

PJC & Associates, Inc.

Consulting Engineers & Geologists

September 19, 2019

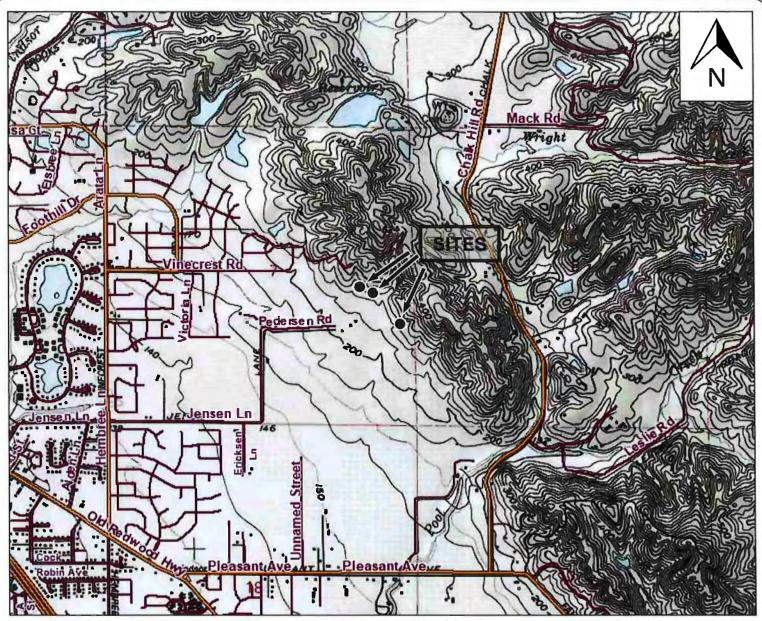
Job No. 7845.02

Famiglia Liberata, LLC. Attention: Kelly Harrison 855 Bordeaux Way, Suite 210 Napa, CA 94558 Kelly@swgnapa.com c/o: Munselle Civil Engineering Attention: Cort Munselle cort@munsellecivil.com

Subject: Slope Stability Study Proposed Minor Subdivision 1276 Jensen Lane Windsor, California

References: Report titled, "Alquist-Priolo Earthquake Fault Study, Proposed Minor Subdivision, 1276 Jensen Lane, Windsor, California," prepared by PJC & Associates, Inc., dated September 5, 2019.

Site Plan titled, "Tentative Map," prepared by Munselle Civil Engineering, dated July 25, 2019.


Geologic Map of the Healdsburg 7.5' Quadrangle Sonoma County, California, California Geological Survey, Compiled by Marc Delattre, dated 2011.

Lidar Images, prepared by Earthscope.org, provided by Google Earth, dated 2009.

Geology for Planning in Sonoma County, Special Report 120, California Division of Mines and Geology, 1980.

Dear Famiglia Liberata, LLC:

PJC & Associates, Inc. (PJC) is pleased to submit the results of our slope stability study for the proposed minor subdivision located at 1276 Jensen Lane in Windsor, California. The locations of the potential building envelopes are shown on the Site Location Plan, Plate 1. PJC previously prepared an Alquist-Priolo Earthquake Fault Study (AP Fault Study) for the project and presented the results in a written report dated September 5, 2019. As discussed in our AP Fault Study, the property is located within a State designated active fault zone. In addition to the active fault zone, it is our understanding that Permit Sonoma is concerned with slope stability at and near the potential building envelopes at the property. The following provides the results of our slope stability study at the property, with emphasis on and around the potential building envelopes.

SCALE: 1:24,000

REFERENCE: USGS HEALDSBURG, CALIFORNIA 7.5 MINUTE QUADRANGLE, REVISED 1993.

	Proj. No: 7845.02	Date: 9/19	App'd by: PJC	
Consulting Engineers & Geologists		OSED MINOR SU 1276 JENSEN LA VINDSOR, CALIFO	ANE	1
PJC & Associates, Inc.		SITE LOCATION	MAP	PLATE

1. PROJECT DESCRIPTION

Based on our review of the referenced site plan prepared by Munselle Civil Engineering dated July 25, 2019, it is our understanding that the project will consist of subdividing the existing property into three separate lots (Lots 1, 2, & 3). In the future, we anticipate the construction of a single-family residence on each of the potential building envelopes. The scope of this analysis consisted of performing a qualitative slope stability study at and near the potential building envelopes at the property. We also performed a quantitative slope stability analysis on Lot 3, which is situated on moderately sloping terrain. A site plan delineating the project area is presented on Plate 2A.

2. PREVIOUS GEOLOGICAL WORK COMPLETED

As referenced above, PJC previously performed a AP Fault Study at the property. Our findings and conclusions are provided in a report dated September 5, 2019. During our exploration, we excavated three exploratory fault trenches. PJC cleaned and logged the fault trenches in detail. Based on the results of our AP Fault Study, we concluded that active faulting was not present at the three potential building sites.

