## Appendix IS-11 Transportation Assessment

## Appendix IS-11.1

 Transportation Assessment
# TRANSPORTATION ASSESSMENT FOR THE  <br> LOS ANGELES, CALIFORNIA 

AUGUST 2021

PREPARED FOR ATLAS CAPITAL GROUP

PREPARED BY

# TRANSPORTATION ASSESSMENT FOR THE $8^{\text {TH }} \&$ ALAMEDA STUDIO PROJECT LOS ANGELES, CALIFORNIA 

August 2021

Prepared for:

Prepared by:

## Table of Contents

1. Introduction ..... 1
Project Description ..... 1
Project Location ..... 2
Study Scope ..... 2
Organization of Report ..... 3
2. Project Context ..... 6
Study Area ..... 6
Existing Transportation Conditions ..... 7
Future Cumulative Transportation Conditions ..... 13
3. Project Traffic ..... 35
Project Trip Generation ..... 35
Project Trip Distribution ..... 36
Project Trip Assignment. ..... 36
4. CEQA Analysis of Transportation Impacts ..... 41
Methodology ..... 41
Section 4A: Threshold T-1 - Consistency with Plans, Programs, Ordinances, or Policies Analysis ..... 43
Plans, Programs, Ordinances, and Policies ..... 43
Cumulative Analysis ..... 48
Section 4B: Threshold T-2.1 - Causing Substantial VMT Analysis ..... 55
VMT Methodology ..... 55
Project VMT Analysis ..... 59
Cumulative Analysis ..... 61
Section 4C: Threshold T-2.2 - Substantially Inducing Additional Automobile Travel Analysis ..... 64
Section 4D: Threshold T-3 - Substantially Increasing Hazards Due to a Geometric Design Feature or Incompatible Use Analysis ..... 65
Project Access Review ..... 66
Cumulative Analysis ..... 68
Section 4E: Freeway Safety Analysis ..... 69
Analysis Methodology ..... 69
Analysis Results ..... 70

## Table of Contents, cont.

5. Non-CEQA Transportation Analysis ..... 71
Section 5A - Pedestrian, Bicycle, and Transit Assessment ..... 72
Existing Facilities ..... 72
Intensification of Use ..... 73
Conclusion ..... 74
Section 5B - Project Access, Safety, and Circulation Assessment ..... 75
Project Access ..... 75
Operational Evaluation ..... 76
Intersection Queuing Analysis ..... 80
Recommended Actions ..... 80
Section 5C - Residential Street Cut-Through Analysis ..... 86
Section 5D - Project Construction Assessment. ..... 87
Construction Evaluation Criteria ..... 87
Proposed Construction Schedule ..... 88
Existing Building and New Buildings Demolition Subphases and Parking Garage Grading \& Utilities Subphase ..... 88
Existing Building and New Buildings Interior Subphases ..... 89
Potential Constraints on Access, Transit, and Parking ..... 90
Construction Management Plan ..... 91
Section 5E - Parking ..... 93
Vehicle Parking Code Requirements ..... 93
Bicycle Parking Code Requirements ..... 93
6. Summary \& Conclusions ..... 97
References
Appendix A: Memorandum of Understanding
Appendix B: Traffic Volume Data
Appendix C: CEQA T-1 Plans, Policies, Programs Consistency WorksheetAppendix D: VMT Analysis Worksheets
Appendix E: Caltrans Freeway Off-Ramp Analysis Worksheets
Appendix F: HCM Analysis Worksheets
Appendix G: Signal Warrant Analysis

## List of Figures

## NO.

1 Project Site Plan ..... 4
2 Project Site Location ..... 5
3 Study Area \& Analyzed Intersections ..... 18
4 Intersection Lane Configurations ..... 19
5 Existing Intersection Mobility Facilities ..... 20
6 Mobility Plan Transportation Designations \& Pedestrian Destinations. ..... 21
7 Existing Transit Service ..... 22
8 Existing Conditions (Year 2021) Peak Hour Traffic Volumes. ..... 23
9 Locations of Related Projects ..... 24
10 Related Project-Only Peak Hour Traffic Volumes ..... 25
11 Future without Project Conditions (Year 2026) Peak Hour Traffic Volumes ..... 26
12 Roadway Modal Priorities ..... 27
13 Project Trip Distribution ..... 37
14A Existing Uses to be Removed Peak Hour Traffic Volumes ..... 38
14B Proposed Project-Only Peak Hour Traffic Volumes ..... 39
15 Existing with Project Conditions (Year 2021) Peak Hour Traffic Volumes ..... 81
16 Future with Project Conditions (Year 2026) Peak Hour Traffic Volumes ..... 82
List of Tables
NO.
1 Study Intersections ..... 28
2 Existing Transit Service ..... 29
3A Transit System Capacity in Study Area - Morning Peak Hour ..... 30
3B Transit System Capacity in Study Area - Afternoon Peak Hour ..... 31
4 Related Projects List ..... 32
5 Project Trip Generation ..... 40
6 Project Consistency with Mobility Plan 2035 ..... 49
7 Project Consistency with Plan for a Healthy Los Angeles ..... 52
8 Project Consistency with Central City Community Plan ..... 53
9 Project Consistency with Citywide Design Guidelines ..... 54
10A VMT Trip Equivalency Development. ..... 62
10B VMT Analysis Summary ..... 63
11 Intersection Level of Service ..... 83
12 Existing Conditions (Year 2021) Intersection Peak Hour Levels of Service. ..... 84
13 Future Conditions (Year 2026) Intersection Peak Hour Levels of Service ..... 85
14 Vehicle Parking Code Requirements ..... 95
15 Bicycle Parking Code Requirements. ..... 96

## Chapter 1

## Introduction


#### Abstract

This study presents the transportation assessment for the proposed $8^{\text {th }} \& ~ A l a m e d a ~ S t u d i o ~ P r o j e c t ~$ (Project) located at 2000 E. $8^{\text {th }}$ Street (Project Site) in the Central City Community Plan (City of Los Angeles, 2003) area of the City of Los Angeles, California (City). The methodology and base assumptions used in the analysis were established based on direction from the Los Angeles Department of Transportation (LADOT).


## PROJECT DESCRIPTION

The Project proposes a change of use/adaptive reuse of the existing Los Angeles Times production plant to approximately 639,840 square feet (sf) of studio, production support, office, and ancillary, circulation, and support uses. The Project would also include the construction of approximately 249,790 sf of new studio, production support, office, and ancillary uses.

The Project would provide a total of 1,665 parking spaces within surface lots throughout the Project Site and a new parking structure. The Project incorporates compliance with the City's Transportation Demand Management (TDM) ordinance. In addition, the Project design includes specific TDM measures, including Los Angeles Municipal Code (LAMC) required short-term and long-term bicycle parking spaces throughout the Project Site, as well as showers and other amenities for bicyclists.

Vehicular access would be provided via driveways along $8^{\text {th }}$ Street, Lemon Street, and Hunter Street. The main gate driveway along $8^{\text {th }}$ Street would provide full access (left and right-turn ingress and egress). A secondary outbound-only driveway from the parking structure would also be provided along $8^{\text {th }}$ Street, along with two driveways along Hunter Street, which would provide egress from the surface parking lots. The existing exit gates on Lawrence Street and Olympic Boulevard would remain with the development of the Project; however, the gates would not be
utilized for regular vehicular access. Separate truck access would be provided via exclusive inbound-only and outbound-only driveways along Lemon Street.

The conceptual Project site plan is shown in Figure 1.

## PROJECT LOCATION

As illustrated in Figure 2, the Project Site, contained within Assessor Parcel Numbers 5166027014, 5166027001, 5166027002, 5166023016, 5166027014, 5166023010, and 5166028004, is located in downtown Los Angeles. The Project Site is generally bounded by $8^{\text {th }}$ Street to the north, Lemon Street to the east, Olympic Boulevard and Hunter Street to the south, and Alameda Street and Lawrence Street to the west. The surrounding land uses include industrial, warehouse, and commercial uses.

The Project is located approximately 360 feet north of the Santa Monica Freeway (l-10), approximately one mile west of the Hollywood Freeway (US 101), and approximately one mile west of Santa Ana Freeway (l-5). The Project Site is primarily served by arterial streets including Alameda Street, Central Avenue, $7^{\text {th }}$ Street, and Olympic Boulevard.

The Project is served by multiple bus lines operated by the Los Angeles County Metropolitan Transportation Authority (Metro) along $7^{\text {th }}$ Street, Central Avenue, Olympic Boulevard, and Alameda Street.

## STUDY SCOPE

The scope of analysis for this study was developed in consultation with LADOT and is consistent with Transportation Assessment Guidelines (LADOT, July 2020) (TAG) and in compliance with CEQA and the CEQA Guidelines (California Code of Regulations, Title 14, Section 15000 and following).

The base assumptions and technical methodologies (i.e., vehicle miles traveled [VMT], trip generation, study locations, analysis methodology, etc.) were identified and agreed to in a Memorandum of Understanding (MOU), which was reviewed and approved by LADOT on March 9, 2021, and provided in Appendix A.

## ORGANIZATION OF REPORT

This report is divided into five chapters, including this introduction. Chapter 2 describes the Project context including the existing and future circulation system, traffic volumes, and traffic conditions in the Study Area. Chapter 3 presents the CEQA analysis of the Project's potential transportation impacts. Chapter 4 presents the non-CEQA transportation analyses. Chapter 5 summarizes the analyses and study conclusions. The appendices contain supporting documentation, including the MOU that outlines the study scope and assumptions, and additional details supporting the technical analyses.



## Chapter 2 <br> Project Context

A comprehensive data collection effort was undertaken to develop a detailed description of existing and future conditions in the Study Area.

The Existing Conditions analysis includes an assessment of the existing transportation infrastructure and conditions of the Study Area including freeway and street systems and public transit service, as well as pedestrian and bicycle circulation, at the time of the issuance of the Notice of Preparation. An inventory of lane configurations, signal phasing, parking restrictions, etc., for the analyzed intersections was also collected. The traffic count worksheets are provided in Appendix B.

In addition, this Chapter contains a discussion of the future conditions detailing the assumptions used to develop the Future without Project Conditions in Year 2026, the Project's anticipated buildout year.

## STUDY AREA

The Project's transportation analysis Study Area, shown in Figure 3, includes a geographic area that is generally bounded by $6^{\text {th }}$ Street to the north, Mateo Street to the east, $18^{\text {th }}$ Street to the south, and Central Avenue to the west. This Study Area was established in consultation with LADOT based on the following factors identified in the TAG:

1. Primary driveway(s) for the Project
2. Intersections at either end of the block on which the Project is located or up to 600 feet from the primary Project driveway(s)
3. Unsignalized intersections adjacent to the Project Site that are integral to the Project's site access and circulation plan
4. Signalized intersections in proximity to the Project Site where 100 or more Project trips would be added

As listed in Table 1, a total of five Study Area intersections, including four signalized and one unsignalized, were identified for detailed analysis during the MOU process and are illustrated in Figure 3. The existing lane configurations at the analyzed intersections are provided in Figure 4.

## EXISTING TRANSPORTATION CONDITIONS

## Existing Street System

The existing street system in the Study Area consists of a regional roadway system including freeways, arterials, and collector and local streets that provide regional, sub-regional, or local access and circulation within the Study Area. These transportation facilities generally provide two to six travel lanes and usually allow parking on either side of the street. Typically, the speed limits range between 25 and 35 miles per hour (mph) on the streets and between 55 and 65 mph on freeways.

Street classifications are designated in Mobility Plan 2035, An Element of the General Plan (Los Angeles Department of City Planning [LADCP], September 2016) (Mobility Plan). The Mobility Plan defines specific street standards in an effort to provide an enhanced balance between traffic flow and other important street functions including transit routes and stops, pedestrian environments, bicycle routes, building design and site access, etc. Per the Mobility Plan, street classifications are defined as follows:

- Freeways are high-volume, high-speed roadways with limited access provided by interchanges that carry regional traffic through and do not provide local access to adjacent land uses.
- Arterial Streets are major streets that serve through traffic, as well as provide access to major commercial activity centers. Arterials are divided into two categories:
- Boulevards represent the widest Arterial Streets that typically provide regional access to major destinations and include two categories:
- Boulevard I provides up to four travel lanes in each direction with a target operating speed of 40 mph , and generally includes a right-of-way (ROW) width of 136 feet and pavement width of 100 feet.
- Boulevard II provides up to three travel lanes in each direction with a target operating speed of 35 mph , and generally includes a ROW width of 110 feet, and pavement widths of 80 feet.
- Avenues are typically narrow arterials that pass through both residential and commercial areas and include three categories:
- Avenue I provides up to two travel lanes in each direction with a target operating speed of 35 mph , with a ROW width of 100 feet and pavement width of 70 feet.
- Avenue II provides up to two travel lanes in each direction with a target operating speed of 30 mph , with a ROW width of 86 feet and pavement width of 56 feet.
- Avenue III provides up to two travel lanes in each direction with a target operating speed of 25 mph , with a ROW width of 72 feet and pavement width of 46 feet.
- Collector Streets are generally located in residential neighborhoods and provide access to and from Arterial Streets for local traffic and are not intended for cut-through traffic. They provide one travel lane in each direction with operating speed of 25 mph , with a ROW width generally at 66 feet and pavement width of 40 feet.
- Local Streets are intended to accommodate lower volumes of vehicle traffic and provide parking on both sides of the street. They provide one travel lane in each direction with a target operating speed of 15 to 20 mph . Pavement widths may vary between 30-36 feet within a ROW width of 50-60 feet. Local Streets include two categories:
- Continuous Local Streets connect to other streets at both ends
- Non-continuous Local Streets lead to a dead-end

Primary regional access to the Project Site is provided by US 101, I-5, and I-10. The arterials providing access to the Project Site include $7^{\text {th }}$ Street, Alameda Street, and Olympic Boulevard. The following is a brief description of the roadways in the Study Area, including their classifications under the Mobility Plan:

## Freeways

- US 101 - US 101 generally runs in the north-south direction and is located less than 1.0 miles east of the Project Site. In the vicinity of the Project Site, US 101 provides three travel lanes in each direction. Access to and from US 101 is available via interchanges at $7^{\text {th }}$ Street.
- l-5 - I-5 generally runs in the north-south direction and is located less than 1.0 miles east of the Project Site. In the vicinity of the Project Site, I-5 provides five travel lanes in each direction. Access to and from $\mathrm{l}-5$ is available via interchanges at $7^{\text {th }}$ Street.
- $\quad \mathrm{I}-10-\mathrm{I}-10$ generally runs in the east-west direction and is located approximately 500 feet south of the Project Site. In the vicinity of the Project Site, I-10 provides three to five travel lanes in each direction. Access to and from $\mathrm{l}-10$ is available via interchanges at $8{ }^{\text {th }}$ Street, Porter Street, and Alameda Street.


## Roadways

- Alameda Street - Alameda Street is a designated Avenue I. It travels in the north-south direction and is located adjacent to the western boundary of the Project Site. It provides four travel lanes, two in each direction, with left-turn lanes at intersections and a two-way leftturn median. Unmetered parking is available on both sides of the street between Bay Street and Center Street and on the west side of the street between $8^{\text {th }}$ Street and Bay Street; elsewhere, parking is generally prohibited within the Study Area.
- Lawrence Street - Lawrence Street is a designated Collector Street. It travels in the northsouth direction and is located toward the western boundary of the Project Site, aligned opposite the main gate driveway at $8^{\text {th }}$ Street along the northern boundary of the Project Site. It provides two travel lanes, one in each direction. Unmetered parking is generally available on both sides of the street north of $8^{\text {th }}$ Street and south of Olympic Boulevard within the Study Area.
- Lemon Street - Lemon Street is a designated Collector Street. It travels in the north-south direction and is located adjacent to the eastern boundary of the Project Site. It provides two travel lanes, one in each direction, and connects with $8^{\text {th }}$ Street, north of Damon Street. Unmetered parking is generally available on the east side of the street north of Olympic Boulevard within the Study Area.
- Mateo Street - Mateo Street is a designated Avenue III. It travels in the north-south direction and is located east of the Project Site. It provides two travel lanes, one in each direction. Unmetered parking is generally available on both sides of the street north of Damon Street and on the west side of the street between Enterprise Street and Damon Street within the Study Area.
- $7^{\text {th }}$ Street $-7^{\text {th }}$ Street is a designated Avenue II. It travels in the east-west direction and is located north of the Project Site. It provides four travel lanes, two in each direction, with leftturn lanes at intersections. Unmetered parking is generally available on the south side of the street east of Mateo Street and on the north side of the street between Channing Street and Lawrence Street with passenger loading restrictions from 6:30 AM to 9:00 AM and 1:30 PM to 4:00 PM.
- $8^{\text {th }}$ Street $-8^{\text {th }}$ Street is a designated Avenue II west of Linden Street and a designated Collector Street east of Alameda Street within the Study Area. It travels in the east-west direction and is located adjacent to the northern boundary of the Project Site. It provides
four travel lanes, two in each direction, with left-turn lanes west of Central Avenue, and two travel lanes, one lane in each direction, west of Central Avenue within the Study Area. Parking is generally provided on the north side of the street east of Alameda Street and metered parking is generally available on both sides of the street west of Alameda Street.
- Hunter Street - Hunter Street is a designated Collector Street. It travels in the east-west direction and is located adjacent to the southern boundary of the Project Site. It provides two travel lanes, one in each direction. Unmetered parking is generally not available on either side of the street.
- Olympic Boulevard - Olympic Boulevard is a designated Avenue I that generally travels in the east-west direction and is located adjacent to the southern boundary of the Project Site. It provides four travel lanes, two in each direction, with left-turn lanes at intersections and a two-way left-turn median. Unmetered parking is generally available on both sides of the street between Hemlock Street and Naomi Avenue and on the north side of the street between Hooper Street and Alameda Street within the Study Area.

As required in the TAG, an inventory was conducted of facilities serving pedestrians, bicyclists, and transit riders. The existing mobility facilities at each of the analyzed Study Area intersections are detailed in Figure 5 and the existing transportation facilities within the Study Area are shown in Figure 6.

## Existing Transit System

Figure 7 illustrates the existing transit service and transit stops within the Study Area, which is served by bus lines operated by Metro. Table 2 summarizes the transit lines operating in the Study Area by Metro, the type of service (peak vs. off-peak, express vs. local), and the frequency of service. The average frequency of transit service during the peak hour was derived from schedule information for the stop nearest the Project Site, as well as detailed trip data from April 2019 provided by Metro.

Tables 3A and 3B summarize the available capacity of the Metro transit lines within 0.25 miles of the Project Site during the morning and afternoon peak hours, based on the frequency of service of each line, detailed ridership data provided by the transit provider, and the maximum seated and standing capacity. As shown, the Metro transit lines within 0.25 miles of the Project Site currently have available capacity for 1,011 additional riders during the morning peak hour and 949 additional riders during the afternoon peak hour.

## Existing Bicycle System

Based on 2010 Bicycle Plan, A Component of the City of Los Angeles Transportation Element (LADCP, adopted March 1, 2011) (2010 Bicycle Plan), the existing bicycle system consists of a limited network of bicycle lanes (Class II) and bicycle routes (Class III). Class II bicycle lanes are a component of street design with dedicated striping, separating vehicular traffic from bicycle traffic. These facilities offer a safer environment for both cyclists and motorists. Class III bicycle routes and bicycle-friendly streets are those where motorists and cyclists share the roadway and there is no separated striping for bicycle travel. Bicycle routes and bicycle-friendly streets are preferably placed on Collector and lower volume Arterial Streets. Bicycle routes with shared lane markings, or "sharrows", remind bicyclists to ride farther from parked cars to prevent collisions, increase awareness of motorists that bicycles may be in the travel lane, and shows bicyclists the correct direction of travel.

The components of the 2010 Bicycle Plan have been incorporated into the bicycle network of the Mobility Plan. The Mobility Plan consists of a Bicycle Enhanced System (Low-Stress Network) (BEN) and a Bicycle Lane Network (BLN). The BEN is a subset of and supplement to the 2010 Bicycle Plan and is comprised of a network of streets that prioritize bicyclists and provide bicycle paths and protected bicycle lanes (Class IV). Class IV protected bicycle lanes including cycle tracks, bicycle traffic signals, and demarcated areas to facilitate turns at intersections and along neighborhood streets, provide further protection from other travel lanes. These Class IV networks typically provide mini-roundabouts, cross-street stop signs, crossing islands at major intersection crossings, improved street lighting, bicycle boxes, and bicycle-only left-turn pockets. Once implemented, these facilities would offer a safer environment for both cyclists and motorists. The BLN consists of Class II bicycle lanes with striped separation. There are currently no bicycle facilities provided along corridors within the Study Area.

## Existing Pedestrian Facilities

The signalized intersections surrounding the Project Site provide pedestrian access in the vicinity of the Project Site. The signalized intersections provide pedestrian phasing, crosswalk striping, and Americans with Disabilities Act (ADA) accessible ramps at most crosswalks. Additional
pedestrian facilities, not immediately adjacent to the Project Site, are located within the Study Area and are further detailed in Figure 6.

## Vision Zero

As described in Vision Zero: Eliminating Traffic Deaths in Los Angeles by 2025 (City of Los Angeles, August 2015), Vision Zero is a traffic safety policy that promotes strategies to eliminate transportation-related collisions that result in severe injury or death. Vision Zero has identified the High Injury Network (HIN), a network of streets included based on collision data from the last five years, where strategic investments will have the biggest impact in reducing death and severe injury. The Project Site is located along Olympic Boulevard, which is identified as part of the HIN but is not proposing access from Olympic Boulevard. The following streets in the Project Study Area have also been identified as part of the HIN:

- $7^{\text {th }}$ Street west of Mateo Street
- Alameda Street both south of Olympic Boulevard and north of 6 th Street
- Santa Fe Avenue between Olympic Boulevard and Hunter Street


## Existing Traffic Volumes

Due to the recent demolition of the $6^{\text {th }}$ Street Viaduct and the resulting closure of $6^{\text {th }}$ Street between Mateo Street and US 101, traffic traveling in the east/west direction has shifted to detour routes, specifically $4^{\text {th }}$ Street and $7^{\text {th }}$ Street. In addition, due to the current traffic conditions related to the State and City's response to COVID-19, LADOT has directed transportation assessments to utilize traffic counts collected prior to March 1, 2020. Thus, due to the on-going closures of $6{ }^{\text {th }}$ Street and given the uncertainty of the termination of the Safer-At-Home order, historical traffic count data from Years 2009 to 2019 were utilized for this analysis. Local schools were in session when these traffic counts were conducted. Traffic counts were conservatively increased at a rate of $1 \%$ per year to reflect regional growth and development between the year of the traffic count and the existing year. Although the turning movement counts were conducted during different days and months of the year, a review of the data and typical traffic conditions (i.e., prior to COVID-19) indicated that the traffic volume pattern and flow were consistent regardless of the traffic count collection date. Thus,
for the purposes of this analysis, the Existing Conditions traffic volumes represent Year 2021 conditions. The existing intersection peak hour traffic volumes are illustrated in Figure 8. The traffic count worksheets are provided in Appendix B.

## FUTURE CUMULATIVE TRANSPORTATION CONDITIONS

The forecast of Future without Project Conditions was prepared in accordance with procedures outlined in the TAG. Specifically, two requirements are provided for developing the cumulative traffic volume forecast:
> "The Transportation Assessment must estimate ambient traffic conditions for the study horizon year selected during the scoping phase and recorded in the executed MOU. The study must clearly identify the horizon year and annual ambient growth rate used for the study. The horizon year should align with the development project's expected completion year. For development projects constructed in phases over several years, the Transportation Assessment should analyze intermediary milestones before the buildout and completion of the project. The annual ambient growth rate shall be determined by LADOT staff during the scoping process and can be based on an adopted TSP, the most recent SCAG regional transportation model, the citywide transportation model, or other empirical information approved by LADOT.

"The Transportation Assessment must consider related projects. For related development projects, this should include the associated trip generation for known development projects within one-half mile ( 2,640 foot) radius of the project site and one-quarter mile ( 1,320 foot) radius of the farthest outlying study intersections. Consultation with the Department of City Planning and LADOT may be required to compile the related projects list. The City's ZIMAS database can be used to assist in identifying development projects that have submitted applications to the City of Los Angeles. Project access and circulation constraints would be determined by adding project-generated trips to future base traffic volumes including ambient growth and related projects and conducting the operational analysis."

As described in detail below, this analysis includes increases to traffic from future projects and from regional growth projections. The ambient growth factor discussed below likely includes some traffic increases resulting from the Related Projects. Therefore, through some inherent double-counting of vehicles, the traffic analysis provides a highly conservative estimate of Future without Project traffic volumes.

The Future without Project traffic volumes, therefore, include ambient growth, which reflects increases in traffic due to regional growth and development outside the Study Area, as well as traffic generated by ongoing or entitled projects near or within the Study Area.

## Ambient Traffic Growth

Traffic levels are expected to increase over time as a result of regional growth and development in and around the Study Area. Based on discussions with LADOT during the MOU process, a conservative ambient growth rate of $1 \%$ per year compounded annually was applied to the Existing Conditions traffic volumes to reflect Year 2026 (the estimated buildout year of the Project) conditions. The total adjustment applied over the five-year period was $5.10 \%$. This growth factor accounts for increases in traffic due to potential projects plus projects not yet proposed and projects located outside the Study Area.

## Related Projects

In accordance with the TAG, this study also considered the effects of the Project in relation to other developments either proposed, approved, or under construction (collectively, the Related Projects). Including this analysis step, the potential impact of the Project was evaluated within the context of past, present, and probable future developments capable of producing cumulative impacts.

The list of Related Projects is based on information provided by LADCP and LADOT, as well as recent traffic studies prepared for projects in the area. The Related Projects are detailed in Table 4 and their approximate locations shown in Figure 9.

Though the buildout years of many of these Related Projects are uncertain and may be well beyond the buildout year of the Project, and notwithstanding that some may never be approved or developed, they were all considered as part of this study and conservatively assumed to be completed by the Project buildout Year 2026. Therefore, the traffic growth due to the development of Related Projects considered in this analysis is highly conservative and, by itself, is appropriately assumed to substantially overestimate the actual traffic volume growth in the Study Area that would
likely occur prior to Project buildout. With the addition of the $1 \%$ per year ambient growth factor previously discussed, the Future without Project cumulative condition is even more conservative.

Using these conservative assumptions, the potential transportation effects of the Project were evaluated. The development of estimated traffic volumes added to the Study Area as a result of Related Projects involves the use of a three-step process: trip generation, trip distribution, and trip assignment.

Trip Generation. Trip generation estimates for the Related Projects were provided by LADOT or were calculated using a combination of previous study findings and the trip generation rates contained in Trip Generation Manual, 10th Edition (Institute of Transportation Engineers, 2017). The Related Projects trip generation estimates summarized in Table 4 are conservative in that they do not in every case account for either the existing uses to be removed or the likely use of other travel modes (transit, walk, etc.). Further, such analysis is conservative because, in many cases, it does not account for the internal capture trips within a multi-use development, nor the interaction of trips between multiple Related Projects within the Study Area, in which one Related Project serves as the origin for a trip destined for another Related Project.

Trip Distribution. The geographic distribution of the traffic generated by the Related Projects is dependent on several factors. These include the type and density of the proposed land uses, the geographic distribution of the population from which the employees/residents and potential patrons of the proposed developments are drawn, and the location of these projects in relation to the surrounding street system. These factors are considered, along with logical travel routes through the street system, when developing a reasonable pattern of trip distribution.

Trip Assignment. The trip generation estimates for the Related Projects were assigned to the local street system using the trip distribution pattern described above. Figure 10 shows the peak hour traffic volumes associated with these Related Projects at the Study Area intersections.

## Future without Project Traffic Volumes

The Future without Project Condition traffic volumes were estimated by adding the Related Project volumes to the Existing Conditions traffic volumes with the aforementioned annual ambient growth
factor through the projected buildout year of 2026. As discussed above, this is a conservative approach as the traffic generated from many of the Related Projects may already be reflected in the ambient growth rate. The Future without Project Condition traffic volumes at the five Study Area intersections are shown in Figure 11.

## Future Roadway Improvements

The analysis of Future Conditions accounted for roadway improvements that are or would be funded and are reasonably expected to be implemented prior to the buildout of the Project in Year 2026. Any roadway improvement that would result in changes to the physical configuration in the Study Area were incorporated into the analysis. Other proposed traffic / trip reduction strategies such as TDM programs for individual buildings and developments were omitted from the Future Conditions analyses. Figure 12 illustrates the future transportation facilities improvements, including future transit, bicycle, and pedestrian facilities per the Mobility Plan, within the Study Area. The following projects were evaluated for their potential effects on the future roadway configurations.
$6^{\text {th }}$ Street Viaduct Replacement Project. Due to a rare chemical reaction in the cement supports and seismic vulnerability, the $6^{\text {th }}$ Street Viaduct, which provided a connection between the Arts District and the Boyle Heights neighborhood, was demolished in early Year 2016 as part of the $6^{\text {th }}$ Street Viaduct Replacement Project. As a result, $6^{\text {th }}$ Street/Whittier Street between Mateo Street and US 101 is closed to through traffic. Construction of the new bridge is anticipated to be complete by Year 2022. The $6^{\text {th }}$ Street Viaduct Replacement Project would not affect the street configurations of the Study Area or traffic distribution assumptions considered in the Future Conditions analyses and, therefore, was not incorporated into the analysis.

Arts District/6 ${ }^{\text {th }}$ Street Station. The Arts District/6 ${ }^{\text {th }}$ Street Station is a proposed rail station that would serve the Arts District and the surrounding neighborhoods. The Arts District/6 ${ }^{\text {th }}$ Street Station project is still in the preliminary planning stages, and public issuance of the Environmental Impact Report is anticipated in Year 2022. The Arts District/6 ${ }^{\text {th }}$ Street Station would not affect the street configurations of the Study Area or traffic distribution assumptions considered in the Future Conditions analyses and, therefore, was not incorporated into the analysis.

Mobility Plan. In the Mobility Plan, the City identifies key corridors as components of various "mobility-enhanced networks." Each network is intended to focus on improving a particular aspect of urban mobility, including transit, neighborhood connectivity, bicycles, pedestrians, and vehicles. The specific improvements that may be implemented in those networks have not yet been identified, and there is no schedule for implementation; therefore, no changes to vehicular lane configurations were made or incorporated into the analysis as a result of the Mobility Plan. However, the following mobility-enhanced networks included corridors within the Study Area and depicted in Figure 12 for informational purposes:

- Transit Enhanced Network (TEN): The TEN aims to improve existing and future bus services through reliable and frequent transit service in order to increase transit ridership, reduce single-occupancy vehicle trips, and integrate transit infrastructure investments within the surrounding street system. The TEN has designated Olympic Boulevard within the Study Area as part of the network.
- Neighborhood Enhanced Network (NEN): The NEN reflects the synthesis of the bicycle and pedestrian networks and serves as a system of Local Streets that are slow moving and safe enough to connect neighborhoods through active transportation. The NEN has designated Santa Fe Avenue and Mateo Street north of Olympic Boulevard within the Study Area as part of the network.
- BEN / BLN: Within the Study Area, the Bicycle Enhanced Network designates Central Avenue as part of the BEN. Olympic Boulevard east of Central Avenue and $7^{\text {th }}$ Street east of Central Avenue have been designated as part of the BLN within the Study Area.
- Pedestrian Enhanced District (PED): The Mobility Plan aims to promote walking to reduce the reliance on automobile travel by providing more attractive and pedestrian-friendly sidewalks, as well as adding pedestrian signalizations, street trees, and pedestrianoriented design features. Alameda Street north of Bay Street, $7^{\text {th }}$ Street west of Mill Street, and Central Avenue are identified as part of the PED.

$\square$


EXISTING INTERSECTION MOBILITY FACILITIES

FIGURE
5

MOBILITY PLAN TRANSPORTATION DESIGNATIONS \& PEDESTRIAN DESTINATIONS

EXISTING TRANSIT SERVICE

FIGURE
7



FIGURE
9


| RELATED PROJECT-ONLY |
| :---: |
| PEAK HOUR TRAFFIC VOLUMES |

FIGURE




TABLE 1 STUDY INTERSECTIONS

| No. | N/S Steet | E/W Street |
| :---: | :--- | :--- |
| 1. | Alameda Street | 7th Street |
| 2. | Alameda Street | 8th Street |
| 3. | Alameda Street | Olympic Boulevard |
| $4 .[a]$ | Lemon Street | Olympic Boulevard |
| 5. | Mateo Street | Olympic Boulevard |

Notes:
[a] Intersection is unsignalized.

TABLE 2
EXISTING TRANSIT SERVICE

| Provider, Route, and Service Area |  | Service Type | Hours of Operation | Average Headway (minutes) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AM Peak Period |  | PM Peak Period |  |
| Metro |  |  |  |  | NB/EB | SB/WB | NB/EB | SB/WB |
| 18 | Wilshire Center - Downtown Los Angeles - Montebello via 6th St and Whittier Blvd | Local | 24-Hour | 7 | 6 | 6 | 6 |
| 53 | Downtown Los Angeles - CSU Domingues Hills via Central Ave | Local | 4:45 AM - 12:15 AM | 15 | 15 | 15 | 15 |
| 60 | Downtown Los Angeles - Artesia Station via Long Beach Blvd | Local | 24-Hour | 7 | 6 | 7 | 6 |
| 62 | Downtown Los Angeles - Hawaiian Gardens via Telegraph Rd | Local | 5:00 AM - 12:15 AM | 48 | 30 | 24 | 60 |
| 66 | Wilshire Center - Downtown Los Angeles - Montebello via 8th St and Olympic Blvd | Local | 4:15 A.M. - 1:30 A.M. | 8 | 10 | 10 | 8 |
| 720 | Santa Monica - Downtown Los Angeles via Wilshire Blvd | Rapid | 4:15 AM - 1:30 AM | 20 | 7 | 10 | 16 |

Notes
Metro: Los Angeles County Metropolitan Transportation Authority
AM Peak from 6-10 AM
PM Peak from 3-7 PM

TABLE 3A
TRANSIT SYSTEM CAPACITY IN STUDY AREA - MORNING PEAK HOUR

| Provider, Route, and Service Area |  | Capacity per Trip <br> [a] | Peak Hour Ridership [b] |  |  |  | Average Remaining Capacity per Trip |  | Remaining Peak Hour Capacity |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Peak Load | Average Load |  |  |  |  |  |
|  |  | NB/EB | SB/WB | NB/EB | SB/WB | NB/EB | SB/WB | NB/EB | SB/WB |
| Metro Bus Service |  |  |  |  |  |  |  |  |  |  |
|  | Downtown Los Angeles - Artesia Station via Long Beach Blvd |  | 50 | 25 | 29 | 16 | 18 | 34 | 32 | 281 | 344 |
| 66 | Wilshire Center - Downtown Los Angeles Montebello via 8th St and Olympic Blvd |  | 50 | 32 | 44 | 18 | 26 | 32 | 24 | 248 | 138 |
| Total Remaining Transit System Capacity |  |  |  |  |  |  |  |  | 1,011 |  |

Notes
Metro: Los Angeles County Metropolitan Transportation Authority.
[a] Capacity assumptions:
Metro Regular Bus - 40 seated / 50 seated and standing.
Metro Articulated Bus - 66 seated / 75 seated and standing standing.
[b] Based on ridership data provided by Metro in 2019.

TABLE 3B
TRANSIT SYSTEM CAPACITY IN STUDY AREA - AFTERNOON PEAK HOUR

| Provider, Route, and Service Area |  | Capacity per Trip [a] | Peak Hour Ridership [b] |  |  |  | Average Remaining Capacity per Trip |  | Remaining Peak Hour Capacity |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Peak Load | Average Load |  |  |  |  |  |
|  |  | NB/EB | SB/WB | NB/EB | SB/WB | NB/EB | SB/WB | NB/EB | SB/WB |
| Metro Bus Service |  |  |  |  |  |  |  |  |  |  |
|  | Downtown Los Angeles - Artesia Station via Long Beach Blvd |  | 50 | 28 | 29 | 18 | 18 | 32 | 32 | 280 | 312 |
|  | Wilshire Center - Downtown Los Angeles Montebello via 8th St and Olympic Blvd |  | 50 | 44 | 31 | 28 | 21 | 22 | 29 | 132 | 225 |
| Total Remaining Transit System Capacity |  |  |  |  |  |  |  |  | 949 |  |

Notes
Metro: Los Angeles County Metropolitan Transportation Authority.
[a] Capacity assumptions:
Metro Regular Bus - 40 seated / 50 seated and standing.
Metro Articulated Bus - 66 seated / 75 seated and standing standing.
[b] Based on ridership data provided by Metro in 2019.

TABLE 4
RELATED PROJECTS LIST

| No. | Project | Address | Distance <br> from Project <br> Site | Description | Trip Generation [a] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Daily | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  |  |  |  | In | Out | Total | In | Out | Total |
| 1. | Office \& Commercial | 2159 E Bay St | 0.6 miles | 202,954 sf creative office, 3,235 sf meeting room space, 10,860 sf quality restaurant, and 10,860 sf high-turnover restaurant | 4,417 | 193 | 27 | 220 | 115 | 245 | 360 |
| 2. | Rendon Hotel | 2053 E 7th St | 0.6 miles | 103-room hotel | 732 | 24 | 17 | 41 | 27 | 26 | 53 |
| 3. | 676 Mateo St MU Project | 676 S Mateo St | 0.6 miles | 159 apartment units, 26,093 sf office, 15,005 sf restaurant, and 8,375 sf retail | 1,991 | 64 | 81 | 145 | 100 | 68 | 168 |
| 4. | Mixed-Use | 2143 E Violet St | 0.6 miles | 347 apartment units, 21,858 sf restaurant, and 187,374 sf office | 4,651 | 206 | 129 | 335 | 182 | 208 | 390 |
| 5. | ROW DTLA Mixed-Use | 777 S Alameda St | 0.4 miles | 850,400 sf office, 117,700 sf restaurant, 66,200 sf retail, and 125 hotel rooms | 916 | (134) | (172) | (306) | (157) | 35 | (122) |
| 6. | Mixed-Use | 930 E 6th St | 0.7 miles | 236 apartment units and 12,000 sf retail | 1,074 | 17 | 79 | 96 | 70 | 32 | 102 |
| 7. | 6AM (6th \& Alameda MU) | 1206 E 6th St | 0.6 miles | 1,736 apartment units, 316,632 sf warehouse, 253,514 sf office, 45,278 sf restaurant, 82,332 sf retail, $22,429 \mathrm{sf}$ art museum, 514 hotel rooms, 300 -student school | 14,258 | 437 | 585 | 1,022 | 710 | 642 | 1,352 |
| 8. | Municipal Solid Waste Facility | 2001 E Washington BI | 0.6 miles | 187,000 sf municipal solid waste material recovery facility | 3,578 | (27) | 18 | (9) | 8 | (18) | (10) |
| 9. | Mixed-Use | 640 S Sante Fe Ave | 0.7 miles | 91,185 sf office, 9,430 sf retail, and 6,550 sf restaurant | 1,330 | 90 | 8 | 98 | 43 | 114 | 157 |
| 10. | Mixed-Use | 641 S Imperial St | 0.7 miles | 140 live-work units and 14,750 sf commercial | 1,245 | 44 | 61 | 105 | 66 | 60 | 126 |
| 11. | Restaurant | 1722 E 16th St | 0.5 miles | 8,151 sf restaurant | 592 | (4) | 2 | (2) | 36 | 11 | 47 |
| 12. | Mixed-Use (Revised) | 1800 E 7th St | 0.4 miles | 122 apartment units, 3,245 sf retail, 4,605 sf restaurant, and 2,700 sf office | 992 | 25 | 52 | 77 | 54 | 34 | 87 |
| 13. | 2110 Bay Street | 2110 Bay St | 0.5 miles | 110 live-work units, 113,350 sf office, and 43,657 sf retail | 2,394 | 180 | 63 | 243 | 89 | 192 | 281 |
| 14. | Mixed-Use | 668 S Alameda St | 0.5 miles | 475 live-work units, 33,100 sf office, 17,500 sf retail, 16,300 sf restaurant, and 15,300 sf supermarket | 4,002 | 107 | 182 | 289 | 216 | 145 | 361 |
| 15. | 1024 Mateo St MU | 1024 S Mateo St | 0.4 miles | 106 apartment units, 2,250 sf live-work office, 92,740 sf office, 13,979 sf retail, and 13,126 sf restaurant | 1,862 | 102 | 64 | 166 | 73 | 101 | 174 |
| 16. | Mesquit Mixed-Use | 670 S Mesquit St | 0.7 miles | 944,055 sf office, 308 apartment units, 236 hotel rooms, 79,240 sf retail, 89,576 restaurant, $62,148 \mathrm{sf}$ gym, 93,617 sf studio/museum/gallery, and 56,912 sf grocery store | 22,845 | 1,258 | 321 | 1,579 | 640 | 1,195 | 1,835 |
| 17. | Camden Arts Mixed-Use | 1525 E Industrial St | 0.5 miles | 328 apartment units, 27,300 sf office, 6,400 sf retail, and $5,700 \mathrm{sf}$ restaurant | 2,288 | 58 | 73 | 131 | 86 | 69 | 155 |
| 18. | Mixed-Use | 2130 E Violet St | 0.6 miles | 94,000 sf office, 3,500 sf retail, and 4,000 sf restaurant | 1,351 | 137 | 30 | 167 | 39 | 122 | 162 |
| 19. | Mixed-Use | 1000 S Sante Fe St | 0.5 miles | 14,193 sf market, 6,793 sf health club, and 10,065 sf restaurant | 966 | 36 | 38 | 74 | 49 | 20 | 69 |
| 20. | Hillcrest MU | 1745 E 7th St | 0.5 miles | 57 apartment units, and 6,000 sf retail | 635 | 10 | 25 | 35 | 34 | 23 | 57 |

Notes
[a] Source: Related project (within a one-mile radius) information based on available information provided by LADOT (January 11, 2020), Department of City Planning, and recent studies in the area

TABLE 4 (cont.)
RELATED PROJECTS

| No. | Project | Address | Distance <br> from Project <br> Site | Description | Trip Generation [a] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Daily | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  |  |  |  | In | Out | Total | In | Out | Total |
| 21. | Mixed-Use (Old Ford Factory) | 2030 E 7th St | 0.5 miles | 243,583 sf office and 40,000 sf retail | 2,306 | 274 | 34 | 308 | 69 | 269 | 318 |
| 22. | Mixed-Use | 2051 E 7th St | 0.6 miles | 320 apartment units, 5,000 sf restaurant, and 15,000 sf retail | 2,310 | 17 | 127 | 144 | 145 | 64 | 208 |
| 23. | Mixed-Use | 826 S Mateo St | 0.4 miles | 90 live-work units, 11,000 sf retail, and 5,600 sf restaurant | 1,267 | 11 | 34 | 45 | 62 | 39 | 101 |
| 24. | SPR-Industrial Park | 1005 S Mateo St | 0.4 miles | 94,849 sf industrial park | 426 | 40 | 9 | 49 | 10 | 39 | 49 |
| 25. | The City Market (Mixed-Use) | 1057 S San Pedro St | 0.9 miles | 945 residential units, 210-room hotel, 294,641 sf office, 224,862 sf retail, and 744 -seat cinema | 16,433 | 837 | 434 | 1,271 | 632 | 957 | 1,589 |
| 26. | Office | 540 S Sante Fe Ave | 0.9 miles | 89,825 sf office | 726 | 90 | 12 | 102 | 17 | 81 | 98 |
| 27. | 310 Residential Apts + 26.7k Commercial | 1147 E Palmetto St | 0.8 miles | 310 residential apartment units and 26,701 sf commercial | 0 | 33 | 78 | 111 | 175 | 112 | 287 |
| 28. | Mixed-Use (Coca Cola) | 963 E 4th St | 1.0 mile | 75,000 sf office, 25,000 sf retail, and 20,000 sf restaurant | 2,512 | 106 | 22 | 128 | 113 | 138 | 251 |
| 29. | Retail (Palmetto \& Mateo) | 555 S Mateo St | 0.8 miles | 1,530,000 sf retail | 4,300 | 5 | 30 | 35 | 220 | 205 | 425 |
| 30. | Mixed-Use | 360 S Alameda St | 1.0 mile | 52 apartment units, 2,400 sf restaurant, and 6,900 sf creative office | 648 | 42 | 33 | 57 | 33 | 28 | 61 |
| 31. | Arts District Center (MixedUse) | 1129 E 5th St | 0.9 miles | 27,000 sf retail, 32,000 sf restaurant, 113-room hotel, 129 apartment units, 10,341 sf art gallery, and 3,430 design incubator | 4,713 | 133 | 140 | 273 | 157 | 72 | 229 |
| 32. | Restaurant | 500 S Mateo St | 0.9 miles | 12,682 sf high-turnover restaurant | 1,052 | 48 | 41 | 89 | 50 | 31 | 81 |
| 33. | Mixed-Use | 719 E 5th St | 1.0 mile | 160 apartment units and 7,500 sf retail | 1,033 | 15 | 58 | 73 | 59 | 36 | 95 |
| 34. | 520 Mateo St MU | 520 S Mateo St | 0.9 miles | 600 apartment units, 120,000 sf office, 15,000 sf retail, and 15,000 sf restaurant | 4,995 | 157 | 220 | 377 | 274 | 223 | 497 |
| 35. | 4th \& Hewitt MU | 405 S Hewitt St | 1.0 mile | 311,682 sf office, and 81,49 sf retail | 3,416 | 319 | 69 | 388 | 83 | 301 | 384 |
| 36. | Apartments | 656 S Stanford Ave | 0.8 miles | 82 apartment units | 1,463 | 8 | 34 | 42 | 33 | 18 | 51 |
| 37. | Weingart Projects (Affordable Housing) | 554 S San Pedro St | 1.0 mile | 667 affordable housing units and 54,500 commercial on two sites | 197 | 33 | 120 | 153 | 229 | 91 | 320 |
| 38. | San Pedro Tower (Affordable Housing) | 600 S San Pedro St | 1.0 mile | 5 apartment units, 298 affordable housing units, and 19,909 sf commercial | 636 | 38 | 25 | 63 | 30 | 37 | 67 |
| 39. | Sears MU Project | 2650 E Olympic BI | 1.0 mile | 1000 apartment units, 34,000 sf retail, 46,000 sf high-turnover restaurant, and 230,000 sf office | 12,247 | 498 | 477 | 976 | 599 | 539 | 1,138 |
| 40. | Palmetto MU | 527 S Colyton St | 0.8 miles | 275 apartment units, 35 affordable housing units, 11,375 sf retail, and 11,375 sf artist production | 2,095 | 36 | 116 | 152 | 121 | 74 | 195 |

Notes
[a] Source: Related project (within a one-mile radius) information based on available information provided by LADOT (January 11, 2020), Department of City Planning, and recent studies in the area.

TABLE 4 (cont.)
RELATED PROJECTS

| No. | Project | Address | Distance <br> from Project <br> Site | Description | Trip Generation [a] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Daily | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  |  |  |  | In | Out | Total | In | Out | Total |
| 41. | Mixed-Use | 609 E 5th St | 1.0 mile | 151 apartment units | 1,004 | 15 | 62 | 77 | 61 | 33 | 94 |
| 42. [b] | Residential (Edward Hotel) | 713 E 5th St | 1.0 mile | 50 affordable housing units and one apartment unit | 208 | 15 | 10 | 25 | 9 | 8 | 17 |
| 43. | Office, Restaurant, Fast-Food | 431 S Colyton St | 0.9 miles | 97,577 sf office, 10,739 sf restaurant, 1,977 sf fast-food restaurant | 1,524 | 80 | 18 | 98 | 60 | 95 | 155 |
| 44. | 1100 E 5th St MU Project | 1100 E 5 5th St | 0.9 miles | 220 apartment units, 4,350 sf office, 17,810 sf general office, 19,609 sf restaurant, and 9,129 sf retail | 2,556 | 78 | 107 | 185 | 130 | 80 | 210 |
| 45. [b] | Affordable Housing Development | 508 E 4th St | 1.0 mile | 41 affordable housing units | 167 | 8 | 12 | 20 | 8 | 6 | 14 |
| 46. | Clinic | 649 S Wall St | 1.0 mile | 55 apartment units and 25,000 sf clinic | 104 | 24 | 5 | 29 | 3 | 24 | 27 |
| 47. | 400 S Alameda Hotel | 400 S Alameda St | 1.0 mile | 66-room hotel, 2,130 sf restaurant, and 840 sf retail | 512 | 20 | 18 | 38 | 23 | 14 | 37 |
| 48. | Greystar GP II | 330 Alameda St | 1.0 mile | 186 apartment units and 22,000 sf commercial | 1,662 | 36 | 76 | 112 | 91 | 65 | 156 |
| 49. | Mixed-Use | 1000 S Mateo St | 0.3 miles | 113 apartment units and 134,000 sf commercial | 2,238 | 153 | 83 | 236 | 90 | 131 | 221 |
| 50. [c] | Restaurant | 605 E 4 th St | 1.0 mile | 3,798 sf restaurant | 426 | 21 | 17 | 38 | 23 | 14 | 37 |
| 51. [c] | Mixed-Use | 1340 E 6th St | 0.7 miles | 193 live/work units and 255,088 sf commercial | 11,469 | 190 | 177 | 367 | 550 | 554 | 1,104 |
| 52. | Mixed-Use | 1200 S Santa Fe Ave | 0.3 miles | 53 apartment units and 13,000 sf retail | 907 | 12 | 27 | 39 | 44 | 37 | 81 |
| 53. | Apartments | 655 San Pedro St | 0.9 miles | 81 apartment units | 539 | 8 | 33 | 41 | 33 | 17 | 50 |
| 54. [c] | Restaurant | 634 S Mateo St | 0.6 miles | 499-seat restaurant | 2,181 | 125 | 115 | 240 | 119 | 91 | 210 |
| 55. [c] | Affordable Housing Development | 401 E 7th St | 1.0 mile | 99 affordable housing units | 404 | 20 | 30 | 50 | 19 | 15 | 34 |

Notes
[a] Source: Related project (within a one-mile radius) information based on available information provided by LADOT (January 11, 2020), Department of City Planning, and recent studies in the area
[b] Although construction of the related project may be partially complete/entirely complete, the project was not fully occupied at the time of the NOP or when traffic counts were conducted. Therefore, the related project was considered and listed to provide a more conservative analysis.
[c] Trip generation estimated using rates from Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017.

# Chapter 3 <br> Project Traffic 

This chapter describes the assumptions and methodology used in developing the traffic volumes associated with the Project within the Study Area.

## PROJECT TRIP GENERATION

The number of trips expected to be generated by the Project was estimated using a combination of rates from published sources and empirical data. For the purposes of this assessment, the trip generation rates from Trip Generation, $10^{\text {th }}$ Edition for general office uses were utilized to estimate the trip generation for the office components of the Project. These rates are based on surveys of similar land uses at sites around the country and are provided as both daily rates and morning and afternoon peak hour rates. They relate the number of vehicle trips traveling to and from the Project Site to the size of development of each land use. The rates for production support and sound stage uses were based on empirical trip generation studies at studios in Los Angeles.

In consultation with LADOT, trip generation reductions to account for public transit usage/walking arrivals were considered. The Project Site is located within 0.25 miles from Metro bus stops; therefore, a $5 \%$ transit/walk-in adjustment was applied to account for transit usage and walk-in arrivals from surrounding neighborhoods and adjacent commercial developments.

The number of trips currently generated by the existing uses of the Project Site was also estimated using the rates published in Trip Generation, $10^{\text {th }}$ Edition for general light industrial uses. Based on a review of the current operations of the existing uses, no additional trip reductions to account for transit/walk-in trips were applied.

After accounting for the adjustments above and the removal of the existing uses, the Project is estimated to generate 316 net new morning peak hour trips (216 inbound, 100 outbound) and 402 net new afternoon peak hour trips (147 inbound, 255 outbound), as summarized in Table 5.

## PROJECT TRIP DISTRIBUTION

The geographic distribution of trips generated by the Project is dependent on the location of residential and commercial centers to and from which employees and visitors of the Project would be drawn, characteristics of the street system serving the Project Site, the location of the Project driveway(s), and existing traffic conditions.

Based on these considerations, traffic entering and exiting the Project Site was assigned to the surrounding street system. The intersection-level trip distribution pattern for Project traffic at the Study Area intersections is shown in Figure 13.

Generally, the regional pattern for the Project is as follows:

- $20 \%$ to/from the north
- $25 \%$ to/from the east
- $15 \%$ to/from the south
- $40 \%$ to/from the west


## PROJECT TRIP ASSIGNMENT

The Project trip generation estimates summarized in Table 5 and the trip distribution patterns shown in Figure 13 were used to assign the Project-generated traffic through the Study Area intersections. Figure 14A and 14B illustrate the existing trips uses to be removed from the Project Site and the total Project-only traffic volumes, respectively, at the Study Area intersections during typical weekday morning and afternoon peak hours.

PROJECT TRIP DISTRIBUTION


| EXISTING USES TO BE REMOVED |
| :---: |
| PEAK HOUR TRAFFIC VOLUMES |



| PROPOSED PROJECT-ONLY |
| :---: |
| PEAK HOUR TRAFFIC VOLUMES |

TABLE 5
PROJECT TRIP GENERATION

| TRIP GENERATION RATES [a] |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Use | ITE Land Use | Rate | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  | In | Out | Total | In | Out | Total |
| Sound Stage | [b] | per ksf | 63\% | 37\% | 0.20 | 40\% | 60\% | 0.43 |
| Production Support | [b] | per ksf | 65\% | 35\% | 0.61 | 45\% | 55\% | 0.57 |
| General Light Industrial | 110 | per ksf | 88\% | 12\% | [c] | 13\% | 87\% | [c] |
| General Office | 710 | per ksf | 86\% | 14\% | 1.16 | 16\% | 84\% | 1.15 |



## Notes:

$k s f=1,000$ square feet.
[a] Source: Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017, unless as noted.
[b] Rate based on empirical rate from Transportation Study for the NBC Universal Evolution Plan Environmental Impact Report, Gibson Transportation Consulting, Inc. and Raju Associates, Inc., March 2010.
[c] The trip generation estimates for the existing uses were calculated based on the following best-fit curve equations for general light industrial uses (ITE Land Use Code 110):

$$
\begin{aligned}
\text { Daily: } & \mathrm{T}=3.79(\mathrm{X})+57.96 \\
\text { AM: } & \operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(\mathrm{X})+0.39 \\
\text { PM: } & \operatorname{Ln}(\mathrm{T})=0.69 \operatorname{Ln}(\mathrm{X})+0.43
\end{aligned}
$$

[d] The total 249,790 sf of New Studio Construction includes a new 190 sf guard house, which was assumed to be an ancillary use of the Project and was not considered for trip generation purposes.
[e] The Project Site is located within walking distance of a Metro bus stop, therefore a $5 \%$ transit reduction is applied to account for transit usage and walking visitor arrivals from the adjacent commercial developments.
[f] The total 639,840 sf Existing Building Renovation includes amenities and supporting uses for the Project (i.e., 24,000 sf commissary and dining area, 57,400 sf mechanical rooms, $16,950 \mathrm{sf}$ gym $/ \mathrm{spa} / \mathrm{salon} /$ restrooms). These uses were assumed to be ancillary to the studio, production, and office uses, and therefore, were not considered for trip generation purposes.
[g] The 558,900 sf existing light industrial use does not account for the existing 23,005 sf vehicular maintenance building, nor the demolition of the 150 sf guard house, 3,840 sf fuel station, and 1,476 sf drum storage. These uses were considered ancillary to the existing light industrial uses on-site. Therefore, no existing use trip reductions were applied for these uses.

