,4160 20,2160 20, Depth (ft) 44,480 44,480 44,4780 45,280 45,280 45,280 45,280 45,280 45,280 46,100 4

CORNERSTONE EARTH GROUP Ш

CPT No.

က

PGA (A_{max})

0.91

0.25 (Inches) Total Settlement:

	•
Settlement (Inches)	
Vertical Strain Ev	
Factor of Safety (CRR/CSR)	
CRR	
CRRM=7.5, o'vc = 1 atm	
K _σ for Sand	1.100 1.000 1.000
CSR	0.589 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0590 0.0580 0.0582 0.0583
Stress Reduction Coeff, rd	2
qenecs	54.00 54.30 66.29 66.29 66.29 66.29 66.29 66.29 66.29 66.39 66.29 66.39
qc1N	0.05 0.03 0.03 14.17 14.17 15.48 16.78 17.78
ŏ	1.00
Interpreted	0.03 0.03
Thin Layer Factor (K _H)	
qcn near interfaces (soft layer)	
Fines dcN (%) (soft	77.7 4 77.4 77.4 77.4 77.4 77.4 77.4 77
	200 (200 (200 (200 (200 (200 (200 (200
Flag Soil Type	Unsaturated Unsatu
Layer "Plastic" Flag Soil PI > 7	200 (200 (200 (200 (200 (200 (200 (200
	200 (200 (200 (200 (200 (200 (200 (200
Layer "Plastic" Pl > 7	Unsaturated Unsatu
Layer Ic "Plastic" PI > 7	4.48 Unsaturated 2.68 Unsaturated 2.77 Unsaturated 2.79 Unsaturated 2.59 Unsaturated 2.59 Unsaturated 2.50 Unsaturated 2.50 Unsaturated 2.50 Unsaturated 2.50 Unsaturated 2.50 Unsaturated 2.50 Unsaturated 2.51 Unsaturated 2.52 Unsaturated 2.54 Unsaturated 2.55 Unsaturated 2.56 Unsaturated 2.57 Unsaturated 2.58 Unsaturated 2.59 Unsaturated 2.50 Unsaturated
F (%) Ic "Plastic"	93.504 4.48 Unsaturated 8.522 2.68 Unsaturated 6.706 2.243 Unsaturated 6.706 2.77 Unsaturated 6.706 2.77 Unsaturated 6.708 2.27 Unsaturated 6.709 2.77 Unsaturated 6.709 2.70 Unsaturated 6.700 2.70 0.700 2.70 Unsaturated 6.700 2.7
Q F (%) Ic "Plastic"	2.099 93.504 4.48 Unsaturated 0.503 94.619 5.36 Unsaturated 0.503 94.619 5.36 Unsaturated 0.503 94.619 5.36 Unsaturated 0.503 9.34 6.19 5.36 Unsaturated 0.503 9.315 2.243 Unsaturated 0.503 9.315 2.243 Unsaturated 0.503 9.315 2.243 Unsaturated 0.503 9.315 2.243 Unsaturated 0.503 9.316 2.243 Unsaturated 0.503 9.316 2.243 Unsaturated 0.503 9.316 2.243 Unsaturated 0.503 9.316 2.51 Unsaturated 0.503 9.316 2.52 Unsaturated 0.503 9.316 2.52 Unsaturated 0.503 9.316 2.53 Unsaturated 0.503 9.320 2.50 Unsaturated 0.503 9.320 0.503 0.503 9.300 0.503
Institu Q F (%) Ic "Plastic" Pl > 7	19.4 2.089 39.564 4.48 Unsaturated 9.9 7.03 39.4619 5.36 Unsaturated 9.9 7.03 39.4619 5.36 Unsaturated 9.9 7.03 39.4619 5.36 Unsaturated 9.9 7.04 8.72 2.68 Unsaturated 1186 2.85.50 6.05 2.77 Unsaturated 178.1 5.6409 8.227 2.68 Unsaturated 277.2 3.426 5.67 2.77 Unsaturated 277.3 4.680 6.499 2.77 Unsaturated 278.4 4.377 5.687 2.77 Unsaturated 278.7 4.680 6.499 2.77 Unsaturated 278.4 3.426 4.592 2.70 Unsaturated 278.4 4.410 3.972 2.69 Unsaturated 278.4 4.410 3.972 2.69 Unsaturated 278.5 4.410 3.972 2.69
$ \frac{1}{G_{vc}(psf)} \frac{\ln situ}{G_{vc}(psf)} \frac{Q}{G_{vc}(psf)} = \frac{La yer}{P} $	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.5 38.9 9.2 39.4 18.5 4.8 Unsaturated Unsaturated Unsaturated Unsaturated 119.2 18.2 5.409 9.02.2 2.8 Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated 119.2 18.6 <th< th=""></th<>
$f^{s}\left(\text{sf}\right) \text{Ovc}\left(\text{psf}\right) \text{Ovc}\left(\text{psf}\right) \text{Q} \text{F}\left(\%\right) \text{Ic} \text{'Plastic'} \text{Pl} > 7$	0.0.09 3.9.4 1.8.4 2.099 36.5 GB 4.4.8 Unsaturated Control 0.1.6 3.9.2 3.8.9 3.6.00 30.82.4 4.9 Unsaturated Control 0.1.6 3.9.2 3.8.9 0.08.23 3.4.9 Unsaturated Control 0.2.36 1.9.2 7.0.7 1.0.8 2.2.7 2.0.8 Unsaturated Control 0.2.36 1.9.2 1.0.8 2.2.7 2.0.8 Unsaturated Control 0.2.37 1.1.8 1.1.8 1.0.8 2.2.7 2.0.8 Unsaturated Control 0.2.39 1.1.8 1.0.8 2.2.7 2.0.9 Unsaturated Control 0.2.30 1.1.8 1.0.8 2.0.9 2.0.9 Unsaturated Control 0.2.30 1.0.8 2.0.9 2.0.9 Unsaturated Control 0.0.9 0.2.30 1.0.8 2.0.9 2.0.9 Unsaturated Control 0.0.9 0.2.30 2.0.9 2.0.9 Unsaturated Control 0.0.9 0.0.9 0.0.9 0.2.30

က

CPT No.

0.91 PGA (A_{max})

(Inches) 0.25 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1961 | 1962 | 1963 | CSR Stress Reduction Coeff, rd ŏ Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) Flag Soil Type Layer "Plastic" PI > 7 F (%) 11.189
19.187
19.188
19.187
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188
19.188 Ø Insitu o'vc (psf) 1110.094.5
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
1110.39
111 σvc (pst) 1409.0 14 fs (tsf) 0.0407
0.0352
0.0352
0.0472
0.0472
0.0472
0.0312
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0.0327
0. qc (tsf) 6.5560 9.5270 Depth (ft) 11.130 11

က

0.91 PGA (A_{max})

Settlement (Inches)	0.00	00.00	0.00	00.00	0.0	0.00	00.00	0.00	0.00	9 6	0.00	00.0	00.0	0.00	0.00	8 0	0.00	00.00	0.0	00.0	800	00'0	0.00	0.00	00.00	0.00	000	00.0	00.00	0.0	00'0	00.00	0.00	0.00	0.00	00.00	0.0	000	0.00	0.00	00.00	0.00	800	0.00	0.0	8.0	0.00	0.00	0.0	0.0	0.00
Vertical Strain Ev	0.00	00.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	9.0	8.0	800	0.00	0.00	0.00	800	0.00	0.00	0.00	8.6	800	0.00	0.0	0.00	0.00	0.00	8.0	0.00	0.00	8 6	000	0.00	0.00	8 0	0.00	0.00	0.00	8 6	0.00	0.00	0.00	0.00	8 6	0.00	0.0	8.0	0.00	0.00	0.00	000	0.0
Factor of Safety (CRR/CSR)	n.a. n.a.	па	n n	n.a.	n.a.		n a	n.a.	n a	e e	. c	 	n.a.	па	n a	, e	n.a.	n.a	n.a	e c		n.a.	n.a.	e e	n.a	n.a.	, c	n.a	n a	e e	e c	n.a	e c	. e	n.a	n.a.	n.a.	. c	n.a.	e c	n.a	n a	, c	n	n,a,	. c	e u	n.a.	n.a.	n.a.	n e
CRR	n.a n.a	па	n.a.	n.a.	e c	a c	n.a	n.a.	n.a	e c	. c	a a	na	n.a.	па	. e	n.a	n.a.	па	e c	а в = =	n.a.	e c	a	n.a	n a	, c	па	n.a	e c	n e	па	па	, c	па	n.a	n.a.	. c	па	е с с	па	n a	, c	п	n a	. c	a c	пa	n.a.	e c	9 6
CRRM=7.5, σ'vc = 1 atm	 	n a	a a	n.a.	e c		n.a	n.a.	n a	c c		о С	n a	n.a.	n d	0 0	n.a	па	n.a.	e c	o o	n.a.	e e	9 5	n.a	e e	. c	a u	n a	c c	a	n a	n a	g 6	n a	n.a	n.a.	9 8	n	e e	n	e e	. c	n n	n a		9 5	n a	n.a.	e c	e e
K _σ for Sand	. e . c	a	e e	n.a.	e c	g e	па	n.a.	n a	e c	מ ת	g @	a	па	n a	d di	n.a.	n.a.	n.a.	e e	n a	n.a.	n.a.	ed ed	n.a.	n.a.	n (c	e c	n a	c c	e c	e u	e i	g @	e L	пa	n a	n e	ВП	e e	Вп	e u	, c	п	e c	n n	. c	па	n.a.	e c	a c
CSR	0.778	0.782	0.784	0.785	0.787	0.789	0.790	0.791	0.792	0.793	0.796	0.797	0.798	0.799	0.800	0.802	0.803	0.803	0.804	0.805	0.807	0.808	0.809	0.810	0.811	0.812	0.013	0.814	0.815	0.816	0,817	0.818	0.818	0.819	0.820	0.821	0.821	0.822	0.823	0.824	0.825	0.825	0.826	0.826	0.827	0.827	0.828	0.829	0.829	0.829	0.830
Stress Reduction Coeff, rd	0.94 0.94 0.94	0.94	9. 9.	0.94	96.0	0.94	0.94	0.94	0.94	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.83	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.97	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.90	0.90	0.90	0.90	0.00	0.90
q _{c1N-CS} F	л п п п	па	e e	n.a.	e c	g 6	n.a.	n.a.	n.a	e e	m m	g	n.a	n.a.	n a	, E	n.a.	n.a.	n.a.	n, a,	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	. c	a L	n a	e e	a	n.a	e i	. c	n.a	па	n.a.	 	па	e c	na	n.a.	. c	п	n a	e e	. e	па	n.a.	n a	a a
qc1N	n.a. n.a.	n a	n.a. n.a.	n.a.	n.a.	 	n.a.	n.a.	n.a.	n n		ם ם	n a	n.a.	n a	. E	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	, c	na	n.a.	n n	a c	n.a.	n a	, e	n n	n.a	n.a.	n. e.	n.a.	2 2	n.a.	n.a.	n (c	na	n.a.	e e	n a	n a	n.a.	n.a.	, a
Ő	1.06 1.05 1.05	1.05	1.05	1.05	1.05	2 4	1.04	1.04	2.5	2 2	4 5	1.03	1.03	1.03	103	1.03	1.02	1.02	1.02	20.1	1.02	1.02	1.02	101	1.01	1.01	5 5	1.01	1.01	8.5	8 8	1.00	9 9	8 8	1.00	66.0	0.99	66.0	0.99	66.0	66.0	66.0	0.80	96.0	86.0	98.0	0.98	0.98	0.98	0.97	0.97
Interpreted qcN	11.50 12.92 13.75	14.39	14.73	14.26	13.98	15.30	15.92	15.65	15.74	15.97	06.90	17.14	17.37	18.19	19.70	18.71	19.30	19.25	19.43	20.14	19.65	18.51	16.18	12.01	12.86	13.88	3.57	17.71	23.50	24.94	25.05	24.76	25.25	24.13	23.60	23.18	23.17	23.49	21.03	19.82	16.51	15.04	2.59	11.71	1.82	94.1	14.64	50.68	21.16	21.21	22.06
															. 1					2010	1.00	9							•		• • •	•	•••		• • •	•		• • •										•			
Layer or (K _H)																							L	200																											
ear Thin Layer (K _H)																																																			
qcN near interfaces (soft layer)	0 0 0		0 0	0	0 0	. 0	0	0	0 0	5	9 6	. 0	. 0	0	10			0					000		0		.	. 0				-				10	10.6	N 6-			. 0	0	.	0	0	.	0	0	0	0 ~	
Fines qcN near (%) (soft layer)	100.0 100.0 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.00.0	100.0	100.0	100.0	97.6	100.0	6.66	100.0	98.9	4.79	98.3	266	100.0	100.0	100.0	100.0	100.0	100.0	92.7	92.7	94.6	94.4	94.9	97.4	96.3	95.5	95.5	92.7	9.96	97.4 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	81.3
Fines qcN near (%) (soft layer)	Clay 100.0 Clay 100.0 Clay 100.0													Clay 100.0		Cley 100.0	Clay 99.9	Clay 100.0	Olay 98.9	97.4	Clay 98.3	Clay 99.7	Clay 100.0	Clay 100.0		Cley 100.0					Clay 94.6			Clay 97.4				Clav 92.7		Clay 97.4	Ė		Ì	ì		Clay 100:0	ì	`			Clay 81.3
Fines dcN near (%) (soft layer)																Cley 100.0	Clay 99.9	100.0 to 100.0	Clay 98.9	97.4	Clay 98.3	Clay 99.7	Clay 100.0	100.0																			Ì	ì			ì	`			
Fines qcN near (%) (soft layer)		Clay	Cay	Clay	Clay	Clay	Clay	1	Clay	A CO	Çiay	Cap.	(F) (F)	Qay	À de	Cley	Clay	Clay	Cay Say	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay		Clay														
Layer Plastic" Hag Soil Type (%) (soft layer)	Clay Clay	3.00 Clay	2.98 Clay	3.01 Clay	3.05 3.05	3.03 Clay	3.01 Clay	3.02 Clay	3.02 0.03	3.01 2.07	2.97 2.96	2.98 Clay	2.99 Clay	2.99 Clay	2.93 Clay	2.97 Clay	2.96 Clay	2.96 Clay	2.95	2.93	2.92 2.94 Clay	2.96	3.02 3.15	3.19 Clay	3.14 Clay	3.10 Clay	3.16 3.16	3.02 Clay	2.87 Clay	2.87 Clay	2.90 Clay	2.89 Clay	2.90 Clay	2.93 Clav	2.92 Clay	2.91 Clay	2.91 Clay	2.80 Cay	2.92 Clay	Clay	3.02 Clay	3.08	3.17 Clay	3.21 Clay	3.15	3.14 Clay	3.15 Clay	2.99 Clay	2.99 Clay	2.98 Clay	2.73 Clay
	3.12 Clay 3.06 Clay 3.05 Clay	5.585 3.00 Clay	5.349 2.98 Clay	5.611 3.01 Clay	6.217 3.05 Clay	6.339 3.03 Clay	6.072 3.01 Clay	6.199 3.02 Clay	6.200 3.02 Clay	6.165 3.01 Clay	5.274 2.97 5.431 2.96	5.857 2.98 Clay	6.211 2.99 Clay	6.364 2.99 Clay	5.760 2.93 Clay	6.088 2.97 Clay	6.096 2.96 Clay	6.108 2.96 Clay	5.822 2.95	5.650 2.93	5.636 2.94 Clay	5.536 2.96 Clay	5.836 3.02 6.047 3.15	6.985 3.19 Clay	6.409 3.14 Clay	6.103 3.10 Clay	7 294 3 16	6.116 3.02 Clay	5.181 2.87 Clay	5.526 2.87 Clay	5.962 2.90 Clay	5.805 2.89 Clay	6.007 2.90 Clay	6.268 2.93 Clay	5.805 2.92 Clay	5.484 2.91 Clay	5.442 2.91 Clay	4.947 2.86 4.855 2.87 Clay	4.985 2.92 Clay	4.774 2.93 Clay	5.189 3.02 Clay	5.560 3.08 Clay	5.877 3.17 Clay	6.078 3.21 Clay	4.978 3.15 Clay	6.562 3.26 Clay	6.710 3.15 Clay	5.858 2.99 Clay	5.925 2.99 Clay	5.832 2.98 Clay	2.73 Clay
Q F (%) Ic "Plastic" Hag Soil Type Fines (%) soft layer)	6.513 3.12 Clay 6.079 3.06 Clay 6.212 3.05 Clay	15.837 5.585 3.00 Clay	16.247 5.349 2.98 Clay	15.401 5.611 3.01 Clay	14.968 6.217 3.05 Clay	16.336 6.339 3.03 Clay	16.957 6.072 3.01 Clay	16.552 6.199 3.02 Clay	16.549 6.200 3.02 Clay	16.726 6.165 3.01 Clay	17.583 5.431 2.96	17.751 5.857 2.98 Clay	17.912 6.211 2.99 Clay	18.733 6.364 2.99 Clay	20.296 5.760 2.93 Clay	18.994 6.088 2.97 Clay	19.528 6.096 2.96 Clay	19.372 6.108 2.96 Cday	19,457 5,822 2,95	20.720 5.650 2.93	19.378 5.636 2.94 Clay	18.059 5.536 2.96 Clay	15.477 5.836 3.02	10.957 6.985 3.19	11.784 6.409 3.14 Clay	12.781 6.103 3.10 Clay	12.161 0.714 3.14 Clay	16.492 6.116 3.02 Clay	22.308 5.181 2.87 Clay	23.666 5.526 2.8/ Clay	23,534 5,962 2,90 Clav	23.130 5.805 2.89 Clay	23.499 6.007 2.90 Clay	22.360 0.404 2.93 Clay	21.540 5.805 2.92 Clay	21.015 5.484 2.91 Clay	20.906 5.442 2.91 Clay	21.807 4.947 2.80 Clay	18.552 4.985 2.92 Clay	4.774 2.93 Clay	13.996 5.189 3.02 Clay	12.531 5.560 3.08 Clay	1010 3.14 Clay	9.240 6.078 3.21 Clay	9.299 4.978 3.15 Clay	8.909 4.545 3.14 Clay	11.740 6.710 3.15 Clay	17.204 5.858 2.99 Clay	17.565 5.925 2.99 Clay	17.524 5.832 2.98 Clay	2.389 2.73 Clay
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.587 6.513 3.12 Clay 14.244 6.079 3.06 Clay 15.162 6.212 3.05 Clay	1747.9 15.837 5.585 3.00 Clay	1757.3 16.048 5.282 2.98 Clay	1776.6 15.401 5.611 3.01 Clay	1786.6 14.968 6.217 3.05 Clay	1805.9 16.336 6.339 3.03 Clay	1815.3 16.957 6.072 3.01 Clay	1824.7 16.552 6.199 3.02 Clay	1834 6 16.549 6.200 3.02 Clay	1844.0 16.726 6.165 3.01 Clay	1854.0 17.537 5.574 2.97 Clay	1872.7 17.751 5.857 2.98 Clay	1882.7 17.912 6.211 2.99 Clay	1892.1 18.733 6.364 2.99 Clay	1902.0 20.296 5.760 2.93 Clay	1920.8 18.994 6.088 2.97	1930.8 19.528 6.096 2.96 Clay	1940.1 19.372 6.108 2.96 Clay	1950.1 19.457 5.822 2.95	1959.5 20.120 5.650 2.93	1978.8 19.378 5.636 2.94 Clay	1988.2 18.059 5.536 2.96 Clay	15.477 5.836 3.02	2017.5 10.957 6.985 3.19	2026.9 11.784 6.409 3.14 Clay	2036.2 12.781 6.103 3.10 Clay	2046.2 12.181 0.714 3.14 Clay	2065.5 16.492 6.116 3.02 Clay	2074.9 22.308 5.181 2.87 Clay	2084.3 23.666 5.526 2.87 Clay	2103.6 23.534 5.962 2.90 Clay	2113.6 23.130 5.805 2.89 Clay	2123.0 23.499 6.007 2.90 Clay	2142.3 22.166 6.268 2.93 Clay	2151.7 21.540 5.805 2.92 Clay	2161.6 21.015 5.484 2.91 Clay	2171.0 20.906 5.442 2.91 Clay	2180.4 21.807 4.847 2.80 Clay	2199.7 18.552 4.985 2.92 Clay	17.300 4.774 2.93 Clay	2228.4 13.996 5.189 3.02 Clay	2238.4 12.531 5.560 3.08 Clay	2247.6 11.010 3.911 3.14 Clay	2267.1 9.240 6.078 3.21 Clay	2276 5 9 299 4 978 3.15 Clay	2200.5 8.909 4.545 3.14 Clay	2305.8 11.740 6.710 3.15 Clay	2315.2 17.204 5.858 2.99 Clay	2324.5 17.565 5.925 2.99 Clay	2334.5 17.524 5.832 2.98 Clay	18.128 2.389 2.73 Clay
$\frac{\text{Cw.(psf)}}{\text{Cw.(psf)}} \frac{\text{Insitu}}{\text{C'w.(psf)}} \frac{\text{Q}}{\text{C'w.(psf)}} = \frac{\text{F.(\%)}}{\text{P.(\%)}} \frac{\text{L.c.}}{\text{P.(\%)}} \frac{\text{L.c.}}{\text{P.(\%)}} \frac{\text{Cov. Near Plastic.}}{\text{P.(\%)}} = \frac{\text{Cov. Near Plastic.}}{\text{P.(\%)}} \frac{\text{Gov. near Plastic.}}{\text{(soft layer)}} = \frac{\text{Cov. Near Plastic.}}{\text{P.(\%)}} \frac{\text{Cov. Near Plastic.}}{\text{P.(\%)}} = \frac{\text{P.(\%)}}{\text{P.(\%)}} = \frac{\text{Cov. Near Plastic.}}{\text{P.(\%)}} = \frac{\text{P.(\%)}}{\text{P.(\%)}} = \frac{\text{P.(\%)}}{$	1719.2 12.587 6.513 3.12 Clay 1728.6 14.244 6.079 3.06 Clay 1738.5 15.157 6.212 3.05 Clay	2758.8 1747.9 15.837 5.585 3.00 Clay	2798.7 1767.3 16.048 5.282 2.98 Clay	2818.1 1776.6 15.401 5.611 3.01 Clay	2838.7 1786.6 14.968 6.217 3.05 Clay	2878.6 1805.9 16.336 6.339 3.03 Clay	2898.0 1815.3 16.957 6.072 3.01 Clay	2917.3 1824.7 16.552 6.199 3.02 Clay	2937.9 1834.6 16.549 6.200 3.02 Clay	2957.2 1844.0 16.726 6.165 3.01 Clay	297.5 1854.0 17.537 5.574 2.97 Clay	3016.5 1872.7 17.751 5.857 2.98 Clay	3037.1 1882.7 17.912 6.211 2.99 Clay	3056.5 1892.1 18.733 6.364 2.99 Clay	3077 0 1902.0 20.296 5.760 2.93 Clay	3115.8 1920.8 18,994 6,088 2.97 Clay	3136.3 1930.8 19.528 6.096 2.96 Clay	3155.7 1940.1 19.372 6.108 2.96 Clay	3176.3 1950.1 19.457 5.822 2.95	3195.6 1959.5 20.120 5.650 2.93	3235.5 1978.8 19.378 5.636 2.94	3254.9 1988.2 18.059 5.5 36 2.96	1998.1 15.477 5.836 3.02	3315.4 2017.5 10.957 6.985 3.19	3334.8 2026.9 11.784 6.409 3.14 Clay	3354.1 2036.2 12.781 6.103 3.10 Clay	3394 1 2055 6 12 262 7 294 3 16 Clay	3414.6 2065.5 16.492 6.116 3.02 Clay	3434.0 2074.9 22.308 5.181 2.87 Clay	3453.3 2084.3 23.666 5.526 2.87	3493.3 2103.6 23.534 5.962 2.90 Clay	3513.8 2113.6 23.130 5.805 2.89 Clay	3533.2 2123.0 23.499 6.007 2.90 Clay	3573.1 2142.3 22.166 6.268 2.93 Clay	3592.5 2151.7 21.540 5.805 2.92 Clay	3613.1 2161.6 21.015 5.484 2.91 Clay	3632.4 2171.0 20.906 5.442 2.91 Clay	3672.4 2190.4 21.01 4.947 2.80 Clay	3691.7 2199.7 18.552 4.985 2.92 Clay	2209.7 17.300 4.774 2.93 Clay	3751.0 2228.4 13.996 5.189 3.02 Clay	3771.6 2238.4 12.531 5.560 3.08 Clay	38115 2257 10111 5877 317 Clay	3830.9 2267.1 9.240 6.078 3.21 Clay	3850.2 2276.5 9.299 4.978 3.15 Clay	3890 2280.5 8.909 4.545 3.14 Clay	3910.7 2305.8 11.740 6.710 3.15 Clay	3930.1 2315.2 17.204 5.858 2.99 Clay	3949.4 2324.5 17.565 5.925 2.99 Clay	3970.0 2334.5 17.524 5.832 2.98 Clay	2003;4 2040;5 11,322 4,021 2,00 Clay
force forc	0.705 2699.5 1719.2 12.587 6.513 3.12 Clay Clay 0.705 2718.9 1772.6 14.244 6.079 3.06 Clay Clay 0.819 773.6 14.545 6.77 3.06 Clay Clay	0.773 2758.8 1747.9 15.837 5.585 3.00 Clay	0.749 2798.7 1767.3 16.048 5.282 2.98 Clay	0.768 2818.1 1776.6 15.401 5.611 3.01 Clay	0.831 2838.7 1786.6 14.968 6.217 3.05 Clay	0.935 2878.6 1805.9 16.336 6.339 3.03 Clay	0.935 2898.0 1815.3 16.957 6.072 3.01 Clay	0.936 2917.3 1824.7 16.552 6.199 3.02 Clay	0.941 2937.9 1834.6 16.549 6.200 3.02 Clay	0.951 2957.2 1844.0 16.726 6.165 3.01 Clay	0.896 2877.6 1854.0 17.337 5.574 2.97 Clay	0.974 3016.5 1872.7 17.751 5.857 2.98 Clay	1.047 3037.1 1882.7 17.912 6.211 2.99 Clay	1.128 3056.5 1892.1 18.733 6.364 2.99 Clay	1.112 3077.0 1902.0 20.296 5.760 2.93 Clay	1,111 3115,8 1920,8 18,994 6,088 2.97	1.149 3136.3 1930.8 19.528 6.096 2.96 Clay	1.148 3155.7 1940.1 19.372 6.108 2.96	1.105 3176.3 1950.1 19.457 5.822 2.95	1.114 3195.6 1959.5 20.120 5.650 2.93	1.00 3213.0 1906.0 20.230 3318 2.92 1.081 3235.5 1978.8 19.378 5.636 2.94	0.994 3254.9 1988.2 18.059 5.636 2.96	0.902 3275.5 1998.1 15.477 5.836 3.02	0.772 3315.4 2017.5 10.957 6.985 3.19	0.765 3334.8 2026.9 11.784 6.409 3.14	0.794 3354.1 2036.2 12.781 6.103 3.10 Clay	0.037 3374.7 2046.2 12.101 0.714 3.14 Clay	1.042 3414.6 2065.5 16.492 6.116 3.02 Clay	1199 3434 0 2074.9 22.308 5.181 2.87 Clay	1.363 3453.3 2084.3 23.666 5.526 2.87 Clay	1476 3493,3 2103,6 23,534 5,962 2,90 Clay	1.419 3513.8 2113.6 23.130 5.805 2.89 Clay	1.498 3533.2 2123.0 23.499 6.007 2.90 Clay	1.342 3332.0 2132.3 22.360 0.404 2.33 Cay	1.345 3592.5 2151.7 21.540 5.805 2.92 Clay	1.246 3613.1 2161.6 21.015 5.484 2.91 Clay	1.235 3632.4 2171.0 20.906 5.442 2.91 Clay	1.17 3672.4 2190.4 21.04 4.947 2.80 Clay	1.017 3691.7 2199.7 18.552 4.985 2.92 Clay	0.913 3712.3 2209.7 17.300 4.774 2.93 Clay	0.809 3751.0 2228.4 13.996 5.189 3.02 Clay	0.780 3771.6 2238.4 12.531 5.560 3.08 Clay	0.731 3/30/3 2247.0 11:010 3:311 3:14 Clay	0.637 3830.9 2267.1 9.240 6.078 3.21 Clay	0.527 3850.2 2276.5 9.299 4.978 3.15 Clay	0.463 3870.8 2286.5 6.909 4.545 5.14 Clay	0.908 3910.7 2305.8 11.740 6.710 3.15 Clay	1.167 3930.1 2315.2 17.204 5.858 2.99 Clay	1.210 3949.4 2324.5 17.565 5.925 2.99 Clay	1.193 3970.0 2334.5 17.524 5.832 2.98 Clay	0.510 4009.9 2353.8 18.128 2.389 2.73 Clay
Institution of the control of the co	2699.5 1719.2 12.587 6.513 3.12 Glay C219.8 1728.6 14.24 6.079 3.06 Glay 7739.4 1738.5 15.16? 6.212 3.06 Glay	15.220 0.773 2758.8 1747.9 15.837 5.585 3.00 Clay	15.5/0 0.764 2/79.4 1757.3 16.247 5.349 2.98 Clay	15.090 0.768 2818.1 1776.6 15.401 5.611 3.01 Clay	14.790 0.831 2838.7 1786.6 14.968 6.217 3.05 Clay	16.190 0.935 2878.6 1805.9 16.336 6.339 3.03 Clay	16.840 0.935 2898.0 1815.3 16.957 6.072 3.01 Clay	16.560 0.936 2917.3 1824.7 16.552 6.199 3.02 Clay	16.650 0.941 2937.9 1834.6 16.549 6.200 3.02 Clay	16.900 0.951 2957.2 1844.0 16.726 6.165 3.01 Clay	17.300 0.300 297.8 1834 17.337 3.574 2.97 Clay	18.130 0.974 3016.5 1872.7 17.751 5.857 2.98 Clay	18.380 1.047 3037.1 1882.7 17.912 6.211 2.99 Clay	19.250 1.128 3056.5 1892.1 18.733 6.364 2.99 Clay	20.840 1.112 3077.0 1902.0 20.296 5.760 2.93 Clay	19.320 1.124 3090.4 1911.4 19.223 0.11 2.97 C. 1910.8 1920.8 19.994 6.088 2.97	20.420 1.149 3136.3 1930.8 19.528 6.096 2.96 Clay	20.370 1.148 3155.7 1940.1 19.372 6.108 2.96	20.560 1.105 3176.3 1950.1 19.457 5.822 2.95	21.310 1.114 3195.6 1959.5 20.120 5.650 2.93	20.790 1.081 3235.5 1978.8 19.378 5.636 2.94 Characteristics	19.580 0.994 3254.9 1988.2 18.059 5.536 2.96	17.100 0.902 3275.5 1998.1 15.477 5.836 3.02	12.710 0.772 3315.4 2017.5 10.957 6.965 3.19	13.610 0.765 3334.8 2026.9 11.784 6.409 3.14	14.690 0.794 3354.1 2036.2 12.781 6.103 3.10	14.130 0.057 5574.7 2040.2 12.101 0.714 5.14 Clay	18.740 1.042 3414.6 2065.5 16.492 6.116 3.02 Clay	24.860 1.199 3434.0 2074.9 22.308 5.181 2.87 Clay	26.39U 1.363 3453.3 2084.3 23.666 5.526 2.87 Clay	26.500 1.476 3493,3 2103,6 23,534 5,962 2,90 Clay	26.200 1.419 3513.8 2113.6 23.130 5.805 2.89 Clay	26.710 1.498 3533.2 2123.0 23.499 6.007 2.90 Clay	25.530 1.488 3573.1 2.142.3 22.166 6.268 2.93 Clav	24.970 1.345 3592.5 2151.7 21.540 5.805 2.92 Clay	24.520 1.246 3613.1 2161.6 21.015 5.484 2.91 Clay	24.510 1.235 3632.4 2171.0 20.906 5.442 2.91 Clay	25,000 1.170 3051.8 2180.4 21.807 4.947 2.80 Clay	22.250 1.017 3691.7 2199.7 18.552 4.985 2.92 Clay	20,970 0,913 3712,3 2209,7 17,300 4,774 2,93 Clay	17.470 0.809 3751.0 2228.4 13.996 5.189 3.02 Clay	15.910 0.780 3771.6 2238.4 12.531 5.560 3.08 Clay	13.320 0.671 38115 22577 10.11 5.877 3.17 Clay	12.390 0.637 3830.9 2267.1 9.240 6.078 3.21 Clay	12.510 0.527 3850.2 2276.5 9.299 4.978 3.15 Clay	12.120 0.463 3870.8 2286.3 6.309 4.345 3.14 0.489 12.120 0.463 3870.8 2286.3 8.498 6.569 3.26 0.189	15.490 0.908 3910.7 2305.8 11.740 6.710 3.15 Clay	21.880 1.167 3930.1 2315.2 17.204 5.858 2.99 Clay	22.390 1.210 3949.4 2324.5 17.565 5.925 2.99 Clay	22.440 1.193 3970.0 2334.5 17.524 5.832 2.98 Clay	2003;4 2040;5 11,322 4,021 2,00 Clay

CORNERSTONE EARTH GROUP

© 2014 Cornerstone Earth Group, Inc.

