South Shore Testing & Environmental

23811 Washington Ave, Suite C110, #112, Murrieta, CA 92562 Phone: (951) 239-3008 FAX: (951) 239-3122 E-mail: ss.testing@aol.com

February 24, 2020

Mr. Rich Wilson Trademark Construction Co., Inc. 15916 Bernardo Center Drive San Diego, CA 92127

SUBJECT: ONSITE STORMWATER INFILTRATION SYSTEM INVESTIGATION

Proposed Multi-Family Residential Development APN: 339-200-080, 9.92-Acres NE Corner of Berea and Normandy Roads City of Menifee, Riverside County, California Work Order No. 4722002.01

Dear Mr. Wilson:

In accordance with your authorization, we have conducted percolation testing for the infiltration system for the proposed multi-family residential development. The purpose of our investigation was to provide infiltration rates for proposed infiltration systems. The proposed infiltration test areas were designated on a 40-scale Conceptual Site Plan (Summa Architecture, 2019) by the project civil engineer, Kolibrien Civil, Structural, and Surveying of Temecula, California.

Site Description

The subject site is a nearly square-shaped, 9.92-acre parcel of land located the northeast corner of Brea and Normandy Roads in the city of Menifee, Riverside County, California. The site is bordered on the north by a flood control channel and an existing single-family residential tract, on the west by Berea Road and a mini-storage facility, on the south by Normandy Road and a park, and on the east by vacant undeveloped land.

Topographically on the subject site, for the most part, consists of low rolling gently sloping terrain with natural gradients of less than 5 percent. The southeast corner of the site consists of a small hill with numerous large unweathered granitic boulders up to 20-ft in diameter. Natural gradients on the hill are approximately 15 percent. Drainage is accomplished by sheetflow to the northwest toward Berea Road and the flood control channel. Vegetation onsite generally consists of a sparse to moderate low dried growth of annual weeds and grasses.

Proposed Development

The proposed development consists of the construction of a multi-family residential development with interior parking and driveways, a 3-story commercial building, a fitness building, a clubhouse, a recreation area, and landscape area. The Conceptual Site Plan (Summa, 2019) depicts the extreme southeast corner of the site, which is underlain by numerous granitic boulders, is to remain vacant and in a relatively natural condition.

Percolation Investigation

Percolation testing was conducted on January 31, 2020 at locations designated by the project civil engineer. Six (6) tests were performed within the onsite late to middle Pleistocene-age Old alluvial fan deposits (Morton, 2003) on the northerly portion of the subject site. Six (6) exploratory trenches were advanced to a depth of 3-ft below the ground surface (bgs) with an infiltration test performed at the bottom of each trench. The Old alluvial fan deposits, for the most part, consisted of silty Sand (Unified Soil Classification – SM) that can generally be described as red to orange brown, fine to coarse grained, minor gravel size, abundant fines, dry (top 1-ft) to slightly moist, loose(top 2-ft) to medium dense to very dense and excavated with slight difficulty. Approximately 0.5 to 1-ft of undocumented fills were observed overlying the Old alluvial fan deposits in most areas. Infiltration test pits were advanced to a depth of 36-ft bgs utilizing a Case No. 590 extenda-backhoe equipped with a 18-inch bucket. Our field personnel logged the exploratory trenches and a copies of our Exploratory Trench Logs are presented in **Appendix B**.

GROUNDWATER

Groundwater was not encountered to the maximum depth explored of 16.2-ft below the ground surface (bgs) previously excavated on the northerly portion of the subject site (T.H.E., 2003). Based on historic regional groundwater information (DWR, 1978), regional high groundwater is at least 100-ft bgs on the lower elevations of the subject site. Minor fluctuations can and will likely occur in moisture or free water content of the soil owing to rainfall and irrigation over time.

