APPENDIX E

Village Specific Plan and Environmental Impact Report

Infrastructure Plan

December 13, 2021

Prepared for

Town of Apple Valley 14955 Dale Evans Parkway Apple Valley, CA 92307

Prepared by

Terra Nova Planning and Research, Inc. 42635 Melanie Place, Suite 101 Palm Desert, CA 92211

Infrastructure Plan

Final Draft 12/13/21

A. Administrative Services/General Government

The current limits of the Village Specific Plan are part of the Town of Apple Valley. General government services include the Town Council, Town Manager, Town Clerk, Town Administrative Offices, including Public Services Administration, and Town Attorney. The Town Council consists of five council members with the mayor as presiding officer.

The Town Manager is responsible for the administrative affairs of the Town, including managing Town services and implementing programs and activities as directed by the Town Council. Other managerial responsibilities include monitoring and advising the Council of all state and federal legislation that concern the Town. The Town Manager and staff serve the entire Town, including the Village Specific Plan area.

The Town Clerk maintains the Town's official records, including Town Council official minutes. The Clerk performs duties required by the California Political Reform Act, which created the California Fair Political Practices Commission (FPPC). The Clerk serves as the Town's Election Official and Notary Public, and maintains the Municipal Code. The Clerk's office also serves as a Passport office. The Clerk and staff serve the entire Town.

The Town's General Government offices and services include the following:

- Human Resources Department, including Risk Management
- Public Information Office
- Finance Department
- Animal Services
- Economic and Business Development Department
- Police Department
- Community Development Department, including planning, housing, and code enforcement services
- Parks & Recreation Department
- Public Services Department
- Office of Emergency Preparedness
- Building & Safety Department
- Public Works Department, including street maintenance, wastewater, and grounds maintenance
- Engineering Department
- Environmental & Transit Services
- Apple Valley Golf Course administration

The Community Resource Foundation, a non-profit public benefit corporation, supports and promotes cultural, recreational, and human services needs in Apple Valley.

B. Wastewater Treatment

The Town owns and operates the local wastewater collection system, which serves more than 22,000 residents. The sewer system consists of approximately 145 miles of sewer pipe infrastructure and 8 lift stations. It is relatively new and does not cover the entire Town; approximately 70% of developed residential areas have not been connected to the sewer system and still rely on septic systems.

The Town is a member of the Victor Valley Wastewater Reclamation Authority (VVWRA), a joint powers authority that includes the Town of Apple Valley, City of Hesperia, City of Victorville, and San Bernardino County Service Areas 42 (Oro Grande) and 64 (Spring Valley Lake). Although the Town of Apple Valley maintains ownership, operation, and maintenance of its sewer system, VVWRA maintains regional intercept lines that collect and transport wastewater from Town pipelines to a regional wastewater treatment plant in Victorville. The Victorville wastewater treatment plant treats approximately 10.7 million gallons per day (MGD),² and has a design and treatment capacity of 18 MGD. Overall capacity is expected to be expanded to 22 MGD by 2020 and 30 MGD by 2025.³

The Apple Valley Subregional Water Reclamation Plant near Brewster Park is a new VVWRA facility that treats a portion of locally generated wastewater, while all solids and other wastewater continue to be treated at the Victorville treatment plant. The new plant produces about one million gallons per day of recycled water to be used for irrigation of the Apple Valley Golf Course and other irrigated spaces.⁴

The local sewer facilities within the Village Specific Plan area are located in Assessment District 2A, which was established in 1982. The area generally includes existing underground sewer lines running in a south to north direction. Properties south of Highway 18 collect sewer in the north-south roads of Manhasset Road, Quinault Road, and Navajo Road. These sewers are collected along Highway 18, connecting to sewers in a north-south direction primarily at Navajo Road, but also Quinault Road north of Highway 18. Sewage from AD 2A flows generally north to the Lift Station VVWRA Nanticoke AD 2, located at the intersection of Standing Rock Road and Nanticoke Road. The Lift Station VVWRA Nanticoke AD 2 pumps the wastewater flows nearly two miles westerly along and parallel to Standing Rock Road to Highway 18 where it flows by gravity to the VVWRA interceptor.

Exhibit B-1 illustrates the Existing Sewer Facilities within the Apple Valley Village Specific Plan area.

The Apple Valley Sewer System Master Plan 2013 evaluated the adequacy of the Town's sewer system based on the assumption that the Town will develop according to land use

Town of Apple Valley Sewer System Management Plan (SSMP) Update, September 10, 2019.

http://www.vvwra.com, accessed November 12, 2019.

³ "Victor Valley Wastewater Reclamation Authority Sewer Plan, Adopted Policy for Serving the Growth of the Community," August 2005.

^{4 .}Purple Pipe Newsletter, Volume XIII Springs 2018, Victor Valley Wastewater Reclamation Authority.

projections defined in the 2009 General Plan. This report concluded that all three pipeline segments leading to the Lift Station 2A No. 2 are predicted to surcharge due to the lift station's inadequate capacity. Surcharge is anticipated unless additional improvements are installed, in particular the increase of the force main from 4" to 12".

The Town adopted a Sewer Connection Policy in 2006 that requires new development to connect with Town facilities where the development's lots are within one-half mile of existing sewer facilities, which would include the entire Village Specific Plan area. Developments located more than one-half mile from existing facilities are required to install dry sewers or interim "Holding Tank Systems" if approved by the Lahontan Regional Water Quality Control Board (CRWQCB).

The Town and VVWRA assess local and regional sewer connection fees based on the total number of plumbing fixtures. The Town also assesses capacity fees, sewage facilities fees, and Development Impact Fees which are expected to provide adequate funding for extension and maintenance of sewer services to new development.

Exhibit B-2 illustrates the Proposed Sewer Facilities within the Apple Valley Village Specific Plan area. The Town requires new development in the Village to provided sewer facilities and extend sewer infrastructure as development occurs. The sewer improvements will be constructed on an as needed basis as a condition of approval as development occurs.

C. Stormwater Improvements

The Town of Apple Valley Public Works Department is responsible for local drainage management, and the County of San Bernardino Flood Control District ("Flood Control District") is responsible for regional stormwater management within the Village Specific Plan area. The Town defines and manages local facilities through its Master Drainage Plan, which divides the Town and its Sphere of Influence into several subareas and identifies facilities and future needs within each.

Regional stormwater management for the surrounding areas in the Town are provided by the Flood Control District. The Flood Control District implements broad management functions, such as flood control planning, construction of drainage improvements for regional flood control facilities, and watershed and watercourse protection related to those facilities. It has power of taxation, bonded indebtedness, land and water rights acquisition, and cooperative partnerships with local, state, and federal agencies in order to carry out its mandated responsibility. Decisions related to the Flood Control District are made by the San Bernardino County Board of Supervisors. The District is subdivided into several geographic zones; the Town of Apple Valley is fully within District Zone 4.

The Town is required to monitor its Master Drainage Plans every five years to update changes to local and regional drainage and flood conditions. It has established per unit developer impact fees for storm drainage facilities for residential and

⁵ Town of Apple Valley Sewer System Master Plan Update, August 2013.

commercial/industrial development to offset the cost of improvements due to increased development.

Exhibit C-1 illustrates the existing drainage flows in the Village area. The elevation of the area within the Village Specific Plan is generally 2,940', and slopes in a northern direction towards at an average slope of 0.3% to a low point in the Apple Valley Dry Lake region. There are no storm drain catch basins or storm drain lines within the current area, largely due to the low slopes and lack of location to drain any storm drain infrastructure to receiving waters within the region. As presented in the Apple Valley Village Corridor Enhancement Plan Drainage Study, "Appendix A" attached, there are two existing trapezoidal channels with an existing capacity of 77 cfs. These channels parallel to the north and south of Highway 18, terminating near a wash on the northwest corner of Central Road and Highway 18.

The reconstruction of the existing frontage roads along Highway 18 would require the need to remove and/or reconstruct the existing trapezoid channels. Two alternatives are presented for the recommended drainage improvements along the Highway 18 corridor from Navajo Road to Central Road.

Alternative 1

Exhibit C-2 illustrates the Alternative 1 recommended drainage improvements for the Highway 18 corridor. The recommended drainage improvements would be to replace the existing channels with larger capacity box culverts in a similar lay out to the existing channels. Typically, Caltrans requires the 25 year storm event to be conveyed under the Highway, so a preliminary box culvert size for an underground storm drain along Highway 18 to replace the existing drainage ditches, is recommended to be a double 6 foot by 6 foot box culvert. Depth of storm drains need to be as shallow as possible due to areas mild slopes. Additional catch basins at intersections of local flooding could enhance the existing system. At its outlet, a bio swale and combination basin and/or drywells would provide for some cleanup of the storm water and mitigate some of the volume.

Alternative 2

This alternative would be to provide upstream improvements, such as detention basins to reduce the drainage flows to the Village area. Exhibit C-3 illustrates the Alternative 2 recommended drainage improvements for the Highway 18 corridor. With the reduced drainage flows, the underground storm drain along Highway 18 to replace the existing drainage ditches, would consist of a 54-inch pipe.

At present there are some drainage devices upstream, but they are too small to have any effect on storm flows, such as the basins at the Community Center at the southeast corner of Navajo Road and Powhattan Road. A few drywells are located in the area upstream to the Village, however drywells are primarily for nuisance flows. Any capacity of storm water captured by drywells would only amount to approximately 0.02% of the storm flows. The construction of upstream basins would reduce the storm flows. Exhibit C-4 illustrates the potential locations of the proposed basins. The best basin opportunity would be along Navajo, west side, just north of Bear Valley Road and since it is about a

mile and one half upstream of the site 40 acres could be used there. Also, there is some vacant land between Ottawa Road and Maccauly Road that looks large enough for a second basin and could work well there. Other locations include the vacant land downstream of the Junior High on Navajo Road downstream along Nomwakett Lane. The biggest drawback to the upstream basins alternative is the sizable areas of the basins needed to provide mitigation. One-hundred-year storm event mitigation could require a total of 110 to 180 acres. Also, basins upstream of Bear Valley Road could provide some benefit in volume reduction and reduce the size of the downstream basins.

The locations and sizing of the proposed detention basins will require additional analysis. The Town Engineering staff has started discussions with the County Flood Control District to examine funding through the allocations to the County Flood Control District Zone 4.

D. Roadway Maintenance

The area includes a small network of primarily paved roadways. Running through the Specific Plan area is Highway 18, a four lane divided road containing an 18' wide median, owned and maintained by Caltrans District 8. From the Village area, the highway turns to the northwest and is a major arterial for the Town, ultimately connecting with Highway 15 in Victorville via D Street and Stoddard Wells Road.

The Village Specific Plan area is bounded by Navajo Road (4-lane median divided, major roadway with 104' ROW) to the west, Central Road (2-lane, major roadway with 104' ROW) to the east, Esaws Ave (2-lane local road) to the north and Ottawa Road (2-lane, secondary road with 88' ROW) to the south.

The remainder of the streets run through the Village area in a grid layout with north-south roads (John Glenn, Pawnee, Hitt) and east-west roads (Powhatan, Arapahoe). All of these roads are designated as Local Commercial Streets with a 66' ROW, developed with crowned asphalt that drain to either curb and gutters, curbs, or drainage ditches.

Aside from Highway 18, which is owned and maintained by Caltrans, the Town is responsible for roadway construction and maintenance. Any future development will be responsible for a fair share of roadway improvements via development impact fees, which have been established as transportation impact fees through the Town's Developer Impact Fee schedule. These are assessed per square foot for commercial and industrial development. Gas taxes, Proposition 42 Traffic Congestion Relief funds, Local Transportation Funds, and Measure I funds are also used for the construction and maintenance of streets and highways.

The area's roads have several deficiencies that could be improved within the right-of-way. The ADA constraints should be addressed first since there are several roads that do not have sidewalks, have non-ADA curb ramps, and have ADA-deficient driveways. In support of pedestrian improvements, additional signage could be installed form improved pedestrian safety. Several of the roads could have additional striping such as centerlines, edge lines, crosswalks, and turn arrows. Furthermore, Class III chevron striping and Class II bike lanes could be installed for improved bicycle access.

E. Public Safety: Police and Emergency Preparedness

Law Enforcement

Law enforcement services are provided by the Town of Apple Valley which contracts with the San Bernardino County Sheriff's Department. The Apple Valley Police/Sheriff Station is located in the Civic Center at 14931 Dale Evans Parkway in Apple Valley. Its staff includes 51 sworn personnel and 13 general employees. In 2018, staffing levels resulted in a ratio of one deputy per 1,987 residents, and the Department responded to 67,988 calls for service.

The Department has set a target ratio of 1 deputy per 1,500 residents. The Town expends approximately 43% of its General Fund toward Sheriff services. The Town has established Development Impact Fees to fund additional law enforcement facilities; these are assessed per dwelling unit and per square foot of commercial/industrial development.

Emergency Preparedness

The Town's Public Safety budget includes expenditures for emergency and disaster preparedness, including but not limited to the Emergency Operations Plan, operation of the Emergency Operation Center (EOC) at the Apple Valley Unified School District's Administration Campus, emergency response training and coordination, and public education and drills. Inclusion of this program places the Town in position to receive Federal Emergency Management Assistance (FEMA) reimbursement funds. In the event of an emergency, the Apple Valley EOC reports directly to the County Office of Emergency Services who can assist the Town with requests for state and federal assistance. Funding for the Emergency Preparedness program is through the Town's General Fund, the Apple Valley Fire Protection District, and a Federal Emergency Management Program Grant (EMPG).

Emergency medical services are provided by American Medical Response, AMR, a private company. This is further discussed under the Fire Department section.

F. Fire Department

The Apple Valley Fire Protection District (AVFPD) provides fire protection and emergency response services to a population of nearly 94,000 in a service area covering 206 square miles, including the Town of Apple Valley, and unincorporated land east of Apple Valley.

The District employs 52 full-time and 4 part-time and reserve personnel. 12 In 2018, it

http://wp.sbcounty.gov/sheriff/patrol-stations/apple-valley/, accessed November 12, 2019.

https://www.applevalley.org/services/economic-development/commercial/demographics, accessed November 12, 2019.

p. 102, "Town of Apple Valley Adopted Budget, Fiscal Year July 1, 2019 – June 30, 2020"

p. 101, "Town of Apple Valley Adopted Budget, Fiscal Year July 1, 2019 – June 30, 2020"

[&]quot;Town of Apple Valley General Plan," adopted August 11, 2009.

p. 27 & 102, "Town of Apple Valley Adopted Budget, Fiscal Year July 1, 2019 – June 30, 2020"

http://avfpd.org/about-us/, accessed November 6, 2019.

responded to more than 13,422 service calls, including fires and medical emergencies.¹³ It staffs five fire stations full time, all of which provide paramedic services. The closest station is the headquarters office located within the Village Specific Plan area at 22400 Headquarters Drive. Response times are typically within 6 minutes.¹⁴

The desired staffing ratio of full-time fire personnel to population is 1:1,500.¹⁵ The District's 2019-20 budget revenues total \$13.4 million and expenditures total \$12.9 million.¹⁶ Operations are funded through two main revenue sources: property taxes and special tax measures. In 2016, voters approved Measure A, a special tax measure to help fund the District, allowing it to open two previously closed fire stations and reduce response times. The District also receives revenues from Development Impact Fees which are collected by the Town from developers for new development occurring within the District.

Emergency Medical Services

American Medical Response (AMR) Victorville is under contract to San Bernardino County to provide emergency, non-emergency, and stand-by medical services to High Desert communities, including Apple Valley. It responds to approximately 40,000 calls annually and employs an estimated 130 EMTs and Paramedics. ¹⁷

G. Parks and Recreation

The Town of Apple Valley Parks and Recreation Department is responsible for planning, operating, and maintaining parks and recreational facilities within the specific plan area. There are currently 370 acres of parks and open space within 6 mini parks, 2 neighborhood parks, 3 community parks, 2 special use parks, and 4 undeveloped park properties in Apple Valley. The special use parks include the Apple Valley Golf Course and Horsemen's Center. The closest developed park facilities are the James Woody Park (located within the Village area) and the Yucca Loma Park (0.3 miles to the west).

The Town's target parkland standard is 4.5 acres of developed parkland per 1,000 residents. The Town collects Park fees through its Development Impact Fee schedule based on a per residential unit and per square foot commercial/industrial development basis. As authorized by the Quimby Act of 1975, the Town has adopted an ordinance to require dedications of land or in-lieu fees for development of new, or rehabilitation of existing, park facilities. A portion of the 1% property tax allocation it receives from the County is also allocated to parks and recreation.

H. Public Services and Facilities

The Village Specific Plan area is within the service areas of the following public services

1

P. 9, "Apple Valley Fire Protection District 2019-20 Final Budget".

http://avfpd.org/fireems/ems-unit/, accessed November 8, 2019.

Town of Apple Valley General Plan, 2009.

¹⁶ "Apple Valley Fire Protection District 2019-20 Final Budget"

http://www.amr.net/home/victorville, accessed November 11, 2019.

⁸ "Apple Valley Parks and Recreation Master Plan, Final Plan," MIG, Inc., May 2013.

¹⁹ Ibid.

providers:

- Domestic Water: The Town is served by several water private water service providers, of which Liberty Utilities and Golden State Water Company are the largest.
- Solid Waste Management: Burrtec Waste Industries
- Sewer: Town of Apple Valley
- Electricity: Southern California Edison
- Natural Gas: Southwest Gas Company
- Telecommunications: Frontier, Charter Spectrum
- Medical Services: St. Mary Medical Center, American Medical Response (AMR)

Domestic Water

Domestic water for existing development is provided by domestic water service lines. Liberty Utilities provides water services to the majority (81%) of the Apple Valley population, including the area within the Village Specific Plan. Liberty pumps 100% of its water from the Alto subarea of the Mojave River Basin groundwater aquifer from 20 wells. It has approximately 20,000 service connections, 470 miles of water pipelines, 11 reservoirs, and 8 booster pump stations. Liberty's 2015 Urban Water Management Plan concluded that it can meet water demands during normal, single dry, and multiple dry years through the year 2040, and groundwater supplies available to Liberty in the Mojave Basin area are considered reliable over the long term. ²¹

Exhibit H-1 illustrates the Existing Water Facilities within the Apple Valley Village Specific Plan area.

Exhibit H-2 illustrates the Proposed Water Facilities within the Apple Valley Village Specific Plan area. The Town requires new development in the Village to provide water service and extend water infrastructure as development occurs. The water improvements will be constructed on an as needed basis as a condition of approval as development occurs.

Solid Waste Management

Burrtec Waste Industries provides the Town with solid waste collection and disposal services. Through its contractual agreement with Apple Valley, Burrtec's AVCO Disposal collects non-hazardous solid waste and hauls it to the Victorville Landfill, located at 18600 Stoddard Wells Road. The landfill is operated by San Bernardino County. It has 491 total acres, 341 disposal acres, and is permitted to receive up to 3,000 tons daily.²² Its remaining capacity is estimated at 81,510,000 cubic yards,²³ and the estimated closing date is October 2047.²⁴ Solid waste collection and disposal services are provided on a fee basis to residential, commercial, and industrial customers.

²⁰ "Liberty Utilities Celebrates Completion of \$3.5 Million Well Project in Apple Valley," April 16, 2019, California.libertyutilities.com.

²¹ "Liberty Utilities – Apple Valley, 2015 Urban Water Management Plan," Stetson Engineers, Inc., June 2016.

http://calrecycle.ca.gov/SWFFacilities/Directory/36-AA-0045/Detail/, accessed November 12, 2019.

²³ Ibid

²⁴ County of San Bernardino Solid Waste Facility Permit, Facility Number 36-AA-0045, issued June 2, 2010.

AVCO also provides weekly pick up of recyclable materials for residential, commercial and industrial development. Recyclables are sorted at the Victor Valley Materials Recovery Facility (MRF) at 17000 Abbey Lane. The facility is capable of processing 20 tons of material per hour.²⁵

Residential household hazardous wastes (HHW), such as pesticides, batteries, medications, paint thinners, electronics, and gasoline and fuels, are accepted at the Apple Valley Public Works Yard at 13450 Nomwaket Road.

The Town participates in the Zero Waste Communities of San Bernardino County (ZWC) collective, as well as the Mojave Desert and Mountain Recycling Joint Powers Authority (JPA) along with Adelanto, Barstow, Big Bear, Needles, Twentynine Palms, Victorville, Yucca Valley, and unincorporated areas of San Bernardino County. The JPA addresses solid waste contracts, facilities, issues, and education for its member cities and some unincorporated areas in the County.

Electricity

The Village area is within the service area of Southern California Edison (SCE), which serves the Town of Apple Valley and High Desert region. SCE has four major SCE 115kV electric transmission corridors in the region, from which power is delivered to local residential, commercial, industrial and institutional customers by means of substations and distribution lines. Substation voltages are 33kV to 115kV. Distribution lines and circuits range from 33kV to 6.9kV. The Town Ordinance No. 14.28.020 requires that all new electric lines of 34.5kV or less in Apple Valley be installed underground.

In the short-term, no immediate increase in demand for electricity is anticipated. Development is expected to occur gradually over time and will contribute to the regional demand for electricity. Developers will be responsible for the cost for extension of electricity facilities and hook ups to properties. As a publicly traded company, SCE has developed a rate structure that includes the expansion of facilities to accommodate growth. The power lines in the Specific Plan area are generally overhead. North of Highway 18, the power lines generally run along the back of lots through an electrical easement, connecting with the back of properties. South of Highway 18, the power lines are generally larger and typically run along the back of lot, but do not have a dedicated easement. Some streets (such as Nomwaket Road) have power lines running along the street set back behind drainage ditches.

Undergrounding power lines in areas where the overhead lines run behind lots without dedicated easements would be technically infeasible. SCE could underground lines through dedicated easement areas, but nothing could be developed on top of these easements and undergrounding would have a high cost/benefit ratio. Undergrounding future power lines will need to be covered by the developer (for private developments) and the City for any public works projects.

http://www.applevalley.org/services/solid-waste-trash/materials-recovery-facility-mrf, accessed November 12, 2019.

Letter of correspondence, Nancy Jackson, Southern California Edison, July 25, 2008.

Natural Gas

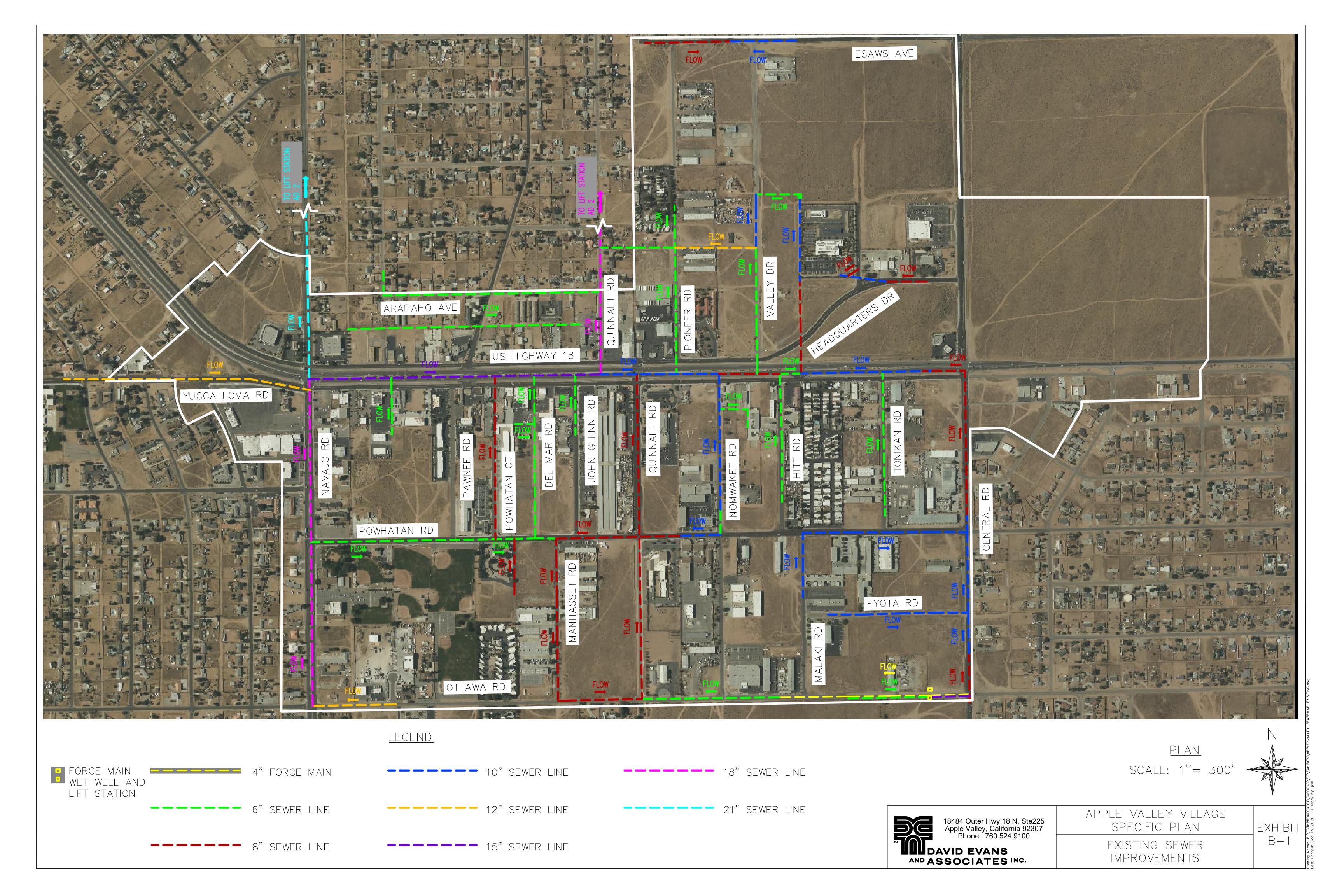
Southwest Gas Company (SWG) provides natural gas service to the Town and its planning area through a series of pipelines of differing sizes and pressure capabilities. Transmission, supply, and distribution lines provide service to most portions of the Town and its Sphere of Influence.

