

Ottawa Business Center AIR QUALITY IMPACT ANALYSIS CITY OF VICTORVILLE

PREPARED BY:

Haseeb Qureshi hqureshi@urbanxroads.com

Alyssa Barnett abarnett@urbanxroads.com

SEPTEMBER 26, 2022

14035-03 AQ Report

TABLE OF CONTENTS

TABLE OF CONTENTSI					
AP	PENDI	CES			
LIS	ST OF E	XHIBITS			
LIS	ST OF T	ABLESI			
LIS	ST OF A	BBREVIATED TERMSII			
EX	ECUTI	VE SUMMARY1			
	ES.1	Summary of Findings1			
	ES.2	Standard Regulatory Requirements/Best Available Control Measures			
	ES.3	Construction-Source MMs			
	ES.4	Operational-Source MMs			
1	ΙΝΤ	RODUCTION4			
	1.1	Site Location			
	1.2	Project Description4			
2	AIR	QUALITY SETTING			
	2.1	Mojave Desert Air Basin			
	2.2	Regional Climate			
	2.3	Criteria Pollutants			
	2.4	Existing Air Quality			
	2.5	Regional Air Quality			
	2.6	Local Air Quality 19			
	2.7	Regulatory Background			
3	PR	DJECT AIR QUALITY IMPACT26			
	3.1	Introduction			
	3.2	Standards of Significance			
	3.3	Models Employed To Analyze Air Quality Emissions27			
	3.4	Construction Emissions			
	3.5	Operational Emissions			
	3.6	CO "Hot Spot" Analysis			
	3.7	AQMP			
	3.8	Potential Impacts to Sensitive Receptors			
	3.9	Udors			
	3.10	Cumulative impacts			
4	4 REFERENCES				
5	5 CERTIFICATIONS				

APPENDICES

APPENDIX 2.1: STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS APPENDIX 3.1: CALEEMOD CONSTRUCTION EMISSIONS MODEL OUTPUTS (UNMITIGATED) APPENDIX 3.2: CALEEMOD CONSTRUCTION EMISSIONS MODEL OUTPUTS (MITIGATED) APPENDIX 3.3: CALEEMOD OPERATIONAL EMISSIONS MODEL OUTPUTS (HIGH-CUBE FULFILLMENT CENTER WAREHOUSE) APPENDIX 3.4: CALEEMOD OPERATIONAL EMISSIONS MODEL OUTPUTS (HIGH-CUBE COLD STORAGE WAREHOUSE)

LIST OF EXHIBITS

EXHIBIT 1-A:	LOCATION MAP5	
EXHIBIT 1-B:	SITE PLAN	
EXHIBIT 3-A:	SENSITIVE RECEPTOR LOCATIONS40	

LIST OF TABLES

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS	1
TABLE 2-1: CRITERIA POLLUTANTS	9
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)	17
TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)	18
TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE MDAB	19
TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020	20
TABLE 3-1: MAXIMUM REGIONAL DAILY EMISSIONS THRESHOLDS	26
TABLE 3-2: CONSTRUCTION DURATION	28
TABLE 3-3: CONSTRUCTION EQUIPMENT ASSUMPTIONS (1 OF 2)	28
TABLE 3-3: CONSTRUCTION EQUIPMENT ASSUMPTIONS (2 OF 2)	29
TABLE 3-4: EMISSIONS SUMMARY OF CONSTRUCTION – WITHOUT MITIGATION	29
TABLE 3-5: EMISSIONS SUMMARY OF CONSTRUCTION – WITH MITIGATION	30
TABLE 3-6: PASSENGER CAR FLEET MIX	32
TABLE 3-7: TRUCK FLEET MIX	33
TABLE 3-8: SUMMARY OF PEAK OPERATIONAL EMISSIONS	34
TABLE 3-10: CO MODEL RESULTS	35
TABLE 3-11: TRAFFIC VOLUMES	36
TABLE 3-12: PROJECT PEAK TRAFFIC VOLUMES	37

LIST OF ABBREVIATED TERMS

(1)	Reference
%	Percent
1992 CO Plan	1992 Federal Attainment Plan for Carbon Monoxide
µg/m³	Microgram per Cubic Meter
AB 2595	California Clean Air Act
AQIA	Air Quality Impact Analysis
AQMIS	Air Quality and Meteorological Information System
AQMP	Air Quality Management Plan
BAAQMD	Bay Area Air Quality Management District
BACM	Best Available Control Measures
BMPs	Best Management Practices
BSC	Building Standards Commission
CAA	Federal Clean Air Act
CAAQS	California Ambient Air Quality Standards
CalEEMod	California Emissions Estimator Model™
CALGreen	California Green Building Standards Code
CalEPA	California Environmental Protection Agency
CAPCOA	California Air Pollution Control Officers Association
CARB	California Air Resources Board
CEC	California Energy Commission
CEQA	California Environmental Quality Act
City	City of Victorville
СО	Carbon Monoxide
COHb	Carboxyhemoglobin
EPA	Environmental Protection Agency
g/L	Grams Per Liter
GHG	Greenhouse Gas
HRA	Health Risk Assessment
I-15	Interstate 15
lbs/day	Pounds per Day
MDAB	Mojave Desert Air Basin
MDAQMD	Mojave Desert Air Quality Management District
MWELO	Model Water Efficient Landscape Ordinance
NAAQS	National Ambient Air Quality Standards
N ₂	Nitrogen

NO	Nitric Oxide
N ₂ O	Nitrous Oxide
NO ₂	Nitrogen Dioxide
NO _X	Nitrogen Oxides
O ₂	Oxygen
O ₃	Ozone
Pb	Lead
PM ₁₀	Particulate Matter 10 microns in diameter or less
PM _{2.5}	Particulate Matter 2.5 microns in diameter or less
ppm	Parts Per Million
Project	Ottawa Business Center
ROG	Reactive Organic Gases
RECLAIM	Regional Clean Air Incentives Market
SDAB	Southeast Desert Air Basin
SCAQMD	South Coast Air Quality Management District
sf	Square Feet
SIP	State Implementation Plan
SO ₂	Sulfur Dioxide
SO ₄	Sulfates
SO _X	Oxides of Sulfur
TAC	Toxic Air Contaminant
ТА	Ottawa Business Center Traffic Analysis
TSF	Thousand Square Feet
VOC	Volatile Organic Compound
VPH	Vehicles Per Hour

This page intentionally left blank

EXECUTIVE SUMMARY

ES.1 SUMMARY OF FINDINGS

The results of this *Ottawa Business Center Air Quality Impact Analysis* (AQIA) are summarized below based on the significance criteria in Section 3 of this report consistent with Appendix G of the *California Environmental Quality Act (CEQA) Guidelines* (1). Table ES-1 shows the findings of less than significant for each potential air quality impact under CEQA. As shown, no mitigation measures (MM) are required.

Anghuig	Report	Significance Findings		
Anaiysis	Section	Unmitigated	Mitigated	
Regional Construction Emissions	3.4	Potentially Significant	Less Than Significant	
Regional Operational Emissions	3.5	Less Than Significant	n/a	
CO "Hot Spot" Analysis	3.6	Less Than Significant	n/a	
Air Quality Management Plan	3.7	Potentially Significant	Less Than Significant	
Sensitive Receptors	3.8	Less Than Significant	n/a	
Odors	3.9	Less Than Significant	n/a	
Cumulative Impacts	3.10	Potentially Significant	Less Than Significant	

TABLE ES-1: SUMMARY OF CEQA SIGNIFICANCE FINDINGS

ES.2 STANDARD REGULATORY REQUIREMENTS/BEST AVAILABLE CONTROL MEASURES

Measures listed below (or equivalent language) shall appear on all Project grading plans, construction specifications and bid documents, and the City shall ensure such language is incorporated prior to issuance of any development permits. Mojave Desert Air Quality Management District (MDAQMD) Rules that are currently applicable during construction activity for this Project include but are not limited to Rule 1113 (Architectural Coatings) (2). It should be noted that these Best Available Control Measures (BACMs) are not mitigation as they are standard regulatory requirements. As such, credit for Rule 1113 has been taken.

MDAQMD RULE 1113

This rule serves to limit the Volatile Organic Compound (VOC) content of architectural coatings used on projects in the MDAQMD. Any person who supplies, sells, offers for sale, or manufactures

any architectural coating for use on projects in the MDAQMD must comply with the current VOC standards set in this rule $(2)^1$.

ES.3 CONSTRUCTION-SOURCE MMs

The Project construction-source emissions would exceed SCAQMD regional thresholds for nitrogen oxides (NO_X) emissions. The following mitigation is designed to reduce Project construction-source NO_X emissions. After application of MM AQ-1, Project construction-source emissions impacts would be less than significant.

MM AQ-1

The Construction Contractor shall ensure that off-road diesel construction equipment during Grading activities, complies with Environmental Protection Agency (EPA)/California Air Resources Board (CARB) Tier 4 emissions standards or equivalent and shall ensure that all construction equipment is tuned and maintained in accordance with the manufacturer's specifications.

ES.4 OPERATIONAL-SOURCE MMS

The Project would not exceed any thresholds of significance for operational-source emissions. As such, a less than significant impact would occur for Project-related operational-source emissions and no mitigation would be required.

¹ Building envelope coatings are limited to no more than 50 g/L of VOC, pursuant to the requirements of MDAQMD Rule 1113.

This page intentionally left blank

1 INTRODUCTION

This report presents the results of the AQIA prepared by Urban Crossroads, Inc., for the proposed Ottawa Business Center (Project).

The purpose of this AQIA is to evaluate the potential impacts to air quality associated with construction and operation of the proposed Project and recommend measures to mitigate impacts considered potentially significant in comparison to thresholds established by the MDAQMD.

1.1 SITE LOCATION

The proposed project is located at the northeast corner of Hesperia Road and Ottawa Street in the City of Victorville, as shown on Exhibit 1-A. An industrial use is located to the south, residential uses located to the east across the Union Pacific railroad, and vacant land surrounds the Project site to the west and north. The Project Site is currently vacant. Per the City of Victorville General Plan designates the Project site or Heavy Industrial uses. The Heavy Industrial land use category refers to industrial and manufacturing uses that are more specialized in nature and require special consideration in terms of use of the property as well as impacts on adjacent properties (3).

1.2 PROJECT DESCRIPTION

The proposed Project consists of the following uses:

- 200,000 square feet (sf) of High-Cube Cold Storage warehouse use (20% of the total building sf)
- 796,520 sf of High-Cube Fulfillment Center Warehouse use (80% of the total building sf)

The Project is anticipated to be developed within a single phase with an anticipated opening year of 2024. Regional access to the Project site will be provided by the Interstate 15 (I-15) Freeway via Nisqualli Road. At the time this AQIA was prepared, the future tenants of the proposed Project were unknown.

The on-site Project-related emission sources are expected to include loading dock activity and entry gate & truck movements. This air study is intended to describe air quality impacts associated with the expected typical operational activities at the Project site. To present a conservative approach, this report assumes the Project will operate 24-hours daily for seven days per week.

EXHIBIT 1-A: LOCATION MAP

N

EXHIBIT 1-B: SITE PLAN

N

This page intentionally left blank

2 AIR QUALITY SETTING

This section provides an overview of the existing air quality conditions in the Project area and region.

2.1 MOJAVE DESERT AIR BASIN

The Project site is located in the portion of the County of San Bernardino, California, that is part of the Mojave Desert Air Basin (MDAB) and is under the jurisdiction of the MDAQMD. The air quality assessment for the proposed Project includes estimating emissions associated with shortterm construction and long-term operation of the proposed Project. A number of air quality modeling tools are available to assess the air quality impacts of projects. In addition, certain air districts, such as the MDAQMD, have created guidelines and requirements to conduct air quality analyses. The MDAQMD's current guidelines, included in its *California Environmental Quality Act and Federal Conformity Guidelines* (August 2016), were adhered to in the assessment of air quality impacts for the proposed Project.

2.2 REGIONAL CLIMATE

Air quality in the Project area is not only affected by various emissions sources (mobile, industry, etc.) but is also affected by atmospheric conditions such as wind speed, wind direction, temperature, and rainfall.

The MDAB is an assemblage of mountain ranges interspersed with long broad valleys that often contain dry lakes. Many of the lower mountains within the vast terrain rise from 1,000 to 4,000 feet above the valley floor. Prevailing winds in the MDAB are out of the west and southwest. These prevailing winds are due to the proximity of the MDAB to coastal and central regions and the blocking nature of the Sierra Nevada Mountains to the north; air masses pushed onshore in Southern California by differential heating are channeled through the MDAB. The MDAB is separated from the Southern California coastal and Central California valley regions by mountains (highest elevation is approximately 10,000 feet), whose passes form the main channels for these air masses. The Mojave Desert is bordered on the southwest by the San Bernardino Mountains, separated from the San Gabriel Mountains by the Cajon Pass (4,200 feet). A lesser pass lies between the San Bernardino Mountains and the Little San Bernardino Mountains in the Morongo Valley. The Palo Verde Valley portion of the Mojave Desert lies in the low desert, at the eastern end of a series of valleys (notably the Coachella Valley), whose primary channel is the San Gorgonio Pass (2,300 feet) between the San Bernardino and San Jacinto Mountains.

During the summer, the MDAB is generally influenced by a Pacific subtropical high cell that sits off the coast, inhibiting cloud formation and encouraging daytime solar heating. The MDAB is rarely influenced by cold air masses moving south from Canada and Alaska, as these frontal systems are weak and diffuse by the time they reach the desert. Most desert moisture arrives from infrequent warm, moist, and unstable air masses from the south. The MDAB averages between three and seven inches of precipitation per year (from 16 to 30 days with at least 0.01 inch of precipitation). The MDAB is classified as a dry-hot desert climate, with portions classified

as dry-very hot desert, to indicate that at least three months have maximum average temperatures over 100.4° F.

Snow is common above 5,000 feet in elevation, resulting in moderate snowpack and limited spring runoff. Below 5,000 feet, any precipitation normally occurs as rainfall. Pacific storm fronts normally move into the area from the west, driven by prevailing winds from the west and southwest. During late summer, moist high-pressure systems from the Pacific collide with rising heated air from desert areas, resulting in brief, high-intensity thunderstorms that can cause high winds and localized flash flooding.

2.3 CRITERIA POLLUTANTS

Criteria pollutants are pollutants that are regulated through the development of human health based and/or environmentally based criteria for setting permissible levels. Criteria pollutants, their typical sources, and health effects are identified below (4):

Criteria Pollutant	Description	Sources	Health Effects
Carbon Monoxide (CO)	CO is a colorless, odorless gas produced by the incomplete combustion of carbon-containing fuels, such as gasoline or wood. CO concentrations tend to be the highest during the winter morning, when little to no wind and surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines, unlike ozone (O ₃), motor vehicles operating at slow speeds are the primary source of CO in the MDAB. The highest ambient CO concentrations are generally found near congested transportation corridors and intersections.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Individuals with a deficient blood supply to the heart are the most susceptible to the adverse effects of CO exposure. The effects observed include earlier onset of chest pain with exercise, and electrocardiograph changes indicative of decreased oxygen supply to the heart. Inhaled CO has no direct toxic effect on the lungs but exerts its effect on tissues by interfering with oxygen transport and competing with oxygen to combine with hemoglobin present in the blood to form carboxyhemoglobin (COHb). Hence, conditions with an increased demand for oxygen supply can be adversely affected by exposure to CO. Individuals most at risk include fetuses, patients with diseases involving heart and blood vessels, and patients with chronic hypoxemia

TABLE 2-1: CRITERIA POLLUTANTS

Criteria Pollutant	Description	Sources	Health Effects
			(oxygen deficiency) as seen at high altitudes.
Sulfur Dioxide (SO ₂)	SO ₂ is a colorless, extremely irritating gas or liquid. It enters the atmosphere as a pollutant mainly as a result of burning high sulfur-content fuel oils and coal and from chemical processes occurring at chemical plants and refineries. When SO ₂ oxidizes in the atmosphere, it forms sulfates (SO ₄). Collectively, these pollutants are referred to as sulfur oxides (SO _x)	Coal or oil burning power plants and industries, refineries, diesel engines	A few minutes of exposure to low levels of SO ₂ can result in airway constriction in some asthmatics, all of whom are sensitive to its effects. In asthmatics, increase in resistance to air flow, as well as reduction in breathing capacity leading to severe breathing difficulties, are observed after acute exposure to SO ₂ . In contrast, healthy individuals do not exhibit similar acute responses even after exposure to higher concentrations of SO ₂ . Animal studies suggest that despite SO ₂ being a respiratory irritant, it does not cause substantial lung injury at ambient concentrations. However, very high levels of exposure can cause lung edema (fluid accumulation), lung tissue damage, and sloughing off of cells lining the respiratory tract. Some population-based studies indicate that the mortality and morbidity effects associated with fine particles show a similar association with ambient SO ₂ levels. In these studies, efforts to separate the effects of SO ₂ from those of fine particles have not been successful. It is not clear whether the two pollutants act synergistically, or one pollutant alone is the predominant factor.

Criteria Pollutant	Description	Sources	Health Effects
NOx	NO _x consist of nitric oxide (NO), nitrogen dioxide (NO ₂) and nitrous oxide (N ₂ O) and are formed when nitrogen (N ₂) combines with oxygen (O ₂). Their lifespan in the atmosphere ranges from one to seven days for nitric oxide and nitrogen dioxide, to 170 years for nitrous oxide. Nitrogen oxides are typically created during combustion processes and are major contributors to smog formation and acid deposition. NO ₂ is a criteria air pollutant and may result in numerous adverse health effects; it absorbs blue light, resulting in a brownish-red cast to the atmosphere and reduced visibility. Of the seven types of nitrogen oxide compounds, NO ₂ is the most abundant in the atmosphere. As ambient concentrations of NO ₂ are related to traffic density, commuters in heavy traffic may be exposed to higher concentrations of NO ₂ than those indicated by regional monitoring station.	Any source that burns fuel such as automobiles, trucks, heavy construction equipment, farming equipment and residential heating.	Population-based studies suggest that an increase in acute respiratory illness, including infections and respiratory symptoms in children (not infants), is associated with long-term exposure to NO ₂ at levels found in homes with gas stoves, which are higher than ambient levels found in Southern California. Increase in resistance to air flow and airway contraction is observed after short-term exposure to NO ₂ in healthy subjects. Larger decreases in lung functions are observed in individuals with asthma or chronic obstructive pulmonary disease (e.g., chronic bronchitis, emphysema) than in healthy individuals, indicating a greater susceptibility of these sub-groups. In animals, exposure to levels of NO ₂ considerably higher than ambient concentrations result in increased susceptibility to infections, possibly due to the observed changes in cells involved in maintaining immune functions. The severity of lung tissue damage associated with high levels of O ₃ exposure increases when animals are exposed to a combination of O ₃ and NO ₂ .
O3	O ₃ is a highly reactive and unstable gas that is formed when VOCs and NO _x , both byproducts of internal combustion engine exhaust, undergo slow photochemical reactions in the presence of sunlight. O ₃ concentrations are generally highest during the summer	Formed when reactive organic gases (ROG) and nitrogen oxides react in the presence of sunlight. ROG sources include any source	Individuals exercising outdoors, children, and people with preexisting lung disease, such as asthma and chronic pulmonary lung disease, are considered to be the most susceptible sub- groups for O ₃ effects. Short- term exposure (lasting for a

Criteria Pollutant	Description	Sources	Health Effects
Criteria Pollutant	Description months when direct sunlight, light wind, and warm temperature conditions are favorable to the formation of this pollutant.	Sources that burns fuels, (e.g., gasoline, natural gas, wood, oil) solvents, petroleum processing and storage and pesticides.	Health Effectsfew hours) to O3 at levelstypically observed inSouthern California can resultin breathing pattern changes,reduction of breathingcapacity, increasedsusceptibility to infections,inflammation of the lungtissue, and someimmunological changes.Elevated O3 levels areassociated with increasedschool absences. In recentyears, a correlation betweenelevated ambient O3 levelsand increases in daily hospitaladmission rates, as well asmortality, has also beenreported. An increased riskfor asthma has been found inchildren who participate inmultiple outdoor sports andlive in communities with highO3 exposure under exercisingconditions is known toincrease the severity of theresponses described above.Animal studies suggest thatexposure to O3 alone.Although lung volume andresistance changes observedafter a single exposurediminish with repeatedexposures, biochemical andcellular changes appear topersist, which can lead tosubsequent lung structural
Particulate Matter	PM ₁₀ (Particulate Matter less	Sources of PM ₁₀	A consistent correlation
	than 10 microns): A major air	include road dust,	between elevated ambient
	pollutant consisting of tiny solid	windblown dust and	fine particulate matter (PM ₁₀
	or liquid particles of soot, dust,	construction. Also	and PNI2.5) levels and an
	smoke, fumes, and aerosols.	formed from other	increase in mortality rates,
	Particulate matter pollution is a	pollutants (acid	respiratory infections,
	major cause of reduce visibility	rain, NOx, SOx,	number and severity of

Criteria Pollutant	Description	Sources	Health Effects
	(haze) which is caused by the scattering of light and consequently the significant reduction air clarity. The size of the particles (10 microns or smaller, about 0.0004 inches or less) allows them to easily enter the lungs where they may be deposited, resulting in adverse health effects. Additionally, it should be noted that PM ₁₀ is considered a criteria air pollutant. PM _{2.5} (Particulate Matter less than 2.5 microns): A similar air pollutant to PM ₁₀ consisting of tiny solid or liquid particles which are 2.5 microns or smaller (which is often referred to as fine particles). These particles are formed in the atmosphere from primary gaseous emissions that include sulfates formed from SO ₂ release from power plants and industrial facilities and nitrates that are formed from NO _x release from power plants, automobiles and other types of combustion sources. The chemical composition of fine particles highly depends on location, time of year, and weather conditions. PM _{2.5} is a criteria air pollutant.	organics). Incomplete combustion of any fuel. PM _{2.5} comes from fuel combustion in motor vehicles, equipment and industrial sources, residential and agricultural burning. Also formed from reaction of other pollutants (acid rain, NOx, SOx, organics).	asthma attacks and the number of hospital admissions has been observed in different parts of the United States and various areas around the world. In recent years, some studies have reported an association between long-term exposure to air pollution dominated by fine particles and increased mortality, reduction in lifespan, and an increased mortality from lung cancer. Daily fluctuations in PM _{2.5} concentration levels have also been related to hospital admissions for acute respiratory conditions in children, to school and kindergarten absences, to a decrease in respiratory lung volumes in normal children, and to increased medication use in children and adults with asthma. Recent studies show lung function growth in children is reduced with long term exposure to particulate matter. The elderly, people with pre- existing respiratory or cardiovascular disease, and children appear to be more susceptible to the effects of high levels of PM ₁₀ and PM _{2.5} .
Volatile Organic Compounds (VOC)	VOCs are hydrocarbon compounds (any compound containing various combinations of hydrogen and carbon atoms) that exist in the ambient air. VOCs contribute to the formation of smog through atmospheric photochemical reactions and/or may be toxic. Compounds of carbon (also known as organic compounds) have different levels of reactivity; that is, they do not react at the same speed or do not	Organic chemicals are widely used as ingredients in household products. Paints, varnishes and wax all contain organic solvents, as do many cleaning, disinfecting, cosmetic, degreasing and hobby products.	Breathing VOCs can irritate the eyes, nose and throat, can cause difficulty breathing and nausea, and can damage the central nervous system as well as other organs. Some VOCs can cause cancer. Not all VOCs have all these health effects, though many have several.

