

September 30, 2022 Updated January 26, 2023

Mr. Henry Avila
DS Westgate West, L.P.
200 East Baker Street
Suite 100
Costa Mesa, California 92626

Subject: Recommendation of No Further Environmental Action

Westgate West – Former Midas Muffler

5287 Prospect Road San Jose, California

Converse Project No. 16-42-194-15/17

Mr. Avila:

This letter summarizes the environmental assessment activities conducted at the portion of the Westgate West center formerly occupied by Midas Muffler (5287 Prospect Road) in the City of San Jose, California (herein referenced as the Site), and includes updated information generated in accordance with our proposal dated December 30, 2022. The location of the Site is indicated on Figure 1. The Westgate West center is currently owned by DS Westgate West, LP. We understand that a portion of the center, including the Site, may be leased to and redeveloped for use by Costco.

This letter presents a general summary of prior assessment reports prepared by Converse and others, and an overall evaluation of the data generated relative to current regulatory thresholds.

Background

The Site was historically developed with orchards and farm structures prior to development with a Firestone (circa 1977 to 1985) and Midas Muffler (circa 1985 to 2012). The building's automotive service area historically included four single-post automobile hoists, a double-post hoist with an in-ground oil-air tank, an alignment pit that contained a "dry well," a "sediment trap" and a waste oil tank. Most of these features have been removed, and the space has remained vacant since 2012.

Converse prepared a letter dated September 30, 2022 summarizing environmental assessment activities conducting at the Site and recommending no further action. As a

* *

conservative measure and in accordance with general DTSC guidance, Converse recently conducted a second sampling event in a different season to confirm the lack of a vapor intrusion risk. As summarized below, the results of the recent indoor air event confirm Converse's recommendation that no further action is required at the Site.

Assessments Activities and Findings

<u>Converse Consultants – September 2016</u>

The findings with regard to soil samples collected from 12 borings (M1 through M12) completed at the Site were presented in a Supplemental Phase II Environmental Site Assessment (ESA) Report, dated November 9, 2016. During the same mobilization Converse also completed some additional non-scope items that were not presented or discussed in that report, which included two (2) supplemental borings completed adjacent to the inlet and effluent of the clarifier at the Site (CI and CE, respectively), the collection and analysis of soil and soil vapor samples from these borings, as well as the collection of soil vapor samples from three of the initially completed borings (M6, M9, and M12).

All soil samples from borings M1 through M12 were analyzed for Polychlorinated Biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPH) in the diesel and heavy oil ranges. Soil samples from borings CI and CE were analyzed for TPH in the gasoline, diesel, and heavy oil ranges, Volatile Organic Compounds (VOCs), and CAM 17 Metals. Soil vapor samples were analyzed for VOCs and fuel oxygenates.

The findings of this assessment revealed the following:

- PCBs and VOCs were not detected in any of the soil samples analyzed.
- TPH was detected in four (4) soil samples. TPH was reported at a maximum concentration of 380 milligrams per kilogram (mg/kg) in the diesel range, and at 6,410 mg/kg in the heavy oil range. All reported TPH detections were in samples from 10 feet below ground surface (bgs), with no TPH detected in samples from 5, 15 or 20 feet bgs. Results of TPH in soil are presented on attached Tables 1A and 1B.
- A total of 10 metals were detected in the soil samples analyzed. All reported concentrations were considered to be representative of naturally occurring background levels. Results of metals in soil are presented on attached Table 1B.
- A total of 10 VOCs were detected in the soil vapor samples analyzed including Tetrachloroethylene (PCE), carbon tetrachloride, 1,1-dichloroethylene (DCA), 1,1dichloroethylene (DCEE), ethylbenzene, toluene, 1,1,1-trichloroethane (TCA), 1,2,4-trimethylbenzene (TMB), 1,3,5-TMB, and xylenes. Results of VOCs in soil vapor are presented on attached Table 2.

Sample location of this assessment are indicated on attached Figures 2A and 2B. Analytical results of this assessment are summarized on attached Tables 1A, 1B, and 2.

<u>Kleinfelder – September 2021</u>

The findings of the soil and soil vapor samples collected from 14 borings (KVP1 through KVP14) at the Site were presented in a Phase II ESA Report, dated December 2, 2021. Each borehole was completed to a depth of approximately 15 feet bgs, with soil samples collected from depths of 2.5, 5, 10, and 15 feet bgs. Soil vapor samples were subsequently collected from each location at depths of approximately 5 and 15 feet bgs.

Select soil samples from borings KVP1 through KVP14 were analyzed for TPH in the gasoline, diesel and heavy oil ranges, VOCs, and CAM 17 Metals. Soil vapor samples were analyzed for VOCs and low fraction TPH.

The findings of this assessment revealed the following:

- TPH in the gasoline range (TPH-g) was not present at concentrations at or above its "Reported Detection Limit" (RDL). TPH in the diesel range (TPH-d) was present in two soil samples at a maximum concentration of 8.12 mg/kg. TPH in the combined heavy/motor oil ranges (TPH-mo) was present in five soil samples at a maximum concentration of 24.26 mg/kg.
- The following four (4) VOCs were detected in one (1) or more of four (4) soil samples: acetone, 2-butane, PCE and 1,1,1-Trichloroethane (TCA). These VOCs were reported at maximum concentrations of 0.0936, 0.0144, 0.00164, and 1.00197 mg/kg, respectively. Other VOCs were not present in the samples at concentrations at or above their respective RDLs.
- Eleven (11) metals were present at concentrations at or above their respective RDLs in each analyzed soil sample: barium, beryllium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, vanadium, and zinc. Additionally, arsenic was present in 13 of the 14 analyzed samples, and cadmium was present in one soil sample at a concentration above its RDL. Antimony, selenium, silver, and thallium were not present in the analyzed samples at a concentration at or above their respective laboratory RDL. The metals present in the samples and their maximum reported concentration (in mg/kg) follow:

Metal	Maximum Concentration
	(mg/kg)
Arsenic	6.88
Barium	215
Beryllium	0.857
Cadmium	0.544
Chromium	56.7
Cobalt	16.3
Copper	45.3

Lead	22.9
Mercury	0.0785
Molybdenum	1.23
Nickel	72.0
Vanadium	58.1
Zinc	81.6

- Soluble chromium was reported in at a maximum concentration of 0.176 milligram per liter (mg/L).
- Low fraction TPH and 38 VOCs were present in the soil vapor samples at concentrations at or above their respective laboratory RDL.

Sample location of this assessment are indicated on attached Figure 3. Analytical results of the soil vapor samples from this assessment are summarized on attached Table 3.

Converse Consultants - June 2022

Based on the findings presented in the Kleinfelder report, Converse proposed to collect samples to evaluate for actual potential impacts to indoor air.

At the time the indoor air samples were collected there was minimal exchange between the building and outside air since all of the doors were closed and the HVAC was not operating. Additionally, there were multiple penetrations of the concrete slab where soil vapor probes had been installed, which had not been sealed.

The findings of the ambient air assessment conducted by Converse in May 2022 were presented in a Draft Vapor Intrusion Assessment Report, dated June 30, 2022. A total of four (4) indoor air samples were collected from the Site and the adjoining units, and two (2) samples of ambient air were collected from outdoor locations near the Site. All samples were collected over an approximate 24-hour period in 6-liter summa canisters and were analyzed for VOCs in accordance with EPA Test Method TO-15.

The findings of this assessment revealed the following:

• A total of 11 VOCs were detected in one or more of the four (4) indoor air samples and/or two (2) outdoor (ambient) air samples. All except two (2) of the VOCs detected in indoor air samples were also reported in soil vapor samples collected during the recent Kleinfelder assessment, and are considered to be chemicals of concern (COCs) due to the potential that they may be present as a result of vapor intrusion. The other two (2) compounds that were not detected in soil vapor samples (1,4-Dichlorobenzene, and 1,2-Dichloroethane) are not considered to be COCs as their presence in indoor air is unlikely to be related to intrusion of contamination from the subsurface.

- Neither PCE or TCE were reported in any of the indoor or outdoor air samples.
- Of the nine (9) detected COCs, only two (2) were reported in one (1) or more indoor air samples at concentrations exceeding either the residential or commercial screening levels; benzene and chloroform.
 - O Benzene was reported in all four (4) indoor air samples at concentrations ranging from 0.26 to 0.28 micrograms per cubic meter (μg/m³). When accounting for the average outdoor air concentrations (assuming ½ the reporting limit for the non-detect value in sample OA-2), the maximum indoor air concentration adjusts to 0.09 μg/m³.
 - O Chloroform was reported in two (2) of the samples (IA-3 and IA-4) at concentrations of 0.18 and 0.16 μg/m³, respectively. When accounting for the average outdoor air concentrations (assuming ½ the reporting limit for the non-detect value in sample OA-1), the maximum indoor air concentration adjusts to $0.06 \ \mu g/m^3$.

Sample location of this assessment are indicated on attached Figure 4. Analytical results of this assessment are summarized on attached Table 4.

Converse Consultants – January 2023

A total of four (4) indoor air samples were collected from the Site and the adjoining units, and two (2) samples of ambient air were collected from outdoor locations near the Site. Sample canisters were placed in the same locations as during the May 2022 sampling event. During this event samples were collected over an approximate 8-hour period in 6-liter summa canisters and were analyzed for VOCs in accordance with EPA Test Method TO-15. Site conditions during sample collection were generally the same as those of the May 2022 event. The laboratory report for the samples collected during this sampling event is included as an attachment to this report.

The findings of this assessment revealed the following:

- A total of 24 VOCs were detected in one or more of the four (4) indoor air samples and/or two (2) outdoor (ambient) air samples. Compounds detected include 10 of the 11 that were detected during the initial round of ambient air testing conducted in June 2022, five (5) compounds not detected during the initial assessment, and nine (9) compounds that were not analyzed for during the initial assessment (different laboratories were used between the two assessments, and they have different standard lists of chemicals to report).
- Eight (8) of the reported compounds were not detected in any of the soil vapor samples previously collected by Kleinfelder. These include bromodichloromethane, 1,4-dichlorobenzene, 1,2-dichloroethane, and naphthalene. Because these constituents have not been detected during prior soil vapor sampling, the indoor detections appear to result from building materials or

- products being used, and/or background indoor air conditions as opposed to a subsurface condition.
- The 16 VOCs detected in indoor air samples which were also reported in soil vapor samples collected during the recent Kleinfelder assessment, are all considered to be chemicals of concern (COCs). After accounting for background levels of contaminants present in the outdoor air samples, all concentrations are less than their respective screening levels for commercial land use.

Evaluation of Findings

<u>Converse Consultants – September 2016</u>

The maximum concentrations of TPH-d and TPH-o, which were reported in a limited number of samples from depths of 10 feet bgs, as well as all concentrations of VOCs in soil vapor samples, were less than the Environmental Screening Level (ESL) values for commercial land use from that time (2016).

With the exception of arsenic, all metals were reported at maximum concentrations less than their respective ESL values for commercial land use. Regional studies conducted in both Southern California (see DTSC HHRA Note 11) and the San Francisco Bay Area (thesis of Dylan Jacques Duverge at SFSU, 2011) have found that arsenic naturally occurs at mean concentrations of approximately 4 mg/kg, and up to 12 mg/kg. The reported arsenic concentrations of 3.73 and 3.91 mg/kg are therefore considered to likely be representative of naturally occurring background levels.

Based on the information above, no further action was recommended at the Site at that time.

It is noted that in 2019 the Regional Water Quality Control Board (RWQCB) made a significant revision to the method used in establishing the ESLs for soil vapor. The amount of vapor that is assumed to pass from the subsurface through the building slab and into indoor air, the Attenuation Factor (AF), was changed from 0.001 to 0.03. This changed assumption essentially lowered the concentrations of compounds in soil vapor at which further assessment would be recommended by a factor of 30. However, the actual acceptable concentrations of chemicals in indoor air were not affected by this change. The reported concentrations of constituents in soil, with the exception of arsenic, are also less than their current (2019) respective ESLs for commercial land use. However, as discussed above, the reported arsenic concentrations are believed to be representative of naturally occurring background levels.

Kleinfelder – September 2021

All reported concentrations of TPH and VOCs in soil samples are below their respective Tier I ESL screening levels for residential and commercial/industrial land uses.

All reported metals concentrations in soil samples are less than their respective ESL screening levels for residential land use, or naturally occurring background levels for the region. All metals concentrations are also less than hazardous waste disposal threshold values.