CPT No.

က

PGA (A_{max})

_{nax}) 0.91

	_																																																				
Settlement (Inches)	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	9 6	0.00	0.00	0.00	8 6	800	0.00	0.00	0.00	800	0.00	0.00	00.0	0000	0.00	0.00	00.00	00.00	0.0	8 6	00.00	0.00	0.00	0.00	0.0	0.00	00.00	0.00	0.00	800	0.00	0.00	00.0	00.00	0.00	0.00	00.00	0.00	9 6	8 6	0.00	0.00	9 6	0.00	0.00
Vertical Strain	0.0	0.00	0.00	0.00	0.00	86	0.00	0.00	8 6	0.00	0.00	0.00	8 6	8.0	0.00	0.00	0.00	8.0	00.0	0.00	000	000	0.00	0.00	800	0.00	0.0	800	800	0.00	0.00	0.00	8.6	0.00	0.00	0.00	0.00	800	0.00	0.00	000	000	0.00	0.00	00.0	0.00	9 6	8.0	0.00	0.00	9 6	00.0	0.00
Factor of Safety (CRR/CSR)	n.a.	n.a.	n.a.	n a	n.a.	e e	a c	n.a	n a	a e	па	па	e c	, a	n.a.	n.a.	n a	, c	e u	n.a	e c	n a	n.a.	n a	, e	n.a.	n a	n n	, e	n.a	па	n.a	e c	a c	na	n.a.	na	. a	n e	n.a.	п. с	e e	n.a	n a	n.a.	па	n n	, a	n.a	па	n n	. e	n.a.
CRR		n n	n.a.	a a	n.a.	e e	a c	n.a	e c	a e	n.a.	n.a.	e c	ם ת	n.a	n.a.	e c	ם ת	a c	n.a.	e c		па	e c	. c	n.a.	n a	n n		па	па	n.a.	e c	a e	n.a.	n.a.	n a	. c	e c	n.a.	6 6	a e	па	n.a.	n.a.	па	e c	, a	вц	n.a.	e c	9 6	па
CRRM=7.5, σ'vc = 1 atm	n.a.	n a	n.a.	n a	n.a.	e e	a c	na	e c	a e	па	n a	e c	, a	n a	n.a.	n a		n e	n a	. a.	n n	n.a.	n a	9 6	n.a.	n a	n n	, e	n.a.	n.a.	n a	e c	a c	na	n.a.	na	. a	n e	n.a.	n	, e	n a	na	n.a.	n a	n n	, a	a	n a	e e	9 6	n.a.
K _σ for Sand	n.a.	a e	n.a.	e e	n.a.	e e	a c	пa	е с С с	g	пa	пa	g 0	ם ת	a	n's	7.8.	e e	n. n.	n.a.	e e	n.a.	n.a.	n.a.		n.a.	e -	m n	o 0	a L	пa	пa	е с С	g	n a	n.a	e l	n n	a u	па	E 6	. c	n n	пa	n.a	n a	e c	, a	a	пa	c c	g G	n a
CSR	0.831	0.831	0.832	0.832	0.833	0.833	0.834	0.834	0.834	0.835	0.835	0.835	0.835	0.836	0.836	0.836	0.836	0.837	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838	0.838	0.038	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.839	0.839	0.039	0.839	0.839	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.000	0.838	0.838	0.838	0.838	0.838
Stress Reduction Coeff, rd	0.90	06.0	0.90	0.90	0.90	0.89	0.89	0.89	0.89	0.89	0.89	0.89	68.0	680	0.89	0.89	0.89	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.07	0.87	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.00	0.86	0.86	0.86	0.85	0.85
qetN-CS	n.a.	n a	n.a.	n n	n.a.	e e	. c	па	e e	. c	n.a	n.a.	e c	ם מ	n a	es co	n.a.		n.a	n.a.	E 0	n.a.	n.a.	n,a.	. c	n.a.	e i	m n	, c	па	п	n.a.	e c	в е = =	n.a	n.a.	e .	. c	e c	n.a.	c c	. a	па	n.a.	n.a	n a	e c	. a	n a	n.a.	 	. c	na La
q _{c1N}	n.a.	n.a	n.a.	n n	n.a.	e e	a c	na	. a	, c	na	па	e e	n a	n a	n.a.	n.a.	9 6	n.a.	n.a.	ig c	na.	n.a.	n.a.	9 9	n.a.	n a	m n	, e	па	па	па	. a	. c	na	n.a.	n a	n a	e c	n.a	e e	g e	па	na	n.a.	па	n n	, a	В	па	e e	, c	n a
Š	0.97	0.97	0.97	0.97	0.97	96.0	96.0	96.0	96.0	0.96	96.0	96'0	96.0	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	36.0	0.94	9 9	3 3	0.94	0.94	9.0	0.94	0.94	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.0	0.91	0.91
Interpreted	22.32	19.73	22.35	22.32	22.87	21.72	18.58	15.94	15.13	17.57	15.56	12.94	12.23	13.58	11.87	10.73	10.46	10.11	10.30	10.04	10.70	14.58	16.93	18.88	18.90	17.49	16.37	12.30	14.36	15.17	16.60	17.58	20.00	27.81	31.15	31.74	31.61	20.02	27.50	27.40	28.08	28.23	28.40	29.87	30.52	29.85	27.20	26.04	26.33	25.64	22.93	17.55	15.65
Thin Layer Factor (K _H)																		7	~																																		
qcN near interfaces soft laver)																								4																													
of terms	1															1		2																																			
Fines (%)		100.0	0.66	98.8 97.8	98.1	100.0 98.5	100.0	100.0	100.0	93.2	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.00.0	91.0	84.8	84.7	83.4	82.1	86.9	89.3	89.2 88.0	88.4	88.2	83.8	83.6	82.3	85.3	80.6 80.6	87.4	0.68	91.0	96.0	100.0
Fines (%)	100.0	Clay 100.0						Ì									Clay 100.0	100.0	Olay 100.0	Clsy 100.0	100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clev 100.0	Ì		_ `			_										Clay 89.2						Clay 85.3	Oay 89.5	Clay 87.4	Clay 89.0	Gay 91.0	Clay 96.0	Clay 100.0
Flag Soil Type (%)	Clay 100.0							Ì									Clay 100.0	100.0	100.0	Clsy 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clev 100.0	Ì		_ `			_																Clay 85.3	Cay 85.2	Clay 87.4	Clay 89.0	Clay 91.0	Clay 96.0	Clay 100.0
Fines (%)	Clay 100.0		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Cay	Clay	Clay	Clay	Ciav	Clay	O Coley	S. C.	2 0	Clay	A C	Cla	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Cay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Cay	Clay	Clay	Clay	Clay	Clay
Layer "Plastic" Flag Soil Type (%)	2.97 Clay 100.0	Clay	2.95 Clay	2.95 Clay	2.94 Clay	2.97 2.94 2.94	2.97 Clay	3.03 Clay	3.04 3.06	2.88 Clay	2.98 Clay	3.14 Clay	3.18 3.16	3.16 3.14	3.22 Clay	3.25 Clay	3.24 Clay	326	3.24 Clay	3.26	3.22 3.16	3.10 Clay	3.03	2.98	3.00 Clev	3.07 Clay	3.10 Clay	3.15 3.15	3.11 Clay	3.07 Clay	3.02 Clay	3.03 Clay	2.98	2.85 Clay	2.77 Clay	2.77 Clay	2.76 Clay	2.12 2.74 Clay	2.80 Clay	2.83 Clay	2.83 Clay	2.82 Clay	2.81 Clay	2.76 Clay	2.76 Clay	2.74 Clay	2.78 2.78	2.78	2.81 Clay	2.82 Clay	2.85	2.91 Clay	2.98 Clay
Layer Plastic" Flag Soil Type (%)	5.915 2.97 Clay 100.0	3.06 Clay	5.381 2.95 Clay	5.298 2.95 5.041 2.94 Clay	5.235 2.94 Clay	5.484 2.97 Clay	4.455 2.97 Clay	4.433 3.03 Clay	4.180 3.04 Clay	2.763 2.88 Clay	3.463 2.98 Clay	4.615 3.14 Clay	5.033 3.18 Clay	4 919 3.14 Clay	5.434 3.22 Clay	5.075 3.25 Clay	4.703 3.24 Clay	4.695 3.25	4.538 3.24 Olay	4.561 3.26 Clay	4.368 3.22	4.448 3.10 Clay	4.317 3.03 Clay	4.116 2.98	4.481 3.00 Clay	5.098 3.07 Clay	5.127 3.10 Clay	5.21 5.15 Clay	4.248 3.11 Clay	4.030 3.07 Clay	3.840 3.02 Clay	4.222 3.03 Clay	4.276 2.98 Clay	4.114 2.85 Clay	3.599 2.77 Clay	3.652 2.77 Clay	3.406 2.76 Clay	2.307 2.12 2.908 2.74	3.276 2.80 Clay	3.618 2.83 Clay	3.701 2.83 Clay	3,564 2,82 Clay	3.540 2.81 Clay	2.76 Clay	3.138 2.76 Clay	2.847 2.74 Clay	2.862 2.78 Clay	3.263 2.83 Clay	2.973 2.81 Clay	3.067 2.82 Clay	2.836 2.85 Clay	2.330 2.91 Clay	2.98 Clay
Fines (%) Ic "Plastic" Flag Soil Type (%)	18.276 5.915 2.97 Clay 100.0	6.775 3.06 Clay 8.913 3.24 Clay	18.065 5.381 2.95 Clay	17.949 5.298 2.95 Clay	18.281 5.235 2.94 Clay	17.194 5.484 2.97 Clay	14.332 4.455 2.97 Clay	11.992 4.433 3.03 Clay	11.250 4.180 3.04 Clay	13.220 2.763 2.88 Clay	11.454 3.463 2.98 Clay	9.194 4.615 3.14 Clay	8.554 5.033 3.18 Clay	9.290 3.220 3.10 9.603 4.919 3.14	8.135 5.434 3.22 Clay	7.151 5.075 3.25 Clay	6.897 4.703 3.24 Clay	6.546 4.695 3.26	6.667 4.538 3.24	6.420 4.561 3.26 Cley	6.923 4.368 3.22 8.134 4.363 3.16	9.982 4.448 3.10	11.814 4.317 3.03	13.319 4.116 2.98	13.230 4.481 3.00	12.057 5.098 3.07 Clay	11.128 5.127 3.10 Clay	0.304 5.211 5.13 Clay	9.421 4.248 3.11 Clay	10.012 4.030 3.07 Clay	11.071 3.840 3.02 Clay	11.784 4.222 3.03 Clay	13.590 4.276 2.98 Clay	19.435 4.114 2.85 Clay	21.899 3.599 2.77 Clay	22.262 3.652 2.77 Clay	22.076 3.406 2.76 Clay	22.139 2.90/ 2.12 Clay	18.769 3.276 2.80 Clay	18.623 3.618 2.83 Clay	19.055 3.701 2.83 Clay	19.029 3.564 2.82 Clav	19.081 3.540 2.81 Clay	20.084 3.088 2.76 Clay	20.484 3.138 2.76 Clay	19.923 2.847 2.74 Clay	17.935 2.862 2.78 Clay	16.967 3.963 2.83	17.113 2.973 2.81 Clay	16.559 3.067 2.82 Clay	14.563 2.836 2.85 Clay	10.650 2.330 2.91 Clay	9.267 2.469 2.98 Clay
Q F (%) Ic "Plastic" Flag Soil Type (%)	2363.2 18.276 5.915 2.97 Clay 100.0	15.886 6.775 3.06 Clay	2391.9 18.065 5.381 2.95 Clay	2411.3 17.871 5.041 2.94 Clay	2420.6 18.281 5.235 2.94 Clay	2430.6 17.194 5.484 2.97 Clay	2449.9 14.332 4.455 2.97 Clay	2459.3 11.992 4.433 3.03 Clay	2468.7 11.250 4.180 3.04 Clay	2488.0 13.220 2.763 2.88 Clay	2498.0 11.454 3.463 2.98 Clay	2507.4 9.194 4.615 3.14 Clay	2517.3 8.554 5.033 3.18 Clay	2526.7 3.250 3.10 Clay	2546.1 8.135 5.434 3.22 Clay	2555.4 7.151 5.075 3.25 Clay	2565.4 6.897 4.703 3.24 Clay	2584 1 6.546 4.695 3.26	2594 1 6.667 4.538 3.24 Coay	2603.5 6.420 4.561 3.26 Clay	2613.4 6.923 4.368 3.22	2632.2 9.982 4.448 3.10	2642.2 11.814 4.317 3.03 Clay	2651.5 13.319 4.116 2.98	2670.9 13.230 4481 3.00	2680.2 12.057 5.098 3.07 Clay	2690.2 11.128 5.127 3.10 Clay	2709.5 10.304 5.211 3.13 Clay	2718.9 9.421 4.248 3.11 Clay	2728.3 10.012 4.030 3.07 Clay	2738.3 11.071 3.840 3.02 Clay	2747.6 11.784 4.222 3.03 Clay	2/5/6 13.590 4.2/6 2.98 Clay	2776.4 19.435 4.114 2.85 Clay	2786.3 21.899 3.599 2.77 Clay	2795.7 22.262 3.652 2.77 Clay	2805.7 22.076 3.406 2.76 Clay	2824 20 549 2 98 274 Clay	2834.4 18.769 3.276 2.80 Clay	2843.7 18.623 3.618 2.83 Clay	2853.7 19.055 3.701 2.83 Clay	2872.5 19.029 3.564 2.82 Clay	2882.4 19.081 3.540 2.81 Clay	2891.8 20.084 3.088 2.76 Clay	2901.8 20.484 3.138 2.76 Clay	2911.1 19.923 2.847 2.74 Clay	2920.5 17.935 2.862 2.78 Clay	2930.3 17.303 2.170 2.78	2949.8 17.113 2.973 2.81 Clay	2959.2 16.559 3.067 2.82 Clay	2969.1 14.563 2.836 2.85 Clay	2987.9 10.650 2.330 2.91 Clay	2997.9 9.267 2.469 2.98 Clay
Insitu Q F (%) Ic "Plastic" Flag Soil Type (%) PI > 7	4029.3 2363.2 18.276 5.915 2.97 Clay 100.0	2372.6 15.886 6.775 3.06 Clay 2382.6 11.622 8.913 3.24 Clay	4088.6 2391.9 18.065 5.381 2.95 Clay	4109.2 2401.9 17.949 5.298 2.95 Clay	4147.9 2420.6 18.281 5.235 2.94 Clay	4168.5 2430.6 17.194 3.484 2.97 Clay	4208.4 2449.9 14.332 4.455 2.97 Clay	4227.7 2459.3 11.992 4.433 3.03 Clay	4247.1 2468.7 11.250 4.180 3.04 Clay	4287.0 2488.0 13.220 2.763 2.88 Clay	4307.6 2498.0 11.454 3.463 2.98 Clay	4327.0 2507.4 9.194 4.615 3.14 Clay	4347.5 2517.3 8.554 5.033 3.18 Clay	4386.3 2536.1 9.603 4.919 3.14 Clay	4406.8 2546.1 8.135 5.434 3.22 Clay	4426.2 2555.4 7.151 5.075 3.25 Clay	4446.8 2565.4 6.897 4.703 3.24 Clay	44855 25841 6546 4695 3.26	4506.0 2594.1 6.667 4.538 3.24	4525.4 2603.5 6.420 4.561 3.26	4546.0 2613.4 6.923 4.368 3.22	4584.7 2632.2 9.982 4.448 3.10	4605.3 2642.2 11.814 4.317 3.03	4624.6 2651.5 13.319 4.116 2.98	4664.6 2670.9 13.230 4.481 3.00	4683.9 2680.2 12.057 5.098 3.07	4704.5 2690.2 11.128 5.127 3.10 Clay	4724 27095 0.304 3.211 3.13 Clay	4763.8 2718.9 9.421 4.248 3.11 Clay	4783.1 2728.3 10.012 4.030 3.07 Clay	4803.7 2738.3 11.071 3.840 3.02 Clay	4823.1 2747.6 11.784 4.222 3.03 Clay	4843.6 2/5/.6 13.59U 4.2/6 2.98 Clay	4882.4 2776.4 19.435 4.114 2.85 Clay	4902.9 2786.3 21.899 3.599 2.77 Clay	4922.3 2795.7 22.262 3.652 2.77 Clay	4942.9 2805.7 22.076 3.406 2.76 Clay	4902.2 2010.0 22.109 2.90/ 2.12 Clay	5002.1 2834.4 18.769 3.276 2.80 Clay	5021.5 2843.7 18.623 3.618 2.83 Clay	5042.1 2853.7 19.055 3.701 2.83 Clay	5080.8 2872.5 19.029 3.564 2.82 Clay	5101.4 2882.4 19.081 3.540 2.81 Clay	5120.7 2891.8 20.084 3.088 2.76 Clay	5141.3 2901.8 20.484 3.138 2.76 Clay	5160.7 2911.1 19.923 2.847 2.74 Clay	5180.0 2920.5 17.935 2.862 2.78 Clay	5219 9 2939 8 16 967 3 263 2 83 Clav	5240.5 2949.8 17.113 2.973 2.81 Clay	5259.9 2959.2 16.559 3.067 2.82 Clay	5280.4 2969.1 14.563 2.836 2.85 Clay	5319.2 2987.9 10.650 2.330 2.91 Clay	5339.7 2997.9 9.267 2.469 2.98 Clay
Oxe (psf) Insitu Q F (%) Ic "Plastic" Flag Soil Type Fines Plastic" Flag Soil Type (%) Plastic" Flag Soil Type Plastic Pla	1.277 4029.3 2363.2 18.276 5.915 2.97 Clay 100.0	4048.7 2372.6 15.886 6.775 3.06 Clay 4069.2 2382.6 11.622 8.913 3.24 Clay	1.163 4088.6 2391.9 18.065 5.381 2.95 Clay	1.142 4109.2 2401.9 17.949 5.298 2.95 Clay	1.158 4147.9 2420.6 18.281 5.235 2.94 Clay	1.146 4168.5 2430.6 17.194 5.484 2.97 Clay	0.782 4208.4 2449.9 14.332 4.455 2.97 Clay	0.654 4227.7 2459.3 11.992 4.433 3.03 Clay	0.580 424/1 2468/ 11.250 4.180 3.04 Gay	0.454 4287.0 2488.0 13.220 2.763 2.88 Clay	0.495 4307.6 2498.0 11.454 3.463 2.98 Clay	0.532 4327.0 2507.4 9.194 4.615 3.14 Clay	0.542 4347.5 2517.3 8.554 5.033 3.18 Clay	0.014 4300.9 2320.1 9.290 0.220 0.10 0.599 4386.3 2536.1 9.603 4.919 3.14	4406.8 2546.1 8.135 5.434 3.22 Clay	0.464 4426.2 2555.4 7.151 5.075 3.25 Clay	4446.8 2565.4 6.897 4.703 3.24 Clay	0.412 4400.1 2574.0 0.703 4.00 3.25	0.392 4506.0 2594.1 6.667 4.538 3.24	0.381 4525.4 2603.5 6.420 4.561 3.26 Clay	0.395 4546.0 2613.4 6.923 4.368 3.22	0,584 4584.7 2632.2 9,982 4,448 3.10	0.674 4605.3 2642.2 11.814 4.317 3.03	4624.6 2651.5 13.319 4.116 2.98	0.792 4664.6 2670.9 13.230 4481 3.00	0.824 4683.9 2680.2 12.057 5.098 3.07	0.767 4704.5 2690.2 11.128 5.127 3.10 Clay	0.723 4723.6 2099.0 10.304 3.211 3.13 Cay	4763.8 2718.9 9.421 4.248 3.11 Clay	0.551 4783.1 2728.3 10.012 4.030 3.07 Clay	0.582 4803.7 2738.3 11.071 3.840 3.02 Clay	0.683 4823.1 2747.6 11.784 4.222 3.03 Clay	0.801 4843.6 2757.6 13.590 4.276 2.98 Glay	4882.4 2776.4 19.435 4.114 2.85 Clay	1.098 4902.9 2786.3 21.899 3.599 2.77 Clay	1.136 4922.3 2795.7 22.262 3.652 2.77 Clay	1.055 4942.9 2805.7 22.076 3.406 2.76 Clay	0.532 4902.2 2015.0 22.159 2.907 2.72 0.88	0.871 5002.1 2834.4 18.769 3.276 2.80 Clay	0.958 5021.5 2843.7 18.623 3.618 2.83 Clay	5042.1 2853.7 19.055 3.701 2.83 Clay	0.974 5080.8 2872.5 19.029 3.564 2.82 Clay	0.974 5101.4 2882.4 19.081 3.540 2.81 Clay	0.897 5120.7 2891.8 20.084 3.088 2.76 Clay	0.933 5141.3 2901.8 20.484 3.138 2.76 Clay	0.826 5160.7 2911.1 19.923 2.847 2.74 Clay	0.550 5180.0 2920.5 17.935 2.862 2.78 Clay	0.713 0.200.0 2830.3 17.333 2.770 2.78	0.751 5240.5 2949.8 17.113 2.973 2.81 Clay	0.751 5259.9 2959.2 16.559 3.067 2.82 Clay	0.613 5280.4 2969.1 14.563 2.836 2.85 Clay	0.371 5319.2 2987.9 10.650 2.330 2.91 Clav	5339.7 2997.9 9.267 2.469 2.98 Clay

CORNERSTONE EARTH GROUP

CPT No.

က

PGA (A_{max})

4 (A_{max}) 0.91

+	1
Settlement (Inches)	
Vertical Strain &v	
Factor of Safety (CRR/CSR)	# # # # # # # # # # # # # # # # # # #
CRR	6 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
CRRM=7.5, o'vc = 1 atm	7.2.
K _σ for Sand	10.00
CSR	0.837 0.837 0.837 0.837 0.838
Stress Reduction Coeff, rd	0.088 0.088
q _{c1N-CS}	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
qc1N	### ##################################
Ö	0.91 0.91 0.91 0.91 0.93 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Interpreted	6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Thin La Factor (21 22 1 22 1 22 1 22 1 22 1 22 1 22 1
qon near Thin Layer nterfaces Factor (K _H)	90.48 90.48 90.48 90.48 90.48 1.72 82.76 1.72 82.76 1.72
Fines qcN near (%) (soft layer)	
qcn near interfaces (soft layer)	90.48 90.48 90.48 90.48 90.48 82.76 82.76
Fines qcN near (%) (soft layer)	95.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9
Fines (%) (soft layer)	Clay (100.0) Clay
Layer "Plastic" Flag Soil Type (%) (%) (soft layer)	Clay 95.9
Layer Plastic* Flag Soil Type (%) (soft layer)	2.501 Glay 95.5 9.28 3.11 Glay 100.0 Glay 10
Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	2.084 2.89 Glay 95.9 4.246 3.01 Glay 95.9 4.246 3.01 Glay 95.9 4.246 3.01 Glay 95.9 4.246 3.01 Glay 95.8 4.246 3.01 Glay 95.8 4.246 3.02 Glay 95.8 4.246 3.02 Glay 95.8 4.246 3.02 Glay 95.8 4.256 2.04 Glay 95.8 4.25 2.04 Glay 95.8 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.29 2.24 5.20 6.29 3.04 5.29 2.24 5.20 6.29 3.04 5.29 2.27 5.29 2
Institu Q F (%) Ic "Plastic" Flag Soll Type (%) (soft Layer PIPs (9%) (soft Layer)	9,970 2,044 2,91 Gay 65,9 12,077 4,245 3,01 Gay 100,0 12,077 4,245 3,01 Gay 100,0 10,034 5,033 3,11 Gay 100,0 10,034 4,278 3,01 Gay 100,0 13,027 4,278 3,01 Gay 100,0 13,027 4,278 3,01 Gay 100,0 24,352 2,69 2,69 2,69 2,69 38,417 4,572 2,82 2,64 Gay 100,0 24,352 2,89 2,79 Gay 100,0 3,73 68,701 3,42 2,89 2,43 3,73 3,74 68,707 3,42 2,89 2,44 3,87 3,94 3,44 6,617 3,42 2,49 3,87 3,49 3,44 3,42 3,48 3,44 4,51 3,48 3,44 4,51 3,48 3,44 4,51
Institu Q F (%) Ic "Plastic" Flag Soll Type (%) (soft layer) Pl > 7	90072 2870 2.064 2.87 CD64 2.87 CD64 2.87 CD64 2.87 CD69 2.88 3.88 3.88 3.88 <
fs (st) Gw (ps) Gw (ps) Cw (ps) Gw (ps	553.92.1 3007.2 2047.0 2.084 2.91 0.00 65.9 553.92.1 3007.2 1.2007 4.246 3.02 0.00 0.00 541.82.3 0.06.5 1.0.007 4.246 3.02 0.00 0.00 548.82 0.06.6.3 1.0.007 4.246 3.02 0.00 0.00 548.82 0.06.6.3 1.0.007 4.246 3.02 0.00 0.00 548.82 0.06.6.3 1.0.007 4.246 3.00 0.00 0.00 548.82 0.06.6.3 1.0.007 4.246 3.00 0.00 0.00 548.82 0.06.6.3 1.0.007 4.44 2.06 0.00 0.00 0.00 558.82 0.00.6.2 1.0.007 2.48 3.00 0.00 0.00 0.00 568.62 1.0.00 3.0.00 3.0.00 3.0.00 3.0.0 0.00 0.00 0.00 568.62 1.0.00 3.0.00 3.0.00 3.0.00

© 2014 Cornerstone Earth Group, Inc.

က

CPT No.