3. WORK PERFORMED

Our scope of services for this slope stability study included the following:

- a. Review regional geologic and slope stability maps, aerial photographs, and LIDAR imagery to evaluate slope stability at the site. A regional geologic map is presented on Plate 2B. A regional slope stability map is presented on Plate 2C. A LiDAR image of the site is presented on Plate 2D.
- b. Surficial reconnaissance of the potential building sites and surrounding hillsides to observe topography, surface soils, soil creep and landslide areas. The site reconnaissance was performed by our professional geologist and certified engineering geologist.
- c. Advancing one exploratory to a depth of five and one-half feet below the existing ground surface to observe the soil, bedrock and groundwater conditions at the potential building envelope on Lot 3. Our certified engineering geologist coordinated the collection of undisturbed samples for visual classification and laboratory testing.
- d. Laboratory observation and testing were performed on the selected samples to assist in the evaluation of the engineering properties and strength parameters of the soils and bedrock underlying the project site.

f. Preparation of this report presenting the results of this study.

4. SURFACE FEATURES, MAP REVIEW, & SUBSURFACE CONDITIONS

a. <u>Surface Features</u>. At the time of our field investigation, the potential building envelopes were primarily occupied by active vineyard blocks and adjoining vineyard avenues. The remaining areas of the property were generally undeveloped and covered with oak trees, brush, ground vines, and perennial grasses. Topography at the property consists of nearly level terrain to moderately sloping hillsides at the base of the rolling foothills east of the City of Windsor. The slopes immediately west and north of the property are generally undeveloped and covered with oak trees and sloping grassland.

The potential building envelopes on Lots 1 and 2 are situated on nearly level to gently sloping terrain along the topographic transition from gently sloping hillsides to the Santa Rosa Plain. Review of LiDAR images indicates the presence of a relatively large landslide north of Lot 1, see Plate 2D. The location of this landslide appears to generally coincide with a mapped landslide on a geologic map of the Healdsburg 7.5 Minute Quadrangle, prepared by the California Geologic Survey (CGS), see Plate 2B. Furthermore, during our site reconnaissance we documented significant spring activity and a small active landslide in the vineyard block immediately north of the potential building envelope on Lot 2. The landslide is easily recognizable due to the contorted vine rows and significant surface seepage.

Lot 3 is located on moderately sloping terrain which is bordered by a deeply incised seasonal drainage course to the north. Review of LiDAR images and our surficial reconnaissance has revealed the presence of a relatively large landslide deposit south and southeast of the potential building envelope on Lot 3, see Plate 2D. During our site reconnaissance we observed hummocky terrain within the forest and vineyard block south and southeast of the potential building envelope on Lot 3. The location of this landslide appears to generally coincide with a mapped landslide on a geologic map of the Healdsburg 7.5 Minute Quadrangle, see Plate 2B.

The regional geologic map presented on Plate 2C also indicates that the previously discussed large landslides, but as much bigger features. The regional slope stability also indicates that the large landslide north of Lot 1 is a questionable feature, which suggests a degree of uncertainty.

- b. Soils Conditions and Bedrock. To further evaluate the subsurface conditions in the potential building envelope on Lot 3, PJC advance one exploratory borehole at the project site. The approximate borehole location is shown on the Borehole Location Plan, Plate 3. The borehole was drilled to observe the soil, bedrock and groundwater conditions and to collect samples of the underlying soils for visual examination and laboratory testing. The soils and bedrock were characterized and described according to Plates 4 and 5. The exploratory borehole encountered a surface topsoil stratum underlain by a near surface residual soil stratum and sandstone/mudstone bedrock of the Glen Ellen Formation which extended to the maximum depths explored. No evidence of slope instability was observed in the exploratory borehole or within any of the fault trenches. Although a prominent polished clay surface was observed in the bank of the incised drainage course north of Lot 3. This feature may suggest previous instability localized to the bank of the drainage course north of the potential building envelope on Lot 3.
- c. <u>Groundwater</u>. No groundwater or seepage was encountered in our boring during our subsurface investigation on July 22, 2019. We did not observe the presence of obvious surface seeps or springs at or near the project site. However, like most hillside sites, seepage in the porous soils and bedrock fractures, and/or perched groundwater zones are likely to develop during and following prolonged rainfall. However, based on the conditions observed, we believe these conditions, if they develop, would likely dissipate following seasonal rainfall.

5. GEOMORPHOLOGY AND SLOPE STABILITY DISCUSSION

As previously discussed, review of a LiDAR image indicates the presence of a relatively large landslide feature north of Lot 1. The landslide feature appears to be confined to the sloping terrain north of Lot 1 and is located a significant distance away from the potential building envelope on Lot 1. Therefore, this landslide does not appear to be serious geologic concern for the development on Lot 1.