Soil vapor sample data indicates that of the 38 VOCs present above the laboratory RDL, only two (2) were reported with maximum concentrations greater than ESL screening levels for commercial land use; PCE and TCE. Although Kleinfelder discussed carbon tetrachloride as a chemical of concern, Converse believes that they were comparing concentrations to the January 2019 ESL values, but all reported concentrations appear to be less than the revised ESLs issued in August 2019. Below is a summary of the findings for the VOCs in soil vapor that were reported in excess of commercial screening levels:

- PCE was reported at a maximum concentration of 923 micrograms per cubic meter (ug/m³). A total of nine (9) samples were reported with PCE concentrations in excess of the ESL for commercial/industrial land use of 67 ug/m³. However, all of the reported concentrations were less than the screening level for commercial land use of 2,000 ug/m³ based on DTSC-SL and an AF of 0.001.
- TCE was reported at a maximum concentration of 234 ug/m³. Only one (1) reported TCE concentration exceeded the ESL for commercial/industrial land use of 100 ug/m³. However, this maximum concentration is less than the screening level for commercial land use of 267 ug/m³, which is calculated using an AF of 0.03 and the Accelerated Response Action Level of 8 ug/m³ that is presented in DTSC HHRA Note 5.

Low fraction TPH concentrations reported in the soil vapor samples are all below its Tier I ESL screening level.

Converse Consultants – June 2022 and January 2023

The chemicals of primary concern, based on the findings of the recent Kleinfelder soil vapor assessment, were PCE and TCE. Neither PCE nor TCE were detected in any of the indoor or outdoor air samples during the June 2022 sampling event. During the January 2023 sampling event TCE was detected in one (1) ambient air sample but none of the indoor air samples, and PCE was reported in one (1) outdoor and two (2) indoor air samples. All reported PCE and TCE concentrations were less than their respective residential screening levels, and it is noted that the maximum concentrations of both were reported in outdoor air sample OA-2, indicating a potential ambient source for the detections of PCE in the indoor air samples. All other detected indoor air constituents are also less than commercial standards after taking into account outdoor ambient conditions.

Based on maximum and average concentrations of PCE in prior soil vapor samples from within the Midas building of 923 and 227 ug/m³, respectively, the actual AF for the site appears to be approximately 0.001, which is far below the conservative AF of 0.03 used in developing the Tier 1 ESLs, but equal to the AF recommended in the DTSC Vapor Intrusion Guidance for an existing structure at a commercial property.

The findings of the indoor air assessments are considered to be representative of worst-case exposure scenarios for potential vapor intrusion due to the minimal ventilation of the vacant buildings, and core holes in the slab of the Midas building that might be presenting major pathways. It is assumed that the potential for impacts from vapor intrusion in a future new occupied building will be lower, as it is anticipated to be ventilated and to have a less porous slab.

Reportable Quantities Evaluation

California Code, Health and Safety Code - HSC § 25359.4 indicates appropriate agencies must be notified in the event of a reportable quantity (RQ) of a hazardous substance being released into the environment. A "reportable quantity" is defined as either:

- (1) The quantity of a hazardous substance established in Part 302 (commencing with Section 302.1) of Title 40 of the Code of Federal Regulations, the release of which requires notification pursuant to that part.
- (2) Any quantity of a hazardous substance that is not reportable pursuant to paragraph (1), but that may pose a significant threat to public health and safety or to the environment. The department (DTSC) may establish guidelines for determining which releases are reportable under this paragraph.

The RQ threshold value for PCE listed on Table 302.4 - List of Hazardous Substances and Reportable Quantities, is 100 pounds.

The following conservative assumptions were made to evaluate the approximate mass of PCE released to the Site:

- PCE was detectable in soil samples from 2 locations at a depth of 2.5 feet bgs, with no detections in samples from 5 feet bgs, so half of the footprint of the Midas building was assumed to be impacted to a depth of 5 feet bgs (10,000 cubic feet, or approximately 470,000 kg of soil) at the maximum reported concentration (0.00164 mg/kg).
- PCE was detected in most of the soil vapor samples collected from within the Midas building down to depths of 15 feet bgs. It was therefore assumed that the soil vapor beneath the entire footprint of this 4,500 square foot building, down to a

DS Westgate West, L.P. WW – NFA Recommendation Letter Converse Project No. 16-42-194-15/17 Updated January 26, 2023

depth of 20 feet bgs (1,020 m³, assuming 40% soil porosity) are impacted at the maximum reported concentration (923 ug/m³).

Based on the assumptions above it is estimated that 0.004 pounds (approximately 2 grams, or 0.04 ounces) of PCE is present in the soil and soil vapor beneath the Site, which does not exceed the RQ threshold of 100 pounds. Because the mass of this primary chemical of concern was so far below the RQ threshold, no other compounds were evaluated. Assumptions and calculations used in deriving this estimated mass are presented on Table 5.

Analytical results of all soil samples, with the exception of arsenic, have been reported at concentrations less than their respective ESLs for commercial land use. However, the reported arsenic concentrations are believed to be representative of naturally occurring background levels. Therefore, there is not suspected to be any significant threat to the environment. Although some VOCs have been detected in soil vapor samples at concentrations greater than conservative screening levels, all reported concentrations of VOCs in indoor air samples are less than their respective ESL screening levels for commercial land use. It is therefore concluded that the detections of VOCs in soil vapor do not pose a significant threat to public health and safety.

Conclusions and Recommendations

Based on the findings presented above, multiple rounds of indoor air testing conducted during varying seasons demonstrate that the VOCs previously reported in the soil vapor beneath the Site do not pose a significant vapor intrusion risk to the health of current or future Site occupants.

Concentrations of metals, VOCs, and/or TPH reported in soil and/or soil vapor samples collected from the vicinity of the former Midas building are not considered to pose a potential threat to construction workers or groundwater.

Based on the collective sampling and analysis, and the absence of an actual significant vapor intrusion risk to occupants, further assessment does not appear warranted to delineate the lateral extent of concentrations down to screening level values.

The reported concentrations of these compounds are not considered to be representative of past releases at significant volumes to rise to the level of reportable quantities.

It is assumed that all soils that may be generated from this area during potential future construction activities will be considered non-hazardous soil for handling, transportation, and disposal purposes, although further testing should be conducted at that time to profile the waste stream.

DS Westgate West, L.P. WW – NFA Recommendation Letter Converse Project No. 16-42-194-15/17 Updated January 26, 2023

No further environmental assessment or action appears warranted with regard to the soil or soil vapor in the vicinity of the former Midas building.

Closure

Thank you for this opportunity to be of service. Should you have any questions regarding this letter, please contact Michael Van Fleet at (626) 930-1267, or Norman Eke at (626) 930-1260.

MICHAEL A VAN FLEET No. 7869

Sincerely,

CONVERSE CONSULTANTS

Michael Van Fleet, PG

Senior Geologist

Norman Eke

Managing Officer

Attachments:

Figure 1: Site Location

Figure 2: Converse Soil and Soil Vapor Sample Locations Figure 3: Kleinfelder Soil and Soil Vapor Sample Locations

Figure 4: Converse Ambient Air Sample Locations

Table 1A: Summary of Analytical Results – Soil Matrix

Table 1B: Summary of Supplemental Analytical Results - Soil Matrix

Table 2: Summary of Analytical Results – VOCs in Soil Vapor

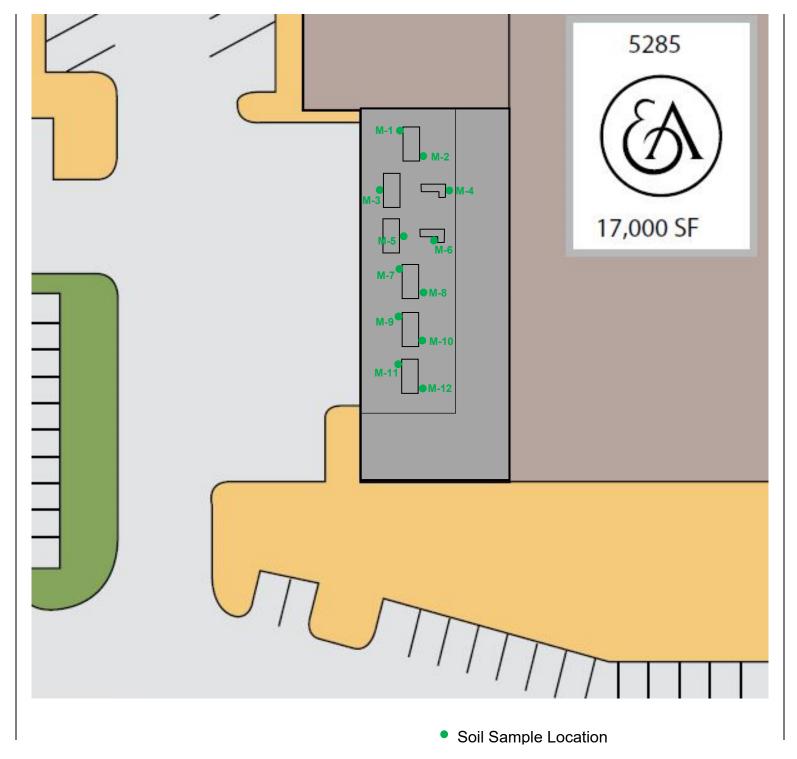
Table 3: Soil Vapor Analytical Results (Kleinfelder)

Table 4: Ambient Air Analytical Results

Table 5: PCE Mass Calculations

Laboratory Analytical Report – 1/12/2023 Samples

Attachments


SITE LOCATION PLAN

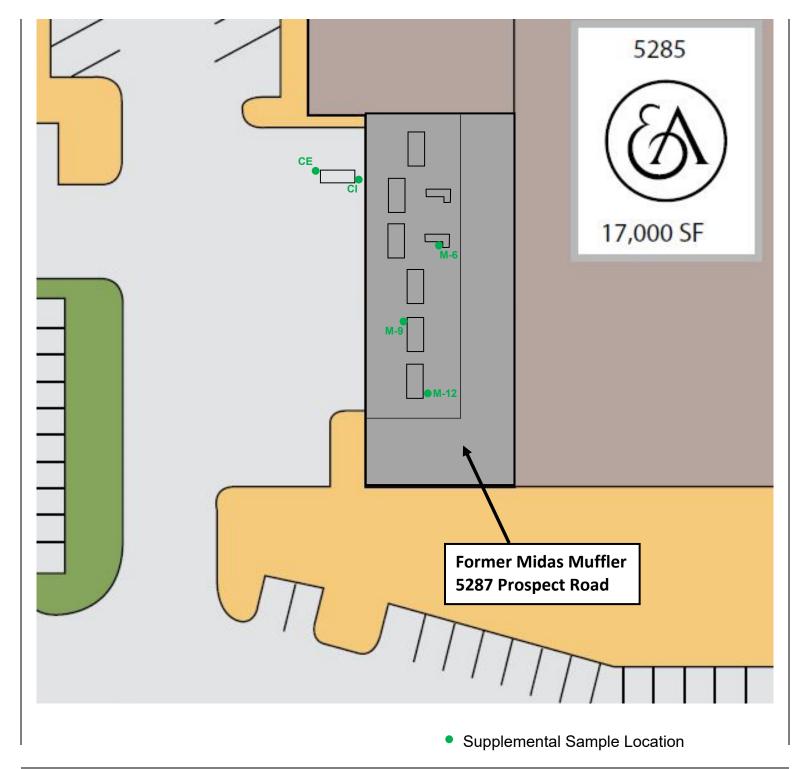
DS Westgate West, L.P. - Former Midas

Project No:

16-42-194-15

BORING LOCATIONS – FORMER MIDAS MUFFLER

DONAHUE SCHRIBER REALTY GROUP WESTGATE WEST SAN JOSE, CALIFORNIA


Project No:

16-42-194-03

Converse Consultants

FIGURE

2A

BORING LOCATIONS – FORMER MIDAS MUFFLER

DONAHUE SCHRIBER REALTY GROUP WESTGATE WEST SAN JOSE, CALIFORNIA

Project No:

16-42-194-03

Converse Consultants

FIGURE

2B

Explanation

DRAWN BY:

CHECKED BY:

Ph2_Fig3.mxd

FILE NAME:

KFH

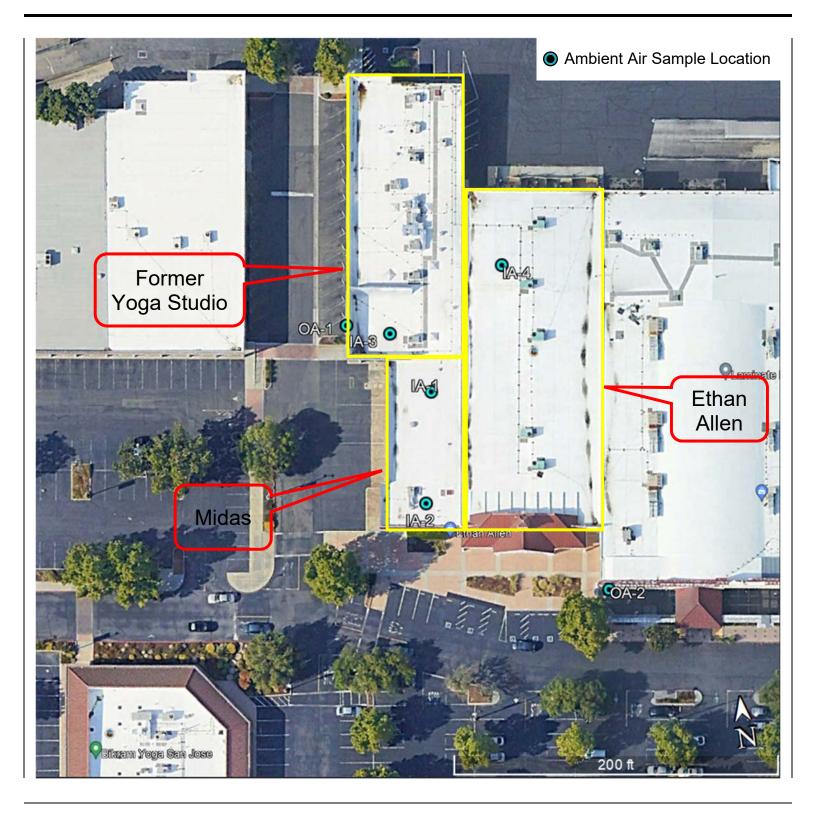
VAG

PROPOSED COSTCO WHOLESALE WAREHOUSE

WESTGATE WEST SHOPPING MALL

FORMER FIRESTONE / MIDAS MUFFLER 5287 PROSPECT RD, SAN JOSE, CA, 95129

CW20-0355-01 SAN JOSE, CA (WESTGATE WEST)


3

KVP-14

S LAGUNA HILLS,

KLEINFELDER

Bright People. Right Solutions.

AMBIENT AIR SAMPLE LOCATIONS

DS Westgate West, L.P. – Former Midas 5287 Prospect Road San Jose California

Project No:

16-42-194-15

Table 1A Summary of Analytical Results - Soil Matrix Former Midas Muffler

5287 Prospect Road, San Jose, California

Boring Location	Sample Depth	Date	Polychlorinated Biphenyls (mg/kg)	Hydrod	etroleum earbons i/kg)
	(ft bgs)		All PCBs	C11-C22	C23-C35
	5	9/23/2016	ND	ND	ND
	10	9/23/2016	ND	380	6,410
M-1	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-2	10	9/23/2016	ND	ND	ND
IVI-Z	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-3	10	9/23/2016	ND	ND	ND
0	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-4	10	9/23/2016	ND	ND	ND
	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-5	10	9/23/2016	ND	ND	ND
	15	9/23/2016	ND ND	ND	ND
	20	9/23/2016	ND ND	ND	ND
	5 10	9/23/2016 9/23/2016	ND ND	ND ND	ND 99.8
M-6	15	9/23/2016	ND ND	ND	ND
	20	9/23/2016	ND ND	ND	ND
	5	9/23/2016	ND	ND	ND
	10	9/23/2016	ND	123	1,700
M-7	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
	10	9/23/2016	ND	ND	ND
M-8	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-9	10	9/23/2016	ND	ND	ND
IVI-9	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-10	10	9/23/2016	ND	ND	ND
•	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND	ND	ND
	5	9/23/2016	ND	ND	ND
M-11	10	9/23/2016	ND	249	2,600
	15	9/23/2016	ND	ND	ND
	20	9/23/2016	ND ND	ND	ND
	5	9/23/2016	ND ND	ND	ND
M-12	10	9/23/2016	ND ND	ND	ND
	15 20	9/23/2016 9/23/2016	ND ND	ND ND	ND ND
S				1	
	ples Analyze	ı	48	48	48
	Detections		0	1	1
Maximu	ım Concentra	tion	NA	380	6,410
ESLs - Com	mercial	2016 (Feb.)	NA	1,100	140,000
2020 00111		2019 (Aug.)	NA	1,200	180,000

mg/kg = milligrams per kilogram

ft bgs = feet below ground surface

ND = Not Detected at or above PQL

NA = Not Applicable

ESL = Environmental Screening Level, from San Francisco RWQCB

Table 1B Summary of Supplemental Analytical Results - Soil Matrix

Former Midas Muffler 5287 Prospect Road, San Jose, California

Boring	Location	Clarifier In	fluent (CI)	Clarifier Ef	fluent (CE)		ES	SLs
Sample D	epth (ft bgs)	5.0	10.0	5.0	10.0	Maximum Concentration	Commerica	al Land Use
С	ate	9/23/2016	9/23/2016	9/23/2016	9/23/2016	Gorioonii dilori	2016 (Feb.)	2019 (Aug.)
Volatile Organic Compounds (mg/kg)	All Analytes	-	ND	ND		-	-	-
	C4-C10	-	ND	ND	-	-	3,900	2,000
Total Petroleum	C11-C22	ND	ND	ND	ND	-	1,100	1,200
Hydrocarbons (mg/kg)	C23-C35	ND	ND	ND	ND	-	140,000	180,000
, ,	Antimony	-	ND	ND	-	-	467	160
	Arsenic	-	3.91	3.73	-	3.91	0.31	0.31
	Barium	-	159	146	-	159	216,610	220,000
	Beryllium	-	ND	ND	-	1	2,212	230
	Cadmium	-	ND	ND	-	-	578	1,100
	Chromium	-	44.6	36.6	-	44.6	1,752,000	1,800,000
	Cobalt	-	11.2	10.4	-	11.2	347	350
CAM Metals	Copper	-	24.4	24.6	-	24.6	46,720	47,000
(mg/kg)	Lead	-	5.98	6.2	-	6.2	320	320
(1116/116)	Mercury	-	ND	0.128	-	0.128	187	190
	Molybdenum	-	ND	ND	-	-	5,840	5,800
	Nickel	-	53.7	42.3	-	53.7	11,132	11,000
	Selenium	-	ND	ND	-	-	5,840	5,800
	Silver	-	ND	ND	-	-	5,840	5,800
	Thallium	-	ND	ND	-	-	11.7	12
	Vanadium	-	38.3	35.7	-	38.3	5,829	5,800
	Zinc	-	59.6	60.2	-	60.2	350,400	350,000

mg/kg = milligrams per kilogram

ND = Not Detected at or above PQL

ft bgs = feet below ground surface

ESL = Environmental Screening Level, from San Francisco RWQCB

Table 2 Summary of Analytical Results - VOCs in Soil Vapor

Former Midas Muffler

5287 Prospect Road, San Jose, California

Probe Location	Depth (ft bgs)	Sample Date	Carbon Tetrachloride	1,1-Dichloroethane	1,1-Dichloroethene	Ethylbenzene	Tetrachloroethylene (PCE)	Toluene	1,1,1-Trichloroethane	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	Xylenes	All Other Analytes
M-6	5	9/23/2016	34.6	nd	nd	nd	493	21.7	277	12.5	nd	27.3	nd
101 0	20	9/23/2016	148	98.3	nd	nd	104	nd	1,140	nd	nd	nd	nd
M-9	5	9/23/2016	35.0	51.4	nd	nd	833	14.2	266	11.1	nd	20.6	nd
101-9	20	9/23/2016	132	177	14.8	nd	170	nd	982	nd	nd	nd	nd
M-12	10	9/23/2016	nd	nd	nd	nd	86.5	15.9	493	nd	nd	10.6	nd
CI	10	9/23/2016	nd	nd	nd	nd	70.3	25.3	523	nd	nd	11.5	nd
CE	5	9/23/2016	nd	64.4	nd	29.2	87.7	128	289	42.4	11.9	163	nd
CE	20	9/23/2016	nd	nd	nd	nd	42.0	8.1	1,220	nd	nd	nd	nd
	Samples /	Analyzed	8	8	8	8	8	8	8	8	8	8	8
	Count	>ND	4	4	1	1	8	6	8	3	1	5	0
Maximu	um Conce	ntration (ug/m³)	148	177	14.8	29.2	833	128	1220	42.4	11.9	163	0
Soil Vap	or Screen	ing Level (ug/m³)	290	7,700	310,000	4,900	2,100	1,300,000	4,400,000	na	na	440,000	
Soil V	/apor > So	creening Level	NO	NO	NO	NO	NO	NO	NO	na	na	NO	
	ited Indooi ug/m³ (AF	r Concentration = 0.001)	0.148	0.177	0.0148	0.0292	0.833	0.128	1.22	0.0424	0.0119	0.163	
	or Air Scre	eening level - al (ug/m³)	0.29	7.7	310	4.9	2.1	1,300	4400	31	180	440	
Indo	oor > Scre	eening Level	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	

nd = Not Detected at or above Reported Detection Limit (RDL)

ft bgs = Feet below ground surface

ug/m³ = micrograms per meter cubed

AF - Attenuation Factor per DTSC Vapor Intrusion Guidance

na = not applicable, no published screening levels

Soil Vapor Screening level based on commercial scenario, from San Francisco RWQCB ESL Tables (Rev. 3 - February 2016)

Indoor Air screening elvel based on commercial scenario, from San Francisco RWQCB ESL Tables (Rev. 3 - February 2016), DTSC HHRA Note 3, or RSLs