0.91 PGA (A_{max})

	_																																																		
Settlement (Inches)	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	9 0	00.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Vertical Strain Ev	0.00	0.00	8.0	0.00	0.0	000	00.00	0.00	0.0	8.6	00.00	0.00	0.00	8.6	00.0	00.00	0.00	000	0.00	00.0	8.0	00.0	0.00	0.0	800	0.00	0.00	8.0	0.00	0.00	0.00	800	0.00	0.0	0.00	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	000	0.00	0.00	800	0.00	000	0.00	0.00
Factor of Safety (CRR/CSR)	n.a.	n a	, e	n.a.	n.a	9 0	n.a	n.a.	n.a.	n o	9 6	па	n.a	e c		n.a.	n.a.	e e	n.a.	n.a.	e e	n'a	n.a.	n a	9 0	n.a.	n.a.	e e	n.a.	n.a.	n.a.	, e	па	n a	n a	n.a.	n a	n e	n.a.	n.a.	n a	n.a	n.a.	ם ם	n.a	е с е с	9 0	n.a.	e c	n.a.	. e.
CRR	n.a.	e i	. c	n.a.	n.a	9 6	па	n.a.	n.a.	e c	9 6	па	n a	e c	e L	na	n.a.	e e	па	n.a.		e e	n.a.	e c	9 6	n.a.	n.a.	6 6	па	па	n.a.	. e	па	па	e e	n.a.	a c	n e	n.a.	. a.	g 6	па	n.a.	a a	па	a c	0 0	n a	n n	n a	a a
CRRM=7.5, o'vc = 1 atm	n.a.	e i		n.a.	n.a	. c	n.a	n.a.	n.a.	 	, c	n	n.a.	e c	e c	n.a	n.a.	e e	n.a.	n.a.	מ מ	. e.	n.a.	 	. c	n.a.	n.a.	e e	n.a.	n.a	n.a.	. c	па	n n	a e	n.a.	n n	i e	n.a.	n d	в = ц	n a	e :	n n	n.a	e e	, e	n a	n a n a	n.a.	. e
K _a for Sand	n.a.	e i	, c	па	n a	, e	n n	пa	u u	e c	g 6	n a	па	e c	e c	па	n.a.	6 6	n.a.	n.a.	e e	n.a.	n.a.	n.a.	i e	n.a.	n.a.	c c	пa	па	n a	□ = =	п	e c	a c	пa	e c	a c	n.a.	c	g 6	n a	n.a.	. c	па	c c	g 6	e u	a a	e c	i ei
CSR	0.822	0.822	0.821	0.821	0.820	0.820	0.819	0.819	0.819	0.618	0.817	0.817	0.817	0.816	0.816	0.815	0.815	0.814	0.814	0.813	0.813	0.812	0.812	0.811	0.811	0.810	0.810	0.810	0.809	0.808	0.808	0.807	0.807	0.806	0.806	0.805	0.805	0.804	0.803	0.803	0.802	0.802	0.801	0.801	0.800	0.800	0.799	0.798	0.798	0.797	0.796
Stress Reduction Coeff, rd	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0,78	0.78	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.76	0.76	0,76	0.76	0.76	0.76	0.76
qenecs	n.a.	n n	. c	п	n a	. c	па	па	n a	o c	. c	n a	n a	g 0	9 6	па	E .	e c	n.a.	n.a.	e e	1.3	n.a.	ej e	0.0	n.a.	n.a.	c c	n a	n a	e c	. c	e c	e c	a c	па	e c	e e	n.a.	e c	g 60	e e	n a	e e	па	c c	, c	e u	n n	n.a	. a.
qc1N	n.a.	n a	, e	n.a.	n a	, c	n a	n.a	n a	о с С с	g 6	n a	n a	e e	. c	n	n.a.	n n	n.a.	n.a.		na.	n,a.	n.a.	- F	n.a.	n.a.	c c	n a	n n	n n	р (0 = =	e u	e c	a e	n.a.	e c	a e	n.a.	e .	g 65	e e	n a	a a	n.a	c c	0 0	e u	n a n	n.a	n e
Š	0.87	0.87	0.00	0.86	0.86	0.86	0.86	0.86	0.86	0.80	0.86	0.86	0.86	0.86	0.86	0.85	0.85	0.85	0.85	0.85	0.83	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	28.0	0.84	0.84	0.0	0.84	0.84	0.84	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Interpreted	15.75	15.95	17.26	17.21	16.48	16.57	16.14	16.12	15.78	16.40	17.22	17.46	17.04	16.48	16.54	17.17	18.59	19.91	20.95	20.30	17.33	20.72	25.82	20.97	28.98	28.59	29.71	28.53	23.66	22.05	19.79	17 74	16.80	18.70	29.90	28.95	27.26	43.53	34.22	25.98	21.31	19.42	18.32	21.78	25.31	20.39	20.87	23.63	24.64 24.68	24.61	27.03
Thin Layer Factor (K _H)																									100																										
qcN near Tinterfaces Fig. (soft layer)																				100					4																										
Fines qc (%) (so	100.0	100.0	100.0	100.0	100.0	1000	100.0	100.0	100.0	0.00	1000	100.0	100.0	100.0	1000	100.0	100.0	100.0	92.0	94.4	100.0	100.0	0.66	95.2	94.9	95.9	96.4	100.1	100.0	100.0	100.0	100,0	100.0	100.0	94.4	100.0	100.0	84.0	93.0	100.0	1000	100.0	100.0	100.0	100.0	100.0	1000	100.0	100.0	100.0	99.5
Flag Soil Type	Clay	Clay	<u>S</u> S	Clay	Clay	Clay Clay	Clay	Clay	Clay	C as	Clay	Clay	Clay	Clay	Clay	Clay	è	Clay	Clay	Clay	i di	S S	Cay) Cay	Cley	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay						
Layer "Plastic" PI > 7																		4	d					8			8																								
<u>0</u>	3.14	3,13	3.5	3.10	3.13	9 6 4 4	3.14	3.14	3.17	3.17	3.17	3.16	3.13	3.12	. e.	3.09	0000	2.95	2.86	2.89	3.05	3.04	2.95	2.90	2.90	2.91	2.92	2.95	2.98	3.00	3.05	3.12	3.22	3.20	2.89	3.02	3.03	2.76	2.88	2.99	3.17	3.21	3.23	3.08	2.99	3.09	3.15	3.07	3.0¢	3.04	2.96
F (%)	3.444	4.047	3.502	3.315	3.441	3.561	3.442	3.424	3.720	3.905	4.242	4.076	3.439	3.170	3.057	3.002	2.253	2.323	1.572	1.684	2.435	3.229	3.254	3.217	3.149	3.233	3.501	3.720	3.084	2.903	2.994	3.163	4 384	4.837	3.074	4.667	4 478	3.199	3.464	3.511	5.137	5.042	4.993	3.715	3.248	3.458	4.260	4.019	4 234	3.738	3.108
a	7.294	7.388	8 090	8.036	7.594	7.592	7.326	7.291	7.075	7.887	7.811	7.917	7.660	7 223	7.310	7,635	8.392	8.806	9.599	9.220	7.544	9.362	12.088	13,718	13.676	13,432	13.988	13.321	10.670	9.792	8.573	7,448	6.930	7.901	13.670	13.144	12,233	20.534	15.709	11.448	9.005	8.017	7.433	9.136	10.893	8.386	8,581	9.934	10.401	10.341	11.480
Insitu o'vc (psf)	3651.2	3661.2	3680.0	3689.9	3699.3	3718.6	3728.0	3738.0	3747.4	37667	3776.1	3786.0	3795.4	3805.4	3824.1	3834.1	3843.5	3862.8	3872.8	3882.1	3901.5	3910.8	3920.8	3930.2	3949.5	3958.9	3968.9	3978.2	3997.6	4007.0	4016.9	4035.7	4045.6	4055.0	4074.3	4083.7	4093.7	4113.0	4122.4	4131.8	4151.1	4161.1	4170.4	41/9.8	4199.2	4209.1	4227.9	4237.8	4247.2	4266.5	4285.9
σνc (psf)	6688.9	6709.5	6748.2	6768.7	6788.1	6828.0	6847.4	6868.0	6887.3	6007.3	6946.6	6967.2	6986.5	7,007	7045.8	7066.4	7085.8	7125.7	7146.3	7165.6	7205.6	7224.9	7245.5	7264.8	7304.8	7324.1	7344.7	7383.4	7404.0	7423.4	7443.9	7482.6	7503.2	7522.6	7562.5	7581.9	7602.4	7642.4	7661.7	7681.1	7721.0	7741.6	7760.9	7800.9	7820.2	7840.8	7879.5	7900.1	7940.0	7959.4	7999.3
fs (tsf)	0.459	0.547	0.559	0.491	0.483	0.503	0.470	0.467	0.493	0.55	0.626	0.611	0.500	0.442	0.427	0.439	0.363	0.395	0.292	0.301	0.358	0.591	0.771	0.867	0.850	0.860	0.972	0.986	0.658	0.570	0.516	0.475	0.615	0.775	0.856	1.253	1.121	1.351	1.122	0.830	0.960	0.841	0.774	0.340	0.743	0.610	0.773	0.846	0.891	0.825	0.765
qc (tsf)	16.660	16.880	18 260	18.210	17.440	17,530	17,080	17.060	16.700	17.050	18.220	18.470	18.030	17.290	17.500	18.170	19.670	20.570	22.160	21.480	18.510	21.920	27.320	30.590	30,660	30.250	31.430	30.180	25.030	23.330	20.940	18,770	17,770	76.460	31.630	30.630	28.840	46.050	36.210	27.490	22.550	20.550	19.380	23.040	26.780	21.570	22,080	25.000	26.070 26.110	26.040	28.600
Depth (ft)	55.280	55.450	55.770	55.940	56,100	56,430	56.590	56.760	56,920	57.090	57.410	57.580	57,740	57.910	58,230	58,400	58.560	58.890	59.060	59.220	59.380	59.710	59.880	60.040	60.370	60.530	60.700	60.860	61.190	61 350	61.520	61.840	62.010	62,170	62.500	62.660	62.830	63.160	63.320	63.480	63.810	63.980	64.140	64 470	64.630	64 800	65,120	65.290	65.620	65.780	66,110

© 2014 Cornerstone Earth Group, Inc.

က

0.91 PGA (A_{max})

+-	1																																
Settlement (Inches)	00.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.0	0.00	0.0	0.00	00.0	0.00	800	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	8 8 8	0.00	0.00	0.00	00.0	8 0 0	0.00	0.00
> "	00.00	0.00	000	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.00	0.00	8.0.0	0.00	0.00	0.00	00.0	8 8 8	0.00	0.00	00.00	8 8 8	0.00	00.00	0.00
Factor of Safety (CRR/CSR)	n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a.	n.a. n.a.	n.a.	n n n	n.a.	n.a.	8 6	n.a.	. e. e	e e	. e. e.	n.a.	n.a. n.a.	n.a n.a	n a	n.a. n.a.	n.a.	n.a.	e c		n.a.	2.87	2.52	89.4	25.80	467.92 26.37	1.38 0.52 0.21
	n.a. n.a.	n.a. n.a.	n n n	па	n.a.	n.a.	. a.	e u	n.a.	n.a.	n n	e e	a e	n n	n a	n a		n.a.	a u	n a	n.a.	n n	n a	e c	e c	e e	n e	2.217	1.945	3.608	19.858	359.767 20.264	1.063 0.396 0.163
CRRM=7.5, σ'vc = 1 atm	n.a. n.a.	n.a. n.a.	a c	n.a n.a	n.a.	n.a.	. e.	a c	n d	n.a.	n.a.	. c		n.a.	n a	e e		n.a.	n n	n n	n.a.	a a	n.a.	. c	e c		n e	1.256	1.095	2.111	12.039	218,441	0.632 0.277 0.141
= 7	n.a. n.a.	n.a.	n a n	n a	n a n a	n.a.	a	n a	n a	n a n	n.a. n.a.	e c	8 8	n.a.	n.a.	n, e,	n.a.	n.a. n.a.	e c	a a	n a	a a	n a	e e	a c	. e	a a	0.802	0.807	0.777	0.750	0.748	0.828 0.867 0.908
CSR	0.796 0.795 0.795	0.795	0.794	0.793	0.792	0.791	0.790	0.790	0.789	0.788	0.787	0.786	0.786	0.785	0.784	0.783	0.782	0.781	0.780	0.779	0.778	0.777	0.776	0.775	0.775	0.774	0.773	0.772	0.771	0.771	0.770	0.769	0.768 0.768 0.767
Stress Reduction Coeff, rd	0.76 0.76 0.76	0.76	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.72	0.72	0.72	0.72	0.72	0.72	0.72 0.72 0.72
q _{c1N-CS}	n a n a	n.a. n.a.	a c	n a	n.a.	n.a.		a c	n a	n a n a	n a	n.a.	n.a.	6 6	n.a.	n.a.	n.a.	n.a.	a a	n a n a	n a	a a	n n	a c	e c	. e. e	a a	192.29 192.94	189.45	201.93	226.45	254.25 226.72	176.42 148.18 102.78
qc1N	n.a. n.a.	n.a. n.a.	a c	n.a.	n a	n.a.	. a.	e e	n a	n a n a	na. na.	1.8.	n.a.	n.a.	na.	n.a.	na.	n.a.	n.a.	n a n a	n a	n a	n.a.	e e	e c		n a	127.80 163.31	166.35	201.93	226.45	254.25 226.72	166.41 96.45 42.91
ŏ	0.83 0.83 0.83	0.83	0.83	0.83	0.83	0.82	0.82	0.82 0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.76 0.76	0.75	0.76	0.78	0.80	0.74 0.71 0.66
Interpreted	28.81 30.41 30.68	30.89 32.92	33.39 32.77	31.60 32.13	33.63 36.46	39.91	40.60	38 76 37 06	35.42 34.65	32.58 31.01	28.74	23.97	21.81	21.75	24.15	28.07	27.43	23.73	23.87 23.98	24.56 25.26	28.69	28.99 27.34	25.95 30.16	36.68	40.03	28.95	43.31	169.00 215.95	220.99	264.90 276.12	289.84	317.15 290.60	225.78 135.89 65.06
Thin Layer In Factor (K _H)																																	
qcn near interfaces (soft layer)																																	
	6 6											7			A	1																	
	96	97.9	97.0 97.3	98.3 96.6	93.8 90.4	87.6	98.6	39.1 38.4	90.0	94.2 96.9	99.8	0.00	0000	0000	0000	000.0	0.00	0.00	0.00	0.00	96.5	0.00	0.00	39.4 38.1	000	0.00	0.00	32.3 15.3	13.6	0.0	0.0	0.0	10.1 27.8 57.0
Soil T	Clay 98 Clay 96 Clay 96	Clay 97.9	Clay 97.0	Clay 98.3	Clay 93.8	3lay 87.6	Clay 88.6	Clay 89.1	Clay 90.0	Clay 94.2 Clay 96.9	29.9 Zley 99.8	100.0 100.0	18y 100.0	Clay 100.0	100.0 100.0	100.0 100.0			Clay 100.0	Clay 100.0	Clay 96.5	Jay 100.0	Clay 100.0	Clay 99.4	2lay 100.0	Clay 100.0	Clay 100.0	and 32.3	and 13.6	and 0.0	and 0.0	sand 0.0	Sand 10.1 Sand 27.8 Sand 57.0
er stic" Flag Soil Type	Clay 98 Clay 96	Clay 97.9 Clay 96.6	Clay 97.0 Clay 97.3	Clay 98.3 Clay 96.6	Clay 93.8 Clay 90.4	Clay 87.6	Clay 88.6	Clay 89.1 Clay 88.4	Clay 90.0		Clay 99.8	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0		Clay 100.0	Clay 98.9	Clay 100.0	Clay 100.0	Clay 100.0 Clay 100.0	Clay 99.4	Clay 100.0		Clay 100.0	Sand 32.3 Sand 15.3	Sand 13.6	Sand 0.0	Sand 0.0	Sand 0.0	Sand 10.1 Sand 27.8 Sand 57.0
Layer "Plastic" PI > 7	Clay Clay	Olay Clay	Clay Clay	Clay	Clay Clay	Clay	Clay	Clay Clay	Clay	Clay Clay	Clay	Clay	A S	C CO	in and	G Glay	Clay	Clay Clay	Clay Clay	Clay Clay	Gay Gay	Clay	Clay	Clay	Clay	Cay	Clay	Sand	Sand	Sand	Sand	Sand	Sand Sand Sand
Layer "Plastic" PI > 7	2.95 Clay Clay 2.92 Clay Clay	2.94 Clay	2.92 Clay 2.93 Clay	2.94 Clay 2.92 Clay	2.89 Clay	2.81 Clay	2.82 Clay	2.83 Clay 2.82 Clay	2.84 Clay	2.89 Clay	2.96 Clay	3.01 3.06	3.05 3.04 Clay	3.08 3.15	3.15 3.09	3.08 3.06 0.01	3.02 Glay	3.05 Clay 3.06 Clay	3.05 Clay	2.95 Clay	2.97 Clay	2.99 Clay	3.07 Clay 3.01 Clay	2.95 Clay	2.99 Clay	3.19 Clay	3.10 Clay	2.12 Sand 1.90 Sand	1.88 Sand	171 Sand	1.54 Sand	1.60 Sand 1.65	1.84 Sand 2.06 Sand 2.43 Sand
F (%) Ic "Plastic" Pl > 7	3.295 2.95 Clay 3.267 2.92 Clay 3.341 2.92 Clay	3.491 2.94 Clay 3.605 2.92 Clay	3.728 2.92 Clay 3.677 2.93 Clay	3.641 2.94 Clay 3.417 2.92 Clay	3.200 2.89 Clay 3.053 2.84 Clay	3.044 2.81 Clay	3.256 2.82 Clay	3.107 2.83 Clay 2.796 2.82 Clay	2.815 2.84 Clay	3.013 2.89 Clay 3.164 2.92 Clay	3.236 2.96 Clay	2.836 3.01 2.966 3.06	2.855 3.05 Clay	3192 3.08 Clay	4.891 3.15 4.597 3.09	4.736 3.08 Clay	3.771 3.03 Clay	3.204 3.05 Clay 3.199 3.06 Clay	3.141 3.05 Clay 2.786 3.02 Clay	2.335 2.97 Clay	2.592 2.97 Clay	3.456 2.99 Clay	3.791 3.07 Clay 3.847 3.01 Clay	4.193 2.95 Clay 4.853 2.94 Clay	5.291 2.99 Clay	7.006 3.19 Clay	8.506 3.10 Clay	2.183 2.12 Sand 1.410 1.90 Sand	1.343 1.88 Sand	0.920 1.71 Sand	0.568 1.54 Sand	0.765 1.60 Sand 0.839 1.65 Sand	1.184 1.84 Sand 1.430 2.06 Sand 2.107 2.43 Sand
Q F (%) Ic "Plastic"	12.326 3.295 Clay 13.077 3.267 2.92 Clay 13.179 3.341 2.92 Clay	13.245 3.491 2.94 Clay 14.205 3.605 2.92 Clay	14.400 3.728 2.92 Clay 14.059 3.677 2.93 Clay	13.456 3.641 2.94 Clay 13.676 3.417 2.92 Clay	14.368 3.200 2.89 Clay 15.695 3.053 2.84 Clay	17.318 3.044 2.81 Clay	17.559 3.256 2.82 Clay	16.642 3.107 2.83 Clay 15.791 2.796 2.82 Clay	14.969 2.815 2.84 Clay	13.553 3.013 2.89 Clay 12.779 3.164 2.92 Clay	11.678 3.236 2.96 Clay	9.378 2.836 3.01 8.263 2.468 3.06	8.222 2.855 3.05 8.230 2.671 3.04	8.247 3.192 3.08 Clay	9.316 4.891 3.15 10.565 4.597 3.09	11.080 4.736 3.08 City 11.469 4.649 3.06	10.702 3.771 3.03 Clay	8.962 3.204 3.05 Clay 8.671 3.199 3.06 Clay	8.976 3.141 3.05 Clay 9.004 2.786 3.02 Clay	9.243 2.335 2.97 Glay 9.541 2.290 2.95 Glay	9.776 2.592 2.97 Clay	11.142 3.456 2.99 Clay	9.727 3.791 3.07 Clay 11.585 3.847 3.01 Clay	14.465 4.193 2.95 Clay	15.884 5.291 2.99 Clay	10.913 7.0046 3.19 Clay	17.184 8.506 3.10 Clay	109.190 2.183 2.12 Sand 140.169 1.410 1.90 Sand	1.343 1.88 Sand	0.920 1.71 Sand	0.568 1.54 Sand	0.765 1.60 Sand 0.839 1.65 Sand	1.84 Sand 2.06 Sand 2.43 Sand
Insitu Q F (%) Ic "Plastic" PI > 7	4295.3 12.326 3.295 Clay 4305.2 13.077 3.267 2.92 Clay 4314 13.179 3.311 2.92 Clay	4324.6 13.245 3.491 2.94 Clay 4333.9 14.205 3.605 2.92 Clay	4343.3 14.400 3.728 2.92 Clay 4353.3 14.059 3.677 2.93 Clay	4362.7 13.456 3.641 2.94 Clay 4372.6 13.676 3.417 2.92 Clay	4382.0 14.368 3.200 2.89 Clay 4391.4 15.695 3.053 2.84 Clay	4401.3 17.318 3.044 2.81 Clay	4420.7 17.559 3.256 2.82 Clay	4430.0 16.642 3.107 2.83 Clay 4439.4 15.791 2.796 2.82 Clay	4449.4 14.969 2.815 2.84 Clay 4458.8 14.570 2.718 2.84 Clay	4468.7 13.553 3.013 2.89 Clay 4478.1 12.779 3.164 2.92 Clay	4487.5 11.678 3.236 2.96 Cay 4497.4 10.642 2.825 2.96 Cay	4506.8 9.378 2.836 3.01 4516.8 8.263 2.966 3.06	4256.1 8.322 2.855 3.05 4535.5 8.230 2.671 3.04	4545.5 8.247 3.192 3.08 4554.9 8.366 4.273 3.15	4564-8 9.316 4.891 3.15 4574.2 10.565 4.597 3.09	4583.6 11.080 4.736 3.08 Clay	4672.9 10.702 3.774 3.03 Clay	4631.6 8.962 3.204 3.05 Clay 4641.6 8.671 3.199 3.06 Clay	4651.0 8.976 3.141 3.05 Clay 4660.9 9.004 2.786 3.02 Clay	4670.3 9.243 2.335 2.97 Glay	4699.0 11.034 2.516 2.92 Clay	4/09.0 11.142 3.456 2.99 Clay	4727.7 9.727 3.791 3.07 Clay 4737.7 11.585 3.847 3.01 Clay	4747.1 14.465 4.193 2.95 Clay	15.884 5.291 2.99 Clay	10.913 7.0046 3.19 Clay	17.184 8.506 3.10 Clay	109.190 2.183 2.12 Sand 140.169 1.410 1.90 Sand	143.360 1.343 1.88 Sand	172.051 0.920 1.71 Sand	188.135 0.568 1.54 Sand	265.722 0.765 1.60 Sand 188.067 0.839 1.65 Sand	1.184 1.84 Sand 1.430 2.06 Sand 2.107 2.43 Sand
Insitu Q F (%) Ic "Plastic" PI > 7	12.326 3.295 Clay 13.077 3.267 2.92 Clay 13.179 3.341 2.92 Clay	4324.6 13.245 3.491 2.94 Clay 4333.9 14.205 3.605 2.92 Clay	4343.3 14.400 3.728 2.92 Clay 4353.3 14.059 3.677 2.93 Clay	4362.7 13.456 3.641 2.94 Clay 4372.6 13.676 3.417 2.92 Clay	4382.0 14.368 3.200 2.89 Clay 4391.4 15.695 3.053 2.84 Clay	4401.3 17.318 3.044 2.81 Clay	4420.7 17.559 3.256 2.82 Clay	4430.0 16.642 3.107 2.83 Clay 4439.4 15.791 2.796 2.82 Clay	4449.4 14.969 2.815 2.84 Clay 4458.8 14.570 2.718 2.84 Clay	4468.7 13.553 3.013 2.89 Clay 4478.1 12.779 3.164 2.92 Clay	4487.5 11.678 3.236 2.96 Cay 4497.4 10.642 2.825 2.96 Cay	4506.8 9.378 2.836 3.01 4516.8 8.263 2.966 3.06	4256.1 8.322 2.855 3.05 4535.5 8.230 2.671 3.04	4545.5 8.247 3.192 3.08 4554.9 8.366 4.273 3.15	4564-8 9.316 4.891 3.15 4574.2 10.565 4.597 3.09	4583.6 11.080 4.736 3.08 Clay	4672.9 10.702 3.774 3.03 Clay	4631.6 8.962 3.204 3.05 Clay 4641.6 8.671 3.199 3.06 Clay	4651.0 8.976 3.141 3.05 Clay 4660.9 9.004 2.786 3.02 Clay	4670.3 9.243 2.335 2.97 Glay	4699.0 11.034 2.516 2.92 Clay	4/09.0 11.142 3.456 2.99 Clay	4727.7 9.727 3.791 3.07 Clay 4737.7 11.585 3.847 3.01 Clay	4747.1 14.465 4.193 2.95 Clay	4766.4 15.884 5.291 2.99 Clay	10.913 7.0046 3.19 Clay	4795.1 9.507 12.809 5.41 Clay	4814.5 109.190 2.183 2.12 Sand 4824.4 140.169 1.410 1.90 Sand	4833.8 143.360 1.343 1.88 Sand	4855 172.051 0.920 1.71 Sand	487.25 188.135 0.568 1.54 Sand	4891.2 205.722 0.765 1.60 Sand 4901.2 188.067 0.839 1.65 Sand	145.325 1.184 1.84 Sand 86.227 1.430 2.06 Sand 39.733 2.107 2.43 Sand
Ove (psf) Insitu Q F (%) Ic Plastic* PP (%) PP (%) PP PP T PP PP T	8018.7 4285.3 12.326 3.295 Clay 8039.2 4.305.2 13.077 3.267 2.92 Clay 8058.6 43.446 13.179 33.11 2.92 Clay	8079.2 4324.6 13.245 3.491 2.94 Clay 8098.5 4333.9 14.205 3.605 2.92 Clay	8117.9 4343.3 14.400 3.728 2.92 Clay 8138.5 4353.3 14.059 3.677 2.93 Clay	8157.8 4362.7 13.456 3.641 2.94 Glay 8178.4 4372.6 13.676 3.417 2.92 Glay	8197.8 4382.0 14.368 3.200 2.89 Clay 8217.1 4391.4 15.695 3.053 2.84 Clay	8237.7 4401.3 17.318 3.044 2.81 Clay	8277.6 4420.7 17.559 3.256 2.82 Clay	8297.0 4430.0 16.542 3.107 2.83 Clay 8316.3 4439.4 15.791 2.796 2.82 Clay	8336.9 4449.4 14.969 2.815 2.84 Clay 8356.3 4458.8 14.570 2.718 2.84 Clay	8376.8 4468.7 13.553 3.013 2.89 Clay 8396.2 4478.1 12.779 3.164 2.92 Clay	8415.6 4487.5 11.678 3.236 2.96 8436.1 4497.4 10.642 2.825 2.96	8455.5 4506.8 9.378 2.836 3.01 8478.1 4516.8 8.263 2.966 3.06	8495,4 4526.1 8.322 2.855 3.05 8514.8 4535.5 8.230 2.671 3.04	8535.3 4545.5 8.247 3.192 3.08 Clay 8554.7 4554.9 8.386 4.273 3.15	8575.3 4564.8 9.316 4.891 3.15 8594.6 4574.7 10.565 4.597 3.09	8614.0 4583.6 11.080 4.736 3.08 Giny 8634.6 4593.5 11.489 4.649 3.06	8674.5 4612.9 10.702 3.771 3.03 8683.4 465.2 9.733 3.148 3.02	8713.2 4631.6 8.962 3.204 3.05 Clay 8733.8 4641.6 8.671 3.199 3.06 Clay	8753.1 4651.0 8.976 3.141 3.05 Clay 8773.7 4660.9 9.004 2.786 3.02 Clay	8793.1 4670.3 9.243 2.335 2.97 Clay 8812.4 4679.7 9.541 2.290 2.95 Clay	8833.0 4689.6 9.776 2.592 2.97 Clay	8872.9 4709.0 11.142 3.456 2.99 Clay 8892.3 4718.4 10.378 3.131 2.99 Clay	8911.7 4727.7 9.727 3.791 3.07 Clay 8932.2 4737.7 11.585 3.847 3.01 Clay	8951.6 4747.1 14.465 4.193 2.95 Clay	8991.5 4766.4 15.884 5.291 2.99 Clay	9031.4 4785.7 10.913 7.046 3.19 Clay	9071.4 4805.1 17.184 8.506 3.10 Clay	9090.7 4814.5 109.190 2.183 2.12 Sand 9111.3 4824, 140.169 1.410 1.90 Sand	9130.7 4833.8 143.360 1.343 1.88 Sand	9100.0 4953.1 172.051 0.920 1.71 Sand 9400.0 4863.5 172.051 0.920 1.71 Sand 9400.0 4863.5 172.051 0.773 1.85 Sand	9210.5 4872.5 18.135 0.568 1.54 Sand 9220 0 48818 208 246 0.688 1.56 Sand	9249.2 4891.2 265.722 0.765 1.60 Sand 9269.8 4901.2 188.067 0.839 1.65 Sand	4910.6 145.325 1.184 1.84 Sand 4920.5 86.227 1.430 2.06 Sand 4929.9 39.733 2.107 2.43 Sand
$f^{s}(\text{tsf}) \text{Give (psf)} \text{linstitu} \qquad \text{Q} \qquad \text{F (%)} \qquad \text{Ic} \qquad \text{"Plastic"}$	8018.7 4285.3 12.326 3.295 Clay 8039.2 4.305.2 13.077 3.267 2.92 Clay 8058.6 43.446 13.179 33.11 2.92 Clay	1.000 8079.2 4324.6 13.245 3.491 2.94 Clay 1.110 8098.5 4333.9 14.205 3.605 2.92 Clay	1.166 8117.9 4343.3 14.400 3.728 2.92 Clay	1,069 8157.8 4362.7 13,456 3.641 2.94 Clay 1,022 8178.4 4372.6 13,676 3,417 2,92 Clay	1.008 8197.8 4382.0 14.368 3.200 2.89 Clay	1.160 8237.7 4401.3 17.318 3.044 2.81 Clay	1.264 8277.6 4420.7 17.559 3.266 2.82 Clay	1.145 8297.0 4430.0 16.642 3.107 2.83 Clay 0.980 8316.3 4439.4 15.791 2.796 2.82 Clay	0.938 8336.9 4449.4 14.969 2.815 2.84 Clay	8376.8 4468.7 13.553 3.013 2.89 Clay 8396.2 4478.1 12.779 3.164 2.92 Clay	0.848 8415.6 4487.5 11.678 3.236 2.96 Cay	0.599 8455.5 4506.8 9.378 2.836 3.01 0.554 8478.1 4516.8 8.283 2.968 3.06	8495,4 4526.1 8.322 2.855 3.05 8514.8 4535.5 8.230 2.671 3.04	0.598 8535.3 4545.5 8.247 3.192 3.08 0.814 8554.7 4554.9 8.366 4.273 3.15	1.040 8575.3 4564.8 9.316 4.891 3.15	8614.0 4583.6 11.080 4.736 3.08 Giny 8634.6 4593.5 11.489 4.649 3.06	0.303 8674.5 4672.3 9.733 3.148 3.02	0.665 8713.2 4631.6 8.962 3.204 3.05 Clay 0.644 8733.8 4641.6 8.671 3.199 3.06 Clay	0.656 8753.1 4651.0 8.976 3.141 3.05 Clay 0.585 8773.7 4660.9 9.004 2.786 3.02 Clay	0.504 8793.1 4670.3 9.243 2.335 2.97 Clay	0.552 885.24 4699.0 11034 2.516 2.92 Clay	0.907 8872.9 4709.0 11.142 3.456 2.99 Clay	0.872 8911.7 4727.7 9.727 3.791 3.07 Clay 1.056 8932.2 4737.7 11.585 3.847 3.01 Clay	1440 8951.6 4747.1 14.465 4.193 2.95 Clay	2.003 8991.5 4766.4 15.884 5.291 2.99 Clay	1840 90314 47857 10913 7.046 3.19 Clay	3.512 90714 4805.1 17.184 8.506 3.10 Clay	3.805 9090.7 4814.5 109.190 2.183 2.12 Sand 3.157 9111.3 4824.4 140.169 1.410 1.90 Sand	3.079 9130.7 4833.8 143.360 1.343 1.88 Sand	2.537 9170.6 4853.1 172.051 0.920 1.71 Sand	1,717 92105 472.5 188.135 0.568 1.54 Sand	2.552 9249.2 4891.2 205.722 0.765 1.60 Sand 2.540 9269.8 4901.2 188.067 0.839 1.65 Sand	9289.2 44016 145.325 1.184 1.84 Sand 93027 4920.5 86.227 14.30 2.06 Sand 9329.1 4929.9 39.733 2.107 2.43 Sand