SUMMARY OF TEST PROCEDURES

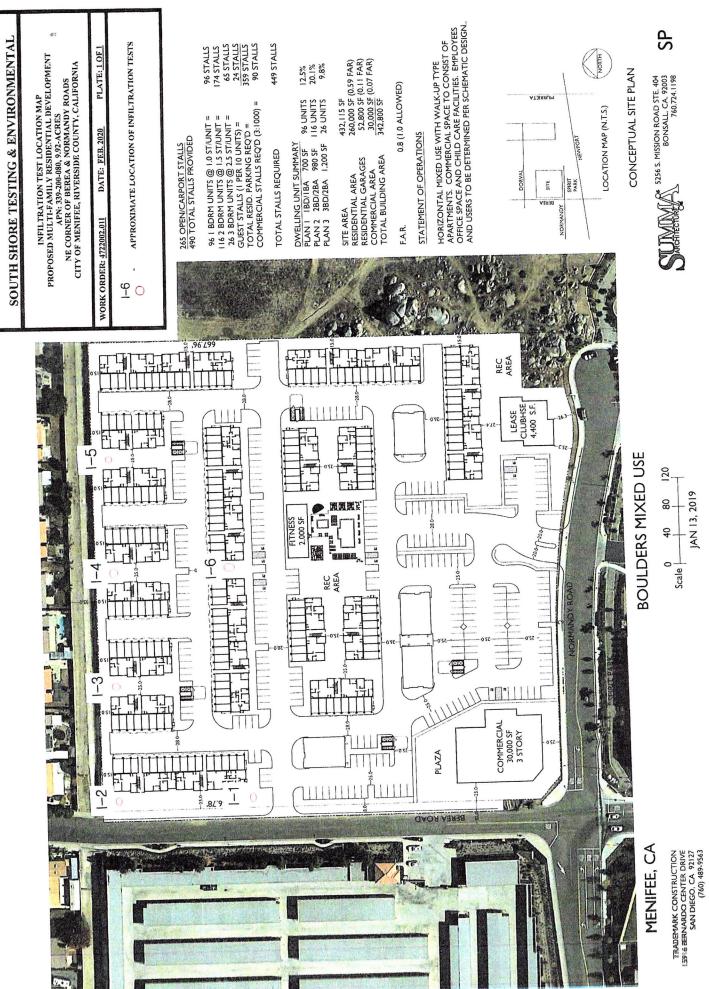
The testing procedure was performed in accordance with Riverside County Department of Environmental Health's "Local Management Program for Onsite Wastewater Treatment Systems", which became effective October 5, 2016 and the resulting perc rates were converted to infiltration rates utilizing the Porchet Method as outlined in the Riverside County Flood Control and Water Conservation District, "Design Handbook for Low Impact Development Best Management Practices" dated September 2011. The percolation tests were performed at a depth of 3-ft bgs (per

the project civil engineer). Owing to the mostly moderately fast rates the procedures for **Normal** soils were followed (see percolation test sheets).

Conclusion

Testing indicated infiltration rates at 3-ft below existing grade within the native soils obtained fast to moderately fast rates of 6.0 to 13.3-min/inch percolation rate. The percolation rates were converted to infiltration rate utilizing the Porchet Method. The converted infiltration rates varied from 1.1 to 3.5-inches/hr. The rate provided does not include a safety factor. The test locations are presented on our Infiltration Test Location Map, **Plate 1**.

PERCOLATION TEST NO.	DEPTH OF TEST BELOW GRADE (In Feet)	PERCOLATION RATE (Min/Inch	
1	3	7.1	4.3
2	3	13.3	2.2
3	3	12.0	3.1
4	3	15.0	2.7
5	3	6.0	7.0
6	3	7.5	5.3


CLOSURE

It should be noted that infiltration rates determined by testing are ultimate rates based on shortduration field test results utilizing clear water. Infiltration rates can be affected by silt build-up, debris, degree of soil saturation, and other factors. An appropriate safety factor should be applied prior to use in design to account for subsoil inconsistencies, possible compaction related to site grading, and potential silting of the percolating soils. The safety factor should also be determined with consideration to other factors in the system design, particularly storm water volume estimates and the safety factors associated with those design components.

LIMITATIONS

The tested rates are representative for the areas and soil types tested. Should the systems be moved, or the exposed soil types are found to different within the proposed systems, the approved infiltration rates may not apply. Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable Geotechnical Engineers and Geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report.

The report is issued with the understanding that it is used only by the owner and it is the sole responsibility of the owner or their representative to ensure that the information and

1/18/2020 457-36 PM

JAN 13, 2019

recommendations contained herein are brought to the attention of the architect, engineer, and appropriate jurisdictional agency for the project and incorporated into the plans; and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations contained herein during construction and in the field.