																				v	OCs .																	
	Helium (leak check	TPH Low		2-Buta	anone Carbon	Carbon		Chloro-	Consta	1.1-	1.1-	cis-1.2-	1.1-								Incommod I	Mathadaaa	4-Methyl-2-	Mashad				Tatas	bd	1,1,1-		1,2,4-	1,3,5-	2,2,4-	Wand	Manual		
	gas)	Fraction Ace		ne (ME	EK) Disulfide	Tetrachloride		methane	hexane	Dichloroethane	Dichloroethene	Dichloroethene	Difluoroethane	Ethanol	Ethylbenzene			Freon 12	Heptane		benzene	Chloride	Pentanone (MIBK)	Methyl Methacrylate	2-Propanol			CE fu	ran Toluer	e Trichloroeth			benzene	pentane	Acetate		n,p-Xylenes	-Xylene Other VO
Soil Vapor Depth	(percent)	(µg/m³) (µg	/m³) (µg/m	3) (µg/i	/m³) (μg/m³)	(µg/m³)	(µg/m³)	(µg/m³)		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)				(µg/m³)	(µg/m³)	(µg/m³)		(µg/m³)	(µg/m³)	(µg/m³)		(µg/m³) (µ			J/m³) (μg/m				(µg/m³)	(µg/m³)	(µg/m³)	(μg/m³)	(µg/m³)	(μg/m³) (μg/m
10/04/5 5.0 40/4/0004		TO-15 TO 901 B 10			-15 TO-15 3.69 ND<0.622		ND<0.973		TO-15 ND<0.689	TO-15 ND<0.802	TO-15 ND<0.793	TO-15 ND<0.793	TO-15 4.57	7.64	7.33	1 77	1.41	7.62	1.45		TO-15 ND<0.983					ND<2.15 ND		58 ND<	0-15 TO-1: :0.590 33.9		2.37	TO-15 5.79	3.75			TO-15 ND<0.511	TO-15 19.9	TO-15 TO-18 8.32 ND<0.511 - N
KVP-1-15 15.0 10/1/2021	0.905	1,330 B 8.	46 1.49	ND<	3.69 ND<0.622	10.1	3.86	ND<0.413	3 ND<0.689	ND<0.802	62.2	ND<0.793	ND<2.70	4.43	1.79	14D -0.00E		17.0	ND<0.818	ND<2.22	ND<0.983	ND<0.694	ND<5.12	ND<0.819	ND<3.07	2.15 ND	<0.851 2	1.3 ND<	0.590 11.5	2,580	1.93	1.99	1.03	ND<0.934	ND<0.704	ND<0.511	6.37	2.90 ND<0.511 - N
KVP-2 KVP-2-5 5.0 10/1/2021 KVP-2-15 15.0 10/1/2021		1,110 B 19 1,070 B 9.					ND<0.973		3 ND<0.689 ND<0.689	ND<0.802 0.850	ND<0.793 27.5	2.65 ND<0.793	ND<2.70	3.85 41.9		1.16 ND<0.982										ND<2.15 ND			0.590 10.8 .59 13.2		132	6.87 ND<0.982				ND<0.511	12.2	6.16 ND<0.511 - ND<0.5
KVP-3-5 5.0 10/1/2021	0.781	1,260 B 4.	11 < 0.63	9 ND<	3.69 ND<0.622	ND<1.26	ND<0.973	ND<0.413	3 ND<0.689	ND<0.802	ND<0.793	4.48	2.86	6.01	2.70	ND<0.982	1.69	6.87	ND<0.818	ND<2.22	ND<0.983	1.15	ND<5.12	ND<0.819	ND<3.07	ND<2.15 ND	<0.851 5	70 ND<	0.590 9.72	626	234	2.28	1.42	ND<0.934	1.04	ND<0.511	7.80	3.84 ND<0.511 - N
KVP-3-15* 15.0 10/1/2021		ND<826* 65			30° ND<0.622°					ND<0.802*	1.65*	ND<0.793* ND<0.793	5.43* 11.8	439* 9.31	0.000	ND<0.982* ND<0.982	1.16*	3.00*	7.81*	ND<2.22*	ND<0.983*	6.46*	ND<5.12*	ND<0.819*	152*	ND<2.15* 1	.00* 8	.96* 7.	61* 89.3*	79.4*	ND<1.07 5.68	* ND<0.982*						1.16* ND<0.511 - N
KVP-4	1.01	1,240 B 9. 1,210 B 11	1.0 1.15	ND<	3.69 ND<0.622 3.69 ND<0.622	2 2.28	1.16	ND<0.413	3 3.12	ND<0.802 1.90	ND<0.793 7.65	ND<0.793	ND<2.70	59.8		ND<0.982	1.39 3.24	6.48	4.34	13.1	ND<0.983	1.44	ND<5.12 ND<5.12	1.25	14.8	ND<2.15 ND	<0.851 4	111 1	:0.590 9.79 .14 42.2	232 903	2.27		1.22 ND<0.982	ND<0.934	ND<0.704	ND<0.511 0.519	10.9	3.20 ND<0.511 - N 3.42 ND<0.511 - N
KVP-5 5.0 10/1/2021	ND<0.100	5,620 B ND<	2.97 1.45	ND<	3.69 ND<0.622	ND<1.26	ND<0.973	ND<0.413	3 7.78 3 ND<0.689	ND<0.802	ND<0.793	ND<0.793 ND<0.793	15.3 ND<2.70	35.8		ND<0.982 ND<0.982		3.72	2.41	ND<2.22	ND<0.983	6.08	ND<5.12	ND<0.819	9.96	ND<2.15 0	.919 4	162 ND<	:0.590 14.5 :0.590 27.6	301 887	ND<1.07 ND<1.07		1.49			ND<0.511 ND<0.511	8.63 12.6	5.03 ND<0.511 - N
		1, 520 B 31 884 B 3.									4.84 ND<0.793	ND<0.793 ND<0.793	ND<2.70 ND<2.70	8.45	4.00	ND<0.982 ND<0.982													0.590 27.6		ND<1.07							2.46 ND<0.511 - N
KVP-6-15 15.0 10/1/2021	0.375	996 B 50	0.6 1.14	10.	0.3 ND<0.622	2.31	ND<0.973	ND<0.413	3 ND<0.689	ND<0.802	ND<0.793	ND<0.793	ND<2.70	11.2	3.99	1.09	1.79	5.64	0.969	ND<2.22	ND<0.983	ND<0.694	5.65	ND<0.819	ND<3.07	ND<2.15 ND	<0.851 1	24 ND<	0.590 21.2	827	ND<1.07	4.46	2.57	ND<0.934	ND<0.704	ND<0.511	13.2	5.85 ND<0.511 - N
KVP-7 5 5.0 10/1/2021 KVP-7-15 15.0 10/1/2021		921 B 4. 1 320 B 6							3 ND<0.689 3 ND<0.689		ND<0.793	ND<0.793 ND<0.793	ND<2.70 ND<2.70	5.24 4.17															0.590 13.3		ND<1.07							6.68 ND<0.511 - N 2.97 ND<0.511 - N
KVP-8-5 5.0 10/1/2021												ND<0.793	14.7					10.3	ND<0.818	ND<2.22	ND<0.983																	4.51 ND<0.511 - N
KVP-8-15 15.0 10/1/2021	0.132	1,350 B ND<	297 837	ND<	3.69 ND<0.622	2.92	ND<0.973	ND<0.413	3 9.95	ND<0.802	4.08	ND<0.793	ND<2.70	107	4.55	2.45	1.87		npled due to Sur 8 71			12.4	ND<5 12	ND<0.819	6.56	ND<2 15	17 1	85 6	.37 45.6	914	3.75	3.28	1.42	9.67	ND<0.704	ND<0.511	13.7	5.64 ND<0.511 - N
KVP-9-15 15.0 10/1/2021	0.168	1,700 B 35	5.2 3.93	4.5	57 ND<0.622	6.36	5.45	ND<0.413	3 4.13	ND<0.802	71.7	ND<0.793	ND<2.70	55.2	2.69	1.95	2.26	22.4	4.09	8.85	ND<0.983	6.74	ND<5.12	ND<0.819	10.6	ND<2.15 ND	<0.851 ND	<1.36 3	.48 27.5	1,920	2.58	2.64	1.12	4.07	ND<0.704	ND<0.511	9.49	3.86 ND<0.511 - N
KVP-10 KVP-10-5 5.0 10/1/2021 KVP-10-15 15.0 10/1/2021	ND<0.100	ND<826 6. ND<826 8	42 ND<0.6	39 ND<	3.69 ND<0.622	ND<1.26	ND<0.973	ND<0.413	3 ND<0.689	ND<0.802 ND<0.802	ND<0.793 ND<0.793	ND<0.793 ND<0.793	ND<2.70		1.27 ND<0.867	ND<0.982		2.18		ND<2.22	ND<0.983	0.760 ND 40.604	ND<5.12	ND<0.819	ND<3.07	ND<2.15 ND	<0.851 2	.44 ND<	0.590 4.22 0.590 8.66	45.4 72.3	ND<1.07	2.47	1.40	ND<0.934	ND<0.704	ND<0.511 ND<0.511	4.51 3.1	2.79 ND<0.511 - N
KVP-10-15 15.0 10/1/2021 KVP-11											ND<0.793	ND<0.793	8.91	41.5		6.82														361	ND<1.07						411	14.9 ND<0.511 - N
KVP-11-15 15.0 9/23/2021	ND<0.100 ND<0.100	ND<826 5.	85 0.930	ND<	3.69 1.88	1.90	ND<0.973	0.63	ND<0.689 3 ND<0.689	ND<0.802 ND<0.802	ND<0.793 ND<0.793	ND<0.793 ND<0.793	19.0	10.5	2.55	1.57	1.39	1.91	1.11	3.41	ND<0.983	2.42	ND<5.12	ND<0.819	ND<3.07	ND<2.15 ND ND<2.15 ND	<0.851 ND	<1.36 ND<	0.590 18.6	353	ND<1.07 ND<1.07					ND<0.511	8.11	2.90 ND<0.511 - N 14.2 ND<0.511 - N
KVP-12 KVP-12-5 5.0 9/23/2021 KVP-12-15 15.0 9/23/2021		880 5. 1,770 5.		ND<					3 ND<0.689 3 ND<0.689		3.32	ND<0.793 ND<0.793	9.21 2.94	5.62 8.33		7.56 5.40	1.41	2.17	2.37 4.99									3.6 ND< .76 ND<	0.590 42.2		ND<1.07		5.01 3.49			ND<0.511 ND<0.511	39.5 31.2	14.2 ND<0.511 - P
KVP-13	ND<0.100	987 6. 1 100 11	53 1.45	ND<	3.69 7.69	ND<1.26	ND<0.973	ND<0.413	3 ND<0.689	ND<0.802	ND<0.793	ND<0.793	18.3	8.47	9.80	7.21	1.38	1.74	1.27	3.30	ND<0.983	3.08	ND<5.12	ND<0.819	ND<3.07	ND<2.15 ND	<0.851 ND	<1.36 ND<	0.590 33.2	162	ND<1.07		4.67 1.74			ND<0.511	37.6	16.3 ND<0.511 - N 5.98 ND<0.511 - N
KVP-13-15 15.0 9/23/2021 KVP-14-5 5.0 9/23/2021	0.121 ND<0.100			ND<		1.26 2.98			3 ND<0.689 3 ND<0.689	ND<0.802 ND<0.802	ND<0.793 ND<0.793	ND<0.793 ND<0.793	9.35	5.75	11.7	3.25 7.61	1.73	1.80 3.13	2.75 2.16				ND<5.12 ND<5.12			ND<2.15 ND ND<2.15 ND			0.590 58.4 0.590 50.9		ND<1.07 ND<1.07				ND<0.704 ND<0.704	ND<0.511 ND<0.511	15.9 41.8	5.98 ND<0.511 - N 17.7 ND<0.511 - N
KVP-14-15 15.0 9/23/2021	ND<0.100	ND<826 3.	45 0.805	ND<	3.69 7.84	12.7	ND<0.973	ND<0.413	3 ND<0.689	ND<0.802	ND<0.793	ND<0.793	ND<2.70	3.28	1.67	1.20	1.56	3.88	ND<0.818	ND<2.22	ND<0.983	2.92	ND<5.12	ND<0.819	ND<3.07	ND<2.15 ND	<0.851 ND	<1.36 0.	899 9.38	123	ND<1.07	1.11	ND<0.982	ND<0.934	ND<0.704	ND<0.511	5.38	2.41 ND<0.511 - N
ESL – Tier 1 ESL – Residential	NV NV	3,300 1,000 20,000 1,100	0,000 3.2 0,000 3.2	170,0	,000 NV ,000 NV	2.2	4.1	3,100 3.100	NV NV	58 58	2,400	280 280	NV NV	NV NV	37	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	34 34	14,000	NV NV	NV NV		1,000		NV 10,00 NV 10,00	0 35,000 0 35,000	16 16	NV NV	NV NV	NV NV	NV NV	0.30	3,400	Vary or Vary or
ESL – Commercial/Industrial	NV	83,000 4,50	0,000 14	730,0	,000 NV	9.7	18	13,000		260	10,000	1,200	NV	NV	160	NV	NV	NV	NV	NV	NV	410	440,000	NV	NV	NV 13	0,000	67 1	NV 44,00	150,000			NV	NV	NV	5.2	15,000	Vary or
DTSC-SL – Residential (AF = 0.03) DTSC-SL – Commercial/Industrial (AF = 0.03)	NV NV	20,000** N 83,000** N			V NV	NV NV	NV NV	NV NV		NV NV	2,433 10,333	277 1,167	NV NV	NV NV	NL NL	NV NV	43,333 176,667	NV NV	NV NV	NV NV	NV NV	33 400	NV NV	NV NV	NV NV	NV 3:			NV 10,33 NV 43,33		NV NV	NV NV	NV NV	NV NV	NV NV	0.32 5.3	NV NV	NV Vary or NV Vary or
RSL - Residential (AF = 0.03)	NV	4,333 1,066	6,667 12	173,3	,333 24,333	16	4.0	3,133	210,000	60	7,000	NV	1,400,000	NV	37	NV	NV	3,333	14,000	24,333	14,000	3,333	103,333	24,333	7,000	103,333 33	3,333	67 70	,000 173,33	3 173,333	16	2,100	2,100	NV	7,000	5.7	3,333	3,333 Vary or
RSL – Commercial/Industrial (AF = 0.03) DTSC-SL – Residential (AF = 0.001)	NV NV	18,067 4,660 600,000** N	-,	733,3 N\	,333 103,333 V NV		18 NV	13,000 NV	866,667 NV	257 NV	29,333 73,000	NV 8.300	6,000,000 NV	NV NV	163 NV	NV NV	NV 1,300,000	14,667 NV	60,000 NV	103,333 NV	43,333 NV	40,000 1,000	433,333 NV	103,333 NV		433,333 14 NV 94	6,667 1,		3,333 733,33 NV 310,00				8,667 NV	NV NV	29,333 NV	93 9.5	14,667 NV	14,667 Vary or NV Vary or
DTSC-SL – Commercial/Industrial (AF = 0.001)		2,500,000** N	IV 420	N\	V NV	NV	NV	NV	NV	NV	310,000	350,000	NV	NV		NV	5,300,000	NV	NV	NV	NV	12,000	NV	NV	NV	NV 3,9	00,000 2.	000	NV 1,300,0	00 4,400,000) NV	NV		NV	NV	160	NV	NV Vary or
RSL – Residential (AF = 0.001) RSL – Commercial/Industrial (AF = 0.001)	NV NV	130,000 32,00	0,000 360	5,200	0,000 730,000 0.000 3.100.000	470	120 530		6,300,000 26.000.000	1,800 7,700	210,000 880.000	NV NV	42,000,000 180.000.000	NV NV	1,100 4,900	NV NV			420,000			100,000	3,100,000	730,000	210,000	3,100,000 1,0	00,000 11	,000 2,10	0,000 5,200,0	00 5,200,000	480	63,000		NV NV	210,000 880.000		100,000 440,000	
RSL - Commercial/Industrial (AF = 0.001)	NV	542,000 140,0	00,000 1,600	22,000	0,000 3,100,000	2,000	530	390,000	26,000,000	7,700	880,000	NV	180,000,000	NV	4,900	NV	NV	440,000	1,800,000	3,100,000	1,300,000	1,200,000	13,000,000	3,100,000	880,000	13,000,000 4,4	00,000 47	,000 8,80	0,000 22,000,0	22,000,00	3,000	260,000	260,000	NV	880,000	2,800	440,000	140,000 Vary or
Notes: TPH Total petroleum hydrocarbons.																																						
VOCs Volatile organic compounds.																																						
MEK Methyl ethyl ketone. Freon 11 Trichlorofluoromethane.																																						
Freon 12 Dichlorodifluoromethane.																																						
MIBK Methyl isobutyl ketone. PCE Tetrachloroethylene.																																						
TCE Trichloroethylene.																																						
µg/m ³ Micrograms per cubic meter. bas Below ground surface.																																						
ASTM D-1946 ASTM International analytical method number																																						
TO-15 United States Environmental Protection Age ND Not present at a concentration at or above the				"less than" (-	(<) symbol.																																	
B Laboratory qualifier indicating analyte was pr	sent in the laborat	tory blank sample ass	ociated with the	sample batc	ch.																																	
 At the time of sampling, the Summa canister ESL San Francisco Bay Regional Water Quality 0 						al vacuum of -5 inc	thes of mercury.	The results the	us may or may not	be representative.																												
NV Analyte has no published value.		-						L/DT00\ - **			o														D4 1875													
DTSC-SL Soil vapor screening level based on modified AF Soil vapor to indoor air attenuation factor rec			Cautornia Enviro	nmental Prof	tection Agency Dep	partment of Toxic S	substances Contr	roi (DTSC) Off	rice of Human and	Ecological Risk (HER	ט) Human Health	rdisk Assessment (HH	KA) Note Number 3,	, υ I SC-modifi	nea Screening Le	vers (DTSC-SLs).	release date: Ju	une 2020. Ea	cn screening val	ue incorporates	s a soil vapor att	enuation factor	r ot 0.03 pursuan	t to current US E	MA and DTSC g	uidance.												
** Value is not based on a DTSC-SL and instea											results.																											
RSL Soil vapor screening level based on US EPA 158 Bold font indicates result exceeds analyte's I					an une tollowing equa	auon: TPH KSL =	I/((U.BU/RSL _{TPH A}	Aliphatic Low) + (0.)	ZU/ROLTPH Aromatic Lo	a))-																												
,																																						

