# Noise Impact Analysis Griswold Residential Project County of Los Angeles

# Lead Agency:

# **County of Los Angeles**

Department of Regional Planning 320 West Temple Street Los Angeles, California 90012

Prepared by:

# **Vista Environmental**

1021 Didrickson Way Laguna Beach, California 92651 949 510 5355 Greg Tonkovich, INCE

Project No. 20021

January 18, 2021

# **TABLE OF CONTENTS**

| 1.0 | Introduction                                          | 1  |
|-----|-------------------------------------------------------|----|
|     | 1.1 Purpose of Analysis and Study Objectives          | 1  |
|     | 1.2 Site Location and Study Area                      |    |
|     | 1.3 Proposed Project Description                      |    |
|     | 1.4 Standard Noise Regulatory Conditions              |    |
|     | 1.5 Summary of Analysis Results                       | 2  |
|     | 1.6 Mitigation Measures for the Proposed Project      | 3  |
| 2.0 | Noise Fundamentals                                    | 6  |
|     | 2.1 Noise Descriptors                                 | 6  |
|     | 2.2 Tone Noise                                        | 6  |
|     | 2.3 Noise Propagation                                 |    |
|     | 2.4 Ground Absorption                                 | 7  |
| 3.0 | Ground-Borne Vibration Fundamentals                   | 8  |
|     | 3.1 Vibration Descriptors                             | 8  |
|     | 3.2 Vibration Perception                              |    |
|     | 3.3 Vibration Propagation                             | 8  |
| 4.0 | Regulatory Setting                                    | 9  |
|     | 4.1 Federal Regulations                               |    |
|     | 4.2 State Regulations                                 |    |
|     | 4.3 Local Regulations                                 | 11 |
| 5.0 | Existing Noise Conditions                             | 16 |
|     | 5.1 Noise Measurement Equipment                       | 16 |
|     | 5.2 Noise Measurement Results                         | 16 |
| 6.0 | Modeling Parameters and Assumptions                   | 20 |
|     | 6.1 Construction Noise                                | 20 |
|     | 6.2 Operations-Related Noise                          | 21 |
|     | 6.3 Vibration                                         | 23 |
| 7.0 | Impact Analysis                                       | 24 |
|     | 7.1 CEQA Thresholds of Significance                   | 24 |
|     | 7.2 Generation of Noise Levels in Excess of Standards | 24 |
|     | 7.3 Generation of Excessive Groundborne Vibration     | 28 |
|     | 7.4 Aircraft Noise                                    | 30 |
| 8.0 | References                                            | 31 |

# **TABLE OF CONTENTS CONTINUED**

## **APPENDICES**

Appendix A – Field Noise Measurements Photo Index

Appendix B – Field Noise Measurements Printouts

Appendix C – RCNM Model Construction Noise Calculations

Appendix D – FHWA Model Traffic Noise Calculation

# **LIST OF FIGURES**

| Figure 1 – Project Location Map                                                  | 4  |
|----------------------------------------------------------------------------------|----|
| Figure 2 – Proposed Site Plan                                                    | 5  |
| Figure 3 – Field Noise Monitoring Locations                                      | 18 |
| Figure 4 – Field Noise Measurements Graph                                        | 19 |
| LIST OF TABLES                                                                   |    |
| Table A – FTA Project Effects on Cumulative Noise Exposure                       | 9  |
| Table B – County of Los Angeles Exterior Noise Standards                         | 12 |
| Table C – County of Los Angeles Interior Noise Standards                         | 13 |
| Table D – County of Los Angeles Mobile Equipment Residential Noise Standards     | 14 |
| Table E – County of Los Angeles Stationary Equipment Residential Noise Standards | 14 |
| Table F – Existing (Ambient) Noise Measurement Results                           | 17 |
| Table G – Construction Equipment Noise Emissions and Usage Factors               | 20 |
| Table H – FHWA Model Roadway Parameters                                          | 22 |
| Table I – FHWA Model Average Daily Traffic Volumes                               | 22 |
| Table J – Roadway Vehicle Mix                                                    | 23 |
| Table K – Vibration Source Levels for Construction Equipment                     | 23 |
| Table L – Mobile Construction Noise Levels at the Nearby Homes                   | 25 |
| Table M – Stationary Construction Noise Levels at the Nearby Homes               | 26 |
| Table N – Existing Year Project Traffic Noise Contributions                      | 27 |
| Table O – Opening Year 2023 Project Traffic Noise Contributions                  | 28 |

## **ACRONYMS AND ABBREVIATIONS**

ANSI American National Standards Institute

Caltrans California Department of Transportation

CEQA California Environmental Quality Act

County County of Los Angeles

cmu Concrete masonry unit

CNEL Community Noise Equivalent Level

dB Decibel

dBA A-weighted decibels

DOT Department of Transportation

FHWA Federal Highway Administration

FTA Federal Transit Administration

EPA Environmental Protection Agency

Hz Hertz

Ldn Day-night average noise level

Leq Equivalent sound level
Lmax Maximum noise level

ONAC Federal Office of Noise Abatement and Control

OSHA Occupational Safety and Health Administration

PPV Peak particle velocity

RMS Root mean square

SEL Single Event Level or Sound Exposure Level

STC Sound Transmission Class

UMTA Federal Urban Mass Transit Administration

VdB Vibration velocity level in decibels

#### 1.0 INTRODUCTION

## 1.1 Purpose of Analysis and Study Objectives

This Noise Impact Analysis has been prepared to determine the noise impacts associated with the proposed Griswold Residential project (proposed project). The following is provided in this report:

- A description of the study area and the proposed project;
- Information regarding the fundamentals of noise;
- Information regarding the fundamentals of vibration;
- A description of the local noise guidelines and standards;
- An evaluation of the current noise environment;
- An analysis of the potential short-term construction-related noise impacts from the proposed project; and,
- An analysis of long-term operations-related noise impacts from the proposed project.

## 1.2 Site Location and Study Area

The project site is located in an unincorporated portion of Los Angeles County (County) that is within the County's East San Gabriel Planning Area. Specifically, the approximately 9.61 gross acre project site is located at 16209 E San Bernardino Road, which formerly contained Griswold Elementary School that closed in 1989 and more recently contained Griswold Tri-Community Adult Education Center that consists of approximately seven school structures and paved parking areas on the north and south sides of the structures, as well as abandoned athletic fields on the north side of the project site. The project site is bounded by the Metrolink San Bernardino Line and single-family homes to the north, single-family homes to the east, San Bernardino Road and single-family homes to the south, and single-family homes to the west. The project study area is shown in Figure 1.

#### **Sensitive Receptors in Project Vicinity**

The nearest sensitive receptors to the project site are the single-family homes located as near as approximately 2 feet from the property lines on the east and west sides of the project site. There are also single-family homes located as near as 90 feet north of the project site and as near as 130 feet south of the project site. The nearest school is Merwin Elementary School that is located as near as a quarter mile north of the project site.

#### 1.3 Proposed Project Description

The proposed project would consist of development of a residential community with 68 single-family homes with two common open space areas (private), which would be used for passive recreation and landscaping. The main common open space, at the southern portion of the property covering is anticipated to include a community open space area, a playground, a lawn area with bench seating, and a short-term bike rack. The community open space area would include a wood shade area, lighting, community BBQ, table and chair seating, and a fire pit. The playground would be adjacent to the community open space area and include a rubberized surface and play equipment. The proposed site plan is shown in Figure 2.

## 1.4 Standard Noise Regulatory Conditions

The proposed project will be required to comply with the following regulatory conditions from the County of Los Angeles and State of California.

## **County of Los Angeles Municipal Code**

The following lists the County of Los Angeles Municipal Code regulations that are applicable to all residential projects in the County.

#### Section 12.08.390 Exterior noise standards

Section 12.08.390(A) of the County's Municipal Code limits exterior noise levels at the nearby residential uses to 50 dBA between the hours of 7:00 a.m. and 10:00 p.m. and to 45 dBA between the hours of 10:00 p.m. and 7:00 a.m.

## Section 12.08.440 Construction noise

Section 12.08.440(A) limits construction activities and associated noise to between the weekday hours of 7:00 a.m. to 7:00 p.m. Section 12.08.440(B) limits noise from mobile construction equipment at nearby single-family residential uses to 75 dBA between the hours of 7:00 a.m. and 8:00 p.m. on weekdays and Saturdays. Construction-related activities and noise are prohibited on Sundays and legal holidays.

#### State of California Rules

The following lists the State of California rules that are applicable to all commercial projects in the State.

#### <u>California Vehicle Code Section 27200-27207 – On-Road Vehicle Noise</u>

California Vehicle Code Section 27200-27207 provides noise limits for vehicles operated in California. For vehicles over 10,000 pounds noise is limited to 88 dB for vehicles manufactured before 1973, 86 dB for vehicles manufactured before 1975, 83 dB for vehicles manufactured before 1988, and 80 dB for vehicles manufactured after 1987. All measurements are based at 50 feet from the vehicle.

#### California Vehicle Section 38365-38380 – Off-Road Vehicle Noise

California Vehicle Code Section 38365-38380 provides noise limits for off-highway motor vehicles operated in California. 92 dBA for vehicles manufactured before 1973, 88 dBA for vehicles manufactured before 1975, 86 dBA for vehicles manufactured before 1986, and 82 dBA for vehicles manufactured after December 31, 1985. All measurements are based at 50 feet from the vehicle.

## 1.5 Summary of Analysis Results

The following is a summary of the proposed project's impacts with regard to the State CEQA Guidelines noise checklist questions.

Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Potentially significant impact. Implementation of Mitigation Measure 1 would reduce the impact to less than significant levels.

## Generation of excessive groundborne vibration or groundborne noise levels?

Potentially significant impact. Implementation of Mitigation Measure 2 would reduce the impact to less than significant levels.

For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

No impact.

## 1.6 Mitigation Measures for the Proposed Project

This analysis found that through adherence to the noise and vibration regulations detailed in Section 1.4 above, through implementation of the Project Design Features detailed in Section 1.6 above, and through implementation of the following mitigation all noise and vibration impacts would be reduced to less than significant levels.

## **Mitigation Measure 1:**

During all construction activities the project applicant shall require a minimum 8-foot high sound blanket or sound wall to be placed on the side nearest the offsite homes to any stationary equipment (i.e., air compressors, generators, and welders) utilized onsite during construction of the proposed project and the stationary construction equipment shall be located a minimum of 100 feet from any offsite residential property line.

#### Mitigation Measure 2:

The project applicant shall restrict all contractors from operating any off-road construction equipment that is 150 horsepower or greater within 10 feet of either the east or west property lines in order to limit construction-related vibration levels at the nearby homes. Typical construction equipment that is less than 150 horsepower include backhoes, skid steers, skip loaders, and tractors, that are capable of performing all grading and excavation activities within the 10-foot wide areas adjacent to the east and west property lines.









## 2.0 NOISE FUNDAMENTALS

The following discussion on noise fundamentals has been obtained from *Technical Noise Supplement to the Traffic Noise Analysis Protocol* (TeNS), prepared by Caltrans, September 2013. Noise is defined as unwanted sound. Sound becomes unwanted when it interferes with normal activities, when it causes actual physical harm or when it has adverse effects on health. Sound is produced by the vibration of sound pressure waves in the air. Sound pressure levels are used to measure the intensity of sound and are described in terms of decibels. The decibel (dB) is a logarithmic unit which expresses the ratio of the sound pressure level being measured to a standard reference level. A-weighted decibels (dBA) approximate the subjective response of the human ear to a broad frequency noise source by discriminating against very low and very high frequencies of the audible spectrum. They are adjusted to reflect only those frequencies which are audible to the human ear.

## 2.1 Noise Descriptors

Noise Equivalent sound levels are not measured directly, but are calculated from sound pressure levels typically measured in A-weighted decibels (dBA). The equivalent sound level (Leq) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period. The peak traffic hour Leq is the noise metric used by California Department of Transportation (Caltrans) for all traffic noise impact analyses.

The Day-Night Average Level (Ldn) is the weighted average of the intensity of a sound, with corrections for time of day, and averaged over 24 hours. The time of day corrections require the addition of ten decibels to sound levels at night between 10 p.m. and 7 a.m. While the Community Noise Equivalent Level (CNEL) is similar to the Ldn, except that it has another addition of 4.77 decibels to sound levels during the evening hours between 7 p.m. and 10 p.m. These additions are made to the sound levels at these time periods because during the evening and nighttime hours, when compared to daytime hours, there is a decrease in the ambient noise levels, which creates an increased sensitivity to sounds. For this reason the sound appears louder in the evening and nighttime hours and is weighted accordingly. The County of Los Angeles relies on the CNEL noise standard to assess transportation-related impacts on noise sensitive land uses.

#### 2.2 Tone Noise

A pure tone noise is a noise produced at a single frequency and laboratory tests have shown that humans are more perceptible to changes in noise levels of a pure tone. For a noise source to contain a "pure tone," there must be a significantly higher A-weighted sound energy in a given frequency band than in the neighboring bands, thereby causing the noise source to "stand out" against other noise sources. A pure tone occurs if the sound pressure level in the one-third octave band with the tone exceeds the average of the sound pressure levels of the two contiguous one-third octave bands by:

- 5 dB for center frequencies of 500 hertz (Hz) and above
- 8 dB for center frequencies between 160 and 400 Hz
- 15 dB for center frequencies of 125 Hz or less

## 2.3 Noise Propagation

From the noise source to the receiver, noise changes both in level and frequency spectrum. The most obvious is the decrease in noise as the distance from the source increases. The manner in which noise

reduces with distance depends on whether the source is a point or line source as well as ground absorption, atmospheric effects and refraction, and shielding by natural and manmade features. Sound from point sources, such as air conditioning condensers, radiate uniformly outward as it travels away from the source in a spherical pattern. The noise drop-off rate associated with this geometric spreading is 6 dBA per each doubling of the distance (dBA/DD). Transportation noise sources such as roadways are typically analyzed as line sources, since at any given moment the receiver may be impacted by noise from multiple vehicles at various locations along the roadway. Because of the geometry of a line source, the noise drop-off rate associated with the geometric spreading of a line source is 3 dBA/DD.

## 2.4 Ground Absorption

The sound drop-off rate is highly dependent on the conditions of the land between the noise source and receiver. To account for this ground-effect attenuation (absorption), two types of site conditions are commonly used in traffic noise models, soft-site and hard-site conditions. Soft-site conditions account for the sound propagation loss over natural surfaces such as normal earth and ground vegetation. For point sources, a drop-off rate of 7.5 dBA/DD is typically observed over soft ground with landscaping, as compared with a 6.0 dBA/DD drop-off rate over hard ground such as asphalt, concrete, stone and very hard packed earth. For line sources a 4.5 dBA/DD is typically observed for soft-site conditions compared to the 3.0 dBA/DD drop-off rate for hard-site conditions. Caltrans research has shown that the use of soft-site conditions is more appropriate for the application of the Federal Highway Administration (FHWA) traffic noise prediction model used in this analysis.

## 3.0 GROUND-BORNE VIBRATION FUNDAMENTALS

Ground-borne vibrations consist of rapidly fluctuating motions within the ground that have an average motion of zero. The effects of ground-borne vibrations typically only cause a nuisance to people, but at extreme vibration levels damage to buildings may occur. Although ground-borne vibration can be felt outdoors, it is typically only an annoyance to people indoors where the associated effects of the shaking of a building can be notable. Ground-borne noise is an effect of ground-borne vibration and only exists indoors, since it is produced from noise radiated from the motion of the walls and floors of a room and may also consist of the rattling of windows or dishes on shelves.

## 3.1 Vibration Descriptors

There are several different methods that are used to quantify vibration amplitude such as the maximum instantaneous peak in the vibrations velocity, which is known as the peak particle velocity (PPV) or the root mean square (rms) amplitude of the vibration velocity. Due to the typically small amplitudes of vibrations, vibration velocity is often expressed in decibels and is denoted as  $(L_v)$  and is based on the rms velocity amplitude. A commonly used abbreviation is "VdB", which in this text, is when  $L_v$  is based on the reference quantity of 1 micro inch per second.

## 3.2 Vibration Perception

Typically, developed areas are continuously affected by vibration velocities of 50 VdB or lower. These continuous vibrations are not noticeable to humans whose threshold of perception is around 65 VdB. Offsite sources that may produce perceptible vibrations are usually caused by construction equipment, steelwheeled trains, and traffic on rough roads, while smooth roads rarely produce perceptible ground-borne noise or vibration.

## 3.3 Vibration Propagation

The propagation of ground-borne vibration is not as simple to model as airborne noise. This is due to the fact that noise in the air travels through a relatively uniform median, while ground-borne vibrations travel through the earth which may contain significant geological differences. There are three main types of vibration propagation; surface, compression, and shear waves. Surface waves, or Rayleigh waves, travel along the ground's surface. These waves carry most of their energy along an expanding circular wave front, similar to ripples produced by throwing a rock into a pool of water. P-waves, or compression waves, are body waves that carry their energy along an expanding spherical wave front. The particle motion in these waves is longitudinal (i.e., in a "push-pull" fashion). P-waves are analogous to airborne sound waves. S-waves, or shear waves, are also body waves that carry energy along an expanding spherical wave front. However, unlike P-waves, the particle motion is transverse or "side-to-side and perpendicular to the direction of propagation."

As vibration waves propagate from a source, the vibration energy decreases in a logarithmic nature and the vibration levels typically decrease by 6 VdB per doubling of the distance from the vibration source. As stated above, this drop-off rate can vary greatly depending on the soil but has been shown to be effective enough for screening purposes, in order to identify potential vibration impacts that may need to be studied through actual field tests.

## 4.0 REGULATORY SETTING

The project site is located in the County of Los Angeles. Noise regulations are addressed through the efforts of various federal, state, and local government agencies. The agencies responsible for regulating noise are discussed below.

## 4.1 Federal Regulations

The adverse impact of noise was officially recognized by the federal government in the Noise Control Act of 1972, which serves three purposes:

- Promulgating noise emission standards for interstate commerce
- Assisting state and local abatement efforts
- Promoting noise education and research

The Federal Office of Noise Abatement and Control (ONAC) was initially tasked with implementing the Noise Control Act. However, the ONAC has since been eliminated, leaving the development of federal noise policies and programs to other federal agencies and interagency committees. For example, the Occupational Safety and Health Administration (OSHA) agency prohibits exposure of workers to excessive sound levels. The Department of Transportation (DOT) assumed a significant role in noise control through its various operating agencies. The Federal Aviation Administration (FAA) regulates noise of aircraft and airports. Surface transportation system noise is regulated by a host of agencies, including the Federal Transit Administration (FTA). Transit noise is regulated by the FTA, while freeways that are part of the interstate highway system are regulated by the Federal Highway Administration (FHWA). Finally, the federal government actively advocates that local jurisdictions use their land use regulatory authority to arrange new development in such a way that "noise sensitive" uses are either prohibited from being sited adjacent to a highway or, alternately that the developments are planned and constructed in such a manner that potential noise impacts are minimized.

Although the proposed project is not under the jurisdiction of the FTA, the FTA is the only agency that has defined what constitutes a significant noise impact from implementing a project. The FTA standards are based on extensive studies by the FTA and other governmental agencies on the human effects and reaction to noise and a summary of the FTA findings are provided below in Table A.

Table A – FTA Project Effects on Cumulative Noise Exposure

| Existing Noise Exposure | Allowable Noise Impact Exposure dBA Leq or Ldn |          |                         |  |  |
|-------------------------|------------------------------------------------|----------|-------------------------|--|--|
| (dBA Leq or Ldn)        | Project Only                                   | Combined | Noise Exposure Increase |  |  |
| 45                      | 51                                             | 52       | +7                      |  |  |
| 50                      | 53                                             | 55       | +5                      |  |  |
| 55                      | 55                                             | 58       | +3                      |  |  |
| 60                      | 57                                             | 62       | +2                      |  |  |
| 65                      | 60                                             | 66       | +1                      |  |  |
| 70                      | 64                                             | 71       | +1                      |  |  |
| 75                      | 65                                             | 75       | 0                       |  |  |

Source: Federal Transit Administration, 2018.

Since the federal government has preempted the setting of standards for noise levels that can be emitted by transportation sources, the County is restricted to regulating noise generated by the transportation system through nuisance abatement ordinances and land use planning.

## **4.2 State Regulations**

#### **Noise Standards**

## California Department of Health Services Office of Noise Control

Established in 1973, the California Department of Health Services Office of Noise Control (ONC) was instrumental in developing regularity tools to control and abate noise for use by local agencies. One significant model is the "Land Use Compatibility for Community Noise Environments Matrix," which allows the local jurisdiction to clearly delineate compatibility of sensitive uses with various incremental levels of noise.

## California Noise Insulation Standards

Title 24, Chapter 1, Article 4 of the California Administrative Code (California Noise Insulation Standards) requires noise insulation in new hotels, motels, apartment houses, and dwellings (other than single-family detached housing) that provides an annual average noise level of no more than 45 dBA CNEL. When such structures are located within a 60-dBA CNEL (or greater) noise contour, an acoustical analysis is required to ensure that interior levels do not exceed the 45-dBA CNEL annual threshold. In addition, Title 21, Chapter 6, Article 1 of the California Administrative Code requires that all habitable rooms, hospitals, convalescent homes, and places of worship shall have an interior CNEL of 45 dB or less due to aircraft noise.

#### **Government Code Section 65302**

Government Code Section 65302 mandates that the legislative body of each county and city in California adopt a noise element as part of its comprehensive general plan. The local noise element must recognize the land use compatibility guidelines published by the State Department of Health Services. The guidelines rank noise land use compatibility in terms of normally acceptable, conditionally acceptable, normally unacceptable, and clearly unacceptable.

#### **Vibration Standards**

Title 14 of the California Administrative Code Section 15000 requires that all state and local agencies implement the California Environmental Quality Act (CEQA) Guidelines, which requires the analysis of exposure of persons to excessive groundborne vibration. However, no statute has been adopted by the state that quantifies the level at which excessive groundborne vibration occurs.

Caltrans issued the *Transportation- and Construction Vibration Guidance Manual* in April 2020. The manual provides practical guidance to Caltrans engineers, planners, and consultants who must address vibration issues associated with the construction, operation, and maintenance of Caltrans projects. However, this manual is also used as a reference point by many lead agencies and CEQA practitioners throughout California, as it provides numeric thresholds for vibration impacts. Thresholds are established for both potential damage to structures and vibration annoyance, which found that the human response becomes distinctly perceptible at 0.04 inch per second PPV and structural damage may occur between 0.08 and 0.5 inch per second PPV for continuous sources of vibration, which includes most types of mobile construction equipment.

## 4.3 Local Regulations

The County of Los Angeles General Plan and Municipal Code establishes the following applicable policies related to noise and vibration.

## **County of Los Angeles General Plan**

## Goal N 1 The reduction of excessive noise impacts

#### **Policies**

- **N 1.1** Utilize land uses to buffer noise-sensitive uses from sources of adverse noise impacts.
- **N 1.2** Reduce exposure to noise impacts by promoting land use compatibility.
- **N 1.3** Minimize impacts to noise-sensitive land uses by ensuring adequate site design, acoustical construction, and use of barriers, berms, or additional engineering controls through Best Available Technologies (BAT).
- N 1.5 Ensure compliance with the jurisdictions of State Noise Insulation Standards (Title 24, California Code of Regulations and Chapter 35 of the Uniform Building Code), such as noise insulation of new multifamily dwellings constructed within the 60 dB (CNEL or Ldn) noise exposure contours.
- **N 1.6** Ensure cumulative impacts related to noise do not exceed health-based safety margins.
- **N 1.9** Require construction of suitable noise attenuation barriers on noise sensitive uses that would be exposed to exterior noise levels of 65 dBA CNEL and above, when unavoidable impacts are identified.
- **N 1.11** Maximize buffer distances and design and orient sensitive receptor structures (hospitals, residential, etc.) to prevent noise and vibration transfer from commercial/light industrial uses.
- **N 1.12** Decisions on land adjacent to transportation facilities, such as the airports, freeways and other major highways, must consider both existing and future noise levels of these transportation facilities to assure the compatibility of proposed uses.

## **County of Los Angeles Municipal Code**

The County of Los Angeles Municipal Code establishes the following applicable standards related to noise.

Section 12.08.390 Exterior noise standards – Citations for violations authorized when.

A. Unless otherwise herein provided, the following exterior noise levels shall apply to all receptor properties within a designated noise zone:

Table B – County of Los Angeles Exterior Noise Standards

| Noise Zone | Designated Noise Zone Land Use (Receptor property) | Time Interval                          | Exterior Noise Level<br>(dB) |
|------------|----------------------------------------------------|----------------------------------------|------------------------------|
| 1          | Noise-sensitive area                               | Anytime                                | 45                           |
|            | Decidential agenestics                             | 10:00 p.m. to 7:00 a.m.<br>(nighttime) | 45                           |
| II         | Residential properties                             | 7:00 a.m. to 10:00 p.m.<br>(daytime)   | 50                           |
|            | III Commercial properties                          | 10:00 p.m. to 7:00 a.m.<br>(nighttime) | 55                           |
| III        |                                                    | 7:00 a.m. to 10:00 p.m.<br>(daytime)   | 60                           |
| IV         | Industrial properties                              | Anytime                                | 70                           |

Source: County of Los Angeles Municipal Code Section 12.08.390.

- B. Unless otherwise herein provided, no person shall operate or cause to be operated, any source of sound at any location within the unincorporated county, or allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person which causes the noise level, when measured on any other property either incorporated or unincorporated to exceed any of the following exterior noise standards:
  - **Standard No. 1** shall be the exterior noise level which may not be exceeded for a cumulative period of more than 30 minutes in any hour. Standard No. 1 shall be the applicable noise level from subsection A of this section; or, if the ambient L50 exceeds the foregoing level, then the ambient L50 becomes the exterior noise level for Standard No. 1.
  - **Standard No. 2** shall be the exterior noise level which may not be exceeded for a cumulative period of more than 15 minutes in any hour. Standard No. 2 shall be the applicable noise level from subsection A of this section plus 5dB; or, if the ambient L25 exceeds the foregoing level, then the ambient L25 becomes the exterior noise level for Standard No. 2.
  - **Standard No. 3** shall be the exterior noise level which may not be exceeded for a cumulative period of more than five minutes in any hour. Standard No. 3 shall be the applicable noise level from subsection A of this section plus 20dB; or, if the ambient L8.3 exceeds the foregoing level, then the ambient L8.3 becomes exterior noise level for Standard No. 3.
  - **Standard No. 4** shall be the exterior noise level which may not be exceeded for a cumulative period of more than one minute in any hour. Standard No. 4 shall be the applicable noise level from subsection A of this section plus 15dB; or, if the ambient L1.7 exceeds the foregoing level, then the ambient L1.7 becomes the exterior noise level for Standard No. 4.
  - Standard No. 5 shall be the exterior noise level which may not be exceeded for any period of time.
     Standard No. 5 shall be the applicable noise level from subsection A of this section plus 20dB; or, if the ambient LO exceeds the foregoing level then the ambient LO becomes the exterior noise level for Standard No. 5.
- C. If the measurement location is on a boundary property between two different zones, the exterior noise level utilized in subsection B of this section to determine the exterior standard shall be the arithmetic mean of the exterior noise levels in subsection A of the subject zones. Except as provided for above in this subsection C, when an intruding noise source originates on an industrial property and is impacting

another noise zone, the applicable exterior noise level as designated in subsection A shall be the daytime exterior noise level for the subject receptor property.

## Section 12.08.400 Interior noise standards

A. No person shall operate or cause to be operated within a dwelling unit, any source of sound, or allow the creation of any noise, which causes the noise level when measured inside a neighboring receiving dwelling unit to exceed the following standards:

- **Standard No 1** The applicable interior noise level for cumulative period of more than five minutes in any hour; or
- **Standard No. 2** The applicable interior noise level plus 5dB for a cumulative period of more than one minute in any hour; or
- **Standard No. 3** The applicable interior noise level plus 10dB or the maximum measured ambient noise level for any period of time.
- B. The following interior noise levels for multifamily residential dwellings shall apply, unless otherwise specifically, indicated, within all such dwellings with windows in their normal seasonal configuration.

Table C – County of Los Angeles Interior Noise Standards

| Noise Zone | Designated Land Use | Time Interval          | Allowable Interior Noise<br>Level |
|------------|---------------------|------------------------|-----------------------------------|
| All        | Multifamily         | 10:00 p.m. – 7:00 a.m. | 40                                |
| All        | Residential         | 7:00 a.m. – 10:00 p.m. | 45                                |

Source: County of Los Angeles Municipal Code Section 12.08.400.

C. If the measured ambient noise level reflected by the L50 exceeds that permissible within any of the interior noise standards in subsection A of Section 12.08.390, the allowable interior noise level shall be increased in 5dB increments in each standard as appropriate to reflect said ambient noise level.

#### Section 12.08.440 Construction noise.

- A. Operating or causing the operation of any tools or equipment used in construction, drilling, repair, alteration or demolition work between weekday hours of 7:00 p.m. and 7:00 a.m., or at any time on Sundays or holidays, such that the sound therefrom creates a noise disturbance across a residential or commercial real-property line, except for emergency work of public service utilities or by variance issued by the health officer is prohibited.
- B. Noise Restrictions at Affected Structures. The contractor shall conduct construction activities in such a manner that the maximum noise levels at the affected buildings will not exceed those listed in the following schedule:
  - 1) At Residential Structures.
    - a) Mobile Equipment. Maximum noise levels for nonscheduled, intermittent short-term operation of mobile equipment:

Table D – County of Los Angeles Mobile Equipment Residential Noise Standards

|                                                                     | Single-Family<br>Residential | Multi-Family<br>Residential | Semiresidential/<br>Commercial |
|---------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------|
| Daily, except Sundays and legal holidays, 7:00 a.m. to 8:00 p.m.    | 75 dBA                       | 80 dBA                      | 85 dBA                         |
| Daily, 8:00 p.m. to 7:00 a.m. and all day Sunday and legal holidays | 60 dBA                       | 64 dBA                      | 70 dBA                         |

Source: County of Los Angeles Municipal Code Section 12.08.440(B)(1)(a).

i) Stationary Equipment. Maximum noise level for repetitively scheduled and relatively longterm operation (periods of 10 days or more) of stationary equipment:

Table E – County of Los Angeles Stationary Equipment Residential Noise Standards

|                                                                     | Single-Family<br>Residential | Multi-Family<br>Residential | Semiresidential/<br>Commercial |
|---------------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------|
| Daily, except Sundays and legal holidays, 7:00 a.m. to 8:00 p.m.    | 60 dBA                       | 65 dBA                      | 70 dBA                         |
| Daily, 8:00 p.m. to 7:00 a.m. and all day Sunday and legal holidays | 50 dBA                       | 55 dBA                      | 60 dBA                         |

Source: County of Los Angeles Municipal Code Section 12.08.440(B)(1)(a).

## 2) At Business Structures

i) Mobile Equipment. Maximum noise levels for nonscheduled, intermittent short-term operation of mobile equipment:

Daily, including Sunday and legal holidays, all hours: maximum of 85 dBA.

C. All mobile or stationary internal-combustion-engine powered equipment or machinery shall be equipped with suitable exhaust and air-intake silencers in proper working order.

## Section 12.08.460 Loading and unloading operations.

Loading, unloading, opening, closing or other handling of boxes, crates, containers, building materials, garbage cans or similar objects between the hours of 10:00 p.m. and 6:00 a.m. in such a manner as to cause noise disturbance is prohibited.

## Section 12.08.560 Vibration

Operating or permitting the operation of any device that creates vibration which is above the vibration perception threshold of any individual at or beyond the property boundary of the source if on private property, or at 150 feet (46 meters) from the source if on a public space or public right-of-way is prohibited. The perception threshold shall be a motion velocity of 0.01 in/sec over the range of 1 to 100 Hertz.

## Section 12.08.570 Activities exempt from chapter restrictions

The following activities set out in this chapter shall be exempted from the provisions of this chapter:

B. Warning Devices. Warning devices necessary for the protection of public safety, as for example police, fire ambulance sirens, and train horns.

- D. Exemptions from Exterior noise standards. The following activities are exclusively regulated by the prohibitions of Part 4 of this chapter:
  - 1) Construction.
  - 2) Stationary nonemergency signaling devices.
  - 3) Emergency signaling devices,
  - 4) Refuse collection vehicles,
  - 5) Residential air-conditioning or refrigeration equipment.
- F. Railroad Activities. All locomotives and rail cars operated by any railroad which is regulated by the California Public Utilities Commission.
- I. Motor Vehicles on Private Right-of-way and Private Property. Except as provided in Section 12.08.550, all legal vehicles of transportation operating in a legal manner in accordance with local, state and federal vehicle-noise regulations within the public right-of-way or air space, or on private property.

## 5.0 EXISTING NOISE CONDITIONS

To determine the existing noise levels, noise measurements have been taken in the vicinity of the project site. The field survey noted that noise within the proposed project area is generally characterized by vehicle traffic on San Bernardino Road, which is adjacent to the south side of the project site and from train noise on the Metrolink San Bernardino Line that is adjacent to the north side of the project site. The following describes the measurement procedures, measurement locations, noise measurement results, and the modeling of the existing noise environment.

## **5.1 Noise Measurement Equipment**

The noise measurements were taken using two Extech Model 407780 Type 2 integrating sound level meters programmed in "slow" mode to record the sound pressure level at 3-second intervals for approximately 24 hours in "A" weighted form. In addition, the  $L_{eq}$  averaged over the entire measuring time and  $L_{max}$  were recorded. The sound level meters and microphones were mounted on trees approximately four to six feet above the ground and were equipped with a windscreen. The sound level meters were calibrated before and after the monitoring using an Extech calibrator, Model 407766. The noise level measurement equipment meets American National Standards Institute specifications for sound level meters (S1.4-1983 identified in Chapter 19.68.020.AA).

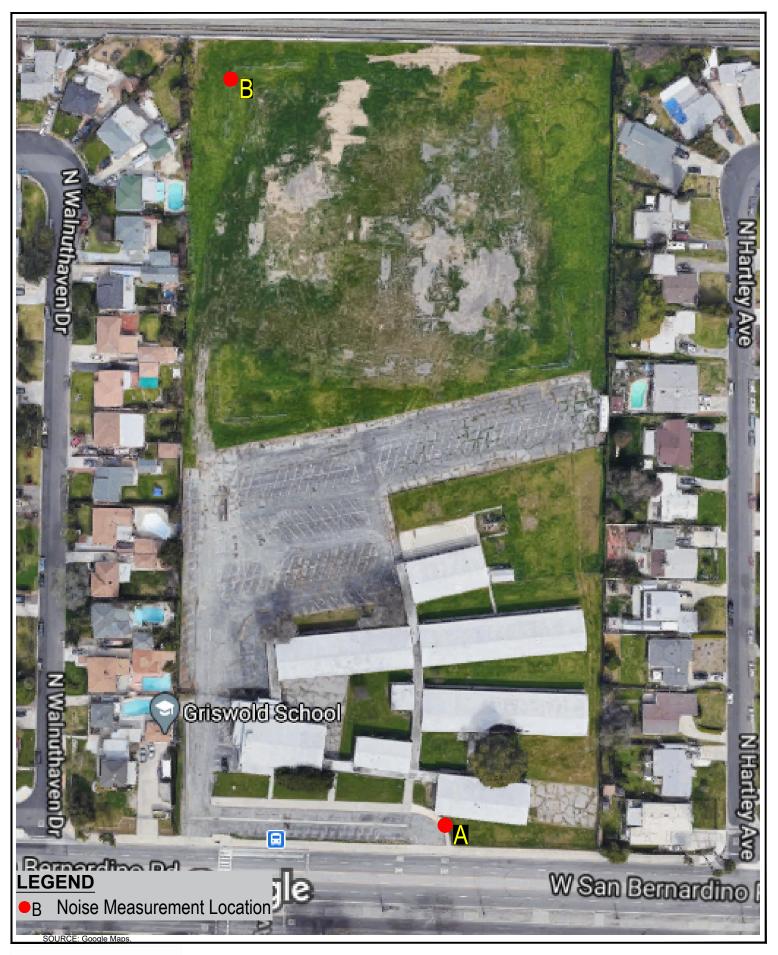
#### **Noise Measurement Locations**

The noise monitoring locations were selected in order to obtain noise levels on the project site. Descriptions of the noise monitoring sites are provided below in Table F and are shown in Figure 3. Appendix A includes a photo index of the study area and noise level measurement locations.