During our site reconnaissance we documented significant spring activity and a small active landslide in the vineyard block immediately north of the potential building envelope on Lot 2. The landslide is easily recognizable due to the contorted vine rows and significant surface seepage. However, due to relatively small size of the landslide, shallow downslope gradients, and distance away from the potential building envelope on Lot 2, this landslide did not appear to be a significant geologic hazard to the potential building envelope on Lot 2. Lot 3 is located on moderately sloping terrain which is bordered by a deeply incised seasonal drainage course to the north. Review of a LiDAR image and our surficial reconnaissance has revealed the presence of a relatively large landslide deposit south and southeast of the potential building envelope on Lot 3. During our site reconnaissance we observed hummocky terrain and partially closed topographic depressions within the forest and vineyard block south and southeast of the potential building envelope on Lot 3. The hummocky terrain and unusual topographic features are interpreted as accumulated landslide debris which was derived from a relatively large landslide on the steep slope west facing slope upslope and southeast of the potential building envelope on Lot 3. The subdued nature of the hummocks, and lack of an obvious landslide scarp suggest that this feature was likely an ancient landslide event. This particular landslide appears to be a relatively old feature which was likely triggered during a climatic wet period of the Pleistocene epoch which coincided with a significant seismic event. Based on our site reconnaissance there are no obvious indications that the particular landslide in the vicinity of the project site is actively moving. Furthermore, the potential building envelope on Lot 3 is set-back a significant distance away from this landslide features.

6. STABILITY ANALYSIS

A quantitative slope stability analyses was performed at Lot 3 to further evaluate slope stability. The slope was analyzed by conventional limit equilibrium methods to evaluate factors of safety against sliding. The slope was computer analyzed for trial circular arc failure surfaces using Geo Studio slope stability analysis computer program. The program performs an automatic search for the circular failure surface having the minimum factor of safety based on the Morgenstern-Price Method. The slope was analyzed for static and seismic stability. A seismic yield coefficient of 0.2 was used in the seismic analysis. The following are the results of our analyses:

Conditions	Factor of Safety	Acceptable Criteria
Static	6.625	2.0
Seismic	2.456	1.5

Table 1 Results of Stability Analysis

Based on the results of our analyses, the slope at Lot 3 has substantially adequate safety factors against landsliding during static and seismic conditions. The results of the slope stability analysis are presented on Plates 7 and 8.

7. CONCLUSIONS

Based on the results of our slope stability study, we judge that the project site is relatively stable, and that development of the potential building envelopes as planned, is feasible from a geologic standpoint. Based on the results of original study we judge the potential building envelopes are developable from a geologic point of view.

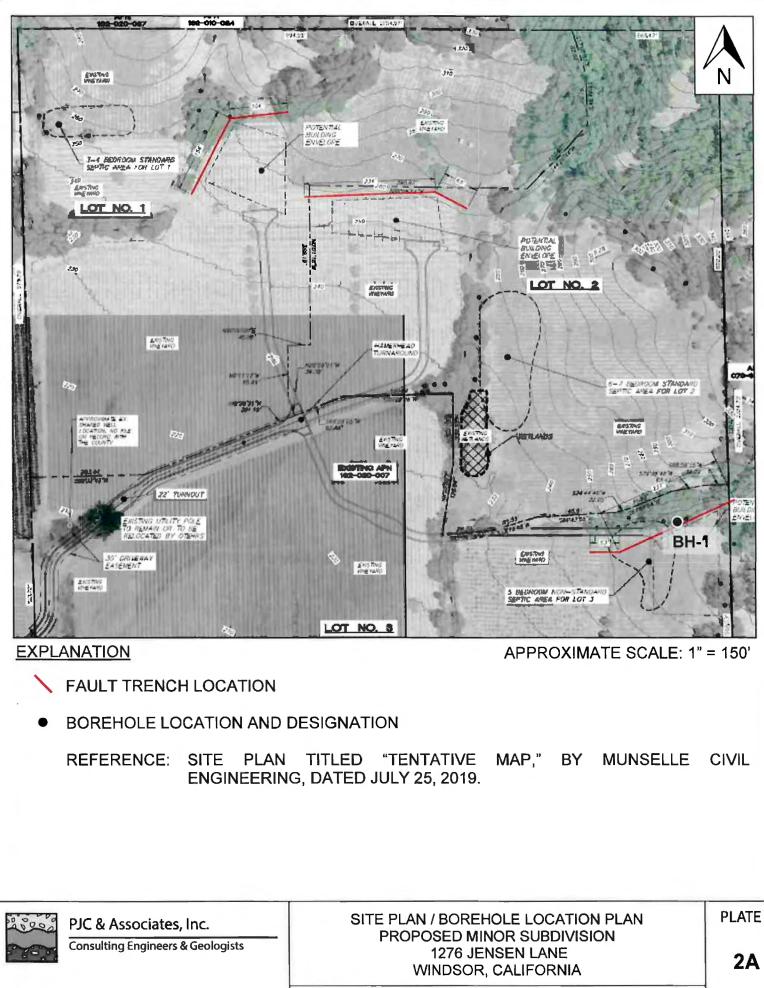
Due to low slope inclinations, we judge Lot 1 and Lot 2 are relatively stable sites and suitable for development. The relatively large landslide north of Lot 1 is located a significant distance away from the potential building envelope and therefore does not appear to be serious geologic concern for the development on Lot 1. Lot 1 is bordered by a relatively shallow drainage course to the north and Lot 2 is bordered by a relatively shallow drainage course to the east. As a precautionary measure, we recommend that structures and improvements be set-back a minimum distance of 15 feet away from tops of these shallow drainage courses. We also documented significant spring activity and a small active landslide in the vineyard block immediately north of the potential building envelope on Lot 2. This landslide did not appear to be a significant geologic hazard to the potential building envelope on Lot 2 but should be monitored and repaired as the project develops.