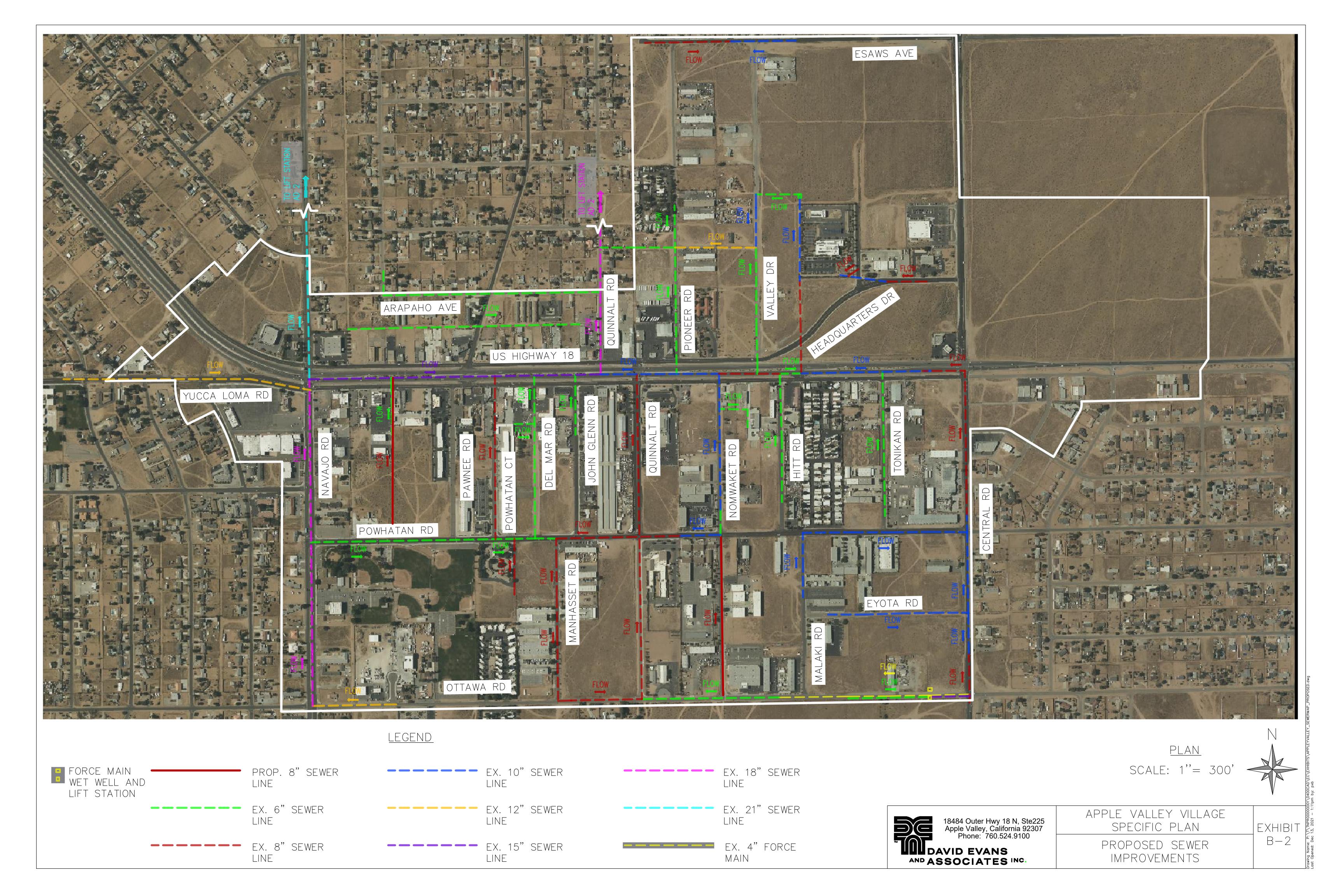
SWG has a network of high-pressure natural gas corridors along: Central Road-Quarry Road to Ottawa Road; Thunderbird Road-Central Road to Highway 18 and Quantico Road; Ottawa Road-Central Road to Kiowa Road; Del Oro Road-Kiowa Road to Tussing Ranch Road; Del Oro Road-Kiowa Road to Joshua Road; Bear Valley Road-Kiowa Road to the Mojave River; and Apple Valley Road-Bear Valley Road to Yucca Loma Road. There are high pressure lines (8 inch and 12 inch) along Central Road and an 8 inch line along Ottawa Road in the Specific Plan area. These lines generally are on the border of the study area.

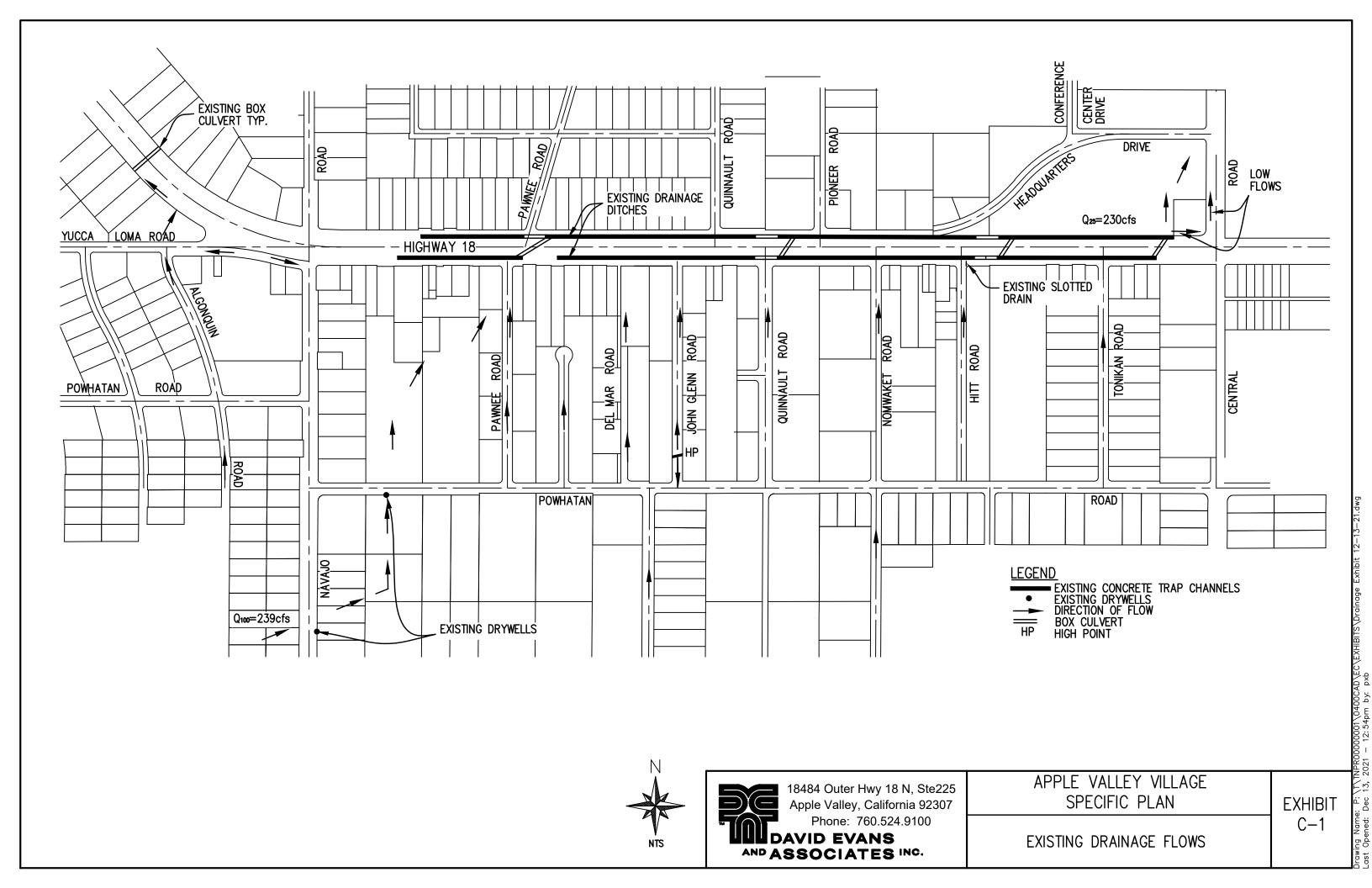
The high-pressure system consists of a combination of 4-inch, 6-inch, 8-inch, and 12-inch high-pressure lines that operate at 240 pounds per square inch (psi). These lines use 36-inch lines with pressure levels ranging from 400 to 700 psi, with pressure reduced at different limiting stations, which then direct the gas to distribution lines. Distribution lines are 2 to 8 inches in diameter, with pressure levels ranging from 175 to 400 psi, and are located within most public rights-of-way. The pressure is reduced again at regulator stations, which transfer natural gas to distribution lines for transportation to homes and businesses. Distribution lines are 2 to 4-inch diameter steel or plastic pipes that operate at 45 to 55 psi.²⁷

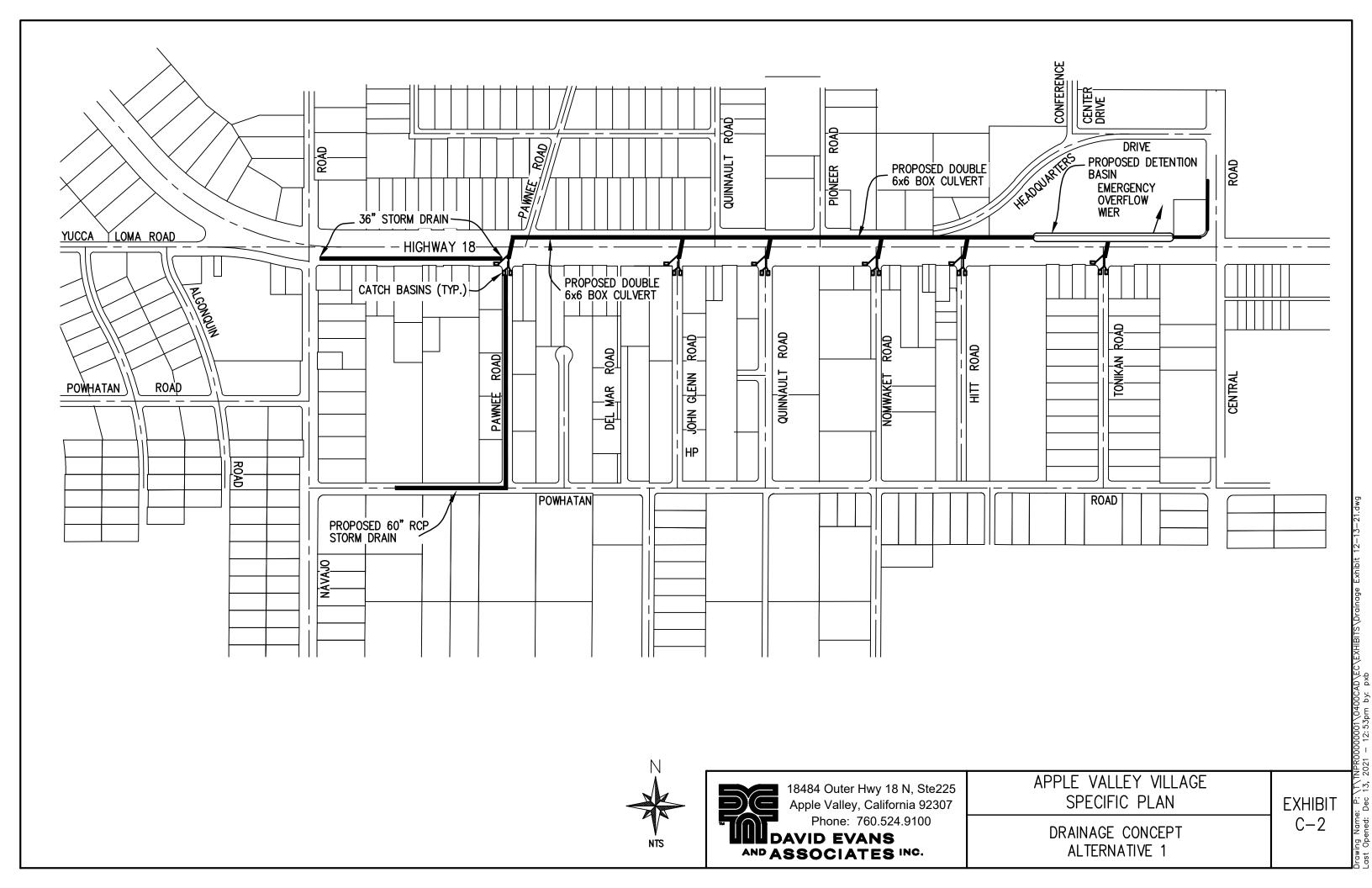
SWG works closely with developers to accommodate new development through the extension of services and facilities as demand load warrants. New facilities, including natural gas distribution lines and service tees, will need to be constructed to serve new development in the Village area.

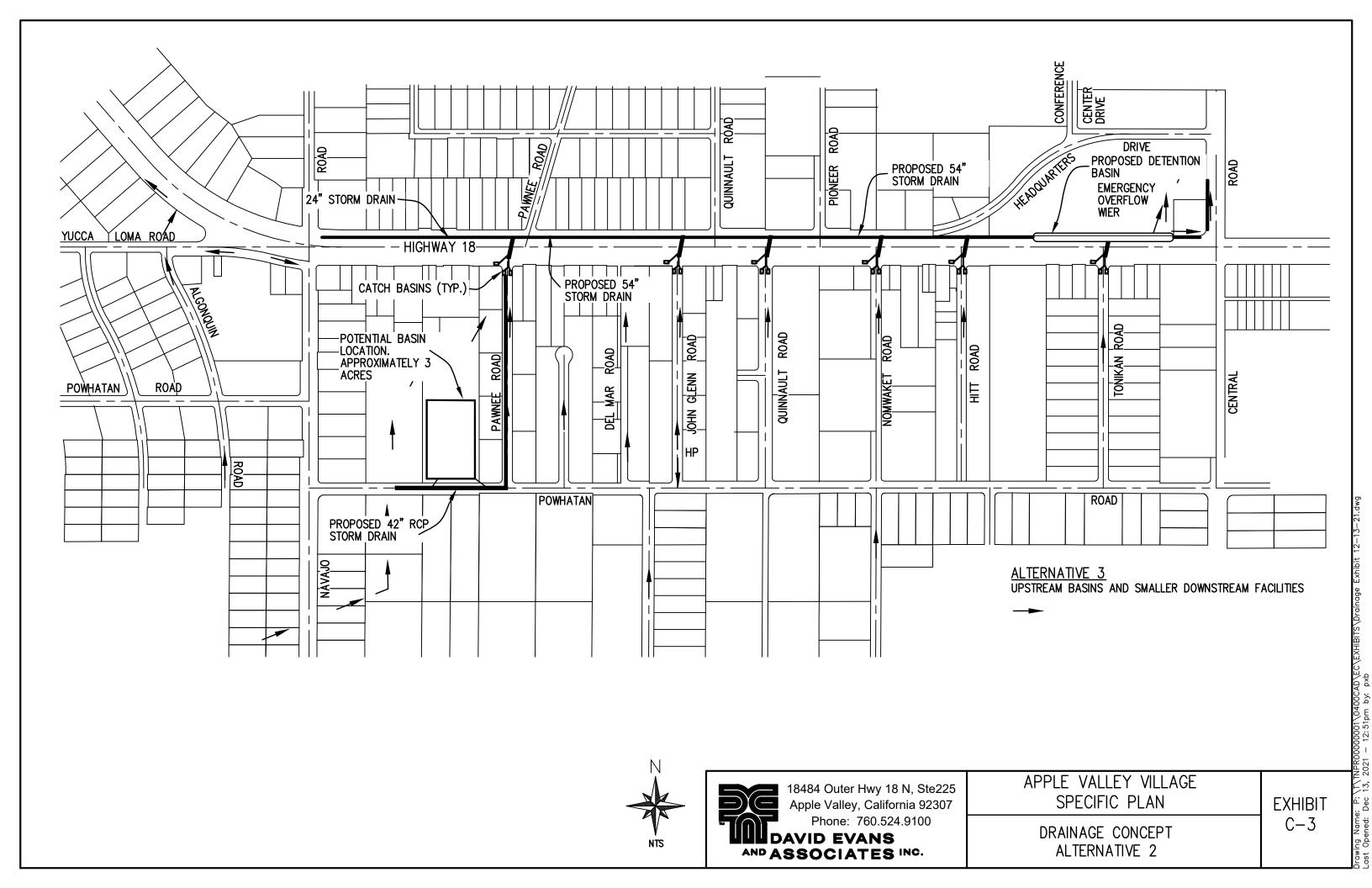
Telecommunications

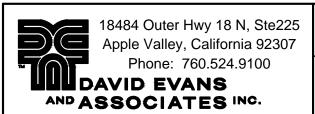

Frontier and Charter Spectrum provide telecommunications services, including telephone, high-speed Internet service, and cable television, to the high desert region, including the Village area of Apple Valley.

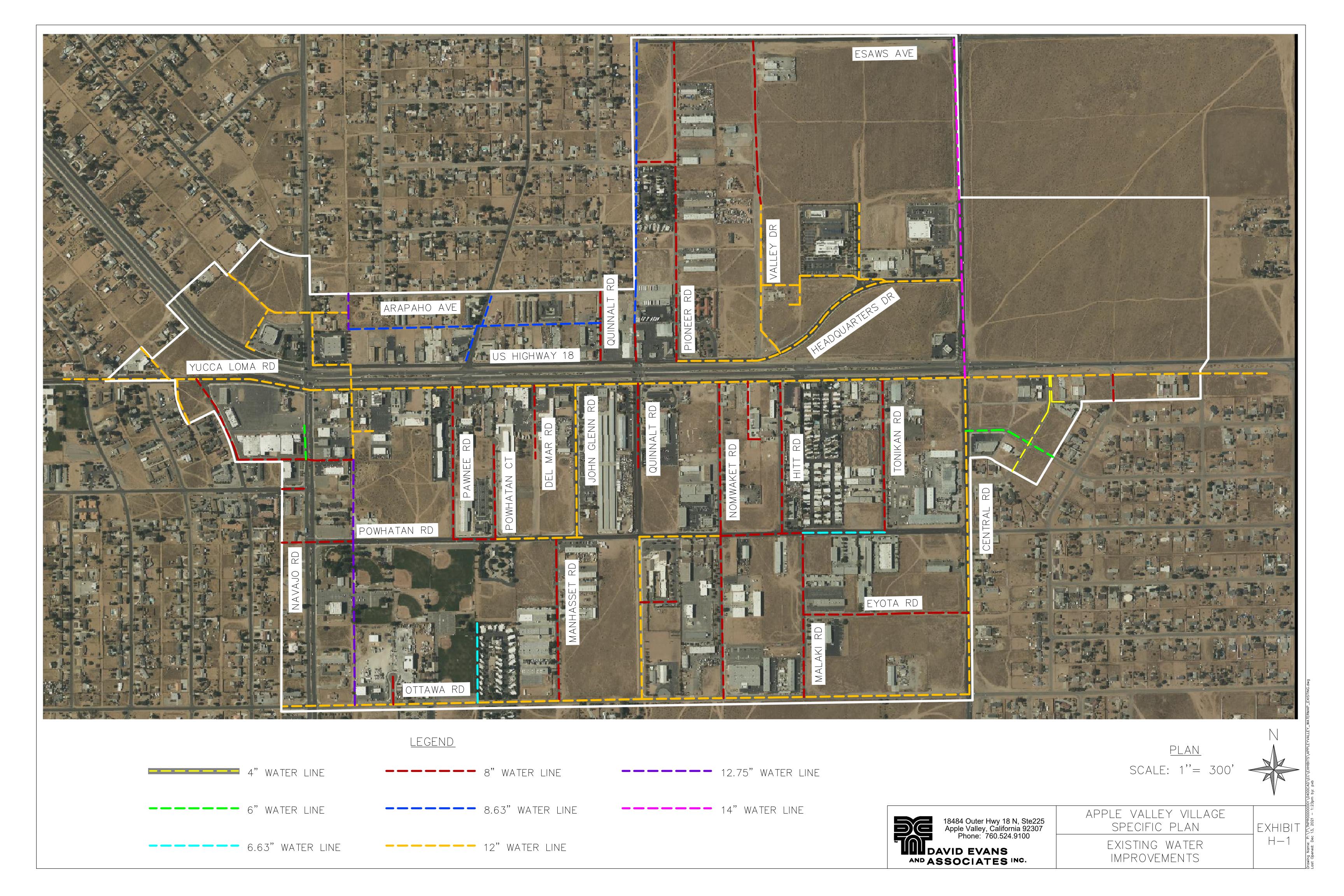

Medical Services


The nearest hospital to the Specific Plan area is St. Mary Medical Center, a licensed 212-bed hospital located at 18300 Highway 18 in Apple Valley (5.3± miles northwest of the Village). Its service area includes more than 372,000 residents in the communities of Apple Valley, Heperia, Lucerne Valley, Adelanto, Victorville, Helendale, and surrounding areas. It is staffed by more than 1,751 employees and has professional relationships with more than 300 doctors. Major programs include a fully accredited cardiovascular surgery program, Level II Neonatal Intensive Care Unit, diagnostic imaging, emergency medicine, and obstetrics.


²⁷ Personal communication, Kevin Lang, Southwest Gas, April 2008.


²⁸ "St. Mary Medical Center 2017 Community Health Assessment Report."





APPLE VALLEY VILLAGE SPECIFIC PLAN

POTENTIAL OFFSITE BASIN AREAS EXHIBIT C-4

---- 14" EX. WATER

LINE

LINE

4" EX. WATER

8.63" EX. WATER

LINE

LINE

---- 12" EX. WATER

6" EX. WATER

6.63" EX. WATER LINE

LINE

APPLE VALLEY VILLAGE

SPECIFIC PLAN

PROPOSED WATER

IMPROVEMENTS

18484 Outer Hwy 18 N, Ste225
Apple Valley, California 92307
Phone: 760.524.9100

AND ASSOCIATES INC.

