Appendix C

Traffic Report \& Vehicle Queuing Memo

This Page Intentionally Left Blank

Keith Higgins Traffic Engineer

SUSAN STREET APARTMENTS TRANSPORTATION IMPACT ANALYSIS

FINAL DRAFT REPORT
PAJARO, MONTEREY COUNTY, CALIFORNIA

Prepared for
Avila Construction
Monterey, CA 93940
Prepared by
Keith Higgins, Traffic Engineer
Gilroy, CA 95020

November 23, 2021

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Scope of Work 1
1.2 Study Network 1
1.3 Analysis Scenarios 1
1.4 Traffic Operation Evaluation Methodologies 2
1.5 Level of Service Standards - Study Network 2
1.6 Significance Criteria 2
1.6.1 Environmental (CEQA) 2
1.6.2 Local. 3
1.7 Impact Fees 3
1.7.1 Transportation Agency for Monterey County 3
1.7.2 Monterey County Traffic Impact Fee 4
2 EXISTING TRAFFIC CONDITIONS 5
2.1 Existing Traffic Network 5
2.2 Existing Pedestrian Network 5
2.3 Existing Bicycle Network 6
2.4 Existing Transit Service. 6
2.5 Existing Conditions Traffic Circulation 7
2.5.1 Susan Street Traffic Operations 7
2.5.2 Intersection Operations 7
2.5.3 Pedestrian Circulation 8
2.5.4 Bicycle Circulation 8
3 EXISTING PLUS PROJECT CONDITIONS 9
3.1 Project Description 9
3.2 Project Trip Generation 9
3.3 Project Trip Distribution and Assignment 9
3.4 Existing Plus Project Condition Traffic Circulation 9
3.4.1 Susan Street Traffic Operations 9
3.4.2 Intersection Operations 9
3.4.3 Pedestrian Circulation 10
3.4.4 Bicycle Circulation. 10
3.4.5 Transit Circulation 10
3.5 Impact Fees 10
4 CUMULATIVE WITHOUT PROJECT CONDITIONS 11
4.1 Derivation of Cumulative Without Project Condition Volumes 11
4.2 Network Modifications under Cumulative Conditions. 11
4.3 Cumulative Without Project Traffic Conditions 11
4.3.1 Intersection Operations 11
4.3.2 Pedestrian Circulation 11
4.3.3 Bicycle Circulation. 12
4.3.4 Transit Circulation 12
5 CUMULATIVE PLUS PROJECT CONDITIONS 13
5.1 Derivation of Cumulative Plus Project Condition Traffic Volumes 13
5.2 Cumulative Plus Project Traffic Conditions 13
5.2.1 Intersection Operations 13
5.2.2 Pedestrian Circulation 13
5.2.3 Bicycle Circulation. 13
5.2.4 Transit Circulation 13
6 SITE ACCESS AND INTERNAL CIRCULATION 14
6.1 Vehicle Circulation 14
6.2 Pedestrian Circulation 14
6.3 Bicycle Circulation. 14
6.4 Emergency Access 14
7 VEHICLE MILES TRAVELED 15
7.1 Apartments 15
7.2 Agricultural Worker Housing 16
8 COLLISION ANALYSIS 16
9 SUMMARY OF PROJECT RESPONSIBILITIES 17
10 REFERENCES 18
10.1 List of References 18
10.2 List of Contacts. 18

LIST OF EXHIBITS

1. Project Location Map and Study Area
2. Project Site Plan
3. Susan Street Sidewalk Improvements
4. Existing Peak Hour Volumes - AM and PM Peak Hour Volumes

5A. Intersection Levels of Service
5B. Recommended Intersection Improvements
6. Project Trip Generation
7. Project Trip Distribution
8. Project Trip Assignment - AM and PM Peak Hour Peak Hour Volumes
9. Existing Plus Project Conditions - AM and PM Peak Hour Peak Hour Volumes
10. Cumulative Without Project Conditions - AM and PM Peak Hour Volumes
11. Cumulative Plus Project Conditions - AM and PM Peak Hour Volumes
12. North County VMT Heat Map
13. Collision History on San Juan Road near Susan Street

LIST OF APPENDICES

A. Level of Service Descriptions
B. Existing and Proposed Bicycle Facilities near Project Site
C. Monterey County Public Works Tertiary Street Standard Cross Section
D. Historical Traffic Growth in Pajaro
E. Intersection Level of Service Calculations - Existing Conditions
F. Intersection Level of Service Calculations - Existing Plus Project Conditions
G. Intersection Level of Service Calculations - Cumulative Without Project Conditions
H. Intersection Level of Service Calculations - Cumulative Plus Project Conditions
I. North County Fire District Emergency Access Review Email
J. San Juan Road Collision History - Raw SWITRS Database 2011-October 2021

1 INTRODUCTION

The proposed Susan Street Apartments (Project) is located in the Pajaro area of Monterey County, California, near Watsonville. The project site covers approximately 3.41 acres at 0 Susan Street, north of San Juan Road and adjacent to the Pajaro River. The project is proposed to include 60 standard apartments and 1 manager apartment. This will provide as many as 480 beds for agricultural employee (H2A) housing. The locations of the Project site and study area are indicated in Exhibit 1. The project site plan is shown in Exhibit 2.

The project is analyzed as standard apartments in this report, as a worst-case condition. This report summarizes the analysis of potential traffic effects associated with both alternatives of the proposed Project as well as cumulative effects. Existing and Cumulative conditions are also analyzed with and without the Project. Vehicular, pedestrian, bicycle and transit circulation are evaluated at the Project site and the immediate surrounding street network.

1.1 Scope of Work

This report addresses the following topics:

1. Existing vehicular, pedestrian and bicycle circulation on the surrounding street network.
2. Assessment of potential impacts to vehicular, pedestrian, bicycle, and transit circulation due to the Project, and recommendations to minimize or alleviate those impacts.
3. Assessment of potential cumulative traffic impacts.
4. Site access and on-site circulation assessment, including emergency access.
5. Discussion of the project's Vehicle Miles Traveled (VMT) impact based on draft Monterey County VMT policy and accompanying "VMT per Capita" heat maps.
6. Collision analysis of Susan Street and its intersection with San Juan Road.

1.2 Study Network

The AM and PM peak periods were analyzed at the following four intersections which are all under the jurisdiction of Monterey County. Their locations are indicated on Exhibit 1.

1. Intersection 1 - Porter Street / San Juan Road
2. Intersection 2 - Porter Street - Salinas Road / Stender Avenue - Salinas Road
3. Intersection 3 - San Juan Road / Salinas Road
4. Intersection 4 - San Juan Road / Gonda Street
5. Intersection 5 - San Juan Road / Susan Street

1.3 Analysis Scenarios

Traffic operations for the following analysis scenarios were analyzed:

1. Existing Conditions
2. Existing Plus Project Conditions
3. Cumulative Without Project Conditions
4. Cumulative Plus Project Conditions

Improvements recommended to provide acceptable traffic operations for each development scenario are recommended where warranted.

1.4 Traffic Operation Evaluation Methodologies

Intersection traffic operations were evaluated based upon the level of service (LOS) concept. LOS is a qualitative description of an intersection's operations, ranging from LOS A to LOS F. Level of Service "A" represents free flow uncongested traffic conditions. Level of Service "F" represents highly congested traffic conditions with unacceptable delay to vehicles at intersections. The intermediate levels of service represent incremental levels of congestion and delay between these two extremes. LOS descriptions for each type of existing traffic control at the study intersections (i.e., signal, all-way stop and one-/two-way stop) are included as Appendix A.

Intersection traffic operations were evaluated using the Synchro@ traffic analysis software (Version 10) using both the 2010 and 2000 Highway Capacity Manual (HCM) methodologies. The average delay is then correlated to a level of service. For two-way stop-controlled intersections, only the vehicle delay for side street traffic is analyzed. LOS for each side street movement is based on the distribution of gaps in the major street traffic stream and driver judgment in selecting gaps. Improvements are warranted when a side street approach reaches LOS F for two-way stopcontrolled intersections.

When using the HCM 2010 and 2000 methods for the analysis of signalized and all-way stopcontrolled intersections, the overall intersection delay is used to determine LOS.

1.5 Level of Service Standards - Study Network

This study assesses operations at intersections under the jurisdiction of Monterey County, which has an overall level of service (LOS) standard of LOS D.

As noted in Section 1.4, the Highway Capacity Manual does not provide overall levels of service for one-way stop-controlled intersections; rather, it only provides side-street operations for this type of traffic control. Side-street operations represent delay for the entire stop-controlled approach, regardless of the number of lanes. For the purposes of this analysis, a standard of LOS E is applied to side-street operations at these intersections, given that intersection improvements such as signalization and channelization are generally not warranted until the side street LOS is F. Also, side street traffic volumes are typically much lower than volumes on the major street and only represent a small portion of the overall intersection operations.

1.6 Significance Criteria

Two different significance criteria are used to assess the impacts and adverse effects of this project - one for environmental impacts and one for local adverse effects. The environmental impacts refer to impacts assessed per the California Environmental Quality Act (CEQA) guidelines, while the local adverse effects are assessed relative to capacity and the Monterey County General Plan
level of service standard. The following significance criteria are used in this study:

1.6.1 Environmental (CEQA)

Senate Bill (SB) 743 required that, starting July 2020, transportation impacts for projects per the California Environmental Quality Act (CEQA) be based on a project's Vehicle Miles Traveled (VMT), rather than level of service. The publication Technical Advisory on Evaluating Transportation Impacts in CEQA, State of California Governor's Office of Planning and Research, December 2018
(OPR Guidelines), suggests that a significant environmental (CEQA) impact for residential uses would not occur when a project VMT per capita is more than 15% below the average residential VMT per capita for the region. However, local agencies are allowed to adopt their own customized thresholds. As of this writing, Monterey County has not established either a VMT standard or significance threshold for VMT analysis. It is uncertain when the County will adopt VMT policies and standards. This report, therefore, includes a qualitative VMT analysis for the study project consistent with OPR Guidelines.

1.6.2 Local

SB 743 also allows local jurisdictions to assess local adverse effects based on their own adopted level of service (LOS) standards and General Plan policies, although the LOS analysis is not subject to CEQA.

For the purposes of this analysis, adverse effects on intersection operations are defined in the following situations:

Signalized Intersection (Intersection 1):

- A significant impact would occur if an intersection operating at LOS A, B, C, or D pre-Project degrades to E or F with the addition of Project traffic.
- For intersections already operating at unacceptable level E or F pre-Project, any increase (one vehicle) in traffic is considered significant.

One- or Two-Way Stop-Controlled Intersection (Intersections 2-4):

- A significant impact would occur if the side-street at an intersection operating at LOS A, B, C, D or E pre-Project degrades to LOS F with Project traffic; or
- If any traffic signal warrant is met with the addition of Project traffic; or
- For side-streets already operating at LOS F pre-Project, the addition of any Project traffic during the deficient peak hour would be considered significant, regardless of its effects on delay.

1.7 Impact Fees

1.7.1 Transportation Agency for Monterey County

The Transportation Agency for Monterey County (TAMC) and its member jurisdictions have adopted a county-wide, regional development impact fee to cover the costs for studies and construction of many roadway improvements throughout Monterey County. This impact fee, which went into effect on August 27, 2008, is applied to new development within Monterey County. The governing document for the fee is the Regional Impact Fee Nexus Study Update (March 26, 2008) prepared by Kimley-Horn Associates, Inc. The Regional Impact Fee Nexus Study Update was updated in October 2018 by Wood Rodgers.
TAMC, Monterey County and Caltrans have agreed that the payment of the TAMC fee satisfies the Project's fair share contribution to cumulative impact mitigation throughout the regional highway system. This includes highways that will operate deficiently but no capital improvement Project is
programmed to correct the deficiency. Projects partially funded by the TAMC fee in North Monterey County and the vicinity of Salinas include the following.