Criteria Pollutant	Description	Sources	Health Effects
	form O_3 to the same extent when exposed to photochemical processes. VOCs often have an odor, and some examples include gasoline, alcohol, and the solvents used in paints. Exceptions to the VOC designation include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate. VOCs are a criteria pollutant since they are a precursor to O_3 , which is a criteria pollutant. The terms VOC and ROG (see below) interchangeably.	Fuels are made up of organic chemicals. All of these products can release organic compounds while you are using them, and, to some degree, when they are stored.	
Reactive Organic Gases (ROG)	Similar to VOC, ROGs are also precursors in forming O ₃ and consist of compounds containing methane, ethane, propane, butane, and longer chain hydrocarbons, which are typically the result of some type of combustion/decomposition process. Smog is formed when ROG and nitrogen oxides react in the presence of sunlight. ROGs are a criteria pollutant since they are a precursor to O ₃ , which is a criteria pollutant. The terms ROG and VOC (see previous) interchangeably.	Sources similar to VOCs.	Health effects similar to VOCs.
Lead (Pb)	Lead is a heavy metal that is highly persistent in the environment and is considered a criteria pollutant. In the past, the primary source of lead in the air was emissions from vehicles burning leaded gasoline. The major sources of lead emissions are ore and metals processing, particularly lead smelters, and piston-engine aircraft operating on leaded aviation gasoline. Other stationary sources include waste incinerators, utilities, and lead-acid battery manufacturers. It should be noted that the	Metal smelters, resource recovery, leaded gasoline, deterioration of lead paint.	Fetuses, infants, and children are more sensitive than others to the adverse effects of Pb exposure. Exposure to low levels of Pb can adversely affect the development and function of the central nervous system, leading to learning disorders, distractibility, inability to follow simple commands, and lower intelligence quotient. In adults, increased Pb levels are associated with increased blood pressure.

Criteria Pollutant	Description	Sources	Health Effects
	Project does not include		Pb poisoning can cause
	operational activities such as		anemia, lethargy, seizures,
	metal processing or lead acid		and death; although it
	battery manufacturing. As such,		appears that there are no
	the Project is not anticipated to		direct effects of Pb on the
	generate a quantifiable amount		respiratory system. Pb can be
	of lead emissions.		stored in the bone from early
			age environmental exposure,
			and elevated blood Pb levels
			can occur due to breakdown
			of bone tissue during
			pregnancy, hyperthyroidism
			(increased secretion of
			hormones from the thyroid
			gland) and osteoporosis
			(breakdown of bony tissue).
			Fetuses and breast-fed babies
			can be exposed to higher
			levels of Pb because of
			previous environmental Pb
			exposure of their mothers.
Odor	Odor means the perception	Odors can come	Offensive odors can
	experienced by a person when	from many sources	potentially affect human
	one or more chemical substances	, including animals,	health in several ways. First,
	in the air come into contact with	human activities,	odorant compounds can
	the human olfactory nerves.	industry, natures,	irritate the eye, nose, and
	,	and vehicles.	throat, which can reduce
			respiratory volume. Second,
			studies have shown that the
			VOCs that cause odors can
			stimulate sensory nerves to
			cause neurochemical changes
			that might influence health,
			for instance, by
			compromising the immune
			system. Finally, unpleasant
			odors can trigger memories
			or attitudes linked to
			unpleasant odors, causing
			cognitive and emotional
			effects such as stress.
		1	

2.4 EXISTING AIR QUALITY

Existing air quality is measured at established MDAQMD air quality monitoring stations. Monitored air quality is evaluated in the context of ambient air quality standards. These standards are the levels of air quality that are considered safe, with an adequate margin of safety, to protect the public health and welfare. National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) currently in effect are shown in Table 2-2 (5).

The determination of whether a region's air quality is healthful or unhealthful is determined by comparing contaminant levels in ambient air samples to the state and federal standards. At the time of this AQIA, the most recent state and federal standards were updated by CARB on May ,4 2016 and are presented in Table 2-2. The air quality in a region is considered to be in attainment by the state if the measured ambient air pollutant levels for O₃, CO (except 8-hour Lake Tahoe), SO₂ (1 and 24 hour), NO₂, PM₁₀, and PM_{2.5} are not to be exceeded. All others are not to be equaled or exceeded. It should be noted that the three-year period is presented for informational purposes and is not the basis for how the State assigns attainment status. Attainment status for a pollutant means that the Air District meets the standards set by the United State EPA or the California EPA (CalEPA). Conversely, nonattainment means that an area has monitored air quality that does not meet the NAAQS or CAAQS standards. In order to improve air quality in nonattainment areas, a State Implementation Plan (SIP) is drafted. The SIP outlines the measures that the state will take to improve air quality. Once nonattainment areas meet the standards and additional redesignation requirements, the EPA will designate the area as a maintenance area (6).

Ambient Air Quality Standards							
Dellutent	Averaging	Averaging California Standards ¹		National Standards ²			
Pollutant	Time	Concentration ³	Method ⁴	Primary ^{3,5}	Secondary ^{3,6}	Method ⁷	
0700e (0.)8	1 Hour	0.09 ppm (180 µg/m ³)	Ultraviolet	-	Same as	Ultraviolet	
(-3/	8 Hour	0.070 ppm (137 µg/m ³)	Photometry	0.070 ppm (137 µg/m ³)	Primary Standard	Photometry	
Respirable Particulate	24 Hour	50 µg/m³	Gravimetric or	150 µg/m ³	Same as	Inertial Separation	
Matter (PM10) ⁹	Annual Arithmetic Mean	20 µg/m ³	Beta Attenuation	2 <u>1</u> 12	Primary Standard	Analysis	
Fine Particulate	24 Hour	<u> </u>	_	35 µg/m ³	Same as Primary Standard	Inertial Separation	
Matter (PM2.5) ⁹	Annual Arithmetic Mean	12 µg/m ³	Gravimetric or Beta Attenuation	12.0 µg/m ³	15 µg/m ³	Analysis	
Carbon	1 Hour	20 ppm (23 mg/m ³)		35 ppm (40 mg/m ³)			
Monoxide	8 Hour	9.0 ppm (10 mg/m ³)	Non-Dispersive Infrared Photometry (NDIR)	9 ppm (10 mg/m ³)	1000	Non-Dispersive Infrared Photometry (NDIR)	
(00)	8 Hour (Lake Tahoe)	6 ppm (7 mg/m ³)	(C = 0.7)		<u>201</u>		
Nitrogen	1 Hour	0.18 ppm (339 µg/m ³)	Gas Phase	100 ppb (188 µg/m ³)	<u></u> -	Gas Phase	
(NO ₂) ¹⁰	Annual Arithmetic Mean	0.030 ppm (57 µg/m ³)	Chemiluminescence	0.053 ppm (100 µg/m ³)	Same as Primary Standard	Chemiluminescence	
	1 Hour	0.25 ppm (655 µg/m ³)		75 ppb (196 µg/m ³)	_	Ultraviolet Flourescence; Spectrophotometry (Pararosaniline Method)	
Sulfur Dioxide	3 Hour	-	Ultraviolet		0.5 ppm (1300 µg/m ³)		
(SO ₂) ¹¹	24 Hour	0.04 ppm (105 µg/m ³)	Fluorescence	0.14 ppm (for certain areas) ¹¹	1. <u>2015</u> 2		
	Annual Arithmetic Mean	-		0.030 ppm (for certain areas) ¹¹	-		
	30 Day Average	<mark>1.5 µg/m³</mark>		-			
Lead ^{12,13}	Calendar Quarter	-	Atomic Absorption	1.5 μg/m ³ (for certain areas) ¹²	Same as	High Volume Sampler and Atomic Absorption	
	Rolling 3-Month Average	-		0.15 µg/m ³	Primary Standard	. accipuen	
Visibility Reducing Particles ¹⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape	No			
Sulfates	24 Hour	25 µg/m ³	Ion Chromatography	National			
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m ³)	Ultraviolet Fluorescence		Standards		
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m ³)	Gas Chromatography				
See footnotes on next page							

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (1 OF 2)

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

TABLE 2-2: AMBIENT AIR QUALITY STANDARDS (2 OF 2)

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and
 particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be
 equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the
 California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- 6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 µg/m³ to 12.0 µg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 µg/m³, as was the annual secondary standard of 15 µg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 µg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.

Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

- 12. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 µg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

For more information please call ARB-PIO at (916) 322-2990

California Air Resources Board (5/4/16)

2.5 REGIONAL AIR QUALITY

Air pollution contributes to a wide variety of adverse health effects. The EPA has established NAAQS for six of the most common air pollutants: O₃, PM₁₀, PM_{2.5}, CO, NO₂, SO₂ and Pb which are known as criteria pollutants. The MDAQMD monitors levels of various criteria pollutants at 6 permanent monitoring stations throughout the air district (7). On February 20, 2019, CARB posted the 2018 amendments to the state and national area designations. See Table 2-3 for attainment designations for the MDAB and the Southeast Desert Air Basin (SDAB) (8). Appendix 2.1 provides geographic representation of the state and federal attainment status for applicable criteria pollutants within the MDAB and SDAB.

Criteria Pollutant	State Designation	Federal Designation
O ₃ – 1-hour standard	Nonattainment	
O ₃ – 8-hour standard	Nonattainment	Nonattainment
PM10	Nonattainment	Nonattainment
PM _{2.5}	Attainment	Unclassifiable/Attainment
СО	Attainment Unclassifiabl	
NO ₂	Attainment Unclassifiab	
SO ₂	Unclassifiable/Attainment	Unclassifiable/Attainment
Pb	Attainment	Unclassifiable/Attainment

TABLE 2-3: ATTAINMENT STATUS OF CRITERIA POLLUTANTS IN THE MDAB

Note: See Appendix 2.1 for a detailed map of State/National Area Designations within the MDAB and SDAB "-" = The national 1-hour O₃ standard was revoked effective June 15, 2005.

2.6 LOCAL AIR QUALITY

Relative to the Project site, the nearest long-term air quality monitoring site for O₃, CO, NO₂, PM₁₀, and PM_{2.5} was obtained from the MDAQMD Victorville-Park Avenue monitoring station, located approximately 2.28 miles northwest of the Project site.

The most recent three (3) years of data available is shown on Table 2-4 and identifies the number of days ambient air quality standards were exceeded for the study area, which is considered to be representative of the local air quality at the Project site. Data for O₃, CO, NO₂, PM₁₀, and PM_{2.5} was obtained using the CARB iADAM: Air Quality and Data Statistics and the Air Quality and Meteorological Information System (AQMIS) (9) (10). Data for SO₂ has been omitted as attainment is regularly met and few monitoring stations measure SO₂ concentrations. It should be noted that the table below is provided for informational purposes.

Dellutent	Chandand	Year			
Pollutant	Standard	2018	2019	2020	
O ₃					
Maximum Federal 1-Hour Concentration (ppm)		0.107	0.104	0.112	
Maximum Federal 8-Hour Concentration (ppm)		0.096	0.081	0.094	
Number of Days Exceeding Federal 1-Hour Standard	> 0.09 ppm	0	0	0	
Number of Days Exceeding State 1-Hour Standard		5	3	4	
Number of Days Exceeding Federal 8-Hour Standard	> 0.070 ppm	55	29	35	
Number of Days Exceeding State 8-Hour Standard	> 0.075 ppm	27	13	17	
СО	-				
Maximum Federal 1-Hour Concentration	> 35 ppm	1.420	1.493	1.638	
NO ₂	·				
Maximum Federal 1-Hour Concentration	> 0.100 ppm	0.051	0.056	0.059	
Maximum State 1-Hour Concentration	> 0.180 ppm	0.051	0.056	0.059	
Annual Federal Standard Design Value		12	11	13	
Annual State Standard Design Value		12	12	12	
Number of Days Exceeding Federal 1-Hour Standard	> 0.100 ppm	0	0	0	
Number of Days Exceeding State 1-Hour Standard	> 0.18 ppm	0	0	0	
PM10					
Maximum Federal 24-Hour Concentration (µg/m ³)	> 150 µg/m ³	165.2	170.0	261.4	
Annual Federal Arithmetic Mean (μg/m ³)		29.8	27.2	34.0	
Number of Days Exceeding Federal 24-Hour Standard	> 150 µg/m ³	1	2	2	
PM _{2.5}					
Maximum Federal 24-Hour Concentration (µg/m ³)	> 35 µg/m³	32.7	17.8	48.4	
Maximum State 24-Hour Concentration (µg/m ³)		33.2	20.0	48.7	
Annual Federal Arithmetic Mean (μg/m³)	>12 µg/m ³	7.9	7.0	9.7	
Annual State Arithmetic Mean (μg/m³)	>12 µg/m³	8.7	7.0	10.4	
Number of Samples Exceeding Federal 24-Hour Standard	> 35 µg/m ³	0	0	4	

TABLE 2-4: PROJECT AREA AIR QUALITY MONITORING SUMMARY 2018-2020

Source: California Air Resource Board iADAM: Air Quality Data Statistics and AQMIS

ppm = Parts Per Million

 $\mu g/m^3$ – microgram per cubic meter

-- = data not available

2.7 REGULATORY BACKGROUND

2.7.1 FEDERAL REGULATIONS

The EPA is responsible for setting and enforcing the NAAQS for O₃, CO, NO_x, SO₂, PM₁₀, and Pb (11). The EPA has jurisdiction over emissions sources that are under the authority of the federal government including aircraft, locomotives, and emissions sources outside state waters (Outer

Continental Shelf). The EPA also establishes emission standards for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission requirements of CARB.

The Federal Clean Air Act (CAA) was first enacted in 1955 and has been amended numerous times in subsequent years (1963, 1965, 1967, 1970, 1977, and 1990). The CAA establishes the federal air quality standards, the NAAQS, and specifies future dates for achieving compliance (12). The CAA also mandates that states submit and implement SIPs for local areas not meeting these standards. These plans must include pollution control measures that demonstrate how the standards will be met.

The 1990 amendments to the CAA that identify specific emission reduction goals for areas not meeting the NAAQS require a demonstration of reasonable further progress toward attainment and incorporate additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA most directly applicable to the development of the Project site include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions) (13) (14). Title I provisions were established with the goal of attaining the NAAQS for the following criteria pollutants O₃, NO₂, SO₂, PM₁₀, CO, PM_{2.5}, and Pb. The NAAQS were amended in July 1997 to include an additional standard for O₃ and to adopt a NAAQS for PM_{2.5}. Table 2-3 (previously presented) provides the NAAQS within the MDAB.

Mobile source emissions are regulated in accordance with Title II provisions. These provisions require the use of cleaner burning gasoline and other cleaner burning fuels such as methanol and natural gas. Automobile manufacturers are also required to reduce tailpipe emissions of hydrocarbons and NO_x. NO_x is a collective term that includes all forms of NO_x which are emitted as byproducts of the combustion process.

2.7.2 CALIFORNIA REGULATIONS

CARB

CARB, which became part of the CalEPA in 1991, is responsible for ensuring implementation of the California Clean Air Act (AB 2595), responding to the federal CAA, and for regulating emissions from consumer products and motor vehicles. AB 2595 mandates achievement of the maximum degree of emissions reductions possible from vehicular and other mobile sources in order to attain the state ambient air quality standards by the earliest practical date. CARB established the CAAQS for all pollutants for which the federal government has NAAQS and, in addition, establishes standards for SO₄, visibility, hydrogen sulfide (H₂S), and vinyl chloride (C₂H₃Cl). However, at this time, H₂S and C₂H₃Cl are not measured at any monitoring stations in the MDAB because they are not considered to be a regional air quality problem. Generally, the CAAQS are more stringent than the NAAQS (15) (11).

Local air quality management districts, such as the MDAQMD, regulate air emissions from stationary sources such as commercial and industrial facilities. All air pollution control districts have been formally designated as attainment or non-attainment for each CAAQS.

Serious non-attainment areas are required to prepare Air Quality Management Plans (AQMP) that include specified emission reduction strategies in an effort to meet clean air goals. These plans are required to include:

- Application of Best Available Retrofit Control Technology to existing sources;
- Developing control programs for area sources (e.g., architectural coatings and solvents) and indirect sources (e.g. motor vehicle use generated by residential and commercial development);
- A District permitting system designed to allow no net increase in emissions from any new or modified permitted sources of emissions;
- Implementing reasonably available transportation control measures and assuring a substantial reduction in growth rate of vehicle trips and miles traveled;
- Significant use of low emissions vehicles by fleet operators;
- Sufficient control strategies to achieve a 5% or more annual reduction in emissions or 15% or more in a period of three years for ROGs, NO_x, CO and PM₁₀. However, air basins may use alternative emission reduction strategy that achieves a reduction of less than 5% per year under certain circumstances.

TITLE 24 ENERGY EFFICIENCY STANDARDS AND CALIFORNIA GREEN BUILDING STANDARDS

CCR Title 24 Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings, was first adopted in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficient technologies and methods. CCR, Title 24, Part 11: California Green Building Standards Code (CALGreen) is a comprehensive and uniform regulatory code for all residential, commercial, and school buildings that went in effect on January 1, 2011, and is administered by the California Building Standards Commission. CALGreen is updated on a regular basis, with the most recent approved update consisting of the 2019 California Green Building Code Standards that will be effective January 1, 2020. Local jurisdictions are permitted to adopt more stringent requirements, as state law provides methods for local enhancements. CALGreen recognizes that many jurisdictions have developed existing construction and demolition ordinances and defers to them as the ruling guidance provided, they establish a minimum 65% diversion requirement. The code also provides exemptions for areas not served by construction and demolition recycling infrastructure. The State Building Code provides the minimum standard that buildings must meet in order to be certified for occupancy, which is generally enforced by the local building official.

Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas (GHG) emissions. The 2019 version of Title 24 was adopted by the California Energy Commission (CEC) and became effective on January 1, 2020.

The 2019 Title 24 standards will result in less energy use, thereby reducing air pollutant emissions associated with energy consumption in the MDAB and across the State of California. For example, the 2019 Title 24 standards will require solar photovoltaic systems for new homes, establish requirements for newly constructed healthcare facilities, encourage demand responsive

technologies for residential buildings, and update indoor and outdoor lighting requirements for nonresidential buildings. The CEC anticipates that single-family homes built with the 2019 standards will use approximately 7% less energy compared to the residential homes built under the 2016 standards. Additionally, after implementation of solar photovoltaic systems, homes built under the 2019 standards will use about 53% less energy than homes built under the 2016 standards. Nonresidential buildings (such as the Project) will use approximately 30% less energy due to lighting upgrade requirements (16).

Because the Project will be constructed after January 1,2019, the 2019 CALGreen standards are applicable to the Project and require, among other items (17):

- Short-term bicycle parking. If the new project or an additional alteration is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitors' entrance, readily visible to passers-by, for 5% of new visitor motorized vehicle parking spaces being added, with a minimum of one two-bike capacity rack (5.106.4.1.1).
- Long-term bicycle parking. For new buildings with tenant spaces that have 10 or more tenantoccupants, provide secure bicycle parking for 5% of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility (5.106.4.1.2).
- Designated parking. In new projects or additions to alterations that add 10 or more vehicular parking spaces, provide designated parking for any combination of low-emitting, fuel-efficient and carpool/van pool vehicles as shown in Table 5.106.5.2 (5.106.5.2).
- Construction waste management. Recycle and/or salvage for reuse a minimum of 65% of the nonhazardous construction and demolition waste in accordance with Section 5.408.1.1. 5.405.1.2, or 5.408.1.3; or meet a local construction and demolition waste management ordinance, whichever is more stringent (5.408.1).
- Excavated soil and land clearing debris. 100% of trees, stumps, rocks and associated vegetation and soils resulting primarily from land clearing shall be reused or recycled. For a phased project, such material may be stockpiled on site until the storage site is developed (5.408.3).
- Recycling by Occupants. Provide readily accessible areas that serve the entire building and are identified for the depositing, storage and collection of non-hazardous materials for recycling, including (at a minimum) paper, corrugated cardboard, glass, plastics, organic waste, and metals or meet a lawfully enacted local recycling ordinance, if more restrictive (5.410.1).
- Water conserving plumbing fixtures and fittings. Plumbing fixtures (water closets and urinals) and fittings (faucets and showerheads) shall comply with the following:
 - Water Closets. The effective flush volume of all water closets shall not exceed 1.28 gallons per flush (5.303.3.1)
 - Urinals. The effective flush volume of wall-mounted urinals shall not exceed 0.125 gallons per flush (5.303.3.2.1). The effective flush volume of floor-mounted or other urinals shall not exceed 0.5 gallons per flush (5.303.3.2.2).
 - Showerheads. Single showerheads shall have a minimum flow rate of not more than 1.8 gallons per minute and 80 psi (5.303.3.3.1). When a shower is served by more than one showerhead, the combine flow rate of all showerheads and/or other shower outlets controlled by a single valve shall not exceed 1.8 gallons per minute at 80 psi (5.303.3.2.2).

- Faucets and fountains. Nonresidential lavatory faucets shall have a maximum flow rate of not more than 0.5 gallons per minute at 60 psi (5.303.3.4.1). Kitchen faucets shall have a maximum flow rate of not more than 1.8 gallons per minute of 60 psi (5.303.3.4.2). Wash fountains shall have a maximum flow rate of not more than 1.8 gallons per minute (5.303.3.4.3). Metering faucets shall not deliver more than 0.20 gallons per cycle (5.303.3.4.4). Metering faucets for wash fountains shall have a maximum flow rate not more than 0.20 gallons per cycle (5.303.3.4.5).
- Outdoor portable water use in landscaped areas. Nonresidential developments shall comply with a local water efficient landscape ordinance or the current California Department of Water Resources' Model Water Efficient (MWELO), whichever is more stringent (5.304.1).
- Water meters. Separate submeters or metering devices shall be installed for new buildings or additions in excess of 50,000 sf or for excess consumption where any tenant within a new building or within an addition that is project to consume more than 1,000 gallons per day (5.303.1.1 and 5.303.1.2).
- Outdoor water use in rehabilitated landscape projects equal or greater than 2,500 sf. Rehabilitated landscape projects with an aggregate landscape area equal to or greater than 2,500 sf requiring a building or landscape permit (5.304.3).
- Commissioning. For new buildings 10,000 sf and over, building commissioning shall be included in the design and construction processes of the building project to verify that the building systems and components meet the owner's or owner representative's project requirements (5.410.2).

2.7.3 AIR QUALITY MANAGEMENT PLANNING

Currently, the NAAQS and CAAQS are exceeded in most parts of the MDAB. The NAAQS, the Project region within the MDAB is in nonattainment for O_3 (8-hour) and PM_{10} . For the CAAQS, the Project region within the MDAB is in nonattainment for O_3 (1-hour and 8-hour) and PM_{10} . In response, the MDAQMD has adopted a series of AQMPs to meet the state and federal ambient air quality standards (18). AQMPs are updated regularly in order to more effectively reduce emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy. A detailed discussion on the AQMP and Project consistency with the AQMP is provided in Section 3.7.

This page intentionally left blank

3 PROJECT AIR QUALITY IMPACT

3.1 INTRODUCTION

The Project has been evaluated to determine if it will violate an air quality standard or contribute to an existing or projected air quality violation. Additionally, the Project has been evaluated to determine if it will result in a cumulatively considerable net increase of a criteria pollutant for which the MDAB is non-attainment under an applicable federal or state ambient air quality standard. The significance of these potential impacts is described in the following section.