## Chapter 4

## CEQA Analysis of Transportation Impacts

This chapter presents the results of an analysis of CEQA-related transportation impacts. The analysis identifies any potential conflicts the Project may have with adopted City plans and policies and the proposed improvements to address potential conflicts, as well as the results of a Project VMT analysis that satisfies State requirements under State of California Senate Bill 743 (Steinberg, 2013) (SB 743).

## METHODOLOGY

SB 743, made effective in January 2014, required the Governor's Office of Planning and Research (OPR) to change the CEQA guidelines regarding the analysis of transportation impacts. Under SB 743, the focus of transportation analyses shifted from driver delay (level of service [LOS]) to VMT, in order to reduce greenhouse gas emissions (GHG), create multimodal networks, and promote mixed-use developments. The TAG defines the methodology to be used for analyzing a project's transportation impacts in accordance with SB 743.

Per the TAG, the CEQA transportation analysis used the following thresholds for identifying significant impacts:

- Threshold T-1: Conflicting with Plans, Programs, Ordinances, or Policies
- Threshold T-2.1: Causing Substantial Vehicle Miles Traveled (VMT)
- Threshold T-2.2: Substantially Inducing Additional Automobile Travel
- Threshold T-3: Substantially Increasing Hazards Due to a Geometric Design Feature or Incompatible Use

The thresholds were reviewed and analyzed, as detailed in the following Sections 4A-4D.

Recently, LADOT issued Interim Guidance for Freeway Safety Analysis (LADOT, May 1, 2020) (Freeway Guidance) identifying City requirements for a CEQA safety analysis for the California Department of Transportation (Caltrans) freeway off-ramp facilities as part of a transportation assessment. This analysis includes identification of potential safety impacts at freeway off-ramps due to increased traffic from development projects. The freeway off-ramp safety analysis is provided in Section 4E.

## Section 4A: Threshold T-1 Conflicting with Plans, Programs, Ordinances, or Policies Analysis

Threshold T-1 considers whether a project would conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities.

A project is considered to be consistent with a policy if it would generally be in conformance and would not obstruct the implementation of that policy or preclude future improvements. If a conflict is identified, mitigation measures would focus on improving access, comfort, and safety for all mobility types, especially pedestrians, bicyclists, and transit riders.

## PLANS, PROGRAMS, ORDINANCES, AND POLICIES

Table 2.1-1 of the TAG identifies the City plans, policies, programs, ordinances, and standards relevant in determining project consistency. Attachment D of the TAG, Plans, Policies, and Programs Consistency Worksheet, provides a structured approach to evaluate whether a project conflicts with the City's plans, programs, ordinances, or policies and streamlines the review by highlighting the most relevant plans, policies, and programs for assessing potential impacts to the City's transportation system. The Plans, Policies, and Programs Consistency Worksheet was completed for the Project and is provided in Appendix C.

As stated in Section 2.1.4 of the TAG, a project that generally conforms with and does not obstruct the City's development policies and standards is considered to be consistent. As summarized below, the Project is consistent with the City documents listed in Table 2.1-1 of the TAG; therefore, the Project would not result in a significant impact under Threshold T-1. Detailed discussion of the Project's consistency with the applicable plans, programs, ordinances, or policies is provided below.

## Mobility Plan

The Mobility Plan combines "complete street" principles with the following five goals that define the City's mobility priorities:

- Safety First: Design and operate streets in a way that enables safe access for all users, regardless of age, ability, or transportation mode of choice.
- World Class Infrastructure: A well-maintained and connected network of streets, paths, bikeways, trails, and more provides Angelenos with the optimum variety of mode choices.
- Access for All Angelenos: A fair and equitable system must be accessible to all and must pay particularly close attention to the most vulnerable users.
- Collaboration, Communication, and Informed Choices: The impact of new technologies on our day-to-day mobility demands will continue to become increasingly important to the future. The amount of information made available by new technologies must be managed responsibly in the future.
- Clean Environments and Healthy Communities: Active transportation modes such as bicycling and walking can significantly improve personal fitness and create new opportunities for social interaction, while lessening impacts on the environment.

A detailed analysis of the Project's consistency with the Mobility Plan is provided in Table 6. As detailed in Chapter 2, the Mobility Plan identifies key corridors within the Study Area as components of various "mobility-enhanced networks." Though no specific improvements have been identified adjacent to the Project Site or within the Study Area and, thus, there is no schedule for implementation, the mobility-enhanced networks represent a focus on improving a particular aspect of urban mobility, including transit, neighborhood connectivity, bicycles, pedestrians, and vehicles. The Project would be designed with the mobility-enhanced networks as a top priority.

Alameda Street is a designated Avenue I and $8^{\text {th }}$ Street, Lemon Street, Hunter Street, and Lawrence Street are designated as Collector Streets in the Mobility Plan. The Project would provide adequate dedication and improvements to meet the Mobility Plan standards where required and seek Waivers of Dedication and Improvement where Mobility Plan standards cannot be satisfied.

The full access driveway on $8^{\text {th }}$ Street and the truck outbound-only driveway on Lemon Street would utilize existing curb cuts. The outbound-only driveways on $8^{\text {th }}$ Street and Hunter Street and the truck inbound-only driveway would require the installation of new curb cuts. The driveways
would be improved and designed in accordance with the standards set forth in Manual of Policies and Procedures (LADOT, December 2008). Appropriate access and safety measures would be placed to limit potential queue spillover into the public ROW that could interrupt pedestrian, bicycle, and vehicular flow. In addition, the driveways anticipated to provide truck access would be designed to adequately accommodate truck turning maneuvers without encroachment into the public ROW.

Separate pedestrian and bicycle access to the Project Site would be provided via entrances along $8^{\text {th }}$ Street. In addition, the Project would also be designed in compliance with ADA standards to provide accessibility for all patrons of the Project.

As further detailed in Section 5E, the Project would provide off-street parking to satisfy the LAMC requirements. Secured bicycle parking facilities, as well as showers and amenities, within the Project Site would also be provided. These measures would promote active transportation modes such as biking and walking, thereby reducing the Project VMT per employee compared to the average for the area, as demonstrated in Section 4B. Further, the Project does not propose modifying, removing, or otherwise affecting existing bicycle infrastructure, and the Project driveways are not proposed along a street with an existing or proposed bicycle facility.

Thus, the Project would not conflict with the goals of the Mobility Plan.

## Plan for a Healthy Los Angeles

Plan for a Healthy Los Angeles: A Health and Wellness Element of the General Plan (LADCP, March 2015) (Plan for a Healthy Los Angeles) contains guidelines for the City to follow to enhance the City's position as a regional leader in health and equity, encourage healthy design and equitable access, and increase awareness of equity and environmental issues.

A detailed analysis of the Project's consistency with Plan for a Healthy Los Angeles is provided in Table 7. The Project prioritizes safety and access for all individuals utilizing the Project Site by complying with all ADA requirements and providing direct connections to pedestrian amenities with separate pedestrian and vehicle accesses and active street frontages. Further, the Project supports healthy lifestyles and encourages alternative modes of transport by locating jobs near
transit (Metro bus lines), providing bicycle amenities, and enhancing the pedestrian environment with shade trees and landscaping. The Project is also estimated to generate lower VMT per capita for employees than the areawide average, as demonstrated in Section 4B, which reduces GHG emissions.

Thus, the Project would be consistent with the goals of Plan for a Healthy Los Angeles.

## Land Use Element of the General Plan

The City General Plan's Land Use Element contains 35 Community Plans that establish specific goals and strategies for the various neighborhoods across Los Angeles. This Project falls within the boundaries of the Central City Community Plan (Community Plan).

A detailed analysis of the Project's consistency with the Community Plan is provided in Table 8. The Project would provide employment opportunities in an area characterized by industrial and warehouse uses that are located in close proximity to various transit options, including Metro bus lines. The Project's proximity to transit provides alternative modes of transportation for employees and visitors to travel to and from the Project Site and maximizes the development opportunities of the transit system. Thus, the Project promotes and encourages development consistent with the goals and objectives of the Community Plan.

## LAMC Section 12.21.A. 16 (Bicycle Parking)

LAMC Section 12.21.A. 16 details the bicycle parking requirements for new developments. As further detailed in Section 5E, the Project would provide short-term and long-term spaces to satisfy the LAMC requirements for on-site bicycle parking supply.

## LAMC Section 12.26J (TDM Ordinance)

LAMC Section 12.26J, the TDM Ordinance (1993) establishes TDM requirements for nonresidential projects, in addition to non-residential components of the mixed-use projects, in excess
of 25,000 sf. The Project would incorporate TDM measures to encourage use of alternative transportation modes by providing on-site bicycle parking facilities and amenities, providing connection to off-site pedestrian facilities, and concentrating development in proximity to transit opportunities, consistent with the requirements set forth in the TDM Ordinance. In addition, the Project would implement parking management measures such as parking gate control technology to facilitate ingress and egress at the driveways to limit queue spillover and minimize traffic and parking-related impacts on the surrounding street system to the extent feasible.

## Vision Zero Corridor Plans

Vision Zero implements projects that are designed to increase safety on the most vulnerable City streets. The City has identified a number of streets as part of the HIN where City projects will be targeted. As previously detailed, the Project Site is located along Olympic Boulevard, which is identified as part of the HIN, but the Project does not propose vehicle access to Olympic Boulevard. The Project driveways and improvements to the pedestrian environment would not preclude or interfere with any Vision Zero safety improvements along Olympic Boulevard by the City. Thus, the Project would not conflict with Vision Zero.

## Streetscape Plans

There are no streetscape plans adjacent to the Project Site and, therefore, streetscape plans do not apply to the Project.

## Citywide Design Guidelines

The Pedestrian-First Design approach of the Citywide Design Guidelines (LADCP Urban Design Studio, October 2019) identifies design strategies that "create human-scale spaces in response to how people actually engage with their surroundings, by prioritizing active street frontages, clear paths of pedestrian travel, legible wayfinding, and enhanced connectivity. Pedestrian-First Design promotes healthy living, increases economic activity at the street level, enables social interaction, creates equitable and accessible public spaces, and improves public safety."

The Pedestrian-First Design guidelines are as follows:

- Guideline 1: Promote a safe, comfortable, and accessible pedestrian experience for all.
- Guideline 2: Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.
- Guideline 3: Design projects to actively engage with streets and public space and maintain human scale.

A detailed analysis of the Project's consistency with the guidelines of the Pedestrian-First Design approach is provided in Table 9.

The Project design includes accessible sidewalks, pedestrian amenities, and well-designed vehicular access driveways in accordance with the City's design guidelines. The Project would provide street trees uniformly within the sidewalk to provide overhead shade, as well as a more comfortable environment for pedestrians. Further, the Project would provide separate pedestrian entrances to ensure safe pedestrian access separate from vehicular activity. Thus, the Project would be consistent with the Pedestrian-First Design goal of Citywide Design Guidelines.

## CUMULATIVE ANALYSIS

In addition to potential Project-specific impacts, the TAG requires that the Project be reviewed in combination with nearby Related Projects to determine if the potential exists for a cumulatively significant impact resulting from inconsistency with a particular program, plan, policy, or ordinance. In accordance with the TAG, the cumulative analysis must include consideration of any Related Projects within 0.50 miles of the Project Site and any transportation system improvements in the vicinity. Table 4 identifies Related Projects within a 0.50 -mile radius of the Project Site. Each of the Related Projects considered in this cumulative analysis of consistency with programs, plans, policies, and ordinances would be separately reviewed, including a check for their consistency with applicable policies, prior to approval by the City. Therefore, the Project, together with the Related Projects identified in Table 4, would neither create inconsistencies nor result in cumulative impacts with respect to the identified programs, plans, policies, and ordinances.

## TABLE 6

PROJECT CONSISTENCY WITH MOBILITY PLAN 2035

| Objective, Policy, Program, or Plan [a] | Analysis of Project Consistency |
| :---: | :---: |
| Chapter 1-Safety First |  |
| Policy 1.1 Roadway User Vulnerability Design, plan, and operate streets to prioritize the safety of the most vulnerable roadway user. | Consistent. Alameda Street is a designated Avenue I and 8th Street, Lemon Street, Hunter Street, and Lawrence Street are designated as Collector Streets in the Mobility Plan. The full access driveway on 8th Street and the truck outbound-only driveway on Lemon Street would utilize existing curb cuts. The outbound-only driveways on 8th Street and Hunter Street and the truck inbound-only driveway would require the installation of new curb cuts. Separate pedestrian and bicycle access to the Project Site would be provided via entrances along 8th Street. The driveways would be designed according to City standards and the Project would be designed in compliance with ADA standards. Off-street parking and bicycle parking would be provided per City code requirements as well. |
| Policy 1.6 Multi-Modal Detour Facilities Design detour facilities to provide safe passage for all modes of travel. | Consistent. Construction activities would be maintained on-site. Any impedements to the public right-of-way would be addressed with implementation of a Construction Management Plan. |
| Chapter 2 - World Class Infrastructure |  |
| Policy 2.3 Pedestrian Infrastructure <br> Recognize walking as a component of every trip, and ensure high-quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment. | Consistent. Alameda Street north of Bay Street, 7th Street west of Mill Street, and Central Avenue within the Study Area are identified as part of the Mobility Plan's Pedestrian Enhanced District. The Project does not propose repurposing existing curb space and does not propose narrowing or shifting existing sidewalk placement or paving, narrowing, shifting, or removing an existing parkway. The Project is also proposing pedestrian improvements, such as landscaping, along the Project frontage on 8th Street, Alameda Street, and Hunter Street to meet the longterm mobility needs identified in the Mobility Plan. |
| Policy 2.4 Neighborhood Enhanced Network <br> Provide a slow speed network of locally serving streets. | Consistent. No streets adjacent to the Project are identified as part of the Mobility Plan's Neighborhood Enhanced Network. The Project is proposing pedestrian improvements along the Project frontage to meet the long-term mobility needs identified in the Mobility Plan. |
| Policy 2.5 Transit Network <br> Improve the performance and reliability of existing and future bus service. | Consistent. Olympic Boulevard adjacent to the Project Site is identified as part of the Mobility Plan's Transit Enhanced Network. The Project would encourage more transit usage by developing a studio/office project with convenient access to bus transit services. |
| Policy 2.6 Bicycle Networks <br> Provide safe, convenient, and comfortable local and regional bicycling facilities for people of all types and abilities. (includes scooters, skateboards, rollerblades, etc.) | Consistent. The Project does not propose modifying, removing, or otherwise affecting existing bicycle infrastructure, and the Project driveways are not proposed along a street with a bicycle facility. Bicycle parking would also be provided on-site in accordance with LAMC requirements. |

Notes:
[a] Objectives, Policies, Programs, or Plans based on information provided in Mobility Plan 2035: An Element of the General Plan (Los Angeles Department of City Planning, January 2016).

TABLE 6 (CONT.)
PROJECT CONSISTENCY WITH MOBILITY PLAN 2035

| Objective, Policy, Program, or Plan [a] | Analysis of Project Consistency |
| :---: | :---: |
| Policy 2.10 Loading Areas <br> Facilitate the provision of adequate on and offstreet loading areas. | Consistent. All proposed delivery and ride share drop-off/loading zones would be provided onsite. The loading zones would be managed to facilitate safe loading operations and to limit vehicle queue spillovers into the travel lanes. |
| Chapter 3-Access for All Angelenos |  |
| Policy 3.1 Access for All <br> Recognize all modes of travel, including pedestrian, bicycle, transit, and vehicular modes - including goods movement - as integral components of the City's transportation system. | Consistent. The Project encourages multi-modal transportation alternatives and access for all travel modes to and from the Project Site. The Project provides separate pedestrian and bicycle entrances and bicycle infrastructure (short- and long-term bicycle parking) to encourage walking and bicycling. The Project encourages transit usage by developing a studio/office project located in proximity to transit. |
| Policy 3.2 People with Disabilities <br> Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way. | Consistent. The Project's vehicular and pedestrian entrances would be designed in accordance with LADOT standards and would comply with Americans with Disabilities Act (ADA) requirements. The Project design would also be in compliance with all ADA requirements and would provide direct connections to pedestrian amenities at adjacent intersections. |
| Policy 3.8 Bicycle Parking <br> Provide bicyclists with convenient, secure, and well-maintained bicycle parking facilities. | Consistent. The Project provides infrastructure and services to encourage bicycling for employees and visitors to the Project Site. |
| Chapter 4 - Collaboration, Communication, \& Informed Choices |  |
| Policy 4.5 Improved Communication <br> Facilitate communications between citizens and the City in reporting on and receiving responses to non-emergency street improvements. | Consistent. As part of the Project's Construction Management Plan, advance notification to the adjacent property owners and occupants of upcoming construction activities, including durations and daily hours of construction, would be provided. |
| Policy 4.8 Transportation Demand <br> Management Strategies <br> Encourage greater utilization of Transportation Demand Management (TDM) strategies to reduce dependence on single-occupancy vehicles. | Consistent. The Project incorporates several design features, which include TDM measures to reduce the number of single occupancy vehicle trips to the Project Site, including bike parking per LAMC requirements, including short-term and long-term parking facilities and bicycle amenities. |

Notes:
[a] Objectives, Policies, Programs, or Plans based on information provided in Mobility Plan 2035: An Element of the General Plan (Los Angeles Department of City Planning, January 2016)

## ABLE 6 (CONT.)

PROJECT CONSISTENCY WITH MOBILITY PLAN 2035

| Objective, Policy, Program, or Plan [a] | Analysis of Project Consistency |
| :--- | :--- |
| Policy 4.13 Parking and Land Use <br> Management <br> Balance on-street and off-street parking supply <br> with other transportation and land use <br> objectives. <br> Consistent. The Project would provide sufficient off-street parking to accommodate Project <br> parking demand. No on-street parking would be provided adjacent to the Project. <br> Chapter 5 - Clean Environments \& Healthy Communities <br> Policy 5.1 Sustainable Transportation <br> transportation system that promotes <br> environmental and public health. <br> Consistent. As part of the Project, secured bicycle parking facilities and pedestrian connections <br> within the Project Site and connecting to off-site pedestrian facilities would be provided. This <br> would promote active transportation modes such as biking and walking. Additionally, the Project <br> is located adjacent to several Metro bus stops, providing employees and visitors to the Project <br> with public transportation alternatives. <br> Policy 5.2 Vehicle Miles Traveled (VMT) <br> Support ways to reduce vehicle miles traveled <br> (VMT) per capita. <br> Consistent. The Project is estimated to generate lower VMT per employee for employees than <br> the average for the area, as demonstrated in Section 4B. Additionally, the Project incorporates <br> several TDM measures to reduce the number of single occupancy vehicle trips to the Project <br> Site. |  |

Notes:
[a] Objectives, Policies, Programs, or Plans based on information provided in Mobility Plan 2035: An Element of the General Plan (Los Angeles Department of City Planning, January 2016).

## TABLE 7

PROJECT CONSISTENCY WITH PLAN FOR A HEALTHY LOS ANGELES

| Objective, Policy, Program, or Plan [a] | Analysis of Project Consistency |
| :---: | :---: |
| Chapter 1 - Los Angeles, a Leader in Health and Equity |  |
| Policy 1.5 Plan for Health <br> Improve Angelenos' health and well-being by incorporating a health perspective into land use, design, policy, and zoning decisions through existing tools, practices, and programs. | Consistent. The Project prioritizes safety and access for all individuals utilizing the site by complying with all ADA requirements and providing direct connections to pedestrian amenities at adjacent intersections. Further, the Project supports healthy lifestyles by locating jobs adjacent to transit (Metro Local Bus Lines), providing bicycle parking, and enhancing the pedestrian environment by providing landscape elements for a more comfortable environment for pedestrians. Further, the Project supports healthy lifestyles by locating jobs near transit, providing bicycle parking, and enhancing the pedestrian environment with improved pedestrian pathways. |
| Chapter 2-A City Built for Health |  |
| Policy 2.8 Basic Amenities <br> Promote increased access to basic amenities, which include public restrooms and free drinking water in public spaces, to support active living and access to health-promoting resources. | Consistent. The Project would provide open space to support active living. |
| Chapter 5-An Environment Where Life Thrives |  |
| Policy 5.7 Land Use Planning for Public Health and GHG Emission Reduction <br> Promote land use policies that reduce per capita greenhouse gas emissions, result in improved air quality and decreased air pollution, especially for children, seniors and others susceptible to respiratory diseases. | Consistent. The Project is estimated to generate lower VMT per capita for residents than the average for the area, as demonstrated in Section 4B. Additionally, the Project incorporates several TDM measures to reduce the number of single occupancy vehicle trips to the Project Site, including short-term and long-term bike parking per LAMC. VMT directly contributes to GHG emissions, so a reduced VMT per capita also reduces GHG per capita. |

[^0]
## TABLE 8

## PROJECT CONSISTENCY WITH CENTRAL CITY COMMUNITY PLAN

| Objective, Policy, Program, or Plan [a] | Analysis of Project Consistency |
| :--- | :--- |
| Objective 4-4: To encourage traditional and non-traditional sources of <br> open space by recognizing and capitalizing on linkages with transit, <br> parking, historic resources, cultural facilities, and social services <br> programs. | Consistent. The Project would improve the pedestrian environment within <br> and around the Project Site by improving the adjacent sidewalks with <br> enhanced landscaping and street trees. The Project would also incorporate <br> open space throughout the Project Site to connect the various buildings of <br> the Project. These open spaces would be open to Project employees and <br> visitors. |
| Objective 11-6: To accommodate pedestrian open space and usage in <br> Central City. | Consistent. The Project would provide a pedestrian-friendly environment <br> with improved sidewalks along the Project frontage that would be <br> landscaped with street trees. The open spaces would be open to Project <br> employees and visitors. |
| Objective 11-7: To provide sufficient parking to satisfy short-term <br> retail/business users and visitors but still find ways to encourage long-term <br> office commuters to use alternate modes of access. | Consistent. Vehicular parking would be provided on-site to serve the <br> various uses of the Project. The Project would also include bicycle parking <br> facilities, as well as pedestrian network improvements, both connecting <br> within the Project Site and connecting to off-site pedestrian facilities that <br> would encourage alternate modes of access. |

## Notes:

[a] Objectives, Policies, Programs, or Plans based on information provided in the Central City Community Plan, Los Angeles
Department of City Planning, 2003.

TABLE 9
PROJECT CONSISTENCY WITH CITYWIDE DESIGN GUIDELINES

| Objective, Policy, Program, or Plan [a] | Analysis of Project Consistency |
| :--- | :--- |
| Pedestrian-First Design | Consistent. The Project design includes accessible sidewalks, pedestrian amenities, and <br> well-designed vehicular access driveways in accordance with the City's design <br> considerations. The Project would provide street trees within the sidewalk to provide for a <br> more comfortable pedestrian environment. Further, the orientation of the Project <br> pedestrian entrances ensures that the Project actively engages with the street activity and <br> its surrounding uses. |
| Guideline 1: Promote a safe, comfortable, and |  |
| Design projects to be safe and accesible and contribute <br> to a better public right-of-way for people of all ages, <br> genders, and abilities, especially the most vulnerable - <br> children, seniors, and people with disabilities. |  |
| Guideline 2: Carefully incorporate vehicular access |  |
| such that it does not degrade the pedestrian <br> experience | Design to avoid pedestrian and vehiular conflicts and to <br> create an inviting and comfortable public right-of-way. A |
| pleasant and welcoming public realm reinforces <br> walkability and improves the quality of life for users. |  |
| Guideline 3: Design projects to actively engage with |  |
| streets and public space and maintain human scale |  |$\quad$| New projects should be designed to contribute to a |
| :--- |
| vibrant and attractive public realm that promotes a |
| sense of civic pride. Better connections within the built |
| environment contribute to a livable and accessible city |
| and a healthier public realm. |

[a] Objectives, Policies, Programs, or Plans based on information provided in the Citywide Design Guidelines (Los Angeles Department of City Planning, 2019).

## Section 4B: Threshold T-2.1 Causing Substantial VMT Analysis

Threshold T-2.1 in the TAG analyzes whether a project causes substantial VMT and is applied generally to land use projects. Specifically, Threshold T-2.1 inquires whether the project would conflict with or be inconsistent with CEQA Guidelines Section 15064.3, subdivision (b)(1). This subdivision states that (for land use projects) "vehicle miles travelled exceeding an applicable threshold of significance may indicate a significant impact." This subdivision also states that a lead agency has discretion to choose the most appropriate method to evaluate the project's VMT.

As the Lead Agency for this Project, the City uses the analytical methods established by LADOT to determine impacts. Section 2.2.3 of the TAG states that a residential project would result in a potential VMT impact if it would generate household VMT per capita exceeding 15\% below the existing average household VMT per capita for the Area Planning Commission (APC) area in which a project is located. Similarly, a commercial project would result in a potential VMT impact if it would generate work VMT per employee exceeding $15 \%$ below the existing average work VMT per employee for the APC area in which the project is located.

The VMT analysis presented below was conducted in accordance with the TAG, which satisfies State requirements under SB 743.

## VMT METHODOLOGY

The following reviews the methodology for calculating vehicle trips and VMT using City of Los Angeles VMT Calculator Version 1.3 (LADOT and LADCP, July 2020) (VMT Calculator), as detailed in City of Los Angeles VMT Calculator Documentation (LADOT and LADCP, May 2020). LADOT developed the VMT Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for developments within City limits. The daily household VMT per capita and work VMT per employee are based on the following types of one-way trips:

- Home-Based Work Production: resident-driven trips originating from a residential use to a workplace destination
- Home-Based Other Production: resident-driven trips originating from a residential use to a non-workplace destination (e.g., retail, restaurant, etc.)
- Home-Based Work Attraction: employee-driven trips to a workplace destination originating from a residential use

As detailed in City of Los Angeles VMT Calculator Documentation, the household VMT per capita threshold is calculated based on Home-Based Work Production and Home-Based Other Production trips, and the work VMT per employee threshold is calculated based on Home-Based Work Attraction trips, as the location and characteristics of residences and workplaces are often the main drivers of VMT, as detailed in Appendix 1 of Technical Advisory on Evaluating Transportation Impacts in CEQA (Governor's Office of Planning and Research, December 2018).

Table 2.2-1 of the TAG provides the following daily household VMT per capita and daily work VMT per employee impact thresholds for the APC areas:

| APC | Daily Household <br> VMT per Capita | Daily Work VMT <br> per Employee |
| :---: | :---: | :---: |
| Central | 6.0 | 7.6 |
| East LA | 7.2 | 12.7 |
| Harbor | 9.2 | 12.3 |
| North Valley | 9.2 | 15.0 |
| South LA | 6.0 | 11.6 |
| South Valley | 9.4 | 11.6 |
| West LA | 7.4 | 11.1 |

The Project Site is located in the Central APC area.

The VMT Calculator defines other types of trips generated by the Project, which include Non-Home-Based Other Production (trips to a non-residential destination originating from a nonresidential use at the Project Site), Home-Based Other Attraction (trips to a non-workplace destination at the Project Site originating from a residential use), and Non-Home-Based Other Attraction (trips to a non-residential destination at the Project Site originating from a non-
residential use). These trip types are not factored into the VMT per capita and VMT per employee thresholds, because these trip types are typically localized and are assumed to have a negligible effect on the VMT impact assessment. However, to ensure a conservative analysis for the Project, these trip types were factored into the calculation of total Project VMT for screening purposes when determining whether VMT analysis for the Project would be required.

## Travel Behavior Zone (TBZ)

The City developed TBZ categories to determine the magnitude of VMT and vehicle trip reductions that could be achieved through TDM strategies. As detailed in City of Los Angeles VMT Calculator Documentation, the development of the TBZs considered the population density, land use density, intersection density, and proximity to transit of each Census tract in the City and are categorized as follows:

1. Suburban (Zone 1): Very low-density primarily centered around single-family homes and minimally connected street network.
2. Suburban Center (Zone 2): Low-density developments with a mix of residential and commercial uses with larger blocks and lower intersection density.
3. Compact Infill (Zone 3): Higher density neighborhoods that include multi-story buildings and well-connected streets.
4. Urban (Zone 4): High-density neighborhoods characterized by multi-story buildings with a dense road network.

The VMT Calculator determines a project's TBZ based on the latitude and longitude of a project address. The Project Site is located in a Suburban Center (Zone 2) TBZ.

## Mixed-Use Development Methodology

As detailed in City of Los Angeles VMT Calculator Documentation, the VMT Calculator accounts for the interaction of land uses within a mixed-use development and considers the following sociodemographic, land use, and built environment factors for a project area:

- The project's jobs/housing balance
- Land use density of the project
- Transportation network connectivity
- Availability of and proximity to transit
- Proximity to retail and other destinations
- Vehicle ownership rates
- Household size


## Trip Lengths

The VMT Calculator estimates trip lengths based on information from the City's Travel Demand Forecasting (TDF) Model. The TDF Model considers the traffic analysis zones within 0.125 miles of where the project is located to determine the average trip length and trip type, which factor into the calculation of the project's VMT.

## Population and Employment Assumptions

As previously stated, the VMT thresholds identified in the TAG are based on household VMT per capita and work VMT per employee. Thus, the VMT Calculator contains population assumptions developed based on Census data for the City and employment assumptions derived from multiple data sources, including 2012 Developer Fee Justification Study (Los Angeles Unified School District, 2012), the San Diego Association of Governments' Activity Based Model, Trip Generation, $9^{\text {th }}$ Edition (Institute of Transportation Engineers, 2012), the United States Department of Energy, and other modeling resources. A summary of population and employment assumptions for various land uses is provided in Table 1 of City of Los Angeles VMT Calculator Documentation.

## TDM Measures

Additionally, the VMT Calculator measures the reduction in VMT resulting from a project's incorporation of TDM strategies as project design features or mitigation measures. The following seven categories of TDM strategies are included in the VMT Calculator:

1. Parking
2. Transit
3. Education and Encouragement
4. Commute Trip Reductions
5. Shared Mobility
6. Bicycle Infrastructure
7. Neighborhood Enhancement

TDM strategies within each of these categories have been empirically demonstrated to reduce trip-making or mode choice in such a way as to reduce VMT, as documented in Quantifying Greenhouse Gas Mitigation Measures (California Air Pollution Control Officers Association, 2010).

## PROJECT VMT ANALYSIS

The VMT Calculator was used to evaluate Project VMT for comparison to the VMT impact criteria. The Project proposes no residential units. Therefore, the Project would not generate any household VMT per capita and would not result in a significant household VMT impact.

## Office Equivalency Assumptions

The VMT Calculator was developed to estimate project-specific daily work VMT per employee for developments within City limits. Based on a review of relevant empirical and historical data, and in consultation with LADOT, it was determined that the daily trip generation characteristics and patterns of the Project's employee-based creative office and studio-related land uses were similar in scope and behavior to the characteristics of the general office land use in Trip Generation

Manual, $10^{\text {th }}$ Edition. As such, in order to evaluate the VMT generated by the Project's studiorelated land uses, which are not land use categories recognized within the VMT Calculator, an office floor area equivalency calculation was conducted based on a comparison of the daily trip generation estimates.

The empirical daily trip generation rates for the studio-related uses and the standard daily trip rates for the general office land use are detailed in Table 5. The results of the office equivalency calculation are detailed in Table 10A. As shown, the Project's proposed studio-related uses and office uses are equivalent to the daily trip generation estimates for 523,514 sf of general office use. Thus, upon completion, the Project's land uses would be similar in scope and behavior to 523,514 sf of general office use.

The VMT analysis results based on the Project's general office equivalency and the VMT Calculator are summarized in Table 10B. Detailed output from the VMT Calculator is provided in Appendix D.

## Project VMT

The Project includes several design features, which include measures to reduce the number of single occupancy vehicle trips to the Project Site. For the purposes of this analysis, the following TDM measures that are incorporated into the Project design were accounted for in the VMT evaluation:

- Bicycle parking supply per LAMC requirements, including short-term and long-term parking spaces
- Bicycle repair station and shower facilities

As noted in Section 4A and further detailed in Section 5B, the Project would include compliance with the requirements of the City's TDM ordinance and, therefore, a TDM program would be implemented as part of the Project, which would include the measures listed above, as well as additional measures. However, for the purposes of providing a more conservative analysis, no further VMT reductions were applied to account for the TDM strategies (e.g., education programs, incentive programs, transportation services, etc.) associated with the Project's TDM program. As
shown in Table 10B, the VMT Calculator estimates that the Project would generate 15,499 daily work VMT. Thus, the Project would generate an average work VMT per employee of 7.4, which falls below the significance thresholds for the Central APC (7.6 work VMT per employee). Therefore, no VMT-related mitigation measures would be required.

## CUMULATIVE ANALYSIS

Cumulative effects of development projects are determined based on their consistency with the air quality and GHG reduction goals of Connect SoCal - The 2020-2045 Regional Transportation Plan / Sustainable Communities Strategy (Southern California Association of Governments [SCAG], September 2020) (RTP/SCS) in terms of development location, density, and intensity. The RTP/SCS presents a long-term vision for the region's transportation system through Year 2045 and balances the region's future mobility and housing needs with economic, environmental, and public health goals. In addition, as detailed in the TAG, the RTP/SCS is the regional plan that demonstrates compliance with air quality conformity requirements and GHG reduction targets. As such, projects that are consistent with this plan in terms of development location, density, and intensity are part of the regional solution for meeting air pollution and GHG goals. Projects that are deemed to be consistent would have a less than significant cumulative impact on VMT. Thus, based on the conclusions above, the Project has a less than significant cumulative impact on VMT.

Moreover, as detailed above, the Project is designed to further reduce single occupancy trips to the Project Site because it encourages alternative transportation by providing bicycle parking facilities and amenities and because it locates employment in proximity to local transit. Thus, the Project encourages the use of a variety of transportation options in place of single-occupant vehicle use and is consistent with the RTP/SCS goal of maximizing mobility and accessibility in the region. The Project would also contribute to the productivity and use of the regional transportation system by providing employment near transit and would encourage active multimodal transportation by providing new bicycle parking and facilities, consistent with RTP/SCS goals. Therefore, the Project would not result in a cumulative VMT impact under Threshold T-2.1, and no further evaluation or mitigation measures would be required.

VMT TRIP EQUIVALENCY DEVELOPMENT


Notes
[a] Source: Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017, unless as noted
[b] Rate based on empirical rate from Transportation Study for the NBC Universal Evolution Plan Environmental Impact Report, Gibson Transportation Consulting, Inc. and Raju Associates, Inc., March 2010
[d] The Project Site is located within walking distance of a Metro bus stop, therefore a $5 \%$ transit reduction is applied to account for transit usage and walking visitor arrivals from the adjacent commercial developments.
[e] Amenities and supporting uses for the Project (i.e., commissary, mechanical rooms, gym/spa/salon) were assumed to be ancillary to the studio, production, and office uses, and therefore, were not
considered for trip generation purposes

TABLE 10B
VMT ANALYSIS SUMMARY

| Project Information |  |
| :--- | :---: |
| Land Use [a] | Size |
| Office \| General Office | 523,514 sf |
| Project Analysis [b] |  |
| Project Area Planning Commission | Central |
| Travel Behavior Zone [c] | Suburban Center |
| Maximum Allowable VMT Reduction | $20 \%$ |
| VMT Analysis [d] |  |
| Daily Vehicle Trips | 3,466 |
| Daily VMT | 27,418 |
| Daily Work VMT | 15,499 |
| Work VMT per Employee [e] | 7.4 |
| Impact Threshold | 7.6 |
| Significant Impact | NO |

## Notes:

[a] In order to evaluate the VMT generated by the Project's studio-related land uses, which are not recognized within the VMT Calculator, an office floor area equivalency calculation was conducted based on a comparison of the daily trip generation estimates. As shown in Table 10A, the Project's proposed studio-related uses and office uses are equivalent to the daily trip generation estimates for 523,514 sf of general office use.
[b] Project Analysis based on the City of Los Angeles VMT Calculator Version 1.3
(May 2020).
[c] A "Suburban Center" TBZ is characterized in City of Los Angeles VMT Calculator Documentation (LADOT and DCP, May 2020) as low-density development primarily centered around single-family homes and minimally connected street network.
[d] The following Project design features were accounted for in the VMT evaluation:

- Include bike parking per LAMC, including short-term and long-term parking facilities
- Provision of bicycle repair station and shower facilities
[e] Based on home-based work attraction trips only (see Appendix D, Report 4).


## Section 4C: Threshold T-2.2 Substantially Inducing Additional Automobile Travel Analysis

Threshold T-2.2 applies to transportation projects. The TAG explains that transportation projects that increase vehicular capacity can lead to additional travel on the roadway network, which can include induced vehicle travel due to factors such as increased speeds and induced growth. The TAG also provides screening criteria and states that:
"[i]f the answer is no to the following question, further analysis will not be required for Threshold T-2.2, and a no impact determination can be made for that threshold:
"T-2.2: Would the project include the addition of through traffic lanes on existing or new highways, including general purpose lanes, high-occupancy vehicle (HOV) lanes, peak period lanes, auxiliary lanes, and lanes through grade-separated interchanges (except managed lanes, transit lanes, and auxiliary lanes of less than one mile in length designed to improve roadway safety)?"

The Project does not include additional through traffic lanes on existing or new highways, general purpose lanes, HOV lanes, peak period lanes, auxiliary lanes, or lanes through grade-separated interchanges. Accordingly, neither the Project nor any improvements associated with it are considered a transportation project. Therefore, Threshold T-2.2 does not apply to the Project and no further evaluation is required.

## Section 4D: Threshold T-3 <br> Substantially Increasing Hazards Due to a Geometric Design Feature or Incompatible Use Analysis

Impacts regarding the potential increase of hazards due to a geometric design feature generally relate to the design of access points to and from a project site, and may include safety, operational, or capacity impacts. Impacts can be related to vehicle/vehicle, vehicle/bicycle, or vehicle/pedestrian conflicts as well as to operational delays caused by vehicles slowing and/or queuing to access a project site. These conflicts may be created by the driveway configuration or through the placement of project driveway(s) in areas of inadequate visibility, adjacent to bicycle or pedestrian facilities, or too close to busy or congested intersections.

Further evaluation is required for projects that that require a discretionary action and (1) propose new driveways or introduce new vehicle access to the property from public ROW or (2) propose any voluntary or required modifications to the public ROW (i.e., street dedications, reconfigurations of curb line, etc.) The Project requires further evaluation based on these screening criteria. The threshold for determining impacts is whether the Project would substantially increase hazards due to a geometric design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment).

A review of Project access points, internal circulation, and parking access was performed to determine if the Project would substantially increase hazards due to geometric design features, including safety, operational, or capacity impacts. This analysis considered the following factors: (a) the relative amount of pedestrian activity at Project access points; (b) design features/physical configurations that affect the visibility of pedestrians and bicyclists to drivers entering and exiting the site, and the visibility of cars to pedestrians and bicyclists; (c) the type of bicycle facilities the Project driveway(s) crosses and the relative level of utilization; (d) the physical conditions of the site and surrounding area, such as curves, slopes, walks, landscaping or other barriers, that could result in vehicle/pedestrian, vehicle/bicycle, or vehicle/vehicle impacts; (e) the Project location, or Project-related changes to the public ROW, relative to proximity to the HIN or a Safe Routes to School (SRTS) program area; (f) any other conditions, including the approximate location of
incompatible uses that would substantially increase a transportation hazard. These factors are addressed below.

## PROJECT ACCESS REVIEW

## Driveway Design Features

As described in Chapter 1, primary vehicular access to the Project Site would be provided via driveways along $8^{\text {th }}$ Street, Lemon Street, and Hunter Street, which are all designated Collector Streets. The main gate driveway, which provides full access to the Project Site, and the outboundonly driveway, which provides access from the parking structure, would be located on $8^{\text {th }}$ Street. Two additional secondary outbound-only driveways would be located on Hunter Street. Separate truck-only inbound and outbound driveways are proposed on Lemon Street.

All driveways would be designed according to LADOT standards and reviewed by the City Bureau of Engineering during site plan review.

The main gate driveway along $8^{\text {th }}$ Street and the truck-only outbound driveway along Lemon Street would improve existing curb cuts to meet City standards and Project needs. The truck-only inbound driveway along Lemon Street, as well as the outbound-only driveways along $8^{\text {th }}$ Street and Hunter Street, would require the installation of new curb cuts. All driveways that provide truck access would be designed to adequately accommodate truck turning maneuvers without encroachment into the public ROW. The driveways and access control systems would be designed, placed, and configured to limit vehicle queues and bicycle/pedestrian-vehicle conflicts. In addition, minimal pedestrian and bicycle traffic around the Project perimeter is anticipated. Thus, the Project's driveway plans would not substantially increase vehicle-vehicle conflicts along $8^{\text {th }}$ Street, Lemon Street, or Hunter Street, and based on the site plan review, would not present geometric design hazards as it relates to traffic movement.

## Pedestrian and Bicycle Activity

The Project would include landscaped setbacks along the entire Project perimeter to create a walkable and attractive pedestrian environment. In addition, separated pedestrian and bicycle access would be provided at the main gate along $8^{\text {th }}$ Street. None of the Project driveways would cross any existing bicycle lanes or routes, as detailed in Figure 6. The Project driveways would be designed and placed to provide adequate sight distance and pedestrian refuge areas to limit potential vehicular-bicycle or vehicular-pedestrian conflicts. Based on the site plan review and design assumptions, the Project does not present geometric design hazards related to mobility or pedestrian accessibility.

## Physical Terrain

The proposed driveways to the Project Site would not be located along curved sections of the roadways that may limit sight distance. On-street parking adjacent to the driveways would continue to be prohibited, thus maximizing sight distance at the Project driveways. The Project frontages would be designed with landscaped setbacks to allow better visibility between vehicles accessing the driveways and pedestrians/bicyclists.

The Project would provide landscaped elements and street trees for shade along the Project perimeter and within the Project Site to create a walkable and attractive pedestrian environment. Pedestrian sidewalks would be improved to meet City standards and to provide continuous pedestrian connections along the Project frontage.

## Project Location

The Project Site does not propose any new driveways or curb cuts along any streets identified as part of the HIN. Additionally, the SRTS map does not identify any infrastructure improvement projects within the Study Area.

As previously detailed, the Project would require the installation of new curb cuts along $8^{\text {th }}$ Street, Lemon Street, and Hunter Street. The driveways would be designed in accordance with City
design guidelines. The Project would be consistent with the designated driveway and roadway width requirements as indicated in the Mobility Plan, and the Project would not preclude future roadway improvements proposed in the Mobility Plan.

## Incompatible Uses

None of the Project design elements that are adjacent to the neighboring uses are considered incompatible. There are no unusual or new obstacles that would be considered hazardous to motorized vehicles, non-motorized vehicles, or pedestrians.

## Summary

Based on the site plan review and design assumptions, the Project does not present any geometric design hazards related to mobility or pedestrian accessibility.

## CUMULATIVE ANALYSIS

None of the Related Projects identified in Table 4 provides access along the same block as the Project. Thus, the Project and Related Projects would not result in a cumulative impact under Threshold T-3.

## Section 4E

Freeway Safety Analysis


#### Abstract

LADOT has issued Freeway Guidance identifying City requirements for a CEQA safety analysis of Caltrans freeway off-ramp facilities as part of a transportation assessment.


## ANALYSIS METHODOLOGY

The Freeway Guidance relates to the identification of potential safety impacts at freeway offramps as a result of increased traffic from development projects. It provides a methodology and significance criteria for assessing whether additional vehicle queueing at off-ramps could result in a safety impact due to speed differentials between the mainline freeway lanes and the queued vehicles at the off-ramp.

Based on the Freeway Guidance, a transportation assessment for a development project must include analysis of any freeway off-ramp where the project adds 25 or more peak hour trips. A project would result in a significant impact at such a ramp if each of the following three criteria were met:

1. Under a scenario analyzing future conditions upon project buildout, with project traffic included, the off-ramp queue would extend to the mainline freeway lanes ${ }^{1}$.
2. A project would contribute at least two vehicle lengths ( 50 feet, assuming 25 feet per vehicle) to the queue.
3. The average speed of mainline freeway traffic adjacent to the off-ramp during the analyzed peak hour(s) is greater than 30 mph .

Should a significant impact be identified, mitigation measures to be considered include TDM measures to reduce a project's trip generation, investments in active transportation or transit system infrastructure to reduce a project's trip generation, changes to the traffic signal timing or

[^1]lane assignments at the ramp intersection, or physical changes to the off-ramp. Any physical change to the ramp would have to improve safety, not induce greater VMT, and not result in secondary environmental impacts.

## ANALYSIS RESULTS

Based on the Project's trip generation estimates and traffic distribution pattern detailed previously in Chapter 3, the Project would add 28 morning and 19 afternoon peak hour trips to the l-10 Westbound Off-Ramp to Enterprise Street.

In accordance with the Freeway Guidance, the $95^{\text {th }}$ percentile ramp queue was calculated using the Highway Capacity Manual, 6th Edition (Transportation Research Board, 2016) (HCM) methodology. Conditions were analyzed both with and without Project traffic under future cumulative conditions for Year 2026, the anticipated Project buildout, and included ambient growth and traffic from other Related Projects. The summary of queue lengths and off-ramp storage length, along with the analysis worksheets, are provided in Appendix E.

As shown in Table E-1, under Future with Project Conditions, although the Project would add more than 50 feet to the off-ramp queue during both the morning and afternoon peak hours, the queues would not exceed the ramp storage length during either peak hour. Thus, the Project would not result in a significant freeway safety impact and no mitigation is required.

## Chapter 5

## Non-CEQA Transportation Analysis

Section 3 of the TAG provides guidance for preparing additional transportation analyses that are not required to determine the CEQA impacts of the Project because VMT is the legally applicable methodology for analyzing traffic, circulation, and transportation impacts. This chapter summarizes the non-CEQA transportation analysis of the Project. It includes sections related to the Project traffic, proposed access provisions, safety, and circulation operations of the Project, and the adjacent pedestrian, bicycle, and transit facilities. This chapter also evaluates the Project's operational conditions, parking supply and requirements, and effects due to Project construction.

Per Section 3.1 of the TAG, any deficiencies identified based on the non-CEQA transportation analysis is "not intended to be interpreted as thresholds of significance, or significance criteria for purposes of CEQA review unless otherwise specifically identified in Section 2." Section 3 of the TAG identifies the following four non-CEQA transportation analyses for reviewing potential transportation deficiencies that may result from a development project:

- Pedestrian, Bicycle, and Transit Access Assessment
- Project Access, Safety, and Circulation Evaluation
- Residential Street Cut-Through Analysis
- Construction Analysis

The four non-CEQA transportation analyses were reviewed in detail in Sections 5A-5D. In addition, a review of the proposed parking and the City's parking requirement for the Project is provided in Section 5E.

## Section 5A

## Pedestrian, Bicycle, and Transit Assessment

This section assesses the Project's potential effect on pedestrian, bicycle, and transit facilities in the vicinity of the Project Site.

Factors to consider when assessing a project's potential effect on pedestrian, bicycle, and transit facilities, include the following:

- Would the project directly or indirectly result in a permanent removal or modification that would lead to the degradation of pedestrian, bicycle, or transit facilities?
- Would a project intensify use of existing pedestrian, bicycle, or transit facilities?


## EXISTING FACILITIES

## Pedestrians and Bicycles

Adjacent to the Project Site, 10-foot wide sidewalks are provided along $8^{\text {th }}$ Street and Alameda Street and 11 -foot wide sidewalks are provided along Hunter Street. Curb ramps for ADA accessibility are provided at the northwest and southwest corners of Alameda Street \& Hunter Street as well as the northeast and northwest corners of Lawrence Street \& Olympic Boulevard. The nearby signalized intersection of Alameda Street \& Olympic Boulevard provides curb ramps for ADA accessibility, pedestrian push buttons, and continental crosswalks across all legs. Pedestrian push buttons and curb ramps for ADA are provided (except at the northeast and southwest corners) at Alameda Street \& $8^{\text {th }}$ Street. Figure 6 identifies commercial and institutional facilities within walking distance ( 0.25 miles) of the Project Site that could attract pedestrian activity.

No bicycle lanes or routes are provided within the vicinity of the Project Site.

## Transit

The Metro Route 66 bus stops are located immediately adjacent to the Project Site on Olympic Boulevard at Lawrence Street and Alameda Street. The following bus stops in the vicinity of the Project Site are equipped with transit amenities:

- Along eastbound Olympic Boulevard, the Metro Route 66 bus stop west of Alameda Street (approximately 340 feet southwest of the Project Site) provides a bus shelter and bench.
- Along westbound Olympic Boulevard, the Metro Route 66 bus stop immediately east of Alameda Street (approximately 280 feet southwest of the Project Site) provides benches.


## INTENSIFICATION OF USE

The Project would result in additional pedestrian, bicycle, and transit activity in the vicinity of the Project Site. However, the Project would enhance the pedestrian environment by providing a more comfortable pedestrian experience by maintaining accessible sidewalks along the Project frontage and would encourage alternative transportation modes by providing bicycle parking and amenities for employees and visitors. In addition, the Project is located within a 0.25 -mile walking distance of numerous Metro bus stops.

Although the Project (and other Related Projects) will cumulatively add transit ridership, the Study Area is served by multiple bus lines operated by Metro. As shown in Tables 3A and 3B, the total residual capacity of the bus lines within a 0.25 -mile walking distance of the Project Site during the morning and afternoon peak hours is approximately 1,011 additional riders during the morning peak hour and 949 additional riders during the afternoon peak hour. As shown in Table 5, transit usage for the Project accounts for the reduction of approximately 12 vehicle trips during both the morning and afternoon peak hours. Based on the average vehicle occupancy factor of 1.55 for all trip purposes in Los Angeles County as identified in SCAG Regional Travel Demand Model and 2012 Model Validation (SCAG, March 2016), the total Project vehicle-transit trips correspond to 19 person-transit trips during the morning and afternoon peak hours. This equates to approximately $2 \%$ of the total residual capacity of the transit lines within the Study Area during the morning and afternoon peak hours, confirming that the adjacent transit capacity can accommodate the intensification of transit usage attributable to the Project.

## CONCLUSION

The Project would result in some intensification of pedestrian, bicycle, and transit activity in the vicinity of the Project Site. However, given the Project Site's location near local bus services and its proximity to active commercial centers in the Arts District, it is ideally located to encourage non-automobile trips to and from those destinations and additional public transit routes. The amount of additional pedestrian, bicycle, and transit activity generated by the Project would not strain the capacity of facilities and operations dedicated to those modes.

## Section 5B

## Project Access, Safety, and Circulation Assessment

This section summarizes the site access, safety, and circulation of the Project Site. It includes a quantitative evaluation of the Project's access and circulation operations, as well as the anticipated LOS at the Study Area intersections and anticipated traffic queues.

## PROJECT ACCESS

## Vehicle Access and Internal Circulation

As described in Chapter 1, vehicular access to the Project Site would be provided via driveways along $8^{\text {th }}$ Street, Lemon Street, and Hunter Street, which are designated Collector Streets. Primary access would be provided via the main driveway along $8^{\text {th }}$ Street, which provides full access to the Project Site. Passenger loading would be accommodated on-site with access provided via the main gate driveway along $8^{\text {th }}$ Street. Additional secondary outbound-only access would be provided via driveways along $8^{\text {th }}$ Street and Hunter Street. Separate truck-only inbound and outbound driveways would be provided along Lemon Street. The Project would provide internal drive aisles that would accommodate passenger vehicle and truck circulation.

The driveways would be designed to LADOT standards under the review of City staff. Access control equipment would be designed and operated to limit delay at the driveways and queue spillover into the public ROW. The circulation aisle widths of the parking areas should be designed to allow adequate and safe circulation of vehicles and trucks without significant conflicts. The vehicular access points are adequate to serve the demand of the Project Site and no significant internal congestion is anticipated that would affect traffic flow on adjacent public streets. The detailed queue evaluation worksheets for the proposed Project driveways are provided in Appendix F.

## Pedestrians and Bicycles

Pedestrian access to the Project Site would be provided via a separate pedestrian entrance at the main gate along $8^{\text {th }}$ Street, which would connect to internal walkways throughout the Project Site.

Employees and visitors arriving by bicycle would have the same access opportunities as pedestrian visitors.

None of the Project driveways would cross any existing bicycle lanes or routes. Therefore, given the limited access and minimal bicycle traffic, the driveway would not pose a safety hazard to bicyclists. The Project driveways would be designed and placed to provide adequate sight distance and pedestrian refuge areas to limit potential vehicular-bicycle or vehicular-pedestrian conflicts. In order to facilitate bicycle use, short-term and long-term bicycle parking spaces, along with showers and other amenities, would be provided, as detailed in Section 5E.

## OPERATIONAL EVALUATION

Intersection operations were evaluated for typical weekday morning (7:00 AM to 10:00 AM) and afternoon (3:00 PM to 6:00 PM) peak periods. A total of four signalized intersections and one unsignalized intersection in the vicinity of the Project Site were selected for detailed transportation analysis and are shown in Figure 3.

The following traffic conditions were developed and analyzed as part of this study:

- Existing with Project Conditions: This analysis condition estimates the potential intersection operating conditions that could be expected if the Project were built under existing conditions.
- Future with Project Conditions (Year 2026): This analysis condition estimates the potential intersection operating conditions that could be expected if the Project were occupied in the projected buildout year. In this analysis, the Project-generated traffic is added to Future without Project Conditions (Year 2026).