Page 1 of 1 December 2, 2021 20221076.001A/LH21R132991 Copyright 2021 Kleinfelder

Table 1 - Ambient Air Analytical Results

DS Westgate West, L.P. - Former Midas 5287 Prospect Raod San Jose, California

												(ompound	ds Detect	ed in Soi	l Vapor S	Samples										
Sample Location	Sample Date	Benzene	Bromodichloromethane	Carbon Tetrachloride	Chloroform	Cyclohexane	1,4-Dichlorobenzene	1,2-Dichloroethane	Ethyl Acetate	Ethylbenzene	Freon 11	Dichlorodifluoromethane (Freon 12)	Freon 113	4-Isopropitoluene	Methylene Chloride	Naphthalene	Propylbenzene	Styrene	Tetrachloroethylene (PCE)	Trichloroethene (TCE)	Toluene	1,1,1-Trichloroethane	1,2,4-trimethylbenzene	1,3,5-trimethylbenzene	m,p-Xylenes	o-Xylenes	All Other VOCs
IA-1	5/26/2022	0.26	NA	0.44	ND	NA	ND	ND	NA	ND	NA	3.0	NA	NA	NA	ND	ND	ND	ND	ND	0.60	ND	NA	NA	0.31	ND	ND
1/4-1	1/12/2023	0.47	ND	6.19	ND	ND	ND	ND	ND	0.12	1.31	2.04	0.64	0.40	0.43	0.58	ND	ND	0.10	ND	1.52	ND	1.10	ND	0.46	0.19	ND
IA-2	5/26/2022	0.28	NA	0.42	ND	NA	ND	ND	NA	ND	NA	1.8	NA	NA	NA	ND	ND	ND	ND	ND	0.57	ND	NA	NA	0.31	ND	ND
17 (-2	1/12/2023	0.46	ND	6.22	ND	ND	ND	ND	ND	0.14	1.35	2.12	0.65	0.35	0.46	0.53	ND	ND	ND	ND	0.71	ND	1.11	ND	0.52	0.21	ND
IA-3	5/26/2022	0.28	NA	0.45	0.18	NA	ND	ND	NA	ND	NA	3.0	NA	NA	NA	ND	ND	ND	ND	ND	0.99	0.39	NA	NA	0.35	0.14	ND
17 (-0	1/12/2023	0.46	ND	6.33	ND	0.11	ND	ND	ND	0.13	1.36	2.01	0.67	0.59	0.55	0.59	ND	ND	ND	ND	0.7	ND	2.17	ND	ND	0.19	ND
IA-4	5/26/2022	0.26	NA	0.46	0.16	NA	0.21	0.21	NA	0.41	NA	3.0	NA	NA	NA	ND	ND	ND	ND	ND	1.5	ND	NA	NA	0.84	0.34	ND
	1/12/2023	0.60	0.13	6.46	0.21	0.22	0.55	0.74	2.46	0.76	1.49	2.11	0.66	0.79	1.01	0.96	ND	1.08	0.11	ND	19	ND	2.92	0.15	1.78	0.74	ND
OA-1	5/26/2022	0.26	NA	0.41	ND	NA	ND	ND	NA	ND	NA	1.8	NA	NA	NA	ND	ND	ND	ND	ND	0.48	ND	NA	NA	0.26	ND	ND
0/11	1/12/2023	0.48	ND	5.80	ND	0.11	ND	ND	ND	0.16	1.35	2.23	0.63	0.18	0.56	ND	ND	ND	ND	ND	0.78	ND	0.83	ND	0.61	0.26	ND
OA-2	5/26/2022	ND	NA	0.43	0.18	NA	ND	ND	NA	ND	NA	1.8	NA	NA	NA	ND	ND	ND	ND	ND	0.42	ND	NA	NA	ND	ND	ND
O/12	1/12/2023	0.63	ND	6.00	ND	0.75	ND	ND	6.58	0.44	1.27	2.25	0.68	0.24	0.67	0.52	0.10	0.34	0.24	0.11	4.79	ND	ND	0.15	1.45	0.56	ND
	Concentration ıg/m³)	0.63	0.13	6.46	0.21	0.75	0.55	0.74	6.58	0.76	1.49	3.0	0.68	0.79	1.01	0.96	0.10	1.08	0.24	0.11	19.0	0.39	2.92	0.15	1.78	0.74	
Outdoor 0	oor Minus Average Concentration ug/m³)	0.09	0.13	0.56	0.16	ND	0.55	0.74	ND	0.46	0.18	0.76	0.02	0.58	0.40	0.45	ND	0.86	ND	ND	16.22	0.39	2.46	0.03	0.75	0.33	-1
Indoor Air Screening	Residential	0.097	0.076	0.47	0.12	6,300	0.26	0.11	73	1.1		100	5,200		1.0	0.083	1,000	940	0.46	0.48	310	35,000	63	63	100	100	
Levels (SLs)	Commercial / Industrial	0.42	0.33	2.0	0.53	26,000	1.1	0.47	310	4.9		440	22,000		12	0.36	4,400	3,900	2.0	3.0	1,300	150,000	260	260	440	440	
	ncentration in Soil or (ug/m³)	8.66	ND	12.7	5.45	9.95	ND	ND	ND	12.0	3.24	22.4	ND	ND	12.4	ND	ND	1.17	923	234	97.9	2,580	7.85	5.50	42.1	17.7	

NA - Not Analyzed

ND - Not Detected

ug/m³ - micrograms per cubic meter

Screening Levels based on Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs)

Indoor Air Concentration Minus Average Outdoor Concentration Exceeds Residential Screening Level Indoor Air Concentration Minus Average Outdoor Concentration Exceeds Commercial Screening Level

Table 5
Conservative Estimateion on Volume of PCE Present in the Subsurface

Soil				
		Formula	Value	Unit
(A)	Impacted Area		2,000	ft ²
(B)	Impacted Depth		5	ft
(C)	Impacted Soil Volume	(A x B)	10,000	
(D)		(C / 27)	370	•
(E)	Soil Density		1.4	tons/yd ³
(F)	Mass of Impacted	(D x E)	519	tons
(G)	Soil	(F x 2,000)	1,037,037	lbs
(H)		(G / 2.2)	471,380	kg
(1)	Maximum PCE Concentration		0.00164	mg/kg
(J)	Mass of PCE	(I / H)	773	mg
(K)	IVIASS OF PCE	(J / 453,000)	0.002	lbs

Soil	Vapor			
		Formula	Value	Unit
(L)	Impacted Area		4,500	ft ²
(M)	Impacted Depth		20	ft
(N)	Impacted Soil	(L x M)	90,000	ft ³
(O)	Volume	(N / 35.3)	2550	m ³
(P)	Soil Porosity		40	%
(Q)	Volume of Impacted Pore Space	(O x P)	1,020	m^3
	Maximum PCE			
(R)	Concentration		923	ug/m ³
(S)	Mass of PCE	(Q * R)	941,303	
(T)	IVIASS OI PCE	(S / 453,000,000)	0.002	lbs

(U)	Total Mass of PCE	(K + T)	0.004	lbs
(V)	TOTAL IVIASS OF PCE	(U *453)	2	grams

17 January 2023

Michael Van Fleet Converse Consultants 222 E. Huntington Drive, Suite 211 Monrovia, CA 91016

Jahl

Re: WW-Midas

Enclosed are the results of analyses for samples received by the laboratory on 01/16/23. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
IA-1	JEI230028-01	Air	01/12/2023 16:08	01/16/2023 14:00
IA-2	JEI230028-02	Air	01/12/2023 16:07	01/16/2023 14:00
IA-3	JEI230028-03	Air	01/12/2023 15:02	01/16/2023 14:00
IA-4	JEI230028-04	Air	01/12/2023 16:02	01/16/2023 14:00
OA-1	JEI230028-05	Air	01/12/2023 15:58	01/16/2023 14:00
OA-2	JEI230028-06	Air	01/12/2023 14:35	01/16/2023 14:00

Jones Environmental, Inc.