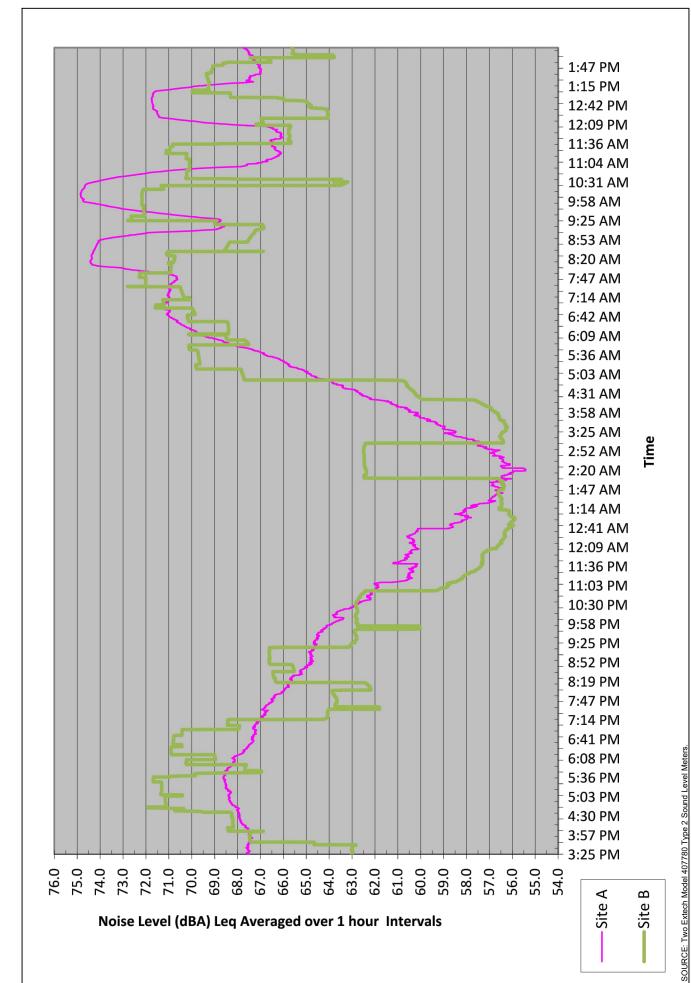
#### **Noise Measurement Timing and Climate**

The noise measurements were recorded between 2:50 p.m. on Wednesday February 26, 2020 and 2:55 p.m. on Thursday, February 27, 2020. It should be noted that the two noise measurements were taken for the due diligence analysis of the project site, which occurred prior to all of the school and business closures associated with the Covid-19 crisis, when vehicle traffic and train volumes were at normal levels.

At the start of the noise measurements, the sky was clear (no clouds), the temperature was 82 degrees Fahrenheit, the humidity was 21 percent, barometric pressure was 29.69 inches of mercury, and the wind was blowing at an average rate of three miles per hour. Overnight, the sky became cloudy and the temperature dropped to 52 degrees Fahrenheit. At the conclusion of the noise measurements, the sky was cloudy, the temperature was 84 degrees Fahrenheit, the humidity was 21 percent, barometric pressure was 29.61 inches of mercury, and the wind was blowing at an average rate of two miles per hour.


## **5.2 Noise Measurement Results**

The results of the noise level measurements are presented in Table F. Table F shows the Leq, Lmax, and CNEL, based on the entire measurement time as well as the minimum and maximum  $L_{eq}$  averaged over 1-hour intervals. In addition, a graph of the 24-hour noise measurements is shown in Figure 4 and the noise monitoring data printouts are included in Appendix B.


**Table F – Existing (Ambient) Noise Measurement Results** 

| Site<br>No. | Measurement Location                                                                                     | Average<br>(dBA L <sub>eq</sub> ) | Maximum<br>(dBA L <sub>max</sub> ) | Min. 1-Hour<br>Interval (dBA<br>L <sub>eq</sub> /Time) | Max. 1-Hour<br>Interval (dBA<br>L <sub>eq</sub> /Time) | Average<br>(dBA<br>CNEL) |
|-------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------|
| А           | Located on the south side of project site, approximately 70 feet north of San Bernardino Road centerline | 68.4                              | 86.0                               | 55.4<br>2:18 a.m.                                      | 74.9<br>10:07 a.m.                                     | 72.2                     |
| В           | Located near the northwest corner of project site, approximately 50 feet south of nearest rail line.     | 67.6                              | 99.9                               | 55.9<br>12:53 a.m.                                     | 72.8<br>7:32 p.m.                                      | 71.8                     |

Source: Noise measurements taken with two Extech Model 407780 Type 2 integrating sound level meters between Wednesday, February 26 and Thursday, February 27, 2020.









## 6.0 MODELING PARAMETERS AND ASSUMPTIONS

#### 6.1 Construction Noise

The noise impacts from construction of the proposed project have been analyzed through use of the FHWA's Roadway Construction Noise Model (RCNM). The FHWA compiled noise measurement data regarding the noise generating characteristics of several different types of construction equipment used during the Central Artery/Tunnel project in Boston. Table G below provides a list of the construction equipment anticipated to be used for each phase of construction as detailed in *Air Quality, Energy, and Greenhouse Gas Emissions Impact Analysis Griswold Residential Project* (Air Quality Analysis), prepared by Vista Environmental, January 9, 2021.

Table G – Construction Equipment Noise Emissions and Usage Factors

|                              |                        |                                                 |                                                                     | •                                                                      |
|------------------------------|------------------------|-------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|
| Equipment Description        | Number of<br>Equipment | Acoustical Use<br>Factor <sup>1</sup> (percent) | Spec 721.560 Lmax at 50 feet <sup>2</sup> (dBA, slow <sup>3</sup> ) | Actual Measured Lmax at 50 feet <sup>4</sup> (dBA, slow <sup>3</sup> ) |
| Demolition                   | Equipment              | ractor (percent)                                | Jo leet (ubA, slow )                                                | at 50 feet (ubA, slow )                                                |
| Concrete/Industrial Saw      | 1                      | 20                                              | 90                                                                  | 90                                                                     |
| Excavators                   | 3                      | 40                                              | 85                                                                  | 81                                                                     |
| Rubber Tired Dozers          | 2                      | 40                                              | 85                                                                  | 82                                                                     |
| Site Preparation             |                        |                                                 |                                                                     |                                                                        |
| Rubber Tired Dozers          | 3                      | 40                                              | 85                                                                  | 83                                                                     |
| Tractor, Loader, or Backhoes | 4                      | 40                                              | 84                                                                  | N/A                                                                    |
| Grading                      |                        |                                                 |                                                                     | ·                                                                      |
| Excavator                    | 1                      | 40                                              | 85                                                                  | 81                                                                     |
| Grader                       | 1                      | 40                                              | 85                                                                  | 83                                                                     |
| Rubber Tired Dozer           | 1                      | 40                                              | 85                                                                  | 82                                                                     |
| Tractor, Loader or Backhoes  | 3                      | 40                                              | 84                                                                  | N/A                                                                    |
| <b>Building Construction</b> |                        |                                                 |                                                                     |                                                                        |
| Crane                        | 1                      | 16                                              | 85                                                                  | 81                                                                     |
| Forklift (Gradall)           | 3                      | 40                                              | 85                                                                  | 83                                                                     |
| Generator <sup>5</sup>       | 1                      | 50                                              | 82                                                                  | 81                                                                     |
| Tractor, Loader or Backhoes  | 3                      | 40                                              | 84                                                                  | N/A                                                                    |
| Welder <sup>5</sup>          | 1                      | 40                                              | 73                                                                  | 74                                                                     |
| Paving                       |                        |                                                 |                                                                     |                                                                        |
| Paver                        | 2                      | 50                                              | 85                                                                  | 77                                                                     |
| Paving Equipment             | 2                      | 50                                              | 85                                                                  | 77                                                                     |
| Rollers                      | 2                      | 20                                              | 85                                                                  | 80                                                                     |
| Architectural Coating        |                        |                                                 |                                                                     |                                                                        |
| Air Compressor <sup>5</sup>  | 1                      | 40                                              | 80                                                                  | 78                                                                     |
| •• .                         |                        |                                                 |                                                                     |                                                                        |

#### Notes:

Source: Federal Highway Administration, 2006 and CalEEMod default equipment mix.

 $<sup>^{1}</sup>$  Acoustical use factor is the percentage of time each piece of equipment is operational during a typical workday.

 $<sup>^{\</sup>rm 2}$  Spec 721.560 is the equipment noise level utilized by the RCNM program.

<sup>&</sup>lt;sup>3</sup> The "slow" response averages sound levels over 1-second increments. A "fast" response averages sound levels over 0.125-second increments.

<sup>&</sup>lt;sup>4</sup> Actual Measured is the average noise level measured of each piece of equipment during the Central Artery/Tunnel project in Boston, Massachusetts primarily during the 1990s.

<sup>&</sup>lt;sup>5</sup> Stationary equipment, analyzed separately from the mobile equipment.

Table G also shows the associated measured noise emissions for each piece of equipment from the RCNM model and measured percentage of typical equipment use per day. Construction noise impacts to the nearby sensitive receptors have been calculated according to the equipment noise levels and usage factors listed in Table G and through use of the RCNM. For each phase of construction, the mobile equipment was placed at the center of the project site, since over the course of the day, it is anticipated that each piece of mobile equipment would operate over a large portion of the project site.

## **6.2 Operations-Related Noise**

The proposed project would result in increases in traffic noise to the nearby roadways as well as introduce new sensitive receptors to the project site. The project impacts to the offsite roadways as well as the nearby roadway impacts to the proposed homes were analyzed through use of the FHWA Traffic Noise Prediction Model - FHWA-RD-77-108 (FHWA Model). The FHWA Model arrives at a predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). Adjustments are then made to the reference energy mean emission level to account for: the roadway active width (i.e., the distance between the center of the outermost travel lanes on each side of the roadway), the total average daily traffic (ADT) and the percentage of ADT which flows during the day, evening and night, the travel speed, the vehicle mix on the roadway, which is a percentage of the volume of automobiles, medium trucks and heavy trucks, the roadway grade, the angle of view of the observer exposed to the roadway and site conditions ("hard" or "soft" relates to the absorption of the ground, pavement or landscaping).

To assess the roadway noise generation in a uniform manner, all vehicles have been analyzed in the FHWA Model at the single lane equivalent acoustic center of the roadway being analyzed. In order to determine the height above the road grade where the noise is being emitted from, each type of vehicle has been analyzed independently with autos at road grade, medium trucks at 2.3 feet above road grade, and heavy trucks at 8 feet above road grade. These elevations were determined through a noise-weighted average of the elevation of the exhaust pipe, tires and mechanical parts in the engine, which are the primary noise emitters from a vehicle.

#### FHWA Model Traffic Noise Prediction Model Inputs

The roadway parameters used for this study are presented in Table H. The roadway classifications are based on the County's General Plan Circulation Element. The roadway speeds are based on the posted speed limits. The distance to the nearest sensitive receptor was determined by measuring the distance from the roadway centerline to the nearest sensitive receptor. Since the study area is located in a suburban environment and landscaping exists along most of the nearby roadways, soft site conditions were modeled.

Table H – FHWA Model Roadway Parameters

| Roadway               | Segment                        | General Plan<br>Classification | Vehicle Speed<br>(MPH) | Distance to Nearest<br>Receptor (feet) |
|-----------------------|--------------------------------|--------------------------------|------------------------|----------------------------------------|
| Irwindale Avenue      | North of San Bernardino Avenue | Major                          | 40                     | 70                                     |
| Irwindale Avenue      | South of San Bernardino Avenue | Major                          | 40                     | 70                                     |
| Vincent Avenue        | North of San Bernardino Avenue | Secondary                      | 35                     | 50                                     |
| Vincent Avenue        | South of San Bernardino Avenue | Secondary                      | 35                     | 50                                     |
| San Bernardino Avenue | West of Irwindale Avenue       | Secondary                      | 40                     | 100                                    |
| San Bernardino Avenue | West of Project Driveway       | Secondary                      | 40                     | 90                                     |
| San Bernardino Avenue | East of Project Driveway       | Secondary                      | 40                     | 50                                     |
| San Bernardino Avenue | East of Vincent Avenue         | Secondary                      | 40                     | 60                                     |

Source: Vista Environmental; and Urban Crossroad, 2021.

The average daily traffic (ADT) volumes were obtained from the Traffic Impact Analysis (Urban Crossroads, 2021). The ADT volumes have been provided for both without project and with project conditions for the existing and opening year 2023. The ADT volumes used in this analysis are shown in Table I.

Table I – FHWA Model Average Daily Traffic Volumes

|                       |                                | Average Daily Traffic Volumes |                       |                         | mes                    |
|-----------------------|--------------------------------|-------------------------------|-----------------------|-------------------------|------------------------|
| Road                  | Road Segment                   | Existing                      | Existing +<br>Project | Year 2023<br>No Project | Year 2023 +<br>Project |
| Irwindale Avenue      | North of San Bernardino Avenue | 18,350                        | 18,360                | 18,740                  | 18,750                 |
| Irwindale Avenue      | South of San Bernardino Avenue | 19,150                        | 19,450                | 19,500                  | 19,800                 |
| Vincent Avenue        | North of San Bernardino Avenue | 18,100                        | 18,110                | 19,140                  | 19,150                 |
| Vincent Avenue        | South of San Bernardino Avenue | 18,500                        | 18,650                | 19,550                  | 19,700                 |
| San Bernardino Avenue | West of Irwindale Avenue       | 17,300                        | 17,310                | 18,040                  | 18,050                 |
| San Bernardino Avenue | West of Project Driveway       | 15,400                        | 15,800                | 16,050                  | 16,450                 |
| San Bernardino Avenue | East of Project Driveway       | 15,550                        | 15,800                | 16,200                  | 16,450                 |
| San Bernardino Avenue | East of Vincent Avenue         | 15,050                        | 15,060                | 15,840                  | 15,850                 |

Source: Urban Crossroads, 2021.

The vehicle mix used in the FHWA RD-77-108 Model are shown in Table J. The vehicle mix is based on the typical vehicle mix for major and secondary arterial roadways observed in Southern California.

Table J - Roadway Vehicle Mix

|               |                           | Traffic Flow Distributions |      |       |  |  |  |  |
|---------------|---------------------------|----------------------------|------|-------|--|--|--|--|
| Vehicle Type  | Day<br>(7 a.m. to 7 p.m.) | ,                          |      |       |  |  |  |  |
| Automobiles   | 69.5%                     | 12.9%                      | 9.6% | 92.0% |  |  |  |  |
| Medium Trucks | 1.4%                      | 0.1%                       | 1.5% | 3.0%  |  |  |  |  |
| Heavy Trucks  | 2.4%                      | 0.1%                       | 2.5% | 5.0%  |  |  |  |  |

Source: Vista Environmental.

#### 6.3 Vibration

Construction activity can result in varying degrees of ground vibration, depending on the equipment used on the site. Operation of construction equipment causes ground vibrations that spread through the ground and diminish in strength with distance. Buildings in the vicinity of the construction site respond to these vibrations with varying results ranging from no perceptible effects at the low levels to slight damage at the highest levels. Table K gives approximate vibration levels for particular construction activities. The data in Table K provides a reasonable estimate for a wide range of soil conditions.

Table K – Vibration Source Levels for Construction Equipment

| Equipment                     |             | Peak Particle Velocity (inches/second) | Approximate Vibration Level $(L_v)$ at 25 feet |
|-------------------------------|-------------|----------------------------------------|------------------------------------------------|
| Dila driver (impact)          | Upper range | 1.518                                  | 112                                            |
| Pile driver (impact)          | typical     | 0.644                                  | 104                                            |
| Pilo drivor (sonis)           | Upper range | 0.734                                  | 105                                            |
| Pile driver (sonic)           | typical     | 0.170                                  | 93                                             |
| Clam shovel drop (slurry wall | l)          | 0.202                                  | 94                                             |
| Vibratory Roller              |             | 0.210                                  | 94                                             |
| Hoe Ram                       |             | 0.089                                  | 87                                             |
| Large bulldozer               |             | 0.089                                  | 87                                             |
| Caisson drill                 |             | 0.089                                  | 87                                             |
| Loaded trucks                 |             | 0.076                                  | 86                                             |
| Jackhammer                    |             | 0.035                                  | 79                                             |
| Small bulldozer               |             | 0.003                                  | 58                                             |

Source: Federal Transit Administration, September, 2018.

The construction-related vibration impacts have been calculated through the vibration levels shown above in Table K and through typical vibration propagation rates. The equipment assumptions were based on the equipment lists provided above in Table G.

## 7.0 IMPACT ANALYSIS

## 7.1 CEQA Thresholds of Significance

Consistent with the California Environmental Quality Act (CEQA) and the State CEQA Guidelines, a significant impact related to noise would occur if a proposed project is determined to result in:

- Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- Generation of excessive groundborne vibration or groundborne noise levels; or
- For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

## 7.2 Generation of Noise Levels in Excess of Standards

The proposed project would not generate a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies. The following section calculates the potential noise emissions associated with the temporary construction activities and long-term operations of the proposed project and compares the noise levels to the County standards.

#### **Construction-Related Noise**

The construction activities for the proposed project are anticipated to include demolition of the existing school building structures and parking lot areas, site preparation and grading of the gross 9.61-acre project site, building construction of the proposed 68 single-family homes, paving of the onsite roads and driveways and application of architectural coatings. Noise impacts from construction activities associated with the proposed project would be a function of the noise generated by construction equipment, equipment location, sensitivity of nearby land uses, and the timing and duration of the construction activities. The nearest sensitive receptors to the project site are single-family homes located as near as approximately 2 feet from the property lines on the east and west sides of the project site. There are also single-family homes located as near as 90 feet north of the project site and as near as 130 feet south of the project site.

Section 12.08.440 of the Municipal Code limits construction activities to between 7:00 a.m. and 7:00 p.m., on weekdays and Saturdays and restricts construction activities from occurring on Sundays or holidays. During the allowable times of construction, Section 12.08.440 limits mobile equipment construction noise impacts to 75 dBA and stationary equipment construction noise impacts to 60 dBA at the nearby single-family homes.

#### Mobile Equipment Construction Noise Impacts

Due to the nature of all phases of building construction, and especially demolition and grading, where the equipment will be focused on one sub-area of the project until specifications are met and then move on to the next sub-area of the project, it is not likely that mobile construction equipment would operate continuously for 10 days or more in the direct vicinity of any nearby home. As such, it has been

determined that the County's mobile equipment threshold of 75 dBA at the nearby single-family homes is the appropriate noise threshold to analyze the mobile equipment during construction of the proposed project.

The mobile equipment construction noise impacts to the nearby sensitive receptors have been calculated through use of the RCNM and the parameters and assumptions detailed in Section 6.1 of this report including Table G – Construction Equipment Noise Emissions and Usage Factors. The results are shown below in Table L and the RCNM printouts are provided in Appendix C.

Table L – Mobile Construction Noise Levels at the Nearby Homes

|                                                  | Construction Noise Level (dBA Leq) at: |                             |                             |  |
|--------------------------------------------------|----------------------------------------|-----------------------------|-----------------------------|--|
|                                                  | Single-Family Homes to                 | Single-Family               | Single-Family               |  |
| Construction Phase <sup>1</sup>                  | West & East <sup>2</sup>               | Homes to North <sup>3</sup> | Homes to South <sup>4</sup> |  |
| Demolition                                       | 73                                     | 66                          | 65                          |  |
| Site Preparation                                 | 72                                     | 65                          | 64                          |  |
| Grading                                          | 72                                     | 65                          | 65                          |  |
| <b>Building Construction</b>                     | 73                                     | 66                          | 65                          |  |
| Paving                                           | 71                                     | 64                          | 63                          |  |
| County's Mobile Equipment Threshold <sup>5</sup> | 75                                     | 75                          | 75                          |  |
| Exceed Thresholds?                               | No                                     | No                          | No                          |  |

<sup>&</sup>lt;sup>1</sup> Only the construction phases with mobile equipment were analyzed (i.e., painting was not analyzed since it would be limited to stationary equipment)

As shown in Table L, the mobile construction noise levels would be as high as 73 dBA during the demolition and building construction phases at the adjacent homes on the west and east sides of the project site. Table L shows that none of the phases of construction would exceed the County's mobile equipment construction noise threshold of 75 dBA at the nearby single-family homes. Therefore, mobile construction noise levels created from the proposed project would be result in a less than significant impact.

#### Stationary Equipment Construction Noise Impacts

The stationary equipment construction noise impacts at the nearby homes have been calculated through use of the RCNM for an air compressor, generator, and welder, which are the only three types of stationary equipment detailed in Section 6.1 of this report. Since the project site is only 470 feet wide, which limits the placement of the stationary equipment to a maximum of approximately 235 feet from the nearest homes, the stationary construction equipment has been calculated at 100 feet, 160 feet, and 200 feet distances. The results are shown below in Table M and the RCNM printouts are provided in Appendix C.

<sup>&</sup>lt;sup>2</sup> The single-family homes on the west and east sides of the project site are located as near as 2 feet from the project site property line.

<sup>&</sup>lt;sup>3</sup> The single-family homes to the north of the project site are located as near as 90 feet north of the project site property line.

<sup>&</sup>lt;sup>4</sup> The single-family homes to the south of the project site are located as near as 130 feet south of the project site property line.

<sup>&</sup>lt;sup>5</sup> County Mobile and Stationary Equipment Noise Thresholds were obtained from Section 12.08.440(B) of the Municipal Code. Source: RCNM, Federal Highway Administration, 2006

Table M – Stationary Construction Noise Levels at the Nearby Homes

|                                                      | Construction Noise Level (dBA Leq) at: |           |          |  |
|------------------------------------------------------|----------------------------------------|-----------|----------|--|
| Construction Equipment                               | 100 feet                               | 160 feet  | 230 feet |  |
| Air Compressor                                       | 68                                     | 64        | 60       |  |
| Generator                                            | 64                                     | 60        | 56       |  |
| Welder/Torch                                         | 64                                     | 60        | 57       |  |
| County's Stationary Equipment Threshold <sup>1</sup> | 60                                     | 60        | 60       |  |
| Exceed Thresholds?                                   | Yes                                    | Yes/No/No | No       |  |

Notes:

Table M shows that at 160 feet the generator and welder/torch would be within the County's stationary noise threshold of 60 dBA at 160 feet and the air compressor would be within the County's stationary noise threshold of 60 dBA at 230 feet from the nearest home. Since it is likely that stationary construction equipment would be required to operate in areas on the project site that would be within these distances to the nearby homes, this would be considered a significant impact, without mitigation.

Table M shows that at 100 feet from the nearby homes, the stationary equipment would exceed the County's stationary noise standard of 60 dB by as much as 8 dB. In order to reduce stationary construction equipment noise, Mitigation Measure 1 is provided that would require a minimum 8-foot high sound blanket or sound wall to be placed next to the stationary equipment on the side of the nearest homes and that the stationary equipment shall be located a minimum of 100 feet away of any offsite residential property line.

According to Caltrans (Caltrans, 2013), a sound wall provides approximately 5 dB of attenuation at the height where it blocks the line-of-sight (4 feet high for air compressors, generators, and welders) and then an additional 0.9 dB for each additional foot of height, which would result in at least 8 dB of additional attenuation provided by an 8-foot high sound blanket. With implementation of Mitigation Measure 1, the noise levels at 100 feet would be 60 dBA for and air compressor, and 56 dBA for a generator and welder/torch, which would all be within the County's 60 dBA stationary construction noise standard. Therefore, with implementation of Mitigation Measure 1, stationary construction noise impacts would be less than significant.

## **Operational-Related Noise**

The proposed project would consist of the development of a residential community with 68 single-family homes. Potential noise impacts associated with the operations of the proposed project would be from project-generated vehicular traffic on the nearby roadways.

Vehicle noise is a combination of the noise produced by the engine, exhaust and tires. The level of traffic noise depends on three primary factors (1) the volume of traffic, (2) the speed of traffic, and (3) the number of trucks in the flow of traffic. The proposed project does not include any uses that would require a substantial number of truck trips and the proposed project would not alter the speed limit on any existing roadway so the proposed project's potential offsite noise impacts have been focused on the noise impacts associated with the change of volume of traffic that would occur with development of the proposed project.

<sup>&</sup>lt;sup>1</sup> County Stationary Equipment Noise Thresholds were obtained from Section 12.08.440(B) of the Municipal Code. Source: RCNM, Federal Highway Administration, 2006

Since, neither the General Plan nor the Municipal Code provide any policies or regulation defining what constitutes a "substantial permanent increase to ambient noise levels", the noise increase threshold developed by the Federal Transit Administration for a moderate impact that has been detailed above in Table A have been utilized, which determined a significant impact would occur if a project would increase the noise by 3 dB, where the ambient noise level is 55 dB or less, 2 dB, where the ambient noise level is between 55 and 60 dBA CNEL, or would increase the noise by 1 dB, where the ambient noise level is between 60 and 75 dBA CNEL.

The potential offsite traffic noise impacts created by the on-going operations of the proposed project have been analyzed through utilization of the FHWA model and parameters described above in Section 6.2 and the FHWA model noise calculation spreadsheets are provided in Appendix D. The proposed project's offsite traffic noise impacts have been analyzed for the existing year and opening year 2023 conditions that are discussed below.

## **Existing Year Conditions**

The proposed project's potential offsite noise impacts have been calculated through a comparison of the existing year scenario to the existing year with project scenario. The results of this comparison are shown in Table N.

Table N – Existing Year Project Traffic Noise Contributions

|                       |                                | dBA CNEL at Nearest Receptor <sup>1</sup> |                          |                     |                                    |
|-----------------------|--------------------------------|-------------------------------------------|--------------------------|---------------------|------------------------------------|
| Roadway               | Segment                        | Existing                                  | Existing Plus<br>Project | Project<br>Increase | Increase<br>Threshold <sup>2</sup> |
| Irwindale Avenue      | North of San Bernardino Avenue | 65.5                                      | 65.5                     | +0.0                | +1 dBA                             |
| Irwindale Avenue      | South of San Bernardino Avenue | 65.7                                      | 65.8                     | +0.1                | +1 dBA                             |
| Vincent Avenue        | North of San Bernardino Avenue | 66.2                                      | 66.2                     | +0.0                | +1 dBA                             |
| Vincent Avenue        | South of San Bernardino Avenue | 66.3                                      | 66.4                     | +0.1                | +1 dBA                             |
| San Bernardino Avenue | West of Irwindale Avenue       | 62.5                                      | 62.5                     | +0.0                | +2 dBA                             |
| San Bernardino Avenue | West of Project Driveway       | 62.7                                      | 62.8                     | +0.1                | +2 dBA                             |
| San Bernardino Avenue | East of Project Driveway       | 67.0                                      | 67.1                     | +0.1                | +1 dBA                             |
| San Bernardino Avenue | East of Vincent Avenue         | 65.5                                      | 65.5                     | +0.0                | +1 dBA                             |

#### Notes:

Table N shows that for the existing conditions, the proposed project's permanent noise increases to the nearby homes from the generation of additional vehicular traffic would not exceed the FTA's allowable increase thresholds detailed above. Therefore, the proposed project would not result in a substantial permanent increase in ambient noise levels for the existing conditions. Impacts would be less than significant.

#### **Opening Year 2023 Conditions**

The proposed project's potential offsite noise impacts have been calculated through a comparison of the opening year 2023 without project scenario to the opening year 2023 with project scenario. The results of this comparison are shown in Table O.

<sup>&</sup>lt;sup>1</sup> Distance to nearest sensitive receptor shown in Table H, does not take into account existing noise barriers.

Increase Threshold obtained from the FTA's allowable noise impact exposures detailed above in Table A. Source: FHWA Traffic Noise Prediction Model FHWA-RD-77-108.

Table O – Opening Year 2023 Project Traffic Noise Contributions

|                       |                                | dBA CNEL at Nearest Receptor <sup>1</sup> |                      |                     |                                    |
|-----------------------|--------------------------------|-------------------------------------------|----------------------|---------------------|------------------------------------|
| Roadway               | Segment                        | 2023 No<br>Project                        | 2023 Plus<br>Project | Project<br>Increase | Increase<br>Threshold <sup>2</sup> |
| Irwindale Avenue      | North of San Bernardino Avenue | 65.6                                      | 65.6                 | +0.0                | +1 dBA                             |
| Irwindale Avenue      | South of San Bernardino Avenue | 65.8                                      | 65.9                 | +0.1                | +1 dBA                             |
| Vincent Avenue        | North of San Bernardino Avenue | 66.5                                      | 66.5                 | +0.0                | +1 dBA                             |
| Vincent Avenue        | South of San Bernardino Avenue | 66.6                                      | 66.6                 | +0.0                | +1 dBA                             |
| San Bernardino Avenue | West of Irwindale Avenue       | 62.7                                      | 62.7                 | +0.0                | +2 dBA                             |
| San Bernardino Avenue | West of Project Driveway       | 62.9                                      | 63.0                 | +0.1                | +2 dBA                             |
| San Bernardino Avenue | East of Project Driveway       | 67.2                                      | 67.3                 | +0.1                | +1 dBA                             |
| San Bernardino Avenue | East of Vincent Avenue         | 65.7                                      | 65.7                 | +0.0                | +1 dBA                             |

#### Notes:

Table O shows that for the opening year 2023 conditions, the proposed project's permanent noise increases to the nearby homes from the generation of additional vehicular traffic would not exceed the FTA's allowable increase thresholds detailed above. Therefore, the proposed project would not result in a substantial permanent increase in ambient noise levels for the opening year 2023 conditions. Impacts would be less than significant.

## **Level of Significance Before Mitigation**

Potentially significant impact.

## **Mitigation Measures**

## **Mitigation Measure 1:**

During all construction activities the project applicant shall require a minimum 8-foot high sound blanket or sound wall to be placed on the side nearest the offsite homes to any stationary equipment (i.e., air compressors, generators, and welders) utilized onsite during construction of the proposed project and the stationary construction equipment shall be located a minimum of 100 feet from any offsite residential property line.

## **Level of Significance After Mitigation**

Less than significant impact.

## 7.3 Generation of Excessive Groundborne Vibration

The proposed project would not expose persons to or generation of excessive groundborne vibration or groundborne noise levels. The following section analyzes the potential vibration impacts associated with the construction and operations of the proposed project.

#### **Construction-Related Vibration Impacts**

The construction activities for the proposed project are anticipated to include demolition of the existing school building structures and parking lot areas, site preparation and grading of the gross 9.61-acre project site, building construction of the proposed 68 single-family homes, paving of the onsite roads and

<sup>&</sup>lt;sup>1</sup> Distance to nearest sensitive receptor shown in Table H, does not take into account existing noise barriers.

Increase Threshold obtained from the FTA's allowable noise impact exposures detailed above in Table A. Source: FHWA Traffic Noise Prediction Model FHWA-RD-77-108.

driveways and application of architectural coatings. Vibration impacts from construction activities associated with the proposed project would typically be created from the operation of heavy off-road equipment. The nearest sensitive receptors to the project site are single-family homes located as near as approximately 2 feet from the property lines on the east and west sides of the project site.

Section 12.08.560 of the County's Municipal Code restricts the operation of any device that creates a vibration level above 0.01 inch per second root mean square (RMS) at the property line (the FHWA utilizes a factor of 4 to convert RMS to PPV, so this would be equivalent to 0.04 inch per second PPV). Section 12.08.570 of the Municipal Code exempts construction activities from the vibration standards, provided construction activities occur between 7:00 a.m. and 7:00 p.m. on weekdays, excluding holidays. Since the County does not provide a quantifiable vibration level for construction activities that occur during allowable times, the Caltrans standards have been utilized, which defines the threshold of perception from transient sources that include mobile construction equipment to 0.25 inch per second PPV.

The primary source of vibration during construction would be from the operation of a bulldozer. From Table K above a large bulldozer would create a vibration level of 0.089 inch per second PPV at 25 feet. Based on typical propagation rates, the vibration level at the nearest sensitive receptors (2 feet away from the proposed project) would be 1.43 inch per second PPV, which would exceed the Caltrans distinctly perceptible vibration level of 0.25 inch per second PPV for transient sources. This would be considered a significant impact.

Mitigation Measure 2 is provided that restricts any off-road equipment with 150 horsepower engine or greater from operating within 10 feet of either the east or west property lines. Based on typical propagation rates, the vibration level at the nearest homes (12 feet away from proposed construction activities with implementation of Mitigation Measure 2) would be 0.03 inch per second PPV, which is within the 0.25 inch per second PPV threshold. Therefore, with implementation of Mitigation Measure 2, construction-related vibration impacts would be less than significant.

## **Operations-Related Vibration Impacts**

The proposed project would consist of the development of 68 single-family homes. The on-going operation of the proposed project would not include the operation of any known vibration sources other than typical onsite vehicle operations for a residential development. As such, operation of the proposed project would not create a vibration impact to any of the nearby sensitive receptors.

The proposed single-family homes would be located as near as 28 feet south of the nearest tracks for the Metrolink Railroad on the north side of the project site. As such, there is a potential for excessive vibration levels to impact the proposed single-family homes.

Section 12.08.560 of the County's Municipal Code restricts the operation of any device that creates a vibration level above 0.01 inch per second root mean square (RMS) at the property line (the FHWA utilizes a factor of 4 to convert RMS to PPV, so this would be equivalent to 0.04 inch per second PPV).

Vista Environmental has previously taken vibration measurements of Metrolink and Amtrak trains, which measured a worst-case vibration level of 0.089 inch per second PPV at 8 feet from the tracks of a passing Metrolink train. Based on typical vibration propagation rates, the vibration level at the nearest proposed homes (28 feet away from the train tracks) would be 0.02 inch per second PPV or 0.005 inch per second RMS, which is well below the County's 0.01 inch per second RMS threshold. Therefore, operational vibration impacts would be less than significant.

## **Level of Significance Before Mitigation**

Potentially significant impact.

## **Mitigation Measures**

## **Mitigation Measure 2:**

The project applicant shall restrict all contractors from operating any off-road construction equipment that is 150 horsepower or greater within 10 feet of either the east or west property lines in order to limit construction-related vibration levels at the nearby homes. Typical construction equipment that is less than 150 horsepower include backhoes, skid steers, skip loaders, and tractors, that are capable of performing all grading and excavation activities within the 10-foot wide areas adjacent to the east and west property lines.

## **Level of Significance After Mitigation**

Less than significant impact.

## 7.4 Aircraft Noise

The proposed project would not expose people residing or working in the project area to excessive noise levels from aircraft. The nearest airport is San Gabriel Valley Airport that is located approximately 5.9 miles west of the project site. The project site is located outside of the 60 dBA CNEL noise contours of this airport and no aircraft noise was audible during site visits associated with the noise measurements. Impacts would be less than significant.

## **Level of Significance**

No impact.

## 8.0 REFERENCES

California Department of Transportation, 2016 Annual Average Daily Truck Traffic on the California State Highway System, 2018.

California Department of Transportation (Caltrans), *Technical Noise Supplement to the Traffic Noise Analytics Protocol*, September 2013.

California Department of Transportation, *Transportation and Construction Vibration Guidance Manual*, April 2020.

County of Los Angeles, Los Angeles County General Plan, October 6, 2015.

County of Los Angeles, Los Angeles County, CA Code of Ordinances, December 8, 2020.

Federal Transit Administration, Transit Noise and Vibration Impact Assessment, September 2018.

Harris, Cyril M., Noise Control in Buildings, 1994.

J.C. Brennan & Associates, La Verne General Plan Background Report Noise Study, December 11, 2017.

Kinsler, Lawrence E., Fundamentals of Acoustics 4<sup>th</sup> Edition, 2000.

Urban Crossroads, *Griswold Residential (RPPL202000447) Focused Transportation Analysis*, January 4, 2021.

U.S. Department of Transportation, FHWA Roadway Construction Noise Model User's Guide, January, 2006.