APPLE VALLEY VILLAGE CORRIDOR ENHANCEMENT PLAN, **TOWN OF APPLE VALLEY**

DRAINAGE STUDY

Prepared for:

KOA Corporation 2141 West Orangewood Avenue Orange, California 92868 Tel: (714) 573-0317 Attn: Min Zhou, PE

Prepared by:

David Evans and Associates

14297 Cajon Avenue, Suite 101 Victorville, CA 92392 Tel: (760) 524-9100 Attn: Robert Kilpatrick, PE

TUSTIN

SANTA CLARITA

Santa Clarita, CA 91355-1096 661.284.7400 Fax 661.284.7401

TEMECULA

Suite 130 Temecula, CA 92590-2553 951.294.9300 Fax: 951.294-9301

VICTORVILLE

Suite 101 760.524.9100 Fax 760.524.9101

www.deainc.com

Prepared under the supervision of:

Robert Kilpatrick, P.E.,

R.C.E. 42386

Dedicated Service **Since 1976**

January 23, 2019 Job No: KOAC00000003

TABLE OF CONTENTS

Description	Page No.
Introduction	1
Site Discussion	1
Analysis	2
Methodology	4
Recommendations	4
APPENDICES	
Exhibits/Figures	A
- Figure 1 – Vicinity Map	
- Figure 2 – Project Area	
- Figure 3 – Existing Drainage Flows	
- Figure 4 – Drainage Concept, Alternate 1	
- Figure 5 – Drainage Concept, Alternate 2	
- Figure 6 – Drainage Concept, Alternate 3	
- Figure 7 – Potential basins sites upstream of the site	
Hydrology Map	В
- Hydrology Map	
- Apple Valley Master Plan of Drainage	
Reference Documents	C
San Bernardino County Hydrology Manual Reference Material	
NOAA Atlas 14 Point Precipitation Frequency Estimates	
USDA Hydrologic Soils Group Map	
Antecedent Moisture Condition Map	
Flow Master Hydraulic Calculations	
Unit Hydrograph Method Analysis	D
25-Year Storm Event	
100- Year Storm Event	

Introduction:

The Apple Valley Village Corridor Enhancement Plan (Project) is located within the Town of Apple Valley along Highway 18 between Navajo Road and Central Road, as illustrated on Figure 1 and 2, included in Appendix "A". All the land fronting the Outer Highway 18 streets are approximately 80% developed as primarily commercial business on the south side and approximately 65% on the north side. The rest of the land is vacant. Highway 18 has a landscaped median in the center of the road and medians with concrete channels on each side of the Highway, referred to in this study as outer medians. There are local streets called Outer Highway 18 that are on the other side of the outer medians that serve as access to the businesses. Most of the corridor is 200 feet wide and creates a barrier for pedestrians and cyclists, as well as making access to businesses difficult. There are areas of missing sidewalk and can be awkward to navigate for the local citizens.

The project consists of examining and developing transportation alternatives for motorists, bicyclists, pedestrians, equestrians, and transit users. This will consist of data collection and literature review, public outreach, project analysis and plan development.

The purpose of this drainage study is to provide information as to drainage patterns, identify any current areas of flooding and to obtain the preliminary flow rates and compare them to the Town of Apple Valley Master Plan of Drainage (MPD), and show a complimentary storm drain improvement as part of the Corridor Enhancement Plan.

Site Discussion:

The existing site that is to be studied for improvements is a one mile long strip of Highway 18 and consists of approximately 25 acres. All the land upstream of the Project is partially developed with a small percentage being commercial, some apartments, and the rest is single family homes. The land has an average slope of approximately 0.4% from about 4 miles upstream. Further upstream drainage originates from the Ord Mountains in an area known as the Marianas. The Town of Apple Valley has a Master Plan of Drainage (MPD), which was used as a guide for this drainage study. Appendix "B" of this report includes the excerpts of the MPD that presents the information on the existing hydrologic characteristics of the site.

The project site receives a large amount of storm water due to the large water shed upstream. The MPD shows a large wash near Central Road at the project site with a discharge of 7952 cubic feet per second (cfs) in the one hundred year storm event. In review of the USGS Topography map and aerial photographs there is no evidence of large flows that are typically seen in other areas of the region with flows of this magnitude. It is believed that the BNSF Railroad and Bear Valley Road to the south,

limit the amount of storm water passing underneath those two crossings, therefore, this study limited its upstream review to Bear Valley Road, to examine the more localized flows that impact the site.

Also, it should be noted that upstream drainage MPD Line S-01 diverts at Mohawk Road and runs into the S-08 drainage line that runs northerly along Mohawk Road per the Town's Engineering Dept. This has no effect on this study since the study only took 100 cfs of base flows under Bear Valley at the outflow of drainage from the High School at Navajo Road and 50 cfs of base flows from the two pipes that outlet near Algonquin Road.

The MPD presents a 25 year flows of 191 cfs at Ottawa Road and Navajo and conveying those flows north and west to an existing low flow box culvert under Highway 18, approximately 100 feet west of Navajo Road. Currently those flows do not reach there today. That flow crosses Navajo Road just north of Ottawa Road and flows through and around the Community Center and then north towards the project site area.

In the outer medians, there are existing concrete trapezoidal channels (drainage ditches) that have an existing capacity of approximately 77 cfs. The MPD shows the discharge for those channels to be 230 cfs in the 25 year storm event. The southerly channel captures all the upstream flows along the study area mostly via sheet flows crossing the outer Highway and through several small curb openings. There is a small slotted drain inlet at Hitt Road crossing the outer highway and drains into the channel. From the southerly channel, there are three low flow culvert crossings from the south channel into the north channel, crossing under Highway 18. At the easterly outlet storm water flows east to a small swale in front of the existing gas station located at the northwest corner of Highway 18 and Central Road and overflows flow north, behind the gas station, then northeasterly toward the dry lake bed through mostly vacant land. Figure 3, included in Appendix "A", illustrates the existing drainage flows in the project area.

Soil classification around the project site is Hydrologic Soil Group (HSG) "A" (the east 80%) and "C" (the west 20%). Upstream the soil classifications are "A" and "C". The soil classification boundary limit is based on the USDA Web Soil Survey site, included in Appendix 'C' of this report.

Analysis:

Due to the scope of this drainage study, the large Mariana Wash shown on the MPD crossing the project site just west of Central Road, is not specifically addressed. It is assumed the flows in the drainage basin for this facility identified in the MPD spread out into several smaller flow areas. As such, the drainage reaches the project site via the existing small drainage courses and streets. These drainage courses drain into the existing trapezoid channel (drainage ditches) on the south side. Because the flows spread out the drainage flow for the identified Mariana Wash will not be of the magnitude shown on the MPD. This approach was taken due to the fact that no drainage improvements exist

upstream, with the exception of the small culverts crossing under Bear Valley Road west of Navajo Road and the detention basin and small culverts that exist at Apple Valley High School at the southeast corner of Bear Valley Road and Navajo Road.

The study divides the areas upstream of the site into two. One contributing to the crossing on Navajo just south of the Community Center and the other contributing to the rest of the project site. Those results can be seen in the following table;

						Ex	sisting Condition
	Acreage	25-yr	25-	100-	25-yr	100-yr	Comments
		(MPD)	Yr	Yr	Volume	Volume	
	(ac)	(cfs)	(cfs)	(cfs)	(Ac Ft)	(Ac Ft)	
Area A1	487	191	162	239	155	198	Flows cross Navajo and flow through the Community Center, then to project site.
Area A2	963	230	236	374	281	362	Flows toward project site
Pipes crossing Bear Valley Road near Algonquin				25			2-24" pipes
Pipes crossing Bear Valley Road, west of Navajo				25			2-24" pipes. (Did not find where these pipes outlet.)
2- Culverts under Bear Valley road west of Navajo.				100			2 box culverts that drain from the detention basin at Apple Valley High School. In the area of Toltec Drive.

Refer to Appendix D for calculation.

As presented in the table above, there was some base flows added to drainage areas to account for drainage under Bear Valley Road.

To mitigate the existing drainage, storm drain improvements are recommended to be constructed. Three alternatives were studied and are discussed in more detail below under Recommendations.

A storm drain in Navajo Road at Ottawa Road is recommended to alleviate the flooding around the Community Center and conveyed to the culverts along Highway 18 or to the

box culvert west of Navajo Road per the Master Plan of Drainage. This flow can be conveyed into a 60-inch RCP or acceptable alternate.

As part of the Corridor Enhancement, a drainage easement is recommended for the outlet area and the use of landscaped bio swale and or drywell or basin combination to help mitigate the overflows at the outlet, since the drainage facilities provided fronting the gas station are inadequate. Overflows will continue to flow historically east and north.

Methodology:

Bonadiman Civil Design Software, Version 7.0 & 7.1 was used for the 25-year & 100-year Hydrological Analysis for San Bernardino County.

- 25-year AMC II Unit Hydrograph Method
- 100-year AMC III Unit Hydrograph Method
- Soil Type A and C
- Mannings Values Used
- Existing Surface n=0.035
- Proposed Surface n=0.015
- Project is located in the Town of Apple Valley

Drainage boundaries were derived using the Apple Valley Quadrangle Topography Map by USGS, as shown on the hydrology map, provided in Appendix B of this report.

Recommendations

The analysis of the project area and its upstream drainage area reveals very mild slopes and no discernable flow lines. Since existing storm drain improvements upstream are very little, it appears flows do not concentrate or are of the magnitude as in the MPD as to the major washes. In the analysis of the upstream area, the 25-year flows are within 15% or so of the MPD flow rates (not including the Mariana Wash). Three drainage alternatives were reviewed as presented below.

Alternative 1

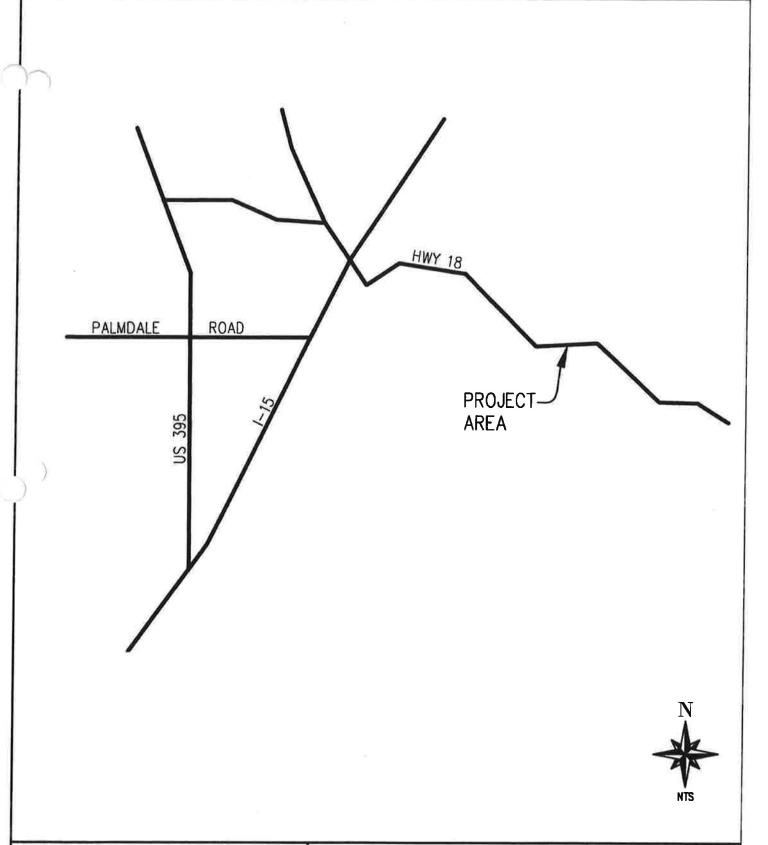
This alternative is to leave the existing concrete channels in place. Clean up, repair cracked and broken areas, repair drainage openings and replace all hardscape between curb and channel along the outer highways. Additional catch basins at intersections of local flooding could enhance the existing system. At its outlet, a bio swale and combination basin and/or drywells would provide for some cleanup of the storm water and mitigate some of the volume. See Figure 4 in Appendix A.

Alternative 2

This alternative would be to replace the existing channels with larger capacity box culverts in a similar lay out to the existing channels. Typically, Caltrans requires the 25

year storm event to be conveyed under the Highway, so a preliminary box culvert size for an underground storm drain along Highway 18 to replace the existing drainage ditches, is recommended to be a double 6 foot by 6 foot box culvert. Depth of storm drains need to be as shallow as possible due to areas mild slopes. Figure 5 in Appendix "A", illustrates the recommended drainage concept in the project area. At its outlet, the same type as in the first alternative is recommended.

Alternative 3

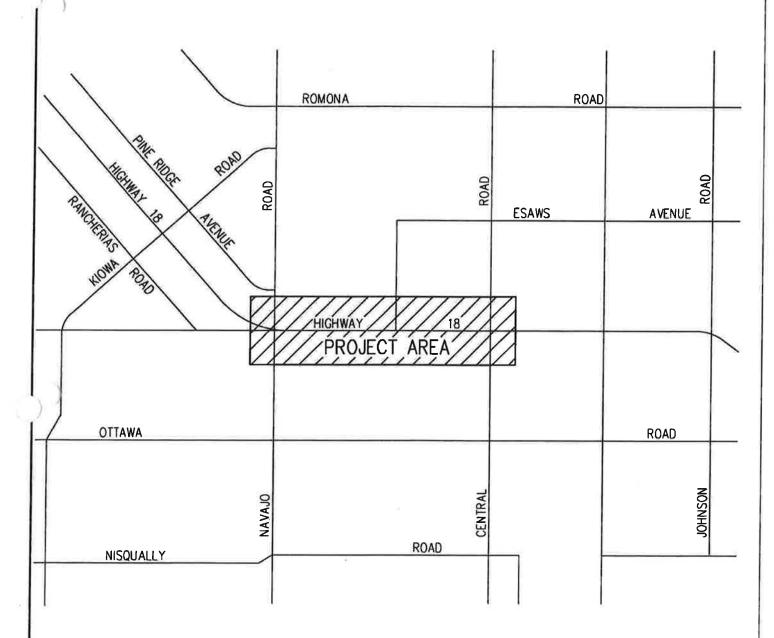

This alternative would be to provide upstream improvements, such as detention basins to reduce the flows getting to the Village area. At present there are some drainage devices upstream, but they are too small to have any effect on storm flows. Such as the basin the Community Center. From casual observations, that basin does not detain much and is only about an acre in size. A few drywells were also observed, however, drywells are primarily for nuisance flows. Any capacity of storm water captured by drywells wouldn't even amount to 0.02% of the storm flows. As can be seen from the table the storm water volumes for A1 and A2 are quite large and would require large basins. In Area A1, most of that watershed is built out. The only basin opportunity would be along Navajo, west side, just north of Bear Valley Road and since it is about a mile and one half upstream of the site, not the most desirable location, but 40 acres could be used there. Also, there is some vacant land between Ottawa Road and Maccauly Road that looks large enough for a second basin and could work well there. In the A2 area, there is vacant land downstream of the Junior High on Navajo Road that would be a good site and downstream along Nomwakett Lane. See Figure 6 and 7 in Appendix A. The biggest drawback to the basins is sizable area needed to provide mitigation. One hundred year storm event mitigation would require 40-66 acres in area A1 and 73-121 acres in area A2. Even in the 10 year event, large areas would be needed for upstream basins. For area A1, 25-42 acres would be needed and for area A2, 46-76 acres would be needed. The range in size is based on 3' to 5' basin depths. Also, basins upstream of Bear Valley Road could provide some benefit in volume reduction and reduce the size of the downstream basins.

In summary, three alternatives were examined. It may be that a combination of the three alternatives would be an acceptable solution rather than just one alone. This would need to be studied in further detail once the ultimate section of the roadway is determined.

APPENDIX 'A'

- Figure 1 Vicinity Map
- Figure 2 Project Area

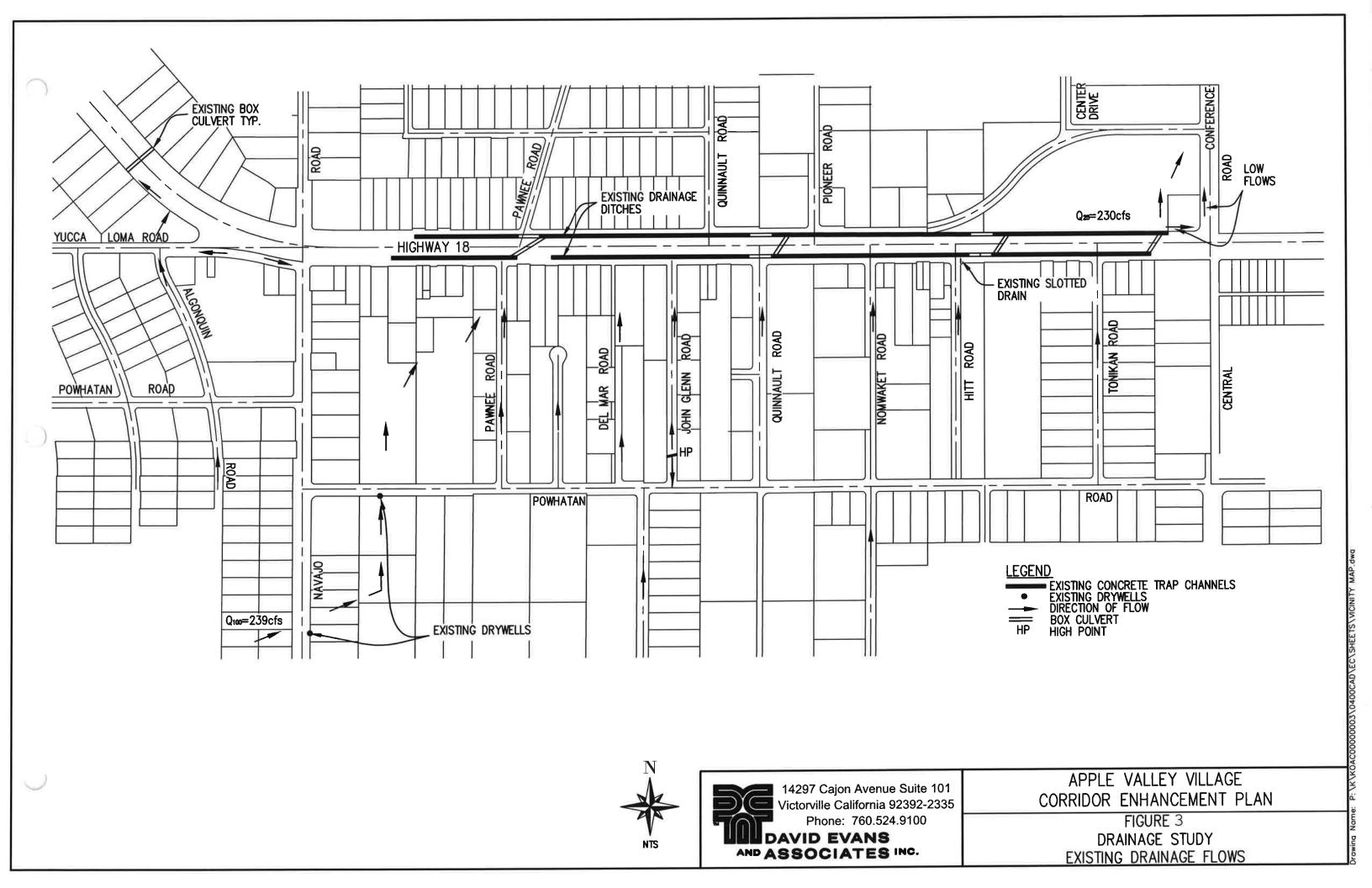
- Figure 3 Existing Drainage Flows
 Figure 4 Drainage Concept, Alternate 1
 Figure 5 Drainage Concept, Alternate 2
- Figure 6 Drainage Concept, Alternate 3
- Figure 7 Potential basins sites upstream of the site