Jell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

DETECTIONS SUMMARY

Sample ID: IA-1 Laboratory ID: JEI230028-01

Analyte	Result	Reporting Limit	Units	Method	Notes
Benzene	0.47	0.10	$\mu g/m3$	EPA TO-15	
Carbon tetrachloride	6.19	0.10	$\mu g/m3$	EPA TO-15	
Ethylbenzene	0.12	0.10	$\mu g/m3$	EPA TO-15	
Freon 11	1.31	0.10	$\mu g/m3$	EPA TO-15	
Freon 12	2.04	0.10	$\mu g/m3$	EPA TO-15	
Freon 113	0.64	0.10	$\mu g/m3$	EPA TO-15	
4-Isopropyltoluene	0.40	0.10	$\mu g/m3$	EPA TO-15	
Methylene chloride	0.43	0.10	$\mu g/m3$	EPA TO-15	
Naphthalene	0.58	0.50	$\mu g/m3$	EPA TO-15	
Tetrachloroethene	0.10	0.10	$\mu g/m3$	EPA TO-15	
Toluene	1.52	0.10	$\mu g/m3$	EPA TO-15	
,2,4-Trimethylbenzene	1.10	0.10	$\mu g/m3$	EPA TO-15	
m+p-Xylene	0.46	0.10	$\mu g/m3$	EPA TO-15	
o-Xylene	0.19	0.10	$\mu g/m3$	EPA TO-15	
Sample ID: IA-2		1	Laboratory ID:	JEI230028-02	

Analyte	Result	Reporting Limit	Units	Method	Notes
Benzene	0.46	0.10	$\mu g/m3$	EPA TO-15	
Carbon tetrachloride	6.22	0.10	$\mu g/m3$	EPA TO-15	
Ethylbenzene	0.14	0.10	$\mu g/m3$	EPA TO-15	
Freon 11	1.35	0.10	$\mu g/m3$	EPA TO-15	
Freon 12	2.12	0.10	$\mu g/m3$	EPA TO-15	
Freon 113	0.65	0.10	$\mu g/m3$	EPA TO-15	
4-Isopropyltoluene	0.35	0.10	$\mu g/m3$	EPA TO-15	
Methylene chloride	0.46	0.10	$\mu g/m3$	EPA TO-15	
Naphthalene	0.53	0.50	$\mu g/m3$	EPA TO-15	
Toluene	0.71	0.10	μg/m3	EPA TO-15	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

DETECTIONS SUMMARY

Sample ID: IA-2 Labor	ratory ID:	JEI230028-02
-----------------------	------------	--------------

	n 2	Reporting	TT */		
Analyte	Result	Limit	Units	Method	Notes
1,2,4-Trimethylbenzene	1.11	0.10	$\mu g/m3$	EPA TO-15	
m+p-Xylene	0.52	0.10	$\mu g/m3$	EPA TO-15	
o-Xylene	0.21	0.10	$\mu g/m3$	EPA TO-15	
Sample ID: IA-3]	Laboratory ID:	JEI230028-03	
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	0.46	0.10	$\mu g/m3$	EPA TO-15	
Carbon tetrachloride	6.33	0.10	$\mu g/m3$	EPA TO-15	
Cyclohexane	0.11	0.10	$\mu g/m3$	EPA TO-15	
Ethylbenzene	0.13	0.10	$\mu g/m3$	EPA TO-15	
Freon 11	1.36	0.10	$\mu g/m3$	EPA TO-15	

-				
Ethylbenzene	0.13	0.10	$\mu g/m3$	EPA TO-15
Freon 11	1.36	0.10	$\mu g/m3$	EPA TO-15
Freon 12	2.01	0.10	$\mu g/m3$	EPA TO-15
Freon 113	0.67	0.10	$\mu g/m3$	EPA TO-15
4-Isopropyltoluene	0.59	0.10	$\mu g/m3$	EPA TO-15
Methylene chloride	0.55	0.10	$\mu g/m3$	EPA TO-15
Naphthalene	0.59	0.50	$\mu g/m3$	EPA TO-15
Toluene	0.70	0.10	$\mu g/m3$	EPA TO-15
1,2,4-Trimethylbenzene	2.17	0.10	$\mu g/m3$	EPA TO-15
o-Xylene	0.19	0.10	$\mu g/m3$	EPA TO-15

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Benzene	0.60	0.10	$\mu g/m3$	EPA TO-15	
Bromodichloromethane	0.13	0.10	μg/m3	EPA TO-15	
Carbon tetrachloride	6.46	0.10	μg/m3	EPA TO-15	
Chloroform	0.21	0.10	$\mu g/m3$	EPA TO-15	
Cyclohexane	0.22	0.10	$\mu g/m3$	EPA TO-15	

Laboratory ID:

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

JEI230028-04

Sample ID:

IA-4

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

DETECTIONS SUMMARY

Sample ID: IA-4 Laboratory ID: JEI230028-04

D14	Reporting	TT-24	Madead	NT - 4
				Notes
		, -		
		, -		
2.46	0.50	µg/m3	EPA TO-15	
0.76	0.10	$\mu g/m3$	EPA TO-15	
1.49	0.10	$\mu g/m3$	EPA TO-15	
2.11	0.10	$\mu g/m3$	EPA TO-15	
0.66	0.10	$\mu g/m3$	EPA TO-15	
0.79	0.10	$\mu g/m3$	EPA TO-15	
1.01	0.10	$\mu g/m3$	EPA TO-15	
0.96	0.50	$\mu g/m3$	EPA TO-15	
1.08	0.10	$\mu g/m3$	EPA TO-15	
0.11	0.10	$\mu g/m3$	EPA TO-15	
19.0	2.00	$\mu g/m3$	EPA TO-15	
2.92	0.10	$\mu g/m3$	EPA TO-15	
0.15	0.10	$\mu g/m3$	EPA TO-15	
1.78	0.10	$\mu g/m3$	EPA TO-15	
0.74	0.10	µg/m3	EPA TO-15	
	1	Laboratory ID:	JEI230028-05	
-	Reporting	***		
Result	0.10	Units	Method FPA TO-15	Notes
	1.49 2.11 0.66 0.79 1.01 0.96 1.08 0.11 19.0 2.92 0.15 1.78 0.74	Result Limit 0.55 0.10 0.74 0.10 2.46 0.50 0.76 0.10 1.49 0.10 2.11 0.10 0.66 0.10 0.79 0.10 1.01 0.10 0.96 0.50 1.08 0.10 0.11 0.10 19.0 2.00 2.92 0.10 0.15 0.10 1.78 0.10 0.74 0.10 Result Reporting Limit	Result Limit Units 0.55 0.10 μg/m3 0.74 0.10 μg/m3 2.46 0.50 μg/m3 0.76 0.10 μg/m3 1.49 0.10 μg/m3 2.11 0.10 μg/m3 0.66 0.10 μg/m3 0.79 0.10 μg/m3 1.01 0.10 μg/m3 0.96 0.50 μg/m3 0.10 μg/m3 0.11 0.10 μg/m3 19.0 2.00 μg/m3 2.92 0.10 μg/m3 0.15 0.10 μg/m3 1.78 0.10 μg/m3 0.74 0.10 μg/m3 Laboratory ID:	Result Limit Units Method 0.55 0.10 μg/m3 EPA TO-15 0.74 0.10 μg/m3 EPA TO-15 2.46 0.50 μg/m3 EPA TO-15 0.76 0.10 μg/m3 EPA TO-15 1.49 0.10 μg/m3 EPA TO-15 2.11 0.10 μg/m3 EPA TO-15 0.66 0.10 μg/m3 EPA TO-15 0.79 0.10 μg/m3 EPA TO-15 1.01 0.10 μg/m3 EPA TO-15 0.96 0.50 μg/m3 EPA TO-15 1.08 0.10 μg/m3 EPA TO-15 0.11 0.10 μg/m3 EPA TO-15 1.9.0 2.00 μg/m3 EPA TO-15 2.92 0.10 μg/m3 EPA TO-15 0.15 0.10 μg/m3 EPA TO-15 1.78 0.10 μg/m3 EPA TO-15 0.74 0.10 μg/m3 EPA TO-15

Analyte	Result	Reporting Limit	Units	Method	Notes
Benzene	0.48	0.10	$\mu g/m3$	EPA TO-15	
Carbon tetrachloride	5.80	0.10	$\mu g/m3$	EPA TO-15	
Cyclohexane	0.11	0.10	$\mu g/m3$	EPA TO-15	
Ethylbenzene	0.16	0.10	μg/m3	EPA TO-15	
Freon 11	1.35	0.10	μg/m3	EPA TO-15	
Freon 12	2.23	0.10	μg/m3	EPA TO-15	
Freon 113	0.63	0.10	μg/m3	EPA TO-15	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

DETECTIONS SUMMARY

Sample ID: OA-1 Laboratory ID: JEI230028-05

		Reporting		
Analyte	Result	Limit Units	Method	Notes
4-Isopropyltoluene	0.18	0.10 $\mu g/m3$	EPA TO-15	
Methylene chloride	0.56	0.10 µg/m3	EPA TO-15	
Toluene	0.78	0.10 μ g/m3	EPA TO-15	
1,2,4-Trimethylbenzene	0.83	0.10 μ g/m3	EPA TO-15	
m+p-Xylene	0.61	0.10 μ g/m3	EPA TO-15	
o-Xylene	0.26	0.10 µg/m3	EPA TO-15	
Sample ID: OA-2		Laboratory II): JEI230028-06	

Sample ID: OA-2		I	Laboratory ID:	JEI230028-06	
Analyte	Result	Reporting Limit	Units	Method	Notes
Benzene	0.63	0.10	$\mu g/m3$	EPA TO-15	
Carbon tetrachloride	6.00	0.10	$\mu g/m3$	EPA TO-15	
Cyclohexane	0.75	0.10	$\mu g/m3$	EPA TO-15	
Ethyl Acetate	6.58	0.50	$\mu g/m3$	EPA TO-15	
Ethylbenzene	0.44	0.10	$\mu g/m3$	EPA TO-15	
Freon 11	1.27	0.10	µg/m3	EPA TO-15	
Freon 12	2.25	0.10	µg/m3	EPA TO-15	
Freon 113	0.68	0.10	µg/m3	EPA TO-15	
4-Isopropyltoluene	0.24	0.10	µg/m3	EPA TO-15	
Methylene chloride	0.67	0.10	µg/m3	EPA TO-15	
Naphthalene	0.52	0.50	µg/m3	EPA TO-15	
n-Propylbenzene	0.10	0.10	µg/m3	EPA TO-15	
Styrene	0.34	0.10	$\mu g/m3$	EPA TO-15	
Tetrachloroethene	0.24	0.10	$\mu g/m3$	EPA TO-15	
Toluene	4.79	0.10	μg/m3	EPA TO-15	
Trichloroethene	0.11	0.10	$\mu g/m3$	EPA TO-15	
1,3,5-Trimethylbenzene	0.15	0.10	$\mu g/m3$	EPA TO-15	
m+p-Xylene	1.45	0.10	$\mu g/m3$	EPA TO-15	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Converse Consultants

222 E. Huntington Drive, Suite 211

Monrovia, CA 91016

Project: WW-Midas

Project Number: 16-42-196-17 Project Manager: Michael Van Fleet Reported 01/17/23 10:40

DETECTIONS SUMMARY

Sample ID: OA-2 Laboratory ID: JEI230028-06

Jones Environmental, Inc.

GLL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-I JEI230028-01(Air)

			E1230026-	(/					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by E	PA TO-15				
Benzene	0.47	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
Bromodichloromethane	ND	0.10	$\mu g/m3$	"	"		"	"	
Bromoform	ND	0.10	$\mu g/m3$	"	"		"	"	
n-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
sec-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Carbon tetrachloride	6.19	0.10	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	0.10	µg/m3	"	"		"	"	
Chloroform	ND	0.10	μg/m3	"	"		"	"	
Carbon Disulfide	ND	0.10	μg/m3	"	"		"	"	
Cyclohexane	ND	0.10	μg/m3	"	"		"	"	
Dibromochloromethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3	"	"		"	"	
1,4-Dioxane	ND	0.10	μg/m3	"	"		"	"	
1,2- Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,3-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,4-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
trans-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
Ethyl Acetate	ND	0.50	μg/m3	"	"		"	"	
Ethylbenzene	0.12	0.10	μg/m3	"	"		"	"	
Freon 11	1.31	0.10	μg/m3	"	"		"	"	
Freon 12	2.04	0.10	μg/m3	"	"		"	"	
Freon 113	0.64	0.10	μg/m3	"	"		"	"	
Isopropylbenzene	ND	0.10	μg/m3	"	"		"	"	
4-Isopropyltoluene	0.40	0.10	μg/m3	"	"		"	"	
Methylene chloride	0.43	0.10		"	"		"	"	
Methylmethacrylate	ND	0.10	μg/m3 μg/m3	"	"		"	"	
· ·	0.58			"	"		"	"	
Naphthalene n Branylhanzana	0.58 ND	0.50 0.10	μg/m3	"	"		"	"	
n-Propylbenzene			μg/m3	"	"		"	"	
Styrene	ND	0.10	μg/m3	"	"		"	"	
1,1,1,2-Tetrachloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1,2,2-Tetrachloroethane	ND	0.10	μg/m3	"	"		"	"	
Tetrachloroethene	0.10	0.10	μg/m3						
Toluene	1.52	0.10	$\mu g/m3$	"	"		"	"	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-I JEI230028-01(Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by	EPA TO-15				
Tetrahydrofuran	ND	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
1,1,1-Trichloroethane	ND	0.10	$\mu g/m3$	"	"		"	"	
1,1,2-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
Trichloroethene	ND	0.10	μg/m3	"	"		"	"	
1,2,4-Trimethylbenzene	1.10	0.10	μg/m3	"	"		"	"	
1,3,5-Trimethylbenzene	ND	0.10	μg/m3	"	"		"	"	
Vinyl Chloride	ND	0.10	μg/m3	"	"		"	"	
Vinyl Acetate	ND	0.20	μg/m3	"	"		"	"	
m+p-Xylene	0.46	0.10	μg/m3	"	"		"	"	
o-Xylene	0.19	0.10	μg/m3	"	"		"	"	

Surrogate: 4-Bromofluorobenzene

103.56 %

80 - 120

Jones Environmental, Inc.