## Methodology

In accordance with the TAG, the intersection delay and queue analyses for the operational evaluation were conducted using the HCM methodology, which was implemented using Synchro software with signal timing plans provided by the City to analyze intersection operating conditions. The HCM signalized methodology calculates the average delay, in seconds, for each vehicle passing through the intersections while the HCM unsignalized two-way stop-control methodology calculates the control delay, in seconds, for individual approaches of an intersection. Table 11 presents a description of the LOS categories, which range from excellent, nearly free-flow traffic at LOS A, to congested stop-and-go conditions at LOS F, for signalized intersections. The queue lengths were estimated using Synchro, which reports the $95^{\text {th }}$ percentile queue length for each approach lane.

LOS and queuing worksheets for each scenario are provided in Appendix F.

## Existing with Project Conditions

Traffic Volumes. The morning and afternoon peak hour traffic volumes generated by the Project, as described in Chapter 3 and shown in Figures 14A-B, were added to the Existing Conditions morning and afternoon peak hour traffic volumes shown in Figure 8. The resulting volumes are illustrated in Figure 15 and represent Existing with Project Conditions, assuming Project operation under Existing Conditions.

Intersection LOS. Table 12 summarizes the weekday morning and afternoon peak hour LOS results for the Study Area intersections under Existing and Existing with Project Conditions. As shown in Table 12, four Study Area intersections operate at LOS D or better during both the morning and afternoon peak hours. The remaining intersection of Lemon Street \& Olympic Boulevard (Intersection \#4) is anticipated to operate at LOS D during the morning peak hour and at LOS F during the afternoon peak hour. It should be noted that the HCM Two-Way-Stop-Control (TWSC) unsignalized methodology calculates the control delay, in seconds, for each individual approach of an intersection. The reported control delay represents the worst-case approach, typically on the lower volume minor street, and does not account for traffic gaps created by adjacent traffic signals that allow turn movements to proceed from the minor street.

## Future with Project Conditions

All future cumulative traffic growth (i.e., ambient and Related Project traffic growth) and transportation infrastructure improvements described in Chapter 2 are incorporated into this analysis.

Traffic Volumes. The morning and afternoon peak hour traffic volumes generated by the Project described in Chapter 3 and shown in Figures 14A-B were added to the Future without Project Conditions (Year 2026) morning and afternoon peak hour traffic volumes shown in Figure 11. The resulting volumes are illustrated in Figure 16 and represent Future with Project Conditions after development of the Project in Year 2026.

Intersection LOS. Table 13 summarizes the results of the Future without Project (Year 2026) and Future with Project Conditions during the weekday morning and afternoon peak hours for the Study Area intersections. As shown in Table 13, three Study Area intersections operate at LOS D or better during both the morning and afternoon peak hours. The remaining two intersections are anticipated to operate as follows:

- Alameda Street \& Olympic Boulevard (Intersection \#3): LOS E (morning peak hour) and LOS D (afternoon peak hour)
- Lemon Street \& Olympic Boulevard (Intersection \#4): LOS D (morning peak hour) and LOS F (afternoon peak hour)

It should be noted that the HCM TWSC unsignalized methodology calculates the control delay, in seconds, for each individual approach of an intersection. The reported control delay represents the worst-case approach, typically on the lower volume minor street, and does not account for traffic gaps created by adjacent traffic signals that allow turn movements to proceed from the minor street.

## Signal Warrant Analysis

A signal warrant analysis was conducted to evaluate the potential installation of a new traffic signal at Lemon Street \& Olympic Boulevard (Intersection \#4). The signal warrant analyses follow the guidelines set forth in Manual of Policies and Procedures and California Manual on Uniform

Traffic Control Devices (Caltrans, 2012) (California MUTCD), by applying the thresholds from Warrant 3 (peak hour). The following methodology, as quoted from the California MUTCD, was used to evaluate signal warrants at the intersection.

## Warrant 3, Peak-Hour Vehicular Volume Warrant

Signal Warrant 3 is intended for use at a location where traffic conditions are such that for a minimum of one hour of an average day, the minor-street traffic suffers undue delay when entering or crossing the major street. Combined volumes for both approaches of the major street are included while only the volume from the higher minor street approach is included. At an intersection with a high volume of left-turn traffic from the major street, the analysis may include the major street left-turn volumes plus the minor street approach volume as the total "minor street" volume. The warrant is satisfied if traffic volumes for any one hour of an average day exceed the plotted lines shown in the following figure.

As shown in Appendix G, the unsignalized intersection meets the minimum afternoon peak hour traffic volume threshold of Warrant 3 under Existing and Future Conditions, with or without the addition of Project traffic.

It should be noted that the determination that an unsignalized intersection meets the peak hour criteria of a traffic signal warrant does not in itself require the installation of a signal. Rather, the decision on whether a traffic signal should be installed is made by the governing jurisdictions taking into consideration other factors such as distance to adjacent signalized intersections, safety, and interruption to traffic flow along the major street.

The intersection of Lemon Street \& Olympic Boulevard is located in close proximity ( 350 feet west) to the existing signalized intersection of Mateo Street \& Olympic Boulevard. Thus, this close spacing of signalized intersections along an Olympic Boulevard, a designated Avenue I, would likely not be recommended or approved by LADOT.

## INTERSECTION QUEUING ANALYSIS

The queue lengths were estimated using Synchro software, which reports the $95^{\text {th }}$ percentile queue length for signalized intersections at each approach lane. Synchro queue results that are reported in vehicle-length were converted to linear feet by multiplying each vehicle by 25 feet to account for the average length of a vehicle plus distance between vehicles in the queue. The reported queues are calculated using the HCM methodology.

As detailed in Appendix F, the Project would not cause or substantially extend queuing at any of the five Study Area intersections.

## RECOMMENDED ACTIONS

It is anticipated that the Project would contribute to cumulative traffic levels within the Study Area, as detailed in Table 13. However, as discussed in Sections 4A and 4B, the Project would implement a TDM program in accordance with the requirements of the TDM Ordinance to reduce single occupancy trips to the Project Site and Project traffic throughout the Study Area. Implementation of a TDM program could include a comprehensive program of Project design features, transportation services, education programs, and incentive programs intended to promote non-automobile travel and reduce single-occupant vehicle trips and traffic from employees and visitors to the Project Site during the most congested time periods of the day.



TABLE 11
INTERSECTION LEVEL OF SERVICE

| Level of Service | Description | Delay [a] |  |
| :---: | :---: | :---: | :---: |
|  |  | Signalized Intersections | Unsignalized Intersections |
| A | EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used. | $\leq 10$ | $\leq 10$ |
| B | VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles. | $>10$ and $\leq 20$ | $>10$ and $\leq 15$ |
| C | GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles. | $>20$ and $\leq 35$ | > 15 and $\leq 25$ |
| D | FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups. | $>35$ and $\leq 55$ | $>25$ and $\leq 35$ |
| E | POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles. | $>55$ and $\leq 80$ | $>35$ and $\leq 50$ |
| F | FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths. | > 80 | > 50 |

Notes
Source: Highway Capacity Manual, 6th Edition (Transportation Research Board, 2016).
[a] Measured in seconds.

TABLE 12
EXISTING WITH PROJECT CONDITIONS (YEAR 2021) INTERSECTION PEAK HOUR LEVELS OF SERVICE

| No. | Intersection | Peak Hour | Existing Conditions |  | Existing with Project Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay | LOS | Delay | LOS |
| $1 .$ <br> [a] | Alameda Street \& 7th Street | $\begin{aligned} & \hline \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & \hline \hline 22.8 \\ & 34.5 \end{aligned}$ | $\begin{aligned} & \hline \hline \mathrm{C} \\ & \mathrm{C} \end{aligned}$ | $\begin{aligned} & \hline \hline 23.4 \\ & 36.7 \end{aligned}$ | $\begin{aligned} & \hline \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ |
| $\begin{aligned} & \hline 2 . \\ & {[\mathrm{a}]} \\ & \hline \end{aligned}$ | Alameda Street \& 8th Street | $\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & \hline 7.3 \\ & 5.2 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 6.9 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ |
| $3 .$ [a] | Alameda Street \& Olympic Boulevard | $\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 46.7 \\ & 37.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 50.2 \\ & 38.9 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \\ & \hline \end{aligned}$ |
| 4. <br> [b] | Lemon Street \& Olympic Boulevard | $\begin{aligned} & \hline \text { AM } \\ & \text { PM } \end{aligned}$ | $\begin{aligned} & 19.6 \\ & 25.4 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 27.1 \\ & 74.6 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~F} \end{aligned}$ |
| 5. <br> [a] | Mateo Street \& Olympic Boulevard | $\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & \hline 20.6 \\ & 38.9 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & \hline 22.4 \\ & 39.0 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ |

## Notes:

Delay is measured in seconds per vehicle. LOS = Level of Service.
[a] Intersection analysis based on HCM 6th Edition Signalized methodology, which calculates the average intersection delay, in seconds, for each vehicle passing through the intersection.
[b] Intersection analysis based on the HCM 6th Edition Two-Way Stop Control Unsignalized methodology, which calculates the control delay, in seconds, for each individual approach of an intersection. The reported control delay represents the worst-case approach, and does not account for traffic gaps created by adjacent traffic signals.

TABLE 13
FUTURE WITH PROJECT CONDITIONS (YEAR 2026) INTERSECTION PEAK HOUR LEVELS OF SERVICE

| No. | Intersection | Puture without Project <br> Conditions |  | Future with Project <br> Conditions |  |  |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay | LOS | Delay | LOS |
| 1. | Alameda Street \& | AM | 23.8 | C | 24.4 | C |
| [a] | 7th Street | PM | 36.5 | D | 39.4 | D |
| 2. | Alameda Street \& | AM | 7.3 | A | 7.7 | A |
| [a] | 8th Street | PM | 5.2 | A | 7.0 | A |
| 3. | Alameda Street \& | AM | 53.9 | D | 59.0 | E |
| [a] | Olympic Boulevard | PM | 46.2 | D | 48.8 | D |
| 4. | Lemon Street \& | AM | 22.9 | C | 35.0 | D |
| [b] | Olympic Boulevard | PM | 34.6 | D | 119.1 | F |
| 5. | Mateo Street \& | AM | 22.1 | C | 24.6 | C |
| [a] | Olympic Boulevard | PM | 42.5 | D | 42.6 | D |

## Notes:

Delay is measured in seconds per vehicle. LOS = Level of Service.
[a] Intersection analysis based on HCM 6th Edition Signalized methodology, which calculates the average intersection delay, in seconds, for each vehicle passing through the intersection.
[b] Intersection analysis based on the HCM 6th Edition Two-Way Stop Control Unsignalized methodology, which calculates the control delay, in seconds, for each individual approach of an intersection. The reported control delay represents the worst-case approach, and does not account for traffic gaps created by adjacent traffic signals.

## Section 5C

## Residential Street Cut-Through Analysis

This section summarizes the residential street cut-through analysis for the Project. The residential street cut-through analysis determines potential increases in average daily traffic volumes on designated Local Streets, as classified in the Mobility Plan, that can be identified as cut-through trips generated by the Project, and that can adversely affect the character and function of those streets.

Section 3.5.2 of the TAG provides a list of questions to assess whether the Project would negatively affect residential streets. The Project is not projected to lead to trip diversion along residential Local Streets, nor is the Project projected to add a substantial amount of automobile traffic to congested Arterial Streets that could potentially cause a shift to residential Local Streets, as the surrounding area uses mainly consist of industrial and commercial uses. Thus, the Project is not required to conduct a Local Residential Street Cut-Through Analysis.

## Section 5D

Project Construction Assessment

This section summarizes the construction schedule and construction impact analysis for the Project. The construction impact analysis relates to the temporary impacts that may result from the construction activities associated with the Project and was performed in accordance with Section 3.4 of the TAG.

## CONSTRUCTION EVALUATION CRITERIA

Section 3.4.3 of the TAG identifies the following three types of in-street construction constraints that require further analysis to assess the effects of Project construction on the existing pedestrian, bicycle, transit, or vehicle circulation.

1. Temporary transportation constraints - potential effects on the transportation system
2. Temporary loss of access - potential effects on visitors entering and leaving sites
3. Temporary loss of bus stops or rerouting of bus lines - potential effects on bus travelers

The factors to be considered include the magnitude and duration of the temporary loss of access and transportation facilities, the potential inconvenience caused to users of the transportation system, and consideration for public safety. Construction activities could potentially interfere with pedestrian, bicycle, transit, or vehicle circulation and accessibility to adjoining areas. As detailed in Section 3.4.4 of the TAG, the proposed construction plans should be reviewed to determine whether construction activities would require any of the following actions within the public ROW:

- Street, sidewalk, or lane closures
- Block existing vehicle, bicycle, or pedestrian access along a street or to parcels fronting the street
- Modification of access to transit stations, stops, or facilities during revenue hours
- Closure or movement of an existing bus stop or rerouting of an existing bus line
- Creation of transportation hazards


## PROPOSED CONSTRUCTION SCHEDULE

The Project is anticipated to be constructed over a period of approximately 34 months, with an anticipated completion in Year 2026. The analysis conservatively assumes that typical construction activity would occur between 7:00 AM and 9:00 PM on weekdays and between 8:00 AM and 6:00 PM on Saturdays. However, the analysis also takes into account that haul truck activity is typically restricted to the non-commuter peak hours (e.g., 9:00 AM to 3:00 PM). The traffic constraints associated with construction workers depends on the number of construction workers employed during various subphases of construction, as well as the travel mode and travel time of the workers. In general, the hours of construction typically require workers to be on-site before the weekday morning commuter peak period and allow them to leave before or after the afternoon commuter peak period (i.e., arrive at the site prior to 7:00 AM and depart before 4:00 PM or after 6:00 PM). Therefore, most, if not all, construction worker trips would occur outside of the typical weekday commuter peak periods.

The construction period would include various sub-phases, with the highest haul truck activity occurring during the overlap of the demolition subphases for the existing building, new buildings, and parking garage, and the highest construction worker activity occurring during the overlap of the interior subphases for the existing building and new buildings. These overlapping subphases of construction were studied in greater detail and analyzed to ensure the analysis accounts for the maximum potential volume of trips associated with Project construction activities.

## EXISTING BUILDING AND NEW BUILDINGS DEMOLITION SUBPHASES AND PARKING GARAGE GRADING \& UTILITIES SUBPHASE

The peak period of truck activity would occur during the overlap of the demolition subphases for the existing building and new buildings and the grading and utilities subphase for the parking garage. Haul trucks would travel on approved truck routes designated within the City. Given the Project Site's proximity to $\mathrm{I}-10$, haul truck traffic would take the most direct route to the appropriate freeway ramps. The haul route will be reviewed and approved by the City.

Based on projections compiled for the Project, approximately 26,000 cubic yards of material would be removed from the Project Site during the overlap these subphases. During the overlap of the existing building and new buildings demolition subphases and the parking garage grading and subphase, 60 haul trucks per day are estimated to generated to the Project Site. Thus, up to 120 daily truck trips (60 inbound, 60 outbound) are forecast to occur during this period.

Large trucks were converted into the equivalent value of passenger cars due to the slower headway and delay-creating effects of heavy vehicles. Table 8 of Transportation Research Circular No. 212, Interim Materials on Highway Capacity (Transportation Research Board, 1980) and Exhibit 12-25 of the HCM suggest that a passenger car equivalency (PCE) of one truck is equal to 2.0 commuter vehicles on level terrain. Assuming a PCE factor of 2.0, the 120 truck trips would be equivalent to 240 daily PCE trips.

In addition, a maximum of 80 construction workers would work at the Project Site during this phase. Assuming minimal carpooling amongst those workers, an average vehicle occupancy (AVO) of 1.135 persons per vehicle was applied, as provided in CEQA Air Quality Handbook (South Coast Air Quality Management District, 1993). Therefore, 80 workers would result in a total of 70 vehicles, or 140 trips ( 70 inbound and 70 outbound) to and from the Project Site on a daily basis.

With implementation of the Construction Management Plan, it is anticipated that almost all haul truck activity and worker trips would occur outside of the peak hours. Therefore, no peak hour construction traffic impacts are expected during the demolition subphases.

## EXISTING BUILDING AND NEW BULDINGS INTERIOR SUBPHASES

According to construction projections prepared for the Project, the overlap of the existing building and new buildings interior subphases would employ the most construction workers, with a maximum of approximately 600 workers per day.

Assuming an AVO of 1.135 persons per vehicle, 600 workers would result in a total of 529 vehicles that would arrive and depart from the Project Site each day. The estimated number of daily trips
associated with the construction workers is approximately 1,058 (529 inbound and 529 outbound trips), but nearly all of those trips would occur outside of the peak hours, as described above. As such, the existing building and new buildings interior subphases are not expected to affect operations at any of the Study Area intersections.

During building construction, adequate parking for construction workers would be secured off-site at nearby parking lots. Restrictions on workers parking in the public ROW in the vicinity of (or adjacent to) the Project Site would be identified as part of the Construction Management Plan.

## POTENTIAL CONSTRAINTS ON ACCESS, TRANSIT, AND PARKING

Project construction is not expected to create hazards for roadway travelers, bus riders, or parkers, as long as commonly practiced safety procedures for construction are followed. Such procedures and other measures (e.g., to address temporary traffic control, lane closures, sidewalk closures, etc.) will be incorporated into the Construction Management Plan. The constructionrelated constraints associated with access and transit would be addressed with the implementation of the Construction Management Plan described below.

## Access

Construction activities are expected to be primarily contained within the Project Site boundary with no encroachment or closures on the public ROW (e.g., sidewalks and roadways) adjacent to the Project Site. The Project-adjacent parking lane and sidewalks along $8^{\text {th }}$ Street and Hunter Street would not be affected by construction activities or the staging of construction materials and equipment.

## Transit

All construction is expected to occur on-site; therefore, transit operations would not be affected. An existing bus stop that serves the Metro Bus Route 66 at Olympic Boulevard \& Lawrence Street would be maintained during construction.

## Parking

On-street parking is not provided along the Project frontage. Therefore, Project construction would not result in any temporary loss of street parking along the on-street parking spaces.

## CONSTRUCTION MANAGEMENT PLAN

A detailed Construction Management Plan, including haul routes and a staging plan, would be prepared and submitted to the City for review and approval, prior to commencing construction. The Construction Management Plan would formalize how construction would be carried out and identify specific actions that would be required to reduce effects on the surrounding community. The Construction Management Plan shall be based on the nature and timing of the specific construction activities and other projects in the vicinity of the Project Site, and shall include, but not be limited to, the following elements, as appropriate:

- Advance, bilingual notification of adjacent property owners and occupants of upcoming construction activities, including durations and daily hours of operation
- Prohibition of construction worker or equipment parking on adjacent streets
- Prohibition of haul truck staging on any streets adjacent to the Project, unless specifically approved as a condition of an approved haul route
- Scheduling of construction activities to reduce the effect on traffic flow on surrounding Arterial Streets
- Containment of construction activity within the Project Site boundaries
- Implementation of safety precautions for pedestrians and bicyclists through such measures as alternate routing and protection barriers
- Scheduling of construction-related deliveries, haul trips, etc., to occur outside the commuter peak hours
- Spacing of trucks so as to discourage a convoy effect
- Sufficient dampening of the construction area to control dust caused by grading and hauling and reasonable control at all times of dust caused by wind
- Maintenance of a log, available on the job site at all times, documenting the dates of hauling and the number of trips (i.e., trucks) per day
- Identification of a construction manager and provision of a telephone number for any inquiries or complaints from residents regarding construction activities posted at the site readily visible to any interested party during site preparation, grading, and construction

It is likely that Construction Management Plans of the Related Projects would also be submitted for approval to the City prior to the start of construction activities. As part of the LADOT and/or Los Angeles Department of Building and Safety established review process of Construction Management Plans, potential overlapping construction activities and proposed haul routes would be reviewed to minimize the impacts of cumulative construction activities on any particular roadway.

## Section 5E

Parking

This section provides an analysis of the proposed parking and the potential parking impacts of the Project.

## VEHICLE PARKING CODE REQUIREMENTS

The parking requirements of the Project are based on rates provided in LAMC Section 12.21.A4(x)(3) for projects within an Enterprise Zone, which requires commercial developments to provide two spaces per 1,000 sf, as detailed in Table 14.

As summarized in Table 14, the Project would require a total of 1,665 parking spaces. The Project's proposed parking supply would satisfy the LAMC parking requirement.

## BICYCLE PARKING CODE REQUIREMENTS

LAMC Section 12.21.A16 details the bicycle parking requirements for new developments. Per Section 12.21.A16(c), buildings undergoing a change of use, including adaptive reuse projects, are not required to provide bicycle parking. Thus, no bicycle parking is required for the Existing Building Renovation. The Code bicycle parking requirement of the New Studio Construction component of the Project is based on the following rates:

- Other Commercial Uses (Studio-Related Uses)
- Short-Term
- 1.0 space per 10,000 sf (minimum 2 spaces)
- Long-Term
- 1.0 space per 10,000 sf (minimum 2 spaces)
- Office
- Short-Term
- 1.0 space per 10,000 sf (minimum 2 spaces)
- Long-Term
- 1.0 space per 5,000 sf (minimum 2 spaces)

Per the updated LAMC, the Project's New Studio Construction sound stage, production support, and ancillary uses would require 17 short-term and 17 long-term bicycle parking spaces, while the Project's office uses would require eight short-term and 16 long-term bicycle parking spaces.

As summarized in Table 15, the total LAMC bicycle requirement for the Project is 25 short-term and 33 long-term bicycle parking spaces. The Project would provide short-term and long-term bicycle parking that meets LAMC requirements.

TABLE 14
VEHICLE PARKING CODE REQUIREMENTS


Notes
[a] Per LAMC Section 12.21.A4, the vehicle code parking requirements consider the total floor area within the New Studio Construction and Existing Building Renovation, excluding mechanical areas.
[a] Commercial parking requirement per LAMC Section 12.21.A4(x)(3)(2) pursuant to the Project Site's location within a State Enterprise Zone.

TABLE 15
BICYCLE PARKING CODE REQUIREMENTS

| Land Use | Size | Short-Term |  |  |  | Long-Term |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rate [a] |  |  | Requirement | Rate [a] |  |  | Requirement |
| New Studio Construction |  |  |  |  |  |  |  |  |  |
| Sound Stage | 116,400 sf | 1.0 sp | 1 | 10,000 sf | 12 sp | 1.0 sp | 1 | 10,000 sf | 12 sp |
| Production Support | $34,000 \mathrm{sf}$ | 1.0 sp | 1 | 10,000 sf | 3 sp | 1.0 sp | 1 | 10,000 sf | 3 sp |
| Mill/Shop | 20,700 sf | 1.0 sp | 1 | 10,000 sf | 2 sp | 1.0 sp | 1 | 10,000 sf | 2 sp |
| Mill/Shop Office | 20,700 sf | 1.0 sp | 1 | 10,000 sf | 2 sp | 1.0 sp | 1 | $5,000 \mathrm{sf}$ | 4 sp |
| Executive Office | 57,800 sf | 1.0 sp | 1 | 10,000 sf | 6 sp | 1.0 sp | 1 | 5,000 sf | 12 sp |
| Ancillary Uses | 190 sf | 1.0 sp | 1 | 10,000 sf | 0 sp | 1.0 sp | 1 | 10,000 sf | 0 sp |
| Existing Building Renovation | 582,400 sf |  | -- |  | [b] |  | -- |  | [b] |
| Total Bicycle Parking Requirements |  |  |  | Short-Term: | 25 sp |  |  | Long-Term: | 33 sp |
| Total Code Bicycle Parking Requirement |  |  |  |  |  |  |  |  | 58 sp |

Notes
sp: spaces
[a] Bicycle requirements as calculated by Section 12.21.A. 16 of the LAMC.
[b] Per Section 12.21.A16(c), buildings undergoing change of use, including adaptive reuse projects, are not required to provide bicycle parking.

## Chapter 6

## Summary and Conclusions

This study was undertaken to analyze the potential transportation impacts of the Project. The following summarizes the results of this analysis:

## Project Description

- The Project proposes a change of use/adaptive reuse of the existing Los Angeles Times production plant to approximately 639,840 sf of studio, production support, office, and ancillary, circulation, and support uses. The Project would construct approximately 249,790 sf of new studio, production support, office, and ancillary uses. The Project is anticipated to be completed in Year 2026.
- Vehicular access to the Project Site would be provided via driveways along $8^{\text {th }}$ Street, Lemon Street, and Hunter Street.
- The Project incorporates compliance with the City's TDM Ordinance. In addition, the Project design includes specific TDM measures, including bicycle parking as well as amenities and shower facilities for bicyclists.


## CEQA Analysis

- The Project would be consistent with the City's plans, programs, ordinances, and polices and would not generate any geometric design hazard impacts. Therefore, the Project would result not result in a significant CEQA impact related to CEQA Threshold T-1 or CEQA Threshold T-3, and no mitigation would be required.
- The Project would result in a less than significant VMT impact (CEQA Threshold 2-1), and therefore, no mitigation would be required.


## Non-CEQA Analysis

- After accounting for vehicle trips generated by the existing uses, the Project is estimated to generate 316 net new morning peak hour trips and 402 net new afternoon peak hour trips.
- The Project provides adequate internal circulation to accommodate vehicular, pedestrian, and bicycle traffic without impeding through traffic movements on City streets.
- The Project incorporates compliance with the City's TDM Ordinance and would implement a TDM program in accordance with requirements of the TDM Ordinance to reduce single occupancy vehicle trips to the Project Site and throughout the Study Area.
- The Project would meet LAMC-required vehicle and bicycle parking requirements and incorporate pedestrian and bicycle-friendly designs wider sidewalks and open spaces.
- The Project would not adversely affect any residential Local Streets.
- All construction activities would occur outside of the commuter morning and afternoon peak hours to the extent feasible and will not result in substantial interference. A Construction Management Plan will be prepared to ensure that construction impacts are less than significant.


## References

2010 Bicycle Plan, A Component of the City of Los Angeles Transportation Element, Los Angeles Department of City Planning, adopted March 1, 2011.

2012 Developer Fee Justification Study, Los Angeles Unified School District, 2012.
California Manual on Uniform Traffic Control Devices, California Department of Transportation, Rev. March 2020.

Central City Community Plan, City of Los Angeles, 2003.
California Code of Regulations, Title 14, Section 15000 and following.
CEQA Air Quality Handbook, South Coast Air Quality Management District, 1993.
City of Los Angeles VMT Calculator Documentation, Los Angeles Department of Transportation and Los Angeles Department of City Planning, May 2020.

City of Los Angeles VMT Calculator Version 1.3, Los Angeles Department of Transportation and Los Angeles Department of City Planning, July 2020.

Citywide Design Guidelines, Los Angeles City Planning Urban Design Studio, October 2019.
Connect SoCal - The 2020-2045 Regional Transportation Plan / Sustainable Communities Strategy, Southern California Association of Governments, September 2020.

Highway Capacity Manual, 6 ${ }^{\text {th }}$ Edition, Transportation Research Board, 2016.
Interim Guidance for Freeway Safety Analysis, Los Angeles Department of Transportation, May 2020

Los Angeles Municipal Code, City of Los Angeles.
Manual of Policies and Procedures, Los Angeles Department of Transportation, December 2008.
Mobility Plan 2035, An Element of the General Plan, Los Angeles Department of City Planning, September 2016.

Plan for a Healthy Los Angeles: A Health and Wellness Element of the General Plan, Los Angeles Department of City Planning, March 2015.

Quantifying Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, 2010.

## References, cont.

SCAG Regional Travel Demand Model and 2012 Model Validation, Southern California Association of Governments, March 2016.

State of California Senate Bill 743, Steinberg, 2013.
Technical Advisory on Evaluating Transportation Impacts in CEQA, Governor's Office of Planning and Research, December 2018.

Transportation Assessment Guidelines, Los Angeles Department of Transportation, July 2020.
Transportation Research Circular No. 212, Interim Materials on Highway Capacity, Transportation Research Board, 1980

Trip Generation, $9^{\text {th }}$ Edition, Institute of Transportation Engineers, 2012.
Trip Generation, $10^{\text {th }}$ Edition, Institute of Transportation Engineers, 2017.
Vision Zero: Eliminating Traffic Deaths in Los Angeles by 2025, City of Los Angeles, August 2015.

## Appendix A

## Memorandum of Understanding

## Transportation Assessment Memorandum of Understanding (MOU)

This MOU acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

## I. Project Information

Project Name: 8 th \& Alameda
Project Address: 2000 E. 8th Street, Los Angeles, CA 90021
Project Description: The Project proposes a change of use/adaptive reuse of the existing LA Times production plant to approximately 639,840 square feet (sf) of studio, production support, office,
and ancillary/circulation/support uses, and the construction of approximately 249,790 sf of new studio, production support, office, and ancillary uses. Parking would be provided at grade throughout the site and in a new parking structure. See Figure 1.

LADOT Project Case Number: $\qquad$ Project Site Plan attached? (Required) $\square$ Yes $\square$ No

## II. Transportation Demand Management (TDM) Measures

Provide any transportation demand management measures that are being considered where the eligibility needs to be verified in advance (e.g. bike share kiosks, unbundled parking, microstransit service, etc.). Note that LADOT staff will make the final determination if TDM measures eligibility for a particular project. Please confirm eligibility with the LADOT Planning and Bureau staff assigned to your project.
1 $\qquad$ 4 $\qquad$
2 $\qquad$ 5 $\qquad$
3 6 $\qquad$
Select any TDM measures that are currently being considered that may be eligible as a Project Design Feature ${ }^{1}$ :

|  | Reduced Parking Supply ${ }^{2}$ |
| :--- | :--- |
| $\boldsymbol{\checkmark}$ | Bicycle Parking and Amenities |
|  | Parking Cash Out |

## III. Trip Generation

Trip Generation Rate(s) Source: ITE 10th Edition / Other ITE 10th Edition / Empirical Rates

| $\begin{array}{c}\text { Trip Generation Adjustment } \\ \text { (Exact amount of credit subject to approval by LADOT) }\end{array}$ | Yes |
| :--- | :---: | :---: |$)$ No

Trip generation table including a description of the existing and proposed land uses, rates, estimated morning and afternoon peak hour volumes (ins/outs/totals), proposed trip credits, etc. attached? (Required) $\square$ Yes $\square$ No

|  | $\frac{1 \mathrm{IN}}{216}$ | $\frac{\text { OUT }}{100}$ | $\frac{\text { TOTAL }}{316}$ |
| :--- | :--- | :--- | :--- | :--- |
| AM Trips | $\frac{216}{147}$ |  |  |
| PM Trips | $\underline{255}$ |  |  |

```
NET Daily Vehicle Trips (DVT)
        DVT (ITE
```

$\qquad$

``` ed.)
    578 DVT (VMT Calculator ver. . . . )
```

[^2]$\qquad$
IV. Study Area and Assumptions

Project Buildout Year: 2026 Ambient Growth Rate: 1 \% Per Yr.
Related Projects List, researched by the consultant and approved by LADOT, attached? (Required) $⿴ 囗 \square$ Yes $\square$ No STUDY INTERSECTIONS and/or STREET SEGMENTS (May be subject to LADOT revision after access, sajery and circulation evaluation)
$\qquad$ 4 $\qquad$
2 $\qquad$ 5 $\qquad$
3 $\qquad$ 6 $\qquad$
Is this Project located on a street within the High Injury Network? Yes $\square$ No

## V. ACCESS ASSESSMENT

a. Does the project exceed 1,000 total DVT? $\square$ Yes $\square$ No
b. Is the project's frontage 250 linear feet or more along an Avenue or Boulevard as classified by the City's General Plan? Yes $\square$ No
c. Is the project's building frontage encompassing an entire block along an Avenue or Boulevard as classified by the City's General Plan? $\quad$ Yes $\square$ No

If questions a., b., or c. is Yes then complete Attachment C.1: Access Assessment Criteria.
VI. SITE PLAN and map of Study Area

| Does the attached site plan or map of study area show | Yes | No | Not <br> Applicable |
| :--- | :---: | :---: | :---: |
| Each study intersection and/or street segment | $\square$ | $\square$ | $\square$ |
| Project Vehicle Peak Hour trips at each study intersection | $\square$ | $\square$ | $\square$ |
| Project Vehicle Peak Hour trips at each project access point | $\square$ | $\square$ | $\square$ |
| Project driveways (show widths and directions or lane assignment) | $\square$ | $\square$ | $\square$ |
| Pedestrian access points and any pedestrian paths | $\square$ | $\square$ | $\square$ |
| Pedestrian loading zones | $\square$ | $\square$ | $\square$ |
| Delivery loading zone or area | $\square$ | $\square$ | $\square$ |
| Bicycle parking onsite | $\square$ | $\square$ | $\square$ |
| Bicycle parking offsite (in public right-of-way) | $\square$ | $\square$ | $\square$ |

VII. CONTACT Information

## CONSULTANT

Name: Gibson Transportation Consulting. Inc.
Address: $\quad 555$ W. 5th St., Suite 3375, Los Angeles, CA 90013
Phone Number: (213) 683-0088
E-Mail: ewong@gibsontrans.com

"Mous are generaly valid for two years after signing. If after two years a transportation assessment has not been submitted to Ladot, the developer's representative shall check with the appropriate LADOT office to determine if the terms of this MOU are still valid or if a new MOU is needed.

## Attachment C.1: Access Assessment Criteria

## LADOT

## Access Assessment Criteria

This Criteria acknowledges that the Transportation Assessment for the following Project will be prepared in accordance with the latest version of LADOT's Transportation Assessment Guidelines:

## I. PROJECT INFORMATION

Project Name: ${ }^{\text {8th \& Alameda }}$
Project Address: ${ }^{2000}$ E. 8th Street, Los Angeles, CA 90021
Project Description: The Project proposes a change of use/adaptive reuse of the existing LA Times production plant to approximately 639,840 square feet (sf) of studio, production support, office,
and ancillary/circulation/support uses, and the construction of approximately 249,790 sf of new studio, production support, office, and ancillary uses. Parking would be provided at grade throughout the site and in a new parking structure. See Figure 1 .

LADOT Project Case Number: $\qquad$

## II. PEDESTRIAN/ PERSON TRIP GENERATION

Source of Pedestrian/Person Trip Generation Rate(s)? $\square$ VMT Calculator $\square$ ITE $10^{\text {th }}$ Edition $\square$ Other:

## Land Use Size/Unit Daily Person <br> Trips

| Proposed | To Be Provided |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  | Total new trips: |  |

Pedestrian/Person trip generation table including a description of the proposed land uses, trip credits, person trip assumptions, comparison studies used for reference, etc. attached? $\square$ Yes $\square$ No

## III. PEDESTRIAN ATTRACTORS INVENTORY

Attach Pedestrian Map for the area (1,320 foot radius from edge of the project site) depicting:

- site pedestrian entrance(s)
- Existing or proposed passenger loading zones
- pedestrian generation/distribution values
o Geographic Distribution: N 50 \% s 15 \% E 10 \% w $25 \%$
- transit boarding and alighting of transit stops (should include Metro rail stations; Metro, DASH, and
other municipal bus stops)
- Key pedestrian destinations with hours of operation:
- schools (school times)
- government offices with a public counter or meeting room
- senior citizen centers
- recreation centers or playgrounds
- public libraries
- medical centers or clinics
- child care facilities
- post offices
- places of worship
- grocery stores
- other facilities that attract pedestrian trips
- pedestrian walking routes to key destinations from project site

Note: Pedestrian Count Summary, Bicycle Count Summary, Manual Traffic Count Summary will need to be attached to the Transportation Assessment

## IV. FACILITIES INVENTORY

Is a High Injury Network street located within 1,320 foot radius from the edge of the project site? $\square$ Yes $\square$ No If yes, list streets and include distance from the project:

| Olympic Boulevard | at 0 _(feet) |
| :---: | :---: |
| Alameda Street | at 260 (feet) |
| Sante Fe Avenue | at ${ }^{1,120}$ (feet) |
|  | at ______(feet) |

Attach Radius Map for the area (1,320 foot radius from edge of the project site) depicting the following existing and proposed facilities:

- transit stops
- bike facilities
- traffic control devices for controlled crossings
- uncontrolled crosswalks
- location of any missing, damaged or substandard sidewalks

For a reference of planned facilities, see the Transportation Assessment Support Map

## Crossing Distances

Does the project property have frontage along an arterial street (designated as either an Avenue or Boulevard?) $\square$ Yes $\square$ No

If yes, provide the distance between the crossing control devices (e.g. signalized crosswalk, or controlled midblock crossing) along any arterial within 1,320 feet of the property.

| 343 | (feet) at Olympic Bl: Naomi Ave \& Hooper Ave | 650 | (feet) at Alameda St: Bay Street \& 8th Street |
| :---: | :---: | :---: | :---: |
| 910 | (feet) at Olympic Bl: Hooper Ave \& Alameda St | 880 | (feet) at Alameda St: Olympic BI \& 8th Street |
| 640 | (feet) at Olympic Bl: Alameda St \& Lawrence St | 770 | (feet) at Alameda St: 14th St \& Olympic Blvd |
| 1,476 | (feet) at Olympic Bl: Lawrence St \& Mateo St |  | (feet) at |
| 690 | (feet) at Olympic B1: Mateo St \& Sante Fe Ave |  | (feet) at |
| 660 | (feet) at Alameda St: Center St \& Bay Street |  | (feet) at |

## V. Project Construction

Will the project require any construction activity within the city right-of-way? $\square$ Yes $\square$ No

If yes, will the project require temporary closure of any of the following city facilities?

- sidewalk
- bike lane
- parking lane
- travel lane
- bus stop
- bicycle parking (racks or corrals)
- bike share or other micro-mobility station
- car share station
- parklet
- other: $\qquad$
© ibson



$\square$

TABLE 1
STUDY INTERSECTIONS

| No. | N/S Steet | E/W Street |
| :---: | :--- | :--- |
| 1. | Alameda Street | 7th Street |
| 2. | Alameda Street | 8th Street |
| 3. | Alameda Street | Olympic Boulevard |
| $4 .[a]$ | Lemon Street | Olympic Boulevard |
| 5. | Mateo Street | Olympic Boulevard |

Notes:
[a] Intersection is unsignalized.

TABLE 2
PROJECT TRIP GENERATION ESTIMATES

| TRIP GENERATION RATES [a] |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Land Use | $\begin{aligned} & \text { ITE Land } \\ & \text { Use } \end{aligned}$ | Rate | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  | In | Out | Total | In | Out | Total |
| Sound Stage | [b] | per ksf | 63\% | 37\% | 0.20 | 40\% | 60\% | 0.43 |
| Production Support | [b] | per ksf | 65\% | 35\% | 0.61 | 45\% | 55\% | 0.57 |
| General Light Industrial | 110 | per ksf | 88\% | 12\% | [c] | 13\% | 87\% | [c] |
| General Office | 710 | per ksf | 86\% | 14\% | 1.16 | 16\% | 84\% | 1.15 |



## Notes:

$\mathrm{ksf}=1,000$ square feet.
[a] Source: Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017, unless as noted.
[b] Rate based on empirical rate from Transportation Study for the NBC Universal Evolution Plan Environmental Impact Report, Gibson Transportation Consulting, Inc. and Raju Associates, Inc., March 2010.
[c] The trip generation estimates for the existing uses were calculated based on the following best-fit curve equations for general light industrial uses (ITE Land Use Code 110):

$$
\begin{aligned}
\text { Daily: } & \mathrm{T}=3.79(\mathrm{X})+57.96 \\
\text { AM: } & \operatorname{Ln}(\mathrm{T})=0.74 \operatorname{Ln}(\mathrm{X})+0.39 \\
\text { PM: } & \operatorname{Ln}(\mathrm{T})=0.69 \operatorname{Ln}(\mathrm{X})+0.43
\end{aligned}
$$

[d] The total 249,790 sf of New Studio Construction includes a new 190 sf guard house, which was assumed to be an ancillary use of the Project and was not considered for trip generation purposes.
[e] The Project Site is located within walking distance of a Metro bus stop, therefore a $5 \%$ transit reduction is applied to account for transit usage and walking visitor arrivals from the adjacent commercial developments.
[f] The total 639,840 sf Existing Building Renovation includes amenities and supporting uses for the Project (i.e., 24,000 sf commissary and dining area, 57,400 sf mechanical rooms, $16,950 \mathrm{sf} \mathrm{gym} / \mathrm{spa} / \mathrm{salon} /$ restrooms). These uses were assumed to be ancillary to the studio, production, and office uses, and therefore, were not considered for trip generation purposes.
[g] The 558,900 sf existing light industrial use does not account for the existing 23,005 sf vehicular maintenance building, nor the demolition of the 150 sf guard house, 3,840 sf fuel station, and 1,476 sf drum storage. These uses were considered ancillary to the existing light industrial uses on-site. Therefore, no existing use trip reductions were applied for these uses.

$\square$


|  |
| :--- |
| EXISTING USES TO BE REMOVED |
| PEAK HOUR TRAFFIC VOLUMES |



$\square$



TABLE 3
RELATED PROJECTS

| No. | Project | Address | Distance from Project Site | Description | Trip Generation [a] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Daily | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  |  |  |  | In | Out | Total | In | Out | Total |
| 1. | Office \& Commercial | 2159 E Bay St | 0.6 miles | 202,954 sf creative office, 3,235 sf meeting room space, 10,860 sf quality restaurant, and 10,860 sf high-turnover restaurant | 4,417 | 193 | 27 | 220 | 115 | 245 | 360 |
| 2. | Rendon Hotel | 2053 E 7th St | 0.6 miles | 103-room hotel | 732 | 24 | 17 | 41 | 27 | 26 | 53 |
| 3. | 676 Mateo St MU Project | 676 S Mateo St | 0.6 miles | 159 apartment units, 26,093 sf office, 15,005 sf restaurant, and 8,375 sf retail | 1,991 | 64 | 81 | 145 | 100 | 68 | 168 |
| 4. | Mixed-Use | 2143 E Violet St | 0.6 miles | 347 apartment units, 21,858 sf restaurant, and 187,374 sf office | 4,651 | 206 | 129 | 335 | 182 | 208 | 390 |
| 5. | ROW DTLA Mixed-Use | 777 S Alameda St | 0.4 miles | 850,400 sf office, 117,700 sf restaurant, 66,200 sf retail, and 125 hotel rooms | 916 | (134) | (172) | (306) | (157) | 35 | (122) |
| 6. | Mixed-Use | 930 E 6th St | 0.7 miles | 236 apartment units and 12,000 sf retail | 1,074 | 17 | 79 | 96 | 70 | 32 | 102 |
| 7. | 6AM (6th \& Alameda MU) | 1206 E 6th St | 0.6 miles | 1,736 apartment units, 316,632 sf warehouse, 253,514 sf office, 45,278 sf restaurant, 82,332 sf retail, 22,429 sf art museum, 514 hotel rooms, 300 -student school | 14,258 | 437 | 585 | 1,022 | 710 | 642 | 1,352 |
| 8. | Municipal Solid Waste Facility | 2001 E Washington BI | 0.6 miles | 187,000 sf municipal solid waste material recovery facility | 3,578 | (27) | 18 | (9) | 8 | (18) | (10) |
| 9. | Mixed-Use | 640 S Sante Fe Ave | 0.7 miles | 91,185 sf office, 9,430 sf retail, and 6,550 sf restaurant | 1,330 | 90 | 8 | 98 | 43 | 114 | 157 |
| 10. | Mixed-Use | 641 S Imperial St | 0.7 miles | 140 live-work units and 14,750 sf commercial | 1,245 | 44 | 61 | 105 | 66 | 60 | 126 |
| 11. | Restaurant | 1722 E 16th St | 0.5 miles | 8,151 sf restaurant | 592 | (4) | 2 | (2) | 36 | 11 | 47 |
| 12. | Mixed-Use (Revised) | 1800 E 7th St | 0.4 miles | 122 apartment units, 3,245 sf retail, 4,605 sf restaurant, and 2,700 sf office | 992 | 25 | 52 | 77 | 54 | 34 | 87 |
| 13. | 2110 Bay Street | 2110 Bay St | 0.5 miles | 110 live-work units, 113,350 sf office, and 43,657 sf retail | 2,394 | 180 | 63 | 243 | 89 | 192 | 281 |
| 14. | Mixed-Use | 668 S Alameda St | 0.5 miles | 475 live-work units, 33,100 sf office, 17,500 sf retail, 16,300 sf restaurant, and 15,300 sf supermarket | 4,002 | 107 | 182 | 289 | 216 | 145 | 361 |
| 15. | 1024 Mateo St MU | 1024 S Mateo St | 0.4 miles | 106 apartment units, 2,250 sf live-work office, 92,740 sf office, 13,979 sf retail, and 13,126 sf restaurant | 1,862 | 102 | 64 | 166 | 73 | 101 | 174 |
| 16. | Mesquit Mixed-Use | 670 S Mesquit St | 0.7 miles | 944,055 sf office, 308 apartment units, 236 hotel rooms, 79,240 sf retail, 89,576 restaurant, 62,148 sf gym, 93,617 sf studio/museum/gallery, and 56,912 sf grocery store | 22,845 | 1,258 | 321 | 1,579 | 640 | 1,195 | 1,835 |
| 17. | Camden Arts Mixed-Use | 1525 E Industrial St | 0.5 miles | 328 apartment units, 27,300 sf office, 6,400 sf retail, and 5,700 sf restaurant | 2,288 | 58 | 73 | 131 | 86 | 69 | 155 |
| 18. | Mixed-Use | 2130 E Violet St | 0.6 miles | 94,000 sf office, 3,500 sf retail, and 4,000 sf restaurant | 1,351 | 137 | 30 | 167 | 39 | 122 | 162 |
| 19. | Mixed-Use | 1000 S Sante Fe St | 0.5 miles | 14,193 sf market, 6,793 sf health club, and 10,065 sf restaurant | 966 | 36 | 38 | 74 | 49 | 20 | 69 |
| 20. | Hillcrest MU | 1745 E 7th St | 0.5 miles | 57 apartment units, and 6,000 sf retail | 635 | 10 | 25 | 35 | 34 | 23 | 57 |

Notes
[a] Source: Related project (within a one-mile radius) information based on available information provided by LADOT (January 11, 2020), Department of City Planning, and recent studies in the area.

TABLE 3 (cont.)
RELATED PROJECTS

| No. | Project | Address | Distance from Project Site | Description | Trip Generation [a] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Daily | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  |  |  |  | In | Out | Total | In | Out | Total |
| 21. | Mixed-Use (Old Ford Factory) | 2030 E 7th St | 0.5 miles | 243,583 sf office and 40,000 sf retail | 2,306 | 274 | 34 | 308 | 69 | 269 | 318 |
| 22. | Mixed-Use | 2051 E 7th St | 0.6 miles | 320 apartment units, 5,000 sf restaurant, and 15,000 sf retail | 2,310 | 17 | 127 | 144 | 145 | 64 | 208 |
| 23. | Mixed-Use | 826 S Mateo St | 0.4 miles | 90 live-work units, 11,000 sf retail, and 5,600 sf restaurant | 1,267 | 11 | 34 | 45 | 62 | 39 | 101 |
| 24. | SPR-Industrial Park | 1005 S Mateo St | 0.4 miles | 94,849 sf industrial park | 426 | 40 | 9 | 49 | 10 | 39 | 49 |
| 25. | The City Market (Mixed-Use) | 1057 S San Pedro St | 0.9 miles | 945 residential units, 210-room hotel, 294,641 sf office, 224,862 sf retail, and 744-seat cinema | 16,433 | 837 | 434 | 1,271 | 632 | 957 | 1,589 |
| 26. | Office | 540 S Sante Fe Ave | 0.9 miles | 89,825 sf office | 726 | 90 | 12 | 102 | 17 | 81 | 98 |
| 27. | 310 Residential Apts +26.7 k Commercial | 1147 E Palmetto St | 0.8 miles | 310 residential apartment units and 26,701 sf commercial | 0 | 33 | 78 | 111 | 175 | 112 | 287 |
| 28. | Mixed-Use (Coca Cola) | 963 E 4th St | 1.0 mile | 75,000 sf office, 25,000 sf retail, and 20,000 sf restaurant | 2,512 | 106 | 22 | 128 | 113 | 138 | 251 |
| 29. | Retail (Palmetto \& Mateo) | 555 S Mateo St | 0.8 miles | 1,530,000 sf retail | 4,300 | 5 | 30 | 35 | 220 | 205 | 425 |
| 30. | Mixed-Use | 360 S Alameda St | 1.0 mile | 52 apartment units, 2,400 sf restaurant, and 6,900 sf creative office | 648 | 42 | 33 | 57 | 33 | 28 | 61 |
| 31. | Arts District Center (MixedUse) | 1129 E 5th St | 0.9 miles | 27,000 sf retail, 32,000 sf restaurant, 113-room hotel, 129 apartment units, 10,341 sf art gallery, and 3,430 design incubator | 4,713 | 133 | 140 | 273 | 157 | 72 | 229 |
| 32. | Restaurant | 500 S Mateo St | 0.9 miles | 12,682 sf high-turnover restaurant | 1,052 | 48 | 41 | 89 | 50 | 31 | 81 |
| 33. | Mixed-Use | 719 E 5th St | 1.0 mile | 160 apartment units and 7,500 sf retail | 1,033 | 15 | 58 | 73 | 59 | 36 | 95 |
| 34. | 520 Mateo St MU | 520 S Mateo St | 0.9 miles | 600 apartment units, 120,000 sf office, 15,000 sf retail, and 15,000 sf restaurant | 4,995 | 157 | 220 | 377 | 274 | 223 | 497 |
| 35. | 4th \& Hewitt MU | 405 S Hewitt St | 1.0 mile | 311,682 sf office, and 81,49 sf retail | 3,416 | 319 | 69 | 388 | 83 | 301 | 384 |
| 36. | Apartments | 656 S Stanford Ave | 0.8 miles | 82 apartment units | 1,463 | 8 | 34 | 42 | 33 | 18 | 51 |
| 37. | Weingart Projects (Affordable Housing) | 554 S San Pedro St | 1.0 mile | 667 affordable housing units and 54,500 commercial on two sites | 197 | 33 | 120 | 153 | 229 | 91 | 320 |
| 38. | San Pedro Tower (Affordable Housing) | 600 S San Pedro St | 1.0 mile | 5 apartment units, 298 affordable housing units, and 19,909 sf commercial | 636 | 38 | 25 | 63 | 30 | 37 | 67 |
| 39. | Sears MU Project | 2650 E Olympic BI | 1.0 mile | 1000 apartment units, 34,000 sf retail, 46,000 sf high-turnover restaurant, and 230,000 sf office | 12,247 | 498 | 477 | 976 | 599 | 539 | 1,138 |
| 40. | Palmetto MU | 527 S Colyton St | 0.8 miles | 275 apartment units, 35 affordable housing units, 11,375 sf retail, and 11,375 sf artist production | 2,095 | 36 | 116 | 152 | 121 | 74 | 195 |

## Notes

Source: Related project (within a one-mile radius) information based on available information provided by LADOT (January 11, 2020), Department of City Planning, and recent studies in the area.

TABLE 3 (cont.)
RELATED PROJECTS

| No. | Project | Address | Distancefrom ProjectSite | Description | Trip Generation [a] |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Daily | Morning Peak Hour |  |  | Afternoon Peak Hour |  |  |
|  |  |  |  |  |  | In | Out | Total | In | Out | Total |
| 41. | Mixed-Use | 609 E 5 th St | 1.0 mile | 151 apartment units | 1,004 | 15 | 62 | 77 | 61 | 33 | 94 |
| 42. [b] | Residential (Edward Hotel) | 713 E 5th St | 1.0 mile | 50 affordable housing units and one apartment unit | 208 | 15 | 10 | 25 | 9 | 8 | 17 |
| 43. | Office, Restaurant, FastFood | 431 S Colyton St | 0.9 miles | 97,577 sf office, 10,739 sf restaurant, 1,977 sf fast-food restaurant | 1,524 | 80 | 18 | 98 | 60 | 95 | 155 |
| 44. | 1100 E 5th St MU Project | 1100 E 5th St | 0.9 miles | 220 apartment units, 4,350 sf office, 17,810 sf general office, 19,609 sf restaurant, and 9,129 sf retail | 2,556 | 78 | 107 | 185 | 130 | 80 | 210 |
| 45. [b] | Affordable Housing Development | 508 E 4th St | 1.0 mile | 41 affordable housing units | 167 | 8 | 12 | 20 | 8 | 6 | 14 |
| 46. | Clinic | 649 S Wall St | 1.0 mile | 55 apartment units and 25,000 sf clinic | 104 | 24 | 5 | 29 | 3 | 24 | 27 |
| 47. | 400 S Alameda Hotel | 400 S Alameda St | 1.0 mile | 66-room hotel, 2,130 sf restaurant, and 840 sf retail | 512 | 20 | 18 | 38 | 23 | 14 | 37 |
| 48. | Greystar GP II | 330 Alameda St | 1.0 mile | 186 apartment units and 22,000 sf commercial | 1,662 | 36 | 76 | 112 | 91 | 65 | 156 |
| 49. | Mixed-Use | 1000 S Mateo St | 0.3 miles | 113 apartment units and 134,000 sf commercial | 2,238 | 153 | 83 | 236 | 90 | 131 | 221 |
| 50. [c] | Restaurant | 605 E 4 th St | 1.0 mile | 3,798 sf restaurant | 426 | 21 | 17 | 38 | 23 | 14 | 37 |
| 51. [c] | Mixed-Use | 1340 E 6th St | 0.7 miles | 193 live/work units and 255,088 sf commercial | 11,469 | 190 | 177 | 367 | 550 | 554 | 1,104 |
| 52. | Mixed-Use | 1200 S Santa Fe Ave | 0.3 miles | 53 apartment units and 13,000 sf retail | 907 | 12 | 27 | 39 | 44 | 37 | 81 |
| 53. | Apartments | 655 San Pedro St | 0.9 miles | 81 apartment units | 539 | 8 | 33 | 41 | 33 | 17 | 50 |
| 54. [c] | Restaurant | 634 S Mateo St | 0.6 miles | 499-seat restaurant | 2,181 | 125 | 115 | 240 | 119 | 91 | 210 |
| 55. [c] | Affordable Housing Development | 401 E 7th St | 1.0 mile | 99 affordable housing units | 404 | 20 | 30 | 50 | 19 | 15 | 34 |

Notes
[a] Source: Related project (within a one-mile radius) information based on available information provided by LADOT (January 11, 2020), Department of City Planning, and recent studies in the area.
[b] Although construction of the related project may be partially complete/entirely complete, the project was not fully occupied at the time of the NOP or when traffic counts were conducted. Therefore, the related project was considered and listed to provide a more conservative analysis.
[c] Trip generation estimated using rates from Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017

TABLE 4
FREEWAY OFF-RAMP SCREENING PROCESS

| Freeway Off-Ramp | Peak Hour | Project Traffic | Meets <br> Screening <br> Criteria? [a] |  |
| :--- | :---: | :---: | :---: | :---: |
| US-101 Southbound |  |  |  |  |
| Off-ramp to |  |  |  |  |
| 7th Street | AM | 11 | NO |  |
| I-10 Eastbound | PM | 7 | NO |  |
| Off-ramp to |  |  |  |  |
| Alameda Street | AM | 17 | NO |  |
| Off-ramp to | PM | 12 | NO |  |
| Porter Street | AM | 22 | NO |  |
| I-10 Westbound | PM | 15 | NO |  |
| Off-ramp to |  |  |  |  |
| Enterprise Street | AM | 28 | YES |  |

Notes
[a] Based on Interim Guidance for Freeway Safety Analysis (LADOT, 2020), a transportation assessment for a development project must include analysis of any freeway off-ramp where a project adds 25 or more peak hour trips.

