

GEOTECHNICAL INVESTIGATION MIXED-INCOME TRANSIT-ORIENTED HOUSING DEVELOPMENT LA MESA, CALIFORNIA

Prepared for

USA PROPERTIES FUND

3200 Douglas Boulevard, Suite 200 Roseville, California 95661

Prepared by

GROUP DELTA CONSULTANTS, INC.

9245 Activity Road, Suite 103 San Diego, California 92126

> Project No. SD634 October 14, 2019

October 14, 2019

USA Properties Fund 3200 Douglas Boulevard, Suite 200 Roseville, California 95661

Attention: Mr. Milo Terzich

SUBJECT: **GEOTECHNICAL INVESTIGATION** Mixed-Income Transit-Oriented Housing Development La Mesa, California

Mr. Terzich:

We are pleased to submit this geotechnical investigation for the proposed mixed-income transitoriented housing development in the City of La Mesa, California. This report is based on our recent subsurface explorations at the site, the results of field and laboratory tests and geotechnical analyses conducted on samples collected from the borings, and our previous experience with similar materials in the site vicinity. Specific conclusions regarding the potential geologic constraints to site development, and geotechnical recommendations for remedial grading, shoring, foundation, slab, retaining wall, and pavement section design are provided in the following report. The results of our field infiltration tests are also provided.

We appreciate this opportunity to be of continued professional service. Feel free to contact the NAL GEO office with any questions or comments, or if you need anything else.

GROUP DELTA CONSULTANTS

Matthew A

Matthew A. Fagan, G.E. 2569 Senior Geotechnical Engineer

GINEERING EOLOGIST FOFCAL James C. Sanders, C.E.G. 1125

Distribution: (1) Addressee, Mr. Milo Terzich (<u>mterzich@usapropfund.com</u>)

TABLE OF CONTENTS

1.0	INTRO	DDUCTION											
	1.1	1 Scope of Services											
	1.2	Site De	escription	6									
	1.3	Propos	ed Development	6									
2.0	FIELD		ABORATORY INVESTIGATION	7									
	2.1	Infiltra	tion Testing	7									
3.0	GEOL	OGY AN	ID SUBSURFACE CONDITIONS	7									
	3.1	Stadiu	m Conglomerate	8									
	3.2	Fill	~	8									
	3.3	Ground	dwater	9									
4.0	GEOL	OGIC H	AZARDS	9									
	4.1	Ground	d Rupture	9									
	4.2	Seismi	city	9									
	4.3	Liquefa	action and Dynamic Settlement	10									
	4.4	Landsli	des and Lateral Spreads	10									
	4.5	Tsunar	nis, Seiches and Flooding	10									
5.0	CONC	CLUSION	IS	11									
6.0	RECO	MMEN	DATIONS	12									
	6.1	Plan Re	eview	12									
	6.2	Excava	tion and Grading Observation	12									
	6.3	Earthw	vork	12									
		6.3.1	Site Preparation	12									
		6.3.2	Improvement Areas	13									
		6.3.3	Building Areas	13									
		6.3.4	Fill Compaction	13									
		6.3.5	Subgrade Stabilization	14									
		6.3.6	Surface Drainage	14									
		6.3.7	Storm Water Management	14									
		6.3.8	Temporary Excavations	15									
		6.3.9	Shored Excavations	15									
	6.4	Founda	ation Recommendations	16									
		6.4.1	Conventional Foundations	16									
		6.4.2	Post-Tensioned Slab Foundations	16									
		6.4.3	Settlement	17									
		6.4.4	Lateral Resistance	17									
		6.4.5	Seismic Design	17									

	6.5	On-Gr	ade Slabs	18
		6.5.1	Moisture Protection for Slabs	18
		6.5.2	Exterior Slabs	19
		6.5.3	Expansive Soils	19
		6.5.4	Reactive Soils	19
	6.6	Earth-	Retaining Structures	19
		6.6.1	Cantilever Walls	20
		6.6.2	Seismic Wall Loads	20
	6.7	Pavem	ent Design	20
		6.7.1	Asphalt Concrete	21
		6.7.2	Portland Cement Concrete	21
	6.8	Pipelir	es	21
		6.8.1	Thrust Blocks	22
		6.8.2	Modulus of Soil Reaction	22
		6.8.3	Pipe Bedding	22
7.0	LIMIT	ATION	S	22
8.0	REFE	RENCES		22

TABLES

e 1 – 2016 CBC Acceleration Response Spectra 26

FIGURES

28
29
30
33
34
35
36
37
38
39
10
1 1
12
2 2 3 3 3 3 3 4 4 4

APPENDICES

Appendix A – Field Exploration	. 43
Appendix B – Laboratory Testing	. 56
Appendix C – Infiltration Assessment	. 75

1.0 INTRODUCTION

The following report presents our geotechnical investigation for the proposed apartment building development in the City of La Mesa, California. The approximate location of the site is shown in Figure 1A. The site vicinity is shown in more detail in Figure 1B. Selected photographs of the site vicinity are provided in Figures 1C to 1E. A rendering and plan view of the proposed development are provided in Figures 2A and 2B, respectively. The approximate locations of the five exploratory borings and two borehole percolation tests that we conducted at the site for this investigation are shown in Figures 3A and 3B. The approximate site topography is depicted in Figure 3C.

1.1 Scope of Services

This report was prepared in general accordance with the provisions of the referenced proposal (GDC, 2019). The purpose of this investigation was to characterize the general geotechnical constraints to site development and provide geotechnical recommendations for grading and the design of the proposed structure, pavements, utilities, retaining walls and surface improvements. The recommendations provided herein are based on the findings of the subsurface exploration, laboratory tests and engineering analyses, as well as our previous experience with similar geologic conditions in the site vicinity. In summary, we provided the following scope of services.

- A geologic reconnaissance of the surface characteristics of the site and surrounding areas, and a review of relevant reports referenced in Section 8.0.
- A subsurface exploration of the site including 5 exploratory borings in the area of the planned redevelopment. The approximate boring locations are shown on the Exploration Plan, Figure 3A. Boring logs are provided in Appendix A.
- Laboratory testing on selected soil samples collected from the exploratory borings. Laboratory testing included sieve analysis, Atterberg Limits, Expansion Index, moisture content, dry density, soil corrosion, maximum density, optimum moisture, remolded shear and R-Value. The test results are presented in Appendix B.
- Two field infiltration tests were conducted as part of this investigation at the approximate locations shown on the Exploration Plan, Figure 3A. The borehole percolation test results and infiltration assessment are presented in Appendix C.
- Engineering analysis of the field and laboratory data to help develop geotechnical recommendations for site preparation, remedial earthwork, shoring, foundations, pavements and retaining walls, soil reactivity, drainage and moisture protection.
- Preparation of this report summarizing our findings, conclusions and geotechnical recommendations for the proposed site development.

1.2 Site Description

The 1.3-acre site consists of Assessor's Parcel Number (APN) 470-572-22 located within the City of La Mesa, as shown on the Site Location Map, Figure 1A. The site is situated southeast of the intersection between Allison and Date Avenues, as shown on the Site Vicinity Plan, Figure 1B. Photographs depicting the existing condition of the site at the time of our field investigation are provided in Figures 1C and 1D. A photograph of a nearby outcrop showing the typical composition of the formational material underlying the property is provided in Figure 1E.

Much of the site is surfaced with asphalt concrete parking associated with the Police Headquarters building that previously occupied the property until it was demolished in 2012. Aerial photographs showing the site conditions in 2019, as well as the configuration of the Police Headquarters in 2010 are provided in Figures 3A and 3B, respectively. Note that the Police Headquarters building had a subterranean basement that was used as a shooting range. We understand that environmental remediation efforts were undertaken by others when the building was demolished in 2012 in order to remove any remnants of lead bullets that may have remained within the soil after demolition of was completed. The demolished basement excavation was backfilled using imported soil.

The site vicinity slopes gently down to the west as shown in Figure 3C. Existing surface elevations range from a low of about 525 feet above mean sea level (MSL) in the southwest portion of the property, to a high of about 535 feet MSL near the northeast corner of the site. The perimeter of the site is landscaped with a few trees and shrubs. A screen wall from the previous development still borders much of the southern and eastern property boundaries. Various subsurface utility remnants also exist on site from the previous Police Headquarters development, including water, sewer, storm drain, electrical and communication conduits. Note that these utilities appear <u>not</u> to have been completely removed from the site during the previous demolition operations in 2012, as evidenced by the pavement areas which appear to be in roughly the same condition as 2010.

1.3 Proposed Development

An architectural rendering and conceptual plan for the proposed high-density, transit-oriented four-story, 115-unit apartment building are shown in Figures 2A and 2B (USA Properties, 2019). We understand that the development may include a single-level subterranean parking garage beneath portions of the site. Due to the close proximity of the proposed building to the surrounding streets and other existing improvements, the basement excavation would likely be completed using a vertical soldier pile and lagging shoring system without tie-backs. We anticipate that the garage walls, slabs-on-grade and conventional foundations will be constructed using reinforced concrete.

We anticipate that site development will begin with the demolition of the existing pavements and surface improvements, and removal of landscaping vegetation. The existing subsurface utilities will also be removed or relocated. Remedial earthwork will then be conducted to prepare a new pad for the building slab-on-grade. Based on the depths of fill we encountered at the site, we anticipate that the new basement level garage foundations may bear entirely on dense formation.

2.0 FIELD AND LABORATORY INVESTIGATION

The field investigation included a geologic reconnaissance of the site, and the excavation of five exploratory borings between September 19th and 20th, 2019. The maximum depth of exploration was about 20 feet below existing grades. The approximate locations of the borings are shown on the Exploration Plan, Figure 3A. Logs of the borings are provided in the figures of Appendix A.

Soil samples were collected from the borings for laboratory testing. The testing program included gradation analyses and Atterberg Limits to aid in material classification according to the Unified Soil Classification System (USCS). Tests were conducted on relatively undisturbed ring samples to help estimate the in-situ dry density and moisture content of the soils we encountered. The maximum density and optimum moisture of the existing fill was also determined. Index tests were conducted on the bulk samples to help evaluate the soil expansion and corrosivity potential. Direct shear tests were conducted on remolded samples to aid in strength characterization. R-Value tests were conducted to aid in pavement section design. The laboratory test results are shown in Appendix B.

2.1 Infiltration Testing

Two field infiltration tests were conducted as part of this investigation at the approximate locations shown on the Exploration Plan, Figure 3A. The test results are presented in detail in Appendix C. The field infiltration tests indicated a factored vertical infiltration rate of less than 0.05 inches per hour at both test locations. The unfactored infiltration rates varied from 0.00 to 0.01 inches per hour. With a Safety Factor of 2, the average factored infiltration rate was less than 0.01 inches per hour, which is indicative of "No Infiltration" per the City of La Mesa BMP Design guidelines. The infiltration test results may be used by the project civil designer to help evaluate the storm water infiltration measures that may be proposed at the site. Worksheet C.4-1 from the City of La Mesa BMP Design Manual is provided in Appendix C for reference.

The field infiltration test results indicate that neither full nor partial infiltration is feasible at the site, since the equilibrium infiltration rate was measured at less than 0.05 inches per hour. Note that a minimum infiltration rate of 0.50 inches per hour is commonly considered the lower limit for effective implementation of full on-site infiltration measures. The entire site is underlain by very dense sandstone and conglomerate. Our previous experience with permeability testing per ASTM D5084 indicates that such soils typically have a hydraulic conductivity on the order of 10⁻⁷ cm/s or less. Such materials are essentially impermeable to groundwater infiltration.

3.0 GEOLOGY AND SUBSURFACE CONDITIONS

The site is located within the coastal plain section of the Peninsular Ranges geomorphic province of southern California. The coastal plain generally consists of subdued landforms underlain by marine sedimentary formations. As observed in our borings, the entire site is underlain by the Eocene-age Stadium Conglomerate (Map Symbol - Tst) to the maximum depth we explored. The conglomerate is covered with shallow fill soils throughout most of the site.

The geologic conditions in the site vicinity are depicted on the Local Geologic Map, Figure 4. The approximate locations of the five borings we conducted at the site are shown on the Exploration Plan, Figure 3A. Logs describing the subsurface conditions we encountered in the borings are provided in Appendix A. The various geologic materials observed at the site are described below.

3.1 Stadium Conglomerate

The Stadium Conglomerate underlies the entire site at depth. This formation primarily consists of massive beds of cobble conglomerate, with occasional interbeds of sandstone. A photograph of a nearby outcrop of the Stadium Conglomerate is provided in Figure 1E. Note that the photograph shows both the conglomerate and sandstone units within the formation. Well-rounded gravel and cobble typically comprise between 30 and 60 percent of the conglomerate by mass. The cobbles are typically 3 to 6 inches in maximum dimension but may include a few boulders up to 18 to 24 inches in diameter. The sandstone and matrix within the formation includes both silty and clayey sandstone (SM and SC), as well as poorly graded sandstone (SP).

The Stadium Conglomerate is dense to very dense in apparent density. Most of the Standard Penetration Test (SPT) blow counts that we collected at the site met with refusal on the gravel and cobble within the massive conglomerate. However, several of the SPT tests were conducted in the sandstone beds within the formation. These SPT tests indicated corrected blow counts (N_{60}) ranging from 69 to 113 and averaging 92 (indicating a very dense condition on average).

Laboratory tests and our previous experience indicate that the formational materials generally have a low expansion potential and negligible soluble sulfate content based on commonly accepted criteria. Our previous experience with remolded tests on samples of the matrix material from this formation suggest that the in-situ shear strength typically exceeds 39° with 200 lb/ft² cohesion.