က

PGA (A_{max})

Settlement (Inches)	i																																
Settl	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	00.0	8 8 8	0.00	8 8 8	0.00	0.00	8 8	8 8 8	8 8 8	000	0.00	0.00	0.0	0.0	0.0	0.00	0.00	000	8 8 8	8 8 8	0.00	0.00
> "	0.00	0.00	0.00	0.00	0.00	0.00	0.0	00.0	0.00	0.00	0.00	0.00	8.0.0	00.0	8 6 8	0.00	0.00	0.0	0.00	0.0	000	0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.0	8 8 8	80.0	0.00	0.02
Factor of Safety (CRR/CSR)	n.a. n.a.	n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a.	. n. n.	a c	n.a.	n.a.	n.a.	i ei e	. c. c	n a	n.a. n.a.	n.a.	n.a. n.a.	n.a. n.a.			i ei e	n.a. n.a.	n.a. n.a.	n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	e e		. n. n. n. n. n.	n.a. n.a.	0.45
	n.a. n.a.	n.a.	n a	n a	a a	a a	e e	e e	a a	па	n.a.	e c	e e e	a a	n.a. n.a.	. e	n.a.	e e	n n n			n.a.	a u	n n	e e	n a	a a	e c	e c	 	n n n	n.a. n.a.	0.333
CRRM=7.5, o'vc = 1 atm	n.a. n.a.	n n	n.a.	n.a. n.a.	n a	n a	9 9		a a	n n	n.a.		9 6 6	a	n n	n e	n.a. n.a.	e e				n n	e e	n.a.	n.a. n.a.	n a	n n n	n.a.			n.a. n.a.	n.a. n.a.	0.246
K _o for Sand	n.a. n.a.	n a	n n	n.a. n.a.	a a	n n	n.a.	a c	a c	n n	6,0	ej e	9 6 6	n n	n.a.	n.a.	n.a.	e u	e e e			n n	e e	n n	n n	n.a. n.a.	e e	n a	e c	. e. c	. a. a.	n.a. n.a.	0.855
CSR	0.767 0.766 0.766	0.765	0.765	0.764	0.763	0.762	0.761	0.760	0.759	0.759	0.758	0.757	0.756	0.756	0.755	0.754	0.753	0.753	0.752	0.751	0.750	0.749	0.748	0.747	0.747	0.746	0.745	0.744	0.743	0.743	0.742	0.741	0.740
Stress Reduction Coeff, rd	0.72 0.72 0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.77	0.71	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.69	69.0	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.68	0.68	0.68	0.68
85	n.a. n.a. n.a.	n n	n a	n.a n.a	n a	a a			e e	n n	e e	6.0	6 6 6	na	n.a.	n.a.	n.a. n.a.	n.a.	 		. c. c	n a	n.a.	n a	n.a. n.a.	л.а. .а.	n n n	n.a.			. a . . a .	n.a. n.a.	142.42
qc1N	n.a. n.a.	n a	n a	n.a. n.a.	n n	n n	 	n'a	n n	па	n 9.	6 6	9 2	n.a.	na.	n.a.	n.a.	n a	e; e; e			n a	e e	n n	e e	n.a. n.a.	n n	n a	. e. c	 	 	n.a. n.a. 73.42	82.38 82.21
Š	0.80 0.80 0.80	0.80	0.80	0.80	0.80	0.80	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78 0.78	0.78	79.0
Interpreted	37.11 32.46 33.24	27.56	30.09 26.71	26.55 26.69	25.36 24.64	23.75	22.78	21.75	21.05	21.90 22.63	23.02	25.43	24.37	24.52	24.52	26.91	27.70	34.96	34.58 27.61 26.37	24.99	24.84	24.43	25.86 25.75	25.67 26.34	26.31 26.22	26.03 26.59	26.12 25.30	24.73	27.86	26.86	28.89 41.60	71.80 91.65	123.04
Thin Layer Factor (K _H)																																	
qcn near interfaces (soft layer)											4																						
	93.6 93.7 94.4	100.0	97.2 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	80.8	93.1 100.0 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	97.5	100.0	6 6 6 6 6 6 6	89.8 76.8	37.8
Flag Soil Type	Clay Clay Clay	Clay Clay	Clay Clay	Clay Clay	Clay Clay	Clay	Clay	Clay	Clay Clay	Clay Clay	Clay	à d	Î	Clay		à	Clay	Clay	Clay Clay	Clay	Clay	Clay Clay	Clay Clay	Clay Clay	Clay Clay	Clay Clay	Clay Clay	Clay	Clay	Clay	Clay G	Clay Clay	Sand
Layer "Plastic" PI > 7											9	4																					
o	2.88 2.88 2.89	3.05	2.93 3.02	2.99 3.01	3.03 3.06	3.10	3.13	; e, c	3.13	3.09	3,08	2.99	3.00	2.98	3.04	2.97	3.10	2.95	2.88 2.99 2.99	3.04	3.06	3.09	3.09 3.12	3.12 3.10	3.08	3.05	2.98 2.97	3.01	2.93	3.00	3.26 3.14	2.67	2.18
F (%)	3.053 2.468 2.644	3.665	2.552 3.005	2.658 2.823	2.842 3.048	3.337	3.534	2.900	3.057	2.680	2.792	2.314	2.191	1.991	2.537	2.233	4.083	1.885	2.387	2.639	2,747	3.043	3.396	3.753	3.298	2.813	2.084	2.054	1.869	2.393	7.429 7.764	5.310 4.044 2.784	1.818
Ø	14.004 11.984 12.292	9.844	10.874 9.415	9.326 9.363	8.781 8.459	8.065	7.620	7.155	6.599	7.165	7.591	8.549	8.072	8.096	7.943	8.989	9.171 9.269	15.654	11.966 9.149 8.634	8.064	7.967	7.770	8.298 8.234	8.187 8.432	8.402	8.254	8.255 7.917	7.676	8.854	8.430 8.568	9.172 14.018	25.535 33.063	72.851
	623	90	ကက	~ 10	~ +	e 1-	~ -				10 -	. 00 0	200		തയാ	7 7	9 6	9.3	5.6	σ. ε.	8.4	00	+ ~						- m -		. IO O	2 2 4	573.9
	4939.3 4949.2 4958.6	4968	4987	5006	5026 (5045	5064	5083.4	5102.8	5112.7	5131.5	5150	5170.	5189.5	5208	5228	5237 5246	525	527	530	532	5343	5362	5381.7	5401.0	5420.4	5439.1	5458.5	5477.1	5497.1	5516.	5535	₩ ₩
Insitu o'vc (psf)	9348.5 4939. 9369.0 4949. 9388.4 4958.																																
Ovc (psf) O'vc (psf)		9409.0	9447.7 9468.3	9487.6 9508.2	9527.5 9546.9	9567.5	9607.4	9646.1	9666.7 9686.1	9706.6 9726.0	9745.3	9785.3	9825.2	9865.1	9884.5	9924.4	9964.4 9983.7	10004.3	10044.2 10063.6 10082.9	10103.5	10143.4	10182.2	10222.1 10242.7	10262.0 10281.4	10301.9	10341.9 10361.2	10380.6 10401 <u>.</u> 2	10420.5	10460.5	10500.4	10540.3 10559.7		10658.9
$f^{s} \text{ (tsf)} \qquad \sigma_{vc} \text{ (psf)} \qquad \text{Insitu} \\ \sigma^{l}_{vc} \text{ (psf)} $	9348.5 9369.0 9388.4	0.896 9409.0 0.720 9428.3	0.692 9447.7 0.707 9468.3	0.621 9487.6 0.663 9508.2	0.627 9527.5 0.649 9546.9	0.679 9567.5 0.711 9586.8	0.682 9607.4	0.527 9646.1	0.515 9686.1	0.491 9706.6 0.531 9726.0	0.544 9745.3	0.509 9785.3	0.453 9825.2	0.418 9865.1	0.430 9884.5	0.525 9945.0	0.613 9964.4 0.993 9983.7	1.066 10004.3 0.777 10023.6	0.754 10044.2 0.627 10063.6 0.522 10082.9	0.564 10103.5	0.583 10143.4	0.632 10182.2 0.696 10202.7	0.756 10222.1 0.841 10242.7	0.827 10262.0 0.803 10281.4	0.748 10301.9 0.713 10321.3	0.629 10341.9 0.544 10361.2	0.468 10380.6 0.405 10401.2	0.430 10420.5	0.453 10460.5	0.554 10500.4	1.879 10540.3 3.007 10559.7	10579.0 10599.6	2.272 10639.5 2.265 10658.9

Calculations (9/2/2020)

CORNERSTONE EARTH GROUP

u

CPT No.

က

PGA (A_{max})

0.91

0.25 (Inches) Total Settlement:

Settlement (Inches)		8 8 8 8
> "	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.02 0.02 0.02
Factor of Safety (CRR/CSR)	0.46 0.46 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59	0.44 0.55 0.79 0.67
	0.339 0.236 0.236 0.237	0.313 0.396 0.566 0.481
CRRM=7.5, σ'vc = 1 atm	0.249 0.228 0.228 0.228 0.228 0.228 0.249 0.249 0.249 0.249 0.246 0.246 0.265 0.265 0.256	0.237 0.287 0.386 0.337
	0.884 0.884 0.8859 0.8859 0.8859 0.8851 0.8871 0.773 0.773 0.774 0.7754 0.7754 0.7757 0.8831 0.8831 0.8831 0.8832 0.8833 0.7033 0.7039 0.7745 0.7745 0.7745 0.7747 0.7741 0.7741 0.7741 0.7741 0.7741 0.7741 0.7741 0.7741	0.842 0.828 0.809 0.818
CSR	0.739 0.738	0.718 0.717 0.717 0.717
Stress Reduction Coeff, rd	0.08	0.65 0.65 0.65
qenes	143.14 144.28 138.59 138.50 144.28 138.50 143.20 143.20 147.26 147.26 147.29 147.29 147.29 148.56 160.09 17	140.62 149.78 161.42 156.38
qc1N	80.80 17.2.96 17.2.96 17.2.96 17.2.97 11.6.03 11.6.	127.89 128.49 130.14 135.00
ő	0.657 0.056 0.056 0.056 0.057 0.077 0.077 0.077 0.077 0.078	0.64 0.65 0.65
Interpreted	1120.83 1120.83 110.91 110.91 110.91 110.91 110.91 110.93	200.53 198.27 196.96 206.19
nin L actor		
on near Thin Layer erfaces Factor (K _H)		
Fines dcN near Thin L (%) (soft layer)	4413 4275 5815 7822 7832 7835 7835 7835 7835 7835 7836 7836 7836 7836 7836 7836 7836 7836	11.3 13.8 16.7 13.7
Soil Type (%) (soft layer)		Sand 11.3 Sand 13.8 Sand 16.7 Sand 13.7
Fines GoN near Hag Soil Type (%) (soft layer)		
Soil Type (%) (soft layer)		Sand Sand Sand Sand
Layer Fines Golf Type (%) (90) (soft layer)	Sand Sand Sand Sand Sand Sand Sand Sand	1.85 Sand 1.88 Sand 1.92 Sand 1.88 Sand
E (%) Ic "Plastic" Flag Soil Type (%) (soft layer)	2.23 2.24 2.24 2.24 2.24 2.24 2.24 2.24	0.955 1.85 Sand 1.050 1.88 Sand 1.181 1.92 Sand 1.092 1.88
E (%) Ic "Plastic" Flag Soil Type (%) (soft layer)	2.057 2.23 Sand 3.504 2.54 2.25 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60	113.955 0.995 1.85 Sand 112.544 1.050 1.88 Sand 111.681 1.181 1.92 Sand 116.978 1.092 1.88 Sand
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6,5,046 2,057 2,23 Sand Gold 6,5,046 1,962 2,23 Sand Gold 6,5,046 1,962 2,24 Sand Gold 24,569 5,602 2,26 Clay 24,569 6,682 2,26 Clay 22,200 6,682 2,29 Clay 22,200 6,682 2,29 Clay 22,200 6,682 2,29 Clay 86,274 3,013 2,29 Clay 82,354 2,29 Clay Sand 98,804 2,29 Clay Sand 112,110 1,64 2,26 Sand 111,2410 1,58 2,10 Sand 111,2410 1,58 2,10 Sand 112,25 2,10 Sand Sand 112,25 2,10 Sand Sand 112,24 2,10 2,22 Sand 112,25 2,10 Sand Sand 112,25 2,10<	6189.2 113.956 0.955 1.85 Sand 6189.6 112.544 1.050 1.88 Sand 6208.6 111.681 1.181 Sand 6217.9 116.978 1.092 1.88 Sand
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5683.3 71,280 2.057 2.23 Sand Source 5683.3 71,280 2.644 2.23 Sand Source 5602.6 66,246 1.982 2.24 Sand Source 5621.2 66,246 3.641 2.65 Glay 5621.3 24,569 5.602 2.24 Glay 5650.1 2.654 4.604 2.78 Glay 5660.2 2.644 4.604 2.78 Glay 5680.0 2.6547 4.604 2.78 Glay 5680.0 2.6547 4.604 2.78 Glay 5680.0 2.6547 4.604 2.78 Glay 5680.0 2.654 4.604 2.78 Glay 5680.0 2.654 4.604 2.78 Glay 5680.1 2.654 4.604 2.78 Glay 5680.2 3.18 2.24 5.604 2.78 5776.1 1.12 1.88 1.14 1.96 Sand	11929.4 6189.2 113.955 0.955 1.85 Sand 11948.8 6198.6 11.554 1.050 1.88 Sand 11969.3 6208.6 111.681 1.181 Sand 11988.7 6217.9 116.978 1.092 1.88 Sand
$f_{S}(\text{tsf}) \sigma_{\text{vc}}(\text{psf}) \sigma_{\text{vc}}(\text{psf}) Q F(\%) \text{Ic} \text{"Plastic"} \text{Flag Soil Type} (\%) \text{(soft layer)} (\text{soft layer)}$	10678.3 5683.3 77.20 2.057 2.23 Sand Offices Control C	1.970 11929.4 6189.2 113.956 0.955 1.85 Sand 2.140 11948.8 6189.5 11.544 1.050 1.88 Sand 2.390 11969.5 6208.6 111.681 1.181 1.92 Sand 2.316 11988.7 6217.9 116.978 1.092 1.88 Sand
In qc (tsf) f (tsf) G (cyc) G (repsi) G (represented by G (represented by G (soft layer) G (soft layer)	17.2.840 2.220 ORDRAS 568.33 71.22.860 2.225 Sand 11.7.2.840 2.220 0.0068.8 568.23 2.244 2.23 Sand 11.7.340 2.220 1.006.4 1.82 2.24 2.24 Sand 11.7.340 2.220 1.007.8 561.2 2.48 2.24 2.24 Sand 4.6.50 3.86 1.008.8 561.2 2.24 2.24 Sand 6.1.70 3.86 1.008.8 561.2 2.24 2.24 Sand 6.1.70 3.86 1.008.8 561.2 2.24 2.25 Sand 6.1.70 3.84 1.008.2 2.62 2.26 2.26 Sand 7.00 4.56 1.008.2 3.24 6.008.2 3.22 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 3.008.8 <td>1.970 11929.4 6189.2 113.956 0.955 1.85 Sand 2.140 11948.8 6189.6 112.544 1.050 1.88 Sand 2.390 11989.3 6208.6 111.681 1.181 Sand 2.391 11988.7 6217.9 116.978 1.092 1.88 Sand</td>	1.970 11929.4 6189.2 113.956 0.955 1.85 Sand 2.140 11948.8 6189.6 112.544 1.050 1.88 Sand 2.390 11989.3 6208.6 111.681 1.181 Sand 2.391 11988.7 6217.9 116.978 1.092 1.88 Sand

σvc (pst)

∫s (tsf)

(tst) ဝိ Depth (ft)

0.91 PGA (Amax)

0.25 Total Settlement:

Factor of Safety (CRR/CSR) 0.63 0.83 0.88 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.069 0.070 0.0 (Inches) 0.453 0.591 0.591 0.691 0.445 0.445 0.445 0.445 0.445 0.445 0.445 0.627 0.203 0.373 0.401 1.111 0.373 0.209 0.209 0.317 0.317 0.317 0.317 0.3105 1.1255 1.1255 1.1262 1.1262 1.1262 1.1262 1.1262 1.1262 1.1362 1.1263 1.126 0.0821 0.0821 0.0822 0. CSR Stress Reduction Coeff, rd 1445.62
1160.11
1160.11
1160.11
1160.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.11
1176.1 ŏ 223.30
223.30
222.33.30
222.33.30
222.34.22
222.34.22
222.34.22
222.34.22
222.34.22
222.34.22
222.34.22
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32
222.34.32 Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) Flag Soil Type က Layer "Plastic" PI > 7 CPT No. F (%) 1017 1017 1017 1017 1018 1019 0 126.881 138.103 138.103 148.402 1115.246 1115.346 1117.880 117.880 117.880 117.880 117.880 117.880 113.803 119.740 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.880 117.890 117.890 117.890 117.890 117.890 117.800 117 Ø α G Insitu $\sigma'_{vc} \, (psf)$ 6227.7 6227.7 6227.7 6227.7 6227.7 6227.7 6227.7 6227.7 6227.7 6237.4 6237.4 6237.7

2009.03 2009.0

2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2.4946
2.2

236,250 247,770 226,230 247,770 226,231 216,280 221,730 222,1730 222,1730 222,1730 222,1730 222,1730 233,1540 233,1540 234,120 235,230 236,200 236,200 237,200 238,250

99.250
99.240
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410
99.3410

က

CPT No.

0.91 PGA (A_{max})

	•
Settlement (Inches)	
Vertical Strain &v	
Factor of Safety (CRR/CSR)	0.000 0.058 0.0000 0.000
CRR	0.511 0.046 0.0470 0.040
CRRM=7.5, o'vc = 1 atm	0.0327 0.276 0.277
K _σ for Sand	0.0796 0.0804 0.0804 0.0805 0.0709 0.
CSR	0.701 0.701 0.701 0.700 0.700 0.700 0.700 0.700 0.700 0.699
Stress Reduction Coeff, rd	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
q _{c1N-CS}	158.95 157.20 157.20 158.73
q _{c1N}	145,655 145,688 130,555 130,555 130,555 145,146 145,146 145,146 146,141 146,14
Š	0.63 0.62 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
Interpreted	244.34 220.26 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 220.35 23
hin Layer actor (K _H)	
N near Thin Layer Factor (K _H)	
qcn near interfaces (soft layer)	8 8.3 11.5
qcN near interfaces (soft layer)	Sand 15.5 Sand 23.2 Sand 23.3 Sand 2
Fines qen near (%) (soft layer)	
Fines quentier (%) (soft layer)	
Layer "Plastic" Flag Soil Type (%) (%) (soft layer)	Sand day San
Layer Plag Soil Type (%) (soft layer)	1.82 1.84 1.84 1.87 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89
Fines down near Plastic* Flag Soil Type (%) (soft layer) (soft layer)	1.099 1.82 Sand 1.000 1.84 Sand 1.000 1.87 Sand 1.000 1.82 Sand 1.000 1.82 Sand 1.000 1.82 Sand 1.000 Sand 1.215 S
Q F (%) Ic "Plastic" Flag Soil Type Fines interfaces PI > 7	132.087 0.981 1.82 1.83 1.008 1.84 1.84 1.008 1.87 1.85 1.008 1.87 1.85 1.008 1.87 1.85 1.008 1.87 1.80 1.87 1.80 1.87 1.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68913 152.087 0.981 1.82 8and 68813 155.503 1.004 1.84 8and 6890.6 113.383 1.008 187 8and 6898.7 126.400 1.970 182 8and 6898.0 130.74 112.841 1.134 1.97 8and 6896.7 112.841 1.134 1.97 8and 6896.7 112.841 1.134 1.97 8and 6896.7 112.841 1.134 1.97 8and 6996.7 112.841 1.134 1.97 8and 6996.7 112.841 1.134 1.97 8and 6996.7 1.02.89 1.206 2.00 8and 6996.7 1.02.89 1.0
Gv. (psf) Insitu Q F (%) Ic "Plastic" Flines (%) Qounty (%) Fines (soft layer) Qounty (%) Goth (soft layer)	13389.0 6871.3 132.087 1.004 1.182 1.008 1.008 1.182 1.008 1.008 1.182 1.008 1.008 1.008 1.182 1.008
$f_{S}\left(\text{Isf}\right) \text{Gv.}\left(\text{psf}\right) \text{Institu} \qquad Q \text{F (\%)} \text{Ic} \text{"Plastic"} \text{Fleg Sol Type} \text{Fines} \text{interfaces} \\ PI > 7 \text{(soft layer)} \text{(soft layer)}$	2.466 132,248 1871,3 13.08 1.68 3.00 2.268 13377,3 6801,3 1.50,89 1.68 2.28 2.28 1.48 2.38 1.68 1.68 1.68 1.68 2.38 2.28 2.28 1.34 1.69 1.88 2.38 2.28 2.28 1.34 1.69 1.88 2.38 2.28 2.28 2.28 1.68 1.12 2.38 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.29 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.29 2.28 2.29 2.28 2.29 2.29 2.29

qc (tsf)

Depth (ft)

0.91 PGA (Amax)

(Inches) 0.25 Total Settlement:

Factor of Safety (CRR/CSR) 0.00 (1.00 (CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand CSR Stress Reduction Coeff, rd ŏ 45.90
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125
33.125 Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) 998.0
998.0
998.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0
999.0 Flag Soil Type က Layer "Plastic" PI > 7 CPT No. F (%) 2.089 2.099 2.090 2. 0 10.944 10.944 10.944 10.908 10 Ø α G Insitu $\sigma'_{vc} \, (psf)$ 7515.5
7525.3
7535.4
7535.4
7535.4
7544.6
7554.0
7564.0
7564.0
7564.0
7564.0
7564.0
7564.0
7564.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
7661.0
76 RTH 44668.8 44668.8 44668.8 44668.8 44668.8 44668.8 44668.8 44668.8 44668.2 44668. σvc (pst) ∫s (tsf) V

48.460
48.470
48.470
48.470
48.470
48.470
48.470
48.470
48.470
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480
48.480

121.230 121.230 121.230 122.25

© 2014 Cornerstone Earth Group, Inc.

က

CPT No.

0.91 PGA (A_{max})

Total Settlement:

0.25 (Inches)

Settlement (Inches)		0.00
Vertical Strain &v	000000000000000000000000000000000000000	0.00
Factor of Safety (CRR/CSR)	7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.28
CRR	7.286 7.286	0.916
CRRM=7.5, o'vc = 1 atm	П. В.	0.636
K _σ for Sand	0.782 0.683 0.782 0.782 0.782 0.782 0.783 0.783 0.786 0.786 0.786 0.786 0.786 0.786 0.786 0.787 0.786 0.787	0.709
CSR	0.701 0.701 0.701 0.701 0.702 0.702 0.702 0.702 0.703 0.703 0.703 0.703 0.704 0.704 0.704 0.704 0.704 0.706 0.706 0.706 0.707	0.717
Stress Reduction Coeff, rd		0.63
q _{c1N-CS}	П. 4. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	176.57 179.72
qc1N	п. а. 106.38 1131.08 1431.08	115.95
ŏ	0.070 0.070	0.60
Interpreted	86.03 46.03 47.13 100.11 110.11 1	194.16
Thin Layer Factor (K _H)		
qcn near Th interfaces Fac (soft layer)		
Fines qcN (%) inter (soft	100.00 (100.00	1.3
Soil Type	Clay 10 Clay	Sand 3
Flag		, 0, 0,
Layer "Plastic" PI > 7		
<u>.0</u>	3.3.48 2.2.48	2.10
F (%)	8.88 88 88 88 88 88 88 88 88 88 88 88 88	1.760
Ø	7.372 7.4372 7.0238 7.0228 7.0	91.281 88.604
Insitu o'vc (psf)	81199.3 81199.3 81199.3 81199.3 81208.0 82208.0 8227.4 8227.7 8227.5 8225.6 8225.6 8225.6 8227.5 8227.5 8227.5 8227.6 8227.7 8227 822	8784.6 8794.0
σvc (psf)	16078.0 16038.6 16057.3 16177.3 16177.3 16177.3 16176.5 16176.5 16176.5 16176.5 16176.5 16176.5 16177.3 16177.	17288.5
∱s (tsf)	2.679 2.679	3.463
qc (tsf) \int fs (tsf)	49.860 4.666	3 W 4

CORNERSTONE EARTH GROUP

PGA (A_{max})

က

CPT No.

0.91

0.25 (Inches) Total Settlement:

mer ies)	00 5	2 2	2 2	00	00	00	00	00	0.	0	e :	2 3	2 2	2 2	00	00	00	00	2 2	2 2	2 0	00	2 2	8 8	. 0	00	00	0 1	8 9	2 2	3 2	2 2	3 5	8 5	2 2	2 2	00	90
Set																							0.00															
\$ 00	00.00	000	0.00	0.02	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.01	0.00	0.00	0.00	0.00	00.0	00.00	0.00	000	00.0	0.00	0.00	0.01	0.00	0.00	8 6	8 6	8 8	000	000	000	0.0	00'0
Factor of Safety (CRR/CSR)	1.49	176	3.31	0.63	1.71	2.44	3.07	4.99	1.57	2,37	9.18	33.90	39.10	334	1.01	0.98	1.48	2.07	1.90	0.67	2.03	2.38	4.18	6.27	2.11	1.35	1.50	1.19	1.62	5.43	. a	n 0		; c		e	n.a	na
CRR	1.071	1.591	2.380	0.454	1.233	1,758	2.211	3,599	1.134	1,707	6.626	24.488	389.590 28.795	2.415	0.734	0.710	1.069	1.502	1.381	0.487	1.476	1.732	3.043	4.569	1,535	0.984	1.097	0.869	1.185	3.971	- u	T 0	9 0	, a	, c	n e	n.a	па
CRRM=7.5, σ'vc = 1 atm	0.733	1.083	1.711	0.342	0.836	1.215	1.577	2,757	0.775	1.177	5.296	19.584	23.054	1 751	0.523	0.508	0.736	1.023	0.934	0.365	1.005	1.204	2.294	3.684	1.052	0.684	0.757	0.611	0.813	3.138	. a	n 0		5 0		e	n.a.	na
K _o for Sand	0.697	0.668	0.632	0.757	0.686	0.658	0.637	0.593	0.691	0.659	0.569	0.568	0.568	0.627	0.720	0.722	0.693	0.667	0.674	0.748	0.668	0.654	0.603	0.564	0.663	969.0	0.688	0.705	0.682	0.575	e e	TO 0	0 0	i (, n	e	n a	па
CSR	0.718	0.719	0.719	0.719	0.720	0.720	0.720	0.721	0.721	0.722	0.722	0.722	0.723	0.723	0.724	0.724	0.725	0,725	0.725	0.726	0.727	0.727	0.728	0.728	0.729	0.729	0.730	0.730	0.731	0.731	0.732	0.732	0.732	0.733	0.734	0.734	0.735	0,735
Stress Reduction Coeff, rd	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.64	0.64	0.64	0.64	9.0	0.64	0.64	0.64	0.64	0.64	0.64	9.0	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	90.0	40.0	1000	0.0	0.0	0.65	0.65	0.65
q c1N-CS	180.25	189.21	198.21	156.96	183.43	191.60	196.70	206.36	181.62	190.96	216.03	231.94	237.03	198.63	171.13	170.26	180.35	187.98	185.98	159.38	187.59	191.42	203.35	210.84	188.58	178.50	181.03	175.51	182.77	208.40	. a	n 0	2 2	i a	, a	ë	n.a.	n.a.
qc1N	119.15	159.40	153.40	139.05	142.95	154.55	177.98	192.03	181.62	183.46	189.11	194.01	196.69	175.82	155.93	141.05	134.72	144.68	147.66	159.38	187.59	191.42	172.03	55.91	144.66	145.64	150.05	160.19	174.09	145.88	e e	m 0	o (i a		ë	n.a	n.a
Č	09.0	190	0.62	0.57	09.0	0.61	0.62	0.63	0.60	0.61	0.64	990	0.68	0.62	0.59	0.58	0.60	0.61	0.60	0.57	0.61	0.61	0.62	0.63	0.61	0.59	0.60	0.59	0.60	0.63	20.0	000	0.00	990	0.00	0.68	0.68	0.68
Interpreted	198.17	227.79	246.48	243.57	236.66	251.81	287.23	304.38	302.26	299 74	294.77	294 15	306.63 297.51	283.50	266.01	241.18	225.57	238.59	244.57	279.75	310.05	314.07	275.86	246.67	239.05	245.83	252.02	272.31	291.57	232.32	131.05	13.20	30.00	34.54	32.47	31.92	31,53	32,19
Thin Layer Factor (K _H)																						^							100									
qcn near interfaces (soft layer)																			4																			
Fines ir (%)	31.2	16.5	20.2	12.7	19.2	17.7	12.3	1.1	8.0	9.5	14.1	16.7	16.4	13.3	11.7	15.8	21.5	20.1	0,03	0.0	0.0	1.8	15.6	23.9	20.3	16.7	16.0	11.7	9.7	28.6	8.8	0.00	9.0	0.00	100.0	100.0	100.0	100,0
Flag Soil Type	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Cay	Cay	S S		C C	Clay	Clav	Clav
Layer "Plastic" PI > 7																			0	4	ď.						1											
<u>0</u>	2.10	2.00	1.97	1.87	1.95	1.93	1.87	1.85	1.72	.83	1.89	1.92	193	88.	1.86	1.91	1.98	1.96	9, 9	1.66	1.69	1.73	1.91	2.01	1.97	1.92	1.91	1.86	1.83	2.07	2.70	3.02	0.0	2.8	333	3.39	3.38	3,35
(9)	1.786	1.472	1.431	1.025	1.312	1.316	1.212	1.223	0.785	1,115	1.338	1.481	1.000	1.242	1.080	1.150	1.359	1.362	1.298	0.546	0.701	0.849	1,315	1.643	1.371	1.214	1.212	1.098	1.088	1.859	3.727	19491	5.072	5.489	5.913	5.901	5,623	5.072
F (%)				30	683	19.023	136.248	144.541	143.422	142,116	139.614	139.227	145.223	133.810	125.237	113,101	105.457	111,714	114.553	131.464	146.060	147.923	129.358	15.108	11.361	114.570	117.494	127.209	136.417	107.803	78.398	14.966	7.266	2 998	5.512	5.378	5.282	5,426
	93.137	118 427	16.62	115.1	Ξ			`	•	•					•				8996.2				9044.2							9121.0						9188.4	9197.7	9207 7
Ø	8803.9 93.137						8871.3	8880.7	8890.7	8900.1	8909 4	8919.4	8828.8	8948.1	895	896	õ																			9	6	
Insitu Q o'vc (psf)	8803.9	8813.3	8832.7	8842.0	8852.0	8861.4	~						-	_					17725.3	17765.2	7784.6	17805.2	17824.5	7864 4	7883.8	17904.4	17923.7	17943.1	17963.7	17983.0	18003.0	18023.0	9062.0	18082.2		-	-	18162,1
σvc (psf) σ'vc (psf) Q		17368 3 8813.3	17387.7 8832.7	17407 1 8842 0	17427.6 8852.0	17447 0 8861 4	17467.6	17486.9		17526.9	17546.2	17566.8	-	17626.1	17645.4	17666.0	17685.4	17705.9	3.244 17725.3			2.746 17805.2		4 142 17864 4								3.702 18023.0		1 509 18082 2	18102.8	18122.2	18141.5	•
for (psf) ove (psf) of ver (psf) Q	17328.4 8803.9	3.419 17.347.8 8813.3	3.607 17387.7 8832.7	2.552 17407.1 8842.0	3.171 17427.6 8852.0	3.391 17447.0 8861.4	3.578 17467.6	17486.9	2.443 17507.5	17526.9	4.054 17546.2	4 479 17566 8	17506.1	3.616 17626.1	2.944 17645.4	2.833 17666.0	3.122 17685.4	3.318 17705.9		1.568	2.239	2.746		4 142	3 344	3.048	3.124	3.064		4.403	9 752		1 690	1.509	1.496 18102.8	1.458 18122.2	1.366 18141.5	1.267