1. TAMC Improvement 11 - County Road G12 San Miguel Canyon Improvements
2. TAMC Improvement 12 - Salinas Road Improvements

Additional funding will be provided by Measure X, the Transportation Sales Tax measure. These local funding sources are anticipated to leverage State and federal funding sources to fully fund the improvements. Toll roads are also being considered as a funding source.

1.7.2 Monterey County Traffic Impact Fee

Monterey County also has a traffic impact fee which is described the "Monterey Countywide Traffic Impact Fee Nexus Study," Kimley Horn, August 1, 2014. The only project in North Monterey County is Project Number 2 - Crazy Horse Canyon Road Improvements. This project includes adding passing lanes and Class II bike lanes from San Juan Grade Road to US 101.

2 EXISTING TRAFFIC CONDITIONS

This chapter evaluates Existing traffic conditions and includes a description of the Project setting.

2.1 Existing Traffic Network

The Project site is located in the community of Pajaro at the end of Susan Street, adjacent to the Pajaro River levee, in Pajaro, unincorporated Monterey County. Pajaro is located near the City of Watsonville, which lies just across the Pajaro River from the project site.
The key roadways in the vicinity of the proposed project include San Juan Road, Salinas Road, and Porter Drive. Direct project access to the project site is via Susan Street. These facilities are described below, in alphabetical order:
Gonda Street is a two-lane dead end local street providing access to neighborhoods north of San Juan Road. The presumed speed limit is 25 miles per hour (mph). It has a width of 26 feet curb-to-curb. Parking is prohibited on both sides of the street.

Porter Drive is a two- to four-lane roadway in Pajaro, providing through access in Pajaro and a connection into Watsonville. Porter Drive also has a two-way left turn lane in its median for its entire length. The posted speed limit is 25 mph .

Salinas Road is a two- to four-lane roadway in northern Monterey County, connecting Pajaro with State Route 1 north of Moss Landing. It also connects to both Porter Drive and Elkhorn Road, allowing travel between Watsonville and Prunedale. Salinas Road also has a two-way left turn lane in its median south of Porter Drive. The posted speed limit is 25 mph south of Porter Drive. The presumed speed between Porter Drive and San Juan Road is 25 mph .
San Juan Road is a two-lane roadway in northern Monterey County connecting Pajaro with US 101 southeast of Aromas. Within Pajaro, it also has a two-way left turn lane in its median. The posted speed limit is 35 mph in the immediate vicinity of Susan Street.
Susan Street is a two-lane local street providing access to approximately 25 existing dwelling units north of San Juan Road. It is about 660 feet in length. The presumed speed limit is 25 miles per hour (mph).

2.2 Existing Pedestrian Network

Susan Street has a continuous sidewalk along its western frontage, extending from the project site to San Juan Road with the exceptions of three missing segments, which are illustrated on Exhibit
3. Immediately south of the Project site, these include a 50 -foot missing segment along the frontage of the existing home and about a 120 -foot missing segment one lot further south. These gaps are located near the existing terminus of Susan Street, where traffic volumes and speeds are low. The third is a 50 -foot section immediately north of San Juan Road that extends from the end of the curb return along an existing wooden slat fence.
Sidewalks exist on both sides of San Juan Road to the east and west, between east of Susan Street and a community park west of Porter Drive. Salinas Road and Porter Street also have continuous sidewalks through Pajaro, allowing continuous travel to Pajaro Middle School in southern Pajaro and Watsonville to the north.

A marked crosswalk is present across San Juan Road at Salinas Road. Crosswalks are also present across the south, east, and west legs of the Porter Street / San Juan Road intersection.

2.3 Existing Bicycle Network

There are four types of bicycle facilities defined by Caltrans. Each type is described below:

1. Bike path (Class I) - A separate right-of-way designed for the exclusive use of bicycle and pedestrian traffic with crossflow minimized.
2. Bike lane (Class II) - A striped lane for one-way bike travel on a street or highway, typically including signs placed along the street segment.
3. Bike route (Class III) - Provides a shared use with pedestrian or motor vehicle traffic. Typically, these facilities are city streets with signage designating the segment for Bike Route without additional striping or facilities.
4. Separated Bikeways (Class IV) - A bikeway for the exclusive use of bicycles and includes a separation between the bikeway and the through vehicular traffic. The separation may include, but is not limited to, grade separation, flexible posts, inflexible posts, inflexible barriers, or on-street parking.

A bicycle network map for Monterey County is included in Appendix B. This map is cited from Transportation Agency for Monterey County Bicycle and Pedestrian Master Plan, Alta Planning + Design, December 2011 ("TAMC Bicycle and Pedestrian Master Plan").

Bicycle facilities are provided along the following roadways in the study network:

- Bike Lane (Class II):
a. Porter Drive: north of San Juan Road (both directions)

The shoulders present on Salinas Road south of Porter Drive are wide enough to accommodate bicycle traffic, although they are not formally striped as Class II bike lanes.

2.4 Existing Transit Service

Monterey-Salinas Transit (MST) provides fixed-route bus service in Monterey County and Peninsula cities. Two MST bus lines provides service to the study area:

- Line 28 (Watsonville - Salinas via Castroville). This line provides weekday and weekend service every two hours between roughly 6:30 AM - 10:00 PM.
- Line 29 (Watsonville - Salinas via Prunedale). This line provides weekday and weekend service every two hours 90 minutes between roughly 6:00 AM - 8:00 PM.

The nearest bus stops to the Project site (served by both Lines 28 and 29) are located on Porter Drive south of San Juan Road (both directions). These stops are located approximately 0.4 mile (about a 10- to 15 -minute walk) from the project site. Additional bus stops are located on Salinas Road further south of the project site.

2.5 Existing Conditions Traffic Circulation

2.5.1 Susan Street Traffic Operations

Susan Street has a width of 36 feet measured from the back of the rolled curbs. This is the equivalent of a face of curb to face of curb width of 35 feet, which exceeds the Tertiary Street standard width of 34 feet from face of curb to face of curb on "Monterey County Standard Details," (County Standard Details) 1977, Plate 2. This same width is shown on Standard Detail Plate 3 for a Modified Tertiary Street. Plates 2 and 3 are included as Appendix C.

Per the County Standard Details, a Tertiary Street can accommodate up to 100 abutting residential lots and provide access to no more than 100 units. This has a corresponding range of 300 to 1,000 vehicles per day expected in 20 years. The Susan Street Apartments is proposed to include 61 apartments. There are a total of 19 existing lots. This a total of about 80 units, which is within the Tertiary Street range for number of units served. Adequate capacity is therefore provided for current traffic volumes.

2.5.2 Intersection Operations

In May 2020, the Monterey County Health Department instituted a shelter-in-place order for all of Monterey County, restricting operations and travel to/from offices, commercial businesses, and recreational activities. This order was in response to the COVID-19 pandemic occurring within the County during the Year 2020. As a result, traffic activity throughout the county was significantly reduced from typical conditions, precluding the usual collection of peak period traffic volumes at the four study intersections.

Existing peak hour traffic volumes at the four study intersections in the Year 2021 were therefore referenced from the recent "Pajaro Apartments Traffic Impact Analysis," Keith Higgins Traffic Engineer, March 25, 2021, which approximated peak hour volumes using a combination of resources, as listed below.

1. AM and PM peak hour volumes from G12: Prunedale to Pajaro Corridor Study - Existing Conditions Report ("Existing Corridor Report"), Omni-Means, August 2018. These volumes were collected in 2018.
2. Historical traffic growth in the study network was estimated using segment volumes in Monterey County Public Works Annual Average 2019, Monterey County Public Works Department, 2020. Appendix C contains three years (2017-2019) of annual average daily traffic (AADT) on Porter Drive and San Juan Road in Pajaro. Over that time, traffic grew an average of 2.33% per year. Hence, a growth rate of 2.33% for 2 years, or 4.66%, was applied to the Existing Corridor Report volumes to approximate Year 2021 volumes.
3. Traffic counts were also conducted at the San Juan Road / Susan Street intersection on August 28, 2021. These counts are used to confirm the accuracy of the San Juan Road volumes at the Gonda Street, Salinas Road and Porter Street intersections. The counts are also included in Appendix D.
The resulting Existing AM and PM peak hour volumes used in this analysis are depicted in Exhibit 4. Existing intersection lane configurations, traffic controls and levels of service at the study intersections are summarized in Exhibit 5A. Recommended intersection improvements are
summarized in Exhibit 5B. The LOS calculation sheets for Existing conditions can be found in Appendix E.

All the study intersections currently operate at or better than their respective level of service standards, as shown below:

1. Intersection 1 - Porter Street / San Juan Road - LOS C (AM), LOS D (PM)
2. Intersection 2 - Porter Street - Salinas Road / Stender Avenue - Salinas Road - LOS C AM, PM)
3. Intersection 3 - San Juan Road / Salinas Road - LOS B (AM), LOS C (PM)
4. Intersection 4 - San Juan Road / Gonda Street - LOS C (AM), LOS B (PM)
5. Intersection 5 - San Juan Road / Susan Street - LOS C (AM), LOS A (PM)

2.5.3 Pedestrian Circulation

Pedestrian volumes are light in the immediate project vicinity and moderate near Salinas Road, Porter Drive and Main Street, due to the close proximity of Pajaro to downtown Watsonville and the presence of Pajaro Middle School south of the study area. Automobile ownership may also be lower than typical due to the lower income in the Pajaro community. The school population includes both residents from Pajaro and Watsonville, leading some students from Watsonville to walk to school. A total of 74 AM and 39 PM pedestrian crossings occurred at the Porter Drive / San Juan Road intersection during the study peak periods. These are adequately served by the existing pedestrian network described in Section 2.2 above.

2.5.4 Bicycle Circulation

According to the Existing Corridor Report, there are a low number of bicycles traveling through the study intersections during the peak hours. Only 7 AM and 10 PM bicyclists passed through the Porter Drive / San Juan Road intersection during the study peak periods. The Existing Corridor Report cited earlier recommends converting the existing outside southbound through/right lane on the Main Street bridge over the Pajaro River to an exclusive right turn lane to allow the provision of bike lanes on Pajaro Street between San Juan Road and Salinas Street.

3 EXISTING PLUS PROJECT CONDITIONS

3.1 Project Description

This section of the report focuses on Existing Plus Project conditions with the Project conservatively utilized as standard apartments although the project will be agricultural employee housing. The Project will consist of 60 standard apartments and 1 manager apartment. This will provide as many as 480 beds if used as agricultural employee housing. No credit is given for existing agricultural operations on the Project site. The trip generation estimate for the Project is based on rates from Trip Generation Manual, 10 th Edition, published by the Institute of Traffic Engineers in 2017 (Trip Generation Manual). This includes both the proposed apartments and manager's unit.

3.2 Project Trip Generation

Exhibit 6 provides the trip generation estimate for the Project operated as standard apartments. The Project is estimated to generate about 446 weekday daily trips, with 29 trips (6 in, 23 out) during the AM peak hour and 35 trips (22 in, 13 out) during the PM peak hour. As a worst case, the Project is analyzed as a standard apartment.

The Project is actually proposed to be used as H2A (Agricultural Worker) housing. As indicated on Exhibit 6, standard apartments would generate about 454 daily trips with 29 during the morning peak hour and 35 during the evening peak hour. H2A would generate about 148 daily trips with 4 in the morning peak hour and 36 in the evening peak hour when the Project is occupied.
H2A projects are only occupied during the growing season in the Pajaro and Salinas Valleys which extends from March through the middle of November, which is about 8.5 months. The Project would be unoccupied for the winter season, which lasts about 3.5 months. On an annualized basis, the Project would generate about 105 daily trips with 3 in the morning peak hour and 26 in the evening peak hour. The H2A alternative would only represent about one-fourth to one-third of the daily total, depending on whether it is considered on a peak occupancy or annual average basis. The AM peak hour would be 10% to 14% of the apartment trip generation.