3.2 STANDARDS OF SIGNIFICANCE

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the Initial Study Checklist in Appendix G of the *State CEQA Guidelines* (14 CCR §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to air quality if it would (1):

- Conflict with or obstruct implementation of the applicable air quality plan.
- Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard.
- Expose sensitive receptors to substantial pollutant concentrations.
- Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

The MDAQMD has developed regional significance thresholds for regulated pollutants, shown below in Table 3-1. The MDAQMD's *Guidelines* indicate that any projects in the MDAB with daily regional emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact (19).

Pollutant	Daily Threshold (lbs/day)		
СО	548 lbs/day		
NO _X	137 lbs/day		
VOC	137 lbs/day		
SOx	137 lbs/day		
PM10	82 lbs/day		
PM _{2.5}	65 lbs/day		

TABLE 3-1: MAXIMUM REGIONAL DAILY EMISSIONS THRESHOLDS

Note: lbs/day – pounds per day

3.3 MODELS EMPLOYED TO ANALYZE AIR QUALITY EMISSIONS

Land uses such as the Project affect GHGs through construction-source and operational-source emissions.

3.3.1 CALEEMOD

In May 2021, the SCAQMD, in conjunction with the California Air Pollution Control Officers Association (CAPCOA) and other California air districts, released the latest version of the CalEEMod Version 2020.4.0. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation (20). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality emissions. Output from the model runs for both construction and operational activity are provided in Appendices 3.1 and 3.4.

3.4 CONSTRUCTION EMISSIONS

Construction activities associated with the Project will result in emissions of VOCs, NO_X, CO, SO_X, PM₁₀, and PM_{2.5}. Construction related emissions are expected from the following construction activities:

- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating
- Construction Workers Commuting

GRADING ACTIVITIES

Dust is typically a major concern during grading activities. Because such emissions are not amenable to collection and discharge through a controlled source, they are called "fugitive emissions". Fugitive dust emissions rates vary as a function of many parameters (soil silt, soil moisture, wind speed, area disturbed, number of vehicles, depth of disturbance or excavation, etc.). CalEEMod was utilized to calculate fugitive dust emissions resulting from this phase of activity. The Project will require 539,558 cubic yards of cut and 800,953 cubic yards of fill, resulting in a total of 261,395 cubic yards of import.

CONSTRUCTION WORKER VEHICLE TRIPS

Construction emissions for construction worker vehicles traveling to and from the Project site, as well as vendor trips (construction materials delivered to the Project site) were estimated based on information from CalEEMod defaults.

3.4.1 CONSTRUCTION DURATION

Construction is expected to commence in June 2023 and will last through August 2024. Construction duration by phase is shown on Table 3-2. The construction schedule utilized in the analysis represents a "worst-case" analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent.² The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per *CEQA Guidelines*.

Phase Name	Start Date	End Date	Days
Site Preparation	06/01/2023	07/26/2023	40
Grading	07/27/2023	12/27/2023	110
Building Construction	12/28/2023	08/28/2024	175
Paving	05/16/2024	08/28/2024	75
Architectural Coating	01/18/2024	08/28/2024	160

TABLE 3-2: CONSTRUCTION DURATION

3.4.2 CONSTRUCTION EQUIPMENT

Site specific construction fleet may vary due to specific project needs at the time of construction. The associated construction equipment was generally based on CalEEMod defaults. A detailed summary of construction equipment assumptions by phase is provided at Table 3-3. Please refer to specific detailed modeling inputs/outputs contained in Appendix 3.1 of this analysis.

Phase Name	Equipment ¹	Number	Hours Per Day
Cito Droporation	Crawler Tractors	9	8
Site Preparation	Rubber Tired Dozers	6	8
	Crawler Tractors	6	8
	Excavators	6	8
Grading	Graders	3	8
	Rubber Tired Dozers	3	8
	Scrapers	6	8

TABLE 3-3: CONSTRUCTION EQUIPMENT ASSUMPTIONS (1 OF 2)

² As shown in the CalEEMod User's Guide Version 2020.4.0, Section 4.3"Offroad Equipment" as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

Phase Name	Equipment ¹	Number	Hours Per Day
	Cranes	3	8
Building Construction	Crawler Tractors	9	8
	Forklifts	9	8
	Generator Sets	3	8
	Welders	3	8
	Pavers	6	8
Paving	Paving Equipment	6	8
	Rollers	6	8
Architectural Coating	Air Compressors	3	8

TABLE 3-3: CONSTRUCTION EQUIPMENT ASSUMPTIONS (2 OF 2)

¹ In order to account for fugitive dust emissions, Crawler Tractors were used in lieu of Tractors/Loaders/Backhoes.

3.4.3 CONSTRUCTION EMISSIONS SUMMARY

IMPACTS WITHOUT MITIGATION

CalEEMod calculates maximum daily emissions for summer and winter periods. As such, the estimated maximum daily construction emissions without mitigation for both summer and winter periods are summarized on Table 3-4. Detailed construction model outputs are presented in Appendix 3.1. Under the assumed scenarios, emissions resulting from the Project construction would exceed criteria pollutant thresholds established by the MDAQMD for emissions NO_x.

Veen	Emissions (lbs/day)					
Year	VOC	NOx	со	SOx	PM10	PM2.5
		Summer				
2023	12.79	162.44	97.79	0.41	51.09	24.61
2024	50.18	115.73	137.36	0.33	15.87	7.43
		Winter				
2023	12.71	164.48	97.75	0.41	51.09	24.61
2024	49.95	116.24	132.29	0.32	15.87	7.43
Maximum Daily Emissions	50.18	164.48	137.36	0.41	51.09	24.61
MDAQMD Regional Threshold	137	137	548	137	82	65
Threshold Exceeded?	NO	YES	NO	NO	NO	NO

Source: CalEEMod construction-source (unmitigated) emissions are presented in Appendix 3.1.
IMPACTS WITH MITIGATION

The estimated maximum daily construction emissions with mitigation are summarized on Table 3-5. Detailed construction model outputs are presented in Appendix 3.2. MM AQ-1 is recommended to reduce the impacts. As stated in Section ES.3, MM AQ-1 requires that the Construction Contractor shall ensure that off-road diesel construction equipment during Grading activities, complies with EPA/CARB Tier 4 emissions standards or equivalent and shall ensure that all construction equipment is tuned and maintained in accordance with the manufacturer's specifications. After implementation of MM AQ-1, regional construction emissions would not exceed the applicable MDAQMD thresholds of significance for any criteria pollutant. Therefore, a less than significant impact would occur.

Veer	Emissions (lbs/day)									
Year	voc	NOx	со	SOx	PM10	PM2.5				
Summer										
2023	11.05	90.63	112.45	0.41	51.09	24.61				
2024	50.18	115.73	137.36	0.33	15.87	7.43				
		Winter								
2023	10.85	90.73	112.41	0.41	51.09	24.61				
2024	49.95	116.24	132.29	0.32	15.87	7.43				
Maximum Daily Emissions	50.18	116.24	137.36	0.41	51.09	24.61				
MDAQMD Regional Threshold	137	137	548	137	82	65				
Threshold Exceeded?	NO	NO	NO	NO	NO	NO				

TABLE 3-5: EMISSIONS SUMMARY OF CONSTRUCTION – WITH MITIGATION

Source: CalEEMod construction-source (mitigated) emissions are presented in Appendix 3.2.

3.5 OPERATIONAL EMISSIONS

Operational activities associated with the proposed Project will result in emissions of VOCs, NO_x, CO, SO_x, PM₁₀, and PM_{2.5}. Operational emissions would be expected from the following primary sources:

- Area Source Emissions
- Energy Source Emissions
- Mobile Source Emissions
- On-site Equipment Emissions
- Transportation Refrigeration Units (TRU) Emissions

3.5.1 Area Source Emissions

ARCHITECTURAL COATINGS

Over a period of time the buildings that are part of this Project would require maintenance and would therefore produce emissions resulting from the evaporation of solvents contained in paints, varnishes, primers, and other surface coatings. The emissions associated with architectural coatings were calculated using CalEEMod.

CONSUMER PRODUCTS

Consumer products include, but are not limited to detergents, cleaning compounds, polishes, personal care products, and lawn and garden products. Many of these products contain organic compounds which when released in the atmosphere can react to form ozone and other photochemically reactive pollutants. The emissions associated with use of consumer products were calculated based on defaults provided within CalEEMod.

LANDSCAPE MAINTENANCE EQUIPMENT

Landscape maintenance equipment would generate emissions from fuel combustion and evaporation of unburned fuel. Equipment in this category would include lawnmowers, shedders/grinders, blowers, trimmers, chain saws, and hedge trimmers used to maintain the landscaping of the Project. It should be noted that as October 9, 2021, Governor Gavin Newsom signed AB 1346. The bill aims to ban the sale of new gasoline-powered equipment under 25 gross horsepower (known as small off-road engines [SOREs]) by 2024. For purposes of analysis, the emissions associated with landscape maintenance equipment were calculated based on assumptions provided in CalEEMod.

3.5.2 ENERGY SOURCE EMISSIONS

COMBUSTION EMISSIONS ASSOCIATED WITH NATURAL GAS AND ELECTRICITY

Electricity and natural gas are used by almost every project. Criteria pollutant emissions are emitted through the generation of electricity and consumption of natural gas. However, because electrical generating facilities for the Project area are located either outside the region (state) or offset through the use of pollution credits (RECLAIM) for generation within the SCAB, criteria pollutant emissions from offsite generation of electricity are generally excluded from the evaluation of significance and only natural gas use is considered. The emissions associated with natural gas use were calculated using CalEEMod.

3.5.3 MOBILE SOURCE EMISSIONS

The Project related operational air quality emissions derive primarily from vehicle trips generated by the Project, including employee trips to and from the site and truck trips associated with the proposed uses. Trip characteristics available from the *Ottawa Business Center Traffic Assessment* were utilized in this analysis (21). The Project is expected to generate a total of approximately 2,124 two-way vehicular trips per day (1,062 inbound and 1,062 outbound) which includes 454 two-way truck trips per day (227 inbound and 227 outbound) (21).

APPROACH FOR ANALYSIS OF THE PROJECT

To determine emissions from passenger car vehicles, the CalEEMod defaults were utilized for trip length and trip purpose for the proposed industrial land uses. For the proposed industrial uses, it is important to note that although the *Ottawa Business Center Traffic Assessment* does not breakdown passenger cars by type, this analysis assumes that passenger cars include Light-Duty-Auto vehicles (LDA), Light-Duty-Trucks (LDT1³ & LDT2⁴), Medium-Duty-Vehicles (MDV), and Motorcycles (MCY) vehicle types. To account for emissions generated by passenger cars, the following fleet mix was utilized in this analysis:

Land Use	Vehicle Type	%
	LDA	58.08
	LDT1	6.02
High-Cube Fulfillment Center Warehouse/ High-Cube Cold Storage Warehouse	LDT2	18.55
	MDV	14.66
	MCY	2.69

TABLE 3-6: PASSENGER CAR FLEET MIX

Note: The Project-specific passenger car fleet mix used in this analysis is based on a proportional split utilizing the default CalEEMod percentages assigned to LDA, LDT1, LDT2, and MDV vehicle types.

To determine emissions from trucks for the proposed industrial uses, the analysis incorporated the SCAQMD recommended truck trip length of 40 miles⁵ and an assumption of 100% primary trips for the proposed industrial land uses. In order to be consistent with the *Ottawa Business Center Traffic Assessment*, trucks are broken down by truck type. The truck fleet mix is estimated by rationing the trip rates for each truck type based on information provided in the *Ottawa Business Center Traffic Assessment*. Heavy trucks are broken down by truck type (or axle type) and are categorized as either Light-Heavy-Duty Trucks (LHDT1⁶ & LHDT2⁷)/2-axle, Medium-Heavy-Duty Trucks (MHDT)/3-axle, and HHDT/4+-axle. To account for emissions generated by trucks, the following fleet mix was utilized in this analysis:

³ Vehicles under the LDT1 category have a gross vehicle weight rating (GVWR) of less than 6,000 lbs. and equivalent test weight (ETW) of less than or equal to 3,750 lbs.

⁴ Vehicles under the LDT2 category have a GVWR of less than 6,000 lbs. and ETW between 3,751 lbs. and 5,750 lbs.

⁵ The average trip length for heavy trucks were based on the SCAQMD documents for the implementation of the Facility-Based Mobile Source Measures (FBMSMs) adopted in the 2016 AQMP. SCAQMD's "Preliminary Warehouse Emission Calculations" cites 39.9-mile trip length for heavy-heavy trucks (41). As a conservative measure, a trip length of 40 miles has been utilized for all trucks for the purpose of this analysis (39)

⁶ Vehicles under the LHDT1 category have a GVWR of 8,501 to 10,000 lbs.

⁷ Vehicles under the LHDT2 category have a GVWR of 10,001 to 14,000 lbs.

Land Use	Vehicle Type	%
	LHDT1	8.52
High-Cube Fulfillment Center Warehouse	LHDT2	2.30
	MHDT	10.82
	HHDT	78.36
	LHDT1	27.30
High-Cube Cold Storage Warehouse	LHDT2	7.37
	MHDT	10.67
	HHDT	54.66

TABLE 3-7: TRUCK FLEET MIX

Note: Project-specific truck fleet mix is based on the number of trips generated by each truck type (LHDT1, LHDT2, MHDT, and HHDT) relative to the total number of truck trips.

FUGITIVE DUST RELATED TO VEHICULAR TRAVEL

Vehicles traveling on paved roads would be a source of fugitive emissions due to the generation of road dust inclusive of break and tire wear particulates. The emissions estimate for travel on paved roads were calculated using CalEEMod.

3.5.4 ON-SITE EQUIPMENT EMISSIONS

It is common for warehouse buildings to require the operation of exterior cargo handling equipment in the building's truck court areas. For this particular Project, on-site modeled operational equipment includes up to four (4) 200 horsepower (hp), compressed natural gas or gasoline-powered tractors/loaders/backhoes operating at 4 hours a day⁸ for 365 days of the year.

3.5.5 TRU EMISSIONS

In order to account for the possibility of refrigerated uses, trucks associated with the cold-storage land use are assumed to also have TRUs. Therefore, for modeling purposes 75 trucks have the potential to include TRUs (approximately 33% of all trucks accessing the site). TRUs are accounted for during on-site and off-site travel. The TRU calculations are based on the 2017 Off-road Emissions model, version 1.0.1 (Orion), developed by the CARB. Orion does not provide emission rates per hour or mile as with the on-road emission model and only provides emission inventories. Emission results are produced in tons per day while all activity, fuel consumption and horsepower hours were reported at annual levels. The emission inventory is based on specific assumptions including the average horsepower rating of specific types of equipment and the hours of operation annually. These assumptions are not always consistent with assumptions used in the modeling of project level emissions. Therefore, the emissions inventory was converted into emission rates to accurately calculate emissions from TRU operation associated with project level details. This was accomplished by converting the annual horsepower hours to

⁸ Based on Table II-3, Port and Rail Cargo Handling Equipment Demographics by Type, from CARB's Technology Assessment: Mobile Cargo Handling Equipment document, a single piece of equipment could operate up to 2 hours per day (Total Average Annual Activity divided by Total Number Pieces of Equipment). As such, the analysis conservatively assumes that the tractor/loader/backhoe would operate up to 4 hours per day.

daily operational characteristics and converting the daily emission levels into hourly emission rates based on the total emission of each criteria pollutant by equipment type and the average daily hours of operation.

3.5.6 OPERATIONAL EMISSIONS SUMMARY

The estimated operational-source emissions are summarized on Tables 3-8. Detailed operation model outputs for the Project are presented in Appendices 3.3 and 3.4. As shown on Table 3-8, the Project's daily regional emissions from on-going operations would not exceed the thresholds of significance for emissions of any criteria pollutant.

Source	Emissions (lbs/day)								
Source	voc	NOx	со	SOx	PM10	PM _{2.5}			
		Summer							
Area Source	28.38	3.48E-03	0.38	3.00E-05	1.37E-03	1.37E-03			
Energy Source	0.35	3.21	2.70	0.02	0.24	0.24			
Mobile Source	6.96	80.15	70.08	0.52	27.06	8.00			
TRU Source	0.69	7.68	9.78	1.85E-03	0.08	0.07			
On-Site Equipment Sources	0.44	3.89	3.01	0.01	0.14	0.13			
Total Maximum Daily Emissions	36.82	94.93	85.94	0.55	27.53	8.45			
MDAQMD Regional Threshold	137	137	548	137	82	65			
Threshold Exceeded?	NO	NO	NO	NO	NO	NO			
		Winter							
Area Source	28.38	3.48E-03	0.38	3.00E-05	1.37E-03	1.37E-03			
Energy Source	0.35	3.21	2.70	0.02	0.24	0.24			
Mobile Source	6.18	84.24	65.05	0.51	27.06	8.00			
TRU Source	0.69	7.68	9.78	1.85E-03	0.08	0.07			
On-Site Equipment Sources	0.44	3.89	3.01	0.01	0.14	0.13			
Total Maximum Daily Emissions	36.04	99.02	80.92	0.54	27.53	8.45			
MDAQMD Regional Threshold	137	137	548	137	82	65			
Threshold Exceeded?	NO	NO	NO	NO	NO	NO			

TABLE 3-8: SUMMARY OF PEAK OPERATIONAL EMISSIONS

3.6 CO "HOT SPOT" ANALYSIS

As discussed below, the Project would not result in potentially adverse CO concentrations or "hot spots." Further, detailed modeling of Project-specific CO "hot spots" is not needed to reach this conclusion. An adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 ppm or the eight-hour standard of 9 ppm were to occur. At the time of the 1993 Handbook, the MDAB was designated nonattainment under the CAAQS and NAAQS for CO (22).

It has long been recognized that CO hotspots are caused by vehicular emissions, primarily when idling at congested intersections. In response, vehicle emissions standards have become increasingly stringent in the last twenty years. Currently, the allowable CO emissions standard in California is a maximum of 3.4 grams/mile for passenger cars (there are requirements for certain vehicles that are more stringent). With the turnover of older vehicles, introduction of cleaner fuels, and implementation of increasingly sophisticated and efficient emissions control technologies, CO concentration in the MDAB is now designated as attainment. To establish a more accurate record of baseline CO concentrations affecting the MDAB, a CO "hot spot" analysis was conducted in 2003 for four busy intersections in Los Angeles at the peak morning and afternoon time periods. This "hot spot" analysis did not predict any violation of CO standards, as shown on Table 3-10.

Internation Location	CO Concentrations (ppm)						
Intersection Location	Morning 1-hour	Afternoon 1-hour 8 4.6 3.5 4.0 4.5					
Wilshire Boulevard/ Veteran Avenue	4.6	3.5	3.7				
Sunset Boulevard/ Highland Avenue	4.0	4.5	3.5				
La Cienega Boulevard/ Century Boulevard	3.7	3.1	5.2				
Long Beach Boulevard/ Imperial Highway	3.0	3.1	8.4				

TABLE 3-10: CO MODEL RESULTS

Source: 2003 AQMP, Appendix V: Modeling and Attainment Demonstrations

Notes: Federal 1-hour standard is 35 ppm and the deferral 8-hour standard is 9.0 ppm.

As identified within SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan), peak CO concentrations in the MDAB were a result of unusual meteorological and topographical conditions and not a result of traffic volumes and congestion at a particular intersection. As evidence of this, for example, 9.3 ppm 8-hour CO concentration measured at the Long Beach Boulevard and Imperial Highway intersection (highest CO generating intersection within the "hot spot" analysis), only 0.7 ppm was attributable to the traffic volumes and congestion at this intersection; the remaining 8.6 ppm were due to the ambient air measurements at the time the 2003 AQMP was prepared (23).

Similar considerations are also employed by other Air Districts when evaluating potential CO concentration impacts. More specifically, the Bay Area Air Quality Management District (BAAQMD) concludes that under existing and future vehicle emission rates, a given project would have to increase traffic volumes at a single intersection by more than 44,000 vehicles per hour (vph) —or 24,000 vph where vertical and/or horizontal air does not mix—in order to generate a significant CO impact (24).

Traffic volumes generating the CO concentrations for the "hot spot" analysis is shown on Table 3-11. The busiest intersection evaluated was that at Wilshire Boulevard and Veteran Avenue, which has a daily traffic volume of approximately 100,000 vehicles per day and AM/PM traffic volumes of 8,062 vph and 7,719 vph respectively (25). The 2003 AQMP estimated that the 1-hour concentration for this intersection was 4.6 ppm; this indicates that, should the daily traffic volume increase four times to 400,000 vehicles per day, CO concentrations (4.6 ppm x 4= 18.4 ppm) would still not likely exceed the most stringent 1-hour CO standard (20.0 ppm).⁹ As shown on Exhibit 5-2 of the TA, Opening Year Cumulative (2024) With Project Traffic Volumes, the highest average daily trips on a segment of road would be 62,050 daily trips on I-15 Northbound Ramps and Nisqualli Road, which is lower than the highest daily traffic volumes at Wilshire Blvd. and Veteran Ave. of 100,000 vehicles per day (21). Additionally, the 2003 AQMP determined that the highest traffic volumes on a segment of road is 8,674 vph on La Cienega Boulevard and Century Boulevard. As shown on Table 3-12 the highest trips on a segment of road for the Project is 36,738 vph on Amargosa Road and La Mesa Road. As such, Project-related traffic volumes are less than the traffic volumes identified in the 2003 AQMP. The proposed Project considered herein would not produce the volume of traffic required to generate a CO "hot spot" either in the context of the 2003 Los Angeles hot spot study or based on representative BAAQMD CO threshold considerations. Therefore, CO "hot spots" are not an environmental impact of concern for the proposed Project. Localized air quality impacts related to mobile-source emissions would therefore be less than significant.

	Peak Traffic Volumes (vph)								
Intersection Location	Eastbound (AM/PM)	Westbound (AM/PM)	Southbound (AM/PM)	Northbound (AM/PM)	Total (AM/PM)				
Wilshire Boulevard/Veteran Avenue	4,954/2,069	1,830/3,317	721/1,400	560/933	8,062/7,719				
Sunset Boulevard/Highland Avenue	1,417/1,764	1,342/1,540	2,304/1,832	1,551/2,238	6,614/5,374				
La Cienega Boulevard/ Century Boulevard	2,540/2,243	1,890/2,728	1,384/2,029	821/1,674	6,634/8,674				
Long Beach Boulevard/ Imperial Highway	1,217/2,020	1,760/1,400	479/944	756/1,150	4,212/5,514				

TABLE 3-11: TRAFFIC VOLUMES

Source: 2003 AQMP

⁹ Based on the ratio of the CO standard (20.0 ppm) and the modeled value (4.6 ppm).

	Peak Traffic Volumes (vph)								
Intersection Location	Northbound (AM/PM)	Southbound (AM/PM)	Eastbound (AM/PM)	Westbound (AM/PM)	Total (AM/PM)				
Amargosa Road/ La Mesa Road	212/883	706/1,954	1,087/1,291	1,182/2,610	3,187/6,738				
I-15 Northbound Ramps/ Nisqualli Road	442/1070	0/0	1,413/2,276	1,330/2,546	3,185/5,892				
Mariposa Road/ Nisqualli Road	429/960	210/607	1,471/2,541	1,215/2,209	3,325/6,318				
Hesperia Road/ Nisqualli Road	1,469/2,013	1,143/1,789	614/785	117/163	3,343/4,749				

TABLE 3-12: PROJECT PEAK TRAFFIC VOLUMES

Source: Ottawa Business Center Traffic Analysis (Urban Crossroads, Inc.)