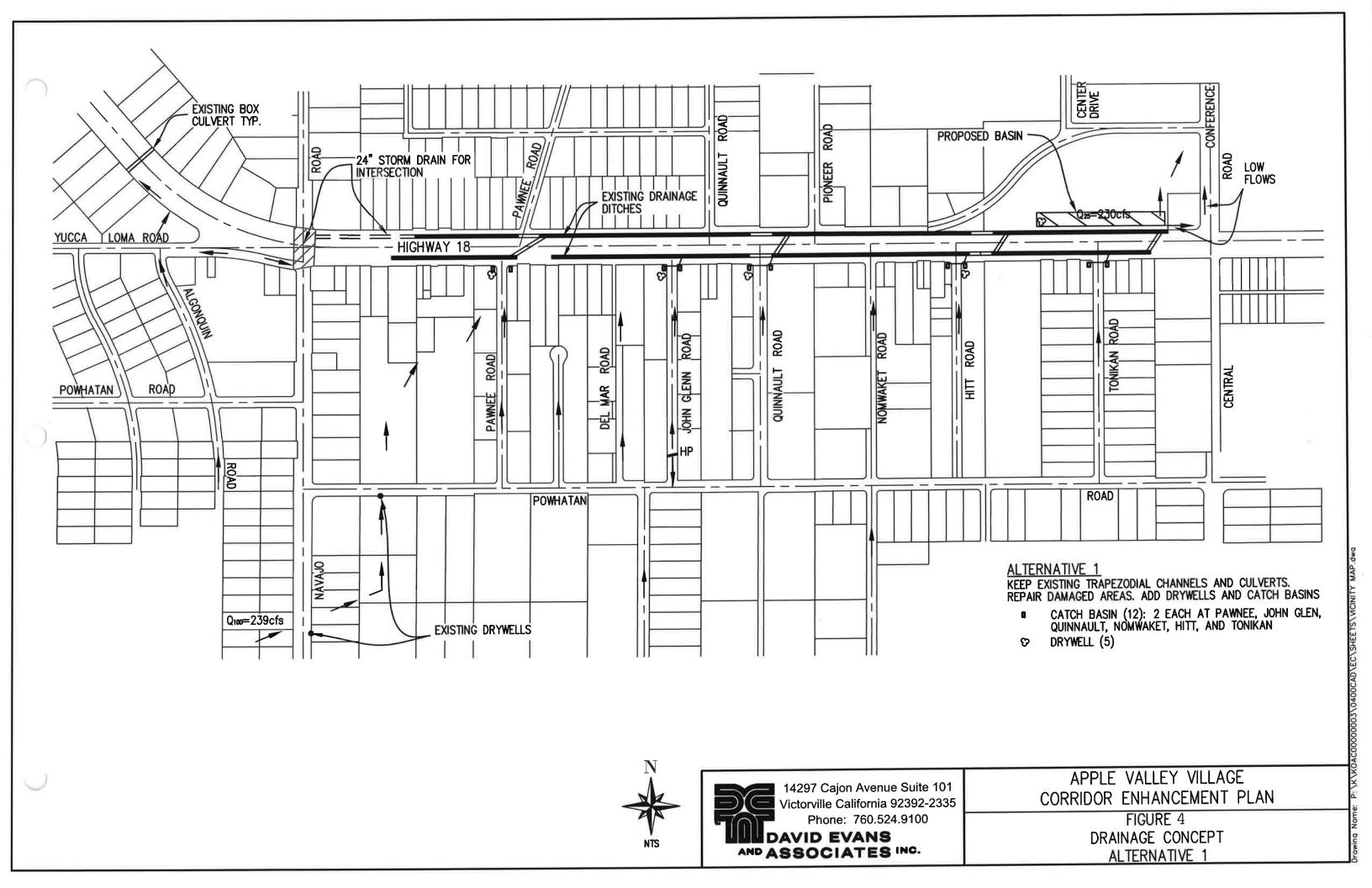


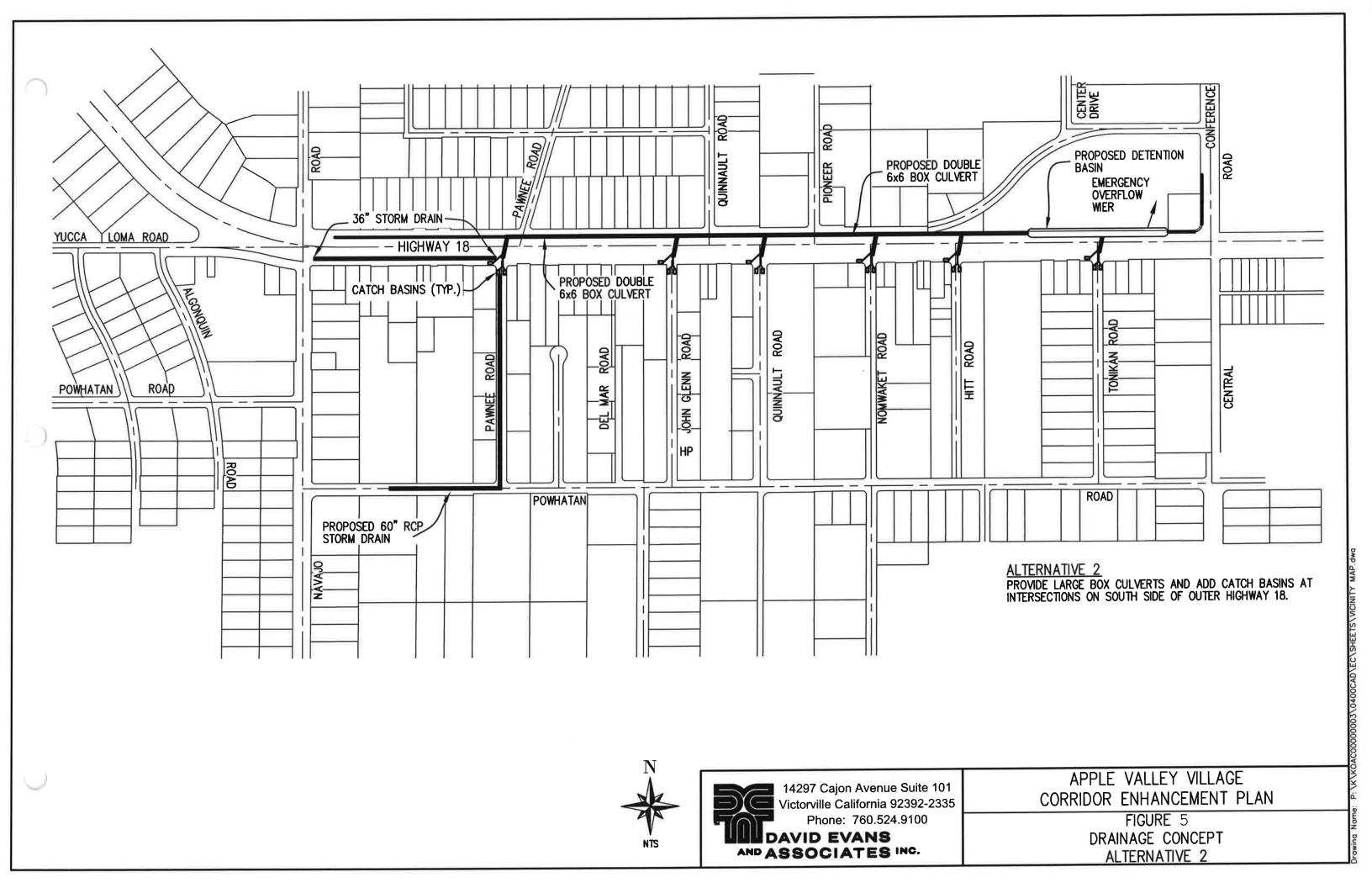
Victorville California 92392-2335

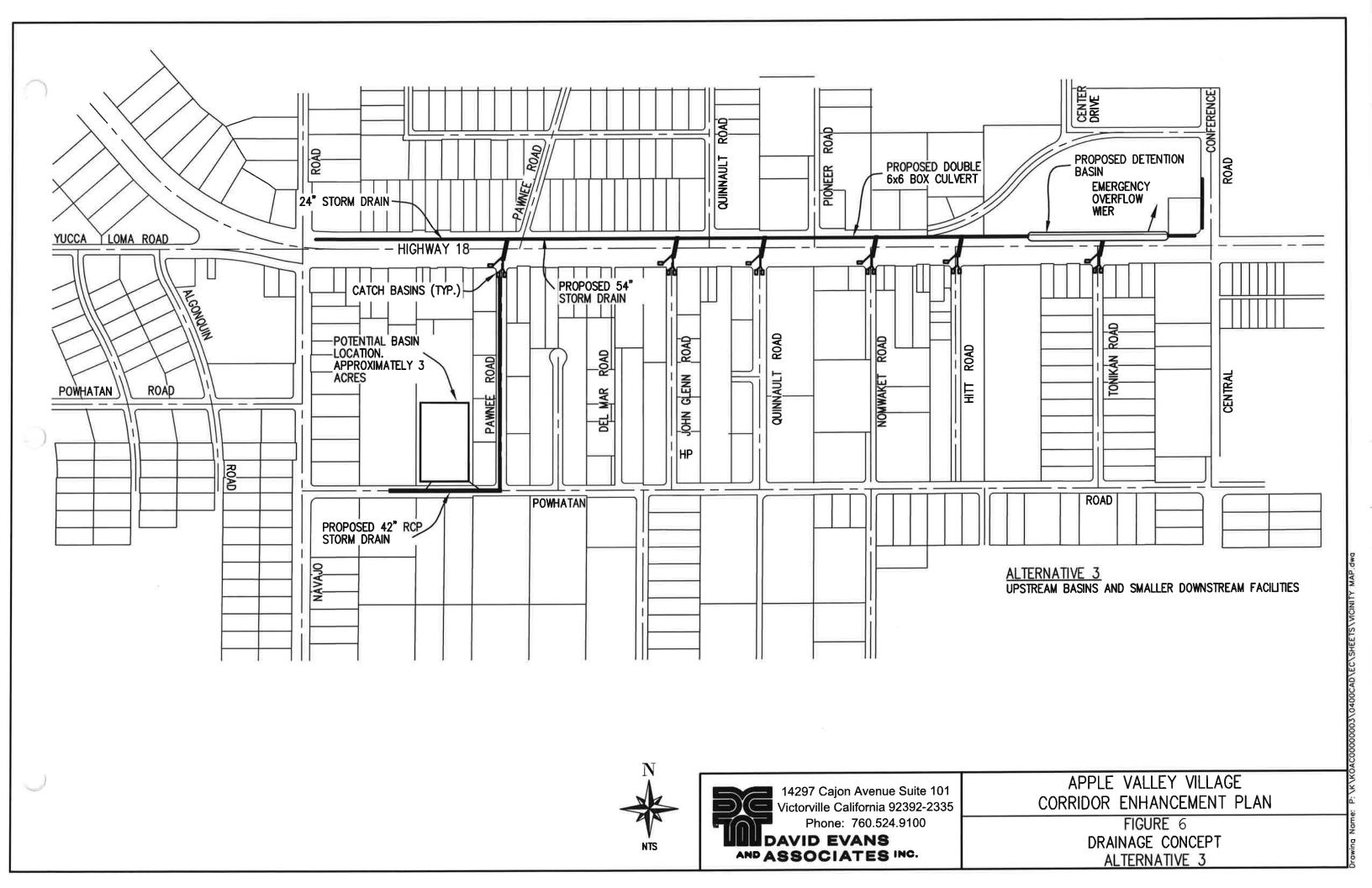
APPLE VALLEY VILLAGE CORRIDOR ENHANCEMENT PLAN

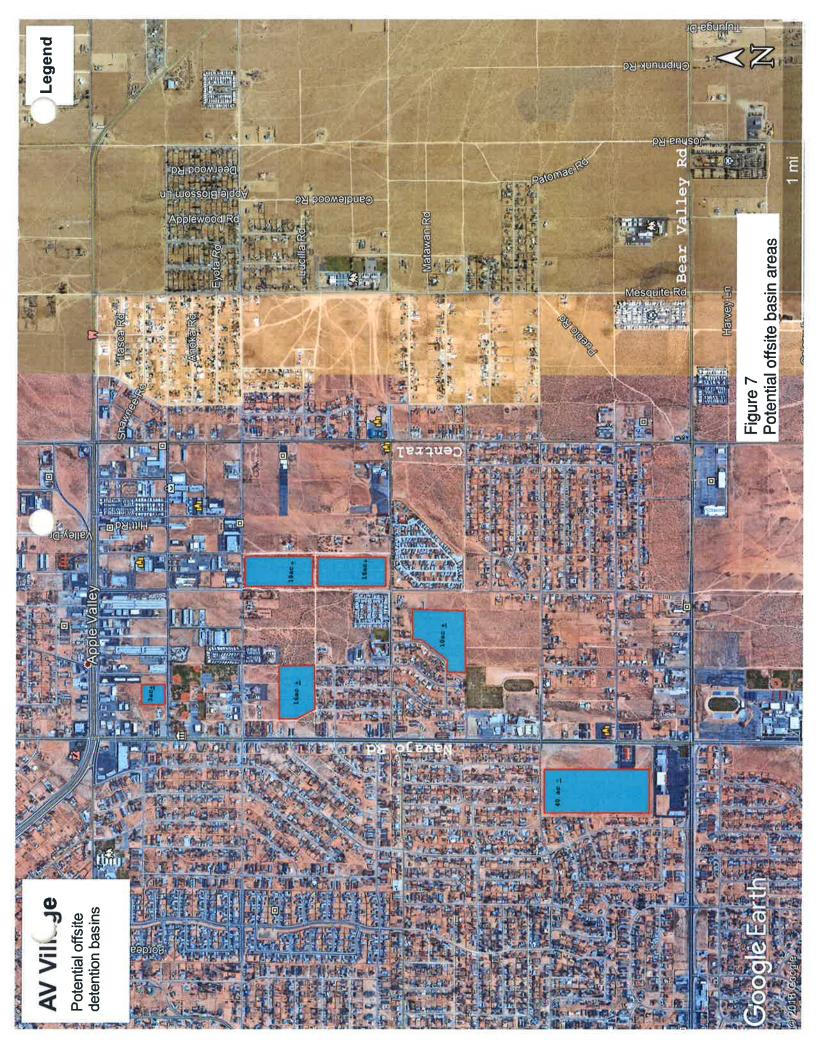
> FIGURE 1 DRAINAGE STUDY VICINITY MAP

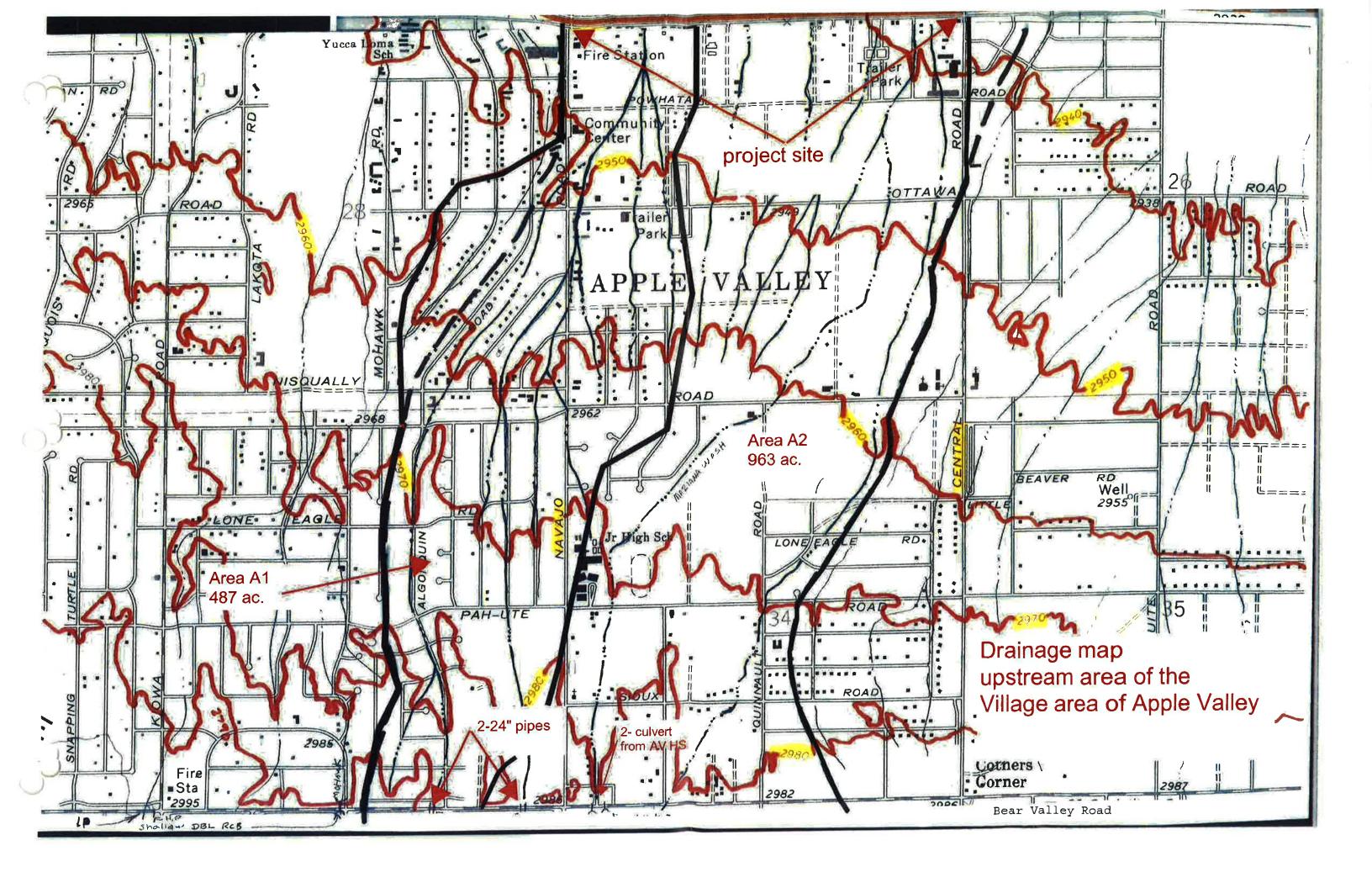


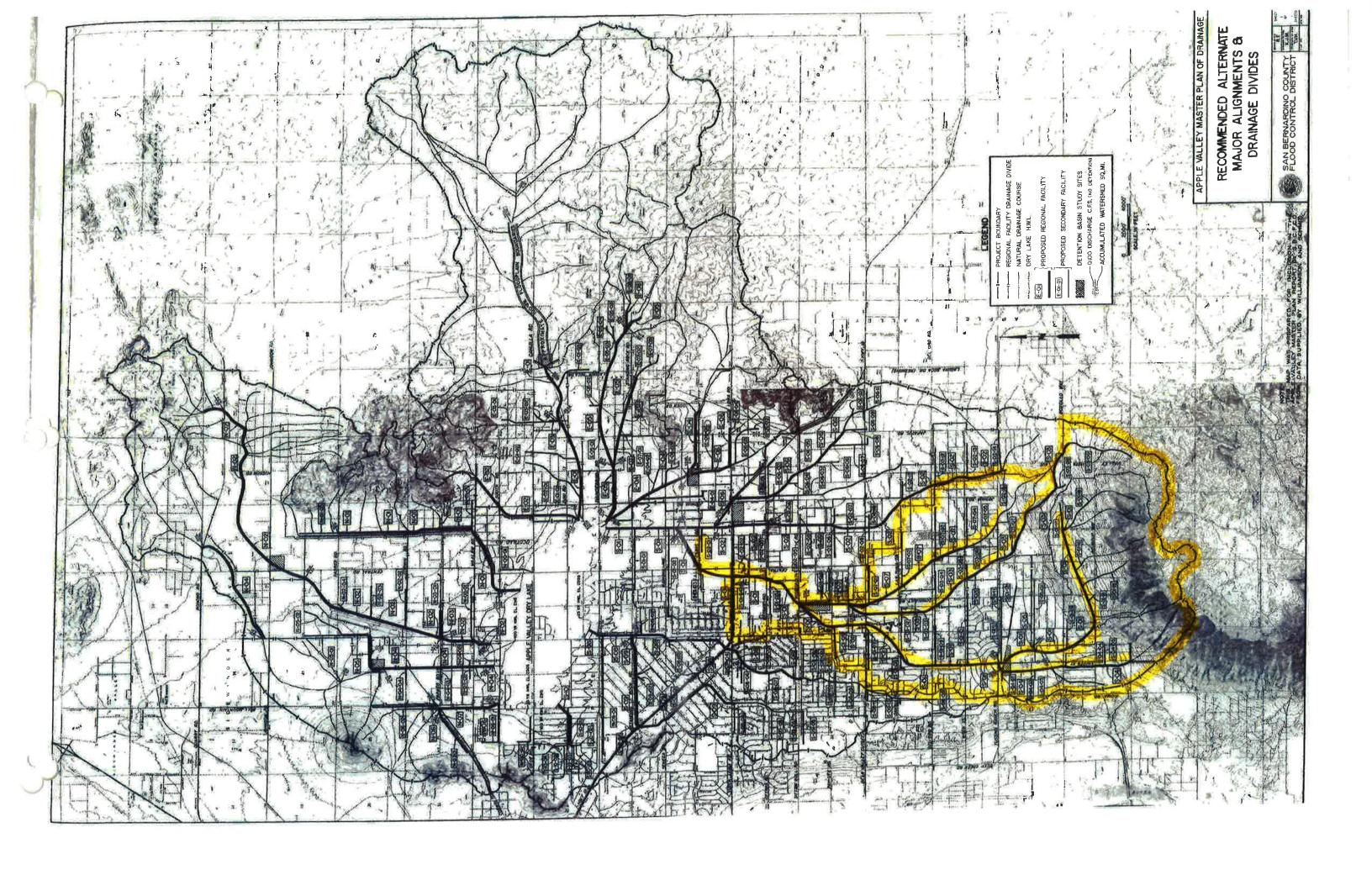

14297 Cajon Avenue Suite 101 Victorville California 92392-2335 Phone: 760.524.9100

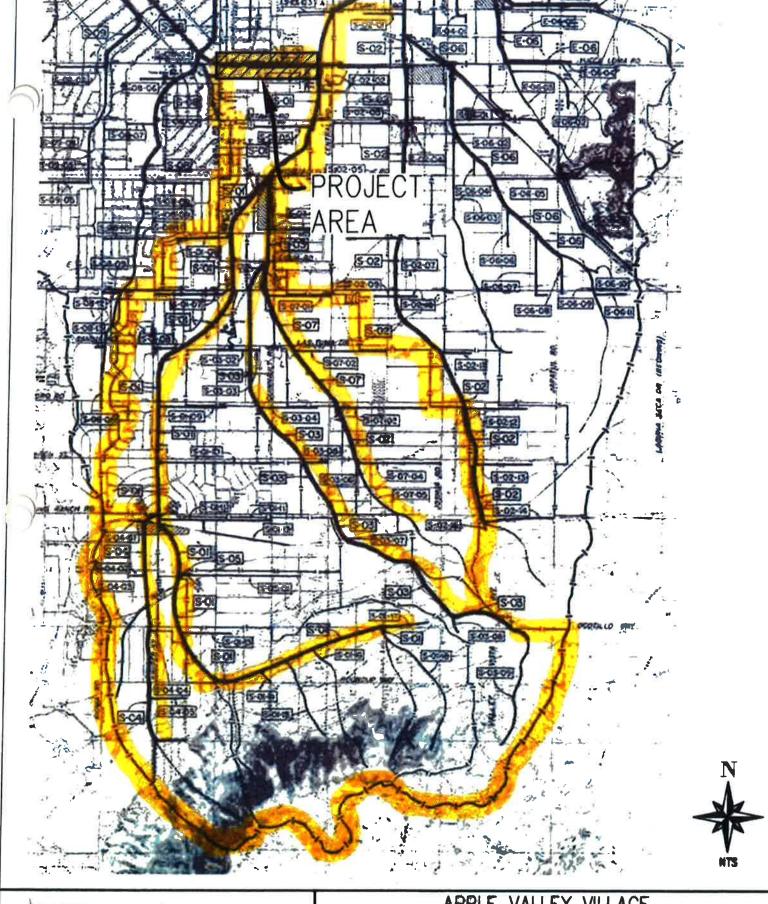

MUDAVID EVANS
AND ASSOCIATES INC.


APPLE VALLEY VILLAGE CORRIDOR ENHANCEMENT PLAN


> FIGURE 2 DRAINAGE STUDY PROJECT AREA

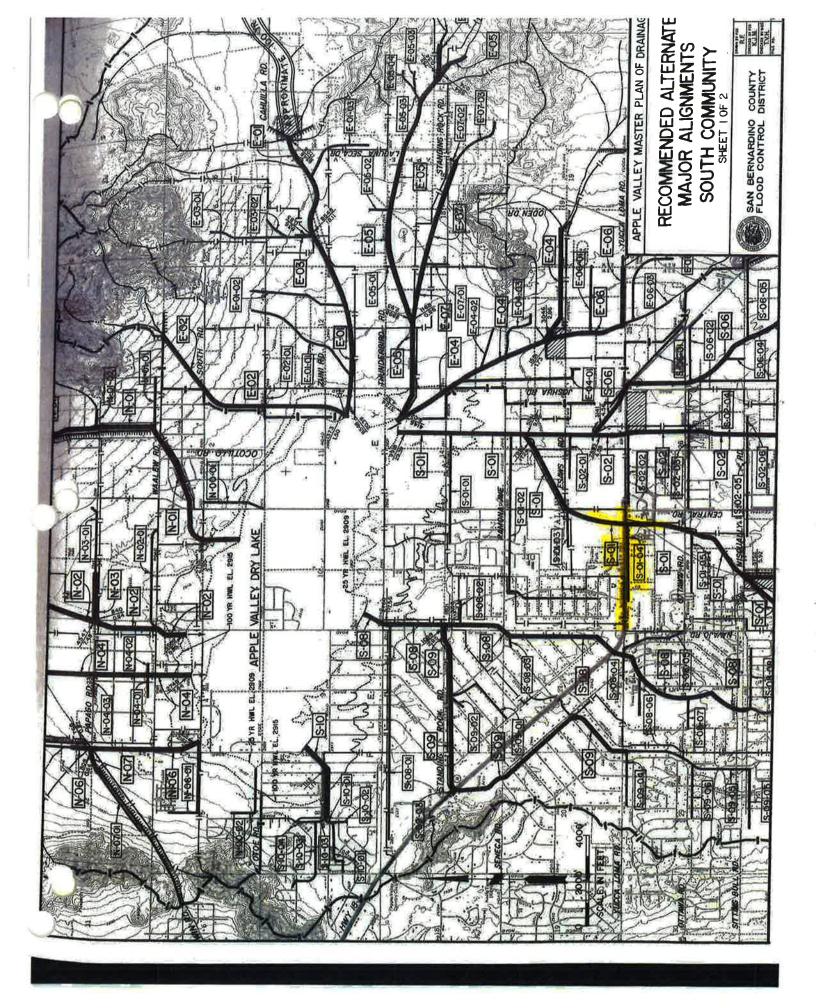


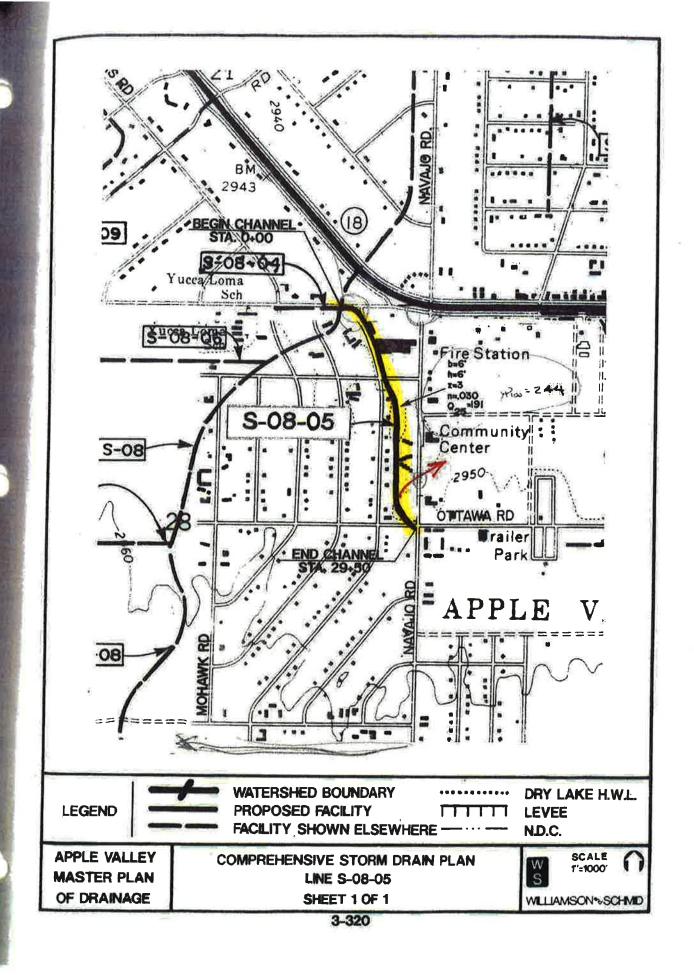


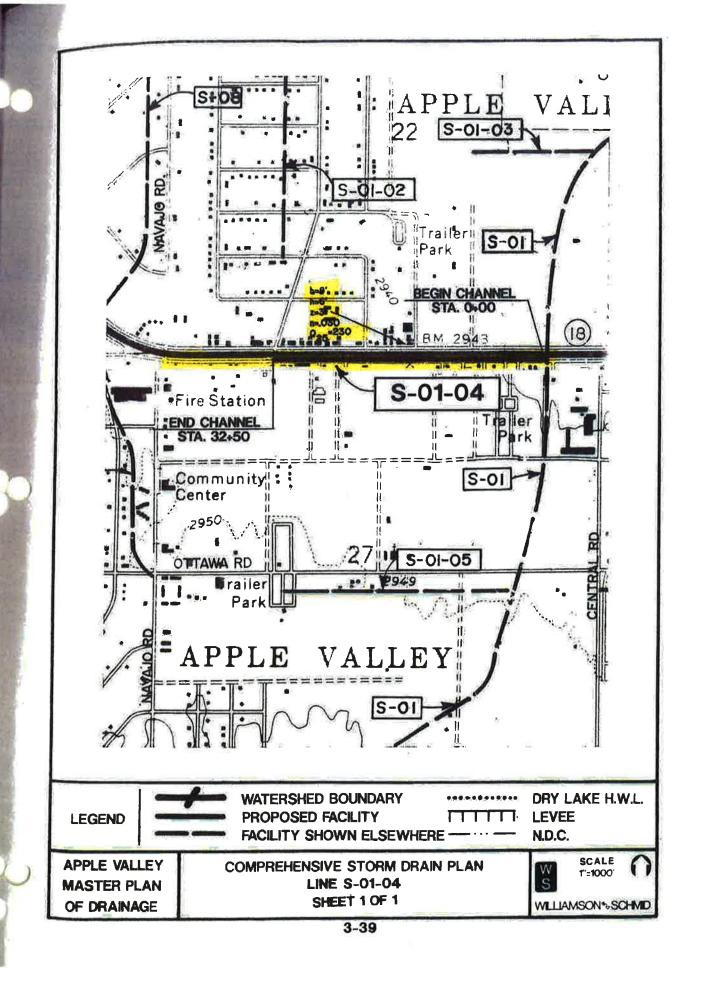


APPENDIX 'B'

- Existing Condition Hydrology MapApple Valley Master Plan of Drainage




14297 Cajon Avenue Suite 101 Victorville California 92392-2335 Phone: 760.524.9100


MUDAVID EVANS
AND ASSOCIATES INC.