TABLE 5
8TH \& ALAMEDA STUDIOS
VMT TRIP EQUIVALENCY DEVELOPMENT


## Notes

[a] Source: Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017, unless as noted.
[b] Rate based on empirical rate from Transportation Study for the NBC Universal Evolution Plan Environmental Impact Report, Gibson Transportation Consulting, Inc. and Raju Associates, Inc., March 2010.
[d] The Project Site is located within walking distance of a Metro bus stop, therefore a $5 \%$ transit reduction is applied to account for transit usage and walking visitor arrivals from the adjacent commercial developments.
[e] Amenities and supporting uses for the Project (i.e., commissary, circulation areas, mechanical rooms, gym/spa/salon) were assumed to be ancillary to the studio, production, and office uses, and therefore, were not considered for trip generation purposes.

## CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

## Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?



Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?


Existing Land Use

$\square$ Click here to add a single custom land use type (will be included in the above list)


Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary


## VMT Calculator User Agreement

The Los Angeles Department of Transportation (LADOT), in partnership with the Department of City Planning and Fehr \& Peers, has developed the City of Los Angeles Vehicle Miles Traveled (VMT) Calculator to estimate project-specific daily household VMT per capita and daily work VMT per employee for land use development projects. This application, the VMT Calculator, has been provided to You, the User, to assess vehicle miles traveled (VMT) outcomes of land use projects within the City of Los Angeles. The term "City" as used below shall refer to the City of Los Angeles. The terms "City" and "Fehr \& Peers" as used below shall include their respective affiliates, subconsultants, employees, and representatives.

The City is pleased to be able to provide this information to the public. The City believes that the public is most effectively served when they are provided access to the technical tools that inform the public review process of private and public land use investments. However, in using the VMT Calculator, You agree to be bound by this VMT Calculator User Agreement (this Agreement).

VMT Calculator Application for the City of Los Angeles. The City's consultant calibrated the VMT Calculator's parameters in 2018 to estimate travel patterns of locations in the City, and validated those outcomes against empirical data. However, this calibration process is limited to locations within the City, and practitioners applying the VMT Calculator outside of the City boundaries should not apply these estimates without further calibration and validation of travel patterns to verify the VMT Calculator's accuracy in estimating VMT in such other locations.

Limited License to Use. This Agreement gives You a limited, non-transferrable, non-assignable, and nonexclusive license to use and execute a copy of the VMT Calculator on a computer system owned, leased or otherwise controlled by You in Your own facilities, as set out below, provided You do not use the VMT Calculator in an unauthorized manner, and that You do not republish, copy, distribute, reverse-engineer, modify, decompile, disassemble, transfer, or sell any part of the VMT Calculator, and provided that You know and follow the terms of this Agreement. Your failure to follow the terms of this Agreement shall automatically terminate this license and Your right to use the VMT Calculator.

Ownership. You understand and acknowledge that the City owns the VMT Calculator, and shall continue to own it through Your use of it, and that no transfer of ownership of any kind is intended in allowing You to use the VMT Calculator.

Warranty Disclaimer. In spite of the efforts of the City and Fehr \& Peers, some information on the VMT Calculator may not be accurate. The VMT Calculator, OUTPUTS AND ASSOCIATED DATA ARE PROVIDED "as is" WITHOUT WARRANTY OF ANY KIND, whether expressed, implied, statutory, or otherwise including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability. It is understood that the VMT Calculator is provided without charge. Neither the City nor Fehr \& Peers can be responsible or liable for any information derived from its use, or for any delays, inaccuracies, incompleteness, errors or omissions arising out of your use of the VMT Calculator or with respect to the material contained in the VMT Calculator. You understand and agree that Your sole remedy against the City or Fehr \& Peers for loss or damage caused by any defect or failure of the

VMT Calculator, regardless of the form of action, whether in contract, tort, including negligence, strict liability or otherwise, shall be the repair or replacement of the VMT Calculator to the extent feasible as determined solely by the City. In no event shall the City or Fehr \& Peers be responsible to You or anyone else for, or have liability for any special, indirect, incidental or consequential damages (including, without limitation, damages for loss of business profits or changes to businesses costs) or lost data or downtime, however caused, and on any theory of liability from the use of, or the inability to use, the VMT Calculator, whether the data, and/or formulas contained in the VMT Calculator are provided by the City or Fehr \& Peers, or another third party, even if the City or Fehr \& Peers have been advised of the possibility of such damages.

This Agreement and License shall be governed by the laws of the State of California without regard to their conflicts of law provisions, and shall be effective as of the date set forth below and, unless terminated in accordance with the above or extended by written amendment to this Agreement, shall terminate on the earlier of the date that You are not making use of the VMT Calculator or one year after the beginning of Your use of the VMT Calculator.

By using the VMT Calculator, You hereby waive and release all claims, responsibilities, liabilities, actions, damages, costs, and losses, known and unknown, against the City and Fehr \& Peers for Your use of the VMT Calculator.

Before making decisions using the information provided in this application, contact City LADOT staff to confirm the validity of the data provided.

Print and sign below, and submit to LADOT along with the transportation assessment Memorandum of Understanding (MOU).

| You, the User |  |
| :---: | :---: |
|  | Canet Cfe |
| By: | Aarer |
| Print Name: | Janet Ye |
| Title: | Associate |
| Company: | Gibson Transportation Consulting, Inc. |
| Address: | 555 W. 5th St., Suite 3375 <br> Los Angeles, CA 90013 |
| Phone: | (213) 683-0088 |
| Email Address: | jye@gibsontrans.com |
| Date: | February 11, 2021 |

## Appendix B

## Traffic Volume Data

ITM Peak Hour Summary
Prepared by:
NDS
National Data \& Surveying Services


Total Ins \& Outs


Total Volume Per Leg


INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: | GIBSON TRANSPORTATION CONSULTING, INC. |  |
| :--- | :--- | :--- |
| PROJECT: |  | ARTS DISTRICT DOWNTOWN LOS ANGELES |
| DATE: |  | TUESDAY JUNE 25, 2019 |
| PERIOD: |  | 7:00 AM TO 10:00 AM |
| INTERSECTION: | N/S | ALAMEDA STREET |
| CITY: | E/W | 8TH STREET |
|  |  | LOS ANGELES |


| VEHICLE COUNTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-715 | 29 | 136 | 3 | 0 | 6 | 17 | 8 | 0 | 3 | 183 | 7 | 0 | 10 | 4 | 26 | 0 | 432 |
| 715-730 | 25 | 171 | 3 | 0 | 4 | 35 | 14 | 0 | 5 | 172 | 11 | 0 | 10 | 5 | 16 | 0 | 471 |
| 730-745 | 27 | 160 | 2 | 0 | 10 | 18 | 10 | 0 | 4 | 182 | 12 | 0 | 13 | 15 | 29 | 0 | 482 |
| 745-800 | 32 | 205 | 5 | 0 | 11 | 19 | 8 | 0 | 6 | 194 | 10 | 0 | 13 | 7 | 21 | 0 | 531 |
| 800-815 | 25 | 203 | 2 | 0 | 13 | 17 | 8 | 0 | 7 | 205 | 5 | 0 | 10 | 15 | 26 | 0 | 536 |
| 815-830 | 26 | 185 | 4 | 0 | 8 | 26 | 13 | 0 | 9 | 175 | 6 | 0 | 6 | 13 | 18 | 0 | 489 |
| 830-845 | 19 | 168 | 2 | 0 | 5 | 14 | 12 | 0 | 7 | 185 | 16 | 0 | 12 | 9 | 25 | 0 | 474 |
| 845-900 | 27 | 144 | 6 | 0 | 12 | 16 | 13 | 0 | 8 | 212 | 9 | 0 | 14 | 11 | 29 | 0 | 501 |
| 900-915 | 21 | 185 | 9 | 0 | 15 | 26 | 19 | 0 | 11 | 172 | 13 | 0 | 12 | 6 | 27 | 0 | 516 |
| 915-930 | 34 | 184 | 4 | 0 | 11 | 18 | 15 | 0 | 6 | 176 | 10 | 0 | 12 | 11 | 17 | 0 | 498 |
| 930-945 | 35 | 184 | 6 | 0 | 14 | 18 | 8 | 0 | 10 | 170 | 11 | 0 | 17 | 11 | 36 | 0 | 520 |
| 945-1000 | 36 | 181 | 9 | 0 | 10 | 17 | 8 | 0 | 13 | 168 | 16 | 0 | 19 | 9 | 13 | 0 | 499 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-800 | 113 | 672 | 13 | 0 | 31 | 89 | 40 | 0 | 18 | 731 | 40 | 0 | 46 | 31 | 92 | 0 | 1916 |
| 715-815 | 109 | 739 | 12 | 0 | 38 | 89 | 40 | 0 | 22 | 753 | 38 | 0 | 46 | 42 | 92 | - | 2020 |
| 730-830 | 110 | 753 | 13 | 0 | 42 | 80 | 39 | 0 | 26 | 756 | 33 | 0 | 42 | 50 | 94 | 0 | 2038 |
| 745-845 | 102 | 761 | 13 | 0 | 37 | 76 | 41 | 0 | 29 | 759 | 37 | 0 | 41 | 44 | 90 | 0 | 2030 |
| 800-900 | 97 | 700 | 14 | 0 | 38 | 73 | 46 | 0 | 31 | 777 | 36 | 0 | 42 | 48 | 98 | 0 | 2000 |
| 815-915 | 93 | 682 | 21 | 0 | 40 | 82 | 57 | 0 | 35 | 744 | 44 | 0 | 44 | 39 | 99 | 0 | 1980 |
| 830-930 | 101 | 681 | 21 | 0 | 43 | 74 | 59 | 0 | 32 | 745 | 48 | 0 | 50 | 37 | 98 | 0 | 1989 |
| 845-945 | 117 | 697 | 25 | 0 | 52 | 78 | 55 | 0 | 35 | 730 | 43 | 0 | 55 | 39 | 109 | 0 | 2035 |
| 900-1000 | 126 | 734 | 28 | 0 | 50 | 79 | 50 | 0 | 40 | 686 | 50 | 0 | 60 | 37 | 93 | 0 | 2033 |


| PEAK HOUR | $730-830$ |
| :--- | :--- |



PEDESTRIAN COUNTS

| 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-715 | 1 | 1 | 3 | 3 | 8 |
| 715-730 | 0 | 0 | 2 | 4 | 6 |
| 730-745 | 1 | 1 | 3 | 7 | 12 |
| 745-800 | 2 | 2 | 2 | 6 | 12 |
| 800-815 | 2 | 2 | 1 | 8 | 13 |
| 815-830 | 1 | 1 | 5 | 7 | 14 |
| 830-845 | 1 | 1 | 0 | 13 | 15 |
| 845-900 | 0 | 0 | 3 | 10 | 13 |
| 900-915 | 1 | 1 | 1 | 13 | 16 |
| 915-930 | 1 | 1 | 6 | 6 | 14 |
| 930-945 | 1 | 1 | 2 | 19 | 23 |
| 945-1000 | 1 | 1 | 5 | 30 | 37 |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-800 | 4 | 4 | 10 | 20 | 38 |
| 715-815 | 5 | 5 | 8 | 25 | 43 |
| 730-830 | 6 | 6 | 11 | 28 | 51 |
| 745-845 | 6 | 6 | 8 | 34 | 54 |
| 800-900 | 4 | 4 | 9 | 38 | 55 |
| 815-915 | 3 | 3 | 9 | 43 | 58 |
| 830-930 | 3 | 3 | 10 | 42 | 58 |
| 845-945 | 3 | 3 | 12 | 48 | 66 |
| 900-1000 |  | 4 |  |  | 90 |



## APPROACH SUMMARIES

|  NORTH APRCH |  |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 700-800 | 798 | 854 | 160 | 62 | 789 | 758 | 169 | 242 |
| 715-815 | 860 | 883 | 167 | 76 | 813 | 825 | 180 | 236 |
| 730-830 | 876 | 892 | 161 | 89 | 815 | 834 | 186 | 223 |
| 745-845 | 876 | 886 | 154 | 86 | 825 | 843 | 175 | 215 |
| 800-900 | 811 | 913 | 157 | 93 | 844 | 788 | 188 | 206 |
| 815-915 | 796 | 883 | 179 | 95 | 823 | 783 | 182 | 219 |
| 830-930 | 803 | 886 | 176 | 90 | 825 | 790 | 185 | 223 |
| 845-945 | 839 | 891 | 185 | 99 | 808 | 807 | 203 | 238 |
| 900-1000 | 888 | 829 | 179 | 105 | 776 | 844 | 190 | 255 |

INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

CLIENT:
PROJECT:
DATE:
PERIOD:
INTERSECTION:
CITY:
VEHICLE COUNTS

| VEHICLE COU |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 |  | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-715 | 14 | 114 | 18 | 0 | 18 | 298 | 45 | 0 | 8 | 151 | 22 | 0 | 7 | 115 | 15 | 0 | 825 |
| 715-730 | 26 | 138 | 23 | 0 | 23 | 283 | 36 | 0 | 15 | 170 | 22 | 0 | 18 | 105 | 12 | 0 | 871 |
| 730-745 | 27 | 123 | 17 | 0 | 23 | 338 | 32 | 0 | 12 | 156 | 29 | 0 | 9 | 132 | 15 | 0 | 913 |
| 745-800 | 42 | 154 | 25 | 0 | 25 | 338 | 31 | 0 | 11 | 170 | 22 | 0 | 7 | 171 | 19 | 0 | 1015 |
| 800-815 | 31 | 159 | 24 | - | 17 | 323 | 37 | 0 | 13 | 189 | 18 | 0 | 20 | 209 | 17 | 0 | 1057 |
| 815-830 | 34 | 143 | 24 | 0 | 2 | 349 | 54 | 0 | 9 | 188 | 27 | 0 | 15 | 189 | 13 | 0 | 1047 |
| 830-845 | 29 | 127 | 20 | 0 | 10 | 315 | 30 | 0 | 20 | 192 | 34 | 0 | 18 | 167 | 15 | 0 | 977 |
| 845-900 | 43 | 137 | 24 | 0 | 15 | 322 | 39 | 0 | 14 | 190 | 27 | 0 | 11 | 200 | 26 | 0 | 1048 |
| 900-915 | 38 | 157 | 25 | 0 | 19 | 307 | 37 | 0 | 18 | 175 | 25 | 0 | 15 | 167 | 16 | 0 | 999 |
| 915-930 | 41 | 128 | 28 | 0 | 24 | 311 | 26 | 0 | 16 | 145 | 26 | 0 | 14 | 148 | 29 | 0 | 936 |
| 930-945 | 35 | 169 | 38 | 0 | 18 | 299 | 28 | 0 | 15 | 157 | 23 | 0 | 19 | 179 | 17 | 0 | 997 |
| 945-1000 | 49 | 124 | 22 | 0 | 19 | 284 | 32 | 0 | 18 | 150 | 26 | 0 | 21 | 173 | 19 | 0 | 937 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-800 | 109 | 529 | 83 | 0 | 89 | 1257 | 144 | 0 | 46 | 647 | 95 | 0 | 41 | 523 | 61 | 0 | 3624 |
| 715-815 | 126 | 574 | 89 | 0 | 88 | 1282 | 136 | 0 | 51 | 685 | 91 | 0 | 54 | 617 | 63 | 0 | 3856 |
| 730-830 | 134 | 579 | 90 | 0 | 67 | 1348 | 154 | 0 | 45 | 703 | 96 | 0 | 51 | 701 | 64 | 0 | 4032 |
| 745-845 | 136 | 583 | 93 | 0 | 54 | 1325 | 152 | 0 | 53 | 739 | 101 | 0 | 60 | 736 | 64 | 0 | 4096 |
| 800-900 | 137 | 566 | 92 | 0 | 44 | 1309 | 160 | 0 | 56 | 759 | 106 | 0 | 64 | 765 | 71 | 0 | 4129 |
| 815-915 | 144 | 564 | 93 | 0 | 46 | 1293 | 160 | 0 | 61 | 745 | 113 | 0 | 59 | 723 | 70 | 0 | 4071 |
| 830-930 | 151 | 549 | 97 | 0 | 68 | 1255 | 132 | 0 | 68 | 702 | 112 | 0 | 58 | 682 | 86 | 0 | 3960 |
| 845-945 | 157 | 591 | 115 | 0 | 76 | 1239 | 130 | 0 | 63 | 667 | 101 | 0 | 59 | 694 | 88 | 0 | 3980 |
| 900-1000 | 163 | 578 | 113 | 0 | 80 | 1201 | 123 | 0 | 67 | 627 | 100 | 0 | 69 | 667 | 81 | 0 | 3869 |


| PEAK HOUR | $800-900$ |
| :--- | :--- |

 ARTS DISTRICT DOWNTOWN LOS ANGELES

TUESDAY JUNE 25, 2019
7:00 AM TO 10:00 AM
N/S ALAMEDA STREET
OLYMPIC BOULEVARD
LOS ANGELES

OLYMPIC BOULEVARD


| PEDESTRIAN COUNTS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-715 | 3 | 3 | 10 | 16 | 32 |
| 715-730 | 5 | 5 | 7 | 6 | 23 |
| $730-745$ | 4 | 4 | 6 | 4 | 18 |
| 745-800 | 7 | 7 | 11 | 13 | 38 |
| 800-815 | 7 | 7 | 12 | 13 | 39 |
| 815-830 | 5 | 5 | 2 | 2 | 14 |
| 830-845 | 3 | 3 | 2 | 3 | 11 |
| 845-900 | 7 | 7 | 2 | 1 | 17 |
| 900-915 | 3 | 3 | -4 | 2 | 4 |
| 915-930 | 6 | 6 | 13 | 6 | 31 |
| 930-945 | 3 | 3 | 5 | 3 | 14 |
| 945-1000 | 2 | 2 | 3 | 1 | 8 |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-800 | 19 | 19 | 34 | 39 | 111 |
| 715-815 | 23 | 23 | 36 | 36 | 118 |
| $730-830$ | 23 | 23 | 31 | 32 | 109 |
| 745-845 | 22 | 22 | 27 | 31 | 102 |
| 800-900 | 22 | 22 | 18 | 19 | 81 |
| 815-915 | 18 | 18 | 2 | 8 | 46 |
| 830-930 | 19 | 19 | 13 | 12 | 63 |
| 845-945 | 19 | 19 | 16 | 12 | 66 |
| 900-1000 | 14 | 14 | 17 | 12 | 57 |

BICYCLE COUNTS

| 15 MIN COUNTS | NORTH |  | SOUTH |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-715 | 4 | 2 | 0 | 1 | 7 |
| 715-730 | 2 | 1 | 1 | 0 | 4 |
| 730-745 | 3 | 1 | 4 | 2 | 10 |
| 745-800 | 1 | 0 | 2 | 0 | 3 |
| 800-815 | 4 | 1 | 2 | 2 | 9 |
| 815-830 | 2 | 2 | 6 | 4 | 14 |
| 830-845 | 2 | 0 | 0 | 2 | 4 |
| 845-900 | 0 | 1 | 0 | 1 | 2 |
| 900-915 | 1 | 1 | 2 | 1 | 5 |
| 915-930 | 2 | 2 | 1 | 2 | 7 |
| 930-945 | 1 | 3 | 0 | 3 | 7 |
| 945-1000 | 0 | 1 | 1 | 2 | 4 |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-800 | 10 | 4 | 7 | 3 | 24 |
| 715-815 | 10 | 3 | 9 | 4 | 26 |
| 730-830 | 10 | 4 | 14 | 8 | 36 |
| 745-845 | 9 | 3 | 10 | 8 | 30 |
| 800-900 | 8 | 4 | 8 | 9 | 29 |
| 815-915 | 5 | 4 | 8 | 8 | 25 |
| 830-930 | 5 | 4 | 3 | 6 | 18 |
| 845-945 | 4 | 7 | 3 | 7 | 21 |
| 900-1000 | 4 | 7 | 4 | 8 | 23 |

## APPROACH SUMMARIES

|  | NORTH APRCH |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 700-800 | 721 | 797 | 1490 | 652 | 788 | 714 | 625 | 1461 |
| 715-815 | 789 | 836 | 1506 | 757 | 827 | 764 | 734 | 1499 |
| 730-830 | 803 | 834 | 1569 | 836 | 844 | 784 | 816 | 1578 |
| 745-845 | 812 | 857 | 1531 | 882 | 893 | 795 | 860 | 1562 |
| 800-900 | 795 | 874 | 1513 | 913 | 921 | 790 | 900 | 1552 |
| 815-915 | 801 | 861 | 1499 | 877 | 919 | 783 | 852 | 1550 |
| 830-930 | 797 | 856 | 1455 | 847 | 882 | 739 | 826 | 1518 |
| 845-945 | 863 | 831 | 1445 | 872 | 831 | 780 | 841 | 1497 |
| 900-1000 | 854 | 788 | 1404 | 847 | 794 | 770 | 817 | 1464 |

INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: | GIBSON TRANSPORTATION CONSULTING, INC. |  |
| :--- | :--- | :--- |
| PROJECT: |  | ARTS DISTRICT DOWNTOWN LOS ANGELES |
| DATE: |  | TUESDAY JUNE 25, 2019 |
| PERIOD: | 7:00 AM TO 10:00 AM |  |
| INTERSECTION: | N/S | LEMON STREET |
| CITY: | E/W | OLYMPIC BOULEVARD <br> LOS ANGELES |


| VEHICLE COUNTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 6 U |  | 8 | 9 | 90 | 10 | 11 | 12 | 12 V |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-715 | 35 | 3 | 2 | 0 | 4 | 371 | 6 | 0 | 1 | 0 | 1 | 0 | 2 | 87 | 3 | 0 | 515 |
| 715-730 | 36 | 0 | 0 | 0 | 3 | 377 | 8 | 0 | 1 | 1 | 0 | 0 | 0 | 84 | 2 | 0 | 512 |
| 730-745 | 27 | 1 | 0 | 0 | 2 | 378 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 95 | 1 | 0 | 511 |
| 745-800 | 25 | 0 | 5 | 1 | 7 | 360 | 8 | 0 | 1 | 0 | 2 | 0 | 0 | 104 | 4 | 0 | 517 |
| 800-815 | 17 | 0 | 1 | 0 | 5 | 381 | 9 | 0 | 1 | 0 | 0 | 0 | 0 | 123 | 3 | 0 | 540 |
| 815-830 | 30 | 1 | 1 | 0 | 5 | 370 | 7 | 0 | 0 | 1 | 0 | 0 | 1 | 98 | 7 | 0 | 521 |
| 830-845 | 23 | 0 | 1 | 0 | 6 | 380 | 7 | 1 | 0 | 0 | 2 | 0 | 1 | 112 | 1 | , | 534 |
| 845-900 | 18 | 1 | 4 | 0 | 4 | 373 | 10 | 0 | 3 | 0 | 1 | 0 | 3 | 102 | 3 | 0 | 522 |
| 900-915 | 15 | 0 | 4 | 0 | 7 | 354 | 10 | 0 | 2 | 0 | 1 | 0 | 0 | 104 | 6 | 0 | 503 |
| 915-930 | 15 | 0 | 5 | 0 | 8 | 349 | 9 | 0 | 2 | 0 | 4 | 0 | 1 | 102 | 7 | 0 | 502 |
| 930-945 | 11 | 0 | 0 | 0 | 3 | 306 | 4 | 0 | 3 | 0 | 3 | 0 | 2 | 107 | 5 | 0 | 444 |
| 945-1000 | 8 | 0 | 6 | 0 | 1 | 355 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 120 | 5 | 0 | 501 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 6 U | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-800 | 123 | 4 | 7 | 1 | 16 | 1486 | 28 | 0 | 4 | 1 | 3 | 0 | 2 | 370 | 10 | 0 | 2055 |
| 715-815 | 105 | 1 | 6 | 1 | 17 | 1496 | 31 | 0 | 4 | 1 | 2 | 0 | 0 | 406 | 10 | 0 | 2080 |
| 730-830 | 99 | 2 | 7 | 1 | 19 | 1489 | 30 | 0 | 3 | 1 | 2 | 0 | 1 | 420 | 15 | 0 | 2089 |
| 745-845 | 95 | 1 | 8 | 1 | 23 | 1491 | 31 | 1 | 2 | 1 | 4 | 0 | 2 | 437 | 15 | 0 | 2112 |
| 800-900 | 88 | 2 | 7 | 0 | 20 | 1504 | 33 | 1 | 4 | 1 | 3 | 0 | 5 | 435 | 14 | 0 | 2117 |
| 815-915 | 86 | 2 | 10 | 0 | 22 | 1477 | 34 | 1 | 5 | 1 | 4 | 0 | 5 | 416 | 17 | 0 | 2080 |
| 830-930 | 71 | 1 | 14 | 0 | 25 | 1456 | 36 | 1 | 7 | 0 | 8 | 0 | 5 | 420 | 17 | 0 | 2061 |
| 845-945 | 59 | 1 | 13 | 0 | 22 | 1382 | 33 | 0 | 10 | 0 | 9 | 0 | 6 | 415 | 21 | 0 | 1971 |
| 900-1000 | 49 | 0 | 15 | 0 | 19 | 1364 | 26 | 0 | 9 | 0 | 8 | 0 | 4 | 433 | 23 | 0 | 1950 |

[^3]
gr

OLYMPIC BOULEVARD
$\longleftarrow \quad 150$ $\qquad$


PEDESTRIAN COUNTS

| 15 MIN COUNTS <br> PERIOD | $\begin{aligned} & \text { NORTH } \\ & \text { LEG } \end{aligned}$ | $\begin{aligned} & \hline \text { EAST } \\ & \text { LEG } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { SOUTH } \\ & \text { LEG } \end{aligned}$ | $\begin{aligned} & \text { WEST } \\ & \text { LEG } \end{aligned}$ | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 700-715 | 0 | 0 | 0 | 0 | 0 |
| 715-730 | 3 | 3 | 0 | 2 | 8 |
| 730-745 | 3 | 3 | 2 | 0 | 8 |
| 745-800 | 2 | 2 | 0 | 0 | 4 |
| 800-815 | 2 | 2 | 0 | 1 | 5 |
| 815-830 | 2 | 2 | 0 | 1 | 5 |
| 830-845 | 0 | 0 | 3 | 0 | 3 |
| 845-900 | 2 | 2 | 2 | 2 | 8 |
| 900-915 | 0 | 0 | 1 | 1 | 2 |
| 915-930 | 1 | 1 | 0 | 0 | 2 |
| 930-945 | 3 | 3 | 0 | 0 | 6 |
| 945-1000 | 2 | 2 | 1 | 3 | 8 |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-800 | 8 | 8 | 2 | 2 | 20 |
| 715-815 | 10 | 10 | 2 | 3 | 25 |
| 730-830 | 9 | 9 | 2 | 2 | 22 |
| 745-845 | 6 | 6 | 3 | 2 | 17 |
| 800-900 | 6 | 6 | 5 | 4 | 21 |
| 815-915 | 4 | 4 | 6 | 4 | 18 |
| 830-930 | 3 | 3 | 6 | 3 | 15 |
| 845-945 | 6 | 6 | 3 | 3 | 18 |
| 900-1000 |  |  |  |  | 18 |



APPROACH SUMMARIES

|  | NORTH APRCH |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 700-800 | 135 | 28 | 1530 | 381 | 8 | 34 | 382 | 1612 |
| 715-815 | 113 | 29 | 1544 | 416 | 7 | 32 | 416 | 1603 |
| 730-830 | 109 | 36 | 1538 | 430 | 6 | 33 | 436 | 1590 |
| 745-845 | 105 | 40 | 1546 | 448 | 7 | 34 | 454 | 1590 |
| 800-900 | 97 | 35 | 1558 | 447 | 8 | 40 | 454 | 1595 |
| 815-915 | 98 | 40 | 1534 | 432 | 10 | 41 | 438 | 1567 |
| 830-930 | 86 | 42 | 1518 | 442 | 15 | 42 | 442 | 1535 |
| 845-945 | 73 | 43 | 1437 | 438 | 19 | 40 | 442 | 1450 |
| 900-1000 | 64 | 42 | 1409 | 457 | 17 | 30 | 460 | 1421 |

INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: | GIBSON TRANSPORTATION CONSULTING, INC. |  |
| :--- | :--- | :--- |
| PROJECT: |  | ARTS DISTRICT DOWNTOWN LOS ANGELES |
| DATE: |  | TUESDAY JUNE 25, 2019 |
| PERIOD: | 7:00 AM TO 10:00 AM |  |
| INTERSECTION: | N/S | MATEO STREET |
| CITY: | E/W | OLYMPIC BOULEVARD <br> LOS ANGELES |


| VEHICLE COUNTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 6 U |  | 8 | 9 | 90 | 10 | 11 | 12 | 12 V |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-715 | 73 | 2 | 16 | 0 | 16 | 301 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | 68 | 15 | 0 | 495 |
| 715-730 | 97 | 0 | 29 | 0 | 10 | 281 | 0 | 0 | 2 | 0 | 1 | 0 | 3 | 75 | 9 | 0 | 507 |
| 730-745 | 91 | 1 | 34 | 0 | 22 | 296 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 82 | 12 | 0 | 539 |
| 745-800 | 82 | 1 | 55 | 0 | 30 | 311 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 92 | 19 | 0 | 592 |
| 800-815 | 100 | 0 | 38 | 0 | 22 | 284 | 1 | 0 | 2 | 2 | 1 | 0 | 2 | 108 | 20 | 0 | 580 |
| 815-830 | 86 | 0 | 49 | 0 | 15 | 317 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 96 | 11 | 0 | 576 |
| 830-845 | 91 | 0 | 35 | 0 | 19 | 289 | 3 | 0 | 2 | 0 | 0 | 0 | 1 | 92 | 19 | , | 551 |
| 845-900 | 99 | 3 | 48 | 0 | 24 | 279 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 82 | 20 | 0 | 556 |
| 900-915 | 102 | 2 | 37 | 0 | 27 | 256 | 4 | 0 | 1 | 1 | 0 | 0 | 1 | 97 | 14 | 0 | 542 |
| 915-930 | 77 | 1 | 43 | 0 | 24 | 291 | 1 | 0 | 2 | 1 | 2 | 0 | 1 | 96 | 13 | 0 | 552 |
| 930-945 | 76 | 1 | 19 | 0 | 27 | 232 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 93 | 10 | 0 | 462 |
| 945-1000 | 84 | 0 | 30 | 0 | 22 | 270 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 112 | 27 | 0 | 548 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 6 U | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 700-800 | 343 | 4 | 134 | 0 | 78 | 1189 | 0 | 0 | 6 | 1 | 1 | 0 | 5 | 317 | 55 | 0 | 2133 |
| 715-815 | 370 | 2 | 156 | 0 | 84 | 1172 | 1 | 0 | 6 | 2 | 2 | 0 | 6 | 357 | 60 | 0 | 2218 |
| 730-830 | 359 | 2 | 176 | 0 | 89 | 1208 | 2 | 0 | 4 | 3 | 1 | 0 | 3 | 378 | 62 | 0 | 2287 |
| 745-845 | 359 | 1 | 177 | 0 | 86 | 1201 | 5 | 0 | 5 | 3 | 1 | 0 | 4 | 388 | 69 | 0 | 2299 |
| 800-900 | 376 | 3 | 170 | 0 | 80 | 1169 | 5 | 0 | 5 | 3 | 1 | 0 | 3 | 378 | 70 | 0 | 2263 |
| 815-915 | 378 | 5 | 169 | 0 | 85 | 1141 | 8 | 0 | 4 | 2 | 0 | 0 | 2 | 367 | 64 | 0 | 2225 |
| 830-930 | 369 | 6 | 163 | 0 | 94 | 1115 | 8 | 0 | 6 | 2 | 2 | 0 | 3 | 367 | 66 | 0 | 2201 |
| 845-945 | 354 | 7 | 147 | 0 | 102 | 1058 | 6 | 1 | 4 | 3 | 3 | 0 | 2 | 368 | 57 | 0 | 2112 |
| 900-1000 | 339 | 4 | 129 | 0 | 100 | 1049 | 7 | 1 | 3 | 5 | 3 | 0 | 2 | 398 | 64 | 0 | 2104 |

[^4]OLYMPIC BOULEVARD


PEDESTRIAN COUNTS

| 15 MIN COUNTS <br> PERIOD | $\begin{aligned} & \text { NORTH } \\ & \text { LEG } \end{aligned}$ | $\begin{aligned} & \text { EAST } \\ & \text { LEG } \end{aligned}$ | $\begin{aligned} & \text { SOUTH } \\ & \text { LEG } \end{aligned}$ | $\begin{aligned} & \text { WEST } \\ & \text { LEG } \end{aligned}$ | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 700-715 | 2 | 2 | 2 | 4 | 10 |
| 715-730 | 0 | 0 | 1 | 1 | 2 |
| 730-745 | 2 | 2 | 0 | 1 | 5 |
| 745-800 | 3 | 3 | 8 | 1 | 15 |
| 800-815 | 3 | 3 | 2 | 2 | 10 |
| 815-830 | 1 | 1 | 3 | 0 | 5 |
| 830-845 | 2 | 2 | 0 | 2 | 6 |
| 845-900 | 7 | 7 | 3 | 3 | 20 |
| 900-915 | 2 | 2 | 1 | 3 | 8 |
| 915-930 | 2 | 2 | 0 | 0 | 4 |
| 930-945 | 3 | 3 | 0 | 0 | 6 |
| 945-1000 | 1 | 1 | 0 | 3 | 5 |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 700-800 | 7 | 7 | 11 | 7 | 32 |
| 715-815 | 8 | 8 | 11 | 5 | 32 |
| 730-830 | 9 | 9 | 13 | 4 | 35 |
| 745-845 | 9 | 9 | 13 | 5 | 36 |
| 800-900 | 13 | 13 | 8 | 7 | 41 |
| 815-915 | 12 | 12 | 7 | 8 | 39 |
| 830-930 | 13 | 13 | 4 | 8 | 38 |
| 845-945 | 14 | 14 | 4 | 6 | 38 |
| 900-1000 |  |  |  |  | 23 |



APPROACH SUMMARIES

|  NORTH APRCH |  |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 700-800 | 481 | 134 | 1267 | 457 | 8 | 9 | 377 | 1533 |
| 715-815 | 528 | 146 | 1257 | 519 | 10 | 9 | 423 | 1544 |
| 730-830 | 537 | 154 | 1299 | 558 | 8 | 7 | 443 | 1568 |
| 745-845 | 537 | 158 | 1292 | 570 | 9 | 10 | 461 | 1561 |
| 800-900 | 549 | 153 | 1254 | 553 | 9 | 11 | 451 | 1546 |
| 815-915 | 552 | 151 | 1234 | 540 | 6 | 15 | 433 | 1519 |
| 830-930 | 538 | 162 | 1217 | 536 | 10 | 17 | 436 | 1486 |
| 845-945 | 508 | 162 | 117 | 520 | 10 | 15 | 427 | 1415 |
| 900-1000 | 472 | 169 | 1157 | 531 | 11 | 13 | 464 | 1391 |

INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: | GIBSON TRANSPORTATION CONSULTING, INC. |
| :--- | :--- |
| PROJECT: | ARTS DSTRICT DOWNTOWN LOS ANGELES |
| DATE: | TUESDAY JUNE 25, 2019 |
| PERIOD: |  |
| INTERSECTION: | N/S |
|  | ALAMED TO 7:000 PM |
| CITY: | E/W |


| VEHICLE COU |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 6 U | 7 |  |  | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 300-315 | 20 | 183 | 5 | 0 | 10 | 6 | 4 | 0 | 9 | 157 | 2 | 0 | 13 | 6 | 14 | 0 | 429 |
| 315-330 | 19 | 216 | 7 | 0 | 4 | 3 | 12 | 0 | 6 | 160 | 6 | 0 | 9 | 5 | 16 | 0 | 463 |
| 330-345 | 19 | 248 | 4 | 0 | 6 | 5 | 6 | 0 | 3 | 141 | 4 | 0 | 7 | 5 | 13 | 0 | 461 |
| 345-400 | 17 | 236 | 5 | 0 | 9 | 5 | 4 | 0 | 2 | 172 | 4 | 0 | 9 | 1 | 10 | 0 | 474 |
| 400-415 | 24 | 218 | 4 | 0 | 4 | 8 | 4 | 0 | 8 | 173 | 2 | 0 | 5 | 4 | 11 | 0 | 465 |
| 415-430 | 12 | 254 | 4 | 0 | 6 | 6 | 5 | 0 | 5 | 162 | 3 | 0 | 11 | 12 | 12 | 0 | 492 |
| 430-445 | 18 | 208 | 3 | 0 | 5 | 4 | 12 | 0 | 4 | 166 | 4 | 2 | 4 | 2 | 8 | 0 | 440 |
| 445-500 | 16 | 252 | 4 | 0 | 4 | 8 | 4 | 0 | 5 | 154 | 3 | 0 | 10 | 2 | 12 | 0 | 474 |
| 500-515 | 22 | 288 | 7 | 0 | 10 | 6 | 4 | 0 | 8 | 159 | 2 | 0 | 6 | 6 | 15 | 0 | 533 |
| 515-530 | 29 | 217 | 10 | 0 | 4 | 3 | 12 | 0 | 6 | 161 | 6 | 0 | 11 | 2 | 7 | 0 | 468 |
| 530-545 | 29 | 218 | 10 | 0 | 6 | 5 | 6 | 0 | 3 | 141 | 3 | 0 | 9 | 2 | 8 | 0 | 440 |
| 545-600 | 17 | 212 | 2 | 0 | 9 | 5 | 4 | 0 | 2 | 172 | 3 | 0 | 9 | 3 | 9 | 0 | 447 |
| 600-615 | 14 | 232 | 7 | 0 | 4 | 8 | 4 | 0 | 8 | 171 | 1 | 0 | 7 | 4 | 11 | 0 | 471 |
| 615-630 | 11 | 220 | 3 | 0 | 6 | 6 | 5 | 0 | 5 | 161 | 3 | 0 | 5 | 1 | 7 | 0 | 433 |
| 630-645 | 7 | 191 | 4 | 0 | 4 | 4 | 5 | 0 | 4 | 174 | 1 | 0 | 3 | 2 | 5 | 0 | 404 |
| 645-700 | 8 | 192 | 3 | 0 | 4 | 3 | 11 | 0 | 4 | 122 | 2 | 0 | 5 | 0 | 4 | 0 | 358 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 300-400 | 75 | 883 | 21 | 0 | 29 | 19 | 26 | 0 | 20 | 630 | 16 | 0 | 38 | 17 | 53 | 0 | 1827 |
| 315-415 | 79 | 918 | 20 | 0 | 23 | 21 | 26 | 0 | 19 | 646 | 16 | 0 | 30 | 15 | 50 | 0 | 1863 |
| 330-430 | 72 | 956 | 17 | 0 | 25 | 24 | 19 | 0 | 18 | 648 | 13 | 0 | 32 | 22 | 46 | 0 | 1892 |
| 345-445 | 71 | 916 | 16 | 0 | 24 | 23 | 25 | 0 | 19 | 673 | 13 | 2 | 29 | 19 | 41 | 0 | 1871 |
| 400-500 | 70 | 932 | 15 | 0 | 19 | 26 | 25 | 0 | 22 | 655 | 12 | 2 | 30 | 20 | 43 | 0 | 1871 |
| 415-515 | 68 | 1002 | 18 | 0 | 25 | 24 | 25 | 0 | 22 | 641 | 12 | 2 | 31 | 22 | 47 | 0 | 1939 |
| 430-530 | 85 | 965 | 24 | 0 | 23 | 21 | 32 | 0 | 23 | 640 | 15 | 2 | 31 | 12 | 42 | 0 | 1915 |
| 445-545 | 96 | 975 | 31 | 0 | 24 | 22 | 26 | 0 | 22 | 615 | 14 | 0 | 36 | 12 | 42 | 0 | 1915 |
| 500-600 | 97 | 935 | 29 | 0 | 29 | 19 | 26 | 0 | 19 | 633 | 14 | 0 | 35 | 13 | 39 | 0 | 1888 |
| 515-615 | 89 | 879 | 29 | 0 | 23 | 21 | 26 | 0 | 19 | 645 | 13 | 0 | 36 | 11 | 35 | 0 | 1826 |
| 530-630 | 71 | 882 | 22 | 0 | 25 | 24 | 19 | 0 | 18 | 645 | 10 | 0 | 30 | 10 | 35 | 0 | 1791 |
| 545-645 | 49 | 855 | 16 | 0 | 23 | 23 | 18 | 0 | 19 | 678 | 8 | 0 | 24 | 10 | 32 | 0 | 1755 |
| 600-700 | 40 | 835 | 17 | 0 | 18 | 21 | 25 | 0 | 21 | 628 | 7 | 0 | 20 | 7 | 27 | 0 | 1666 |


| PEAK HOUR | $415-515$ |
| :--- | :--- |




ALAMEDA STREET

## PEDESTRIAN COUNTS



## APPROACH SUMMARIES

|  | NORTH APRCH |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 300-400 | 979 | 712 | 74 | 58 | 666 | 947 | 108 | 110 |
| 315-415 | 1017 | 719 | 70 | 54 | 681 | 974 | 95 | 116 |
| 330-430 | 1045 | 719 | 68 | 57 | 679 | 1007 | 100 | 109 |
| 345-445 | 1003 | 738 | 72 | 54 | 707 | 972 | 89 | 107 |
| 400-500 | 1017 | 717 | 70 | 57 | 691 | 989 | 93 | 108 |
| 415-515 | 1088 | 713 | 74 | 62 | 677 | 1060 | 100 | 104 |
| 430-530 | 1074 | 705 | 76 | 59 | 680 | 1030 | 85 | 121 |
| 445-545 | 1102 | 681 | 72 | 65 | 651 | 1037 | 90 | 132 |
| 500-600 | 1061 | 701 | 74 | 61 | 666 | 996 | 87 | 130 |
| 515-615 | 997 | 703 | 70 | 59 | 677 | 941 | 82 | 123 |
| 530-630 | 975 | 705 | 68 | 50 | 673 | 931 | 75 | 105 |
| 545-645 | 920 | 733 | 64 | 45 | 705 | 897 | 66 | 80 |
| 600-700 |  |  |  |  |  |  |  | 68 |

INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: | GIBSON TRANSPORTATION CONSULTING, INC. |
| :--- | :--- |
| PROJECT: | ARTS DISTRICT DOWNTOWN LOS ANGELES |
| DATE: |  |
| PERIOD: | TUESDAY JUNE 25, 2019 |
| INTERSECTION: | N/S |
|  | ALAMEDA TO 7TREET |
| CITY: | E/W |
|  |  |


| VEHICLE COUNTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | Ebut | TOTAL |
| 300-315 | 43 | 136 | 28 | 0 | 17 | 184 | 16 | 0 | 46 | 118 | 25 | 0 | 17 | 273 | 31 | 0 | 934 |
| 315-330 | 43 | 166 | 41 | 0 | 15 | 156 | 26 | 0 | 25 | 122 | 14 | 0 | 20 | 235 | 21 | 0 | 884 |
| 330-345 | 38 | 169 | 44 | 0 | 11 | 163 | 23 | 0 | 25 | 116 | 17 | 0 | 19 | 263 | 29 | 0 | 917 |
| 345-400 | 38 | 156 | 34 | , | 14 | 203 | 18 | 0 | 31 | 124 | 22 | 0 | 12 | 271 | 25 | 0 | 948 |
| 400-415 | 51 | 158 | 33 | 0 | 14 | 232 | 35 | 0 | 39 | 134 | 18 | 0 | 18 | 238 | 24 | 0 | 994 |
| 415-430 | 37 | 169 | 25 | 0 | 12 | 222 | 28 | 0 | 28 | 118 | 19 | 0 | 21 | 249 | 25 | 0 | 953 |
| 430-445 | 30 | 173 | 27 |  | 10 | 284 | 24 | 0 | 36 | 142 | 20 | 0 | 14 | 280 | 19 | 0 | 1059 |
| 445-500 | 39 | 192 | 36 | 0 | 13 | 248 | 24 | 0 | 34 | 121 | 21 | 0 | 22 | 279 | 27 | 0 | 1056 |
| 500-515 | 67 | 206 | 26 | 0 | 7 | 289 | 27 | 0 | 43 | 148 | 14 | 0 | 14 | 290 | 16 | 0 | 1147 |
| 515-530 | 42 | 171 | 35 | 0 | 12 | 286 | 22 | 0 | 41 | 151 | 26 | 0 | 12 | 298 | 21 | 0 | 1117 |
| 530-545 | 46 | 155 | 30 | 0 | 5 | 248 | 25 | 0 | 30 | 141 | 15 | 0 | 14 | 312 | 12 | 0 | 1033 |
| 545-600 | 55 | 141 | 27 | 0 | 17 | 251 | 24 | 0 | 29 | 124 | 24 | 0 | 13 | 327 | 8 | 0 | 1040 |
| 600-615 | 42 | 174 | 36 | 0 | 19 | 254 | 28 | 0 | 32 | 143 | 17 | 0 | 21 | 315 | 25 | 0 | 1106 |
| 615-630 | 37 | 153 | 29 | 0 | 17 | 249 | 19 | 0 | 34 | 136 | 24 | 0 | 13 | 297 | 19 | 0 | 1027 |
| $630-645$ | 29 | 137 | 35 | 0 | 14 | 240 | 36 | 0 | 29 | 111 | 19 | 0 | 14 | 258 | 18 | 0 | 940 |
| 645-700 | 31 | 155 | 33 | 0 | 6 | 172 | 31 | 0 | 28 | 105 | 15 | 0 | 11 | 218 | 23 | 0 | 828 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 120 |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBut | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | Ebut | total |
| 300-400 | 162 | 627 | 147 | 0 | 57 | 706 | 83 | 0 | 127 | 480 | 78 | 0 | 68 | 1042 | 106 | 0 | 3683 |
| 315-415 | 170 | 649 | 152 | 0 | 54 | 754 | 102 | 0 | 120 | 496 | 71 | 0 | 69 | 1007 | 99 | 0 | 3743 |
| 330-430 | 164 | 652 | 136 | 0 | 51 | 820 | 104 | 0 | 123 | 492 | 76 | 0 | 70 | 1021 | 103 | 0 | 3812 |
| 345-445 | 156 | 656 | 119 | 0 | 50 | 941 | 105 | 0 | 134 | 518 | 79 | 0 | 65 | 1038 | 93 | 0 | 3954 |
| 400-500 | 157 | 692 | 121 | 0 | 49 | 986 | 111 | 0 | 137 | 515 | 78 | 0 | 75 | 1046 | 95 | 0 | 4062 |
| 415-515 | 173 | 740 | 114 | 0 | 42 | 1043 | 103 | 0 | 141 | 529 | 74 | 0 | 71 | 1098 | 87 | 0 | 4215 |
| 430-530 | 178 | 742 | 124 | 0 | 42 | 1107 | 97 | 0 | 154 | 562 | 81 | 0 | 62 | 1147 | 83 | 0 | 4379 |
| 445-545 | 194 | 724 | 127 | 0 | 37 | 1071 | 98 | 0 | 148 | 561 | 76 | 0 | 62 | 1179 | 76 | 0 | 4353 |
| 500-600 | 210 | 673 | 118 | 0 | 41 | 1074 | 98 | , | 143 | 564 | 79 | 0 | 53 | 1227 | 57 | 0 | 4337 |
| 515-615 | 185 | 641 | 128 | 0 | 53 | 1039 | 99 | - | 132 | 559 | 82 | 0 | 60 | 1252 | 66 | 0 | 4296 |
| 530-630 | 180 | 623 | 122 | 0 | 58 | 1002 | 96 | , | 125 | 544 | 80 | 0 | 61 | 1251 | 64 | 0 | 4206 |
| 545-645 | 163 | 605 | 127 | 0 | 67 | 994 | 107 | , | 124 | 514 | 84 | 0 | 61 | 1197 | 70 | 0 | 4113 |
| 600-700 | 139 | 619 | 133 | 0 | 56 | 915 | 114 | 0 | 123 | 495 | 75 | , | 59 | 1088 | 85 | 0 | 3901 |


| PEAK HOUR | $430-530$ |
| :--- | :--- |

MPIC BOULEVARD



## PEDESTRIAN COUNTS



## APPROACH SUMMARIES



INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: |  | GIBSON TRANSPORTATION CONSULTING, INC. |
| :---: | :---: | :---: |
| PROJECT: |  | ARTS DISTRICT DOWNTOWN LOS ANGELES |
| DATE: |  | TUESDAY JUNE 25, 2019 |
| PERIOD: |  | 3:000 TO 7:000 PM |
| INTERSECTION: | N/S | LEMON STREET |
|  | E/W | OLYMPIC BOULEVARD |
|  |  | LOS ANGELES |

VEHICLE COUNTS

| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 |  | $6 \cup$ |  |  | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 300-315 | 5 | 0 | 6 | 0 | 0 | 200 | 10 | 0 | 4 | 0 | 0 | 0 | 2 | 231 | 5 | 1 | 464 |
| 315-330 | 7 | 1 | 5 | 0 | 3 | 181 | 5 | 1 | 1 | 0 | 1 | 0 | 0 | 229 | 2 | 0 | 436 |
| 330-345 | 21 | 1 | 3 | 0 | 4 | 196 | 4 | 0 | 2 | 0 | 0 | 0 | 2 | 227 | 1 | 0 | 461 |
| 345-400 | 22 | 1 | 1 | 0 | 1 | 234 | 9 | 0 | 8 | 1 | 0 | 0 | 3 | 235 | 3 | 0 | 518 |
| 400-415 | 32 | 3 | 4 | 0 | 5 | 209 | 8 | 1 | 4 | 0 | 1 | 0 | 3 | 235 | 3 | 1 | 509 |
| 415-430 | 32 | 0 | 2 | 0 | 0 | 248 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 229 | 2 | 0 | 518 |
| 430-445 | 49 | 0 | 0 | 0 | 1 | 223 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 256 | 1 | 0 | 538 |
| 445-500 | 32 | 0 | 4 | 0 | 3 | 278 | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 241 | 0 | 0 | 563 |
| 500-515 | 63 | 0 | 6 | 0 | 3 | 291 | 11 | 0 | 3 | 0 | 1 | 0 | 0 | 230 | 2 | 1 | 611 |
| 515-530 | 41 | 0 | 5 | 0 | 1 | 260 | 5 | 0 | 4 | 0 | 0 | 0 | 0 | 269 | 3 | 0 | 588 |
| 530-545 | 42 | 0 | 7 | 0 | 4 | 259 | 5 | 1 | 4 | 0 | 1 | 0 | 3 | 230 | 0 | 0 | 556 |
| 545-600 | 37 | 0 | 7 | 0 | 0 | 270 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 256 | 6 | 0 | 580 |
| 600-615 | 29 | 2 | 8 | 0 | 4 | 279 | 5 | 0 | 3 | 0 | 0 | 0 | 1 | 254 | 3 | 0 | 588 |
| 615-630 | 33 | 1 | 5 | 0 | 1 | 259 | 8 | 0 | 1 | 0 | 0 | 0 | 0 | 249 | 3 | 0 | 560 |
| $630-645$ | 30 | 0 | 2 | 0 | 2 | 239 | 6 | 0 | 1 | 0 | 1 | 0 | 0 | 215 | 0 | 0 | 496 |
| 645-700 | 29 | 1 | 4 | 0 | 1 | 192 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 178 | 1 | 1 | 410 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 300-400 | 55 |  | 5 | 0 | 8 | 811 | 28 | 1 | 15 | 1 | 1 | 0 | 7 | 922 | 11 | 1 | 1879 |
| 315-415 | 82 | 6 | 13 | 0 | 13 | 820 | 26 | 2 | 15 | 1 | 2 | 0 | 8 | 926 | 9 | 1 | 1924 |
| 330-430 | 107 | 5 | 10 | 0 | 10 | 887 | 24 | 1 | 15 | 1 | 2 | 0 | 8 | 926 | 9 | 1 | 2006 |
| 345-445 | 135 | 4 | 7 | 0 | 7 | 914 | 27 | 1 | 14 | 1 | 2 | 0 | 6 | 955 | 9 | 1 | 2083 |
| 400-500 | 145 | 3 | 10 | 0 | 9 | 958 | 22 | 1 | 7 | 0 | 2 | 0 | 3 | 961 | 6 | 1 | 2128 |
| 415-515 | 176 | 0 | 12 | 0 | 7 | 1040 | 25 | 0 | 6 | 0 | 2 | 0 | 0 | 956 | 5 | 1 | 2230 |
| 430-530 | 185 | 0 | 15 | 0 | 8 | 1052 | 27 | 0 | 9 | 0 | 1 | 0 | 0 | 996 | 6 | 1 | 2300 |
| 445-545 | 178 | 0 | 22 | 0 | 11 | 1088 | 25 | 1 | 12 | 0 | 2 | 0 | 3 | 970 | 5 | 1 | 2318 |
| 500-600 | 183 | 0 | 25 | 0 | 8 | 1080 | 23 | 1 | 12 | 0 | 2 | 0 | 4 | 985 | 11 | 1 | 2335 |
| 515-615 | 149 | 2 | 27 | 0 | 9 | 1068 | 17 | 1 | 12 | 0 | 1 | 0 | 5 | 1009 | 12 | 0 | 2312 |
| 530-630 | 141 | 3 | 27 | 0 | 9 | 1067 | 20 | 1 | 9 | 0 | 1 | 0 | 5 | 989 | 12 | 0 | 2284 |
| 545-645 | 129 | 3 | 22 | 0 | 7 | 1047 | 21 | 0 | 6 | 0 | 1 | 0 | 2 | 974 | 12 | 0 | 2224 |
| 600-700 | 121 | 4 | 19 | 0 | 8 | 969 | 21 | 0 | 5 | 0 | 2 | 0 | 1 | 896 | 7 | 1 | 2054 |


| PEAK HOUR | $500-600$ |
| :--- | :--- |

MPIC BOULEVARD



## PEDESTRIAN COUNTS



## BICYCLE COUNTS

| 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 300-315 |  | 3 | 5 | 0 | 10 |
| 315-330 |  | 0 |  | 0 |  |
| 330-345 | 2 | 0 | 0 | 0 |  |
| 345-400 | 3 | 1 | 2 | 0 |  |
| 400-415 |  | 0 | 2 | 0 |  |
| 415-430 | 0 | 0 | 1 | 0 |  |
| 430-445 | 3 | 0 | 1 | 0 |  |
| 445-500 | 2 | 0 | 2 | 0 |  |
| 500-515 | 8 | 0 | - 1 | 0 |  |
| 515-530 | 2 | 0 | 3 | 0 |  |
| 530-545 | 1 | 3 | 3 | 0 |  |
| 545-600 | 4 | 1 | 0 | 0 |  |
| 600-615 | 1 | 1 | 3 | 0 |  |
| 615-630 | 2 | 0 | 2 | 0 |  |
| 630-645 | 1 | 1 | 1 | 0 |  |
| 645-700 | 4 | 1 | 1 | 0 |  |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 300-400 | 9 | 4 | 7 | 0 | 2 |
| 315-415 | 8 | 1 | 4 | 0 | - 1 |
| 330-430 | 6 | 1 | 5 | 0 |  |
| 345-445 | 7 | 1 | 6 | 0 |  |
| 400-500 | 6 | 0 | 6 | 0 |  |
| 415-515 | 13 | 0 | 5 | 0 | 1 |
| 430-530 | 15 | 0 | 7 | 0 |  |
| 445-545 | 13 | 3 | 9 | 0 | 2 |
| 500-600 | 15 | 4 | 7 | 0 | 2 |
| 515-615 | 8 | 5 | 9 | 0 | 2 |
| 530-630 | 8 | 5 | 8 | 0 | 2 |
| 545-645 | 8 | 3 | 6 | 0 |  |
| 600-700 | \% | 3 | 7 | 0 |  |


| APPROACH SUMMARIES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NORTH APRCH |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 300-400 | 73 | 20 | 848 | 953 | 17 | 38 | 941 | 868 |
| 315-415 | 101 | 23 | 861 | 956 | 18 | 40 | 944 | 905 |
| 330-430 | 122 | 20 | 922 | 952 | 18 | 37 | 944 | 997 |
| 345-445 | 146 | 17 | 949 | 977 | 17 | 37 | 971 | 1052 |
| 400-500 | 158 | 15 | 990 | 979 | 9 | 28 | 971 | 1106 |
| 415-515 | 188 | 12 | 1072 | 974 | 8 | 25 | 962 | 1219 |
| 430-530 | 200 | 14 | 1087 | 1020 | 10 | 27 | 1003 | 1239 |
| 445-545 | 200 | 16 | 1125 | 1005 | 14 | 28 | 979 | 1269 |
| 500-600 | 208 | 19 | 1112 | 1023 | 14 | 27 | 1001 | 1266 |
| 515-615 | 178 | 21 | 1095 | 1049 | 13 | 24 | 1026 | 1218 |
| 530-630 | 171 | 21 | 1097 | 1026 | 10 | 28 | 1006 | 1209 |
| 545-645 | 154 | 19 | 1075 | 1002 | 7 | 26 | 988 | 1177 |
| 600 |  |  |  |  |  |  |  |  |

INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY

| CLIENT: |  | GIBSON TRANSPORTATION CONSULTING, INC. |
| :---: | :---: | :---: |
| PROJECT: |  | ARTS DISTRICT DOWNTOWN LOS ANGELES |
| DATE: |  | TUESDAY JUNE 25, 2019 |
| PERIOD: |  | 3:000 TO 7:000 PM |
| INTERSECTION: | N/S | MATEO STREET |
|  | E/W | OLYMPIC BOULEVARD |
| CITY: |  | LOS ANGELES |


| VEHICLE COUNTS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 MIN COUNTS | 1 | 2 | 3 | 30 | 4 | 5 | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 120 |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | Ebut | TOTAL |
| 300-315 | 42 | 2 | 50 | 0 | 15 | 158 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 219 | 23 | 0 | 514 |
| 315-330 | 43 | 2 | 67 | 0 | 16 | 163 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 203 | 19 | 0 | 515 |
| 330-345 | 64 | 1 | 64 | 0 | 25 | 158 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 217 | 18 | 0 | 552 |
| 345-400 | 67 | 0 | 35 | 0 | 13 | 150 | 1 | 0 | 2 | 1 | 0 | 0 | 2 | 220 | 25 | 0 | 516 |
| 400-415 | 80 | 1 | 57 | 0 | 21 | 147 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 220 | 17 | 0 | 546 |
| 415-430 | 115 | 0 | 71 | 0 | 19 | 196 | 3 | 0 | 1 | 2 | 0 | 0 | 0 | 209 | 15 | 0 | 631 |
| 430-445 | 96 | 0 | 83 | 0 | 17 | 154 | 1 |  | 1 | 1 | 2 | 0 | 1 | 241 | 15 | 0 | 612 |
| 445-500 | 100 | 0 | 70 | 0 | 14 | 171 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 225 | 24 | 0 | 607 |
| 500-515 | 85 | 1 | 71 | 0 | 25 | 163 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 228 | 15 | 0 | 590 |
| 515-530 | 101 | 0 | 61 | 0 | 28 | 196 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 245 | 22 | 0 | 654 |
| 530-545 | 114 | 0 | 84 | 0 | 14 | 157 | 3 | 1 | 2 | 0 | 0 | 0 | 2 | 230 | 18 | 0 | 625 |
| 545-600 | 121 | 0 | 72 | 0 | 17 | 158 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 237 | 18 | 0 | 628 |
| 600-615 | 96 | 0 | 76 | 0 | 22 | 175 | 8 | 2 | 6 | 1 | 0 | 0 | 1 | 256 | 13 | 0 | 656 |
| 615-630 | 122 | 0 | 55 | 0 | 17 | 153 | 1 | 0 | 0 | 1 | 1 | 0 | 2 | 218 | 12 | 1 | 583 |
| $630-645$ | 125 | 0 | 50 | 0 | 15 | 132 | 3 | 0 | 2 | 0 | 1 | 0 | 1 | 203 | 20 | 0 | 552 |
| 645-700 | 102 | 0 | 35 | 0 | 11 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 173 | 14 | 0 | 407 |
| HOUR TOTALS | 1 | 2 | 3 | 30 | 4 |  | 6 | 60 | 7 | 8 | 9 | 90 | 10 | 11 | 12 | 12 U |  |
| PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL |
| 300-400 | 216 | 5 | 216 | 0 | 69 | 629 | 6 | 0 | 6 | 1 | 1 | 0 | 4 | 859 | 85 | 0 | 2097 |
| 315-415 | 254 | 4 | 223 | 0 | 75 | 618 | 5 | 0 | 6 | 1 | 0 | 0 | 4 | 860 | 79 | 0 | 2129 |
| 330-430 | 326 | 2 | 227 | 0 | 78 | 651 | 7 | 0 | 7 | 3 | 0 | 0 | 3 | 866 | 75 |  | 2245 |
| 345-445 | 358 | 1 | 246 | 0 | 70 | 647 | 6 | 0 | 5 | 4 | 2 | 0 | 4 | 890 | 72 | 0 | 2305 |
| 400-500 | 391 | 1 | 281 | 0 | 71 | 668 | 6 | 0 | 4 | 4 | 2 | 0 | 2 | 895 | 71 | 0 | 2396 |
| 415-515 | 396 | 1 | 295 | 0 | 75 | 684 | 5 | 0 | 3 | 4 | 2 | 0 | 3 | 903 | 69 |  | 2440 |
| 430-530 | 382 | 1 | 285 | 0 | 84 | 684 | 2 | 0 | 3 | 2 | 2 | 0 | 3 | 939 | 76 |  | 2463 |
| 445-545 | 400 | 1 | 286 | 0 | 81 | 687 | 4 | 1 | 4 | 1 | 0 | 0 | 4 | 928 | 79 | 0 | 2476 |
| 500-600 | 421 | 1 | 288 | 0 | 84 | 674 | 5 | 1 | 4 | 0 | 1 | 0 | 5 | 940 | 73 | , | 2497 |
| 515-615 | 432 | 0 | 293 | 0 | 81 | 686 | 13 | 3 | 10 | 1 | 1 | 0 | 4 | 968 | 71 | 0 | 2563 |
| 530-630 | 453 | 0 | 287 | 0 | 70 | 643 | 14 | 3 | 9 | 2 | 2 | 0 | 6 | 941 | 61 | 1 | 2492 |
| 545-645 | 464 | 0 | 253 | 0 | 71 | 618 | 14 | 2 | 9 | 2 | 3 | 0 | 5 | 914 | 63 | 1 | 2419 |
| 600-700 | 445 | 0 | 216 | 0 | 65 | 532 | 12 | 2 | 8 | 2 | 2 | 0 | 4 | 850 | 59 | 1 | 2198 |


| PEAK HOUR | $500-600$ |
| :--- | :--- |

OLYMPIC BOULEVARD


## PEDESTRIAN COUNTS



## BICYCLE COUNTS

| 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 300-315 | 0 | 0 | 2 | 0 | 2 |
| 315-330 | 2 | 0 | 0 | 0 |  |
| 330-345 | 0 | 0 | 1 | 2 |  |
| 345-400 | 2 | 0 | 0 | 0 |  |
| 400-415 | 1 | 0 | 2 | 0 |  |
| 415-430 | 1 | 0 | 0 | 0 |  |
| 430-445 | 3 | 0 | 0 | 0 |  |
| 445-500 | 0 | 0 | 0 | 0 |  |
| 500-515 | 5 | 0 | 1 | 0 |  |
| 515-530 | 5 | 1 | 1 | 0 |  |
| 530-545 | 3 | 2 | 3 | 0 |  |
| 545-600 | 2 | 1 | 0 | 0 |  |
| 600-615 | 0 | 0 | 3 | 0 |  |
| 615-630 | 5 | 0 | 1 | 0 |  |
| 630-645 | 0 | 0 | 1 | 0 |  |
| 645-700 | 2 | 0 | 1 | 0 |  |
| HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL |
| PERIOD | LEG | LEG | LEG | LEG |  |
| 300-400 | 4 | 0 | 3 | 2 |  |
| 315-415 | 5 | 0 | 3 | 2 | 10 |
| 330-430 | 4 | 0 | 3 | 2 |  |
| 345-445 | 7 | 0 | 2 | 0 |  |
| 400-500 | 5 | 0 | 2 | 0 |  |
| 415-515 | 9 | 0 | 1 | 0 | 10 |
| 430-530 | 13 | 1 | 2 | 0 | 16 |
| 445-545 | 13 | 3 | 5 | 0 | 21 |
| 500-600 | 15 | 4 | 5 | 0 | 24 |
| 515-615 | 10 | 4 | 7 | 0 | 21 |
| 530-630 | 10 | 3 | 7 | 0 | 20 |
| 545-645 | 7 | 1 | 5 | 0 | 13 |
| 600-700 |  |  |  |  |  |


| APPROACH SUMMARIES |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NORTH APRCH |  | EAST APRCH |  | SOUTH APRCH |  | WEST APRCH |  |
|  | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT |
| 300-400 | 437 | 155 | 704 | 1081 | 8 | 15 | 948 | 846 |
| 315-415 | 481 | 155 | 698 | 1089 | 7 | 13 | 943 | 872 |
| 330-430 | 555 | 156 | 736 | 1100 | 10 | 12 | 944 | 977 |
| 345-445 | 605 | 146 | 723 | 1141 | 11 | 11 | 966 | 1007 |
| 400-500 | 673 | 146 | 745 | 1180 | 10 | 9 | 968 | 1061 |
| 415-515 | 692 | 148 | 764 | 1201 | 9 | 9 | 975 | 1082 |
| 430-530 | 668 | 162 | 770 | 1227 | 7 | 6 | 1018 | 1068 |
| 445-545 | 687 | 161 | 773 | 1219 | 5 | 9 | 1011 | 1087 |
| 500-600 | 710 | 157 | 764 | 1233 | 5 | 11 | 1018 | 1096 |
| 515-615 | 725 | 153 | 783 | 1274 | 12 | 17 | 1043 | 1119 |
| 530-630 | 740 | 133 | 730 | 1240 | 13 | 20 | 1009 | 1099 |
| 545-645 | 717 | 136 | 705 | 1178 | 14 | 19 | 983 | 1086 |
| 600-700 | 661 | 126 | 611 | 1076 | 12 | 16 | 914 | 980 |

## Appendix C

CEQA T-1 Plans, Policies, Programs Consistency Worksheet

## Plans, Policies and Programs Consistency Worksheet

The worksheet provides a structured approach to evaluate the threshold T-1 question below, that asks whether a project conflicts with a program, plan, ordinance or policy addressing the circulation system. The intention of the worksheet is to streamline the project review by highlighting the most relevant plans, policies and programs when assessing potential impacts to the City's circulation system.

Threshold T-1: Would the project conflict with a program, plan, ordinance, or policy addressing the circulation system, including transit, roadways, bicycle, and pedestrian facilities?

This worksheet does not include an exhaustive list of City policies, and does not include community plans, specific plans, or any area-specific regulatory overlays. The Department of City Planning project planner will need to be consulted to determine if the project would obstruct the City from carrying out a policy or program in a community plan, specific plan, streetscape plan, or regulatory overlay that was adopted to support multimodal transportation options or public safety. LADOT staff should be consulted if a project would lead to a conflict with a mobility investment in the Public Right of Way (PROW) that is currently undergoing planning, design, or delivery. This worksheet must be completed for all projects that meet the Section I. Screening Criteria. For description of the relevant planning documents, see Attachment D.1.

For any response to the following questions that checks the box in bold text (i.e. Yes or No), further analysis is needed to demonstrate that the project does not conflict with a plan, policy, or program.

## I. SCREENING CRITERIA FOR POLICY ANALYSIS

If the answer is 'yes' to any of the following questions, further analysis will be required:
Does the project require a discretionary action that requires the decision maker to find that the project would substantially conform to the purpose, intent and provisions of the General Plan?
$\square$ Yes $\square$ No
Is the project known to directly conflict with a transportation plan, policy, or program adopted to support multimodal transportation options or public safety?

Is the project required to or proposing to make any voluntary modifications to the public right-of-way (i.e., dedications and/or improvements in the right-of-way, reconfigurations of curb line, etc.)?

## II. PLAN CONSISTENCY ANALYSIS <br> To be verified with Civil

## A. Mobility Plan 2035 PROW Classification Standards for Dedications and Improvements

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.1 - Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 - Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 - People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.

## Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

A. 1 Does the project include additions or new construction along a street designated as a Boulevard I, and II, and/or Avenue I, II, or III on property zoned for R3 or less restrictive zone? $\quad \boxed{V}$
A. 2 If A. 1 is yes, is the project required to make additional dedications or improvements to the Public Right of Way as demonstrated by the street designation.YesNo $\square$ N/A
A. 3 If $\mathbf{A .} 2$ is yes, is the project making the dedications and improvements as necessary to meet the designated dimensions of the fronting street (Boulevard I, and II, or Avenue I, II, or III)?


If the answer is to A. 1 or A. 2 is NO, or to A.1, A. 2 and A.3. is YES, then the project does not conflict with the dedication and improvement requirements that are needed to comply with the Mobility Plan 2035 Street Designations and Standard Roadway Dimensions.
A. 4 If the answer to A.3. is NO, is the project applicant asking to waive from the dedication standards?
$\square$ Yes $\square$ No $\square$ N/A

Lists any streets subject to dedications or voluntary dedications and include existing roadway and sidewalk widths, required roadway and sidewalk widths, and proposed roadway and sidewalk width or waivers.

## 

Frontage 3 Existing PROW'/Curb' : Existing $\qquad$ Required $\qquad$ Proposed $\qquad$

Frontage 4 Existing PROW'/Curb' : Existing $\qquad$ Required $\qquad$ Proposed $\qquad$

Plan, Policy, and Program Consistency Worksheet
If the answer to A. 4 is NO, the project is inconsistent with Mobility Plan 2035 street designations and must file for a waiver of street dedication and improvement.

If the answer to $\mathbf{A} .4$ is YES, additional analysis is necessary to determine if the dedication and/or improvements are necessary to meet the City's mobility needs for the next 20 years. The following factors may contribute to determine if the dedication or improvement is necessary:

Is the project site along any of the following networks identified in the City's Mobility Plan?

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network

To see the location of the above networks, see Transportation Assessment Support Map. ${ }^{1}$
Is the project within the service area of Metro Bike Share, or is there demonstrated demand for micromobility services?

If the project dedications and improvements asking to be waived are necessary to meet the City's mobility needs, the project may be found to conflict with a plan that is adopted to protect the environment.

## B. Mobility Plan 2035 PROW Policy Alignment with Project-Initiated Changes

## B. 1 Project-Initiated Changes to the PROW Dimensions

These questions address potential conflict with:
Mobility Plan 2035 Policy 2.1 - Adaptive Reuse of Streets. Design, plan, and operate streets to serve multiple purposes and provide flexibility in design to adapt to future demands.

Mobility Plan 2035 Policy 2.3 - Pedestrian Infrastructure. Recognize walking as a component of every trip, and ensure high quality pedestrian access in all site planning and public right-of-way modifications to provide a safe and comfortable walking environment.

Mobility Plan 2035 Policy 3.2 - People with Disabilities. Accommodate the needs of people with disabilities when modifying or installing infrastructure in the public right-of-way.

Mobility Plan 2035 Policy 2.10 - Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.

Mobility Plan 2035 Street Designations and Standard Roadway Dimensions

[^5]Plan, Policy, and Program Consistency Worksheet
B. 1 Does the project physically modify the curb placement or turning radius and/or physically alter the sidewalk and parkways space that changes how people access a property?

Examples of physical changes to the public right-of-way include:

- widening the roadway,
- narrowing the sidewalk,
- adding space for vehicle turn outs or loading areas,
- removing bicycle lanes, bike share stations, or bicycle parking
- modifying existing bus stop, transit shelter, or other street furniture
- paving, narrowing, shifting or removing an existing parkway or tree well


## B. 2 Driveway Access

These questions address potential conflict with:

Mobility Plan 2035 Policy 2.10 - Loading Areas. Facilitate the provision of adequate on and offsite street loading areas.

Mobility Plan 2035 Program PL.1. Driveway Access. Require driveway access to buildings from non-arterial streets or alleys (where feasible) in order to minimize interference with pedestrian access and vehicular movement.

Citywide Design Guidelines - Guideline 2: Carefully incorporate vehicular access such that it does not degrade the pedestrian experience.

## Site Planning Best Practices:

- Prioritize pedestrian access first and automobile access second. Orient parking and driveways toward the rear or side of buildings and away from the public right-of-way. On corner lots, parking should be oriented as far from the corner as possible.
- Minimize both the number of driveway entrances and overall driveway widths.
- Do not locate drop-off/pick-up areas between principal building entrances and the adjoining sidewalks.
- Orient vehicular access as far from street intersections as possible.
- Place drive-thru elements away from intersections and avoid placing them so that they create a barrier between the sidewalk and building entrance(s).
- Ensure that loading areas do not interfere with on-site pedestrian and vehicular circulation by separating loading areas and larger commercial vehicles from areas that are used for public parking and public entrances.
B. 2 Does the project add new driveways along a street designated as an Avenue or a Boulevard that conflict with LADOT's Driveway Design Guidelines (See Sec. 321 in the Manual of Policies and Procedures) by any of the following:
- locating new driveways for residential properties on an Avenue or Boulevard, and access is otherwise possible using an alley or a collector/local street, or
- locating new driveways for industrial or commercial properties on an Avenue or Boulevard and access is possible along a collector/local street, or
- the total number of new driveways exceeds 1 driveway per every 200 feet $^{2}$ along on the Avenue or Boulevard frontage, or
- locating new driveways on an Avenue or Boulevard within 150 feet from the intersecting street, or
- locating new driveways on a collector or local street within 75 feet from the intersecting street, or
- locating new driveways near mid-block crosswalks, requiring relocation of the mid-block crosswalk

If the answer to B. $\mathbf{1}$ and B. $\mathbf{2}$ are both NO, then the project would not conflict with a plan or policies that govern the PROW as a result of the project-initiated changes to the PROW.

## Impact Analysis

If the answer to either B. $\mathbf{1}$ or B. 2 are YES, City plans and policies should be reviewed in light of the proposed physical changes to determine if the City would be obstructed from carrying out the plans and policies. The analysis should pay special consideration to substantial changes to the Public Right of Way that may either degrade existing facilities for people walking and bicycling (e.g., removing a bicycle lane), or preclude the City from completing complete street infrastructure as identified in the Mobility Plan 2035, especially if the physical changes are along streets that are on the High Injury Network (HIN). The analysis should also consider if the project is in a Transit Oriented Community (TOC) area, and would degrade or inhibit trips made by biking, walking and/ or transit ridership. The streets that need special consideration are those that are included on the following networks identified in the Mobility Plan 2035, or the HIN :

- Transit Enhanced Network
- Bicycle Enhanced Network
- Bicycle Lane Network
- Pedestrian Enhanced District
- Neighborhood Enhanced Network
- High Injury Network

To see the location of the above networks, see Transportation Assessment Support Map. ${ }^{3}$
Once the project is reviewed relevant to plans and policies, and existing facilities that may be impacted by the project, the analysis will need to answer the following two questions in concluding if there is an impact due to plan inconsistency.
B.2.1 Would the physical changes in the public right of way or new driveways that conflict with LADOT's Driveway Design Guidelines degrade the experience of vulnerable roadway users such as modify, remove, or otherwise negatively impact existing bicycle, transit, and/or pedestrian infrastructure?

$$
\square \mathrm{Yes} \square \mathrm{No} \square \mathrm{~N} / \mathrm{A}
$$

[^6]B.2.2 Would the physical modifications or new driveways that conflict with LADOT's Driveway Design Guidelines preclude the City from advancing the safety of vulnerable roadway users?

If either of the answers to either B.2.1 or B.2.2 are YES, the project may conflict with the Mobility Plan 2035, and therefore conflict with a plan that is adopted to protect the environment. If either of the answers to both B.2.1. or B.2.2. are NO, then the project would not be shown to conflict with plans or policies that govern the Public Right-of-Way.

## C. Network Access

## C. 1 Alley, Street and Stairway Access

These questions address potential conflict with:
Mobility Plan Policy 3.9 Increased Network Access: Discourage the vacation of public rights-ofway.
C.1.1 Does the project propose to vacate or otherwise restrict public access to a street, alley, or public stairway?
$\square$ Yes $\triangle$ No
C.1.2 If the answer to C.1.1 is Yes, will the project provide or maintain public access to people walking and biking on the street, alley or stairway?


## C. 2 New Cul-de-sacs

These questions address potential conflict with:

Mobility Plan 2035 Policy 3.10 Cul-de-sacs: Discourage the use of cul-de-sacs that do not provide access for active transportation options.
C.2.1 Does the project create a cul-de-sac or is the project located adjacent to an existing cul-de-sac?
$\square$ Yes $\boxed{\square}$ No
C.2.2 If yes, will the cul-de-sac maintain convenient and direct public access to people walking and biking to the adjoining street network?


If the answers to either C.1.2 or C.2.2 are YES, then the project would not conflict with a plan or policies that ensures access for all modes of travel. If the answer to either C.1.2 or C.2.2 are NO, the project may conflict with a plan or policies that governs multimodal access to a property. Further analysis must assess to the degree that pedestrians and bicyclists have sufficient public access to the transportation network.

## D. Parking Supply and Transportation Demand Management

These questions address potential conflict with:

## Mobility Plan 2035 Policy 3.8- Bicycle Parking, Provide bicyclists with convenient, secure and well maintained bicycle parking facilities.

Mobility Plan 2035 Policy 4.8 - Transportation Demand Management Strategies. Encourage greater utilization of Transportation Demand Management Strategies to reduce dependence on single-occupancy vehicles.

Mobility Plan 2035 Policy 4.13 - Parking and Land Use Management: Balance on-street and offstreet parking supply with other transportation and land use objectives.
D. 1 Would the project propose a supply of onsite parking that exceeds the baseline amount ${ }^{4}$ as required in the Los Angeles Municipal Code or a Specific plan, whichever requirement prevails?

$$
\square \mathrm{Yes} \square \mathrm{No}
$$

D. 2 If the answer to D.1. is YES, would the project propose to actively manage the demand of parking by independently pricing the supply to all users (e.g. parking cash-out), or for residential properties, unbundle the supply from the lease or sale of residential units?

$$
\square \mathrm{Yes} \square \mathrm{No} \square \mathrm{~N} / \mathrm{A}
$$

If the answer to D.2. is NO the project may conflict with parking management policies. Further analysis is needed to demonstrate how the supply of parking above city requirements will not result in additional (induced) drive-alone trips as compared to an alternative that provided no more parking than the baseline required by the LAMC or Specific Plan. If there is potential for the supply of parking to result in induced demand for drive-alone trips, the project should further explore transportation demand management (TDM) measures to further off-set the induced demands of driving and vehicle miles travelled (VMT) that may result from higher amounts of on-site parking. The TDM measures should specifically focus on strategies that encourage dynamic and context-sensitive pricing solutions and ensure the parking is efficiently allocated, such as providing real time information. Research has demonstrated that charging a user cost for parking or providing a 'cash-out' option in return for not using it is the most effective strategy to reduce the instances of drive-alone trips and increase non-auto mode share to further reduce VMT. To ensure the parking is efficiently managed and reduce the need to build parking for future uses, further strategies should include sharing parking with other properties and/or the general public.
D.3. Would the project provide the minimum on and off-site bicycle parking spaces as required by Section 12.21 A. 16 of the LAMC?
$\square$ Yes $\square$ No

[^7]Plan, Policy, and Program Consistency Worksheet
D.4. Does the Project include more than 25,000 square feet of gross floor area construction of new nonresidential gross floor?
D. 5 If the answer to D.4. is YES, does the project comply with the City's TDM Ordinance in Section 12.26 J of the LAMC?

If the answer to D.3. or D.5. is NO the project conflicts with LAMC code requirements of bicycle parking and TDM measures. If the project includes uses that require bicycle parking (Section 12.21 A .16 ) or TDM (Section 12.26 J ), and the project does not comply with those Sections of the LAMC, further analysis is required to ensure that the project supports the intent of the two LAMC sections. To meet the intent of bicycle parking requirements, the analysis should identify how the project commits to providing safe access to those traveling by bicycle and accommodates storing their bicycle in locations that demonstrates priority over vehicle access.

Similarly, to meet the intent of the TDM requirements of Section 12.26 J of the LAMC, the analysis should identify how the project commits to providing effective strategies in either physical facilities or programs that encourage non-drive alone trips to and from the project site and changes in work schedule that move trips out of the peak period or eliminate them altogether (as in the case in telecommuting or compressed work weeks).

## E. Consistency with Regional Plans

This section addresses potential inconsistencies with greenhouse gas (GHG) reduction targets forecasted in the Southern California Association of Governments (SCAG) Regional Transportation Plan (RTP) / Sustainable Communities Strategy (SCS).
E. 1 Does the Project or Plan apply one the City's efficiency-based impact thresholds (i.e. VMT per capita, VMT per employee, or VMT per service population) as discussed in Section 2.2.3 of the TAG? $\checkmark$ Yes $\square$ No
E. 2 If the Answer to E. 1 is YES, does the Project or Plan result in a significant VMT impact?

E. 3 If the Answer to E. 1 is NO, does the Project result in a net increase in VMT?


If the Answer to E. 2 or E. 3 is NO, then the Project or Plan is shown to align with the long-term VMT and GHG reduction goals of SCAG's RTP/SCS.
E. 4 If the Answer to E. 2 or E. 3 is YES, then further evaluation would be necessary to determine whether such a project or land use plan would be shown to be consistent with VMT and GHG reduction goals of the SCAG RTP/SCS. For the purpose of making a finding that a project is consistent with the GHG reduction targets forecasted in the SCAG RTP/SCS, the project analyst should consult Section 2.2.4 of the Transportation Assessment Guidelines (TAG). Section 2.2.4 provides the methodology for evaluating a land use project's cumulative impacts to VMT, and the appropriate reliance on SCAG's most recently adopted RTP/SCS in reaching that conclusion.

Plan, Policy, and Program Consistency Worksheet
The analysis methods therein can further support findings that the project is consistent with the general use designation, density, building intensity, and applicable policies specified for the project area in either a sustainable communities strategy or an alternative planning strategy for which the State Air Resources Board, pursuant to Section 65080(b)(2)(H) of the Government Code, has accepted a metropolitan planning organization's determination that the sustainable communities strategy or the alternative planning strategy would, if implemented, achieve the greenhouse gas emission reduction targets.

## References

BOE Street Standard Dimensions S-470-1 http://eng2.lacity.org/techdocs/stdplans/s-400/s-4701 20151021 150849.pdf

LADCP Citywide Design Guidelines. https://planning.lacity.org/odocument/f6608be7-d5fe-4187-bea620618eec5049/Citywide Design Guidelines.pdf

LADOT Transportation Assessment Support Map https://arcg.is/fubbD

Mobility Plan 2035 https://planning.lacity.org/odocument/523f2a95-9d72-41d7-aba5-
1972f84c1d36/Mobility Plan 2035.pdf

SCAG. Connect SoCal, 2020-2045 RTP/SCS, https://www.connectsocal.org/Pages/default.aspx

## ATTACHMENT D.1: CITY PLAN, POLICIES AND GUIDELINES

The Transportation Element of the City's General Plan, Mobility Plan 2035, established the "Complete Streets Design Guide" as the City's document to guide the operations and design of streets and other public rights-of-way. It lays out a vision for designing safer, more vibrant streets that are accessible to people, no matter what their mode choice. As a living document, it is intended to be frequently updated as City departments identify and implement street standards and experiment with different configurations to promote complete streets. The guide is meant to be a toolkit that provides numerous examples of what is possible in the public right-of-way and that provides guidance on context-sensitive design.

The Plan for A Healthy Los Angeles (March 2015) includes policies directing several City departments to develop plans that promote active transportation and safety.

The City of Los Angeles Community Plans, which make up the Land Use Element of the City's General Plan, guide the physical development of neighborhoods by establishing the goals and policies for land use. The 35 Community Plans provide specific, neighborhood-level detail for land uses and the transportation network, relevant policies, and implementation strategies necessary to achieve General Plan and community-specific objectives.

The stated goal of Vision Zero is to eliminate traffic-related deaths in Los Angeles by 2025 through a number of strategies, including modifying the design of streets to increase the safety of vulnerable road users. Extensive crash data analysis is conducted on an ongoing basis to prioritize intersections and corridors for implementation of projects that will have the greatest effect on overall fatality reduction. The City designs and deploys Vision Zero Corridor Plans as part of the implementation of Vision Zero. If a project is proposed whose site lies on the High Injury Network (HIN), the applicant should consult with LADOT to inform the project's site plan and to determine appropriate improvements, whether by funding their implementation in full or by making a contribution toward their implementation.

The Citywide Design Guidelines (October 24, 2019) includes sections relevant to development projects where improvements are proposed within the public realm. Specifically, Guidelines one through three provide building design strategies that support the pedestrian experience. The Guidelines provide best practices in designing that apply in three spatial categories of site planning, building design and public right of way. The Guidelines should be followed to ensure that the project design supports pedestrian safety, access and comfort as they access to and from the building and the immediate public right of way.

The City's Transportation Demand Management (TDM) Ordinance (LA Municipal Code 12.26.J) requires certain projects to incorporate strategies that reduce drive-alone vehicle trips and improve access to destinations and services. The ordinance is revised and updated periodically and should be reviewed for application to specific projects as they are reviewed.

The City's LAMC Section 12.37 (Waivers of Dedication and Improvement) requires certain projects to dedicate and/or implement improvements within the public right-of-way to meet the street designation standards of the Mobility Plan 2035.

The Bureau of Engineering (BOE) Street Standard Dimensions S-470-1 provides the specific street widths and public right of way dimensions associated with the City's street standards.

## Appendix D

## VMT Analysis Worksheets

## CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

## Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information


Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?


## Existing Land Use



Click here to add a single custom land use type (will be included in the above list)

Project Screening Summary

| Existing | Proposed |
| :---: | :---: |
| Land Use | Project |
| 2,933 | $\mathbf{3 , 5 1 1}$ |
| Daily Vehicle Trips | Daily Vehicle Trips |
| $\mathbf{2 2 , 3 8 2}$ | $\mathbf{2 7 , 7 6 4}$ |
| Daily VMT | Daily VMT |

Tier 1 Screening Criteria
Project will have less residential units compared to existing residential units \& is within one-half mile of a fixed-rail station.

## Tier 2 Screening Criteria

The net increase in daily trips < 250 trips

The net increase in daily VMT $\leq 0$

The proposed project consists of only retail 0.000 land uses $\leq 50,000$ square feet total.
ksf

The proposed project is required to perform VMT analysis.

## CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information

| Project: | 8th \& Alameda |
| :--- | :--- |
| Scenario: | Project |
| Address: | 2000 E 8TH ST, 90021 |



Proposed Project Land Use Type Value

Unit Office | General Office

TDM Strategies


Analysis Results

| Proposed Project | With <br> Mitigation |
| :---: | :---: |
| 3,466 | 3,466 |
| Daily Vehicle Trips | Daily Vehicle Trips |
| 27,418 | 27,418 |
| Daily VMT | Daily VmT |
| 0.0 | 0.0 |
| Houseshold VMT per Capita | Houseshold VMT per Capita |
| 7.4 | 7.4 |
| Work VMT per Employee | Work VMT per Employee |
| Significant VMT Impact? |  |
| Household: No | Household: No |
| $\text { Threshold }=6.0$ 15\% Below APC | Threshold $=6.0$ 15\% Below APC |
| Work: No | Work: No |
| Threshold $=7.6$ 15\% Below APC | Threshold $=7.6$ 15\% Below APC |

Heasuring the Niles

| Project Information |  |  |  |
| :---: | :---: | :---: | :---: |
| Land Use Type |  | Value | Units |
| Housing | Single Family | 0 | DU |
|  | Multi Family | 0 | DU |
|  | Townhouse | 0 | DU |
|  | Hotel | 0 | Rooms |
|  | Motel | 0 | Rooms |
| Affordable Housing | Family | 0 | DU |
|  | Senior | 0 | DU |
|  | Special Needs | 0 | DU |
|  | Permanent Supportive | 0 | DU |
| Retail | General Retail | 0.000 | ksf |
|  | Furniture Store | 0.000 | ksf |
|  | Pharmacy/Drugstore | 0.000 | ksf |
|  | Supermarket | 0.000 | ksf |
|  | Bank | 0.000 | ksf |
|  | Health Club | 0.000 | ksf |
|  | High-Turnover Sit-Down Restaurant | 0.000 | ksf |
|  | Fast-Food Restaurant | 0.000 | ksf |
|  | Quality Restaurant | 0.000 | ksf |
|  | Auto Repair | 0.000 | ksf |
|  | Home Improvement | 0.000 | ksf |
|  | Free-Standing Discount | 0.000 | ksf |
|  | Movie Theater | 0 | Seats |
| Office | General Office | 523.514 | ksf |
|  | Medical Office | 0.000 | ksf |
| Industrial | Light Industrial | 0.000 | ksf |
|  | Manufacturing | 0.000 | ksf |
|  | Warehousing/Self-Storage | 0.000 | ksf |
| School | University | 0 | Students |
|  | High School | 0 | Students |
|  | Middle School | 0 | Students |
|  | Elementary | 0 | Students |
|  | Private School (K-12) | 0 | Students |

Project and Analysis Overview

| Analysis Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Total Employees: 2,094 |  |  |  |
| Total Population: 0 |  |  |  |
| Proposed Project |  | With Mitigation |  |
| 3,466 | Daily Vehicle Trips | 3,466 | Daily Vehicle Trips |
| 27,418 | Daily VMT | 27,418 | Daily VMT |
| 0 | Household VMT per Capita | 0 | Household VMT per Capita |
| 7.4 | Work VMT per Employee |  | Work VMT per Employee |
| Significant VMT Impact? |  |  |  |
| APC: Central |  |  |  |
| Impact Threshold: 15\% Below APC Average Household $=6.0$ |  |  |  |
|  |  |  |  |
| Work $=7.6$ |  |  |  |
| Proposed Project |  | With Mitigation |  |
| VMT Threshold | Impact | VMT Threshold | Impact |
| Household > 6.0 | No | Household > 6.0 | No |
| Work > 7.6 | No | Work > 7.6 | No |

CITY OF LOS ANGELES VMT CALCULATOR
Report 2: TDM Inputs

TDM Strategy Inputs

| Strategy Type |  | Description | Proposed Project | Mitigations |
| :---: | :---: | :---: | :---: | :---: |
| Parking | Reduce parking supply | City code parking provision (spaces) | 0 | 0 |
|  |  | Actual parking provision (spaces) | 0 | 0 |
|  | Unbundle parking | Monthly cost for parking (\$) | \$0 | \$0 |
|  | Parking cash-out | Employees eligible (\%) | 0\% | 0\% |
|  | Price workplace parking | Daily parking charge (\$) | \$0.00 | \$0.00 |
|  |  | Employees subject to priced parking (\%) | 0\% | 0\% |
|  | Residential area parking permits | Cost of annual permit (\$) | \$0 | \$0 |
| (cont. on following page) |  |  |  |  |

CITY OF LOS ANGELES VMT CALCULATOR
Report 2: TDM Inputs

TDM Strategy Inputs, Cont.

| Strategy Type |  | Description | Proposed Project | Mitigations |
| :---: | :---: | :---: | :---: | :---: |
| Transit | Reduce transit headways | Reduction in headways (increase in frequency) (\%) | 0\% | 0\% |
|  |  | Existing transit mode share (as a percent of total daily trips) (\%) | 0\% | 0\% |
|  |  | Lines within project site improved (<50\%, $>=50 \%$ ) | 0 | 0 |
|  | Implement neighborhood shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees and residents eligible (\%) | 0\% | 0\% |
|  | Transit subsidies | Employees and residents eligible (\%) | 0\% | 0\% |
|  |  | Amount of transit subsidy per passenger (daily equivalent) (\$) | \$0.00 | \$0.00 |
| Education \& Encouragement | Voluntary travel behavior change program | Employees and residents <br> participating (\%) | 0\% | 0\% |
|  | Promotions and marketing | Employees and residents participating (\%) | 0\% | 0\% |
| (cont. on following page) |  |  |  |  |

CITY OF LOS ANGELES VMT CALCULATOR
Report 2: TDM Inputs

| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Commute Trip Reductions | Required commute trip reduction program | Employees participating (\%) | 0\% | 0\% |
|  | Alternative Work Schedules and | Employees participating (\%) | 0\% | 0\% |
|  | Telecommute | Type of program | 0 | 0 |
|  | Employer sponsored vanpool or shuttle | Degree of implementation (low, medium, high) | 0 | 0 |
|  |  | Employees eligible (\%) | 0\% | 0\% |
|  |  | Employer size (small, medium, large) | 0 | 0 |
|  | Ride-share program | Employees eligible (\%) | 0\% | 0\% |
| Shared Mobility | Car share | Car share project setting (Urban, Suburban, All Other) | 0 | 0 |
|  | Bike share | Within 600 feet of existing bike share station - ORimplementing new bike share station (Yes/No) | 0 | 0 |
|  | School carpool program | Level of implementation (Low, Medium, High) | 0 | 0 |
| (cont. on following page) |  |  |  |  |

CITY OF LOS ANGELES VMT CALCULATOR
Report 2: TDM Inputs
Project Name: 8th \& Alameda
Project Scenario: Project
Project Address: 2000 E 8TH ST, 90021

| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Bicycle <br> Infrastructure | Implement/Improve on-street bicycle facility | Provide bicycle facility along site (Yes/No) | 0 | 0 |
|  | Include Bike parking per LAMC | Meets City Bike Parking Code (Yes/No) | Yes | Yes |
|  | Include secure bike parking and showers | Includes indoor bike parking/lockers, showers, \& repair station (Yes/No) | Yes | Yes |
| Neighborhood Enhancement | Traffic calming improvements | Streets with traffic calming <br> improvements (\%) | 0\% | 0\% |
|  |  | Intersections with traffic calming improvements (\%) | 0\% | 0\% |
|  | Pedestrian network improvements | Included (within project and connecting offsite/within project only) | 0 | 0 |

## CITY OF LOS ANGELES VMT CALCULATOR

Report 3: TDM Outputs
Date: March 17, 2021
Project Name: 8th \& Alameda
Project Scenario: Project
Project Address: 2000 E 8TH ST, 90021

## TDM Adjustments by Trip Purpose \& Strategy

Place type: Suburban Center

| Place type: Suburban Center |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Parking | Reduce parking supply | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Parking sections 1-5 |
|  | Unbundle parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Parking cash-out | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Price workplace parking | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Residential area parking permits | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
| Transit | Reduce transit headways | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy Appendix, Transit sections 1-3 |
|  | Implement neighborhood shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Transit subsidies | 0\% | 0\% | 0\% | 0\% | $0 \%$ | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Education \& Encouragement | Voluntary travel behavior change program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Education \& Encouragement sections 1-2 |
|  | Promotions and marketing | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Commute Trip <br> Reductions | Required commute trip reduction program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | TDM Strategy <br> Appendix, Commute Trip Reductions sections 1-4 |
|  | Alternative Work <br> Schedules and Telecommute Program | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Employer sponsored vanpool or shuttle | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
|  | Ride-share program | 0\% | 0\% | 0\% | $0 \%$ | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% | 0\% |  |
| Shared Mobility | Car-share | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Shared Mobility sections 1-3 |
|  | Bike share | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% | 0.00\% |  |
|  | School carpool program | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |  |

CITY OF LOS ANGELES VMT CALCULATOR
Report 3: TDM Outputs

## TDM Adjustments by Trip Purpose \& Strategy, Cont.

| Place type: Suburban Center |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Bicycle Infrastructure | Implement/ Improve on-street bicycle facility | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, Bicycle Infrastructure sections 1-3 |
|  | Include Bike parking per LAMC | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% |  |
|  | Include secure bike parking and showers | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% |  |
| Neighborhood | Traffic calming improvements | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | TDM Strategy Appendix, |
| Enhancement | Pedestrian network improvements | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | Neighborhood Enhancement |

Final Combined \& Maximum TDM Effect

|  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Proposed | Mitigated |
| COMBINED TOTAL | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% |
| MAX. TDM EFFECT | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% |


| $=\mathbf{M i n i m u m ~ ( X \% , ~ 1 - [ ( 1 - A ) * ( 1 - B ) . . . ] ) ~}$ |  |  |
| :---: | :---: | :---: |
| where X\%= |  |  |$]$

Note: (1-[(1-A)*(1-B)...]) reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,....). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment $G$ ) for further discussion of dampening.

| Home Based Work Production | MXD Methodology - Project Without TDM |  |  |  | Unadjusted VMT | MXD VMT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unadjusted Trips | MXD Adjustment | MXD Trips | Average Trip Length |  |  |
|  | 0 | 0.0\% | 0 | 7.1 | 0 | 0 |
| Home Based Other Production | 0 | 0.0\% | 0 | 5.1 | 0 | 0 |
| Non-Home Based Other Production | 548 | -4.4\% | 524 | 8.3 | 4,548 | 4,349 |
| Home-Based Work Attraction | 2,429 | -22.1\% | 1,891 | 8.3 | 20,161 | 15,695 |
| Home-Based Other Attraction | 1,095 | -47.8\% | 572 | 6.9 | 7,556 | 3,947 |
| Non-Home Based Other Attraction | 548 | -4.4\% | 524 | 7.2 | 3,946 | 3,773 |


| MXD Methodology with TDM Measures |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Proposed Project |  |  | Project with Mitigation Measures |  |  |
|  | TDM Adjustment | Project Trips | Project VMT | TDM Adjustment | Mitigated Trips | Mitigated VMT |
| Home Based Work Production | -1.2\% |  |  | -1.2\% |  |  |
| Home Based Other Production | -1.2\% |  |  | -1.2\% |  |  |
| Non-Home Based Other Production | -1.2\% | 517 | 4,295 | -1.2\% | 517 | 4,295 |
| Home-Based Work Attraction | -1.2\% | 1,867 | 15,499 | -1.2\% | 1,867 | 15,499 |
| Home-Based Other Attraction | -1.2\% | 565 | 3,898 | -1.2\% | 565 | 3,898 |
| Non-Home Based Other Attraction | -1.2\% | 517 | 3,726 | -1.2\% | 517 | 3,726 |

## MXD VMT Methodology Per Capita \& Per Employee

Total Population: 0
Total Employees: 2,094
APC: Central

|  |  | APC: Central |  |
| :--- | :---: | :---: | :---: |
| Total Home Based Production VMT | Proposed Project | 0 | Project with Mitigation Measures |
| Total Home Based Work Attraction VMT | $\mathbf{1 5 , 4 9}$ | $\mathbf{0}$ |  |
| Total Home Based VMT Per Capita | $\mathbf{0 . 0}$ | $\mathbf{1 5 , 4 9 9}$ |  |
| Total Work Based VMT Per Employee | $\mathbf{7 . 4}$ | $\mathbf{0 . 0}$ |  |

## Appendix E

## Caltrans Freeway Off-Ramp Analysis Worksheets

TABLE E-1
FREEWAY OFF-RAMP QUEUING SAFETY ANALYSIS

| Off-ramp | Ramp Storage Length |  |  | Peak <br> Hour | 95th Percentile Queue |  | Exceeds Ramp Storage [b] | Project Adds 50 Feet [c] | Requires Speed Analysis [d] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ramp | Auxiliary Lane | Total [a] |  | Future without Project Conditions | Future with Project Conditions |  |  |  |
| I-10 West at Enterprise Street | 800 | 0 | 800 | AM | 208 | 398 | NO | YES | NO |
|  |  |  |  | PM | 305 | 455 | NO | YES | NO |

## Notes:

Ramp storage length and 95th percentile queue reported in feet.
[a] Includes ramp length (from stop line to gore point) as well as half the length of any auxiliary lane, if provided.
[b] Based on Future with Project Conditions queue.
[c] The difference in queue length between Future with Project Conditions and Future without Project Conditions.
[d] Speed differential analysis is required if the ramp storage length is exceeded and the Project adds 50 or more feet to the queue length.



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 18 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement EBL | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | $\uparrow$ |  |  | $\uparrow$ |  |  |
| Traffic Vol, veh/h | 5 | 0 | 0 | 88 | 0 | 398 | 0 | 168 | 0 | 0 | 761 | 0 |  |
| Future Vol, veh/h |  | 0 | 0 | 88 | 0 | 398 | 0 | 168 | 0 | 0 | 761 | 0 |  |
| Conflicting Peds, \#/hr |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control S | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized |  | - | None | - | - | None | - | - | None | - | - | None |  |
| Storage Length |  | - | - | - | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# |  | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% |  | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |  |
| Heavy Vehicles, \% |  | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow |  | 0 | 0 | 96 | 0 | 433 | 0 | 183 | 0 | 0 | 827 | 0 |  |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 31.7 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations |  | ¢ |  |  | ¢ |  |  | $\uparrow$ |  |  | $\hat{1}$ |  |  |
| Traffic Vol, veh/h | 3 | 0 | 7 | 138 | 11 | 349 | 0 | 205 | 0 | 0 | 576 | 0 |  |
| Future Vol, veh/h | 3 | 0 | 7 | 138 | 11 | 349 | 0 | 205 | 0 | 0 | 576 | 0 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized | - | - | None | - | - | None | - | - | None | - |  | None |  |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |  |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 3 | 0 | 8 | 150 | 12 | 379 | 0 | 223 | 0 | 0 | 626 | 0 |  |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 35.2 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations |  | ¢ |  |  | $\uparrow$ |  |  | $\uparrow$ |  |  | $\hat{\beta}$ |  |  |
| Traffic Vol, veh/h | 5 | 0 | 10 | 104 | 5 | 398 | 0 | 184 | 0 | 0 | 782 | 0 |  |
| Future Vol, veh/h | 5 | 0 | 10 | 104 | 5 | 398 | 0 | 184 | 0 | 0 | 782 | 0 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control Stor | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |  |
| RT Channelized | - | - | None |  |
| Storage Length | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |  |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 5 | 0 | 11 | 113 | 5 | 433 | 0 | 200 | 0 | 0 | 850 | 0 |  |



## Appendix F

HCM Analysis Worksheets

|  | 4 |  | \％ | 7 |  | 4 | 4 | $\dagger$ | $p$ |  | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{*}$ | 中 ${ }^{\text {P }}$ |  |
| Traffic Volume（veh／h） | 60 | 321 | 85 | 123 | 687 | 102 | 113 | 645 | 96 | 132 | 904 | 173 |
| Future Volume（veh／h） | 60 | 321 | 85 | 123 | 687 | 102 | 113 | 645 | 96 | 132 | 904 | 173 |
| Initial Q（Qb），veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h | 65 | 349 | 92 | 134 | 747 | 111 | 123 | 701 | 104 | 143 | 983 | 188 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 181 | 1003 | 261 | 333 | 1116 | 166 | 247 | 1080 | 160 | 342 | 1510 | 288 |
| Arrive On Green | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.11 | 0.11 | 0.11 | 0.19 | 1.00 | 1.00 |
| Sat Flow，veh／h | 644 | 2791 | 726 | 948 | 3103 | 461 | 479 | 3104 | 460 | 1781 | 2976 | 568 |
| Grp Volume（v），veh／h | 65 | 221 | 220 | 134 | 428 | 430 | 123 | 401 | 404 | 143 | 586 | 585 |
| Grp Sat Flow（s），veh／h／ln | 644 | 1777 | 1740 | 948 | 1777 | 1787 | 479 | 1777 | 1788 | 1781 | 1777 | 1768 |
| Q Serve（g＿s），s | 8.5 | 8.2 | 8.4 | 10.9 | 18.3 | 18.3 | 22.3 | 19.4 | 19.5 | 4.1 | 0.0 | 0.0 |
| Cycle Q Clear（g＿c），s | 26.8 | 8.2 | 8.4 | 19.2 | 18.3 | 18.3 | 22.3 | 19.4 | 19.5 | 4.1 | 0.0 | 0.0 |
| Prop In Lane | 1.00 |  | 0.42 | 1.00 |  | 0.26 | 1.00 |  | 0.26 | 1.00 |  | 0.32 |
| Lane Grp Cap（c），veh／h | 181 | 639 | 625 | 333 | 639 | 643 | 247 | 618 | 622 | 342 | 901 | 897 |
| V／C Ratio（X） | 0.36 | 0.35 | 0.35 | 0.40 | 0.67 | 0.67 | 0.50 | 0.65 | 0.65 | 0.42 | 0.65 | 0.65 |
| Avail Cap（c＿a），veh／h | 181 | 639 | 625 | 333 | 639 | 643 | 247 | 618 | 622 | 355 | 901 | 897 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 2.00 | 2.00 | 2.00 |
| Upstream Filter（I） | 0.97 | 0.97 | 0.97 | 1.00 | 1.00 | 1.00 | 0.94 | 0.94 | 0.94 | 0.84 | 0.84 | 0.84 |
| Uniform Delay（d），s／veh | 35.6 | 21.1 | 21.1 | 28.2 | 24.3 | 24.3 | 35.9 | 34.6 | 34.6 | 15.2 | 0.0 | 0.0 |
| Incr Delay（d2），s／veh | 5.3 | 1.4 | 1.5 | 3.6 | 5.5 | 5.5 | 6.6 | 4.9 | 4.9 | 0.7 | 3.1 | 3.1 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／ln | 2.9 | 6.4 | 6.4 | 4.9 | 13.1 | 13.2 | 5.9 | 15.0 | 15.1 | 2.7 | 1.4 | 1.4 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh | 41.0 | 22.5 | 22.7 | 31.8 | 29.8 | 29.8 | 42.5 | 39.5 | 39.5 | 15.9 | 3.1 | 3.1 |
| LnGrp LOS | D | C | C | C | C | C | D | D | D | B | A | A |
| Approach Vol，veh／h |  | 506 |  |  | 992 |  |  | 928 |  |  | 1314 |  |
| Approach Delay，s／veh |  | 24.9 |  |  | 30.1 |  |  | 39.9 |  |  | 4.5 |  |
| Approach LOS |  | C |  |  | C |  |  | D |  |  | A |  |
| Timer－Assigned Phs |  | 2 |  | 4 | 5 | 6 |  | 8 |  |  |  |  |
| Phs Duration（G＋Y＋Rc），s |  | 51.3 |  | 38.7 | 14.3 | 37.0 |  | 38.7 |  |  |  |  |
| Change Period（Y＋Rc），s |  | ＊ 5.7 |  | ＊ 6.3 | 5.6 | ＊ 5.7 |  | ＊ 6.3 |  |  |  |  |
| Max Green Setting（Gmax），s |  | ＊ 44 |  | ＊ 32 | 9.4 | ＊ 31 |  | ＊ 31 |  |  |  |  |
| Max Q Clear Time（g＿c＋11），s |  | 2.0 |  | 21.2 | 6.1 | 24.3 |  | 28.8 |  |  |  |  |
| Green Ext Time（p＿c），s |  | 10.6 |  | 4.5 | 0.1 | 3.6 |  | 0.6 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 22.8 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |




| Approach | EB | WB | NB | SB |
| :--- | :---: | :---: | :---: | ---: |
| HCM Control Delay, s | 0.3 | 0.2 | 19 | 19.6 |
| HCM LOS |  | $C$ | C |  |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 265 | $* 670$ | - | -1071 | - | -353 |  |
| HCM Lane V/C Ratio | 0.033 | 0.023 | - | -0.036 | - | -0.305 |  |
| HCM Control Delay (s) | 19 | 10.5 | - | - | 8.5 | - | -19.6 |
| HCM Lane LOS | C | B | - | - | A | - | - |
| HCM 95th \%otile Q(veh) | 0.1 | 0.1 | - | - | 0.1 | - | - |

## Notes

$\sim$ : Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined $\quad$ : All major volume in platoon