Lot 3 is located on moderately sloping terrain which is bordered by a deeply incised seasonal drainage course to the north. Our quantitative slope stability analysis indicates that the potential building envelope on Lot 3 is stable during static and seismic conditions. However, the presence of polished clay surface observed in the nearby incised drainage course suggests possible previous instability. As a precautionary measure, we recommend development on Lot 3 be set-back a distance of at least 25 feet away from the top of the drainage course north of Lot 3. Furthermore, during our site reconnaissance we observed hummocky terrain within the forest and vineyard block south and southeast of the potential building envelope on Lot 3. The subdued nature of the hummocks, and lack of an obvious landslide scarp suggest that this feature was likely an ancient landslide event. This landslide did not appear to be a significant geologic hazard to the potential building envelope on Lot 3.

8. LIMITATIONS

This report has been prepared for the proposed minor subdivision located at 1276 Jensen Lane in Windsor, California. Our services consist of professional opinions and conclusions developed in accordance with generally accepted geologic principles and practices. We provide no other warranty, either expressed or implied. Our conclusions are based on the information provided us regarding the proposed project, the results of our field reconnaissance, and professional judgment. No warranty, either expressed or implied.

9. ADDITIONAL SERVICES

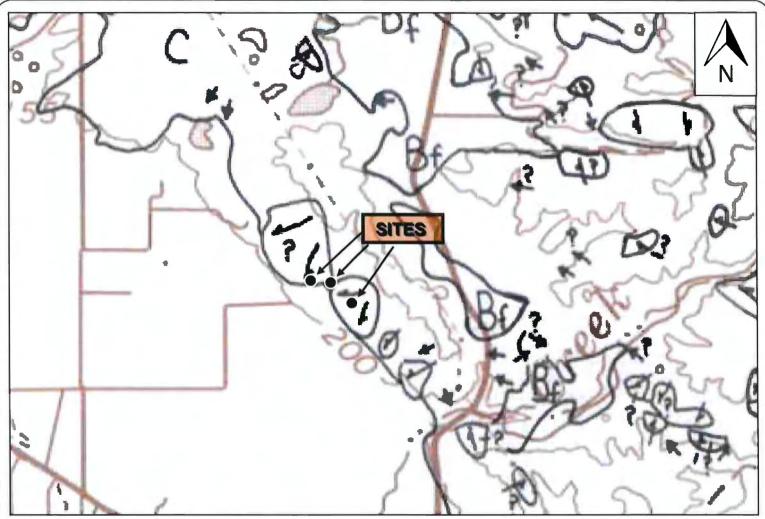

At this time, we did not consider other potential geologic hazards such as liquefaction, lateral spreading, expansive soils, etc. As the project proceeds and the exact building envelopes have been established, more detailed geotechnical investigations including additional subsurface exploration, laboratory testing, and engineering analysis should be performed at each lot. The geotechnical investigations can provide lot specific foundation options as well as recommendations and design criteria for all structural elements. The geotechnical investigation report should also provide recommendations to control surface and subsurface drainage.

We trust that this is the information you require at this time. If you have any questions concerning the content of this report, please call.

Sincerely,

PJC & ASSOCIATES, INC. STED Stephen M. Schurke NO. 2647 **Certified** Engineering Geologist CEG 2647, California OF C Patrick J. Conwa Certified Engineering Geologis CEG 2452, California SMS:sms

OF C



Proj. No: 7845.02

Date: 9/19

App'd by: PJC

Or Or Org Org Org Org Org Org Allowid function Org Allowid function Org Allowid function Org Org Allowid function Org Onamed fluvial deposits (Holocene to latest Pleis deposits of sand, gravel, sit, and clay mapp moderately dissected, allovial surfaces. Org Org Unnamed fluvial deposits (early Pleistocene to latest Pleis deposits of sand, gravel, sit, and clay mapp moderately dissected, allovial surfaces. Org Unnamed fluvial deposits (early Pleistocene to brown, weakly consolidated gravel, tuffaceou Clasts are derived from Tertiary volcanic and gravels previously mapped as Glen Ellen and here because of unreliable lifelogic and apunits and correlation with the formation type The unit includes obsidian pebbles (character relative abundance throughout the southern Healdsburg Fault. Gravels east of the ash-flow and air fail tuff that appear to represt the Sonoma Volcanics (Tsvt). Landside - arrows indicate principal direction Contact between map units – Solid where organizely located; dotted where organizely located; dotted where organizely located; dotted where organitaly located; dotted where organizely located;	Itos I. Guiterrez, dated 2011. stocene) – Moderately to poorly sorted ed on sloping, fan-shaped, slightly to to Pliocene) – Light-brown to yellow- us sand, silt, clay, and reworked tuff. I Franciscan basement rocks. Includes d Huichica formations; names not used e criteria for distinguishing between the localities (McLaughlin and others, 2008). eristic of the Glen Ellen Formation) in portion of the quadrangle west of the arse or absent northward and to the east a Healdsburg Fault include interbeds of sent interfingering with the upper part of n of movement. tere accurately located; dashed where oncealed, queried where uncertain. , dashed where approximately located;	MARC .
approximately located; dotted where o Fault – Solid where accurately located short dash where inferred; dotted where Dip of fault shown by arrow normal to shown by arrows parallel to fault. Rela	oncealed, queried where uncertain. , dashed where approximately located; re concealed; queried where uncertain. fault. Relative horizontal movement ative vertical movement shown by U on	
PJC & Associates, Inc. Consulting Engineers & Geologists	REGIONAL GEOLOGIC MAP PROPOSED MINOR SUBDIVISION 1276 JENSEN LANE WINDSOR, CALIFORNIA	PLATE 2B
	Proj. No: 7845.02 Date: 8/19 App'd by: PJC	