Vista Environmental, Air Quality, Energy, and Greenhouse Gas Emissions Impact Analysis Griswold Residential Project, January 9, 2021.

### **APPENDIX A**

Field Noise Measurements Photo Index



Noise Measurement Site A - looking north



Noise Measurement Site A - looking northeast



Noise Measurement Site A - looking east



Noise Measurement Site A - looking southeast



Noise Measurement Site A - looking south



Noise Measurement Site A - looking southwest



Noise Measurement Site A - looking west



Noise Measurement Site A - looking northwest



Noise Measurement Site B - looking north



Noise Measurement Site B - looking northeast



Noise Measurement Site B - looking east



Noise Measurement Site B - looking southeast



Noise Measurement Site B - looking south



Noise Measurement Site B - looking southwest



Noise Measurement Site B - looking west



Noise Measurement Site B - looking northwest

### **APPENDIX B**

Field Noise Measurements Printouts

### Site A - On South Side of Project Site

|          |          |       |                | •           |         |
|----------|----------|-------|----------------|-------------|---------|
| Date     | Time=02/ | 26/20 | 2:55:00 PM     |             |         |
| Sampling | Time=3   |       | Weighting=A    |             |         |
| Record   | Num=     | 28800 | Weighting=Slow | CNEL(24hr)= | 72.2    |
| Leq      | 68.4     | SEL   | Value=117.8    | Ldn(24hr)=  | 71.9    |
| MAX      | 86.0     |       | Min Leq1hr =   | 55.4        | 2:18 AM |

Max Leq1hr =

MIN

40.9

74.9

10:07 AM

### Site B - Near Northwest Corner of Project

Time=02/26/20 2:50:00 PM Date Sampling Time=3 Freq Weighting=A

Record

Num=

28600 Weighting=Slow CNEL(24hr)= Value=118.8 67.6 SEL Ldn(24hr)= 71.6 Leq MAX Min Leq1hr = 55.9 12:53 AM 99.9 MIN 52.7 Max Leq1hr = 72.8 7:32 AM

71.8

|              | Site A - On South Side of Project Site |                   |              |              | Site B - Near Northwest Corner of Project |                      |                   |              |              |  |  |
|--------------|----------------------------------------|-------------------|--------------|--------------|-------------------------------------------|----------------------|-------------------|--------------|--------------|--|--|
| SPL          |                                        | Leq (1 hour Avg.) |              | CNEL         | SPL                                       | Time                 | Leq (1 hour Avg.) | Ldn (        | CNEL         |  |  |
| 54.1         |                                        |                   | 54.1         | 54.1         | 66.2                                      | 14:50:00             |                   | 66.2         | 66.2         |  |  |
| 62.9         |                                        |                   | 62.9         | 62.9         | 68.6                                      | 14:50:03             |                   | 68.6         | 68.6         |  |  |
| 68.3         |                                        |                   | 68.3         | 68.3         | 65.3                                      | 14:50:06             |                   | 65.3         | 65.3         |  |  |
| 64.1<br>60.4 |                                        |                   | 64.1<br>60.4 | 64.1<br>60.4 | 61.1<br>66.8                              | 14:50:09<br>14:50:12 |                   | 61.1<br>66.8 | 61.1<br>66.8 |  |  |
| 62.3         |                                        |                   | 62.3         | 62.3         | 60.6                                      | 14:50:12             |                   | 60.6         | 60.6         |  |  |
| 63.4         |                                        |                   | 63.4         | 63.4         | 61.3                                      | 14:50:18             |                   | 61.3         | 61.3         |  |  |
| 59.3         |                                        |                   | 59.3         | 59.3         | 67.3                                      | 14:50:21             |                   | 67.3         | 67.3         |  |  |
| 63.5         |                                        |                   | 63.5         | 63.5         | 68.7                                      | 14:50:24             |                   | 68.7         | 68.7         |  |  |
| 55.9         |                                        |                   | 55.9         | 55.9         | 67.5                                      | 14:50:27             |                   | 67.5         | 67.5         |  |  |
| 57.9         |                                        |                   | 57.9         | 57.9         | 67.4                                      | 14:50:30             |                   | 67.4         | 67.4         |  |  |
| 57.8         |                                        |                   | 57.8         | 57.8         | 61.1                                      | 14:50:33             |                   | 61.1         | 61.1         |  |  |
| 62.3<br>57.3 |                                        |                   | 62.3<br>57.3 | 62.3<br>57.3 | 63.2<br>62.2                              | 14:50:36<br>14:50:39 |                   | 63.2<br>62.2 | 63.2<br>62.2 |  |  |
| 59.8         |                                        |                   | 59.8         | 59.8         | 68.9                                      | 14:50:42             |                   | 68.9         | 68.9         |  |  |
| 64.3         |                                        |                   | 64.3         | 64.3         | 60.8                                      | 14:50:45             |                   | 60.8         | 60.8         |  |  |
| 56.4         |                                        |                   | 56.4         | 56.4         | 63.8                                      | 14:50:48             |                   | 63.8         | 63.8         |  |  |
| 55.5         | 14:55:51                               |                   | 55.5         | 55.5         | 62.8                                      | 14:50:51             |                   | 62.8         | 62.8         |  |  |
| 54.2         |                                        |                   | 54.2         | 54.2         | 63.6                                      | 14:50:54             |                   | 63.6         | 63.6         |  |  |
| 60.7         |                                        |                   | 60.7         | 60.7         | 63.6                                      | 14:50:57             |                   | 63.6         | 63.6         |  |  |
| 61.2         |                                        |                   | 61.2         | 61.2         | 63.8                                      | 14:51:00             |                   | 63.8         | 63.8         |  |  |
| 61.6<br>57.3 |                                        |                   | 61.6         | 61.6<br>57.3 | 63.3<br>60.5                              | 14:51:03<br>14:51:06 |                   | 63.3<br>60.5 | 63.3         |  |  |
| 62           |                                        |                   | 57.3<br>62   | 62.0         | 57.9                                      | 14:51:00             |                   | 57.9         | 60.5<br>57.9 |  |  |
| 63.1         |                                        |                   | 63.1         | 63.1         | 60.2                                      | 14:51:12             |                   | 60.2         | 60.2         |  |  |
| 63.6         |                                        |                   | 63.6         | 63.6         | 56.8                                      | 14:51:15             |                   | 56.8         | 56.8         |  |  |
| 65.8         |                                        |                   | 65.8         | 65.8         | 57.7                                      | 14:51:18             |                   | 57.7         | 57.7         |  |  |
| 58.5         |                                        |                   | 58.5         | 58.5         | 58                                        | 14:51:21             |                   | 58           | 58           |  |  |
| 56.5         |                                        |                   | 56.5         | 56.5         | 56.1                                      | 14:51:24             |                   | 56.1         | 56.1         |  |  |
| 57.7         |                                        |                   | 57.7         | 57.7         | 63.7                                      | 14:51:27             |                   | 63.7         | 63.7         |  |  |
| 58.4         |                                        |                   | 58.4         | 58.4         | 63.2                                      | 14:51:30             |                   | 63.2         | 63.2         |  |  |
| 55.5<br>60.3 |                                        |                   | 55.5<br>60.3 | 55.5<br>60.3 | 58.9<br>57.6                              | 14:51:33<br>14:51:36 |                   | 58.9<br>57.6 | 58.9<br>57.6 |  |  |
| 60.4         |                                        |                   | 60.4         | 60.4         | 58.2                                      | 14:51:39             |                   | 58.2         | 58.2         |  |  |
| 62.1         |                                        |                   | 62.1         | 62.1         | 57.9                                      | 14:51:42             |                   | 57.9         | 57.9         |  |  |
| 61           |                                        |                   | 61           | 61.0         | 57.6                                      | 14:51:45             |                   | 57.6         | 57.6         |  |  |
| 60.4         |                                        |                   | 60.4         | 60.4         | 57.4                                      | 14:51:48             |                   | 57.4         | 57.4         |  |  |
| 69.4         |                                        |                   | 69.4         | 69.4         | 59.9                                      | 14:51:51             |                   | 59.9         | 59.9         |  |  |
| 63.6         |                                        |                   | 63.6         | 63.6         | 56.9                                      | 14:51:54             |                   | 56.9         | 56.9         |  |  |
| 57.7         |                                        |                   | 57.7         | 57.7         | 60                                        | 14:51:57             |                   | 60           | 60           |  |  |
| 61.6<br>72.9 |                                        |                   | 61.6<br>72.9 | 61.6<br>72.9 | 60.2<br>57.9                              | 14:52:00<br>14:52:03 |                   | 60.2<br>57.9 | 60.2<br>57.9 |  |  |
| 68           |                                        |                   | 68           | 68.0         | 57.9<br>57.2                              | 14:52:06             |                   | 57.9<br>57.2 | 57.9<br>57.2 |  |  |
| 74.3         |                                        |                   | 74.3         | 74.3         | 58.2                                      | 14:52:09             |                   | 58.2         | 58.2         |  |  |
| 65.8         |                                        |                   | 65.8         | 65.8         | 57.9                                      | 14:52:12             |                   | 57.9         | 57.9         |  |  |
| 71           | 14:57:15                               |                   | 71           | 71.0         | 59                                        | 14:52:15             |                   | 59           | 59           |  |  |
| 79.6         |                                        |                   | 79.6         | 79.6         | 57.4                                      | 14:52:18             |                   | 57.4         | 57.4         |  |  |
| 70.9         |                                        |                   | 70.9         | 70.9         | 58.3                                      | 14:52:21             |                   | 58.3         | 58.3         |  |  |
| 71.6         |                                        |                   | 71.6         | 71.6         | 60.8                                      | 14:52:24             |                   | 60.8         | 60.8         |  |  |
| 68.3<br>71.2 |                                        |                   | 68.3<br>71.2 | 68.3<br>71.2 | 56.4<br>56.5                              | 14:52:27<br>14:52:30 |                   | 56.4<br>56.5 | 56.4<br>56.5 |  |  |
| 72.8         |                                        |                   | 72.8         | 72.8         | 55.5                                      | 14:52:33             |                   | 55.5         | 55.5         |  |  |
| 65.2         |                                        |                   | 65.2         | 65.2         | 58.9                                      | 14:52:36             |                   | 58.9         | 58.9         |  |  |
| 58.9         |                                        |                   | 58.9         | 58.9         | 56.2                                      | 14:52:39             |                   | 56.2         | 56.2         |  |  |
| 57.3         | 14:57:42                               |                   | 57.3         | 57.3         | 61.2                                      | 14:52:42             |                   | 61.2         | 61.2         |  |  |
| 60.5         |                                        |                   | 60.5         | 60.5         | 56.3                                      | 14:52:45             |                   | 56.3         | 56.3         |  |  |
| 60.4         |                                        |                   | 60.4         | 60.4         | 58                                        | 14:52:48             |                   | 58           | 58           |  |  |
| 60.9         |                                        |                   | 60.9         | 60.9         | 57.3                                      | 14:52:51             |                   | 57.3         | 57.3         |  |  |
| 61.6<br>62.8 |                                        |                   | 61.6<br>62.8 | 61.6<br>62.8 | 56.8                                      | 14:52:54             |                   | 56.8<br>61.1 | 56.8<br>61.1 |  |  |
| 62.4         |                                        |                   | 62.4         | 62.4         | 61.1<br>56.9                              | 14:52:57<br>14:53:00 |                   | 56.9         | 56.9         |  |  |
| 68.4         |                                        |                   | 68.4         | 68.4         | 56.5                                      | 14:53:03             |                   | 56.5         | 56.5         |  |  |
| 69.8         |                                        |                   | 69.8         | 69.8         | 57.5                                      | 14:53:06             |                   | 57.5         | 57.5         |  |  |
| 71.5         |                                        |                   | 71.5         | 71.5         | 57                                        | 14:53:09             |                   | 57           | 57           |  |  |
| 68.9         | 14:58:12                               |                   | 68.9         | 68.9         | 56.6                                      | 14:53:12             |                   | 56.6         | 56.6         |  |  |
| 69.8         |                                        |                   | 69.8         | 69.8         | 56.4                                      | 14:53:15             |                   | 56.4         | 56.4         |  |  |
| 66.6         |                                        |                   | 66.6         | 66.6         | 55.6                                      | 14:53:18             |                   | 55.6         | 55.6         |  |  |
| 67.6         |                                        |                   | 67.6         | 67.6         | 57.3                                      | 14:53:21             |                   | 57.3         | 57.3         |  |  |
| 68.4         |                                        |                   | 68.4<br>63.3 | 68.4<br>63.3 | 55.6<br>57.7                              | 14:53:24             |                   | 55.6<br>57.7 | 55.6<br>57.7 |  |  |
| 63.3<br>65.2 |                                        |                   | 63.3<br>65.2 | 65.2         | 57.7<br>58.4                              | 14:53:27<br>14:53:30 |                   | 57.7<br>58.4 | 57.7<br>58.4 |  |  |
| 65.2         |                                        |                   | 65.2         | 65.2         | 57.8                                      | 14:53:33             |                   | 57.8         | 57.8         |  |  |
| 62.6         |                                        |                   | 62.6         | 62.6         | 58                                        | 14:53:36             |                   | 58           | 58           |  |  |
| 66           |                                        |                   | 66           | 66.0         | 56.8                                      | 14:53:39             |                   | 56.8         | 56.8         |  |  |
| 61.8         | 14:58:42                               |                   | 61.8         | 61.8         | 56.6                                      | 14:53:42             |                   | 56.6         | 56.6         |  |  |
| 62.3         |                                        |                   | 62.3         | 62.3         | 58.9                                      | 14:53:45             |                   | 58.9         | 58.9         |  |  |
| 70.2         | 14:58:48                               |                   | 70.2         | 70.2         | 57.7                                      | 14:53:48             |                   | 57.7         | 57.7         |  |  |

|              | Sito                 | A - On South Side of Project Sit | ۵            | ı            |              | Sita R -             | Near Northwest Corner of Project |              |              |
|--------------|----------------------|----------------------------------|--------------|--------------|--------------|----------------------|----------------------------------|--------------|--------------|
| SPL          | Time                 | Leq (1 hour Avg.)                |              | CNEL         | SPL          | Time                 | Leq (1 hour Avg.)                |              | CNEL         |
| 73.9         | 14:58:51             | Ecq (1 Hour Avg.)                | 73.9         | 73.9         | 58.8         | 14:53:51             | Ecq (1 Hour Avg.)                | 58.8         | 58.8         |
| 72.2<br>68.7 | 14:58:54<br>14:58:57 |                                  | 72.2<br>68.7 | 72.2<br>68.7 | 57.6<br>56.9 | 14:53:54<br>14:53:57 |                                  | 57.6<br>56.9 | 57.6<br>56.9 |
| 66.1         | 14:59:00             |                                  | 66.1         | 66.1         | 56.5         | 14:54:00             |                                  | 56.5         | 56.5         |
| 70.6         | 14:59:03             |                                  | 70.6         | 70.6         | 56.9         | 14:54:03             |                                  | 56.9         | 56.9         |
| 70.2<br>63.8 | 14:59:06<br>14:59:09 |                                  | 70.2<br>63.8 | 70.2<br>63.8 | 58.5<br>59   | 14:54:06<br>14:54:09 |                                  | 58.5<br>59   | 58.5<br>59   |
| 62.1         | 14:59:09             |                                  | 62.1         | 62.1         | 57.3         | 14:54:09             |                                  | 57.3         | 57.3         |
| 69.7         | 14:59:15             |                                  | 69.7         | 69.7         | 57           | 14:54:15             |                                  | 57           | 57           |
| 67.1         | 14:59:18             |                                  | 67.1         | 67.1         | 57.6         | 14:54:18             |                                  | 57.6         | 57.6         |
| 70.4<br>66.4 | 14:59:21<br>14:59:24 |                                  | 70.4<br>66.4 | 70.4<br>66.4 | 56.2<br>57.7 | 14:54:21<br>14:54:24 |                                  | 56.2<br>57.7 | 56.2<br>57.7 |
| 61.7         | 14:59:27             |                                  | 61.7         | 61.7         | 57.4         | 14:54:27             |                                  | 57.4         | 57.4         |
| 58.1         | 14:59:30             |                                  | 58.1         | 58.1         | 57.4         | 14:54:30             |                                  | 57.4         | 57.4         |
| 67<br>58.3   | 14:59:33<br>14:59:36 |                                  | 67<br>58.3   | 67.0<br>58.3 | 56.4<br>57.7 | 14:54:33<br>14:54:36 |                                  | 56.4<br>57.7 | 56.4<br>57.7 |
| 63.4         | 14:59:39             |                                  | 63.4         | 63.4         | 57.2         | 14:54:39             |                                  | 57.2         | 57.2         |
| 73.5         | 14:59:42             |                                  | 73.5         | 73.5         | 58.4         | 14:54:42             |                                  | 58.4         | 58.4         |
| 70.1<br>67.3 | 14:59:45<br>14:59:48 |                                  | 70.1<br>67.3 | 70.1<br>67.3 | 57.9<br>59.4 | 14:54:45<br>14:54:48 |                                  | 57.9<br>59.4 | 57.9<br>59.4 |
| 63.5         | 14:59:51             |                                  | 63.5         | 63.5         | 56.6         | 14:54:51             |                                  | 56.6         | 56.6         |
| 63.2         | 14:59:54             |                                  | 63.2         | 63.2         | 56.8         | 14:54:54             |                                  | 56.8         | 56.8         |
| 73.2<br>72.8 | 14:59:57<br>15:00:00 |                                  | 73.2<br>72.8 | 73.2<br>72.8 | 57.2<br>57.9 | 14:54:57<br>14:55:00 |                                  | 57.2<br>57.9 | 57.2<br>57.9 |
| 71.2         | 15:00:03             |                                  | 71.2         | 71.2         | 57           | 14:55:03             |                                  | 57           | 57           |
| 70.8         | 15:00:06             |                                  | 70.8         | 70.8         | 56.6         | 14:55:06             |                                  | 56.6         | 56.6         |
| 65.8<br>65   | 15:00:09<br>15:00:12 |                                  | 65.8<br>65   | 65.8<br>65.0 | 58.2<br>57.4 | 14:55:09<br>14:55:12 |                                  | 58.2<br>57.4 | 58.2<br>57.4 |
| 71.6         | 15:00:15             |                                  | 71.6         | 71.6         | 57.3         | 14:55:15             |                                  | 57.3         | 57.3         |
| 68.1         | 15:00:18             |                                  | 68.1         | 68.1         | 56.7         | 14:55:18             |                                  | 56.7         | 56.7         |
| 66.1<br>61.4 | 15:00:21<br>15:00:24 |                                  | 66.1<br>61.4 | 66.1<br>61.4 | 57.9<br>56.8 | 14:55:21<br>14:55:24 |                                  | 57.9<br>56.8 | 57.9<br>56.8 |
| 61           | 15:00:27             |                                  | 61           | 61.0         | 56.9         | 14:55:27             |                                  | 56.9         | 56.9         |
| 70.2         | 15:00:30             |                                  | 70.2         | 70.2         | 58.1         | 14:55:30             |                                  | 58.1         | 58.1         |
| 59<br>52.8   | 15:00:33<br>15:00:36 |                                  | 59<br>52.8   | 59.0<br>52.8 | 58<br>56.8   | 14:55:33<br>14:55:36 |                                  | 58<br>56.8   | 58<br>56.8   |
| 48.9         | 15:00:39             |                                  | 48.9         | 48.9         | 56.9         | 14:55:39             |                                  | 56.9         | 56.9         |
| 48.1         | 15:00:42             |                                  | 48.1         | 48.1         | 56.1         | 14:55:42             |                                  | 56.1         | 56.1         |
| 49.8<br>57.2 | 15:00:45<br>15:00:48 |                                  | 49.8<br>57.2 | 49.8<br>57.2 | 58.5<br>57.9 | 14:55:45<br>14:55:48 |                                  | 58.5<br>57.9 | 58.5<br>57.9 |
| 63.6         | 15:00:51             |                                  | 63.6         | 63.6         | 58           | 14:55:51             |                                  | 58           | 58           |
| 65.1         | 15:00:54             |                                  | 65.1         | 65.1         | 57.3         | 14:55:54             |                                  | 57.3         | 57.3         |
| 57.8         | 15:00:57             |                                  | 57.8         | 57.8         | 58.3         | 14:55:57             |                                  | 58.3         | 58.3<br>58   |
| 58.3<br>67.9 | 15:01:00<br>15:01:03 |                                  | 58.3<br>67.9 | 58.3<br>67.9 | 58<br>57.2   | 14:56:00<br>14:56:03 |                                  | 58<br>57.2   | 56<br>57.2   |
| 58.4         | 15:01:06             |                                  | 58.4         | 58.4         | 57.8         | 14:56:06             |                                  | 57.8         | 57.8         |
| 62           | 15:01:09             |                                  | 62           | 62.0         | 57.8         | 14:56:09             |                                  | 57.8         | 57.8         |
| 65.8<br>67.9 | 15:01:12<br>15:01:15 |                                  | 65.8<br>67.9 | 65.8<br>67.9 | 58.2<br>58.4 | 14:56:12<br>14:56:15 |                                  | 58.2<br>58.4 | 58.2<br>58.4 |
| 60.2         | 15:01:18             |                                  | 60.2         | 60.2         | 56.9         | 14:56:18             |                                  | 56.9         | 56.9         |
| 68           | 15:01:21             |                                  | 68           | 68.0         | 57.3         | 14:56:21             |                                  | 57.3<br>59.8 | 57.3<br>59.8 |
| 69.4<br>68.4 | 15:01:24<br>15:01:27 |                                  | 69.4<br>68.4 | 69.4<br>68.4 | 59.8<br>58.4 | 14:56:24<br>14:56:27 |                                  | 59.6<br>58.4 | 58.4         |
| 65.2         | 15:01:30             |                                  | 65.2         | 65.2         | 56.8         | 14:56:30             |                                  | 56.8         | 56.8         |
| 65.9         | 15:01:33             |                                  | 65.9         | 65.9         | 55.9<br>55.9 | 14:56:33             |                                  | 55.9<br>55.9 | 55.9<br>55.9 |
| 68.1<br>63.5 | 15:01:36<br>15:01:39 |                                  | 68.1<br>63.5 | 68.1<br>63.5 | 55.9<br>57.4 | 14:56:36<br>14:56:39 |                                  | 57.4         | 57.4         |
| 55.5         | 15:01:42             |                                  | 55.5         | 55.5         | 57.4         | 14:56:42             |                                  | 57.4         | 57.4         |
| 51.7         | 15:01:45<br>15:01:48 |                                  | 51.7         | 51.7         | 68.1         | 14:56:45             |                                  | 68.1         | 68.1         |
| 45.9<br>44.3 | 15:01:46             |                                  | 45.9<br>44.3 | 45.9<br>44.3 | 57.1<br>57   | 14:56:48<br>14:56:51 |                                  | 57.1<br>57   | 57.1<br>57   |
| 42.7         | 15:01:54             |                                  | 42.7         | 42.7         | 57.7         | 14:56:54             |                                  | 57.7         | 57.7         |
| 44.7         | 15:01:57             |                                  | 44.7         | 44.7         | 57.8         | 14:56:57             |                                  | 57.8         | 57.8         |
| 43.9<br>57.7 | 15:02:00<br>15:02:03 |                                  | 43.9<br>57.7 | 43.9<br>57.7 | 57.4<br>56.8 | 14:57:00<br>14:57:03 |                                  | 57.4<br>56.8 | 57.4<br>56.8 |
| 69.7         | 15:02:06             |                                  | 69.7         | 69.7         | 58.3         | 14:57:06             |                                  | 58.3         | 58.3         |
| 71.1         | 15:02:09             |                                  | 71.1         | 71.1         | 59           | 14:57:09             |                                  | 59           | 59           |
| 70.7<br>72.5 | 15:02:12<br>15:02:15 |                                  | 70.7<br>72.5 | 70.7<br>72.5 | 57.9<br>58.3 | 14:57:12<br>14:57:15 |                                  | 57.9<br>58.3 | 57.9<br>58.3 |
| 69.2         | 15:02:18             |                                  | 69.2         | 69.2         | 59.3         | 14:57:18             |                                  | 59.3         | 59.3         |
| 70.1         | 15:02:21             |                                  | 70.1         | 70.1         | 59.2         | 14:57:21             |                                  | 59.2         | 59.2         |
| 64.5<br>71.8 | 15:02:24<br>15:02:27 |                                  | 64.5<br>71.8 | 64.5<br>71.8 | 60.5<br>59.3 | 14:57:24<br>14:57:27 |                                  | 60.5<br>59.3 | 60.5<br>59.3 |
| 67.8         | 15:02:30             |                                  | 67.8         | 67.8         | 57.8         | 14:57:30             |                                  | 57.8         | 57.8         |
| 64.9         | 15:02:33             |                                  | 64.9         | 64.9         | 57.1         | 14:57:33             |                                  | 57.1         | 57.1         |
| 63.8<br>67.3 | 15:02:36<br>15:02:39 |                                  | 63.8<br>67.3 | 63.8<br>67.3 | 59.2<br>58.2 | 14:57:36<br>14:57:39 |                                  | 59.2<br>58.2 | 59.2<br>58.2 |
| 63.9         | 15:02:42             |                                  | 63.9         | 63.9         | 60.3         | 14:57:42             |                                  | 60.3         | 60.3         |
| 61           | 15:02:45             |                                  | 61           | 61.0         | 61.8         | 14:57:45             |                                  | 61.8         | 61.8         |
| 56.5<br>51.6 | 15:02:48<br>15:02:51 |                                  | 56.5<br>51.6 | 56.5<br>51.6 | 58.7<br>60.1 | 14:57:48<br>14:57:51 |                                  | 58.7<br>60.1 | 58.7<br>60.1 |
| 56.9         | 15:02:54             |                                  | 56.9         | 56.9         | 58.5         | 14:57:54             |                                  | 58.5         | 58.5         |
| 55.9         | 15:02:57             |                                  | 55.9         | 55.9         | 58.4         | 14:57:57             |                                  | 58.4         | 58.4         |
| 53.4<br>57.3 | 15:03:00<br>15:03:03 |                                  | 53.4<br>57.3 | 53.4<br>57.3 | 59<br>61.8   | 14:58:00<br>14:58:03 |                                  | 59<br>61.8   | 59<br>61.8   |
| 57.3<br>71.7 | 15:03:03             |                                  | 71.7         | 71.7         | 60.1         | 14:58:06             |                                  | 60.1         | 60.1         |
| 67.3         | 15:03:09             |                                  | 67.3         | 67.3         | 58.2         | 14:58:09             |                                  | 58.2         | 58.2         |
| 64.8<br>62.2 | 15:03:12<br>15:03:15 |                                  | 64.8<br>62.2 | 64.8<br>62.2 | 59.6<br>58.7 | 14:58:12<br>14:58:15 |                                  | 59.6<br>58.7 | 59.6<br>58.7 |
| 02.2         | 10.00.10             |                                  | 02.2         | 02.2         | 30.7         | 14.00.10             |                                  | 50.1         | 50.7         |

|              | Site A               | - On South Side of Project | Site         |              |              | Site B -             | - Near Northwest Corner of Project | ct           |              |
|--------------|----------------------|----------------------------|--------------|--------------|--------------|----------------------|------------------------------------|--------------|--------------|
| SPL          | Time                 | Leq (1 hour Avg.)          | Ldn          | CNEL         | SPL          | Time                 | Leq (1 hour Avg.)                  | Ldn          | CNEL         |
| 71<br>60.8   | 15:03:18<br>15:03:21 |                            | 71<br>60.8   | 71.0<br>60.8 | 58.2<br>58.2 | 14:58:18<br>14:58:21 |                                    | 58.2<br>58.2 |              |
| 63.2         | 15:03:24             |                            | 63.2         | 63.2         | 57.8         | 14:58:24             |                                    | 57.8         |              |
| 61.7         | 15:03:27             |                            | 61.7         | 61.7         | 56.8         | 14:58:27             |                                    | 56.8         |              |
| 56.3<br>59.1 | 15:03:30<br>15:03:33 |                            | 56.3<br>59.1 | 56.3<br>59.1 | 57.7<br>57.7 | 14:58:30<br>14:58:33 |                                    | 57.7<br>57.7 | 57.7<br>57.7 |
| 67.6         | 15:03:36             |                            | 67.6         | 67.6         | 57.5         | 14:58:36             |                                    | 57.5         |              |
| 67.3         | 15:03:39             |                            | 67.3         | 67.3         | 59.8         | 14:58:39             |                                    | 59.8         | 59.8         |
| 58.3<br>56.2 | 15:03:42<br>15:03:45 |                            | 58.3<br>56.2 | 58.3<br>56.2 | 57.9<br>58.8 | 14:58:42<br>14:58:45 |                                    | 57.9<br>58.8 | 57.9<br>58.8 |
| 70.2         | 15:03:45             |                            | 70.2         | 70.2         | 59.4         | 14:56:45             |                                    | 59.4         | 59.4         |
| 66.9         | 15:03:51             |                            | 66.9         | 66.9         | 57.8         | 14:58:51             |                                    | 57.8         | 57.8         |
| 73.4         | 15:03:54             |                            | 73.4         | 73.4         | 56.9         | 14:58:54             |                                    | 56.9         | 56.9         |
| 64.6<br>56.4 | 15:03:57<br>15:04:00 |                            | 64.6<br>56.4 | 64.6<br>56.4 | 56.6<br>58.5 | 14:58:57<br>14:59:00 |                                    | 56.6<br>58.5 |              |
| 55.1         | 15:04:03             |                            | 55.1         | 55.1         | 57           | 14:59:03             |                                    | 57           | 57           |
| 58.9         | 15:04:06             |                            | 58.9         | 58.9         | 57.3         | 14:59:06             |                                    | 57.3         |              |
| 66.2<br>68.2 | 15:04:09<br>15:04:12 |                            | 66.2<br>68.2 | 66.2<br>68.2 | 57.3<br>58.6 | 14:59:09<br>14:59:12 |                                    | 57.3<br>58.6 | 57.3<br>58.6 |
| 69.4         | 15:04:15             |                            | 69.4         | 69.4         | 58.6         | 14:59:15             |                                    | 58.6         | 58.6         |
| 70.1         | 15:04:18             |                            | 70.1         | 70.1         | 57.9         | 14:59:18             |                                    | 57.9         |              |
| 69.4<br>65   | 15:04:21<br>15:04:24 |                            | 69.4<br>65   | 69.4<br>65.0 | 58.5<br>58.6 | 14:59:21<br>14:59:24 |                                    | 58.5<br>58.6 |              |
| 66.4         | 15:04:27             |                            | 66.4         | 66.4         | 60.6         | 14:59:27             |                                    | 60.6         | 60.6         |
| 67.3         | 15:04:30             |                            | 67.3         | 67.3         | 58.7         | 14:59:30             |                                    | 58.7         | 58.7         |
| 67.7<br>58.5 | 15:04:33<br>15:04:36 |                            | 67.7<br>58.5 | 67.7<br>58.5 | 58.8<br>58.7 | 14:59:33<br>14:59:36 |                                    | 58.8<br>58.7 | 58.8<br>58.7 |
| 52.8         | 15:04:39             |                            | 52.8         | 52.8         | 59.1         | 14:59:39             |                                    | 59.1         | 59.1         |
| 60.1         | 15:04:42             |                            | 60.1         | 60.1         | 60.6         | 14:59:42             |                                    | 60.6         |              |
| 67.3<br>66   | 15:04:45<br>15:04:48 |                            | 67.3<br>66   | 67.3<br>66.0 | 58.9<br>58   | 14:59:45<br>14:59:48 |                                    | 58.9<br>58   | 58.9<br>58   |
| 66.7         | 15:04:51             |                            | 66.7         | 66.7         | 59           | 14:59:51             |                                    | 59           | 59           |
| 62.4         | 15:04:54             |                            | 62.4         | 62.4         | 59.8         | 14:59:54             |                                    | 59.8         | 59.8         |
| 64.9<br>55.9 | 15:04:57<br>15:05:00 |                            | 64.9<br>55.9 | 64.9<br>55.9 | 60<br>61.5   | 14:59:57<br>15:00:00 |                                    | 60<br>61.5   | 60<br>61.5   |
| 44.3         | 15:05:03             |                            | 44.3         | 44.3         | 60.3         | 15:00:03             |                                    | 60.3         |              |
| 41.1         | 15:05:06             |                            | 41.1         | 41.1         | 59           | 15:00:06             |                                    | 59           | 59           |
| 44.1<br>52.4 | 15:05:09<br>15:05:12 |                            | 44.1<br>52.4 | 44.1<br>52.4 | 59.4<br>59.5 | 15:00:09<br>15:00:12 |                                    | 59.4<br>59.5 | 59.4<br>59.5 |
| 66.1         | 15:05:15             |                            | 66.1         | 66.1         | 59.1         | 15:00:12             |                                    | 59.1         | 59.1         |
| 67.2         | 15:05:18             |                            | 67.2         | 67.2         | 59           | 15:00:18             |                                    | 59           | 59           |
| 55.4<br>50.4 | 15:05:21<br>15:05:24 |                            | 55.4<br>50.4 | 55.4<br>50.4 | 58.7<br>59.7 | 15:00:21<br>15:00:24 |                                    | 58.7<br>59.7 | 58.7<br>59.7 |
| 46.1         | 15:05:27             |                            | 46.1         | 46.1         | 61.3         | 15:00:27             |                                    | 61.3         |              |
| 44.2         | 15:05:30             |                            | 44.2         | 44.2         | 59.3         | 15:00:30             |                                    | 59.3         |              |
| 43.4<br>45.2 | 15:05:33<br>15:05:36 |                            | 43.4<br>45.2 | 43.4<br>45.2 | 61.3<br>60.9 | 15:00:33<br>15:00:36 |                                    | 61.3<br>60.9 | 61.3<br>60.9 |
| 50.3         | 15:05:39             |                            | 50.3         | 50.3         | 60.7         | 15:00:39             |                                    | 60.7         | 60.7         |
| 58.2         | 15:05:42             |                            | 58.2         | 58.2         | 59           | 15:00:42             |                                    | 59           | 59           |
| 68.3<br>72.8 | 15:05:45<br>15:05:48 |                            | 68.3<br>72.8 | 68.3<br>72.8 | 58.9<br>59   | 15:00:45<br>15:00:48 |                                    | 58.9<br>59   | 58.9<br>59   |
| 69.6         | 15:05:51             |                            | 69.6         | 69.6         | 58.8         | 15:00:51             |                                    | 58.8         | 58.8         |
| 65.2         | 15:05:54             |                            | 65.2         | 65.2         | 59.4         | 15:00:54             |                                    | 59.4         |              |
| 72<br>69.3   | 15:05:57<br>15:06:00 |                            | 72<br>69.3   | 72.0<br>69.3 | 61.6<br>61.2 | 15:00:57<br>15:01:00 |                                    | 61.6<br>61.2 |              |
| 69           | 15:06:03             |                            | 69           | 69.0         | 61.1         | 15:01:03             |                                    | 61.1         |              |
| 67.6         | 15:06:06             |                            | 67.6         | 67.6         | 60.2         | 15:01:06             |                                    | 60.2         | 60.2         |
| 66.8<br>78.6 | 15:06:09<br>15:06:12 |                            | 66.8         | 66.8<br>78.6 | 57.9<br>56.2 | 15:01:09<br>15:01:12 |                                    | 57.9<br>56.2 |              |
| 74.8         | 15:06:15             |                            | 78.6<br>74.8 | 74.8         | 58.9         | 15:01:12             |                                    | 58.9         |              |
| 68           | 15:06:18             |                            | 68           | 68.0         | 58.6         | 15:01:18             |                                    | 58.6         | 58.6         |
| 58.9<br>62.9 | 15:06:21<br>15:06:24 |                            | 58.9<br>62.9 | 58.9<br>62.9 | 58.6<br>57   | 15:01:21<br>15:01:24 |                                    | 58.6<br>57   | 58.6<br>57   |
| 72.5         | 15:06:27             |                            | 72.5         | 72.5         | 59           | 15:01:27             |                                    | 59           |              |
| 69.9         | 15:06:30             |                            | 69.9         | 69.9         | 57.9         | 15:01:30             |                                    | 57.9         | 57.9         |
| 70.3<br>72.5 | 15:06:33<br>15:06:36 |                            | 70.3<br>72.5 | 70.3<br>72.5 | 58.4<br>58.4 | 15:01:33<br>15:01:36 |                                    | 58.4<br>58.4 | 58.4<br>58.4 |
| 69.3         | 15:06:39             |                            | 69.3         | 69.3         | 58.2         | 15:01:39             |                                    | 58.2         |              |
| 68.7         | 15:06:42             |                            | 68.7         | 68.7         | 59.1         | 15:01:42             |                                    | 59.1         | 59.1         |
| 67.2         | 15:06:45             |                            | 67.2         |              | 58<br>57.3   | 15:01:45             |                                    | 58<br>57.3   |              |
| 60.3<br>58.7 | 15:06:48<br>15:06:51 |                            | 60.3<br>58.7 | 60.3<br>58.7 | 57.3<br>57.9 | 15:01:48<br>15:01:51 |                                    | 57.3<br>57.9 | 57.3<br>57.9 |
| 65.9         | 15:06:54             |                            | 65.9         | 65.9         | 58.3         | 15:01:54             |                                    | 58.3         | 58.3         |
| 64.9         | 15:06:57             |                            | 64.9         | 64.9         | 59.4         | 15:01:57             |                                    | 59.4         |              |
| 66.4<br>56.3 | 15:07:00<br>15:07:03 |                            | 66.4<br>56.3 | 66.4<br>56.3 | 59.7<br>60.9 | 15:02:00<br>15:02:03 |                                    | 59.7<br>60.9 |              |
| 54.4         | 15:07:06             |                            | 54.4         | 54.4         | 60.5         | 15:02:06             |                                    | 60.5         | 60.5         |
| 58.9         | 15:07:09             |                            | 58.9         | 58.9         | 58.5         | 15:02:09             |                                    | 58.5         |              |
| 69.7<br>67.3 | 15:07:12<br>15:07:15 |                            | 69.7<br>67.3 | 69.7<br>67.3 | 58.8<br>59.9 | 15:02:12<br>15:02:15 |                                    | 58.8<br>59.9 |              |
| 69.4         | 15:07:18             |                            | 69.4         | 69.4         | 59.9         | 15:02:18             |                                    | 59.1         | 59.9         |
| 70.3         | 15:07:21             |                            | 70.3         | 70.3         | 59           | 15:02:21             |                                    | 59           | 59           |
| 68.4<br>64   | 15:07:24<br>15:07:27 |                            | 68.4         | 68.4<br>64.0 | 59.3<br>59.5 | 15:02:24<br>15:02:27 |                                    | 59.3<br>59.5 | 59.3         |
| 65.2         | 15:07:27             |                            | 64<br>65.2   |              | 59.5<br>59.4 | 15:02:27             |                                    | 59.5<br>59.4 | 59.5<br>59.4 |
| 66.9         | 15:07:33             |                            | 66.9         | 66.9         | 61           | 15:02:33             |                                    | 61           | 61           |
| 59.1<br>67.8 | 15:07:36<br>15:07:39 |                            | 59.1<br>67.8 | 59.1<br>67.8 | 60.8<br>57.7 | 15:02:36<br>15:02:39 |                                    | 60.8<br>57.7 | 60.8<br>57.7 |
| 61.5         | 15:07:42             |                            | 61.5         | 61.5         |              | 15:02:39             |                                    | 57.7         |              |
|              |                      |                            |              |              |              |                      |                                    |              |              |