3.3 Project Trip Distribution and Assignment

Exhibit 7 depicts the trip distribution for the Project. The trip distribution was combined with the Project trip generation to derive the Project trip assignment depicted in Exhibit 7.

3.4 Existing Plus Project Condition Traffic Circulation

3.4.1 Susan Street Traffic Operations

As discussed in Section 2.5.1 above, Susan Street exceeds the Tertiary Street width shown on the County Standard Details. Susan Street will therefore adequately accommodate up to 100 units. The addition of the Susan Street Apartments will result in about 80 units being served by Susan Street, which is within the Tertiary Street range. Susan Street will adequately accommodate Existing plus Susan Street Apartments traffic volumes.

3.4.2 Intersection Operations

The Project trip assignment (Exhibit 8) was added to the existing traffic volumes in Exhibit 4 to estimate the Existing Plus Project volumes depicted in Exhibit 9.

Existing Plus Project condition intersection levels of service are summarized in Exhibit 5A. Recommended intersection improvements are summarized in Exhibit 5B. The LOS calculation sheets for Existing Plus Project conditions can be found in Appendix F.

All study intersections would continue to operate at or better than their respective level of service standards under Existing Plus Project conditions. No improvements are required.

3.4.3 Pedestrian Circulation

The Project is anticipated to generate pedestrian trips to and from commercial areas on Porter Drive as well as downtown Watsonville. There are existing sidewalks between the project site and these locations that provide adequate capacity for the additional pedestrian traffic. The exceptions are the three missing segments of sidewalk discussed in Section 2.2 "Existing Pedestrian Network" of this report and illustrated on Exhibit 3. The Project should construct the missing segments of sidewalk at the three locations, subject to coordination with the corresponding adjacent property owner.

3.4.4 Bicycle Circulation

The Project is anticipated to generate a small amount of bicycle traffic. The existing bike lanes and shoulders on the study street network will be adequate to accommodate this additional bicycle traffic. Therefore, the Project would not represent a significant impact to bicycle circulation.

3.4.5 Transit Circulation

The Project is anticipated to generate minimal transit demand. Therefore, the Project would not represent a significant impact to transit service.

3.5 Impact Fees

The Project would be subject to the TAMC Regional Development Impact Fee and the Monterey County transportation impact fee. The project's fees applicable to the apartments would be different than the fees applicable for the agricultural employee housing.

4 CUMULATIVE WITHOUT PROJECT CONDITIONS

This section describes the analysis results under Cumulative Without Project traffic conditions, which forecasts traffic conditions at buildout of the Monterey County and City of Watsonville General Plans. This scenario does not include trips from the study Project. This condition represents conditions in approximately the Year 2043.

4.1 Derivation of Cumulative Without Project Condition Volumes

Traffic volumes under Cumulative Without Project conditions were estimated using growth rates derived in the report G12: Prunedale to Pajaro Corridor Study ("G12 Corridor Study"), GHD, June 13, 2019. This report forecasts a total volume growth rate over existing conditions of 7.4% over 22 years. This growth rate of 7.4% was applied to the Existing volumes in Exhibit 4 to derive the Cumulative Without Project volumes shown in Exhibit 10.

4.2 Network Modifications under Cumulative Conditions

Cumulative Without Project and Cumulative Plus Project conditions include street network modifications on Porter Drive at San Juan Road. These modifications were recommended in the G12 Corridor Study. These improvements are funded by the TAMC Regional Development Impact Fee. The improvements include the restriping of southbound Porter Drive to convert one southbound through/right lane into a southbound right turn lane. These improvements are necessary to add bicycle lanes in each direction on Porter Drive south of the intersection.

4.3 Cumulative Without Project Traffic Conditions

4.3.1 Intersection Operations

Cumulative Without Project traffic volumes are depicted on Exhibit 10. Cumulative Without Project intersection levels of service are summarized in Exhibit 5A. Recommended intersection improvements are summarized in Exhibit 5B. The LOS calculation sheets for Cumulative Without Project traffic conditions can be found in Appendix G.

All study intersections will continue to operate at or better than their respective level of service standards under Cumulative Without Project conditions, as shown below:

1. Intersection 1 - Porter Street / San Juan Road - LOS D (AM, PM)
2. Intersection 2 - Porter Street - Salinas Road / Stender Avenue - Salinas Road - LOS D (AM), LOS C (PM)
3. Intersection 3 - San Juan Road / Salinas Road - LOS B (AM), LOS C (PM)
4. Intersection 4 - San Juan Road / Gonda Street - LOS C (AM, PM)
5. Intersection 5 - San Juan Road / Susan Street - LOS C (AM), LOS B (PM)

No improvements will be required at any of these intersections.

4.3.2 Pedestrian Circulation

The G12 Corridor Study proposes the widening of the existing sidewalks on Porter Drive and Salinas Road, including near Pajaro Middle School. There are no other planned pedestrian improvements in the study area under Cumulative Without Project conditions other than to construct
sidewalks along future streets where appropriate and to close gaps in existing sidewalks along Susan Street (discussed earlier in this report) as well as elsewhere in the Pajaro Community.

4.3.3 Bicycle Circulation

The TAMC bike and ped plan proposes the following future bicycle improvements in the study area.

- Bike Lane (Class II):
a. San Juan Road: between Porter Drive and US 101 (both directions)

The Final Corridor Study also proposes the following future bicycle improvements in the study area.

- Bike Lane (Class II):
b. Porter Drive: between Salinas Road and San Juan Road (both directions)
c. San Juan Road: between Porter Drive and Elkhorn Road (both directions)

4.3.4 Transit Circulation

There are no anticipated transit improvements in the study area.

5 CUMULATIVE PLUS PROJECT CONDITIONS

This section describes the analysis results under Cumulative Plus Project traffic conditions, which adds Project trip to the Cumulative Without Project volumes.

5.1 Derivation of Cumulative Plus Project Condition Traffic Volumes

The Project trip assignment (Exhibit 7) was added to the Cumulative Without Project volumes (Exhibit 9) to estimate Cumulative Plus Project traffic volumes, which are depicted on Exhibit 11.

5.2 Cumulative Plus Project Traffic Conditions

5.2.1 Intersection Operations

Cumulative Plus Project intersection levels of service are summarized in Exhibit 5A. Recommended intersection improvements are summarized in Exhibit 5B. The LOS calculation sheets for Cumulative Plus Project traffic conditions can be found in Appendix H.

All study intersections would continue to operate at or better than their respective level of service standards under Cumulative Plus Project conditions. No improvements will be required.

5.2.2 Pedestrian Circulation

Pedestrian activity is not anticipated to increase significantly under Cumulative Plus Project conditions as compared to Cumulative Without Project conditions. Therefore, the Project would not represent a significant effect on pedestrian circulation under Cumulative Plus Project conditions, other than along Susan Street, which has been discussed in detail earlier in this report

5.2.3 Bicycle Circulation

Bicycle activity is not anticipated to increase significantly under Cumulative Plus Project conditions as compared to Cumulative Without Project conditions. Therefore, the Project would not represent a significant effect on bicycle circulation under Cumulative Plus Project conditions.

5.2.4 Transit Circulation

Transit demand from the Project is not anticipated to increase significantly under Cumulative Plus Project conditions. As such, the Project would not represent a significant cumulative effect on transit circulation.

6 SITE ACCESS AND INTERNAL CIRCULATION

This section summarizes the site access and internal circulation analysis, including Project driveway operations, based on the site plan included as Exhibit 2.

6.1 Vehicle Circulation

The onsite parking area has direct access to Susan Street. All project site traffic would travel on Susan Street to and from San Juan Road. This intersection will operate acceptably through Cumulative Plus Project conditions without any improvements.

The project driveway on Susan Street will operate acceptably through Cumulative Plus Project conditions. This is because the project is located at the existing terminus of Susan Street, where there is little to no cross traffic on Susan Street.

The on-site bus loading area will be located along the northernmost building on the project site. Passenger vehicles and buses will be able to circulate on the loop circulation aisle that will provided around the Project's building complex. This will provide alternate internal access for the entire project and eliminate the need for buses to turn around within the Project site. Project access and internal circulation is adequate as proposed.

6.2 Pedestrian Circulation

Sidewalks are proposed around all on-site buildings. A crosswalk is proposed across the onsite driveway for easy access to both ADA parking and Susan Street. No additional on-site pedestrian circulation improvements are required. Off-site pedestrian improvements along Susan Street are discussed elsewhere in this report.

6.3 Bicycle Circulation

Bicycle racks are located adjacent to each building, plus in the far southwest corner of the site plan. In total, approximately 24 bike racks are provided, which is double the 12 racks required per Monterey County standards. No bicycle improvements are required.

6.4 Emergency Access

Emergency access to the Project site is provided by Susan Street. According to the North County Fire District email included as Appendix I emergency access is acceptable to serve the Project.

7 VEHICLE MILES TRAVELED

This section summarizes the calculation of the total vehicle miles traveled by Project traffic.
Vehicle Miles Traveled (VMT) represents the total number of miles traveled per weekday by all vehicles while traveling to and from a Project site. Monterey County is in the process of establishing a VMT standard with significance criteria for VMT evaluations in the unincorporated areas of the county. The draft policy has been reviewed by the Monterey County Planning Commission which has recommended it for approval by the Board of Supervisors. The schedule for the Board to consider this policy has not been established as of the date of this report. However, it is assumed to occur in the next several months. Exhibit 12 provides the heat map, which indicates by color code the areas of North Monterey County where residences generate vehicle miles per capita below (in green) or above (orange or red) the significance threshold. The threshold is 15% below the County-wide average VMT per capita.

Residential development in the entire Pajaro area, including the Project site, has been determined to generate VMT below the County threshold. No additional analysis is required. The discussion below is therefore superseded. However, it explains why Pajaro residential development has low VMT per capita relative to the County average. It also discusses why the H2A project alternative also would have VMT per capita below the County average and may reduce regional VMT by providing bus transportation for Project residents to and from work as well as personal trips during non-work hours.

7.1 Apartments

Assuming the worst-case apartment use, the project will generate about 454 weekday daily trips, which is greater than the default threshold of 110 daily trips above which a VMT analysis is recommended according to the Technical Advisory on Evaluating Transportation Impacts in CEQA, State of California Governor's Office of Planning and Research, December 2018. The project generally fits the following generic criteria per Proposed CEQA Guideline Section 15064.3, subdivision (b)(1).

1. Projects (including residential, retail, and office projects, as well as projects that are a mix of these uses) proposed within $1 / 2$ mile of an existing major transit stop or an existing stop along a high-quality transit corridor will have a less-than-significant impact on VMT.
The project is located about $3 / 4$ mile from the Watsonville Transit Center, located at the southerly corner of the Rodriquez Street / East Lake Street intersection in Watsonville as well. A total of nine Santa Cruz Metro Transit District and Monterey Salinas Transit (MST) routes converge. MST Routes 28 and 29 operate along Pajaro Street and Main Street within 0.30 miles of the site. They each operate on a 2-hour headway between the City of Salinas and the Watsonville Transit Center.
2. Adding affordable housing to infill locations generally improves the jobs-housing match, in turn shortening commutes and reducing VMT. Further, according to "... low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available." In areas where existing jobs-housing match is closer to optimal, lowincome housing nevertheless generates less VMT than market-rate housing. Therefore, a
project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations.
The project nearly meets the exemption based on transit service. If used as standard apartments it would qualify as affordable housing given its location in Pajaro as well as being multi-family housing. It would also be infill because it is one of the only remaining vacant developable parcels within the Pajaro Community.