HCM 6th Signalized Intersection Summary
5: Olympic BI \& Mateo St
03/17/2021

|  | 4 | $\rightarrow$ | 7 | 7 | $\downarrow$ | 4 | 4 | 4 | 7 | * | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{1}$ | 中 ${ }^{\text {a }}$ |  |  | \& |  |  | $\uparrow$ | F |
| Traffic Volume (veh/h) | 70 | 396 | 4 | 5 | 1225 | 88 | 1 | 3 | 5 | 181 | 1 | 366 |
| Future Volume (veh/h) | 70 | 396 | 4 | 5 | 1225 | 88 | 1 | 3 | 5 | 181 | 1 | 366 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 76 | 430 | 4 | 5 | 1332 | 96 | 1 | 3 | 5 | 197 | 1 | 398 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 210 | 2185 | 20 | 607 | 2036 | 146 | 71 | 184 | 262 | 488 | 2 | 460 |
| Arrive On Green | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
| Sat Flow, veh/h | 375 | 3608 | 34 | 954 | 3362 | 242 | 90 | 633 | 904 | 1407 | 7 | 1585 |
| Grp Volume(v), veh/h | 76 | 212 | 222 | 5 | 702 | 726 | 9 | 0 | 0 | 198 | 0 | 398 |
| Grp Sat Flow(s), veh/h/ln | 375 | 1777 | 1864 | 954 | 1777 | 1827 | 1627 | 0 | 0 | 1414 | 0 | 1585 |
| Q Serve(g_s), s | 15.0 | 4.8 | 4.8 | 0.2 | 23.2 | 23.4 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 21.4 |
| Cycle Q Clear(g_c), s | 38.4 | 4.8 | 4.8 | 5.0 | 23.2 | 23.4 | 0.3 | 0.0 | 0.0 | 10.3 | 0.0 | 21.4 |
| Prop In Lane | 1.00 |  | 0.02 | 1.00 |  | 0.13 | 0.11 |  | 0.56 | 0.99 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 210 | 1076 | 1129 | 607 | 1076 | 1106 | 516 | 0 | 0 | 490 | 0 | 460 |
| V/C Ratio(X) | 0.36 | 0.20 | 0.20 | 0.01 | 0.65 | 0.66 | 0.02 | 0.00 | 0.00 | 0.40 | 0.00 | 0.87 |
| Avail Cap(c_a), veh/h | 210 | 1076 | 1129 | 607 | 1076 | 1106 | 516 | 0 | 0 | 490 | 0 | 460 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 24.2 | 7.9 | 7.9 | 9.1 | 11.6 | 11.6 | 22.8 | 0.0 | 0.0 | 26.3 | 0.0 | 30.3 |
| Incr Delay (d2), s/veh | 4.8 | 0.4 | 0.4 | 0.0 | 3.1 | 3.0 | 0.1 | 0.0 | 0.0 | 2.5 | 0.0 | 19.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(95\%),veh/ln | 2.8 | 3.2 | 3.4 | 0.1 | 13.9 | 14.3 | 0.3 | 0.0 | 0.0 | 6.8 | 0.0 | 15.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 29.0 | 8.4 | 8.3 | 9.1 | 14.7 | 14.7 | 22.9 | 0.0 | 0.0 | 28.8 | 0.0 | 49.5 |
| LnGrp LOS | C | A | A | A | B | B | C | A | A | C | A | D |
| Approach Vol, veh/h |  | 510 |  |  | 1433 |  |  | 9 |  |  | 596 |  |
| Approach Delay, s/veh |  | 11.4 |  |  | 14.6 |  |  | 22.9 |  |  | 42.6 |  |
| Approach LOS |  | B |  |  | B |  |  | C |  |  | D |  |
| Timer - Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $G+Y+R c$ ), $s$ |  | 59.0 |  | 31.0 |  | 59.0 |  | 31.0 |  |  |  |  |
| Change Period (Y+Rc), s |  | * 4.5 |  | 4.9 |  | * 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting (Gmax), s |  | * 55 |  | 26.1 |  | * 55 |  | 26.1 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 25.4 |  | 23.4 |  | 40.4 |  | 2.3 |  |  |  |  |
| Green Ext Time (p_c), s |  | 12.7 |  | 0.8 |  | 3.3 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 20.6 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |



## Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ | 虫 |  | ${ }^{1}$ | 嘲 |  |  | \$ |  |  | * |  |
| Traffic Vol, veh/h | 12 | 1005 | 4 | 24 | 1102 | 8 | 2 | 0 | 12 | 26 | 0 | 187 |
| Future Vol, veh/h | 12 | 1005 | 4 | 24 | 1102 | 8 | 2 | 0 | 12 | 26 | 0 | 187 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 124 | - | - | 80 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 13 | 1092 | 4 | 26 | 1198 | 9 | 2 | 0 | 13 | 28 | 0 | 203 |



| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Capacity (veh/h) | 301 | *930 | - | - | 633 | - | 402 |  |
| HCM Lane V/C Ratio | 0.051 | 0.014 | - | - | 0.041 | - | - 0.576 |  |
| HCM Control Delay (s) | 17.6 | 8.9 | - | - | 10.9 | - | 25.4 |  |
| HCM Lane LOS | C | A | - | - | B | - | D |  |
| HCM 95th \%tile Q(veh) | 0.2 | 0 |  |  | 0.1 | - | 3.5 |  |
| Notes |  |  |  |  |  |  |  |  |
| $\sim$ : Volume exceeds capacity | \$: Delay exceeds 300s |  |  |  | +: Computation Not Defined |  |  | *: All major volume in platoon |

HCM 6th Signalized Intersection Summary
5: Olympic BI \& Mateo St

|  | 4 | $\rightarrow$ | $\checkmark$ | 7 |  | 4 | 4 | $\dagger$ | $p$ | ( | $\frac{1}{\dagger}$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中t |  | ${ }^{1}$ | 中t |  |  | $\uparrow$ |  |  | $\uparrow$ | 7 |
| Traffic Volume (veh/h) | 74 | 959 | 5 | 6 | 687 | 86 | 1 | 0 | 4 | 294 | 1 | 429 |
| Future Volume (veh/h) | 74 | 959 | 5 | 6 | 687 | 86 | 1 | 0 | 4 | 294 | 1 | 429 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 80 | 1042 | 5 | 7 | 747 | 93 | 1 | 0 | 4 | 320 | 1 | 466 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 274 | 1672 | 8 | 211 | 1466 | 182 | 48 | 29 | 115 | 258 | 1 | 689 |
| Arrive On Green | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.43 | 0.00 | 0.43 | 0.43 | 0.43 | 0.43 |
| Sat Flow, veh/h | 655 | 3627 | 17 | 539 | 3180 | 396 | 0 | 66 | 264 | 410 | 1 | 1585 |
| Grp Volume(v), veh/h | 80 | 511 | 536 | 7 | 417 | 423 | 5 | 0 | 0 | 321 | 0 | 466 |
| Grp Sat Flow(s), veh/h/ln | 655 | 1777 | 1867 | 539 | 1777 | 1799 | 330 | 0 | 0 | 411 | 0 | 1585 |
| Q Serve(g_s), s | 8.8 | 19.6 | 19.6 | 0.9 | 14.9 | 14.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21.2 |
| Cycle Q Clear(g_c), s | 23.7 | 19.6 | 19.6 | 20.4 | 14.9 | 14.9 | 39.1 | 0.0 | 0.0 | 39.1 | 0.0 | 21.2 |
| Prop In Lane | 1.00 |  | 0.01 | 1.00 |  | 0.22 | 0.20 |  | 0.80 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 274 | 819 | 861 | 211 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| V/C Ratio(X) | 0.29 | 0.62 | 0.62 | 0.03 | 0.51 | 0.51 | 0.03 | 0.00 | 0.00 | 1.24 | 0.00 | 0.68 |
| Avail Cap(c_a), veh/h | 274 | 819 | 861 | 211 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 25.4 | 18.3 | 18.3 | 26.1 | 17.1 | 17.1 | 19.8 | 0.0 | 0.0 | 31.5 | 0.0 | 20.4 |
| Incr Delay (d2), s/veh | 2.7 | 3.6 | 3.4 | 0.3 | 2.3 | 2.2 | 0.3 | 0.0 | 0.0 | 136.9 | 0.0 | 5.3 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(95\%),veh/ln | 2.8 | 13.1 | 13.6 | 0.2 | 10.4 | 10.5 | 0.1 | 0.0 | 0.0 | 25.1 | 0.0 | 13.2 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 28.1 | 21.9 | 21.7 | 26.4 | 19.3 | 19.3 | 20.1 | 0.0 | 0.0 | 168.4 | 0.0 | 25.7 |
| LnGrp LOS | C | C | C | C | B | B | C | A | A | F | A | C |
| Approach Vol, veh/h |  | 1127 |  |  | 847 |  |  | 5 |  |  | 787 |  |
| Approach Delay, s/veh |  | 22.3 |  |  | 19.4 |  |  | 20.1 |  |  | 83.9 |  |
| Approach LOS |  | C |  |  | B |  |  | C |  |  | F |  |
| Timer - Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s |  | 46.0 |  | 44.0 |  | 46.0 |  | 44.0 |  |  |  |  |
| Change Period (Y+Rc), s |  | * 4.5 |  | 4.9 |  | * 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting (Gmax), s |  | * 42 |  | 39.1 |  | * 42 |  | 39.1 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 22.4 |  | 41.1 |  | 25.7 |  | 41.1 |  |  |  |  |
| Green Ext Time (p_c), s |  | 5.4 |  | 0.0 |  | 6.9 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 38.9 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | D |  |  |  |  |  |  |  |  |  |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |




| Major/Minor | Major1 |  | Major2 |  | Minor1 |  |  |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 1746 | 0 | 0 | 488 | 0 | 0 | 1429 | 2338 | 244 | 2057 |
| Stage 1 | - | - | - | - | - | - | 516 | 516 | - | 1785 |
| Stage 2 | - | - | - | - | - | - | 913 | 1822 | - | 272 |
| Critical Hdwy | 4.14 | - | - | 4.14 | - |  | 7.54 | 6.54 | 6.94 | 7.54 |
| Critical Hdwy Stg 1 | - | - | - | - | - |  | 6.54 | 5.54 | - | 6.54 |
| Critical Hdwy Stg 2 | - | - | - | - | - |  | 6.54 | 5.54 | - | 6.54 |
| Follow-up Hdwy | 2.22 | - | - | 2.22 | - | - | 3.52 | 4.02 | 3.32 | 3.52 |
| Pot Cap-1 Maneuver | *670 | - | - | 1071 | - | - | *422 | 57 | 757 | 131 |
| Stage 1 | - | - | - | - | - | - | *510 | 533 | - | 390 |
| Stage 2 | - | - | - | - | - | - | *422 | 319 | - | 711 |
| Platoon blocked, \% | 1 | - | - |  | - | - | 1 | 1 |  | 1 |
| Mov Cap-1 Maneuver | *670 | - | - | 1071 | - |  | *307 | 54 | 757 | 122 |
| Mov Cap-2 Maneuver | - | - | - | - | - |  | *307 | 54 | - | 122 |
| Stage 1 | - | - | - | - | - |  | *499 | 521 | - | 381 |
| Stage 2 | - | - | - | - | - | - | *316 | 308 | - | 690 |
|  |  |  |  |  |  |  |  |  |  |  |
| Approach | EB |  |  | WB |  |  | NB |  |  | SB |
| HCM Control Delay, s | 0.3 |  |  | 0.2 |  |  | 20.7 |  |  | 27.1 |
| HCM LOS |  |  |  |  |  |  | C |  |  | D |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 238 | $* 670$ | - | -1071 | - | - | 282 |
| HCM Lane V/C Ratio | 0.037 | 0.023 | - | -0.036 | - | -0.432 |  |
| HCM Control Delay (s) | 20.7 | 10.5 | - | - | 8.5 | - | - |
| HCM Lane LOS | C | B | - | - | A | - | - |
| HCM 95th \%tile Q(veh) | 0.1 | 0.1 | - | - | 0.1 | - | - |
|  |  |  |  |  |  |  |  |
| Notes |  |  |  | 2.1 |  |  |  |
| $\sim:$ Volume exceeds capacity | $\$:$ Delay exceeds 300s | $+:$ Computation Not Defined $\quad *:$ All major volume in platoon |  |  |  |  |  |

HCM 6th Signalized Intersection Summary
5: Olympic BI \& Mateo St
03/22/2021

|  | 4 |  | \% | 7 | $\nsim$ | 4 | 4 | $\dagger$ | 7 | ( | $\downarrow$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中t |  | ${ }^{7}$ | 中t |  |  | \& |  |  | $\uparrow$ | F |
| Traffic Volume (veh/h) | 73 | 406 | 4 | 5 | 1251 | 88 | 1 | 3 | 5 | 181 | 1 | 392 |
| Future Volume (veh/h) | 73 | 406 | 4 | 5 | 1251 | 88 | 1 | 3 | 5 | 181 | 1 | 392 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 79 | 441 | 4 | 5 | 1360 | 96 | 1 | 3 | 5 | 197 | 1 | 426 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 203 | 2185 | 20 | 600 | 2039 | 144 | 70 | 183 | 262 | 488 | 2 | 460 |
| Arrive On Green | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
| Sat Flow, veh/h | 365 | 3609 | 33 | 945 | 3368 | 237 | 89 | 632 | 902 | 1407 | 7 | 1585 |
| Grp Volume(v), veh/h | 79 | 217 | 228 | 5 | 716 | 740 | 9 | 0 | 0 | 198 | 0 | 426 |
| Grp Sat Flow(s), veh/h/ln | 365 | 1777 | 1864 | 945 | 1777 | 1828 | 1623 | 0 | 0 | 1414 | 0 | 1585 |
| Q Serve(g_s), s | 16.5 | 4.9 | 4.9 | 0.2 | 23.9 | 24.2 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 23.5 |
| Cycle Q Clear(g_c), s | 40.6 | 4.9 | 4.9 | 5.2 | 23.9 | 24.2 | 0.3 | 0.0 | 0.0 | 10.3 | 0.0 | 23.5 |
| Prop In Lane | 1.00 |  | 0.02 | 1.00 |  | 0.13 | 0.11 |  | 0.56 | 0.99 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 203 | 1076 | 1129 | 600 | 1076 | 1107 | 515 | 0 | 0 | 490 | 0 | 460 |
| V/C Ratio(X) | 0.39 | 0.20 | 0.20 | 0.01 | 0.67 | 0.67 | 0.02 | 0.00 | 0.00 | 0.40 | 0.00 | 0.93 |
| Avail Cap(c_a), veh/h | 203 | 1076 | 1129 | 600 | 1076 | 1107 | 515 | 0 | 0 | 490 | 0 | 460 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 25.2 | 8.0 | 8.0 | 9.1 | 11.7 | 11.8 | 22.8 | 0.0 | 0.0 | 26.3 | 0.0 | 31.0 |
| Incr Delay (d2), s/veh | 5.5 | 0.4 | 0.4 | 0.0 | 3.3 | 3.2 | 0.1 | 0.0 | 0.0 | 2.5 | 0.0 | 27.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(95\%),veh/In | 3.0 | 3.3 | 3.5 | 0.1 | 14.3 | 14.7 | 0.3 | 0.0 | 0.0 | 6.8 | 0.0 | 17.8 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 30.8 | 8.4 | 8.4 | 9.2 | 15.0 | 15.0 | 22.9 | 0.0 | 0.0 | 28.8 | 0.0 | 58.2 |
| LnGrp LOS | C | A | A | A | B | B | C | A | A | C | A | E |
| Approach Vol, veh/h |  | 524 |  |  | 1461 |  |  | 9 |  |  | 624 |  |
| Approach Delay, s/veh |  | 11.8 |  |  | 15.0 |  |  | 22.9 |  |  | 48.9 |  |
| Approach LOS |  | B |  |  | B |  |  | C |  |  | D |  |
| Timer - Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 59.0 |  | 31.0 |  | 59.0 |  | 31.0 |  |  |  |  |
| Change Period (Y+Rc), s |  | * 4.5 |  | 4.9 |  | * 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting (Gmax), s |  | * 55 |  | 26.1 |  | * 55 |  | 26.1 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 26.2 |  | 25.5 |  | 42.6 |  | 2.3 |  |  |  |  |
| Green Ext Time (p_c), s |  | 12.9 |  | 0.2 |  | 3.1 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 22.4 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.




| Major/Minor | Major1 | Major2 |  | Minor2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | - | 0 | - | 0 | 1 | 1 |  |
| Stage 1 | - | - | - |  | 1 | - |  |
| Stage 2 | - | - | - |  | 0 | - |  |
| Critical Hdwy | - | - | - |  | 6.42 | 6.22 |  |
| Critical Hdwy Stg 1 | - | - | - |  | 5.42 |  |  |
| Critical Hdwy Stg 2 | - | - | - |  | 5.42 |  |  |
| Follow-up Hdwy | - | - | - |  | 3.518 | 3.318 |  |
| Pot Cap-1 Maneuver | 0 | - | - | 0 | 1022 | 1084 |  |
| Stage 1 | 0 | - | - | 0 | 1022 | - |  |
| Stage 2 | 0 | - | - | 0 | - |  |  |
| Platoon blocked, \% |  | - | - |  |  |  |  |
| Mov Cap-1 Maneuver | - | - | - |  | 1022 | 1084 |  |
| Mov Cap-2 Maneuver | - | - | - |  | 1022 | - |  |
| Stage 1 | - | - | - |  | 1022 | - |  |
| Stage 2 | - | - | - |  | - | - |  |


|  | EB | WB | SB |
| :--- | ---: | ---: | ---: |
| Approach | 0 | 8.5 |  |
| HCM Control Delay, S | 0 | 0 | A |


| Minor Lane/Major Mvmt | EBT | WBT SBLn1 |
| :--- | ---: | ---: |
| Capacity (veh/h) | - | -1065 |
| HCM Lane V/C Ratio | - | -0.042 |
| HCM Control Delay (s) | - | -8.5 |
| HCM Lane LOS | - | - |
| HCM 95th \%tile Q(veh) | - | - |
| A | 0.1 |  |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.8 |  |  |  |  |  |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | 个 |  |  | 个 | Mr |  |
| Traffic Vol, veh/h | 109 | 0 | 0 | 290 | 19 | 15 |
| Future Vol, veh/h | 109 | 0 | 0 | 290 | 19 | 15 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 118 | 0 | 0 | 315 | 21 | 16 |



|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


| 4 |  |  | 4 |  |  | 4 | 9 | \％ |  | $\frac{1}{1}$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 虫 |  | ${ }^{1}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{1}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{1}$ | 44 | 「 |
| Traffic Volume（veh／h） 100 | 1170 | 63 | 99 | 1142 | 46 | 83 | 602 | 157 | 131 | 783 | 220 |
| Future Volume（veh／h） 100 | 1170 | 63 | 99 | 1142 | 46 | 83 | 602 | 157 | 131 | 783 | 220 |
| Initial Q（Qb），veh 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h 109 | 1272 | 68 | 108 | 1241 | 50 | 90 | 654 | 171 | 142 | 851 | 0 |
| Peak Hour Factor 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h 99 | 1323 | 71 | 89 | 1342 | 54 | 298 | 1382 | 361 | 406 | 1761 |  |
| Arrive On Green 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.99 | 0.99 | 0.99 | 0.50 | 0.50 | 0.00 |
| Sat Flow，veh／h 427 | 3431 | 183 | 408 | 3482 | 140 | 648 | 2788 | 728 | 664 | 3554 | 1585 |
| Grp Volume（v），veh／h 109 | 658 | 682 | 108 | 633 | 658 | 90 | 417 | 408 | 142 | 851 | 0 |
| Grp Sat Flow（s），veh／h／ln 427 | 1777 | 1837 | 408 | 1777 | 1845 | 648 | 1777 | 1739 | 664 | 1777 | 1585 |
| Q Serve（g＿s），s 4.0 | 32.5 | 32.6 | 2.1 | 30.6 | 30.7 | 5.7 | 0.4 | 0.4 | 12.4 | 14.3 | 0.0 |
| Cycle Q Clear（g＿c），s 34.7 | 32.5 | 32.6 | 34.7 | 30.6 | 30.7 | 19.9 | 0.4 | 0.4 | 12.8 | 14.3 | 0.0 |
| Prop In Lane 1.00 |  | 0.10 | 1.00 |  | 0.08 | 1.00 |  | 0.42 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h 99685 | 685 | 708 | 89 | 685 | 711 | 298 | 881 | 862 | 406 | 1761 |  |
| V／C Ratio（X） 1.10 | 0.96 | 0.96 | 1.21 | 0.92 | 0.93 | 0.30 | 0.47 | 0.47 | 0.35 | 0.48 |  |
| Avail Cap（c＿a），veh／h 99 | 685 | 708 | 89 | 685 | 711 | 298 | 881 | 862 | 406 | 1761 |  |
| HCM Platoon Ratio 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（l） 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.78 | 0.78 | 0.78 | 1.00 | 1.00 | 0.00 |
| Uniform Delay（d），s／veh 44.6 | 27.0 | 27.0 | 44.9 | 26.4 | 26.4 | 3.5 | 0.2 | 0.2 | 14.8 | 15.1 | 0.0 |
| Incr Delay（d2），s／veh 119.6 | 24.9 | 24.9 | 161.9 | 18.3 | 18.0 | 2.0 | 1.4 | 1.5 | 2.4 | 1.0 | 0.0 |
| Initial Q Delay（d3），s／veh 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／IT9．8 | 24.7 | 25.5 | 10.8 | 22.2 | 22.9 | 0.8 | 0.8 | 0.8 | 3.7 | 9.6 | 0.0 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh 164.2 | 51.9 | 51.9 | 206.8 | 44.7 | 44.4 | 5.5 | 1.6 | 1.7 | 17.2 | 16.0 | 0.0 |
| LnGrp LOS F | D | D | F | D | D | A | A | A | B | B |  |
| Approach Vol，veh／h | 1449 |  |  | 1399 |  |  | 915 |  |  | 993 | A |
| Approach Delay，s／veh | 60.4 |  |  | 57.1 |  |  | 2.0 |  |  | 16.2 |  |
| Approach LOS | E |  |  | E |  |  | A |  |  | B |  |
| Timer－Assigned Phs | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration（G＋Y＋Rc），s | 50.0 |  | 40.0 |  | 50.0 |  | 40.0 |  |  |  |  |
| Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s | ＊ 5.4 |  | ＊ 5.3 |  | ＊ 5.4 |  | ＊ 5.3 |  |  |  |  |
| Max Green Setting（Gmax），s | ＊ 45 |  | ＊ 35 |  | ＊ 45 |  | ＊ 35 |  |  |  |  |
| Max Q Clear Time（g＿c＋11），s | 16.3 |  | 36.7 |  | 21.9 |  | 36.7 |  |  |  |  |
| Green Ext Time（p＿c），s | 8.4 |  | 0.0 |  | 6.5 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay 38.9 |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS D |  |  |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |
| ＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier． |  |  |  |  |  |  |  |  |  |  |  |
| Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay． |  |  |  |  |  |  |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 7.7 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{1}$ | 中 ${ }^{\text {+ }}$ |  | ${ }^{1}$ | 性 |  |  | \& |  |  | * |  |
| Traffic Vol, veh/h | 12 | 1005 | 4 | 24 | 1105 | 40 | 2 | 0 | 12 | 59 | 0 | 187 |
| Future Vol, veh/h | 12 | 1005 | 4 | 24 | 1105 | 40 | 2 | 0 | 12 | 59 | 0 | 187 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 124 | - | - | 80 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 13 | 1092 | 4 | 26 | 1201 | 43 | 2 | 0 | 13 | 64 | 0 | 203 |



| Approach | EB | WB | NB | SB |
| :--- | :---: | :---: | :---: | :---: |
| HCM Control Delay, s | 0.1 | 0.2 | 17.6 | 74.6 |
| HCM LOS |  |  | C | F |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 300 | $* 930$ | - | -633 | - | -289 |  |
| HCM Lane V/C Ratio | 0.051 | 0.014 | - | -0.041 | - | -0.925 |  |
| HCM Control Delay (s) | 17.6 | 8.9 | - | -10.9 | - | -74.6 |  |
| HCM Lane LOS | C | A | - | - | B | - | - |
| HCM 95th \%otile Q(veh) | 0.2 | 0 | - | - | 0.1 | - | - |

[^8]HCM 6th Signalized Intersection Summary
5: Olympic BI \& Mateo St
03/22/2021

|  | 4 |  | \% | 7 |  | 4 | 4 | $\dagger$ | 7 | ( | $\downarrow$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  |  | * |  |  | $\uparrow$ | F |
| Traffic Volume (veh/h) | 82 | 985 | 5 | 6 | 705 | 86 | 1 | 0 | 4 | 294 | 1 | 447 |
| Future Volume (veh/h) | 82 | 985 | 5 | 6 | 705 | 86 | 1 | 0 | 4 | 294 | 1 | 447 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 89 | 1071 | 5 | 7 | 766 | 93 | 1 | 0 | 4 | 320 | 1 | 486 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 267 | 1673 | 8 | 203 | 1471 | 179 | 48 | 29 | 115 | 258 | 1 | 689 |
| Arrive On Green | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.43 | 0.00 | 0.43 | 0.43 | 0.43 | 0.43 |
| Sat Flow, veh/h | 643 | 3627 | 17 | 524 | 3190 | 387 | 0 | 66 | 264 | 410 | 1 | 1585 |
| Grp Volume(v), veh/h | 89 | 525 | 551 | 7 | 427 | 432 | 5 | 0 | 0 | 321 | 0 | 486 |
| Grp Sat Flow(s), veh/h/ln | 643 | 1777 | 1867 | 524 | 1777 | 1801 | 330 | 0 | 0 | 411 | 0 | 1585 |
| Q Serve(g_s), s | 10.3 | 20.3 | 20.3 | 0.9 | 15.3 | 15.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.5 |
| Cycle Q Clear(g_c), s | 25.6 | 20.3 | 20.3 | 21.3 | 15.3 | 15.3 | 39.1 | 0.0 | 0.0 | 39.1 | 0.0 | 22.5 |
| Prop In Lane | 1.00 |  | 0.01 | 1.00 |  | 0.22 | 0.20 |  | 0.80 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 267 | 819 | 861 | 203 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| V/C Ratio(X) | 0.33 | 0.64 | 0.64 | 0.03 | 0.52 | 0.52 | 0.03 | 0.00 | 0.00 | 1.24 | 0.00 | 0.71 |
| Avail Cap(c_a), veh/h | 267 | 819 | 861 | 203 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 26.3 | 18.5 | 18.5 | 26.7 | 17.2 | 17.2 | 19.8 | 0.0 | 0.0 | 31.5 | 0.0 | 20.8 |
| Incr Delay (d2), s/veh | 3.3 | 3.8 | 3.6 | 0.3 | 2.4 | 2.3 | 0.3 | 0.0 | 0.0 | 136.9 | 0.0 | 6.0 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(95\%),veh/ln | 3.2 | 13.6 | 14.1 | 0.2 | 10.6 | 10.8 | 0.1 | 0.0 | 0.0 | 25.1 | 0.0 | 14.0 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 29.6 | 22.4 | 22.2 | 27.0 | 19.6 | 19.5 | 20.1 | 0.0 | 0.0 | 168.4 | 0.0 | 26.8 |
| LnGrp LOS | C | C | C | C | B | B | C | A | A | F | A | C |
| Approach Vol, veh/h |  | 1165 |  |  | 866 |  |  | 5 |  |  | 807 |  |
| Approach Delay, s/veh |  | 22.8 |  |  | 19.6 |  |  | 20.1 |  |  | 83.1 |  |
| Approach LOS |  | C |  |  | B |  |  | C |  |  | F |  |
| Timer - Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 46.0 |  | 44.0 |  | 46.0 |  | 44.0 |  |  |  |  |
| Change Period (Y+Rc), s |  | * 4.5 |  | 4.9 |  | * 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting (Gmax), s |  | * 42 |  | 39.1 |  | * 42 |  | 39.1 |  |  |  |  |
| Max Q Clear Time (g_c+11), s |  | 23.3 |  | 41.1 |  | 27.6 |  | 41.1 |  |  |  |  |
| Green Ext Time (p_c), s |  | 5.5 |  | 0.0 |  | 6.7 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 39.0 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | D |  |  |  |  |  |  |  |  |  |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.







|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


| 4 | $\rightarrow$ | \％ | 7 | $\Perp$ | 4 | 4 | 9 | $p$ | $1$ | $\frac{1}{\dagger}$ | $\pm$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | 中 ${ }^{\text {a }}$ |  | ${ }^{*}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{*}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{*}$ | 中4 | F |
| Traffic Volume（veh／h） 76 | 820 | 68 | 171 | 1403 | 47 | 114 | 813 | 60 | 99 | 606 | 147 |
| Future Volume（veh／h） 76 | 820 | 68 | 171 | 1403 | 47 | 114 | 813 | 60 | 99 | 606 | 147 |
| Initial Q（Qb），veh 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h 83 | 891 | 74 | 186 | 1525 | 51 | 124 | 884 | 65 | 108 | 659 | 0 |
| Peak Hour Factor 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h 80 | 1281 | 106 | 173 | 1353 | 45 | 462 | 1663 | 122 | 247 | 1761 |  |
| Arrive On Green 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.33 | 0.33 | 0.33 | 0.99 | 0.99 | 0.00 |
| Sat Flow，veh／h 325 | 3322 | 276 | 582 | 3509 | 117 | 775 | 3356 | 247 | 591 | 3554 | 1585 |
| Grp Volume（v），veh／h 83 | 477 | 488 | 186 | 771 | 805 | 124 | 468 | 481 | 108 | 659 | 0 |
| Grp Sat Flow（s），veh／h／ln 325 | 1777 | 1821 | 582 | 1777 | 1849 | 775 | 1777 | 1826 | 591 | 1777 | 1585 |
| Q Serve（g＿s），s 0.0 | 20.3 | 20.3 | 14.4 | 34.7 | 34.7 | 10.8 | 19.2 | 19.2 | 11.3 | 0.2 | 0.0 |
| Cycle Q Clear（g＿c），s 34.7 | 20.3 | 20.3 | 34.7 | 34.7 | 34.7 | 11.0 | 19.2 | 19.2 | 30.5 | 0.2 | 0.0 |
| Prop In Lane 1.00 |  | 0.15 | 1.00 |  | 0.06 | 1.00 |  | 0.14 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h 80 | 685 | 702 | 173 | 685 | 713 | 462 | 881 | 905 | 247 | 1761 |  |
| V／C Ratio（X） 1.04 | 0.70 | 0.70 | 1.07 | 1.12 | 1.13 | 0.27 | 0.53 | 0.53 | 0.44 | 0.37 |  |
| Avail Cap（c＿a），veh／h 80 | 685 | 702 | 173 | 685 | 713 | 462 | 881 | 905 | 247 | 1761 |  |
| HCM Platoon Ratio 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 | 2.00 | 2.00 | 2.00 |
| Upstream Filter（I） 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.77 | 0.77 | 0.77 | 1.00 | 1.00 | 0.00 |
| Uniform Delay（d），s／veh 45.0 | 23.2 | 23.2 | 41.1 | 27.6 | 27.7 | 18.9 | 21.6 | 21.6 | 6.9 | 0.2 | 0.0 |
| Incr Delay（d2），s／veh 111.3 | 3.1 | 3.0 | 89.1 | 74.1 | 75.4 | 1.1 | 1.8 | 1.7 | 5.6 | 0.6 | 0.0 |
| Initial Q Delay（d3），s／veh 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／lr .6 | 13.5 | 13.8 | 13.3 | 39.7 | 41.6 | 3.9 | 13.1 | 13.4 | 2.3 | 0.4 | 0.0 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh 156.3 | 26.3 | 26.2 | 130.2 | 101.7 | 103.0 | 20.0 | 23.4 | 23.3 | 12.5 | 0.8 | 0.0 |
| LnGrp LOS F | C | C | F | F | F | C | C | C | B | A |  |
| Approach Vol，veh／h | 1048 |  |  | 1762 |  |  | 1073 |  |  | 767 | A |
| Approach Delay，s／veh | 36.6 |  |  | 105.3 |  |  | 23.0 |  |  | 2.5 |  |
| Approach LOS | D |  |  | F |  |  | C |  |  | A |  |
| Timer－Assigned Phs | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R c$ ），$s$ | 50.0 |  | 40.0 |  | 50.0 |  | 40.0 |  |  |  |  |
| Change Period（ $\mathrm{Y}+\mathrm{Rc}$ ），s | ＊ 5.4 |  | ＊ 5.3 |  | ＊ 5.4 |  | ＊ 5.3 |  |  |  |  |
| Max Green Setting（Gmax），s | ＊ 45 |  | ＊ 35 |  | ＊ 45 |  | ＊ 35 |  |  |  |  |
| Max Q Clear Time（g＿c＋11），s | 32.5 |  | 36.7 |  | 21.2 |  | 36.7 |  |  |  |  |
| Green Ext Time（p＿c），s | 4.4 |  | 0.0 |  | 7.7 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  | 53.9 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  | D |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |
| ＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier． |  |  |  |  |  |  |  |  |  |  |  |
| Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay． |  |  |  |  |  |  |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.3 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 中t |  |  | \& |  |  | \& |  |
| Traffic Vol, veh/h | 15 | 467 | 5 | 37 | 1612 | 21 | 3 | 1 | 4 | 7 | 2 | 95 |
| Future Vol, veh/h | 15 | 467 | 5 | 37 | 1612 | 21 | 3 | 1 | 4 | 7 | 2 | 95 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 124 | - | - | 80 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 16 | 508 | 5 | 40 | 1752 | 23 | 3 | 1 | 4 | 8 | 2 | 103 |


| Major/Minor | Major1 |  |  | Major2 |  |  | Minor1 | Minor2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 1775 | 0 | 0 | 513 | 0 | 0 | 1500 | 2398 | 257 | 2131 | 2389 | 888 |  |
| Stage 1 | - | - | - | - | - | - | 543 | 543 | - | 1844 | 1844 | - |  |
| Stage 2 | - | - | - | - | - | - | 957 | 1855 | - | 287 | 545 | - |  |
| Critical Hdwy | 4.14 | - | - | 4.14 | - | - | 7.54 | 6.54 | 6.94 | 7.54 | 6.54 | 6.94 |  |
| Critical Hdwy Stg 1 | - | - | - | - | - | - | 6.54 | 5.54 | - | 6.54 | 5.54 | - |  |
| Critical Hdwy Stg 2 | - | - | - | - | - | - | 6.54 | 5.54 | - | 6.54 | 5.54 | - |  |
| Follow-up Hdwy | 2.22 | - | - | 2.22 | - | - | 3.52 | 4.02 | 3.32 | 3.52 | 4.02 | 3.32 |  |
| Pot Cap-1 Maneuver | *618 | - | - | 1049 | - | - | *389 | *51 | 742 | *120 | *53 | *413 |  |
| Stage 1 | - | - | - | - | - | - | *492 | *518 | - | *389 | *341 | - |  |
| Stage 2 | - | - | - | - | - | - | *389 | *341 | - | *696 | *517 | - |  |
| Platoon blocked, \% | 1 | - | - |  | - | - | 1 | 1 |  | 1 | 1 | 1 |  |
| Mov Cap-1 Maneuver | *618 | - | - | 1049 | - | - | *269 | *48 | 742 | *112 | *50 | *413 |  |
| Mov Cap-2 Maneuver | - | - | - | - | - | - | *269 | *48 | - | *112 | *50 | - |  |
| Stage 1 | - | - | - | - | - | - | *479 | *505 | - | *379 | *328 | - |  |
| Stage 2 | - | - | - | - | - | - | *279 | *328 | - | *673 | *504 | - |  |


| Approach | EB | WB | NB | SB |
| :--- | :---: | :---: | ---: | ---: |
| HCM Control Delay, s | 0.3 | 0.2 | 22.5 | 22.9 |
| HCM LOS |  |  | C | C |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 214 | ${ }^{*} 618$ | - | -1049 | - | -313 |  |
| HCM Lane V/C Ratio | 0.041 | 0.026 | - | -0.038 | - | -0.361 |  |
| HCM Control Delay (s) | 22.5 | 11 | - | - | 8.6 | - | -22.9 |
| HCM Lane LOS | C | B | - | - | A | - | - |
| HCM 95th \%tile Q(veh) | 0.1 | 0.1 | - | - | 0.1 | - | - |

## Notes

$\sim$ : Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined $\quad$ : All major volume in platoon

HCM 6th Signalized Intersection Summary
5: Olympic BI \& Mateo St
03/17/2021

|  | 4 | $\rightarrow$ |  | $\checkmark$ | - |  | 4 | $\uparrow$ | $p$ |  | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | \% | 性 |  | \% | 个t |  |  | $\uparrow$ |  |  | $\uparrow$ | F |
| Traffic Volume (veh/h) | 74 | 416 | 4 | 5 | 1287 | 92 | 1 | 3 | 5 | 190 | 1 | 385 |
| Future Volume (veh/h) | 74 | 416 | 4 | 5 | 1287 | 92 | 1 | 3 | 5 | 190 | 1 | 385 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 80 | 452 | 4 | 5 | 1399 | 100 | 1 | 3 | 5 | 207 | 1 | 418 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 193 | 2186 | 19 | 594 | 2037 | 145 | 70 | 183 | 262 | 488 | 2 | 460 |
| Arrive On Green | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
| Sat Flow, veh/h | 350 | 3610 | 32 | 935 | 3364 | 240 | 90 | 632 | 902 | 1407 | 7 | 1585 |
| Grp Volume(v), veh/h | 80 | 222 | 234 | 5 | 736 | 763 | 9 | 0 | 0 | 208 | 0 | 418 |
| Grp Sat Flow(s),veh/h/ln | 350 | 1777 | 1865 | 935 | 1777 | 1827 | 1624 | 0 | 0 | 1414 | 0 | 1585 |
| Q Serve(g_s), s | 18.0 | 5.1 | 5.1 | 0.2 | 25.1 | 25.4 | 0.0 | 0.0 | 0.0 | 10.6 | 0.0 | 22.9 |
| Cycle Q Clear (g_c), s | 43.5 | 5.1 | 5.1 | 5.3 | 25.1 | 25.4 | 0.3 | 0.0 | 0.0 | 11.0 | 0.0 | 22.9 |
| Prop In Lane | 1.00 |  | 0.02 | 1.00 |  | 0.13 | 0.11 |  | 0.56 | 1.00 |  | 1.00 |
| Lane Grp Cap (c), veh/h | 193 | 1076 | 1129 | 594 | 1076 | 1106 | 516 | 0 | 0 | 490 | 0 | 460 |
| V/C Ratio(X) | 0.41 | 0.21 | 0.21 | 0.01 | 0.68 | 0.69 | 0.02 | 0.00 | 0.00 | 0.42 | 0.00 | 0.91 |
| Avail Cap(c_a), veh/h | 193 | 1076 | 1129 | 594 | 1076 | 1106 | 516 | 0 | 0 | 490 | 0 | 460 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 26.7 | 8.0 | 8.0 | 9.2 | 12.0 | 12.0 | 22.8 | 0.0 | 0.0 | 26.5 | 0.0 | 30.8 |
| Incr Delay (d2), s/veh | 6.4 | 0.4 | 0.4 | 0.0 | 3.5 | 3.5 | 0.1 | 0.0 | 0.0 | 2.7 | 0.0 | 24.5 |
| Initial Q Delay (d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(95\%),veh/ln | 3.2 | 3.4 | 3.6 | 0.1 | 15.0 | 15.4 | 0.3 | 0.0 | 0.0 | 7.2 | 0.0 | 17.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 33.2 | 8.4 | 8.4 | 9.2 | 15.5 | 15.5 | 22.9 | 0.0 | 0.0 | 29.2 | 0.0 | 55.3 |
| LnGrp LOS | C | A | A | A | B | B | C | A | A | C | A | E |
| Approach Vol, veh/h |  | 536 |  |  | 1504 |  |  | 9 |  |  | 626 |  |
| Approach Delay, s/veh |  | 12.1 |  |  | 15.5 |  |  | 22.9 |  |  | 46.7 |  |
| Approach LOS |  | B |  |  | B |  |  | C |  |  | D |  |
| Timer - Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s |  | 59.0 |  | 31.0 |  | 59.0 |  | 31.0 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc}$ ), s |  | * 4.5 |  | 4.9 |  | * 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting (Gmax), s |  | *55 |  | 26.1 |  | *55 |  | 26.1 |  |  |  |  |
| Max Q Clear Time (g_c+1), s |  | 27.4 |  | 24.9 |  | 45.5 |  | 2.3 |  |  |  |  |
| Green Ext Time (p_c), s |  | 13.2 |  | 0.4 |  | 2.7 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 22.1 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations \％ | 中t |  | \％ | 性 |  | \％ | 个t |  | ${ }^{7}$ | 4 4 | 「 |  |
| Traffic Volume（veh／h） 89 | 1230 | 66 | 104 | 1187 | 45 | 87 | 602 | 165 | 132 | 796 | 191 |  |
| Future Volume（veh／h） 89 | 1230 | 66 | 104 | 1187 | 45 | 87 | 602 | 165 | 132 | 796 | 191 |  |
| Initial Q（Qb），veh 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Ped－Bike Adj（A＿pbT） 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |  |
| Parking Bus，Adj 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |  |
| Work Zone On Approach | No |  |  | No |  |  | No |  |  | No |  |  |
| Adj Sat Flow，veh／h／ln 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |  |
| Adj Flow Rate，veh／h 97 | 1337 | 72 | 113 | 1290 | 49 | 95 | 654 | 179 | 143 | 865 | 0 |  |
| Peak Hour Factor 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Percent Heavy Veh，\％ 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Cap，veh／h 90 | 1322 | 71 | 80 | 1346 | 51 | 293 | 1366 | 374 | 404 | 1761 |  |  |
| Arrive On Green 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.99 | 0.99 | 0.99 | 0.50 | 0.50 | 0.00 |  |
| Sat Flow，veh／h 408 | 3430 | 184 | 382 | 3491 | 132 | 640 | 2757 | 754 | 659 | 3554 | 1585 |  |
| Grp Volume（v），veh／h 97 | 691 | 718 | 113 | 656 | 683 | 95 | 421 | 412 | 143 | 865 | 0 |  |
| Grp Sat Flow（s），veh／h／n 408 | 1777 | 1837 | 382 | 1777 | 1847 | 640 | 1777 | 1735 | 659 | 1777 | 1585 |  |
| Q Serve（g＿s），s 2.2 | 34.7 | 34.7 | 0.0 | 32.4 | 32.5 | 6.3 | 0.4 | 0.4 | 12.7 | 14.6 | 0.0 |  |
| Cycle Q Clear（g＿c），s 34.7 | 34.7 | 34.7 | 34.7 | 32.4 | 32.5 | 20.9 | 0.4 | 0.4 | 13.0 | 14.6 | 0.0 |  |
| Prop In Lane $\quad 1.00$ |  | 0.10 | 1.00 |  | 0.07 | 1.00 |  | 0.43 | 1.00 |  | 1.00 |  |
| Lane Grp Cap（c），veh／h 90 | 685 | 708 | 80 | 685 | 712 | 293 | 881 | 860 | 404 | 1761 |  |  |
| V／C Ratio（X） 1.08 | 1.01 | 1.01 | 1.41 | 0.96 | 0.96 | 0.32 | 0.48 | 0.48 | 0.35 | 0.49 |  |  |
| Avail Cap（c＿a），veh／h 90 | 685 | 708 | 80 | 685 | 712 | 293 | 881 | 860 | 404 | 1761 |  |  |
| HCM Platoon Ratio 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 |  |
| Upstream Filter（l）$\quad 1.00$ | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.78 | 0.78 | 0.78 | 1.00 | 1.00 | 0.00 |  |
| Uniform Delay（d），s／veh 44.9 | 27.6 | 27.7 | 45.0 | 26.9 | 27.0 | 3.8 | 0.2 | 0.2 | 14.9 | 15.1 | 0.0 |  |
| Incr Delay（d2），s／veh 116.8 | 36.7 | 37.1 | 244.2 | 24.3 | 24.1 | 2.3 | 1.5 | 1.5 | 2.4 | 1.0 | 0.0 |  |
| Initial Q Delay（d3），s／veh 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| \％ile BackOfQ（95\％），veh／IIB．9 | 28.6 | 29.6 | 12.9 | 24.5 | 25.3 | 1.0 | 0.8 | 0.8 | 3.7 | 9.7 | 0.0 |  |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh 161.7 | 64.4 | 64.7 | 289.2 | 51.3 | 51.1 | 6.0 | 1.7 | 1.7 | 17.3 | 16.1 | 0.0 |  |
| LnGrp LOS F | F | F | F | D | D | A | A | A | B | B |  |  |
| Approach Vol，veh／h | 1506 |  |  | 1452 |  |  | 928 |  |  | 1008 | A |  |
| Approach Delay，s／veh | 70.8 |  |  | 69.7 |  |  | 2.1 |  |  | 16.3 |  |  |
| Approach LOS | E |  |  | E |  |  | A |  |  | B |  |  |
| Timer－Assigned Phs | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |  |
| Phs Duration（ $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ）， s | 50.0 |  | 40.0 |  | 50.0 |  | 40.0 |  |  |  |  |  |
| Change Period（ $Y+R \mathrm{C}$ ）， s | ＊5．4 |  | ＊ 5.3 |  | ＊ 5.4 |  | ＊5．3 |  |  |  |  |  |
| Max Green Setting（Gmax），s | ＊ 45 |  | ＊ 35 |  | ＊ 45 |  | ＊ 35 |  |  |  |  |  |
| Max Q Clear Time（g＿c＋11），s | 16.6 |  | 36.7 |  | 22.9 |  | 36.7 |  |  |  |  |  |
| Green Ext Time（p＿c），s | 8.6 |  | 0.0 |  | 6.6 |  | 0.0 |  |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay 46.2 |  | 46.2 |  |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS D |  | D |  |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．
Unsignalized Delay for［SBR］is excluded from calculations of the approach delay and intersection delay．

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.4 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 虫 |  | ${ }^{7}$ | 虫 |  |  | \& |  |  | \$ |  |
| Traffic Vol, veh/h | 13 | 1056 | 4 | 25 | 1158 | 8 | 2 | 0 | 13 | 27 | 0 | 197 |
| Future Vol, veh/h | 13 | 1056 | 4 | 25 | 1158 | 8 | 2 | 0 | 13 | 27 | 0 | 197 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 124 | - | - | 80 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 14 | 1148 | 4 | 27 | 1259 | 9 | 2 | 0 | 14 | 29 | 0 | 214 |



| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 262 | $* 930$ | - | -602 | - | -355 |  |
| HCM Lane V/C Ratio | 0.062 | 0.015 | - | -0.045 | - | -0.686 |  |
| HCM Control Delay (s) | 19.7 | 8.9 | - | -11.3 | - | -34.6 |  |
| HCM Lane LOS | C | A | - | - | B | - | - |
| HCM 95th \%otlile Q(veh) | 0.2 | 0 | - | - | 0.1 | - | - |

## Notes

$\sim$ : Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined $\quad$ : All major volume in platoon

HCM 6th Signalized Intersection Summary
5：Olympic BI \＆Mateo St
03／17／2021

|  | 4 | $\rightarrow$ | $\checkmark$ | 7 |  | 4 | 4 | 4 | 7 | $t$ | $\downarrow$ | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {P }}$ |  | ${ }^{1}$ | 虫 |  |  | 4 |  |  | 4 | 「 |
| Traffic Volume（veh／h） | 78 | 1008 | 5 | 6 | 722 | 90 | 1 | 0 | 4 | 309 | 1 | 451 |
| Future Volume（veh／h） | 78 | 1008 | 5 | 6 | 722 | 90 | 1 | 0 | 4 | 309 | 1 | 451 |
| Initial Q（Qb），veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h | 85 | 1096 | 5 | 7 | 785 | 98 | 1 | 0 | 4 | 336 | 1 | 490 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 259 | 1673 | 8 | 197 | 1466 | 183 | 48 | 29 | 115 | 258 | 1 | 689 |
| Arrive On Green | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.43 | 0.00 | 0.43 | 0.43 | 0.43 | 0.43 |
| Sat Flow，veh／h | 629 | 3628 | 17 | 512 | 3179 | 397 | 0 | 66 | 264 | 410 | 1 | 1585 |
| Grp Volume（v），veh／h | 85 | 537 | 564 | 7 | 439 | 444 | 5 | 0 | 0 | 337 | 0 | 490 |
| Grp Sat Flow（s），veh／h／ln | 629 | 1777 | 1867 | 512 | 1777 | 1799 | 330 | 0 | 0 | 411 | 0 | 1585 |
| Q Serve（g＿s），s | 10.1 | 21.0 | 21.0 | 1.0 | 15.9 | 15.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.8 |
| Cycle Q Clear（g＿c），s | 26.0 | 21.0 | 21.0 | 22.0 | 15.9 | 15.9 | 39.1 | 0.0 | 0.0 | 39.1 | 0.0 | 22.8 |
| Prop In Lane | 1.00 |  | 0.01 | 1.00 |  | 0.22 | 0.20 |  | 0.80 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h | 259 | 819 | 861 | 197 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| V／C Ratio（X） | 0.33 | 0.66 | 0.66 | 0.04 | 0.54 | 0.54 | 0.03 | 0.00 | 0.00 | 1.30 | 0.00 | 0.71 |
| Avail Cap（c＿a），veh／h | 259 | 819 | 861 | 197 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（I） | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay（d），s／veh | 26.6 | 18.7 | 18.7 | 27.2 | 17.4 | 17.4 | 19.8 | 0.0 | 0.0 | 31.5 | 0.0 | 20.8 |
| Incr Delay（d2），s／veh | 3.4 | 4.1 | 3.9 | 0.3 | 2.5 | 2.5 | 0.3 | 0.0 | 0.0 | 161.7 | 0.0 | 6.2 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／ln | 3.1 | 14.0 | 14.5 | 0.2 | 11.0 | 11.1 | 0.1 | 0.0 | 0.0 | 28.2 | 0.0 | 14.1 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh | 30.0 | 22.8 | 22.6 | 27.5 | 19.9 | 19.8 | 20.1 | 0.0 | 0.0 | 193.2 | 0.0 | 27.0 |
| LnGrp LOS | C | C | C | C | B | B | C | A | A | F | A | C |
| Approach Vol，veh／h |  | 1186 |  |  | 890 |  |  | 5 |  |  | 827 |  |
| Approach Delay，s／veh |  | 23.2 |  |  | 19.9 |  |  | 20.1 |  |  | 94.7 |  |
| Approach LOS |  | C |  |  | B |  |  | C |  |  | F |  |
| Timer－Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R c$ ），$s$ |  | 46.0 |  | 44.0 |  | 46.0 |  | 44.0 |  |  |  |  |
| Change Period（Y＋Rc），s |  | ＊ 4.5 |  | 4.9 |  | ＊ 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting（Gmax），s |  | ＊ 42 |  | 39.1 |  | ＊ 42 |  | 39.1 |  |  |  |  |
| Max Q Clear Time（g＿c＋l1），s |  | 24.0 |  | 41.1 |  | 28.0 |  | 41.1 |  |  |  |  |
| Green Ext Time（p＿c），s |  | 5.5 |  | 0.0 |  | 6.7 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 42.5 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | D |  |  |  |  |  |  |  |  |  |
| Notes |  |  |  |  |  |  |  |  |  |  |  |  |

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 虾 |  | ${ }^{*}$ | 虾 |  |
| Traffic Volume（veh／h） | 63 | 337 | 111 | 146 | 722 | 107 | 129 | 693 | 111 | 139 | 982 | 182 |
| Future Volume（veh／h） | 63 | 337 | 111 | 146 | 722 | 107 | 129 | 693 | 111 | 139 | 982 | 182 |
| Initial Q（Qb），veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h | 68 | 366 | 121 | 159 | 785 | 116 | 140 | 753 | 121 | 151 | 1067 | 198 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 168 | 945 | 308 | 311 | 1115 | 165 | 232 | 1066 | 171 | 325 | 1520 | 281 |
| Arrive On Green | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.11 | 0.11 | 0.11 | 0.20 | 1.00 | 1.00 |
| Sat Flow，veh／h | 618 | 2634 | 859 | 909 | 3106 | 459 | 438 | 3066 | 493 | 1781 | 2994 | 554 |
| Grp Volume（v），veh／h | 68 | 245 | 242 | 159 | 449 | 452 | 140 | 436 | 438 | 151 | 632 | 633 |
| Grp Sat Flow（s），veh／h／ln | 618 | 1777 | 1716 | 909 | 1777 | 1788 | 438 | 1777 | 1782 | 1781 | 1777 | 1771 |
| Q Serve（g＿s），s | 9.5 | 9.2 | 9.5 | 14.2 | 19.5 | 19.5 | 28.5 | 21.3 | 21.3 | 4.4 | 0.0 | 0.0 |
| Cycle Q Clear（g＿c），s | 29.1 | 9.2 | 9.5 | 23.7 | 19.5 | 19.5 | 28.5 | 21.3 | 21.3 | 4.4 | 0.0 | 0.0 |
| Prop In Lane | 1.00 |  | 0.50 | 1.00 |  | 0.26 | 1.00 |  | 0.28 | 1.00 |  | 0.31 |
| Lane Grp Cap（c），veh／h | 168 | 638 | 616 | 311 | 638 | 642 | 232 | 618 | 620 | 325 | 902 | 899 |
| V／C Ratio（X） | 0.41 | 0.38 | 0.39 | 0.51 | 0.70 | 0.70 | 0.60 | 0.71 | 0.71 | 0.47 | 0.70 | 0.70 |
| Avail Cap（c＿a），veh／h | 168 | 638 | 616 | 311 | 638 | 642 | 232 | 618 | 620 | 337 | 902 | 899 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 2.00 | 2.00 | 2.00 |
| Upstream Filter（I） | 0.97 | 0.97 | 0.97 | 1.00 | 1.00 | 1.00 | 0.90 | 0.90 | 0.90 | 0.84 | 0.84 | 0.84 |
| Uniform Delay（d），s／veh | 37.2 | 21.5 | 21.5 | 30.4 | 24.7 | 24.7 | 38.6 | 35.4 | 35.4 | 15.8 | 0.0 | 0.0 |
| Incr Delay（d2），s／veh | 6.9 | 1.7 | 1.8 | 5.9 | 6.4 | 6.4 | 10.0 | 6.0 | 6.0 | 0.9 | 3.8 | 3.9 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／In | 3.1 | 7.3 | 7.2 | 6.4 | 13.9 | 14.0 | 7.1 | 16.3 | 16.3 | 2.9 | 1.7 | 1.7 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh | 44.1 | 23.2 | 23.3 | 36.3 | 31.2 | 31.1 | 48.6 | 41.4 | 41.4 | 16.7 | 3.8 | 3.9 |
| LnGrp LOS | D | C | C | D | C | C | D | D | D | B | A | A |
| Approach Vol，veh／h |  | 555 |  |  | 1060 |  |  | 1014 |  |  | 1416 |  |
| Approach Delay，s／veh |  | 25.8 |  |  | 31.9 |  |  | 42.4 |  |  | 5.2 |  |
| Approach LOS |  | C |  |  | C |  |  | D |  |  | A |  |


| Timer－Assigned Phs | 2 | 4 | 5 | 6 | 8 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phs Duration（G＋Y＋Rc），s | 51.4 | 38.6 | 14.4 | 37.0 | 38.6 |
| Change Period（Y＋Rc），s | $* 5.7$ | ${ }^{*} 6.3$ | 5.6 | $* 5.7$ | ${ }^{*} 6.3$ |
| Max Green Setting（Gmax），s | $* 44$ | $* 32$ | 9.4 | $* 31$ | ${ }^{* 31}$ |
| Max Q Clear Time（g＿c＋11），s | 2.0 | 25.7 | 6.4 | 30.5 | 31.1 |
| Green Ext Time（p＿c），s | 12.0 | 3.2 | 0.1 | 0.6 | 0.0 |