0.91

0.00 Total Settlement:

Factor of Safety (CRR/CSR) (Inches) K_o for Sand 1000 | 10 Stress Reduction Coeff, rd 55,55,67 68,441 78,58 78,73 78,78 78,78 78,78 78,78 78,78 78,78 78,78 78,78 78,78 78,78 78,78 78 Š 2.2.5.2 2.2.5.2 2.2.5.2 2.2.5.2 2.3.5.2 2.3.5.2 2.3.5.2 2.3.5.3 2.3.5 PGA (Amax) Thin Layer Factor (K_H) qcn near interfaces (soft layer) ines (%) Flag Soil Type Jnsaturated Jnsaturated 4 Layer "Plastic" PI > 7 CPT No. F (%) Ø Insitu $\sigma'_{vc} \, (psf)$ 779.9 99.2 11.18.5 11.18.5 12.7.18.7 12.7.18.3 13.7.19.1 σvc (pst) 749.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9
719.9 ∫s (tsf) 0.0065
0.0086
0.0086
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0.01087
0 (tst) 2.2670
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860
10.2860 ဗိ Depth (ft) 7.500 (1.00

4

0.91 PGA (A_{max})

Total Settlement: 0.00 (Inches)

+	1																																																
Settlement (Inches)	0.00	8 8	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	8 8	0.00	0.00	0.00	8 6	0.0	0.00	000	0.00	0.00	8 0	0.00	8 6	0.00	0.00	00.0	0.00	0.00	0.00	0.00	00.0	0.00	000	0.00	0.00	000	0.00	0.00	0.0	0.00	0.00	8 8	00.00	0.00	0.00	00.0	0.00	8 00	0.00
Vertical Strain &v	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.0	8.0	00.00	00.00	0.00	8.6	00.0	0.00	0000	0.00	0.00	8 8	0.00	000	0.00	0.00	0.00	0.00	00.0	0.00	0.00	00.0	0.00	8.6	00.00	0.00	000	0.00	0.00	800	0.00	0.00	8.0	00.00	0.00	0.00	0.00	0.00	0.00	0.00
Factor of Safety (CRR/CSR)	n.a. n.a.		n.a.	n.a.	n.a.	. e	n.a	пa	n.a.	e e	, e	n a	n.a.	n.a.	e e	n e	n.a.	n a	па	e c	, e	n.a.	e e	n.a.	n a	a c	n.a.	e e	n.a.	e c	n e	n.a.	e c	n a	n.a.	. c	па	e c	. e	n.a.	n.a	. e	па	n.a	e c	. e	n.a.	n a	n.a.
CRR	n.a. n.a.	. e	n.a.	n.a.	n.a.		n.a.	пa	n.a.	0 0	n 0	a a	n.a	пa	c c	. e	n.a.	8 6	па	e e		n.a.	e e	n.a.	n a	a c	n.a.	e e	n.a.	e c	e c	па	a a	a	n.a.		па	e c	g @	n.a.	n.a	. c	в	па	e c	. e	n.a.	a a	па
CRRM=7.5, o'vc = 1 atm	n.a.	 	e e	па			n.a.	n.a.	n a	o o	. c	9 0	n.a.	n a	e e	. c	n.a.	e e	В	e e	о 2 2	n.a.	o o	па	e c	9 6	n a	а e	па	e e	9 0	па	e c	a a	n.a.	e e	па	e c	g 6	n.a.	n a	9 9	e u	па	e c	. e	n a	е е - с	па
K _σ for Sand	n.a.	. c	e e	па	e c	в в = =	п	n.a.	n a	c c	n (0	. e	n.a.	e -	e e	6 6	n.a.	ei ei	n.a.	e e	, e	n.a.	ei ei	n.a.	n.a.	. c	n a	a e	па	e c	. c	па	c c	a	n a	n e	пa	е с с	g @	n.a.	e L	. c	e	па	e c	a a	n a	e e	па
CSR	0.626	0.638	0.641	0.648	0.652	0.658	0.661	0.665	0.668	0.674	0.677	0.680	0.683	0.686	0.689	0.694	769.0	0.699	0.704	0.707	0.712	0.714	0.719	0.721	0.723	0.728	0.730	0.734	0.736	0.738	0.742	0.744	0.746	0.749	0.751	0.755	0.756	0.758	0.761	0.763	0.764	0.768	0.769	0.771	0.772	0.775	0.776	0.779	0.780
Stress Reduction Coeff, rd	0.98	0.98	0.98	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	76.0	0.97	0.97	96.0	0.96	0.96	0.96	96.0	0.96	96.0	96'0	96.0	96.0	96.0	96.0	96.0	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.94	0.94	0.94	0.94
qctn-cs	n.a.	. e	n.a.	n.a.	. a.	a a	n.a.	n.a.	n.a.	e e	, c	a c	n.a.	n.a.	o d	1 E	n.a.	n.a.	n.a.	e e	n.a.	n.a.	n, a	n.a.	n.a.	a	n.a.	. a.	n.a	e e	a	па	a a	a	n.a.	. c	па	e c		n.a.	n a	. e	В	n.a.	e c	. e	n.a.	n n	n.a
q _{c1N}	n.a.	. e	n.a.	n.a.	n.a.		n.a	n.a.	n.a		n c	n e	n.a	n.a.	e e	1.0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	e c	n.a.	n a	n.a.	e c	e c	n.a.	œ a	a a	n.a.	. e.	па	e c	. e	n.a.	n.a	. c	n a	n.a.	e c	. e	n.a.	n a	n.a
ő	113	5 5.	1.12	1.12	1.12	1.1	1.1	1.1	.	= = =	2 9	1.10	1.10	1.10	2 8	1.09	1.09	1.09	1.08	1.08	1.08	1.08	1.07	1.07	1.07	1.07	1.07	1.06	1.06	1.06	1.06	1.05	50.5	1.05	1.05	6 5	1.04	<u>.</u> 2	2 4	1.04	4.5	2 8	1.03	1.03	1.03	1.03	1.03	1.02	1.02
Interpreted qcN	9 22 9 77	8.31	8.36 9.37	9.16	8.53	8.82	9.40	9.51	10.09	8.25	96.90	8.24	7.78	7.47	7.73	8.70	9.38	9.51	8.59	8.32	8.87	8.98	8.99	9.44	10.18	10,65	11.04	11 44	10.92	10.35	9.40	9.14	10.75	11.02	10.92	11.71	11.16	11.29	10.78	11.64	10.68	9.00	9.92	10.63	10.57	9.59	9.09	8.93	10.62
Thin Layer Factor (K _H)																						ı,																											
hin																							Ų	7																									
	-															4																																	
Fines dev near Thin (%) (soft layer)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Fines dcN near (%) (soft layer)	Clay 100.0										Clay 100.0		Clay 100.0		Cray 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Cley 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0	Cley 100.0	Clay 100.0			Clay 100.0		Clay 100.0			100.0			Clay 100.0		Clay 100.0	İ	Ì		Clav 100.0	Ì	į	Clay 100.0		Clay 100.0	Clay 100.0	Clay 100.0
qcn near interfaces (soft layer)																CIBY 100.0	Clay 100.0	100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0	100.0	Clay 100.0	Clay 100.0			Ì											İ	Ì			Ì	į			Clay 100.0	Clay 100.0	Clay 100.0
Fines qcn near (%) (soft layer)		Gay G	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	di di	Clay	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Clay	A PO	000	à de la constant de l		Cley	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	3.21 Clay 100.0	Clay Clay	Clay
Layer Plastic" Flag Soil Type (%) (%) (soft layer)	Clay Clay	3.07 Clay	3.06 3.00	2.98 Clay	3.04 Clay	3.03 Clay	3.03 Clay	3.04 Clay	2.97 Clay	3.03	3.09 Cay	3.14 Clay	3.17 Clay	3.20 Clay	3.21 3.22	3.17 Clay	3.14 Clay	3.12 3.13 Clay	3.17 Clay	3.18	3.13	3.12 Clay	3.10 Clay	3.09 Clay	3.05	3.01 Clay	3.00 Clay	3.01 Clay	3.03 Clay	3.02 2.00	3.02 Clay	3.09 Clay	3.13	3.11 Clay	3.12 Clay	3.12 Clay	3.14 Clay	3.11 3.15	3.14 Clay	3.07 Clay	3.10 Clay	3.18 O Cay	3.16 Clay	3.17 Clay	3.18 Clay	3.22 Clay	3.21 Clay	3.26 Clay	3.17 Clay
Layer Fines Qev near Pines Pin	3.05 Clay 3.03 Clay	5.001 3.07 Clay	4.790 3.06 Clay 4.532 3.00 Clay	4.038 2.98 Clay	4.590 3.04 Clay	4.521 3.03 Clay	4.776 3.03 Clay	5.086 3.04 Clay	4.227 2.97 Clay	4.500 3.03 Clay	5.325 3.09 Clay	5.716 3.14 Clay	5.887 3.17 Clay	6.074 3.20 Clay	6.527 3.21	6.518 3.17 Clay	6.426 3.14 Clay	5.958 3.12 Clay	6.095 3.17 Clay	6.079 3.18 Clay	5.482 3.13	5.177 3.12 Clay	4.886 3.11 4.815 3.10	4.977 3.09 Clay	4.651 3.05	4.293 3.01 Clay	4.178 3.00 Clay	4.618 3.01 Clay	4.553 3.03 Clay	3.986 3.02 Clay	3.448 3.02 Clay	4.311 3.09 Clay	6 004 3 13 Clay	5.913 3.11 Clay	5.990 3.12 Clay	6.211 3.11 Clay	6409 3.14 Clay	5.774 3.11 Clay	5.993 3.14 Clay	5.166 3.07 Clay	4.992 3.10 Clay	5.259 5.16 Clay	5.554 3.16 Clay	6.157 3.17 Clay	6.352 3.18 Clay	6.267 3.22 Clay	5.594 3.21 Clay	6.426 3.25 Clay	5.932 3.17 Clay
Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	5.561 3.05 Clay 5.506 3.03 Clay	13.712 3.23 3.03 Cay	11.951 4.790 3.06 Clay 13.409 4.532 3.00 Clay	12.977 4.038 2.98 Clay	11.921 4.590 3.04 Clay	12.156 4.521 3.03 Clay	12.925 4.776 3.03 Clay	12.989 5.086 3.04 Clay	13.757 4.227 2.97 Clay	12.418 4.500 3.03 Clay	11.23/ 3.41/ 3.11 Clay	10.674 5.716 3.14 Clay	9.931 5.887 3.17 Clay	9.412 6.074 3.20 Clay	9.322 6.321 3.21 Clay	10.903 6.518 3.17 Clay	11.766 6.426 3.14 Clay	11.864 6.085 3.12 C.av	10.444 6.095 3.17 Clsy	9,995 6.079 3.18 Clay	10,584 5,482 3.13	10.655 5.177 3.12 Clay	10.515 4.815 3.10	4.977 3.09 Clay	11.914 4.651 3.05	12.355 4.293 3.01 Clay	12.762 4.178 3.00 Clay	13.097 4.618 3.01 Clay	12.357 4.553 3.03 Clay	11.572 3.986 3.02 Clay	10.255 3.448 3.02 Clay	9.865 4.311 3.09 Clay	10.013 5.497 3.13 Clay	11.929 5.913 3.11 Clay	11.731 5.990 3.12 Clay	12.588 6.211 3.11 Clay	11.799 6.409 3.14 Clay	11.878 5.774 3.11 Clay	5.993 3.14 Clay	12.063 5.166 3.07 Clay	10.885 4.992 3.10 Clay	9.555 5.229 5.16 Clay	9.829 5.554 3.16 Clay	10.566 6.157 3.17 Clay	10.430 6.352 3.18 Clay	9.226 6.267 3.22 Clay	8.616 5.594 3.21 Clay	6.426 3.25 Clay	10.120 5.932 3.17 Clay
Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	13.731 5.561 3.05 Clay 14.502 5.506 3.03 Clay	1333.4 13.712 3.236 3.03 Clay	1354.7 11.951 4.790 3.06 Clay	1374.1 12.977 4.038 2.98 Clay	1383.5 11.921 4.590 3.04 Clay	1352.8 11.327 4.333 3.04 Clay	1412.2 12.925 4.776 3.03 Clay	1422.1 12.989 5.086 3.04 Clay	1431.5 13.757 4.227 2.97 Clay	1440.9 12.418 4.506 3.03 Clay	1460.2 11.802 5.325 3.09 Clay	1470.2 10.674 5.716 3.14 Clay	1479.6 9.931 5.887 3.17 Clay	1488.9 9.412 6.074 3.20 Clay	1498.9 9.322 b.321 3.21 Clay	1518.2 10.903 8.518 3.17 Clay	1527.6 11.766 6.426 3.14 Clay	1537.0 11.864 6.085 3.12 1547.0 11.477 5.958 3.13	1556.3 10.444 6.095 3.17 Clay	1566.3 9.995 6.079 3.18 Clay	1585.0 10.584 5.482 3.13	1595.0 10.655 5.177 3.12 Chay	1614.3 10.515 4.815 3.10	1623.7 11.034 4.977 3.09 Clay	1633.1 11.914 4.651 3.05 Clay	1652.4 12.355 4.293 3.01 Clay	1662.4 12.762 4.178 3.00 Clay	1681.1 13.097 4.618 3.01 Clay	1691.1 12.357 4.553 3.03 Clay	1700.5 11.572 3.986 3.02 Clay	1719.8 10.255 3.448 3.02 Clay	1729.2 9.865 4.311 3.09 Clay	1739.2 10.613 5.497 3.13 Clay	1758.5 11.929 5.913 3.11 Clay	1767.9 11.731 5.990 3.12 Clay	1777.8 12.002 0.108 3.12 Clay	1796.6 11.799 6.409 3.14 Clay	1806.5 11.878 5.774 3.11 Clay	1825.9 11.139 5.993 3.14 Clay	1835.3 12.063 5.166 3.07 Clay	1844.6 10.885 4.992 3.10 Clay	1864 0 9 002 5 387 3.18 Clav	1873.9 9.829 5.554 3.16 Clay	1883.3 10.566 6.157 3.17 Clay	1892.7 10.430 6.352 3.18 Clay	1912.0 9.226 6.267 3.22 Clay	1922.0 8.616 5.594 3.21 Clay	1931.4 8.046 6.028 3.25 Clay	1950.7 10.120 5.932 3.17 Clay
Insitu Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (%) (soft layer)	1316.1 13.731 5.561 3.05 Clay	1486.3 1344.8 11.966 5.001 3.07 Clay	1508.9 1354.7 11.951 4.790 3.06 Clay 1528.2 1364.1 13.409 4.532 3.00 Clay	1548.8 1374.1 12.977 4.038 2.98 Clay	1568.2 1383.5 11.921 4.590 3.04 Clay	1367.3 1392.6 11.927 + 393 3.04 Clay	1627.5 1412.2 12.925 4.776 3.03 Clay	1648.0 1422.1 12.989 5.086 3.04 Clay	1667.4 1431.5 13.757 4.227 2.97 Clay	1086./ 1440.9 12.418 4.506 5.03 Clay	1726.7 1460.2 11.802 5.325 3.09 Clav	1747.2 1470.2 10.674 5.716 3.14 Clay	1766.6 1479.6 9.931 5.887 3.17 Clay	1786.0 1488.9 9.412 6.074 3.20 Clay	1806.5 1498.9 9.322 6.321 3.21 Clay	1846.5 1518.2 10.903 6.518 3.17 Clay	1865.8 1527.6 11.766 6.426 3.14	1885.2 1537.0 11.864 6.085 3.12 Car	1925.1 1556.3 10.444 6.095 3.17	1945,7 1566,3 9,995 6,079 3.18 Cay	1984,4 1585.0 10.584 5.482 3.13	2005.0 1595.0 10.655 5.177 3.12 Clay	2024.3 1604.4 10.481 4.866 3.11 2044.9 1614.3 10.515 4.815 3.10	2064.3 1623.7 11.034 4.977 3.09 Clay	2083.6 1633.1 11.914 4.651 3.05 Clay	2123.6 1652.4 12.355 4.293 3.01 Clay	2144.1 1662.4 12.762 4.178 3.00 Clay	2182.8 1681.1 13.097 4.618 3.01 Clay	2203.4 1691.1 12.357 4.553 3.03 Clay	2222.8 1700.5 11.572 3.986 3.02 Clay	2262.7 1719.8 10.255 3.448 3.02 Clay	2282.1 1729.2 9.865 4.311 3.09 Clay	2302.6 1/39.2 10.613 5.49/ 3.13 Clay	2342.6 1758.5 11.929 5.913 3.11 Clay	2361.9 1767.9 11.731 5.990 3.12 Clay	2362.5 1777.8 12.002 6.108 3.12 Clay	2421.2 1796.6 11.799 6.409 3.14 Clay	2441.8 1806.5 11.878 5.774 3.11 Clay	2481.7 1825.9 11.139 5.993 3.14 Clay	2501.1 1835.3 12.063 5.166 3.07 Clay	2520.4 1844.6 10.885 4.992 3.10 Clay	2560.4 1864.0 9.002 5.387 3.18 Clay	2580.9 1873.9 9.829 5.554 3.16 Clay	2600.3 1883.3 10.566 6.157 3.17 Clay	2619.7 1892.7 10.430 6.352 3.18 Clay	2659.6 1912.0 9.226 6.267 3.22 Clay	2680.2 1922.0 8.616 5.594 3.21 Clay	2599.5 1931.4 8.046 6.028 3.25 Clay	2739.4 1950.7 10.120 5.932 3.17 Clay
Gv. (psf) Cv. (psf) Q F (%) Ic "Plastic" Fines PI > 7 Fines interfaces interfaces G/sol Type (%) (%)	1429.0 1316.1 13.731 5.561 3.05 Clay	0.402 1488.3 1344.8 11.966 5.001 3.07 Clay	0.388 1508.9 1354.7 11.951 4.790 3.06 Clay 0.415 1528.2 1364.1 13.409 4.532 3.00 Clay	0.360 1548.8 1374.1 12.977 4.038 2.98 Clay	0.379 1568.2 1383.5 11.921 4.590 3.04 Clay	0.386 1608.1 1402.8 12.156 4.521 3.03 Clay	0.436 1627.5 1412.2 12.925 4.776 3.03 Clay	0.470 1648.0 1422.1 12.989 5.086 3.04 Clay	0.416 1667.4 1431.5 13.757 4.227 2.97 Clay	0.409 1686.7 1440.9 12.418 4.566 5.03 Clay	0.459 1726.7 1460.2 11.802 5.325 3.09 Clav	0.449 1747.2 1470.2 10.674 5.716 3.14 Clay	0.433 1766.6 1479.6 9.931 5.887 3.17 Clay	0.426 1786.0 1488.9 9.412 6.074 3.20 Clay	0.442 1806.5 1498.9 9.322 5.321 3.21 Clay	0.540 1846.5 1518.2 10.903 6.518 3.17	0.578 1865.8 1527.6 11.766 6426 3.14	0.555 1885.2 1537.0 11.864 6.085 3.12 0.529 1905.8 1547.0 11.477 5.958 3.13	0.495 1925.1 1556.3 10.444 6.095 3.17	0.476 1945.7 1566.3 9.995 6.079 3.18 Clay	0.460 1984,4 1585,0 10.584 5.482 3.13	0.440 2005.0 1595.0 10.655 5.177 3.12 Clay	0.409 2044.9 1614.3 10.515 4.815 3.10	0.446 2064.3 1623.7 11.034 4.977 3.09	0.453 2083.6 1633.1 11.914 4.651 3.05	0.438 2123.6 1652.4 12.355 4.293 3.01 Clay	0.443 2144.1 1662.4 12.762 4.178 3.00 Clay	0.508 2182.8 1681.1 13.097 4.618 3.01 Clay	0.476 2203.4 1691.1 12.357 4.553 3.03 Clay	0.392 2222.8 1700.5 11.572 3.986 3.02 Clay	0.304 2262.7 1719.8 10.255 3.448 3.02 Clay	0.368 2282.1 1729.2 9.865 4.311 3.09 Clay	0.507 2.302.6 17.39.2 10.613 5.497 3.13 Gay	0.620 2342.6 1758.5 11.929 5.913 3.11 Clay	0.621 2361.9 1767.9 11.731 5.990 3.12 Clay	0.659 2401.9 1787.2 12.588 6.211 3.11 Clay	0.679 2421.2 1796.6 11.799 6.409 3.14 Clay	0.620 2441.8 1806.5 11.878 5.774 3.11 Clay	0.609 2481.7 1825.9 11.139 5.993 3.14 Clay	0.572 2501.1 1835.3 12.063 5.166 3.07 Clay	0.501 2520.4 1844.6 10.885 4.992 3.10 Clay	0.452 2560.4 1864.0 9.002 5.387 3.18 Clay	0.512 2580.9 1873.9 9.829 5.554 3.16 Clay	0.613 2600.3 1883.3 10.566 6.157 3.17 Clay	0.627 2619.7 1892.7 10.430 6.352 3.18 Clay	0.553 2659.6 1912.0 9.226 6.267 3.22 Clay	0.463 2680.2 1922.0 8.616 5.594 3.21 Clay	0.520 2718.9 1940.7 8.338 6.426 3.26 Clay	0.586 2739.4 1950.7 10.120 5.932 3.17 Clay
force (psf)	0.503 1429.0 1316.1 13.731 5.561 3.05 Clay 0.502 1449.6 1336.0 14502 5.506 3.03 Clay	8.790 0.402 1488.3 1344.8 11.966 5.001 3.07 Clay	8.850 0.388 1508.9 1354.7 11.951 4.790 3.06 Clay	9.690 0.360 1548.8 1374.1 12.977 4.038 2.98 Clay	9.030 0.379 1568.2 1383.5 11.921 4.590 3.04 Clay	9.100 0.302 130.3 1392.0 11.327 4.333 3.04 Clay	9.940 0.436 1627.5 1412.2 12.925 4.776 3.03 Clay	10.060 0.470 1648.0 1422.1 12.989 5.086 3.04 Clay	10.680 0.416 1667.4 1431.5 13.757 4.227 2.97 Clay	9.790 0.409 1666.7 1440.9 12.418 4.566 5.03 Clay	9.020 0.442 1707.3 1430.8 11.237 3.417 3.11 Clay	8.720 0.449 1747.2 1470.2 10.674 5.716 3.14 Clay	8.230 0.433 1766.6 1479.6 9.931 5.887 3.17 Clay	7.900 0.426 1786.0 1488.9 9.412 6.074 3.20 Clay	7.890 0.442 1806.5 1498.9 9.322 6.321 3.21 Clay	9.200 0.540 1846.5 1518.2 10.903 6.518 3.17 Clay	9.920 0.578 1865.8 1527.6 11.766 6.426 3.14	10,060 0,555 1885.2 1537.0 11,864 6,085 3.12 CPN 9,830 0,529 1905.8 154.0 11,477 5,958 3.13	9.090 0.495 1925.1 1556.3 10.444 6.095 3.17	8.800 0.476 1945.7 1566.3 9.995 6.079 3.18 Clay	9.380 0.460 1984.4 1585.0 10.584 5.482 3.13	9.500 0.440 2005.0 1595.0 10.655 5.177 3.12	9.420 0.411 2024.3 1004.4 10.481 4.886 3.11 9.510 0.409 2044.9 1614.3 10.515 4.815 3.10	9.990 0.446 2064.3 1623.7 11.034 4.977 3.09	10.770 0.453 2083.6 1633.1 11.914 4.651 3.05	11.270 0.438 2123.6 1652.4 12.355 4.293 3.01 Clay	11.680 0.443 2144.1 1662.4 12.762 4.178 3.00 Clay	12.100 0.508 2182.8 1681.1 13.097 4.618 3.01 Clay	11.550 0.476 2203.4 1691.1 12.357 4.553 3.03 Clay	10.950 0.392 2222.8 1700.5 11.572 3.986 3.02 Clay	9.950 0.304 2262.7 1719.8 10.255 3.448 3.02 Clay	9.670 0.368 2282.1 1729.2 9.865 4.311 3.09 Clay	10.380 0.307 2.302.6 17.39.2 10.613 3.497 3.13 Clay	11.660 0.620 2342.6 1758.5 11.929 5.913 3.11 Clay	11.550 0.621 2361.9 1767.9 11.731 5.990 3.12 Clay	11.880 0.836 2.362.3 177.8 12.002 6.166 3.12 Clay	11.810 0.679 2421.2 1796.6 11.799 6.409 3.14 Clay	11.950 0.620 2441.8 1806.5 11.878 5.774 3.11 Clay	11,410 0.609 2481.7 1825.9 11.139 5.993 3.14 Clay	12.320 0.572 2501.1 1835.3 12.063 5.166 3.07 Clay	11.300 0.501 2520.4 1844.6 10.885 4.992 3.10 Clay	9.670 0.452 2560.4 1864.0 9.002 5.387 3.18 Clay	10.500 0.512 2580.9 1873.9 9.829 5.554 3.16 Clay	11.250 0.613 2600.3 1883.3 10.566 6.157 3.17 Clay	11.180 0.627 2619.7 1892.7 10.430 6.352 3.18 Clay	10.150 0.553 2659.6 1912.0 9.226 6.267 3.22 Clay	0.463 2680.2 1922.0 8.616 5.594 3.21 Clay	9.120 0.468 2699.5 1931.4 8.046 6.028 3.25 Glay 9.450 0.520 2718.9 1940.7 8.338 6.426 3.26 Glay	11.240 0.586 2739.4 1950.7 10.120 5.932 3.17 Clay

4

CPT No.

0.91 PGA (A_{max})

(Inches) 0.00 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand CSR Stress Reduction Coeff, rd ŏ 11.05
11.16
11.17
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18
11.18 Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) 10000 Flag Soil Type Layer "Plastic" PI > 7 F (%) 11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11.308
11 Ø Insitu $\sigma'_{vc} \, (psf)$ 1970.0 19 σvc (pst) 7776.8 a 27776.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.9 a 27777.9 a 27777.9 a 27777.9 a 27777.9 a 27777.9 a 27777.9 a 27777.9 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.8 a 27777.9 fs (tsf) 0.0638 0.0658 0.0658 0.0659 0.0659 0.0659 0.0770 0. qc (tsf) 11.880
12.2650
13.260
13.260
13.260
13.260
13.260
13.260
13.370
14.730
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
10.400
1 Depth (ft)

© 2014 Cornerstone Earth Group, Inc.