3.2 Fill

Undocumented fill was encountered in all of the borings. A maximum fill depth of about 13½ feet was observed in Boring B-3 in the area where the Police Headquarters basement was previously demolished and backfilled. The fill appears to have been imported to the site, and most commonly consists of clayey sand (SC) with a variable amount of subrounded gravel. The sand was typically fine to medium grained, and the fines were predominantly low in plasticity. The Liquid Limit of the samples we tested varied from 31 to 36, and the Plasticity Index varied from 16 to 20.

The corrected SPT blow counts within the fill (N₆₀) varied from 32 to 47 and averaged 38 (excluding those SPT samples that encountered refusal on gravel or cobble). However, it should be noted that all of the SPT data throughout the site was likely inflated by the presence of gravel. One fill sample that was relatively undisturbed indicated an in-situ density of about 116 lb/ft³. The rock corrected maximum density for this material is shown in Figure B-4. Based on the gravel content of 18.5 percent for the test specimen, the rock corrected maximum density was 134 lb/ft³, which indicates a relative compaction for this fill sample of approximately 87 percent.

Borings B-1, B-4, B-5 and I-1 were all situated within paved parking areas. The pavement sections we encountered included 3 or 4 inches of asphalt concrete with no underlying aggregate base. The most common pavement section consisted of 3 inches of asphalt concrete with no base.

3.3 Groundwater

No seepage or groundwater was encountered in our exploratory borings. However, historic well data from the Chevron gasoline station located about 600 feet north of the site (at roughly the same ground surface elevation) indicates that the groundwater table in the site vicinity may be located at roughly 20 to 30 feet below existing grades (SWRCB, 2019). It should be noted that changes in rainfall, irrigation practices or site drainage may produce seepage or locally perched groundwater conditions at any location within the fill or formational units underlying the site. It has been our experience that light to moderate seepage is often encountered at or near the geologic contact between fill and the underlying Stadium Conglomerate. Accordingly, future excavations may encounter zones of wet soil and seepage. Due to the difficulty in predicting the location of perched groundwater, such conditions are typically mitigated if and where they occur.

4.0 GEOLOGIC HAZARDS

The subject site is not located within an area previously known for significant geologic hazards. Evidence of past landslides, liquefaction or active faulting at the site was not encountered in our geotechnical investigation or literature review. The main geologic hazard at the site will be the potential for strong ground motion due to a seismic event on the Rose Canyon fault zone. The strong ground shaking hazard is typically mitigated through structural design of the building in general accordance with the applicable provisions of the current California Building Code. Each of the potential geologic hazards is described in more detail below.

4.1 Ground Rupture

Ground rupture is the result of movement on an active fault reaching the ground surface. The site is not located within an Alquist-Priolo Earthquake Fault Zone. No indications of Holocene-active faulting were found during our site investigation or literature review. The nearest known active faults are located within the Rose Canyon fault zone, roughly 13½ kilometers (km) west of the site, as shown on the Regional Fault Map, Figure 5. Ground rupture is not a geologic hazard at this site.

4.2 Seismicity

The site is located at latitude 32.7657° north and longitude 117.0218° west. The United States Geologic Survey has an interactive website that provides Next Generation Attenuation (NGA) probabilistic seismic analyses based on the site location and shear wave velocity (USGS, 2014). Based on an estimated average shear wave velocity of 360 meters per second, the peak ground accelerations (PGA) with a 2, 5 and 10 percent probability of being exceeded in a 50-year period at the site are estimated at about 0.40g, 0.29g and 0.22g, respectively. These risk levels reflect the Maximum Considered (MCE), Upper Bound (UBE) and Design Basis Earthquakes (DBE), respectively.

By comparison to the probabilistic PGA values noted above, the risk-targeted peak ground accelerations associated with the MCE and DBE risk levels from the 2016 California Building Code (CBC) are 0.369g and 0.246g, respectively, as shown in Table 1.

4.3 Liquefaction and Dynamic Settlement

Liquefaction involves the sudden loss in strength of a saturated, cohesionless soil (sand and nonplastic silts) caused by the build-up of pore water pressure during cyclic loading, such as that produced by an earthquake. This increase in pore water pressure can temporarily transform the soil into a fluid mass, resulting in sand boils, settlement and lateral ground deformations. Typically, liquefaction occurs in areas where there are loose to medium dense sands and silts, and where the depth to groundwater is less than 50 feet from the ground surface. In summary, three simultaneous conditions are required for liquefaction:

- Historic high groundwater within 50 feet of the ground surface
- Liquefiable soils such as loose to medium dense sands
- Strong shaking, such as that caused by an earthquake

The regional groundwater table is estimated at roughly 20 to 30 feet below the existing site grades, based on the available well data described in Section 3.3. However, the entire building will be underlain by very dense Stadium Conglomerate and compacted fill. Given the absence of shallow groundwater and the high density of the underlying materials, the potential for liquefaction and dynamic settlement to adversely affect the planned development is considered to be low.

4.4 Landslides and Lateral Spreads

Evidence of ancient landslides or slope instabilities was not observed during our literature review or site reconnaissance. The site slopes gently down to the west, matching the existing grades around the perimeter of the property (see Figure 3C). Provided that our recommendations are implemented during construction, and that shoring is used for vertical basement excavations, it is our opinion that slope instability will not adversely impact the proposed development.

4.5 Tsunamis, Seiches and Flooding

The site is located approximately 13½ miles east of the Pacific Ocean, at an elevation of more than 520 feet above mean sea level (MSL). Given the large distance between the subject site and the coast, and the elevation of the site above mean sea level, the potential for damage due to tsunamis (seismically induced waves) is considered negligible.

The site is not located below any lakes or confined bodies of water and is not located within a FEMA 100-year flood zone. Consequently, the potential for earthquake induced flooding at the site is also considered to be negligible.

5.0 CONCLUSIONS

The proposed development appears to be feasible from a geotechnical perspective, provided that appropriate measures are implemented during design development and earthwork construction. Several geotechnical conditions will need to be addressed.

- Most of the site is covered with a variable depth of potentially compressible undocumented fill soil. During fine grading of the site, all existing fill soils should be excavated and replaced as compacted fill under the observation and testing of the geotechnical consultant. If the new building slab-on-grade is located at or near existing street grades, the cut portion of the building pad may also need to be over-excavated to mitigate the transition. However, if the building is underlain by a basement garage that bears directly on the conglomerate, over-excavation may not be necessary. Therefore, the required remedial grading for the new building pad area will vary depending on the final building design, and the conditions observed by the geotechnical consultant during grading.
- Assuming that the entire building is underlain by a basement garage, we anticipate that the basement foundations will bear entirely on dense Stadium Conglomerate. These materials are very dense and strong, with a low expansion potential and low compressibility. The Stadium Conglomerate is considered suitable for the support of the planned foundations.
- The on-site soils are generally considered suitable for reuse in compacted fills, with the exception of any soils deemed to be contaminated by the environmental consultant. Any contaminated soils should be disposed at an off-site facility in general accordance with the existing Soil Management Plan prepared by the project environmental consultant.
- Laboratory tests indicate that the near surface soils at the site primarily consist of silty and clayey sand (SM and SC) with a low expansion potential. However, it should be noted that some moderately or highly expansive soils may also exist at the site. Additional laboratory testing should be conducted by the geotechnical consultant during fine grading of the site in order to confirm that all fill soil placed beneath the new structure consists of a granular (sandy or gravelly) material with an Expansion Index of less than 50 (EI<50).
- Laboratory tests indicate that the on-site soils likely present a *negligible* potential for sulfate attack. However, these soils still appear to be corrosive to buried metals. Typical corrosion control measures should also be incorporated into the project design. A corrosion consultant may be contacted for specific recommendations.
- The potential for active faults, seismic settlement or floods to adversely impact the planned development is considered remote. Other hazards that may impact site development include strong ground shaking from an earthquake on a nearby active fault. This hazard may be mitigated by structural design in accordance with the applicable building code.

6.0 **RECOMMENDATIONS**

The remainder of this report presents recommendations for earthwork construction and the design of the proposed improvements. These recommendations are based on empirical and analytical methods typical of the standards of practice in southern California. If these recommendations do not cover a specific feature of the project, please contact our office for revisions or amendments.

6.1 Plan Review

We recommend that the demolition, grading and foundation plans be reviewed by Group Delta Consultants prior to construction. We anticipate that substantial changes in the development may occur from the preliminary design concepts used for this investigation. Such changes may require additional geotechnical evaluation, which may result in substantial modifications to the remedial grading and foundation recommendations provided in this report.

6.2 Excavation and Grading Observation

Foundation and grading excavations should be observed by the project geotechnical consultant. During grading, the geotechnical engineer's representative should provide observation and testing services continuously. Such observations are considered essential to identify field conditions that differ from those anticipated by this investigation, to adjust designs to the actual field conditions, and to determine that the remedial grading is accomplished in general accordance with the recommendations presented in this report. The recommendations provided in this report are contingent upon Group Delta Consultants providing these services. Our personnel should perform sufficient testing of fill and backfill during grading and improvement operations to support our professional opinion as to compliance with the compaction recommendations.

6.3 Earthwork

Grading and earthwork should be conducted in general accordance with the requirements of the current California Building Code, the City of La Mesa, and the earthwork recommendations provided within this report. The following recommendations are provided regarding specific aspects of the proposed earthwork. These recommendations should be considered subject to revision based on the conditions observed by the geotechnical consultant during grading.

6.3.1 Site Preparation

General site preparation should begin with the removal of deleterious materials, including any existing structures, walls, foundations, concrete slabs, asphalt concrete pavements, landscaping vegetation, contaminated soil and demolition debris. Existing subsurface utilities that will be abandoned should be removed and the excavations backfilled and compacted as described in Section 6.3.4. Alternatively, abandoned pipes may be grouted with a two-sack sand-cement slurry under the observation of the project geotechnical consultant.

6.3.2 Improvement Areas

A minimum of two feet of material with an Expansion Index of 50 or less is recommended beneath all new sidewalks, courtyards, exterior flatwork areas and building slabs-on-grade. In order to accomplish this objective, the upper 12-inches of soil below the slab subgrade elevations may be excavated and stockpiled on site. The exposed subgrade should then be observed and tested by Group Delta. If formational material is exposed, no additional remediation excavation will be needed. If soil with an Expansion Index above 50 is encountered, the expansive soil should be excavated and replaced with low expansion material. Immediately prior to placing concrete or base within new improvement areas, the subgrade soil should be scarified 12 inches, brought to above optimum moisture content, and compacted as described in Section 6.3.4.

6.3.3 Building Areas

There are several potential geotechnical constraints within the proposed building area. The impact of these constraints will vary depending on the final elevation selected for the building slab-ongrade. The potential constraints include the presence of undocumented fill and expansive soil, and the presence of transitions between cut and fill beneath the new building slab. As a minimum, all existing undocumented fill beneath the new building perimeter should be excavated and replaced with compacted fill. At least two feet of low expansion material (with an Expansion Index of 50 or less) is recommended beneath the new building slab-on-grade, as described in Section 6.3.2.

We anticipate that the entire building may be underlain by a subterranean parking garage that will extend 12 or more feet below surrounding street grades. In this case, most of the backfill for the Police Headquarters basement will be removed by the planned basement excavation, and all of the new basement level foundations may bear directly on dense formation. However, if portions of the new building slab-on-grade are situated at or near street level, portions of the structure would be situated over undocumented fill, while others may bear directly on formation. In this case, the building pad should be over-excavated to a depth of H/2, where H is the maximum fill depth beneath the slab as determined by the geotechnical consultant during grading. The over-excavation should be at least 3 feet deep and need not extend more than 10 feet below slab subgrade elevation, as shown on the Transition Details, Figure 6. The stockpiled soil that is free of deleterious materials may then be replaced as uniformly compacted fill to the planned finish pad grades.

6.3.4 Fill Compaction

All fill and backfill should be placed at slightly above optimum moisture content using equipment that is capable of producing a uniformly compacted product. The minimum recommended relative compaction is 90 percent of the maximum dry density per ASTM D1557. All fill should be compacted at slightly above optimum moisture content per ASTM D1557. Sufficient observation and testing should be performed by the geotechnical consultant during grading so that an opinion can be rendered as to the compaction achieved. Rocks or concrete fragments greater than 6 inches in maximum dimension should not be used in structural compacted fill.

Imported fill sources should be observed prior to hauling onto the site to determine the suitability for use. In general, imported fill materials should consist of granular soil with less than 35 percent passing the No. 200 sieve based on ASTM C136 and an Expansion Index less than 20 based on ASTM D4829. Samples of the import should be tested by the geotechnical consultant in order to evaluate the suitability of these soils for their proposed use. During grading operations, soil types may be encountered by the contractor that do not appear to conform to those discussed within this report. The geotechnical consultant should be notified to evaluate the suitability of these soils.

A two-sack sand and cement slurry may be used as an alternative to compacted fill soil. It has been our experience that slurry is often useful in confined areas which may be difficult to access with typical compaction equipment. A minimum 28-day compressive strength of 100 psi is recommended for the two-sack sand and cement slurry. Samples of the slurry should be fabricated and tested for compressive strength during construction.

6.3.5 Subgrade Stabilization

All excavation bottoms should be firm and unyielding prior to placing fill. In areas of saturated or "pumping" subgrade, a geogrid such as Tensar BX-1200 or Terragrid RX1200 may be placed directly on the excavation bottom, and then covered with at least 12 inches of minus ¾-inch aggregate base. Once the excavation is firm enough to attain the required compaction within the base, the remainder of the excavation may be backfilled using either compacted soil or aggregate base.

6.3.6 Surface Drainage

Foundation and slab performance depends greatly on how well surface runoff drains from the site. The ground surface should be graded so that water flows rapidly away from the structure and top of slope without ponding. The surface gradient needed to achieve this may depend on the prevailing landscaping. Planters should be built so that water will not seep into the foundation, slab, or pavement areas. If roof drains are used, the drainage should be channeled by pipe to the storm drain system, or discharge at least 10 feet from buildings. Irrigation should be limited to the minimum needed to sustain landscaping. Excessive irrigation, surface water, water line breaks, or rainfall may cause perched groundwater to develop within the underlying soil.