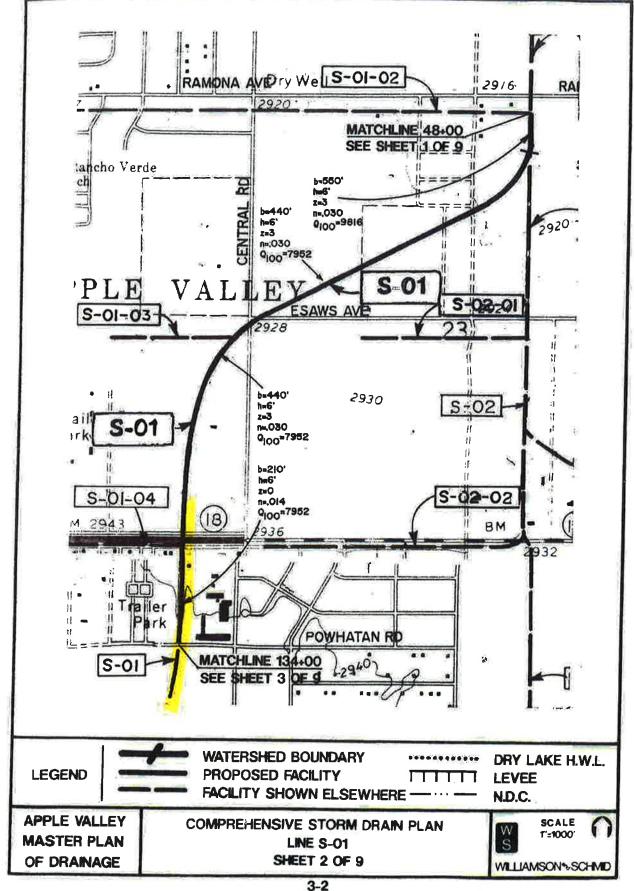

APPLE VALLEY VILLAGE CORRIDOR ENHANCEMENT PLAN

FIGURE 3
DRAINAGE STUDY
MASTER PLAN OF DRAINAGE

APPENDIX 'C'

Reference Documents

San Bernardino County Hydrology Manual Reference Material

NOAA 14 Point Precipitation Frequency Estimates USDA Web Soil Survey Hydrologic Soils Group Antecedent Moisture Condition Map

Flow Master Hydraulic Calculations

NOAA Atlas 14, Volume 6, Version 2 Location name: Apple Valley, California, USA* Latitude: 34.4839°, Longitude: -117.1823° Elevation: 2966.46 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Cari Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

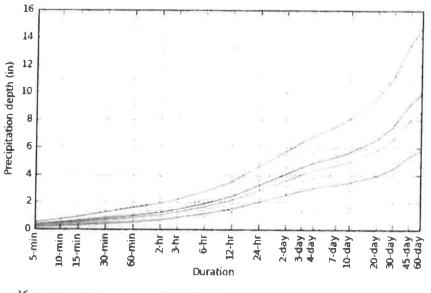
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

				Avera	ge recurrer	nce Interval	(vears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.076 (0.063-0.093)	0.108 (0.089-0.132)	0.153 (0.126-0.188)	0.192 (0.157-0.238)	0.249 (0,196-0.318)	0.295 (0.228-0.385)	0.345	0.398 (0.292-0.548)	0.476 (0.335-0.682)	0.539 (0.367-0.80
10-min	0.109 (0.090-0.133)	0.155 (0.128-0.190)	0.220 (0.181-0.270)	0.275 (0.225-0.341)	0.356 (0.281-0.456)	0.423 (0.327-0.552)	0.494 (0.373-0.661)	0.571 (0.419-0.786)	0.682 (0.480-0.978)	0.773 (0.526-1.1
16-min	0.131 (0.109-0.161)	0.187 (0.154-0.229)	0.266 (0.218-0.326)	0.333 (0.272-0.412)	0.431 (0.340-0.552)	0.511 (0.395-0.668)	0.597 (0.451-0.800)	0.691 (0.507-0.950)	0.825 (0.581-1.18)	0.935 (0.636-1.3
30-min	0.179 (0.148-0.219)	0.255 (0.211-0.313)	0.362 (0.298-0.445)	0.454 (0.370-0.562)	0.588 (0.464-0.752)	0.697 (0.539-0.911)	0.815 (0.615-1.09)	0.942 (0.691-1.30)	1.13 (0.792-1.61)	1,27 (0.868-1.8
60-min	0.223 (0.184-0.273)	0.318 (0.262-0.389)	0.450 (0.370-0.553)	0.565 (0.461-0.699)	0.731 (0.577-0.935)	0.867 (0.670-1.13)	1.01 (0.764-1.36)	1.17 (0.859-1.61)	1.40 (0.985-2.01)	1.59 (1.08-2.35
2-hr	0.321 (0.265-0.393)	0.435 (0.359-0.533)	0.595 (0.489-0.730)	0.731 (0.596-0.905)	0.927 (0.732-1.19)	1.09 (0.840-1.42)	1.25 (0.947-1.68)	1.44 (1.05-1.98)	1.69 (1.19-2.43)	1.90 (1.30-2.82
3-hr	0.393 (0.324-0.481)	0.524 (0.432-0.642)	0.706 (0.580-0.867)	0.861 (0.702-1.07)	1.08 (0.854-1.38)	1.26 (0.974-1.65)	1.45 (1.09-1.94)	1.65 (1.21-2.27)	1.94 (1.36-2.78)	2.17 (1.47-3.21
6-hr	0.543 (0.449-0.665)	0.714 (0.589-0.875)	0.947 (0.779-1.16)	1.14 (0.934-1.42)	1.42 (1.12-1.82)	1.65 (1.27-2.15)	1.88 (1.42-2.52)	2.13 (1.56-2.93)	2.47 (1.74-3.55)	2.75 (1.87-4.08
12-hr	0.710 (0.587-0.869)	0.934 (0.771-1.15)	1.24 (1.02-1.52)	1.49 (1.22-1.85)	1.84 (1.46-2.36)	2.12 (1.64-2.77)	2.41 (1.82-3.23)	2.72 (1.99-3.74)	3.14 (2.21-4.50)	3.47 (2.36-5.15
24-hr	0.942 (0.835-1.08)	1.25 (1.11-1.44)	1.67 (1.47-1.93)	2.01 (1.76-2.34)	2.48 (2.10-2.99)	2.85 (2.37-3.50)	3.23 (2.62-4.07)	3.63 (2.86-4.70)	4.17 (3.16-5.63)	4.60 (3.36-6.43
2-day	1.14 (1.01-1.32)	1.55 (1.37-1.79)	2.09 (1.84-2.41)	2.52 (2.21-2.94)	3.12 (2.64-3.76)	3.58 (2.97-4.40)	4.05 (3.28-5.10)	4.53 (3.57-5.87)	5.19 (3.92-7.00)	5.70 (4.16-7.95
3-day	1.25 (1.11-1.44)	1.72 (1.52-1.98)	2.33 (2.06-2.69)	2.82 (2.47-3.29)	3.49 (2.96-4.21)	4.01 (3.33-4.93)	4.53 (3.67-5.71)	5.07 (3.99-6.56)	5.79 (4.38-7.82)	6.36 (4.64-8.88
4-day	1.32 (1.17-1.52)	1.82 (1 62-2 10)	2.48 (2.19-2.87)	3.02 (2.64-3.51)	3.74 (3.17-4.50)	4.29 (3.56-5.27)	4.85 (3.93-6.11)	5.43 (4.28-7.03)	6.20 (4.69-8.37)	6.80 (4.97-9.50)
7-day	1.44 (1.27-1.65)	1.97 (1.74-2.27)	2.68 (2.36-3.09)	3.26 (2.85-3.80)	4.05 (3.44-4.88)	4.67 (3.87-5.74)	5.29 (4.29-6.67)	5.94 (4.68-7.69)	6.82 (5.16-9.21)	7.51 (5.49-10.5)
10-day	1.51 (1.34-1.74)	2.07 (1.83-2.38)	2.81 (2.49-3.25)	3.43 (3.01-4.00)	4.28 (3.63-5.16)	4.95 (4.11-6.08)	5.63 (4.56-7.09)	6.34 (4.99-8.20)	7.31 (5.53-9.86)	9.07 (5.90-11.3)
20-day	1.71 (1.52-1.97)	2.34 (2.08-2.70)	3.21 (2.84-3.71)	3.94 (3.45-4.58)	4.95 (4.20-5.96)	5.75 (4.78-7.07)	6.58 (5.34-8.29)	7.45 (5.87-9.65)	8.65 (6.54-11.7)	9.59 (7.01-13.4)
30 day	1.92 (1.70-2.21)	2.64 (2.34-3.04)	3.63 (3.20-4.19)	4.46 (3.91-5.19)	5.64 (4.78-6.79)	6.57 (5.45-8.08)	7.54 (6.11-9.49)	8.55 (6.74-11.1)	9.96 (7.53-13.4)	11.1 (8.08-15.4)
5-day	2.30 (2.04-2.64)	3.15 (2.79-3.63)	4.33 (3.83-5.00)	5.34 (4.67-6.21)	6.77 (5.73-8.15)	7.91 (6.57-9.72)	9.10 (7.37-11.5)	10.3 (8.15-13.4)	12.1 (9.13-16.3)	13.4 (9.82-18.8)
0-day	2.49 (2.21-2.86)	3.40 (3.01-3.92)	4.68 (4.13-5.40)	5.76 (5.05-6.71)	7.32 (6.20-8.81)	8.57 (7.11-10.5)	9.88 (8.00-12.4)	11.2 (8.86-14.6)	13.2 (9.95-17.8)	14.7 (10.7-20.5)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

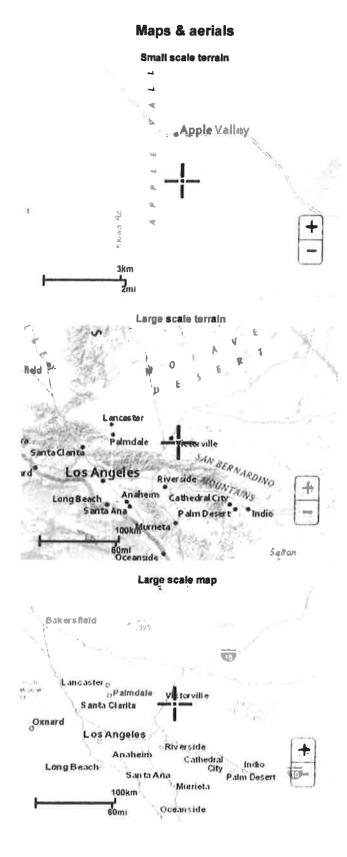
Please refer to NOAA Atlas 14 document for more information.

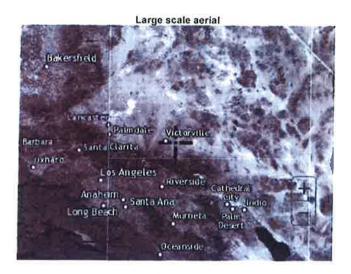
Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 34.4839°. Longitude: -117,1823°

In	recurrence lerval
(y	ears)
10	1
	2
	5
-	10
	25
14000	50
_	100
-	200
	500
-	1000

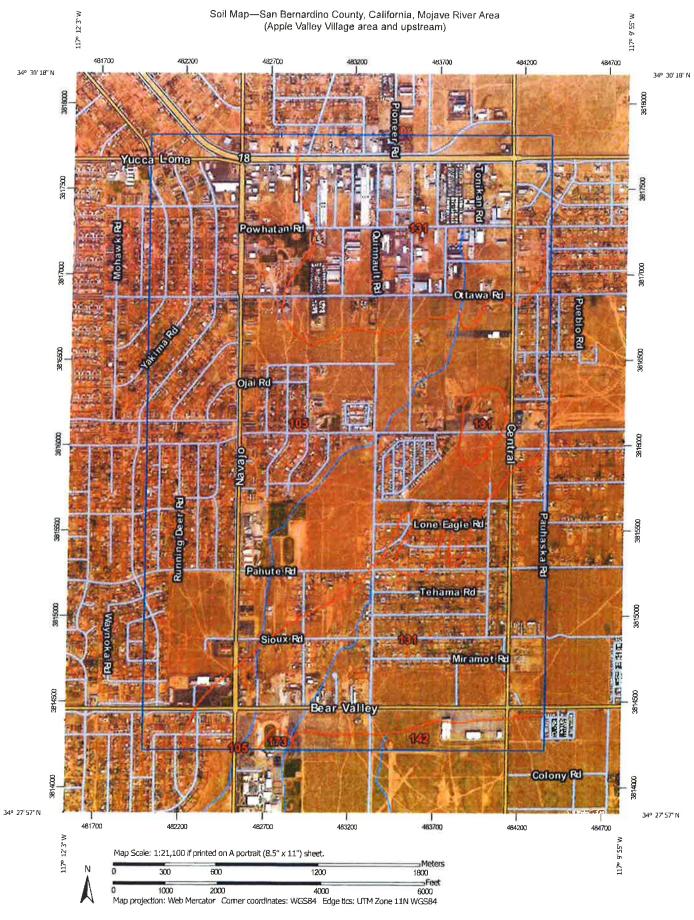

>		3						
							-	-
					-			
- 4			Territoria.					
								-
							100000	
		10	36	F0.	100	200	500	1000
	2	2 5		_		2 5 10 25 50 100 Average recurrence interval (years)		


Duri	Mon
5 min	2-day
10-miri	3-dяу
15 min	4-day
tim-0E =	- 7-day
60-min	10-day
2-hr	20-day
3-hr	- Jo-day
6-hr	45-day
12-hr	60-day

NOAA Atlas 14, Volume 6, Version 2

Created (GMT) Wed Apr 25 21:19:57 2018

Back to Top



Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC Questions@noaa.gov

Disclaimer

MAP LEGEND

Special Line Features Streams and Canals Very Stony Spot Stony Spot Spoil Area Wet Spot Other Water Features W 5 €¢ Soil Map Unit Polygons Area of Interes: (AOI) Soil Map Unit Points Soil Map Unit Lines Special Point Features **Borrow Pit** Area of Interest (AOI) Blowout 9 Soils

Interstate Highways Rails Transportation ŧ

Closed Depression

Clay Spot

Gravelly Spot

Landfill

0

Gravel Pit

X

Marsh or swarrp

-4 14. 0 0

Lava Flow

Mine or Quarry

Local Roads

Aerial Photography

Miscellaneous Afater

Perennial Water

Rock Outcrop

Saline Spot Sandy Spot Severely Eroded Spot

Slide or Slip

Sinkhole

Sodic Spot

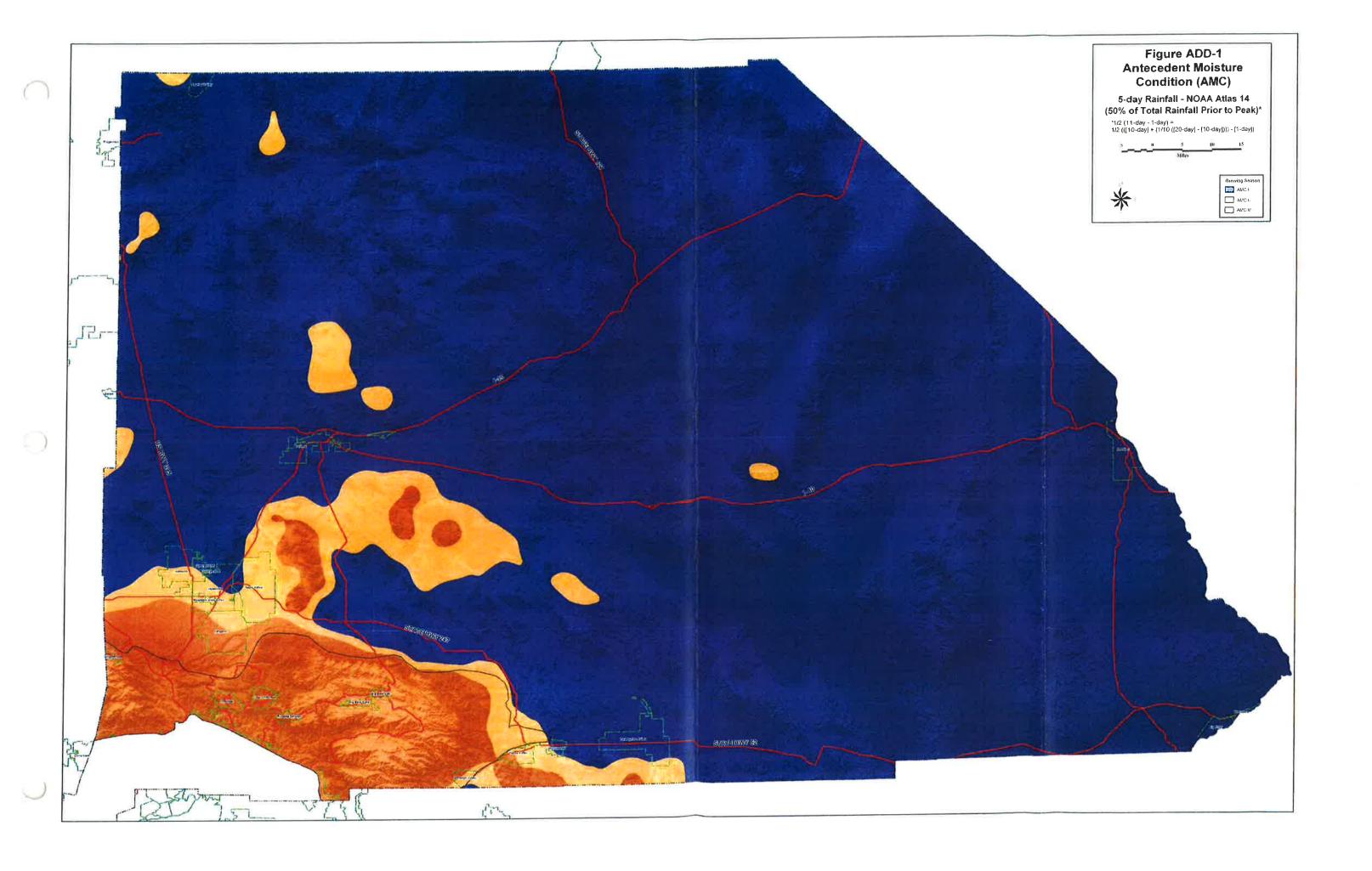
MAP INFORMATION

The soil surveys that comprise your AOI were mapped at

Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Coordinate System: Web Mercator (EPSG:3857) Web Soil Survey URL

distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: San Bernardino County, California, Mojave Survey Area Data: Version 9, Sep 11, 2017 River Area


Soil map units are labeled (as space allows) for map scales

Date(s) aerial images were photographed: Feb 1, 2015—Feb 4, 1:50,000 or larger.