7.2 Agricultural Worker Housing

The project will house up to 480 workers. They will be transported to and from a variety of agricultural fields throughout the Pajaro Valley by buses and vans. Workers will also be provided with shuttles or walk and bicycle to local businesses within Pajaro and Watsonville for personal trips. The use of buses and vans to transport these workers with vehicle occupancy ranging from 9 to 30 or more workers per vehicle will significantly reduce VMT compared to the workers driving themselves to the fields from existing housing in the region. The H2A housing project will therefore have a beneficial effect on VMT. There is therefore no need for further VMT analysis for the H2A Project alternative.

8 COLLISION ANALYSIS

California Statewide Integrated Traffic Records System (SWTRS) was obtained for the intersection of Susan Street and San Juan Road and Susan Street (from end to San Juan Road) between January 1, 2011, and October 21, 2021 through the Transportation Injury Mapping System (TIMS) platform provided by the University of California at Berkeley. The summary data is included as Appendix J. Exhibit 13 tabulates this data.

According to TIMS records, a total of 12 collisions were reported along San Juan Road that were located by their distance from the San Juan Road / Susan Street intersection during the past 10.8 years. It will be noted that the collisions occurred along a segment of San Juan Road extending from about 50 feet west of Susan Street to 1,584 feet east of Susan Street. Susan Street was used as the reference point for identifying the location of these collisions because this is the most easterly public street intersection along San Juan Road in the area. Six of the collisions involved parked cars. Seven were caused by unsafe lane changes including passing in the two way left turn lane, two were due to unsafe speed. None were at the Susan Street intersection.

Only one collision was associated directly or indirectly with the Susan Street intersection. It involved a vehicle that was hit broadside exiting a private residential driveway about 60 feet west of Susan Street. Although in relatively close proximity, this collision was not associated with traffic operations at the San Juan Road / Susan Street intersection.

No collisions were reported along Susan Street in the last 10.8 years.
There are no apparent traffic safety issues thus no remedial measures are required at the San Juan Road / Susan Street intersection or along Susan Street.

9 SUMMARY OF PROJECT RESPONSIBILITIES

The following is a summary of the Project responsibilities regarding traffic issues and impacts, based upon the recommendations discussed earlier in this report.

1. The Project should construct sidewalks at the three missing segments along the west side of Susan Street to provide a continuous sidewalk between the Project and San Juan Road, subject to the approval of, and in coordination with, the corresponding adjacent property owners. This is discussed in Section 2.2 "Existing Pedestrian Network" of this report.
2. Pay the TAMC Regional Development Impact Fee. Monterey County staff will quantify the applicable fees to the Project at the time of development.
3. Pay the County of Monterey Traffic Impact Fee. Monterey County staff will quantify the applicable fee to the Project at the time of development.

10 REFERENCES

10.1 List of References

1. 2010 Highway Capacity Manual, Transportation Research Board, 2010.
2. 2000 Highway Capacity Manual, Transportation Research Board, 2000.
3. Guide for the Preparation of Traffic Impact Studies, Monterey County Resource Management Agency - Department of Public Works, March 2014.
4. 2007 Monterey County General Plan Draft Environmental Impact Report, ICF Jones \& Stokes, September 2008.
5. The Regional Impact Fee Program Nexus Study Update 2018, Wood Rodgers, October 2018.
6. Highway Design Manual, $6^{\text {th }}$ Edition, California Department of Transportation (Caltrans), November 20, 2017.
7. Transportation Agency for Monterey County Bicycle and Pedestrian Master Plan, Alta Planning + Design, December 2011.
8. Monterey-Salinas Transit web site, http://www.mst.org. Accessed February 26, 2021.
9. G12: Prunedale to Pajaro Corridor Study - Existing Conditions Report, Omni-Means, August 2018.
10. Monterey County Public Works Annual Average 2019, Monterey County Public Works Department, 2020.
11. Trip Generation Manual, $10^{\text {th }}$ Edition, Institute of Transportation Engineers, 2017.
12. G12: Prunedale to Pajaro Corridor Study, GHD, June 13, 2019.
13. Technical Advisory on Evaluating Transportation Impacts in CEQA, State of California Governor's Office of Planning and Research, December 2018
14. Statewide Integrated Traffic Records System (SWITRS), California Highway Patrol, 2021

10.2 List of Contacts

1. Jeff Nohr, Project Manager, Avila Construction, Monterey, California.
2. Paul Davis, The Paul Davis Partnership, Monterey, California.
3. Juan Hernandez, Monterey County Public Works Department, Salinas, California.
4. Fernando Armendariz, Monterey County Public Works Department, Salinas, California.

Basemap Source: Google Maps, 2021.

Source: The Paul Davis Partnership, 10/14/21.

Susan Street
Agricultural
Employee Housing

APN: 117:36-016:000

Whitson
Civi E finineering
lend Survering
 PARTNERSHIP
\qquad

A
Comem or
Comeng odece $1123 a 21$
4409.00

LANNING REVIEW ONLY SUBJECT TO REVISION

Exhibit 3

Susan Street Sidewalk Improvements

	$\begin{array}{r} \mathrm{N}-\mathrm{S} \\ \text { Street } \end{array}$	E-W Street	Existing Lane Configuration	Existing Intersection Control	LOS Standard	Peak Hour	Existing Conditions		Existing Plus Project Conditions		Cumulative Without Project Conditions		Cumulative Plus Project Conditions	
							Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
1	Porter Drive	San Juan Road	NB 1-L, 1-T, 1-T/RSB 2-L, 1-T, 1-T/REB 1-L, 1-T, 1-RWB 1-L/T, 2-R	Signal	D	AM	27.3	C	27.5	C	38.9	D	39.0	D
						PM AM	44.4	D	44.8	D	51.7	D	52.0	D
				With Improvement		PM								
2	Salinas Road	Porter Drive - Stender Avenue	NB 1-L/T/RSB 1-L/T/REB 1-L/T, 1-RWB 1-L/T/R	One-Way Stop* E With Improvement		AM	23.4	C	23.5	C	26.7	D	26.7	D
						PM AM	21.8	C	21.9	C	24.0	C	24.1	C
						PM								
3	Salinas Road	San Juan Road	$\begin{aligned} & \text { NB } 1-L / R \\ & \text { EB } 1-T / R \\ & \text { WB } 1-L, 1-T \end{aligned}$	One-Way Stop E With Improvement		AM	12.2	B	12.2	B	12.7	B	12.7	B
						PM AM	15.9	C	16.3	C	17.4	C	17.7	C
						PM								
4	Gonda Street	San Juan Road	SB 1-L/REB 1-L, 1-TWB 1-T/R	One-Way Stop	E mprovement	AM	17.2	C	17.5	C	19.3	C	19.7	C
						PM AM	14.2	B	14.4	B	15.1	B	15.3	C
				With Improvement		PM								
5	Susan Street	San Juan Road	$\begin{aligned} & \text { NB 1-L/T/R } \\ & \text { SB L/T/R } \\ & \text { EB 1-L, 1-T/R } \\ & \text { WB 1-L, 1-T/R } \end{aligned}$	One-Way Stop With	E/E mprovement	AM	29.3/15.0	D/C	31.3/18.8	D/C	32.1/15.6	D/C	34.5/20.1	D/C
						PM AM	38.3/8.9	E/A	41.4/17.4	E/C	41.4/12.8	E/B	46.4/18.6	E/C
						PM								

Notes:

1. L, T, R = Left, Through, Right.
2. NB, SB, EB, WB = Left, Through, Right, Northbound, Southbound, Eastbound, Westbound.
3. Monterey County overall levels of service standard is LOS D. Side-street standard is assumed as LOS E.
4. For signalized intersection analysis, delay is average overall delay in seconds per vehicle (sec/veh). For oneand two-way stop intersections, delays are side-street approach operations, also in seconds per vehicle (sec/veh).
5. Analysis performed using 2010 and 2000 Highway Capacity Manual methodologies.
6. Level of service calculations can be found in Appendices D through G.

Keith Higgins
Traffic Engineer
7. LOS highlighted in red indicates intersection operating below level of service standard.
8. LOS with a thick black border represents a significant impact. Resulting levels of service with recommended improvements noted under "With Improvements". A list of applied improvements can be found on Exhibit 4B.
9. * $=$ This intersection has both cross streets on the same side of the street. Analysis models this intersection by combining both the south and east approaches to the intersection into a single approach.

Exhibit 5A
Intersection
Levels of Service

	N-S Street	E-W Street	Existing Intersection Control	Existing Conditions	Existing Plus Project Conditions	Cumulative Without Project Conditions	Cumulative Plus Project Conditions
1	Porter Drive	San Juan Road	Signal	None Required	None Required	None Required	

Notes:

1. L, T, R = Left, Through, Right.
2. NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound.
3. * $=$ This intersection has both cross streets on the same side of the street. Analysis models this intersection by combining both the south and east approaches to the intersection into a single approach.

PROPOSED PROJECT - APARTMENTS										
A. Project Trip Rates										
			AM PEAK HOUR				PM PEAK HOUR			
	ITE	DAILY	PEAK	\%			PEAK	\%		
	LAND USE	TRIP	HOUR	OF	\%	\%	HOUR	OF	\%	\%
TRIP GENERATION RATES	CODE	RATE	RATE	ADT	IN	OUT	RATE	ADT	IN	OUT
Multifamily Housing (Low-Rise) (per unit)	220	7.32	0.46	6\%	23\%	77\%	0.56	8\%	63\%	37\%
B. Project Trip Generation										
			AM PEAK HOUR				PM PEAK HOUR			
			PEAK	\%			PEAK	\%		
	PROJECT	DAILY	HOUR	OF	TRIPS	TRIPS	HOUR	OF	TRIPS	TRIPS
PROPOSED USE	SIZE	TRIPS	TRIPS	ADT	IN	OUT	TRIPS	ADT	IN	OUT
Apartments	61 units	447	28	6\%	6	22	34	8\%	21	13
Apartment - Manager's Unit	1 unit	7	1	14\%	0	1	1	14\%	1	0
Total:		454	29		6	23	35		22	13

PROPOSED PROJECT - AGRICULTURAL EMPLOYEE HOUSING										
A. Project Trip Rates										
			AM PEAK HOUR				PM PEAK HOUR			
REFERENCE USE	EXISTING SIZE	DAILY TRIPS	PEAK HOUR TRIPS	$\begin{gathered} \hline \% \\ \text { OF } \\ \text { ADT } \end{gathered}$	$\begin{aligned} & \% \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{gathered} \% \\ \text { OUT } \end{gathered}$	PEAK HOUR TRIPS	$\begin{gathered} \hline \% \\ \text { OF } \\ \text { ADT } \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \text { IN } \\ & \hline \end{aligned}$	$\begin{gathered} \% \\ \text { OUT } \end{gathered}$
Casa Boronda Ag. Employee Housing Driveway Count ${ }^{1}$	600 beds	N.A.	4		3	1	43		22	21
Trip Rates (per employee): ${ }^{2}$		0.288	0.007		75\%	25\%	0.072		51\%	49\%
B. Project Trip Generation										
				AM PE	AK HOU			PEA	K HOUR	
PROPOSED USE	PROJECT SIZE	DAILY TRIPS	PEAK HOUR TRIPS	$\begin{gathered} \hline \% \\ \text { OF } \end{gathered}$	TRIPS IN	TRIPS OUT	PEAK HOUR TRIPS	$\begin{gathered} \% \\ \text { OF } \end{gathered}$ ADT	TRIPS IN	TRIPS OUT
Agricultural Employee Housing	488 beds	141	3	2\%	2	1	35	25\%	18	17
Apartment - Manager's Unit	1 unit	7	1	14\%	0	1	1	14\%	1	0
Raw (Peak Hour) Total (used in analysis):		148	4	3\%	2	2	36	24\%	19	17
Percent of Apartment Trip Generation		33\%	14\%				103\%			
Annual Average Total:		105	3		1	2	26		13	13
Percent of Apartment Trip Generation		23\%	10\%				74\%			

Notes:

1. AM and PM peak hour traffic at Casa Boronda was collected Tuesday, April 16, 2019. This data can be found in Appendix C.
2. Daily trip rate derived by assuming that PM peak rate is 25% of the daily trip rate.
3. Estimated trip generation for Casa Boronda project cited from Casa Boronda Agricultural Employee Housing Project Traffic Impact Analysis, Keith Higgins Traffic Engineer, July 3, 2017.
4. Seasonal adjustment reflects that project is open for just 8.5 months of the year (i.e., approximately 71% of a year).