6.3.7 Storm Water Management

Various bioretention basins, swales or subterranean detention basins may be considered as part of the development in order to promote on-site infiltration for storm water Best Management Practice (BMP). Details of the planned storm water BMPs are not yet available. To help determine the feasibility of on-site infiltration, the on-site infiltration rates were estimated at the two locations shown on the Exploration Plan, Figure 3A. These tests showed an average infiltration rate of less than 0.05 inches per hour, which is indicative of a "No Infiltration" condition per the City of La Mesa BMP Design Manual. The infiltration test results are described in detail in Appendix C.

6.3.8 Temporary Excavations

Temporary excavations may be needed to construct the planned improvements. All excavations should conform to Cal-OSHA guidelines. In general, we recommended that temporary excavations be inclined no steeper than 1:1 for heights up to 20-feet. Vertical excavations should be shored.

The design, construction, maintenance and monitoring of all temporary slopes is the responsibility of the contractor. The contractor should have a competent person evaluate the geologic conditions encountered during excavation to determine permissible temporary slope inclinations and other measures as required by Cal-OSHA. Based on the findings of our subsurface investigation, the following OSHA Soil Types may be assumed for temporary slope design.

Geologic Unit	Cal/OSHA Soil Type						
Undocumented Fill	Туре В						
Stadium Conglomerate	Type A ¹						

1. Not subject to vibration, with no fracturing, fissuring or dip into the excavation.

6.3.9 Shored Excavations

We anticipate that shored vertical excavations will be used to construct the proposed subterranean parking garage. Cantilever shoring may be applicable for excavations up to about 15 feet deep, provided that about 1-inch of lateral deflection at the top of the shoring is acceptable to the design team. Existing improvements located within the retained zone behind the cantilever shoring system may be damaged by such lateral deformation and may need to be replaced once the project is completed. For deeper excavations, or where lateral movements must be limited to protect existing improvements, tie-backs or internal braces may be used.

The contractor should be responsible for the design of the shoring system. Cantilever shoring will likely include steel soldier piles and wood lagging (or shotcrete). Typically, steel I-beams are installed in pre-drilled 2 or 3-foot diameter holes spaced at 6 to 8-foot centers. The space between the hole and soldier beam would be filled with structural concrete, up to about 6-inches below the bottom of the planned basement foundations. A 1½ sack sand-cement slurry would then be used to backfill the remainder of the pile excavations to facilitate construction. Wood lagging or shotcrete would be placed between the I-beams as the excavation proceeds.

For design of cantilever shoring, we recommend assuming a triangular active pressure distribution approximated by a fluid with an equivalent unit weight of 35 lb/ft³ (assuming level soil conditions behind the shoring). For the design of soldier piles spaced at least two pile diameters on center, the allowable passive pressure of the Stadium Conglomerate below the bottom of the excavation may be approximated by a fluid with an equivalent unit weight of 400 lb/ft³. The allowable passive pressure incorporates a Safety Factor of 2 or more.

For existing settlement sensitive improvements located near the planned excavation, a survey and monitoring program may be needed to document deflections resulting from the excavations. The existing condition of the sensitive improvements would be documented prior to commencing with the excavations. The soldier piles would be surveyed periodically during the excavation process. The design team would review the survey data to verify that the displacements are tolerable. If lateral displacements exceed one inch, the excavations would be halted until further review.

6.4 Foundation Recommendations

The foundations for the new buildings should be designed by the project structural engineer using the following geotechnical parameters. These are only minimum criteria, and should not be considered a structural design, or to preclude more restrictive criteria of governing agencies or the structural engineer. The following recommendations should be considered preliminary, and subject to revision based on the conditions observed by the geotechnical consultant during grading.

6.4.1 Conventional Foundations

The following design parameters are considered appropriate for conventional shallow foundations that bear entirely on Stadium Conglomerate, or entirely on a relatively shallow depth of compacted fill prepared in accordance with the recommendations in Section 6.3.3.

Allowable Bearing: (Compacted Fill)	3,000 lbs/ft ² (⅓ increase for short-term loads).					
Allowable Bearing: (Conglomerate)	5,000 lbs/ft ² (allow a $\frac{1}{3}$ increase for short-term wind or seismic loads). The allowable bearing may be increased by 500 lbs/ft ² per foot increase in width, and by 1,000 lbs/ft ² for each additional foot of depth, up to a maximum value of 10,000 lbs/ft ² .					
Minimum Footing Width:	18 inches					
Minimum Footing Depth:	24 inches below lowest adjacent soil grade					
Minimum Reinforcement:	Two No. 4 bars, top and bottom, continuous footings.					

6.4.2 Post-Tensioned Slab Foundations

If the new building does not include a subterranean parking garage, extensive remedial grading will be used to excavate and compact the existing undocumented fill, over-excavate the cut portions of the site, and prepare a new building pad in accordance with the recommendations provided in Section 6.3.3. In that case, a post-tensioned slab foundation may be used for support of the new building. Note that the final post-tensioned slab foundation design parameters should be provided in the as-graded geotechnical report, after the recommended remedial grading is completed.

The following post-tension slab design parameters were developed in general accordance with the procedures described the referenced guidelines (PTI, 2007). These parameters are generally consistent with methods currently used in southern California. Other alternative design methods are available. The following design parameters are considered to be appropriate for a building underlain by a relatively uniform depth of compacted fill with a low expansion potential (EI<50). Preliminary post-tensioned slab foundation design may be performed by the project structural engineer using the following geotechnical parameters.

Preliminary Post-Tension Slab Design Parameters:

Moisture Variation, em:	Center Lift: Edge Lift:	5.3 feet 2.6 feet				
Differential Swell, ym:	Center Lift: Edge Lift:	0.6 inches 0.8 inches				
Allowable Bearing:	2,000 psf at slab subgra					

6.4.3 Settlement

Provided that remedial grading is conducted as recommended in Section 6.3, total and differential settlement of the structure is not expected to exceed one inch and ¾-inch in 40 feet, respectively.

6.4.4 Lateral Resistance

Lateral loads against the structure may be resisted by friction between the bottoms of footings and slabs and the underlying soil, as well as passive pressure from the portion of vertical foundation members embedded into compacted fill or formational materials. A coefficient of friction of 0.35 and a passive pressure of 350 psf per foot of depth may be used.

6.4.5 Seismic Design

Structures should be designed in general accordance with the seismic provisions of the 2016 California Building Code (CBC) for Seismic Design Category D. Based on our understanding of the site geology and the findings of the subsurface explorations, it is our opinion that a 2016 CBC Site Class C would apply to the general site conditions.

The USGS mapped spectral ordinates S_S and S_1 equal 0.881 and 0.340, respectively. For Site Class C, the acceleration and velocity coefficients F_a and F_v equal 1.048 and 1.460, respectively. The spectral design parameters S_{DS} and S_{D1} equal 0.615 and 0.331, respectively. The peak ground acceleration from the 2016 CBC Design spectrum may be taken as 40 percent of S_{DS} or 0.246g. The MCE peak ground acceleration from the 2016 CBC is 0.369g. The 2016 CBC acceleration response spectra for a Site Class C are shown in Table 1.

6.5 On-Grade Slabs

Building slabs should be at least 5 inches thick and should be reinforced with at least No. 3 bars on 18-inch centers, each way. Slab thickness, control joints, and reinforcement should be designed by the structural engineer and should conform to the requirements of the current CBC. It should be reiterated that at least two feet of low expansion material (EI<50) is recommended beneath all new concrete sidewalks and building slabs on-grade.

6.5.1 Moisture Protection for Slabs

Concrete slabs constructed on grade ultimately cause the moisture content to rise in the underlying soil. This results from continued capillary rise and the termination of normal evapotranspiration. Because normal concrete is permeable, the moisture will eventually penetrate the slab. Excessive moisture may cause mildewed carpets, lifting or discoloration of floor tiles, or similar problems. To decrease the likelihood of problems related to damp slabs, suitable moisture protection measures should be used where moisture sensitive floor coverings, equipment, or other factors warrant.

The most common moisture barriers in southern California consist of two to four inches of clean sand covered by 'visqueen' plastic sheeting. Two inches of sand are placed over the plastic to decrease concrete curing problems. It has been our experience that such systems will transmit approximately 6 to 12 pounds of moisture per 1000 square feet per day. The architect should review the estimated moisture transmission rates, since these values may be excessive for some applications, such as sheet vinyl, wood flooring, vinyl tiles, or carpeting with impermeable backings that use water soluble adhesives. Sheet vinyl may develop discoloration or adhesive degradation due to excessive moisture. Wood flooring may swell and dome if exposed to excessive moisture. The architect should specify an appropriate moisture barrier based on the allowable moisture transmission rate for the flooring. This may require a "vapor barrier" or a "vapor retarder".

The American Concrete Institute provides detailed recommendations for moisture protection systems (ACI 302.1R-04). ACI defines a "vapor retarder" as having a minimum thickness of 10-mil, and a water transmission rate of less than 0.3 perms when tested per ASTM E96. ACI defines a "vapor barrier" as having a water transmission rate of 0.01 perms or less (such as a 15 mil StegoWrap). The vapor membrane should be constructed in accordance with ASTM E1643 and E1745 guidelines. All laps or seams should be overlapped at least 6 inches or per the manufacturer recommendations. Joints and penetrations should be sealed with pressure sensitive tape, or the manufacturer's adhesive. The vapor membrane should be protected from puncture, and repaired per the manufacturer's recommendations if damaged.

The vapor membrane is often placed over 4 inches of granular material, when required by the product manufacturer. The material should consist of a clean, fine graded sandy soil with roughly 10 to 30 percent passing the No. 100 sieve. The sand should not be contaminated with clay, silt, or organic material. The sand should be proof-rolled prior to placing the vapor membrane.

Based on current ACI recommendations, the concrete slab should be placed directly over the vapor membrane. The common practice of placing sand over the vapor membrane may increase moisture transmission through the slab, because it provides a reservoir for bleed water from the concrete to collect. The sand placed over the vapor membrane may also move during placement, resulting in an irregular slab thickness. When placing concrete directly on an impervious membrane, it should be noted that finishing delays may occur. Care should be taken to assure that a low water to cement ratio is used, and that the concrete is moist cured in accordance with ACI guidelines.

6.5.2 Exterior Slabs

Exterior slabs and sidewalks should be at least 4 inches thick. Crack control joints should be placed on a maximum spacing of 10-foot centers, each way, for slabs, and on 5-foot centers for sidewalks. The potential for differential movements across the control joints may be reduced by using steel reinforcement. Typical reinforcement for exterior slabs would consist of 6x6 W2.9/W2.9 welded wire fabric placed securely at mid-height of the slab.

6.5.3 Expansive Soils

The near surface soils we observed in the subsurface investigation primarily consisted of silty and clayey sand (SM and SC) with gravel. Laboratory tests and our previous experience suggests that these materials typically have a low expansion potential (EI<50), based on commonly accepted criteria. The Expansion Index test results are presented in Figure B-2.

6.5.4 Reactive Soils

In order to assess the sulfate exposure of concrete in contact with the site soils, samples were tested for water-soluble sulfate content, as shown in Figure B-3. The test results indicate that the on-site soils typically have a *negligible* potential for sulfate attack based on commonly accepted criteria. The sulfate content of the finish grade soils should be confirmed during fine grading. In order to assess the reactivity of the site soils with buried metals, the pH, resistivity and chloride content were also determined (see Figure B-3). These tests suggest that the on-site soils may be *corrosive* to buried metals. Typical corrosion control measures should be incorporated into design, such as providing minimum clearances between reinforcing steel and soil, or sacrificial anodes for buried metal structures. A corrosion consultant may be contacted for specific recommendations.

6.6 Earth-Retaining Structures

Backfilling retaining walls with expansive soil can increase lateral pressures well beyond normal active or at-rest pressures. Retaining walls should be backfilled with granular soil with an Expansion Index of 20 or less (EI<20). Retaining wall backfill should be compacted to at least 90 percent relative compaction based on ASTM D1557. Backfill should not be placed until the retaining walls have achieved adequate strength. Heavy compaction equipment, which could cause distress to the walls, should not be used. For retaining wall design, an allowable bearing capacity of 2,500 lbs/ft², a coefficient of friction of 0.35, and a passive pressure of 350 psf per foot of depth is recommended.

6.6.1 Cantilever Walls

Cantilever retaining walls with level granular backfill may be designed using an active earth pressure approximated by an equivalent fluid pressure of 35 lbs/ft³. The active pressure should be used for walls free to yield at the top at least ½ percent of the wall height. Subterranean walls (such as the garage basement walls) that are restrained so that such movement is not permitted should be designed for an at-rest equivalent fluid pressure of 60 lbs/ft³. These pressures do not include groundwater forces. All retaining walls should contain backdrains to relieve hydrostatic pressures. Typical retaining wall drain details are shown in Figure 7A.

Any surcharges located within a 1:1 plane extending back and up from the base of the retaining wall should also be accounted for in the wall design. Retaining walls (and temporary shoring) situated adjacent to vehicular traffic areas may be designed to resist a uniform lateral surcharge pressure of 100 lb/ft², resulting from a typical 300 lb/ft² traffic surcharge acting behind the wall.