APPROXIMATE SCALE: 1" = 1780'

EXPLANATION

Landslides; arrows show general direction of movement (areas of lowest relative slope stability), guestion marks indicate possible landslides.

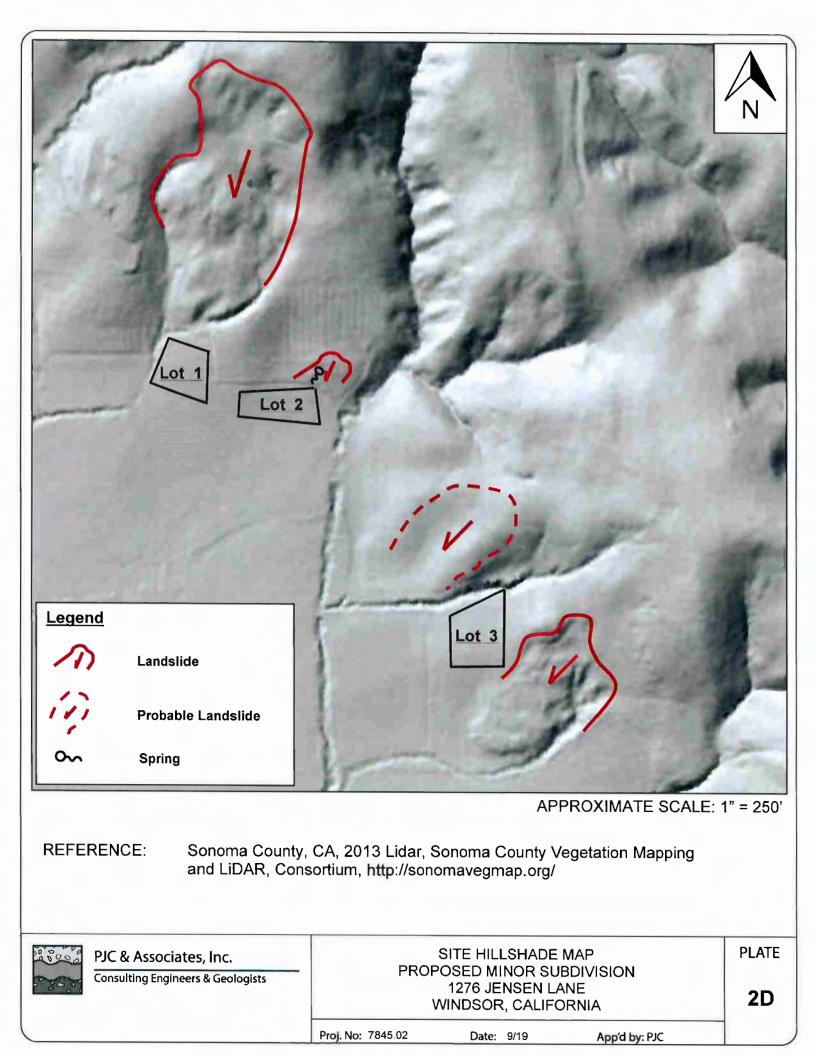
Landslide or severe soil creep area too small to be outlined at the map scale. Question mark adjacent to arrow Indicates landslide is uncertain, or "possible".

- C Areas of relatively unstable rock and soil units on slopes greater than 15%, containing abundant landslides.
- Bf Locally level areas within hilly terrain; may be underlain or bounded by unstable or potentially unstable rock materials.

REFERENCE: LANDSLIDE & SLOPE STABILITY MAP- NORTHERN SONOMA COUNTY (SR 120), CALIFORNIA DIVISION OF MINES AND GEOLOGY, DATED 1980.