The samples taken and used for testing and the observations made are believed representative; however, soil and geologic conditions can vary significantly between test locations. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by **South Shore Testing & Environmental**, or its assigns.

The findings of this report are valid as of the present date. However, changes in the condition of a property can occur with the passage of time, whether due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and revision as changed conditions are identified. The firm that performed the geotechnical investigation for this project should be retained to provide testing observation services during construction to maintain continuity of geotechnical interpretation and to check that the recommendations presented herein are implemented during construction of improvements.

If another geotechnical firm is selected to perform the testing and observation services during construction operations, that firm should prepare a letter indicating their intent to assume the responsibilities of project geotechnical engineer of record. Selection of another firm to perform any of the recommended activities or failure to retain the undersigned to perform the recommended activities wholly absolves **South Shore Testing & Environmental**, the undersigned, and its assigns from any and all liability arising directly or indirectly from any aspects of this project.

We appreciate the opportunity to be of service. Limitations and conditions contained in reference documents are considered in full force and applicable. If you have any questions, please do not hesitate to call our office.

Respectfully Submitted,

South Shore Testing & Environmental

John P. Frey Project Manager

William C. Hobbs, RCE 42265 Civil Engineer

ATTACHMENTS

Plate 1 – Infiltration Test Location Map Appendix A –References Appendix B – Exploratory Trench Logs Appendix C - Percolation Test Data

APPENDIX A

References

South Shore Testing & Environmental

W.O. NO:4722002.011

REFERENCES

CDM Smith, Inc. 2013, "Technical Guidance Document for Water Quality Management Plans" dated June 7, 2013.

County of Riverside GIS Website, 2020.

Department of Water Resources, 1978, "Water Resources Evaluation of the San Jacinto Area", District Report April 1978.

Morton, D.M., 2004, "Preliminary Digital Geologic Map of the Santa Ana 30' x 60' Quadrangle, Southern California (Version 2.0)", U.S. Geological Survey in Cooperation with the California Geologic Survey, Open-File Report 99-172, Scale: 1" = 100,000'.

Morton, D.M.,1991, "Geologic Map of the Romoland 7.5' Quadrangle, Riverside County, California", Scale: 1" = 2,000', U.S.G.S. Open-File Report 90-701.

Riverside County Flood Control and Water Conservation District, 2011, "Design Handbook for Low Impact Development Best Management Practices" dated 9, 2011.

South Shore Testing & Environmental, 2020, "Update to Preliminary Geotechnical Investigation & Assumption of Responsibility, Proposed Multi-Family Residential Development, APN: 339-200-080, 9.92-Acres, NE Corner of Berea and Normandy Roads, City of Menifee, Riverside County, California", Work Order No. 4722001.00U.

Summa Architecture, December 5, 2019, "Conceptual Site Plan, Boulders Mixed Use, Menifee, CA", Sheet SP, 40-Scale.

T.H.E. Soils Company, Inc., December 15, 2003, "Preliminary Geotechnical Investigation, Proposed Residential Development, ±10-Acre Parcel on the NEC of Newport and Berea Roads, Menifee Area, Riverside County, California", Work Order No. 657301.00.

APPENDIX B

-

Exploratory Trench Logs

South Shore Testing & Environmental

W.O. NO:4722002.011

						METHOD OF EXCAVATION: CASE #580 N BACKHOE EQUIPPED W/ 18'' BUCKET ELEVATION: <u>+</u>	DATE OBSERVED: 1/30/2020 LOCATION: SEE PLATE 1
חבריה (רבני)	CLASSIFICATION BLOWS/FOOT		SAMPLE BULK SAMPLE	MOISTURE CONTENT(%)	INPLACE DRY DENSITY (PCF)	TEST PIT NO1 DESCRIPTION	SOIL TEST
						UNDOCUMENTED FILL SILTY SAND (SM): DARK BROWN, FINE TO COARSE GRAINED, MINOR GRAVEL, LOOSE POROUS OLD ALLUVIAL DEPOSITS SILTY SAND (SM): RED BROWN, FINE TO COARSE GRAINED, ABUNDANT FINES, MINOR PINPOINT PORES IN UPPER 1-FT, MINOR GRAVEL SIZE, DENSITY INCREASES W/ DEPTH SILGHTLY MOIST TOTAL DEPTH=10.2FT NO GROUNDWATER NO CAVING	INFILTRATION TEST
J	JOB NO: 4722002.00			2002.0	00	LOG OF TEST PIT	FIGURE: T-1