6.6.2 Seismic Wall Loads

Per the provisions of the 2016 California Building Code (CBC), seismic design is required for all earth retaining structures over 6 feet in height. Basement walls may also require seismic design. We recommend that seismic wall design be conducted using the Mononabe-Okabe solution which incorporates a pseudo-static horizontal load. According to the provisions of the 2016 CBC, the design level peak ground acceleration (PGA) for the site may be taken as 40 percent of the short period spectral ordinate ($S_{DS} \sim 0.615$) or 0.246g, as shown in Table 1. One-half of the design level peak ground acceleration is typically used for pseudo-static seismic wall design. Consequently, we have provided seismic retaining wall design parameters for a pseudo-static load of 0.12g.

The seismic load increment may be idealized as an inverted triangular pressure distribution with the resultant acting at 0.6H above the base of the wall (see Figure 7B). The Mononabe-Okabe solution is based on active earth pressures and requires that the retaining walls are free to yield. For restrained basement walls, we recommend that the static wall design be based on the at-rest earth pressure, which we have approximated by a fluid with an equivalent unit weight of 60 lb/ft³ (assuming level backfill). We recommend that the equivalent seismic pressure increment shown in Figure 7B ($\gamma_e \sim 10$ PCF) be added to the at-rest earth pressure for seismic design of the restrained basement walls at the site which are not free to yield at least ½ percent of the wall height.

6.7 Pavement Design

For all pavement areas, upper 12 inches of subgrade soil should be scarified immediately prior to constructing the pavements, brought to optimum moisture, and compacted to at least 95 percent of the maximum density per ASTM D1557. Aggregate base should also be compacted to 95 percent relative compaction. Aggregate base should conform to the Standard Specifications for Public Works Construction (*SSPWC*), Section 200-2. Asphalt concrete should conform to Section 400-4 of the *SSPWC* and should be compacted to 91 and 97 percent of the Rice density per ASTM D2041.

6.7.1 Asphalt Concrete

In order to aid in preliminary pavement section design, several R-Value tests were conducted on soil samples collected during the field investigation. The testing was conducted in general accordance with CTM 301. The test results are presented in Figures B-6.1 and B-6.2. The R-Values of the samples we tested varied from 11 to 12. The final pavement section designs should be based on R-Value testing of the actual pavement subgrade soils collected during fine grading.

Asphalt concrete pavement design was conducted in general accordance with the Caltrans Design Method. We anticipate that a Traffic Index ranging from 5.0 to 7.0 may apply to any new pavement areas. The project civil engineer should review the assumed Traffic Indices to determine if and where they apply to the various new pavements proposed on site. Based on the minimum R-Value of 11, and an assumed range of Traffic Indices, the following pavement sections would apply.

PAVEMENT TYPE	TRAFFIC INDEX	ASPHALT SECTION	BASE SECTION		
Passenger Car Parking	5.0	3 Inches	9 Inches		
Light Truck Traffic Areas	6.0	4 Inches	11 Inches		
Heavy Truck Traffic Areas	7.0	4 Inches	14 Inches		

6.7.2 Portland Cement Concrete

Concrete pavement design was conducted in general accordance with the simplified design procedure of the Portland Cement Association. This methodology is based on a 20-year design life. For design, it was assumed that aggregate interlock would be used for load transfer across control joints. The concrete was assumed to have a minimum flexural strength of 600 psi. The flexural strength of the pavement concrete should be confirmed during construction using ASTM C78.

For concrete pavement design, the subgrade materials were assumed to provide "low" support, based on the results of the R-Value tests. Using these assumptions and the same traffic indices presented previously, we recommend that the PCC pavement sections at the site consist of at least <u>6 inches of concrete placed over 6 inches of compacted aggregate base.</u>

Crack control joints should be constructed for all PCC pavements on a maximum spacing of 10 feet, each way. Concentrated truck traffic areas, such as trash truck aprons and loading docks, should be reinforced with number 4 bars on 18-inch centers, each way.

6.8 Pipelines

The planned development may include various pipelines such as water, storm drain and sewer systems. Geotechnical aspects of pipeline design include lateral earth pressures for thrust blocks, modulus of soil reaction, and pipe bedding. Each of these parameters is discussed below.

6.8.1 Thrust Blocks

Lateral resistance for thrust blocks may be determined by a passive pressure value of 350 lbs/ft² per foot of embedment, assuming a triangular distribution. This value may be used for thrust blocks embedded into compacted fill soils as well as the formational materials.

6.8.2 Modulus of Soil Reaction

The modulus of soil reaction (E') is used to characterize the stiffness of soil backfill placed along the sides of buried flexible pipelines. For the purpose of evaluating deflection due to the load associated with trench backfill over the pipe, a value of 2,000 lbs/in² is recommended for the general conditions, assuming granular bedding material is placed around the pipe.

6.8.3 Pipe Bedding

Typical pipe bedding as specified in the *Standard Specifications for Public Works Construction* may be used. As a minimum, we recommend that pipes be supported on at least 4 inches of granular bedding material such as minus ¾-inch crushed rock or disintegrated granite. Where pipeline or trench excavations exceed a 15 percent gradient, we do not recommend that open graded rock be used for bedding or backfill because of the potential for piping and internal erosion. For sloping utilities, we recommend that coarse sand or sand-cement slurry be used for the bedding and pipe zone. The slurry should consist of a 2-sack mix having a slump no greater than 5 inches.

7.0 LIMITATIONS

This report was prepared using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in similar localities. No warranty, express or implied, is made as to the conclusions and professional opinions included in this report.

The findings of this report are valid as of the present date. However, changes in the condition of a property can occur with the passage of time, whether due to natural processes or the work of man on this or adjacent properties. In addition, changes in applicable or appropriate standards of practice may occur from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.

8.0 REFERENCES

- American Society for Testing and Materials (2018). Annual Book of ASTM Standards, Section 4, Construction, Volume 04.08 Soil and Rock (I); Volume 04.09 Soil and Rock (II); Geosynthetics, ASTM, West Conshohocken, PA.
- Anderson, J. G., Rockwell, T. K., Agnew, D. C. (1989). *Past and Possible Future Earthquakes of Significance to the San Diego Region*: Earthquake Spectra, Vol. 5, No. 2. pp 299-335.

- APWA (2018). Standard Specifications for Public Works Construction, Section 200-2.2, Untreated Base Materials, Section 400-4, Asphalt Concrete: BNI.
- Boore, D.M. and G.M. Atkinson (2008). *Ground-Motion Prediction Equations for the Average Horizontal Component of PGA, PGV & 5% Damped PSA at Spectral Periods between 0.01s and 10.0s*, Earthquake Spectra, V.24, pp. 99-138.
- Bowles, J. E. (1996). Foundation Analysis and Design, 5th ed.: McGraw Hill 1175 p.
- California Department of Conservation, Division of Mines and Geology (1992). Fault Rupture Hazard Zones in California, Alquist-Priolo Special Studies Zone Act of 1972: California Division of Mines and Geology, Special Publication 42.
- California Department of Conservation, Division of Mines and Geology (1993). *The Rose Canyon Fault Zone, Southern California*, CDMG OFR 93-02.
- California Department of Transportation (2017). Caltrans ARS Online (V2.3.06), Based on the Average of (2) NGA Attenuation Relationships, Campbell & Bozorgnia (2008) & Chiou & Youngs (2008) from http://dap3.dot.ca.gov/ARS_Online/
- Campbell, K.W. and Y. Bozorgnia (2008). NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV and PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01s and 10s, Earthquake Spectra, V.24, pp. 139-172.
- Chiou, B. and R. Youngs (2008). An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra, V.24, pp. 173-216.
- City of La Mesa Community Development Department (2019). Request for Developer Qualifications 20-01, Long-Term Ground Lease Opportunity, 1.27-acre Transit-Oriented Development Site, Mixed-Rate – Multi-Family Residential Project, February 7.
- Group Delta Consultants (2019). *Revised Proposal for Geotechnical Investigation, Mixed Income Transit Oriented Development, Allison Avenue, La Mesa, California, 92101,* Proposal No. SD19-071, September 10.

International Conference of Building Officials (2016). 2016 California Building Code.

- Jennings, C. W. (1994). Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions: CDMG, Geologic Data Map Series, Map No. 6.
- Kennedy, M. P., and Tan, S. S. (2005). *Geologic Map of the San Diego 30'x60' Quadrangle, California*: California Geologic Survey, Scale 1:100,000.

- Post-Tensioning Institute (2008). *Standard Requirements for Analysis of Shallow Concrete* Foundations on Expansive Soils, 3rd Edition with 2008 Supplement <u>www.post-tensioning.org</u>.
- Southern California Earthquake Center (1999). *Recommended Procedures for Implementation of DMG SP 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California,* University of Southern California, 60 p.
- Southern California Earthquake Center (2002). *Recommended Procedures for Implementation of DMG SP117, Guidelines for Analyzing and Mitigating Landslide Hazards in California,* University of Southern California, 110 p.
- State Water Resources Control Board (2019). *GeoTracker Map and Groundwater Monitoring Well* Data for Chevron #92235 (TO60702314), <u>https://geotracker.waterboards.ca.gov</u>, August 14.
- Treiman, J. A. (1984). *The Rose Canyon Fault Zone -- A Review and Analysis*: California Division of Mines and Geology unpublished report, 106 p.
- USA Properties Fund (2019). *Request for Proposal, Geotechnical Engineering Study, La Mesa APN#* 470-572-2200, August 9.
- United States Geological Survey (2014). Unified Hazard Tool, Dynamic Conterminous U.S. Model (V4.1.1), from <u>https://earthquake.usgs.gov/hazards/interactive</u>.
- Wesnousky, S. G. (1986). Earthquakes, Quaternary Faults, and Seismic Hazard in California: Journal of Geophysical Research, v. 91, no. B12, p. 12587-12631.
- Youngs, R.R. and Coopersmith, K.J. (1985). *Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates*, Bulletin of the Seismological Society of America, vol. 75, no. 4, pp. 939-964.

TABLES

TABLE 1 - 2016 CBC ACCELERATION RESPONSE SPECTRA

	Ss=	0.881	g = short perio	od (0.2 sec) i	mappe	ed spectral resp	onse accel	eration	MCE Site	Class B (CBC 2013	Fig. 1613	.5(3) or US	GS Groun	d Motion C	alculator)		Site Latitude	32.7657
	S ₁ =	0.340	g = 1.0 sec per	= 1.0 sec period mapped spectral response acceleration MCE Site Class B (CBC 2013 Fig. 1613.5(4) or USGS Ground Motion Calculator)									or)	Site Longitude: -117						
5	Site Class=	С	= Site Class det	finition base	ed on	CBC 2013 Table	2013 Table 1613.5.2								.,		Seisr	nic Design Category	D	
NPC	F,=	1.048	= Site Coefficie	ent applied t	to S. te	o account for so	oil type (CB	C 2013	Table 161	13.5.3(1))					Site	Modified Pe	ak Ground /	Acceleration (PGA _M)	0.361
=	с. Е =	1 460	= Site Coefficie	ent annlied t	to S. t	o account for se	nil type (CB	C 2013	Table 16'	13 5 3(2)	,)									
	T.=	8.00	coc = Long Por	ind Transiti	$O D_1 C$	rind (ASCE 7 OF	Eiguro 22 1	16)		13.3.3(2)	,									
	۰ _۲	0.00	= site class me	dified chort	t norio	d (0.2 soc) MCE	constral r	10)	accolora	tion - E		2012 Ean	16 26)							
	S _{MS} =	0.923	= site class mo	$= c_{abs} = c_$																
5	S _{M1} =	0.496	= site class mo	dified 1.0 se	ec per		ai response	e acceler	ration = F	• x S ₁ (CB	3C 2013 E	(n. 16-37)	F	•						
TPI	S _{DS} =	0.615	= site class mo	alfied short	t perio	d (U.2 sec) Desi	gn spectrai	respon	se accele	ration =	2/3 x S _{MS}	CBC 2013	s Eqn. 16-3	8)						
0	S _{D1} =	0.331	= site class mo	dified 1.0 se	ec per	iod Design spec	tral respon	ise acce	leration =	= 2/3 x S _N	и1 (CBC 20	13 Eqn. 1	6-39)							
	Г ₀ = т –	0.108	$sec = 0.2 S_{D1}/S_{D1}$	_{DS} = Control	l Perio	d (left end of pe	eak) for AR	S Curve	(Section	11.4.5 AS	SCE 7-05)									
	I _s =	0.538	$\sec = S_{D1}/S_{DS} =$	Control Per	riod (ri	ight end of peal	k) for ARS (Curve (Se	ection 11	4.5 ASCI	E 7-05)									
	т	Design	MCE																	
	(seconds)	Sa (g)	Sa (g)																	
	0.000	0.246	0.369																	
	0.108	0.615	0.923																	
	0.538	0.615	0.923	· ·	1.2 •															
	0.600	0.552	0.827																	
	0.700	0.473	0.709			_														
	0.800	0.414	0.621																Docian	
	0.900	0.368	0.552																Design	
	1.000	0.331	0.496	· ·	1.0 •	-														
	1.100	0.301	0.431	<u></u>		•														
	1.200	0.270	0.414	l S															MCE	
	1.400	0.236	0.355																	
	1.500	0.221	0.331	i ∺																
	1.600	0.207	0.310	ים ש	0.8 ·	┢──┤──┤														
z	1.700	0.195	0.292	ē		•														
Ę	1.800	0.184	0.276	<u></u>																
Π	1.900	0.174	0.261	l X																
I LCI	2.000	0.165	0.248	A																
ğ	2.100	0.158	0.236	al	0.6 •															
Š	2.200	0.150	0.226	Ľ.		•														
CTR	2.300	0.144	0.216	S S																
SPE	2.400	0.138	0.207	ă																
	2.500	0.132	0.199	S																
	2.000	0.127	0.191	(0.4 •															
	2.700	0.125	0.104			H														
	2.900	0.114	0.171																	
	3.000	0.110	0.165																	
	3.100	0.107	0.160		~ ~	r i i i i i i i i i i i i i i i i i i i														
	3.200	0.103	0.155	(0.2 •															
	3.300	0.100	0.150			•														
	3.400	0.097	0.146																	
	3.500	0.095	0.142]																
	3.600	0.092	0.138																	
	3.700	0.089	0.134	(0.0		· · · ·			<u> </u>		+ + + +		+ +		+ + +	· · · · · · · · · · · · · · · · · · ·	· · · · ·		·····
	3.800	0.087	0.131		0	.0	0.5		1.(D		1.5		2.0		2.5	3.	.0	3.5	4.0
	3.900	0.085	0.127									Per	iod (s	econd	ls)					
	4.000	0.083	0.124	ł											,					
	5.000	0.066	0.099																	

FIGURES

SITE PHOTOGRAPHS

EXPLANATION:

I-2

Approximate locations of the 5 exploratory borings (Group Delta, 2019). **B-5**

Approximate locations of the 2 borehole percolation infiltration tests (Group Delta, 2019).