Basemap Source: Google Maps, 2021.

5. San Juan Road / Susan Street

Keith Higgins
Traffic Engineer

Source: Draft Monterey County Vehicle Miles Traveled Policy - "Monterey County Fee Zone 1 Residential VMT per Capita," Heat Map, approved by Monterey County Planning Commission, June 30, 2021

No.	Date	CollisionType	Violation	Primary Collision Factor	When Ocurred		Party 1 Direction of Travel	DistancefromIntersection	Number of		In Proximity to Intersection	Comment
					Day	Time			Fatalities	Injuries		
None in 2011												
None in 2012												
None in 2013												
1	3/20/2014	Sideswipe	22107	Unsafe Lane Change	Thursday	2:50 PM	EB	150 ft . East	0	0	No	Hit EB Parked Car
2	8/19/2014	Sideswipe	21460.5	Passing in TWLTL	Tuesday	2:30 PM	WB	528 ft . East	0	0	No	WB Passing
3	9/10/2014	Hit Object	None	Not Driver	Wednesday	8:15 PM	NB	$300 \mathrm{ft}$. East	0	0	No	Exit Driveway
4	10/11/2016	Broadside	22107	Unsafe Lane Change	Tuesday	2:30 AM	EB	50 ft . West	0	1	No	Hit EB Parked Car
5	12/18/2017	Sideswipe	22107	Unsafe Lane Change	Monday	8:15 PM	EB	1150 ft . East	0	1	No	Hit EB Parked Car
6	10/21/2017	Broadside	21804a	Failure to Yield	Thursday	10:40 AM	NB	60 ft . West	0	0	No	Exit Driveway
7	11/27/2017	Rear End	22350	Unsafe Speed	Sunday	1:00 PM	WB	528 ft . East	0	1	No	
8	9/22/2019	Rear End	22107	Unsafe Lane Change	Sunday	7:45 AM	WB	40 ft . East	0	0	No	Hit WB Parked Car
9	2/8/2019	Hit Object	22106	Start/Backing	Friday	12:50 PM	EB	60 ft . East	0	0	No	Backing into Traffic at Driveway
10	1/29/2020	Hit Object	22107	Unsafe Lane Change	Wednesday	12:45 PM	EB	1584 ft . East	1	0	No	Hit NB Parked Car
11	8/1/2020	Sideswipe	22350	Unsafe Speed	Saturday	6:35 AM	WB	475 ft . East	0	0	No	Hit EB Left Turn
12	10/21/2021	Sideswipe	22107	Unsafe Lane Change	Thursday	8:05 PM	WB	200 ft . East	0	1	No	Hit WB Parked Car

Notes:

1. Collision data obtained from California Highway Patrol web site: https://iswitrs.chp.ca.gov/ from January 1, 2011 through Ocotber 21, 2021.
2. Intersection collisions are defined as within approximately 200 feet of the intersection and associated with intersection traffic operations
3. No collisions were reported in 2011, 2012, 2013, 2015 and 2018.
4. 12 Collisions in 10.8 Years at locations along San Juan Road measured from Susan Street, although none appear to be associated with traffic movements to or from Susan Street.
5.

One (Collision 6) apparently was a broadside involving a vehicle exiting a private residential driveway about 60 feet west of Susan Street. This is the only collision that is the type typically associated with conflicts occurring at an intersection. However, this appears to have no relationship with the Susan Street intersection.
6. 6 collisions were with parked cars; 7 were unsafe lane changes or passing; 2 were unsafe speed; 1 was failure to yield; 1 was start or backing in the roadway.

Appendix A

Level of Service
Descriptions

APPENDIX A1

LEVEL OF SERVICE (LOS) DESCRIPTION SIGNALIZED INTERSECTIONS

The capacity of an urban street is related primarily to the signal timing and the geometric characteristics of the facility as well as to the composition of traffic on the facility. Geometrics are a fixed characteristic of a facility. Thus, while traffic composition may vary somewhat over time, the capacity of a facility is generally a stable value that can be significantly improved only by initiating geometric improvements. A traffic signal essentially allocates time among conflicting traffic movements that seek to use the same space. The way in which time is allocated significantly affects the operation and the capacity of the intersection and its approaches.

The methodology for signalized intersection is designed to consider individual intersection approaches and individual lane groups within approaches. A lane group consists of one or more lanes on an intersection approach. The outputs from application of the method described in the HCM 2000 and 2010 are reported on the basis of each lane. For a given lane group at a signalized intersection, three indications are displayed: green, yellow and red. The red indication may include a short period during which all indications are red, referred to as an all-red interval and the yellow indication forms the change and clearance interval between two green phases.

The methodology for analyzing the capacity and level of service must consider a wide variety of prevailing conditions, including the amount and distribution of traffic movements, traffic composition, geometric characteristics, and details of intersection signalization. The methodology addresses the capacity, LOS, and other performance measures for lane groups and the intersection approaches and the LOS for the intersection as a whole.

Capacity is evaluated in terms of the ratio of demand flow rate to capacity (v/c ratio), whereas LOS is evaluated on the basis of control delay per vehicle (in seconds per vehicle). The methodology does not take into account the potential impact of downstream congestion on intersection operation, nor does the methodology detect and adjust for the impacts of turn-pocket overflows on through traffic and intersection operation.

LEVEL OF SERVICE (LOS) CRITERIA FOR SIGNALIZED INTERSECTIONS
(Reference 2000 and 2010 Highway Capacity Manual)

Level of Service	Control Delay (seconds / vehicle)
A	<10
B	$>10-20$
C	$>20-35$
D	$>35-55$
E	$>55-80$
F	>80

APPENDIX A2

LEVEL OF SERVICE (LOS) DESCRIPTION UNSIGNALIZED INTERSECTIONS WITH TWO-WAY STOP CONTROL (TWSC)

TWSC intersections are widely used and stop signs are used to control vehicle movements at such intersections. At TWSC intersections, the stop-controlled approaches are referred to as the minor street approaches; they can be either public streets or private driveways. The intersection approaches that are not controlled by stop signs are referred to as the major street approaches. A three-leg intersection is considered to be a standard type of TWSC intersection if the single minor street approach (i.e. the stem of the T configuration) is controlled by a stop sign. Three-leg intersections where two of the three approaches are controlled by stop signs are a special form of unsignalized intersection control.

At TWSC intersections, drivers on the controlled approaches are required to select gaps in the major street flow through which to execute crossing or turning maneuvers on the basis of judgment. In the presence of a queue, each driver on the controlled approach must use some time to move into the front-of-queue position and prepare to evaluate gaps in the major street flow. Capacity analysis at TWSC intersections depends on a clear description and understanding of the interaction of drivers on the minor or stop-controlled approach with drivers on the major street. Both gap acceptance and empirical models have been developed to describe this interaction.

Thus, the capacity of the controlled legs is based on three factors:

- the distribution of gaps in the major street traffic stream;
- driver judgment in selecting gaps through which to execute the desired maneuvers; and
- the follow-up time required by each driver in a queue.

The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions, in the absence of incident, control, traffic or geometric delay. Average control delay for any particular minor movement is a function of the capacity of the approach and the degree of saturation and referred to as level of service.

LEVEL OF SERVICE (LOS) CRITERIA FOR TWSC INTERSECTIONS
(Reference 2010 Highway Capacity Manual)

Level of Service	Control Delay (seconds / vehicle)
A	$0-10$
B	$>10-15$
C	$>15-25$
D	$>25-35$
E	$>35-50$
F	>50

Appendix B

Existing and Proposed

Bicycle Facilities
near Project Site

Basemap Source: Transportation Agency for Monterey County Bicycle and Pedestrian Master Plan, Alta Planning + Design, December 2011.

Appendix C
 Monterey County Public Works
 Tertiary Street Standard Cross Section

STANDARD DETAILS

COUNTY OF MONTEREY, CALIFORNIA

OCTOBER 1977

10,000 vehicles expected in 20 years.
1,500 1eft turning movements per day
Major Divided Street

This street is so designated by a Master
Plan, Precise Plan or Road Classification
Plan adopted by the Board of Supervisors.
5,000 vehicles or more, but less than
15,000 vehicles expected in 20 years $\quad \because \quad$ Major Street

Collect or carry vehicular traffic through a subdivision and that is not expected to serve in the future as a major street.
400 units with two or more entrances or
200 units
800 to 3,000 vehicles expected in 20 years Secondary Street.

100 units - abutted by residential lots and provide access to not more than 100 units.
300 to 1,000 vehicles expected in 20 years Tertiary Street

30 units or less - begins and terminates
on the same cross street and provides access to not more than 30 abutted units Maximum 300 vehicles expected in 20 years Loop Street
.
16 units or less on dead-end street to provide access to a limited number of abutting units and cannot be extended to serve a greater number of dwelling units Maximum 200 vehicles expected in 20 years

Cul-de-sac Street

Industrial Street -Half-width Street Frontage Road Alley - Split-level

LOOP OR CUL-DE-SAC STREET

TERTIARY STREET

MONTEREY COUNTY	DEPT. OF PUBLIC WORKS
STANDARD DETAILSFLATTTERRAIN STREET SECTION	
APPROVED DJuec zetill 88	- OATE 10-24-7T
namaco 1 oate	plate no.

Appendix D

Historical
Traffic Growth
in Pajaro
and
Intersection
Traffic Counts

Volume Growth

Existing Volumes

Porter Drive / San Juan Road
Growth Rates

Location	ADT Volumes (Two-Way)					
	2017	2018	2019	Net Dif.	\% Growth	\% per year
Porter, north	26,900	27,100	28,500	1,600	5.95%	1.98%
Porter, south	18,300	18,600	19,100	800	4.37%	1.46%
San Juan, east	13,100	13,500	14,500	1,400	10.69%	3.56%
					Average:	7.00%
					2.33%	

Volume Source: Monterey County Public Works Annual Average 2019, Monterey County Public Works Department, 2020.

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	San Juan Rd				San Juan Rd				Drive way				Susan St				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
7:00 AM	0	0	7	0	0	0	11	0	0	0	0	0	0	0	0	0	18	0
7:15 AM	0	0	3	0	0	0	17	0	0	0	0	0	0	0	0	0	20	0
7:30 AM	0	1	10	0	0	0	14	0	0	0	0	0	0	0	0	1	26	0
7:45 AM	0	0	8	0	0	0	8	0	0	0	0	0	0	0	0	0	16	80
8:00 AM	0	0	4	0	0	0	13	0	0	0	0	0	0	0	0	0	17	79
8:15 AM	0	0	9	0	0	0	11	0	0	0	0	0	0	0	0	0	20	79
8:30 AM	0	0	10	0	0	0	10	0	0	0	0	0	0	0	0	0	20	73
8:45 AM	0	0	11	0	0	0	8	0	0	0	0	0	0	0	0	0	19	76
Count Total	0	1	62	0	0	0	92	0	0	0	0	0	0	0	0	1	156	0
Peak Hour	0	1	28	0	0	0	50	0	0	0	0	0	0	0	0	1	80	0

Two-Hour Count Summaries - Bikes

Interval Start	San Juan Rd			San Juan Rd			Drive way			Susan St			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Note: Two-hour count summary volumes include heavy vehicles but exclude bicycles in overall count.