|              | Site A               | \ - On South Side of Project Site |              |      |              | Site B               | - Near Northwest Corner of Project |              |              |
|--------------|----------------------|-----------------------------------|--------------|------|--------------|----------------------|------------------------------------|--------------|--------------|
| SPL          | Time                 | Leq (1 hour Avg.)                 | Ldn          | CNEL | SPL          | Time                 | Leq (1 hour Avg.)                  | Ldn          | CNEL         |
| 53.4<br>48.8 | 15:07:45<br>15:07:48 |                                   | 53.4<br>48.8 |      | 58.4<br>56.5 | 15:02:45<br>15:02:48 |                                    | 58.4<br>56.5 | 58.4<br>56.5 |
| 52.8         | 15:07:51             |                                   | 52.8         | 52.8 | 58.8         | 15:02:51             |                                    | 58.8         | 58.8         |
| 68<br>67.7   | 15:07:54<br>15:07:57 |                                   | 68<br>67.7   |      | 58.6<br>59.2 | 15:02:54<br>15:02:57 |                                    | 58.6<br>59.2 | 58.6<br>59.2 |
| 64.2         | 15:08:00             |                                   | 64.2         |      | 58.5         | 15:03:00             |                                    | 58.5         | 58.5         |
| 57.1         | 15:08:03             |                                   | 57.1         |      | 56.9         | 15:03:03             |                                    | 56.9         | 56.9         |
| 51<br>57.6   | 15:08:06<br>15:08:09 |                                   | 51<br>57.6   |      | 58.5<br>62   | 15:03:06<br>15:03:09 |                                    | 58.5<br>62   | 58.5<br>62   |
| 66.8         | 15:08:12             |                                   | 66.8         | 66.8 | 64.7         | 15:03:12             |                                    | 64.7         | 64.7         |
| 64.9<br>69.6 | 15:08:15<br>15:08:18 |                                   | 64.9<br>69.6 |      | 66.4<br>60.1 | 15:03:15<br>15:03:18 |                                    | 66.4<br>60.1 | 66.4<br>60.1 |
| 69.1         | 15:08:21             |                                   | 69.1         | 69.1 | 58.1         | 15:03:21             |                                    | 58.1         | 58.1         |
| 60.8<br>57.2 | 15:08:24<br>15:08:27 |                                   | 60.8<br>57.2 |      | 57.9<br>57.9 | 15:03:24<br>15:03:27 |                                    | 57.9<br>57.9 | 57.9<br>57.9 |
| 64.8         | 15:08:30             |                                   | 64.8         |      | 58.6         | 15:03:27             |                                    | 58.6         | 58.6         |
| 66.4         | 15:08:33             |                                   | 66.4         |      | 58.2         | 15:03:33             |                                    | 58.2         | 58.2         |
| 68.2<br>66.8 | 15:08:36<br>15:08:39 |                                   | 68.2<br>66.8 |      | 57.3<br>58.2 | 15:03:36<br>15:03:39 |                                    | 57.3<br>58.2 | 57.3<br>58.2 |
| 66.5         | 15:08:42             |                                   | 66.5         | 66.5 | 58.7         | 15:03:42             |                                    | 58.7         | 58.7         |
| 70<br>67.8   | 15:08:45<br>15:08:48 |                                   | 70<br>67.8   |      | 56.7<br>58.5 | 15:03:45<br>15:03:48 |                                    | 56.7<br>58.5 | 56.7<br>58.5 |
| 62.2         | 15:08:51             |                                   | 62.2         | 62.2 | 60.7         | 15:03:51             |                                    | 60.7         | 60.7         |
| 58<br>68.4   | 15:08:54<br>15:08:57 |                                   | 58<br>68.4   |      | 59.6<br>60.8 | 15:03:54<br>15:03:57 |                                    | 59.6<br>60.8 | 59.6<br>60.8 |
| 67.3         | 15:09:00             |                                   | 67.3         |      | 61.3         | 15:04:00             |                                    | 61.3         | 61.3         |
| 64.9         | 15:09:03             |                                   | 64.9         |      | 63.2         | 15:04:03             |                                    | 63.2         | 63.2         |
| 60.4<br>71.1 | 15:09:06<br>15:09:09 |                                   | 60.4<br>71.1 |      | 59.9<br>59.6 | 15:04:06<br>15:04:09 |                                    | 59.9<br>59.6 | 59.9<br>59.6 |
| 66.8         | 15:09:12             |                                   | 66.8         | 66.8 | 58.5         | 15:04:12             |                                    | 58.5         | 58.5         |
| 62.7<br>55   | 15:09:15<br>15:09:18 |                                   | 62.7<br>55   |      | 58.7<br>57.7 | 15:04:15<br>15:04:18 |                                    | 58.7<br>57.7 | 58.7<br>57.7 |
| 60           | 15:09:21             |                                   | 60           |      | 57.6         | 15:04:10             |                                    | 57.6         | 57.6         |
| 68.9         | 15:09:24             |                                   | 68.9         |      | 57.8         | 15:04:24             |                                    | 57.8         | 57.8         |
| 62.8<br>56.5 | 15:09:27<br>15:09:30 |                                   | 62.8<br>56.5 |      | 57.7<br>59.5 | 15:04:27<br>15:04:30 |                                    | 57.7<br>59.5 | 57.7<br>59.5 |
| 65.1         | 15:09:33             |                                   | 65.1         |      | 58.4         | 15:04:33             |                                    | 58.4         | 58.4         |
| 67.8<br>69   | 15:09:36<br>15:09:39 |                                   | 67.8<br>69   |      | 58.9<br>58.4 | 15:04:36<br>15:04:39 |                                    | 58.9<br>58.4 | 58.9<br>58.4 |
| 68.4         | 15:09:42             |                                   | 68.4         | 68.4 | 58.2         | 15:04:42             |                                    | 58.2         | 58.2         |
| 70.6<br>64.2 | 15:09:45<br>15:09:48 |                                   | 70.6<br>64.2 |      | 58.1<br>58.3 | 15:04:45<br>15:04:48 |                                    | 58.1<br>58.3 | 58.1<br>58.3 |
| 55.7         | 15:09:51             |                                   | 55.7         |      | 58           | 15:04:40             |                                    | 58           | 58           |
| 57.4         | 15:09:54             |                                   | 57.4         |      | 58.4         | 15:04:54             |                                    | 58.4         | 58.4         |
| 60.3<br>64.6 | 15:09:57<br>15:10:00 |                                   | 60.3<br>64.6 |      | 58.8<br>57.4 | 15:04:57<br>15:05:00 |                                    | 58.8<br>57.4 | 58.8<br>57.4 |
| 68.3         | 15:10:03             |                                   | 68.3         | 68.3 | 56.7         | 15:05:03             |                                    | 56.7         | 56.7         |
| 68.6<br>69.9 | 15:10:06<br>15:10:09 |                                   | 68.6<br>69.9 |      | 59<br>57.4   | 15:05:06<br>15:05:09 |                                    | 59<br>57.4   | 59<br>57.4   |
| 71.9         | 15:10:12             |                                   | 71.9         |      | 57.2         | 15:05:12             |                                    | 57.2         | 57.2         |
| 70.5<br>67.4 | 15:10:15<br>15:10:18 |                                   | 70.5<br>67.4 |      | 57.8<br>59.6 | 15:05:15<br>15:05:18 |                                    | 57.8<br>59.6 | 57.8<br>59.6 |
| 69.2         | 15:10:16             |                                   | 69.2         |      | 59.0         | 15:05:16             |                                    | 59.0         | 59.0         |
| 73.9         | 15:10:24             |                                   | 73.9         | 73.9 | 56.6         | 15:05:24             |                                    | 56.6         | 56.6         |
| 73.3<br>67.1 | 15:10:27<br>15:10:30 |                                   | 73.3<br>67.1 |      | 57.6<br>58   | 15:05:27<br>15:05:30 |                                    | 57.6<br>58   | 57.6<br>58   |
| 70.5         | 15:10:33             |                                   | 70.5         | 70.5 | 57.4         | 15:05:33             |                                    | 57.4         | 57.4         |
| 71.5<br>74.7 | 15:10:36<br>15:10:39 |                                   | 71.5<br>74.7 |      | 59.1<br>57.3 | 15:05:36<br>15:05:39 |                                    | 59.1<br>57.3 | 59.1<br>57.3 |
| 71.6         | 15:10:42             |                                   | 71.6         |      | 56.9         | 15:05:42             |                                    | 56.9         | 56.9         |
| 68.8         | 15:10:45<br>15:10:48 |                                   | 68.8         |      | 57.2<br>58.2 | 15:05:45<br>15:05:48 |                                    | 57.2<br>58.2 | 57.2<br>58.2 |
| 72.4<br>65   | 15:10:46             |                                   | 72.4<br>65   |      | 56.2<br>57.5 | 15:05:51             |                                    | 57.5         | 57.5         |
| 67.4         | 15:10:54             |                                   | 67.4         |      | 57.2         | 15:05:54             |                                    | 57.2         | 57.2         |
| 65<br>70.9   | 15:10:57<br>15:11:00 |                                   | 65<br>70.9   |      | 57.9<br>58.7 | 15:05:57<br>15:06:00 |                                    | 57.9<br>58.7 | 57.9<br>58.7 |
| 65.7         | 15:11:03             |                                   | 65.7         | 65.7 | 59.9         | 15:06:03             |                                    | 59.9         | 59.9         |
| 58.3<br>65.3 | 15:11:06<br>15:11:09 |                                   | 58.3<br>65.3 |      | 59.7<br>58.8 | 15:06:06<br>15:06:09 |                                    | 59.7<br>58.8 | 59.7<br>58.8 |
| 66.4         | 15:11:12             |                                   | 66.4         |      | 58           | 15:06:12             |                                    | 58           | 58           |
| 64.6<br>67.8 | 15:11:15<br>15:11:18 |                                   | 64.6<br>67.8 |      | 56.8<br>57.2 | 15:06:15<br>15:06:18 |                                    | 56.8<br>57.2 | 56.8<br>57.2 |
| 66.2         | 15:11:21             |                                   | 66.2         |      | 57.2<br>57.7 | 15:06:10             |                                    | 57.7         | 57.7         |
| 58.3         | 15:11:24             |                                   | 58.3         |      | 57.1         | 15:06:24             |                                    | 57.1         | 57.1         |
| 52.9<br>57.5 | 15:11:27<br>15:11:30 |                                   | 52.9<br>57.5 |      | 61<br>62.7   | 15:06:27<br>15:06:30 |                                    | 61<br>62.7   | 61<br>62.7   |
| 65.2         | 15:11:33             |                                   | 65.2         | 65.2 | 59.8         | 15:06:33             |                                    | 59.8         | 59.8         |
| 72.1<br>69   | 15:11:36<br>15:11:39 |                                   | 72.1<br>69   |      | 61.6<br>56.9 | 15:06:36<br>15:06:39 |                                    | 61.6<br>56.9 | 61.6<br>56.9 |
| 69.7         | 15:11:39             |                                   | 69.7         |      | 58.4         | 15:06:39             |                                    | 58.4         | 58.4         |
| 68.8         | 15:11:45             |                                   | 68.8         |      | 58.9         | 15:06:45             |                                    | 58.9         | 58.9         |
| 69.2<br>73   | 15:11:48<br>15:11:51 |                                   | 69.2<br>73   |      | 56.3<br>56.7 | 15:06:48<br>15:06:51 |                                    | 56.3<br>56.7 | 56.3<br>56.7 |
| 68.4         | 15:11:54             |                                   | 68.4         | 68.4 | 58.6         | 15:06:54             |                                    | 58.6         | 58.6         |
| 67.7<br>68.9 | 15:11:57<br>15:12:00 |                                   | 67.7<br>68.9 |      | 57<br>56.5   | 15:06:57<br>15:07:00 |                                    | 57<br>56.5   | 57<br>56.5   |
| 69.7         | 15:12:03             |                                   | 69.7         | 69.7 | 56.9         | 15:07:03             |                                    | 56.9         | 56.9         |
| 67.8<br>71.4 | 15:12:06<br>15:12:09 |                                   | 67.8<br>71.4 |      | 57<br>56.4   | 15:07:06<br>15:07:09 |                                    | 57<br>56.4   | 57<br>56.4   |
| 7 1.4        | 10.12.03             |                                   | 7 1.4        | 11.4 | 30.4         | 10.01.08             |                                    | 50.4         | 50.4         |

|                      |                      | A - On South Side of Project |              |              |              |                      | Near Northwest Corner of Pr | -            |              |
|----------------------|----------------------|------------------------------|--------------|--------------|--------------|----------------------|-----------------------------|--------------|--------------|
| SPL<br>71.4          | Time<br>15:12:12     | Leq (1 hour Avg.)            | Ldn<br>71.4  | CNEL         | SPL<br>57.7  | Time<br>15:07:12     | Leq (1 hour Avg.)           | Ldn C        | 57.7         |
| 71.4<br>70.4         | 15:12:12             |                              | 71.4         | 71.4<br>70.4 | 57.7<br>56.9 | 15:07:12             |                             | 56.9         | 56.9         |
| 59.4                 | 15:12:18             |                              | 59.4         | 59.4         | 56.5         | 15:07:18             |                             | 56.5         | 56.5         |
| 51<br>51.7           | 15:12:21<br>15:12:24 |                              | 51<br>51.7   | 51.0<br>51.7 | 55.8<br>56.4 | 15:07:21<br>15:07:24 |                             | 55.8<br>56.4 | 55.8<br>56.4 |
| 51. <i>1</i><br>51.1 | 15:12:27             |                              | 51.7         | 51.7         | 50.4         | 15:07:24             |                             | 50.4         | 50.4         |
| 49.2                 | 15:12:30             |                              | 49.2         | 49.2         | 55.7         | 15:07:30             |                             | 55.7         | 55.7         |
| 50.6                 | 15:12:33             |                              | 50.6         | 50.6         | 56.3         | 15:07:33             |                             | 56.3         | 56.3         |
| 57.7<br>65.8         | 15:12:36<br>15:12:39 |                              | 57.7<br>65.8 | 57.7<br>65.8 | 54.9<br>56.7 | 15:07:36<br>15:07:39 |                             | 54.9<br>56.7 | 54.9<br>56.7 |
| 73.5                 | 15:12:42             |                              | 73.5         | 73.5         | 57.6         | 15:07:42             |                             | 57.6         | 57.6         |
| 68.6                 | 15:12:45             |                              | 68.6         | 68.6         | 59           | 15:07:45             |                             | 59           | 59           |
| 58.8<br>54           | 15:12:48<br>15:12:51 |                              | 58.8<br>54   | 58.8<br>54.0 | 58.3<br>58.3 | 15:07:48<br>15:07:51 |                             | 58.3<br>58.3 | 58.3<br>58.3 |
| 54.4                 | 15:12:54             |                              | 54.4         | 54.4         | 56.9         | 15:07:54             |                             | 56.9         | 56.9         |
| 65.3                 | 15:12:57             |                              | 65.3         | 65.3         | 58.8         | 15:07:57             |                             | 58.8         | 58.8         |
| 62.5<br>54.5         | 15:13:00<br>15:13:03 |                              | 62.5<br>54.5 | 62.5<br>54.5 | 57.3<br>55.4 | 15:08:00<br>15:08:03 |                             | 57.3<br>55.4 | 57.3<br>55.4 |
| 52.7                 | 15:13:06             |                              | 52.7         | 52.7         | 57.1         | 15:08:06             |                             | 57.1         | 57.1         |
| 56                   | 15:13:09             |                              | 56           | 56.0         | 55.5         | 15:08:09             |                             | 55.5         | 55.5         |
| 64.1<br>77.3         | 15:13:12<br>15:13:15 |                              | 64.1<br>77.3 | 64.1<br>77.3 | 55<br>56     | 15:08:12<br>15:08:15 |                             | 55<br>56     | 55<br>56     |
| 76.8                 | 15:13:18             |                              | 76.8         | 76.8         | 55           | 15:08:18             |                             | 55           | 55           |
| 71.2                 | 15:13:21             |                              | 71.2         | 71.2         | 54.8         | 15:08:21             |                             | 54.8         | 54.8         |
| 68.3<br>70.9         | 15:13:24<br>15:13:27 |                              | 68.3<br>70.9 | 68.3<br>70.9 | 55.7<br>56.6 | 15:08:24<br>15:08:27 |                             | 55.7<br>56.6 | 55.7<br>56.6 |
| 70.9                 | 15:13:30             |                              | 70.9         | 70.9         | 55.5         | 15:08:30             |                             | 55.5         | 55.5         |
| 66.4                 | 15:13:33             |                              | 66.4         | 66.4         | 54.4         | 15:08:33             |                             | 54.4         | 54.4         |
| 63.2                 | 15:13:36             |                              | 63.2         | 63.2         | 54.3         | 15:08:36             |                             | 54.3         | 54.3         |
| 63.4<br>64           | 15:13:39<br>15:13:42 |                              | 63.4<br>64   | 63.4<br>64.0 | 55.7<br>56.9 | 15:08:39<br>15:08:42 |                             | 55.7<br>56.9 | 55.7<br>56.9 |
| 70.6                 | 15:13:45             |                              | 70.6         | 70.6         | 56.1         | 15:08:45             |                             | 56.1         | 56.1         |
| 64.8                 | 15:13:48             |                              | 64.8         | 64.8         | 56           | 15:08:48             |                             | 56           | 56           |
| 64.4<br>68.3         | 15:13:51<br>15:13:54 |                              | 64.4<br>68.3 | 64.4<br>68.3 | 56.1<br>58.2 | 15:08:51<br>15:08:54 |                             | 56.1<br>58.2 | 56.1<br>58.2 |
| 69.4                 | 15:13:57             |                              | 69.4         | 69.4         | 58.5         | 15:08:57             |                             | 58.5         | 58.5         |
| 65.5                 | 15:14:00             |                              | 65.5         | 65.5         | 57.7         | 15:09:00             |                             | 57.7         | 57.7         |
| 58.5<br>59           | 15:14:03<br>15:14:06 |                              | 58.5<br>59   | 58.5<br>59.0 | 57.2<br>57.9 | 15:09:03<br>15:09:06 |                             | 57.2<br>57.9 | 57.2<br>57.9 |
| 68.5                 | 15:14:09             |                              | 68.5         | 68.5         | 58.1         | 15:09:00             |                             | 58.1         | 58.1         |
| 67.6                 | 15:14:12             |                              | 67.6         | 67.6         | 57.8         | 15:09:12             |                             | 57.8         | 57.8         |
| 66.3                 | 15:14:15             |                              | 66.3         | 66.3         | 59           | 15:09:15             |                             | 59           | 59           |
| 61.8<br>58           | 15:14:18<br>15:14:21 |                              | 61.8<br>58   | 61.8<br>58.0 | 60.6<br>59.6 | 15:09:18<br>15:09:21 |                             | 60.6<br>59.6 | 60.6<br>59.6 |
| 67                   | 15:14:24             |                              | 67           | 67.0         | 57.7         | 15:09:24             |                             | 57.7         | 57.7         |
| 71.7                 | 15:14:27             |                              | 71.7         | 71.7         | 56.6         | 15:09:27             |                             | 56.6         | 56.6         |
| 71<br>69.7           | 15:14:30<br>15:14:33 |                              | 71<br>69.7   | 71.0<br>69.7 | 55.7<br>56   | 15:09:30<br>15:09:33 |                             | 55.7<br>56   | 55.7<br>56   |
| 69.3                 | 15:14:36             |                              | 69.3         | 69.3         | 55.2         | 15:09:36             |                             | 55.2         | 55.2         |
| 71.7                 | 15:14:39             |                              | 71.7         | 71.7         | 56.4         | 15:09:39             |                             | 56.4         | 56.4         |
| 70.9<br>71.2         | 15:14:42<br>15:14:45 |                              | 70.9<br>71.2 | 70.9<br>71.2 | 58.5<br>57.6 | 15:09:42<br>15:09:45 |                             | 58.5<br>57.6 | 58.5<br>57.6 |
| 70.2                 | 15:14:48             |                              | 70.2         | 70.2         | 55.1         | 15:09:48             |                             | 55.1         | 55.1         |
| 66.1                 | 15:14:51             |                              | 66.1         | 66.1         | 55.7         | 15:09:51             |                             | 55.7         | 55.7         |
| 68.7                 | 15:14:54             |                              | 68.7         | 68.7         | 79           | 15:09:54             |                             | 79           | 79           |
| 69<br>67.5           | 15:14:57<br>15:15:00 |                              | 69<br>67.5   | 69.0<br>67.5 | 69.8<br>58.4 | 15:09:57<br>15:10:00 |                             | 69.8<br>58.4 | 69.8<br>58.4 |
| 66.8                 | 15:15:03             |                              | 66.8         | 66.8         | 56.9         | 15:10:03             |                             | 56.9         | 56.9         |
| 65.1                 | 15:15:06             |                              | 65.1         | 65.1         | 56.1         | 15:10:06             |                             | 56.1         | 56.1         |
| 59.9<br>59.2         | 15:15:09<br>15:15:12 |                              | 59.9<br>59.2 | 59.9<br>59.2 | 56.7<br>58.7 | 15:10:09<br>15:10:12 |                             | 56.7<br>58.7 | 56.7<br>58.7 |
| 65                   | 15:15:15             |                              | 65           | 65.0         | 58.1         | 15:10:15             |                             | 58.1         | 58.1         |
| 58.7                 | 15:15:18             |                              | 58.7         | 58.7         | 57.9         | 15:10:18             |                             | 57.9         | 57.9         |
| 56.7<br>63.4         | 15:15:21<br>15:15:24 |                              | 56.7<br>63.4 | 56.7<br>63.4 | 55.5<br>57.1 | 15:10:21<br>15:10:24 |                             | 55.5<br>57.1 | 55.5<br>57.1 |
| 69                   | 15:15:27             |                              | 69           | 69.0         | 56.7         | 15:10:24             |                             | 56.7         | 56.7         |
| 67.7                 | 15:15:30             |                              | 67.7         | 67.7         | 58           | 15:10:30             |                             | 58           | 58           |
| 65.8                 | 15:15:33             |                              | 65.8         | 65.8         | 58.3         | 15:10:33             |                             | 58.3         | 58.3         |
| 64.1<br>55.6         | 15:15:36<br>15:15:39 |                              | 64.1<br>55.6 | 64.1<br>55.6 | 57.9<br>59.1 | 15:10:36<br>15:10:39 |                             | 57.9<br>59.1 | 57.9<br>59.1 |
| 52                   | 15:15:42             |                              | 52           | 52.0         | 61.8         | 15:10:42             |                             | 61.8         | 61.8         |
| 51.4                 | 15:15:45             |                              | 51.4         | 51.4         | 59.4         | 15:10:45             |                             | 59.4         | 59.4         |
| 53.3<br>57.5         | 15:15:48<br>15:15:51 |                              | 53.3<br>57.5 | 53.3<br>57.5 | 59.8<br>59.5 | 15:10:48<br>15:10:51 |                             | 59.8<br>59.5 | 59.8<br>59.5 |
| 66.9                 | 15:15:54             |                              | 66.9         | 66.9         | 59.5         | 15:10:51             |                             | 59.5         | 59.5         |
| 71.5                 | 15:15:57             |                              | 71.5         | 71.5         | 59.4         | 15:10:57             |                             | 59.4         | 59.4         |
| 72.1<br>67.7         | 15:16:00<br>15:16:03 |                              | 72.1<br>67.7 | 72.1<br>67.7 | 60.3<br>60.5 | 15:11:00<br>15:11:03 |                             | 60.3<br>60.5 | 60.3<br>60.5 |
| 67.7<br>71.5         | 15:16:03             |                              | 67.7<br>71.5 | 71.5         | 61.2         | 15:11:03             |                             | 61.2         | 61.2         |
| 73.4                 | 15:16:09             |                              | 73.4         | 73.4         | 61.8         | 15:11:09             |                             | 61.8         | 61.8         |
| 75.9                 | 15:16:12             |                              | 75.9         | 75.9         | 61.2         | 15:11:12             |                             | 61.2         | 61.2         |
| 69.5<br>64.8         | 15:16:15<br>15:16:18 |                              | 69.5<br>64.8 | 69.5<br>64.8 | 59.8<br>58.1 | 15:11:15<br>15:11:18 |                             | 59.8<br>58.1 | 59.8<br>58.1 |
| 67.7                 | 15:16:21             |                              | 67.7         | 67.7         | 57           | 15:11:21             |                             | 57           | 57           |
| 66.9                 | 15:16:24             |                              | 66.9         | 66.9         | 60           | 15:11:24             |                             | 60           | 60           |
| 63<br>65.6           | 15:16:27<br>15:16:30 |                              | 63<br>65.6   | 63.0<br>65.6 | 58.1<br>56.3 | 15:11:27<br>15:11:30 |                             | 58.1<br>56.3 | 58.1<br>56.3 |
| 65                   | 15:16:33             |                              | 65           | 65.0         | 57.9         | 15:11:33             |                             | 57.9         | 57.9         |
| 58.4                 | 15:16:36             |                              | 58.4         | 58.4         | 62           | 15:11:36             |                             | 62           | 62           |
|                      |                      |                              |              | •            |              |                      |                             |              |              |

|              | Site A               | - On South Side of Project Sit | е            |              |              | Site B -                     | Near Northwest Corner of Proje | ct           |              |
|--------------|----------------------|--------------------------------|--------------|--------------|--------------|------------------------------|--------------------------------|--------------|--------------|
| SPL          | Time                 | Leq (1 hour Avg.)              |              | CNEL         | SPL          | Time                         | Leq (1 hour Avg.)              | Ldn C        |              |
| 59.3<br>56.1 | 15:16:39<br>15:16:42 |                                | 59.3<br>56.1 | 59.3<br>56.1 | 57.1<br>56.1 | 15:11:39<br>15:11:42         |                                | 57.1<br>56.1 | 57.1<br>56.1 |
| 57.7         | 15:16:45             |                                | 57.7         | 57.7         | 57.2         | 15:11:45                     |                                | 57.2         | 57.2         |
| 68.2         | 15:16:48             |                                | 68.2         | 68.2         | 56.4         | 15:11:48                     |                                | 56.4         | 56.4         |
| 74.2<br>70   | 15:16:51<br>15:16:54 |                                | 74.2<br>70   | 74.2<br>70.0 | 60<br>58.1   | 15:11:51<br>15:11:54         |                                | 60<br>58.1   | 60<br>58.1   |
| 66.2         | 15:16:57             |                                | 66.2         | 66.2         | 58.3         | 15:11:57                     |                                | 58.3         | 58.3         |
| 72.2<br>72.8 | 15:17:00<br>15:17:03 |                                | 72.2<br>72.8 | 72.2<br>72.8 | 58.2<br>57.6 | 15:12:00<br>15:12:03         |                                | 58.2<br>57.6 | 58.2<br>57.6 |
| 66.9         | 15:17:06             |                                | 66.9         | 66.9         | 56.9         | 15:12:06                     |                                | 56.9         | 56.9         |
| 67.9         | 15:17:09             |                                | 67.9         | 67.9         | 56.8         | 15:12:09                     |                                | 56.8         | 56.8         |
| 61<br>68.4   | 15:17:12<br>15:17:15 |                                | 61<br>68.4   | 61.0<br>68.4 | 58.3<br>57.3 | 15:12:12<br>15:12:15         |                                | 58.3<br>57.3 | 58.3<br>57.3 |
| 68.2         | 15:17:18             |                                | 68.2         | 68.2         | 57.3         | 15:12:18                     |                                | 57.3         | 57.3         |
| 61.9<br>61.6 | 15:17:21<br>15:17:24 |                                | 61.9<br>61.6 | 61.9<br>61.6 | 57.2<br>57.6 | 15:12:21<br>15:12:24         |                                | 57.2<br>57.6 | 57.2<br>57.6 |
| 64.2         | 15:17:27             |                                | 64.2         | 64.2         | 58.1         | 15:12:27                     |                                | 58.1         | 58.1         |
| 69.1         | 15:17:30             |                                | 69.1         | 69.1         | 56.5         | 15:12:30                     |                                | 56.5         | 56.5         |
| 68.3<br>69.6 | 15:17:33<br>15:17:36 |                                | 68.3<br>69.6 | 68.3<br>69.6 | 56.9<br>57.2 | 15:12:33<br>15:12:36         |                                | 56.9<br>57.2 | 56.9<br>57.2 |
| 71.7         | 15:17:39             |                                | 71.7         | 71.7         | 58.1         | 15:12:39                     |                                | 58.1         | 58.1         |
| 70.1         | 15:17:42             |                                | 70.1         | 70.1         | 58.4         | 15:12:42                     |                                | 58.4         | 58.4         |
| 68.2<br>71.5 | 15:17:45<br>15:17:48 |                                | 68.2<br>71.5 | 68.2<br>71.5 | 58.8<br>57.6 | 15:12:45<br>15:12:48         |                                | 58.8<br>57.6 | 58.8<br>57.6 |
| 68.5         | 15:17:51             |                                | 68.5         | 68.5         | 58           | 15:12:51                     |                                | 58           | 58           |
| 64.6         | 15:17:54             |                                | 64.6         | 64.6         | 59<br>50     | 15:12:54                     |                                | 59           | 59           |
| 69<br>66.2   | 15:17:57<br>15:18:00 |                                | 69<br>66.2   | 69.0<br>66.2 | 59<br>56.9   | 15:12:57<br>15:13:00         |                                | 59<br>56.9   | 59<br>56.9   |
| 65           | 15:18:03             |                                | 65           | 65.0         | 55.9         | 15:13:03                     |                                | 55.9         | 55.9         |
| 61.1<br>53.4 | 15:18:06<br>15:18:09 |                                | 61.1<br>53.4 | 61.1<br>53.4 | 56.9<br>57   | 15:13:06                     |                                | 56.9<br>57   | 56.9<br>57   |
| 47.2         | 15:18:12             |                                | 47.2         | 47.2         | 56.6         | 15:13:09<br>15:13:12         |                                | 56.6         | 56.6         |
| 48.2         | 15:18:15             |                                | 48.2         | 48.2         | 57.1         | 15:13:15                     |                                | 57.1         | 57.1         |
| 58.2<br>71.1 | 15:18:18<br>15:18:21 |                                | 58.2<br>71.1 | 58.2<br>71.1 | 57.2<br>59   | 15:13:18<br>15:13:21         |                                | 57.2<br>59   | 57.2<br>59   |
| 69           | 15:18:24             |                                | 69           | 69.0         | 56.9         | 15:13:24                     |                                | 56.9         | 56.9         |
| 68.3         | 15:18:27             |                                | 68.3         | 68.3         | 58.2         | 15:13:27                     |                                | 58.2         | 58.2         |
| 65.7<br>69.1 | 15:18:30<br>15:18:33 |                                | 65.7<br>69.1 | 65.7<br>69.1 | 58.1<br>62.1 | 15:13:30<br>15:13:33         |                                | 58.1<br>62.1 | 58.1<br>62.1 |
| 56.3         | 15:18:36             |                                | 56.3         | 56.3         | 58.2         | 15:13:36                     |                                | 58.2         | 58.2         |
| 49.4         | 15:18:39             |                                | 49.4         | 49.4         | 56.3         | 15:13:39                     |                                | 56.3         | 56.3         |
| 56.3<br>68.8 | 15:18:42<br>15:18:45 |                                | 56.3<br>68.8 | 56.3<br>68.8 | 56.5<br>56.2 | 15:13:42<br>15:13:45         |                                | 56.5<br>56.2 | 56.5<br>56.2 |
| 63.2         | 15:18:48             |                                | 63.2         | 63.2         | 56.3         | 15:13:48                     |                                | 56.3         | 56.3         |
| 66.5         | 15:18:51             |                                | 66.5         | 66.5         | 63.2         | 15:13:51                     |                                | 63.2         | 63.2<br>60.2 |
| 67.5<br>64.7 | 15:18:54<br>15:18:57 |                                | 67.5<br>64.7 | 67.5<br>64.7 | 60.2<br>58.3 | 15:13:54<br>15:13:57         |                                | 60.2<br>58.3 | 58.3         |
| 61.3         | 15:19:00             |                                | 61.3         | 61.3         | 58.1         | 15:14:00                     |                                | 58.1         | 58.1         |
| 64.3<br>56.6 | 15:19:03<br>15:19:06 |                                | 64.3<br>56.6 | 64.3<br>56.6 | 57.1<br>56.9 | 15:14:03<br>15:14:06         |                                | 57.1<br>56.9 | 57.1<br>56.9 |
| 54.6<br>57.6 | 15:19:09<br>15:19:12 |                                | 54.6<br>57.6 | 54.6<br>57.6 | 55.8<br>55   | 15:14:09<br>15:14:12         |                                | 55.8<br>55   | 55.8<br>55   |
| 66.9         | 15:19:15             |                                | 66.9         | 66.9         | 55.5         | 15:14:15                     |                                | 55.5         | 55.5         |
| 68.6<br>68.8 | 15:19:18<br>15:19:21 |                                | 68.6<br>68.8 | 68.6<br>68.8 | 54.8<br>59.6 | 15:14:18<br>15:14:21         |                                | 54.8<br>59.6 | 54.8<br>59.6 |
| 70.1         | 15:19:24             |                                | /U.1         | 70.1         | 58           | 15:14:24                     |                                | 58           | 58           |
| 65.6<br>66.4 | 15:19:27<br>15:19:30 |                                | 65.6<br>66.4 | 65.6<br>66.4 | 56.1<br>55.3 | 15:14:2 <i>f</i><br>15:14:30 |                                | 55.3         | 56.1<br>55.3 |
| 66.3         | 15:19:33             |                                | 66.3         | 66.3         | 55.7         | 15:14:33                     |                                | 55.7         | 55.7         |
| 66.6<br>69.5 | 15:19:36<br>15:19:39 |                                | 66.6<br>69.5 | 66.6<br>69.5 | 55.2<br>55.6 | 15:14:36<br>15:14:39         |                                | 55.2<br>55.6 | 55.2<br>55.6 |
| 66.9<br>62.6 | 15:19:42<br>15:19:45 |                                | 66.9<br>62.6 | 66.9<br>62.6 | 54.6<br>55.7 | 15:14:42<br>15:14:45         |                                | 54.6<br>55.7 | 54.6<br>55.7 |
| 57.9         | 15:19:48             |                                | 57.9         | 57.9         | 56.2         | 15:14:48                     |                                | 56.2         | 56.2         |
| 54.2<br>57.8 | 15:19:51<br>15:19:54 |                                | 54.2<br>57.8 | 54.2<br>57.8 | 55.9<br>57   | 15:14:51<br>15:14:54         |                                | 55.9<br>57   | 55.9<br>57   |
| 72.6         | 15:19:57             |                                | 72.6         | 72.6         | 56.6         | 15:14:57                     |                                | 56.6         | 56.6         |
| 63<br>56.9   | 15:20:00<br>15:20:03 |                                | 55.9         | 63.0<br>56.9 | 56.6<br>56.2 | 15:15:00<br>15:15:03         |                                | 56.6<br>56.2 | 56.6<br>56.2 |
| 58.4<br>66.9 | 15:20:06<br>15:20:09 |                                | 58.4<br>66.9 | 58.4<br>66.9 | 56<br>56.7   | 15:15:06<br>15:15:09         |                                | 56<br>56.7   | 56<br>56.7   |
| 62.3         | 15:20:12             |                                | 62.3         | 62.3         | 58.3         | 15:15:12                     |                                | 58.3         | 58.3         |
| 58.7<br>59.3 | 15:20:15<br>15:20:18 |                                | 58.7<br>59.3 | 58.7<br>59.3 | 56.8<br>57.6 | 15:15:15<br>15:15:18         |                                | 56.8<br>57.6 | 56.8<br>57.6 |
| 62.6         | 15:20:21             |                                | 62.6         | 62.6         | 58           | 15:15:21                     |                                | 58           | 58           |
| 60.9<br>63.9 | 15:20:24<br>15:20:27 |                                | 60.9<br>63.9 | 60.9<br>63.9 | 56.9<br>56.6 | 15:15:24<br>15:15:27         |                                | 56.9<br>56.6 | 56.9<br>56.6 |
| 68.1         | 15:20:30             |                                | 68.1         | 68.1         | 57.4         | 15:15:30                     |                                | 57.4         | 57.4         |
| 68.2<br>71.5 | 15:20:33<br>15:20:36 |                                | 68.2<br>/1.5 | 68.2<br>/1.5 | 56.8<br>57.6 | 15:15:33<br>15:15:36         |                                | 56.8<br>57.6 | 56.8<br>57.6 |
| 69<br>66.8   | 15:20:39<br>15:20:42 |                                | 69<br>66.8   | 69.U<br>66.8 | 58<br>56.6   | 15:15:39<br>15:15:42         |                                | 58<br>56.6   | 58<br>56.6   |
| 69.6         | 15:20:45             |                                | 69.6         | 69.6         | 56.2         | 15:15:45                     |                                | 56.2         | 56.2         |
| 66.4<br>64.5 | 15:20:48<br>15:20:51 |                                | 66.4<br>64.5 | 66.4<br>64.5 | 56.4<br>56.3 | 15:15:48<br>15:15:51         |                                | 56.4<br>56.3 | 56.4<br>56.3 |
| 6/           | 15:20:54             |                                | 6/           | 67.0         | 56.6         | 15:15:54                     |                                | 56.6         | 56.6         |
| 68.1<br>70.7 | 15:20:57<br>15:21:00 |                                | 68.1<br>70.7 | 68.1<br>70.7 | 57.3<br>59.6 | 15:15:57<br>15:16:00         |                                | 57.3<br>59.6 | 57.3<br>59.6 |
| 70.8         | 15:21:03             |                                | 70.8         | 70.8         | 59.5         | 15:16:03                     |                                | 59.5         | 59.5         |
| 74.3<br>67.7 | 15:21:06<br>15:21:09 |                                | 74.3<br>67.7 | 74.3<br>67.7 | 56.7<br>57.6 | 15:16:06<br>15:16:09         |                                | 56.7<br>57.6 | 56.7<br>57.6 |
| 64.4<br>65.9 | 15:21:12<br>15:21:15 |                                | 64.4<br>65.9 | 64.4<br>65.9 | 56.5<br>57.4 | 15:16:12<br>15:16:15         |                                | 56.5<br>57.4 | 56.5<br>57.4 |
| 8.00         | 15:21:18             |                                | 8.60         | 66.8         | 58           | 15:16:18                     |                                | 58           | 58           |
| /0.6         | 15:21:21             |                                | 70.6         | 70.6         | 56.6         | 15:16:21                     |                                | 56.6         | 56.6         |
|              |                      |                                |              |              |              |                              |                                |              |              |