3.7 AQMP

The Federal Particulate Matter Attainment Plan and Ozone Attainment Plan for the Mojave Desert set forth a comprehensive set of programs that will lead the MDAB into compliance with federal and state air quality standards. The control measures and related emission reduction estimates within the Federal Particulate Matter Attainment Plan and Ozone Attainment Plan are based upon emissions projections for a future development scenario derived from land use, population, and employment characteristics defined in consultation with local governments. Accordingly, conformance with these attainment plans for development projects is determined by demonstrating compliance the indicators discussed below:

3.7.1 CONSISTENCY CRITERION NO. 1

Local land use plans and/or population projections

As previously stated, the City of Victorville General Plan designates the Project site or Heavy Industrial uses. The Heavy Industrial land use category refers to industrial and manufacturing uses that are more specialized in nature and require special consideration in terms of use of the property as well as impacts on adjacent properties (3). The Project Applicant proposes land uses that are consistent with development anticipated under the site's existing General Plan designation. The Project would therefore conform to local land use plans.

3.7.4 CONSISTENCY CRITERION NO. 2

All MDAQMD Rules and Regulations

The Project would be required to comply with all applicable MDAQMD Rules and Regulations, including, but not limited to Rules 401 (Visibile Emissions), 402 (Nuisance), and 403 (Fugitive Dust). As previously stated in Section ES.2 of this AQIA, the Project would implement BCAM AQ-1 (MDAQMD Rule 1113 for flat coatings).

3.7.3 CONSISTENCY CRITERION NO. 3

Demonstrating that the project will not increase the frequency or severity of a violation in the federal or state ambient air quality standards

As substantiated herein, Project construction and operational-source emissions would not exceed applicable MDAQMD regional thresholds after implementation of MM AQ-1. As such, the Project would not have the potential to increase the frequency or severity of a violation in the federal or state ambient air quality for on-going project operations.

AQMP CONSISTENCY CONCLUSION

The Project would conform to local land use plans, comply with all applicable all MDAQMD Rules and Regulations, and would not exeed the applicable regional thresholds. Therefore, the Project would be considered to have a less than signifiant impact and is consistent with the AQMP.

3.8 POTENTIAL IMPACTS TO SENSITIVE RECEPTORS

As per the MDAQMD's *Guidelines*, the following project types located within a specified distance to an existing or planned sensitive receptor land use must be evaluated to determine exposure of substantial pollutant concentrations to sensitive receptors (19):

- Any industrial project within 1,000 feet;
- A distribution center (40 or more trucks per day) within 1,000 feet;
- A major transportation project (50,000 or more vehicles per day) within 1,000 feet;
- A dry cleaner using perchloroethylene within 500 feet;
- A gasoline dispensing facility within 300 feet.

The proposed Project consists of 200,000 sf of High-Cube Cold Storage warehouse use and 796,520 sf of High-Cube Fulfillment Center Warehouse use. As such, the potential impact of Project-generated air pollutant emissions at sensitive receptors has also been considered. Sensitive receptors can include uses such as long-term health care facilities, rehabilitation centers, and retirement homes. Residences, schools, playgrounds, childcare centers, and athletic facilities can also be considered as sensitive receptors.

Receptors in the Project study area are described below and shown on Exhibit 3-A. All distances are measured from the Project sites boundary to the outdoor living areas (e.g., backyards) or at the building façade, whichever is closer to the Project sites. The selection of receptor locations is based on Federal Highway Administration (FHWA) guidelines and is consistent with additional guidance provided by Caltrans and the Federal Transit Administration (FTA). Distance is measured in a straight line from the project boundary to each receptor location.

- R1: Location R1 represents the existing residence at 17049 Montecito Drive, approximately 2,232 feet northwest of the Project site. R1 is placed at the private outdoor living area (backyard) facing the Project site.
- R2: Location R2 represents the Complete Trucking facility at 17384 Terra Linda Drive, approximately 228 feet north of the Project site.

- R3: Location R3 represents the existing residence at 13432 Jubilee Place, approximately 380 feet northeast of the Project site. R3 is placed at the private outdoor living area (backyard) facing the Project site.
- R4: Location R4 represents the sensitive residence at 13284 High Mesa Street, approximately 1,011 feet east of the Project site. R4 is placed at the private outdoor living area (backyard) facing the Project site.
- R5: Location R5 represents The Nutro Company facility at 13243 Nutro Way, approximately 265 feet south of the Project site.
- R6: Location R6 represents the sensitive residence at 13291 Great Falls Avenue, approximately 717 feet southwest of the Project site. R6 is placed at the private outdoor living area (backyard) facing the Project site.
- R7: Location R7 represents the sensitive residence at 16873 Lambert Lane, approximately 1,478 feet northwest of the Project site. R7 is placed at the private outdoor living area (backyard) facing the Project site.

The Project would have a significant impact if it results in a maximum incremental cancer risk from emission of diesel particulate matter of ≥ 10 in one million and/or a chronic & acute hazard index that is ≥ 1.0 .

For purposes of this evaluation, a Health Risk Assessment (HRA) has been prepared by Urban Crossroads, Inc. under a separate cover. The results of the *Ottawa Business Center Mobile Source Health Risk Assessment* (Urban Crossroads, Inc.) indicate that the Project would not result in any significant health risk impacts from exposure to TACs resulting from the Project (26).

EXHIBIT 3-A: SENSITIVE RECEPTOR LOCATIONS

3.9 ODORS

The potential for the Project to generate objectionable odors has also been considered. Land uses generally associated with odor complaints include:

- Agricultural uses (livestock and farming)
- Wastewater treatment plants
- Food processing plants
- Chemical plants
- Composting operations
- Refineries
- Landfills
- Dairies
- Fiberglass molding facilities

The Project does not propose or require land uses that would use substantive sources of objectionable odors. Potential temporary and intermittent odors may result from construction equipment exhaust and application of asphalt and architectural coatings. Temporary and intermittent construction-source emissions are controlled through existing requirements and industry Best Management Practices (BMPs) addressing proper storage of and application construction materials.

Over the life of the Project, odors may result from storage of municipal solid waste pending its transport to area landfills. Project-generated refuse would be stored in covered containers and removed at regular intervals in compliance with the City of Victorville's solid waste regulations.

The proposed Project would also be required to comply with MDAQMD Rule 402. Rule 402 provides that "[a] person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property." (27). Based on the preceding, the potential for the Project to create objectionable odors affecting a substantial number of people is considered less-than-significant.

3.10 CUMULATIVE IMPACTS

The MDAQMD relies on the SCAQMD guidance for determining cumulative impacts. The SCAQMD has recognized that there is typically insufficient information to quantitatively evaluate the cumulative contributions of multiple projects because each project applicant has no control over nearby projects.

The SCAQMD published a report on how to address cumulative impacts from air pollution: *White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution* (28). In this report the SCAQMD clearly states (Page D-3):

"...the AQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for toxic air contaminant (TAC) emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant."

Individual projects that do not generate operational or construction emissions that exceed the MDAQMD's recommended daily thresholds for project-specific impacts would also not cause a cumulatively considerable increase in emissions for those pollutants for which the Basin is in nonattainment, and, therefore, would not be considered to have a significant, adverse air quality impact. Conversely, individual project-related construction and operational emissions that exceed MDAQMD thresholds for project-specific impacts would be considered cumulatively considerable. As previously noted, the Project will not exceed the applicable MDAQMD regional threshold for construction and operational-source emissions. As such, the Project will not result in a cumulatively significant impact for construction or operational activity.

This page intentionally left blank

4 **REFERENCES**

- 1. Association of Environmental Professionals. 2020 CEQA California Environmental Quality Act. 2020.
- 2. **Mojave Air Quality Management District.** Rule 1113 Architectural Coatings. [Online] http://mdaqmd.ca.gov/home/showdocument?id=418.
- 3. City of Victorville. General Plan 2030.
- 4. **South Coast Air Quality Management District.** *Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning.* 2005.
- 5. California Air Resources Board. Ambient Air Quality Standards (AAQS). [Online] 2016. http://www.arb.ca.gov/research/aaqs/aaqs2.pdf.
- 6. United State Environmental Protection Agency. Frequent Questions about General Conformity . *EPA*. [Online] https://www.epa.gov/general-conformity/frequent-questions-about-general-conformity#8.
- 7. **Mojave Desert Air Quality Management District.** Ambient Air Monitoring. *Mojave Desert Air Quality Management District*. [Online] [Cited: May 8, 2019.] http://mdaqmd.ca.gov/air-quality/monitoring-info.
- Air Resources Board. State and National Ambient Air Quality Standards. [Online] https://www.arb.ca.gov/regact/2019/stateareadesignations/appc.pdf?_ga=2.169398369.15376157 02.1554741141-1192937971.1505156621.
- 9. —. iAdam: Air Quality Data Statistics. *California Air Resources Board.* [Online] https://arb.ca.gov/adam.
- 10. **California Air Resources Board.** iAir Quality Data (PST) Query Tool. *AQMIS.* [Online] https://www.arb.ca.gov/aqmis2/aqdselect.php?tab=specialrpt.
- 11. Environmental Protection Agency. National Ambient Air Quality Standards (NAAQS). [Online] 1990. https://www.epa.gov/environmental-topics/air-topics.
- 12. —. Air Pollution and the Clean Air Act. [Online] http://www.epa.gov/air/caa/.
- 13. United States Environmental Protection Agency. 1990 Clean Air Act Amendment Summary: Title I. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-i.
- 14. —. 1990 Clean Air Act Amendment Summary: Title II. [Online] https://www.epa.gov/clean-air-act-overview/1990-clean-air-act-amendment-summary-title-ii.
- 15. Air Resources Board. California Ambient Air Quality Standards (CAAQS). [Online] 2009. [Cited: April 16, 2018.] http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm.
- The California Energy Commission. 2019 Building Energy Efficiency Standards . California Energy Commission. [Online] 2018. https://www.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Stand ards_FAQ.pdf.
- 17. **Department of General Services.** Building Standards Commission. *CALGreen.* [Online] https://codes.iccsafe.org/content/chapter/15778/.
- 18. **California Air Resources Board.** Western Mojave Desert Air Quality Management Plans. [Online] https://www.arb.ca.gov/planning/sip/planarea/mojavesedsip.htm.

- 19. **Mojave Desert Air Quality Management District.** California Environmental Quality Act (CEQA) and Federal Conformity Guidelines. [Online] August 2016. http://mdaqmd.ca.gov/home/showdocument?id=538.
- 20. California Air Pollution Control Officers Association (CAPCOA). California Emissions Estimator Model (CalEEMod). [Online] www.caleemod.com.
- 21. Urban Crossroads, Inc. Ottawa Business Center Traffic Assessment. 2021.
- 22. South Coast Air Quality Management District. 2003 Air Quality Management Plan. [Online] 2003. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2003-airquality-management-plan/2003-aqmp-appendix-v.pdf.
- 23. —. Final 2003 AQMP Appendix V: Modeling and Attainment Demonstrations. [Online] 2003. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2003-airquality-management-plan/2003-aqmp-appendix-v.pdf.
- 24. Bay Area Air Quality Management District. [Online] http://www.baaqmd.gov/.
- 25. **South Coast Air Quality Management District.** 2003 Air Quality Management Plan. [Online] 2003. https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/2003-aqmp.
- 26. Urban Crossroads, Inc. Ottawa Business Center Mobile Source Health Risk Assessment. 2021.
- 27. **Mojave Desert Air Quality Management District.** Rule 402 Nuisance. [Online] May 7, 1976. http://mdaqmd.ca.gov/home/showdocument?id=290.
- 28. Goss, Tracy A and Kroeger, Amy. White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, 2003. http://www.aqmd.gov/rules/ciwg/final_white_paper.pdf.

This page intentionally left blank

5 CERTIFICATIONS

The contents of this air study report represent an accurate depiction of the environmental impacts associated with the proposed Ottawa Business Center Project. The information contained in this air quality impact assessment report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at <u>hqureshi@urbanxroads.com</u>.

Haseeb Qureshi Principal URBAN CROSSROADS, INC. hqureshi@urbanxroads.com

EDUCATION

Master of Science in Environmental Studies California State University, Fullerton • May 2010

Bachelor of Arts in Environmental Analysis and Design University of California, Irvine • June 2006

PROFESSIONAL AFFILIATIONS

AEP – Association of Environmental Planners AWMA – Air and Waste Management Association ASTM – American Society for Testing and Materials

PROFESSIONAL CERTIFICATIONS

Planned Communities and Urban Infill – Urban Land Institute • June 2011 Indoor Air Quality and Industrial Hygiene – EMSL Analytical • April 2008 Principles of Ambient Air Monitoring – CARB • August 2007 AB2588 Regulatory Standards – Trinity Consultants • November 2006 Air Dispersion Modeling – Lakes Environmental • June 2006

This page intentionally left blank

APPENDIX 2.1:

STATE/FEDERAL ATTAINMENT STATUS OF CRITERIA POLLUTANTS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

APPENDIX C

MAPS AND TABLES OF AREA DESIGNATIONS FOR STATE AND NATIONAL AMBIENT AIR QUALITY STANDARDS

This attachment fulfills the requirement of Health and Safety Code section 40718 for CARB to publish maps that identify areas where one or more violations of any State ambient air quality standard (State standard) or national ambient air quality standard (national standard) have been measured. The national standards are those promulgated under section 109 of the federal Clean Air Act (42 U.S.C. 7409).

This attachment is divided into three parts. The first part comprises a table showing the levels, averaging times, and measurement methods for each of the State and national standards. This is followed by a section containing maps and tables showing the area designations for each pollutant for which there is a State standard in the California Code of Regulations, title 17, section 70200. The last section contains maps and tables showing the most current area designations for the national standards.

	Ambient Air Quality Standards									
Pollutant	Averaging	California S	tandards ¹	Nat	tional Standards	2				
Fondtant	Time	Concentration ³	Method 4	Primary 3.5	Secondary 3.6	Method 7				
Ozone (O.):	1 Hour	0.09 ppm (180 µg/m ^s)	Ultraviolet Photometrv	_	Same as Primary	Ultraviolet				
(-3)	8 Hour	0.070 ppm (137 µg/mº)	- · · · · · · · · · · · · · · · · · · ·	0.070 ppm (137 μg/m ³)	Standard	Photometry				
Respirable Particulate	24 Hour	50 µg/m²	Gravimetric or Beta	150 µg/m³	Same as Primary	Inertial Separation				
Matter (PM10) ⁹	Annual Arithmetic Mean	20 µg/m⊧	Attenuation	—	Standard	Analysis				
Fine Particulate	24 Hour	_	—	35 μg/m ^₀	Same as Primary Standard	Inertial Separation				
Matter (PM2.5) [,]	Annual Arithmetic Mean	12 µg/m²	Gravimetric or Beta Attenuation	12.0 µg/m	15 µg/m⁰	Analysis				
Carbon	1 Hour	20 ppm (23 mg/m ^s)	Non-Dispersive	35 ppm (40 mg/m ^s)	—	Non-Dispersive				
Monoxide	8 Hour	9.0 ppm (10 mg/m³)	Infrared Photometry (NDIR)	9 ppm (10 mg/m³)	_	Infrared Photometry (NDIR)				
(00)	8 Hour (Lake Tahoe)	6 ppm (7 mg/m [,])	(—	_	(
Nitrogen	1 Hour	0.18 ppm (339 µg/m³)	Gas Phase	100 ppb (188 µg/m³)	—	Gas Phase				
(NO ₂) ¹⁰	Annual Arithmetic Mean	0.030 ppm (57 µg/m³)	Chemiluminescence	0.053 ppm (100 µg/m³)	Same as Primary Standard	Chemiluminescence				
	1 Hour	0.25 ppm (655 µg/m ["])		75 ppb (196 µg/m³)	_	kage=1-1-4				
Sulfur Dioxide	3 Hour	_	Ultraviolet	—	0.5 ppm (1300 µg/m³)	Flourescence; Spectrophotometry				
(SO₂)¹¹	24 Hour	0.04 ppm (105 µg/m³)	Huorescence	0.14 ppm (for certain areas) ¹¹	—	(Pararosaniline Method)				
	Annual Arithmetic Mean	—		0.030 ppm (for certain areas) ¹¹	_					
	30 Day Average	1.5 μg/m³		—	_	LEnh Mahama				
Lead ^{12,13}	Calendar Quarter	_	Atomic Absorption	1.5 μg/m³ (for certain areas) ¹²	Same as Primary	Sampler and Atomic Absorption				
	Rolling 3-Month Average	_		0.15 µg/m³	Standard					
Visibility Reducing Particles⁴	8 Hour	See footnote 14	Beta Attenuation and Transmittance through Filter Tape		No					
Sulfates	24 Hour	25 µg/m³	lon Chromatography		National					
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m²)	Ultraviolet Fluorescence		Standards					
Vinyl Chloride ¹²	24 Hour	0.01 ppm (26 µg/m³)	Gas Chromatography							
See footnotes of	on next page									

Г

- California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1- and 24-hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.
- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24-hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24-hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the CARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- 6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.
- 8. On October 1, 2015, the national 8-hour ozone primary and secondary standards were lowered from 0.075 to 0.070 ppm.
- 9. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 10. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 11. On June 2, 2010, a new 1-hour SO₂ standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO₂ national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.

Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

- 12. The CARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 13. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 μg/m³)as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 14. In 1989, the CARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

Area Designations for the State Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a State standard set forth in the California Code of Regulations, title 17, section 60200. Each area is identified as attainment, nonattainment, nonattainment-transitional, or unclassified for each pollutant, as shown below:

Attainment	А
Nonattainment	Ν
Nonattainment-Transitional	NA-T
Unclassified	U

In general, CARB designates areas by air basin for pollutants with a regional impact and by county for pollutants with a more local impact. However, when there are areas within an air basin or county with distinctly different air quality deriving from sources and conditions not affecting the entire air basin or county, CARB may designate a smaller area. Generally, when boundaries of the designated area differ from the air basin or county boundaries, the description of the specific area is referenced at the bottom of the summary table.

FIGURE 1

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

TABLE 1

California Ambient Air Quality Standards Area Designations for Ozone ¹

	Ν	NA-T	U	А		Ν	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN					NORTHEAST PLATEAU AIR BASIN				Х
Alpine County			Х		SACRAMENTO VALLEY AIR BASIN				
Inyo County	Х				Colusa and Glenn Counties				Х
Mono County	Х				Shasta County		х		
LAKE COUNTY AIR BASIN				Х	Sutter/Yuba Counties				
LAKE TAHOE AIR BASIN				Х	Sutter Buttes	Х			
MOJAVE DESERT AIR BASIN	Х				Remainder of Sutter County	Х			
MOUNTAIN COUNTIES AIR BASIN					Yuba County	Х			
Amador County		Х			Yolo/Solano Counties		Х		
Calaveras County	Х				Remainder of Air Basin	Х			
El Dorado County (portion)	Х				SALTON SEA AIR BASIN	Х			
Mariposa County	Х				SAN DIEGO AIR BASIN	Х			
Nevada County	Х				SAN FRANCISCO BAY AREA AIR	Х			
Placer County (portion)	Х					x			
Plumas County			Х		SAN JOAQUIN VALLET AIR BASIN			1	1
Sierra County			Х		SOUTH CENTRAL COAST AIR BASIN	X		1	T
Tuolumne County	Х					X			
NORTH CENTRAL COAST AIR BASIN				Х	Santa Barbara County	X			
NORTH COAST AIR BASIN				Х		×			

¹ AB 3048 (Olberg) and AB 2525 (Miller) signed into law in 1996, made changes to Health and Safety Code, section 40925.5. One of the changes allows nonattainment districts to become nonattainment-transitional for ozone by operation of law.

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

TABLE 2

California Ambient Air Quality Standards	
Area Designation for Suspended Particulate Matter (P	' M ₁₀)

Α

Х

Х

Х

	Ν	U	Α		Ν	U
GREAT BASIN VALLEYS AIR BASIN	Х			NORTH CENTRAL COAST AIR BASIN	Х	
LAKE COUNTY AIR BASIN			Х	NORTH COAST AIR BASIN		
LAKE TAHOE AIR BASIN	Х			Del Norte, Sonoma (portion) and Trinity Counties		
MOJAVE DESERT AIR BASIN	Х			Remainder of Air Basin	Х	
MOUNTAIN COUNTIES AIR BASIN				NORTHEAST PLATEAU AIR BASIN		
Amador County		Х		Siskiyou County		
Calaveras County	Х			Remainder of Air Basin		Х
El Dorado County (portion)	Х			SACRAMENTO VALLEY AIR BASIN		
Mariposa County				Shasta County		
- Yosemite National Park	Х			Remainder of Air Basin	Х	
- Remainder of County		Х		SALTON SEA AIR BASIN	Х	
Nevada County	Х			SAN DIEGO AIR BASIN	Х	
Placer County (portion)	Х			SAN FRANCISCO BAY AREA AIR BASIN	Х	
Plumas County	Х			SAN JOAQUIN VALLEY AIR BASIN	Х	
Sierra County	Х			SOUTH CENTRAL COAST AIR BASIN	Х	
Tuolumne County		Х		SOUTH COAST AIR BASIN	Х	

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

TABLE 3

California Ambient Air Quality Standards Area Designations for Fine Particulate Matter (PM_{2.5})

	N	υ	Α
GREAT BASIN VALLEYS AIR BASIN			Х
LAKE COUNTY AIR BASIN			Х
LAKE TAHOE AIR BASIN			Х
MOJAVE DESERT AIR BASIN			
San Bernardino County			
- County portion of federal Southeast Desert Modified AQMA for Ozone ¹			х
Remainder of Air Basin			Х
MOUNTAIN COUNTIES AIR BASIN			
Plumas County			
- Portola Valley ²	Х		
Remainder of Air Basin		Х	
NORTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Х
NORTHEAST PLATEAU AIR BASIN			Х
SACRAMENTO VALLEY AIR BASIN			
Butte County	Х		
Colusa County			Х
Glenn County			Х
Placer County (portion)			Х
Sacramento County			Х
Shasta County			Х
Sutter and Yuba Counties			Х
Remainder of Air Basin		Х	

	Ν	U	Α
SALTON SEA AIR BASIN			
Imperial County			
- City of Calexico ³	Х		
Remainder of Air Basin			Х
SAN DIEGO AIR BASIN	Х		
SAN FRANCISCO BAY AREA AIR BASIN	Х		
SAN JOAQUIN VALLEY AIR BASIN	Х		
SOUTH CENTRAL COAST AIR BASIN			
San Luis Obispo County			Х
Santa Barbara County		Х	
Ventura County			Х
SOUTH COAST AIR BASIN	Х		

¹ California Code of Regulations, title 17, section 60200(b)

² California Code of Regulations, title 17, section 60200(c)

³ California Code of Regulations, title 17, section 60200(a)

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

TABLE 4

California Ambient Air Quality Standards Area Designation for Carbon Monoxide*

	Ν	NA-T	U	А		Ν	NA-T	U	А
GREAT BASIN VALLEYS AIR BASIN					SACRAMENTO VALLEY AIR BASIN				
Alpine County			Х		Butte County				Х
Inyo County				Х	Colusa County			Х	
Mono County				Х	Glenn County			Х	
LAKE COUNTY AIR BASIN				Х	Placer County (portion)				Х
LAKE TAHOE AIR BASIN				Х	Sacramento County				Х
MOJAVE DESERT AIR BASIN					Shasta County			Х	
Kern County (portion)			Х		Solano County (portion)				Х
Los Angeles County (portion)				Х	Sutter County				Х
Riverside County (portion)			Х		Tehama County			Х	
San Bernardino County (portion)				Х	Yolo County				Х
MOUNTAIN COUNTIES AIR BASIN					Yuba County			Х	
Amador County			Х		SALTON SEA AIR BASIN				Х
Calaveras County			Х		SAN DIEGO AIR BASIN				Х
El Dorado County (portion)			Х		SAN FRANCISCO BAY AREA AIR BASIN				Х
Mariposa County			Х		SAN JOAQUIN VALLEY AIR BASIN				
Nevada County			Х		Fresno County				Х
Placer County (portion)			Х		Kern County (portion)				Х
Plumas County				Х	Kings County			Х	
Sierra County			Х		Madera County			Х	
Tuolumne County				Х	Merced County			Х	
NORTH CENTRAL COAST AIR BASIN					San Joaquin County				Х
Monterey County				Х	Stanislaus County				Х
San Benito County			Х		Tulare County				Х
Santa Cruz County			Х		SOUTH CENTRAL COAST AIR BASIN				Х
NORTH COAST AIR BASIN					SOUTH COAST AIR BASIN				Х
Del Norte County			Х						
Humboldt County				Х					
Mendocino County				Х					
Sonoma County (portion)			Х						
Trinity County			Х						
NORTHEAST PLATEAU AIR BASIN			Х						