Interval Start	Heavy Vehicle Totals					Bicycles					Pedestrians (Crossing Leg)				
	EB	WB	NB	SB	Total	EB	WB	NB	SB	Total	East	West	North	South	Total
4:00 PM	15	9	0	0	24	0	0	0	0	0	0	3	1	0	4
4:15 PM	7	3	0	0	10	0	0	0	0	0	0	0	2	0	2
4:30 PM	4	5	0	0	9	0	0	0	0	0	0	0	0	1	1
4:45 PM	6	5	0	0	11	1	0	0	0	1	0	0	0	0	0
5:00 PM	8	7	0	0	15	0	0	0	0	0	0	0	0	0	0
5:15 PM	6	1	0	0	7	1	0	0	0	1	1	0	0	0	1
5:30 PM	6	7	0	0	13	0	0	0	0	0	0	0	0	2	2
5:45 PM	5	6	0	0	11	0	0	0	0	0	0	0	0	0	0
Count Total	57	43	0	0	100	2	0	0	0	2	1	3	3	3	10
Peak Hour	32	22	0	0	54	1	0	0	0	1	0	3	3	1	7

www.idaxdata.com

Two-Hour Count Summaries - Heavy Vehicles

Interval Start	San Juan Rd				San Juan Rd				Drive way				Susan St				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT														
4:00 PM	0	0	15	0	0	0	9	0	0	0	0	0	0	0	0	0	24	0
4:15 PM	0	0	7	0	0	0	3	0	0	0	0	0	0	0	0	0	10	0
4:30 PM	0	0	4	0	0	0	5	0	0	0	0	0	0	0	0	0	9	0
4:45 PM	0	0	6	0	0	0	5	0	0	0	0	0	0	0	0	0	11	54
5:00 PM	0	0	8	0	0	0	7	0	0	0	0	0	0	0	0	0	15	45
5:15 PM	0	0	6	0	0	0	1	0	0	0	0	0	0	0	0	0	7	42
5:30 PM	0	0	6	0	0	0	7	0	0	0	0	0	0	0	0	0	13	46
5:45 PM	0	0	5	0	0	0	6	0	0	0	0	0	0	0	0	0	11	46
Count Total	0	0	57	0	0	0	43	0	0	0	0	0	0	0	0	0	100	0
Peak Hour	0	0	32	0	0	0	22	0	0	0	0	0	0	0	0	0	54	0

Two-Hour Count Summaries - Bikes

Interval Start	San Juan Rd			San Juan Rd			Drive way			Susan St			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT											
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	1
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:15 PM	0	1	0	0	0	0	0	0	0	0	0	0	1	2
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Count Total	0	2	0	0	0	0	0	0	0	0	0	0	2	0
Peak Hour	0	1	0	0	0	0	0	0	0	0	0	0	1	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Appendix E

Level of Service
Calculations

Existing

Conditions

c Critical Lane Group

Intersection						
Int Delay, s/veh	1					
Movement W	NBL	WBR	NBT	NBR	SBL	
Lane Configurations	K/		F		${ }^{*}$	4
Traffic Vol, veh/h	32	31	799	47	14	641
Future Vol, veh/h	32	31	799	47	14	641
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stop	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	\# 1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	4	4	4	4
Mvmt Flow	37	36	918	54	16	737

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1714	945	0	0	972	0
Stage 1	945	-	-	-	-	-
Stage 2	769	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.14	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.236	-
Pot Cap-1 Maneuver	99	318	-	-	701	-
Stage 1	378	-	-	-	-	-
Stage 2	457	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	97	318	-	-	701	-
Mov Cap-2 Maneuver	231	-	-	-	-	-
Stage 1	378	-	-	-	-	-
Stage 2	446	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.4		0		0.2	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	267	701	-
HCM Lane V/C Ratio		-	-	0.271	0.023	-
HCM Control Delay (s)		-	-	23.4	10.3	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	1.1	0.1	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\boldsymbol{F}			4	1	\mathbf{T}
Traffic Vol, veh/h	327	7	29	773	9	40
Future Vol, veh/h	327	7	29	773	9	40
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	4	4	4	4	2	2
Mvmt Flow	376	8	33	889	10	46

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	903	0	-	0	1330	902	
Stage 1	-	-	-	-	902	-	
Stage 2	-	-	-	-	428	-	
Critical Hdwy	4.14	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.236	-	-	-3.518	3.318		
Pot Cap-1 Maneuver	745	-	-	-	171	336	
\quad Stage 1	-	-	-	-	396	-	
Stage 2	-	-	-	-	657	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	745	-	-	-	169	336	
Mov Cap-2 Maneuver	-	-	-	-	294	-	
Stage 1	-	-	-	-	392	-	
Stage 2	-	-	-	-	657	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	17.2
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	745	-	-	-	323
HCM Lane V/C Ratio	0.009	-	-	-0.089	
HCM Control Delay (s)	9.9	-	-	-17.2	
HCM Lane LOS	A	-	-	-	C
HCM 95th \%tile Q(veh)	0	-	-	-	0.3

1: Porter Dr \& San Juan Rd

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F		a	4
Traffic Vol, veh/h	11	12	854	117	30	964
Future Vol, veh/h	11	12	854	117	30	964
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	11	12	880	121	31	994

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1997	941	0	0	1001	0
Stage 1	941	-	-	-	-	-
Stage 2	1056	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	66	319	-	-	692	-
Stage 1	380	-	-	-	-	-
Stage 2	335	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	63	319	-	-	692	-
Mov Cap-2 Maneuver	187	-	-	-	-	-
Stage 1	380	-	-	-	-	-
Stage 2	320	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.8		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	238	692	-
HCM Lane V/C Ratio		-	-	0.1	0.045	-
HCM Control Delay (s)		-	-	21.8	10.4	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection						
Int Delay, s/veh	0.3					
Movement E	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{1}$	+	\uparrow		*	
Traffic Vol, veh/h	20	750	584	8	5	12
Future Vol, veh/h	20	750	584	8	5	12
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	0	-
Veh in Median Storage, \#	\#	0	0	-	1	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	21	773	602	8	5	12

Appendix F

Level of Service
Calculations

Existing Plus Project

Conditions

c Critical Lane Group

Intersection						
Int Delay, s/veh	1					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		个		${ }_{1}$	4
Traffic Vol, veh/h	32	31	799	48	14	646
Future Vol, veh/h	32	31	799	48	14	646
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stor	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	\# 1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	4	4	4	4
Mvmt Flow	37	36	918	55	16	743

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1721	946	0	0	973	0
Stage 1	946	-	-	-	-	-
Stage 2	775	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.14	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.236	-
Pot Cap-1 Maneuver	98	317	-	-	701	-
Stage 1	377	-	-	-	-	-
Stage 2	454	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	96	317	-	-	701	-
Mov Cap-2 Maneuver	230	-	-	-	-	-
Stage 1	377	-	-	-	-	-
Stage 2	444	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	23.5		0		0.2	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	266	701	-
HCM Lane V/C Ratio		-	-	0.272	0.023	-
HCM Control Delay (s)		-	-	23.5	10.3	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	1.1	0.1	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}		1	4	a	\mathbf{F}
Traffic Vol, veh/h	330	7	29	789	9	41
Future Vol, veh/h	330	7	29	789	9	41
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	4	4	4	4	2	2
Mvmt Flow	379	8	33	907	10	47

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	922	0	-	0	1353	921	
\quad Stage 1	-	-	-	-	921	-	
Stage 2	-	-	-	-	432	-	
Critical Hdwy	4.14	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.236	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	732	-	-	-	165	328	
\quad Stage 1	-	-	-	-	388	-	
Stage 2	-	-	-	-	655	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	732	-	-	-	163	328	
Mov Cap-2 Maneuver	-	-	-	-	288	-	
Stage 1	-	-	-	-	384	-	
Stage 2	-	-	-	-	655	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	17.5
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	732	-	-	-316	
HCM Lane V/C Ratio	0.009	-	-	-0.091	
HCM Control Delay (s)	10	-	-	-17.5	
HCM Lane LOS	A	-	-	-	C
HCM 95th \%tile Q(veh)	0	-	-	-	0.3

Intersection													
Int Delay, s/veh	0.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{7}$	$\hat{\beta}$		*	\uparrow			¢			*		
Traffic Vol, veh/h	11	354	6	3	770	2	1	0	0	7	0	32	
Future Vol, veh/h	11	354	6	3	770	2	1	0	0	7	0	32	
Conflicting Peds, \#/hr	0	0	8	8	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	50	-	-	50	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, \%	10	10	10	7	7	7	2	2	2	6	6	6	
Mvmt Flow	11	369	6	3	802	2	1	0	0	7	0	33	

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		T		a	4
Traffic Vol, veh/h	11	12	854	121	30	967
Future Vol, veh/h	11	12	854	121	30	967
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	11	12	880	125	31	997

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2002	943	0	0	1005	0
Stage 1	943	-	-	-	-	-
Stage 2	1059	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	66	318	-	-	689	-
Stage 1	379	-	-	-	-	-
Stage 2	333	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	63	318	-	-	689	-
Mov Cap-2 Maneuver	186	-	-	-	-	-
Stage 1	379	-	-	-	-	-
Stage 2	318	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	21.9		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	237	689	-
HCM Lane V/C Ratio		-	-	0.1	0.045	-
HCM Control Delay (s)		-	-	21.9	10.5	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.3	0.1	-

Intersection						
Int Delay, s/veh	1.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			4	1	\mathbf{T}
Traffic Vol, veh/h	684	2	7	598	25	102
Future Vol, veh/h	684	2	7	598	25	102
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	705	2	7	616	26	105

Appendix G

Level of Service
Calculations

Cumulative Without Project
Conditions

1: Porter Dr \& San Juan Rd

c Critical Lane Group

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		1		1	4
Traffic Vol, veh/h	34	34	857	51	15	691
Future Vol, veh/h	34	34	857	51	15	691
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	4	4	4	4
Mvmt Flow	39	39	985	59	17	794

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1843	1015	0	0	1044	0
Stage 1	1015	-	-	-	-	-
Stage 2	828	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.14	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.236	-
Pot Cap-1 Maneuver	83	289	-	-	659	-
Stage 1	350	-	-	-	-	-
Stage 2	429	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	81	289	-	-	659	-
Mov Cap-2 Maneuver	210	-	-	-	-	-
Stage 1	350	-	-	-	-	-
Stage 2	418	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	26.7		0		0.2	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	243	659	-
HCM Lane V/C Ratio		-	-	0.322	0.026	-
HCM Control Delay (s)		-	-	26.7	10.6	-
HCM Lane LOS		-	-	D	B	-
HCM 95th \%tile Q(veh)		-	-	1.3	0.1	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	4	T	\mathbf{F}
Traffic Vol, veh/h	353	8	31	838	10	44
Future Vol, veh/h	353	8	31	838	10	44
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	4	4	4	4	2	2
Mvmt Flow	406	9	36	963	11	51

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	a	A	F		M	
Traffic Vol, veh/h	9	387	842	3	11	27
Future Vol, veh/h	9	387	842	3	11	27
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	1	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	4	4	4	4	2	2
Mvmt Flow	10	445	968	3	13	31