PJC & Associates, Inc. Consulting Engineers & Geologists

REGIONAL LANDSLIDE & SLOPE STABILITY MAP PROPOSED MINOR SUBDIVISION 1276 JENSEN LANE WINDSOR, CALIFORNIA


PLATE

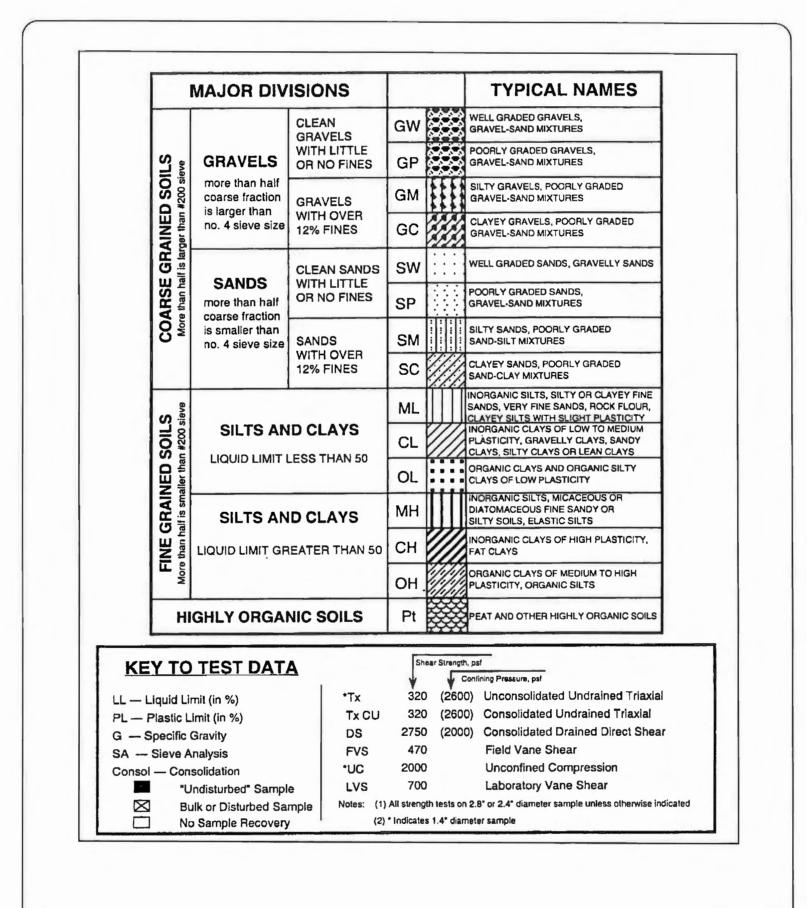
2C

Proj. No: 7845.02 Date: 9/19 App'd

App'd by: PJC

c

es, Inc.	Associates,	P
es, Inc.	Associates,	P,


BORING NUMBER BH-1 PAGE 1 OF 1

Consulting Engineers & Geologists

			LOCATION 1276 Jensen Lane,											
			COMPLETED					_	HOLE	SIZE	_4"			_
			CHECKED BY	_			_ING <u>N</u>							
							ING							
				- ^'				-			ATT	ERBE	RG	F
o DEPTH (ft)	GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	LIMITS		FINES CONTENT
	<u>14 14</u> <u>14 14</u> <u>14 14</u>	low plasticity, po	Y CLAY (CL); grayish brown, slightly m rous and weak (TOPSOIL).					4.5+	107	12				
			Y CLAY WITH GRAVEL (CH); pale to rd, high plasticity (RESIDUAL SOIL).	moderate				4.5+		16				
5		4.0' - 5.5'; SAND to slightly hard, f	STONE/MUDSTONE (QTg); orangish riable to weak, highly weathered. (BED	brown, soft ROCK)										

		MAJOR DIV	ISIONS			TYPICAL NAMES	
			CLEAN GRAVELS	GW		WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES	
	SOILS 200 sieve	GRAVELS	WITH LITTLE OR NO FINES	GP		POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES	
		more than half coarse fraction is larger than	GRAVELS	GM		SILTY GRAVELS, POORLY GRADED GRAVEL-SAND MIXTURES	
	RAINED larger than #	no. 4 sieve size	WITH OVER 12% FINES	GC		CLAYEY GRAVELS, POORLY GRADED GRAVEL-SAND MIXTURES	
	E GR/ alf is lar	SANDS	CLEAN SANDS	sw		WELL GRADED SANDS, GRAVELLY SANDS	
	COARSE More than ha	more than half	WITH LITTLE OR NO FINES	SP		POORLY GRADED SANDS, GRAVEL-SAND MIXTURES	
	Non	is smaller than no. 4 sieve size		SM		SILTY SANDS, POORLY GRADED SAND-SILT MIXTURES	
			WITH OVER 12% FINES	SC		CLAYEY SANDS, POORLY GRADED SAND-CLAY MIXTURES	
	Sieve			ML		NORGANIC SILTS, SILTY OR CLAYEY FINE SANDS, VERY FINE SANDS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
	SOIL:		ID CLAYS	CL		NORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS OF LEAN CLAYS	
	NED alter tha		LESS THAN SU	OL		ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
	FINE GRAINED SOILS More than half is smaller than #200 sieve	SILTS AN	DCLAYS	мн		NORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS	
	FINE (LIQUID LIMIT GR	EATER THAN 50	СН		NORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	
	More			ОН.	1.1.1.	DRGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
	н	GHLY ORGAI	NIC SOILS	Pt R		PEAT AND OTHER HIGHLY ORGANIC SOILS	
	V TO	TEST DAT	A	Shear	Strength,	psl	
<u>NL</u>	110	ILSI DAD	E.	¥		nfining Pressure, pst	
		mit (in %)	*Tx	320	•	Unconsolidated Undrained Triaxial	
		imit (in %)	DS	320 2750	• •	Consolidated Undrained Triaxial Consolidated Drained Direct Shear	
	Specific (Sieve A		FVS	470	(2000)	Field Vane Shear	
		solidation	•UC	2000		Unconfined Compression	
		ndisturbed" Sampl		700		Laboratory Vane Shear	
\boxtimes		Ik or Disturbed Sa		All strength	tests on 2	2.8" or 2.4" diameter sample unless otherwise indic	ated
		Sample Recovery		* Indicates 1	.4° diame	eter sample	