 * The area designated for carbon monoxide is a county or portion of a county

FIGURE 5

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

TABLE 5

California Ambient Air Quality Standards Area Designations for Nitrogen Dioxide

	Z	υ	A
GREAT BASIN VALLEYS AIR BASIN			Х
LAKE COUNTY AIR BASIN			Х
LAKE TAHOE AIR BASIN			Х
MOJAVE DESERT AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Х
NORTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Х
NORTHEAST PLATEAU AIR BASIN			Х

	Ν	υ	А
SACRAMENTO VALLEY AIR BASIN			Х
SALTON SEA AIR BASIN			Х
SAN DIEGO AIR BASIN			Х
SAN FRANCISCO BAY AREA AIR BASIN			Х
SAN JOAQUIN VALLEY AIR BASIN			Х
SOUTH CENTRAL COAST AIR BASIN			Х
SOUTH COAST AIR BASIN			
CA 60 Near-road Portion of San Bernardino, Riverside, and Los Angeles Counties	х		
Remainder of Air Basin			Х

FIGURE 6

Last Updated: October 2020 Air Quality Planning and Science Division, CARB
California Ambient Air Quality Standards Area Designation for Sulfur Dioxide*

	Ν	Α
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOJAVE DESERT AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х

	Ν	А
SACRAMENTO VALLEY AIR BASIN		Х
SALTON SEA AIR BASIN		Х
SAN DIEGO AIR BASIN		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		Х

* The area designated for sulfur dioxide is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

FIGURE 7

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

California Ambient Air Quality Standards Area Designation for Sulfates

	Ν	U	Α
GREAT BASIN VALLEYS AIR BASIN			Х
LAKE COUNTY AIR BASIN			Х
LAKE TAHOE AIR BASIN			Х
MOJAVE DESERT AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Х
NORTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Х
NORTHEAST PLATEAU AIR BASIN			Х

	Ν	υ	A
SACRAMENTO VALLEY AIR BASIN			Х
SALTON SEA AIR BASIN			Х
SAN DIEGO AIR BASIN			Х
SAN FRANCISCO BAY AREA AIR BASIN			Х
SAN JOAQUIN VALLEY AIR BASIN			Х
SOUTH CENTRAL COAST AIR BASIN			Х
SOUTH COAST AIR BASIN			Х

FIGURE 8

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

California Ambient Air Quality Standards Area Designations for Lead (particulate)*

	Ν	υ	Α
GREAT BASIN VALLEYS AIR BASIN			Х
LAKE COUNTY AIR BASIN			Х
LAKE TAHOE AIR BASIN			Х
MOJAVE DESERT AIR BASIN			Х
MOUNTAIN COUNTIES AIR BASIN			Х
NORTH CENTRAL COAST AIR BASIN			Х
NORTH COAST AIR BASIN			Х
NORTHEAST PLATEAU AIR BASIN			Х
SACRAMENTO VALLEY AIR BASIN			Х

	Ν	U	Α
SALTON SEA AIR BASIN			Х
SAN DIEGO AIR BASIN			Х
SAN FRANCISCO BAY AREA AIR BASIN			Х
SAN JOAQUIN VALLEY AIR BASIN			Х
SOUTH CENTRAL COAST AIR BASIN			Х
SOUTH COAST AIR BASIN			Х

* The area designated for lead is a county or portion of a county. Since all areas in the State are in attainment for this standard, air basins are indicated here for simplicity.

FIGURE 9

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

California Ambient Air Quality Standards Area Designation for Hydrogen Sulfide*

	N	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN				
Alpine County			Х	
Inyo County				Х
Mono County				Х
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN			Х	
MOJAVE DESERT AIR BASIN				
Kern County (portion)			Х	
Los Angeles County (portion)			Х	
Riverside County (portion)			Х	
San Bernardino County (portion)				
- Searles Valley Planning Area ¹	Х			
- Remainder of County			Х	
MOUNTAIN COUNTIES AIR BASIN				
Amador County				
- City of Sutter Creek	Х			
- Remainder of County			Х	
Calaveras County			Х	
El Dorado County (portion)			Х	
Mariposa County			Х	
Nevada County			Х	
Placer County (portion)			Х	
Plumas County			Х	
Sierra County			Х	
Tuolumne County			Х	

	Ν	NA-T	U	А
NORTH CENTRAL COAST AIR BASIN			Х	
NORTH COAST AIR BASIN				
Del Norte County			Х	
Humboldt County				Х
Mendocino County			Х	
Sonoma County (portion)				
- Geyser Geothermal Area ²				Х
- Remainder of County			Х	
Trinity County			Х	
NORTHEAST PLATEAU AIR BASIN			Х	
SACRAMENTO VALLEY AIR BASIN			Х	
SALTON SEA AIR BASIN			Х	
SAN DIEGO AIR BASIN			Х	
SAN FRANCISCO BAY AREA AIR BASIN			Х	
SAN JOAQUIN VALLEY AIR BASIN			Х	
SOUTH CENTRAL COAST AIR BASIN				
San Luis Obispo County				Х
Santa Barbara County				Х
Ventura County			Х	
SOUTH COAST AIR BASIN			Х	

* The area designated for hydrogen sulfide is a county or portion of a county

 ¹ 52 Federal Register 29384 (August 7, 1987)
² California Code of Regulations, title 17, section 60200(d)

Last Updated: October 2020 Air Quality Planning and Science Division, CARB

California Ambient Air Quality Standards Area Designation for Visibility Reducing Particles

	Ν	NA-T	U	Α
GREAT BASIN VALLEYS AIR BASIN			Х	
LAKE COUNTY AIR BASIN				Х
LAKE TAHOE AIR BASIN			Х	
MOJAVE DESERT AIR BASIN			Х	
MOUNTAIN COUNTIES AIR BASIN			Х	
NORTH CENTRAL COAST AIR BASIN			Х	
NORTH COAST AIR BASIN			Х	
NORTHEAST PLATEAU AIR BASIN			Х	

	Ν	NA-T	υ	А
SACRAMENTO VALLEY AIR BASIN			Х	
SALTON SEA AIR BASIN			Х	
SAN DIEGO AIR BASIN			Х	
SAN FRANCISCO BAY AREA AIR BASIN			Х	
SAN JOAQUIN VALLEY AIR BASIN			Х	
SOUTH CENTRAL COAST AIR BASIN			Х	
SOUTH COAST AIR BASIN			Х	

Area Designations for the National Ambient Air Quality Standards

The following maps and tables show the area designations for each pollutant with a national ambient air quality standard. Additional information about the federal area designations is available on the U.S. EPA website:

https://www.epa.gov/green-book

Over the last several years, U.S. EPA has been reviewing the levels of the various national standards. The agency has already promulgated new standard levels for some pollutants and is considering revising the levels for others. Information about the status of these reviews is available on the U.S. EPA website:

https://www.epa.gov/criteria-air-pollutants

Designation Categories

Suspended Particulate Matter (PM_{10}). The U.S. EPA uses three categories to designate areas with respect to PM_{10} :

- Attainment (A)
- Nonattainment (N)
- Unclassifiable (U)

Ozone, Fine Suspended Particulate Matter ($PM_{2.5}$), Carbon Monoxide (CO), and Nitrogen Dioxide (NO_2). The U.S. EPA uses two categories to designate areas with respect to these standards:

- Nonattainment (N)
- Unclassifiable/Attainment (U/A)

The national 1-hour ozone standard was revoked effective June 15, 2005, and the area designations map reflects the 2015 national 8-hour ozone standard of 0.070 ppm. Area designations were finalized on August 3, 2018.

On December 14, 2012, the U.S. EPA established a new national annual primary $PM_{2.5}$ standard of 12.0 µg/m³. Area designations were finalized in December 2014. The current designation map reflects the most recently revised (2012) annual average standard of 12.0 µg/m³ as well as the 24-hour standard of 35 µg/m³, revised in 2006.

On January 22, 2010, the U.S. EPA established a new national 1-hour NO₂ standard of 100 parts per billion (ppb) and retained the annual average standard of 53 ppb. Designations for the primary NO₂ standard became effective on February 29, 2012. All areas of California meet this standard.

Sulfur Dioxide (SO₂). The U.S. EPA uses three categories to designate areas with respect to the 24-hour and annual average sulfur dioxide standards. These designation categories are:

- Nonattainment (N),
- Unclassifiable (U), and
- Unclassifiable/Attainment (U/A).

On June 2, 2010, the U.S. EPA established a new primary 1-hour SO₂ standard of 75 parts per billion (ppb). At the same time, U.S. EPA revoked the 24-hour and annual

average standards. Area designations for the 1-hour SO₂ standard were finalized on December 21, 2017 and are reflected in the area designations map.

Lead (particulate). The U.S. EPA promulgated a new rolling 3-month average lead standard in October 2008 of 0.15 μ g/m³. Designations were made for this standard in November 2010.

Designation Areas

From time to time, the boundaries of the California air basins have been changed to facilitate the planning process. CARB generally initiates these changes, and they are not always reflected in the U.S. EPA's area designations. For purposes of consistency, the maps in this attachment reflect area designation boundaries and nomenclature as promulgated by the U.S. EPA. In some cases, these may not be the same as those adopted by CARB. For example, the national area designations reflect the former Southeast Desert Air Basin. In accordance with Health and Safety Code section 39606.1, CARB redefined this area in 1996 to be the Mojave Desert Air Basin and Salton Sea Air Basin. The definitions and boundaries for all areas designated for the national standards can be found in Title 40, Code of Federal Regulations (CFR), Chapter I, Subchapter C, Part 81.305. They are available on the web at:

https://ecfr.io/Title-40/se40.20.81 1305

FIGURE 11

Source Date: August 2019 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for 8-Hour Ozone*

	Ν	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		
Amador County	Х	
Calaveras County	Х	
El Dorado County (portion) ¹	Х	
Mariposa County	Х	
Nevada County		
- Western Nevada County	Х	
- Remainder of County		Х
Placer County (portion) ¹	Х	
Plumas County		Х
Sierra County		Х
Tuolumne County	Х	
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		
Butte County	Х	
Colusa County		Х
Glenn County		Х
Sacramento Metro Area ¹	Х	
Shasta County		Х
Sutter County		
- Sutter Buttes	Х	
- Southern portion of Sutter County ¹	Х	
- Remainder of Sutter County		Х
Tehama County		
- Tuscan Buttes	Х	
- Remainder of Tehama County		Х

	Ν	U/A
SACRAMENTO VALLEY AIR BASIN (cont.)		
Yolo County ¹	х	
Yuba County		Х
SAN DIEGO COUNTY	х	
SAN FRANCISCO BAY AREA AIR BASIN	Х	
SAN JOAQUIN VALLEY AIR BASIN	Х	
SOUTH CENTRAL COAST AIR BASIN ²		
San Luis Obispo County		
- Eastern San Luis Obispo County	Х	
- Remainder of County		Х
Santa Barbara County		Х
Ventura County		
- Area excluding Anacapa and San Nicolas Islands	х	
- Channel Islands ²		Х
SOUTH COAST AIR BASIN ²	Х	
SOUTHEAST DESERT AIR BASIN		
Kern County (portion)	х	
- Indian Wells Valley		Х
Imperial County	х	
Los Angeles County (portion)	Х	
Riverside County (portion)		
- Coachella Valley	Х	
- Non-AQMA portion		Х
San Bernardino County		
- Western portion (AQMA)	Х	
- Eastern portion (non-AQMA)		Х

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. NOTE: This map and table reflect the 2015 8-hour ozone standard of 0.070 ppm.

¹ For this purpose, the Sacramento Metro Area comprises all of Sacramento and Yolo Counties, the Sacramento Valley Air Basin portion of Solano County, the southern portion of Sutter County, and the Sacramento Valley and Mountain Counties Air Basins portions of Placer and El Dorado counties.

² South Central Coast Air Basin Channel Islands:

Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands.

Ventura County includes Anacapa and San Nicolas Islands.

South Coast Air Basin:

Los Angeles County includes San Clemente and Santa Catalina Islands.

Source Date: October 2020 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for Suspended Particulate Matter (PM₁₀)*

	Ν	U	А
GREAT BASIN VALLEYS AIR BASIN			
Alpine County		Х	
Inyo County			
- Owens Valley Planning Area	Х		
- Coso Junction			Х
- Remainder of County		Х	
Mono County			
- Mammoth Lake Planning Area			Х
- Mono Lake Basin	Х		
- Remainder of County		Х	
LAKE COUNTY AIR BASIN		Х	
LAKE TAHOE AIR BASIN		Х	
MOUNTAIN COUNTIES AIR BASIN			
Placer County (portion) ¹		Х	
Remainder of Air Basin		Х	
NORTH CENTRAL COAST AIR BASIN		Х	
NORTH COAST AIR BASIN		Х	
NORTHEAST PLATEAU AIR BASIN		Х	
SACRAMENTO VALLEY AIR BASIN			
Butte County		Х	
Colusa County		Х	
Glenn County		Х	
Placer County (portion) ¹		Х	
Sacramento County ²			Х
Shasta County		Х	
Solano County (portion)		Х	
Sutter County		Х	
Tehama County		Х	
Yolo County		Х	
Yuba County		Х	

Ν	U	А
	Х	
	Х	
		Х
	Х	
		Х
		Х
х		
	Х	
		Х
	Х	
	Х	
Х		
	Х	
Х		
Х	-	
	N	N U X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

¹ U.S. EPA designation puts the Sacramento Valley Air Basin portion of Placer County in the Mountain Counties Air Basin.

 $^{^{2}}$ Air quality in Sacramento County meets the national PM₁₀ standards. The request for redesignation to attainment was approved by U.S. EPA in September 2013.

³ The request for redesignation to attainment for the Imperial Valley Planning Area was approved by U.S. EPA and in September 2020, effective October 2020.

 $^{^4}$ Air quality in Coachella Valley meets the national PM₁₀ standards. A request for redesignation to attainment has been submitted to U.S. EPA.

Area Designations for National Ambient Air Quality Standards PM2.5

Source Date: August 2019 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for Fine Particulate Matter (PM_{2.5})

	Ν	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		
Plumas County		
- Portola Valley Portion of Plumas	Х	
- Remainder of Plumas County		Х
Remainder of Air Basin		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		
Sacramento Metro Area ¹	Х	
Sutter County		Х
Yuba County (portion)		Х
Remainder of Air Basin		Х

	Ν	U/A
SAN DIEGO COUNTY		х
SAN FRANCISCO BAY AREA AIR BASIN ²	Х	
SAN JOAQUIN VALLEY AIR BASIN	Х	
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN ³	Х	
SOUTHEAST DESERT AIR BASIN		
Imperial County (portion) ⁴	Х	
Remainder of Air Basin		Х

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. This map reflects the 2006 24-hour $PM_{2.5}$ standard as well as the 1997 and 2012 $PM_{2.5}$ annual standards.

¹ For this purpose, Sacramento Metro Area comprises all of Sacramento and portions of El Dorado, Placer, Solano, and Yolo Counties. Air quality in this area meets the national $PM_{2.5}$ standards. A Determination of Attainment for the 2006 24-hour $PM_{2.5}$ standard was made by U.S. EPA in June 2017.

 $^{^2}$ Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

³ Those lands of the Santa Rosa Band of Cahulla Mission Indians in Riverside County are designated Unclassifiable/Attainment.

⁴ That portion of Imperial County encompassing the urban and surrounding areas of Brawley, Calexico, El Centro, Heber, Holtville, Imperial, Seeley, and Westmorland. Air quality in this area meets the national PM_{2.5} standards. A Determination of Attainment for the 2006 24-hour PM_{2.5} standard was made by U.S. EPA in June 2017.

Source Date: August 2019 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for Carbon Monoxide*

	Ν	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		х

	Ν	U/A
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		х
SOUTHEAST DESERT AIR BASIN		х

 * Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Source Date: August 2019 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for Nitrogen Dioxide*

	Ν	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		х
MOUNTAIN COUNTIES AIR BASIN		х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		х
NORTHEAST PLATEAU AIR BASIN		х

	Ν	U/A
SACRAMENTO VALLEY AIR BASIN		х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		х
SAN JOAQUIN VALLEY AIR BASIN		х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		х

 * Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305.

Source Date: August 2019 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for Sulfur Dioxide*

	Ν	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		Х
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		
Fresno County		Х
Kern County (portion)		Х
Kings County		Х
Madera County		Х
Merced County		Х
San Joaquin County		Х
Stanislaus County		Х
Tulare County		Х

	Ν	U/A
SOUTH CENTRAL COAST AIR BASIN		
San Luis Obispo County		х
Santa Barbara County		Х
Ventura County		х
Channel Islands ¹		х
SOUTH COAST AIR BASIN		Х
SOUTHEAST DESERT AIR BASIN		
Imperial County		Х
Remainder of Air Basin		Х

* Definitions and references for all areas can be found in 40 CFR, Chapter I, Part 81.305. NOTE: This map and table reflect the 2010 1-hour SO₂ standard of 75 ppb.

¹ South Central Coast Air Basin Channel Islands: Santa Barbara County includes Santa Cruz, San Miguel, Santa Rosa, and Santa Barbara Islands.

Ventura County includes Anacapa and San Nicolas Islands.

Note that the San Clemente and Santa Catalina Islands are considered part of Los Angeles County, and therefore, are included as part of the South Coast Air Basin.

Source Date: August 2019 Air Quality Planning and Science Division

National Ambient Air Quality Standards Area Designations for Lead (particulate)

	Ν	U/A
GREAT BASIN VALLEYS AIR BASIN		Х
LAKE COUNTY AIR BASIN		Х
LAKE TAHOE AIR BASIN		Х
MOUNTAIN COUNTIES AIR BASIN		Х
NORTH CENTRAL COAST AIR BASIN		Х
NORTH COAST AIR BASIN		Х
NORTHEAST PLATEAU AIR BASIN		Х
SACRAMENTO VALLEY AIR BASIN		Х

	Ν	U/A
SAN DIEGO COUNTY		Х
SAN FRANCISCO BAY AREA AIR BASIN		Х
SAN JOAQUIN VALLEY AIR BASIN		Х
SOUTH CENTRAL COAST AIR BASIN		Х
SOUTH COAST AIR BASIN		
Los Angeles County (portion) ¹	Х	
Remainder of Air Basin		Х
SOUTHEAST DESERT AIR BASIN		Х

¹ Portion of County in Air Basin, not including Channel Islands

This page intentionally left blank

APPENDIX 3.1:

CALEEMOD CONSTRUCTION EMISSIONS MODEL OUTPUTS (UNMITIGATED)

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Business Center (Construction - Unmitigated)

San Bernardino-Mojave Desert County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Refrigerated Warehouse-No Rail	200.00	1000sqft	4.59	200,000.00	0
Unrefrigerated Warehouse-No Rail	796.52	1000sqft	18.29	796,520.00	0
Other Asphalt Surfaces	1,131.28	1000sqft	25.97	1,131,280.00	0
Parking Lot	641.00	Space	3.07	133,859.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edison				
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity ((Ib/MWhr)	0.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use - Total Project area is 51.92 acres

Construction Phase - Construction anticipated to begin Summer 2023 and end Summer 2024

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction

Grading - Analysis conservatively assumes that up to 10 acres can be disturbed per day

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblConstructionPhase	NumDays	75.00	160.00
tblConstructionPhase	NumDays	1,110.00	175.00
tblEnergyUse	LightingElect	0.35	0.00
tblEnergyUse	LightingElect	2.37	0.00
tblEnergyUse	LightingElect	1.17	0.00
tblEnergyUse	NT24E	36.52	0.00
tblEnergyUse	NT24E	0.82	0.00
tblEnergyUse	NT24NG	48.51	0.00
tblEnergyUse	NT24NG	0.03	0.00
tblEnergyUse	T24E	0.95	0.00
tblEnergyUse	T24E	0.33	0.00
tblEnergyUse	T24NG	3.22	0.00
tblEnergyUse	T24NG	1.98	0.00
tblGrading	AcresOfGrading	1,320.00	1,100.00
tblGrading	AcresOfGrading	300.00	400.00
tblGrading	MaterialImported	0.00	261,395.00
tblLandUse	LandUseSquareFeet	256,400.00	133,859.00
tblLandUse	LotAcreage	5.77	3.07

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	9.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028
tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblSolidWaste	SolidWasteGenerationRate	188.00	0.00
tblSolidWaste	SolidWasteGenerationRate	748.73	0.00
tblTripsAndVMT	VendorTripNumber	0.00	46.00
tblTripsAndVMT	VendorTripNumber	0.00	126.00
tblTripsAndVMT	VendorTripNumber	371.00	200.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	2.12	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.12	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	2.12	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	46,250,000.00	0.00
tblWater	IndoorWaterUseRate	184,195,250.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	lay		
2023	12.7875	162.4439	97.7946	0.4095	47.3614	5.3922	51.0900	21.1790	4.9747	24.6098	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09
2024	50.1787	115.7261	137.3612	0.3314	11.0898	4.7817	15.8715	2.9723	4.4586	7.4309	0.0000	32,824.68 89	32,824.68 89	5.8531	0.7996	33,209.30 72
Maximum	50.1787	162.4439	137.3612	0.4095	47.3614	5.3922	51.0900	21.1790	4.9747	24.6098	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/o	day							lb/d	lay		
2023	12.7875	162.4439	97.7946	0.4095	47.3614	5.3922	51.0900	21.1790	4.9747	24.6098	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09
2024	50.1787	115.7261	137.3612	0.3314	11.0898	4.7817	15.8715	2.9723	4.4586	7.4309	0.0000	32,824.68 89	32,824.68 89	5.8531	0.7996	33,209.30 72
Maximum	50.1787	162.4439	137.3612	0.4095	47.3614	5.3922	51.0900	21.1790	4.9747	24.6098	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/1/2023	7/26/2023	5	40	
2	Grading	Grading	7/27/2023	12/27/2023	5	110	
3	Building Construction	Building Construction	12/28/2023	8/28/2024	5	175	
4	Architectural Coating	Architectural Coating	1/18/2024	8/28/2024	5	160	
5	Paving	Paving	5/16/2024	8/28/2024	5	75	

Acres of Grading (Site Preparation Phase): 400

Acres of Grading (Grading Phase): 1100

Acres of Paving: 29.04

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,494,780; Non-Residential Outdoor: 498,260; Striped Parking Area: 75,908 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor	
Site Preparation	Crawler Tractors	9	8.00	212	0.43	
Site Preparation	Rubber Tired Dozers	6	8.00	247	0.40	
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37	
Grading	Crawler Tractors	6	8.00	212	0.43	
Grading	Excavators	6	8.00	158	0.38	
Grading	Graders	3	8.00	187	0.41	