DOGED BY: JPF METHOD OF EXCANATION: CASE MERGIN BACKHOE EQUIPPED DATE OBSERVED: 1/30/2220 UNIT OF BUCKET LCCATION: 11 LCCATION: 11 LCCATION: 11 UNIT OF BUCKET SOUL TEST SOUL TEST UNIT OF BUCKET MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF BUCKET MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF BUCKET MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF BUCKET MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF BUCKET MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF AND THE DEFILIT ONDER TO AND THE TO COARSE GRAMED, MARCH AND, LOOSE, PORDUS MARCH AND, MARCH AND, LOOSE, PORDUS UNIT OF TAL DEPTHIN TO YARD BAG AND THE TO COARSE GRAMED, MARCH AND, LOOSE, PORDUS MARCH AND THE TO TAL DEPTHIN TO YARD BAG AND THE TO COARSE GRAMED, MARCH AND, LOOSE, PORDUS UNIT OF TAL DEPTHIN TO YARD BAG AND THE TO COARSE GRAMED, MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF TAL DEPTHIN TO YARD BAG AND THE TO COARSE GRAMED, MARCH AND, LOOSE, PORDUS MARCH AND, LOOSE, PORDUS UNIT OF TAL DEPTHIN TO YARD BAG AND THE TO COARSE AND THE TO TALL DEPTHIN TO TALL AND THE TO TALL AND THE TO TAL						r		
LEVATION: <u>*</u> LOCATION: <u>SEP PATE 1</u> Image: Control of the state part of the state of								DATE OBSERVED: 1/30/2020
Non-State Non-State Solutest 1							W/ 18" BUCKET ELEVATION: <u>+</u>	LOCATION: SEE PLATE 1
Image: Status and Status an	T		-	-				
Image: Status and Status an	ATION	001	RBED	APLE	JRE T(%)	DRY (PCF)	TEST PIT NO 2	
Image: Status and Status an	SIFIC	OWS/F	DISTU	K SA	OISTU	ILACE VSITY		SOIL TEST
Image: Status and Status an	CLAS	BLG	ND ON	BUI	zõ	DEN		
OLD ALLUYAL DEPOSITS INFLITATION TEST SIL TY SAND (SM): REDOTS IN CONTR. OF CALLEY ALL DEPOTH PORES AND FILE ROOTS IN CONTR. OF CALLEY ALL DEPOTH PORES AND FILE ROOTS IN CONTR. CONTR. GRAVEL SZ. SLIGHTLY MOIST, INCREASING INFLITATION TEST TOTAL DEPTH TOTAL DEPTH NO CAVING NO CAVING INFLITATION TEST NO CAVING INFLITATION TEST NO CAVING	+	+		1			UNDOCUMENTED FILL	
OLD ALLUYAL DEPOSITS INFLITATION TEST SIL TY SAND (SM): REDOTS IN CONTR. OF CALLEY ALL DEPOTH PORES AND FILE ROOTS IN CONTR. OF CALLEY ALL DEPOTH PORES AND FILE ROOTS IN CONTR. CONTR. GRAVEL SZ. SLIGHTLY MOIST, INCREASING INFLITATION TEST TOTAL DEPTH TOTAL DEPTH NO CAVING NO CAVING INFLITATION TEST NO CAVING INFLITATION TEST NO CAVING								
PORES AND FINE ROOTS IN TOP 1 FT, MINOR GRAVEL 82, SUGHTLY MOIST, INCREASING IN DENSITY WITH DEFTN TOTAL DEPTH-10.2FT NO GROUNDWATER NO CAVING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								INFILTRATION TEST
NDENSITY WITH DEPTH TOTAL DEPTH=10.2FT NO GROUNDWATER NO CAVING 0 15 16 17 18 18 19 19 10 10 11 12 13 14 15 15 16 17 18 19 19 10 10 11 12 13 14 15 15 16 17 18 19 19 10 10 11 12 13 14 15 15 16 17 18 19 19								
TOTAL DEPTH-10.2FT NO GROUNDWATER NO CAVING	5						PORES AND FINE ROOTS IN TOP 1 FT, MINOR GRAVEL SZ, SLIGHTLY MOIST, INCREASING	
NO GROUNDWATER NO CAVING 10 11 12 13 14 15 15 16 17 18 19 19 19 10 10 10 11 12 13 14 15 15 15 16 17 18 19 19 10 10 10 10 11 12 13 14 15 15 16 17 18 19 19 10 10 11 12 13 14 15 15 16 17 18 19 19 10 10 11 11 12 12 135							IN DENSITY WITH DEPTH	_
0 NO CAVING 1 NO CAVING 15 NO CAVING 16 NO CAVING 17 NO CAVING 18 NO CAVING 19 NO CAVING								
							NO CAVING	
	0							
	-							
	_							
	-							
	_							
	15							
	_							
	4							
	-							
	20							
	20							
	-							
	\neg							
	-							
	25							
						1		
	30							
	-							
	-							
	35							
	\vdash							
	\vdash							
	\vdash							
	F							
JOB NO: 4722002.00 LOG OF TEST PIT FIGURE: T-2	40							
JOB NO: 4722002.00 LOG OF TEST PIT FIGURE: T-2	F	<u> </u>						
	JC	DB N	10: 4	1722	2002.	00	LOG OF TEST PIT	FIGURE: T-2