1000	Consulting Frank A.C. 1. 14	-		POSED N 1276 J			PLATE 4
-		Proj. No:	7845.02	Date:	9/19	App'd by: PJC	

1000	PJC & Associates, Inc. Consulting Engineers & Geologists	_		POSED 1276 .			PLATE 5
		Proj. No:	7845.02	Date:	8/19	App'd by: PJC	

	RUCK	TTPES	
Conglomerate	Shale	16/1°A	etamorphic Rocks /drothermally Altered Rocks
Sandstone	Sheared Shale M	elange Igr	neous Rocks
Meta-Sandstone	Chert		
Bedding Thickness		Joint, Fracture	e or Shear Spacing
Massive	Greater than 6 feet	Very Widely Spaced	Greater than 6 feet
Thickly Bedded	2 to 6 feet	Widely Spaced	2 to 6 feet
Medium Bedded	8 to 24 inches	Moderately Widely Space	ed 8 to 24 inches
Thinly Bedded	2-1/2 to 8 inches	Closely Spaced	2-1/2 inches
Very Thinly Bedded	3/4 to 2-1/2 inches	Very Closely Spaced	3/4 to 2-1/2 inches
Closely Laminated	1/4 to 3/4 inches	Extremely Closely Spaced	Less than 3/4 Inch
Very Closely Laminated	Less than 1/4 inch		
	HAR	DNESS	

ROCK TYPES

Soft - Pliable, can be dug by hand

Slightly Hard - Can be gouged deeply or carved with a pocket knife

<u>Moderately Hard</u> - Can be readily scratched by a knife Blade; Scratch leaves heavy trace of dust and is readily visible after the powder has been blown away

Hard - Can be scratched with difficulty; scratch produced little powder and is faintly visible

Very Hard - cannot be scratched with pocket knife, leaves metallic streak

STRENGTH

Plastic- Capable of being molded by hand

Friable - Crumbles by rubbing with fingers

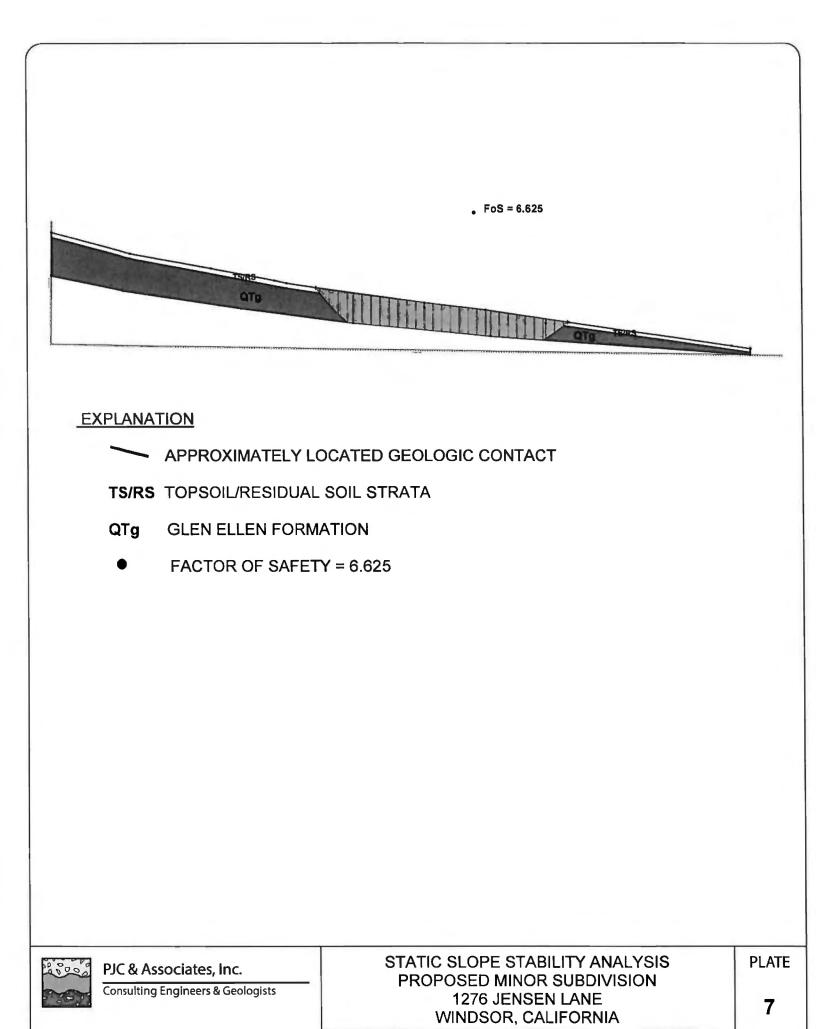
Weak - an unfractured specimen of such material will crumble under light hammer blows