|              | Site A                       | A - On South Side of Project S | Site         |              |              | Site B - I           | Near Northwest Corner of Pr | oject                  |
|--------------|------------------------------|--------------------------------|--------------|--------------|--------------|----------------------|-----------------------------|------------------------|
| SPL          | Time                         | Leq (1 hour Avg.)              | Ldn C        |              | SPL          | Time                 | Leq (1 hour Avg.)           | Ldn CNEL               |
| 65.9<br>63.3 | 15:21:24<br>15:21:2 <i>1</i> |                                | 65.9<br>63.3 | 65.9<br>63.3 | 57.8<br>57.9 | 15:16:24<br>15:16:27 |                             | 57.8 57.8<br>57.9 57.9 |
| 65.1<br>/5.2 | 15:21:30<br>15:21:33         |                                | 65.1<br>/5.2 | 65.1<br>/5.2 | 57.3<br>57.6 | 15:16:30<br>15:16:33 |                             | 5/.3 5/.3<br>5/.6 5/.6 |
| 68.4         | 15:21:36                     |                                | 68.4         | 68.4         | 57.2         | 15:16:36             |                             | 51.2 51.2              |
| 64.6<br>67.4 | 15:21:39<br>15:21:42         |                                | 64.6<br>67.4 | 64.6<br>67.4 | 60.8<br>59.8 | 15:16:39<br>15:16:42 |                             | 60.8 60.8<br>59.8 59.8 |
| 70.3         | 15:21:45                     |                                | 70.3         | 70.3         | 61.1         | 15:16:45             |                             | 61.1 61.1              |
| 71.4<br>73.4 | 15:21:48<br>15:21:51         |                                | 71.4<br>73.4 | 71.4<br>73.4 | 61.1<br>58.9 | 15:16:48<br>15:16:51 |                             | 61.1 61.1<br>58.9 58.9 |
| 73.7         | 15:21:54                     |                                | 73.7         | 73.7         | 58.1         | 15:16:54             |                             | 58.1 58.1              |
| 73<br>68.7   | 15:21:57<br>15:22:00         |                                | 73<br>68.7   | 73.0<br>68.7 | 59.3<br>63.2 | 15:16:57<br>15:17:00 |                             | 59.3 59.3<br>63.2 63.2 |
| 65.6         | 15:22:03                     |                                | 65.6         | 65.6         | 58.6         | 15:17:03             |                             | 58.6 58.6              |
| 67.7<br>66.7 | 15:22:06<br>15:22:09         |                                | 67.7<br>66.7 | 67.7<br>66.7 | 59.2<br>58.2 | 15:17:06<br>15:17:09 |                             | 59.2 59.2<br>58.2 58.2 |
| 68.5         | 15:22:12                     |                                | 68.5         | 68.5         | 59.2         | 15:17:12             |                             | 59.2 59.2              |
| 70<br>69     | 15:22:15<br>15:22:18         |                                | /U<br>69     | 70.0<br>69.0 | 58.8<br>56.9 | 15:17:15<br>15:17:18 |                             | 58.8 58.8<br>56.9 56.9 |
| 67.1<br>64   | 15:22:21                     |                                | 67.1<br>64   | 67.1<br>64.0 | 59.1<br>59.7 | 15:17:21             |                             | 59.1 59.1<br>59.7 59.7 |
| 63.7         | 15:22:24<br>15:22:27         |                                | 63.7         | 63.7         | 58.7         | 15:17:24<br>15:17:27 |                             | 59.7 59.7<br>58.7 58.7 |
| 63.4         | 15:22:30                     |                                | 63.4         | 63.4         | 58.1         | 15:17:30             |                             | 58.1 58.1              |
| 62.4<br>63.1 | 15:22:33<br>15:22:36         |                                | 62.4<br>63.1 | 62.4<br>63.1 | 58.8<br>57.9 | 15:17:33<br>15:17:36 |                             | 58.8 58.8<br>57.9 57.9 |
| /1<br>64.1   | 15:22:39<br>15:22:42         |                                | /1           | /1.0         | 58.1         | 15:17:39<br>15:17:42 |                             | 58.1 58.1              |
| 69.1<br>67.1 | 15:22:45                     |                                | 69.1<br>67.1 | 69.1<br>67.1 | 56.4<br>57.7 | 15:17:45             |                             | 56.4 56.4<br>5/./ 5/./ |
| 6U.1<br>61.6 | 15:22:48                     |                                | 6U.1<br>61.6 | 60.1         | 58.2<br>57.3 | 15:17:48<br>15:17:51 |                             | 58.2 58.2<br>57.3 57.3 |
| 61.6         | 15:22:51<br>15:22:54         |                                | 61.6         | 61.6<br>66.0 | 57.3<br>56.8 | 15:17:54             |                             | 56.8 56.8              |
| 68.7         | 15:22:57                     |                                | 68.7         | 68.7         | 56.9         | 15:17:57             |                             | 56.9 56.9<br>56.2 56.2 |
| 66.9<br>64.3 | 15:23:00<br>15:23:03         |                                | 66.9<br>64.3 | 66.9<br>64.3 | 56.2<br>57.5 | 15:18:00<br>15:18:03 |                             | 56.2 56.2<br>57.5 57.5 |
| 62.8         | 15:23:06<br>15:23:09         |                                | 62.8         | 62.8         | 56.7         | 15:18:06             |                             | 56.7 56.7              |
| 60<br>57.7   | 15:23:12                     |                                | 60<br>57.7   | 60.0<br>57.7 | 56.7<br>56.6 | 15:18:09<br>15:18:12 |                             | 56.7 56.7<br>56.6 56.6 |
| 62.7<br>63.5 | 15:23:15<br>15:23:18         |                                | 62.7<br>63.5 | 62.7<br>63.5 | 55.9<br>56.3 | 15:18:15<br>15:18:18 |                             | 55.9 55.9<br>56.3 56.3 |
| 57.8         | 15:23:21                     |                                | 57.8         | 57.8         | 55.6         | 15:18:21             |                             | 55.6 55.6              |
| 55.4<br>56.6 | 15:23:24<br>15:23:27         |                                | 55.4<br>56.6 | 55.4<br>56.6 | 56.2<br>56.1 | 15:18:24<br>15:18:27 |                             | 56.2 56.2<br>56.1 56.1 |
| 60.3         | 15:23:30                     |                                | 60.3         | 60.3         | 56.2         | 15:18:30             |                             | 56.2 56.2              |
| 67.7<br>72.3 | 15:23:33<br>15:23:36         |                                | 67.7<br>72.3 | 67.7<br>72.3 | 56.9<br>56.9 | 15:18:33<br>15:18:36 |                             | 56.9 56.9<br>56.9 56.9 |
| 72.2         | 15:23:39                     |                                | 72.2         | 72.2         | 57.5         | 15:18:39             |                             | 57.5 57.5              |
| 70.1<br>71.3 | 15:23:42<br>15:23:45         |                                | 70.1<br>71.3 | 70.1<br>71.3 | 56.5<br>57   | 15:18:42<br>15:18:45 |                             | 56.5 56.5<br>57 57     |
| 65.9         | 15:23:48                     |                                | 65.9         | 65.9         | 57.3         | 15:18:48             |                             | 57.3 57.3              |
| /1<br>/1.6   | 15:23:51<br>15:23:54         |                                | 71<br>71.6   | 71.0<br>71.6 | 56.2<br>57   | 15:18:51<br>15:18:54 |                             | 56.2 56.2<br>57 57     |
| /1.2         | 15:23:57                     |                                | /1.2         | /1.2         | 5/.6         | 15:18:57             |                             | 5/.6 5/.6              |
| 67<br>69.1   | 15:24:00<br>15:24:03         |                                | 67<br>69.1   | 67.U<br>69.1 | 56.4<br>56.3 | 15:19:00<br>15:19:03 |                             | 56.4 56.4<br>56.3 56.3 |
| /1.1         | 15:24:06                     |                                | /1.1         | /1.1         | 60.8         | 15:19:06             |                             | 8.00 8.00              |
| 66.9<br>60.4 | 15:24:09<br>15:24:12         |                                | 66.9<br>60.4 | 60.9<br>60.4 | 59<br>62     | 15:19:09<br>15:19:12 |                             | 59 59<br>62 62         |
| 57.9         | 15:24:15                     |                                | 57.9         | 57.9         | 62.6         | 15:19:15             |                             | 62.6 62.6              |
| 58.2<br>60.3 | 15:24:18<br>15:24:21         |                                | 58.2<br>60.3 | 58.2<br>60.3 | 62.8<br>62.9 | 15:19:18<br>15:19:21 |                             | 62.8 62.8<br>62.9 62.9 |
| 65.4         | 15:24:24                     |                                | 65.4         | 65.4         | 60.1         | 15:19:24             |                             | 60.1 60.1              |
| 62.8<br>62.6 | 15:24:27<br>15:24:30         |                                | 62.8<br>62.6 | 62.8<br>62.6 | 55.9<br>56   | 15:19:27<br>15:19:30 |                             | 55.9 55.9<br>56 56     |
| 67.6         | 15:24:33                     |                                | 67.6         | 67.6         | 56.7         | 15:19:33             |                             | 56.7 56.7              |
| /1.6<br>66.6 | 15:24:36<br>15:24:39         |                                | /1.6<br>66.6 | /1.6<br>66.6 | 56.2<br>56.3 | 15:19:36<br>15:19:39 |                             | 56.2 56.2<br>56.3 56.3 |
| 68.4         | 15:24:42                     |                                | 68.4         | 68.4         | 56.1         | 15:19:42             |                             | 56.1 56.1              |
| 69<br>62.1   | 15:24:45<br>15:24:48         |                                | 69<br>62.1   | 69.0<br>62.1 | 56.4<br>56.8 | 15:19:45<br>15:19:48 |                             | 56.4 56.4<br>56.8 56.8 |
| 58.3         | 15:24:51                     |                                | 58.3         | 58.3         | 57.5         | 15:19:51             |                             | 57.5 57.5              |
| 57.1<br>57.8 | 15:24:54<br>15:24:57         |                                | 57.1<br>57.8 | 57.1<br>57.8 | 58.7<br>58.1 | 15:19:54<br>15:19:57 |                             | 58.7 58.7<br>58.1 58.1 |
| 63.4         | 15:25:00                     | 67.5                           | 63.4         | 63.4         | 59.2         | 15:20:00             | 63.1                        | 59.2 59.2              |
| 65.6<br>62.7 | 15:25:03<br>15:25:06         | 67.5<br>67.5                   | 65.6<br>62.7 | 65.6<br>62.7 | 59<br>58.2   | 15:20:03<br>15:20:06 | 63.1<br>63.1                | 59 59<br>58.2 58.2     |
| /4./         | 15:25:09                     | 67.5                           | /4./         | /4./         | 58.7         | 15:20:09             | 63.1                        | 58./ 58./              |
| 69.2<br>68.5 | 15:25:12<br>15:25:15         | 67.5<br>67.5                   | 69.2<br>68.5 | 69.2<br>68.5 | 59.6<br>57.4 | 15:20:12<br>15:20:15 | 63.1<br>63.1                | 59.6 59.6<br>57.4 57.4 |
| 67.4         | 15:25:18                     | 67.5                           | 67.4         | 67.4         | 58.5         | 15:20:18             | 63.1                        | 58.5 58.5              |
| 64.9<br>60.4 | 15:25:21<br>15:25:24         | 6.70<br>6.70                   | 64.9<br>60.4 | 64.9<br>60.4 | 56.2<br>56.9 | 15:20:21<br>15:20:24 | 63.1<br>63.1                | 56.2 56.2<br>56.9 56.9 |
| 60.6         | 15:25:27                     | 67.5                           | 60.6         | 60.6         | 57.9         | 15:20:27             | 63.1                        | 5/.9 5/.9              |
| 66.8<br>67.4 | 15:25:30<br>15:25:33         | 67.5<br>67.5                   | 66.8<br>67.4 | 66.8<br>67.4 | 57.1<br>57.3 | 15:20:30<br>15:20:33 | 63.1<br>63.1                | 57.1 57.1<br>57.3 57.3 |
| 59.4         | 15:25:36                     | 67.6                           | 59.4         | 59.4         | 57.3         | 15:20:36             | 63.1<br>63.1                | 57.3 57.3              |
| 56.4<br>57.5 | 15:25:39<br>15:25:42         | 67.6<br>67.6                   | 56.4<br>57.5 | 56.4<br>57.5 | 56.8<br>58.8 | 15:20:39<br>15:20:42 | 63.1<br>63.1                | 56.8 56.8<br>58.8 58.8 |
| 58.6<br>60   | 15:25:45<br>15:25:48         | 67.6<br>67.6                   | 58.6<br>60   | 58.6<br>60.0 | 57.3<br>56.5 | 15:20:45<br>15:20:48 | 63.U<br>63.U                | 57.3 57.3<br>56.5 56.5 |
| 8.00         | 15:25:51                     | 67.6                           | 60<br>8.8    | 60.0<br>66.8 | 56.5<br>56.8 | 15:20:51             | 63.0                        | 56.8 56.8              |
| 68.3         | 15:25:54                     | 67.6                           | 68.3         | 68.3         | 56.8         | 15:20:54             | 63.0                        | 56.8 56.8              |
| 69.3<br>68.4 | 15:25:57<br>15:26:00         | 67.6<br>67.6                   | 69.3<br>68.4 | 69.3<br>68.4 | 56.1<br>56.3 | 15:20:57<br>15:21:00 | 63.U<br>63.U                | 56.1 56.1<br>56.3 56.3 |
| 68.5         | 15:26:03                     | 67.6                           | 68.5         | 68.5         | 5/./         | 15:21:03             | 63.0                        | 5/./ 5/./              |
| 65.9<br>66.8 | 15:26:06<br>15:26:09         | 67.6<br>67.6                   | 65.9<br>66.8 | 65.9<br>66.8 | 58.6<br>58.1 | 15:21:06<br>15:21:09 | 63.0<br>63.0                | 58.6 58.6<br>58.1 58.1 |
| 66.1         | 15:26:12                     | 67.6                           | 66.1         | 66.1         | 59.2         | 15:21:12             | 63.0                        | 59.2 59.2              |
| 66.3<br>60.2 | 15:26:15<br>15:26:18         | 67.6<br>67.6                   | 66.3<br>60.2 | 66.3<br>60.2 | 58.4<br>59.3 | 15:21:15<br>15:21:18 | 63.0<br>63.0                | 58.4 58.4<br>59.3 59.3 |
| 59.7         | 15:26:21                     | 67.6                           | 59.7         | 59.7         | 59.8         | 15:21:21             | 63.0                        | 59.8 59.8              |
| 60.6<br>66.3 | 15:26:24<br>15:26:27         | 67.6<br>67.6                   | 60.6<br>66.3 | 60.6<br>66.3 | 58.4<br>58.1 | 15:21:24<br>15:21:27 | 63.U<br>63.U                | 58.4 58.4<br>58.1 58.1 |
| /0.2         | 15:26:30                     | 67.6                           | 70.2         | 70.2         | 59.2         | 15:21:30             | 63.0                        | 59.2 59.2              |
|              |                              |                                |              |              |              |                      |                             |                        |

## **APPENDIX C**

**RCNM Model Construction Noise Calculations** 

Report date: 1/15/2021

Case Description: Griswold Residential - Demolition

Total

|                                          |                         | <b>5</b> "      | (15.4)          | Rece          | ptor #1  | <b></b>    |           |
|------------------------------------------|-------------------------|-----------------|-----------------|---------------|----------|------------|-----------|
| Decembries                               | l and llas              | Baselines       | • •             | Nimbt         |          |            |           |
| Description Nearest Homes to West & East | Land Use<br>Residential | Daytime<br>68.4 | Evening<br>68.4 | Night<br>68.4 |          |            |           |
| Nearest Homes to West & Last             | rtesideriliai           | 00.4            | 00.4            | 00.4          |          |            |           |
|                                          |                         |                 |                 | Equipme       | nt       |            |           |
|                                          |                         |                 |                 | Spec          | Actual   | Receptor   | Estimated |
|                                          |                         | Impact          |                 | Lmax          | Lmax     | Distance   | Shielding |
| Description                              |                         | Device          | Usage(%)        | (dBA)         | (dBA)    | (feet)     | (dBA)     |
| Excavator                                |                         | No              | 40              |               | 80.7     | 235        | 0         |
| Excavator                                |                         | No              | 40              |               | 80.7     | 235        | 0         |
| Excavator                                |                         | No              | 40              |               | 80.7     | 235        | 0         |
| Concrete Saw                             |                         | No              | 20              |               | 89.6     | 235        | 0         |
| Tractor                                  |                         | No              | 40              | 84            |          | 235        | 0         |
| Front End Loader                         |                         | No              | 40              |               | 79.1     | 235        | 0         |
|                                          |                         |                 |                 | Results       |          |            |           |
|                                          |                         | Calculate       | d (dBA)         |               | Noise Li | mits (dBA) |           |
|                                          |                         |                 |                 | Day           |          | Evening    |           |
| Equipment                                |                         | *Lmax           | Leq             | Lmax          | Leq      | Lmax       | Leq       |
| Excavator                                |                         | 67.3            | 63.3            | N/A           | N/A      | N/A        | N/A       |
| Excavator                                |                         | 67.3            | 63.3            | N/A           | N/A      | N/A        | N/A       |
| Excavator                                |                         | 67.3            | 63.3            | N/A           | N/A      | N/A        | N/A       |
| Concrete Saw                             |                         | 76.1            | 69.1            | N/A           | N/A      | N/A        | N/A       |
| Tractor                                  |                         | 70.6            | 66.6            | N/A           | N/A      | N/A        | N/A       |
| Front End Loader                         |                         | 65.7            | 61.7            | N/A           | N/A      | N/A        | N/A       |

76

N/A

N/A

N/A

N/A

73

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Demolition

| •                |             |             |          |          |           |            |           |
|------------------|-------------|-------------|----------|----------|-----------|------------|-----------|
|                  |             | Baselines   | (dBA)    | Recep    | otor #2   | -          |           |
| Description      | Land Use    | Daytime     | Evening  | Night    |           |            |           |
| Homes to North   | Residential | 68.4        | 68.4     | 68.4     |           |            |           |
|                  |             |             |          |          |           |            |           |
|                  |             |             |          | Equipmen |           | ъ .        |           |
|                  |             |             |          | Spec     | Actual    | Receptor   | Estimated |
|                  |             | Impact      |          | Lmax     | Lmax      | Distance   | Shielding |
| Description      |             | Device      | Usage(%) | (dBA)    | (dBA)     | (feet)     | (dBA)     |
| Excavator        |             | No          | 40       |          | 80.7      | 535        | 0         |
| Excavator        |             | No          | 40       |          | 80.7      | 535        | 0         |
| Excavator        |             | No          | 40       |          | 80.7      | 535        | 0         |
| Concrete Saw     |             | No          | 20       |          | 89.6      | 535        | 0         |
| Tractor          |             | No          | 40       | 84       |           | 535        | 0         |
| Front End Loader |             | No          | 40.0     |          | 79.1      | 535        | 0         |
|                  |             |             |          | Results  |           |            |           |
|                  | Cal         | lculated (d | BA)      |          | Noise Lin | nits (dBA) |           |
|                  |             | ,           | ,        | Day      |           | Evening    |           |
| Equipment        |             | *Lmax       | Leq      | Lmax     | Leq       | Lmax       | Leq       |
| Excavator        |             | 60.1        | 56.1     | N/A      | N/A       | N/A        | N/A       |
| Excavator        |             | 60.1        | 56.1     | N/A      | N/A       | N/A        | N/A       |
| Excavator        |             | 60.1        | 56.1     | N/A      | N/A       | N/A        | N/A       |
| Concrete Saw     |             | 69.0        | 62.0     | N/A      | N/A       | N/A        | N/A       |
| Tractor          |             | 63.4        | 59.4     | N/A      | N/A       | N/A        | N/A       |
| Front End Loader |             | 58.5        | 54.5     | N/A      | N/A       | N/A        | N/A       |
|                  | Total       | 69          | 66       | N/A      | N/A       | N/A        | N/A       |

<sup>\*</sup>Calculated Lmax is the Loudest value.

1/15/2021 Report date:

Description Homes to South

Tractor

Front End Loader

Case Description: Griswold Residential - Demolition

|             |           |         | Recepto | r #3 |
|-------------|-----------|---------|---------|------|
|             | Baselines | (dBA)   |         |      |
| Land Use    | Daytime   | Evening | Night   |      |
| Residential | 68.4      | 68.4    | 68.4    |      |

Equipment Spec Actual Receptor Estimated Distance Shielding Impact Lmax Lmax Description Device Usage(%) (dBA) (dBA) (feet) (dBA) Excavator 0 40 80.7 575 No Excavator 40 80.7 575 0 No No 40 80.7 0 Excavator 575 Concrete Saw No 20 89.6 575 0 0 40 84

Results Calculated (dBA) Noise Limits (dBA) Day Evening Equipment \*Lmax Leq Lmax Leq Lmax Leq Excavator 59.5 55.5 N/A N/A N/A N/A 59.5 55.5 N/A N/A Excavator N/A N/A 59.5 55.5 N/A N/A N/A N/A Excavator Concrete Saw 68.4 61.4 N/A N/A N/A N/A 62.8 Tractor 58.8 N/A N/A N/A N/A Front End Loader 57.9 53.9 N/A N/A N/A N/A Total 68 65 N/A N/A N/A N/A

No

No

40

575

575

0

79.1

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Site Preparation

|                              |             |            |          | Rece    | ptor #1 - |             |           |
|------------------------------|-------------|------------|----------|---------|-----------|-------------|-----------|
|                              |             | Baselines  | (dBA)    |         |           |             |           |
| Description                  | Land Use    | Daytime    | Evening  | Night   |           |             |           |
| Nearest Homes to West & East | Residential | 68.4       | 68.4     | 68.4    |           |             |           |
|                              |             |            |          |         |           |             |           |
|                              |             |            |          | Equipme |           |             |           |
|                              |             |            |          | Spec    | Actual    | -           | Estimated |
|                              |             | Impact     |          | Lmax    | Lmax      | Distance    | Shielding |
| Description                  |             | Device     | Usage(%) | (dBA)   | (dBA)     | (feet)      | (dBA)     |
| Dozer                        |             | No         | 40       |         | 81.7      | 235         | 0         |
| Dozer                        |             | No         | 40       |         | 81.7      | 235         | 0         |
| Dozer                        |             | No         | 40       |         | 81.7      | 235         | 0         |
| Tractor                      |             | No         | 40       | 84      |           | 235         | 0         |
| Front End Loader             |             | No         | 40       |         | 79.1      | 235         | 0         |
| Backhoe                      |             | No         | 40       |         | 77.6      | 235         | 0         |
|                              |             |            |          | Results |           |             |           |
|                              |             | Calculated | d (dBA)  |         | Noise L   | imits (dBA) |           |
|                              |             |            | , ,      | Day     |           | Evening     |           |
| Equipment                    |             | *Lmax      | Leq      | Lmax    | Leq       | Lmax        | Leq       |
| Dozer                        |             | 68.2       | 64.2     | N/A     | N/A       | N/A         | N/A       |
| Dozer                        |             | 68.2       | 64.2     | N/A     | N/A       | N/A         | N/A       |
| Dozer                        |             | 68.2       | 64.2     | N/A     | N/A       | N/A         | N/A       |
| Tractor                      |             | 70.6       | 66.6     | N/A     | N/A       | N/A         | N/A       |
| Front End Loader             |             | 65.7       | 61.7     | N/A     | N/A       | N/A         | N/A       |
| Backhoe                      |             | 64.1       | 60.1     | N/A     | N/A       | N/A         | N/A       |
|                              | Total       | 71         | 72       | N/A     | N/A       | N/A         | N/A       |

\*Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Site Preparation

|  | Rece | ptor | #2 · |  |
|--|------|------|------|--|
|--|------|------|------|--|

|                  |             | Baselines | (dBA)    |           |        |          |           |
|------------------|-------------|-----------|----------|-----------|--------|----------|-----------|
| Description      | Land Use    | Daytime   | Evening  | Night     |        |          |           |
| Homes to North   | Residential | 68.4      | 68.4     | 68.4      |        |          |           |
|                  |             |           |          |           |        |          |           |
|                  |             |           | E        | Equipment |        |          |           |
|                  |             |           |          | Spec      | Actual | Receptor | Estimated |
|                  |             | Impact    |          | Lmax      | Lmax   | Distance | Shielding |
| Description      |             | Device    | Usage(%) | (dBA)     | (dBA)  | (feet)   | (dBA)     |
| Dozer            |             | No        | 40       |           | 81.7   | 535      | 0         |
| Dozer            |             | No        | 40       |           | 81.7   | 535      | 0         |
| Dozer            |             | No        | 40       |           | 81.7   | 535      | 0         |
| Tractor          |             | No        | 40       | 84        |        | 535      | 0         |
| Front End Loader |             | No        | 40       |           | 79.1   | 535      | 0         |
| Backhoe          |             | No        | 40.0     |           | 77.6   | 535      | 0         |
|                  |             |           |          |           |        |          |           |

|                  |       |                |      | Results |             |         |     |
|------------------|-------|----------------|------|---------|-------------|---------|-----|
|                  |       | Calculated (dB |      | Noise   | Limits (dBA | ۹)      |     |
|                  |       |                |      | Day     |             | Evening | l   |
| Equipment        |       | *Lmax          | Leq  | Lmax    | Leq         | Lmax    | Leq |
| Dozer            |       | 61.1           | 57.1 | N/A     | N/A         | N/A     | N/A |
| Dozer            |       | 61.1           | 57.1 | N/A     | N/A         | N/A     | N/A |
| Dozer            |       | 61.1           | 57.1 | N/A     | N/A         | N/A     | N/A |
| Tractor          |       | 63.4           | 59.4 | N/A     | N/A         | N/A     | N/A |
| Front End Loader |       | 58.5           | 54.5 | N/A     | N/A         | N/A     | N/A |
| Backhoe          |       | 57.0           | 53.0 | N/A     | N/A         | N/A     | N/A |
|                  | Total | 63             | 65   | N/A     | N/A         | N/A     | N/A |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Site Preparation

|                  |             |            |          | Rece    | ptor #3  |            |           |
|------------------|-------------|------------|----------|---------|----------|------------|-----------|
|                  |             | Baselines  | (dBA)    |         |          |            |           |
| Description      | Land Use    | Daytime    | Evening  | Night   |          |            |           |
| Homes to South   | Residential | 68.4       | 68.4     | 68.4    |          |            |           |
|                  |             |            |          |         |          |            |           |
|                  |             |            |          | Equipme |          |            |           |
|                  |             |            |          | Spec    | Actual   | Receptor   | Estimated |
|                  |             | Impact     |          | Lmax    | Lmax     | Distance   | Shielding |
| Description      |             | Device     | Usage(%) | (dBA)   | (dBA)    | (feet)     | (dBA)     |
| Dozer            |             | No         | 40       | )       | 81.7     | 575        | 0         |
| Dozer            |             | No         | 40       | )       | 81.7     | 575        | 0         |
| Dozer            |             | No         | 40       | )       | 81.7     | 575        | 0         |
| Tractor          |             | No         | 40       | 84      | ļ.       | 575        | 0         |
| Front End Loader |             | No         | 40       | )       | 79.1     | 575        | 0         |
| Backhoe          |             | No         | 40       | )       | 77.6     | 575        | 0         |
|                  |             |            |          |         |          |            |           |
|                  |             |            |          | Results |          |            |           |
|                  |             | Calculated | d (dBA)  |         | Noise Li | mits (dBA) |           |
|                  |             |            |          | Day     |          | Evening    |           |
| Equipment        |             | *Lmax      | Leq      | Lmax    | Leq      | Lmax       | Leq       |
| Dozer            |             | 60.5       | 56.5     | N/A     | N/A      | N/A        | N/A       |
| Dozer            |             | 60.5       | 56.5     | N/A     | N/A      | N/A        | N/A       |
| Dozer            |             | 60.5       | 56.5     | N/A     | N/A      | N/A        | N/A       |
| Tractor          |             | 62.8       | 58.8     | N/A     | N/A      | N/A        | N/A       |
| Front End Loader |             | 57.9       | 53.9     | N/A     | N/A      | N/A        | N/A       |
| Backhoe          |             | 56.3       | 52.4     | N/A     | N/A      | N/A        | N/A       |
|                  | Total       | 63         | 64       | N/A     | N/A      | N/A        | N/A       |

\*Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Grading

---- Receptor #1 ----

| Baselines ( | (dBA) | ) |
|-------------|-------|---|
|-------------|-------|---|

Description Land Use Daytime Evening Night Nearest Homes to West & East Residential 68.4 68.4 68.4

Equipment

|                  |        |          | Equipino | /I I L |          |           |
|------------------|--------|----------|----------|--------|----------|-----------|
|                  |        |          | Spec     | Actual | Receptor | Estimated |
|                  | Impact |          | Lmax     | Lmax   | Distance | Shielding |
| Description      | Device | Usage(%) | (dBA)    | (dBA)  | (feet)   | (dBA)     |
| Excavator        | No     | 40       |          | 80.7   | 235      | 0         |
| Grader           | No     | 40       | 85       |        | 235      | 0         |
| Dozer            | No     | 40       |          | 81.7   | 235      | 0         |
| Tractor          | No     | 40       | 84       |        | 235      | 0         |
| Front End Loader | No     | 40       |          | 79.1   | 235      | 0         |
| Backhoe          | No     | 40       |          | 77.6   | 235      | 0         |

### Results

|                  |       | Calculated (dBA) |      | N    | Noise Limits (dBA) |         |     |
|------------------|-------|------------------|------|------|--------------------|---------|-----|
|                  |       |                  |      | Day  |                    | Evening | ]   |
| Equipment        |       | *Lmax            | Leq  | Lmax | Leq                | Lmax    | Leq |
| Excavator        |       | 67.3             | 63.3 | N/A  | N/A                | N/A     | N/A |
| Grader           |       | 71.6             | 67.6 | N/A  | N/A                | N/A     | N/A |
| Dozer            |       | 68.2             | 64.2 | N/A  | N/A                | N/A     | N/A |
| Tractor          |       | 70.6             | 66.6 | N/A  | N/A                | N/A     | N/A |
| Front End Loader |       | 65.7             | 61.7 | N/A  | N/A                | N/A     | N/A |
| Backhoe          |       | 64.1             | 60.1 | N/A  | N/A                | N/A     | N/A |
|                  | Total | 72               | 72   | N/A  | N/A                | N/A     | N/A |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Grading