4

0.91 PGA (A_{max})

Total Settlement: 0.00 (Inches)

	•																																																
Settlement (Inches)	00.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00	000	00.00	00.0	0.00	0.00	0.00
Vertical Strain Ev	00.0	0.00	0.00	000	0.00	000	800	0.00	0.0	8 6	0.00	0.00	000	0.00	000	000	0.00	8 6	0.00	0.00	000	0.00	0.00	00.0	0.00	0.00	000	00.0	0.0	000	0.00	00.0	000	0.00	000	0.00	0.00	800	0.00	00.0	8 8	000	0.00	8 8	00.00	0.0	0.00	0.0	0.00
Factor of Safety (CRR/CSR)	n.a.	па	n n	g 6	n.a.	e c	g e	n.a	e u	n e	па	e u	g 6	n.a.	e 0	a c	n.a.	. c	a c	па	e e	n.a.	па	n.a.	n.a.	n.a	a e	n.a.	6 6	a e	n.a.	e c	a a	n.a	e e	n.a	e c	e e	пa	6 0	. e	n.a.	n.a	. c	na	n.a.	n.a.	n.a.	n.a.
CRR	n a	n n	n a	o o	n.a.	n a	0 0	n.a.	па	n e	n.a	n.a.	g e	n.a.	e c	9 0	па	e c	e = =	па	e e	n.a.	па	a a	n.a.	па	9 6	па	e e	a e	n.a	e c	a u	па	e e	n.a.	n a	9 0	пa	e. c	. e	па	n.a	. c	па	. e	n'a	n a	па
CRRM=7.5, o'vc = 1 atm	n.a.	n u	n a	9 0	n.a.	n c	9 0	n.a.	n.a.	. e	n.	n.a	n e	n.a.	a c	o e	n.a.	e c	. e	n a	n n	n.a.	па	n n	n.a.	n.a.	9 0	n.a.	. a.	e e	n.a.	n n	n a	n.a	e e	n.a	n a	. e	n.a.	 	. e	n a	n.a	. c	n.a	n.a.	n.a.	n a	n.a
K _σ for Sand	e c	a L	n a	. c	па	e c	g 0	па	па	n e	г	e u	. c	па	n a	9 6	n.a.	ej e	e c	n.a.	n e	n.a.	n.a.	e e	n.a.	e c	g 6	a	c c	a e	па	e c	a a	n a	c c	пa	e c	g @	Б	e c	9 0	e –	n a	. c	па	e c	n a	n n	e E
CSR	0.832	0.832	0.833	0.833	0.834	0.834	0.834	0.835	0.835	0.835	0.835	0.836	0.836	0.836	0.836	0.837	0.837	0.837	0.837	0.837	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.839	0.839	0.839	0.839	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.838	0.837	0.837
Stress Reduction Coeff, rd	06.0	06.0	0.90	0.89	0.89	0.89	68.0	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	98.0	0.86	0.85	0.85	0.85	0.85
Qc1N-CS	n a	a.	e i	, a	n.a.	e c	9 0	n.a.	па		п	n a		n.a.	e c	n.a.	n.a.	E 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n a	9 0	na	e e	a a	n.a.	n 0	n a	n a	e e	па	n o	, c	па	e c	9 9	па	n a	9 8	па	9 9	n.a.	n a	па
qc1N	n a	a	n a	0 0	n.a.	e c	0 0	n.a.	n.a.	n e	na	n a	о С	n.a.	e c	1.8.	n.a.	E 0	n.a.	n.a.	na.	n.a.	n.a.	n.a.	n.a.	n a	0 0	n.a	e e	o e	n.a.	8 6	n e	n a	a e	na	n a	o c	na	e c	n e	n a	na	n e	na	n.a.	n.a.	n.a. n.a.	n a
Š	0.95	0.94	0.94	0.94	0.94	96.0	0.09	0.94	96.0	9.0	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	06:0	0.00	06.0	06.0	0.90	0.90	06.0	06.0	0.90	0.90	0.90	0.89
Interpreted	11.95	10.44	9.23	12,16	13.40	14.30	11.97	12.27	11.75	10.08	10.48	12.54	14.15	13.22	18.08	17.83	17,65	15.58	13.22	11.84	10.95	11.03	11.19	14.78	16.12	17.65	18.45	19.28	20.30	21.83	21.94	22.23	22.71	20.77	19.38	19.33	19.61	17.22	13.68	11.01	8.22	8.77	8.31	8.55	8.90	9.24	9.25	9.84 12.39	13.98
Thin Layer Factor (K _H)																		_			100																												
qcn near interfaces (soft layer)																4								4																									
	0.00	0.00	0.00	0.00	0.001	0.00	0.00	0.001	0.00	0.00	0.00	100.0	0.00	100.0	100.0	0.001	100.0	0.00	0.00	0.00	0.00	0.00	0.00	100.0	0.00	0.00	0.00	97.3	91.9	89.5	91.7	93.4	95.0	95.9	282	100.0	00.0	0.00	0.00	0.00	0.00	0.00	0000	0.00	0.001	0.00	0.00	0.00	0.00
Flag Soil Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	C Cay			Clay	Clay	Clay	8	Clay	A 10	Cley	Clay	Clay	Clay	Q I	Cley	Clay		Clay		Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay Clay	Clay								
Layer "Plastic" PI > 7																																																	
<u>o</u>	3.16 3.14	3.19	3.27	3,16	3.03	2.99	3.15	3.14	3.12	3.23	3.24	3.14	3.19	3.26	3.06	3.09	3.05	3.05	3.10	3.18	3.20	3.18	3.20	3.05	3.01	2.98	2.97	2.93	2.86	2.83	2.86	2.88	2.90	2.91	2.94	2.97	2.99	3.02	3.10	3.21	3.37	3.29	3.33	3,32	3,31	3.24	3.27	3.36 3.25	3.20
F (%)	3.864	3.731	4.244	4.231	2.959	2.840 3.50e	3.979	3.948	3.280	3.890	4.369	3.851	5.722	6.703	5.043	5.372	4.578	3 332	3.406	3.828	3.749	3.393	3.664	3.216	3.197	3.237	3.323	3.023	2.489	2.452	2.744	3.035	3.347	3.036	3.235	3.311	3.644	3.384	3.092	3.212	3.473	2.714	2.848	2.919	3,000	2.324	2.666	4.539	4.534
a	8.138	6.850	5.846	8,126	9.072	9.744	7.824	8.026	7.583	6.218	6.504	8.061	9.219	8.473	12.126	11.836	11.654	11.337	8.225	7.166	6.561	6.478	6.568	9.120	10.047	11.114	11 604	12.155	12.835	13.826	13.846	14.003	14.237	12.830	11.381	11.696	11.849	10.127	7.674	5.831	3.901	4.251	3.921	3.386 4.049	4,262	4.469	4.436	4.802 6.453	7.466
Insitu o'vc (psf)	2604.1	2623.4	2632.8	2652.1	2662.1	2671.5	2690.8	2700.2	2710.2	2729.5	2738.9	2748.3	2767.6	2777.6	2786.9	2806.3	2815.6	2825.6	2844.4	2854.3	2853.7	2883.0	2892.4	2902.4	2921.7	2931.1	2950.4	2959.8	2969.8	2988.5	2998.5	3007.8	3027.2	3036.6	3046.5	3065.9	3075.2	3094.6	3104.0	3113.9	3132.7	3142.6	3152.0	3171.3	3181.3	3190.7	3210.0	3219.4 3229.4	3238.7
	4088.6	4128.5	4147.9	4187.8	4208.4	4227.7	4267.7	4287.0	4307.6	4347.5	4366.9	4386.3	4426.2	4446.8	4466.1	4506.0	4525.4	4546.0	4584.7	4605.3	4645.2	4664.6	4683.9	4723.8	4744.4	4763.8	4803.7	4823.1	4843.6	4882.4	4902.9	4922.3	4962.2	4981.6	5002.1	5042.1	5061.4	5101.4	5120.7	5141.3	5180.0	5200.6	5219.9	5259.9	5280.4	5299.8	5339.7	5359.1 5379.7	5399.0
fs (tsf)	0.458	0.335	0.327	0.456	0.357	0.370	0.419	0.428	0.337	0.330	0.389	0.427	0.730	0.789	0.852	0.892	0.751	0./09	0.398	0.392	0.353	0.317	0.348	0.344	0.469	0.527	0.569	0.544	0.474	0.507	0.570	0.639	0.721	0.591	0.563	0.594	0.664	0.530	0.368	0.292	0.212	0.181	0.176	0.187	0.203	0.166	0.190	0.351	0.548
qc (tsf)	12.640 12.470	11.050	9.770	12,870	14.180	15.130	12,660	12.980	12.430	10.660	11.090	13.270	14.970	13.990	19.130	18,860	18.670	18.290	13.990	12.530	11.750	11.670	11.840	15.520	17.050	18.670	19.520	20.400	21.480	23.100	23.210	23.520	24.030	21.970	19.900	20.450	20.750	18.220	14.470	11.650 9.650	8.700	9.280	8.790	9.050	9.420	9.780	9.790	10.410 13.110	14.790
	33.790	34 120	34.280	34 610	34.780	34 940	35.270	35.430	35.600	35.930	36.090	36.250	36.580	36.750	36.910	37 240	37 400	37.570	37.890	38.060	38.390	38.550	38.710	39.040	39.210	39.370	39.700	39.860	40.030	40.350	40.520	40.680	41.010	41.170	41.500	41.670	41.830	42.160	42.320	42.490	42.810	42,980	43.140	43.470	43.640	43.800	44.130	44.290 44.460	44.620

CPT No.

PGA (A_{max}) 0.91

Total Settlement: 0.00 (Inches)

	Settlement (Inches)	00.00	00.00	0.00	00.00	00.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00	00.00	00.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	800	0.00	0.00	00.00	00.00	00.00	0.00	0.00	0.00	0.00
	Vertical Strain &	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.0	000	0.00	00.00	0.00	0.00	0.00	0.00	000	0.00
	Factor of Safety (CRR/CSR)	n.a.	n.a	n.a.	n.a	n.a.	n.a	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a	n.a.	n.a	n.a	n.a.	n.a.	n.a.	n.a	n.a.	n a	n.a.	n a	o a	e	па	n.a.	n.a.	n a	n.a.	n.a	n.a	n a
	CRR	па	n.a.	n.a.	n.a	n.a.	n.a	n.a.	па	n.a.	пa	пa	n.a.	па	n.a.	па	пa	n.a.	n.a.	па	па	n.a.	п	n.a.	n a	g (1		па	n.a	n.a.	n.a	n.a.	па	n a	n n
	CRRM=7.5, σ'vc = 1 atm	na	n.a.	n.a.	n.a	n.a.	n a	n.a.	n.a.	n.a.	n.a	n a	n.a.	n a	n.a.	па	n a	n.a	n.a.	па	па	n.a.	n a	n.a.	a a		9 6	n.a.	na	n.a.	n.a	n.a.	n.a.	e L	n n
	K _o for Sand	па	n.a	n.a.	n.a	n.a	n.a	n.a	пa	n.a	n.a	n.a	n.a.	n.a	n.a	n.a	n.a.	n.a	n.a.	n.a.	n.a	n.a.	n.a.	n.a.	e; c	6 6	, e	n.a.	n.a.	n.a.	n.a.	n,a,	n.a.	n.a.	n n
	CSR	0.837	0.837	0.837	0.837	0.837	0.837	0.836	0.836	0.836	0.836	0.836	0.836	0.835	0.835	0.835	0.835	0.835	0.835	0.834	0.834	0.834	0.834	0.834	0.833	0.000	0.833	0.832	0.832	0.832	0.832	0.831	0.831	0.831	0.831
	Stress Reduction Coeff, rd	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
	qenecs	n.a.	n.a.	n.a.	па	n.a	n.a	n.a.	n.a.	n.a.	n.a	n a	n.a.	па	n.a.	e u	n.a.	n.a	n.a.	па	В	n a	n.a.	n.a.	n. n.	0 0	n.a.	n.a.	n.a.	п.а.	n.a.	n.a.	n.a.	n.a.	e e
	qc1N	na	n.a.	n.a.	n.a	n.a	n a	n.a.	пa	n.a.	n.a.	n a	n a	n.a	n a	n.a	n.a	n.a.	n.a.	n.a.	па	n.a.	n.a.	n.a.	n 9.	0 0	n.a.	n a							
	Š	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.87
	Interpreted qcN	14.70	14.47	14.70	14.29	14.76	15,45	16.04	17.23	18.06	17.37	16.54	16.70	16.74	15.76	15.51	15.99	16.48	17.21	19.11	24.88	33.91	21.56	15.61	16.48	10.60	19.30	16.88	14.22	13.42	12.83	12.76	13.62	14.13	15.60
	Thin Layer Factor (K _H)																																		
	qcn near interfaces (soft layer)																					1	1							4					
	Fines (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	6.86	72.9	92.6	100.0	100.0	1000	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Flag Soil Type	Clay) Clay	À I	Clay																														
	Layer "Plastic" PI > 7																							1											
	<u>0</u>	3.20	3.18	3.15	3.16	3.16	3.15	3.18	3.14	3.09	3.08	3.09	3.05	3.03	3.06	3.11	3.07	3.06	3.22	3.21	2.95	2.62	2.91	3.11	3.10	3.02	2.99	3.05	3.15	3.13	3.19	3.22	3.17	3.13	3.09
-	F (%)	4.810	4.263	3.867	3,930	4.005	4.280	4.938	4.699	4.274	3.811	3.647	3.138	2.853	2.853	3.436	3.012	3.139	6.192	6.914	3.805	1,695	2.561	3.384	3.511	3.406	2.888	2 932	3.229	2.653	3.020	3.412	3.211	2.889	2.824
	Ø	7.907	7.729	7.848	7.555	7.832	8.247	8.591	9.321	9.816	9.345	8.786	8.855	8.849	8.200	8.018	8.291	8.566	8.988	10.131	13.653	19.168	11.531	7.858	8.328	10.247	9.978	8.486	6.858	6.353	5.974	5.912	6.403	6.682	7.507
	Insitu o'vc (psf)	3248.1	3258.1	3267.4	3277.4	3286.8	3296.2	3306.1	3315.5	3325.5	3334.8	3344.2	3354.2	3363.6	3373.5	3382.9	3392.3	3402.2	3411.6	3421.6	3430.9	3440.3	3450.3	3459.7	3469.6	3488.4	3498.3	3507.7	3517.7	3527.0	3536.4	3546.4	3555.8	3565.7	35/5.1
E arth Group, Inc.	σνc (psf)	5418.4	5439.0	5458.3	5478.9	5498.2	5517.6	5538.2	5557.5	5578.1	5597.5	5616.8	5637.4	5656.8	5677.3	2696.7	5716.0	5736.6	5756.0	5776.5	5795.9	5815.3	5835.8	5855.2	5875.8	5914.5	5935.1	5954 4	5975.0	5994.3	6013.7	6034.3	6053.6	6074.2	6112.9
2014 Cornerstone Earth Group, Inc.	fs (tsf)	0.618	0.537	0.496	0.487	0.516	0.582	0.701	0.726	869.0	0.594	0.536	0.466	0.425	0.395	0.466	0.424	0.457	0.949	1.198	0.891	0.559	0.510	0.460	0.509	0.00	0.504	0.436	0.390	0.297	0.319	0.358	0.366	0.344	0.385
nerstone E	qc (tsf)	15.550	15,310	15.550	15.120	15.620	16.350	16.970	18.230	19,110	18.380	17,500	17.670	17,710	16.670	16,410	16,920	17.440	18.210	20.220	26.320	35.880	22.810	16.520	17.440	20.130	20.420	17.860	15.050	14.200	13.570	13.500	14.410	14.950	15.470
© 2014 Con	Depth (ft)	44 780	44,950	45.110	45.280	45.440	45.600	45.770	45.930	46.100	46.260	46.420	46.590	46.750	46.920	47 080	47.240	47.410	47.570	47.740	47.900	48.060	48.230	48.390	48.560	48.880	49.050	49.210	49.380	49.540	49.700	49.870	50.030	50.200	50.520

Factor of Safety CRR/CSR) (Inches) 0.40 K_o for Sand Total Settlement: Stress Reduction Coeff, rd Š 3.95
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
13.75
1 PGA (Amax) Thin Layer Factor (K_H) qcn near interfaces (soft layer) ines (%) Flag Soil Type Unsaturated Unsaturated Jnsaturated Jnsaturated 2 Layer "Plastic" PI > 7 CPT No. CORNERSTONE EARTH GROUP F (%) Ø Insitu $\sigma'_{vc} \, (psf)$ σvc (pst) 79.9 9.9.2 118.6 1 ∫s (tsf) 0.000 4,4180
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11,240
11 (tst) ဗိ Depth (ft) 7.500 (1.00

2

0.91 PGA (A_{max})

(Inches) 0.40 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm | 1960 | CSR Stress Reduction Coeff, rd ŏ Thin Layer Factor (K_H) ∞ ∞ ∞ qcN near interfaces (soft layer) 22.5 10000 Fines (%) Flag Soil Type Layer "Plastic" PI > 7 3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875
3.875 F (%) Ø 14429.0 14489.6 14489.6 14489.6 14489.6 14588.7 14687.5 14687. σvc (pst) 14429.0 1488.3 1488.3 1488.3 1488.3 1488.3 1488.3 1488.3 1488.7 1 fs (tsf) 0.0287 0.01282 0.01282 0.01282 0.01282 0.0214 0. qc (tsf) 88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270
88.270 Depth (ft) 11,1810 12,130 12,130 13,145 13,145 13,145 13,145 13,145 13,145 13,145 13,145 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 14,146 16,146 1

PGA (A_{max})

2

CPT No.

0.91

(Inches) 0.40 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand CSR Stress Reduction Coeff, rd $\begin{smallmatrix} 0.00 \\ 0.00$ ŏ 11.38
8.57
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
10.40
1 Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) Flag Soil Type Layer "Plastic" PI > 7 F (%) 7,778 6,617 6,730 6, Ø Insitu $\sigma'_{vc} \, (psf)$ 7768 8 22881.7779.4 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.1 228818.2 228977.2 2 σvc (pst) ∫s (tsf) 0.596
0.579
0.579
0.579
0.0570
0.0570
0.0570
0.0570
0.0570
0.0706
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580
0.0580 qc (tsf) 11,004 11,000 Depth (ft)

PGA (Amax)

2

CPT No.

0.91

(Inches) 0.40 Total Settlement:

Factor of Safety (CRR/CSR) CRRM=7.5, \(\sigma'vc = 1 \) atm 0.577 0.578 112 0.566 112 K_o for Sand 0.0832 0.0832 0.0833 0.0834 0.0834 0.0835 CSR Stress Reduction Coeff, rd 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.084 ŏ 22.50 22.50 22.50 22.50 22.50 22.50 22.50 23.50 25.50 Thin Layer Factor (K_H) qcn near interfaces (soft layer) 222.91 222.93 222.94 222.94 222.94 222.94 222.94 222.94 222.94 222.94 222.94 222.94 ines (%) Flag Soil Type Layer "Plastic" PI > 7 F (%) 5.5483
5.5605
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6.6016
6. 11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11.186
11 Ø Insitu o'vc (psf) 3868.8
3868.8
3868.8
3868.6
3868.6
38716.7
3775.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.4
3776.6
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3776.7
3 σvc (pst) 4.088.6 A 4.088.6 A 4.088.6 A 4.088.6 A 4.088.6 A 4.088.6 A 4.087.6 A 4.088.6 s (tsf) 1,1199 1,1220 1,1271 1,1271 1,1048 0,048 0,049 0,058 0,058 0,058 0,075 0 qc (tsf) 23.3910
23.3910
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810
23.3810 Depth (ft) 33.700
34.4280
34.4280
34.4280
34.4280
34.4280
34.4280
34.4280
34.4280
34.4280
34.4280
34.4280

PGA (A

2

CPT No.

PGA (A_{max}) 0.91

Total Settlement: 0.40 (Inches)

Settlement (Inches)	0.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	00.00
Vertical Strain Sv	00.0	00.00	0.00	00.00	0.00	00.00	0.00	00.00	00.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
Factor of Safety (CRR/CSR)	n.a.	n.a.	n.a	n.a	n.a.	n.a	n.a.	па	n.a	n.a.	n a	n.a.	n a	n.a.	n.a	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a.	n.a.	па	n.a.	n.a.	n.a.	n.a.	n a	n.a.	n.a.	n.a.	n.a
CRR	n.a.	n.a.	n.a.	n.a	n.a.	n.a	n.a.	па	n.a.	па	па	n.a.	па	n.a.	пa	па	n a	n.a.	пa	па	n.a.	n.a	n.a.	пa	n.a.	n.a	па	n.a	па	n.a.	па	n.a.	n.a
CRRM=7.5, c'vc = 1.atm	n.a.	n.a.	па	na	n.a.	n.a	n.a.	па	па	па	n.a	n.a.	n.a.	n.a.	n.a	n.a.	па	n.a.	n.a.														
K _σ for Sand	n.a.	n a	n.a.	па	n.a.	n.a	n.a.	па	n.a.	па	пa	n.a.	пa	n.a.	пa	па	n.a	n.a.	пa	пa	E'S	n.a.	n, a,	n.a.									
CSR	0.837	0.837	0.837	0.837	0.837	0.837	0.836	0.836	0.836	0.836	0.836	0.836	0.835	0.835	0.835	0.835	0.835	0.835	0.834	0.834	0.834	0.834	0.834	0.833	0.833	0.833	0.833	0.832	0.832	0.832	0.832	0.831	0.831
Stress Reduction Coeff, rd	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
qenecs	n.a.	па	па	пa	n.a.	па	n.a.	па	пa	па	па	n.a.	па	n.a.	па	па	n.a	n.a.	па	n.a	n.a.												
qc1N	n.a.	n.a	n.a.	n.a	n.a.	n.a	n.a.	n.a	n.a.	па	n.a	n.a.	n.a.	n.a.	n.a	n.a.																	
Ö	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.81	0.81
Interpreted	16.45	16.01	14.99	15.02	15.00	14.88	15.10	15.87	15,12	14.66	16.02	16.21	15.69	16.84	16.77	14.82	13.88	14.15	13.39	12.68	12.40	11.38	10,58	11.09	11.82	11.37	11.70	13.40	15.77	17.73	18.95	21.68	24.75
Thin Layer Factor (K _H)																									4								
qcn near Tr interfaces Fa (soft layer)																						d											
Fines qc (%) (sof	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Flag Soil Type	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Layer "Plastic" FI PI > 7																																	
<u>0</u>	3.30	3.30	3.33	3.29	3.28	3.27	3.26	3.24	3.27	3.34	3.23	3.21	3.23	3.15	3.15	3.19	3.22	3.18	3.21	3.21	3,19	3.27	3.32	3.27	3.20	3.23	3.27	3.23	3.15	3.09	3.09	3.03	3.01
F (%)	5.923	5.588	5.605	4.864	4.493	4.232	4.232	4.207	4.421	5.497	4 101	3.779	3.872	3.153	3.088	2.968	2.928	2.501	2.493	2.223	1.967	2.349	2.445	2164	1.745	1.815	2.410	2.656	2.559	2.543	2.840	2.813	3.207
Ø	6.829	6.595	6.076	6.071	6.045	2.967	6.059	6.412	6.032	5.792	6.430	6.501	6.234	6.767	6.712	5.767	5.305	5.415	5.041	4.692	4.544	4.050	3.661	3.887	4.219	3.994	4.135	4.911	5.989	6.881	7.425	8.660	10.048
Insitu o'vc (psf)	4302.7	4312.6	4322.0	4332.0	4341.3	4350.7	4360.7	4370.1	4380.0	4389.4	4398.8	4408.7	4418.1	4428.1	4437.4	4446.8	4456.8	4466.2	4476.1	4485.5	4494.9	4504.8	4514.2	4524.2	4533.6	4542.9	4552.9	4562.3	4572.2	4581.6	4591.0	4600.9	4610.3
Qvc (psf)	5418.4	5439.0	5458.3	5478.9	5498.2	5517.6	5538.2	5557.5	5578.1	5597.5	5616.8	5637.4	5656.8	5677.3	5696.7	5716.0	5736.6	5756.0	5776.5	5795.9	5815.3	5835.8	5855.2	5875.8	5895.1	5914.5	5935.1	5954.4	5975.0	5994.3	6013.7	6034.3	6053.6
Ď			36	640	0.590	0.549	0.559	0.590	0.584	669.0	0.580	0.542	0.533	0.472	0.460	0.381	0.346	0.302	0.281	0.234	0.201	0.214	0.202	0.190	0.167	0.165	0.227	0.298	0.350	0.401	0.484	0.561	0.743
β (tsf) σνο	0.870	0.795	0.7	0	_																												
		_	15.860 0.7	_	_	_	15.980	16.790	16.000	15.510	16,950	17.150	16,600	17.820	17,740	15,680	14.690	14.970	14.170	13,420	13.120	12,040	11.190	11.730	12,510	12.030	12,380	14,180	16,680	18.760	20.050	22.940	26.190

CORNERSTONE EARTH GROUP

L

CPT No.

9

PGA (A_{max})

0.91

0.47 (Inches) Total Settlement:

	_					
Settlement (Inches)	000000000000000000000000000000000000000					0.00
Vertical Strain Ev	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000			0.00
Factor of Safety (CRR/CSR)			ઌ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ ઌ૽ૡ૽ઌ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ૽ૡ	: ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ ಹೆ - ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ ਛ - ਛ ਛ ਛ ਛ		n.a. n.a.
CRR						n.a. n.a.
CRRM=7.5, o'vc = 1 atm						n.a. n.a.
K _σ for Sand	000000000000000000000000000000000000000		0011 0011 0011 0011 0011 0011 0011 001	1,100 1,100 1,100 1,100 1,009 1,009 1,009 1,009 1,009 1,009 1,009	1.094 1.089 1.089 1.085 1.085 1.085 1.085 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072 1.072	n.a. n.a.
CSR	0.590 0.590 0.590 0.590 0.590 0.590 0.590	0.590 0.590 0.590 0.590 0.590 0.590	0.590 0.590 0.590 0.589 0.589 0.589 0.588	0.587 0.587 0.587 0.586 0.586 0.586 0.585 0.585 0.585	0.584 0.583 0.583 0.583 0.583 0.583 0.582 0.582 0.584 0.584 0.580 0.580 0.580	0.602 0.606 0.610
Stress Reduction Coeff, rd	6.6.6.6.6.6.6.6.6	8 6 6 6 6 6 6 6 6 6	866688888888888888888888888888888888888	86.00 86.00		0.98 0.98 0.98
qenecs	273.40 516.60 333.49 235.88 158.50 104.13 100.64 78.30	82.95 92.45 93.22 85.05 82.38 82.23 81.87	82.45 78.92 80.81 77.33 79.05 81.52 73.69 73.66 73.66	73.46 73.12 72.59 72.48 73.43 74.50 75.31 75.30 76.08 76.04 76.82 76.82	77.17 75.87 75.87 77.18 76.04 76.99 77.46 77.46 77.46 77.08 77.08 77.08 77.08 77.08 77.08 77.08 77.08 77.08 77.08 77.08	n.a. n.a. n.a.
qcın	273.40 516.60 333.49 235.88 158.50 95.43 43.98 21.55	25.39 32.39 32.86 26.61 25.11 24.13	23.56 22.77 22.97 22.62 22.62 22.62 19.81 16.10 16.10 16.13 16.08	15.82 17.74 16.89 17.71 18.19 18.19 18.19 18.18 18.19 18.18	10.71 17.72 19.62 18.66 18.66 18.66 18.66 11.29 17.63 17.63 17.63 17.63 17.63 17.63 17.63 17.63 17.63 17.63 17.63 17.63 17.63	n n n
ő	7.1.70 1.70 1.70 1.70 7.1 7.1 7.1	1,70 1,70 1,70 1,70 1,70	0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 1 2 0 1 1 1 1	5 1 1 2 0 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1.70 1.70 1.70 1.70 1.70 1.70 1.60 1.60 1.60 1.60 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	1.24 1.23 1.23
Interpreted	160.82 303.88 196.17 138.75 93.23 56.13 25.87 12.67	14.93 19.05 19.33 15.65 14.08 14.20	13.86 12.97 12.92 112.79 113.31 11.65 9.46 9.46 9.46	9.32 9.19 8.82 8.82 9.06 9.06 9.93 10.09 10.70 10.59 10.70 9.88	11.20 10.30 10.30 10.37 10.37 10.37 10.57	6.23 6.20 6.46
<u>-</u>						
n Layer tor (K _H)						
near Thin Layer sices Factor (K _H)						
qcN near interfaces (soft layer)	00000479	5 1~ 0 0 4 4 0 v 0	ლ √ თ ႃ - O ω თ თ Φ - O თ თ Φ - O σ σ σ Φ - O σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	1	ଚ ୧୯ ମ ଦ ୮ ୮ ୮ ୫ ୩ ୯ ୩ ୫ ୦ ପ ଠ ଶ ୩ ୯ ୩ ୯ ୯ ୦ ୦ ୦ ୦ ୧ ୩ ୯ ୩ ୧ ୦ ୦ ୦ ୦ ୧ ୩ ୯ ୩ ୧ ୦ ୦ ୦ ୦ ୦ ୯ ୩ ୧ ୦ ୦ ୦ ୦ ୦ ୯ ୩ ୧	0.00
Fines qcn near (%) (soft layer)	fied 0.0 (red 0.0 (red 0.0 (red 0.0 (red 0.0 (red 0.0 (red 10.4 47.7 (red 0.3).2 (red 0.3.2 (red 0.		ted 78.8 (ed 81.9 (ed 81.9 (ed 81.9 (ed 81.9 (ed 81.9 (ed 81.9 (ed 81.9 (ed 85.7 (ed 89.9 (ed		, , ,	100.0 100.0
Fines qcn near (%) (soft layer)	Unsaturated 0.0 Unsaturated 0.0 Unsaturated 0.0 Unsaturated 0.0 Unsaturated 0.0 Unsaturated 10.4 Unsaturated 47.7 Unsaturated 59.2 Unsaturated 77.7		Unsaturated 78.8 Unsaturated 71.5 Unsaturated 72.0 Unsaturated 72.0 Unsaturated 72.0 Unsaturated 61.9 Unsaturated 61.9 Unsaturated 61.9 Unsaturated 65.7 Unsaturated 65.7 Unsaturated 65.7 Unsaturated 65.7 Unsaturated 65.7 Unsaturated 68.9 Unsaturated 68.9 Unsaturated 68.9 Unsaturated 68.9		Unsaturated 81.5 Unsaturated 89.5 Unsaturated 89.5 Unsaturated 89.7 Unsaturated 79.1 Unsaturated 79.1 Unsaturated 79.4 Unsaturated 69.8 Unsaturated 69.8 Unsaturated 69.8 Unsaturated 69.8 Unsaturated 69.8 Unsaturated 99.8 Unsaturated 99.6 Unsaturated 99.8	
Fines qcn near (%) (soft layer)					, , ,	
Fines qcn near (%) (soft layer)	Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated	Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated	Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated	Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated Unsaturated	, , ,	Clay Clay Clay
Layer Fines Government (%) Interfaces PI > 7 (%) (soft layer)	0.92 Unsaturated 0.56 Unsaturated 1.01 Unsaturated 1.18 Unsaturated 1.51 Unsaturated 1.51 Unsaturated 2.31 Unsaturated 2.36 Unsaturated 2.56 Unsaturated	2.56 Unsaturated 2.56 Unsaturated 2.59 Unsaturated 2.59 Unsaturated 2.59 Unsaturated 2.59 Unsaturated 2.55 U	2.70 Unsaturated 2.61 Unsaturated 2.64 Unsaturated 2.72 Unsaturated 2.73 Unsaturated 2.74 Unsaturated 2.74 Unsaturated 2.74 Unsaturated 2.78 Unsaturated 2.84 Unsaturated 2.84 Unsaturated 2.84 Unsaturated	2.80 Unsaturated 2.87 Unsaturated 2.87 Unsaturated 2.87 Unsaturated 2.84 Unsaturated 2.84 Unsaturated 2.84 Unsaturated 2.84 Unsaturated 2.84 Unsaturated 2.85 Unsaturated 2.86 Unsaturated 2.87 Unsaturated 2.88 Unsaturated 2.89 Unsaturated 2.80 Unsaturated 2.80 Unsaturated	Unsaturated Unsaturated	3.08 Clay 3.09 Clay 3.06 Clay
Fines Control Print Print Print Control Prin	0.92 Unsaturated 0.56 Unsaturated 1.01 Unsaturated 1.18 Unsaturated 1.51 Unsaturated 1.51 Unsaturated 2.31 Unsaturated 2.36 Unsaturated 2.56 Unsaturated	6.204 Onsettrated 6.204 Onsettrated 6.204 2.56 Unsaturated 6.143 2.59 Unsaturated 6.038 2.62 Unsaturated 6.143 2.59 Unsaturated 6.143 2.59 Unsaturated 6.143 2.55 Unsaturated 6.106 2.68 Unsaturated 6.106 2.6	6.228 2.70 Unsaturated 6.620 2.61 Unsaturated 6.660 2.74 Unsaturated 6.660 2.72 Unsaturated 5.892 2.72 Unsaturated 5.892 2.72 Unsaturated 5.600 2.74 Unsaturated 6.74 2.77 Unsaturated 6.731 2.81 Unsaturated 6.72 2.84 Unsaturated 6.72 2.84 Unsaturated 6.72 2.84 Unsaturated 6.73 2.84 Unsaturated 6.73 2.84 Unsaturated 6.73 2.84 Unsaturated 6.73 2.84 Unsaturated 6.73 2.84 Unsaturated 6.73 2.84 Unsaturated	5.846 2.80 Unsaturated 5.856 2.80 Unsaturated 6.864 2.87 Unsaturated 6.804 2.87 Unsaturated 6.804 2.87 Unsaturated 6.845 2.86 Unsaturated 6.386 2.84 Unsaturated 5.77 2.77 Unsaturated 4.876 2.77 Unsaturated 5.81 2.82 Unsaturated 5.81 2.82 Unsaturated 5.82 Unsaturated 5.83 2.81 Unsaturated 5.83 2.81 Unsaturated 5.83 2.81 Unsaturated 5.93 2.81 Unsaturated	2.73 Unsaturated 2.83 Unsaturated 2.85 Unsaturated 2.75 Unsaturated 2.70 Unsaturated 2.77 Unsaturated 2.77 Unsaturated 2.77 Unsaturated 2.77 Unsaturated 2.56 Unsaturated 2.57 Unsaturated 2.57 Unsaturated 2.97 Unsaturated 2.97 Unsaturated 2.97 Unsaturated 2.97 Unsaturated 2.97 Unsaturated 2.96 Gay 2.99 Gay 2.99 Gay 3.99 Gay	5.475 3.08 Clay 5.561 3.09 Clay 5.189 3.06 Clay
Fines Government Fines Governm	1681.228 0.460 0.92 Unsaturated 2212.025 0.224 0.58 Unsaturated 1777.69 0.511 1.01 Unsaturated 714.028 0.511 1.18 Unsaturated 430.335 1.097 1.51 Unsaturated 175.026 0.539 2.58 Unsaturated 175.02 6.539 2.58 Unsaturated 175.03 6.539 2.58 0.589 2.58 0.589 2.58 0.589 2.58 0.589 2.58 0.589 2.58 0.589 2.58 0.589 2.58 0.589 2.58 0.589 2.580 0.589	77.796 (2.04 2.66 Unsaturated 55.80 (5.24 Constrained 57.80 (4.14 2.69 Unsaturated 57.80 (4.14 2.69 Unsaturated 57.80 (4.14 2.69 Unsaturated 55.80 (4.13 2.69 Unsaturated 55.00 (4.14 2.69 Unsaturated 55.00 (4.14 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 55.00 (4.15 2.69 Unsaturated 5.10 (4.15 2.69 Unsaturated 5.10 (4.15 2.69 Unsaturated 5.10 (4.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15 2	47.573 6.238 2.70 Unsaturated 47.090 6.166 2.71 Unsaturated 68.099 6.965 2.61 Unsaturated 68.099 6.962 2.61 Unsaturated 88.326 5.92 2.72 Unsaturated 88.326 5.93 2.74 Unsaturated 88.072 6.466 2.77 Unsaturated 88.072 6.77 Unsaturated 88.072 6.77 Unsaturated 88.073 2.74 Unsaturated 88.073 2.77 Unsaturated 88.07 6.77 Unsaturated 87.07 6.77 6.77 Unsaturated 87.07 6.77 6.77 0.77 0.77 0.77 0.77 0.77	31.304 5.846 2.80 Unsutrated 28.624 5.570 2.80 Unsutrated 28.624 6.330 2.87 Unsutrated 29.598 6.804 2.87 Unsutrated 29.598 6.804 2.87 Unsutrated 30.021 5.764 2.81 Unsutrated 30.021 5.764 2.81 Unsutrated 31.025 5.412 2.84 Unsutrated 31.025 5.412 2.84 Unsutrated 28.636 5.81 2.84 Unsutrated 30.021 5.764 2.81 Unsutrated 30.021 5.764 2.81 Unsutrated 30.038 4.876 2.78 Unsutrated 29.108 5.480 2.80	4.590 2.7.3 Unsaturated 5.845 2.83 Unsaturated 5.846 2.85 Unsaturated 4.667 2.75 Unsaturated 4.667 2.75 Unsaturated 3.663 2.70 Unsaturated 4.395 2.70 Unsaturated 4.313 2.77 Unsaturated 1.840 2.58 Unsaturated 2.78 2.65 Unsaturated 2.78 2.65 Unsaturated 2.78 2.65 Unsaturated 4.247 2.94 Unsaturated 4.247 2.94 Unsaturated 3.305 2.95 Unsaturated 3	12.539 5.475 3.08 Clay 12.333 5.561 3.09 Clay 12.752 5.189 3.06 Clay
Q F (%) Ic "Plasto" Flag Soil Type (%) (soft layer)	19.4 1681.228 0.460 0.92 Unsaturated 59.3 177.769 0.514 1.01 Unsaturated 79.9 714.028 0.614 1.18 Unsaturated 79.2 714.028 0.614 1.18 Unsaturated 118.6 2.96.890 1.827 1.51 Unsaturated 118.6 2.96.890 1.827 1.51 Unsaturated 118.6 2.96.890 1.827 1.84 Unsaturated 118.5 7.7302 6.539 2.58 Unsaturated 77.94 6.5416 6.798	1884 77.796 6.204 Unsaturated 27.7 67.800 6.14 2.50 Unsaturated 25.7 67.800 6.143 2.50 Unsaturated 25.7 67.800 6.143 2.50 Unsaturated 25.7 67.800 6.143 2.50 Unsaturated 25.7 67.800 6.143 2.50 Unsaturated 25.7 67.800 6.143 2.50 Unsaturated 25.7 67.800 6.143 2.50 Unsaturated 25.7 65.030 6.173 2.65 Unsaturated 37.0 6.186 2.65 Unsaturated 37.6 48.817 6.106 2.68 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.65 Unsaturated 25.800 6.173 2.800	357.0 47.73 6.238 2.70 Unsaturated 377.5 70.572 6.620 2.61 Unsaturated 46.62 8.620 2.61 Unsaturated 46.62 8.620 2.61 Unsaturated 46.62 8.326 2.64 Unsaturated 46.62 8.326 2.64 Unsaturated 46.67 8.326 2.64 Unsaturated 46.7 80.326 5.900 2.71 Unsaturated 46.7 80.326 5.900 2.74 Unsaturated 5.620 2.64 Unsaturated 5.620 2.64 Unsaturated 5.620 2.77 2.77 Unsaturated 5.620 2.77 2.77 Unsaturated 5.620 2.77 2.77 2.77 2.77 2.77 2.77 2.77 2.	610.3 31.304 5.846 2.80 Unsaturated 629.0 2.86.24 5.850 2.83 Unsaturated 629.0 2.85.41 6.655 2.83 Unsaturated 638.3 29.598 6.804 2.87 Unsaturated 677.1 30.404 6.386 2.84 Unsaturated 677.1 30.404 6.386 2.84 Unsaturated 677.1 30.404 6.386 2.84 Unsaturated 677.1 20.404 6.386 2.84 Unsaturated 677.1 20.404 6.386 2.84 Unsaturated 677.1 20.404 6.386 2.84 Unsaturated 776.4 2.81 Unsaturated 776.4 2.81 Unsaturated 776.4 2.81 Unsaturated 776.4 2.81 Unsaturated 776.4 2.81 Unsaturated 776.4 2.81 Unsaturated 776.4 2.80 Unsaturated 7.85 2.80 Unsaturated 7.85 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 Unsaturated 7.85 2.80 2.80 2.80 Unsaturated 7.85 2.80 2.80 2.80 Unsaturated 7.85 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	2.2919 4:300 2.73 Unsaturated 27:320 5.545 2.83 Unsaturated 27:320 5.545 2.83 Unsaturated 27:320 5.545 2.85 Unsaturated 27:320 5.545 2.85 Unsaturated 27:320 5.545 2.85 Unsaturated 27:450 2.63 2.69 Unsaturated 27:450 2.6142 4:313 2.77 Unsaturated 24:550 2.618 Unsaturated 25:56 2.618 Unsaturated 25:56 2.618 2.74 Unsaturated 25:56 2.618 2.74 Unsaturated 27:456 5.624 2.97 Unsaturated 17:912 3.761 2.96 Unsaturated 17:314 3.761 2.96 Unsaturated 17:314 3.761 2.96 Unsaturated 17:314 3.761 2.96 Unsaturated 17:314 3.761 2.96 Unsaturated 17:314 3.761 2.96 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 2.95 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.369 Unsaturated 17:318 3.365 3.365 3.369 Unsaturated 17:318 3.365 3.365 3.369 Unsaturated 17:318 3.365 3.365 3.369 Unsaturated 17:318 3.365 3.365 3.369 Unsaturated 17:318 3.365	946.6 12.539 5.475 3.08 Clay 966.0 12.333 5.561 3.09 Clay 965.4 12.752 5.189 3.06 Clay
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.4 19.4 1681.228 0.460 0.92 Unsaturated 39.9 2212.025 0.224 0.58 Unsaturated 59.3 59.2 171.026 0.514 1.01 Unsaturated 79.9 714.028 0.511 1.01 Unsaturated 99.2 49.035 1.097 1.51 Unsaturated 118.6 118.6 236.890 1.827 1.84 Unsaturated 118.5 18.6 236.890 1.827 1.84 Unsaturated 118.5 18.6 7.302 6.539 2.58 Unsaturated 7.701 7.701 6.516 7.708	193. 17.7 26.7 6.204 Unsaturated 237.7 257.7 6.508 6.038 2.69 Unsaturated 257.8 5.401 2.59 Unsaturated 257.8 5.402 6.038 2.60 Unsaturated 257.7 257.7 67.800 6.143 2.69 Unsaturated 257.7 257.7 67.800 6.143 2.69 Unsaturated 257.7 257.7 6.038 2.65 Unsaturated 257.7 257.7 6.038 2.65 Unsaturated 257.7 257.7 6.038 2.65 Unsaturated 257.7 257.7 6.036 6.13 2.65 Unsaturated 257.7 257.7 6.038 6.038 2.65 Unsaturated 257.7 257.7 6.036 6.038 2.65 Unsaturated 257.7 257.7 6.036 6.038 2.65 Unsaturated 257.7 257.7 6.036 6.038 2.65 Unsaturated 257.7 6.036 6.038 2.05 0.036 6.038 2.05 0.036 6.036 6.036 6.036 6.036 6.036 6.03	357.0 357.0 475.3 6238 2.70 Unsaturated 36.5 376.2 416.2 65.0 2.61 Unsaturated 416.2 416.2 65.0 6.62 2.61 Unsaturated 416.2 416.2 6.62 2.74 Unsaturated 416.2 416.2 6.62 2.74 Unsaturated 416.2 416.2 6.62 2.64 Unsaturated 416.1 476.7 476.7 6.62 2.66 Unsaturated 416.1 496.1 39.385 6.532 2.72 Unsaturated 416.1 496.1 39.385 6.532 2.72 Unsaturated 416.1 496.1 39.385 6.530 2.74 Unsaturated 416.1 496.1 39.385 6.530 2.74 Unsaturated 516.7 516.7 516.7 6.731 2.84 Unsaturated 516.7 516.7 6.731 2.81 Unsaturated 516.7 6.731 2.81 6.731 2.8	615.9 610.3 31.304 5.846 2.80 Unsaturated 65.65 62.90 28.624 5.857 2.83 Unsaturated 67.62 63.90 27.84 6.43 2.83 Unsaturated 67.63 63.90 27.84 6.43 2.841 6.566 2.87 Unsaturated 77.45 68.77 30.341 6.386 2.84 Unsaturated 77.44 68.70 30.021 5.764 2.81 Unsaturated 77.44 68.70 30.021 5.764 2.81 Unsaturated 77.44 68.70 30.021 5.764 2.81 Unsaturated 77.44 68.70 30.021 5.764 2.81 Unsaturated 87.37 77.64 30.898 4.876 2.78 Unsaturated 87.37 77.54 20.30.21 5.81 2.81 Unsaturated 87.37 77.54 20.30.20 5.81 2.81 Unsaturated 87.37 77.54 20.30.20 5.81 2.82 Unsaturated 87.37 77.54 20.30.20 2.80 Unsaturated 87.37 77.54 20.30.20 2.80 Unsaturated 87.34 77.54 20.30.20 2.80 Unsaturated 87.35 20.35 2.81 Unsaturated 97.35 2.30.2 2.81 Unsaturated 97.34 77.54 20.30.20 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 2.80 Unsaturated 97.34 77.54 20.30.20 2.80 2.80 Unsaturated 97.34 20.30.20 2.80 Unsaturated 97.34 20.3	74.4. 2.5.3 7.5.4 0.10saturated 75.4. 30.389 4.507 2.7.3 Unsaturated 773.2 27.300 5.545 2.83 Unsaturated 783.1 27.300 5.645 2.83 Unsaturated 782.5 27.492 3.654 2.70 Unsaturated 802.5 27.492 3.654 2.70 Unsaturated 811.9 27.182 4.396 2.70 Unsaturated 811.2 24.450 2.66 Unsaturated 811.2 24.550 2.66 Unsaturated 800.6 1.862 2.66 Unsaturated 800.6 1.860 2.77 Unsaturated 800.7 1.7566 5.624 2.97 Unsaturated 800.8 1.7566 5.624 2.97 Unsaturated 808.6 1.7566 5.624 2.97 Unsaturated 808.6 1.502 4.247 2.94 Unsaturated 808.7 1.2103	1310.4 946.6 12.539 5.475 3.08 Clay 1329.8 956.0 12.333 5.561 3.09 Clay 1349.2 965.4 12.752 5.189 3.06 Clay
$f_{S}\left(\text{st}\right) \text{Gvc}\left(\text{psf}\right) \text{Insitu} \qquad \text{Q} \qquad \text{F}\left(\%\right) \qquad \text{Ic} \qquad \text{"Plastic"} \text{Flag Soil Type} \text{Fines} \text{interfaces} \text{interfaces} \text{Pl > 7} \text{(soft layer)} \text{(soft layer)}$	0.782 19.4 19.4 1681.228 0.460 0.92 Unsaturated 0.720 38.9 29.212.025 0.224 0.58 Unsaturated 0.301 79.9 79.9 714.028 0.514 1.01 Unsaturated 1.081 99.2 99.2 490.335 1.097 1.18 Unsaturated 1.084 118.6 128.8 1.87 1.84 Unsaturated 0.596 139.2 190.2 3.648 2.31 Unsaturated 0.872 158.5 7.52 8.589 2.58 Unsaturated 0.873 170.7 1.770 45.746 6.758 2.58 Unsaturated	0.974 1984 177.796 6.204 2.504 Unsaturated 0.974 198.4 177.796 6.204 2.504 Unsaturated 1.08 217.8 217.8 59.072 5.401 2.56 Unsaturated 1.005 238.4 238.4 57.728 5.436 2.60 Unsaturated 0.935 278.3 278.3 60.575 6.038 2.60 Unsaturated 0.935 277 257.7 67.800 6.143 2.59 Unsaturated 0.936 277 257.7 67.805 6.132 2.60 Unsaturated 0.937 37.7 297.7 55.030 6.123 2.65 Unsaturated 0.804 317.0 317.0 53.049 5.407 2.62 Unsaturated 0.873 337.6 337.6 48.817 6.106 2.68 Unsaturated 0.873 37.7 6.200 6.106 2.68 Unsaturated 0.873 37.7 6.2 0.2 0.873 37.7 6.2 0.873 37.7 6.2 0.873 37.7 6.2 0.873 37.7 6.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	0.882 357.0 357.0 47.57 6.238 2.70 Unsaturated 0.882 357.0 357.0 47.57 6.238 2.70 Unsaturated 0.881 396.9 396.9 41.080 6.165 2.74 Unsaturated 0.874 416.2 6.629 2.66 Unsaturated 0.796 456.2 456.2 6.620 2.61 Unsaturated 0.796 456.2 456.2 2.65 Unsaturated 0.796 456.2 456.2 2.65 Unsaturated 0.796 456.2 456.2 8.8.236 5.822 2.72 Unsaturated 0.580 496.1 496.1 39.336 5.820 2.74 Unsaturated 0.587 516.7	0.558 615.9 610.3 31.304 5.846 2.80 Unsaturated Unsaturated Casts 0.527 6.84.5 6.29.0 28.624 5.85.0 Unsaturated Unsaturated Casts 0.565 675.2 6.80 2.87 Unsaturated Unsaturated Casts 0.667 718.4 6.68 2.87 Unsaturated Unsaturated Casts 0.667 718.4 6.68 2.87 Unsaturated Unsaturated Casts 0.657 7.84 6.84 2.86 Unsaturated Unsaturated Casts 0.657 7.83 6.77 30.404 6.386 2.84 Unsaturated Unsaturated Casts 0.584 7.74 887.0 30.021 5.764 2.78 Unsaturated Casts 0.585 814.3 706.4 30.021 5.764 2.81 Unsaturated Casts 0.586 814.3 706.4 30.021 5.764 2.78 Unsaturated Casts 0.586 814.3 706.4 30.896 4.876 2.78 Unsaturated Casts 0.576 873.1	0.577 932.9 763.8 4.507 2.73 Unsaturated 0.579 932.9 763.8 4.507 2.73 Unsaturated 0.579 932.9 763.8 27.320 5.645 2.83 Unsaturated 0.529 932.9 763.8 27.320 5.645 2.83 Unsaturated 0.546 972.8 773.2 27.320 5.645 2.85 Unsaturated 0.396 992.2 773.2 27.320 5.645 2.85 Unsaturated 0.396 902.2 773.2 27.320 5.645 2.85 Unsaturated 0.396 902.2 7.82 27.92 2.85 2.90 Unsaturated 0.396 1032.1 811.9 27.182 4.395 2.77 Unsaturated 0.354 1072.1 831.2 24.560 2.618 2.65 Unsaturated 0.236 1011.2 850.5 19.06 1.862 2.65 Unsaturated 0.236 1112.0 850.5 19.06 1.862 2.65 Unsaturated 0.237 1112.0 850.5 17.565 5.624 2.97 Unsaturated 0.238 1113.0 889.3 17.565 5.624 2.97 Unsaturated 0.237 1113.0 898.6 15.203 2.92 Unsaturated 0.237 1110.0 898.6 15.203 2.92 Unsaturated 0.237 1110.0 898.6 15.203 2.92 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 1112.0 898.6 15.203 2.95 Unsaturated 0.237 112.0 898.6 15.203 2.95 Unsaturated 0.237 12.0 898.6 15.203 2.95 Unsaturated 0.237 12.0 898.6 15.203 2.95 Unsaturated 0.237 12.0 898.6 15.203 2.95 Unsaturated 0.238 12.0 898.6 15.203 2.95 Unsaturated 0.238 12.0 898.6 15.203 2.95 Unsaturated 0.238 12.0 898.6 15.203 2.95 Unsaturated 0.238 12.0 898.6 12.203 2.95 Unsatu	0.325 1310.4 946.6 12.539 5.475 3.08 Clay 0.328 1329.8 956.0 12.333 5.651 3.09 Clay 0.319 1349.2 965.4 12.752 5.189 3.06 Clay
F(tsf) Gvc(psf) Gvc(psf) Gvc(psf) Q F(%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	170.150 0.782 19.4 19.4 1681.228 0.460 0.92 Unsaturated 207.560 1.00 0.720 38.9 38.9 2212.025 0.224 0.58 Unsaturated 207.560 1.00 0.901 79.9 79.9 71.769 0.514 1.16 Unsaturated 98.640 0.901 79.9 79.9 74.028 0.614 1.18 Unsaturated 59.390 1.081 1.86 118.6 2.38 1.097 1.51 Unsaturated 27.370 0.996 1.982 1.982 1.88 1.88 1.88 1.88 1.89 Unsaturated 27.370 0.996 1.982 1.982 1.84 Unsaturated 1.34 0.88 1.88	15.30 0.974 1984 1984 77.796 6.204 2.50 Unsaturated 20.46 1.083 217.8 217.8 59.072 5.401 2.56 Unsaturated 20.46 1.083 217.8 217.8 59.072 5.401 2.56 Unsaturated 15.630 0.935 278.3 278.3 69.575 6.038 2.62 Unsaturated 15.630 0.935 278.3 278.3 69.575 6.038 2.65 Unsaturated 15.630 0.935 278.3 278.3 69.575 6.038 2.65 Unsaturated 15.630 0.803 287.7 287.7 67.800 6.123 2.65 Unsaturated 15.630 0.803 287.7 287.7 67.805 6.132 2.65 Unsaturated 15.630 0.803 287.7 287.7 67.805 6.132 2.65 Unsaturated 15.630 0.803 287.7 287.7 67.805 6.132 2.65 Unsaturated 15.630 0.803 287.7 287.7 67.805 6.105 2.85 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.8817 6.106 2.88 Unsaturated 15.630 0.873 2.875 6.875 6.8817 6.106 2.88 Unsaturated 15.630 0.8817 6.8817 6.106 2.88 Unsaturated 15.630 0.8817 6.8817 6.106 2.88 Unsaturated 15.630 0.8818 2.8817 6.8817 6.106 2.88 Unsaturated 15.630 0.8818 2.8818 6.8818	13-510 0.882 357.0 357.0 175.3 6.238 2.70 Unsaturated Unsaturated Unsaturated Unsaturated 13.570 13-570 0.882 357.0 357.0 41.090 6.166 2.74 Unsaturated Unsaturated 13.530 13-670 0.786 4.96.8 4.1090 6.166 2.74 Unsaturated Unsaturated 13.530 13-600 0.786 4.56.8 4.66.9 5.827 2.66 Unsaturated Unsaturated 14.000 12-330 0.786 4.56.2 4.56.2 38.236 5.52 2.77 Unsaturated 15.67 10-020 0.580 4.96.1 39.326 5.93 2.74 Unsaturated 16.000 10-020 0.580 4.96.1 39.326 5.90 2.74 Unsaturated 17.000 10-020 0.580 4.96.1 39.326 5.90 2.74 Unsaturated 17.000 10-040 0.656 5.56.4 5.62.6 5.04 2.77 Unsaturated 17.000 10-040 0.656 5.55.4 5.56.4 35.04 35.74	9.860 0.558 615.9 610.3 31.304 5.846 2.80 Unvasiturated 9.330 0.527 665.5 629.0 2.86.74 5.850 2.89 Unvasiturated 9.330 0.527 665.5 629.0 2.86.74 5.850 2.89 Unvasiturated 9.300 0.665 675.2 639.0 2.86.74 8.851 6.56 2.89 Unvasiturated 10.100 0.665 775.1 658.3 2.958 6.804 2.87 Unvasiturated 10.100 0.663 775.1 658.3 2.958 6.804 2.87 Unvasiturated 10.670 0.657 775.3 677.7 30.40 6.386 2.84 Unvasiturated 11.200 0.584 774.4 687.0 30.21 5.764 2.81 Unvasiturated 11.300 0.580 814.3 706.4 30.021 5.764 2.81 Unvasiturated 11.300 0.550 814.3 706.4 30.88 4.876 2.78 Unvasiturated 11.300 0.550 814.3 706.4 30.88 4.876 2.78 Unvasiturated 11.300 0.576 853.1 725.1 29.108 4.876 0.280 Unvasiturated 11.300 0.576 853.1 725.1 29.108 5.400 Unvasiturated 11.300 0.576 853.1 725.1 29.108 5.400 Unvasiturated 11.300 0.576 873.3 775.1 29.108 5.400 0.280 Unvasiturated 11.300 0.576 873.3 775.1 29.108 5.400 0.280 Unvasiturated 11.300 0.576 873.3 775.1 29.108 0.280 Unvasiturated 11.300 0.576 873.3 775.1 29.108 0.280 Unvasiturated 11.300 0.576 873.8 0.575 873.1 29.108 0.280 Unvasiturated 11.300 0.576 873.3 775.1 29.108 0.280 Unvasiturated 11.300 0.576 873.3 775.1 29.108 0.280 Unvasiturated 11.300 0.576 873.1 75.1 29.108 0.280 0.280 Unvasiturated 11.300 0.576 873.1 75.1 29.108 0.280 0.280 Unvasiturated 11.300 0.576 873.1 75.1 29.108 0.300 0.280 Unvasiturated 11.300 0.576 873.1 75.1 29.108 0.300 0.280 Unvasiturated 11.300 0.576 873.1 75.1 29.108 0.300 0.280 Unvasiturated 11.300 0.3	932.9 763.8 7.329 4.507 2.73 Unsaturated 932.9 763.8 7.320 5.545 2.83 Unsaturated 932.9 763.8 7.320 5.545 2.83 Unsaturated 932.9 773.2 2.730 5.545 2.85 Unsaturated 932.3 773.2 2.730 5.545 2.85 Unsaturated 932.2 773.2 2.730 5.640 2.75 Unsaturated 1012.8 802.5 7.762 2.763 2.69 Unsaturated 1032.1 811.9 27.182 4.395 2.77 Unsaturated 1051.5 812. 24.550 2.618 2.65 Unsaturated 1071.4 831.2 24.550 2.618 2.65 Unsaturated 1071.4 830.9 19.540 2.77 Unsaturated 1171.2 850.9 19.540 2.781 2.77 Unsaturated 1150.7 889.3 17.565 5.624 2.97 Unsaturated 1150.7 889.8 15.203 4.247 2.94 Unsaturated 1171.3 879.2 17.512 4.830 2.92 Unsaturated 1171.3 879.2 17.512 8.830 13.75 2.95 Unsaturated 1171.3 879.2 17.512 8.830 13.75 2.95 Unsaturated 1171.3 879.2 17.512 8.830 13.75 2.95 Unsaturated 1171.3 879.2 17.512 2.95 2.95 Unsaturated 1171.3 879.2 17.512 8.830 13.75 2.95 Unsaturated 1171.3 879.2 17.512 2.95 2.95 Cap.	6.590 0.325 1310.4 946.6 12.539 5.475 3.08 Clay 6.560 0.328 1329.8 956.0 12.333 5.561 3.09 Clay 6.830 0.319 1349.2 965.4 12.752 5.189 3.06 Clay

u

PGA (A_{max})

9

0.91

0.47 (Inches) Total Settlement:

+	1
Settlement (Inches)	
Vertical Strain &v	
Factor of Safety (CRR/CSR)	
CRR	
CRRM=7.5, o'vc = 1 atm	
K _o for Sand	
CSR	0.619 0.6219 0.6219 0.6234 0.6334 0.6346 0.6455 0.6536 0.6536 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6545 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.6546 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7746 0.7766 0.7766
Stress Reduction Coeff, rd	0.00
Qc1N-CS	
qc1N	
Š	
Interpreted	6.36 6.37 6.37 6.37 6.57
hin L actor	
erfaces Factor (K _H)	
Fines qcN near Thin L (%) (soft layer)	100.0 10
Fines qen near (%) (soft layer)	Clay
qcn near interfaces (soft layer)	
Fines quentier (%) (soft layer)	
Layer "Plastic" Flag Soil Type (%) (%) (soft layer)	
Layer Plag Soil Type (%) (soft layer)	2.08 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.09
Fines of the solution (%) It again the control of t	3.465 2.88 3.456 3
Q F (%) Ic "Plastic" Flag Soil Type Fines interfaces PI > 7	1,12,396, 3,475, 2,88, 0,048, 9,063, 4,882, 3,475, 3,682, 3,09, 9,461, 3,188, 3,483, 3,483, 3,483, 3,483, 3,483, 3,483, 3,483, 3,484, 1,1376, 5,129, 3,481, 3,139, 1,1376, 5,340, 3,08, 1,1376, 5,340, 3,08, 2,341, 3,139, 1,1376, 5,340, 3,08, 2,341, 3,141,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	975.4 12.336 3.765 2.98 Glay 984.7 10.765 3.431 3.00 Glay 1004.1 8.755 3.431 3.00 Glay 1004.1 8.755 3.431 3.00 Glay 1002.2 11.773 4.828 3.04 Glay 1022.2 11.773 4.922 3.09 Glay 1062.1 11.773 5.129 3.09 Glay 1062.1 11.789 5.129 3.09 Glay 1062.2 11.773 5.20 3.09 Glay 1062.2 11.773 5.189 3.09 Glay 1062.2 11.773 5.189 3.09 Glay 1062.2 11.774 4.824 3.09 Glay 1062.2 5.739 3.12 Glay 1062.2 5.739 3.12 Glay 110.2 1.782 3.09 Glay 1110.2 1.082 5.39 Glay
Gr. (psf) G'v. (psf) Q F (%) Ic "Plastic" Flag Soil Type (%) (soft layer) (soft layer)	1386.7 975.4 12.36 3.765 2.88 1049 1049 1040 10

qc (tsf)

Depth (ft)

0.91

0.47 Total Settlement:

Factor of Safety (CRR/CSR) (Inches) CRRM=7.5, \(\sigma'vc = 1 \) atm K_o for Sand CSR Stress Reduction Coeff, rd $\begin{smallmatrix} 0.000 \\ 0.$ ŏ 5.5.36 (6.5.24 (6.5.24) (7.5.26) (7.5.2 PGA (A_{max}) Thin Layer Factor (K_H) qcN near interfaces (soft layer) ines (%) 997.3 997.3 997.9 997.9 997.9 999.1 999.2 Flag Soil Type 9 Layer "Plastic" PI > 7 CPT No. F (%) 10.00 (1.00 Ø Insitu o'vc (psf) 1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0.
1610.0 σvc (pst) ∫s (tsf) 0.794
0.0746
0.0746
0.0746
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876
0.0876

6.500 (6.