## Intersection Summary

| HCM 6th Ctrl Delay | 24.4 |
| :--- | ---: |
| HCM 6th LOS | C |

## Notes

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |



## Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.1 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }^{7}$ | 中t |  |  | \& |  |  | \$ |  |
| Traffic Vol, veh/h | 15 | 467 | 5 | 37 | 1616 | 69 | 3 | 1 | 4 | 20 | 2 | 95 |
| Future Vol, veh/h | 15 | 467 | 5 | 37 | 1616 | 69 | 3 | 1 | 4 | 20 | 2 | 95 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 124 | - | - | 80 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 16 | 508 | 5 | 40 | 1757 | 75 | 3 | 1 | 4 | 22 | 2 | 103 |


| Major/Minor | Major1 | Major2 |  |  |  | Minor1 |  |  | Minor2 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 1832 | 0 | 0 | 513 | , | 0 | 1503 | 2455 | 257 | 2162 | 2420 | 916 |  |
| Stage 1 | - | - | - | - | - | - | 543 | 543 | - | 1875 | 1875 | - |  |
| Stage 2 | - | - | - | - | - | - | 960 | 1912 | - | 287 | 545 | - |  |
| Critical Hdwy | 4.14 | - | - | 4.14 | - | - | 7.54 | 6.54 | 6.94 | 7.54 | 6.54 | 6.94 |  |
| Critical Hdwy Stg 1 | - | - | - | - | - | - | 6.54 | 5.54 | - | 6.54 | 5.54 | - |  |
| Critical Hdwy Stg 2 | - | - | - | - | - | - | 6.54 | 5.54 | - | 6.54 | 5.54 | - |  |
| Follow-up Hdwy | 2.22 | - | - | 2.22 | - | - | 3.52 | 4.02 | 3.32 | 3.52 | 4.02 | 3.32 |  |
| Pot Cap-1 Maneuver | *618 | - | - | 1049 | - | - | *389 | 42 | 742 | 105 | 48 | *413 |  |
| Stage 1 | - | - | - | - | - | - | *492 | 518 | - | 365 | 325 | - |  |
| Stage 2 | - | - | - | - | - | - | *389 | 296 | - | 696 | 517 | - |  |
| Platoon blocked, \% | 1 | - | - |  | - | - | 1 | 1 |  | 1 | 1 | 1 |  |
| Mov Cap-1 Maneuver | *618 | - | - | 1049 | - | - | *268 | 39 | 742 | 97 | 45 | *413 |  |
| Mov Cap-2 Maneuver | - | - | - | - | - | - | *268 | 39 | - | 97 | 45 | - |  |
| Stage 1 | - | - | - | - | - | - | *479 | 505 | - | 355 | 313 | - |  |
| Stage 2 | - | - | - | - | - | - | *279 | 284 | - | 673 | 504 | - |  |


| Approach | EB | WB | NB | SB |
| :--- | :---: | :---: | :---: | :---: |
| HCM Control Delay, s | 0.3 | 0.2 | 25 | 35 |
| HCM LOS |  | D | E |  |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 189 | $* 618$ | - | -1049 | - | -243 |  |
| HCM Lane V/C Ratio | 0.046 | 0.026 | - | -0.038 | - | -0.523 |  |
| HCM Control Delay (s) | 25 | 11 | - | - | 8.6 | - | - |
| HCM Lane LOS | D | B | - | - | A | - | - |
| HCM 95th \%otile Q(veh) | 0.1 | 0.1 | - | - | 0.1 | - | - |

## Notes

$\sim$ : Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined $\quad$ : All major volume in platoon

HCM 6th Signalized Intersection Summary
5：Olympic BI \＆Mateo St
03／22／2021

|  | 4 | $\rightarrow$ | $\checkmark$ | 7 |  | 4 | 4 | $\dagger$ | \％ | ， | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{*}$ | 中 ${ }^{\text {P }}$ |  | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  |  | ＊ |  |  | $\uparrow$ | 「 |
| Traffic Volume（veh／h） | 77 | 426 | 4 | 5 | 1313 | 92 | 1 | 3 | 5 | 190 | 1 | 411 |
| Future Volume（veh／h） | 77 | 426 | 4 | 5 | 1313 | 92 | 1 | 3 | 5 | 190 | 1 | 411 |
| Initial Q（Qb），veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h | 84 | 463 | 4 | 5 | 1427 | 100 | 1 | 3 | 5 | 207 | 1 | 447 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 187 | 2186 | 19 | 587 | 2041 | 142 | 70 | 183 | 261 | 488 | 2 | 460 |
| Arrive On Green | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
| Sat Flow，veh／h | 341 | 3610 | 31 | 926 | 3370 | 235 | 89 | 631 | 900 | 1407 | 7 | 1585 |
| Grp Volume（v），veh／h | 84 | 228 | 239 | 5 | 750 | 777 | 9 | 0 | 0 | 208 | 0 | 447 |
| Grp Sat Flow（s），veh／h／ln | 341 | 1777 | 1865 | 926 | 1777 | 1828 | 1620 | 0 | 0 | 1414 | 0 | 1585 |
| Q Serve（g＿s），s | 20.2 | 5.2 | 5.2 | 0.2 | 25.9 | 26.3 | 0.0 | 0.0 | 0.0 | 10.6 | 0.0 | 25.1 |
| Cycle Q Clear（g＿c），s | 46.4 | 5.2 | 5.2 | 5.4 | 25.9 | 26.3 | 0.3 | 0.0 | 0.0 | 11.0 | 0.0 | 25.1 |
| Prop In Lane | 1.00 |  | 0.02 | 1.00 |  | 0.13 | 0.11 |  | 0.56 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h | 187 | 1076 | 1129 | 587 | 1076 | 1107 | 514 | 0 | 0 | 490 | 0 | 460 |
| V／C Ratio（X） | 0.45 | 0.21 | 0.21 | 0.01 | 0.70 | 0.70 | 0.02 | 0.00 | 0.00 | 0.42 | 0.00 | 0.97 |
| Avail Cap（c＿a），veh／h | 187 | 1076 | 1129 | 587 | 1076 | 1107 | 514 | 0 | 0 | 490 | 0 | 460 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（I） | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay（d），s／veh | 28.1 | 8.0 | 8.0 | 9.3 | 12.1 | 12.2 | 22.8 | 0.0 | 0.0 | 26.5 | 0.0 | 31.6 |
| Incr Delay（d2），s／veh | 7.6 | 0.4 | 0.4 | 0.0 | 3.7 | 3.7 | 0.1 | 0.0 | 0.0 | 2.7 | 0.0 | 35.7 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／ln | 3.6 | 3.5 | 3.7 | 0.1 | 15.4 | 15.9 | 0.3 | 0.0 | 0.0 | 7.2 | 0.0 | 19.9 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh | 35.7 | 8.5 | 8.5 | 9.3 | 15.9 | 15.9 | 22.9 | 0.0 | 0.0 | 29.2 | 0.0 | 67.3 |
| LnGrp LOS | D | A | A | A | B | B | C | A | A | C | A | E |
| Approach Vol，veh／h |  | 551 |  |  | 1532 |  |  | 9 |  |  | 655 |  |
| Approach Delay，s／veh |  | 12.6 |  |  | 15.9 |  |  | 22.9 |  |  | 55.2 |  |
| Approach LOS |  | B |  |  | B |  |  | C |  |  | E |  |
| Timer－Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R c$ ），$s$ |  | 59.0 |  | 31.0 |  | 59.0 |  | 31.0 |  |  |  |  |
| Change Period（Y＋Rc），s |  | ＊ 4.5 |  | 4.9 |  | ＊ 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting（Gmax），s |  | ＊ 55 |  | 26.1 |  | ＊ 55 |  | 26.1 |  |  |  |  |
| Max Q Clear Time（g＿c＋l1），s |  | 28.3 |  | 27.1 |  | 48.4 |  | 2.3 |  |  |  |  |
| Green Ext Time（p＿c），s |  | 13.3 |  | 0.0 |  | 2.1 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 24.6 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | C |  |  |  |  |  |  |  |  |  |

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．





|  | EB | WB | SB |
| :--- | ---: | ---: | ---: |
| Approach | 0 | 8.5 |  |
| HCM Control Delay, S | 0 | 0 | A |


| Minor Lane/Major Mvmt | EBT | WBT SBLn1 |
| :--- | ---: | ---: |
| Capacity (veh/h) | - | -1065 |
| HCM Lane V/C Ratio | - | -0.042 |
| HCM Control Delay (s) | - | -8.5 |
| HCM Lane LOS | - | - |
| HCM 95th \%tile Q(veh) | - | - |
| A | 0.1 |  |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.8 |  |  |  |  |  |
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | 4 |  |  | 4 | Mr |  |
| Traffic Vol, veh/h | 114 | 0 | 0 | 298 | 19 | 15 |
| Future Vol, veh/h | 114 | 0 | 0 | 298 | 19 | 15 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, $\%$ | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 124 | 0 | 0 | 324 | 21 | 16 |



|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 12.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 虫 |  | ${ }^{7}$ | 的 |  |  | \& |  |  | \$ |  |
| Traffic Vol, veh/h | 13 | 1056 | 4 | 25 | 1161 | 40 | 2 | 0 | 13 | 60 | 0 | 197 |
| Future Vol, veh/h | 13 | 1056 | 4 | 25 | 1161 | 40 | 2 | 0 | 13 | 60 | 0 | 197 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 124 | - | - | 80 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 14 | 1148 | 4 | 27 | 1262 | 43 | 2 | 0 | 14 | 65 | 0 | 214 |



| Approach | EB | WB | NB | SB |
| :--- | :---: | :---: | :---: | :---: |
| HCM Control Delay, s | 0.1 | 0.2 | 18.9 | 119.1 |
| HCM LOS |  |  | C | F |


| Minor Lane/Major Mvmt | NBLn1 | EBL | EBT | EBR | WBL | WBT | WBR SBLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 275 | $* 878$ | - | -602 | - | -260 |  |
| HCM Lane V/C Ratio | 0.059 | 0.016 | - | -0.045 | - | -1.074 |  |
| HCM Control Delay (s) | 18.9 | 9.2 | - | -11.3 | - | -119.1 |  |
| HCM Lane LOS | C | A | - | - | B | - | - |
| HCM 95th \%otile Q(veh) | 0.2 | 0 | - | - | 0.1 | - | -11.5 |

## Notes

$\sim$ : Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined $\quad$ : All major volume in platoon

HCM 6th Signalized Intersection Summary
5：Olympic BI \＆Mateo St
03／22／2021

|  | 4 | $\rightarrow$ | \％ | 7 |  | 4 | 4 | $\dagger$ | \％ | （ | $\downarrow$ | $\downarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| Lane Configurations | ${ }^{7}$ | 中 ${ }^{\text {a }}$ |  | ${ }_{1}$ | 中 $\%$ |  |  | \＄ |  |  | $\uparrow$ | 「 |
| Traffic Volume（veh／h） | 86 | 1034 | 5 | 6 | 740 | 90 | 1 | 0 | 4 | 309 | 1 | 469 |
| Future Volume（veh／h） | 86 | 1034 | 5 | 6 | 740 | 90 | 1 | 0 | 4 | 309 | 1 | 469 |
| Initial Q（Qb），veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped－Bike Adj（A＿pbT） | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus，Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow，veh／h／ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate，veh／h | 93 | 1124 | 5 | 7 | 804 | 98 | 1 | 0 | 4 | 336 | 1 | 510 |
| Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Percent Heavy Veh，\％ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap，veh／h | 253 | 1673 | 7 | 189 | 1470 | 179 | 48 | 29 | 115 | 258 | 1 | 689 |
| Arrive On Green | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.43 | 0.00 | 0.43 | 0.43 | 0.43 | 0.43 |
| Sat Flow，veh／h | 618 | 3628 | 16 | 499 | 3189 | 389 | 0 | 66 | 264 | 410 | 1 | 1585 |
| Grp Volume（v），veh／h | 93 | 550 | 579 | 7 | 448 | 454 | 5 | 0 | 0 | 337 | 0 | 510 |
| Grp Sat Flow（s），veh／h／ln | 618 | 1777 | 1867 | 499 | 1777 | 1800 | 330 | 0 | 0 | 411 | 0 | 1585 |
| Q Serve（g＿s），s | 11.5 | 21.8 | 21.8 | 1.0 | 16.4 | 16.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.1 |
| Cycle Q Clear（g＿c），s | 27.8 | 21.8 | 21.8 | 22.8 | 16.4 | 16.4 | 39.1 | 0.0 | 0.0 | 39.1 | 0.0 | 24.1 |
| Prop In Lane | 1.00 |  | 0.01 | 1.00 |  | 0.22 | 0.20 |  | 0.80 | 1.00 |  | 1.00 |
| Lane Grp Cap（c），veh／h | 253 | 819 | 861 | 189 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| V／C Ratio（X） | 0.37 | 0.67 | 0.67 | 0.04 | 0.55 | 0.55 | 0.03 | 0.00 | 0.00 | 1.30 | 0.00 | 0.74 |
| Avail Cap（c＿a），veh／h | 253 | 819 | 861 | 189 | 819 | 830 | 191 | 0 | 0 | 259 | 0 | 689 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter（I） | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay（d），s／veh | 27.5 | 18.9 | 18.9 | 27.8 | 17.5 | 17.5 | 19.8 | 0.0 | 0.0 | 31.5 | 0.0 | 21.2 |
| Incr Delay（d2），s／veh | 4.1 | 4.4 | 4.2 | 0.4 | 2.6 | 2.6 | 0.3 | 0.0 | 0.0 | 161.7 | 0.0 | 7.0 |
| Initial Q Delay（d3），s／veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \％ile BackOfQ（95\％），veh／ln | 3.5 | 14.5 | 15.0 | 0.2 | 11.2 | 11.4 | 0.1 | 0.0 | 0.0 | 28.2 | 0.0 | 14.9 |
| Unsig．Movement Delay，s／veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay（d），s／veh | 31.6 | 23.3 | 23.1 | 28.2 | 20.1 | 20.1 | 20.1 | 0.0 | 0.0 | 193.2 | 0.0 | 28.3 |
| LnGrp LOS | C | C | C | C | C | C | C | A | A | F | A | C |
| Approach Vol，veh／h |  | 1222 |  |  | 909 |  |  | 5 |  |  | 847 |  |
| Approach Delay，s／veh |  | 23.8 |  |  | 20.1 |  |  | 20.1 |  |  | 93.9 |  |
| Approach LOS |  | C |  |  | C |  |  | C |  |  | F |  |
| Timer－Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration（ $G+Y+R c$ ），$s$ |  | 46.0 |  | 44.0 |  | 46.0 |  | 44.0 |  |  |  |  |
| Change Period（Y＋Rc），s |  | ＊ 4.5 |  | 4.9 |  | ＊ 4.5 |  | 4.9 |  |  |  |  |
| Max Green Setting（Gmax），s |  | ＊ 42 |  | 39.1 |  | ＊ 42 |  | 39.1 |  |  |  |  |
| Max Q Clear Time（g＿c＋l1），s |  | 24.8 |  | 41.1 |  | 29.8 |  | 41.1 |  |  |  |  |
| Green Ext Time（p＿c），s |  | 5.6 |  | 0.0 |  | 6.3 |  | 0.0 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl Delay |  |  | 42.6 |  |  |  |  |  |  |  |  |  |
| HCM 6th LOS |  |  | D |  |  |  |  |  |  |  |  |  |

## Notes

＊HCM 6th computational engine requires equal clearance times for the phases crossing the barrier．





| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |



Appendix G
Signal Warrant Analysis
$\qquad$

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Condition $A$ or Condition $B$ or combination of $80 \%$ of both parts $A$ and $B$ must be satisfied.
b. A 6-hour Manual Count may be used in a determination that this warrant is not met. However, supplement manual counts should be taken during separate hours for a determination that this warrant is met.
c. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
d. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
e. Figure 4C-103(CA) should be used for new intersections, significantly reconstructed intersections, where near-term land development will result in increased volumes, or where it is not reasonable to use current traffic volumes.
f. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
g. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.
[Eight-Hour Vehicular Volume] (continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *

| Condition A |  |  |  |  |  |  |  |  |  | SATISFIED YES NO |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Vehicle Volume |  |  |  |  |  |  |  |  |  | 100\% | $\square$ | $\square$ |
|  |  |  |  |  |  |  |  |  |  | 80\% | $\square$ | $\square$ |
|  | MINIMUM REQUIREMENTS (80\% SHOW IN BRACKETS) |  |  |  |  |  | RIGHT TURN REDUCTION APPLICATION MINOR STREET <br> (If Yes, fill in percentage)  $\qquad$ \% |  |  |  |  |  |
|  | (U) | R | (U) | R |  |  | Hou |  |  |  |  |  |
| APPROACH LANES | $1 \checkmark$ |  | 2 or More $\checkmark$ |  | 07:00/08:00/09:00/15:00/16:00/17:00 |  |  |  |  |  |  |  |
| Both Approach Major Street | $\begin{gathered} 500 \\ (400) \end{gathered}$ | $\begin{gathered} 350 \\ (280) \end{gathered}$ | $\begin{gathered} 600 \\ (480) \checkmark \end{gathered}$ | $\begin{gathered} 420 \\ (336) \end{gathered}$ | 1950 | 2051 | 1906 | 1822 | 1997 | 2153 |  |  |
| Highest Approach Minor Street | $\begin{gathered} 150 \\ (120) \mathrm{r} \end{gathered}$ | $\begin{aligned} & 105 \\ & (84) \end{aligned}$ | $\begin{gathered} 200 \\ (160) \end{gathered}$ | $\begin{gathered} 140 \\ (112) \end{gathered}$ | 136 | 99 | 65 | 74 | 161 | 213 |  |  |



| COMBINATION OF A \& B | SATISFIED | YES |
| :--- | :---: | :---: |
|  |  | NO |
|  | $\square$ | $\square$ |


| REQUIREMENT | CONDITION | $\checkmark$ | FULFILLED |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | YES | NO |
| TWO CONDITIONS SATISFIED 80\% | A. MINIMUM VEHICULAR VOLUME |  | $\square$ | $\square$ |
|  | AND <br> B. INTERRUPTION OF CONTINUOUS TRAFFIC |  |  |  |
| AN ADEQUATE TRIA LESS DELAY AND IN | AND <br> OF OTHER ALTERNATIVES THAT COULD CAUSE OOVENIENCE TO TRAFFIC HAS FAILED TO SOLVE THE TRAFFIC PROBLEMS |  | $\square$ | $\square$ |

[Eight-Hour Vehicular Volume](continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *


Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form) Based on Estimated Average Daily Traffic - see Note*

| URBAN $\square \quad$ RURAL $\square$ | Minimum Requirements Estimated Average Daily Traffic |  |  |
| :---: | :---: | :---: | :---: |
| CONDITION A - Minimum Vehicular Volume <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day On Major Street (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 8,000 5,600 <br> 9,600 6,720 <br> 9,600 6,720 <br> 8,000 5,600 | $\begin{aligned} & \text { Urban } \\ & \\ & 2,400 \\ & 2,400 \\ & 3,200 \\ & 3,200 \end{aligned}$ | $\begin{gathered} \text { Rural } \\ \\ 1,680 \\ 1,680 \\ 2,240 \\ 2,240 \end{gathered}$ |
| CONDITION B - Interruption of Continuous Traffic <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day <br> On Major Street <br> (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 12,000 8,400 <br> 14,400 10,080 <br> 14,400 10,080 <br> 12,000 8,400 | Urban $\begin{aligned} & 1,200 \\ & 1,200 \\ & 1,600 \\ & 1,600 \end{aligned}$ | Rural $\begin{array}{r} 850 \\ 850 \\ 1,120 \\ 1,120 \end{array}$ |
| Combination of CONDITIONS A + B <br> Satisfied $\square$ Not Satisfied $\square$ <br> No one condition satisfied, but following conditions fulfilled $80 \%$ or more $\qquad$ $\qquad$ <br> A <br> B | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ |  |

* Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Record hourly vehicle volumes for the highest four hours of an average day.
b. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
d. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
e. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.

| APPROACH LANES | One | 2 or More | Hours |  |  |  | RIGHT TURN REDUCTION <br> APPLICATION MINOR STREET | YES | NO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 17: | 16 | 07:0 | 00/08:1 |  |  |  |
| Both Approaches - Major Street |  | $\checkmark$ | 2153 | 1997 | 1950 | 2051 |  | $\square$ |  |
| Higher Approach - Minor Street | $\checkmark$ |  | 213 | 161 | 136 | 99 | (If Yes, fill in percentage) | \% |  |
| * All plotted points fall above the applicable curve in Figure 4C-1. (URBAN AREAS) |  |  |  |  |  |  |  | $\square \square$ |  |
| OR, All plotted points fall above the applicable curve in Figure 4C-2. (RURAL AREAS) |  |  |  |  |  |  |  |  |  |  |

URBAN
Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

MINOR STREET HIGHER VOLUME APPROACH—VPH

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal＊
a．Part A or Part B must be satisfied．
b．In applying each condition，the major street and minor street volumes shall be for the same hours．
c．The study should consider the effects of the right－turn vehicles from the minor－street approaches．Engineering judgment should be used to determine what，if any，portion of the right－turn traffic is subtracted from the minor－ street traffic count．
d．Estimated Peak Hour Volumes may be used for new intersections，significantly reconstructed intersections，or where near－term land development will result in increased volumes．
e．Engineering judgment should also be used in applying various traffic signal warrants to cases where ap－ proaches consist of one lane plus one left－turn or right－turn lane．This site－specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes．For example，for an approach with one lane for through and right－turning traffic plus a left－turn lane，if engineering judgment indicates that it should be considered a one－lane approach because the traffic using the left turn lane is minor，the total traffic volume ap－ proaching the intersection should be applied against the signal warrants as a one－lane approach．The ap－ proach should be considered two lanes if approximately half of the traffic on the approach turns left and the left－ turn lane is of sufficient length to accommodate all left－turn vehicles．Similar engineering judgment and rationale should be applied to a street approach with one through／left－turn lane plus a right－turn lane．In this case，the degree of conflict of minor－street right－turn traffic with traffic on the major street should be considered．Thus， right－turn traffic should not be included in the minor－street volume if the movement enters the major street with minimal conflict．The approach should be evaluated as a one－lane approach with only the traffic volume in the through／left－turn lane considered．
f．At an intersection with a high volume of left－turn traffic from the major street，the signal warrant analysis may be performed in a manner that considers the higher volume of the major－street left－turn volumes plus the higher volume minor－street approach as the＂minor street＂volume and both approaches of the major street minus the higher of the major－street left－turn volume as＂major street＂volume．In these cases，engineering judgment should be used to determine if left－turn phasing is necessary to accommodate the high volume of left－turn traffic．

| PART A |  |  |  | SATISFIED |  | YES | NO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| All parts 1，2，and 3 below must be satisfied for the same one hour，for any four consecutive 15－minute periods） |  |  |  |  |  | 区 | $\square$ |
|  |  |  |  | YES | NO | N／A |  |
| 1．The total delay experienced by traffic on one minor street approach（one direction only）controlled by a STOP sign equals or exceeds four vehicle－hours for a one－lane approach，or five vehicle－hours for a two－lane approach；AND |  |  |  |  | $\square$ | 区 |  |
| 2．The volume on the same minor street approach（one direction only）equals or ex－ ceeds 100 vph for one moving lane of traffic or 150 vph for two moving lanes；$\underline{\text { AND }}$ |  |  |  |  |  | $\square$ |  |
| 3．The total entering volume serviced during the hour equals or exceeds 800 vph for intersections with four or more approaches or 650 vph for intersections with three approaches． |  |  |  |  | $\square$ | $\square$ |  |
| PART B |  |  |  | SATISFIED |  | YES | NO |
|  |  |  |  |  |  | 区 | $\square$ |
| Both Approaches－Major Street |  |  | 2155 |  |  |  |  |
| Higher Approach－Minor Street | $\checkmark$ |  | 213 |  |  |  |  |
|  |  |  |  | YES | NO |  |  |
| The plotted point falls above the applicable curve in $\mathbb{X}$ |  |  |  | 区 $\quad \square$ |  |  |  |
| OR，The plotted point falls above the applicable curve in Figure 4C－4．（RURAL AREAS） |  |  |  |  |  |  |  |

## URBAN

Figure 4C-3. Warrant 3, Peak Hour

MINOR STREET HIGHER VOLUME APPROACH —VPH


MAJOR STREET-TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

RURAL
Figyre 4C-4. Warrant 3, Peak Hour (70\% Fątor) (Community Les than 10,000 Population or Above 40 MPH $/$ Major Street)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 100 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Parts 1 and 2 shall be satisfied.
b. The pedestrian volume criterion may be reduced by as much as $50 \%$ if the 15 th percentile speed of the pedestrians is less than 3.5 feet/second.
c. Estimated pedestrian volumes may be used where nearby, near-term land use development has been approved for construction.
d. In applying each condition, the total vehicles per hour on the major street (on both approaches) and the total pedestrians per hour crossing the major street shall be for the same hours.
e. The Pedestrian Volume signal warrants shall not be applied at locations where the distance to the nearest traffic control signal or STOP sign controlling the street that pedestrians desire to cross is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Traffic control signal may not be needed at the study location if adjacent coordinated traffic control signals consistently provide gaps of adequate length for pedestrians to cross the street.
g. If it is considered at a non-intersection crossing, the traffic control signal should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs. If the traffic control signal is installed at a non-intersection crossing, at least one of the signal faces should be over the traveled way for each approach, parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the crosswalk or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance, and the installation should include suitable standard signs and pavement markings.
h. Bicycles may be counted as pedestrians.


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

SPEED $\leq 35$ MPH
Figure 4C-5. Warrant 4, Pedestrian Four-Hour Volume


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

## SPEED > 35 MPH

Figure 4C-6. Waxant 4, Pedestrian Four-Hour Vgłume (70\% Factor)


[^9]Figure 4C-7. Warrant 4, Pedestrian Peak Hour


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 133 pph applies as the lower threshold volume

SPEED > 35 MPH
Figure 4Cł. Warrant 4, Pedestrian Peak Hour $\not / 10 \%$ Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 93 pph applies as the lower threshold volume
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Part A and Part B shall be satisfied.
b. For purposes of this warrant, schoolchildren include elementary through high school students.
c. Estimated schoolchildren volumes may be used where a new school or expanded school has been approved for construction.
d. The need for a traffic control signal shall be considered when an engineering study of the frequency and adequacy of gaps in the vehicular traffic stream as related to the number and size of groups of schoolchildren at an established school crossing across the major street shows that the number of adequate gaps in the traffic stream during the period when the schoolchildren are using the crossing is less than the number of minutes in the same period and there are a minimum of 20 schoolchildren during the highest crossing hour.
e. The School Crossing signal warrant shall not be applied at locations where the distance to the nearest traffic control signal along the major street is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Non-intersectional schoolchildren crosswalk locations may be signalized when justified.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. The Coordinated Signal System signal warrant should not be applied where the resultant spacing of traffic control signals would be less than 1,000 feet.
b. All Parts must be satisfied.

| MINIMUM REQUIREMENTS | DISTANCE TO NEAREST SIGNAL | YES | NO |
| :---: | :---: | :---: | :---: |
| $\geq 1000 \mathrm{ft}$ | $\mathrm{N} \ldots \ldots \mathrm{ft}, \mathrm{S} \ldots \mathrm{ft}, \mathrm{E}$ _ ft, W__ft |  |  |
| On a one-way street or a street that has traffic predominantly in one direction, the adjacent traffic control signals are so far apart that they do not provide the necessary degree of vehicular platooning. <br> OR, On a two-way street, adjacent traffic control signals do not provide the necessary degree of platooning and the proposed and adjacent traffic control signals will collectively provide a progressive operation. |  | $\square \square$ |  |
|  |  |  |  |

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. All Parts must be satisfied.
b. For locations that involve other agencies, crash data from other involved jurisdictions should be obtained.


$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Existing traffic volumes with an ambient growth rate of $1 \%$ (or other LADOT approved ambient growth rate) may be used if projected volumes are not available.
b. All Parts must be satisfied.

| MINIMUM VOLUME REQUIREMENTS | ENTERING VOLUMES - ALL APPROACHES |  |  | $\checkmark$ | FULLFILLED |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | YES | NO |
| 1000 Veh / Hr | During Typical Weekday Peak Hour $\qquad$ Veh/Hr AND has 5-year projected traffic volumes that meet one or more of Warrants 1,2 , and 3 during an average weekday. |  |  |  |  | $\square \square$ |  |
|  | OR <br> During Each of Any 5 Hrs. of a Saturday or Sunday $\qquad$ Veh / Hr |  |  |  |  |  |
| CHARACTERISTICS OF MAJOR ROUTES |  | MAJOR ROUTE A | MAJOR ROUTE B |  | YES | NO |
| Highway System Serving as Principal Network for Through Traffic |  |  |  |  |  |  |
| Rural or Suburban Highway Outside Of, Entering, or Traversing a City |  |  |  |  |  |  |
| Appears as Major Route on an Official Plan |  |  |  |  |  |  |
| Any Major Route Characteristics Met, Both Streets |  |  |  |  | $\square$ | $\square$ |

$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Both Parts $A$ and $B$ shall be satisfied.
b. This Warrant shall only be applied after review and approval by the LADOT Railroad Crossing and Safety Section (RCOSS), subject to CPUC General Order approval.
c. This Warrant does not apply for Pre-Signals and/or Queue-Cutter signals, as an alternative application of PreSignals (See 2012 CA MUTCD, Sec 8C.09). Pre-Signals shall only be applied after review and approval by RCOSS, subject to CPUC General Order approval.

|  | FULFILLED |  |
| :---: | :---: | :---: |
|  | YES | NO |
| PART A <br> A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach. Track Center Line to Limit Line $\qquad$ ft | $\square$ | $\square$ |
| PART B <br> There is one minor street approach lane at the track crossing - During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-9. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH | $\square$ | $\square$ |
| OR, There are two or more minor street approach lanes at the track crossing - <br> During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-10. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH |  |  |

The minor street approach volume may be multiplied by up to three following adjustment factors (AF) as described in Section 4C-10.

1. Number of Rail Traffic per Day $\qquad$ Adjustment factor from Table 4C-2 $\qquad$
2. Percentage of High-Occupancy Buses on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-3 $\qquad$
3. Percentage of Tractor-Trailer Trucks on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-4 $\qquad$
NOTE: If no data is available or known, then use AF = 1 (no adjustment)

Table 4C-2. Warrant 9, Adjustment Factor for Daily Frequency of Rail Traffic

| Rail Traffic per Day | Adjustment Factor |
| :---: | :---: |
| 1 | 0.67 |
| 2 | 0.91 |
| 3 to 5 | 1.00 |
| 6 to 8 | 1.18 |
| 9 to 11 | 1.25 |
| 12 or more | 1.33 |

Table 4C-3. Warrant 9, Adjustment Factor for Percentage of High-Occupancy Buses

| \% of High-Occupancy Buses * <br> on Minor-Street Approach | Adjustment Factor |
| :---: | :---: |
| 0 \% | 1.00 |
| $2 \%$ | 1.09 |
| $4 \%$ | 1.19 |
| $6 \%$ or more | 1.32 |

[^10]$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
Table 4C-4. Warrant 9, Adjustment Factor for Percentage of Tractor-Trailer Trucks

| \% of Tractor-Trailer Trucks <br> on Minor-Street Approach | Adjustment Factor |  |
| :---: | :---: | :---: |
|  | D less than 70 feet | D of 70 feet or more |
| $0 \%$ to $2.5 \%$ | 0.50 | 0.50 |
| $2.6 \%$ to $7.5 \%$ | 0.75 | 0.75 |
| $7.6 \%$ to $12.5 \%$ | 1.00 | 1.00 |
| $12.6 \%$ to $17.5 \%$ | 2.30 | 1.15 |
| $17.6 \%$ to $22.5 \%$ | 2.70 | 1.35 |
| $22.6 \%$ to $27.5 \%$ | 3.28 | 1.64 |
| More than $27.5 \%$ | 4.18 | 2.09 |

Figure 4C-9. Warrant 9, Intersection Near a Grade Crossing
(One Approach Lane at the Track Crossing)


Figure 4C-10. Warrant 9, Intersection Near a Grade Crossing (Two or More Approach Lanes at the Track Crossing)



* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. A bicycle signal should be considered for use only when the Volume requirement and Collision requirement have been met, or the Volume requirement and Geometry requirement have been met.
b. Bicycle and vehicle volumes shall use the same peak hour.


$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. All Parts shall be satisfied.
b. This warrant should be applied when an Activated Pedestrian Warning Device is recommended within 600 feet both upstream and downstream of existing traffic signals.

| PART A | YES |
| :--- | :---: |
| Location meets the guidelines for the installation of an Activated Pedestrian Warning Device <br> as described in MPP section 354. | $\square$ |

## PART B


$\qquad$

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Condition $A$ or Condition B or combination of $80 \%$ of both parts $A$ and $B$ must be satisfied.
b. A 6-hour Manual Count may be used in a determination that this warrant is not met. However, supplement manual counts should be taken during separate hours for a determination that this warrant is met.
c. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
d. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
e. Figure 4C-103(CA) should be used for new intersections, significantly reconstructed intersections, where near-term land development will result in increased volumes, or where it is not reasonable to use current traffic volumes.
f. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
g. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.

EEight-Hour Vehicular Volume] (continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *

| Condition A |  |  |  |  |  |  |  |  |  | SATISFIED YES NO |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Vehicle Volume |  |  |  |  |  |  |  |  |  | 100\% | $\square$ | $\square$ |
|  |  |  |  |  |  |  |  |  |  | 80\% | $\square$ | $\square$ |
|  | MINIMUM REQUIREMENTS (80\% SHOW IN BRACKETS) |  |  |  |  |  | RIGHT TURN REDUCTION APPLICATION MINOR STREET <br> (If Yes, fill in percentage)  $\qquad$ \% |  |  |  |  |  |
|  | (U) | R | (U) | R |  |  | Hou |  |  |  |  |  |
| APPROACH LANES | $1 \checkmark$ |  | 2 or More $\checkmark$ |  | 07:00 08:00 09:00/15:00/16:00/17:00 |  |  |  |  |  |  |  |
| Both Approach Major Street | $\begin{gathered} 500 \\ (400) \end{gathered}$ | $\begin{gathered} 350 \\ (280) \end{gathered}$ | $\begin{gathered} 600 \checkmark \\ (480) \end{gathered}$ | $\begin{gathered} 420 \\ (336) \end{gathered}$ | 1950 | 2051 | 1906 | 1822 | 1997 | 2190 |  |  |
| Highest Approach Minor Street | $\begin{gathered} 150 \checkmark \\ (120) \end{gathered}$ | $\begin{aligned} & 105 \\ & (84) \end{aligned}$ | $\begin{gathered} 200 \\ (160) \end{gathered}$ | $\begin{gathered} 140 \\ (112) \end{gathered}$ | 136 | 99 | 65 | 74 | 161 | 246 |  |  |



| COMBINATION OF A \& B | SATISFIED | YES |
| :--- | :---: | :---: |
|  |  | NO |
|  | $\square$ | $\square$ |


| REQUIREMENT | CONDITION | $\checkmark$ | FULFILLED |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | YES | NO |
| TWO CONDITIONS SATISFIED 80\% | A. MINIMUM VEHICULAR VOLUME |  | $\square$ | $\square$ |
|  | AND <br> B. INTERRUPTION OF CONTINUOUS TRAFFIC |  |  |  |
| AN ADEQUATE TRIA LESS DELAY AND IN | AND <br> OF OTHER ALTERNATIVES THAT COULD CAUSE OOVENIENCE TO TRAFFIC HAS FAILED TO SOLVE THE TRAFFIC PROBLEMS |  | $\square$ | $\square$ |

[Eight-Hour Vehicular Volume](continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *


Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form) Based on Estimated Average Daily Traffic - see Note*

| URBAN $\square \quad$ RURAL $\square$ | Minimum Requirements Estimated Average Daily Traffic |  |  |
| :---: | :---: | :---: | :---: |
| CONDITION A - Minimum Vehicular Volume <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day On Major Street (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 8,000 5,600 <br> 9,600 6,720 <br> 9,600 6,720 <br> 8,000 5,600 | $\begin{aligned} & \text { Urban } \\ & \\ & 2,400 \\ & 2,400 \\ & 3,200 \\ & 3,200 \end{aligned}$ | $\begin{gathered} \text { Rural } \\ \\ 1,680 \\ 1,680 \\ 2,240 \\ 2,240 \end{gathered}$ |
| CONDITION B - Interruption of Continuous Traffic <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day <br> On Major Street <br> (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 12,000 8,400 <br> 14,400 10,080 <br> 14,400 10,080 <br> 12,000 8,400 | Urban $\begin{aligned} & 1,200 \\ & 1,200 \\ & 1,600 \\ & 1,600 \end{aligned}$ | Rural $\begin{array}{r} 850 \\ 850 \\ 1,120 \\ 1,120 \end{array}$ |
| Combination of CONDITIONS A + B <br> Satisfied $\square$ Not Satisfied $\square$ <br> No one condition satisfied, but following conditions fulfilled $80 \%$ or more $\qquad$ $\qquad$ <br> A <br> B | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ |  |

* Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Record hourly vehicle volumes for the highest four hours of an average day.
b. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
d. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
e. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.

| APPROACH LANES | One | $\begin{aligned} & 2 \text { or } \\ & \text { More } \end{aligned}$ | Hours |  |  |  | RIGHT TURN REDUCTION <br> APPLICATION MINOR STREET | YES | NO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 17: | 16 | 07:0 | $00 / 08: 0$ |  |  |  |
| Both Approaches - Major Street |  | $\checkmark$ | 2190 | 1997 | 1950 | 2051 |  | $\square$ |  |
| Higher Approach - Minor Street | $\checkmark$ |  | 246 | 161 | 136 | 99 | (If Yes, fill in percentage) | \% |  |
| * All plotted points fall above the applicable curve in Figure 4C-1. (URBAN AREAS) |  |  |  |  |  |  |  | $\square \square$ |  |
| OR, All plotted points fall above the applicable curve in Figure 4C-2. (RURAL AREAS) |  |  |  |  |  |  |  |  |  |  |

URBAN
Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

MINOR STREET HIGHER VOLUME APPROACH—VPH

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Part A or Part B must be satisfied.
b. In applying each condition, the major street and minor street volumes shall be for the same hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minorstreet traffic count.
d. Estimated Peak Hour Volumes may be used for new intersections, significantly reconstructed intersections, or where near-term land development will result in increased volumes.
e. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the leftturn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
f. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.


## URBAN

Figure 4C-3. Warrant 3, Peak Hour

MINOR STREET HIGHER VOLUME APPROACH —VPH


MAJOR STREET-TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

RURAL
Figyre 4C-4. Warrant 3, Peak Hour (70\% Fątor) (Community Les than 10,000 Population or Above 40 MPH $/$ Major Street)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 100 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Parts 1 and 2 shall be satisfied.
b. The pedestrian volume criterion may be reduced by as much as $50 \%$ if the 15 th percentile speed of the pedestrians is less than 3.5 feet/second.
c. Estimated pedestrian volumes may be used where nearby, near-term land use development has been approved for construction.
d. In applying each condition, the total vehicles per hour on the major street (on both approaches) and the total pedestrians per hour crossing the major street shall be for the same hours.
e. The Pedestrian Volume signal warrants shall not be applied at locations where the distance to the nearest traffic control signal or STOP sign controlling the street that pedestrians desire to cross is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Traffic control signal may not be needed at the study location if adjacent coordinated traffic control signals consistently provide gaps of adequate length for pedestrians to cross the street.
g. If it is considered at a non-intersection crossing, the traffic control signal should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs. If the traffic control signal is installed at a non-intersection crossing, at least one of the signal faces should be over the traveled way for each approach, parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the crosswalk or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance, and the installation should include suitable standard signs and pavement markings.
h. Bicycles may be counted as pedestrians.


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

SPEED $\leq 35$ MPH
Figure 4C-5. Warrant 4, Pedestrian Four-Hour Volume


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

## SPEED > 35 MPH

Figure 4C-6. Waxant 4, Pedestrian Four-Hour Vgłume (70\% Factor)


[^11]Figure 4C-7. Warrant 4, Pedestrian Peak Hour


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 133 pph applies as the lower threshold volume

SPEED > 35 MPH
Figure 4Cł. Warrant 4, Pedestrian Peak Hour $\not / 10 \%$ Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 93 pph applies as the lower threshold volume
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Part A and Part B shall be satisfied.
b. For purposes of this warrant, schoolchildren include elementary through high school students.
c. Estimated schoolchildren volumes may be used where a new school or expanded school has been approved for construction.
d. The need for a traffic control signal shall be considered when an engineering study of the frequency and adequacy of gaps in the vehicular traffic stream as related to the number and size of groups of schoolchildren at an established school crossing across the major street shows that the number of adequate gaps in the traffic stream during the period when the schoolchildren are using the crossing is less than the number of minutes in the same period and there are a minimum of 20 schoolchildren during the highest crossing hour.
e. The School Crossing signal warrant shall not be applied at locations where the distance to the nearest traffic control signal along the major street is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Non-intersectional schoolchildren crosswalk locations may be signalized when justified.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. The Coordinated Signal System signal warrant should not be applied where the resultant spacing of traffic control signals would be less than 1,000 feet.
b. All Parts must be satisfied.

| MINIMUM REQUIREMENTS | DISTANCE TO NEAREST SIGNAL | YES | NO |
| :---: | :---: | :---: | :---: |
| $\geq 1000 \mathrm{ft}$ | $\mathrm{N} \ldots \ldots \mathrm{ft}, \mathrm{S} \ldots \mathrm{ft}, \mathrm{E}$ _ ft, W__ft |  |  |
| On a one-way street or a street that has traffic predominantly in one direction, the adjacent traffic control signals are so far apart that they do not provide the necessary degree of vehicular platooning. <br> OR, On a two-way street, adjacent traffic control signals do not provide the necessary degree of platooning and the proposed and adjacent traffic control signals will collectively provide a progressive operation. |  | $\square \square$ |  |
|  |  |  |  |

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. All Parts must be satisfied.
b. For locations that involve other agencies, crash data from other involved jurisdictions should be obtained.


$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Existing traffic volumes with an ambient growth rate of $1 \%$ (or other LADOT approved ambient growth rate) may be used if projected volumes are not available.
b. All Parts must be satisfied.

| MINIMUM VOLUME REQUIREMENTS | ENTERING VOLUMES - ALL APPROACHES |  |  | $\checkmark$ | FULLFILLED |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | YES | NO |
| 1000 Veh / Hr | During Typical Weekday Peak Hour $\qquad$ Veh/Hr AND has 5-year projected traffic volumes that meet one or more of Warrants 1,2 , and 3 during an average weekday. |  |  |  |  | $\square \square$ |  |
|  | OR <br> During Each of Any 5 Hrs. of a Saturday or Sunday $\qquad$ Veh / Hr |  |  |  |  |  |
| CHARACTERISTICS OF MAJOR ROUTES |  | MAJOR ROUTE A | MAJOR ROUTE B |  | YES | NO |
| Highway System Serving as Principal Network for Through Traffic |  |  |  |  |  |  |
| Rural or Suburban Highway Outside Of, Entering, or Traversing a City |  |  |  |  |  |  |
| Appears as Major Route on an Official Plan |  |  |  |  |  |  |
| Any Major Route Characteristics Met, Both Streets |  |  |  |  | $\square$ | $\square$ |

$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Both Parts $A$ and $B$ shall be satisfied.
b. This Warrant shall only be applied after review and approval by the LADOT Railroad Crossing and Safety Section (RCOSS), subject to CPUC General Order approval.
c. This Warrant does not apply for Pre-Signals and/or Queue-Cutter signals, as an alternative application of PreSignals (See 2012 CA MUTCD, Sec 8C.09). Pre-Signals shall only be applied after review and approval by RCOSS, subject to CPUC General Order approval.

|  | FULFILLED |  |
| :---: | :---: | :---: |
|  | YES | NO |
| PART A <br> A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach. Track Center Line to Limit Line $\qquad$ ft | $\square$ | $\square$ |
| PART B <br> There is one minor street approach lane at the track crossing - During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-9. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH | $\square$ | $\square$ |
| OR, There are two or more minor street approach lanes at the track crossing - <br> During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-10. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH |  |  |

The minor street approach volume may be multiplied by up to three following adjustment factors (AF) as described in Section 4C-10.

1. Number of Rail Traffic per Day $\qquad$ Adjustment factor from Table 4C-2 $\qquad$
2. Percentage of High-Occupancy Buses on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-3 $\qquad$
3. Percentage of Tractor-Trailer Trucks on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-4 $\qquad$
NOTE: If no data is available or known, then use AF = 1 (no adjustment)

Table 4C-2. Warrant 9, Adjustment Factor for Daily Frequency of Rail Traffic

| Rail Traffic per Day | Adjustment Factor |
| :---: | :---: |
| 1 | 0.67 |
| 2 | 0.91 |
| 3 to 5 | 1.00 |
| 6 to 8 | 1.18 |
| 9 to 11 | 1.25 |
| 12 or more | 1.33 |

Table 4C-3. Warrant 9, Adjustment Factor for Percentage of High-Occupancy Buses

| \% of High-Occupancy Buses * <br> on Minor-Street Approach | Adjustment Factor |
| :---: | :---: |
| 0 \% | 1.00 |
| $2 \%$ | 1.09 |
| $4 \%$ | 1.19 |
| $6 \%$ or more | 1.32 |

[^12]$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
Table 4C-4. Warrant 9, Adjustment Factor for Percentage of Tractor-Trailer Trucks

| \% of Tractor-Trailer Trucks <br> on Minor-Street Approach | Adjustment Factor |  |
| :---: | :---: | :---: |
|  | D less than 70 feet | D of 70 feet or more |
| $0 \%$ to $2.5 \%$ | 0.50 | 0.50 |
| $2.6 \%$ to $7.5 \%$ | 0.75 | 0.75 |
| $7.6 \%$ to $12.5 \%$ | 1.00 | 1.00 |
| $12.6 \%$ to $17.5 \%$ | 2.30 | 1.15 |
| $17.6 \%$ to $22.5 \%$ | 2.70 | 1.35 |
| $22.6 \%$ to $27.5 \%$ | 3.28 | 1.64 |
| More than $27.5 \%$ | 4.18 | 2.09 |

Figure 4C-9. Warrant 9, Intersection Near a Grade Crossing
(One Approach Lane at the Track Crossing)


Figure 4C-10. Warrant 9, Intersection Near a Grade Crossing (Two or More Approach Lanes at the Track Crossing)



* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. A bicycle signal should be considered for use only when the Volume requirement and Collision requirement have been met, or the Volume requirement and Geometry requirement have been met.
b. Bicycle and vehicle volumes shall use the same peak hour.


$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. All Parts shall be satisfied.
b. This warrant should be applied when an Activated Pedestrian Warning Device is recommended within 600 feet both upstream and downstream of existing traffic signals.

| PART A | YES |
| :--- | :---: |
| Location meets the guidelines for the installation of an Activated Pedestrian Warning Device <br> as described in MPP section 354. | $\square$ |

## PART B


$\qquad$

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Condition $A$ or Condition $B$ or combination of $80 \%$ of both parts $A$ and $B$ must be satisfied.
b. A 6-hour Manual Count may be used in a determination that this warrant is not met. However, supplement manual counts should be taken during separate hours for a determination that this warrant is met.
c. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
d. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
e. Figure 4C-103(CA) should be used for new intersections, significantly reconstructed intersections, where near-term land development will result in increased volumes, or where it is not reasonable to use current traffic volumes.
f. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
g. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.
[Eight-Hour Vehicular Volume] (continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *

| Condition A |  |  |  |  |  |  |  |  |  | SATISFIED YES NO |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Vehicle Volume |  |  |  |  |  |  |  |  |  | 100\% | $\square$ | $\square$ |
|  |  |  |  |  |  |  |  |  |  | 80\% | $\square$ | $\square$ |
|  | MINIMUM REQUIREMENTS (80\% SHOW IN BRACKETS) |  |  |  |  |  | RIGHT TURN REDUCTION APPLICATION MINOR STREET <br> (If Yes, fill in percentage)  $\qquad$ \% |  |  |  |  |  |
|  | (U) | R | (U) | R |  |  | Hou |  |  |  |  |  |
| APPROACH LANES | $1 \checkmark$ |  | 2 or More $\checkmark$ |  | 07:00/08:00/09:00/15:00/16:00/17:00 |  |  |  |  |  |  |  |
| Both Approach Major Street | $\begin{gathered} 500 \\ (400) \end{gathered}$ | $\begin{gathered} 350 \\ (280) \end{gathered}$ | $\begin{gathered} 600 \\ (480) \checkmark \end{gathered}$ | $\begin{gathered} 420 \\ (336) \end{gathered}$ | 1950 | 2051 | 1906 | 1822 | 1997 | 2153 |  |  |
| Highest Approach Minor Street | $\begin{gathered} 150 \\ (120) \mathrm{r} \end{gathered}$ | $\begin{aligned} & 105 \\ & (84) \end{aligned}$ | $\begin{gathered} 200 \\ (160) \end{gathered}$ | $\begin{gathered} 140 \\ (112) \end{gathered}$ | 136 | 99 | 65 | 74 | 161 | 213 |  |  |



| COMBINATION OF A \& B | SATISFIED | YES |
| :--- | :---: | :---: |
|  |  | NO |
|  | $\square$ | $\square$ |


| REQUIREMENT | CONDITION | $\checkmark$ | FULFILLED |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | YES | NO |
| TWO CONDITIONS SATISFIED 80\% | A. MINIMUM VEHICULAR VOLUME |  | $\square$ | $\square$ |
|  | AND <br> B. INTERRUPTION OF CONTINUOUS TRAFFIC |  |  |  |
| AN ADEQUATE TRIA LESS DELAY AND IN | AND <br> OF OTHER ALTERNATIVES THAT COULD CAUSE OOVENIENCE TO TRAFFIC HAS FAILED TO SOLVE THE TRAFFIC PROBLEMS |  | $\square$ | $\square$ |

[Eight-Hour Vehicular Volume](continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *


Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form) Based on Estimated Average Daily Traffic - see Note*

| URBAN $\square \quad$ RURAL $\square$ | Minimum Requirements Estimated Average Daily Traffic |  |  |
| :---: | :---: | :---: | :---: |
| CONDITION A - Minimum Vehicular Volume <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day On Major Street (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 8,000 5,600 <br> 9,600 6,720 <br> 9,600 6,720 <br> 8,000 5,600 | $\begin{aligned} & \text { Urban } \\ & \\ & 2,400 \\ & 2,400 \\ & 3,200 \\ & 3,200 \end{aligned}$ | $\begin{gathered} \text { Rural } \\ \\ 1,680 \\ 1,680 \\ 2,240 \\ 2,240 \end{gathered}$ |
| CONDITION B - Interruption of Continuous Traffic <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day <br> On Major Street <br> (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 12,000 8,400 <br> 14,400 10,080 <br> 14,400 10,080 <br> 12,000 8,400 | Urban $\begin{aligned} & 1,200 \\ & 1,200 \\ & 1,600 \\ & 1,600 \end{aligned}$ | Rural $\begin{array}{r} 850 \\ 850 \\ 1,120 \\ 1,120 \end{array}$ |
| Combination of CONDITIONS A + B <br> Satisfied $\square$ Not Satisfied $\square$ <br> No one condition satisfied, but following conditions fulfilled $80 \%$ or more $\qquad$ $\qquad$ <br> A <br> B | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ |  |

* Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Record hourly vehicle volumes for the highest four hours of an average day.
b. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
d. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
e. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.

| APPROACH LANES | One | 2 or More | Hours |  |  |  | RIGHT TURN REDUCTION <br> APPLICATION MINOR STREET | YES | NO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 17: | 16 | 07:0 | 00/08:1 |  |  |  |
| Both Approaches - Major Street |  | $\checkmark$ | 2153 | 1997 | 1950 | 2051 |  | $\square$ |  |
| Higher Approach - Minor Street | $\checkmark$ |  | 213 | 161 | 136 | 99 | (If Yes, fill in percentage) | \% |  |
| * All plotted points fall above the applicable curve in Figure 4C-1. (URBAN AREAS) |  |  |  |  |  |  |  | $\square \square$ |  |
| OR, All plotted points fall above the applicable curve in Figure 4C-2. (RURAL AREAS) |  |  |  |  |  |  |  |  |  |  |

URBAN
Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

MINOR STREET HIGHER VOLUME APPROACH—VPH

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Part A or Part B must be satisfied.
b. In applying each condition, the major street and minor street volumes shall be for the same hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minorstreet traffic count.
d. Estimated Peak Hour Volumes may be used for new intersections, significantly reconstructed intersections, or where near-term land development will result in increased volumes.
e. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the leftturn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
f. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.


## URBAN

Figure 4C-3. Warrant 3, Peak Hour

MINOR STREET HIGHER VOLUME APPROACH —VPH


MAJOR STREET-TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

RURAL
Figyre 4C-4. Warrant 3, Peak Hour (70\% Fątor) (Community Les than 10,000 Population or Above 40 MPH $/$ Major Street)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 100 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Parts 1 and 2 shall be satisfied.
b. The pedestrian volume criterion may be reduced by as much as $50 \%$ if the 15 th percentile speed of the pedestrians is less than 3.5 feet/second.
c. Estimated pedestrian volumes may be used where nearby, near-term land use development has been approved for construction.
d. In applying each condition, the total vehicles per hour on the major street (on both approaches) and the total pedestrians per hour crossing the major street shall be for the same hours.
e. The Pedestrian Volume signal warrants shall not be applied at locations where the distance to the nearest traffic control signal or STOP sign controlling the street that pedestrians desire to cross is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Traffic control signal may not be needed at the study location if adjacent coordinated traffic control signals consistently provide gaps of adequate length for pedestrians to cross the street.
g. If it is considered at a non-intersection crossing, the traffic control signal should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs. If the traffic control signal is installed at a non-intersection crossing, at least one of the signal faces should be over the traveled way for each approach, parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the crosswalk or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance, and the installation should include suitable standard signs and pavement markings.
h. Bicycles may be counted as pedestrians.