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
105	BRYMAN LOAMY FINE SAND, 0 TO 2 PERCENT SLOPES	1,177.4	55.7%
131	HELENDALE LOAMY SAND, 0 TO 2 PERCENT SLOPES	881,1	41.7% 2.4%
142	LUCERNE SANDY LOAM, 0 TO 2 PERCENT SLOPES	51.8	2.4%
173	WASCO SANDY LOAM, COOL, 0 TO 2 PERCENT SLOPES	4.6	0.2%
Totals for Area of Interest		2,114.9	100.0%

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.00100	ft/ft
Height	6.00	ft
Bottom Width	6.00	ft
Discharge	216.00	ft³/s

Results

. 1004115			
Normal Depth		5.83	ft
Flow Area		34.98	ft²
Wetted Perimeter		17.66	ft
Hydraulic Radius		1.98	ft
Top Width		6.00	ft
Critical Depth		3.43	ft
Percent Full		97.2	%
Critical Slope		0.00384	ft/ft
Velocity		6.18	ft/s
Velocity Head		0.59	ft
Specific Energy		6.42	ft
Froude Number		0.45	
Discharge Full		184.72	ft³/s
Siope Full		0.00073	ft/ft
Flow Type	Subcritical		

GVF Input Data

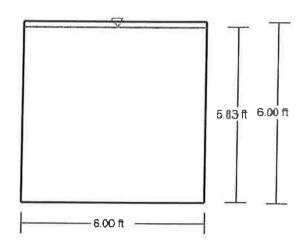
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	97.15	%
Downstream Velocity	Infinity	ft/s

Box along Hwy 18 alternate size

Upstream Velocity	Infinity	ft/s
Normal Depth	5.83	ft
Critical Depth	3.43	ft
Channel Slope	0.00100	ft/ft
Critical Slope	0.00384	ft/ft

Cross Section for Box Pipe - 1


Project Description

Friction Method Manning Formula Solve For Normal Depth

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.00100	ft/ft
Normal Depth	5.83	ft
Height	6.00	ft
Bottom Width	6.00	ft
Discharge	216.00	ft³/s

Cross Section Image

Worksheet for Box Pipe - 1

Project Description

Friction Method Manning Formula
Solve For Discharge

DOUBLE BOX

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.00100	ft/ft
Normal Depth	3.80	ft
Height	4.00	ft
Bottom Width	9.00	ft

Results

1108010			
Discharge		216.83	ft³/s
Flow Area		34.20	ft²
Wetted Perimeter		16.60	ft
Hydraulic Radius		2.06	ft
Top Width		9.00	ft
Critical Depth		2.62	ft
Percent Full		95.0	%
Critical Slope		0.00281	ft/ft
Velocity		6.34	ft/s
Velocity Head		0.62	ft
Specific Energy		4.42	ft
Froude Number		0.57	
Discharge Full		175.12	ft³/s
Slope Full		0.00065	ft/ft
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	95.00	%
Downstream Velocity	Infinity	ft/s

Worksheet for Box Pipe - 1

GVF Output Data

 Upstream Velocity
 Infinity
 ft/s

 Normal Depth
 3.80
 ft

 Critical Depth
 2.62
 ft

 Channel Slope
 0.00100
 ft/ft

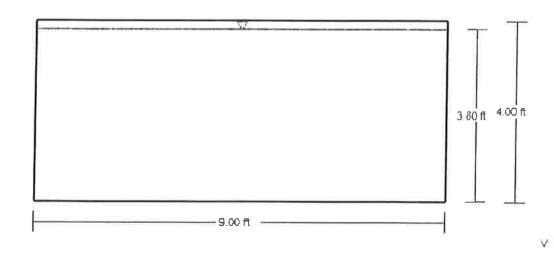
 Critical Slope
 0.00281
 ft/ft

Cross Section for Box Pipe - 1

Project Description

Friction Method

Manning Formula


Solve For

Discharge

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.00100	ft/ft
Normal Depth	3.80	ft
Height	4,00	ft
Bottom Width	9.00	ft
Discharge	216.83	ft³/s

Cross Section Image

Worksheet for Box Pipe - 1

Project Description

Friction Method

Manning Formula

Solve For

Discharge

Q = 256 cfs

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.00100	ft/ft
Normal Depth	3.80	ft
Height	4.00	ft
Bottom Width	6.00	ft

Results

Discharge		125.99	ft³/s
Flow Area		22.80	ft²
Wetted Perimeter		13.60	ft
Hydraulic Radius		1.68	ft
Top Width		6.00	ft
Critical Depth		2.39	ft
Percent Full		95.0	%
Critical Slope		0.00343	ft/ft
Velocity		5.53	ft/s
Velocity Head		0.47	ft
Specific Energy		4.27	ft
Froude Number		0.50	
Discharge Full		106.12	ft³/s
Slope Full		0.00071	ft/ft
Flow Type	Subcritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Stens	٥	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	95.00	%
Downstream Velocity	Infinity	ft/s

Worksheet for Box Pipe - 1

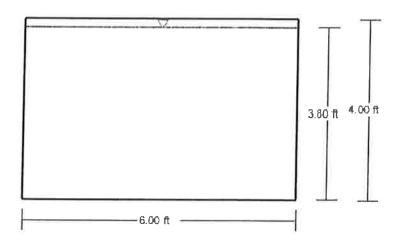
Upstream Velocity	Infinity	ft/s
Normal Depth	3.80	ft
Critical Depth	2.39	ft
Channel Slope	0.00100	ft/ft
Critical Slope	0.00343	ft/ft

Cross Section for Box Pipe - 1

Project Description

Friction Method

Manning Formula


Solve For

Discharge

Input Data

Roughness Coefficient	0.012	
Channel Slope	0.00100	ft/ft
Normal Depth	3.80	ft
Height	4.00	ft
Bottom Width	6.00	ft
Discharge	125.99	ft³/s

Cross Section Image

V: 1 H:

Circular Pipe from Ottawa@Navajo to Hwy 18

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

Roughness Coefficient	0.013	
Channel Slope	0.00100	ft/ft
Normal Depth	4.90	ft
Diameter	5.00	ft

Results

Discharge		87.02	ft³/9
Flow Area		19.54	ft²
Wetted Perimeter		14.29	ft
Hydraulic Radius		1.37	ft
Top Width		1.40	ft
Critical Depth		2.65	ft
Percent Full		98.0	%
Critical Slope	O	0.00369	ft/ft
Velocity		4.45	ft/s
Velocity Head		0.31	ft
Specific Energy		5.21	ft
Froude Number		0.21	
Maximum Discharge		88.59	ft³/s
Discharge Full		82.35	ft³/s
Slope Full	0	.00112	ft/ft
Flow Type	SubCritical		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	98.00	%
Downstream Velocity	Infinity	ft/s

Circular Pipe from Ottawa@Navajo to Hwy 18

Upstream Velocity	Infinity	ft/s
Normal Depth	4.90	ft
Critical Depth	2.65	ft
Channel Slope	0.00100	ft/ft
Critical Slope	0.00369	ft/ft

APPENDIX 'D'

Unit Hydrograph Method Analysis

25-Year Storm Event

100-Year Storm Event

Unit Hydrograph Analysis
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0
Study date 04/27/18

+++++++++++++++++++++++++++++++++++++++					
San Berna	rdino County Manua	Synthetic date - A	Unit Hydro ugust 1986	logy Met	hod
_	icense Serial				
A1 25 year					
S	torm Event Ye	ar = 25			
Ai	ntecedent Moi	sture Con	dition = 2		
English	(in-lb) Input	Units Use	ed		
English	Rainfall Data	(Inches)	Input Value	s Used	
English (Units used in	output fo	ormat		
Su Ca	uged rainfall ub-Area uc.) lata for year 487.00	Duration (hours) 25	I Iso (I	hyetal n) 73	
Rainfall d	ata for year 487.00	25 6	1.	42	
Rainfall d	ata for year 487.00				
+++++++	++++++++++	++++++++	++++++++	+++++++	 ++++++++++++
****** A	rea-averaged	max loss	rate, Fm ***	****	
SCS curve No.(AMCII) 83.0	SCS curve NO.(AMC 2) 83.0	Ar e a (Ac.) 487.00	Area I Fraction 1.000	Fp(Fig C((In/ 0.318	5) Ap Fm Hr) (dec.) (In/Hr) 0.600 0.191
A re a-avera	ged adjusted	loss rate	Fm (In/Hr)	= 0.191	L
******	Area-Averaged	low loss	rate fracti	ion, Yb †	****
Area	Area	SCS CN	SCS CN age 1	S	Pervious

```
A125
   (Ac.)
292.20
                                       (AMC2)
                                                     (AMC2)
                  Fract
                                                                            Yield Fr
                  0.600
                                      83.0
                                                    83.0
                                                                    2.05
                                                                                 0.420
      194.80
                  0.400
                                      98.0
                                                    98.0
                                                                    0.20
                                                                                 0.908
 Area-averaged catchment yield fraction, Y = 0.615 Area-averaged low loss fraction, Yb = 0.385
 Length from concentration point to centroid =
                                                                    4802.00(Ft.)
Length from concentration point to centroid = 4802.00 Elevation difference along watercourse = 42.00(Ft.)

Mannings friction factor along watercourse = 0.200

Watershed area = 487.00(Ac.)

Catchment Lag time = 3.196 hours

Unit interval = 10.000 minutes

Unit interval percentage of lag time = 5.2144

Hydrograph baseflow = 50.00(CFS)
 Average maximum watershed loss rate(Fm) = 0.191(In/Hr)
 Average low loss rate fraction (Yb) = 0.385 (decimal)
DESERT S-Graph Selected
Computed peak 5-minute rainfall = 0.249(In)
Computed peak 30-minute rainfall = 0.588(In)
Specified peak 1-hour rainfall = 0.731(In)

Computed peak 3-hour rainfall = 1.080(In)

Specified peak 6-hour rainfall = 1.420(In)

Specified peak 24-hour rainfall = 2.480(In)
Note: user specified rainfall values used.
Rainfall depth area reduction factors:
                                     487.00(Ac.) (Ref: fig. E-4)
Using a total area of
5-minute factor = 0.977
                                        Adjusted rainfall = 0.243(In)
30-minute factor = 0.977
                                        Adjusted rainfall = 0.575(In)
1-hour factor = 0.977
3-hour factor = 0.997
6-hour factor = 0.998
                                        Adjusted rainfall = 0.714(In)
                                        Adjusted rainfall =
                                                                     1.077(In)
                                       Adjusted rainfall = 1.418(In)
Adjusted rainfall = 2.478(In)
24-hour factor = 0.999
                                 Unit Hydrograph
'S' Graph
Interval
                                           Unit Hydrograph
Number
                         Mean values
                                                    ((CFS))
                      (K =
                                    2944.83 (CFS))
                                                           6.756
13.513
15.745
                           0.229
1
2
3
4
5
6
7
8
9
11
12
13
                           0.688
                           1.223
                           2.066
                                                           24.829
                          2.951
                                                           26.057
                          4.113
                                                           34.206
                          5.406
                                                           38.082
                          6.849
                                                           42.498
                                                           51.347
55.543
90.186
                          8.592
                         10.479
                         13.541
                                                         98.282
128.583
157.242
                         16.879
21.245
 14
                         26.585
                                                         152.333
133.338
 15
                         31.757
                         36.285
 16
                         40.722
                                                         130.644
```

		A125	
18	44.402		108.374
19	47.739		98.276
20 21	50.865 53.586		92.043 80.140
22	56.233		77.960
23	58.353		62.414
24	60.355		58.961
25	62.159		53.131
26	63.786		47.910
27 28	65.363 66.757		46.442 41.041
29	68.130		40.438
30	69.418		37.935
31	70.670		36.854
32	71.848		34.704
33 34	72.894 73.925		30.793
35	74.862		30.356 27.605
36	75.780		27.025
37	76.675		26.361
38	77.551		25.797
39	78.388		24.647
40 41	79.088 79.776		20.618 20.269
42	80.465		20.269
43	81.153		20.269
44	81.796		18.936
45	82.361		16.625
46 47	82.924 83.487		16.584
48	84.050		16.584 16.581
49	84.578		15.562
50	85.079		14.741
51	85.580		14.741
52	86.080		14.741
53 54	86.578 87.018		14.657 12.954
55	87.435		12.285
56	87.852		12.285
57	88.269		12.285
58	88.675		11.949
59 60	89.003 89.316		9.649 9.213
61	89.628		9.213
62	89.941		9.213
63	90.249		9.074
64	90.543		8.632
65	90.835		8.599
66 67	91.127 91.419		8.599
67 68	91.695		8.599 8.125
69	91.945		7.380
70	92.195		7.371
71	92.446		7.371
71 72 73	92.696		7.369
7 3 7 4	92.934 93.164		7.014 6.756
75	93.393		6.756
74 75 76 77	93.622		6.756
77	93.850		6.692
78	94.040		5.608
79 30	94.217 94.395		5.221
50	7 7. 373	Page 3	5.221
		raye)	

		A125
81 82	94.572 94.749	5.221 5.221
83	94.927	5.221
84	95.104	5.221
85	95.281	5.221
86 87	95.458 95.625	5.221 4.919
88	95.763	4.919
89	95.898	3.992
90	96.034	3 992
91 92	96.170 96.305	3.992
93	96.441	3.992 3.992 3.992
94	96 ₋ 576	3.992
95	96.712	3.992
96 97	96.847 96.957	3.985
98	97.051	3.992 3.992 3.985 3.248 2.764 2.764 2.764
99	97.145	2.764
100	97.239	2.764
101 102	97.333 97.427	2.764
103	97.521	2.764
104	97.521 97.615	2.764 2.764 2.764
105	97.708	2.764 2.595
106 107	97.797 97.853	2.595 1.675
108	97.906	1.536
109	97.958	1.536
110 111	98.010 98.062	1.536 1.536
112	98.114	1.536
113	98.166	1.536
114 115	98.218 98.371	1.536
116	98.271 98.327	1.536 1.670
117	98.390	1.842
118	98.452	1.843
119 120	98.515 98.578	1.843 1.843
121	98.640	1.843
122	98.703	1.843 1.843
123	98.765	1.843
124 125	98.828 98.890	1.843 1.843
126	98.953	1.843
127	99.016	1.843
128 129	99.078 99.141	1.843 1.843
130	99.203	1.843
131	99.266	1.843
132	99.328	1.843
133 134	99.391 99.454	1.843 1.843
135	99.508	1.589
136	99.541	0.986
137 138	99.574	0.960
139	99.606 99.639	0.960 0.960
140	99.671	0.960
141	99.704	0.960
142 143	99.737 99.769	0.960 0.960
		ae 4

		A12	25
144	99.802		0.960
145	99.834		0.960
146 147 148	99.867 99.899 99.932		0.960 0.960
149 150	99.932 99.965 100.000		0.960 0.960 0.480
Peak Unit	Adjusted mass	rainfall	
Number	(In) 0.3393		(In) 0.0959
2	0.4730		0.0610
3	0.5746		0.0481
4 ·	0.6289		0.0258
5	0.6746		0.0220
1 2 3 4 5 6 7 8	0.7143 0.7567		0.0193 0.0207
8	0.7954		0.0190
9	0.8312		0.0176
10	0.8645		0.0164
11	0.8959		0.0154
12	0.9255		0.0146
13	0.9536		0.0139
14	0.9804		0.0132
15	1.0060		0.0127
16	1.0305		0.0122
17	1.0541		0.0117
18	1.0769		0.0113
19	1.1002		0.0116
20 21 22	1.1229 1.1448		0.0112 0.0109
22 23 24	1.1661 1.1869 1.2071		0.0106 0.0103
25 26	1.2071 1.2268 1.2461		0.0100 0.0098 0.0096
27	1.2649		0.0093
28	1.2833		0.0091
29 30	1.3013 1.3189		0.0091 0.0089 0.0088
31	1.3362		0.0086
32	1.3531		0.0084
33	1.3697		0.0083
34	1.3860		0.0081
35	1.4021		0.0080
36	1.4178		0.0078
37	1.4336		0.0078
38	1.4491		0.0077
39	1.4643		0.0076
40	1.4793		0.0075
41	1.4941		0.0074
42	1.5087		0.0073
43	1.5231		0.0072
44	1.5372		0.0071
45	1.5512		0.0070
46	1.5650		0.0069
47	1.57 86		0.0068
48	1.5921		0.0067
49	1.6054		0.0066
50	1.6185		0.0065
51	1.6314		0.0065
52	1.6442		0.0064
53	1.6569	Page	0.0063 5

54	1.6694	A125 0.0062
55	1.6818	0.0062
56	1.6941	0.0061
57	1.7062	0.0060
58	1.7182	0.0060
59	1.7301	0.0059
60	1.7418	0.0059
61	1.7535	0.0058
62	1.7650	0.0057
63	1.7764	0.0057
64	1.7877	0.0056
65	1.7989	0.0056
66	1.8100	0.0055
67	1.8210	0.0055
68	1.8319	0.0054
69	1.8427	0.0054
70	1.8534	0.0053
71	1.8641	0.0053
72	1.8746	0.0053
73	1.8850	0.0052
74	1.8954	0.0052
75	1.9057	0.0051
76	1.9159	0.0051
77	1.9260	0.0050
78	1.9360	0.0050
79 80 81	1.9460 1.9559	0.0050 0.0049 0.0049
82 83	1.9657 1.9754 1.9851	0.0049 0.0048
84	1.9947	0.0048
85	2.0042	0.0048
86	2.0137	0.0047
87	2.0231	0.0047
88	2.0324	0.0047
89	2.0417	0.0046
90	2.0509	0.0046
91	2.0601	0.0046
92	2.0692	0.0045
93	2.0782	0.0045
94	2.0872	0.0045
95 96 97	2.0872 2.0961 2.1050	0.0045 0.0044
98 99	2.1138 2.1225 2.1312	0.0044 0.0044 0.0043
100	2.1399	0.0043
101	2.1485	0.0043
102	2.1570	0.0043
103	2.1655	0.0042
104	2.1739	0.0042
105	2.1823	0.0042
106	2.1907	0.0042
107	2.1990	0.0041
108	2.2072	0.0041
109	2.2155	0.0041
110	2.2236	0.0041
111 112 113	2.2317 2.2398 2.2479	0.0041 0.0040
114 115	2.2559 2.2638	0.0040 0.0040 0.0040
116	2.2717	0.0040 Page 6

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	2.2796 2.2874 2.2952 2.3030 2.3107 2.3183 2.3260 2.3336 2.3411 2.3487 2.3562 2.3636 2.3710 2.3784 2.3858 2.3931 2.4004 2.4077 2.4149 2.4221 2.4221 2.4292 2.4364 2.4435 2.4505 2.4576 2.4576 2.4715 2.4785	0.0039 0.0039 0.0039 0.0039 0.0038 0.0038 0.0038 0.0038 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037 0.0036 0.0036 0.0036 0.0036 0.0036 0.0035 0.0035 0.0035	
Unit Period (number)	Unit Rainfall (In)	Unit Soil-Loss (In)	Effective Rainfall (In)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.0069 0.0070 0.0070 0.0071 0.0071 0.0072 0.0073 0.0073 0.0074 0.0075 0.0075 0.0076 0.0076 0.0076 0.0077 0.0078 0.0079 0.0079 0.0079 0.0079 0.0081 0.0081 0.0081 0.0081 0.0082 0.0083 0.0083 0.0085 0.0085 0.0085	0.0027 0.0027 0.0027 0.0027 0.0028 0.0028 0.0028 0.0028 0.0029 0.0029 0.0029 0.0029 0.0029 0.0030 0.0030 0.0031 0.0031 0.0031 0.0031 0.0031 0.0032 0.0032 0.0032 0.0032 0.0032	0.0043 0.0043 0.0044 0.0044 0.0044 0.0045 0.0045 0.0045 0.0046 0.0046 0.0046 0.0047 0.0047 0.0047 0.0047 0.0048 0.0048 0.0048 0.0048 0.0049 0.0049 0.0050 0.0050 0.0051 0.0051 0.0052 0.0053

21	0.0007	A125	
31 32	0.0087 0.0088	0.0034 0.0034	0.0053
33	0.0089	0.0034	0.0054 0.0054
34	0.0089	0.0034	0.0055
35 36	0.0090	0.0035	0.0055 0.0056
36	0.0091	0.0035	0.0056
3 <i>7</i> 38	0.0092 0.0093	0.0035	0.0057
39	0.0094	0.0036 0.0036	0.0057 0.0058
40	0.0095	0.0037	0.0058
41	0.0096	0.0037	0.0058 0.0059
42	0.0097	0.0037	0.0060
43 44	0.0098 0.0099	0.0038	0.0060
45	0.0100	0.0038 0.0039	0.0061 0.0062
46	0.0102	0.0039	0.0062
47	0.0103	0.0040	0.0063
48	0.0104	0.0040	0.0064
49 50	0.0105 0.0107	0.0041	0.0065
51	0.0107	0.0041 0.0042	0.0066 0.0066
51 52	0.0110	0.0042	0.0067
53	0.0111	0.0043	0.0068
54	0.0113	0.0043	0.0069
55 5 6	0.0114 0.0116	0.0044 0.004 5	0.0070
57	0.0118	0.0045	0.0071 0.0072
5 8	0.0119	0.0046	0.0073
59	0.0121	0.0047	0.0075
60 61	0.0123	0.0047	0.0076
62	0.0125 0.0127	0.0048 0.0049	0.0077 0.0078
63	0.0130	0.0050	0.0080
64	0.0132	0.0051	0.0081
65	0.0134	0.0052	0.0083
66 67	0.0137 0.0140	0.0053 0.0054	0.0084 0.0086
68	0.0143	0.0055	0.0088
69	0.0146	0.0056	0.0090
70 71	0.0149	0.0057	0.0092
71 72	0.0152 0.0156	0.0059 0.0060	0.0094
73	0.0158	0.0061	0.0096 0.0097
74	0.0162	0.0062	0.0099
75	0.0166	0.0064	0.0102
76 77	0.0171 0.0176	0.0066	0.0105
78	0.0178	0.0068 0.0070	0.0108 0.0112
79	0.0188	0.0072	0.0116
80	0.0195	0.0075	0.0120
81	0.0202	0.0078	0.0124
82 83	0.0210 0.0220	0.0081 0.0085	0.0129 0.0135
84	0.0230	0.0089	0.0133
85	0.0228	0.0088	0.0140
86	0.0241	0.0093	0.0148
87 88	0.0256 0.0274	0.0099	0.0157
89	0.0274	0.0106 0.0114	0.0169 0.0182
90	0.0323	0.0124	0.0199
91	0.0358	0.0138	0.0220
92 93	0.0404	0.0156	0.0249
7)	0.0398	0.0153 Page 8	0.0244
		FAUC 0	

```
A125
                                        0.0191
   94
                     0.0495
                                                               0.0305
   95
                     0.1015
                                        0.0318
                                                               0.0697
  96
                     0.1688
                                        0.0318
                                                               0.1370
  97
                     0.3043
                                        0.0318
                                                               0.2725
  98
                     0.0505
                                        0.0194
                                                               0.0310
  99
                     0.0406
                                        0.0157
                                                               0.0250
 100
                     0.0324
                                        0.0125
                                                               0.0199
 101
                                        0.0106
                     0.0275
                                                               0.0169
 102
                                        0.0093
                     0.0241
                                                               0.0148
 103
                     0.0230
                                        0.0089
                                                               0.0141
                                       0.0081
0.0075
0.0070
 104
                     0.0210
                                                               0.0129
 105
                                                              0.0120
                     0.0195
 106
                     0.0182
                                                              0.0112
                                       0.0066
0.0062
 107
                    0.0171
                                                              0.0105
 108
                    0.0162
                                                              0.0099
                                       0.0060
0.0057
 109
                    0.0156
                                                              0.0096
 110
                    0.0149
                                                              0.0092
                                       0.0055
                    0.0143
 111
                                                              0.0088
 112
                    0.0137
                                       0.0053
                                                              0.0084
 113
                    0.0132
                                       0.0051
                                                              0.0081
 114
                    0.0127
                                       0.0049
                                                              0.0078
                    0.0123
 115
                                       0.0047
                                                              0.0076
 116
                    0.0119
                                       0.0046 0.0045
                                                              0.0073
 117
                    0.0116
                                                              0.0071 0.0069
 118
                                       0.0043
                    0.0113
 119
                    0.0110
                                       0.0042
                                                              0.0067
 120
                    0.0107
                                       0.0041
                                                              0.0066
 121
                                       0.0040
                    0.0104
                                                              0.0064
122
                                       0.0039
                    0.0102
                                                              0.0062
 123
                    0.0099
                                       0.0038
                                                              0.0061
124
                    0.0097
                                       0.0037
                                                              0.0060
 125
                    0.0095
                                       0.0037
                                                              0.0058
                                       0.0036
0.0035
 126
                    0.0093
                                                              0.0057
127
                    0.0091
                                                              0.0056
128
129
                    0.0089
                                       0.0034
                                                              0.0055
                    0.0088
                                       0.0034
                                                              0.0054
130
                                       0.0033
                    0.0086
                                                              0.0053
                    0.0085
131
                                                              0.0052
                    0.0083
                                       0.0032
132
                                                              0.0051
133
                    0.0082
                                       0.0032
                                                             0.0050
                   0.0081
0.0079
0.0078
0.0077
134
                                       0.0031
                                                             0.0050
135
                                       0.0031
                                                             0.0049
136
                                       0.0030
                                                             0.0048
137
                                       0.0030
0.0029
                                                              0.0047
138
                   0.0076
                                                              0.0047
139
                   0.0075
                                       0.0029
                                                              0.0046
                   0.0074
0.0073
0.0072
140
                                       0.0028
                                                              0.0045
141
                                                              0.0045
                                       0.0028
                                      0.0028
0.0027
0.0027
142
                                                              0.0044
                   0.0071
143
                                                             0.0044
                   0.0070
Total soil rain loss = 0.83(In)
Total effective rainfall = 1.65(In)
Peak flow rate in flood hydrograph = 161.90(CFS)
24 - HOUR STORM
Runoff Hydrograph
             Hydrograph in 10 Minute intervals ((CFS))
```

Page 9

100.0 150.0	50.0) 0	t Q(CFS)	Volume Ac.Ft	Time(h+m)
100.0 150.0			50.03 50.09 50.15 50.26 50.37 50.52 50.69 50.88 51.10 51.34 51.74 52.17 52.73 53.42 54.10 54.69 55.28 56.24 56.67 57.06	1.3790 2.0698 2.7621 3.4560 4.1519 4.8501 5.5509 6.2547 6.9620 7.6746 8.3932 9.1196 9.8554 10.6006 11.3539 12.1154 12.8837 13.6583 14.4390 15.2249 16.0162 16.8118 17.6116 18.4153 19.2226 20.0336 20.8478 21.6653 22.4860 23.3098 24.1367 24.9664 25.7990 26.6343 27.4724 28.3132 29.1567 30.0029 30.8517 31.7029 32.5567 33.4131 34.2720 35.1334 35.1334 36.8637 37.7327 38.6043 39.4784 40.3552 41.2346 42.1168 43.0017	Time(h+m) 0+10 0+20 0+30 0+40 0+50 1+10 1+20 1+30 1+40 1+20 1+30 1+40 2+10 2+30 3+40 3+50 3+40 3+50 4+10 4+30 4+40 4+50 5+10 5+20 5+40 6+10 6+30 6+40 7+10 7+20 7+40 7+50 8+10 8+20 8+40 8+50 9+10