						METHOD OF EXCAVATION: CASE #580 N BACKHOE EQUIPPED W/ 18'' BUCKET ELEVATION: <u>+</u>	DATE OBSERVED: 1/30/2020 LOCATION: SEE PLATE 1
	BLOWS/FOOT	UNDISTURBED SAMPLE	BULK SAMPLE	MOISTURE CONTENT(%)	INPLACE DRY DENSITY (PCF)	TEST PIT NO3 DESCRIPTION	SOIL TEST
1						UNDOCUMENTED FILL	
			_			ALLUVIAL FAN DEPOSITS	INFILTRATION TEST
						SILTY SAND (SM): DARK RED BROWN, FINE TO MEDIUM GRAINED, MINOR COARSE,	
5						MODERATELY SORTED, SLIGHTLY MOIST, NUMEROUS PINPOINT PORES IN UPPER 1-2 FT	4 1
_						TOTAL DEPTH=3.0FT	
						NO GROUNDWATER	
						NO CAVING	
0							
_							
15							
_							
20							
25							
30							
L							
L							
L							
L							
3							
L							
L							
L							
4							
JOB NO: 4722002.00			:002.0	00	LOG OF TEST PIT	FIGURE: T-3	

OGGE	D E	BY: J	PF		METHOD OF EXCAVATION: CASE #580 N BACKHOE EQUIPPED W/ 18'' BUCKET ELEVATION: <u>+</u>	DATE OBSERVED: 1/30/2020	
CLASSIFICATION RI OWS/FOOT	CLASSIFICATION BLOWS/FOOT UNDISTURBED SAMPLE BULK SAMPLE MOISTURE CONTENT(%) INPLACE DRY DENSITY (PCF)				TEST PIT NO4 DESCRIPTION	SOIL TEST	
					UNDOCUMENTED FILL. SILTY SAND (SM): DARK BROWN, FINE TO MEDIUM GRAINED, MINOR COARSE, LOOSE, POROUS OLD ALLUVIAL FAN DEPOSITS SILTY SAND (SM): DARK RED BROWN, FINE TO COARSE GRAINED, MODERATELY SORTED, LOOSE TO MEDIUM DENSE, MINOR GRAVEL SIZE TOTAL DEPTH 3.0FT NO GROUNDWATER NO CAVING	INFILTRATION TEST	
40 JOE	8 NG	D: 47	22002	2.00	LOG OF TEST PIT	FIGURE: T-4	