Jell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-2 JEI230028-02(Air)

	I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by E	PA TO-15				
Benzene	0.46	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
Bromodichloromethane	ND	0.10	$\mu g/m3$	"	"		"	"	
Bromoform	ND	0.10	$\mu g/m3$	"	"		"	"	
n-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
sec-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Carbon tetrachloride	6.22	0.10	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Chloroform	ND	0.10	µg/m3	"	"		"	"	
Carbon Disulfide	ND	0.10	μg/m3	"	"		"	"	
Cyclohexane	ND	0.10	μg/m3	"	"		"	"	
Dibromochloromethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3	"	"		"	"	
1,4-Dioxane	ND	0.10	μg/m3	"	"		"	"	
1,2- Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,3-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,4-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
trans-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
Ethyl Acetate	ND	0.50	μg/m3	"	"		"	"	
Ethylbenzene	0.14	0.10	μg/m3	"	"		"	"	
Freon 11	1.35	0.10	μg/m3	"	"		"	"	
Freon 12	2.12	0.10	μg/m3	"	"		"	"	
Freon 113	0.65	0.10	μg/m3	"	"		"	"	
Sopropylbenzene	ND	0.10	μg/m3	"	"		"	"	
4-Isopropyltoluene	0.35	0.10	μg/m3	"	"		"	"	
Methylene chloride	0.46	0.10	μg/m3	"	"		"	"	
Methylmethacrylate	ND	0.10	μg/m3	"	"		"	"	
Naphthalene	0.53	0.50	μg/m3	"	"		"	"	
n-Propylbenzene	ND	0.30	μg/m3	"	"		"	"	
Styrene	ND ND	0.10	μg/m3	"	"		"	"	
1,1,1,2-Tetrachloroethane	ND ND	0.10		"	"		"	"	
1,1,1,2-Tetrachioroethane			μg/m3	"	"		"	"	
	ND	0.10	μg/m3	"	"		"	"	
Tetrachloroethene	ND	0.10	μg/m3	"	"		"	"	
Toluene	0.71	0.10	$\mu g/m3$						

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-2 JEI230028-02(Air)

	F	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by	EPA TO-15				
Tetrahydrofuran	ND	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
1,1,1-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1,2-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
Trichloroethene	ND	0.10	μg/m3	"	"		"	"	
1,2,4-Trimethylbenzene	1.11	0.10	μg/m3	"	"		"	"	
1,3,5-Trimethylbenzene	ND	0.10	μg/m3	"	"		"	"	
Vinyl Chloride	ND	0.10	μg/m3	"	"		"	"	
Vinyl Acetate	ND	0.20	μg/m3	"	"		"	"	
m+p-Xylene	0.52	0.10	μg/m3	"	"		"	"	
o-Xylene	0.21	0.10	μg/m3	"	"		"	"	

Surrogate: 4-Bromofluorobenzene

105.33 %

80 - 120

Jones Environmental, Inc.

fill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-3 JEI230028-03(Air)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by E	PA TO-15				
Benzene	0.46	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
Bromodichloromethane	ND	0.10	$\mu g/m3$	"	"		"	"	
Bromoform	ND	0.10	$\mu g/m3$	"	"		"	"	
n-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
sec-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Carbon tetrachloride	6.33	0.10	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Chloroform	ND	0.10	μg/m3	"	"		"	"	
Carbon Disulfide	ND	0.10	μg/m3	"	"		"	"	
Cyclohexane	0.11	0.10	μg/m3	"	"		"	"	
Dibromochloromethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3	"	"		"	"	
1,4-Dioxane	ND	0.10	μg/m3	"	"		"	"	
1,2- Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,3-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,4-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
trans-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
Ethyl Acetate	ND	0.50	μg/m3	"	"		"	"	
Ethylbenzene	0.13	0.10	μg/m3	"	"		"	"	
Freon 11	1.36	0.10	μg/m3	"	"		"	"	
Freon 12	2.01	0.10	μg/m3	"	"		"	"	
Freon 113	0.67	0.10	μg/m3	"	"		"	"	
Isopropylbenzene	ND	0.10	μg/m3	"	"		"	"	
4-Isopropyltoluene	0.59	0.10	μg/m3	"	"		"	"	
Methylene chloride	0.55	0.10	μg/m3	"	"		"	"	
Methylmethacrylate	ND	0.50	μg/m3	"	"		"	"	
Naphthalene	0.59	0.50	μg/m3	"	"		"	"	
n-Propylbenzene	ND	0.10	μg/m3	"	"		"	"	
Styrene	ND ND	0.10	μg/m3	"	"		"	"	
Styrene 1,1,1,2-Tetrachloroethane	ND ND	0.10		"	"		"	"	
1,1,1,2-1etrachioroethane			μg/m3	"	"		"	"	
	ND	0.10	μg/m3	"	"		,,	"	
Tetrachloroethene	ND	0.10	μg/m3	"	"		"	"	
Toluene	0.70	0.10	$\mu g/m3$						

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-3 JEI230028-03(Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by	EPA TO-15				
Tetrahydrofuran	ND	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
1,1,1-Trichloroethane	ND	0.10	$\mu g/m3$	"	"		"	"	
1,1,2-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
Trichloroethene	ND	0.10	μg/m3	"	"		"	"	
1,2,4-Trimethylbenzene	2.17	0.10	μg/m3	"	"		"	"	
1,3,5-Trimethylbenzene	ND	0.10	μg/m3	"	"		"	"	
Vinyl Chloride	ND	0.10	μg/m3	"	"		"	"	
Vinyl Acetate	ND	0.20	μg/m3	"	"		"	"	
m+p-Xylene	ND	0.10	μg/m3	"	"		"	"	
o-Xylene	0.19	0.10	μg/m3	"	"		"	"	

Surrogate: 4-Bromofluorobenzene

107.40 %

80 - 120

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-4 JEI230028-04(Air)

JEI250026-04(AII)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by E	PA TO-15				
Benzene	0.60	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
Bromodichloromethane	0.13	0.10	$\mu g/m3$	"	"		"	"	
Bromoform	ND	0.10	$\mu g/m3$	"	"		"	"	
n-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
sec-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Carbon tetrachloride	6.46	0.10	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Chloroform	0.21	0.10	µg/m3	"	"		"	"	
Carbon Disulfide	ND	0.10	µg/m3	"	"		"	"	
Cyclohexane	0.22	0.10	μg/m3	"	"		"	"	
Dibromochloromethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3	"	"		"	"	
1,4-Dioxane	ND	0.10	μg/m3	"	"		"	"	
1,2- Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,3-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,4-Dichlorobenzene	0.55	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dichloroethane	0.74	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
trans-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
Ethyl Acetate	2.46	0.50	μg/m3	"	"		"	"	
Ethylbenzene	0.76	0.10	μg/m3	"	"		"	"	
Freon 11	1.49	0.10	μg/m3	"	"		"	"	
Freon 12	2.11	0.10	μg/m3	"	"		"	"	
Freon 113	0.66	0.10	μg/m3	"	"		"	"	
Isopropylbenzene	ND	0.10	μg/m3	"	"		"	"	
4-Isopropyltoluene	0.79	0.10	μg/m3	"	"		"	"	
Methylene chloride	1.01	0.10	μg/m3	"	"		"	"	
Methylmethacrylate	ND	0.50	μg/m3	"	"		"	"	
Naphthalene	0.96	0.50	μg/m3	"	"		"	"	
n-Propylbenzene	ND	0.10	μg/m3	"	"		"	"	
Styrene	1.08	0.10	μg/m3	"	"		"	"	
1,1,1,2-Tetrachloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1,2,2-Tetrachloroethane	ND ND	0.10	μg/1113 μg/m3	"	"		"	"	
Tetrachloroethene	0.11			"	"		"	"	
		0.10	μg/m3		"		"	"	
Toluene	19.0	2.00	μg/m3	20					

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

IA-4 JEI230028-04(Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by	EPA TO-15				
Tetrahydrofuran	ND	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
1,1,1-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1,2-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
Trichloroethene	ND	0.10	μg/m3	"	"		"	"	
1,2,4-Trimethylbenzene	2.92	0.10	μg/m3	"	"		"	"	
1,3,5-Trimethylbenzene	0.15	0.10	μg/m3	"	"		"	"	
Vinyl Chloride	ND	0.10	μg/m3	"	"		"	"	
Vinyl Acetate	ND	0.20	μg/m3	"	"		"	"	
m+p-Xylene	1.78	0.10	μg/m3	"	"		"	"	
o-Xylene	0.74	0.10	μg/m3	"	"		"	"	

Surrogate: 4-Bromofluorobenzene

108.81 %

80 - 120

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

OA-I JEI230028-05(Air)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by E	PA TO-15				
Benzene	0.48	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
Bromodichloromethane	ND	0.10	$\mu g/m3$	"	"		"	"	
Bromoform	ND	0.10	$\mu g/m3$	"	"		"	"	
n-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
sec-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	0.10	μg/m3	"	"		"	"	
Carbon tetrachloride	5.80	0.10	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	0.10	μg/m3	"	"		"	"	
Chloroform	ND	0.10	μg/m3	"	"		"	"	
Carbon Disulfide	ND	0.10	μg/m3	"	"		"	"	
Cyclohexane	0.11	0.10	μg/m3	"	"		"	"	
Dibromochloromethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3	"	"		"	"	
1,4-Dioxane	ND	0.10	μg/m3	"	"		"	"	
1,2- Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,3-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,4-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
trans-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
Ethyl Acetate	ND	0.50	μg/m3	"	"		"	"	
Ethylbenzene	0.16	0.10	μg/m3	"	"		"	"	
Freon 11	1.35	0.10	μg/m3	"	"		"	"	
Freon 12	2.23	0.10	μg/m3	"	"		"	"	
Freon 113	0.63	0.10	μg/m3	"	"		"	"	
Isopropylbenzene	ND	0.10	μg/m3	"	"		"	"	
4-Isopropyltoluene	0.18	0.10	μg/m3	"	"		"	"	
Methylene chloride	0.56	0.10		"	"		"	"	
Methylmethacrylate	0.36 ND	0.10	μg/m3 μg/m3	"	"		"	"	
· ·				"	"		"	"	
Naphthalene n Propylhonzone	ND ND	0.50	μg/m3	"	"		"	"	
n-Propylbenzene		0.10	μg/m3	"	"		"	"	
Styrene	ND	0.10	μg/m3	"	"		"	"	
1,1,1,2-Tetrachloroethane	ND	0.10	μg/m3	"	"		,,	"	
1,1,2,2-Tetrachloroethane	ND	0.10	μg/m3		"		"	"	
Tetrachloroethene	ND	0.10	μg/m3	"			"		
Toluene	0.78	0.10	$\mu g/m3$	"	"		"	"	

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

OA-I JEI230028-05(Air)

	F	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	ic Compo	ounds by	EPA TO-15				
Tetrahydrofuran	ND	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
1,1,1-Trichloroethane	ND	0.10	$\mu g/m3$	"	"		"	"	
1,1,2-Trichloroethane	ND	0.10	$\mu g/m3$	"	"		"	"	
Trichloroethene	ND	0.10	$\mu g/m3$	"	"		"	"	
1,2,4-Trimethylbenzene	0.83	0.10	$\mu g/m3$	"	"		"	"	
1,3,5-Trimethylbenzene	ND	0.10	μg/m3	"	"		"	"	
Vinyl Chloride	ND	0.10	μg/m3	"	"		"	"	
Vinyl Acetate	ND	0.20	μg/m3	"	"		"	"	
m+p-Xylene	0.61	0.10	μg/m3	"	"		"	"	
o-Xylene	0.26	0.10	μg/m3	"	"		"	"	

Surrogate: 4-Bromofluorobenzene

105.43 %

80 - 120

Jones Environmental, Inc.