REFERENCE: USA Properties Fund (2019). *Mixed Income TOD Housing, La Mesa, CA*, April 8.

N

SCALE (FT):

50'

PROPOSED DEVELOPMENT

GROUP DELTA CONSULTANTS, INC. ENGINEERS AND GEOLOGISTS 9245 ACTIVITY ROAD, SUITE 103 SAN DIEGO, CA 92126 (858) 536-1000 La Mesa Apartments USA Properties Fund

19-0141

PROJECT NUMBER

Approximate elevation of surrounding grade (feet).

REFERENCE: Aguirre & Associates (2015). Preliminary Parcel Map, Lots 1-4 & 11-13, Block 4, Map 1109, APN 470-572-22, July 24

SCALE (FT):

20'

40'

0'

SITE TOPOGRAPHY

GROUP DELTA CONSULTANTS, INC. ENGINEERS AND GEOLOGISTS	PROJECT NUMBER
9245 ACTIVITY ROAD, SUITE 103 SAN DIEGO, CA 92126 (858) 536-1000	DOCUMENT NUMBER
PROJECT NAME	19-0141
La Mesa Apartments	FIGURE NUMBER
USA Properties Fund	3C

NOTATIONS

 \sum

//

Ventura

oint Faul

Holocene fault displacement (during past 10,000 years) without historic record. Geomorphic evidence for Holocene faulting includes sag ponds, scarps showing little erosion, or the following features in Holocene age deposits: offset stream courses, linear scarps, shutter ridges, and triangular faceted spurs. Recency of faulting offshore is based on the interpreted age of the youngest strata displaced by faulting.

San Cayetano Fault Zon

Hollywood Fault Zone

Late Quaternary fault displacement (during past 700,000 years). Geomorphic evidence similar to that described for Holocene faults except features are less distinct. Faulting may be younger, but lack of younger overlying deposits precludes more accurate age classification.

Quaternary fault (age undifferentiated). Most faults of this category show evidence of displacement sometime during the past 1.6 million years; possible exceptions are faults that displace rocks of undifferentiated Plio-Pleistocene age. See Bulletin 201, Appendix D for source data.

Late Cenozoic faults within the Sierra Nevada including, but not restricted to, the Foothills fault system. Faults show stratigraphic and/or geomorphic evidence for displacement of late Miocene and Pliocene deposits. By analogy, late Cenozoic faults in this system that have been investigated in detail may have been active in Quaternary time (Data from PG&.E, 1993.)

Pre-Quaternary fault (older than 1.6 million years) or fault without recognized Quaternary displacement. Some faults are shown in this category because the source of mapping used was of reconnaissance nature, or was not done with the object of dating fault displacements. Faults in this category are not necessarily inactive.

Elmore Ranch

Fault Zone

Pinto Mountain Fault Zone

all

1=

 $\langle \cap$

SITE

ault Zone

ault Zon,

tas-

idio Fault Ion"

San Gorgonio -Banning Fault Zone

REFERENCE: Jennings, C.W. (1994). Fault Activity Map of California and Adjacenet Areas, CDMG Geologic Data Map Series, Map No. 6.

32° —

NOTES

- 1) Perforated pipe should outlet through a solid pipe to a free gravity outfall. Perforated pipe and outlet pipe should have a fall of at least 1%.
- 2) As an alternative to the perforated pipe and outlet, weep-holes may be constructed. Weep-holes should be at least 2 inches in diameter, spaced no greater than 8 feet, and be located just above grade at the bottom of wall.
- 3) Filter fabric should consist of Mirafi 140N, Supac 5NP, Amoco 4599, or similar approved fabric. Filter fabric should be overlapped at least 6-inches.
- 4) Geocomposite panel drain should consist of Miradrain 6000, J-DRain 400, Supac DS-15, or approved similar product.

INPUT PARAMETERS

Unit Weight of Soil [PCF]	
Backfill Soil Friction Angle (
Wall Friction Angle (δ) [°]:	
Soil Backfill Angle (α) [°]:	
Wall Batter Angle (β) [°]:	
Horizontal Acceleration (K _h) [g's]:	
Vertical Acceleration (K _v) [g's]:	

130	
34	
23	
0	
90	
0.12	
0.00	

Active Pressure Resultant: $F_a = 1/2 \gamma_a H^2$ Earthquake Pressure Resultant: $F_e = 1/2 \gamma_e H^2$

CALCULATED PARAMETERS

Active Pressure Coefficient (K_a): Equivalent Fluid Pressure (γ_a):

Seismic Pressure Coefficient (K_{ae}): Equivalent Fluid Pressure (γ_{ae}):

0.254

33.1

0.332

Equivalent Seismic Pressure (γ_e):

Horizontal Component of Active Pressure Resultant $F_{ah} = F_a \cos(\delta + 90-\beta)$ Horizontal Component of Seismic Pressure Resultant $F_{eh} = F_e \cos(\delta + 90-\beta)$

 $\gamma_{e}H$

APPENDIX A FIELD EXPLORATION

APPENDIX A

FIELD EXPLORATION

Field exploration included a visual reconnaissance of the site and the excavation of five exploratory borings, and the completion of two infiltration test between September 19th and 20th, 2019. The exploratory borings and infiltration test holes were drilled by Pacific Drilling Company using their Marl M10 (Grizzly) truck mounted drill rig with a 6-inch diameter hollow stem flight auger. The maximum depth of exploration was about 20 feet below surrounding grades. The approximate boring locations are shown on the Exploration Plan, Figure 3A. The boring logs are provided in Figures A-1 through A-7, immediately following the Boring Record Legends.

Disturbed samples were collected from the borings using a 2-inch outside diameter Standard Penetration Test (SPT) sampler. Less disturbed samples were collected using a 3-inch outside diameter ring lined sampler (a modified California sampler). These samples were sealed in plastic bags, labeled, and returned to the laboratory for testing. The drive samples were collected from the borings using an automatic hammer with a calibrated Energy Transfer Ratios (ETR) of 92 percent. For each sample, the number of blows needed to drive the sampler 12 inches was recorded on the logs. The field blow counts (N) were corrected to reflect a standard 60 percent ETR (N_{60}), as shown on the logs. Bulk soil samples were also collected from the borings.

The boring locations were determined by visually estimating, pacing and taping distances from landmarks shown on the Exploration Plan. The locations shown should not be considered more accurate than is implied by the method of measurement used and the scale of the map. The lines designating the interface between differing soil materials on the logs may be abrupt or gradational. Further, soil conditions at locations between the excavations may be substantially different from those at the specific locations we explored. It should be noted that the passage of time may also result in changes in the soil conditions reported in the logs.

SOIL IDENTIFICATION AND DESCRIPTION SEQUENCE

се	~	Refe Sec	er to tion	p	
Sequen	Identification Components	Field	Lab	Require	Optiona
1	Group Name	2.5.2	3.2.2	•	
2	Group Symbol	2.5.2	3.2.2	•	
	Description Components				
з	Consistency of Cohesive Soil	2.5.3	3.2.3	•	
4	Apparent Density of Cohesionless Soil	2.5.4		•	
5	Color	2.5.5		•	
6	Moisture	2.5.6		•	
	Percent or Proportion of Soil	2.5.7	3.2.4	•	•
7	Particle Size	2.5.8	2.5.8	•	0
	Particle Angularity	2.5.9			0
	Particle Shape	2.5.10			0
8	Plasticity (for fine- grained soil)	2.5.11	3.2.5		0
9	Dry Strength (for fine-grained soil)	2.5.12			0
10	Dilatency (for fine- grained soil)	2.5.13			0
11	Toughness (for fine-grained soil)	2.5.14			0
12	Structure	2.5.15			0
13	Cementation	2.5.16		•	
14	Percent of Cobbles and Boulders	2.5.17		•	
	Description of Cobbles and Boulders	2.5.18		•	
15	Consistency Field Test Result	2.5.3		•	
16	Additional Comments	2.5.19			0

Describe the soil using descriptive terms in the order shown

Minimum Required Sequence:

USCS Group Name (Group Symbol); Consistency or Density; Color; Moisture; Percent or Proportion of Soil; Particle Size; Plasticity (optional).

• = optional for non-Caltrans projects

Where applicable:

Cementation; % cobbles & boulders; Description of cobbles & boulders; Consistency field test result

REFERENCE: Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010).

HOLE IDENTIFICATION

Holes are identified using the following convention:

H-YY-NNN

Where:

H: Hole Type Code

YY: 2-digit year

NNN: 3-digit number (001-999)

Hole Type Code and Description

Hole Type Code	Description
A	Auger boring (hollow or solid stem, bucket)
R	Rotary drilled boring (conventional)
RC	Rotary core (self-cased wire-line, continuously-sampled)
RW	Rotary core (self-cased wire-line, not continuously sampled)
Р	Rotary percussion boring (Air)
HD	Hand driven (1-inch soil tube)
HA	Hand auger
D	Driven (dynamic cone penetrometer)
CPT	Cone Penetration Test
0	Other (note on LOTB)

Description Sequence Examples:

SANDY lean CLAY (CL); very stiff; yellowish brown; moist; mostly fines; some SAND, from fine to medium; few gravels; medium plasticity; PP=2.75.

Well-graded SAND with SILT and GRAVEL and COBBLES (SW-SM); dense; brown; moist; mostly SAND, from fine to coarse; some fine GRAVEL; few fines; weak cementation; 10% GRANITE COBBLES; 3 to 6 inches; hard; subrounded.

Clayey SAND (SC); medium dense, light brown; wet; mostly fine sand,; little fines; low plasticity.