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Grading	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	6	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Cranes	3	8.00	231	0.29
Building Construction	Crawler Tractors	9	8.00	212	0.43
Building Construction	Forklifts	9	8.00	89	0.20
Building Construction	Generator Sets	3	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Architectural Coating	Air Compressors	3	8.00	78	0.48
Paving	Pavers	6	8.00	130	0.42
Paving	Paving Equipment	6	8.00	132	0.36
Paving	Rollers	6	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	15	38.00	46.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	24	60.00	126.00	32,674.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	27	950.00	200.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	3	190.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	18	45.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	8.1055	88.8841	38.8310	0.1217		3.7142	3.7142	1 1 1 1	3.4170	3.4170		11,786.44 99	11,786.44 99	3.8120		11,881.74 93
Total	8.1055	88.8841	38.8310	0.1217	46.7375	3.7142	50.4517	21.0065	3.4170	24.4235		11,786.44 99	11,786.44 99	3.8120		11,881.74 93

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0549	1.6732	0.6876	8.6600e- 003	0.3117	0.0128	0.3245	0.0898	0.0123	0.1020		928.9801	928.9801	0.0243	0.1371	970.4514
Worker	0.1263	0.0707	1.0976	2.8100e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		287.2292	287.2292	7.9600e- 003	7.3100e- 003	289.6058
Total	0.1812	1.7439	1.7852	0.0115	0.6239	0.0144	0.6383	0.1726	0.0137	0.1863		1,216.209 3	1,216.209 3	0.0322	0.1444	1,260.057 2

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Fugitive Dust		, , ,			46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	8.1055	88.8841	38.8310	0.1217		3.7142	3.7142		3.4170	3.4170	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93
Total	8.1055	88.8841	38.8310	0.1217	46.7375	3.7142	50.4517	21.0065	3.4170	24.4235	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0549	1.6732	0.6876	8.6600e- 003	0.3117	0.0128	0.3245	0.0898	0.0123	0.1020		928.9801	928.9801	0.0243	0.1371	970.4514
Worker	0.1263	0.0707	1.0976	2.8100e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		287.2292	287.2292	7.9600e- 003	7.3100e- 003	289.6058
Total	0.1812	1.7439	1.7852	0.0115	0.6239	0.0144	0.6383	0.1726	0.0137	0.1863		1,216.209 3	1,216.209 3	0.0322	0.1444	1,260.057 2

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/o	day		
Fugitive Dust		1 1 1			29.0052	0.0000	29.0052	11.1263	0.0000	11.1263		1 1 1	0.0000			0.0000
Off-Road	11.7220	125.0802	84.2275	0.2146		5.0110	5.0110	1 1 1 1 1 1	4.6101	4.6101		20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	11.7220	125.0802	84.2275	0.2146	29.0052	5.0110	34.0162	11.1263	4.6101	15.7365		20,774.60 46	20,774.60 46	6.7189		20,942.57 78

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.7157	32.6690	9.9507	0.1668	5.2017	0.3436	5.5453	1.4263	0.3287	1.7551		18,183.73 01	18,183.73 01	0.7758	2.8822	19,062.02 78
Vendor	0.1504	4.5831	1.8833	0.0237	0.8539	0.0351	0.8889	0.2459	0.0336	0.2794		2,544.597 6	2,544.597 6	0.0665	0.3756	2,658.193 0
Worker	0.1994	0.1116	1.7331	4.4300e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		453.5198	453.5198	0.0126	0.0115	457.2723
Total	1.0655	37.3637	13.5671	0.1950	6.5484	0.3812	6.9296	1.8029	0.3646	2.1675		21,181.84 75	21,181.84 75	0.8549	3.2694	22,177.49 31

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Fugitive Dust		1			29.0052	0.0000	29.0052	11.1263	0.0000	11.1263			0.0000			0.0000
Off-Road	11.7220	125.0802	84.2275	0.2146		5.0110	5.0110		4.6101	4.6101	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	11.7220	125.0802	84.2275	0.2146	29.0052	5.0110	34.0162	11.1263	4.6101	15.7365	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.7157	32.6690	9.9507	0.1668	5.2017	0.3436	5.5453	1.4263	0.3287	1.7551		18,183.73 01	18,183.73 01	0.7758	2.8822	19,062.02 78
Vendor	0.1504	4.5831	1.8833	0.0237	0.8539	0.0351	0.8889	0.2459	0.0336	0.2794		2,544.597 6	2,544.597 6	0.0665	0.3756	2,658.193 0
Worker	0.1994	0.1116	1.7331	4.4300e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		453.5198	453.5198	0.0126	0.0115	457.2723
Total	1.0655	37.3637	13.5671	0.1950	6.5484	0.3812	6.9296	1.8029	0.3646	2.1675		21,181.84 75	21,181.84 75	0.8549	3.2694	22,177.49 31

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Off-Road	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505	1 1 1	3.1265	3.1265	-	12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2387	7.2747	2.9894	0.0377	1.3553	0.0557	1.4110	0.3902	0.0533	0.4435		4,039.043 8	4,039.043 8	0.1055	0.5962	4,219.354 0
Worker	3.1576	1.7673	27.4410	0.0702	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		7,180.730 7	7,180.730 7	0.1989	0.1827	7,240.144 2
Total	3.3963	9.0421	30.4304	0.1078	9.1594	0.0954	9.2548	2.4602	0.0899	2.5501		11,219.77 45	11,219.77 45	0.3044	0.7789	11,459.49 82

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505	- 	3.1265	3.1265	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2387	7.2747	2.9894	0.0377	1.3553	0.0557	1.4110	0.3902	0.0533	0.4435		4,039.043 8	4,039.043 8	0.1055	0.5962	4,219.354 0
Worker	3.1576	1.7673	27.4410	0.0702	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		7,180.730 7	7,180.730 7	0.1989	0.1827	7,240.144 2
Total	3.3963	9.0421	30.4304	0.1078	9.1594	0.0954	9.2548	2.4602	0.0899	2.5501		11,219.77 45	11,219.77 45	0.3044	0.7789	11,459.49 82

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Off-Road	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300	1 1 1	2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2331	7.3411	2.9387	0.0371	1.3553	0.0548	1.4102	0.3902	0.0525	0.4427		3,983.446 4	3,983.446 4	0.1023	0.5879	4,161.207 9
Worker	2.9310	1.5734	25.5909	0.0681	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		7,026.564 1	7,026.564 1	0.1804	0.1697	7,081.649 5
Total	3.1640	8.9145	28.5296	0.1053	9.1593	0.0930	9.2524	2.4602	0.0876	2.5478		11,010.01 05	11,010.01 05	0.2826	0.7577	11,242.85 74

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2331	7.3411	2.9387	0.0371	1.3553	0.0548	1.4102	0.3902	0.0525	0.4427		3,983.446 4	3,983.446 4	0.1023	0.5879	4,161.207 9
Worker	2.9310	1.5734	25.5909	0.0681	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		7,026.564 1	7,026.564 1	0.1804	0.1697	7,081.649 5
Total	3.1640	8.9145	28.5296	0.1053	9.1593	0.0930	9.2524	2.4602	0.0876	2.5478		11,010.01 05	11,010.01 05	0.2826	0.7577	11,242.85 74

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Archit. Coating	34.3653		1 1 1			0.0000	0.0000	1 1 1	0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9
Total	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Archit. Coating	34.3653	, , ,	1 1 1			0.0000	0.0000	1	0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437	1 1 1	0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9
Total	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466
Total	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466
Total	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Parking Lot	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Refrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Unrefrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	Jay		
Mitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Unmitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	day		
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Business Center (Construction - Unmitigated)

San Bernardino-Mojave Desert County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Refrigerated Warehouse-No Rail	200.00	1000sqft	4.59	200,000.00	0
Unrefrigerated Warehouse-No Rail	796.52	1000sqft	18.29	796,520.00	0
Other Asphalt Surfaces	1,131.28	1000sqft	25.97	1,131,280.00	0
Parking Lot	641.00	Space	3.07	133,859.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Ediso	n			
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity (Ib/MWhr)	0.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use - Total Project area is 51.92 acres

Construction Phase - Construction anticipated to begin Summer 2023 and end Summer 2024

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction

Grading - Analysis conservatively assumes that up to 10 acres can be disturbed per day

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblConstructionPhase	NumDays	75.00	160.00
tblConstructionPhase	NumDays	1,110.00	175.00
tblEnergyUse	LightingElect	0.35	0.00
tblEnergyUse	LightingElect	2.37	0.00
tblEnergyUse	LightingElect	1.17	0.00
tblEnergyUse	NT24E	36.52	0.00
tblEnergyUse	NT24E	0.82	0.00
tblEnergyUse	NT24NG	48.51	0.00
tblEnergyUse	NT24NG	0.03	0.00
tblEnergyUse	T24E	0.95	0.00
tblEnergyUse	T24E	0.33	0.00
tblEnergyUse	T24NG	3.22	0.00
tblEnergyUse	T24NG	1.98	0.00
tblGrading	AcresOfGrading	1,320.00	1,100.00
tblGrading	AcresOfGrading	300.00	400.00
tblGrading	MaterialImported	0.00	261,395.00
tblLandUse	LandUseSquareFeet	256,400.00	133,859.00
tblLandUse	LotAcreage	5.77	3.07

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	9.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028
tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblSolidWaste	SolidWasteGenerationRate	188.00	0.00
tblSolidWaste	SolidWasteGenerationRate	748.73	0.00
tblTripsAndVMT	VendorTripNumber	0.00	46.00
tblTripsAndVMT	VendorTripNumber	0.00	126.00
tblTripsAndVMT	VendorTripNumber	371.00	200.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	2.12	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.12	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	2.12	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	46,250,000.00	0.00
tblWater	IndoorWaterUseRate	184,195,250.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/o	day							lb/c	lay		
2023	12.7115	164.4756	97.7488	0.4095	47.3614	5.3929	51.0900	21.1790	4.9754	24.6098	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67
2024	49.9526	116.2368	132.2905	0.3236	11.0898	4.7819	15.8717	2.9723	4.4588	7.4311	0.0000	32,015.74 41	32,015.74 41	5.8584	0.8083	32,403.07 96
Maximum	49.9526	164.4756	132.2905	0.4095	47.3614	5.3929	51.0900	21.1790	4.9754	24.6098	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	lay		
2023	12.7115	164.4756	97.7488	0.4095	47.3614	5.3929	51.0900	21.1790	4.9754	24.6098	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67
2024	49.9526	116.2368	132.2905	0.3236	11.0898	4.7819	15.8717	2.9723	4.4588	7.4311	0.0000	32,015.74 41	32,015.74 41	5.8584	0.8083	32,403.07 95
Maximum	49.9526	164.4756	132.2905	0.4095	47.3614	5.3929	51.0900	21.1790	4.9754	24.6098	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		Ib/day											lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category													lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/1/2023	7/26/2023	5	40	
2	Grading	Grading	7/27/2023	12/27/2023	5	110	
3	Building Construction	Building Construction	12/28/2023	8/28/2024	5	175	
4	Architectural Coating	Architectural Coating	1/18/2024	8/28/2024	5	160	
5	Paving	Paving	5/16/2024	8/28/2024	5	75	

Acres of Grading (Site Preparation Phase): 400

Acres of Grading (Grading Phase): 1100

Acres of Paving: 29.04

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,494,780; Non-Residential Outdoor: 498,260; Striped Parking Area: 75,908 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Crawler Tractors	9	8.00	212	0.43
Site Preparation	Rubber Tired Dozers	6	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Crawler Tractors	6	8.00	212	0.43
Grading	Excavators	6	8.00	158	0.38
Grading	Graders	3	8.00	187	0.41

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Grading	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	6	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Cranes	3	8.00	231	0.29
Building Construction	Crawler Tractors	9	8.00	212	0.43
Building Construction	Forklifts	9	8.00	89	0.20
Building Construction	Generator Sets	3	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Architectural Coating	Air Compressors	3	8.00	78	0.48
Paving	Pavers	6	8.00	130	0.42
Paving	Paving Equipment	6	8.00	132	0.36
Paving	Rollers	6	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	15	38.00	46.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	24	60.00	126.00	32,674.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	27	950.00	200.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	3	190.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	18	45.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust					46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	8.1055	88.8841	38.8310	0.1217		3.7142	3.7142		3.4170	3.4170		11,786.44 99	11,786.44 99	3.8120		11,881.74 93
Total	8.1055	88.8841	38.8310	0.1217	46.7375	3.7142	50.4517	21.0065	3.4170	24.4235		11,786.44 99	11,786.44 99	3.8120		11,881.74 93

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0512	1.7668	0.7084	8.6800e- 003	0.3117	0.0129	0.3246	0.0898	0.0123	0.1021		931.1209	931.1209	0.0241	0.1375	972.7093
Worker	0.1188	0.0744	0.9187	2.5400e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		260.3604	260.3604	8.1600e- 003	7.5500e- 003	262.8140
Total	0.1700	1.8411	1.6271	0.0112	0.6239	0.0145	0.6383	0.1726	0.0138	0.1863		1,191.481 3	1,191.481 3	0.0322	0.1451	1,235.523 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Fugitive Dust			1 1 1		46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	8.1055	88.8841	38.8310	0.1217		3.7142	3.7142	1 1 1 1	3.4170	3.4170	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93
Total	8.1055	88.8841	38.8310	0.1217	46.7375	3.7142	50.4517	21.0065	3.4170	24.4235	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0512	1.7668	0.7084	8.6800e- 003	0.3117	0.0129	0.3246	0.0898	0.0123	0.1021		931.1209	931.1209	0.0241	0.1375	972.7093
Worker	0.1188	0.0744	0.9187	2.5400e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		260.3604	260.3604	8.1600e- 003	7.5500e- 003	262.8140
Total	0.1700	1.8411	1.6271	0.0112	0.6239	0.0145	0.6383	0.1726	0.0138	0.1863		1,191.481 3	1,191.481 3	0.0322	0.1451	1,235.523 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/o	day		
Fugitive Dust		, , ,			29.0052	0.0000	29.0052	11.1263	0.0000	11.1263			0.0000			0.0000
Off-Road	11.7220	125.0802	84.2275	0.2146		5.0110	5.0110		4.6101	4.6101		20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	11.7220	125.0802	84.2275	0.2146	29.0052	5.0110	34.0162	11.1263	4.6101	15.7365		20,774.60 46	20,774.60 46	6.7189		20,942.57 78

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/o	day		
Hauling	0.6617	34.4387	10.1303	0.1671	5.2017	0.3442	5.5458	1.4263	0.3293	1.7556		18,211.16 83	18,211.16 83	0.7732	2.8866	19,090.69 17
Vendor	0.1402	4.8394	1.9403	0.0238	0.8539	0.0352	0.8891	0.2459	0.0337	0.2795		2,550.461 6	2,550.461 6	0.0660	0.3767	2,664.377 8
Worker	0.1876	0.1174	1.4506	4.0200e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		411.0953	411.0953	0.0129	0.0119	414.9694
Total	0.9895	39.3955	13.5213	0.1949	6.5484	0.3819	6.9303	1.8029	0.3653	2.1682		21,172.72 52	21,172.72 52	0.8520	3.2752	22,170.03 89

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Fugitive Dust		1			29.0052	0.0000	29.0052	11.1263	0.0000	11.1263			0.0000			0.0000
Off-Road	11.7220	125.0802	84.2275	0.2146		5.0110	5.0110		4.6101	4.6101	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	11.7220	125.0802	84.2275	0.2146	29.0052	5.0110	34.0162	11.1263	4.6101	15.7365	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/				lb/d	day						
Hauling	0.6617	34.4387	10.1303	0.1671	5.2017	0.3442	5.5458	1.4263	0.3293	1.7556		18,211.16 83	18,211.16 83	0.7732	2.8866	19,090.69 17
Vendor	0.1402	4.8394	1.9403	0.0238	0.8539	0.0352	0.8891	0.2459	0.0337	0.2795		2,550.461 6	2,550.461 6	0.0660	0.3767	2,664.377 8
Worker	0.1876	0.1174	1.4506	4.0200e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		411.0953	411.0953	0.0129	0.0119	414.9694
Total	0.9895	39.3955	13.5213	0.1949	6.5484	0.3819	6.9303	1.8029	0.3653	2.1682		21,172.72 52	21,172.72 52	0.8520	3.2752	22,170.03 89

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e			lb/c	lay							
Off-Road	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505	1 1 1	3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d				lb/c	day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2225	7.6815	3.0799	0.0378	1.3553	0.0559	1.4112	0.3902	0.0535	0.4437		4,048.351 7	4,048.351 7	0.1047	0.5980	4,229.171 0
Worker	2.9706	1.8592	22.9681	0.0636	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		6,509.009 6	6,509.009 6	0.2039	0.1887	6,570.348 8
Total	3.1931	9.5407	26.0480	0.1014	9.1594	0.0957	9.2550	2.4602	0.0901	2.5503		10,557.36 12	10,557.36 12	0.3086	0.7867	10,799.51 98

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e			lb/d	day							
Off-Road	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d				lb/c	lay						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2225	7.6815	3.0799	0.0378	1.3553	0.0559	1.4112	0.3902	0.0535	0.4437		4,048.351 7	4,048.351 7	0.1047	0.5980	4,229.171 0
Worker	2.9706	1.8592	22.9681	0.0636	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		6,509.009 6	6,509.009 6	0.2039	0.1887	6,570.348 8
Total	3.1931	9.5407	26.0480	0.1014	9.1594	0.0957	9.2550	2.4602	0.0901	2.5503		10,557.36 12	10,557.36 12	0.3086	0.7867	10,799.51 98

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o			lb/d	lay							
Off-Road	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300	1 1 1	2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d				lb/c	lay						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2168	7.7506	3.0285	0.0372	1.3553	0.0550	1.4104	0.3902	0.0527	0.4429		3,992.697 9	3,992.697 9	0.1015	0.5897	4,170.956 2
Worker	2.7628	1.6546	21.4538	0.0618	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		6,370.626 2	6,370.626 2	0.1853	0.1753	6,427.491 6
Total	2.9796	9.4052	24.4823	0.0990	9.1593	0.0932	9.2526	2.4602	0.0878	2.5480		10,363.32 41	10,363.32 41	0.2868	0.7650	10,598.44 78

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e			lb/d	day							
Off-Road	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d				lb/c	lay						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2168	7.7506	3.0285	0.0372	1.3553	0.0550	1.4104	0.3902	0.0527	0.4429		3,992.697 9	3,992.697 9	0.1015	0.5897	4,170.956 2
Worker	2.7628	1.6546	21.4538	0.0618	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		6,370.626 2	6,370.626 2	0.1853	0.1753	6,427.491 6
Total	2.9796	9.4052	24.4823	0.0990	9.1593	0.0932	9.2526	2.4602	0.0878	2.5480		10,363.32 41	10,363.32 41	0.2868	0.7650	10,598.44 78
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Archit. Coating	34.3653					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3
Total	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Archit. Coating	34.3653	, , ,				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3
Total	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601
Total	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145	1 1 1 1				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601
Total	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Parking Lot	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Refrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Unrefrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/d	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	Jay		
Mitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Unmitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003	 - - - -	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/o	day		
Architectural Coating	6.5682	1				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

This page intentionally left blank

APPENDIX 3.2:

CALEEMOD CONSTRUCTION EMISSIONS MODEL OUTPUTS (MITIGATED)

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Business Center (Construction - Mitigated)

San Bernardino-Mojave Desert County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Refrigerated Warehouse-No Rail	200.00	1000sqft	4.59	200,000.00	0
Unrefrigerated Warehouse-No Rail	796.52	1000sqft	18.29	796,520.00	0
Other Asphalt Surfaces	1,131.28	1000sqft	25.97	1,131,280.00	0
Parking Lot	641.00	Space	3.07	133,859.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edison	1			
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity (Ib/MWhr)	0.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use - Total Project area is 51.92 acres

Construction Phase - Construction anticipated to begin Summer 2023 and end Summer 2024

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction

Grading - Analysis conservatively assumes that up to 10 acres can be disturbed per day

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Construction Off-road Equipment Mitigation - MM AQ-1: Tier 4 engines for all equipment operating at >150 HP during Grading

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstructionPhase	NumDays	1,110.00	175.00
tblConstructionPhase	NumDays	75.00	160.00
tblEnergyUse	LightingElect	0.35	0.00
tblEnergyUse	LightingElect	2.37	0.00
tblEnergyUse	LightingElect	1.17	0.00
tblEnergyUse	NT24E	36.52	0.00
tblEnergyUse	NT24E	0.82	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblEnergyUse	NT24NG	48.51	0.00
tblEnergyUse	NT24NG	0.03	0.00
tblEnergyUse	T24E	0.95	0.00
tblEnergyUse	T24E	0.33	0.00
tblEnergyUse	T24NG	3.22	0.00
tblEnergyUse	T24NG	1.98	0.00
tblGrading	AcresOfGrading	1,320.00	1,100.00
tblGrading	AcresOfGrading	300.00	400.00
tblGrading	MaterialImported	0.00	261,395.00
tblLandUse	LandUseSquareFeet	256,400.00	133,859.00
tblLandUse	LotAcreage	5.77	3.07
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	9.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblOffRoadEquipment	UsageHours	7.00	8.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028
tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblSolidWaste	SolidWasteGenerationRate	188.00	0.00
tblSolidWaste	SolidWasteGenerationRate	748.73	0.00
tblTripsAndVMT	VendorTripNumber	0.00	46.00
tblTripsAndVMT	VendorTripNumber	0.00	126.00
tblTripsAndVMT	VendorTripNumber	371.00	200.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	2.12	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.12	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	2.12	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	46,250,000.00	0.00
tblWater	IndoorWaterUseRate	184,195,250.00	0.00

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	day		
2023	12.7875	162.4439	97.7946	0.4095	47.3614	5.3922	51.0900	21.1790	4.9747	24.6098	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09
2024	50.1787	115.7261	137.3612	0.3314	11.0898	4.7817	15.8715	2.9723	4.4586	7.4309	0.0000	32,824.68 89	32,824.68 89	5.8531	0.7996	33,209.30 72
Maximum	50.1787	162.4439	137.3612	0.4095	47.3614	5.3922	51.0900	21.1790	4.9747	24.6098	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2023	10.2695	83.3789	112.4525	0.4095	47.3614	3.0278	50.0639	21.1790	2.8339	23.6703	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09
2024	49.4416	105.9834	140.3640	0.3314	11.0898	4.3959	15.4857	2.9723	4.1060	7.0783	0.0000	32,824.68 89	32,824.68 89	5.8531	0.7996	33,209.30 72
Maximum	49.4416	105.9834	140.3640	0.4095	47.3614	4.3959	50.0639	21.1790	4.1060	23.6703	0.0000	41,956.45 21	41,956.45 21	7.5738	3.2694	43,120.07 09

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	5.17	31.93	-7.51	0.00	0.00	27.03	2.11	0.00	26.43	4.03	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/1/2023	7/26/2023	5	40	
2	Grading	Grading	7/27/2023	12/27/2023	5	110	
3	Building Construction	Building Construction	12/28/2023	8/28/2024	5	175	
4	Architectural Coating	Architectural Coating	1/18/2024	8/28/2024	5	160	
5	Paving	Paving	5/16/2024	8/28/2024	5	75	

Acres of Grading (Site Preparation Phase): 400

Acres of Grading (Grading Phase): 1100

Acres of Paving: 29.04

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,494,780; Non-Residential Outdoor: 498,260; Striped Parking Area: 75,908 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Crawler Tractors	9	8.00	212	0.43
Site Preparation	Rubber Tired Dozers	6	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Crawler Tractors	6	8.00	212	0.43
Grading	Excavators	6	8.00	158	0.38
Grading	Graders	3	8.00	187	0.41