---- Receptor #2 ----

| Description    | Land Use    | Daytime | Evening | Night |
|----------------|-------------|---------|---------|-------|
| Homes to North | Residential | 68.4    | 68.4    | 68.4  |

|                  |        | Е        | Equipment |        |          |           |
|------------------|--------|----------|-----------|--------|----------|-----------|
|                  |        |          | Spec      | Actual | Receptor | Estimated |
|                  | Impact |          | Lmax      | Lmax   | Distance | Shielding |
| Description      | Device | Usage(%) | (dBA)     | (dBA)  | (feet)   | (dBA)     |
| Excavator        | No     | 40       |           | 80.7   | 535      | 0         |
| Grader           | No     | 40       | 85        |        | 535      | 0         |
| Dozer            | No     | 40       |           | 81.7   | 535      | 0         |
| Tractor          | No     | 40       | 84        |        | 535      | 0         |
| Front End Loader | No     | 40       |           | 79.1   | 535      | 0         |
| Backhoe          | No     | 40.0     |           | 77.6   | 535      | 0         |

### Results

|                  |       | Calculated (dBA) |      | Noise Limits (dBA) |     |         |     |
|------------------|-------|------------------|------|--------------------|-----|---------|-----|
|                  |       |                  |      | Day                |     | Evening |     |
| Equipment        |       | *Lmax            | Leq  | Lmax               | Leq | Lmax    | Leq |
| Excavator        |       | 60.1             | 56.1 | N/A                | N/A | N/A     | N/A |
| Grader           |       | 64.4             | 60.4 | N/A                | N/A | N/A     | N/A |
| Dozer            |       | 61.1             | 57.1 | N/A                | N/A | N/A     | N/A |
| Tractor          |       | 63.4             | 59.4 | N/A                | N/A | N/A     | N/A |
| Front End Loader |       | 58.5             | 54.5 | N/A                | N/A | N/A     | N/A |
| Backhoe          |       | 57.0             | 53.0 | N/A                | N/A | N/A     | N/A |
|                  | Total | 64               | 65   | N/A                | N/A | N/A     | N/A |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Backhoe

Case Description: Griswold Residential - Grading

| •                             |                         |                            | •                      |                       |          |             |           |
|-------------------------------|-------------------------|----------------------------|------------------------|-----------------------|----------|-------------|-----------|
| Description<br>Homes to South | Land Use<br>Residential | Baselines<br>Daytime<br>68 | (dBA)<br>Evening<br>68 | Rece<br>Night<br>68.4 | ptor #3  |             |           |
|                               |                         |                            |                        | Equipme               | nt       |             |           |
|                               |                         |                            |                        | Spec                  | Actual   | Receptor    | Estimated |
|                               |                         | Impact                     |                        | Lmax                  | Lmax     | Distance    | Shielding |
| Description                   |                         | Device                     | Usage(%)               | (dBA)                 | (dBA)    | (feet)      | (dBA)     |
| Excavator                     |                         | No                         | 40 ′                   | ,                     | 80.7     | ` 575       | Ò         |
| Grader                        |                         | No                         | 40                     | 85                    |          | 575         | 0         |
| Dozer                         |                         | No                         | 40                     |                       | 81.7     | 575         | 0         |
| Tractor                       |                         | No                         | 40                     | 84                    |          | 575         | 0         |
| Front End Loader              |                         | No                         | 40                     |                       | 79.1     | 575         | 0         |
| Backhoe                       |                         | No                         | 40                     |                       | 77.6     | 575         | 0         |
|                               |                         |                            |                        | Results               |          |             |           |
|                               |                         | Calculate                  | d (dBA)                |                       | Noise Li | imits (dBA) |           |
|                               |                         |                            | ,                      | Day                   |          | Evening     |           |
| Equipment                     |                         | *Lmax                      | Leq                    | Lmax                  | Leq      | Lmax        | Leq       |
| Excavator                     |                         | 59.5                       | 55.5                   | N/A                   | N/A      | N/A         | N/A       |
| Grader                        |                         | 63.8                       | 59.8                   | N/A                   | N/A      | N/A         | N/A       |
| Dozer                         |                         | 60.5                       | 56.5                   | N/A                   | N/A      | N/A         | N/A       |
| Tractor                       |                         | 62.8                       | 58.8                   | N/A                   | N/A      | N/A         | N/A       |
| Front End Loader              |                         | 57.9                       | 53.9                   | N/A                   | N/A      | N/A         | N/A       |
|                               |                         |                            |                        |                       |          |             |           |

56.3

64

Total

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

52.4

65

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Building Construction

---- Receptor #1 ----

|                              | Baselines (dBA) |         |         |       |  |
|------------------------------|-----------------|---------|---------|-------|--|
| Description                  | Land Use        | Daytime | Evening | Night |  |
| Nearest Homes to West & East | Residential     | 68.4    | 68.4    | 68.4  |  |

|                  |        |          | Equipmer | nt     |          |           |
|------------------|--------|----------|----------|--------|----------|-----------|
|                  |        |          | Spec     | Actual | Receptor | Estimated |
|                  | Impact |          | Lmax     | Lmax   | Distance | Shielding |
| Description      | Device | Usage(%) | (dBA)    | (dBA)  | (feet)   | (dBA)     |
| Crane            | No     | 16       |          | 80.6   | 235      | 0         |
| Gradall          | No     | 40       |          | 83.4   | 235      | 0         |
| Gradall          | No     | 40       |          | 83.4   | 235      | 0         |
| Gradall          | No     | 40       |          | 83.4   | 235      | 0         |
| Tractor          | No     | 40       | 84       |        | 235      | 0         |
| Front End Loader | No     | 40       |          | 79.1   | 235      | 0         |
| Backhoe          | No     | 40       |          | 77.6   | 235      | 0         |

|                  |       | Results    |                  |      |         |                    |     |
|------------------|-------|------------|------------------|------|---------|--------------------|-----|
|                  |       | Calculated | Calculated (dBA) |      | Noise I | Noise Limits (dBA) |     |
|                  |       |            |                  | Day  |         | Evening            |     |
| Equipment        |       | *Lmax      | Leq              | Lmax | Leq     | Lmax               | Leq |
| Crane            |       | 67.1       | 59.1             | N/A  | N/A     | N/A                | N/A |
| Gradall          |       | 70.00      | 66.00            | N/A  | N/A     | N/A                | N/A |
| Gradall          |       | 70.00      | 66.00            | N/A  | N/A     | N/A                | N/A |
| Gradall          |       | 70.00      | 66.00            | N/A  | N/A     | N/A                | N/A |
| Tractor          |       | 70.6       | 66.6             | N/A  | N/A     | N/A                | N/A |
| Front End Loader |       | 65.7       | 61.7             | N/A  | N/A     | N/A                | N/A |
| Backhoe          |       | 64.1       | 60.1             | N/A  | N/A     | N/A                | N/A |
|                  | Total | 71         | 73               | N/A  | N/A     | N/A                | N/A |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Building Construction

| Description<br>Homes to North | Ba<br>Land Use<br>Residential | selines (d<br>Daytime<br>68.4 | •        | <b>Rece</b> Night 68.4 | ptor #2   | -        |           |
|-------------------------------|-------------------------------|-------------------------------|----------|------------------------|-----------|----------|-----------|
|                               |                               |                               |          | Equipmer               | nt        |          |           |
|                               |                               |                               |          | Spec                   | Actual    | Receptor | Estimated |
|                               |                               | Impact                        |          | Lmax                   | Lmax      | Distance | Shielding |
| Description                   |                               | Device                        | Usage(%) | (dBA)                  | (dBA)     | (feet)   | (dBA)     |
| Crane                         |                               | No                            | 16       |                        | 80.6      | 535      | 0         |
| Gradall                       |                               | No                            | 40       |                        | 83.4      | 535      | 0         |
| Gradall                       |                               | No                            | 40       |                        | 83.4      | 535      | 0         |
| Gradall                       |                               | No                            | 40       |                        | 83.4      | 535      | 0         |
| Tractor                       |                               | No                            | 40       | 84                     |           | 535      | 0         |
| Front End Loader              |                               | No                            | 40       |                        | 79.1      | 535      | 0         |
| Backhoe                       |                               | No                            | 40       |                        | 77.6      | 535      | 0         |
|                               |                               |                               |          | Results                |           |          |           |
|                               | Ca                            | lculated (c                   | IBA)     | Noi                    | se Limits | (dBA)    |           |
|                               |                               | ,                             | ,        | Day                    |           | Evening  |           |
| Equipment                     |                               | *Lmax                         | Leq      | Lmax                   | Leq       | Lmax     | Leq       |
| Crane                         |                               | 60.0                          | 52.0     | N/A                    | N/A       | N/A      | N/A       |
| Gradall                       |                               | 62.8                          | 58.8     | N/A                    | N/A       | N/A      | N/A       |
| Gradall                       |                               | 62.8                          | 58.8     | N/A                    | N/A       | N/A      | N/A       |
| Gradall                       |                               | 62.8                          | 58.8     | N/A                    | N/A       | N/A      | N/A       |
| Tractor                       |                               | 63.4                          | 59.4     | N/A                    | N/A       | N/A      | N/A       |
| Front End Loader              |                               | 58.5                          | 54.5     | N/A                    | N/A       | N/A      | N/A       |
| Backhoe                       |                               | 57.0                          | 53.0     | N/A                    | N/A       | N/A      | N/A       |
|                               | Total                         | 63                            | 66       | N/A                    | N/A       | N/A      | N/A       |

\*Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Backhoe

Case Description: Griswold Residential - Building Construction

|                            |                         | Baseline        | ` ,             |               | ptor #3  |            |           |
|----------------------------|-------------------------|-----------------|-----------------|---------------|----------|------------|-----------|
| Description Homes to South | Land Use<br>Residential | Daytime<br>68.4 | Evening<br>68.4 | Night<br>68.4 |          |            |           |
| Homes to South             | Residential             | 00.4            | 00.4            | 00.4          |          |            |           |
|                            |                         |                 |                 | Equipmer      | nt       |            |           |
|                            |                         |                 |                 | Spec          | Actual   | Receptor   | Estimated |
|                            |                         | Impact          |                 | Lmax          | Lmax     | Distance   | Shielding |
| Description                |                         | Device          | Usage(%)        | (dBA)         | (dBA)    | (feet)     | (dBA)     |
| Crane                      |                         | No              | 16              |               | 80.6     | 575        | 0         |
| Gradall                    |                         | No              | 40              |               | 83.4     | 575        | 0         |
| Gradall                    |                         | No              | 40              |               | 83.4     | 575        | 0         |
| Gradall                    |                         | No              | 40              |               | 83.4     | 575        | 0         |
| Tractor                    |                         | No              | 40              | 84            |          | 575        | 0         |
| Front End Loader           |                         | No              | 40              |               | 79.1     | 575        | 0         |
| Backhoe                    |                         | No              | 40              |               | 77.6     | 575        | 0         |
|                            |                         |                 |                 | Results       |          |            |           |
|                            |                         | Calculate       | ed (dBA)        |               | Noise Li | mits (dBA) |           |
|                            |                         |                 |                 | Day           |          | Evening    |           |
| Equipment                  |                         | *Lmax           | Leq             | Lmax          | Leq      | Lmax       | Leq       |
| Crane                      |                         | 59.3            | 51.4            | N/A           | N/A      | N/A        | N/A       |
| Gradall                    |                         | 62.2            | 58.2            | N/A           | N/A      | N/A        | N/A       |
| Gradall                    |                         | 62.2            | 58.2            | N/A           | N/A      | N/A        | N/A       |
| Gradall                    |                         | 62.2            | 58.2            | N/A           | N/A      | N/A        | N/A       |
| Tractor                    |                         | 62.8            | 58.8            | N/A           | N/A      | N/A        | N/A       |
| Front End Loader           |                         | 57.9            | 53.9            | N/A           | N/A      | N/A        | N/A       |

56.3

63

Total

52.4

65

N/A

N/A

\*Calculated Lmax is the Loudest value.

N/A

N/A

N/A

N/A

N/A

N/A

Report date: 1/15/2021

Paver

Roller

Tractor

Case Description: Griswold Residential - Paving

|  | Re | ce | ptor | #1 |  |
|--|----|----|------|----|--|
|--|----|----|------|----|--|

N/A

N/A

N/A

N/A

|             |           |                                                                                 | Rece                                                                                                                                                                    | ptor #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|-----------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Baselines | s (dBA)                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Land Use    | Daytime   | Evening                                                                         | Night                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Residential | 68.4      | 68.4                                                                            | 68.4                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |           |                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |           |                                                                                 | Equipme                                                                                                                                                                 | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |           |                                                                                 |                                                                                                                                                                         | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Receptor                                                                       | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Impact    |                                                                                 | Lmax                                                                                                                                                                    | Lmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Distance                                                                       | Shielding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Device    | Usage(%)                                                                        | (dBA)                                                                                                                                                                   | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (feet)                                                                         | (dBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | No        | 40                                                                              | ,                                                                                                                                                                       | 78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                            | Ò                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | No        | 40                                                                              |                                                                                                                                                                         | 78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | No        | 40                                                                              |                                                                                                                                                                         | 78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | No        | 40                                                                              |                                                                                                                                                                         | 78.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | No        | 50                                                                              |                                                                                                                                                                         | 77.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | No        | 20                                                                              |                                                                                                                                                                         | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 235                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | No        | 40                                                                              | 84                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 235                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |           |                                                                                 | Results                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | Calculate | ed (dBA)                                                                        |                                                                                                                                                                         | Noise L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | imits (dBA)                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |           |                                                                                 | Day                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evening                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | *Lmax     | Leq                                                                             | Lmax                                                                                                                                                                    | Leq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lmax                                                                           | Leq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 65.4      | 61.4                                                                            | N/A                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 65.4      | 61.4                                                                            | N/A                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 65.4      | 61.4                                                                            | N/A                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |           |                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             |           | Land Use Residential 68.4  Impact Device No | Impact   Device   Usage(%)   No   40   No   40   No   40   No   40   No   50   No   20   No   40   Outline   Calculated (dBA)   *Lmax   Leq   65.4   61.4   65.4   61.4 | Land Use   Daytime   Evening   Residential   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4   68.4 | Land Use   Daytime   Evening   Night   68.4   68.4   68.4   68.4   68.4   68.4 | Land Use Residential         Daytime 68.4         Evening 68.4         Night 68.4           Residential         Evening 68.4         Equipment Spec Actual Receptor Lmax Lmax Distance Device Usage(%) (dBA) (dBA) (feet)           No         40         78.8         235           No         50         77.2         235           No         20         80.0         235           No         40         84         235           No         40         84         235           No         20         80.0         235           No         40         84         235           No         40         84         235           No         20         80.0         235           No         40         84         235           No         40         84         235           No         40         84         235           No         40         84 </td |

63.8

66.6

70.6

71

Total

\*Calculated Lmax is the Loudest value.

N/A

60.8

59.6

66.6

71

Report date: 1/15/2021

Case Description: Griswold Residential - Paving

|  | Re | ce | ptor | #2 |  |
|--|----|----|------|----|--|
|--|----|----|------|----|--|

|                |             | Baselines (dBA) |         |       |  |  |
|----------------|-------------|-----------------|---------|-------|--|--|
| Description    | Land Use    | Daytime         | Evening | Night |  |  |
| Homes to North | Residential | 68.4            | 68.4    | 68.4  |  |  |

|                      |        |          | Equipmer | nt     |          |           |
|----------------------|--------|----------|----------|--------|----------|-----------|
|                      |        |          | Spec     | Actual | Receptor | Estimated |
|                      | Impact |          | Lmax     | Lmax   | Distance | Shielding |
| Description          | Device | Usage(%) | (dBA)    | (dBA)  | (feet)   | (dBA)     |
| Concrete Mixer Truck | No     | 40       |          | 78.8   | 535      | 0         |
| Concrete Mixer Truck | No     | 40       |          | 78.8   | 535      | 0         |
| Concrete Mixer Truck | No     | 40       |          | 78.8   | 535      | 0         |
| Concrete Mixer Truck | No     | 40       |          | 78.8   | 535      | 0         |
| Paver                | No     | 50       |          | 77.2   | 535      | 0         |
| Roller               | No     | 20       |          | 80     | 535      | 0         |
| Tractor              | No     | 40       | 84       |        | 535      | 0         |

|                      |       |                |      | Results |       |             |            |
|----------------------|-------|----------------|------|---------|-------|-------------|------------|
|                      |       | Calculated (dB | A)   |         | Noise | Limits (dB/ | <b>A</b> ) |
|                      |       |                |      | Day     |       | Evening     | l          |
| Equipment            |       | *Lmax          | Leq  | Lmax    | Leq   | Lmax        | Leq        |
| Concrete Mixer Truck |       | 58.2           | 54.2 | N/A     | N/A   | N/A         | N/A        |
| Concrete Mixer Truck |       | 58.2           | 54.2 | N/A     | N/A   | N/A         | N/A        |
| Concrete Mixer Truck |       | 58.2           | 54.2 | N/A     | N/A   | N/A         | N/A        |
| Concrete Mixer Truck |       | 58.2           | 54.2 | N/A     | N/A   | N/A         | N/A        |
| Paver                |       | 56.6           | 53.6 | N/A     | N/A   | N/A         | N/A        |
| Roller               |       | 59.4           | 52.4 | N/A     | N/A   | N/A         | N/A        |
| Tractor              |       | 63.4           | 59.4 | N/A     | N/A   | N/A         | N/A        |
|                      | Total | 63             | 64   | N/A     | N/A   | N/A         | N/A        |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Paving

|  | Rece | ptor | #3 |  |
|--|------|------|----|--|
|--|------|------|----|--|

|                      |             |           |          | Rece    | ptor #3 |             |           |
|----------------------|-------------|-----------|----------|---------|---------|-------------|-----------|
|                      |             | Baselines | (dBA)    |         |         |             |           |
| Description          | Land Use    | Daytime   | Evening  | Night   |         |             |           |
| Homes to South       | Residential | 68.4      | 68.4     | 68.4    |         |             |           |
|                      |             |           |          |         |         |             |           |
|                      |             |           |          | Equipme | nt      |             |           |
|                      |             |           |          | Spec    | Actual  | Receptor    | Estimated |
|                      |             | Impact    |          | Lmax    | Lmax    | Distance    | Shielding |
| Description          |             | Device    | Usage(%) | (dBA)   | (dBA)   | (feet)      | (dBA)     |
| Concrete Mixer Truck |             | No        | 40       | ,       | 78.8    | ` 575       | Ò         |
| Concrete Mixer Truck |             | No        | 40       |         | 78.8    | 575         | 0         |
| Concrete Mixer Truck |             | No        | 40       |         | 78.8    | 575         | 0         |
| Concrete Mixer Truck |             | No        | 40       |         | 78.8    | 575         | 0         |
| Paver                |             | No        | 50       |         | 77.2    | 575         | 0         |
| Roller               |             | No        | 20       |         | 80      | 575         | 0         |
| Tractor              |             | No        | 40       | 84      | 00      | 575         | 0         |
| Tradioi              |             | 110       | 40       | 0-1     |         | 010         | Ū         |
|                      |             |           |          | Results |         |             |           |
|                      |             | Calculate | d (dBA)  |         | Noise L | imits (dBA) |           |
|                      |             |           | ,        | Day     |         | Evening     |           |
| Equipment            |             | *Lmax     | Leq      | Lmax    | Leq     | Lmax        | Leq       |
| Concrete Mixer Truck |             | 57.6      | 53.6     | N/A     | N/A     | N/A         | N/A       |
| Concrete Mixer Truck |             | 57.6      | 53.6     | N/A     | N/A     | N/A         | N/A       |
| Concrete Mixer Truck |             | 57.6      | 53.6     | N/A     | N/A     | N/A         | N/A       |
| Concrete Mixer Truck |             | 57.6      | 53.6     | N/A     | N/A     | N/A         | N/A       |
| Paver                |             | 56.0      | 53.0     | N/A     | N/A     | N/A         | N/A       |
| Roller               |             | 58.8      | 51.8     | N/A     | N/A     | N/A         | N/A       |
| Tractor              |             | 62.8      | 58.8     | N/A     | N/A     | N/A         | N/A       |
|                      | Total       | 63        | 63       | N/A     | N/A     | N/A         | N/A       |

\*Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Stationary Equipment

---- Receptor #1 ----

| Dagalinaa | / M D // \ |  |
|-----------|------------|--|
| Baselines | (UBA)      |  |

Description Land Use Daytime Evening Night At 100 Feet Residential 68.4 68.4 68.4

Equipment

|                               |        |          | Equipin | CIIL   |          |           |
|-------------------------------|--------|----------|---------|--------|----------|-----------|
|                               |        |          | Spec    | Actual | Receptor | Estimated |
|                               | Impact |          | Lmax    | Lmax   | Distance | Shielding |
| Description                   | Device | Usage(%) | (dBA)   | (dBA)  | (feet)   | (dBA)     |
| Compressor (air)              | No     | 40       |         | 77.7   | 100      | 0         |
| Generator (<25KVA, VMS signs) | No     | 50       |         | 72.8   | 100      | 0         |
| Welder / Torch                | No     | 40       |         | 74     | 100      | 0         |

### Results

|                               | (     | Calculated (dBA | <b>(</b> ) | No   | se Limits | (dBA)   |     |
|-------------------------------|-------|-----------------|------------|------|-----------|---------|-----|
|                               |       |                 |            | Day  |           | Evening |     |
| Equipment                     |       | *Lmax           | Leq        | Lmax | Leq       | Lmax    | Leq |
| Compressor (air)              |       | 72              | 68         | N/A  | N/A       | N/A     | N/A |
| Generator (<25KVA, VMS signs) |       | 67              | 64         | N/A  | N/A       | N/A     | N/A |
| Welder / Torch                |       | 68              | 64         | N/A  | N/A       | N/A     | N/A |
|                               | Total | 71.6            | 70         | N/A  | N/A       | N/A     | N/A |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 1/15/2021

Case Description: Griswold Residential - Stationary Equipment

---- Receptor #2 ----

| Baselines ( | dBA) | į |
|-------------|------|---|
|-------------|------|---|

Description Land Use Daytime Evening Night
At 160 Feet Residential 68.4 68.4 68.4

Equipment

|                               | Impact |          | <b>Spec</b><br>Lmax | Actual<br>Lmax | •      | Estimated Shielding |
|-------------------------------|--------|----------|---------------------|----------------|--------|---------------------|
| Description                   | Device | Usage(%) | (dBA)               | (dBA)          | (feet) | (dBA)               |
| Compressor (air)              | No     | 40.0     |                     | 77.7           | 160    | 0                   |
| Generator (<25KVA, VMS signs) | No     | 50       |                     | 72.8           | 160    | 0                   |
| Welder / Torch                | No     | 40.0     |                     | 74             | 160    | 0                   |

### Results

|                               |       | Calculated | (dBA) |      | Noise Li | Noise Limits (dBA) |     |  |
|-------------------------------|-------|------------|-------|------|----------|--------------------|-----|--|
|                               |       |            |       | Day  |          | Evening            |     |  |
| Equipment                     |       | *Lmax      | Leq   | Lmax | Leq      | Lmax               | Leq |  |
| Compressor (air)              |       | 68         | 64    | N/A  | N/A      | N/A                | N/A |  |
| Generator (<25KVA, VMS signs) |       | 63         | 60    | N/A  | N/A      | N/A                | N/A |  |
| Welder / Torch                |       | 64         | 60    | N/A  | N/A      | N/A                | N/A |  |
|                               | Total | 68         | 66    | N/A  | N/A      | N/A                | N/A |  |

<sup>\*</sup>Calculated Lmax is the Loudest value.

## ---- Receptor #3 ----

| Basel |  |
|-------|--|
|       |  |
|       |  |

| Description | Land Use    | Daytime | Evening | Night |
|-------------|-------------|---------|---------|-------|
| At 235 Feet | Residential | 68.4    | 68.4    | 68.4  |

### Equipment

|                               |        |          | Spec  | Actual | Receptor | Estimated |
|-------------------------------|--------|----------|-------|--------|----------|-----------|
|                               | Impact |          | Lmax  | Lmax   | Distance | Shielding |
| Description                   | Device | Usage(%) | (dBA) | (dBA)  | (feet)   | (dBA)     |
| Compressor (air)              | No     | 40.0     |       | 77.7   | 235      | 0         |
| Generator (<25KVA, VMS signs) | No     | 50.0     |       | 72.8   | 235      | 0         |
| Welder / Torch                | No     | 40.0     |       | 74     | 235      | 0         |

### Results

|                               |       | Calculated | (dBA) |      | Noise | Limits (dBA) | )   |
|-------------------------------|-------|------------|-------|------|-------|--------------|-----|
|                               |       |            |       | Day  |       | Evening      |     |
| Equipment                     |       | *Lmax      | Leq   | Lmax | Leq   | Lmax         | Leq |
| Compressor (air)              |       | 64         | 60    | N/A  | N/A   | N/A          | N/A |
| Generator (<25KVA, VMS signs) |       | 59         | 56    | N/A  | N/A   | N/A          | N/A |
| Welder / Torch                |       | 60.6       | 57    | N/A  | N/A   | N/A          | N/A |
|                               | Total | 64         | 63    | N/A  | N/A   | N/A          | N/A |

<sup>\*</sup>Calculated Lmax is the Loudest value.

### **APPENDIX D**

FHWA Model Traffic Noise Calculation Printouts

Scenario: EXISTING CONDITIONS

|                     | <i>&gt;</i>   | /ehicle Mix | 1 (Collecto | Ţ.     |        | Vehicle Mix 2 (Major) | < 2 (Major) | _      | ×      | /ehicle Mix 3 (SR-39) | 3 (SR-39 |        |
|---------------------|---------------|-------------|-------------|--------|--------|-----------------------|-------------|--------|--------|-----------------------|----------|--------|
| Vehicle Type Day    |               | Evening     | Night       | Daily  | Day    | Evening               | Night       | Daily  | Day    | / Evenin N            | Night    | Daily  |
| utomobiles          | 73.60% 13.60% | 13.60%      | 10.22%      | 97.42% | %05.69 | 12.90%                | %09.6       | 92.00% | 66.02% | 13.53%                | 15.83%   | 95.38% |
| 1edium Trucks 0.90% | 0.90%         | %06.0       | 0.04%       | 1.84%  | 1.44%  | %90.0                 | 1.50%       | 3.00%  | 1.95%  | 0.35%                 | 0.99%    | 3.29%  |
| leavy Trucks 0.35%  | 0.35%         | % 0.04%     | _           | 0.74%  | 2.40%  | 0.10%                 | 2.50%       | 2.00%  | 0.73%  | 0.07%                 | 0.53%    | 1.33%  |

|                                | า: Major                              | to to                        | eet)                            | Ldn CNEL                                             | 35                  | 9/            | 164           | 353                  |
|--------------------------------|---------------------------------------|------------------------------|---------------------------------|------------------------------------------------------|---------------------|---------------|---------------|----------------------|
|                                | ssificatior                           | Distance                     | our (in f                       | Ldn                                                  | 33                  | 20            | 151           | 326                  |
|                                | Roadway Classification: Major         | Centerline Distance to       | Noise Contour (in feet)         |                                                      | 64.14 64.77 70 dBA: | 47.92 65 dBA: | 57.20 60 dBA: | <b>65.55</b> 55 dBA: |
| e                              | Ä                                     | ft)                          |                                 | Ldn CNEL                                             | 64.77               | 47.92         | 57.20         |                      |
| ino Avent                      |                                       | st: 63.71                    |                                 | Ldn                                                  | 64.14               | 47.89         | 57.17         | 65.02                |
| North of San Bernardino Avenue | ix: 2                                 | (Equiv. Lane Dist: 63.71 ft) | <b>Unmitigated Noise Levels</b> | Leq Night                                            | 55.71               | 41.73         | 51.01         | 57.10                |
| North of 8                     | Vehicle Mix: 2                        |                              | itigated №                      | Led Eve.                                             | 61.76               | 32.52         | 41.81         | 61.81                |
|                                | ,                                     | TERLINE                      | Unm                             | Leq Day I                                            | 63.05               | 40.30         | 49.59         | 63.27                |
| Segment:                       | Vehicle Speed: 40 MPH                 | S AT 70 FEET FROM CENTERLINE |                                 | Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | 65.43               | 59.51         | 66.58         | 69.51                |
|                                | Vehicle Spe                           | r 70 feet f                  |                                 | Finite Adj                                           | -1.20               | -1.20         | -1.20         | Total:               |
|                                |                                       | ETERS AT                     | stments                         | Dist Adj.                                            | -1.68               | -1.68         | -1.68         |                      |
| Avenue                         | 50 Vehicles                           | NOISE PARAMETERS             | Noise Adjustmer                 | REMEL Traffic Adj. 🛾 Dist 🗚                          | 0.95                | -13.92        | -11.70        |                      |
| Irwindale                      | raffic: 183                           | ION                          |                                 | REMELI                                               | 67.36               | 76.31         | 81.16         |                      |
| Road Name: Irwindale Avenue    | Average Daily Traffic: 18350 Vehicles |                              |                                 | Vehicle Type                                         | Automobiles         | Medium Trucks | Heavy Trucks  | -                    |

| Road Name:      | Road Name: Irwindale Avenue           | nue          |                   |            | Segment:                                           |                 | South of       | South of San Bernardino Avenue  | lino Aven | ine      |                               |            |          |
|-----------------|---------------------------------------|--------------|-------------------|------------|----------------------------------------------------|-----------------|----------------|---------------------------------|-----------|----------|-------------------------------|------------|----------|
| Average Daily T | Average Daily Traffic: 19150 Vehicles | hicles       |                   | /ehicle Sp | Vehicle Speed: 40 MPH                              | I               | Vehicle Mix: 2 | ix: 2                           |           | ŭ        | Roadway Classification: Major | sificatior | ı: Major |
|                 | /A BSION                              | <b>ARAME</b> | TERS AT           | 70 FEET    | NOISE PARAMETERS AT 70 FEET FROM CENTERLINE        | <b>JTERLINE</b> |                | (Equiv. Lane Dist: 63.71 ft)    | st: 63.71 |          | Centerline Distance to        | Distance   | to to    |
|                 | Nois                                  | e Adjus      | Noise Adjustments |            |                                                    | Unr             | iitigated      | <b>Unmitigated Noise Levels</b> |           |          | Noise Contour (in feet)       | our (in f  | eet)     |
| Vehicle Type    | REMELT                                | Adj. [       | Dist Adj.         | Finite Adj | dj. Finite Adj Leg Peak Leg Day Leg Eve. Leg Night | Led Day         | Led Eve.       | Led Night                       | Ldn       | Ldn CNEL |                               | Ldn        | Ldn CNEL |
| Automobiles     | . 92'29                               | 1.13         | -1.68             | -1.20      | 65.61                                              | 63.24           | 61.95          | 55.89                           | 64.32     | 64.95    | 64.32 64.95 70 dBA:           | 34         | 36       |
| Medium Trucks   | 76.31 -13.73                          | 3.73         | -1.68             | -1.20      | 59.70                                              | 40.49           | 32.71          | 41.92                           | 48.07     | 48.10    | 48.10 65 dBA:                 | 72         | 78       |
| Heavy Trucks    | 81.16 -11.51                          | 1.51         | -1.68             | -1.20      | 92'99                                              | 49.77           | 41.99          | 51.20                           | 57.35     |          | 57.39 60 dBA:                 | 156        | 169      |
|                 |                                       |              |                   | Total:     | 69.69                                              | 63.45           | 61.99          | 57.29                           | 65.20     | 65.73    | <b>65.20 65.73</b> 55 dBA:    | 335        | 363      |
| Road Name:      | Vincent Avenue                        | e<br>e       |                   |            | Segment:                                           |                 | North of §     | North of San Bernardino Avenue  | ino Aven  | en       |                               |            |          |

|                                       |              | 0                |                   |            | ::::::::::::::::::::::::::::::::::::::: |                 |                |                                                                            | 05:0::0                    |       |                                   |              |
|---------------------------------------|--------------|------------------|-------------------|------------|-----------------------------------------|-----------------|----------------|----------------------------------------------------------------------------|----------------------------|-------|-----------------------------------|--------------|
| Average Daily Traffic: 18100 Vehicles | raffic: 1810 | 0 Vehicles       |                   | Vehicle Sp | Vehicle Speed: 35 MPH                   |                 | Vehicle Mix: 2 | lix: 2                                                                     | Roa                        | adway | Roadway Classification: Secondary | Secondary    |
|                                       | SION         | NOISE PARAMETERS | <b>IETERS A</b>   | T 50 FEET  | AT 50 FEET FROM CENTERLINE              | <b>NTERLINE</b> |                | (Equiv. Lane Dist: 45.38 ft)                                               | 45.38 ft)                  | ŭ     | Centerline Distance to            | nce to       |
|                                       |              | Noise Adj        | Noise Adjustments |            |                                         | Unn             | nitigated I    | <b>Unmitigated Noise Levels</b>                                            |                            | Ž     | Noise Contour (in feet)           | in feet)     |
| Vehicle Type                          | REMEL Tr     | affic Adj.       | Dist Adj.         | Finite Adj | Leq Peak                                | Led Day         | Leg Eve.       | REMELTraffic Adj. Dist Adj. Finite Adj Leq Peak Leq Day Leq Eve. Leq Night | Ldn CNEL                   | IEI   | P                                 | Ldn CNEL     |
| Automobiles                           | 65.11        | 1.47             | 0.53              | -1.20      | 65.91                                   | 63.54           | 62.24          |                                                                            | 64.62 65.                  | .25 7 | 65.25 70 dBA: 2                   | ;e 28        |
| Medium Trucks                         | 74.83        | -13.40           | 0.53              | -1.20      | 92.09                                   | 41.55           | 33.77          |                                                                            | 49.13 49.                  | .17 6 | 49.17 65 dBA: 5                   | <b>26</b> 60 |
| Heavy Trucks                          | 80.05        | -11.18           | 0.53              | -1.20      | 68.20                                   | 51.21           | 43.42          | 52.63                                                                      | 58.79 58.                  | .82   | 58.82 60 dBA: <b>120</b>          | 130          |
|                                       |              |                  |                   | Total:     | 70.68                                   | 63.81           | 62.30          | 57.92                                                                      | <b>65.72 66.23</b> 55 dBA: | .23   |                                   | 259 280      |