Moderately Strong - Specimen will withstand a few heavy hammer blows before breaking

Strong - Specimen will withstand a few heaving ringing hammer blows and usually yields large fragments

Very Strong - Rock will resist heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments

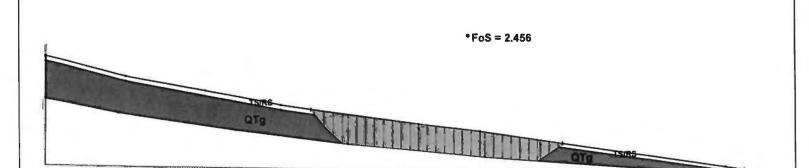
DEGREE OF WEATHERING


<u>Highly Weathered</u> - Abundant fractures coated with oxides, carbonates, sulphates, mud, etc., through discoloration, rock disintegration, mineral decomposition

<u>Moderately Weathered</u> - Some fracture coating, moderate or localized discoloration, little to no effect on cementation, slight mineral decomposition

<u>Slightly Weathered</u> - A few stained fractures, slight discoloration, little to no effect on cementation, no mineral decomposition

Fresh - Unaffected by weathering agents, no appreciable change with depth


PJC & Associates, Inc. Consulting Engineers & Geologists	PROPOSE 127	CLASSIFICAT D MINOR SUBI 6 JENSEN LAN SOR, CALIFOR	DIVISION	PLATE 6
	Proj. No: 7845.02	Date: 9/19	App'd by: PJC	

Prni	Not	7845	02

Date: 0/10

Ann'd hv PIC

EXPLANATION

APPROXIMATELY LOCATED GEOLOGIC CONTACT

TS/RS TOPSOIL/RESIDUAL SOIL STRATA

QTg GLEN ELLEN FORMATION

• FACTOR OF SAFETY=2.456

1000	PJC & Associates, Inc. Consulting Engineers & Geologists	-	PROPC	SED MI 1276 JE			PLATE 8
		Proi. No:	7845.02	Date	9/19	Ann'd hv PIC	

APPENDIX A FIELD INVESTIGATION

1. INTRODUCTION

The field program performed for this study consisted of drilling one exploratory borehole (BH-1) at Lot 3. The exploration was completed July 22, 2019. The borehole location is shown on the Borehole Location Plan, Plate 2A. A Descriptive log of the borehole is presented in this appendix as Plate 3.

2. BOREHOLE

The borehole was advanced using a modified California split-spoon sampler which was pushed with a track-mounted excavator. The soils were classified in accordance with the Unified Soil Classification System, as explained in Plate 4. The bedrock was described according to Plate 5. Relatively undisturbed and disturbed samples were obtained from the exploratory boreholes. All samples collected were labeled and transported to PJC's office for examination and laboratory testing.

APPENDIX B LABORATORY INVESTIGATION

1. INTRODUCTION

This appendix includes a discussion of test procedures and results of the laboratory investigation performed for the proposed project. The investigation program was carried out by employing currently accepted test procedures of the American Society of Testing and Materials (ASTM).

Undisturbed samples used in the laboratory investigation were obtained during the course of the field investigation as described in this report.

2. INDEX PROPERTY TESTING

In the field of soil mechanics and geotechnical engineering design, it is advantageous to have a standard method of identifying soils and classifying them into categories or groups that have similar distinct engineering properties. The most commonly used method of identifying and classifying soils according to their engineering properties is the Unified Soil Classification System as described by ASTM D-2487-83. The USCS is based on a recognition of the various types and significant distribution of soil characteristics and plasticity of materials. The index properties discussed in this report include the determination of natural water content and dry density and pocket penetrometer testing.

- a. <u>Natural Water Content and Dry Density</u>. Natural water content and dry density of the soils were determined, often in conjunction with other tests, on selected undisturbed and disturbed samples. The samples were extruded and visually classified, trimmed to obtain a smooth flat face, and accurately measured to obtain volume and wet weight. The samples were then dried in accordance with the procedures of ASTM 2216-80 for a period of 24 hours in an oven, maintained at a temperature of 100 degrees C. After drying, the weight of each sample was determined and the moisture content and dry density calculated.
- b. <u>Pocket Penetrometer</u>. Pocket Penetrometer tests were performed on all cohesive samples. The test estimates the unconfined compressive strength of a cohesive material by measuring the materials resistance to penetration by a calibrated, spring-loaded cylinder. The maximum capacity of the cylinder is 4.5 tons per square foot (tsf).

3. **ENGINEERING PROPERTIES**

The engineering properties testing to determine strength parameters consisted of direct shear testing.

a. <u>Direct Shear Test</u>. Direct shear tests were performed on selected undisturbed samples. After the initial weight and volume measurements were determined, the sample was placed in the shear machine. The designated normal load was applied and the sample was saturated with water and allowed to consolidate. The sample was then sheared horizontally at a rate of strain of 0.025 inches per minute. Shear stress and sample deformation were monitored throughout the test.