Project No. SD634

La Mesa Apartments USA Properties Fund

BORING RECORD LEGEND #1

		GROUP SYMB	OLS A	ND NA	MES	FIELD AND LABORATORY TESTING
Graphic	c / Symbol	Group Names	Graphi	c / Symbol	Group Names	C Concolidation (ACTM D 2425)
		Well-graded GRAVEL	11	1	Lean CLAY	C Consolidation (ASTM D 2435)
	GW	Well-graded GRAVEL with SAND	1/		Lean CLAY with SAND	CL Collapse Potential (ASTM D 5333)
0110			1/1	CL	SANDY lean CLAY	CP Compaction Curve (CTM 216)
-200	GP	Poorly graded GRAVEL	1/1	1	SANDY lean CLAY with GRAVEL	CR Corrosion, Sulfates, Chlorides (CTM 643; CTM 417; CTM 422)
0000	- Si	Poorly graded GRAVEL with SAND	1//	1	GRAVELLT lean CLAY GRAVELLY lean CLAY with SAND	
		Well-graded GRAVEL with SILT	111/2	1	SILTY CLAY	CU Consolidated Undrained Triaxial (ASTM D 4767)
	GW-GM			1	SILTY CLAY with SAND	DS Direct Shear (ASTM D 3080)
		Well-graded GRAVEL with SILT and SAND		CL-ML	SILTY CLAY with GRAVEL SANDY SILTY CLAY	EI Expansion Index (ASTM D 4829)
		Well-graded GRAVEL with CLAY (or SILTY CLAY)		1	SANDY SILTY CLAY with GRAVEL	M Moisture Content (ASTM D 2216)
	GW-GC	Well-graded GRAVEL with CLAY and SAND			GRAVELLY SILTY CLAY	OC Organic Content (ASTM D 2974)
0001	-	(or SIETT CERT and SRIE)	1114	1	SH T	P Permeability (CTM 220)
0000	GP-GM	Poorly graded GRAVEL with SILT			SILT with SAND	PA Particle Size Analysis (ASTM D 422)
000	n 20000 0000	Poorly graded GRAVEL with SILT and SAND			SILT with GRAVEL	Di Limid Limit Diretis Limit Diretisk Indeu
20%		Poorty graded GRAVEL with CLAY		ML	SANDY SILT with GRAVEL	(AASHTO T 89, AASHTO T 90)
0000	GP-GC	Poorly graded GRAVEL with CLAY and SAND			GRAVELLY SILT	PL Point Load Index (ASTM D 5731)
ext.		(or SILTY CLAY and SAND)	H		GRAVELLY SILT with SAND	PM Pressure Meter
·Spo	GM	SILTY GRAVEL	K/	1	ORGANIC lean CLAY ORGANIC lean CLAY with SAND	
0000	Givi	SILTY GRAVEL with SAND	D)	1	ORGANIC lean CLAY with GRAVEL	R R-Value (CTM 301)
228		OLIVEY COME	V	OL	SANDY ORGANIC lean CLAY	SE Sand Equivalent (CTM 217)
220	GC	CLAYET GRAVEL	12		GRAVELLY ORGANIC lean CLAY with GRAVE	SG Specific Gravity (AASHTO T 100)
0%		CLAYEY GRAVEL with SAND	22		GRAVELLY ORGANIC lean CLAY with SA	ND SL Shrinkage Limit (ASTM D 427)
		SILTY, CLAYEY GRAVEL	222		ORGANIC SILT	SW Swell Potential (ASTM D 4546)
\$ 60	GC-GM	SILTY, CLAYEY GRAVEL with SAND	111		ORGANIC SILT with SAND ORGANIC SILT with GRAVEL	LIC Unconfined Compression Sel (ACTM D 2122)
9196	-	The second second second	111	OL	SANDY ORGANIC SILT	Unconfined Compression - Soli (ASTM D 2166) Unconfined Compression - Rock (ASTM D 2938)
· · ·	SW	Well-graded SAND))))		SANDY ORGANIC SILT with GRAVEL	UU Unconsolidated Undrained Triaxial
	300	Well-graded SAND with GRAVEL	1)))		GRAVELLY ORGANIC SILT GRAVELLY ORGANIC SILT with SAND	(ASTM D 2850)
A		Dearth graded SAND	1/1	1	Fat CLAY	UW Unit Weight (ASTM D 4767)
	SP	Poony graded SAND	//		Fat CLAY with SAND	
		Poorly graded SAND with GRAVEL	//	CH	Fat CLAY with GRAVEL SANDY fat CLAY	
• . • •		Well-graded SAND with SILT	//	- Ch	SANDY fat CLAY with GRAVEL	
	SW-SM	Well-graded SAND with SILT and GRAVEL	//		GRAVELLY fat CLAY	
A 11			Kill!	-	GRAVELLY fat CLAY with SAND	
	SW-SC	Well-graded SAND with CLAY (or SILTY CLAY)			Elastic SILT Elastic SILT with SAND	
1. 1/	311-30	Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		Elastic SILT with SAND Elastic SILT with GRAVEL		SAMPLER GRAPHIC SYMBOLS
1 III		Books graded SAND with SILT		MH	SANDY elastic SILT	
	SP-SM	Poorly graded SAND with SICT			GRAVELLY elastic SILT	Standard Penetration Test (SPT)
		Poorly graded SAND with SILT and GRAVEL			GRAVELLY elastic SILT with SAND	
1.		Poorly graded SAND with CLAY (or SILTY CLAY)	PPI	1	ORGANIC fat CLAY	
	SP-SC	Poorly graded SAND with CLAY and GRAVEL	CO	1	ORGANIC fat CLAY with SAND ORGANIC fat CLAY with GRAVEL	Standard California Sampler
		(or SILTY CLAY and GRAVEL)	00	OH SANDY ORGANIC fat CLAY		
	SM	SILTY SAND	D)	1	SANDY ORGANIC fat CLAY with GRAVEL	
		SILTY SAND with GRAVEL	D		GRAVELLY ORGANIC fat CLAY with SAN	Modified California Sampler (2.4" ID 3" OD)
1.1.		CLAVEY SAND	1223		ORGANIC elastic SILT	
11	SC	CEATET SAND			ORGANIC elastic SILT with SAND	
1.1.		CLAYEY SAND with GRAVEL	1111	OH	ORGANIC elastic SILT with GRAVEL SANDY elastic ELASTIC SILT	Shalby Tube Distan Sampler
	022 222	SILTY, CLAYEY SAND	1222		SANDY ORGANIC elastic SILT with GRAV	/EL Piston Sampler
	SC-SM	SILTY CLAYEY SAND with GRAVEL			GRAVELLY ORGANIC elastic SILT	
	-		200		GRAVELLT ORGANIG elastic SILT with S/	
6 24 24	PT	DEAT	FF	1	ORGANIC SOIL ORGANIC SOIL with SAND	NX Rock Core HQ Rock Core
<u>04</u> 04 0	10.000	- Levi	FF	1	ORGANIC SOIL with GRAVEL	
XX		COBBLES	FF-	OL/OH	SANDY ORGANIC SOIL	
SC		COBBLES and BOULDERS	F.F.	1	GRAVELLY ORGANIC SOIL	Bulk Sample Other (see remarks)
DOX		BOULDERS	F.F.	1	GRAVELLY ORGANIC SOIL with SAND	
						57 E0
			-	SVM	301.5	
-		DRILLING ME	HOD	STWE	0010	WATER LEVEL STWBOLS
		·				☑ First Water Level Reading (during drilling)
I ID			\square	Dynamic	Cone	
	Auge	r Drilling Rotary Drilling	Ma	or Hand	Driven Diamond Core	
1			∇		\bigtriangleup	✓ Static Water Level Reading (after drilling, date)
L						
Def						
Defini	Definitions for Change in Material REFERENCE: Caltrans Soil and Rock Logging. Classification.					
rerm	Term Demittori					
Mate	Change in material is observed in the and Presentation Manual (2010).					
Change	san	nple or core and the location of change			-	
Chang	can be accurately located.					
		50		Project No. SD634		
[ation	Cha	ange in material cannot be accurately	, GROUP			
Estima	loc	ated either because the change is			••••••••••••••••••••••••••••••••••••••	
Mater	iai gra	dational or because of limitations of				
Chang	the drilling and sampling methods.					
		······································				USA Properties Fund
C-11 (
SOIT /	Soil / Rock Material changes from soil characteristics					
Bound	ary to r	OCK CHARACTERISTICS.	/	、		BURING RECORD LEGEND #2
-						

Description	Shear Strength (tsf)	Pocket Penetrometer, PP. Measurement (tsf)	Torvane, TV, Measurement (tsf)	Vane Shear, VS, Measurement (tsf)
Very Soft	Less than 0.12	Less than 0.25	Less than 0.12	Less than 0.12
Soft	0.12 - 0.25	0.25 - 0.5	0.12 - 0.25	0.12 - 0.25
Medium Stiff	0.25 - 0.5	0.5 - 1	0.25 - 0.5	0.25 - 0.5
Stiff	0.5 - 1	1 - 2	0.5 - 1	0.5 - 1
Very Stiff	1-2	2 - 4	1 - 2	1-2
Hard	Greater than 2	Greater than 4	Greater than 2	Greater than 2

APPARENT DENSITY OF COHESIONLESS SOILS		
Description	SPT N ₆₀ (blows / 12 inches)	
Very Loose	0 - 5	
Loose	5 - 10	
Medium Dense	10 - 30	
Dense	30 - 50	
Very Dense	Greater than 50	

PERCENT OR PROPORTION OF SOILS		
Description	Criteria	
Trace	Particles are present but estimated to be less than 5%	
Few	5 - 10%	
Little	15 - 25%	
Some	30 - 45%	
Mostly	50 - 100%	

	CEMENTATION		
Description	Criteria		
Weak	Crumbles or breaks with handling or little finger pressure.		
Moderate	Crumbles or breaks with considerable finger pressure.		
Strong	Will not crumble or break with finger pressure.		

REFERENCE: Caltrans Soil and Rock Logging, Classification, and Presentation Manual (2010), with the exception of consistency of cohesive soils vs. $N_{\rm 60}.$

CONSISTENCY OF COHESIVE SOILS		
Description	SPT N ₆₀ (blows/12 inches)	
Very Soft	0 - 2	
Soft	2 - 4	
Medium Stiff	4 - 8	
Stiff	8 - 15	
Very Stiff	15 - 30	
Hard	Greater than 30	

Ref: Peck, Hansen, and Thornburn, 1974,

"Foundation Engineering," Second Edition.

Note: Only to be used (with caution) when pocket penetrometer or other data on undrained shear strength are unavailable. Not allowed by Caltrans Soil and Rock Logging and Classification Manual, 2010.

MOISTURE		
Description	Criteria	
Dry	No discernable moisture	
Moist	Moisture present, but no free water	
Wet	Visible free water	
Moist Wet	Moisture present, but no free water Visible free water	

	PA	RTICLE SIZE	
Description		Size (in)	
Boulder		Greater than 12	
Cobble		3 - 12	
C	Coarse	3/4 - 3	
Gravel	Fine	1/5 - 3/4	
	Coarse	1/16 - 1/5	
Sand	Medium	1/64 - 1/16	
	Fine	1/300 - 1/64	
Silt and Cla	ay	Less than 1/300	

Plasticity

Description	Criteria					
Nonplastic	A 1⁄8-in. thread cannot be rolled at any water content.					
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit.					
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit.					
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit.					

GROUP

DELTA

Project No. SD634

La Mesa Apartments USA Properties Fund

BORING RECORD LEGEND #3

LEGE	ND OF ROCK MATERIA	LS			BEDD	ING	SPACING	3	
			D	escriptior	ı		Thickne	ss/Spacing	
	IGNEOUS ROCK		M	assive ery Thickly	/ Bedded		Greater 3 ft - 10	than 10 ft ft	
	SEDIMENTARY ROCK		TI	nickly Bed oderately	ded Bedded		1 ft - 3 f 4 in - 1 f	t H	
<u>.</u>			TI	ninly Bedd	ed Baddad		1 in - 4 i	n 1 iz	
. í //	METAMORPHIC ROCK		La	aminated	Beadea		Less tha	an 1/4 in	
							NTACT		
	Ī	WEAT	Diag	nostic Fea	atures	-OR I	NIACI	RUCK	
1970 B SAR	Chemical Weathering-Disco	loration-O	cidation	Mechani and Gr	ical Weatheri ain Boundary	ng	Texture	and Leaching	
Description Fresh	Body of Rock	Fracture S	Surfaces	No separa	onditions	No	Texture	Leaching No leaching	General Characteristics
Slightly	oxidized	or oxidatio	n	(tight)	senaration	Pre	eserved	Minor leaching	rocks are struck. Hammer rings when crystalline
Weathered	limited to surface of, or short distance from, fractures; some feldspar crystals are dull	complete discolorati oxidation surfaces	on or of most	st			eserveu	of some soluble minerals	rocks are struck. Body of rock not weakened.
Moderately Weathered	Discoloration or oxidation extends from fractures usually throughout; Fe-Mg minerals are "rusty"; feldspar crystals are "cloudy"	All fracture surfaces a discolored oxidized	e ire or	Partial separation of boundaries visible			nerally served	Soluble minerals may be mostly leached	Hammer does not ring when rock is struck. Body of rock is slightly weakened.
Intensely Weathered	Discoloration or oxidation throughout; all feldspars and Fe-Mg minerals are altered to clay to some extent; or chemical alteration produces in situ disaggregation, grain boundary conditions	All fracture surfaces a discolored oxidized; surfaces fi	e ire or riable	Partial se is friable; conditions disaggreg	paration, roci în semi-arid s, granitics ar gated	ck Texture altered by chemical disintegration (hydration, argillation)		Leaching of soluble minerals may be complete	Dull sound when struck with hammer; usually can be broken with moderate to heavy manual pressure or by light hammer blow without reference to planes of weakness such as incipient or hairline fractures or veinlets. Rock is significantly weakened.
Decomposed	Discolored of oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay		Complete separatior grain boundaries (disaggregated)			sembles a mplete rem ucture may iching of so ually compl	soil; partial or nant rock be preserved; luble minerals ete	Can be granulated by hand. Resistant minerals such as guartz may be present as "stringers" or "dikes".	
PERCE	ENT CORE RECOVERY	(REC)					ROCK	HARDNESS	
$oldsymbol{\Sigma}$ Length o	f the recovered core pieces ((in.) x 100	Des	emely	Criteria Cannot be	Criteria Cannot be scratched with a pocketknife or sharp pick. with repeated heavy hammer blows		n nick. Can only be chinned	
Tota	al length of core run (in.)	x 100	Har Ver	d v Hard	with repea Cannot be			p pick. Breaks with repeated	
			Har	d	heavy han Can be sci	avy hammer blows. n be scratched with a pocketknife or sharp pi			ick with difficulty (heavy
ROCK	QUALITY DESIGNATION	(RQD)	Мос	derately	pressure). Can be sci	Breaks	s with heav d with a poo	y hammer blows. ketknife or sharp p	ick with light or moderate
Σ Length	of intact core pieces <u>></u> 4 in	× 100	Har Mod	d derately	pressure. I Can be gro	pressure. Breaks with moderate han			e or sharp pick with moderate
Tota	l length of core run (in.)	. 100	Sof Sof	t t	or heavy p Can be gro	r heavy pressure. Breaks with light har an be grooved or gouged easily with a			low or heavy manual pressure. knife or sharp pick with light
RQD* Indi	cates soundness criteria not m	et.		0.4	pressure, o manual pro	essure	scratched	with fingernail. Bre	aks with light to moderate
			ve	ry Soπ	pocketknif	e. Brea	aented, gro aks with ligh	oved or gouged w it manual pressure	th fingernall, or carved with a
					L				
			P	o orinti	T	Oher	FRACTU	RE DENSITY	
			Un	fractured		No fra	ctures	Ire Density	
			Ve	ry Slightly F	Fractured	Core I	engths grea	ater than 3 ft.	
			Slig	htly Fractu	ured	Core l	engths mos	tly from 1 to 3 ft.	
			Мо	derately Fr	actured	Core I	engths mos	stly 4 in. to 1 ft.	
REFERENC	Caltrans Soil and Rock Lo	ogging,	Inte	ensely Frac	tured	Core l	engths mos	tly from 1 to 4 in.	
Classification	, and Presentation Manual (Vei	ry Intensely	/ Fractured	Mostly	/ chips and	fragments.	A	
			Γ	SROU	P		Project	No. SD634	
					DELTA	`	во	La Mesa USA Pro RING REC	Apartments perties Fund ORD LEGEND #4

