TRAFFIC NOISE LEVELS

Project Number: 2020-177
Project Name: Chino Well

Background Information

Model Description: FHWA Highway Noise Prediction Model (FHWA-RD-77-108) with California Vehicle Noise (CALVENO) Emission Levels.

Analysis Scenario(s): X
Source of Traffic Volumes: X

Community Noise Descriptor:

Ldn:

CNEL:

X

Assumed 24-Hour Traffic Distribution:

Day Evening Night

 Total ADT Volumes
 77.70%
 12.70%
 9.60%

 Medium-Duty Trucks
 87.43%
 5.05%
 7.52%

 Heavy-Duty Trucks
 89.10%
 2.84%
 8.06%

Traffic Noise Levels

				Peak		Design	Dist. from		Barrier	Vehicle Mix		Peak Hour	24-Hour
Analysis Condition Roadway Segment	Land Use	Lanes	Median Width	Hour Volume	ADT Volume	Speed (mph)	Center to Receptor	Alpha Factor	Attn. dB(A)	Medium Trucks	Heavy Trucks	$\begin{array}{c} dB(A) \\ L_{eq} \end{array}$	dB(A) CNEL
Highway 60													
Between Mountain Avenue and JCT. 83	Residential	10	0	0	224,000	35	100	0	0	1.8%	0.7%	0.0	76.0