LOGGED BY: JPF	METHOD OF EXCAVATION: CASE #580 N BACKHOE EQUIPPED W/ 18" BUCKET ELEVATION: <u>+</u>	DATE OBSERVED: 1/30/2020 LOCATION: SEE PLATE 1							
DEPTH (FEET) CLASSIFICATION BLOWS/FOOT UNDISTURBED SAMPLE BULK SAMPLE MOISTURE CONTENT(%) INPLACE DRY INPLACE DRY DENSITY (PCF)	TEST PIT NO. 5 DESCRIPTION	SOIL TEST							
	UNDOCUMENTED FILL SANDY SILT (ML) DARK BROWN, DRY, LOOSE, POROUS, MINOR CONSTRUCTION DEBRIS POROUS OLD ALLUVIAL FAN DEPOSITS SILTY SAND (SW): DARK RED BROWN, FINE TO COARSE GRAINED, MINOR GRAVEL SIZE, MODERATELY SORTED, SLIGHTLY MOIST, DENSITY INCREASING WITH DEPTH TOTAL DEPTH 3.0FT NO GROUNDWATER NO CAVING	INFILTRATION TEST							
JOB NO: 4722002.00	LOG OF TEST PIT	FIGURE: T-5							

LOGGED BY: JPF	METHOD OF EXCAVATION: CASE #580 N BACKHOE EQUIPPED W/ 18'' BUCKET ELEVATION: <u>+</u>	DATE OBSERVED: 1/30/2020 LOCATION: SEE PLATE 1			
DEPTH (FEET) CLASSIFICATION BLOWS/FOOT UNDISTURBED SAMPLE BULK SAMPLE MOISTURE CONTENT (%) INPLACE DRY DENSITY (PCF)	TEST PIT (FEE) BIOUK SAMPLE BULK SAMPLE BULK SAMPLE CONTENTURE CON				
	INFILTRATION TEST				
JOB NO: 4722002.00	LOG OF TEST PIT	FIGURE: T-6			

APPENDIX C

Percolation Test Results

South Shore Testing & Environmental

W.O. NO:4722002.011

Leach Line Percolation Data Sheet

Project Trademark	Job No. 472 2002.01		
Test Hole No. $I - 1$	Date Excavated: /- 30 - 2020		
Depth of Test Hole: 36 ~	Soil Classification SM-ML		
Check for Sandy Soil Criteria Tested by: JPF	Date: Presoak: 1-30 - 2020		
Actual Percolation Tested by: \mathcal{TPF}	Date: 1-31-2020		

Sandy Soil Criteria Test

Trial No.	Time	Time Interval (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)
<u>1</u>	8:55	250	6-	0.25	5 3/4
2					

Use Normal Sandy (Circle One) Soil Criteria

Time	Time Interval (Min)	Total Elapsed Time (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)	Percolation Rate (Min/Inch)
9:48	30	30	6-	1.0	52	6,0
10:18 10:48	30	60	67	11/2	4 1/2	67
10:48	30	90	6-	13/4	4/24	7.1
11:18 11:48	30	120	6=	13/4	414	7,1
11:48	30	150	6=	1 3/4	4 4	7.1
12:18	30	180	6 =	1 3/4	4 14	7. (
12:48	30	240	62	13/4	4/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	7.1

Leach Line Percolation Data Sheet

Project Trademark	Job No. 4722002.01		
Test Hole No. I-2	Date Excavated: 1-30-2020		
Depth of Test Hole: 36 ~	Soil Classification SM-ML		
Check for Sandy Soil Criteria Tested by: JPF	Date: Presoak: 1-30-2020		
Actual Percolation Tested by: JPF	Date: 1-31-2020		

Sandy Soil Criteria Test

Trial No.	Time	Time Interval (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)
<u>1</u>	8:57	25	6-16	2.14	3 3/4
2					

Use: Normal Sandy (Circle One) Soil Criteria

Time	Time Interval (Min)	Total Elapsed Time (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)	Percolation Rate (Min/Inch)
9:51 10:21	30	30	6 ~	2.5	3.5	8.6
10:21 10:51	30	60	67	2,75	3 /14	Q.2
10:51	30	90	67	30	3°	10
11:21	30	120	6:	3 1/2	2 1/2	12
11:51	30	150	6''	3 3/4	21/4	13.3
12:21 12:51	30	180	6~	334,	2 1/4	13.3
12:51	30	240	6=	33/4	244	13.3

Leach Line Percolation Data Sheet

Project Trademark	Job No. 4722002.01
Test Hole No. I -3	Date Excavated: /- 30 - 2020
Depth of Test Hole: 36 ~	Soil Classification SM-ML
Check for Sandy Soil Criteria Tested by: JPF	Date: Presoak: 1-30-202
Actual Percolation Tested by: JPF	Date: 1-31-2020