Calculations (9/2/2020) Page 3

CORNERSTONE EARTH GROUP

П

CPT No. 6

PGA (A_{max})

ax) 0.91

Total Settlement: 0.47 (Inches)

ent s)	1		
Settlement (Inches)		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Vertical Strain &	000000000000000000000000000000000000000	0.02	000000000000000000000000000000000000000
Factor of Safety (CRR/CSR)		na. 4,16 3,04 1,297 2,297 3,320 3,320 3,320 0,19 0,19 0,54 0,55 0,55 0,55 0,55 0,55 0,55 0,55	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
CRR	0.171 0.171 0.171 0.171 0.171 0.171 0.171	3.472 2.538 2.480 2.480 2.2480 2.667 2.677 2.677 3.049 0.160 0.160 0.160 0.160 0.456 0.456 0.456	0.422
CRRM=7.5, o'vc = 1 atm	0.137 0.137 0.137 0.137 0.137	na. 1.632 1.195 1.165 1.334 1.264 1.442 0.313 n.a. 0.282 0.282 0.272 0.277	0.267 1.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2. 1.2
K _o for Sand		na. 0.968 0.968 0.966 0.966 0.963 0.963 0.973 0.973 0.973	0.956 0.956
CSR	0.831 0.832 0.832 0.832 0.832 0.833 0.833 0.834 0.834	0.835 0.835 0.835 0.836 0.836 0.836 0.837 0.837 0.837 0.837	0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Stress Reduction Coeff, rd	06.0	080 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.88 0.08 0.087 0.87 0.87 0.87 0.87 0.87
qctn-cs	. d d d d d d d d d d d d d d d d d d d	197.34 191.20 190.74 192.59 192.40 195.00 195.00 195.00 195.00 196.00 146.89 147.21 147.21	146.47 10.2 10.2 10.2 10.2 117.741 117.741 117.742 117.743
qc1N	40.27 40.27 40.27 40.27 40.27	10.81 114.58 114.26 114.26 114.26 113.79 113.79 113.73 113.73 113.73 113.79 113.79 113.79 113.70 113	76 20 10 26 10
ŏ	0.98 0.98 0.98 0.98 0.98 0.97 0.97	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.95 0.95 0.95 0.95 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93
Interpreted	16.42 17.61 17.94 17.94 17.94 13.16 16.11 10.47 13.26 25.04 33.60	43.50 119.86 119	8252 2087 11.77 10.66 10.66 10.68 10.8.75 10.8.75 10.8.75 10.8.75 10.8.75 10.8.75 10.8.75 10.8.75 11.8.75 11.8.12 11.81
Thin Layer I	6.	5 5 5 5 5 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.1 5.5 5.5
qcn near Tr interfaces Fe (soft layer)	_	74.91 74.91 74.91 74.91 74.91 74.91 74.91 74.91 74.91	49.71 70.16 70.16 70.16 70.16 70.16
Fines qc (%) (sof			
	100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0	78.7 78.7 50.6 50.6 50.6 50.6 50.6 50.0 50.0 50.0	883.5 100.0
g Soil Ty	Clay (100.0 Clay (Clay Sand	Sand Clay
-ayer Nastic" Flag Soil Type			
Layer Layer Ic "Plastic" Flag Soil Ty	Sand Can was a sand C	Sand Sand Sand Sand Sand Sand Sand Sand	Sand Casy Sand C
Layer Ic "Plastic" PI > 7	2.99 Gay 2.29 Gay 2.29 Gay 2.29 Gay 2.25 Gay 2.27 Gay 2.27 Gay 2.27 Gay 3.20 Gay 3.2	2.55 Sand 2.34 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.45 Sand 2.46 Sand 2.48 Sand 2.48 Sand 2.48 Sand 2.49 Sand 2.48 Sand 2.49 Sand 2.49 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand 2.40 Sand	2.46 3.26 2.46 2.24 2.246 2.246 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 2.249 3.00
F (%) Ic "Plastic"	4,372 2.99 Gay 3,512 2.99 Gay 3,512 2.90 Gay 2,591 2.80 Gay 3,88 3,05 Gay 3,88 3,05 Gay 4,802 2.45 Gay 4,602 3.20 Gay 7,781 3,11 Gay	4.884 2.70 Gay 3.958 2.70 Sand 2.865 2.34 Sand 2.887 2.39 Sand 2.487 2.42 Sand 2.488 2.40 Sand 2.442 2.56 Gay 2.843 2.65 Gay 2.844 2.56 Sand 2.845 2.85 Sand 2.847 2.46 Sand 2.863 2.49 Sand 2.847 2.46 Sand 2.863 2.48 Sand 2.863 2.49 Sand 2.864 2.54 Sand 2.864 2.54 Sand 2.865 2.55 Sand 2.865 2.865 Sand 2.867 2.48 Sand 2.867 2.54 Sand 2.867 2.54 Sand 2.867 2.54 Sand	2.894 2.47 Can Can Can Can Can Can Can Can Can Can
Q F (%) Ic "Plastic" PP1 7	13.569 4.372 2.99 Glay 14.847 2.591 2.96 Glay 14.847 2.591 2.96 Glay 16.4481 2.591 2.99 Glay 16.247 3.888 2.96 Glay 10.224 3.818 3.05 Glay 20.493 0.850 2.45 Glay 20.493 2.898 Glay 20.493 7.898 2.998 Glay 20.498 7.81 3.11 Glay 20.478 3.11 Glay 20.478 3.11 Glay 20.478 3.11 Glay 20.478 3.11 Glay 20.478 7.781 3.11 Glay 20.478 7.781 3.11 Glay	3.883 4.854 2.70 Clay 3.868 2.22 Sand 6.077 2.850 2.35 Sand 6.077 2.825 Sand 58.899 2.887 2.34 Sand 6.848 2.887 2.34 Sand 6.848 2.887 2.49 Sand 6.848 2.38 2.40 Sand 6.848 2.22 2.87 2.45 Sand 6.848 2.22 2.87 2.45 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.249 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand 6.848 2.245 2.24 Sand	22.486 1.854 2.47 Sand 7.796 2.584 3.05 Gay 6.886 7.123 3.35 Gay 6.886 7.123 3.35 Gay 6.017 7.137 3.26 Gay 6.0183 2.246 2.346 Sand 6.0583 2.246 2.34 Sand 6.0583 2.247 2.40 Sand 6.0583 2.277 2.40 Sand 6.0583 2.277 2.40 Sand 6.0585 3.277 2.24 Sand 6.0585 3.277 2.24 Sand 6.0587 2.176 2.24 Sand 6.0588 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.277 2.24 Sand 6.0589 3.377 2.26 Sand 6.0589 3.37 2.26 Gay 6.0589 3.37 2.26 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.22 Gay 6.0589 3.38 3.32 Cay 6.0589 3.38 Cay 6.0589 3.38 Cay 6.0589 3.38 Cay 6.0589 3.38 Cay 6.0589
Insitu Q F (%) Ic "Plastic" O'vc (psf)	2283.4 13.569 4.372 2.99 Clay 2287.8 14.613 4.391 2.96 Clay 2282.7 14.841 2.81 2.96 Clay 2282.1 14.481 2.81 2.96 Clay 2302.1 14.481 2.841 2.96 Clay 231.4 10.224 3.818 3.96 Clay 231.4 10.224 3.818 3.05 Clay 230.8 2.049 0.890 2.45 Clay 230.1 12.774 1.224 2.72 Clay 2330.1 1.860 2.28 Clay 2336.1 1.860 2.28 Clay 2338.5 7.600 4.602 2.39 Clay 2338.8 2.0478 3.71 Clay 2378.8 2.0478 7.781 3.02 Clay 2388.2 2.7976 6.183 2.85 Clay	2498.2 36.83 4.844 2.70 Gapt 2475 57.31 2.860 2.35 Sand 246.8 57.31 2.860 2.35 Sand 248.8 2.50 Sand 248.8 2.50 Sand 248.8 2.83 2.89 Sand 248.8 2.83 2.89 Sand 248.8 2.83 2.89 Sand 248.8 2.89 2.87 2.49 Sand 248.8 2.80 2.87 2.40 Sand 248.3 2.80 2.40 Sand 248.3 2.80 2.40 Sand 248.3 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	2590.4 1,594 244 Sand 2590.4 1,528 2,007 2,76 Clay 2590.4 7,796 2,884 3,05 Glay 2590.7 7,796 2,847 3,05 Glay 269.8.7 7,123 3,25 3,35 Glay 269.8.7 6,888 7,123 3,26 Glay 269.8.7 6,088 7,123 3,26 Glay 269.8.4 5,264 2,35 3,34 Glay 2667.8 57,146 2,34 2,34 Sand 2667.8 57,186 2,24 2,34 Sand 2667.8 57,396 2,27 2,40 Sand 2665.8 54,396 2,27 2,40 Sand 2765.8 54,396 2,27 2,44 Sand 2765.8 54,396 2,28 3,20 Glay 2765.8 54,397 1,24 2,38 3,20 Glay 2775.9 5,28
$ \cos \left(\operatorname{psf} \right) \ \ \frac{\operatorname{Insitu}}{\operatorname{O'v.} \left(\operatorname{psf} \right)} \ \ Q \ \ \operatorname{F} \left(\% \right) \ \ \operatorname{Ic} \ \ \operatorname{''Plastic''} $	4025.3 2263.4 13.569 4.372 2.99 Glay 4048.7 2272.8 14.4613 4.931 2.96 Glay 4048.7 2222.7 14.461 2.591 2.96 Glay 4088.6 2292.7 14.461 2.591 2.90 Glay 4088.6 2292.1 12.107 3.388 2.96 Glay 4182.5 2302.1 12.107 3.388 2.96 Glay 4182.5 231.1 4.10.224 3.818 3.05 4187.8 2340.1 12.774 1.324 2.72 4187.8 2340.1 12.774 1.324 2.72 427.7 2388.5 7.800 4.602 2.98 Glay 427.7 2388.5 7.800 4.602 3.20 Glay 427.7 2388.8 20.478 7.781 3.04 4287.7 2388.8 20.478 7.781 3.05 4287.7 2388.8 20.478 7.781 3.05	4307.6 2386.2 5.58 4.884 2.70 Cap. 4307.5 2407.5 52.71 2.859 2.52 Sand 4368.3 2405.9 80.017 2.859 2.52 Sand 4368.3 2465.9 80.017 2.82 2.34 Sand 4406.8 2465.6 51.026 2.877 2.42 Sand 4446.8 2465.6 51.026 2.877 2.42 Sand 4446.8 2465.6 46.843 2.39 2.89 Sand 4446.8 2465.6 46.843 2.39 2.49 Sand 4466.7 244.3 22.90 2.877 2.45 Sand 4466.7 244.3 22.90 2.877 2.45 Sand 4466.7 244.3 2.820 2.899 2.65 Sand 4560.0 2494.3 28.20 2.899 2.65 Sand 4560.0 2551.7 37.50 2.893 2.49 Sand 4560.3 2552.0 40.637 2.442 2.54 Sand 4560.3 2542.3 40.638 2.995 2.52 Sand 4651.2 2552.0 40.637 2.442 2.54 Sand 4652.2 2551.7 37.50 2.893 2.49 Sand 4652.2 2551.7 37.50 2.444 2.49 Sand 4652.2 2551.7 37.50 2.444 2.49 Sand 4652.2 2551.7 37.50 2.444 2.49 Sand 4652.2 2551.7 37.50 2.444 2.49 Sand 4652.2 2551.7 37.50 2.444 2.49 Sand 46542.2 2551.7 37.50 2.442 2.49 Sand	4664.6 257.1.0 26.486 1694 247. Control 4703.8 2580.4 7.796 2.584 3.05 3.05 0.08 4703.8 2580.4 7.796 2.584 3.05 3.18 0.08 4703.8 2589.7 6.881 3.593 3.18 0.08 4763.8 2589.7 6.886 3.259 3.48 0.08 4763.1 2588.6 2.581 2.46 2.86 0.08 4763.1 2588.6 2.641 2.35 2.34 28md 4862.0 2667.1 4.078 2.261 2.46 2.88 4862.1 2667.5 2.461 2.35 2.34 2.8md 4862.2 2667.5 5.438 2.06 2.34 2.8md 4862.2 2667.5 5.438 2.20 2.48 2.8md 4862.2 2765.5 5.438 2.27 2.48 2.8md 4862.2 2775.2 2.88 2.27 2
$ \cos \left(\operatorname{psf} \right) \ \ \frac{\operatorname{Insitu}}{\operatorname{O'v.} \left(\operatorname{psf} \right)} \ \ \Omega \ \ \operatorname{F \left(\% \right)} \ \ \operatorname{Ic} \ \ \operatorname{Plastic''} $	0.677 4029.3 2263.4 13.569 4.372 2.99 Glay 0.572 4048.7 2272.8 14.613 4.391 2.96 Glay 0.595 4048.7 2272.8 14.613 4.391 2.96 Glay 0.430 4088.6 2292.7 14.481 2.561 2.89 Glay 0.451 4109.2 2392.1 12.107 3.388 2.96 Glay 0.451 4109.2 2392.8 1.287 1.990 2.81 Glay 0.198 4147.9 2392.8 1.287 1.990 2.81 Glay 0.198 4187.8 2340.1 12.774 1.324 2.72 Glay 0.431 427.7 2398.9 1.002 4.878 3.11 Glay 0.552 4208.4 2.390.8 1.002 4.878 3.11 Glay 0.562 4247.7 2398.8 20.478 3.11 Glay 0.565 4287.7 2398.8 20.478 3.11 Glay 0.565 4287.7 2398.8 20.478 3.11 Glay 0.565 4287.7 2398.8 20.478 3.11 Glay	2.179 4307.6 2398.2 36.83 4.844 2.70 Gand 2.355 2.355 2.357 2.355 2.407.5 2.477.5 67.377 2.850 2.35 2.357 2.355 2.407.5 67.377 2.850 2.35 2.34 2.357 2.355 2.34 2.357 2.355 2.34 2.357 2.355 2.34 2.357 2.355 2.34 2.355 2.34 2.355 2.35 2.35 2.35 2.35 2.35 2.35 2.3	0.583 4.664.6 257.10 2.94.86 1.694 247 Cont. 0.241 4.683.9 2.580.4 1.528 2.067 2.76 Cont. 0.241 4.683.9 2.580.4 1.528 2.067 2.76 Cont. 0.540 4.742.8 2.580.4 7.796 2.84 3.05 Glay 0.640 4.763.8 2.688 7.123 3.35 Glay 1.499 4.783.1 2.682.8 4.017 7.137 3.26 Glay 1.896 4.893.1 2.687.1 9.017 7.137 3.26 Glay 1.896 4.883.1 2.269 2.269 2.246 2.88 3.241 2.46 Sand 1.896 4.883.2 2.675 2.246 2.37 2.40 Sand 1.896 4.883.6 5.2.37 1.577 2.40 Sand 1.397 4.882.3 2.378 2.34 Sand Sand 1.398 4.882.3 2.378<
Ox. (psf) Insitu Q F (%) Ic "Plastic" PI > 7	17.370 0.671 4029.3 2.263.4 13.569 4.372 2.99 Clay 18.680 0.572 4048.7 2.272.8 14.613 4.372 2.99 Clay 18.980 0.595 4048.7 2.272.8 14.613 2.95 Clay 18.980 0.430 4088.6 2.292.1 44.81 2.591 2.96 Clay 18.980 0.451 41.82 2.302.1 14.481 2.591 2.83 Clay 13.880 0.451 41.82 2.302.1 14.481 2.591 2.89 Clay 13.890 0.451 41.85 2.302.1 1.417 3.388 2.96 Clay 13.890 0.451 41.85 2.302.1 1.277 3.388 2.96 Clay 14.80 0.193 4187.8 2.340.8 1.277 4.324 2.27 17.040 0.193 4187.8 2.340.1 12.774 4.324 2.27 17.040 0.494 4187.8 2.340.1 12.774 4.324 2.27 18.995 4.247.7 2.389.7 7.600 4.602 3.20 18.995 4.247.7 2.388.8 2.478 3.11 Clay 2.840 1.895 4.247.7 2.388.8 2.478 3.11 Clay 2.850 2.850 2.867 2.888 2.296 Clay 3.850 2.866 4.287.7 2.388.8 2.2797 6.183 2.265 3.850 2.868 2.298 Clay 3.850 2.868 2.298 Clay 3.850 2.868 2.297 2.888 2.297 3.850 2.868 2.297 2.888 2.297 3.850 2.868 2.297 2.888 2.297 3.850 2.868 2.297 2.888 2.298 3.850 2.868 2.297 2.888 2.298 3.850 2.868 2.297 2.888 2.298 3.850 2.868 2.297 2.888 2.298 3.850 2.868 2.297 2.888 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.288 2.298 3.850 2.868 2.297 2.288 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.298 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.297 2.298 3.850 2.868 2.297 2.298 2.298 3.850 2.868 2.29	2.179 4307.6 2398.2 36.83 4.844 2.70 Gand 2.355 2.355 2.357 2.355 2.407.5 2.477.5 67.377 2.850 2.35 2.357 2.355 2.407.5 67.377 2.850 2.35 2.34 2.357 2.355 2.34 2.357 2.355 2.34 2.357 2.355 2.34 2.357 2.355 2.34 2.355 2.34 2.355 2.35 2.35 2.35 2.35 2.35 2.35 2.3	26,700 0.883 4664,6 257,10 2.9.48 1.64 2.14 Sand Clay 12,208 0.221 4.704,5 2.806.4 1.529 2.064 2.066 0.064 0.064 4.763,8 2.067 6.886 7.123 3.35 0.084 0.064 4.068 2.067 6.886 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067 2.068 2.067

CPT No. CORNERSTONE EARTH GROUP

9

0.91 PGA (A_{max})

0.47 (Inches) Total Settlement:

Settlement (Inches)	00.00	00.00	0.00	00.00	00.00	00.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.0	00.0	000	0.00	0.00	00.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	0.00	00.00	0.00	0.00	00.00	0.00
Vertical Strain Ev	00.0	00.00	0.00	00.00	00.0	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	8 6	00.0	0.00	0.00	00.00	0.0	0.00	8.6	00.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00
Factor of Safety (CRR/CSR)	n.a.	n a	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	па	n.a.	па	па	e L	m 0	9 6	n.a.	n.a.	n.a.	n.a.	n.a.	e c		па	n a	n.a.	n.a.	n.a.	па	n.a.	n.a.	n.a.	n.a.	n.a	n.a.
CRR	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	n.a.	n.a	n.a.	n.a.	n.a.	n.a.	n.a.		a c	n.a.	n.a.	n.a.	n.a.	n.a	e c	. e	па	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
CRRM=7.5, σ'vc = 1 atm	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n a	n.a.	n.a.	n a	n a	m n	9 6	n.a.	n.a.	n.a.	n.a.	n.a.	0 0	. e	па	n a	n.a.	n.a.	n.a.	па	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
K _o for Sand	n.a.	n.a	пa	пa	n.a.	n a	n.a.	пa	n.a	пa	n.a	n.a.	пa	n e	m n	9 6	n.a	па	пa	n,a,	n.a.	ei e	9 6	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	пa	пa	n.a
CSR	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.837	0.836	0.836	0.836	0.836	0.836	0.835	0.835	0.835	0.835	0.835	0.835	0.834	0.834	0.834	0.834	0.833	0.833	0.833	0.833	0.832	0.832	0.832	0.832	0.831	0.831	0.831
Stress Reduction Coeff, rd	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.84	0.84	0.84	98.0	80	0.84	0.84	0.84	0.84	0.84	50.0	20.0	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
qenes	n.a.	n.a	n.a.	n.a	n.a.	па	n.a.	па	n.a.	па	n.a	n.a.	пa	n a	m n	9 0	n.a.	па	па	n.a.	n.a.	E C	. e	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	па	па	n.a.
q _{c1N}	n.a.	n.a.	n.a.	n.a	n.a	n.a	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n a	m 0	, e	n.a	n.a.	n a	n.a.	n.a.	6 0	1.8	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ő	0.92	0,92	0.92	0.92	0.92	0.92	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	9.0	0.91	0.91	0.91	06.0	0.90	0.90	86.0	080	0.90	0.90	0.90	0.30	0.90	0.90	0.90	0.90	0.89	0.89	0.89	0.89
Interpreted	15.55	15.78	15.68	15.79	15.06	14.40	13.18	11.87	12.32	15.77	17.17	16.51	16.47	17.57	10.78	19.44	18.55	21.11	24.35	21.87	21.68	20.02	17.54	15.92	15.12	15.15	18.31	21.87	23.97	22.20	20.46	18.96	19.04	20.26	20.24
Thin Layer Factor (K _H)																															1				
ar ses er)																																			
qcn near interfaces (soft layer)																				1	No. of the last of	3			V		Á								
Fines (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	97.2	100.0	100.0	99.2	94	92.9	100.0	98.6	95.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	9.66	100.0	100.0	100.0	100.0	100.0	100.0
Fines (%)		`	`	_	_	_								Clay 99.2							j	100.0	100.0	Clsy 100.0	Clay 100.0	Clay 100.0	100:0	Clay 100.0	Clay 99.6	Clay 100.0	Clay 100.0		Clay 100.0	`	•
		`	`	_	_	_															j	100.0	Clay 100.0	Clay 100.0	Clay 100.0	Clay 100.0	100.00	Clay 100.0	Clay 99.6	Clay 100.0	Clay 100.0		Ì	`	•
Fines Soil Type (%)	Clay	Clay	Clay	Clay	Clay	Clay 1	Clay	Clay	Clay	Clay	Clay	Clay	Clay		Cay	Cay	Clay	Clay	Clay	Clay	Clay		Ogy	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Layer "Plastic" Flag Soil Type (%)	3.05 Clay	3.01 Clay	3.05 Clay	3.05 Clay	3.02 Clay 1	2.96 Clay 1	3.02 Clay	3.13 Clay	3.13 Clay	2.97 Clay	2.93 Clay	2.97 Clay	2.98 Clay	Clay	2.89	2.87 Clav	2.98 Clay	2.94 Clay	2.91 Clay	3.00	3.00 Cley	3.03	3.05	3.03	3.04 Clay	3.08	3.02	2.97 Clay	2.96 Clay	3.01	3.01 Clay	3.05 Clay	3.04 Clay	3.00 Clay	2.99 Clay
Layer "Plastic" Flag Soil Type (%)	3.422 3.05 Clay	3.043 3.01 Clay	3.410 3.05 Clay	3.525 3.05 Clay	2.803 3.02 Clay 1	2.002 2.96 Clay 1	2.168 3.02 Clay	2.766 3.13 Clay	3.037 3.13 Clay	2.448 2.97 Clay	2.336 2.93 Clay	2.605 2.97 Clay	2.648 2.98 Clay	2.95 Clay	2.271 2.89 Clay	2.242 2.87 Clay	3.127 2.98 Clay	3.391 2.94 Clay	3.649 2.91 Clay	4.356 3.00 Clay	4.371 3.00 Clay	100 coc	3.643 3.05	2.892 3.03 Clay	2.692 3.04 Clay	3.154 3.08 Clay	3.408 3.02	3.696 2.97 Clay	4.071 2.96 Clay	4.440 3.01 Clay	3.918 3.01 Clay	4.019 3.05 Clay	3.798 3.04 Clay	3.680 3.00 Clay	3.495 2.99 Clay
Q F (%) Ic "Plastic" Flag Soil Type Fines (%)	9.473 3.422 3.05 Clay	9.605 3.043 3.01 Clay	9.492 3.410 3.05 Clay	9.537 3.525 3.05 Clay	8.968 2.803 3.02 Clay	8.466 2.002 2.96 Clay 1	7.554 2.168 3.02 Clay	6.596 2.766 3.13 Clay	6.884 3.037 3.13 Clay	9.292 2.448 2.97 Clay	10.249 2.336 2.93 Clay	9.744 2.605 2.97 Clay	9.674 2.648 2.98 Clay	2.652 2.95 Clay	11.210 2.271 2.89 Clay	11.583 2.242 2.87 Clav	10.930 3.127 2.98 Clay	12.643 3.391 2.94 Clay	14.816 3.649 2.91 Clay	13.074 4.356 3.00 Clay	12.897 4.371 3.00 Clay	12.807 4.499 3.01	9.969 3.643 3.05	8.840 2.892 3.03 Clay	8.273 2.692 3.04 Clay	8.262 3.154 3.08	10.334 3.408 3.02	12.662 3.696 2.97	14.008 4.071 2.96 Ciliny	12.791 4.440 3.01	11.603 3.918 3.01	10.577 4.019 3.05 Clay	10.588 3.798 3.04 Clay	11.347 3.680 3.00 Clay	11.293 3.495 2.99 Clay
Layer Layer (%) Ic "Plastic" Flag Soil Type (%) (%)	2907.4 9.473 3.422 3.05 Clay	2917.4 9.605 3.043 3.01 Clay	2926.7 9.492 3.410 3.05 Clay	2936.1 9.537 3.525 3.05 Clay	2946.1 8.968 2.803 3.02 Clay 1	2955.4 8.466 2.002 2.96 Clay 1	2965.4 7.554 2.168 3.02 Clay	2974.8 6.596 2.766 3.13 Clay	2984.2 6.884 3.037 3.13 Clay	2994.1 9.292 2.448 2.97 Clay	3003.5 10.249 2.336 2.93 Clay	3013.5 9.744 2.605 2.97 Clay	3022.8 9.674 2.648 2.98 Clay	10.409 2.652 2.95 Clay	3042.2 11.210 2.271 2.89 Clay	3061.5 11.583 2.242 2.87 Clay	3070.9 10.930 3.127 2.98 Clay	3080.3 12.643 3.391 2.94 Clay	3090.2 14.816 3.649 2.91 Clay	3099.6 13.074 4.356 3.00 Clay	3109.6 12.897 4.371 3.00	3118.9 12.807 4.498 3.01	3138.3 9.969 3.643 3.05	3147.7 8.840 2.892 3.03	3157.6 8.273 2.692 3.04	3167.0 8.262 3.154 3.08	3176.4 10.334 3.408 3.02	3186.3 12.662 3.696 2.97	3195.7 14.008 4.071 2.96 Chy	3205.7 12.791 4.440 3.01	3215.0 11.603 3.918 3.01 Clay	3224.4 10.577 4.019 3.05 Clay	10.588 3.798 3.04 Clay	3243.8 11.347 3.680 3.00 Clay	3253.7 11.293 3.495 2.99 Clay
Gw (psf) Insitu Q F (%) Ic "Plastic" Flag Soil Type (%) Fines (%)	5359.1 2907.4 9.473 3.422 3.05 Clay	5379.7 2917.4 9.605 3.043 3.01 Clay	5399.0 2926.7 9.492 3.410 3.05 Clay	5418.4 2936.1 9.537 3.525 3.05 Clay	5439.0 2946.1 8.968 2.803 3.02 Clay 1	5458.3 2955.4 8.466 2.002 2.96 Clay	5478.9 2965.4 7.554 2.168 3.02 Clay	5498.2 2974.8 6.596 2.766 3.13 Clay	5517 6 2984.2 6.884 3.037 3.13 Clay	5538.2 2994.1 9.292 2.448 2.97 Clay	5557.5 3003.5 10.249 2.336 2.93 Clay	5578.1 3013.5 9.744 2.605 2.97 Clay	5597.5 3022.8 9.674 2.648 2.98 Clay	3032.2 10.409 2.652 2.95 Clay	5057.4 5042.2 11.210 2.271 2.89 Cay	5677.3 3061.5 11.583 2.242 2.87 Clav	5696.7 3070.9 10.930 3.127 2.98 Clay	5716.0 3080.3 12.643 3.391 2.94 Clay	5736.6 3090.2 14.816 3.649 2.91 Clay	5756.0 3099.6 13.074 4.356 3.00	5776.5 3109.6 12.897 4.371 3.00	5/95.9 3118.9 12.80/ 4.499 3.01 6816.9 3138.9 11.60/ 4.499	5835.8 3138.3 9.969 3.643 3.05	5855.2 3147.7 8.840 2.892 3.03	5875.8 3157.6 8.273 2.692 3.04 Clay	5895.1 3167.0 8.262 3.154 3.08 Clay	5914.5 3176.4 10.334 3.408 3.02	5935.1 3186.3 12.662 3.696 2.97	5954.4 3195.7 14.008 4.071 2.96	5975.0 3205.7 12.791 4.440 3.01	5994.3 3215.0 11.603 3.918 3.01	6013.7 3224.4 10.577 4.019 3.05 Clay	6034.3 3234.4 10.588 3.798 3.04 Clay	6053.6 3243.8 11.347 3.680 3.00 Clay	6074.2 3253.7 11.293 3.495 2.99 Clay
$G_{Nc}(psf) \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.471 5359.1 2907.4 9.473 3.422 3.05 Clay	0.426 5379.7 2917.4 9.605 3.043 3.01 Clay	0.474 5399.0 2926.7 9.492 3.410 3.05 Clay	0.494 5418.4 2936.1 9.537 3.525 3.05 Clay	0.370 5439.0 2946.1 8.968 2.803 3.02 Clay 1	0.251 5458.3 2955.4 8.466 2.002 2.96 Clay 1	0.243 5478.9 2965.4 7.554 2.168 3.02 Clay	0.271 5498.2 2974.8 6.596 2.766 3.13 Clay	0.312 5517.6 2984.2 6.884 3.037 3.13 Clay	0.341 5538.2 2994.1 9.292 2.448 2.97 Clay	0.360 5557.5 3003.5 10.249 2.336 2.93 Clay	0.382 5578.1 3013.5 9.744 2.605 2.97 Clay	0.387 5597.5 3022.8 9.674 2.648 2.98 Clay	5616.8 3032.2 10.409 2.652 2.95 Clay	0.36/ 3037.4 3042.2 11.210 2.2/1 2.89 Clay	0.398 5677.3 3061.5 11.583 2.242 2.87 Clav	0.525 5696.7 3070.9 10.930 3.127 2.98 Clay	0.660 5716.0 3080.3 12.643 3.391 2.94 Clay	0.835 5736.6 3090.2 14.816 3.649 2.91 Clay	0.883 5756.0 3099.6 13.074 4.356 3.00 Cay	0.876 5776.5 3109.6 12.897 4.371 3.00	0.389 5/95.9 3118.9 12.80/ 4.98 3.01	0.570 5835.8 3138.3 9.969 3.643 3.05	0.402 5855.2 3147.7 8.840 2.892 3.03	0.352 5875.8 3157.6 8.273 2.692 3.04	0.413 5895.1 3167.0 8.262 3.154 3.08	0.559 5914.5 3176.4 10.334 3.408 3.02	0.746 5935.1 3186.3 12.662 3.696 2.97	0.911 5954.4 3195.7 14.008 4.071 2.96	0.910 5975.0 3205.7 12.791 4.440 3.01	0.731 5994.3 3215.0 11.603 3.918 3.01	0.685 6013.7 3224.4 10.577 4.019 3.05 Clay	0.650 6034.3 3234.4 10.588 3.798 3.04 Clay	0.677 6053.6 3243.8 11.347 3.680 3.00 Clay	0.642 6074.2 3253.7 11.293 3.495 2.99 Clay