			A125
10+10	49.2734	65.67	V Q
10+20	50.1809	65.89	
10+30	51.0915	66.11	VQ
10+40	52.0052	66.33	l viĝ i
10+50	52.9221	66.57	
11+ 0	53.8424	66.81	viò
11+10	53.8424 54.7660	67.06	l vlā l
11+20	55.6932	67.31	
11+30	56.6239	67.57	
11+40	56.6239 57.5583	67.84	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
11+50	58.4965	68.11	
12+ 0	59.4387	68.40	I VIQ I I
12+10	60.3849	68.70	
12+20	61.3353	69.00	
12+30	62.2901	69.32	V Q
12+40	63.2494	69.65	V Q
12+50	64.2135	69.99	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
13+ 0	65.1824	70.34	V Q
13+10	66.1563	70.71	V Q
13+20	67.1355	71.09	V Q
13+30	68.1203	71.49	y Q
13+40	69.1109	71.92	V Q
13+50	70.1076	72.36	V Q
14+ 0	71.1107 72.1206 73.1376	72.83	
14+10	/2.12U0 72 1276	73.32	V Q
14+20 1 4 +30	74.1620	73.83 74.38	V Q
14+40	75.1945	74.36 74.96	V Q
14+50	76.2357	7 4. 90 75.59	
15+ 0	77.2862	76.27	v q
15+10	78.3472	77.03	
15+20	79.4197	77.86	
15+30	80.5047	78.77	l v q l l
15+40	81.6037	79.79	l ľv å l l
15+50	82.7218	81.17	l lv q l l
16+ 0	83.8698	83.35	i lvãi l l
16+10	85.0696	87.10	I V Q I I
16+20	86.3189	90.70	
16+30	87.6100	93.73	
16+40	88.9588	97.93	V Q
16+50	90.3480	100.85	
17+ 0	91.7959	105.12	V Q
17+10	93.2914	108.58	V Q
17+20	94.8426	112.62	V Q
17+30 17+40	96.4726	118.33	V Q
17+50	98.1953 100.0839	125.07 137.11	
18+ 0	102.0782	144.79	V QQQ
18+10	104.2241	155.80	v q q
18+20	106.4542	161.90	
18+30	108.6366	158.45	
18+40	110.7294	151.94	v a
18+50	112.7593	147.37	l v l oi l
19+ 0	114.6776	139.27	
19+10	116.5262	134.21	v q
19+20	118.3145	129.83	v q
19+30	120.0311	124.63	v o
19+40	121.6958	120.85	
19+50	123.2812	115.10	l vlg l
20+ 0	124.8252	112.09	l vlq l
20+10	126.3240	108.81	v q
20+20	127.7844	106.03	V Q
20+30	129,2168	103.99	l và i l

Page 11

			A125
20+40 20+50	130.6152 131.9942	101.52 100.12	l vo i
21+ 0	133.3497	98.41	VQ
21+10	134.6846	96.91	
21+20	135.9951	95.14	l \tilde{q}_{V}
21+30	137.2797	93.26	QV
21+40	138.5481	92.09	l ǧv l
21+50	139.7963	90.62	Ì ŽÝ
22+ 0	141.0321	89.72	QV
22+10	142.2553	88.80	l õiv l
22+20	143.4642	87.77	Q V V
22+30	144.6549	86.45	QV
22+40	145.8237	84.86	l q lv l
22+50	146.9837	84.21	Q V V
23+ 0	148.1356	83.63	QV
23+10	149.2774	82.90	l q l v i
23+20	150.4049	81.85	l Q l V l
23+30	151.5183	80.83	
23+40	152.6253	80.37	
23+50	153.7260	79.91	
24+ 0	154.8192	79.36	

Unit Hydrograph Analysis
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0
Study date 04/27/18

++++++++	++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++
San Berna	rdino County Manual	Synthetic date - A	Unit Hydrology Method ugust 1986
Program L	icense Serial	Number 40	014
Area A1 100 year,		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
St	torm Event Ye		
Ar	ntecedent Moi	sture Cond	dition = 3
English ((in-lb) Input	Units Use	ed .
English R	kainfall Data	(Inches)	Input Values Used
English U	Inits used in	output fo	ormat
Su (A	ged rainfall b-Area c.) ata for year 487.00	Duration (hours) 100	v isohyetal data: Isohyetal (In) 1.01
Rainfall d	ata for year 487.00	6	1.88
	ata for year 487.00		3.23
++++++++	++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++
******	rea-averaged	max loss	rate, Fm *******
	SCS curve NO.(AMC 3) 95.8	Area (Ac.) 487.00	Area Fp(Fig C6) Ap Fm Fraction (In/Hr) (dec.) (In/Hr) 1.000 0.083 0.600 0.050
Area-avera	ged adjusted	loss rate	Fm (In/Hr) = 0.050
*****	Area-Averaged	l low loss	rate fraction, Yb *******
Area	Area	SCS CN	SCS CN S Pervious age 1

```
A1100
                                        (AMC2)
   (AC.)
                                                       (AMC3)
                                                                                Yield Fr
                   Fract
      292.20
                                        83.0
                                                       95.8
                   0.600
                                                                       0.44
                                                                                     0.854
      194.80
                   0.400
                                        98.0
                                                       98.0
                                                                       0.20
                                                                                    0.928
 Area-averaged catchment yield fraction, Y = 0.883 Area-averaged low loss fraction, Y = 0.117
 Watercourse length = 9580.00(Ft.)

Length from concentration point to centroid = 4802.00

Elevation difference along watercourse = 42.00(Ft.)

Mannings friction factor along watercourse = 0.200

Watershed area = 487.00(Ac.)

Catchment Lag time = 3.196 hours

Unit interval = 10.000 minutes
                                                                        4802.00(Ft.)
 Unit interval percentage of lag time = 5.2144

Hydrograph baseflow = 50.00(CFS)
Average maximum watershed loss rate(Fm) = 0.050(In/Hr)
Average low loss rate fraction (Yb) = 0.117 (decimal)
DESERT S-Graph Selected
Computed peak 5-minute rainfall = 0.345(In)
Computed peak 30-minute rainfall = 0.815(In)
Specified peak 1-hour rainfall = 1.010(In)
Computed peak 3-hour rainfall = 1.450(In)
Specified peak 6-hour rainfall = 1.880(In)
Specified peak 6-hour rainfall = 1.880(In)
Specified peak 24-hour rainfall = 3.230(In)
Note: user specified rainfall values used.
Rainfall depth area reduction factors:
Using a total area of 487.00(Ac.) (Ref: fig. E-4)
5-minute factor = 0.977
                                          Adjusted rainfall = 0.337(In)
30-minute factor = 0.977
                                          Adjusted rainfall = 0.796(In)
1-hour factor = 0.977
                                          Adjusted rainfall = 0.987(In)
3-hour factor = 0.997
                                          Adjusted rainfall = 1.446(In)
6-hour factor = 0.998
                                          Adjusted rainfall = 1.877(In)
24-hour factor = 0.999
                                         Adjusted rainfall = 3.228(In)
                                   Unit Hydrograph
Mean values
                                                       ((CFS))
Number
                       (K =
                                      2944.83 (CFS))
1
2
3
4
5
6
7
8
9
10
11
12
                            0.229
                                                               6.756
                            0.688
                                                              13.513
                            1.223
                                                              15.745
                            2.066
                                                              24.829
                            2.951
                                                              26.057
                           4.113
                                                              34.206
                           5.406
                                                              38.082
                           6.849
                                                              42.498
                           8.592
                                                              51.347
                          10.479
                                                              55.543
                          13.541
                                                              90.186
                                                              98.282
                          16.879
 13
                                                            128.583
                          21.245
 14
                          26.585
                                                            157.242
                                                            152.333
133.338
130.644
 15
                          31.757
                          36.285
17
                          40.722
```

	A	1100
18	44.402	108.374
19 20	47.739 50.865	98.276 92.043
21	53.586	80.140
22 23	56.233 58.353	77.960 62.414
24	60.355	58.961
25 26	62.159 63.786	53.131 47.910
27	65.363	46.442
28	66.757	41.041
29 30	68.130 69.418	40.438 37.935
31	70.670	36.854
32 33	71.848 72.894	34.704 30.793
34	73.925	30.356
35 36	74.862 75.780	27.605 27.025
37	76.675	26.361
38	77.551	25.797
39 40	78.388 79.088	24.647 20.618
41	79.776	20.269
42 43	80.465 81.153	20.269 20.269
44	81.796	18.936
45 46	82.361 82.924	16.625 16.584
47	83.487	16.584
48	84.050 84.578	16.581
49 50	84.578 85.079	15.562 14.741
51	85.580	14.741
52 53	86.080 86.578	14.741 14.657
54	87.018	12.954
55 56	87.435 87.852	12.285 12.285
57	88.269	12.285
58 59	88.675 89.003	11.949 9.649
60	89.316	9.213
61 62	89.628 89.941	9.213 9.213
63	90.249	9.074
64	90.543	8.632
65 66	90.835 91.127	8.599 8.599
67	91.419	8.599
68 69	91.695 91.945	8.125 7.380
70	92.195	7.371
71 72	92.446 92.696	7.371 7.369
73	92.934	7.014
74 75	93.164	6.756
75 76	93.393 93.622	6.756 6.756
77	93.850	6.692
78 79	94.040 94.217	5.608 5.221
80	94.395	5.221
	Pag	e 3

١1	1	Λ	\sim	
L۶	Ll	.O	v	

		A1100	
81 82	94.572 94.749		5.221 5.221
83	94.749		5.221
84	95.104		5.221
85	95.281		5.221 5.221
86 87	95.458 95.625		4.919
88	95.763		4.047
89	95.898		3.992
90 91	96.034 96.170		3.992
92	96.305		3.992
93	96.441		3.992 3.992 3.992 3.992 3.992
94 95	96.576		3.992
95 96	96.712 96.847		3.992 3.985
97	96.957		3.248
98	97,051		2.764
99 100	97.145 97.239		2./64 2.764
101	97.145 97.239 97.333		2.764
102	97.427		2.764
103 104	97.521 97.615		2.764
105	97.708		2.764
106	97.797		2.595
107	97.853		3.248 2.764 2.764 2.764 2.764 2.764 2.764 2.764 2.595 1.675
108 109	97.906 97.958		1.536
110	98.010		1.536
111	98.062		1.536
112 113	98.114 98.166		1.536 1.536
114	98.218		1.536
115	98.271		1.536
116 117	98.327 98.390		1.670 1.842
118	98.452		1.843
119	98.515		1.843
120 121	98.578 98.640		1.843 1.843
122	98.703		1.843
123	98.765		1.843
124	98.828		1.843
125 126	98.890 98.953		1.843 1.843
127	99.016		1.843
128	99.078		1.843
129 130	99.141 99.203		1.843 1.843
131	99.266		1.843
132	99.328		1.843
133 134	99.391 99.454		1.843 1.843
135	99.508		1.589
136	99.541		0.986
137	99.574		0.960
138 139	99.606 99.639		0.960 0.960
140	99.671		0.960
141	99.704		0.960
142 143	99.737 99.769		0.960 0.960
_ 7 J	33.103	Page 4	0.900
		_	

		A110	
144 145 146 147 148 149	99.802 99.834 99.867 99.899 99.932 99.965 100.000		0.960 0.960 0.960 0.960 0.960 0.960 0.480
Peak Unit Number 1234567891011213456789101222222222323334567890123344567890122222223256789333333333333333333333333333333333333	Adjusted mass (In) 0.4701 0.6556 0.7964 0.8706 0.9328 0.9869 1.0413 1.0907 1.1363 1.1787 1.2184 1.2558 1.2912 1.3249 1.3570 1.3878 1.4174 1.4458 1.5593 1.5593 1.5593 1.5857 1.6113 1.6362 1.6606 1.6844 1.7076 1.7303 1.7526 1.7743 1.7957 1.8166 1.8372 1.8573 1.8771 1.8974 1.9173 1.9368 1.9561 1.9751 1.9938 2.0122 2.0304 2.0483 2.0660 2.0834 2.1007 2.1177 2.1345 2.1511 2.1674 2.1837	Page	Unit rainfall (In) 0.1330 0.0845 0.0667 0.0352 0.0299 0.0265 0.0242 0.0223 0.0208 0.0195 0.0184 0.0175 0.0166 0.0159 0.0152 0.0146 0.0147 0.0143 0.0131 0.0138 0.0134 0.0131 0.0127 0.0124 0.0121 0.0118 0.0115 0.0113 0.0111 0.0108 0.0106 0.0104 0.0102 0.0108 0.0106 0.0104 0.0102 0.0100 0.0099 0.0101 0.0099 0.0097 0.0096 0.0097 0.0096 0.0097 0.0098 0.0088 0.0087 0.0088 0.0087 0.0088

		A1100
54	2.1997	0.0080
55 56	2.2155 2.2312	0.0079 0.0078
57	2.2467	0.0077
58	2 2624	0.0076
59	2.2772	0.0076
60 61	2.2922	0.0075 0.0074
62	2.30/1 2.321R	0.0074
63	2.3364	0.0073
64	2.2620 2.2772 2.2922 2.3071 2.3218 2.3364 2.3508	0.0072
65 66		0.0071 0.0071
67	2.3792 2.3933	0.0071
68	2.40/2	0.0069
69	2 4210	0.0069
70 71	2.4346 2.4482 2.4616 2.4749	0.0068 0.0068
72	2.4616	0.0067
72 73	2.4749	0.0066
74	2.4881	0.0066
75 76	2.4881 2.5012 2.5142	0.0065
77 77	2.5142	0.0065 0.0064
78	2.5399	0.0064
79	2.5526	0.0063
80 81	2.3651 2.5776	0.0063 0.0062
82	2.5900	0.0062
83	2.5012 2.5142 2.5271 2.5399 2.5526 2.5651 2.5776 2.5900 2.6023	0.0061
84	2.6146 2.6267 2.6387	0.0061
85 86	2.020/ 2.6387	0.0061 0.0060
87	2.6507	0.0060
88	2.6626	0.0059
89 90	2.6743	0.0059 0.0058
91	2.6861 2.6977 2.7092 2.7207	0.0058
92	2.7092	0.0058
93	2.7207	0.0057
94 95	2.7321 2.7435	0.0057 0.0057
96	2.7547	0.0056
97	2.7659	0.0056
98 99	2.7770	0.0055
100	2.7881 2.7990	0.0055 0.0055
101	2.8100	0.0054
102	2.8208	0.0054
103 104	2.8316 2.8423	0.0054 0.0054
105	2.8530	0.0053
106	2.8636	0.0053
107	2.8741	0.0053
108 109	2.8846 2.8950	0.0052 0.0052
110	2.9053	0.0052
111	2.9156	0.0051
112 113	2.9259	0.0051
114	2.9361 2.9462	0.0051 0.0051
115	2.9563	0.0050
116	2.9663	0.0050
		Page 6

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	2.9763 2.9862 2.9961 3.0059 3.0157 3.0254 3.0351 3.0447 3.0543 3.0638 3.0733 3.0827 3.0921 3.1015 3.1108 3.1200 3.1293 3.1384 3.1476 3.1567 3.1657 3.1748 3.1927 3.2016 3.2104 3.2192 3.2280	0.0050 0.0050 0.0049 0.0049 0.0049 0.0048 0.0048 0.0048 0.0047 0.0047 0.0047 0.0047 0.0047 0.0046 0.0046 0.0046 0.0046 0.0046 0.0045 0.0045 0.0045 0.0045 0.0045 0.0044	
Unit Period (number)	Unit Rainfall (In)	Unit Soil-Loss (In)	Effective Rainfall (In)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.0088 0.0089 0.0099 0.0090 0.0091 0.0091 0.0093 0.0093 0.0095 0.0095 0.0095 0.0097 0.0097 0.0097 0.0099 0.0100 0.0101 0.0101 0.0101 0.0102 0.0103 0.0104 0.0105 0.0106 0.0107 0.0108 0.0108 0.0109	0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0013 0.0013 0.0013 Page 7	0.0078 0.0078 0.0079 0.0079 0.0080 0.0081 0.0081 0.0082 0.0082 0.0083 0.0084 0.0085 0.0085 0.0085 0.0085 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0089 0.0090 0.0090 0.0090 0.0090 0.0091 0.0093 0.0093 0.0093 0.0094 0.0095 0.0095 0.0095 0.0096 0.0097

		A1100	
31	0.0110	0.0013	0.0098
32 33	0.0112 0.0113	0.0013 0.0013	0.0099 0.0099
34	0.0114	0.0013	0.0100
35	0.0115	0.0013	0.0101
36	0.0116	0.0014	0.0102
37	0.0117	0.0014	0.0103
38 39	0.0118 0.0120	0.0014 0.0014	0.0105 0.0106
40	0.0121	0.0014	0.0100
41	0.0122	0.0014	0.0108
42	0.0124	0.0014	0.0109
43	0.0125	0.0015	0.0110
44 45	0.0126 0.0128	0.0015 0.0015	0.0112 0.0113
46	0.0128	0.0015	0.0113
47	0.0131	0.0015	0.0116
48	0.0133	0.0015	0.0117
49	0.0134	0.0016	0.0119
50 51	0.0136	0.0016	0.0120
52	0.0138 0.0140	0.0016 0.0016	0.0122 0.0123
53	0.0142	0.0017	0.0125
54	0.0144	0.0017	0.0127
55 56	0.0146	0.0017	0.0129
5 6 57	0.0148	0.0017 0.0018	0.0131
58	0.0150 0.0153	0.0018	0.0133 0.0135
59	0.0155	0.0018	0.0137
60	0.0158	0.0018	0.0139
61	0.0160	0.0019	0.0142
62 63	0.0163 0.0166	0.0019 0.0019	0.0144
64	0.0169	0.0019	0.0147 0.0149
65	0.0172	0.0020	0.0152
66	0.0176	0.0020	0.0155
67	0.0179	0.0021	0.0158
68 69	0.0183 0.0187	0.0021 0.0022	0.0162 0.0165
70	0.0187	0.0022	0.0169
71	0.0196	0.0023	0.0173
72	0.0201	0.0023	0.0177
73	0.0198	0.0023	0.0175
7 4 75	0.0204 0.0209	0.0024 0.0024	0.0180 0.0185
76	0.0216	0.0025	0.0190
77	0.0222	0.0026	0.0196
78	0.0230	0.0027	0.0203
79	0.0238	0.0028	0.0210
80 81	0.0247 0.0256	0.0029 0.0030	0.0218 0.0226
82	0.0267	0.0030	0.0236
83	0.0279	0.0033	0.0246
84	0.0293	0.0034	0.0258
85	0.0284	0.0033	0.0251
86 87	0.0302 0.0322	0.0035 0.0037	0.0266 0.0284
88	0.0322	0.0040	0.0305
89	0.0374	0.0044	0.0330
90	0.0410	0.0048	0.0362
91	0.0456	0.0053	0.0403
92 93	0.0517 0.0541	0.0060 0.0063	0.0457 0.0478
J J	O.034T	0.0003	0.0478

```
A1100
                                       0.0079
                    0.0676
                                                              0.0597
   95
96
                                       0.0083
                    0.1408
                                                              0.1325
                    0.2340
                                       0.0083
                                                             0.2257
   97
                                                             0.4134
                    0.4216
                                       0.0083
   98
                    0.0688
                                       0.0080
   99
                    0.0520
                                       0.0061
                                                             0.0460
 100
                    0.0411
                                       0.0048
                                                             0.0363
                                       0.0040
                                                             0.0306
 101
                    0.0346
                                       0.0035
                                                             0.0267
0.0259
0.0236
 102
                    0.0302
 103
                    0.0293
                                       0.0034
                    0.0267
                                       0.0031
 104
                    0.0247
 105
                                       0.0029
                                                             0.0218
 106
                    0.0230
                                       0.0027
                                                             0.0203
                                       0.0025
 107
                    0.0216
                                                             0.0191
 108
                    0.0204
                                       0.0024
                                                             0.0180
 109
                    0.0201
                                       0.0023
                                                             0.0177
 110
                    0.0191
                                       0.0022
                                                             0.0169
                    0.0183
                                       0.0021
 111
                                                             0.0162
                                       0.0020
0.0020
 112
                    0.0176
                                                             0.0155
                    0.0169
                                                             0.0149
                                       0.0019
                    0.0163
                                                             0.0144
                                       0.0018
 115
                    0.0158
                                                             0.0139
                                       0.0018
 116
                    0.0153
                                                             0.0135
                                       0.0017
0.0017
                    0.0148
 117
                                                             0.0131
 118
                    0.0144
                                                             0.0127
 119
                    0.0140
                                       0.0016
                                                             0.0123
                                       0.0016
 120
                    0.0136
                                                             0.0120
 121
                    0.0133
                                       0.0015
                                                             0.0117
 122
                    0.0129
                                       0.0015
                                                             0.0114
123
124
125
                    0.0126
0.0124
0.0121
                                       0.0015
0.0014
                                                             0.0112
                                                             0.0109
                                       0.0014
                                                             0.0107
126
                    0.0118
                                       0.0014
                                                             0.0105
127
                    0.0116
                                       0.0014
                                                             0.0102
128
                                       0.0013
                   0.0114
                                                             0.0100
129
                                      0.0013
                   0.0112
                                                             0.0099
130
                   0.0109
                                      0.0013
                                                             0.0097
                   0.0108
                                      0.0013
131
                                                            0.0095
132
                   0.0106
                                      0.0012
                                                             0.0093
                   0.0104
0.0102
0.0101
                                      0.0012
0.0012
133
                                                             0.0092
                                                            0.0090
0.0089
134
                                      0.0012
0.0012
135
                   0.0099
136
                                                            0.0087
137
                   0.0097
                                      0.0011
                                                            0.0086
                   0.0096
0.0095
138
                                      0.0011
                                                            0.0085
139
                                      0.0011
                                                            0.0084
                   0.0093
                                      0.0011
140
                                                            0.0082
                   0.0092
                                      0.0011
                                                            0.0081
141
                   0.0091
                                      0.0011
142
                                                            0.0080
                   0.0090
                                      0.0010
                                                            0.0079
143
                   0.0088
                                      0.0010
Total soil rain loss = 0.31(In)
Total effective rainfall = 2.92(In)
Peak flow rate in flood hydrograph = 239.43(CFS)
24 - HOUR STORM
Runoff Hydrograph
             Hydrograph in 10 Minute intervals ((CFS))
```

Time(h+m)	Volume Ac.Ft	Q(CFS)	0	75.0	150.0	225.0	300.0
0+10 0+20 0+40 0+50 1+10 1+20 1+30 1+40 1+20 2+30 2+40 2+10 2+30 2+40 2+50 3+40 3+50 3+40 3+50 3+40 4+10 4+20 4+30 4+40 4+50 5+10 5+20 5+30 5+40 6+50 7+10 7+20 7+30 7+40 7+50 8+10 7+20 7+30 7+40 7+50 7+40 7+50 7+10 7+20 7+30 7+40 7+50 7+10 7+20 7+30 7+40 7+50 7+10 7+20 7+30 7+40 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+10 7+50 7+50 7+50 7+50 7+50 7+50 7+50 7+5	0.6894 1.3803 2.0729 2.7681 3.4662 4.1680 4.8740 5.5846 6.3008 7.0232 7.7554 8.4984 9.2556 10.0300 10.8212 11.6274 12.4484 13.2818 14.1267 14.9826 15.8481 16.7233 17.6064 18.4971 19.3950 20.2996 21.2106 22.1277 23.0508 23.9797 24.9143 25.8546 26.8000 27.7507 28.7064 29.6671 30.6329 31.6036 32.5793 33.5596 34.5445 35.5341 36.5285 37.5276 38.5312 39.5394 40.5599 41.5699 42.6914 44.6514 45.6883 47.7772 48.8290 49.8860 50.9482 52.0157 53.0884 54.1663	50.05 50.16 50.28 50.48 50.68 50.95 51.25 51.59 52.00 52.44 53.16 53.94 54.97 56.22 57.45 58.53 59.60 60.51 61.34	**************************************				