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Grading	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	6	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Cranes	3	8.00	231	0.29
Building Construction	Crawler Tractors	9	8.00	212	0.43
Building Construction	Forklifts	9	8.00	89	0.20
Building Construction	Generator Sets	3	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Architectural Coating	Air Compressors	3	8.00	78	0.48
Paving	Pavers	6	8.00	130	0.42
Paving	Paving Equipment	6	8.00	132	0.36
Paving	Rollers	6	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	15	38.00	46.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	24	60.00	126.00	32,674.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	27	950.00	200.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	3	190.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	18	45.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	8.1055	88.8841	38.8310	0.1217		3.7142	3.7142		3.4170	3.4170		11,786.44 99	11,786.44 99	3.8120		11,881.74 93
Total	8.1055	88.8841	38.8310	0.1217	46.7375	3.7142	50.4517	21.0065	3.4170	24.4235		11,786.44 99	11,786.44 99	3.8120		11,881.74 93

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0549	1.6732	0.6876	8.6600e- 003	0.3117	0.0128	0.3245	0.0898	0.0123	0.1020		928.9801	928.9801	0.0243	0.1371	970.4514
Worker	0.1263	0.0707	1.0976	2.8100e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		287.2292	287.2292	7.9600e- 003	7.3100e- 003	289.6058
Total	0.1812	1.7439	1.7852	0.0115	0.6239	0.0144	0.6383	0.1726	0.0137	0.1863		1,216.209 3	1,216.209 3	0.0322	0.1444	1,260.057 2

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust			, , ,		46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	6.1745	65.0797	43.1812	0.1217		2.6881	2.6881	1 1 1	2.4776	2.4776	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93
Total	6.1745	65.0797	43.1812	0.1217	46.7375	2.6881	49.4256	21.0065	2.4776	23.4841	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0549	1.6732	0.6876	8.6600e- 003	0.3117	0.0128	0.3245	0.0898	0.0123	0.1020		928.9801	928.9801	0.0243	0.1371	970.4514
Worker	0.1263	0.0707	1.0976	2.8100e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		287.2292	287.2292	7.9600e- 003	7.3100e- 003	289.6058
Total	0.1812	1.7439	1.7852	0.0115	0.6239	0.0144	0.6383	0.1726	0.0137	0.1863		1,216.209 3	1,216.209 3	0.0322	0.1444	1,260.057 2

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust		, , ,			29.0052	0.0000	29.0052	11.1263	0.0000	11.1263			0.0000			0.0000
Off-Road	11.7220	125.0802	84.2275	0.2146		5.0110	5.0110		4.6101	4.6101		20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	11.7220	125.0802	84.2275	0.2146	29.0052	5.0110	34.0162	11.1263	4.6101	15.7365		20,774.60 46	20,774.60 46	6.7189		20,942.57 78

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/o	day		
Hauling	0.7157	32.6690	9.9507	0.1668	5.2017	0.3436	5.5453	1.4263	0.3287	1.7551		18,183.73 01	18,183.73 01	0.7758	2.8822	19,062.02 78
Vendor	0.1504	4.5831	1.8833	0.0237	0.8539	0.0351	0.8889	0.2459	0.0336	0.2794		2,544.597 6	2,544.597 6	0.0665	0.3756	2,658.193 0
Worker	0.1994	0.1116	1.7331	4.4300e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		453.5198	453.5198	0.0126	0.0115	457.2723
Total	1.0655	37.3637	13.5671	0.1950	6.5484	0.3812	6.9296	1.8029	0.3646	2.1675		21,181.84 75	21,181.84 75	0.8549	3.2694	22,177.49 31

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Fugitive Dust		, , ,			29.0052	0.0000	29.0052	11.1263	0.0000	11.1263		1 1 1	0.0000			0.0000
Off-Road	5.3662	46.0152	98.8855	0.2146		1.8049	1.8049	1 1 1 1	1.6817	1.6817	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	5.3662	46.0152	98.8855	0.2146	29.0052	1.8049	30.8101	11.1263	1.6817	12.8081	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.7157	32.6690	9.9507	0.1668	5.2017	0.3436	5.5453	1.4263	0.3287	1.7551		18,183.73 01	18,183.73 01	0.7758	2.8822	19,062.02 78
Vendor	0.1504	4.5831	1.8833	0.0237	0.8539	0.0351	0.8889	0.2459	0.0336	0.2794		2,544.597 6	2,544.597 6	0.0665	0.3756	2,658.193 0
Worker	0.1994	0.1116	1.7331	4.4300e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		453.5198	453.5198	0.0126	0.0115	457.2723
Total	1.0655	37.3637	13.5671	0.1950	6.5484	0.3812	6.9296	1.8029	0.3646	2.1675		21,181.84 75	21,181.84 75	0.8549	3.2694	22,177.49 31

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Off-Road	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505	1 1 1	3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2387	7.2747	2.9894	0.0377	1.3553	0.0557	1.4110	0.3902	0.0533	0.4435		4,039.043 8	4,039.043 8	0.1055	0.5962	4,219.354 0
Worker	3.1576	1.7673	27.4410	0.0702	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		7,180.730 7	7,180.730 7	0.1989	0.1827	7,240.144 2
Total	3.3963	9.0421	30.4304	0.1078	9.1594	0.0954	9.2548	2.4602	0.0899	2.5501		11,219.77 45	11,219.77 45	0.3044	0.7789	11,459.49 82

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Off-Road	6.8732	68.0235	54.9515	0.1289		2.9323	2.9323	- 	2.7441	2.7441	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	6.8732	68.0235	54.9515	0.1289		2.9323	2.9323		2.7441	2.7441	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2387	7.2747	2.9894	0.0377	1.3553	0.0557	1.4110	0.3902	0.0533	0.4435		4,039.043 8	4,039.043 8	0.1055	0.5962	4,219.354 0
Worker	3.1576	1.7673	27.4410	0.0702	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		7,180.730 7	7,180.730 7	0.1989	0.1827	7,240.144 2
Total	3.3963	9.0421	30.4304	0.1078	9.1594	0.0954	9.2548	2.4602	0.0899	2.5501		11,219.77 45	11,219.77 45	0.3044	0.7789	11,459.49 82

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Off-Road	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300	1 1 1	2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2331	7.3411	2.9387	0.0371	1.3553	0.0548	1.4102	0.3902	0.0525	0.4427		3,983.446 4	3,983.446 4	0.1023	0.5879	4,161.207 9
Worker	2.9310	1.5734	25.5909	0.0681	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		7,026.564 1	7,026.564 1	0.1804	0.1697	7,081.649 5
Total	3.1640	8.9145	28.5296	0.1053	9.1593	0.0930	9.2524	2.4602	0.0876	2.5478		11,010.01 05	11,010.01 05	0.2826	0.7577	11,2 <mark>42.85</mark> 74

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	6.4852	63.2307	54.3863	0.1290		2.6442	2.6442		2.4730	2.4730	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	6.4852	63.2307	54.3863	0.1290		2.6442	2.6442		2.4730	2.4730	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2331	7.3411	2.9387	0.0371	1.3553	0.0548	1.4102	0.3902	0.0525	0.4427		3,983.446 4	3,983.446 4	0.1023	0.5879	4,161.207 9
Worker	2.9310	1.5734	25.5909	0.0681	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		7,026.564 1	7,026.564 1	0.1804	0.1697	7,081.649 5
Total	3.1640	8.9145	28.5296	0.1053	9.1593	0.0930	9.2524	2.4602	0.0876	2.5478		11,010.01 05	11,010.01 05	0.2826	0.7577	11,242.85 74

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Archit. Coating	34.3653					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9
Total	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Archit. Coating	34.3653	, , ,				0.0000	0.0000	1	0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437	1 1 1	0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9
Total	0.5862	0.3147	5.1182	0.0136	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,405.312 8	1,405.312 8	0.0361	0.0339	1,416.329 9

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466
Total	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145	1 1 1 1				0.0000	0.0000		0.0000	0.0000		 	0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day											lb/d	day			
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466
Total	0.1388	0.0745	1.2122	3.2300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		332.8373	332.8373	8.5400e- 003	8.0400e- 003	335.4466

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0		
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0		
Refrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0		
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Parking Lot	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Refrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Unrefrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	1 1 1	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	Jay		
Mitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Unmitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		Ib/day											lb/c	day		
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Business Center (Construction - Mitigated)

San Bernardino-Mojave Desert County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Refrigerated Warehouse-No Rail	200.00	1000sqft	4.59	200,000.00	0
Unrefrigerated Warehouse-No Rail	796.52	1000sqft	18.29	796,520.00	0
Other Asphalt Surfaces	1,131.28	1000sqft	25.97	1,131,280.00	0
Parking Lot	641.00	Space	3.07	133,859.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edison	1			
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity (Ib/MWhr)	0.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use - Total Project area is 51.92 acres

Construction Phase - Construction anticipated to begin Summer 2023 and end Summer 2024

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

Off-road Equipment - Construction equipment adjusted based on the size of the Project

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Trips and VMT - Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction

Grading - Analysis conservatively assumes that up to 10 acres can be disturbed per day

Architectural Coating - Rule 1113

Vehicle Trips - Construction run only

Energy Use - Construction run only

Water And Wastewater - Construction run only

Solid Waste - Construction run only

Construction Off-road Equipment Mitigation - MM AQ-1: Tier 4 engines for all equipment operating at >150 HP during Grading

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	50.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	50.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	6.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstructionPhase	NumDays	1,110.00	175.00
tblConstructionPhase	NumDays	75.00	160.00
tblEnergyUse	LightingElect	0.35	0.00
tblEnergyUse	LightingElect	2.37	0.00
tblEnergyUse	LightingElect	1.17	0.00
tblEnergyUse	NT24E	36.52	0.00
tblEnergyUse	NT24E	0.82	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblEnergyUse	NT24NG	48.51	0.00
tblEnergyUse	NT24NG	0.03	0.00
tblEnergyUse	T24E	0.95	0.00
tblEnergyUse	T24E	0.33	0.00
tblEnergyUse	T24NG	3.22	0.00
tblEnergyUse	T24NG	1.98	0.00
tblGrading	AcresOfGrading	1,320.00	1,100.00
tblGrading	AcresOfGrading	300.00	400.00
tblGrading	MaterialImported	0.00	261,395.00
tblLandUse	LandUseSquareFeet	256,400.00	133,859.00
tblLandUse	LotAcreage	5.77	3.07
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	9.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	3.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblOffRoadEquipment	UsageHours	7.00	8.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028
tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblSolidWaste	SolidWasteGenerationRate	188.00	0.00
tblSolidWaste	SolidWasteGenerationRate	748.73	0.00
tblTripsAndVMT	VendorTripNumber	0.00	46.00
tblTripsAndVMT	VendorTripNumber	0.00	126.00
tblTripsAndVMT	VendorTripNumber	371.00	200.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CC_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TL	7.30	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CNW_TTP	41.00	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TL	9.50	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	CW_TTP	59.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	DV_TP	5.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00
tblVehicleTrips	PB_TP	3.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	PR_TP	92.00	0.00
tblVehicleTrips	ST_TR	2.12	0.00
tblVehicleTrips	ST_TR	1.74	0.00
tblVehicleTrips	SU_TR	2.12	0.00
tblVehicleTrips	SU_TR	1.74	0.00
tblVehicleTrips	WD_TR	2.12	0.00
tblVehicleTrips	WD_TR	1.74	0.00
tblWater	IndoorWaterUseRate	46,250,000.00	0.00
tblWater	IndoorWaterUseRate	184,195,250.00	0.00

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	day		
2023	12.7115	164.4756	97.7488	0.4095	47.3614	5.3929	51.0900	21.1790	4.9754	24.6098	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67
2024	49.9526	116.2368	132.2905	0.3236	11.0898	4.7819	15.8717	2.9723	4.4588	7.4311	0.0000	32,015.74 41	32,015.74 41	5.8584	0.8083	32,403.07 96
Maximum	49.9526	164.4756	132.2905	0.4095	47.3614	5.3929	51.0900	21.1790	4.9754	24.6098	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	Jay							lb/c	lay		
2023	10.0663	85.4107	112.4067	0.4095	47.3614	3.0280	50.0640	21.1790	2.8342	23.6704	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67
2024	49.2155	106.4942	135.2933	0.3236	11.0898	4.3961	15.4859	2.9723	4.1062	7.0785	0.0000	32,015.74 41	32,015.74 41	5.8584	0.8083	32,403.07 95
Maximum	49.2155	106.4942	135.2933	0.4095	47.3614	4.3961	50.0640	21.1790	4.1062	23.6704	0.0000	41,947.32 98	41,947.32 98	7.5709	3.2752	43,112.61 67

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	5.40	31.64	-7.68	0.00	0.00	27.03	2.11	0.00	26.43	4.03	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005	0.0000	1.0000e- 003	1.0000e- 003	0.0000	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003	0.0000	0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Site Preparation	Site Preparation	6/1/2023	7/26/2023	5	40	
2	Grading	Grading	7/27/2023	12/27/2023	5	110	
3	Building Construction	Building Construction	12/28/2023	8/28/2024	5	175	
4	Architectural Coating	Architectural Coating	1/18/2024	8/28/2024	5	160	
5	Paving	Paving	5/16/2024	8/28/2024	5	75	

Acres of Grading (Site Preparation Phase): 400

Acres of Grading (Grading Phase): 1100

Acres of Paving: 29.04

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 1,494,780; Non-Residential Outdoor: 498,260; Striped Parking Area: 75,908 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Site Preparation	Crawler Tractors	9	8.00	212	0.43
Site Preparation	Rubber Tired Dozers	6	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Grading	Crawler Tractors	6	8.00	212	0.43
Grading	Excavators	6	8.00	158	0.38
Grading	Graders	3	8.00	187	0.41

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Grading	Rubber Tired Dozers	3	8.00	247	0.40
Grading	Scrapers	6	8.00	367	0.48
Grading	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Cranes	3	8.00	231	0.29
Building Construction	Crawler Tractors	9	8.00	212	0.43
Building Construction	Forklifts	9	8.00	89	0.20
Building Construction	Generator Sets	3	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	0	8.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Architectural Coating	Air Compressors	3	8.00	78	0.48
Paving	Pavers	6	8.00	130	0.42
Paving	Paving Equipment	6	8.00	132	0.36
Paving	Rollers	6	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Site Preparation	15	38.00	46.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	24	60.00	126.00	32,674.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	27	950.00	200.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	3	190.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	18	45.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust			1 1 1		46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	8.1055	88.8841	38.8310	0.1217		3.7142	3.7142		3.4170	3.4170		11,786.44 99	11,786.44 99	3.8120		11,881.74 93
Total	8.1055	88.8841	38.8310	0.1217	46.7375	3.7142	50.4517	21.0065	3.4170	24.4235		11,786.44 99	11,786.44 99	3.8120		11,881.74 93

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0512	1.7668	0.7084	8.6800e- 003	0.3117	0.0129	0.3246	0.0898	0.0123	0.1021		931.1209	931.1209	0.0241	0.1375	972.7093
Worker	0.1188	0.0744	0.9187	2.5400e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		260.3604	260.3604	8.1600e- 003	7.5500e- 003	262.8140
Total	0.1700	1.8411	1.6271	0.0112	0.6239	0.0145	0.6383	0.1726	0.0138	0.1863		1,191.481 3	1,191.481 3	0.0322	0.1451	1,235.523 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Site Preparation - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust			, , ,		46.7375	0.0000	46.7375	21.0065	0.0000	21.0065			0.0000			0.0000
Off-Road	6.1745	65.0797	43.1812	0.1217		2.6881	2.6881	1 1 1	2.4776	2.4776	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93
Total	6.1745	65.0797	43.1812	0.1217	46.7375	2.6881	49.4256	21.0065	2.4776	23.4841	0.0000	11,786.44 98	11,786.44 98	3.8120		11,881.74 93

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0512	1.7668	0.7084	8.6800e- 003	0.3117	0.0129	0.3246	0.0898	0.0123	0.1021		931.1209	931.1209	0.0241	0.1375	972.7093
Worker	0.1188	0.0744	0.9187	2.5400e- 003	0.3122	1.5900e- 003	0.3138	0.0828	1.4600e- 003	0.0843		260.3604	260.3604	8.1600e- 003	7.5500e- 003	262.8140
Total	0.1700	1.8411	1.6271	0.0112	0.6239	0.0145	0.6383	0.1726	0.0138	0.1863		1,191.481 3	1,191.481 3	0.0322	0.1451	1,235.523 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust					29.0052	0.0000	29.0052	11.1263	0.0000	11.1263			0.0000			0.0000
Off-Road	11.7220	125.0802	84.2275	0.2146		5.0110	5.0110		4.6101	4.6101		20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	11.7220	125.0802	84.2275	0.2146	29.0052	5.0110	34.0162	11.1263	4.6101	15.7365		20,774.60 46	20,774.60 46	6.7189		20,942.57 78

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.6617	34.4387	10.1303	0.1671	5.2017	0.3442	5.5458	1.4263	0.3293	1.7556		18,211.16 83	18,211.16 83	0.7732	2.8866	19,090.69 17
Vendor	0.1402	4.8394	1.9403	0.0238	0.8539	0.0352	0.8891	0.2459	0.0337	0.2795		2,550.461 6	2,550.461 6	0.0660	0.3767	2,664.377 8
Worker	0.1876	0.1174	1.4506	4.0200e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		411.0953	411.0953	0.0129	0.0119	414.9694
Total	0.9895	39.3955	13.5213	0.1949	6.5484	0.3819	6.9303	1.8029	0.3653	2.1682		21,172.72 52	21,172.72 52	0.8520	3.2752	22,170.03 89

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.3 Grading - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Fugitive Dust			1 1 1		29.0052	0.0000	29.0052	11.1263	0.0000	11.1263			0.0000			0.0000
Off-Road	5.3662	46.0152	98.8855	0.2146		1.8049	1.8049	1 1 1	1.6817	1.6817	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78
Total	5.3662	46.0152	98.8855	0.2146	29.0052	1.8049	30.8101	11.1263	1.6817	12.8081	0.0000	20,774.60 46	20,774.60 46	6.7189		20,942.57 78

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.6617	34.4387	10.1303	0.1671	5.2017	0.3442	5.5458	1.4263	0.3293	1.7556		18,211.16 83	18,211.16 83	0.7732	2.8866	19,090.69 17
Vendor	0.1402	4.8394	1.9403	0.0238	0.8539	0.0352	0.8891	0.2459	0.0337	0.2795		2,550.461 6	2,550.461 6	0.0660	0.3767	2,664.377 8
Worker	0.1876	0.1174	1.4506	4.0200e- 003	0.4929	2.5100e- 003	0.4954	0.1307	2.3100e- 003	0.1331		411.0953	411.0953	0.0129	0.0119	414.9694
Total	0.9895	39.3955	13.5213	0.1949	6.5484	0.3819	6.9303	1.8029	0.3653	2.1682		21,172.72 52	21,172.72 52	0.8520	3.2752	22,170.03 89

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Off-Road	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505	1 1 1	3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	7.6556	78.6132	52.0412	0.1289		3.3505	3.3505		3.1265	3.1265		12,324.71 77	12,324.71 77	3.3304		12,407.97 72

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2225	7.6815	3.0799	0.0378	1.3553	0.0559	1.4112	0.3902	0.0535	0.4437		4,048.351 7	4,048.351 7	0.1047	0.5980	4,229.171 0
Worker	2.9706	1.8592	22.9681	0.0636	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		6,509.009 6	6,509.009 6	0.2039	0.1887	6,570.348 8
Total	3.1931	9.5407	26.0480	0.1014	9.1594	0.0957	9.2550	2.4602	0.0901	2.5503		10,557.36 12	10,557.36 12	0.3086	0.7867	10,799.51 98

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/o	day		
Off-Road	6.8732	68.0235	54.9515	0.1289		2.9323	2.9323	1 1 1	2.7441	2.7441	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72
Total	6.8732	68.0235	54.9515	0.1289		2.9323	2.9323		2.7441	2.7441	0.0000	12,324.71 77	12,324.71 77	3.3304		12,407.97 72

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2225	7.6815	3.0799	0.0378	1.3553	0.0559	1.4112	0.3902	0.0535	0.4437		4,048.351 7	4,048.351 7	0.1047	0.5980	4,229.171 0
Worker	2.9706	1.8592	22.9681	0.0636	7.8040	0.0398	7.8438	2.0700	0.0366	2.1066		6,509.009 6	6,509.009 6	0.2039	0.1887	6,570.348 8
Total	3.1931	9.5407	26.0480	0.1014	9.1594	0.0957	9.2550	2.4602	0.0901	2.5503		10,557.36 12	10,557.36 12	0.3086	0.7867	10,799.51 98

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Off-Road	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300	1 1 1	2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	7.2223	72.9734	51.3834	0.1290		3.0300	3.0300		2.8255	2.8255		12,328.09 46	12,328.09 46	3.3205		12,411.10 74

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2168	7.7506	3.0285	0.0372	1.3553	0.0550	1.4104	0.3902	0.0527	0.4429		3,992.697 9	3,992.697 9	0.1015	0.5897	4,170.956 2
Worker	2.7628	1.6546	21.4538	0.0618	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		6,370.626 2	6,370.626 2	0.1853	0.1753	6,427.491 6
Total	2.9796	9.4052	24.4823	0.0990	9.1593	0.0932	9.2526	2.4602	0.0878	2.5480		10,363.32 41	10,363.32 41	0.2868	0.7650	10,598.44 78

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.4 Building Construction - 2024

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	6.4852	63.2307	54.3863	0.1290		2.6442	2.6442		2.4730	2.4730	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74
Total	6.4852	63.2307	54.3863	0.1290		2.6442	2.6442		2.4730	2.4730	0.0000	12,328.09 46	12,328.09 46	3.3205		12,411.10 74

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.2168	7.7506	3.0285	0.0372	1.3553	0.0550	1.4104	0.3902	0.0527	0.4429		3,992.697 9	3,992.697 9	0.1015	0.5897	4,170.956 2
Worker	2.7628	1.6546	21.4538	0.0618	7.8040	0.0382	7.8422	2.0700	0.0352	2.1051		6,370.626 2	6,370.626 2	0.1853	0.1753	6,427.491 6
Total	2.9796	9.4052	24.4823	0.0990	9.1593	0.0932	9.2526	2.4602	0.0878	2.5480		10,363.32 41	10,363.32 41	0.2868	0.7650	10,598.44 78

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Archit. Coating	34.3653					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437		1,125.792 2	1,125.792 2	0.0634		1,127.377 0

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3
Total	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.5 Architectural Coating - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Archit. Coating	34.3653	, , ,	1 1 1			0.0000	0.0000	1	0.0000	0.0000		1 1 1	0.0000			0.0000
Off-Road	0.7231	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0
Total	35.0884	4.8752	7.2405	0.0119		0.2437	0.2437		0.2437	0.2437	0.0000	1,125.792 2	1,125.792 2	0.0634		1,127.377 0

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3
Total	0.5526	0.3309	4.2908	0.0124	1.5608	7.6400e- 003	1.5684	0.4140	7.0300e- 003	0.4210		1,274.125 2	1,274.125 2	0.0371	0.0351	1,285.498 3

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931		6,622.641 6	6,622.641 6	2.1419		6,676.189 0

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601
Total	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.6 Paving - 2024

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	2.9645	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0
Paving	1.0145	1 1 1 1				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	3.9789	28.5737	43.8773	0.0684		1.4056	1.4056		1.2931	1.2931	0.0000	6,622.641 6	6,622.641 6	2.1419		6,676.189 0