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

SPEED $\leq 35$ MPH
Figure 4C-5. Warrant 4, Pedestrian Four-Hour Volume


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

## SPEED > 35 MPH

Figure 4C-6. Waxant 4, Pedestrian Four-Hour Vgłume (70\% Factor)


[^13]Figure 4C-7. Warrant 4, Pedestrian Peak Hour


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 133 pph applies as the lower threshold volume

SPEED > 35 MPH
Figure 4Cł. Warrant 4, Pedestrian Peak Hour $\not / 10 \%$ Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 93 pph applies as the lower threshold volume
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Part A and Part B shall be satisfied.
b. For purposes of this warrant, schoolchildren include elementary through high school students.
c. Estimated schoolchildren volumes may be used where a new school or expanded school has been approved for construction.
d. The need for a traffic control signal shall be considered when an engineering study of the frequency and adequacy of gaps in the vehicular traffic stream as related to the number and size of groups of schoolchildren at an established school crossing across the major street shows that the number of adequate gaps in the traffic stream during the period when the schoolchildren are using the crossing is less than the number of minutes in the same period and there are a minimum of 20 schoolchildren during the highest crossing hour.
e. The School Crossing signal warrant shall not be applied at locations where the distance to the nearest traffic control signal along the major street is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Non-intersectional schoolchildren crosswalk locations may be signalized when justified.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. The Coordinated Signal System signal warrant should not be applied where the resultant spacing of traffic control signals would be less than 1,000 feet.
b. All Parts must be satisfied.

| MINIMUM REQUIREMENTS | DISTANCE TO NEAREST SIGNAL | YES | NO |
| :---: | :---: | :---: | :---: |
| $\geq 1000 \mathrm{ft}$ | $\mathrm{N} \ldots \ldots \mathrm{ft}, \mathrm{S} \ldots \mathrm{ft}, \mathrm{E}$ _ ft, W__ft |  |  |
| On a one-way street or a street that has traffic predominantly in one direction, the adjacent traffic control signals are so far apart that they do not provide the necessary degree of vehicular platooning. <br> OR, On a two-way street, adjacent traffic control signals do not provide the necessary degree of platooning and the proposed and adjacent traffic control signals will collectively provide a progressive operation. |  | $\square \square$ |  |
|  |  |  |  |

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. All Parts must be satisfied.
b. For locations that involve other agencies, crash data from other involved jurisdictions should be obtained.


$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Existing traffic volumes with an ambient growth rate of $1 \%$ (or other LADOT approved ambient growth rate) may be used if projected volumes are not available.
b. All Parts must be satisfied.

| MINIMUM VOLUME REQUIREMENTS | ENTERING VOLUMES - ALL APPROACHES |  |  | $\checkmark$ | FULLFILLED |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | YES | NO |
| 1000 Veh / Hr | During Typical Weekday Peak Hour $\qquad$ Veh/Hr AND has 5-year projected traffic volumes that meet one or more of Warrants 1,2 , and 3 during an average weekday. |  |  |  |  | $\square \square$ |  |
|  | OR <br> During Each of Any 5 Hrs. of a Saturday or Sunday $\qquad$ Veh / Hr |  |  |  |  |  |
| CHARACTERISTICS OF MAJOR ROUTES |  | MAJOR ROUTE A | MAJOR ROUTE B |  | YES | NO |
| Highway System Serving as Principal Network for Through Traffic |  |  |  |  |  |  |
| Rural or Suburban Highway Outside Of, Entering, or Traversing a City |  |  |  |  |  |  |
| Appears as Major Route on an Official Plan |  |  |  |  |  |  |
| Any Major Route Characteristics Met, Both Streets |  |  |  |  | $\square$ | $\square$ |

$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Both Parts $A$ and $B$ shall be satisfied.
b. This Warrant shall only be applied after review and approval by the LADOT Railroad Crossing and Safety Section (RCOSS), subject to CPUC General Order approval.
c. This Warrant does not apply for Pre-Signals and/or Queue-Cutter signals, as an alternative application of PreSignals (See 2012 CA MUTCD, Sec 8C.09). Pre-Signals shall only be applied after review and approval by RCOSS, subject to CPUC General Order approval.

|  | FULFILLED |  |
| :---: | :---: | :---: |
|  | YES | NO |
| PART A <br> A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach. Track Center Line to Limit Line $\qquad$ ft | $\square$ | $\square$ |
| PART B <br> There is one minor street approach lane at the track crossing - During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-9. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH | $\square$ | $\square$ |
| OR, There are two or more minor street approach lanes at the track crossing - <br> During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-10. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH |  |  |

The minor street approach volume may be multiplied by up to three following adjustment factors (AF) as described in Section 4C-10.

1. Number of Rail Traffic per Day $\qquad$ Adjustment factor from Table 4C-2 $\qquad$
2. Percentage of High-Occupancy Buses on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-3 $\qquad$
3. Percentage of Tractor-Trailer Trucks on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-4 $\qquad$
NOTE: If no data is available or known, then use AF = 1 (no adjustment)

Table 4C-2. Warrant 9, Adjustment Factor for Daily Frequency of Rail Traffic

| Rail Traffic per Day | Adjustment Factor |
| :---: | :---: |
| 1 | 0.67 |
| 2 | 0.91 |
| 3 to 5 | 1.00 |
| 6 to 8 | 1.18 |
| 9 to 11 | 1.25 |
| 12 or more | 1.33 |

Table 4C-3. Warrant 9, Adjustment Factor for Percentage of High-Occupancy Buses

| \% of High-Occupancy Buses * <br> on Minor-Street Approach | Adjustment Factor |
| :---: | :---: |
| 0 \% | 1.00 |
| $2 \%$ | 1.09 |
| $4 \%$ | 1.19 |
| $6 \%$ or more | 1.32 |

[^14]$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
Table 4C-4. Warrant 9, Adjustment Factor for Percentage of Tractor-Trailer Trucks

| \% of Tractor-Trailer Trucks <br> on Minor-Street Approach | Adjustment Factor |  |
| :---: | :---: | :---: |
|  | D less than 70 feet | D of 70 feet or more |
| $0 \%$ to $2.5 \%$ | 0.50 | 0.50 |
| $2.6 \%$ to $7.5 \%$ | 0.75 | 0.75 |
| $7.6 \%$ to $12.5 \%$ | 1.00 | 1.00 |
| $12.6 \%$ to $17.5 \%$ | 2.30 | 1.15 |
| $17.6 \%$ to $22.5 \%$ | 2.70 | 1.35 |
| $22.6 \%$ to $27.5 \%$ | 3.28 | 1.64 |
| More than $27.5 \%$ | 4.18 | 2.09 |

Figure 4C-9. Warrant 9, Intersection Near a Grade Crossing
(One Approach Lane at the Track Crossing)


Figure 4C-10. Warrant 9, Intersection Near a Grade Crossing (Two or More Approach Lanes at the Track Crossing)



* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. A bicycle signal should be considered for use only when the Volume requirement and Collision requirement have been met, or the Volume requirement and Geometry requirement have been met.
b. Bicycle and vehicle volumes shall use the same peak hour.


$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. All Parts shall be satisfied.
b. This warrant should be applied when an Activated Pedestrian Warning Device is recommended within 600 feet both upstream and downstream of existing traffic signals.

| PART A | YES |
| :--- | :---: |
| Location meets the guidelines for the installation of an Activated Pedestrian Warning Device <br> as described in MPP section 354. | $\square$ |

## PART B


$\qquad$

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Condition $A$ or Condition $B$ or combination of $80 \%$ of both parts $A$ and $B$ must be satisfied.
b. A 6-hour Manual Count may be used in a determination that this warrant is not met. However, supplement manual counts should be taken during separate hours for a determination that this warrant is met.
c. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
d. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
e. Figure 4C-103(CA) should be used for new intersections, significantly reconstructed intersections, where near-term land development will result in increased volumes, or where it is not reasonable to use current traffic volumes.
f. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
g. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.

EEight-Hour Vehicular Volume] (continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *

| Condition A |  |  |  |  |  |  |  |  |  | SATISFIED YES NO |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Minimum Vehicle Volume |  |  |  |  |  |  |  |  |  | 100\% | $\square$ | $\square$ |
|  |  |  |  |  |  |  |  |  |  | 80\% | $\square$ | $\square$ |
|  | MINIMUM REQUIREMENTS (80\% SHOW IN BRACKETS) |  |  |  |  |  | RIGHT TURN REDUCTION APPLICATION MINOR STREET <br> (If Yes, fill in percentage)  $\qquad$ \% |  |  |  |  |  |
|  | (U) | R | (U) | R |  |  | Hou |  |  |  |  |  |
| APPROACH LANES | $1 \checkmark$ |  | 2 or More $\checkmark$ |  | 07:00 08:00 09:00/15:00/16:00/17:00 |  |  |  |  |  |  |  |
| Both Approach Major Street | $\begin{gathered} 500 \\ (400) \end{gathered}$ | $\begin{gathered} 350 \\ (280) \end{gathered}$ | $\begin{gathered} 600 \checkmark \\ (480) \end{gathered}$ | $\begin{gathered} 420 \\ (336) \end{gathered}$ | 1950 | 2051 | 1906 | 1822 | 1997 | 2190 |  |  |
| Highest Approach Minor Street | $\begin{gathered} 150 \checkmark \\ (120) \end{gathered}$ | $\begin{aligned} & 105 \\ & (84) \end{aligned}$ | $\begin{gathered} 200 \\ (160) \end{gathered}$ | $\begin{gathered} 140 \\ (112) \end{gathered}$ | 136 | 99 | 65 | 74 | 161 | 246 |  |  |



| COMBINATION OF A \& B | SATISFIED | YES |
| :--- | :---: | :---: |
|  |  | NO |
|  | $\square$ | $\square$ |


| REQUIREMENT | CONDITION | $\checkmark$ | FULFILLED |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | YES | NO |
| TWO CONDITIONS SATISFIED 80\% | A. MINIMUM VEHICULAR VOLUME |  | $\square$ | $\square$ |
|  | AND <br> B. INTERRUPTION OF CONTINUOUS TRAFFIC |  |  |  |
| AN ADEQUATE TRIA LESS DELAY AND IN | AND <br> OF OTHER ALTERNATIVES THAT COULD CAUSE OOVENIENCE TO TRAFFIC HAS FAILED TO SOLVE THE TRAFFIC PROBLEMS |  | $\square$ | $\square$ |

[Eight-Hour Vehicular Volume](continued)

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *


Figure 4C-103 (CA). Traffic Signal Warrants Worksheet (Average Traffic Estimate Form) Based on Estimated Average Daily Traffic - see Note*

| URBAN $\square \quad$ RURAL $\square$ | Minimum Requirements Estimated Average Daily Traffic |  |  |
| :---: | :---: | :---: | :---: |
| CONDITION A - Minimum Vehicular Volume <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day On Major Street (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 8,000 5,600 <br> 9,600 6,720 <br> 9,600 6,720 <br> 8,000 5,600 | $\begin{aligned} & \text { Urban } \\ & \\ & 2,400 \\ & 2,400 \\ & 3,200 \\ & 3,200 \end{aligned}$ | $\begin{gathered} \text { Rural } \\ \\ 1,680 \\ 1,680 \\ 2,240 \\ 2,240 \end{gathered}$ |
| CONDITION B - Interruption of Continuous Traffic <br> Satisfied $\square$ Not Satisfied $\square$ | Vehicles Per Day <br> On Major Street <br> (Total of Both Approaches) | Vehicles Per Day On Higher-Volume Minor Street Approach (One Direction Only) |  |
| Number of lanes for moving traffic on each approach | Urban Rural <br>   <br> 12,000 8,400 <br> 14,400 10,080 <br> 14,400 10,080 <br> 12,000 8,400 | Urban $\begin{aligned} & 1,200 \\ & 1,200 \\ & 1,600 \\ & 1,600 \end{aligned}$ | Rural $\begin{array}{r} 850 \\ 850 \\ 1,120 \\ 1,120 \end{array}$ |
| Combination of CONDITIONS A + B <br> Satisfied $\square$ Not Satisfied $\square$ <br> No one condition satisfied, but following conditions fulfilled $80 \%$ or more $\qquad$ $\qquad$ <br> A <br> B | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ | $\begin{gathered} 2 \text { CONDITIONS } \\ 80 \% \end{gathered}$ |  |

* Note: To be used only for NEW INTERSECTIONS or other locations where it is not reasonable to count actual traffic volumes
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Record hourly vehicle volumes for the highest four hours of an average day.
b. In applying each condition, the major street and minor street volumes shall be for the same hours. On the minor street, the higher volume does not need to be the same approach during each of the hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minor-street traffic count.
d. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the left-turn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
e. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.

| APPROACH LANES | One | $\begin{aligned} & 2 \text { or } \\ & \text { More } \end{aligned}$ | Hours |  |  |  | RIGHT TURN REDUCTION <br> APPLICATION MINOR STREET | YES | NO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 17: | 16 | 07:0 | $00 / 08: 0$ |  |  |  |
| Both Approaches - Major Street |  | $\checkmark$ | 2190 | 1997 | 1950 | 2051 |  | $\square$ |  |
| Higher Approach - Minor Street | $\checkmark$ |  | 246 | 161 | 136 | 99 | (If Yes, fill in percentage) | \% |  |
| * All plotted points fall above the applicable curve in Figure 4C-1. (URBAN AREAS) |  |  |  |  |  |  |  | $\square \square$ |  |
| OR, All plotted points fall above the applicable curve in Figure 4C-2. (RURAL AREAS) |  |  |  |  |  |  |  |  |  |  |

URBAN
Figure 4C-1. Warrant 2, Four-Hour Vehicular Volume

*Note: 115 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

MINOR STREET HIGHER VOLUME APPROACH—VPH

*Note: 80 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 60 vph applies as the lower threshold volume for a minor-street approach with one lane.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Part A or Part B must be satisfied.
b. In applying each condition, the major street and minor street volumes shall be for the same hours.
c. The study should consider the effects of the right-turn vehicles from the minor-street approaches. Engineering judgment should be used to determine what, if any, portion of the right-turn traffic is subtracted from the minorstreet traffic count.
d. Estimated Peak Hour Volumes may be used for new intersections, significantly reconstructed intersections, or where near-term land development will result in increased volumes.
e. Engineering judgment should also be used in applying various traffic signal warrants to cases where approaches consist of one lane plus one left-turn or right-turn lane. This site-specific traffic characteristics should dictate whether an approach is considered as one lane or two lanes. For example, for an approach with one lane for through and right-turning traffic plus a left-turn lane, if engineering judgment indicates that it should be considered a one-lane approach because the traffic using the left turn lane is minor, the total traffic volume approaching the intersection should be applied against the signal warrants as a one-lane approach. The approach should be considered two lanes if approximately half of the traffic on the approach turns left and the leftturn lane is of sufficient length to accommodate all left-turn vehicles. Similar engineering judgment and rationale should be applied to a street approach with one through/left-turn lane plus a right-turn lane. In this case, the degree of conflict of minor-street right-turn traffic with traffic on the major street should be considered. Thus, right-turn traffic should not be included in the minor-street volume if the movement enters the major street with minimal conflict. The approach should be evaluated as a one-lane approach with only the traffic volume in the through/left-turn lane considered.
f. At an intersection with a high volume of left-turn traffic from the major street, the signal warrant analysis may be performed in a manner that considers the higher volume of the major-street left-turn volumes plus the higher volume minor-street approach as the "minor street" volume and both approaches of the major street minus the higher of the major-street left-turn volume as "major street" volume. In these cases, engineering judgment should be used to determine if left-turn phasing is necessary to accommodate the high volume of left-turn traffic.


## URBAN

Figure 4C-3. Warrant 3, Peak Hour

MINOR STREET HIGHER VOLUME APPROACH —VPH


MAJOR STREET-TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 150 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor street approach with one lane.

RURAL
Figyre 4C-4. Warrant 3, Peak Hour (70\% Fątor) (Community Les than 10,000 Population or Above 40 MPH $/$ Major Street)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 100 vph applies as the lower threshold volume for a minor street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor street approach with one lane.

* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal *
a. Parts 1 and 2 shall be satisfied.
b. The pedestrian volume criterion may be reduced by as much as $50 \%$ if the 15 th percentile speed of the pedestrians is less than 3.5 feet/second.
c. Estimated pedestrian volumes may be used where nearby, near-term land use development has been approved for construction.
d. In applying each condition, the total vehicles per hour on the major street (on both approaches) and the total pedestrians per hour crossing the major street shall be for the same hours.
e. The Pedestrian Volume signal warrants shall not be applied at locations where the distance to the nearest traffic control signal or STOP sign controlling the street that pedestrians desire to cross is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Traffic control signal may not be needed at the study location if adjacent coordinated traffic control signals consistently provide gaps of adequate length for pedestrians to cross the street.
g. If it is considered at a non-intersection crossing, the traffic control signal should be installed at least 100 feet from side streets or driveways that are controlled by STOP or YIELD signs. If the traffic control signal is installed at a non-intersection crossing, at least one of the signal faces should be over the traveled way for each approach, parking and other sight obstructions should be prohibited for at least 100 feet in advance of and at least 20 feet beyond the crosswalk or site accommodations should be made through curb extensions or other techniques to provide adequate sight distance, and the installation should include suitable standard signs and pavement markings.
h. Bicycles may be counted as pedestrians.


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

SPEED $\leq 35$ MPH
Figure 4C-5. Warrant 4, Pedestrian Four-Hour Volume


TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREET —PEDESTRIANS PER HOUR (PPH)

## SPEED > 35 MPH

Figure 4C-6. Waxant 4, Pedestrian Four-Hour Vgłume (70\% Factor)


[^15]Figure 4C-7. Warrant 4, Pedestrian Peak Hour


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 133 pph applies as the lower threshold volume

SPEED > 35 MPH
Figure 4Cł. Warrant 4, Pedestrian Peak Hour $\not / 10 \%$ Factor)

TOTAL OF ALL PEDESTRIANS CROSSING MAJOR STREETPEDESTRIANS PER HOUR (PPH)


MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

* Note: 93 pph applies as the lower threshold volume
$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Part A and Part B shall be satisfied.
b. For purposes of this warrant, schoolchildren include elementary through high school students.
c. Estimated schoolchildren volumes may be used where a new school or expanded school has been approved for construction.
d. The need for a traffic control signal shall be considered when an engineering study of the frequency and adequacy of gaps in the vehicular traffic stream as related to the number and size of groups of schoolchildren at an established school crossing across the major street shows that the number of adequate gaps in the traffic stream during the period when the schoolchildren are using the crossing is less than the number of minutes in the same period and there are a minimum of 20 schoolchildren during the highest crossing hour.
e. The School Crossing signal warrant shall not be applied at locations where the distance to the nearest traffic control signal along the major street is less than 300 feet, unless the proposed traffic control signal will not restrict the progressive movement of traffic.
f. Non-intersectional schoolchildren crosswalk locations may be signalized when justified.

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. The Coordinated Signal System signal warrant should not be applied where the resultant spacing of traffic control signals would be less than 1,000 feet.
b. All Parts must be satisfied.

| MINIMUM REQUIREMENTS | DISTANCE TO NEAREST SIGNAL | YES | NO |
| :---: | :---: | :---: | :---: |
| $\geq 1000 \mathrm{ft}$ | $\mathrm{N} \ldots \ldots \mathrm{ft}, \mathrm{S} \ldots \mathrm{ft}, \mathrm{E}$ _ ft, W__ft |  |  |
| On a one-way street or a street that has traffic predominantly in one direction, the adjacent traffic control signals are so far apart that they do not provide the necessary degree of vehicular platooning. <br> OR, On a two-way street, adjacent traffic control signals do not provide the necessary degree of platooning and the proposed and adjacent traffic control signals will collectively provide a progressive operation. |  | $\square \square$ |  |
|  |  |  |  |

$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. All Parts must be satisfied.
b. For locations that involve other agencies, crash data from other involved jurisdictions should be obtained.


$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Existing traffic volumes with an ambient growth rate of $1 \%$ (or other LADOT approved ambient growth rate) may be used if projected volumes are not available.
b. All Parts must be satisfied.

| MINIMUM VOLUME REQUIREMENTS | ENTERING VOLUMES - ALL APPROACHES |  |  | $\checkmark$ | FULLFILLED |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | YES | NO |
| 1000 Veh / Hr | During Typical Weekday Peak Hour $\qquad$ Veh/Hr AND has 5-year projected traffic volumes that meet one or more of Warrants 1,2 , and 3 during an average weekday. |  |  |  |  | $\square \square$ |  |
|  | OR <br> During Each of Any 5 Hrs. of a Saturday or Sunday $\qquad$ Veh / Hr |  |  |  |  |  |
| CHARACTERISTICS OF MAJOR ROUTES |  | MAJOR ROUTE A | MAJOR ROUTE B |  | YES | NO |
| Highway System Serving as Principal Network for Through Traffic |  |  |  |  |  |  |
| Rural or Suburban Highway Outside Of, Entering, or Traversing a City |  |  |  |  |  |  |
| Appears as Major Route on an Official Plan |  |  |  |  |  |  |
| Any Major Route Characteristics Met, Both Streets |  |  |  |  | $\square$ | $\square$ |

$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
a. Both Parts $A$ and $B$ shall be satisfied.
b. This Warrant shall only be applied after review and approval by the LADOT Railroad Crossing and Safety Section (RCOSS), subject to CPUC General Order approval.
c. This Warrant does not apply for Pre-Signals and/or Queue-Cutter signals, as an alternative application of PreSignals (See 2012 CA MUTCD, Sec 8C.09). Pre-Signals shall only be applied after review and approval by RCOSS, subject to CPUC General Order approval.

|  | FULFILLED |  |
| :---: | :---: | :---: |
|  | YES | NO |
| PART A <br> A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach. Track Center Line to Limit Line $\qquad$ ft | $\square$ | $\square$ |
| PART B <br> There is one minor street approach lane at the track crossing - During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-9. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH | $\square$ | $\square$ |
| OR, There are two or more minor street approach lanes at the track crossing - <br> During the highest traffic volume hour during which rail traffic uses the crossing, the plotted point falls above the applicable curve in Figure 4C-10. <br> Major Street - Total of both approaches: $\qquad$ VPH <br> Minor Street - Crosses the track (one direction only, approaching the intersection): $\qquad$ VPH X AF (Use Tables 4C-2, 3, \& 4 below to calculate AF) = $\qquad$ VPH |  |  |

The minor street approach volume may be multiplied by up to three following adjustment factors (AF) as described in Section 4C-10.

1. Number of Rail Traffic per Day $\qquad$ Adjustment factor from Table 4C-2 $\qquad$
2. Percentage of High-Occupancy Buses on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-3 $\qquad$
3. Percentage of Tractor-Trailer Trucks on Minor Street Approach $\qquad$ Adjustment factor from Table 4C-4 $\qquad$
NOTE: If no data is available or known, then use AF = 1 (no adjustment)

Table 4C-2. Warrant 9, Adjustment Factor for Daily Frequency of Rail Traffic

| Rail Traffic per Day | Adjustment Factor |
| :---: | :---: |
| 1 | 0.67 |
| 2 | 0.91 |
| 3 to 5 | 1.00 |
| 6 to 8 | 1.18 |
| 9 to 11 | 1.25 |
| 12 or more | 1.33 |

Table 4C-3. Warrant 9, Adjustment Factor for Percentage of High-Occupancy Buses

| \% of High-Occupancy Buses * <br> on Minor-Street Approach | Adjustment Factor |
| :---: | :---: |
| 0 \% | 1.00 |
| $2 \%$ | 1.09 |
| $4 \%$ | 1.19 |
| $6 \%$ or more | 1.32 |

[^16]$\star$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $\star$
Table 4C-4. Warrant 9, Adjustment Factor for Percentage of Tractor-Trailer Trucks

| \% of Tractor-Trailer Trucks <br> on Minor-Street Approach | Adjustment Factor |  |
| :---: | :---: | :---: |
|  | D less than 70 feet | D of 70 feet or more |
| $0 \%$ to $2.5 \%$ | 0.50 | 0.50 |
| $2.6 \%$ to $7.5 \%$ | 0.75 | 0.75 |
| $7.6 \%$ to $12.5 \%$ | 1.00 | 1.00 |
| $12.6 \%$ to $17.5 \%$ | 2.30 | 1.15 |
| $17.6 \%$ to $22.5 \%$ | 2.70 | 1.35 |
| $22.6 \%$ to $27.5 \%$ | 3.28 | 1.64 |
| More than $27.5 \%$ | 4.18 | 2.09 |

Figure 4C-9. Warrant 9, Intersection Near a Grade Crossing
(One Approach Lane at the Track Crossing)


Figure 4C-10. Warrant 9, Intersection Near a Grade Crossing (Two or More Approach Lanes at the Track Crossing)



* The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. A bicycle signal should be considered for use only when the Volume requirement and Collision requirement have been met, or the Volume requirement and Geometry requirement have been met.
b. Bicycle and vehicle volumes shall use the same peak hour.


$*$ The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal $*$
a. All Parts shall be satisfied.
b. This warrant should be applied when an Activated Pedestrian Warning Device is recommended within 600 feet both upstream and downstream of existing traffic signals.

| PART A | YES |
| :--- | :---: |
| Location meets the guidelines for the installation of an Activated Pedestrian Warning Device <br> as described in MPP section 354. | $\square$ |

## PART B



## Appendix IS-11.2 <br> LADOT Approval Letter

Date: August 27; 2021
To: Susan Jimenez, Administrative Clerk Departmentaf City panning:
From: Wes Pringle, Transportation Engineer
Department of Transportation
Subject: TRANSPORTATION ASSESSMENT FOR THE PROPOSED 8 ${ }^{\text {th }}$ AND ALAMEDA STUDIO PROJECT LOCATED AT 2000 EAST $8^{\text {th }}$ STREET (ENV-2021-4260-EAF/VTT-83418)

The Los Angeles Department of Transportation (LADOT) has reviewed the transportation assessment prepared by Gibson Transportation Consulting, Inc., dated August 2021, for the proposed studio project located at 2000 East $8^{\text {th }}$ Street within the Central City Community Plan Area and the Central Area Planning Commission (APC). In compliance with Senate Bill (SB) 743 and the California Environmental Quality Act (CEQA), a vehicle miles traveled (VMT) analysis is required to identify the project's ability to promote the reduction of green-house gas emissions, the access to diverse land uses, and the development of multi-modal networks. The significance of a project's impact in this regard is measured against the VMT thresholds established in LADOT's Transportation Assessment Guidelines (TAG), as described below.

## DISCUSSION AND FINDINGS

## A. Project Description

The $8^{\text {th }}$ and Alameda Studio project proposes a change of use/adaptive reuse of the existing Los Angeles Times production plant to 639,840 square feet of studio, production support, office, and anciliary, circulation, and support uses on the block bounded by $8^{\text {th }}$ Street to the north, Lemon Street to the east, Olympic Boulevard and Hunter Street to the south, and Alameda Street and Lawrence Street to the west. The development includes the construction of approximately 249,790 square feet of new studio, production support, office; and ancillary uses, a total of 58 ( 33 long-term and 25 short-term) bicycle parking spaces, and 1,665 vehicle parking spaces within a new parking structure and surface lots throughout the project site. The development will be accessed via driveways along $8^{\text {th }}$ Street, Lemon Street, Hiunter Street and Olympic Boulevard as illustrated in Attachment A. The main project access is along $8^{\text {th }}$ Street via a full-access driveway to the project site and an egress only driveway from the parking structure. Access for trucks would be provided along Lemon Street via ingress and egress driveways. Additional gated egress driveways would be located along the project site's southern frontage on Hunter Street, Lawrence Street ${ }_{i}$ and Olympic Boulevard. The new gated driveways on Hunter Street would provide egress from the surface parking lots. The existing gated driveways on Lawrence Street and Olympic Boulevard driveways would remain but would not be regularly used. Separate pedestrian and bicycle access would be provided at the main gate along $88^{\text {th }}$ Street. Passenger loading and all proposed delivery will occur onsite. The project is expected to be completed by 2026.
B. Freeway Safety Analysis

Per the Interim Guidance for Freeway Safety Analysis memorandum issued by LADOT on May 1, 2020 to address Caltrans safety concerns on freeways, the study addresses the project's effects
on vehicle queuing on freeway off-ramps. Such an evaluation measures the project's potential to lengtheri a forecasted off-ramp queue and create speed differentials between vehicles exiting the freeway off-ramps and vehicles operating on the freeway mainline.

The evaluation identified the number of project trips expected to be added to nearby freeway off-ramps serving the project site. It was determined that project traffic at the $1-10$ westbound off-ramp to Enterprise Street would exceed 25 peak hour trips: Therefore, the assessment included a freeway ramp analysis which determined that the project would cause a less than significant freeway impact.

## C. CEQA Screening Threshold

Prior to accounting for trip reductions resulting from the application of Transportation Demand Management (TDM) strategies; a trip generation analysis was conducted to determine if the project would exceed the net 250 daily vehicle trips screening threshold. Using the City of Los Angeles VMT Calculator tool, which draws upon trip rate estimates published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $9^{\text {th }}$ Edition as well as applying trip generation adjustments when applicable, based on sociodemographic data and the built environment factors of the project's surroundings, it was determined that the project does exceed the net 250 daily vehicle trips threshold.

Additionally, the analysis included further discussion of the transportation impact thresholds:
T-1 Conflicting with plans, programs, ordinances, or policies
T-2.1 Causing substantial vehicle miles traveled
T-3. Substantially increasing hazards due to a geometric design feature or incompatible use.
The assessment determined that the project would not have a significant transportation impact under Thresholds T-1 and T-3. A project's impacts per Threshold T-2,1 is determined by using the VMT calculator and is discussed further below, A copy of the VMT Calculator summary report is provided as Attachment $B$ to this report.

## D. Transportation Impacts

On July 30, 2019, pursuant to SB 743 and the recent changes to Section 15064;03 of the State's CEQA Guidelines, the City of Los Angeles adopted VMT as criteria in determining transportation impacts under CEQA. The new LADOT TAG provide instructions on preparing transportation assessments for land use proposals and defines the significant impact thresholds.

The LADOT VMT Calculator tool measures project impact in terms of Household VMT per Capita and Work VMT per Employee. LADOT identified distinct thresholds for significant VMIT impacts for each of the seven APC areas in the City. For the Central APC area, in which the project is located, the following thresholds have been established:

- Household VMT per Capita: 6.0
- Work VMT per Employee: 7.6

As cited in the VMT Analysis report, prepared by Gibson Transportation Consulting, Inc., the project proposes to incorporate the TDM strategies of Include Bike parking per Los Angeles Municipal Code (LAMC), secure bike parking and showers as project design features. With the application of these TDM measures, the proposed project is projected to have no Household

VMT and a Work VMT per employee of 7.4. Therefore, it is concluded that implementation of the Project would result in no significant VMT impact. A copy of the VMT Calculator summary report is provided as Attachiment B.

## E. Access and Circulation

During preparation of the new CEQA guidelines, the State's Office of Planning and Research stressed that lead agencies can continue to apply traditional operational analysis requirements to inform land use decisions provided that such analyses were outside of the CEQA process. The authority for requiring non-CEQA transportation analysis and requiring improvements to address potential circulation deficiencies, lies in the City of Los Angeles' Site Plan Review authority as established in Section 16.05 of the LAMC. Therefore, LADOT continues to require and review a project's site access, circulation, and operational plan to determine if any access enhancements, transit amenities, intersection improvements, traffic signal upgrades, neighborhood traffic calming; or other improvements are needed. In accordance with this authority, the project has completed a circulation analysis using a "level of service" screening. methodology that indicates that the trips generated by the proposed development will not likely result in adverse circulation conditions at several locations. Access to the project will be provided along $8^{\text {th }}$ Street, Lemon Street, Hunter Street, Lawrence Street and Olympic Boulevard. LADOT has reviewed this analysis and determined that it adequately discloses operational concerns. A copy of the circulation analysis table that summarizes these potential deficiencies is provided as Attachment $\mathbf{C}$ to this report:

## PROJECT REQUIREMENTS

## Non-CEQA-Related Requirements and Considerations

To comply with transportation and mobility goals and provisions of adopted City plans and ordinances, the applicant should be required to implement the following:

1. Parking Requirements

The project would provide parking for 1,665 vehicles and 58 bicycles onsite: The applicant should check with the Departments of Building and Safety and City Planning on the number of parking spaces required for this project.
2. Highway Dedication and Street Widening Requirements

Per the Mobility Element of the General Plan, $\mathbf{8}^{\text {th }}$ Street, Lemon Street, Hunter Street, and Lawrence Street, which are designated as Collectors, would require a 20 -foot half-width roadway within a 33 -foot half-width right-of-way and Olympic Boulevard and Alameda Street, which are designated as Avenue 1 , would require a 35 -foot half-width roadway within a 50 -foot half-width right-of-way. The applicant should check with the Bureau of Engineering's Land Development Group to determine if there are any other applicable highway dedication, street widening and/or sidewalk requirements for this project.
3. Project Access and Circulation

The conceptual site plan for the project (see Attachment A) is acceptable to LADOT. The project main gate would be accessed via a full-access driveway along $8^{\text {th }}$ Street and a secondary driveway along $8^{\text {th }}$ Street would provide egress from the parking structure, while two driveways along Hunter Street would provide egress from the surface parking lots. The existing exit gates along Lawrence Street and Olympic Boulevard would remain but would not be utilized by regular vehicle access. Separate truck access would be provided via exclusive ingress and egress
driveways along Lemon Street. Pedestrian and bicycie access would be provided via a separate pedestrian entrance at the main gate along $8^{\text {th }}$ Street. All delivery and Passenger loading and drop offs for ride share services is expected to occur onsite. Review of this study does not constitute approval of the dimensions for any new proposed driveway. Review and approval of the driveway should be coordinated with LADOT's Citywide Planning Coordination Section (201 North Figueroa Street, 5th Floor, Room 550; at 213-482-7024). In order to minimize and prevent last minute building design changes, the applicant should contact LADOT for driveway width and internal circulation requirements prior to the commencement of building or parking layout design. The applicant should check with City Planning regarding the project's driveway placement and design.
4. Worksite Traffic Control Reguirements

LADOT recommends that a construction work site traffic control plan be submitted to LADOT's Citywide Temporary Traffic Control Section or Permit. Plan Review Section for review and approval prior to the start of any construction work. Refer to http://ladot.lacity.org/businesses/temporary-traffic-control-plans to determine which section to coordinate review of the work site traffic control plan. The plan should show the location of any roadway or sidewalk closures, traffic detours, haul routes, hours of operation ${ }_{2}$ protective devices, warning signs and access to abutting properties. LADOT also recommends that all construction related truck traffic be restricted to off-peak hours to the extent feasible.

## 5. TDM Ordinance Requirements

The TDM Ordinance (LAMC 12.26 J ) is currently being updated. The updated ordinance, which is currently progressing through the City's approval process, will:

- Expand the reach and application of TDM strategies to more land uses and neighborhoods,
- Rely on a broader range of strategies that can be updated to keep pace with technology, and
- Provide flexibility for developments and communities to choose strategies that work best for their neighborhood context.

Although not yet adopted, LADOT recommends that the applicant be subject to the terms of the proposed TDM Ordinance update which is expected to be completed prior to the anticipated construction of this project, if approved.
6. Development Review Fees

Section $19: 15$ of the LAMC identifies specific fees for traffic study review, condition clearance, and permit issuance. The applicant shall comply with any applicable fees per this ordinance.

If you have any questions, please contact Jimmy Vivar of my staff at (213) 972-4993.

## Attachments

K: LLetters $\left\langle 2021\right.$ |CEN21-51107_2000: E $8^{\text {th }}$ St_8 $8^{\text {th }}$ and Alameda Studio_Itr.docx
c: Emma Howard/Nate Hayward, Council District 14
Matthew Masuda, Central District, BOE
Tina Huang, Central District, DOT
Taimour Tanavoli, Case Management Office, DOT
Emily Wong, Gibson Transportation Consulting, Inc.


PROJECT SITE PLAN

## Attachment B CEN21-51107_2000 E 8th St

## CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Screening Criteria: Is this project required to conduct a vehicle miles traveled analysis?

Project Information


Is the project replacing an existing number of residential units with a smaller number of residential units AND is located within one-half mile of a fixed-rail or fixed-guideway transit station?

Existing Land Use


Click here to add a single custom land use type (will be included in the above list)
Proposed Project Land Use
Land Use Type Value Unit

| Office \| General Office | 523.514 | ksf | Value |
| :--- | :---: | :---: | :---: |
| Office \| General Office | 523.514 | ksf |  |

Project Screening Summary

| Existing Land Use | Proposed Project |
| :---: | :---: |
| $\begin{gathered} 2,933 \\ \text { Daily Vehicle Trips } \end{gathered}$ | $\begin{gathered} \mathbf{3 , 5 1 1} \\ \text { Daily Vehicle Trips } \end{gathered}$ |
| $\begin{gathered} 22,382 \\ \text { Daily VMT } \end{gathered}$ | $\begin{gathered} 27,764 \\ \text { Dally VMT } \end{gathered}$ |

Tier 1 Screening Criteria
Project will have less residential units compared to existing residential units \& is within one-half mile of a fixed-rail station.

Tier 2 Screening Criteria

The net increase in daily trips < 250 trips

The net increase in daily VMT $\leq 0$

The proposed project consists of only retail land uses $\leq 50,000$ square feet total.

578 Net Daily Trips

5,382 Net Daily VMT

The proposed project is required to perform VMT analysis.

## CITY OF LOS ANGELES VMT CALCULATOR Version 1.3

Project Information


Proposed Project Land Use Type Office | General Office

TDM Strategies


## Analysis Results

| Proposed Project | With Mitigation |
| :---: | :---: |
| $3,466$ <br> Daily Vehicle Trips | $3,466$ <br> Daily Vehicle Trips |
| $\begin{aligned} & 27,418 \\ & \text { Daily VMT } \end{aligned}$ | $\begin{aligned} & 27,418 \\ & \text { Daily VMT } \end{aligned}$ |
| 0.0 <br> Houseshold VMT per Capita | $\begin{gathered} 0.0 \\ \begin{array}{c} \text { Houseshold VMT } \\ \text { per Capita } \end{array} \end{gathered}$ |
| 7.4 <br> Work VMT per Employee | 7.4 <br> Work VMT per Employee |
| Significant VMT Impact? |  |

Household: No
Threshold $=6.0$
15\% Below APC
Work: No
Threshold $=7.6$
15\% Below APC

Household: No 15\% Below APC

Work: No
Threshold $=7.6$ 15\% Below APC


Date: March 17, 2021

Report 1: Project \& Analysis Overview

CITY OF LOS ANGELES VMT CALCULATOR
Report 1: Project \& Analysis Overview

| Analysis Results |  |  |  |
| :---: | :---: | :---: | :---: |
| Total Employees: 2,094 |  |  |  |
| Total Population: 0 |  |  |  |
| Proposed Project |  | With Mitigation |  |
| 3,466 | Daily Vehicle Trips | 3,466 | Daily Vehicle Trips |
| 27,418 | Daily VMT | 27,418 | Daily VMT |
| 0 | Household VMT per Capita | 0 | Household VMT per Capita |
|  | Work VMT |  | Work VMT per |
| 7.4 | per Employee | 7.4 | Employee |
| Significant VMT Impact? |  |  |  |
| APC: Central |  |  |  |
| Impact Threshold: $15 \%$ Below APC Average Household $=6.0$ <br> Work $=7.6$ |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Proposed Project |  | With Mitigation |  |
| VMT Threshold | Impact | VMT Threshold | Impact |
| Household > 6.0 | No | Household > 6.0 | No |
| Work > 7.6 | No | Work > 7.6 | No |



# CITY OF LOS ANGELES VMT CALCULATOR 



Project Address: 2000 E 8TH ST, 90021

| TDM Strategy Inputs, Cont. |  |  |  |
| :---: | :---: | :---: | :---: |
| Strategy Type | Description | Proposed Project | Mitigations |
| Commute Trip Reductions | Employezas paricipoting (\%) | \% | 2\% |
|  | Empioyees oortionpatug (\% | $0 \%$ | $0 \%$ |
|  | Type of progrem | 0 | ${ }^{6}$ |
|  | Degree of imphementation (kows medizm, higin) | 0 | 0 |
|  | Embioyees clicilbie (\%) | 0\% | 0\% |
|  | Empicyer sice (smois medrum forge) | $Q$ | 0 |
| Ride-showe program | Employees eigible <br> (18) | 6\% | Os |
|  | Carshare projedt setting (Urbas. Suburban, All Ohtel) | 0 | 0 |
| Shared Mobility bike shore | Wthin 600 feet of existing thke share station - OR implementing new bike shore sfation (res/No) | 0 | 0 |
| Sctrool carpaed program | evel of imptemieritation LLow, Medium. HMgh) | 0 | 0 |
|  | cont. on following page |  |  |


| TDM Strategy Inputs, Cont. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strategy Type |  | Description | Proposed Project | Mitigations |
| Bicycle Infrastructure | implement/irmprove on street bicyuie focility | provide bicgule Wocilty along ste WesNol | 0 | a |
|  | Include Bike parking per LAMC | Meets City Bike Parking Code (Yes/No) | Yes | Yes |
|  | Include secure bike parking and showers | Includes indoor bike parking/lockers, showers, \& repair station (Yes/ No ) | Yes | Yes |
| Neighborhood Enhancement | Thaffir calinug inprovements <br> Pedestrian netwark inforovements | Streess with trajig wholoing maprovements (a): Intercectans with impfic cationty inprovementr (8) acloded twithon project and connectugy off sime/within project antu) | $0 \%$ $0 \%$ 0 | $0 \%$ $0 \%$ 0 |


| TDM Adjustments by Trip Purpose \& Strategy <br> Place type: Suburban Center |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Parking |  | $0=$ | 08 | O. | O\% | 08. | alf | 0\% | 0 O | 06 | 08 | $0 \times$ | $0 \%$ | TOM Strategy Appendix, Parking sections 1-5 |
|  | Untemale paringe | 0.6 | 6\% | 0 | 08 | (1) | 08 | 2\% | 0\% | Os | 023 | Q $0^{6}$ | cos |  |
|  | Pakking controut | 08 | 0 O | 03 | $6 \%$ | as | Q3\% | 08 | (2) | $0 \%$ | Q* | On | $0 \%$ |  |
|  | Rivetwerlaplace parting | Oi: | 08 | 0. | 6\% | 0. |  | $0 \times$ |  | 45 | O | 4 | 38 |  |
|  | Fombentiativer serkinf permes | 0.0095 | 0005 | 0.008 | 00008 | 0.005 | 0.005 | 2000: | $0.00 \%$ | 200\% | 0.00\% | 0,00\% | a.028 |  |
| Transit | beluce tranat seativans | os | $0 \%$ | $0 \%$ | 08 | 0 \% | $0 \times 8$ | 0 | DK | 08. | $0 \%$ | 2* | ORS | TDM Strategy Appendix, Transit sections 1-3 |
|  | impieneont naindourthond anm: | O\% | not | 0\% | 08 | $0 \%$ | 0) | $0 \%$ | 0\% | 0 \% | $0 \%$ | (3). | ar |  |
|  |  | 08 | 0x | 0.8 | Q | 03 | $0 / 6$ | (2) | 0. | Or | Q | 0: | us |  |
| Education \& Encouragement |  | 20. | $0 \%$ | 048 | Ofe | 0\% | 0\% | 0 | 080 | O2\% | 08 | 08 | 08 | TDM Strategy Appendix, Education \& Encouragement sections 1-2 |
|  |  | 185 | Or | ar | D8 | $0 \cdot$ | \% | 148 | 02 |  | 0\% | 0, | as |  |
| Commute Trip Reductions | Repoured comanule vip ruturaten progitan | $0{ }^{\text {a }}$ | $0 \%$ | 20, | $0 \%$ | 0. | 0 a | 0\% | 08. | OV | 2\% | $0 \cdot$ | 0\% | TDM Strategy Appendix, Commute Trip Reductions sections 1 - 4 |
|  | Nuthathe Withs <br> Scheditar anit <br> Tehagamese proyram | Or | 0 \% | 05 | $2 x$ | O\% | $0 \%$ | On | $0 \%$ | ax | 6 | $0 \%$ | 0\%. |  |
|  | Emblayer satrabeed varpoel or stimethe | 02) | $0 \%$ | 08 | Ofe | We | 08 | $0 \times$ | $0 \%$ | 08 | $0 \%$ | 9\% | 05 |  |
|  | Butestureprostab | $0 \%$ | O\% | 0 | 0 \% | Q8. | 03 | 0\% | 08 | $0 \times$ | $0 \%$ | 0 | 45 |  |
| Shared Mobility | Cal share | 00\% | 0.05 | 0.08 | 0.05 | 0.056 | 208 | 0.0\% | $0.0 \%$ | 20.08 | C.05 | 0.08 | 0.08 | TDM Strategy Appendix, Shared Mobility sections 1-3 |
|  | Buesture | 0.009\% | 0.00: | 0.000 | n008S | 0.008 | 0.003 | 0.00\% | 0.005 | Q000s | $0.00 \%$ | 000\% | a,00\% |  |
|  | \$ctool ramped petysum | 0,08. | 60\% | 0.08 | 0.09 | 20\% | 00\% | $0.0 \%$ | 0.08 | 2005 | 0.05 | 20\% | 0.0\% |  |

TDM Adjustments by Trip Purpose \& Strategy, Cont.

| TDM Adjustments by Trip Purpose \& Strategy, Cont. Place type: Suburban Center |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  | Source |
|  |  | Proposed | Mitigated |  |
| Bicycle Infrastructure | maplesment an prove an gloget bieyche facilly |  | 0.06 | 008 | Q68 | 200\% | 0.08 | 80\% | 0.0) ${ }^{2}$ | a.0.3 | 008 | 0.02 | 2005 | TDM Strategy Appendix, Bicycle |
|  | Include Bike parking per LAMC | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | Appendix, Bicycle <br> Infrastructure <br> sections 1-3 |
|  | Include secure bike parking and showers | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | 0.6\% | sections 1-3 |
| Neighborhood | tralls colimet (4iprovemicnts | 0204 | 000\% | $0.9 \%$ | 0.68 | 208 | 1304 | 0.083 | $6.0 \%$ | 0.06 | (2.0n | a, $0^{\text {a }}$ | Q.037 | TDM Strategy Appendix, |
| Enhancement | Pnclestitan nawwork maronvonetis | Q.0\% | Q (3) | 0080 | $0.0 \%$ | 206 | 00\% | 0.080 | cos | 0.0n | 0.05 | 10, ${ }^{\text {a }}$ | $0 \%$ | Neighborhood Enhancement |

Final Combined \& Maximum TDM Effect

|  | Home Based Work Production |  | Home Based Work Attraction |  | Home Based Other Production |  | Home Based Other Attraction |  | Non-Home Based Other Production |  | Non-Home Based Other Attraction |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Proposed | Mitigated |
| COMBINED TOTAL | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% |
| MAX. TDM EFFECT | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% | 1\% |


| $=$ Minimum $\left(X \%, 1-\left[(1-A)^{*}(1-B) \ldots\right]\right)$ |  |
| :---: | :---: |
|  | where $X \%=$ |
|  |  |
| PLACE | urbon |
| TYPE | compact inill |
| MAX: | suburban center |
|  | subutrban |

Note: $\left(1-\left[(1-A)^{*}(1-B) \ldots\right]\right)$ reflects the dampened combined effectiveness of TDM Strategies (e.g., A, B,...). See the TDM Strategy Appendix (Transportation Assessment Guidelines Attachment $G$ ) for further discussion of dampening.

CITY OF LOS ANGELES VMT CALCULATOR
Report 4: MXD Methodology

| MXD Methodology - Project Without TDM |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Unadjusted Trips | MXD Adjustment | MXD Trips | Average Trip Length | Unadjusted VMT | MXD VMT |
| Home Based Work Production | 0 | 0.0. | 0 | 7.1 | (1) | 0 |
| Home Based Other Production | 0 | 0.085 | 0 | 5.1 | 6 | 0 |
| Non-Home Based Other Production | 548 | -4.4\% | 524 | 8.3 | 4,548 | 4,349 |
| Home-Based Work Attraction | 2,429 | -22.1\% | 1,891 | 8.3 | 20,161 | 15,695 |
| Home-Based Other Attraction | 1,095 | -47.8\% | 572 | 6.9 | 7,556 | 3,947 |
| Non-Home Based Other Attraction | 548 | -4.4\% | 524 | 7.2 | 3,946 | 3,773 |


| MXD Methodology with TDM Measures |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Proposed Project |  |  | Project with Mitigation Measures |  |  |
|  | TDM Adjustment | Project Trips | Project VMT | TDM Adjustment | Mitigated Trips | Mitigated VMT |
| Home Based Work Production | -1.2\% |  |  | -1.2\% |  |  |
| Home Based Other Production | -1.2\% |  |  | -1.2\% |  |  |
| Non-Home Based Other Production | -1.2\% | 517 | 4,295 | -1.2\% | 517 | 4,295 |
| Home-Based Work Attraction | -1.2\% | 1,867 | 15,499 | -1.2\% | 1,867 | 15,499 |
| Home-Based Other Attraction | -1.2\% | 565 | 3,898 | -1.2\% | 565 | 3,898 |
| Non-Home Based Other Attraction | -1.2\% | 517 | 3,726 | -1.2\% | 517 | 3,726 |

## MXD VMT Methodology Per Capita \& Per Employee

Total Population: 0
Total Employees: 2,094
APC: Central

|  | Proposed Project | Project with Mitigation Measures |
| :---: | :---: | :---: |
| Total Home Based Production VMT | 0 | 0 |
| Total Home Based Work Attraction VMT | 15,499 | 15,499 |
| Total Home Based VMT Per Capita | 0.0 | 0.0 |
| Total Work Based VMT Per Employee | 7.4 | 7.4 |

## Attachment C

CEN21-51107_2000 E 8th St
TABLE 13
FUTURE WITH PROJECT CONDITIONS (YEAR 2026)
INTERSECTION PEAK HOUR LEVELS OF SERVICE

| No. | Intersection | Peak Hour | Future without Project Conditions |  | Future with Project Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Delay | LOS | Delay | Los |
| $\begin{array}{\|c} \hline 1 \\ \text { [a] } \\ \hline \end{array}$ | Alameda Street \& 7th Street | $\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & \hline \hline 23.8 \\ & 36.5 \end{aligned}$ | $\begin{aligned} & \hline \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 24.4 \\ & 39.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ |
| 2. <br> [a] | Alameda Street \& 8th Street | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 7,3 \\ & 5.2 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ | $\begin{aligned} & 7.7 \\ & 7.0 \end{aligned}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$ |
| $\begin{aligned} & 3 . \\ & {[\mathrm{a}]} \\ & \hline \end{aligned}$ | Alameda Street \& Olympic Boulevard | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & 53.9 \\ & 46.2 \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 59.0 \\ & 48.8 \end{aligned}$ | $\begin{aligned} & E \\ & D \end{aligned}$ |
| 4. <br> [b] | Lemon Street \& Olympic Boulevard | $\begin{aligned} & \hline \mathrm{AM} \\ & \mathrm{PM} \end{aligned}$ | $\begin{aligned} & \hline 22.9 \\ & 34.6 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\begin{gathered} 35.0 \\ 119.1 \end{gathered}$ | $\begin{aligned} & \mathrm{D} \\ & \mathrm{~F} \end{aligned}$ |
| 5. <br> [a] | Mateo Street \& Olympic Boulevard | $\begin{aligned} & \hline A M \\ & P M \end{aligned}$ | $\begin{aligned} & \hline 22.1 \\ & 42.5 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 24.6 \\ & 42.6 \end{aligned}$ | $\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ |

Notes:
Delay is measured in seconds per vehicle. LOS = Level of Service.
[a] Intersection analysis based on HCM 6th Edition Signalized methodology, which calculates the average intersection delay, in seconds, for each vehicle passing through the intersection.
[b] Intersection analysis based on the HCM.6th Edition Two-Way Stop Control Unsignalized methodology, which calculates the control delay, in seconds; for each individual approach of an intersection. The reported control delay represents the worst-case approach, and does not account for traffic gapis created by adjacent traffic signals.


[^0]:    Notes:
    [a] Objectives, Policies, Programs, or Plans based on information provided in Plan for a Healthy Los Angeles: A Health and Wellness Element of the General Plan (Los Angeles Department of City Planning, March 2015).

[^1]:    ${ }^{1}$ If an auxiliary lane is provided on the freeway, then half the length of the auxiliary lane is added to the ramp storage length.

[^2]:    ${ }^{1}$ At this time Project Design Features are only those measures that are also shown to be needed to comply with a local ordinance, affordable housing incentive program, or state law.
    ${ }^{2}$ Select if reduced parking supply is pursued as a result of a parking incentive as permitted by the City's Bicycle Parking Ordinance, State Density Bonus Law, or a the City/s Transit Oriented ted Community Guidelines.

[^3]:    | PEAK HOUR | $800-900$ |
    | :--- | :--- |

[^4]:    | PEAK HOUR | 745-845 |
    | :--- | :--- |

[^5]:    ${ }^{1}$ LADOT Transportation Assessment Support Map https://arcg.is/fubbD

[^6]:    ${ }^{2}$ for a project frontage that exceeds 400 feet along an Avenue or Boulevard, the incremental additional driveway above 2 is more than 1 driveway for every 400 additional feet.
    ${ }^{3}$ LADOT Transportation Assessment Support Map https://arcg.is/fubbD

[^7]:    ${ }^{4}$ The baseline parking is defined here as the default parking requirements in section 12.21 A. 4 of the Los Angeles Municipal Code or any applicable Specific Plan, whichever prevails, for each applicable use not taking into consideration other parking incentives to reduce the amount of required parking.

[^8]:    Notes
    $\sim$ : Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined $\quad$ : All major volume in platoon

[^9]:    MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

    * Note: 75 pph applies as the lower threshold volume

[^10]:    * A high-occupancy bus is defined as a bus occupied by at least 20 people

[^11]:    MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

    * Note: 75 pph applies as the lower threshold volume

[^12]:    * A high-occupancy bus is defined as a bus occupied by at least 20 people

[^13]:    MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

    * Note: 75 pph applies as the lower threshold volume

[^14]:    * A high-occupancy bus is defined as a bus occupied by at least 20 people

[^15]:    MAJOR STREET—TOTAL OF BOTH APPROACHES—VEHICLES PER HOUR (VPH)

    * Note: 75 pph applies as the lower threshold volume

[^16]:    * A high-occupancy bus is defined as a bus occupied by at least 20 people