Jell

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

OA-2 JEI230028-06(Air)

	ŀ	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by E	PA TO-15				
Benzene	0.63	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
Bromodichloromethane	ND	0.10	$\mu g/m3$	"	"		"	"	
Bromoform	ND	0.10	$\mu g/m3$	"	"		"	"	
n-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
sec-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
tert-Butylbenzene	ND	0.10	$\mu g/m3$	"	"		"	"	
Carbon tetrachloride	6.00	0.10	$\mu g/m3$	"	"		"	"	
Chlorobenzene	ND	0.10	μg/m3	"	"		"	"	
Chloroform	ND	0.10	μg/m3	"	"		"	"	
Carbon Disulfide	ND	0.10	μg/m3	"	"		"	"	
Cyclohexane	0.75	0.10	μg/m3	"	"		"	"	
Dibromochloromethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3	"	"		"	"	
1,4-Dioxane	ND	0.10	μg/m3	"	"		"	"	
1,2- Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,3-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,4-Dichlorobenzene	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,2-Dichloroethane	ND	0.10	μg/m3	"	"		"	"	
1,1-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
cis-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
trans-1,2-Dichloroethene	ND	0.10	μg/m3	"	"		"	"	
Ethyl Acetate	6.58	0.50	μg/m3	"	"		"	"	
Ethylbenzene	0.44	0.10	μg/m3	"	"		"	"	
Freon 11	1.27	0.10	μg/m3	"	"		"	"	
Freon 12	2.25	0.10	μg/m3	"	"		"	"	
Freon 113	0.68	0.10	μg/m3	"	"		"	"	
sopropylbenzene	ND	0.10	μg/m3	"	"		"	"	
4-Isopropyltoluene	0.24	0.10	μg/m3	"	"		"	"	
Methylene chloride	0.67	0.10	μg/m3	"	"		"	"	
Methylmethacrylate	ND	0.50	μg/m3	"	"		"	"	
Naphthalene	0.52	0.50	μg/m3	"	"		"	"	
naphthalene n-Propylbenzene	0.10	0.30	μg/m3	"	"		"	"	
Styrene	0.10	0.10	μg/m3	"	"		"	"	
Styrene 1,1,1,2-Tetrachloroethane	0.34 ND	0.10		"	"		"	"	
			μg/m3	"	"		"	"	
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND	0.10	μg/m3	"	"		"	"	
	0.24	0.10	μg/m3	"	"		"	"	
Гoluene	4.79	0.10	$\mu g/m3$						

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

OA-2 JEI230028-06(Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Volat	ile Organi	c Compo	ounds by	EPA TO-15				
Tetrahydrofuran	ND	0.10	μg/m3	1	QC2301037		01/16/23	EPA TO-15	
1,1,1-Trichloroethane	ND	0.10	µg/m3	"	"		"	"	
1,1,2-Trichloroethane	ND	0.10	μg/m3	"	"		"	"	
Trichloroethene	0.11	0.10	µg/m3	"	"		"	"	
1,2,4-Trimethylbenzene	ND	0.10	μg/m3	"	"		"	"	
1,3,5-Trimethylbenzene	0.15	0.10	μg/m3	"	"		"	"	
Vinyl Chloride	ND	0.10	μg/m3	"	"		"	"	
Vinyl Acetate	ND	0.20	μg/m3	"	"		"	"	
m+p-Xylene	1.45	0.10	μg/m3	"	"		"	"	
o-Xylene	0.56	0.10	μg/m3	"	"		"	"	

Surrogate: 4-Bromofluorobenzene

106.59 %

80 - 120

Jones Environmental, Inc.

BLL

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike S	Source		%REC		%REC	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes
Batch QC2301037 - EPA TO-15										
LCS 1										
Benzene	0.412	0.10	%	0.5		82	70 - 130			
Chlorobenzene	0.434	0.10	%	0.5		87	70 - 130			
1,1-Dichloroethene	0.367	0.10	%	0.5		73	70 - 130			
cis-1,2-Dichloroethene	0.433	0.10	%	0.5		87	70 - 130			
Ethylbenzene	0.420	0.10	%	0.5		84	70 - 130			
Tetrachloroethene	0.407	0.10	%	0.5		81	70 - 130			
Toluene	0.404	0.10	%	0.5		81	70 - 130			
1,1,1-Trichloroethane	0.422	0.10	%	0.5		84	70 - 130			
Trichloroethene	0.392	0.10	%	0.5		78	70 - 130			
1,2,4-Trimethylbenzene	0.462	0.10	%	0.5		92	70 - 130			
Vinyl chloride	0.363	0.10	%	0.5		73	70 - 130			

Surrogate: 4-Bromofluorobenzene

98.99 %

80 - 120

LCSD 1

Benzene	0.416	0.10	%	0.5	83	1.05	
Chlorobenzene	0.426	0.10	%	0.5	85	1.79	
1,1-Dichloroethene	0.355	0.10	%	0.5	71	3.51	
cis-1,2-Dichloroethene	0.478	0.10	%	0.5	96	9.83	
Ethylbenzene	0.435	0.10	%	0.5	87	3.65	
Tetrachloroethene	0.385	0.10	%	0.5	77	5.55	
Toluene	0.404	0.10	%	0.5	81	0.01	
1,1,1-Trichloroethane	0.378	0.10	%	0.5	76	10.86	
Trichloroethene	0.438	0.10	%	0.5	88	11.05	
1,2,4-Trimethylbenzene	0.388	0.10	%	0.5	78	17.21	
Vinyl chloride	0.353	0.10	%	0.5	71	2.97	

Surrogate: 4-Bromofluorobenzene

99.33 %

80 - 120

Method Blank 1

Benzene	ND	0.10	μg/m3
Bromodichloromethane	ND	0.10	μg/m3

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		%REC	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes

Rotch	OC2301037 -	FDA	TO 15
Baich	UU.2301037 -	EPA	10-13

Method Blank 1			
Bromoform	ND	0.10	μg/m3
n-Butylbenzene	ND	0.10	μg/m3
sec-Butylbenzene	ND	0.10	μg/m3
tert-Butylbenzene	ND	0.10	μg/m3
Carbon tetrachloride	ND	0.10	μg/m3
Chlorobenzene	ND	0.10	μg/m3
Chloroform	ND	0.10	μg/m3
Carbon Disulfide	ND	0.10	μg/m3
Cyclohexane	ND	0.10	μg/m3
Dibromochloromethane	ND	0.10	μg/m3
1,2-Dibromoethane (EDB)	ND	0.50	μg/m3
1,4-Dioxane	ND	0.10	μg/m3
1,2- Dichlorobenzene	ND	0.10	μg/m3
1,3-Dichlorobenzene	ND	0.10	μg/m3
1,4-Dichlorobenzene	ND	0.10	μg/m3
1,1-Dichloroethane	ND	0.10	μg/m3
1,2-Dichloroethane	ND	0.10	μg/m3
1,1-Dichloroethene	ND	0.10	μg/m3
cis-1,2-Dichloroethene	ND	0.10	μg/m3
trans-1,2-Dichloroethene	ND	0.10	μg/m3
Ethyl Acetate	ND	0.50	μg/m3
Ethylbenzene	ND	0.10	μg/m3
Freon 11	ND	0.10	μg/m3
Freon 12	ND	0.10	μg/m3
Freon 113	ND	0.10	μg/m3
Isopropylbenzene	ND	0.10	μg/m3
4-Isopropyltoluene	ND	0.10	μg/m3
Methylene chloride	ND	0.10	μg/m3
Methylmethacrylate	ND	0.50	μg/m3
Naphthalene	ND	0.50	μg/m3
n-Propylbenzene	ND	0.10	μg/m3
Styrene	ND	0.10	μg/m3
1,1,2-Tetrachloroethane	ND	0.10	μg/m3
1,1,2,2-Tetrachloroethane	ND	0.10	μg/m3
Tetrachloroethene	ND	0.10	μg/m3
Toluene	ND	0.10	μg/m3
Tetrahydrofuran	ND	0.10	μg/m3

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Converse Consultants

222 E. Huntington Drive, Suite 211 Monrovia, CA 91016

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

Volatile Organic Compounds by EPA TO-15 - Quality Control

		Reporting		Spike	Source		%REC		%REC	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limits	Notes

Batch QC2301037 - EPA TO-15

Method Blank 1			
1,1,1-Trichloroethane	ND	0.10	μg/m3
1,1,2-Trichloroethane	ND	0.10	$\mu g/m3$
Trichloroethene	ND	0.10	$\mu g/m3$
1,2,4-Trimethylbenzene	ND	0.10	$\mu g/m3$
1,3,5-Trimethylbenzene	ND	0.10	$\mu g/m3$
Vinyl Chloride	ND	0.10	$\mu g/m3$
Vinyl Acetate	ND	0.20	$\mu g/m3$
m+p-Xylene	ND	0.10	$\mu g/m3$
o-Xylene	ND	0.10	$\mu g/m3$
Surrogate: A Bromoflyorohonzene		00 88 %	80 120

Surrogate: 4-Bromofluorobenzene

99.88 %

80 - 120

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: WW-Midas Project Number: 16-42-196-17 Project Manager: Michael Van Fleet

Reported 01/17/23 10:40

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry

RPD Relative Percent Difference

E Estimated Concentration; concentration exceeds calibration range.

LCC Leak Check Compound

MDL Compound Reported to Method Detection Limit

Jones Environmental, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

11007 Forest Pl.
Santa Fe Springs, CA 90670
(714) 449-9937
Fax (714) 449-9685

Air Chain-of-Custody Record

ENVIR	ONMENTA	E. INC		www.jonesenv.com							Lab Us	se Only					
lient				Date							Jone	s Proj	ect#				
Converse				1-12-23		. Р	urge Rate		cc/mi	n	TE	T131	202	8			
717 S. Myrtle	Ave	Client Project # 16-42 - 196	16-42-196-17			Shut In Test: Y			JEI23 002 8 Page								
oject Name WW-Midgs				Turn Around B	loguested.	т.,	acer	Panart (Intiono			1	. 1				
oject Address				□ Immediate A	Turn Around Requested □ Immediate Attention - 200%			Report Options EDD EDF* - 10% Surcharge				of					
Prospect Rd.						*Global ID			Analy	rsis Requested							
San Jose, CA	*	□ Rush 72 Ho									H 20)						
port To M. Van Fleet		□ Normal - No Surcharge			Gasoline Range Organics ☐ Yes					/ui) gi							
ail/Phone	Sampler	MUF		Summa Cannist			Units Requ						Readin	dieta			
mvan fleet @ Converse Consu	Itants. com)L		M ug/m	o ⊔ ug/L	□ ррш∨				helic F	97			
Sample ID	Date Collected	Purge Number	Purge Volume	Laboratory Sample ID	Canister ID	Cannister Start Pressure	Cannister End Pressure	Flow Rate (cc/min)	Sampling Start Time	Sampling End Time		8260B	Magnehelic Reading (in/H	Number of Containers			
IA-I	1-12-23	-		JE1230028-01	140201178	30	2		839	1608	x			1			
IA-2		-		JEI 230028-02	B2664	30	2		840	1607	×			1			
IA-3		-	_	JEI 230028-03	B2660	28	3		836	1502	×			1			
TA-4		-		JEI 230028-04	B2480	30	7		930	1602	X			1			
0A-1		_	-	JE1230028-05	B 2670	30	2		842	1558	X			1			
0A-2	4	-	_	JE123 0028 - 06	1402	28	0		846	1435	X			1			
	•																
2	E	40 4 = 1			3.5				7.5								
						7 7 8											
		\$															
linquished By (Signature):		1-	Date: - 12 - 23	Recieved By (Signa	ature):			Date:					-				
mpany Converse Consultants			Time: 1630	Company Fed	Ex			Time:		sign	The deliver	is Chain	of Cust	ody fo			
inquished By (Signature):	_		Date:	Recieved By Labor				Date:	6/2023		nstitutes aut nalyses spe Terms and	cificied a	bove un	nder th			
npany Fed Ex			Time:	Company				Time:									