Scenario: EXISTING CONDITIONS

|                                       |                         |                       |                 |             |                            |                  |                |                                 |               | Site Col | Site Conditions: Soft             | <b>±</b>  |        |
|---------------------------------------|-------------------------|-----------------------|-----------------|-------------|----------------------------|------------------|----------------|---------------------------------|---------------|----------|-----------------------------------|-----------|--------|
| Road Name:                            | Vincent Avenue          | venue                 |                 |             | Segment:                   |                  | outh of S      | South of San Bernardino Avenue  | ino Aven      | ne       |                                   |           |        |
| Average Daily Traffic: 18500 Vehicles | raffic: 1850            | 0 Vehicles            |                 | Vehicle Sp  | Vehicle Speed: 35 MPH      | ^                | Vehicle Mix: 2 | k: 2                            |               | Roadwa   | Roadway Classification: Secondary | ion: Sec  | ondary |
|                                       | SION                    | NOISE PARAMETERS      |                 | r 50 FEET   | AT 50 FEET FROM CENTERLINE | <b>ITERLINE</b>  | (Eo            | (Equiv. Lane Dist:              | st: 45.38 ft) |          | Centerline Distance to            | istance   | t      |
|                                       |                         | Noise Adjustments     | ustments        |             |                            | Unmi             | tigated N      | <b>Unmitigated Noise Levels</b> |               |          | Noise Contour (in feet)           | ur (in fe | et)    |
| Vehicle Type                          | REMEL Traffic Adj.      | affic Adj.            | Dist Adj.       | Finite Adj  | Leq Peak                   | Led Day L        | Led Eve.       | Led Night                       | Ldn           | CNEL     |                                   | Ldn       | CNEL   |
| Automobiles                           | 65.11                   | 1.56                  | 0.53            | -1.20       | 00'99                      | 63.63            | 62.34          | 56.28                           | 64.71         | 65.34    | 70 dBA:                           | 56        | 28     |
| Medium Trucks                         | 74.83                   | -13.30                | 0.53            | -1.20       | 60.85                      | 41.65            | 33.86          | 43.07                           | 49.23         | 49.26    | 65 dBA:                           | 22        | 61     |
| Heavy Trucks                          | 80.05                   | -11.08                | 0.53            | -1.20       | 68.29                      | 51.30            | 43.52          | 52.73                           | 58.88         | 58.92    | 60 dBA:                           | 122       | 132    |
|                                       |                         |                       |                 | Total:      | 70.77                      | 63.90            | 62.40          | 58.01                           | 65.82         | 66.32    | 55 dBA:                           | 263       | 284    |
| Road Name:                            | San Berna               | San Bernardino Avenue | une             |             | Segment:                   |                  | Vest of In     | West of Irwindale Avenue        | nue           |          |                                   |           |        |
| Average Daily Traffic: 17300 Vehicles | raffic: 1730            | 0 Vehicles            |                 | Vehicle Sp  | Vehicle Speed: 40 MPH      |                  | Vehicle Mix:   | k: 2                            |               | Roadwa   | Roadway Classification: Secondary | ion: Sec  | ondary |
|                                       | SION                    | NOISE PARAMETERS      |                 | AT 100 FEET | FROM CENTERLINE            | NTERLINE         |                | (Equiv. Lane Dist:              | st: 97.77     | tt)      | Centerline Distance to            | istance   | to     |
|                                       |                         | Noise Adjustments     | ustments        |             |                            | Unmi             | tigated N      | <b>Unmitigated Noise Levels</b> |               |          | Noise Contour (in feet)           | ur (in fe | et)    |
| Vehicle Type                          | REMEL Traffic Adj.      | affic Adj.            | Dist Adj.       | Finite Adj  | Leg Peak                   | Leq Day Leq Eve. |                | Leq Night                       | Ldn           | CNEL     |                                   | Ldn       | CNEL   |
| Automobiles                           | 92'29                   | 69.0                  | -4.47           | -1.20       | 62.38                      | 60.01            | 58.72          | 52.66                           | 61.09         | 61.72    | 70 dBA:                           | 29        | 32     |
| Medium Trucks                         | 76.31                   | -14.17                | -4.47           | -1.20       | 56.47                      | 37.26            | 29.48          | 38.68                           | 44.84         | 44.87    | 65 dBA:                           | 63        | 89     |
| Heavy Trucks                          | 81.16                   | -11.96                | -4.47           | -1.20       | 63.53                      | 46.54            | 38.76          | 47.97                           | 54.12         | 54.16    | 60 dBA:                           | 135       | 147    |
|                                       |                         |                       |                 | Total:      | 66.46                      | 60.22            | 58.76          | 54.06                           | 61.97         | 62.50    | 55 dBA:                           | 292       | 316    |
| Road Name:                            | San Berna               | San Bernardino Avenue | une             |             | Segment:                   |                  | Vest of Pi     | West of Project Driveway        | vay           |          |                                   |           |        |
| Average Daily Traffic: 15400 Vehicles | raffic: 1540            | 0 Vehicles            |                 | Vehicle Sp  | Vehicle Speed: 40 MPH      |                  | Vehicle Mix: 2 | <br>                            |               | Roadwa   | Roadway Classification: Secondary | ion: Sec  | ondary |
|                                       | SION                    | NOISE PARAMETERS      | ETERS           | F 90 FEET   | AT 90 FEET FROM CENTERLINE | <b>ITERLINE</b>  | (Eo            | (Equiv. Lane Dist:              | st: 87.52 ft) |          | Centerline Distance to            | istance   | ᅌ      |
|                                       |                         | Noise Adjustments     |                 |             |                            | Unmi             | tigated N      | Unmitigated Noise Levels        |               |          | Noise Contour (in feet)           | ur (in fe | et)    |
| Vehicle Type                          | REMEL Traffic Adj.      | affic Adj.            | Dist Adj.       | Finite Adj  | Leg Peak                   | Led Day L        | Led Eve.       | Leg Night                       | Ldn           | CNEL     |                                   | Ldn       | CNEL   |
| Automobiles                           | 67.36                   | 0.19                  | -3.75           | -1.20       | 62.60                      | 60.22            | 58.93          | 52.88                           | 61.31         | 61.94    | 70 dBA:                           | 27        | 59     |
| Medium Trucks                         | 76.31                   | -14.68                | -3.75           | -1.20       | 56.68                      | 37.47            | 29.69          | 38.90                           | 45.06         | 45.09    | 65 dBA:                           | 28        | 63     |
| Heavy Trucks                          | 81.16                   | -12.46                | -3.75           | -1.20       | 63.75                      | 46.76            | 38.98          | 48.19                           | 54.34         | 54.37    | 60 dBA:                           | 126       | 137    |
|                                       |                         |                       |                 | Total:      | 89.99                      | 60.44            | 58.98          | 54.27                           | 62.19         | 62.72    | 55 dBA:                           | 271       | 294    |
| Road Name:                            | San Berna               | San Bernardino Avenue | nue             |             | Segment:                   |                  | ast of Pr      | East of Project Driveway        | ay            |          |                                   |           |        |
| Average Daily T                       | Traffic: 15550 Vehicles | 0 Vehicles            |                 | Vehicle Sp  | Vehicle Speed: 40 MPH      |                  | Vehicle Mix:   | x: 2                            |               | Roadwa   | Roadway Classification: Secondary | ion: Sec  | ondary |
|                                       | SION                    | NOISE PARAMETERS      | <b>ETERS AT</b> | r 50 FEET   | FROM CENTERLINE            | <b>ITERLINE</b>  | (Ec            | Equiv. Lane Dist:               | 45.38         | 4        | Centerline Distance to            | istance   | t)     |
|                                       |                         | Noise Adjustmen       | ustments        |             |                            | Unmi             | tigated N      | <b>Unmitigated Noise Levels</b> |               |          | Noise Contour (in feet)           | ur (in fe | et)    |
| Vehicle Type                          | REMEL Traffic Adj.      | affic Adj.            | Dist Adj.       | Finite Adj  | Leq Peak                   | Leq Day L        | Led Eve.       | Leq Night                       | Ldn           | CNEL     |                                   | Ldn       | CNEL   |
| Automobiles                           | 92.79                   | 0.23                  | 0.53            | -1.20       | 66.92                      | 64.55            | 63.25          | 57.20                           | 65.63         | 66.26    | 70 dBA:                           | 29        | 32     |
| Medium Trucks                         | 76.31                   | -14.64                | 0.53            | -1.20       | 61.00                      | 41.80            | 34.01          | 43.22                           | 49.38         | 49.41    | 65 dBA:                           | 63        | 89     |
| Heavy Trucks                          | 81.16                   | -12.42                | 0.53            | -1.20       | 68.07                      | 51.08            | 43.30          | 52.51                           | 28.66         | 58.69    | 60 dBA:                           | 136       | 147    |
|                                       |                         |                       |                 | Total:      | 71.00                      | 64.76            | 63.30          | 28.60                           | 66.51         | 67.04    | 55 dBA:                           | 293       | 317    |

Scenario: EXISTING CONDITIONS

Project: Griswold Residential Site Conditions: Soft

Roadway Classification: Secondary East of Vincent Avenue Vehicle Mix: 2 Segment: Vehicle Speed: 40 MPH Road Name: San Bernardino Avenue Average Daily Traffic: 15050 Vehicles

| Centerline Dis<br>Centerline Dis<br>Noise Contou<br>CNEL<br>64.72 70 dBA:<br>47.87 65 dBA:<br>57.16 60 dBA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>65.50</b> 55 dBA: <b>277</b> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 3.2 ft) Centerline Noise Cont Noi | <b>5</b> 5 dBA:                 |
| 3.2 ft)  dn CNEL 39 64.72 34 47.87 12 57.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                               |
| 1 5 E 0 7 Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65.50                           |
| Ldn<br>64.09<br>47.84<br>57.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64.97                           |
| Verification   Veri   | 90'29                           |
| igatec<br>eq Eve<br>61.7<br>32.4<br>41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.77                           |
| UTERLINE  Unmi  Leq Day 1 63.01 40.26 49.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63.22                           |
| Noise Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69.46                           |
| Finite Adj<br>-1.20<br>-1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total:                          |
| ETERS A<br>Istments<br>Dist Adj.<br>-0.87<br>-0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| NOISE PARAMETERS  Noise Adjustment  Noise Adjustment  REMEL Traffic Adj. Dist Ad 67.36 0.09 -0.8 76.31 -14.78 -0.8 81.16 -12.56 -0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| NOI<br>REMELT<br>67.36<br>76.31<br>81.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
| NOISE PARAM   NOISE PARAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |

Scenario: EXISTING WITH PROJECT CONDITIONS

|                            |        | Vehicle Mix 1 | 1 (Collecto | Jr.)   |        | Vehicle Mix 2 (Major | : 2 (Major) | _      | V      | Vehicle Mix 3 (SR-39) | 3 (SR-39 | _      |
|----------------------------|--------|---------------|-------------|--------|--------|----------------------|-------------|--------|--------|-----------------------|----------|--------|
| Vehicle Type               | Day    | Evening       | Night       | Daily  | Day    | Evening              | Night       | Daily  | Day    | Evenin                | Night    | Daily  |
| Automobiles                | 73.60% | 73.60% 13.60% | 10.22%      | 97.42% | %05.69 | 12.90%               | %09.6       | 92.00% | 66.02% | 13.53% 15.83%         | 15.83%   | 95.38% |
| Medium Trucks 0.90%        | %06.0  | %06.0         | 0.04%       | 1.84%  | 1.44%  | %90.0                | 1.50%       | 3.00%  | 1.95%  | 0.35%                 | 0.99%    | 3.29%  |
| Heavy Trucks   0.35% 0.04% | 0.35%  | 0.04%         | 0.35%       | 0.74%  | 2.40%  | 0.10%                | 2.50%       | 2.00%  | 0.73%  | 0.07%                 | 0.53%    | 1.33%  |

|                                | : Major                               | to                                          | et)                             | CNEL                                                 | 35            | 9/            | 164           | 353     |
|--------------------------------|---------------------------------------|---------------------------------------------|---------------------------------|------------------------------------------------------|---------------|---------------|---------------|---------|
|                                | ssification                           | Distance                                    | our (in fe                      | Ldn                                                  | 33            | 20            | 151           | 326     |
|                                | Roadway Classification: Major         | Centerline Distance to                      | Noise Contour (in feet)         |                                                      | 64.77 70 dBA: | 47.92 65 dBA: | 57.21 60 dBA: | 55 dBA: |
| ne                             | œ                                     | ft)                                         |                                 | Ldn CNEL                                             |               | 47.92         | 57.21         | 65.55   |
| ino Aven                       |                                       | st: 63.71                                   |                                 | Ldn                                                  | 64.14         | 47.89         | 57.17         | 65.02   |
| North of San Bernardino Avenue | ix: 2                                 | (Equiv. Lane Dist: 63.71 ft)                | <b>Unmitigated Noise Levels</b> | Leq Night                                            | 55.71         | 41.73         | 51.02         | 57.11   |
| North of                       | Vehicle Mix: 2                        |                                             | itigated I                      | Led Eve.                                             | 61.76         | 32.53         | 41.81         | 61.81   |
|                                |                                       | ITERLINE                                    | Unm                             | Leq Day                                              | 90.89         | 40.31         | 49.59         | 63.27   |
| Segment:                       | Vehicle Speed: 40 MPH                 | NOISE PARAMETERS AT 70 FEET FROM CENTERLINE |                                 | Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | 65.43         | 59.51         | 66.58         | 69.51   |
|                                | /ehicle Spo                           | . 70 FEET                                   |                                 | Finite Adj                                           | -1.20         | -1.20         | -1.20         | Total:  |
|                                |                                       | <b>ETERS AT</b>                             | ustments                        | Dist Adj.                                            | -1.68         | -1.68         | -1.68         |         |
| Avenue                         | 0 Vehicles                            | SE PARAM                                    | Noise Adjustme                  | REMEL Traffic Adj. Dist A                            | 0.95          | -13.92        | -11.70        |         |
| Irwindale                      | raffic: 1836                          | SION                                        |                                 | REMEL T                                              | 96.79         | 76.31         | 81.16         |         |
| Road Name: Irwindale Avenue    | Average Daily Traffic: 18360 Vehicles |                                             |                                 | Vehicle Type                                         | Automobiles   | Medium Trucks | Heavy Trucks  |         |

| Irwindal                                                                     | Road Name: Irwindale Avenue<br>Average Daily Traffic: 19450 Vehicles |       | /ehicle Sp | Segment:<br>Vehicle Speed: 40 MPH | ii.     | South of San<br>Vehicle Mix: 2 | South of San Bernardino Avenue Vehicle Mix: 2 | lino Aven |          | Roadway Classification: Maior | sification | : Major  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------|-------|------------|-----------------------------------|---------|--------------------------------|-----------------------------------------------|-----------|----------|-------------------------------|------------|----------|
| ETERS A                                                                      | AETERS AT 70                                                         | 2     | FEET       | FROM CEN                          | TERLINE |                                | (Equiv. Lane Dist: 63.71 ft)                  | st: 63.71 |          | Centerline Distance to        | Distance   | ) to     |
| Noise Adjustments                                                            | justments                                                            |       |            |                                   | Unm     | itigated                       | <b>Unmitigated Noise Levels</b>               |           |          | Noise Contour (in feet)       | our (in f  | eet)     |
| REMEL Traffic Adj. Dist Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | Dist Adj. Finit                                                      | Finit | e Adj      | Leq Peak                          | Led Day | Led Eve.                       | Leq Night                                     | Ldn       | Ldn CNEL |                               | Ldn        | Ldn CNEL |
| - 67.36 1.20 -1.68                                                           |                                                                      | '     | -1.20      | 65.68                             | 63.31   | 62.01                          | 96.39                                         | 64.39     | 65.02    | 64.39 65.02 70 dBA:           | 34         | 37       |
| Aedium Trucks 76.31 -13.67 -1.68 -1                                          |                                                                      | 7     | -1.20      | 59.77                             | 40.56   | 32.78                          | 41.98                                         | 48.14     | 48.17    | 48.14 48.17 65 dBA:           | 73         | 79       |
| 81.16 -11.45 -1.68 -                                                         |                                                                      | ì     | -1.20      | 66.83                             | 49.84   | 42.06                          | 51.27                                         | 57.42     | 57.46    | 57.46 60 dBA:                 | 157        | 170      |
| L                                                                            | Ĺ                                                                    | Ĺ     | Total:     | 92.69                             | 63.52   | 62.06                          | 57.36                                         | 65.27     | 65.80    | <b>65.80</b> 55 dBA:          | 339        | 367      |
| Vincent Avenue                                                               |                                                                      |       |            | Segment:                          |         | North of                       | North of San Bernardino Avenue                | ino Aven  | ne       |                               |            |          |

| condary                               | • to                          | eet)                            | CNEL                                                                         | 28            | 09            | 130           | 280                  |
|---------------------------------------|-------------------------------|---------------------------------|------------------------------------------------------------------------------|---------------|---------------|---------------|----------------------|
| ıtion: Sec                            | Distance                      | our (in f                       | Ldn                                                                          | 26            | 26            | 120           | 259                  |
| Roadway Classification: Secondary     | <b>Centerline Distance to</b> | Noise Contour (in feet)         |                                                                              | 65.25 70 dBA: | 49.17 65 dBA: | 58.82 60 dBA: | <b>66.23</b> 55 dBA: |
| Roadwa                                |                               |                                 | CNEL                                                                         | 65.25         | 49.17         | 58.82         | 66.23                |
|                                       | t: 45.38                      |                                 | Ldn (                                                                        | 64.62         | 49.13         | 58.79         | 65.73                |
| x: 2                                  | (Equiv. Lane Dist: 45.38 ft)  | <b>Unmitigated Noise Levels</b> |                                                                              | 56.19         | 42.98         | 52.63         | 57.92                |
| Vehicle Mix: 2                        | )Ec                           | tigated N                       | eq Eve.                                                                      | 62.24         | 33.77         | 43.43         | 62.31                |
| ^<br>_                                | ITERLINE                      | Unmi                            | Led Day L                                                                    | 63.54         | 41.55         | 51.21         | 63.81                |
| Vehicle Speed: 35 MPH                 | AT 50 FEET FROM CENTERLINE    |                                 | Leq Peak                                                                     | 65.91         | 92.09         | 68.20         | 70.68                |
| Vehicle Spe                           | <sup>-</sup> 50 FEET F        |                                 | Finite Adj                                                                   | -1.20         | -1.20         | -1.20         | Total:               |
| ,                                     | ETERS AT                      | stments                         | Dist Adj.                                                                    | 0.53          | 0.53          | 0.53          |                      |
| 10 Vehicles                           | <b>NOISE PARAMETERS</b>       | Noise Adjustmen                 | REMEL Traffic Adj. Dist Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | 1.47          | -13.40        | -11.18        |                      |
| affic: 181                            | ION                           |                                 | REMELT                                                                       | 65.11         | 74.83         | 80.05         |                      |
| Average Daily Traffic: 18110 Vehicles |                               |                                 | Vehicle Type                                                                 | Automobiles   | Medium Trucks | Heavy Trucks  |                      |

Scenario: EXISTING WITH PROJECT CONDITIONS

|                                       |                       |                   |           |             |                         |                  |                |                                 |               | Site Co | Site Conditions: Soft             | ¥                 |          |
|---------------------------------------|-----------------------|-------------------|-----------|-------------|-------------------------|------------------|----------------|---------------------------------|---------------|---------|-----------------------------------|-------------------|----------|
| Road Name:                            | Vincent Avenue        | une               |           |             | Segment:                | ₩                | outh of S      | South of San Bernardino Avenue  | ino Aven      | ne      |                                   |                   |          |
| Average Daily Traffic: 18650 Vehicles | raffic: 18650         | Vehicles          |           | Vehicle Sp  | Vehicle Speed: 35 MPH   |                  | Vehicle Mix: 2 | : 2                             |               | Roadwa  | Roadway Classification: Secondary | tion: Seco        | ndary    |
|                                       | NOISE                 | NOISE PARAMETERS  | TERS AT   | <b>FEET</b> | FROM CENTERI            | JTERLINE         | (Eq            | Equiv. Lane Dist:               | st: 45.38 ft) | ft)     | Centerline Distance to            | <b>Distance</b>   | t<br>t   |
|                                       | ž                     | Noise Adjustments | stments   |             |                         | Unmi             | igated No      | <b>Unmitigated Noise Levels</b> |               |         | Noise Contour (in feet)           | our (in fe        | et)      |
| Vehicle Type                          | REMEL Traf            | Traffic Adj.      | Dist Adj. | Finite Adj  | Leg Peak                | Led Day L        | Led Eve. 1     | Leq Night                       | Ldn           | CNEL    |                                   | Ldn               | CNEL     |
| Automobiles                           | 65.11                 | 1.60              | 0.53      | -1.20       | 66.04                   | 63.67            | 62.37          | 56.32                           | 64.75         | 65.38   | 70 dBA:                           | 56                | 29       |
| Medium Trucks                         | 74.83                 | -13.27            | 0.53      | -1.20       | 60.89                   | 41.68            | 33.90          | 43.11                           | 49.26         | 49.30   | 65 dBA:                           | 22                | 62       |
| Heavy Trucks                          | 80.05                 | -11.05            | 0.53      | -1.20       | 68.33                   | 51.34            | 43.55          | 52.76                           | 58.95         | 58.95   | 60 dBA:                           | 123               | 133      |
|                                       |                       |                   |           | Total:      | 70.81                   | 63.94            | 62.43          | 58.05                           | 65.85         | 66.36   | 55 dBA:                           | 265               | 286      |
| Road Name:                            | San Bernardino Avenue | dino Aver         | ne        |             | Segment:                |                  | /est of Irv    | West of Irwindale Avenue        | enue          |         |                                   |                   |          |
| Average Daily Traffic: 17310 Vehicles | raffic: 17310         | Vehicles          |           | Vehicle Sp  | Vehicle Speed: 40 MPH   |                  | Vehicle Mix: 2 | :: 2                            |               | Roadwa  | Roadway Classification: Secondary | tion: Seco        | ndary    |
|                                       | NOISE                 | NOISE PARAMETERS  |           | AT 100 FEET | FROM CENTERLINE         | NTERLINE         | ) (Ec          | (Equiv. Lane Dist:              | ist: 97.77    | ft)     | <b>Centerline Distance to</b>     | <b>Distance</b>   | t        |
|                                       | Ň                     | Noise Adjustments | stments   |             |                         | Unmi             | tigated No     | <b>Unmitigated Noise Levels</b> |               |         | Noise Contour (in feet)           | our (in fe        | et)      |
| Vehicle Type                          | REMEL Traffic Adj.    |                   | Dist Adj. | Finite Adj  | Leq Peak                | Led Day L        | Led Eve. 1     | Leq Night                       | Ldn           | CNEL    |                                   | Ldn               | CNEL     |
| Automobiles                           | 92'29                 | 69.0              | -4.47     | -1.20       | 62.38                   | 60.01            | 58.72          | 52.66                           | 61.09         | 61.73   | 70 dBA:                           | 53                | 32       |
| Medium Trucks                         |                       | -14.17            | -4.47     | -1.20       | 56.47                   | 37.26            | 29.48          | 38.69                           | 44.84         | 44.88   | 65 dBA:                           | 63                | 89       |
| Heavy Trucks                          | 81.16                 | -11.95            | -4.47     | -1.20       | 63.53                   | 46.54            | 38.76          | 47.97                           | 54.13         | 54.16   | 60 dBA:                           | 135               | 147      |
|                                       |                       |                   |           | Total:      | 66.46                   | 60.22            | 28.77          | 54.06                           | 61.97         | 62.50   | 55 dBA:                           | 292               | 316      |
| Road Name:                            | San Bernardino Avenue | dino Aver         | ne        |             | Segment:                |                  | /est of Pr     | West of Project Driveway        | way           |         |                                   |                   |          |
| Average Daily Traffic: 15800 Vehicles | raffic: 15800         | Vehicles          |           | Vehicle Sp  | Vehicle Speed: 40 MPH   |                  | Vehicle Mix: 2 | : 2                             |               | Roadwa  | Roadway Classification: Secondary | tion: Seco        | ndary    |
|                                       | NOISE                 | NOISE PARAMETERS  |           | AT 90 FEET  | FROM CENTERI            | <b>JTERLINE</b>  | (Eq            | Equiv. Lane Dist:               | st: 87.52 ft) | ft)     | Centerline Distance to            | <b>Distance</b>   | <b>5</b> |
|                                       | ž                     | Noise Adjustments | stments   |             |                         | Unmi             | igated No      | <b>Unmitigated Noise Levels</b> |               |         | Noise Conto                       | Contour (in feet) | et)      |
| Vehicle Type                          | REMEL Traffic Adj.    |                   | Dist Adj. | Finite Adj  | Leq Peak                | Led Day L        | Leg Eve. 1     | Led Night                       | Ldn           | CNEL    |                                   | Ldn               | CNEL     |
| Automobiles                           | 67.36                 | 0.30              | -3.75     | -1.20       | 62.71                   | 60.34            | 59.04          | 52.99                           | 61.42         | 62.05   | 70 dBA:                           | 28                | 30       |
| Medium Trucks                         | 76.31                 | -14.57            | -3.75     | -1.20       | 56.79                   | 37.59            | 29.80          | 39.01                           | 45.17         | 45.20   | 65 dBA:                           | 29                | 64       |
| Heavy Trucks                          | 81.16                 | -12.35            | -3.75     | -1.20       | 63.86                   | 46.87            | 39.09          | 48.30                           | 54.45         | 54.48   |                                   | 128               | 139      |
|                                       |                       |                   |           | Total:      | 66.79                   | 60.55            | 60.69          | 54.39                           | 62.30         | 62.83   | 55 dBA:                           | 276               | 299      |
| Road Name:                            | San Bernardino Avenue | dino Aver         |           |             | Segment:                | <b>.</b>         | ast of Pro     | East of Project Driveway        | vay           |         |                                   |                   |          |
| Average Daily T                       | Traffic: 15800        | 15800 Vehicles    |           | Vehicle Sp  | Vehicle Speed: 40 MPH   |                  | Vehicle Mix: 2 | :: 2                            |               | Roadwa  | Roadway Classification: Secondary | tion: Secc        | ndary    |
|                                       | NOISE                 | NOISE PARAMETERS  | TERS AT   | r 50 FEET   | 50 FEET FROM CENTERLINE | <b>ITERLINE</b>  | (Eq            | Equiv. Lane Dist                | 45.38         | +       | Centerline Distance to            | <b>Distance</b>   | <b>5</b> |
|                                       | Ň                     | Noise Adjustments | stments   |             |                         | Unmi             | tigated No     | <b>Unmitigated Noise Levels</b> |               |         | Noise Contour (in feet)           | our (in fe        | et)      |
| Vehicle Type                          | REMEL Traffic Adj.    |                   | Dist Adj. | Finite Adj  | Leq Peak                | Leq Day Leq Eve. |                | Led Night                       | Ldn           | CNEL    |                                   | Ldn               | CNEL     |
| Automobiles                           | 67.36                 | 0.30              | 0.53      | -1.20       | 66.99                   | 64.62            | 63.32          | 57.27                           | 65.70         | 66.33   | 70 dBA:                           | 30                | 32       |
| Medium Trucks                         | 76.31                 | -14.57            | 0.53      | -1.20       | 61.07                   | 41.87            | 34.08          | 43.29                           | 49.45         | 49.48   | 65 dBA:                           | 49                | 69       |
| Heavy Trucks                          | 81.16                 | -12.35            | 0.53      | -1.20       | 68.14                   | 51.15            | 43.37          | 52.58                           | 58.73         | 58.76   |                                   | 137               | 149      |
|                                       |                       |                   |           | Total:      | 71.07                   | 64.83            | 63.37          | 28.66                           | 66.58         | 67.11   | 55 dBA:                           | 296               | 321      |
|                                       |                       |                   |           |             |                         |                  |                |                                 |               |         |                                   |                   |          |

Scenario: EXISTING WITH PROJECT CONDITIONS

|                                  | condary                               | to to                                              | eet)                            | CNEL                                                                       | 30                  | 65                  | 140           | 301                  |
|----------------------------------|---------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------------------------------------------|---------------------|---------------------|---------------|----------------------|
|                                  | tion: Sec                             | Distance                                           | our (in f                       | Ldn                                                                        | 28                  | 09                  | 129           | 277                  |
|                                  | Roadway Classification: Secondary     | Centerline Distance to                             | Noise Contour (in feet)         |                                                                            | 64.10 64.73 70 dBA: | 47.88 65 dBA:       | 57.16 60 dBA: | <b>65.50</b> 55 dBA: |
|                                  | Roadw                                 | ft)                                                |                                 | Ldn CNEL                                                                   | 64.73               | 47.88               | 57.16         |                      |
| <u>e</u>                         |                                       | st: 56.2 f                                         |                                 | Ldn                                                                        | 64.10               | 47.84               | 57.13         | 64.98                |
| East of Vincent Avenue           | x: 2                                  | (Equiv. Lane Dist: 56.2 ft)                        | <b>Jumitigated Noise Levels</b> | Leq Night                                                                  | 99:33               | 41.69               | 20.97         | 57.06                |
| East of Vi                       | Vehicle Mix: 2                        |                                                    | itigated N                      | ed Eve.                                                                    | 61.72               | 32.48               | 41.76         | 61.77                |
|                                  |                                       | JTERLINE                                           | Unm                             | Leq Day I                                                                  | 63.01               | 40.26               | 49.55         | 63.23                |
| Segment:                         | Vehicle Speed: 40 MPH                 | <b>NOISE PARAMETERS AT 60 FEET FROM CENTERLINE</b> |                                 | REMELTraffic Adj. Dist Adj. Finite Adj Leq Peak Leq Day Leq Eve. Leq Night | 65.38               | 59.47               | 66.54         | 69.47                |
|                                  | /ehicle Spe                           | T 60 FEET                                          |                                 | Finite Adj                                                                 | -1.20               | -1.20               | -1.20         | Total:               |
| nue                              |                                       | eters a                                            | stments                         | Dist Adj.                                                                  | -0.87               | -0.87               | -0.87         |                      |
| rdino Ave                        | ) Vehicles                            | SE PARAM                                           | Noise Adjustmen                 | affic Adj.                                                                 | 60.0                | -14.78              | -12.56        |                      |
| San Berna                        | affic: 15060                          | SION                                               | _                               | <b>REMEL Tr</b>                                                            | 67.36               | 76.31               | 81.16         |                      |
| Road Name: San Bernardino Avenue | Average Daily Traffic: 15060 Vehicles |                                                    |                                 | Vehicle Type                                                               | Automobiles         | Medium Trucks 76.31 | Heavy Trucks  |                      |

Scenario: YEAR 2023 WITHOUT PROJECT CONDITIONS

|                           |                                 |       |                                   |                                                            | •                                                                                 |                                                                                                                                                                                                                                                                                           | •                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|---------------------------------|-------|-----------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evening                   | Night                           | Daily | Day                               | Evening                                                    |                                                                                   | Daily                                                                                                                                                                                                                                                                                     | Day                                                                                                                                                  | Evenin                                                                                                                                                                                                                                                                                                                                                                                                    | Night                                                                                                                                                                                                                                                                                                                                                                                                     | Daily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| utomobiles 73.60% 13.60%  | 10.22%                          |       | %05.69                            | 12.90%                                                     |                                                                                   | 92.00%                                                                                                                                                                                                                                                                                    | 66.02%                                                                                                                                               | 13.53%                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                           | 95.38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1edium Trucks 0.90% 0.90% | 0.04%                           | 1.84% | 1.44%                             | %90.0                                                      | 1.50%                                                                             | 3.00%                                                                                                                                                                                                                                                                                     | 1.95%                                                                                                                                                | 0.35%                                                                                                                                                                                                                                                                                                                                                                                                     | 0.99%                                                                                                                                                                                                                                                                                                                                                                                                     | 3.29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| leavy Trucks 0.35% 0.04%  | 0.35%                           | 0.74% | 2.40%                             | 0.10%                                                      | 2.50%                                                                             | 2.00%                                                                                                                                                                                                                                                                                     | 0.73%                                                                                                                                                | 0.07%                                                                                                                                                                                                                                                                                                                                                                                                     | 0.53% 1.33%                                                                                                                                                                                                                                                                                                                                                                                               | 1.33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | vening<br>3.60%<br>.90%<br>.04% |       | Night<br>10.22%<br>0.04%<br>0.35% | Night Daily<br>10.22% 97.42%<br>0.04% 1.84%<br>0.35% 0.74% | Night Daily Day<br>10.22% 97.42% 69.50%<br>0.04% 1.84% 1.44%<br>0.35% 0.74% 2.40% | Night         Daily         Day         Evening         Night           10.22%         97.42%         69.50%         12.90%         9.60%           0.04%         1.84%         1.44%         0.06%         1.50%           0.35%         0.74%         2.40%         0.10%         2.50% | Night Daily Day Evening Night Daily 10.22% 97.42% 69.50% 12.90% 9.60% 92.00% 0.04% 1.84% 1.44% 0.06% 1.50% 3.00% 0.35% 0.74% 2.40% 0.10% 2.50% 5.00% | Night         Daily         Day         Evening         Night         Daily         Day           10.22%         97.42%         69.50%         12.90%         9.60%         92.00%         66.02%           0.04%         1.84%         1.44%         0.06%         1.50%         3.00%         1.95%           0.35%         0.74%         2.40%         0.10%         2.50%         5.00%         0.73% | Night         Daily         Day         Evening         Night         Daily         Day           10.22%         97.42%         69.50%         12.90%         9.60%         92.00%         66.02%           0.04%         1.84%         1.44%         0.06%         1.50%         3.00%         1.95%           0.35%         0.74%         2.40%         0.10%         2.50%         5.00%         0.73% | Night         Daily         Day         Evening         Night         Daily         Day         Evenin         Night           10.22%         97.42%         69.50%         12.90%         9.60%         92.00%         66.02%         13.53%         15.83%           0.04%         1.84%         1.44%         0.06%         1.50%         3.00%         1.95%         0.35%         0.99%           0.35%         0.74%         2.40%         0.10%         2.50%         5.00%         0.73%         0.07%         0.53% |

|                                | า: Major                              | e to                                        | eet)                            | Ldn CNEL                                                                    | 36                  | 77                  | 166           | 358                  |                                | າ: Major                              |
|--------------------------------|---------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------------------------------------------|---------------------|---------------------|---------------|----------------------|--------------------------------|---------------------------------------|
|                                | ssificatior                           | Distance                                    | tour (in 1                      | Ldn                                                                         | 33                  | 7                   | 153           | 330                  |                                | ssification                           |
|                                | Roadway Classification: Major         | Centerline Distance to                      | Noise Contour (in feet)         |                                                                             | 64.23 64.86 70 dBA: | 47.98 48.01 65 dBA: | 57.29 60 dBA: | <b>65.64</b> 55 dBA: |                                | Roadway Classification: Major         |
| re                             | R                                     |                                             |                                 | CNEL                                                                        | 64.86               | 48.01               | 57.29         | 65.64                | ne                             | ĸ                                     |
| ino Avenu                      |                                       | ist: 63.71                                  |                                 | Ldn CNEL                                                                    | 64.23               | 47.98               | 57.26         | 65.11                | lino Aven                      |                                       |
| North of San Bernardino Avenue | ix: 2                                 | (Equiv. Lane Dist: 63.71 ft)                | <b>Unmitigated Noise Levels</b> | Leq Night                                                                   | 55.80               | 41.82               | 51.11         | 57.20                | South of San Bernardino Avenue | ix: 2                                 |
| North of \$                    | Vehicle Mix: 2                        |                                             | itigated <b>№</b>               | Led Eve.                                                                    | 63.15 61.85         | 32.61               | 41.90         | 61.90                | South of                       | Vehicle Mix: 2                        |
|                                |                                       | ITERLINE                                    | Unm                             | Led Day                                                                     | 63.15               | 40.40               | 49.68         | 63.36                |                                |                                       |
| Segment:                       | Vehicle Speed: 40 MPH                 | NOISE PARAMETERS AT 70 FEET FROM CENTERLINE |                                 | REMELTraffic Adj. Dist Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | 65.52               | 29.60               | 29.99         | 09'69                | Segment:                       | Vehicle Speed: 40 MPH                 |
|                                | Vehicle Sp                            | <b>I 70 FEET</b>                            |                                 | Finite Adj                                                                  | -1.20               | -1.20               | -1.20         | Total:               |                                | Vehicle Sp                            |
|                                |                                       | ETERS A <sup>T</sup>                        | rstments                        | Dist Adj.                                                                   | -1.68               | -1.68               | -1.68         |                      |                                |                                       |
| Avenue                         | 0 Vehicles                            | <b>SE PARAM</b>                             | Noise Adjustments               | affic Adj.                                                                  | 1.04                | -13.83              | -11.61        |                      | Avenue                         | 0 Vehicles                            |
| Irwindale                      | raffic: 1874                          | SION                                        |                                 | REMELT                                                                      | 98.79               | 76.31               | 81.16         |                      | Irwindale                      | raffic: 1950                          |
| Road Name: Irwindale Avenue    | Average Daily Traffic: 18740 Vehicles |                                             |                                 | Vehicle Type                                                                | Automobiles         | Medium Trucks       | Heavy Trucks  |                      | Road Name: Irwindale Avenue    | Average Daily Traffic: 19500 Vehicles |

| . Major                               | to                                          | et)                             | CNEL                                    | 37          | 79            | 171          | 368     |                                | ondary                                | to                                          | et)                             | CNEL                                    | 29          | 63            | 135          | 291     |
|---------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------|-------------|---------------|--------------|---------|--------------------------------|---------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------|-------------|---------------|--------------|---------|
| รรมเตลแบก                             | Distance                                    | our (in fe                      | Ldn                                     | 34          | 73            | 157          | 339     |                                | ation: Sec                            | Distance                                    | our (in fe                      | Ldn                                     | 27          | 28            | 125          | 269     |
| Roadway Classilication: Major         | Centerline Distance to                      | Noise Contour (in feet)         |                                         | 70 dBA:     | 65 dBA:       | 60 dBA:      | 55 dBA: |                                | Roadway Classification: Secondary     | Centerline Distance to                      | Noise Contour (in feet)         |                                         | 70 dBA:     | 65 dBA:       | 60 dBA:      | 55 dBA: |
| צ                                     | ft)                                         |                                 | CNEL                                    | 65.03       | 48.18         | 57.47        | 65.81   | ne                             | Roadw                                 | ft)                                         |                                 | CNEL                                    | 65.49       | 49.41         | 59.06        | 66.47   |
|                                       | t: 63.71                                    |                                 | Ldn                                     | 64.40       | 48.15         | 57.43        | 65.28   | no Aven                        |                                       | t: 45.38                                    |                                 | Ldn                                     | 64.86       | 49.37         | 59.03        | 65.97   |
| X: Z                                  | (Equiv. Lane Dist: 63.71 ft)                | <b>Unmitigated Noise Levels</b> | Leq Night                               | 25.97       | 41.99         | 51.28        | 57.37   | North of San Bernardino Avenue | x: 2                                  | (Equiv. Lane Dist: 45.38 ft)                | <b>Unmitigated Noise Levels</b> | Led Night                               | 56.43       | 43.22         | 52.87        | 58.16   |
| Verlicie IVIIX: Z                     | Ec                                          | tigated <b>№</b>                | eq Eve.                                 | 62.02       | 32.79         | 42.07        | 62.07   | lorth of §                     | Vehicle Mix: 2                        | E(                                          | tigated <b>N</b>                | eq Eve.                                 | 62.48       | 34.01         | 43.67        | 62.55   |
|                                       | <b>NTERLINE</b>                             | Unmi                            | Leq Day L                               | 63.32       | 40.57         | 49.85        | 63.53   |                                |                                       | <b>VTERLINE</b>                             | Unmi                            | Leq Day Leq Eve. Leq Night              | 63.78       | 41.79         | 51.45        | 64.05   |
| ed: 40 MP                             | NOISE PARAMETERS AT 70 FEET FROM CENTERLINE |                                 | Leq Peak Leq Day Leq Eve. Leq Night     | 69.69       | 59.78         | 66.84        | 69.77   | Segment:                       | Vehicle Speed: 35 MPH                 | NOISE PARAMETERS AT 50 FEET FROM CENTERLINE |                                 | Leq Peak                                | 66.15       | 61.00         | 68.44        | 70.92   |
| Verlicie Speed: 40 MPH                | r 70 FEET                                   |                                 | Finite Adj                              | -1.20       | -1.20         | -1.20        | Total:  |                                | Vehicle Spe                           | r 50 feet                                   |                                 | Finite Adj                              | -1.20       | -1.20         | -1.20        | Total:  |
|                                       | ETERS A <sup>T</sup>                        | ustments                        | Dist Adj.                               | -1.68       | -1.68         | -1.68        |         |                                |                                       | ETERS A                                     | ustments                        | Dist Adj.                               | 0.53        | 0.53          | 0.53         |         |
| o venicies                            | SE PARAM                                    | Noise Adjustments               | REMEL Traffic Adj. Dist Adj. Finite Adj | 1.21        | -13.65        | -11.44       |         | venue                          | <ul><li>0 Vehicles</li></ul>          | SE PARAM                                    | Noise Adjustments               | REMEL Traffic Adj. Dist Adj. Finite Adj | 1.71        | -13.16        | -10.94       |         |
| allic: 1950                           | SION                                        |                                 | REMELT                                  | 92'29       | 76.31         | 81.16        |         | Vincent A                      | raffic: 1914                          | SION                                        |                                 | REMELT                                  | 65.11       | 74.83         | 80.05        |         |
| Average Daily Italiic: 19500 vericies |                                             |                                 | Vehicle Type                            | Automobiles | Medium Trucks | Heavy Trucks | -       | Road Name: Vincent Avenue      | Average Daily Traffic: 19140 Vehicles |                                             |                                 | Vehicle Type                            | Automobiles | Medium Trucks | Heavy Trucks | -       |