F			2 6	RECC			PROJE	CT NA	ME					PROJECT	NUMBER	!	BORING
SITELO							La Me	sa Ap	artme	ent Dev	velopme	nt STAI	рт				B-1 SHEET NO
Sout	heast o	• of Allis	on A	venue ar	nd Date	Aven	ue					9/1	19/2019	9/	011 19/2019)	1 of 1
DRILLI	NG COM	PANY						DRILL	RILLING METHOD				10/2010	LOGGED	BY	CHE	CKED BY
Paci	fic Drilli	ng Co	mpa	ny				Hol	llow Stem Auger					SRN		MA	\F
Morl			l Aount	tod Pig (Crizzly	`		BORI	NG DIA	. (in)		DEPTH (ft) GROUND ELEV (ft) DEPTH/ELEV. GROUND WATE					GROUND WATER (ft
SAMPL	ING MET	THOD	louin	leu Nig (GHZZIY)	NOTES	S			1		520		<u>-</u> IN/ <i>F</i>	A / IIa	
Ham	mer: 14	0 lbs.	, Dro	p: 30 in.	(Auton	natic)	ETR	<mark>ہ ~ 9</mark> 2	%, N ₆	₀ ~ 92/	60 * N ~	· 1.53 * N					
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	Ž	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	SCRIPTION A	ND CLAS	SSIFICA	TION
		XXX										PAVEI FILL ·	MENT:	Asphalt Co	ncrete (3	8"), no E moist	Base (0").
-	-	\otimes	B-1	50						-			SILTI		, DIOWII,	moist,	
_	_	\ge	S-2	(1")	(REF)	(REF)				-	$\mathbb{P}^{\mathbb{Q}}$	STADI	UM CON	NGLOMERA	ATE: Po	orly inc	lurated
	525										00	graine	d; mode	rately weat	nered; sc	oft; unfr	actured
-										-	$\frac{1}{2}$	(POOF dense;	RLY GR/ brown;	ADED GRA dry to mois	VEL WII	I H SAN Istic; m	ID (GP); very ostly GRAVEL
-										-	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	and C	OBBLE;	little SAND	; trace fir	nes).	,
5				_						5	0						
		$ \times $	S-3	5 50	80	122											
F	_			(4")						-	[0]						
-	-									-	60~						
L	520									-		Tatal	anth. 7	fa a 4			
												Refusa	al on gra	vel and cob	ble		
	_									-		No gro	undwate	er encounte	red		
10	-									10 —	-	Refusa	al was er	ncountered	at a dep	th of 1½	∕₂ feet at the
	_									_		initial b	oring lo	cation. The	boring v	was sub	osequently
												refusal	approxi at 7 fee	et. Extreme	ly difficul	t drilling	g conditions
-										-		and ex	tensive	rig chatter v	were enc	ountere	ed.
-	515									-	-						
										-							
15										15							
G19/19										10	1						
2 -										-							
- 6.60	L									-							
	510																
E C										-							
5-										-							
oj20	<u> </u>									20 —							
10634										_							
, OS																	
	<u> </u>									-	1						
л	505									-							
	<u> </u>									-							
BORI															. 1		
GR	GROUP DELTA CONSULTANTS, INC							• TH	THIS B	MARY AP	ND AT THE	Y AT THE TIME OF	E LOCATION DRILLING.		F	IGURE	
enc	924	5 Ad	ctiv	itv Ro	bad.	Suit	e 10	3 SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION									
-	San Diago CA 02126					WITH THE PASSAGE OF TIME. THE DATA A-1											
	San Diego, CA 92126							co	PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.								

BORING RECORD								AME					PROJECT NUMBER		BORING	
SITE LC		1					La Me	esa Ap	artme						SH	SHEET NO.
Sout	neast o	of Allis	on A	venue ar	nd Date	Aven	ue					9/1	 9/2019	9/	19/2019	1 of 1
DRILLI	NG COM	PANY						DRILL	ING M	ETHOD				LOGGED	BY	CHECKED BY
Pacif	ic Drilli	ng Co	mpa	ny				Hol	low S	tem Au	ger			SRN		MAF
DRILLIN			 /		∩	`		BORI	NG DIA	. (in)	TOTAL	DEPTH (ft)	GROUN	D ELEV (ft)		LEV. GROUND WATER (1
IVIARI SAMPL	NG MET	TUCK IN	lount	ied Rig (JIZZIY)	NOTE	s S			12		533		I I N/A	i na
Ham	ner: 14	l0 lbs.	, Dro	p: 30 in.	(Auton	natic)	ETF	R ~ 92	%, N ₆	₀ ~ 92/	60 * N ~ 1	1.53 * N				
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	z°	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTION A	ND CLASS	SIFICATION
												PAVEN	IENT:	Asphalt Co	ncrete (4")), no Base (0").
- - -	 530 		B-1						PA EI~5 R~11	-		FILL: dense; SAND; (20% G	CLAYE` yellowis some fil Gravel; 5	Y SAND W h brown; n nes; little G 2% Sand; ź	ITH GRA\ noist; mosi RAVEL; k 28% Fines	/EL (SC); medium tly fine to medium ow plasticity. s)
5 _ _ _ _ 10	 525 		R-2 S-3	18 50 (4") 12 50	93	95	5.4			5 — - - - 10 —		STADI SANDS weathe SAND fine to I nonplas Poorly to coars unfract dense;	UM CON STONE; red; ver (SP); ve medium stic to lo indurate se grain ured (PC brown; prown;	VGLOMER fine to mer y soft; unfri y dense; y SAND; few w plasticity d COBBLE ed; modera DORLY GR moist; nonp	ATE: Poo dium grain actured (F rellowish b v to little fin). CONGLO ately weath ADED GF plastic; mc	orly indurated led; moderately POORLY GRADED prown; moist; mostly nes; few GRAVEL;
	520 			(5")						- - 15 - -		Total D Refusa No grou	epth: 12 l on gravundwate	P Feet vel and cob	g chatter f	from 11' to 12'.
	 510									- 20 - - -						
ng GRC	GROUP DELTA CONSULTANTS, INC 9245 Activity Road, Suite 103 San Diego, CA 92126						THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.				FIGURE A-5					

BORING RECORD								AME Apartment Development					PROJECT NUMBER		R BORING	
SITE LC		1						sa Ap	aitiite	START					SH	SHEET NO.
Sout	neast o	of Allis	on Av	venue ar	nd Date	Avenu	Je					9/1	9/2019	9/ 9/	20/201	9 1 of 1
DRILLI	NG COM	PANY						DRILL	ING M	ETHOD				LOGGED	BY	CHECKED BY
Pacif	ic Drilli	ng Co	mpai	ny				Hollow Stem Auger						SRN		MAF
DRILLIN	IG EQUI	PMENT	Г					BORII	NG DIA	DIA. (in) TOTAL DEPTH (ft) GROUND ELEV (ft) DEPTH/ELEV. GROUND					I/ELEV. GROUND WATER	
Marl	M10 TI		/lount	ed Rig (Grizzly)	NOTES	6		5 525 ¥ N/A / na						
Ham	nor 1/		Dro	n [.] 30 in	(Auton	natic)	FTR	2 2 ~ 92	% N.	~ 92/	60 * N ~	1 53 * N				
Tiam			., DIU 	p. 50 m.				1 32	70, T N E	0 52/		1.00 1				
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	09 Z	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTION A	AND CLA	SSIFICATION
_			B-1							-		<u>PAVEI</u> <u>FILL:</u> brown;	<u>MENT:</u> SILTY S moist; r	Asphalt Co SAND (SM) nostly fine	ncrete (; mediui SAND; s	3"), no Base (0"). m dense; reddish some fines; nonplastic.
5			R-2	14 46 50 (2")	(REF)	(REF)				-		STADI COBBI grained (CLAY moist; fines; le	LE CON LE CON d; mode EY GRA mostly (ow plast	NGOMERA GLOMERA rately weath VEL (GC); GRAVEL ar ticity).	ATE: Poo ATE; mea hered; s very de nd COBE	orly indurated dium to coarse oft; unfractured nse; yellowish brown; 3LE; little SAND; little
 	520 									- 5 - -	-	Total D No gro Convei	epth: 5 undwate ted to b	feet er encounte orehole pe	red rcolatior	ı test
10 - -	515 									10 — - -	-					
- - ,15	 510									- - 15 —	-					
										-	-					
											1					
ś-	 									-	-					
20	505									20						
5										20]					
5-	<u> </u>									-	-					
3																
										_						
<u>í</u>										-						
										_						
GRO	GROUP DELTA CONSULTANTS, INC. 9245 Activity Road, Suite 103 San Diego, CA 92126						THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTEPED				FIGURE A-6					

					חסו		PROJE	CT NA	ME					PROJECT	NUMBER		BORING	
D			ק כ		עאנ		La Me	sa Ap	artme	ent Dev	elopme	nt		SD634			I-2	
SITE LO	CATION	N A Mia	on ()		d Data	. A.v.o.n						STAF	RT		SH 20/2010		SHEET NO.	
DRILLIN	IG COM	PANY	on A	venue ar	id Dale	e Aven	ue	DRILI	ING M	FTHOD		9/1	9/2019		20/2019 BY	CHE	1 of 1 CKED BY	
Pacifi	c Drilli	ng Co	mpai	ny				Hol	low S	tem Au	ger			SRN		MA	\F	
DRILLIN	IG EQUI	PMEN	Г	,				BORI	NG DIA	. (in)	TOTAL	. DEPTH (ft)	GROUN	D ELEV (ft)	DEPTH/E	LEV. C	ROUND WATER (ff	
Marl M	M10 Ti	ruck N	/lount	ed Rig (Grizzly)		6			5		534					
SAMPLI	NG MET		Due		(4: - \	NOTE	S 000	0/ NI	0.04	CO * NI	4 50 * N						
Hamm	ner: 14	iu ids.	., Dro I	p: 30 in.	Auton			(~ 92	70, IN ₆	₆₀ ~ 92/ 	00 IN~	1.55 N						
DEPTH (feet)	ELEVATION (feet)	SAMPLE TYPE	SAMPLE NO.	PENETRATION RESISTANCE (BLOWS / 6 IN)	BLOW/FT "N"	2°°	MOISTURE (%)	DRY DENSITY (pcf)	OTHER TESTS	DEPTH (feet)	GRAPHIC LOG		DES	CRIPTION A	ND CLAS	SIFICA	TION	
 	 530		B-1 R-2	4 14 18	32	32	10.7	115.8	CP DS			FILL: reddish fines; fo	CLAYE` brown; ew GRA	Y SAND (S moist; mos VEL; low p	C); mediu stly fine to lasticity.	ım der o coars	nse to dense; e SAND; some	
	525 525 											Total D No gro Conver	Depth: 5 f undwate rted to b	feet er encounte orehole per	rred rcolation t	est		
741NG_MMX_SUIL_SU SUB44 LUGS.	 510									20								
GRC	DUP 924	DEI 5 Ao San	L TA Ctiv Die	ity Rc	SUL bad, A 92	TAN Suit 2126	i TS, e 10	INC)3	TH OF SU LO WI PR CO	IS SUMI THIS B BSURF CATION TH THE ESENTE	MARY AP ORING AI ACE CON S AND M PASSAG ED IS A S NS ENCO	PLIES ONLY ND AT THE DITIONS M/ AY CHANGE E OF TIME. IMPLIFICAT DUNTERED.	Y AT THE TIME OF AY DIFFE E AT THI THE DA ION OF 1	E LOCATION DRILLING. ER AT OTHE S LOCATIO TA THE ACTUA	N ER N	F	FIGURE A-7	

APPENDIX B LABORATORY TESTING

APPENDIX B

LABORATORY TESTING

Laboratory testing was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions and in the same locality. No warranty, express or implied, is made as to the correctness or serviceability of the test results, or the conclusions derived from these tests. Where a specific laboratory test method has been referenced, such as ASTM or Caltrans, the reference only applies to the specified laboratory test method, which has been used only as a guidance document for the general performance of the test and not as a "Test Standard". A brief description of the various tests performed for this project follows.

<u>Classification</u>: Soils were visually classified according to the Unified Soil Classification System as established by the American Society of Civil Engineers per ASTM D2487. The soil classifications are shown on the boring logs in Appendix A.

<u>Particle Size Analysis</u>: Particle size analyses were performed in general accordance with ASTM D422, and were used to supplement visual soil classifications. The test results are summarized in Figures B-1.1 through B-1.6.

<u>Atterberg Limits</u>: ASTM D4318 was used to determine the liquid and plastic limits, and plasticity index of selected samples. The results are shown in selected Figures B-1.1 through B-1.6.

Expansion Index: The expansion potential of a selected soil sample was estimated in general accordance with the laboratory procedures outlined in ASTM test method D4829. The test results are summarized in Figure B-2. Figure B-2 also presents common criteria for evaluating the expansion potential based on the expansion index.

<u>pH</u> and <u>Resistivity</u>: To assess the potential for reactivity with buried metals, a selected soil sample was tested for pH and minimum resistivity using Caltrans test method 643. The corrosivity test results are summarized in Figure B-3.

<u>Sulfate Content</u>: To assess the potential for reactivity with concrete, a selected soil sample was tested for water soluble sulfate. The sulfate was extracted from the soil under vacuum using a 10:1 (water to dry soil) dilution ratio. The extracted solution was tested for water soluble sulfate in general accordance with ASTM D516. The test results are also presented in Figure B-3, along with common criteria for evaluating soluble sulfate content.

<u>Chloride Content</u>: A soil sample was also tested for water soluble chloride. The chloride was extracted from the soil under vacuum using a 10:1 (water to dry soil) dilution ratio. The extracted solution was then tested for water soluble chloride using a calibrated ion specific electronic probe. The test results are also shown in Figure B-3.

APPENDIX B

LABORATORY TESTING (Continued)

<u>Maximum Density/Optimum Moisture</u>: The maximum density and optimum moisture content of a selected soil sample were determined using ASTM D1557 (modified Proctor). The results were corrected for over-size material using ASTM D4718. The test results are summarized in Figure B-4.

Direct Shear: The shear strength of a selected sample of the on-site soil was assessed using direct shear testing performed in general accordance with ASTM D3080. The gravel was first removed from the sample, and the remaining matrix material was then remolded to approximate 90 percent relative compaction prior to shear testing. The test results are shown in Figure B-5.1. Similar direct shear tests that we have previously conducted on remolded samples of the matrix material from the Stadium Conglomerate are presented in Figures B-5.2 and B-5.3.