Sandy Soil Criteria Test

Trial No.	Time	Time Interval (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)
<u>1</u>	8:34	25	63	2.75	3/4
2					

Use Normal Sandy (Circle One) Soil Criteria

Time	Time Interval (Min)	Total Elapsed Time (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲ in Water Level (Inches)	Percolation Rate (Min/Inch)
9:52	30	30	676	2.5	3 1/2	8.6
10:22 10:52	30	60	616	3.0	3.0	10
10:52	30	90	6%	3.0	3.0	10
11:22	30	120	616	3 1/4	23/4	10.9
11:52 12:22	30	150	676	31/4	-2 3/y	10.9
12:22	30	180	610	3 1/4	21/2	12
12:52	.30	240	6%	314	21/2	12
	-					

Leach Line Percolation Data Sheet

Project Trademark	Job No. 4722002.01
Test Hole No. I-4	Date Excavated: 1-30-2020
Depth of Test Hole: 36 -	Soil Classification SM-ML
Check for Sandy Soil Criteria Tested by: JPF	Date: Presoak: 1-30 - 2020
Actual Percolation Tested by: JPF	Date: 1-31-2020

Sandy Soil Criteria Test

Trial No.	Time	Time Interval (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)
1	8:36	25	67	23/4	3/4
2					

Use: Normal Sandy (Circle One) Soil Criteria

Time	Time Interval (Min)	Total Elapsed Time (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)	Percolation Rate (Min/Inch)
9:55	30	30	616	3 =	3	10
10:25	30	60	64	3 1/2	21/2	12
10:55	30	90	64	3 3/4	21/4	13.3
11:25	30	120	6	3 34	214	13.3
11:55	30	150	6%	42	22	15
12:25	30	180	6%	42	2%	15
12:55	30	240	69	40	2%	15
			-			

Leach Line Percolation Data Sheet

Project Trademark	Job No. 472 2002.01
Test Hole No. I-5	Date Excavated: /- 30 - 2020
Depth of Test Hole: 36 -	Soil Classification SM-ML
Check for Sandy Soil Criteria Tested by: JPF	Date: Presoak: 1-30-202
Actual Percolation Tested by: JPF	Date: 1-31-2020

Sandy Soil Criteria Test

Trial No.	Time	Time Interval (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)
1	<u>8:39</u> 9:04	25	676	1/4	5 3/y
2					

Use Normal Sandy (Circle One) Soil Criteria

Time	Time Interval (Min)	Total Elapsed Time (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)	Percolation Rate (Min/Inch)
11:00	30	30	6 -	1/2	51/2	5.5
<u> </u>	30	60	67	1/2	5 1/2	5.5
12:00	30	90	67	3/4	5 1/4	57
12:30	30	120	67	12	5%	6 %
1:00	30	150	67	14	5%	6 2
1:30	30	180	67	19	52	62
2:00	30	240	6"	19	50	6.

Leach Line Percolation Data Sheet

Project Trademark	Job No. 4722002.01		
Test Hole No. I -6	Date Excavated: /- 30 - 2020		
Depth of Test Hole: 36 ~	Soil Classification SM-ML		
Check for Sandy Soil Criteria Tested by: JPF	Date: Presoak: 1-30 - 2020		
Actual Percolation Tested by: JPF	Date: 1-31-2020		

Sandy Soil Criteria Test

Trial No.	Time	Time Interval (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)
1	8:42 9:07	25	6 16	1/2	4/2
2					

Use: Normal'Sandy (Circle One) Soil Criteria

Time	Time Interval (Min)	Total Elapsed Time (Min)	Initial Water Level (Inches)	Final Water Level (Inches)	▲in Water Level (Inches)	Percolation Rate (Min/Inch)
11:05	30	30	64	13/1	4/1/21	æ 7. l
11:35	30	60	6 -	1713	4 1/y	7.1
12:05	30	90	6~	20-	40-	7.5
12:35	30	120	62	29	4-	7.5
1:05	30	150	62	20-	4 2	7.5
1:35 2:05	30	180	62	202	4	7.5
205	30	240	6°	22	4.32	7.5