Scenario: YEAR 2023 WITHOUT PROJECT CONDITIONS

|                 |                                       |                                 |            |                         |                 |                |                                 |             | Site Col | Site Conditions: Soft             | ¥                 |           |
|-----------------|---------------------------------------|---------------------------------|------------|-------------------------|-----------------|----------------|---------------------------------|-------------|----------|-----------------------------------|-------------------|-----------|
| Road Name:      | Vincent Avenue                        |                                 |            | Segment:                |                 | outh of S      | South of San Bernardino Avenue  | lino Aven   | ne       |                                   |                   |           |
| Average Daily T | Average Daily Traffic: 19550 Vehicles | sles                            | Vehicle Sp | Vehicle Speed: 35 MPH   |                 | Vehicle Mix: 2 | x: 2                            |             | Roadwa   | Roadway Classification: Secondary | ion: Sec          | ondary    |
|                 | NOISE PARAMETERS                      | ETERS                           | AT 50 FEET | 50 FEET FROM CENTERLINE | NTERLINE        | (Eo            | Equiv. Lane Dist:               | 45.38       | ft)      | Centerline Distance to            | istance           | t<br>t    |
|                 | Noise /                               | Noise Adjustments               |            |                         | Unmi            | tigated N      | <b>Unmitigated Noise Levels</b> |             |          | Noise Contour (in feet)           | our (in fe        | et)       |
| Vehicle Type    | REMEL Traffic Adj.                    |                                 | Finite Adj | Leq Peak                | Led Day L       | Led Eve.       | Led Night                       | Ldn         | CNEL     |                                   | Ldn               | CNEL      |
| Automobiles     | 65.11 1.80                            |                                 | -1.20      | 66.24                   | 63.87           | 62.58          | 56.52                           | 64.95       | 65.58    | 70 dBA:                           | 27                | 29        |
| Medium Trucks   |                                       | 0.53                            | -1.20      | 61.09                   | 41.89           | 34.10          | 43.31                           | 49.47       | 49.50    | 65 dBA:                           | 29                | 64        |
| Heavy Trucks    | 80.05 -10.84                          |                                 | -1.20      | 68.53                   | 51.54           | 43.76          | 52.97                           | 59.12       | 59.16    | 60 dBA:                           | 127               | 137       |
|                 |                                       |                                 | Total:     | 71.01                   | 64.14           | 62.64          | 58.25                           | 90'99       | 66.56    | 55 dBA:                           | 273               | 295       |
| Road Name:      | San Bernardino Avenue                 | Avenue                          |            | Segment:                |                 | Vest of In     | West of Irwindale Avenue        | une         |          |                                   |                   |           |
| Average Daily T | Average Daily Traffic: 18040 Vehicles | sles                            | Vehicle Sp | Speed: 40 MPH           |                 | Vehicle Mix:   | x: 2                            |             | Roadwa   | Roadway Classification: Secondary | ion: Sec          | ondary    |
|                 | NOISE PARAMETERS                      | AMETERS AT                      | T 100 FEET |                         | FROM CENTERLINE | )              | uiv. Lane                       | Dist: 97.77 | ft)      | Centerline Distance to            | istance           | to        |
|                 | Noise /                               | Noise Adjustments               |            |                         | Unmi            | tigated N      | <b>Unmitigated Noise Levels</b> |             |          | Noise Conto                       | Contour (in feet) | et)       |
| Vehicle Type    | REMEL Traffic Adj.                    | <ol><li>Jj. Dist Adj.</li></ol> | Finite Adj | Leq Peak                | Led Day L       | Led Eve.       | Led Night                       | Ldn         | CNEL     |                                   | Ldn               | CNEL      |
| Automobiles     | 28.0 96.79                            |                                 | -1.20      | 62.56                   | 60.19           | 28.90          | 52.84                           | 61.27       | 61.90    | 70 dBA:                           | 30                | 33        |
| Medium Trucks   | 76.31 -13.99                          | 99 -4.47                        | -1.20      | 56.65                   | 37.44           | 29.66          | 38.87                           | 45.02       | 45.06    | 65 dBA:                           | 65                | 20        |
| Heavy Trucks    | 81.16 -11.77                          | 77 -4.47                        | -1.20      | 63.71                   | 46.72           | 38.94          | 48.15                           | 54.30       | 54.34    | 60 dBA:                           | 139               | 151       |
|                 |                                       |                                 | Total:     | 66.64                   | 60.40           | 58.92          | 54.24                           | 62.15       | 62.68    | 55 dBA:                           | 300               | 325       |
| Road Name.      | San Bernardino Avenue                 | Avenue                          |            | Segment.                |                 | Vest of D      | West of Project Driveway        | 76%         |          |                                   |                   |           |
| >               | Traffic: 16050 Vehicles               | les                             | Vehicle Sp | Vehicle Speed: 40 MPH   | ·<br>!          | Vehicle Mix:   | x: 2                            | ĺ.          | Roadwa   | Roadway Classification: Secondary | ion: Sec          | ondary    |
|                 | NOISE PAR                             | NOISE PARAMETERS AT             | T 90 FEET  | FROM CENTERLINE         | <b>FERLINE</b>  | (Eo            | Equiv. Lane Dist                | 87.52       | ft)      | Centerline Distance to            | istance           | <b>\$</b> |
|                 | Noise /                               | Noise Adjustments               |            |                         | Unmi            | tigated N      | Unmitigated Noise Levels        |             |          | Noise Contour (in feet)           | our (in fe        | et)       |
| Vehicle Type    | REMEL Traffic Adj.                    | ıj. Dist Adj.                   | Finite Adj | Leg Peak                | Led Day L       | Led Eve.       | Leg Night                       | Ldn         | CNEL     |                                   | Ldn               | CNEL      |
| Automobiles     | 25.36 0.37                            |                                 | -1.20      | 62.78                   | 60.40           | 59.11          | 53.06                           | 61.49       | 62.12    | 70 dBA:                           | 28                | 30        |
| Medium Trucks   | 76.31 -14.50                          |                                 | -1.20      | 56.86                   | 37.65           | 29.87          | 39.08                           | 45.24       | 45.27    | 65 dBA:                           | 09                | 92        |
| Heavy Trucks    | 81.16 -12.28                          | 28 -3.75                        | -1.20      | 63.93                   | 46.94           | 39.16          | 48.36                           | 54.52       | 54.55    | 60 dBA:                           | 129               | 140       |
|                 |                                       |                                 | Total:     | 98.99                   | 60.62           | 59.16          | 54.45                           | 62.37       | 62.90    | 55 dBA:                           | 279               | 302       |
| Road Name:      | San Bernardino Avenue                 | Avenue                          |            | Segment:                |                 | ast of Pr      | East of Project Driveway        | vay         |          |                                   |                   |           |
| Average Daily T | Traffic: 16200 Vehicles               | iles                            | Vehicle Sp | Vehicle Speed: 40 MPH   |                 | Vehicle Mix:   | x: x                            |             | Roadwa   | Roadway Classification: Secondary | ion: Sec          | ondary    |
|                 | NOISE PAR                             | NOISE PARAMETERS AT             | T 50 FEET  | 50 FEET FROM CENTERLINE | NTERLINE        | (Ec            | Equiv. Lane Dist:               | 45.38       |          | Centerline Distance to            | istance           | t<br>t    |
|                 | Noise /                               | Noise Adjustments               |            |                         | Unmi            | tigated N      | <b>Unmitigated Noise Levels</b> |             |          | Noise Contour (in feet)           | our (in fe        | et)       |
| Vehicle Type    | REMEL Traffic Adj.                    | Dis                             | Finite Adj | Leq Peak                | Leq Day L       | Led Eve.       | Leq Night                       | Ldn         | CNEL     |                                   | Ldn               | CNEL      |
| Automobiles     | 67.36 0.41                            |                                 | -1.20      | 67.10                   | 64.72           | 63.43          | 57.38                           | 65.81       | 66.44    | 70 dBA:                           | 30                | 33        |
| Medium Trucks   |                                       |                                 |            |                         | 41.97           | 34.19          | 43.40                           | 49.55       | 49.59    | 65 dBA:                           | 65                | 20        |
| Heavy Trucks    | 81.16 -12.24                          |                                 | -1.20      |                         | 51.26           | 43.48          | 52.68                           | 58.84       | 58.87    | 60 dBA:                           | 140               | 151       |
|                 |                                       |                                 | Total:     | 71.18                   | 64.94           | 63.48          | 58.77                           | 69.99       | 67.22    | 55 dBA:                           | 301               | 326       |

Scenario: YEAR 2023 WITHOUT PROJECT CONDITIONS

Project: Griswold Residential Site Conditions: Soft

Rnadwav Classification: Secondary East of Vincent Avenue Segment: Vehicle Speed: 40 MPH Road Name: San Bernardino Avenue

| Average Daily Traffic: 13540 Vehicles         Vehicle Speed: 40 MPH         Vehicle MIX: 2         Roadway Classification: Secondary Classification: S                                                | econdary         | ce to         | feet)        | CNEL         | 31          | 29            | 144          |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--------------|--------------|-------------|---------------|--------------|---------|
| Traffic: 15840 Vehicles   Vehicle NIPH   Vehicle NIIX: 2     NOISE PARAMETERS AT 60 FEET FROM CENTERLINE (Equiv. Lane Dist: 56.2 for the proof of | ation: S         | Distan        | tour (in     | Ldn          | 29          | 62            | 133          | 287     |
| Traffic: 15840 Vehicles   Vehicle NIPH   Vehicle NIIX: 2     NOISE PARAMETERS AT 60 FEET FROM CENTERLINE (Equiv. Lane Dist: 56.2 for the proof of | ay Classific     | Centerline    | Noise Con    |              | 70 dBA:     | 65 dBA:       | 60 dBA:      | 55 dBA: |
| NOISE PARAMETERS AT 60 FEET FROM CENTERLINE (Equiv. Lane Dist Noise Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Roadwa           |               |              | CNEL         | 64.95       | 48.10         | 57.38        | 65.72   |
| Traffic: 15340 Vehicles   Vehicle Speed: 40 MPH   Vehicle NOISE PARAMETERS AT 60 FEET FROM CENTERLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | st: 56.2      |              | Ldn          | 64.32       | 48.06         | 57.35        | 65.20   |
| Traffic: 15340 Vehicles   Vehicle Speed: 40 MPH   Vehicle NOISE PARAMETERS AT 60 FEET FROM CENTERLINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X: Z             | quiv. Lane Di | loise Levels | Leq Night    | 25.88       | 41.91         | 51.19        | 57.28   |
| ramc: 15840 Venicles   Venicle Speed: 40 MPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | enicie IVII      |               | tigated N    | .ed Eve.     | 61.94       | 32.70         | 41.98        | 61.99   |
| <u>ε</u>   σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | NTERLINE      | Unmi         | Led Day L    | 63.23       | 40.48         | 49.77        | 63.45   |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed: 40 MPI       | FROM CEI      |              | Leg Peak     | 09:59       | 59.69         | 92.99        | 69.69   |
| <u>ε</u>   σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /enicie Spe      | T 60 FEET     |              | Finite Adj   | -1.20       | -1.20         | -1.20        | Total:  |
| <u>ε</u>   σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | stments      | Dist Adj.    | -0.87       | -0.87         | -0.87        |         |
| <u>ε</u>   σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u venicies       | SE PARAN      | Noise Adjı   | affic Adj.   | 0.31        | -14.56        | -12.34       |         |
| Vehicle Type Automobiles Medium Trucks Heavy Trucks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ′апіс: 1584      | NOI           |              | REMEL Tr     | 67.36       | 76.31         | 81.16        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average Dally II |               |              | Vehicle Type | Automobiles | Medium Trucks | Heavy Trucks | -       |

Scenario: YEAR 2023 WITH PROJECT CONDITIONS

| Vehicle Type Day Evening Night Automobiles 73.60% 13.60% 10.22% Medium Trucks 0.90% 0.90% 0.04% | Collector)  |        |             |                       |        |        |                       |            |        |
|-------------------------------------------------------------------------------------------------|-------------|--------|-------------|-----------------------|--------|--------|-----------------------|------------|--------|
| Evening 13.60% 1                                                                                | *4==        | •      | /ehicle Mix | /ehicle Mix 2 (Major) |        | Š      | /ehicle Mix 3 (SR-39) | 3 (SR-39   | _      |
| 13.60% 1                                                                                        | gnı Daliy   | Day    | Evening     | Night                 | Daily  | Day    | Evenin                | Night      | Daily  |
| %Ub U                                                                                           | 22% 97.42%  | %05.69 | 12.90%      | %09.6                 | 92.00% | 66.02% | 13.53% 15.83%         | 15.83%     | 95.38% |
| 0.00.0                                                                                          | 0.04% 1.84% | 1.44%  | %90.0       | 1.50%                 | 3.00%  | 1.95%  | 0.35%                 | 0.99%      | 3.29%  |
| Heavy Trucks 0.35% 0.04% 0.35%                                                                  | 35% 0.74%   | 2.40%  | 0.10%       | 2.50%                 | 2.00%  | 0.73%  | 0.07%                 | % 0.53% 1. | 1.33%  |

|     |                          |                             |                           |                    |                                | Major                                 | ę<br>Ç                                      | et)                             | CNEL                                                                        | 36            | 77            | 166           | 358                  |
|-----|--------------------------|-----------------------------|---------------------------|--------------------|--------------------------------|---------------------------------------|---------------------------------------------|---------------------------------|-----------------------------------------------------------------------------|---------------|---------------|---------------|----------------------|
|     | Daily                    | 95.38%                      | 3.29%                     | 1.33%              |                                | Roadway Classification: Major         | Centerline Distance to                      | Noise Contour (in feet)         | rdn (                                                                       | 33            | 71            | 153           | 331                  |
| ,   | Night                    | 13.53% 15.83%               | 0.35% 0.99%               | 0.07% 0.53%        |                                | adway Cla                             | Centerline                                  | Noise Cor                       |                                                                             | 64.86 70 dBA: | 48.01 65 dBA: | 57.30 60 dBA: | <b>65.64</b> 55 dBA: |
|     | Evenin Night             | 13.53%                      | 0.35%                     | 0.07%              | ne                             | 쬬                                     |                                             |                                 | Ldn CNEL                                                                    | 64.86         | 48.01         | 57.30         | 65.64                |
|     | Day                      | 66.02%                      | 1.95%                     | 0.73%              | dino Aven                      |                                       | )ist: 63.71                                 | S                               | Ldn                                                                         | 64.23         | 47.98         | 57.26         | 65.11                |
|     | Daily                    | 92.00%                      | 3.00%                     | 2.00%              | North of San Bernardino Avenue | x: 2                                  | (Equiv. Lane Dist: 63.71 ft)                | <b>Unmitigated Noise Levels</b> | Leq Night                                                                   | 55.80         | 41.82         | 51.11         | 57.20                |
| , , | Night                    | %09.6                       | 1.50%                     | 2.50%              | North of S                     | Vehicle Mix: 2                        |                                             | itigated <b>N</b>               | Led Eve.                                                                    | 61.85         | 32.62         | 41.90         | 61.90                |
|     | Evening Night            | 12.90%                      | %90.0                     | 0.10%              |                                | Ţ                                     | NTERLINE                                    | Unm                             | Led Day                                                                     | 63.15         | 40.40         | 49.68         | 63.36                |
|     | Day                      | %05.69                      | 1.44%                     | 2.40%              | Segment:                       | ed: 40 MP                             | FROM CEI                                    |                                 | Leg Peak                                                                    | 65.52         | 59.61         | 66.67         | 09'69                |
| ,   | Daily                    | 97.42%                      | 1.84%                     | 0.74%              |                                | Vehicle Speed: 40 MPH                 | NOISE PARAMETERS AT 70 FEET FROM CENTERLINE |                                 | REMELTraffic Adj. Dist Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | -1.20         | -1.20         | -1.20         | Total:               |
|     | Night                    | 10.22%                      | 0.04%                     | 0.35%              |                                |                                       | eters at                                    | ustments                        | Dist Adj.                                                                   | -1.68         | -1.68         | -1.68         |                      |
|     | Evening                  | 13.60%                      | %06.0                     | 0.04%              | Avenue                         | 50 Vehicles                           | SE PARAN                                    | Noise Adjustments               | raffic Adj.                                                                 | 1.04          | -13.82        | -11.61        |                      |
|     | Day                      | %09'82                      | %06.0                     | 0.35%              | Irwindale                      | raffic: 1875                          | SION                                        |                                 | REMELT                                                                      | 98' 29        | 76.31         | 81.16         |                      |
|     | Vehicle Type Day Evening | Automobiles   73.60% 13.60% | Medium Trucks 0.90% 0.90% | Heavy Trucks 0.35% | Road Name: Irwindale Avenue    | Average Daily Traffic: 18750 Vehicles |                                             |                                 | Vehicle Type                                                                | Automobiles   | Medium Trucks | Heavy Trucks  |                      |

|                                | Major                                 | to                            | et)                             | CNEL                                                | 37            | 80                  | 173           | 372                  |           |           |           |       |       |       |  |
|--------------------------------|---------------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------|---------------|---------------------|---------------|----------------------|-----------|-----------|-----------|-------|-------|-------|--|
|                                | sification:                           | Distance                      | our (in fe                      | Ldn                                                 | 34            | 74                  | 159           | 343                  |           |           |           |       |       |       |  |
|                                | Roadway Classification: Major         | <b>Centerline Distance to</b> | Noise Contour (in feet)         |                                                     | 65.10 70 dBA: | 48.25 65 dBA:       | 57.53 60 dBA: | <b>65.88</b> 55 dBA: |           |           |           |       |       |       |  |
| ne                             | ď                                     |                               |                                 | Ldn CNEL                                            |               | 48.25               | 57.53         | 65.88                |           |           |           |       |       |       |  |
| Jino Aven                      |                                       | ist: 63.71                    | •                               | Ldn                                                 | 64.47         | 48.22               | 57.50         | 65.35                |           |           |           |       |       |       |  |
| South of San Bernardino Avenue | ix: 2                                 | (Equiv. Lane Dist: 63.71 ft)  | <b>Unmitigated Noise Levels</b> | Leq Night                                           | 56.04         | 42.06               | 51.34         | 57.43                |           |           |           |       |       |       |  |
| South of                       | Vehicle Mix: 2                        |                               | itigated <b>№</b>               | Led Eve.                                            | 65.09         | 32.85               | 42.14         | 62.14                |           |           |           |       |       |       |  |
|                                |                                       | ITERLINE                      | Unm                             | Leq Day                                             | 63.38         | 40.63               | 49.92         | 63.60                |           |           |           |       |       |       |  |
| Segment:                       | /ehicle Speed: 40 MPH                 | AT 70 FEET FROM CENTERLINE    |                                 | dj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | 92.29         | 59.84               | 66.91         | 69.84                |           |           |           |       |       |       |  |
|                                | Vehicle Spe                           | r 70 feet                     |                                 | Finite Adj                                          | -1.20         | -1.20               | -1.20         | Total:               |           |           |           |       |       |       |  |
|                                |                                       | eters at                      | ustments                        | ustments                                            | justments     | djustments          | Justments     | justments            | justments | justments | Dist Adj. | -1.68 | -1.68 | -1.68 |  |
| Avenue                         | 0 Vehicles                            | <b>NOISE PARAMETERS</b>       | Noise Adjustmen                 | REMEL Traffic Adj. Dist A                           | 67.36 1.28    | -13.59              | -11.37        |                      |           |           |           |       |       |       |  |
| Irwindale                      | raffic: 1980                          | SION                          |                                 | REMELT                                              | 67.36         | 76.31               | 81.16 -11.37  |                      |           |           |           |       |       |       |  |
| Road Name: Irwindale Avenue    | Average Daily Traffic: 19800 Vehicles |                               |                                 | Vehicle Type                                        | Automobiles   | Medium Trucks 76.31 | Heavy Trucks  |                      |           |           |           |       |       |       |  |

|                                | n: Secondary                          | stance to                     | r (in feet)                     | Ldn CNEL                                                                    | 27 29         | 58 63               | 125 135       | 269 291              |       |
|--------------------------------|---------------------------------------|-------------------------------|---------------------------------|-----------------------------------------------------------------------------|---------------|---------------------|---------------|----------------------|-------|
|                                | Roadway Classification: Secondary     | <b>Centerline Distance to</b> | Noise Contour (in feet)         |                                                                             | 65.49 70 dBA: | 49.41 65 dBA:       | 59.07 60 dBA: | <b>66.47</b> 55 dBA: |       |
| ne                             | Roadwa                                |                               |                                 | Ldn CNEL                                                                    | 65.49         | 49.41               | 59.07         |                      |       |
| o Avenu                        |                                       | : 45.38                       |                                 | Ldn                                                                         | 64.86         | 49.38               | 59.03         | 65.97                |       |
| North of San Bernardino Avenue | x: 2                                  | (Equiv. Lane Dist: 45.38 ft)  | <b>Jumitigated Noise Levels</b> | Led Night                                                                   | 56.43         | 43.22               | 52.88         | 58.16                |       |
| orth of S                      | Vehicle Mix: 2                        | E(                            | tigated N                       | nitigated <b>№</b>                                                          | ed Eve.       | 62.49               | 34.01         | 43.67                | 62.55 |
|                                |                                       | TERLINE                       | Unmi                            | eq Day L                                                                    | 63.78         | 41.80               | 51.45         | 64.05                |       |
| Segment:                       | Vehicle Speed: 35 MPH                 | AT 50 FEET FROM CENTERLINE    |                                 | REMEL Traffic Adj. Dist Adj. Finite Adj Leq Peak Leq Day Leq Eve. Leq Night | 66.15         | 61.00               | 68.44         | 70.92                |       |
|                                | ehicle Spe                            | 50 FEET                       |                                 | Finite Adj                                                                  | -1.20         | -1.20               | -1.20         | Total:               |       |
|                                |                                       |                               | nstments.                       | Dist Adj.                                                                   | 0.53          | 0.53                | 0.53          |                      |       |
| venue                          | 0 Vehicles                            | <b>NOISE PARAMETERS</b>       | Noise Adjustment                | affic Adj.                                                                  | 1.71          | -13.15              | -10.93        |                      |       |
| Vincent A                      | raffic: 1915                          | SION                          |                                 | REMEL Tr                                                                    | 65.11         | 74.83               | 80.05         |                      |       |
| Road Name: Vincent Avenue      | Average Daily Traffic: 19150 Vehicles |                               |                                 | Vehicle Type                                                                | Automobiles   | Medium Trucks 74.83 | Heavy Trucks  | -                    |       |

Scenario: YEAR 2023 WITH PROJECT CONDITIONS

Project: Griswold Residential Site Conditions: Soft

Roadway Classification: Secondary South of San Bernardino Avenue Vahicle Miv. 2 Segment: Vehicle Sheed: 35 MDH Average Daily Traffic. 10700 Wehicles Vincent Avenue Road Name:

| condary                               | to                           | eet)                            | CNEL                                                                         | 30            | 64            | 138          | 296                  |
|---------------------------------------|------------------------------|---------------------------------|------------------------------------------------------------------------------|---------------|---------------|--------------|----------------------|
| ation: Sec                            | Distance                     | our (in f                       | Ldn                                                                          | 27            | 29            | 127          | 274                  |
| Roadway Classification: Secondary     | Centerline Distance to       | Noise Contour (in feet)         |                                                                              | 65.62 70 dBA: | 49.53 65 dBA: | 60 dBA:      | <b>66.59</b> 55 dBA: |
| Roadwa                                |                              |                                 |                                                                              | 65.62         | 49.53         | 59.19        | 66.59                |
|                                       | t: 45.38                     |                                 | Ldn                                                                          | 64.99         | 49.50         | 59.15        | 60.99                |
| X: Z                                  | (Equiv. Lane Dist: 45.38 ft) | <b>Unmitigated Noise Levels</b> | Led Night                                                                    | 26.56         | 43.35         | 53.00        | 58.28                |
| Venicle IVIIX: Z                      | E(                           | tigated <b>N</b>                | eq Eve.                                                                      | 62.61         | 34.14         | 43.79        | 62.67                |
|                                       | <b>ITERLINE</b>              | Unmi                            | Led Day L                                                                    | 63.90         | 41.92         | 51.57        | 64.18                |
| ed: 35 MPI                            | -ROM CEN                     |                                 | Leg Peak                                                                     | 66.28         | 61.13         | 68.56        | 71.05                |
| Venicle Speed: 35 IMPH                | AT 50 FEET FROM CENTERLINE   |                                 | REMEL Traffic Adj. Dist Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | -1.20         | -1.20         | -1.20        | Total:               |
| _                                     | ETERS AT                     | stments                         | Dist Adj.                                                                    | 0.53          | 0.53          | 0.53         |                      |
| u venicies                            | NOISE PARAMETERS             | Noise Adjustment                | affic Adj.                                                                   | 1.84          | -13.03        | -10.81       |                      |
| гаптс: 1970                           | SION                         |                                 | REMELT                                                                       | 65.11         | 74.83         | 80.05        |                      |
| Average Dally Traffic: 19700 venicles |                              |                                 | Vehicle Type                                                                 | Automobiles   | Medium Trucks | Heavy Trucks | •                    |

West of Irwindale Avenue Segment: San Bernardino Avenue Road Name:

151 CNEL Roadway Classification: Secondary Noise Contour (in feet) **Centerline Distance to** Гd 30 65 60 dBA: 70 dBA: 65 dBA: 55 dBA: 62.68 45.06 54.34 61.91 CNE (Equiv. Lane Dist: 97.77 ft) 62.16 61.28 45.02 Ldh 54.31 **Unmitigated Noise Levels** 48.15 52.84 38.87 54.24 Leq Peak Leq Day Leq Eve. Leq Night Vehicle Mix: 2 29.66 58.90 58.95 38.94 NOISE PARAMETERS AT 100 FEET FROM CENTERLINE 60.41 60.19 37.44 46.73 Vehicle Speed: 40 MPH 56.65 62.56 66.65 63.72 -1.20 -1.20 -1.20 Dist Adj. Finite Adj Total: Noise Adjustments -4.47 -4.47 -4.47 Average Daily Traffic: 18050 Vehicles -13.99 0.88 -11.77 REMEL Traffic Adj. 81.16 67.36 76.31 Medium Trucks Heavy Trucks Vehicle Type Automobiles

West of Project Driveway Vehicle Mix: 2 Segment: Vehicle Speed: 40 MPH San Bernardino Avenue Average Daily Traffic: 16450 Vehicles Road Name:

143 307 CNEL Roadway Classification: Secondary Noise Contour (in feet) Centerline Distance to -dn 28 61 70 dBA: 65 dBA: 60 dBA: 54.66 63.00 62.23 45.38 CNEL (Equiv. Lane Dist: 87.52 ft) Ldn 61.60 45.34 54.63 **Unmitigated Noise Levels** Leg Peak Leg Day Leg Eve. Leg Night 39.19 54.56 48.47 29.98 39.26 59.22 59.27 NOISE PARAMETERS AT 90 FEET FROM CENTERLINE 37.76 47.05 60.51 62.88 64.03 56.97 66.97 -1.20 -1.20 -1.20 Dist Adj. Finite Adj Total: Noise Adjustments -3.75 -3.75 REMEL Traffic Adj. -14.39 0.47 -12.1767.36 76.31 81.16 Medium Trucks Heavy Trucks Vehicle Type Automobiles

East of Project Driveway Segment: San Bernardino Avenue Road Name:

| econdary                              | ce to                        | n feet)                         | CNEL                                                                         | 33            | 7                   | 153          | 329                  |
|---------------------------------------|------------------------------|---------------------------------|------------------------------------------------------------------------------|---------------|---------------------|--------------|----------------------|
| ation: S                              | Distan                       | tour (ir                        | Ldn                                                                          | 30            | 65                  | 141          | 304                  |
| Roadway Classification: Secondary     | Centerline Distance to       | Noise Contour (in feet)         |                                                                              | 66.50 70 dBA: | 49.66 65 dBA:       | 60 dBA:      | <b>67.28</b> 55 dBA: |
| Roadwa                                |                              |                                 | CNEL                                                                         | 66.50         | 49.66               | 58.94        | 67.28                |
|                                       | : 45.38                      |                                 | Ldn                                                                          | 65.87         | 49.62               | 58.90        | 66.75                |
| x: 2                                  | (Equiv. Lane Dist: 45.38 ft) | <b>Unmitigated Noise Levels</b> | Leq Night                                                                    | 57.44         | 43.47               | 52.75        | 58.84                |
| Vehicle Mix: 2                        | ) (Ec                        | tigated N                       | eq Eve.                                                                      | 63.50         | 34.26               | 43.54        | 63.55                |
|                                       | ITERLINE                     | Unmi                            | Leq Day L                                                                    | 64.79         | 42.04               | 51.32        | 65.00                |
| Vehicle Speed: 40 MPH                 | AT 50 FEET FROM CENTERLINE   |                                 | REMEL Traffic Adj. Dist Adj. Finite Adj  Leq Peak Leq Day Leq Eve. Leq Night | 67.16         | 61.25               | 68.31        | 71.24                |
| /ehicle Spe                           | 50 FEET R                    |                                 | Finite Adj                                                                   | -1.20         | -1.20               | -1.20        | Total:               |
| <b>^</b>                              | ETERS AT                     | stments                         | Dist Adj.                                                                    | 0.53          | 0.53                | 0.53         |                      |
| ) Vehicles                            | NOISE PARAMETERS             | Noise Adjustment                | affic Adj.                                                                   | 0.47          | -14.39              | -12.17       |                      |
| affic: 16450                          | SION                         | 2                               | <b>REMEL Tra</b>                                                             | 92'29         | 76.31               | 81.16        |                      |
| Average Daily Traffic: 16450 Vehicles |                              |                                 | Vehicle Type                                                                 | Automobiles   | Medium Trucks 76.31 | Heavy Trucks | •                    |
|                                       |                              |                                 |                                                                              |               |                     |              |                      |

Scenario: YEAR 2023 WITH PROJECT CONDITIONS

East of Vincent Avenue Segment: Road Name: San Bernardino Avenue

| ondary                                | to                          | et)                             | CNEL                                           | 31            | 29            | 145           | 311     |
|---------------------------------------|-----------------------------|---------------------------------|------------------------------------------------|---------------|---------------|---------------|---------|
| tion: Sec                             | Distance                    | our (in fe                      | Ldn                                            | 29            | 62            | 133           | 287     |
| Roadway Classification: Secondary     | <b>Centerline Distance</b>  | Noise Contour (in feet)         |                                                | 64.95 70 dBA: | 48.10 65 dBA: | 57.38 60 dBA: | 55 dBA: |
| Roadwa                                |                             |                                 | Ldn CNEL                                       | 64.95         |               | 57.38         | 65.73   |
|                                       | st: 56.21                   |                                 | Ldn                                            | 64.32         | 48.07         | 57.35         | 65.20   |
| x: 2                                  | (Equiv. Lane Dist: 56.2 ft) | <b>Jumitigated Noise Levels</b> | Led Night                                      | 55.89         | 41.91         | 51.20         | 57.28   |
| Vehicle Mix: 2                        |                             | itigated N                      | ed Eve.                                        | 61.94         | 32.70         | 41.99         | 61.99   |
|                                       | ITERLINE                    | Unmi                            | eq Day I                                       | 63.23         | 40.48         | 49.77         | 63.45   |
| Vehicle Speed: 40 MPH                 | AT 60 FEET FROM CENTERLINE  |                                 | Finite Adj Leq Peak Leq Day Leq Eve. Leq Night | 65.61         | 59.69         | 92'99         | 69.69   |
| /ehicle Spe                           | T 60 FEET                   |                                 | Finite Adj                                     | -1.20         | -1.20         | -1.20         | Total:  |
|                                       |                             | stments                         |                                                |               | -0.87         | -0.87         |         |
| 0 Vehicles                            | NOISE PARAMETERS            | Noise Adjustments               | REMEL Traffic Adj. Dist Adj.                   | 0.31          | -14.55        | -12.34        |         |
| affic: 1585                           | SION                        |                                 | REMEL Tr                                       | 92.79         | 76.31         | 81.16         |         |
| Average Daily Traffic: 15850 Vehicles |                             |                                 | Vehicle Type                                   | Automobiles   | Medium Trucks | Heavy Trucks  |         |