			A1100
10+10	55.2497	78.65	V Q
10+20	56.3386	79.06	V Q
10+30	57.4332	79.47	V Q
10+40	58.5336	79.89	V Q
10+50	59.6400 60.7536	80.33	V Q
11+ 0 11+10	60.7526 61.87 1 5	80.77 81.23	V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q
11+20	62.9970	81.71	V Q
11+30	64.1291	82.19	ı v q ı ı
11+40	65.2680	82.69	V 0
11+50	66.4141	83.20	V Q
12+ 0	67.5675	83.74	V Q
12+10	68.7285	84.29	V Q
12+20 12+30	69.8973	84.85 85.44	V Q
12+30	71.0741 72.2592	86.04	v Q
12+50	73.4530	86.67	V Q
13+ 0	74.6557	87.31	
13+10	75.8676	87.99	
13+20	77.0892	88.69	V Q
13+30	78.3209	89.42	V Q
13+40 13+50	79.5632 80.8165	90.19 90.99	vi q
14+ 0	82.0813	91.83	
14+10	83.3580	92.69	v č
14+20	84.6470	93.58	v q
14+30	85.9491	94.54	V Q
14+40	87.2654	95.56	V Q
14+50	88.5972	96.68	VQ
15+ 0 15+10	89.9458 91.3131	97.91 99.27	
15+20	92.7012	100.78	
15+30	94.1124	102.45	V Q V Q V Q V Q V Q V Q V Q V Q V Q V Q
15+40	95.5498	104.36	
15+50	97.0228	106.94	V Q
16+ 0	98.5492	110.81	V Q
16+10 16+20	100.1602	116.96 122.99	V Q
16+30	101.8542 103.6197	128.17	
16+40	105.4808	135.11	'v 'o
16+50	107.4127	140.26	v q
17+ 0	109.4427	147.37	
17+10	111.5568	153.48	V 9
17+20 17+30	113.7676 116.1155	160.51 170.46	V QQ
17+40	118.6204	181.86	v q
17+50	121.3893	201.02	V Q
18+ 0	124.3348	201.02 213.84	V Q
18+10	127.5113	230.62	V Q
18+20	130.8092	239.43	V Q
18+30 18+40	134.0321 137.1114	233.98 223.56	
18+50	140.0836	215.78	l v l q l
19+ 0	142.8796	202.99	
19+10	145.5591	194.53	vlq
19+20	148.1378	187.21	V Q
19+30	150.5984	178.64	V Q
19+40 19+50	152.9703 155.2160	172.20 163.04	V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V V Q Q V Q Q V Q Q V Q Q V Q Q V Q
20+ 0	157.3906	157.88	V Q
20+10	159.4908	152.47	l vo
20+20	161.5271	147.83	QV
20+30	163.5154	144.36	QV QV

Page 11

			A1100
20+40	165.4481	140.31	Q V
20+50	167.3465	137.82	Q V
21+ 0	169.2049	134.92	Q IV
21+10	171.0272	132.30	
21+20	172.8086	129.33	
21+30	174.5471	126.21	
21+40	176.2571	124.15	
21+50	177.9335	121.71	
22+ 0	179.5876	120.08	
22+10	181.2191	118.45	Q V
22+20	182.8253	116.61	
22+30	184.4009	114.39	
22+40	185.9411	111.82	
22+50	187.4649	110.63	
23+ 0	188.9737	109.54	
23+10	190.4644	108.23	
23+20	191.9311	106.48	
23+30	193.3745	104.79	
23+ 4 0	194.8061	103.94	
23+50	196.2259	103.07	
24+ 0	197.6322	102.10	

Unit Hydrograph Analysis

Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0

Study date 04/27/18

+++++++++++++++++++++++++++++++++++++++					
Can Pouna	ndina County	Cumthatic	tinde tiveles.		
Sali Beilla	rdino County Manual	date - A	ugust 1986	gy Method	
_	icense Serial				
Area A2 25 year, 2 AV Village	24 hour				
S1	torm Event Ye	ear = 25			
Ar	ntecedent Moi	sture Cond	dition = 2		
English ((in-lb) Input	Units Use	ed		
_	Rainfall Data		•	Us ed	
English u	Inits us <mark>ed</mark> in	output fo	rmat		
Su (A Rainfall d	ged rainfall b-Area c.) ata for year 963.00	Duration (hours) 25 1	Isoh (In	yetal) 3	
Rainfall d	ata for year 963.00	6	1.4		
Rainfall d	ata for year 963.00	75	2.4		
			+++++++++++		+++++++++
****** A	rea-averaged	max loss	rate, Fm ***	***	
SCS curve No.(AMCII) 74.0	SCS curve NO.(AMC 2) 74.0	Area (Ac.) 963.00	Area F Fraction 1.000	o(Fig C6) (In/Hr) 0.469 0.	(dec.) (In/Hr)
Area-averaged adjusted loss rate Fm (In/Hr) = 0.282					
*****	Area-Averaged	l low loss	rate fractio	n, Yb ****	***
Area	Area	SCS CN	SCS CN age 1	S Per	vious

```
AVA2
  (Ac.)
577.80
                                       (AMC2)
                                                     (AMC2)
                  Fract
                                                                              Yield Fr
                  0.600
                                                     74.0
                                       74.0
                                                                      3.51
                                                                                  0.241
                  0.400
                                       98.0
                                                     98.0
                                                                     0.20
                                                                                  0.908
 Area-averaged catchment yield fraction, Y = 0.507 Area-averaged low loss fraction, Y = 0.493
 Length from concentration point to centroid = 6250.00 Elevation difference along watercourse = 48.00(Ft.)
                                                                      6250.00(Ft.)
Mannings friction factor along watercourse = 0.200
Watershed area = 963.00(Ac.)
Catchment Lag time = 4.008 hours
Unit interval = 30.000 minutes
Unit interval percentage of lag time = 12.4737
Hydrograph baseflow = 100.00(CFS)
Average maximum watershed loss rate(Fm) = 0.282(In/Hr)
Average low loss rate fraction (Yb) = 0.493 (decimal)
DESERT S-Graph Selected
Computed peak 5-minute rainfall = 0.249(In)
Computed peak 30-minute rainfall = 0.588(In)
Specified peak 1-hour rainfall = 0.731(In)
Computed peak 3-hour rainfall = 1.080(In)
Specified peak 6-hour rainfall = 1.420(In)
Specified peak 24-hour rainfall = 2.480(In)
Note: user specified rainfall values used.
Rainfall depth area reduction factors:
Using a total area of
                                      963.00(Ac.) (Ref: fig. E-4)
5-minute factor = 0.955
                                        Adjusted rainfall = 0.238(In)
30-minute factor = 0.955
                                        Adjusted rainfall = 0.561(In)
1-hour factor = 0.955
3-hour factor = 0.994
6-hour factor = 0.997
                                        Adjusted rainfall = 0.698(In)
Adjusted rainfall = 1.074(In)
Adjusted rainfall = 1.416(In)
Adjusted rainfall = 2.477(In)
24-hour factor = 0.999
                                  Unit Hydrograph
'S' Graph
Interval
                                                     Unit Hydrograph
Number
                         Mean values
                                                             ((CF$))
                       (K =
                                     1941.05 (CFS))
                           0.549
  1
                                                             10.653
 2
3
4
5
6
7
8
9
10
11
                           2.143
                                                             30.950
                                                             50.279
                           4.734
                           8.369
                                                            70.564
                         14.424
                                                           117.535
                         24.752
                                                           200.464
                         36.503
                                                           228.099
                         45.873
                                                           181.876
                         53.133
                                                           140.922
                         58.804
                                                           110.062
                         63.163
66.770
                                                            84.628
12
13
14
15
                                                            70.001
                         69.921
                                                            61.163
                         72.679
                                                            53.530
                         75.033
                                                            45.691
                         77.181
16
                                                            41.707
                         79.067
                                                            36,608
```

Peak Unit Number Adjusted mass rainfall (In) Unit rainfal (In) 1 0.5615 0.0470 2 0.6980 0.0188 3 0.8183 0.0181 4 0.9160 0.0152 5 0.9997 0.0132 6 1.0738 0.0118 7 1.1419 0.0109 8 1.2044 0.0101 9 1.2623 0.0094 10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073				
1 0.5615 0.0470 2 0.6980 0.0188 3 0.8183 0.0181 4 0.9160 0.0152 5 0.9997 0.0132 6 1.0738 0.0118 7 1.1419 0.0109 8 1.2044 0.0101 9 1.2623 0.0094 10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073			rainfall	
1 0.5615 0.0470 2 0.6980 0.0188 3 0.8183 0.0181 4 0.9160 0.0152 5 0.9997 0.0132 6 1.0738 0.0118 7 1.1419 0.0109 8 1.2044 0.0101 9 1.2623 0.0094 10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	Number	(In)		(In)
2 0.6980 0.0188 3 0.8183 0.0181 4 0.9160 0.0152 5 0.9997 0.0132 6 1.0738 0.0118 7 1.1419 0.0109 8 1.2044 0.0101 9 1.2623 0.0094 10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	1	0.5615		0.0470
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	2			
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	- -			
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	Ā			
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	7			
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	2			
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	6			0.0118
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	7	1.1419		0.0109
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	8	1.2044		0.0101
10 1.3164 0.0088 11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	g			
11 1.3674 0.0083 12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	10			
12 1.4157 0.0079 13 1.4622 0.0076 14 1.5066 0.0073	11			
13 1.4622 0.0076 14 1.5066 0.0073				
14 1.5066 0.0073	12			
_	13			
_	14	1.5066		0.0073
			Pag e	_

15 16 17 18 19 20 22 23 24 25 27 28 29 31 33 33 34 41 42 43 44 45 47	1.5491 1.5900 1.6294 1.66294 1.7042 1.7398 1.7744 1.8080 1.8408 1.84726 1.9037 1.9341 1.9638 1.9928 2.0212 2.0491 2.0764 2.1032 2.1294 2.1552 2.1806 2.2055 2.2300 2.2542 2.2779 2.3013 2.3244 2.3471 2.3695 2.3916 2.4133 2.4348 2.4561	0.0070 0.0067 0.0065 0.0062 0.0060 0.0059 0.0057 0.0055 0.0053 0.0051 0.0050 0.0049 0.0048 0.0047 0.0046 0.0045 0.0041 0.0043 0.0042 0.0041 0.0041 0.0041 0.0041 0.0039 0.0038 0.0037 0.0036
	2.4348 2.4561 2.4770	

Unit Period (number)	Unit Rainfall (In)	Unit Soil-Loss (In)	Effective Rainfall (In)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.0210 0.0214 0.0218 0.0223 0.0228 0.0233 0.0238 0.0244 0.0250 0.0257 0.0264 0.0271 0.0279 0.0288 0.0298 0.0309 0.0320 0.0333 0.0348 0.0364 0.0364 0.0382 0.0404 0.0428 0.0458	0.0103 0.0105 0.0108 0.0110 0.0112 0.0115 0.0117 0.0120 0.0123 0.0126 0.0130 0.0134 0.0138 0.0142 0.0147 0.0152 0.0158 0.0164 0.0171 0.0179 0.0188 0.0199 0.0225	0.0107 0.0109 0.0111 0.0113 0.0116 0.0118 0.0121 0.0124 0.0127 0.0130 0.0134 0.0138 0.0142 0.0146 0.0151 0.0157 0.0163 0.0169 0.0169 0.0176 0.0185 0.0194 0.0205 0.0217 0.0232
		Page 4	

	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	loss =	1.16(In)	51 9 6 22 7 8 8 8 8 0 4 4 1 1 5 7 2 0 1 1 2 5 9 9	0.0247 0.0269 0.0298 0.0336 0.0384 0.0470 0.0595 0.1718 0.2477 0.0443 0.0323 0.0262 0.0227 0.0201 0.0182 0.0167 0.0155 0.0145 0.0136 0.0129 0.0123 0.0117 0.0112 0.0108	
	Total effective Peak flow rate	in flood hyd: 	ograph =	235.84(CFS)		
	+++++++++++++++++++++++++++++++++++++++		UR ST	ORM		<u> </u>
	Hyd	rograph in 3	0 Minute	intervals ((CFS))	
Time(h	+m) Volume Ac.F		75.0	150.0	225.0	300.0
0+30 1+ 0 1+30 2+ 0 2+30 3+ 0 3+30 4+ 0 5+ 0 5+30 6+ 0 7+30 8+ 0 9+ 0 9+30 10+ 0 10+30 11+ 0	8.2876 12.4607 16.6657 20.9240 25.2730 29.7269 34.2675 38.8787 43.5485 48.2674 53.0303 57.8348	100.45 V 100.99 V 101.76 V 103.05 V 105.25 V 107.78 V 109.88 V 111.59 V 113.01 114.20				

			AVA2
12+30	118.5611	128.38	
13+_0	123.9244	129.79	
13+30	129.3529	131.37	V Q
14+ 0	134.8558	133.17	
14+30	140.4448	135.25	l v q l
15+ 0	146.1358	137.72	i v qi i
15+30	151.9543	140.81	v Q
16+ 0	157.9804	145.83	v q
16+30	164.3720	154.68	l iv ö l l
17+ 0	171.2252	165.85	l viq l
17+30	178.5591	177.48	l l v l q l l
18+ 0	186.5081	192.37	
18+30	195.3951	215.06	
19+ 0	205.1407	235.84	
1 9+ 30	214.8431	234.80	
20+ 0	223.8427	217.79	V Q Q
20+30	232.1852	201.89	
21+ 0	239.9787	188.60	
21+30	247.3355	178.03	
22+ 0	254.3891	170.70	v q
22+30	261.2098	165.06	v o
23+ 0	267.8209	159.99	
23+30	274.2501	155.59	V Q
			l vo l
24+ 0	280.5331	152.05	Q

AVA2100

Unit Hydrograph Analysis
Copyright (c) CIVILCADD/CIVILDESIGN, 1989 - 2004, Version 7.0
Study date 04/27/18

****** San Bernardino County Synthetic Unit Hydrology Method Manual date - August 1986 Program License Serial Number 4014 Area A2 100 year, 24 hour AV Village Storm Event Year = 100Antecedent Moisture Condition = 3English (in-lb) Input Units Used English Rainfall Data (Inches) Input Values Used English Units used in output format Area averaged rainfall intensity isohyetal data: Sub-Area Duration Isohyetal (Ac.) (hours) (In) Rainfall data for year 100 963.00 1 1.01 Rainfall data for year 100 963.00 6 1.88 Rainfall data for year 100 24 963.00 3.23 ****** Area-averaged max loss rate, Fm ****** Fp(Fig C6) SCS curve SCS curve Area Area Fm (Ĭn/Hr) (dec .189 0.600 No.(AMCII) NO.(AMC 3) (dec.) (Ac.) Fraction (In/Hr) 90.2 963.00 1.000 0.189 74.0 Area-averaged adjusted loss rate Fm (In/Hr) = 0.113 ****** Area-Averaged low loss rate fraction, Yb ******** SCS CN SCS CN S Pervious Area Area Page 1

```
AVA2100
                                           (AMC2)
                                                           (AMC3)
   (AC.)
                     Fract
                                                                                       Yield Fr
      577.80
                    0.600
                                           74.0
                                                           90.2
                                                                             1.09
                                                                                           0.686
                    0.400
                                           98.0
      385.20
                                                           98.0
                                                                             0.20
                                                                                           0.928
Watercourse length = 12500.00(Ft.)
Length from concentration point to centroid = 625
Elevation difference along watercourse = 48.00(
Mannings friction factor along watercourse = 0.200
Watershed area = 963.00(Ac.)
Catchment Lag time = 4.008 hours
Unit interval = 30.000 minutes
Unit interval percentage of lag time = 12.4737
Hydrograph baseflow = 100.00(CFS)
Average maximum watershed loss rate(Fm) = 0.113(Tm/
                                                                               6250.00(Ft.)
                                                                           48.00(Ft.)
Average maximum watershed loss rate(Fm) = 0.113(In/Hr)
Average low loss rate fraction (Yb) = 0.218 (decimal)
DESERT S-Graph Selected
Computed peak 5-minute rainfall = 0.345(In)
Computed peak 30-minute rainfall = 0.815(In)
Specified peak 1-hour rainfall = 1.010(In)
Computed peak 3-hour rainfall = 1.450(In)
Specified peak 6-hour rainfall = 1.880(In)
Specified peak 24-hour rainfall = 3.230(In)
Note: user specified rainfall values used.
Rainfall depth area reduction factors:
Using a total area of
                                         963.00(Ac.) (Ref: fig. E-4)
5-minute factor = 0.955
                                             Adjusted rainfall = 0.329(In)
30-minute factor = 0.955
                                             Adjusted rainfall = 0.778(In)
1-hour factor = 0.955
3-hour factor = 0.994
6-hour factor = 0.997
24-hour factor = 0.999
                                             Adjusted rainfall = 0.964(In)
                                             Adjusted rainfall =
                                                                               1.442(In)
                                             Adjusted rainfall = 1.874(In)
Adjusted rainfall = 3.226(In)
                                      Unit Hydrograph
'S' Graph
Interval
                                                           Unit Hydrograph
Number
                            Mean values
                                                                   ((CFS))
                          (K =
                                         1941.05 (CFS))
                                                                   10.653
30.950
50.279
1
2
3
4
5
6
7
8
9
10
11
2
13
14
15
                              0.549
                              2.143
                               4.734
                              8.369
                                                                   70.564
                                                                  117.535
                             14.424
                            24.752
                                                                 200.464
                             36.503
                                                                 228.099
                             45.873
                                                                 181.876
                            53.133
58.804
                                                                 140.922
                                                                 110.062
                            63.163
66.770
69.921
72.679
75.033
                                                                   84.628
                                                                   70.001
                                                                   61.163
53.530
45.691
16
                            77.181
                                                                   41.707
                            79.067
                                                                   36.608
```

		AVA2100
18 19 20 22 22 23 24 25 26 27 28 33 33 33 33 41 42 43 44 45 47 48 49 51 51 51 51 51 51 51 51 51 51 51 51 51	80.714 82.222 83.570 84.848 86.046 87.152 88.150 89.036 89.785 90.511 91.209 91.864 92.463 93.040 93.588 94.083 94.507 94.932 95.356 95.737 96.062 96.386 96.710 97.442 97.4567 97.850 97.976 98.225 98.360 98.509 98.659 98.659 98.659 98.659 99.608 99.529 99.608 99.764 99.842	31.965 29.271 26.153 24.816 23.246 21.482 19.374 17.188 14.533 14.095 13.560 12.701 11.625 11.197 10.655 9.601 8.238 8.232 8.232 7.405 6.301 6.295 5.483 4.358 4.358 4.358 4.358 3.561 2.421 2.421 2.617 2.903 2.905 2.905 2.905 2.905 2.905 2.905 2.905 2.905 2.905 2.364 1.523 1.513 1.513
62 63	99.920 100.000	1.513 0.757
Peak Unit Number 1 2 3 4 5 6 7 8 9 10 11 12 13	Adjusted mass (In) 0.7782 0.9644 1.1187 1.2429 1.3486 1.4417 1.5284 1.6076 1.6809 1.7493 1.8136 1.8743 1.9340 1.9910	rainfall Unit rainfall (In) 0.0652 0.0256 0.0232 0.0192 0.0166 0.0148 0.0139 0.0128 0.0119 0.0111 0.0105 0.0099 0.0098 0.0093

AVA2100

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 38	2.0455 2.0979 2.1483 2.1970 2.2440 2.2495 2.3337 2.3766 2.4184 2.4590 2.4987 2.5374 2.55751 2.6121 2.6482 2.6836 2.7183 2.7523 2.7523 2.7857 2.8185 2.8507 2.8823 2.9134 2.9440 2.9741 3.0037 3.0329 3.0617 3.0901 3.1180 3.1456 3.1728 3.1996	AVA2100 0.0089 0.0086 0.0083 0.0080 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0064 0.0062 0.0061 0.0060 0.0058 0.0057 0.0056 0.0055 0.0055
34 35 36 37 38 39	2.8185 2.8507 2.8823 2.9134 2.9440	0.0054 0.0053 0.0052 0.0051 0.0051
40 41 42 43 44	3.0037 3.0329 3.0617 3.0901 3.1180	0.0050 0.0049 0.0048 0.0048 0.0047 0.0046
45 46 47 48	3.1456 3.1728 3.1996 3.2261	0.0046 0.0045 0.0044 0.0044

Unit	Unit	Unit	Effective
Period	Rainfall	Soil-Loss	Rainfall
(number)	(In)	(In)	(In)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.0266 0.0271 0.0276 0.0282 0.0288 0.0295 0.0302 0.0317 0.0326 0.0335 0.0345 0.0355 0.0367 0.0379 0.0379 0.0393 0.0408 0.0425 0.0444 0.0465 0.0489 0.0517 0.0549 0.0588	0.0058 0.0059 0.0060 0.0061 0.0063 0.0064 0.0066 0.0067 0.0069 0.0071 0.0073 0.0075 0.0077 0.0080 0.0083 0.0086 0.0089 0.0092 0.0097 0.0101 0.0106 0.0112 0.0119 0.0128 Page 4	0.0208 0.0212 0.0216 0.0221 0.0226 0.0231 0.0236 0.0242 0.0248 0.0255 0.0262 0.0270 0.0278 0.0270 0.0278 0.0297 0.0308 0.0320 0.0333 0.0347 0.0364 0.0383 0.0345 0.0405 0.0460

2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 7	4 5 6 7 8 9 0 1 2 3 4 5 6 7 8	0.0613 0.0670 0.0743 0.0841 0.0951 0.1176 0.1535 0.4322 0.5330 0.1104 0.0809 0.0651 0.0575 0.0508 0.0458 0.0420 0.0389 0.0363 0.0341 0.0323 0.0329 0.0269	AVA2100 0.0133 0.0146 0.0162 0.0183 0.0207 0.0256 0.0334 0.0566 0.0566 0.0240 0.0176 0.0142 0.0125 0.0110 0.0100 0.0191 0.0085 0.0079 0.0074 0.0070 0.0067 0.0064 0.0069	2 78(css)	0.0480 0.0524 0.0581 0.0658 0.0744 0.0920 0.1201 0.3756 0.4764 0.0864 0.0633 0.0510 0.0450 0.0397 0.0359 0.0328 0.0304 0.0267 0.0253 0.0240 0.0229 0.0219			
Total effective rainfall = 2.62(In) Peak flow rate in flood hydrograph = 373.78(CFS) +++++++++++++++++++++++++++++++++++								
24 - HOUR STORM Runoff Hydrograph Hydrograph in 30 Minute intervals ((CFS))								
		t Q(CFS) 0		200.0	300.0	400.0		
0+30 1+ 0 1+30 2+ 0 2+30 3+ 0 3+30 4+ 0 4+30 5+ 0 5+30 6+ 0 6+30 7+ 0 7+30 8+ 0 8+30 9+ 0 9+30 10+ 0 10+30 11+ 0 11+30 12+ 0	4.1414 8.3095 12.5215 16.7957 21.1738 25.7289 30.4887 35.4178 40.4848 45.6666 50.9446 56.3089 61.7550 67.2792 72.8778 78.5508 84.2973 90.1173 96.0126 101.9854 108.0399 114.1811 120.4146 126.7470	135.49	Ì q					

12+30 13+ 0 13+30 14+ 0 14+30 15+ 0 15+30 16+ 0 16+30 17+ 0 17+30 18+ 0 19+30 20+ 0 20+30 21+ 0 21+30 22+ 0 22+30 23+ 0 23+30 24+ 0	133.1859 139.7400 146.4226 153.2516 160.2478 167.4394 174.8768 182.7381 191.3451 200.8807 211.3891 223.1841 236.9387 252.3840 267.6542 281.4940 294.0090 305.4196 315.9625 325.9035 335.3782 344.4313 353.1227 361.5191	155.82 158.61 161.72 165.26 169.31 174.04 179.98 190.24 208.29 230.76 254.30 285.44 332.86 373.78 369.54 334.92 302.86 276.14 240.57 229.29 219.09 210.33 203.19	AVA2100 V
--	--	--	------------