Intersection													
Int Delay, s/veh	0.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{*}$	$\hat{\beta}$		*	\uparrow			¢			*		
Traffic Vol, veh/h	7	377	6	3	812	0	1	0	0	0	0	16	
Future Vol, veh/h	7	377	6	3	812	0	1	0	0	0	0	16	
Conflicting Peds, \#/hr	0	0	8	8	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	50	-	-	50	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, \%	10	10	10	7	7	7	2	2	2	6	6	6	
Mvmt Flow	7	393	6	3	846	0	1	0	0	0	0	17	

1: Porter Dr \& San Juan Rd

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	12	13	917	128	32	1043
Future Vol, veh/h	12	13	917	128	32	1043
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	13	945	132	33	1075

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	2152	1011	0	0	1077	0
Stage 1	1011	-	-	-	-	-
Stage 2	1141	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	53	291	-	-	647	-
Stage 1	352	-	-	-	-	-
Stage 2	305	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	50	291	-	-	647	-
Mov Cap-2 Maneuver	167	-	-	-	-	-
Stage 1	352	-	-	-	-	-
Stage 2	289	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	24		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	215	647	-
HCM Lane V/C Ratio		-	-	0.12	0.051	-
HCM Control Delay (s)		-	-	24	10.9	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.4	0.2	-

	Intersection					
Int Delay, s/veh 1.6						
Movement E	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		${ }^{1}$	4	${ }^{1}$	「'
Traffic Vol, veh/h 72	728	2	8	638	27	107
Future Vol, veh/h 728	728	2	8	638	27	107
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	\# 0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow 7	751	2	8	658	28	110

Major/Minor	Major1					
Major2		Minor1				
Conflicting Flow All	0	0	753	0	1426	752
\quad Stage 1	-	-	-	-	752	-
\quad Stage 2	-	-	-	-	674	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-3.518	3.318	
Pot Cap-1 Maneuver	-	-	857	-	149	410
\quad Stage 1	-	-	-	-	466	-
Stage 2	-	-	-	-	506	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	857	-	148	410
Mov Cap-2 Maneuver	-	-	-	-	288	-
Stage 1	-	-	-	-	466	-
Stage 2	-	-	-	-	501	-

Approach	EB		WB	NB				
HCM Control Delay, s	0		0.1	17.4				
HCM LOS	C							
Minor Lane/Major Mvmt		NBLn1	NBLn2	EBT	EBR	WBL	WBT	
Capacity (veh/h)		288	410	-	-	857	-	
HCM Lane V/C Ratio		0.097	0.269	-	-	0.01	-	
HCM Control Delay (s)		18.8	17	-	-	9.2	-	
HCM Lane LOS		C	C	-	-	A	-	
HCM 95th \%tile Q(veh)		0.3	1.1	-	-	0	-	

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	660	0	-	0	1544	654
Stage 1	-	-	-	-	654	-
\quad Stage 2	-	-	-	-	890	-
Critical Hdwy	4.12	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	928	-	-	-	126	467
\quad Stage 1	-	-	-	-	517	-
Stage 2	-	-	-	-	401	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	928	-	-	-	122	467
Mov Cap-2 Maneuver	-	-	-	-	258	-
Stage 1	-	-	-	-	500	-
Stage 2	-	-	-	-	401	-

Approach	EB	WB	SB
HCM Control Delay, s	0.3	0	15.1
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1	
Capacity (veh/h)	928	-	-	-	381
HCM Lane V/C Ratio	0.032	-	-	-0.068	
HCM Control Delay (s)	9	-	-	-15.1	
HCM Lane LOS	A	-	-	-	C
HCM 95th \%tile Q(veh)	0.1	-	-	-	0.2

Intersection												
Int Delay, s/veh	0.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个		${ }^{7}$	\dagger			\$			\$	
Traffic Vol, veh/h	20	775	0	0	615	6	1	0	0	0	0	13
Future Vol, veh/h	20	775	0	0	615	6	1	0	0	0	0	13
Conflicting Peds, \#/hr	3	0	2	2	0	3	3	0	0	0	0	3
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	50	-	-	50	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, \%	5	5	5	4	4	4	2	2	2	2	2	2
Mvmt Flow	20	791	0	0	628	6	1	0	0	0	0	13

Appendix H

Level of Service
Calculations

Cumulative Plus Project
Conditions

c Critical Lane Group

Intersection						
Int Delay, s/veh	1.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow		1	4
Traffic Vol, veh/h	34	34	857	52	15	696
Future Vol, veh/h	34	34	857	52	15	696
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	2	2	4	4	4	4
Mvmt Flow	39	39	985	60	17	800

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1849	1015	0	0	1045	0
Stage 1	1015	-	-	-	-	-
Stage 2	834	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.14	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.236	-
Pot Cap-1 Maneuver	82	289	-	-	658	-
Stage 1	350	-	-	-	-	-
Stage 2	426	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	80	289	-	-	658	-
Mov Cap-2 Maneuver	209	-	-	-	-	-
Stage 1	350	-	-	-	-	-
Stage 2	415	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	26.7		0		0.2	
HCM LOS	D					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	243	658	-
HCM Lane V/C Ratio		-	-	0.322	0.026	-
HCM Control Delay (s)		-	-	26.7	10.6	-
HCM Lane LOS		-	-	D	B	-
HCM 95th \%tile Q(veh)		-	-	1.3	0.1	-

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	4	T	\mathbf{F}
Traffic Vol, veh/h	356	8	31	854	10	45
Future Vol, veh/h	356	8	31	854	10	45
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	4	4	4	4	2	2
Mvmt Flow	409	9	36	982	11	52

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	a	个	\uparrow		r	
Traffic Vol, veh/h	9	391	858	3	11	27
Future Vol, veh/h	9	391	858	3	11	27
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	1	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, \%	4	4	4	4	2	2
Mvmt Flow	10	449	986	3	13	31

Intersection													
Int Delay, s/veh	0.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	${ }^{*}$	$\hat{\beta}$		*	\uparrow			¢			*		
Traffic Vol, veh/h	11	377	6	3	812	2	1	0	0	7	0	32	
Future Vol, veh/h	11	377	6	3	812	2	1	0	0	7	0	32	
Conflicting Peds, \#/hr	0	0	8	8	0	0	0	0	0	0	0	0	
Sign Control F	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None										
Storage Length	50	-	-	50	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96	
Heavy Vehicles, \%	10	10	10	7	7	7	2	2	2	6	6	6	
Mvmt Flow	11	393	6	3	846	2	1	0	0	7	0	33	

1: Porter Dr \& San Juan Rd

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		F		1	4
Traffic Vol, veh/h	12	13	917	132	32	1046
Future Vol, veh/h	12	13	917	132	32	1046
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	50	-
Veh in Median Storage, \#	1	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	13	945	136	33	1078

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	2157	1013	0	0	1081	0
Stage 1	1013	-	-	-	-	-
Stage 2	1144	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	52	290	-	-	645	-
Stage 1	351	-	-	-	-	-
Stage 2	304	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	49	290	-	-	645	-
Mov Cap-2 Maneuver	167	-	-	-	-	-
Stage 1	351	-	-	-	-	-
Stage 2	288	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	24.1		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	214	645	-
HCM Lane V/C Ratio		-	-	0.12	0.051	-
HCM Control Delay (s)		-	-	24.1	10.9	-
HCM Lane LOS		-	-	C	B	-
HCM 95th \%tile Q(veh)		-	-	0.4	0.2	-

Intersection						
Int Delay, s/veh	1.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow		1	个	a	\mathbf{F}
Traffic Vol, veh/h	739	2	8	647	27	111
Future Vol, veh/h	739	2	8	647	27	111
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	50	-	0	50
Veh in Median Storage, \#	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	97	97	97	97	97	97
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	762	2	8	667	28	114

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	670	0	-	0	1569	664
\quad Stage 1	-	-	-	-	664	-
Stage 2	-	-	-	-	905	-
Critical Hdwy	4.12	-	-	-6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.218	-	-	-3.518	3.318	
Pot Cap-1 Maneuver	920	-	-	-	122	461
\quad Stage 1	-	-	-	-	512	-
\quad Stage 2	-	-	-	-	395	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	920	-	-	-	118	461
Mov Cap-2 Maneuver	-	-	-	-	253	-
Stage 1	-	-	-	-	495	-
Stage 2	-	-	-	-	395	-

Approach	EB	WB	SB
HCM Control Delay, s	0.3	0	15.3
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	920	-	-	-375
HCM Lane V/C Ratio	0.032	-	-	-0.069
HCM Control Delay (s)	9	-	-	-15.3
HCM Lane LOS	A	-	-	-
HCM 95th \%tile Q(veh)	0.1	-	-	-
H	0.2			

Appendix I

North County Fire District Emergency
 Access Review Email

Jeffrey Nohr

From:
Sent:
To:
Subject:

Joel Mendoza joel.mendoza@ncfpd.org
Friday, November 19, 2021 8:59 AM
Jeffrey Nohr
RE: Susan St Agricultural Employee Housing project PLN\#210152

Mr. Nohr,
Regarding questions 1 and 2 (below), based on the diagram that accompanies each question, I agree that Susan Street meets the street standard for both questions 1 and 2.

Thank you,
Joel Mendoza

Joel Mendoza
Fire Chief
www.ncfpd.org
North County Fire District
Off: 831-633-2578
Cel: 831-212-1908
Fax: 831-633-2572
mailto:Joel.Mendoza@ncfpd.org
Confidentiality Notice:
This is a communication from North County Fire District. This
message and any attached documents may be confidential and
contain information protected by state and federal medical privacy
statutes. They are intended only for the use of the addressee. If you are not the intended recipient, any disclosure, copying, or
distribution of this information is strictly prohibited. If you received this transmission in error, please accept our apologies and notify the sender.

From: Jeffrey Nohr < jeff@avilaconst.com>
Sent: Thursday, November 18, 2021 4:23 PM
To: Joel Mendoza joel.mendoza@ncfpd.org
Subject: RE: Susan St Agricultural Employee Housing project PLN\#210152
Joel

Good afternoon.

Were you have to review and discuss this Juan Hernandez? I would appreciate if you could get back to me tomorrow at some point with an update.

JEFFREY D. NOHR

Project Manager
Email: Jeff@avilaconst.com.com
Direct Dial: 831.382.3523 |Cell: 831.917.5622 | Main Office: 831.372.5580
Fax: 831.372.5584
12 Thomas Owens Way, Ste 200, Monterey, CA 93940

From: Jeffrey Nohr
Sent: Tuesday, November 16, 2021 10:28 AM
To: Joel Mendoza joel.mendoza@ncfpd.org
Subject: RE: Susan St Agricultural Employee Housing project PLN\#210152
Joel

Following up on our conversation yesterday. These are the two questions to review from public works. Juan Hernandez is reviewing the project from Public Works.

For pedestrian safety, Where would the pedestrians from the proposed project walk?
Response / Action: Per county standard Susan St. meets the threshold of a Tertiary Street - 100 units abutted by residential lots and provided access to no more than 100 units. 300 to 1,000 vehicles expected in 20 years. Project proposes 61 units +18 existing lots $=78$ units. Project will propose to complete missing sections of side walk along West side of Susan St. for continuous path of travel along Susan St. See Standard Detail below for Modified Tertiary St. Susan St. Currently meets this street standard.