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601
Total	0.1309	0.0784	1.0162	2.9300e- 003	0.3697	1.8100e- 003	0.3715	0.0981	1.6600e- 003	0.0997		301.7665	301.7665	8.7800e- 003	8.3000e- 003	304.4601

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	0.00	0.00	0.00		
Unrefrigerated Warehouse-No Rail	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Parking Lot	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Refrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Unrefrigerated Warehouse-No Rail	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-No Rail	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	Jay		
Mitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Unmitigated	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003	 - - - -	1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day									lb/day						
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day								lb/day							
Architectural Coating	6.5682					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	21.7736					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0261	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455
Total	28.3679	2.5600e- 003	0.2822	2.0000e- 005		1.0000e- 003	1.0000e- 003		1.0000e- 003	1.0000e- 003		0.6060	0.6060	1.5800e- 003		0.6455

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

This page intentionally left blank

APPENDIX 3.3:

CALEEMOD OPERATIONAL EMISSIONS MODEL OUTPUTS (HIGH-CUBE FULFILLMENT CENTER WAREHOUSE)

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Businses Center (High-Cube Fulfillment Center Operations)

San Bernardino-Mojave Desert County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	796.52	1000sqft	18.29	796,520.00	0
User Defined Industrial	796.52	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edison				
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity 0 (Ib/MWhr)	.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic Analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	6/28/2023	5/31/2023
tblFleetMix	HHD	0.02	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	0.02	0.78
tblFleetMix	LDA	0.54	0.58
tblFleetMix	LDA	0.54	0.00
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.17	0.19
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.09
tblFleetMix	LHD2	7.1040e-003	0.00
tblFleetMix	LHD2	7.1040e-003	0.02
tblFleetMix	MCY	0.03	0.03
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MDV	0.14	0.15
tblFleetMix	MDV	0.14	0.00
tblFleetMix	МН	4.8300e-003	0.00
tblFleetMix	МН	4.8300e-003	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	MHD	0.01	0.11
tblFleetMix	OBUS	5.5400e-004	0.00
tblFleetMix	OBUS	5.5400e-004	0.00
tblFleetMix	SBUS	9.5400e-004	0.00
tblFleetMix	SBUS	9.5400e-004	0.00
tblFleetMix	UBUS	2.5100e-004	0.00
tblFleetMix	UBUS	2.5100e-004	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblVehicleTrips	CW_TL	9.50	40.00
tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	1.49
tblVehicleTrips	ST_TR	0.00	0.32
tblVehicleTrips	SU_TR	1.74	1.65
tblVehicleTrips	SU_TR	0.00	0.36
tblVehicleTrips	WD_TR	1.74	1.75
tblVehicleTrips	WD_TR	0.00	0.38

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Area	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Energy	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
Mobile	5.4763	56.3597	54.6111	0.3748	19.2203	0.6337	19.8540	5.2317	0.6048	5.8365		40,202.93 76	40,202.93 76	1.6514	5.1434	41,776.96 43
Total	27.6415	56.7912	55.1347	0.3774	19.2203	0.6670	19.8873	5.2317	0.6380	5.8698		40,719.32 34	40,719.32 34	1.6622	5.1529	42,296.43 94

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Energy	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
Mobile	5.4763	56.3597	54.6111	0.3748	19.2203	0.6337	19.8540	5.2317	0.6048	5.8365		40,202.93 76	40,202.93 76	1.6514	5.1434	41,776.96 43
Total	27.6415	56.7912	55.1347	0.3774	19.2203	0.6670	19.8873	5.2317	0.6380	5.8698		40,719.32 34	40,719.32 34	1.6622	5.1529	42,296.43 94

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	6/1/2023	5/31/2023	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Mitigated	5.4763	56.3597	54.6111	0.3748	19.2203	0.6337	19.8540	5.2317	0.6048	5.8365		40,202.93 76	40,202.93 76	1.6514	5.1434	41,776.96 43
Unmitigated	5.4763	56.3597	54.6111	0.3748	19.2203	0.6337	19.8540	5.2317	0.6048	5.8365		40,202.93 76	40,202.93 76	1.6514	5.1434	41,776.96 43

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	1,393.99	1,184.90	1310.36	3,947,682	3,947,682
User Defined Industrial	304.03	258.39	285.79	4,293,829	4,293,829
Total	1,698.02	1,443.29	1,596.15	8,241,511	8,241,511

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	7.30	7.30	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.580800	0.060200	0.185500	0.146600	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.026900	0.000000	0.000000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

User Defined Industrial	:	0.000000	0.000000	0.000000	0.000000	0.085200	0.023000	0.108200	0.783600	0.000000	0.000000	0.000000	0.000000	0.000000
		-												

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
NaturalGas Mitigated	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
NaturalGas Unmitigated	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	day		
Unrefrigerated Warehouse-No Rail	4386.32	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	day		
Unrefrigerated Warehouse-No Rail	4.38632	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037

6.0 Area Detail

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	Jay		
Mitigated	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Unmitigated	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	day							lb/o	day		
Architectural Coating	5.0574					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	17.0455					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0150	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Total	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	5.0574					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	17.0455					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0150	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Total	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Businses Center (High-Cube Fulfillment Center Operations)

San Bernardino-Mojave Desert County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-No Rail	796.52	1000sqft	18.29	796,520.00	0
User Defined Industrial	796.52	User Defined Unit	0.00	0.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edison				
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity 0 (Ib/MWhr)	.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use -

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic Analysis

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	20.00	0.00
tblConstructionPhase	PhaseEndDate	6/28/2023	5/31/2023
tblFleetMix	HHD	0.02	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblFleetMix	HHD	0.02	0.78
tblFleetMix	LDA	0.54	0.58
tblFleetMix	LDA	0.54	0.00
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.17	0.19
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.09
tblFleetMix	LHD2	7.1040e-003	0.00
tblFleetMix	LHD2	7.1040e-003	0.02
tblFleetMix	MCY	0.03	0.03
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MDV	0.14	0.15
tblFleetMix	MDV	0.14	0.00
tblFleetMix	МН	4.8300e-003	0.00
tblFleetMix	МН	4.8300e-003	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	MHD	0.01	0.11
tblFleetMix	OBUS	5.5400e-004	0.00
tblFleetMix	OBUS	5.5400e-004	0.00
tblFleetMix	SBUS	9.5400e-004	0.00
tblFleetMix	SBUS	9.5400e-004	0.00
tblFleetMix	UBUS	2.5100e-004	0.00
tblFleetMix	UBUS	2.5100e-004	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblVehicleTrips	CW_TL	9.50	40.00
tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	1.74	1.49
tblVehicleTrips	ST_TR	0.00	0.32
tblVehicleTrips	SU_TR	1.74	1.65
tblVehicleTrips	SU_TR	0.00	0.36
tblVehicleTrips	WD_TR	1.74	1.75
tblVehicleTrips	WD_TR	0.00	0.38

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/d	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Energy	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
Mobile	4.8301	59.2507	50.4327	0.3683	19.2203	0.6342	19.8545	5.2317	0.6052	5.8369		39,535.06 19	39,535.06 19	1.6641	5.1588	41,113.98 10
Total	26.9952	59.6822	50.9563	0.3709	19.2203	0.6674	19.8877	5.2317	0.6385	5.8702		40,051.44 77	40,051.44 77	1.6749	5.1682	41,633.45 61

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Area	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Energy	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
Mobile	4.8301	59.2507	50.4327	0.3683	19.2203	0.6342	19.8545	5.2317	0.6052	5.8369		39,535.06 19	39,535.06 19	1.6641	5.1588	41,113.98 10
Total	26.9952	59.6822	50.9563	0.3709	19.2203	0.6674	19.8877	5.2317	0.6385	5.8702		40,051.44 77	40,051.44 77	1.6749	5.1682	41,633.45 61

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	6/1/2023	5/31/2023	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	4.8301	59.2507	50.4327	0.3683	19.2203	0.6342	19.8545	5.2317	0.6052	5.8369		39,535.06 19	39,535.06 19	1.6641	5.1588	41,113.98 10
Unmitigated	4.8301	59.2507	50.4327	0.3683	19.2203	0.6342	19.8545	5.2317	0.6052	5.8369		39,535.06 19	39,535.06 19	1.6641	5.1588	41,113.98 10

4.2 Trip Summary Information

	Aver	age Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Unrefrigerated Warehouse-No Rail	1,393.99	1,184.90	1310.36	3,947,682	3,947,682
User Defined Industrial	304.03	258.39	285.79	4,293,829	4,293,829
Total	1,698.02	1,443.29	1,596.15	8,241,511	8,241,511

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	se %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Unrefrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	7.30	7.30	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-No Rail	0.580800	0.060200	0.185500	0.146600	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.026900	0.000000	0.000000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

User Defined Industrial	:	0.000000	0.000000	0.000000	0.000000	0.085200	0.023000	0.108200	0.783600	0.000000	0.000000	0.000000	0.000000	0.000000
		-												

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
NaturalGas Mitigated	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
NaturalGas Unmitigated	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	day		
Unrefrigerated Warehouse-No Rail	4386.32	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	day		
Unrefrigerated Warehouse-No Rail	4.38632	0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0473	0.4300	0.3612	2.5800e- 003		0.0327	0.0327		0.0327	0.0327		516.0371	516.0371	9.8900e- 003	9.4600e- 003	519.1037

6.0 Area Detail

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Mitigated	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Unmitigated	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	day		
Architectural Coating	5.0574					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	17.0455					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0150	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Total	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	5.0574					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	17.0455					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0150	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714
Total	22.1179	1.4700e- 003	0.1624	1.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004		0.3486	0.3486	9.1000e- 004		0.3714

7.0 Water Detail

7.1 Mitigation Measures Water

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
		,				,,

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type

Number

11.0 Vegetation

This page intentionally left blank

APPENDIX 3.4:

CALEEMOD OPERATIONAL EMISSIONS MODEL OUTPUTS (HIGH-CUBE COLD STORAGE WAREHOUSE)

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Business Center (High-Cube Cold Storage Operations)

San Bernardino-Mojave Desert County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Refrigerated Warehouse-No Rail	200.00	1000sqft	4.59	200,000.00	0
User Defined Industrial	200.00	User Defined Unit	0.00	0.00	0
Other Asphalt Surfaces	1,131.28	1000sqft	25.97	1,131,280.00	0
Parking Lot	641.00	Space	3.07	133,859.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern Californi	a Edison			
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity (Ib/MWhr)	0.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use - Total Project area (without High-Cube Fulfillment Center) is 33.63 acres

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic Analysis

Operational Off-Road Equipment - Based on SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results (2014)

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Table Name	Column Name	Default Value	New Value		
tblConstructionPhase	NumDays	30.00	0.00		
tblFleetMix	HHD	0.02	0.00		
tblFleetMix	HHD	0.02	0.55		
tblFleetMix	LDA	0.54	0.58		
tblFleetMix	LDA	0.54	0.00		
tblFleetMix	LDT1	0.06	0.06		
tblFleetMix	LDT1	0.06	0.00		
tblFleetMix	LDT2	0.17	0.19		
tblFleetMix	LDT2	0.17	0.00		
tblFleetMix	LHD1	0.03	0.00		
tblFleetMix	LHD1	0.03	0.27		
tblFleetMix	LHD2	7.1040e-003	0.00		
tblFleetMix	LHD2	7.1040e-003	0.07		
tblFleetMix	МСҮ	0.03	0.03		
tblFleetMix	МСҮ	0.03	0.00		
tblFleetMix	MDV	0.14	0.15		
tblFleetMix	MDV	0.14	0.00		
tblFleetMix	МН	4.8300e-003	0.00		
tblFleetMix	МН	4.8300e-003	0.00		
tblFleetMix	MHD	0.01	0.00		
tblFleetMix	MHD	0.01	0.11		
tblFleetMix	OBUS	5.5400e-004	0.00		
tblFleetMix	OBUS	5.5400e-004	0.00		
tblFleetMix	SBUS	9.5400e-004	0.00		
tblFleetMix	SBUS	9.5400e-004	0.00		
tblFleetMix	UBUS	2.5100e-004	0.00		
tblFleetMix	UBUS	2.5100e-004	0.00		
tblLandUse	LandUseSquareFeet	256,400.00	133,859.00		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblLandUse	LotAcreage	5.77	3.07
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG
tblOperationalOffRoadEquipment	OperHorsePower	97.00	200.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	4.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	4.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028
tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblVehicleTrips	CW_TL	9.50	40.00
tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	2.12	1.17
tblVehicleTrips	ST_TR	0.00	0.64
tblVehicleTrips	SU_TR	2.12	1.30
tblVehicleTrips	SU_TR	0.00	0.71
tblVehicleTrips	WD_TR	2.12	1.38
tblVehicleTrips	WD_TR	0.00	0.75

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year	lb/day										lb/day						
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/d	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Area	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Energy	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
Mobile	1.4865	23.7856	15.4647	0.1438	6.9549	0.2537	7.2086	1.9221	0.2424	2.1645		15,366.14 31	15,366.14 31	0.5235	1.9554	15,961.92 62
Offroad	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3
Total	8.4890	30.4588	21.0255	0.1732	6.9549	0.6080	7.5628	1.9221	0.5852	2.5073	0.0000	19,927.95 32	19,927.95 32	0.9854	2.0165	20,553.50 17
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/o	day		
Area	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Energy	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
Mobile	1.4865	23.7856	15.4647	0.1438	6.9549	0.2537	7.2086	1.9221	0.2424	2.1645		15,366.14 31	15,366.14 31	0.5235	1.9554	15,961.92 62
Offroad	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3
Total	8.4890	30.4588	21.0255	0.1732	6.9549	0.6080	7.5628	1.9221	0.5852	2.5073	0.0000	19,927.95 32	19,927.95 32	0.9854	2.0165	20,553.50 17

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	6/1/2023	5/31/2023	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Paving: 29.04

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	1.4865	23.7856	15.4647	0.1438	6.9549	0.2537	7.2086	1.9221	0.2424	2.1645		15,366.14 31	15,366.14 31	0.5235	1.9554	15,961.92 62
Unmitigated	1.4865	23.7856	15.4647	0.1438	6.9549	0.2537	7.2086	1.9221	0.2424	2.1645		15,366.14 31	15,366.14 31	0.5235	1.9554	15,961.92 62

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	276.00	234.60	259.44	781,612	781,612
User Defined Industrial	150.00	127.50	141.00	2,118,480	2,118,480
Total	426.00	362.10	400.44	2,900,092	2,900,092

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	7.30	7.30	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Parking Lot	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Refrigerated Warehouse-No Rail	0.580800	0.060200	0.185500	0.146600	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.026900	0.000000	0.000000
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.273000	0.073700	0.106700	0.546600	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
NaturalGas Mitigated	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
NaturalGas Unmitigated	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	day		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	28345.2	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,35 <mark>4.546</mark> 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	28.3452	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Unmitigated	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004	 - - -	7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	day							lb/c	lay		
Architectural Coating	1.5108					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.7281					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0204	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004	1	7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Total	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	1.5108	1 1 1				0.0000	0.0000		0.0000	0.0000		1 1 1	0.0000			0.0000
Consumer Products	4.7281					0.0000	0.0000		0.0000	0.0000		, , , , ,	0.0000			0.0000
Landscaping	0.0204	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Total	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Tractors/Loaders/Backhoes	4	4.00	365	200	0.37	CNG

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

UnMitigated/Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/o	day							lb/c	day		
Tractors/Loaders/ Backhoes	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3
Total	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	

User Defined Equipment

Equipment Type Number

11.0 Vegetation

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Ottawa Business Center (High-Cube Cold Storage Operations)

San Bernardino-Mojave Desert County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Refrigerated Warehouse-No Rail	200.00	1000sqft	4.59	200,000.00	0
User Defined Industrial	200.00	User Defined Unit	0.00	0.00	0
Other Asphalt Surfaces	1,131.28	1000sqft	25.97	1,131,280.00	0
Parking Lot	641.00	Space	3.07	133,859.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	32
Climate Zone	10			Operational Year	2024
Utility Company	Southern California Edis	son			
CO2 Intensity (Ib/MWhr)	327.92	CH4 Intensity (Ib/MWhr)	0.028	N2O Intensity (Ib/MWhr)	0.003

1.3 User Entered Comments & Non-Default Data

Project Characteristics - Intensity factors adjusted to reflect the RPS for the 2024 OPY

Land Use - Total Project area (without High-Cube Fulfillment Center) is 33.63 acres

Construction Phase - Operations run only

Off-road Equipment - Operations run only

Vehicle Trips - Trip characteristics based on information provided in the Traffic Analysis

Operational Off-Road Equipment - Based on SCAQMD High Cube Warehouse Truck Trip Study White Paper Summary of Busniess Survey Results (2014)

Fleet Mix - Passenger Car Mix estimated based on the CalEEMod default fleet mix and the ratio of the vehicle classes (LDA, LDT1, LDT2, MDV, & MCY). Truck Mix based on information in the Traffic Analysis

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Table Name	Column Name	Default Value	New Value
tblConstructionPhase	NumDays	30.00	0.00
tblFleetMix	HHD	0.02	0.00
tblFleetMix	HHD	0.02	0.55
tblFleetMix	LDA	0.54	0.58
tblFleetMix	LDA	0.54	0.00
tblFleetMix	LDT1	0.06	0.06
tblFleetMix	LDT1	0.06	0.00
tblFleetMix	LDT2	0.17	0.19
tblFleetMix	LDT2	0.17	0.00
tblFleetMix	LHD1	0.03	0.00
tblFleetMix	LHD1	0.03	0.27
tblFleetMix	LHD2	7.1040e-003	0.00
tblFleetMix	LHD2	7.1040e-003	0.07
tblFleetMix	MCY	0.03	0.03
tblFleetMix	MCY	0.03	0.00
tblFleetMix	MDV	0.14	0.15
tblFleetMix	MDV	0.14	0.00
tblFleetMix	МН	4.8300e-003	0.00
tblFleetMix	МН	4.8300e-003	0.00
tblFleetMix	MHD	0.01	0.00
tblFleetMix	MHD	0.01	0.11
tblFleetMix	OBUS	5.5400e-004	0.00
tblFleetMix	OBUS	5.5400e-004	0.00
tblFleetMix	SBUS	9.5400e-004	0.00
tblFleetMix	SBUS	9.5400e-004	0.00
tblFleetMix	UBUS	2.5100e-004	0.00
tblFleetMix	UBUS	2.5100e-004	0.00
tblLandUse	LandUseSquareFeet	256,400.00	133,859.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

tblLandUse	LotAcreage	5.77	3.07
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	0.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	365.00
tblOperationalOffRoadEquipment	OperFuelType	Diesel	CNG
tblOperationalOffRoadEquipment	OperHorsePower	97.00	200.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	4.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	4.00
tblProjectCharacteristics	CH4IntensityFactor	0.033	0.028
tblProjectCharacteristics	CO2IntensityFactor	390.98	327.92
tblProjectCharacteristics	N2OIntensityFactor	0.004	0.003
tblVehicleTrips	CW_TL	9.50	40.00
tblVehicleTrips	CW_TTP	0.00	100.00
tblVehicleTrips	PR_TP	0.00	100.00
tblVehicleTrips	ST_TR	2.12	1.17
tblVehicleTrips	ST_TR	0.00	0.64
tblVehicleTrips	SU_TR	2.12	1.30
tblVehicleTrips	SU_TR	0.00	0.71
tblVehicleTrips	WD_TR	2.12	1.38
tblVehicleTrips	WD_TR	0.00	0.75

2.0 Emissions Summary

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year		lb/day											lb/e	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year		lb/day											lb/d	day		
2023	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Area	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Energy	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
Mobile	1.3512	24.9850	14.6201	0.1425	6.9549	0.2539	7.2087	1.9221	0.2425	2.1646		15,237.02 99	15,237.02 99	0.5254	1.9608	15,834.48 53
Offroad	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3
Total	8.3537	31.6582	20.1809	0.1719	6.9549	0.6081	7.5630	1.9221	0.5854	2.5075	0.0000	19,798.84 00	19,798.84 00	0.9873	2.0220	20,426.06 08

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day				lb/o	day					
Area	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Energy	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
Mobile	1.3512	24.9850	14.6201	0.1425	6.9549	0.2539	7.2087	1.9221	0.2425	2.1646		15,237.02 99	15,237.02 99	0.5254	1.9608	15,834.48 53
Offroad	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3
Total	8.3537	31.6582	20.1809	0.1719	6.9549	0.6081	7.5630	1.9221	0.5854	2.5075	0.0000	19,798.84 00	19,798.84 00	0.9873	2.0220	20,426.06 08

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	6/1/2023	5/31/2023	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Acres of Paving: 29.04

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	0	8.00	81	0.73
Demolition	Excavators	0	8.00	158	0.38
Demolition	Rubber Tired Dozers	0	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

3.2 Demolition - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day												lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

3.2 Demolition - 2023

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	1.3512	24.9850	14.6201	0.1425	6.9549	0.2539	7.2087	1.9221	0.2425	2.1646		15,237.02 99	15,237.02 99	0.5254	1.9608	15,834.48 53
Unmitigated	1.3512	24.9850	14.6201	0.1425	6.9549	0.2539	7.2087	1.9221	0.2425	2.1646		15,237.02 99	15,237.02 99	0.5254	1.9608	15,834.48 53

4.2 Trip Summary Information

	Avei	age Daily Trip Ra	ite	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Refrigerated Warehouse-No Rail	276.00	234.60	259.44	781,612	781,612
User Defined Industrial	150.00	127.50	141.00	2,118,480	2,118,480
Total	426.00	362.10	400.44	2,900,092	2,900,092

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Refrigerated Warehouse-No	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3
User Defined Industrial	40.00	7.30	7.30	100.00	0.00	0.00	100	0	0

4.4 Fleet Mix

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Parking Lot	0.540566	0.056059	0.172680	0.136494	0.026304	0.007104	0.011680	0.017449	0.000554	0.000251	0.025076	0.000954	0.004830
Refrigerated Warehouse-No Rail	0.580800	0.060200	0.185500	0.146600	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.026900	0.000000	0.000000
User Defined Industrial	0.000000	0.000000	0.000000	0.000000	0.273000	0.073700	0.106700	0.546600	0.000000	0.000000	0.000000	0.000000	0.000000

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
NaturalGas Mitigated	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
NaturalGas Unmitigated	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	day		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	28345.2	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Refrigerated Warehouse-No Rail	28.3452	0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7
User Defined Industrial	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.3057	2.7789	2.3343	0.0167		0.2112	0.2112		0.2112	0.2112		3,334.730 1	3,334.730 1	0.0639	0.0611	3,354.546 7

6.0 Area Detail

6.1 Mitigation Measures Area

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Mitigated	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Unmitigated	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural Coating	1.5108					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.7281		,			0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0204	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004	1	7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Total	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

6.2 Area by SubCategory

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day										lb/d	day				
Architectural Coating	1.5108					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	4.7281					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	0.0204	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064
Total	6.2594	2.0100e- 003	0.2214	2.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		0.4754	0.4754	1.2400e- 003		0.5064

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Tractors/Loaders/Backhoes	4	4.00	365	200	0.37	CNG

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Applied

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/o	day							lb/c	lay		
Tractors/Loaders/ Backhoes	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3
Total	0.4374	3.8923	3.0051	0.0127		0.1422	0.1422		0.1309	0.1309	0.0000	1,226.604 6	1,226.604 6	0.3967		1,236.522 3

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	

User Defined Equipment

Equipment Type Number

11.0 Vegetation

This page intentionally left blank