Provide analysis that Susan Street travel width is adequate to accommodate existing on street parking and ingress and egress for emergency vehicles?
Response: Please refer to section Monterey County FIRE001-ROAD ACCESS
Access roads shall be required for every building when any portion of the exterior wall of the first story is located more than 150 feet from fire department access. All roads shall be constructed to provide a minimum of two nine-foot traffic lanes with an unobstructed vertical
clearance of not less than 15 feet. The roadway surface shall provide unobstructed access to conventional drive vehicles including sedans and fire apparatus and shall be an all-weather surface designed to support the imposed load of fire apparatus (22 tons). Each road shall have an approved name.
Susan St. currently meets this standard.
Per county standard Susan St. meets the threshold of a Tertiary Street - 100 units abutted by residential lots and provided access to no more than 100 units. 300 to 1,000 vehicles expected in 20 years. Project proposes 61 units +18 existing lots $=78$ units.

JEFFREY D. NOHR

Project Manager
Email: Jeff@avilaconst.com.com
Direct Dial: 831.382.3523 | Cell: 831.917.5622| Main Office: 831.372 .5580
Fax: 831.372.5584
12 Thomas Owens Way, Ste 200, Monterey, CA 93940

From: Joel Mendoza joel.mendoza@ncfpd.org
Sent: Thursday, November 4, 2021 10:54 AM
To: Jeffrey Nohr jeff@avilaconst.com
Subject: RE: Susan St Agricultural Employee Housing project PLN\#210152
Jeff,

I emailed you an invoice for our review of the Use and Variance Permit. At this point the project seems complete and I do not require any further information.

Please submit payment so that I can close out my review.

Thank you,

Joel Mendoza
Fire Chief
www.ncfpd.org
North County Fire District
Off: 831-633-2578
Cel: 831-212-1908
Fax: 831-633-2572
mailto:Joel.Mendoza@ncfpd.org

Confidentiality Notice:

This is a communication from North County Fire District. This message and any attached documents may be confidential and contain information protected by state and federal medical privacy statutes. They are intended only for the use of the addressee. If you are not the intended recipient, any disclosure, copying, or distribution of this information is strictly prohibited. If you received this transmission in error, please accept our apologies and notify the sender.

From: Jeffrey Nohr jeff@avilaconst.com
Sent: Tuesday, November 2, 2021 8:14 AM
To: Joel.Mendoza@ncfpd.org
Cc: Mike Avila mike@avilaconst.com
Subject: Susan St Agricultural Employee Housing project PLN\#210152
Joel -
Good Morning.
I am emailing to reach out to provide any assistance or response to questions to keep traction on the review and approval process for the Susan St Agricultural Employee Housing project PLN\#210152. The project was submitted on October $14^{\text {th }}$ to our planner Shawn Archbold at Monterey County Housing and Community Development Services Department. The property is located at 51, 53, 55 \& 57 Susan Street, Royal Oaks (Assessor's Parcel Number 117-361-016-000), North County Area Plan. The proposed project consists of the construction of four (4) two-story apartment style buildings on the 3.41 -acre property, consisting of 60 apartment units, two (2) laundry facilities, one (1) manager unit, one (1) recreation room, open space. The housing project would be occupied primarily during the Salinas Valley harvest season from April through November. The housing would be available for agricultural employees and is designed to accommodate a maximum of 480 agricultural employees without dependents. Each apartment unit would be suitable to house up to eight individuals.

The planning application submittal was routed out to all reviewing agencies the week of October 18th. The 30 day review period for interagency comment and completeness is due to expire on November 15th at which time we are looking to receive a letter of completeness to move our approval process forward. We would appreciate any feedback or comment prior to the November 15th date to make sure you can provide any required conditions and approval during this planning review stage to allow your department to properly condition the project and allow our planner to issue a letter of completeness during this first 30 day review period.

I am available for any questions or discussions to assist you in your review.
Please feel free to contact me by phone or email.
Regards,

JEFFREY D. NOHR

Project Manager
Email: Jeff@avilaconst.com.com
Direct Dial: 831.382 .3523 | Cell: $831.917 .5622 \mid$ Main Office: 831.372 .5580 Fax: 831.372.5584
12 Thomas Owens Way, Ste 200, Monterey, CA 93940

Appendix J

San Juan Road Collision History Raw SWITRS Database 2011-October 2021

[^0]

01/01/2019 thru 12/31/2019

MONTEREY COUNTY RESOURCE MANAGEMENT AGENCY

168 W. Alisal Street, $2^{\text {nd }}$ Floor
Salinas, CA 93901
http://www.co.monterey.ca.us/rma

FACILITIES TRIP REDUCTION PLAN

To be completed by applicant:

Name \& Location	Project/Business Name: Susan St Farm Worker Employee Housing		
	Address: xxxx Susan St, Pajaro, CA 95076		
	Assessor Parcel Number(s): 117-361-016		
Applicant	Name:Rio Vista Group LLC		
	Address: PO Box 4500		
	City: Salinas	State: CA	Zip Code: 93912
	Phone: 831.214 .1970	FAX: ()	
\square Property Owneror\boxtimes Authorized Agent	Name:Jeffrey Nohr		
	Address:12 Thomas Owens Way, Ste. 200		
	City:Monterey	State:CA	Zip Code:93940
	Phone: (831) 917.5622	FAX: ()	

Section 21.64.250 OF THE MONTEREY COUNTY ZONING ORDINANCE AND Section 20.64.250 OF THE COASTAL IMPLEMENTATION PLAN PROVIDES FOR REGULATIONS FOR THE REDUCTION OF VEHICLE TRIPS FOR RESIDENTIAL SUBDIVISIONS AND TOURIST-ORIENTED DEVELOPMENTS. How this is achieved depends on which vehicle trip reduction measures are selected by the applicant. From the following tables, select those vehicle trip reduction measures which you intend to utilize. Select any combination of measures that will result in a total reduction of 7 to 10 percent or more. Each measure selected is subject to approval by the Department of Public Works.

THE FOLLOWING RESIDENTIAL VEHICLE TRIP REDUCTION MEASURES ARE INCLUDED, AND MADE A PART HEAROF, IN THE ABOVE REFERENCED RESIDENTIAL SUBDIVISION:

Check Boxes That Apply	Vehicle Trip Reduction Measure	Residential Permit/Subdivision Conditions	Red uce (\%)	Total (\%)
\square	Public information	Provide ridesharing, public transportation \& nearby (within one mile) licensed child care facilities information to tenants/buyers as a part of move-in materials. A draft informational packet must be provided as part of the project's development approval process.	1%	

区	Printed transit schedules	Print transit schedule information on all promotional materials for the project．Draft printed transit schedules shall be provided as part of the project＇s development approval process．	．5\％	． 5%
，	Bicycle amenities	Bike lanes must be provided adjacent to the project，tie into a County－wide system \＆provide bicycle access to schools，shopping \＆employment centers．	1\％	
இ	Other bicycle amenities	Facilities or measures which go beyond those listed above and which facilitate increased non－vehicular trips． Contact Public Works．Bike racks will be included．	varies	1\％
\square	Bus pull－outs	Provide bus pull－outs，convenient pedestrian access to bus stops and other related amenities to encourage transit usage for those portions of the development within one quarter mile of a bus stop．Contact Monterey－Salinas Transit（831）899－2558．	1\％	
区	Transportation information centers	Provide locked and secured transportation information centers or kiosks with bus schedules and transit information as part of the common area of the development．Monterey－Salinas Transit shall maintain the transportation information；the developer shall maintain the centers／kiosks．Contact Monterey－Salinas Transit．	．5\％	． 5%
\square	Pedestrian facilities	Provide pedestrian facilities linking transit stops to common areas．	． 5%	
	Park \＆Ride	Provide park \＆ride facilities．Contact Public Works．	varies	
\square	Child care facilities	Provide on－site child care facilities based on the capacity of the center and marketing data on expected use． Contact Public Works．	varies	
\square	Telecommuting	Provide facilities to encourage telecommuting．Contact Public Works．	varies	
\square	Mixed uses	Provide mixed uses that reduce the length and number of vehicle trips．Project must consist of at least five acres of high density housing within one quarter mile of neighborhood commercial development and have convenient pedestrian access．（Note：Similar trip reduction measures listed elsewhere cannot be counted toward the required vehicle trip reduction）．Contact Public Works．	varies	
\square	Transit－oriented design	Residential development with at least 35 percent of the project in high density housing and clustered within one half mile of bus stops on a major arterial with convenient pedestrian access to transit and neighborhood shopping．	5\％	5\％
\square	Trip generation fees	Contact Public Works．	varies	
区	Shuttle bus service，bus pools，or improved transit service	Contact Monterey Salinas Transit（831）899－2558． Seasonal use of property and busing of residents to and from work and non－work activities（see project description）accounts for greater than the 10\％ targeted trip reduction．	varies can be up to 30\％	30\％
\square	Other	Other measures supported by documented data of trip reductions in other developments． Contact Public Works．	varies	

RESIDENTIAL TOTAL

THE FOLLOWING TOURIST-ORIENTED VEHICLE TRIP REDUCTION MEASURES ARE INCLUDED, AND MADE A PART HEAROF, IN THE ABOVE REFERENCED TOURIST ORIENTED DEVELOPMENTS.

Check Boxes That Apply	Vehicle Trip Reduction Measure	Tourist-Oriented Development Permit Conditions	Red uce (\%)	Total (\%)
\square	Child care facilities	Provide on-site child care facilities for children of tourists. Contact Public Works.	varies	
\square	Transit scheduling information	Provide transit scheduling information for tourists.	.5\%	
\square	Bicycle amenities	1. Proposed development/use adjacent to bicycle lanes. Contact Public Works.	$\begin{gathered} \hline \text { varies } \\ \text { up to } \\ 2 \% \\ \hline \end{gathered}$	
\square	Bus pull-outs	Provide bus pull-outs, pedestrian access and transit stops.	5\%	
\square	Bus subsidy	Provide transit subsidy program for tourists that reduces the cost of a bus pass by 50% from standard rate.	1\%	
\square	Transportation information centers	Provide locked and secured transportation information centers or kiosks with bus schedules and transit information. Monterey-Salinas Transit shall maintain the transportation; the developer shall maintain the centers/kiosks. Contact Monterey-Salinas Transit.	.5\%	
\square	Pedestrian facilities	Provide pedestrian facilities linking transit stops to tourist facilities entrances, provided such pedestrian facilities do not exceed one-quarter mile.	.5\%	
\square	Other pedestrian facilities	Pedestrian and bicycle system improvements beyond above related measures. Contact Public Works.	varies	
\square	Other site amenities	Provide site amenities that reduce the need for vehicle trips based on documentation of trip reduction. Contact Public Works.	varies	
\square	Park \& ride	Provide park \& ride facilities. Contact Public Works.	varies	
\square	Transportation system management program	Provide a local transportation system management program to reduce on-site trips based on documentation of expected trip reduction. Contact Public Works.	2\%	
\square	Educational and Marketing	Provide educational and marketing strategies to tourists to reduce vehicle trips. Contact Public Works.	varies	
\square	On-site services	Provide on-site ATMs, restaurants, dry cleaners, grocery and other typically needed services to reduce travel.	1\%	
\square	Park \& ride, shuttles, marketing techniques for special events	Provide information to Public Works.	varies	

\square	Tourist- oriented vehicle use reduction	Provide information to Public Works.	varies	
\square	Other	Other measures supported by documented data of trip reductions in other developments. Contact Public Works.	varies	
TOURIST-ORIENTED DEVELOPMENT TOTAL				

I/we declare under penalty of perjury that the information contained in this Facilities Trip Reduction Plan, including any attachments included herewith, are true and correct to the best of my/our knowledge.

Signature of Applicant

Signature of Property Owner or Authorized Agent

$10 / 14 / 27$
Date

This Page Intentionally Left Blank

[^0]: Page 729 This report is accepted subject to the Terms of Use. Due to collision records processing backlogs, SWITRS data is typically seven months behind. Data requested for dates seven months prior to the current date will be incomplete.