<u>R-Value</u>: R-Value tests were performed on selected samples of the on-site soils in general accordance with CTM 301. The test results are shown in Figures B-6.1 and B-6.2.

Document No. 19-0141

Project No. SD634

	COARSE	FINE	COARSE	MEDIUM	FINE	SILT AND	
	GRAVE	E		SAND		CLAY	
	SAMPLE		UNIFIED SO	IL CLASSIFICATION:	SC		ATTERBERG LIMITS
BORING	G NUMBER: B-2						LIQUID LIMIT: 35
SAMF	PLE DEPTH: 0' -	5'	DESCRIPTIC	ON: CLAYEY SAND V	VITH GRAVEL		PLASTIC LIMIT: 17
							PLASTICITY INDEX: 18

COARSE	FINE	COARSE	MEDIUM	FINE	SILT AND
GRAVE	L		SAND		CLAY

Document No. 19-0141

Project No. SD634

Document No. 19-0141

PLASTICITY INDEX: 20

Project No. SD634

- LIQUID LIMIT: ---PLASTIC LIMIT: ---
- PLASTICITY INDEX: ---
- Document No. 19-0141

Project No. SD634

FIGURE B-1.4

BORING NUMBER: B-3 SAMPLE DEPTH:

DESCRIPTION: SILTY SAND

20' - 21½'

GROUP DELTA

Document No. 19-0141

Project No. SD634

COARSE	FINE	COARSE	MEDIUM	FINE	SILT AND	
GRA	/EL		SAND		CLAY	
SAMPI F			IL CLASSIFICATION	50		
				00		IERDERG LINIIIS
BORING NUMBER: B	·4			00		LIQUID LIMIT: 31
BORING NUMBER: B SAMPLE DEPTH: 0	-4 - 5'	DESCRIPTIO	DN: CLAYEY SAND W	ITH GRAVEL	PI	LIQUID LIMIT: 31 ASTIC LIMIT: 15

Document No. 19-0141 Project No. SD634

SAMPLE		UNIFIED SOIL CLASSIFICATION: SC	ATTERBERG LIMITS
BORING NUMBER:	B-5		LIQUID LIMIT:
SAMPLE DEPTH:	0' - 5'	DESCRIPTION: CLAYEY SAND WITH GRAVEL	PLASTIC LIMIT:
			PLASTICITY INDEX:

EXPANSION TEST RESULTS (ASTM D4829)

SAMPLE	DESCRIPTION	EXPANSION INDEX
B-2 @ 0' – 5'	Fill: Brown clayey sand with gravel (SC).	8
B-3 @ 0' – 5'	Fill: Brown clayey sand (SC).	28
B-5 @ 0' – 5'	Fill: Yellow brown clayey sand with gravel (SC).	5

EXPANSION INDEX	POTENTIAL EXPANSION		
0 to 20	Very low		
21 to 50	Low		
51 to 90	Medium		
91 to 130	High		
Above 130	Very High		

LABORATORY TEST RESULTS

Document No. 19-0141 Project No. SD634 FIGURE B-2

CORROSIVITY TEST RESULTS (ASTM D516, CTM 643)

SAMPLE	рН	RESISTIVITY SULFATE [OHM-CM] CONTENT [%]		CHLORIDE CONTENT [%]
B-2 @ 0' – 5'	6.4	3,650	0.01	< 0.01
B-3 @ 0' – 5'	6.0	1.790	0.02	0.01
B-4 @ 0' – 5'	6.6	2,170	0.03	< 0.01

SULFATE CONTENT [%]	SULFATE EXPOSURE	CEMENT TYPE
0.00 to 0.10	Negligible	-
0.10 to 0.20	Moderate	II, IP(MS), IS(MS)
0.20 to 2.00	Severe	V
Above 2.00	Very Severe	V plus pozzolan

SOIL RESISTIVITY	GENERAL DEGREE OF CORROSIVITY TO FERROUS		
0 to 1,000	Very Corrosive		
1,000 to 2,000	Corrosive		
2,000 to 5,000	Moderately Corrosive		
5,000 to 10,000	Mildly Corrosive		
Above 10,000	Slightly Corrosive		

CHLORIDE (CI) CONTENT	GENERAL DEGREE OF
0.00 to 0.03	Negligible
0.03 to 0.15	Corrosive
Above 0.15	Severely Corrosive

LABORATORY TEST RESULTS

Document No. 19-0141 Project No. SD634 FIGURE B-3

MAXIMUM DENSITY & OPTIMUM MOISTURE (ASTM D1557 & D4718)

SAMPLE ID (I-2 @ 0' – 5')	DESCRIPTION	MAXIMUM DENSITY [lb/ft ³]	OPTIMUM MOISTURE [%]
Max #1A	FILL: Reddish brown clayey sand with 0% gravel (SC).	129.0	8.6
Max #1B	FILL: Reddish brown clayey sand with 5% gravel (SC).	130.3	8.2
Max #1C	FILL: Reddish brown clayey sand with 10% gravel (SC).	131.7	7.8
Max #1D	FILL: Reddish brown clayey sand with 15% gravel (SC).	133.1	7.5
Max #1E	FILL: Reddish brown clayey sand with 20% gravel (SC).	134.5	7.1
Max #1F	<u>FILL</u> : Reddish brown clayey sand with 25% gravel (SC).	136.0	6.7
Max #1G	<u>FILL</u> : Reddish brown clayey sand with 30% gravel (SC).	137.4	6.3

LABORATORY TEST RESULTS

SAMPLE NO.: B-4

SAMPLE LOCATION: 0' - 5'

TEST SDECIMEN

SAMPLE DATE: 9/19/19

TEST DATE: 10/7/19

.

[PSI] [%] [G] [ML] [%] [%] [G] [G] [G] [IN] [PCF] [LB] [PSI] [PSI] [PSI] [Turns]

SAMPLE DESCRIPTION: Dark brown clayey sand with gravel (SC)

LABORATORY TEST DATA

4

2

2

	TEST SPECIMEN	1	2	3	4	5
А	COMPACTOR PRESSURE	150	120	190		
В	INITIAL MOISTURE	1.1	1.1	1.1		
С	BATCH SOIL WEIGHT	1200	1200	1200		
D	WATER ADDED	85	94	78		
Е	WATER ADDED (D*(100+B)/C)	7.2	7.9	6.6		
F	COMPACTION MOISTURE (B+E)	8.3	9.0	7.7		
G	MOLD WEIGHT	2019.7	2013.7	2091.8		
н	TOTAL BRIQUETTE WEIGHT	3219.6	3162.2	3256.9		
Ι	NET BRIQUETTE WEIGHT (H-G)	1199.9	1148.5	1165.1		
J	BRIQUETTE HEIGHT	2.53	2.46	2.45		
K	DRY DENSITY (30.3*I/((100+F)*J))	132.7	129.8	133.8		
L	EXUDATION LOAD	4305	3359	5120		
М	EXUDATION PRESSURE (L/12.54)	343	268	408		
Ν	STABILOMETER AT 1000 LBS	48	55	47		
0	STABILOMETER AT 2000 LBS	118	128	107		
Ρ	DISPLACEMENT FOR 100 PSI	5.02	5.75	4.57		
Q	R VALUE BY STABILOMETER	15	10	21		
R	CORRECTED R-VALUE (See Fig. 14)	15	10	21		
S	EXPANSION DIAL READING	0.0000	0.0000	0.0000		
Т	EXPANSION PRESSURE (S*43,300)	0	0	0		
U	COVER BY STABILOMETER	0.77	0.82	0.72		
V	COVER BY EXPANSION	0.00	0.00	0.00		
	TRAFFIC INDEX:	5.0				
	GRAVEL FACTOR:	1.46				
	UNIT WEIGHT OF COVER [PCF]:	130				
	R-VALUE BY EXUDATION:	12				

*Note: Gravel factor estimated from pavement section using CTM 301, Section C, Part b.

REV. 2, DATED 1/31/15

[IN] [PSF] [FT] [FT]

GROUP GROUP DELTA CONSULTANTS, INC. ENGINEERS AND GEOLOGISTS 9245 ACTIVITY ROAD, SUITE 103 DELTA SAN DIEGO, CALIFORNIA 92126

R-VALUE BY EXPANSION: R-VALUE AT EQUILIBRIUM:

R-VALUE TEST RESULTS CT301

30

12

Document No. 19-0141 Project No. SD634 FIGURE B-6.1a

SAMPLE NO.: B-5

SAMPLE LOCATION: 0' - 5'

SAMPLE DATE: 9/19/19

TEST DATE: 10/7/19

[PSI]

[%]

[G]

[ML]

[%]

[%]

[G]

[G]

[G]

[IN]

[PCF]

[LB]

[PSI]

[PSI]

[PSI]

[Turns]

[IN]

[PSF]

[FT]

[FT]

SAMPLE DESCRIPTION: Yellowish brown clayey sand (SC)

LABORATORY TEST DATA

TEST SPECIMEN 4 1 2 3 5 A COMPACTOR PRESSURE 100 50 130 **B** INITIAL MOISTURE 3.6 3.6 3.6 C BATCH SOIL WEIGHT 1200 1200 1200 D WATER ADDED 85 95 75 E WATER ADDED (D*(100+B)/C) 7.3 8.2 6.5 F COMPACTION MOISTURE (B+E) 10.9 11.8 10.1 G MOLD WEIGHT 2013.0 2010.2 2010.2 H TOTAL BRIQUETTE WEIGHT 3148.3 3178.8 3181.1 I NET BRIQUETTE WEIGHT (H-G) 1135.3 1168.6 1170.9 J BRIQUETTE HEIGHT 2.51 2.53 2.52 K DRY DENSITY (30.3*I/((100+F)*J)) 123.5 125.2 127.9 L EXUDATION LOAD 3301 2944 4446 M EXUDATION PRESSURE (L/12.54) 263 235 355 N STABILOMETER AT 1000 LBS 59 65 51 O STABILOMETER AT 2000 LBS 134 150 120 P DISPLACEMENT FOR 100 PSI 5.43 6.35 5.10 **Q** R VALUE BY STABILOMETER 3 8 14 8 3 14 R CORRECTED R-VALUE (See Fig. 14) S EXPANSION DIAL READING 0.0000 0.0000 0.0000 T EXPANSION PRESSURE (S*43,300) 0 0 0 **U COVER BY STABILOMETER** 0.84 0.88 0.78 **V** COVER BY EXPANSION 0.00 0.00 0.00 TRAFFIC INDEX: 5.0 1.46 **GRAVEL FACTOR:** UNIT WEIGHT OF COVER [PCF]: 130 11 **R-VALUE BY EXUDATION:**

*Note: Gravel factor estimated from pavement section using CTM 301, Section C, Part b.

REV. 2, DATED 1/31/15

GROUP GROUP DELTA CONSULTANTS, INC. ENGINEERS AND GEOLOGISTS 9245 ACTIVITY ROAD, SUITE 103 DELTA SAN DIEGO, CALIFORNIA 92126

R-VALUE BY EXPANSION:

R-VALUE AT EQUILIBRIUM:

R-VALUE TEST RESULTS CT301

23

11

Document No. 19-0141 Project No. SD634 FIGURE B-6.2a

APPENDIX C INFILTRATION ASSESSMENT

APPENDIX C

INFILTRATION ASSESSMENT

We understand that bioretention basins, detention basins or swales may be incorporated into the site development. In order to aid in BMP design, the vertical infiltration rates were estimated at two locations using the borehole percolation method. The general configuration of the borehole test is depicted schematically in the figure below. The field infiltration tests were conducted between September 19th and 20th, 2019. The approximate infiltration test locations are shown on the Exploration Plan, Figure 3A. The infiltration test results are presented in Figures C-1.1 to C-2.2.

Worksheet C.4-1 of the 2016 City of La Mesa BMP Design Manual is shown in the following figures. Per Table D.3-1 of the BMP Design manual, the borehole percolation test may be used for both planning level screening and BMP design purposes. Per Section D.4.5 of the BMP Manual, the testing "...shall be conducted at approximately the same depth and the same material as the base of the proposed storm water BMP." The Storm Water Manual requires that two infiltration tests be conducted within 50-feet of each proposed BMP. The BMP locations and configurations have yet to be determined. Consequently, we conducted two infiltration tests at the locations and depths indicated by the project civil design engineer.

The field infiltration tests were conducted in general accordance with the requirements of the City of La Mesa BMP Design Manual. The two borehole percolation test locations were each drilled to a depth of about 5 feet. Prior to testing, each well was cleared of loose soil and presoaked with water overnight. Additional water was then allowed to infiltrate into the soil under constant head with flow measurements taken at 30-minute time intervals. The tests were continued within each well until a relatively constant infiltration rate was attained.

The field testing indicates stabilized (unfactored) infiltration rates ranging from about 0.00 to 0.01 inches per hour and averaging less than 0.01 inches per hour (see Figures C-1.1 to C-2.2). A Factor of Safety of 2.0 is recommended for BMP design. A threshold of 0.50 inches per hour is commonly considered the minimum rate for effective on-site infiltration measures. Our previous experience indicates that clayey soils such as those at the subject site typically have a hydraulic conductivity less than 10⁻⁷ cm/s, which is essentially impermeable (see Figures C-3.1 to C-3.3).

Project Name: La Mesa Apartments

Date Drilled: 9/19/2019

Borehole Radius (*r): 4 in. Casing Diameter: 4 in.

Depth of Hole: 5.0 ft

Gravel Base Thickness: 4 in.

SD634

C-1.2

Project Number: SD634

Г

Test Hole Number: I-1 (Near B-4)

Date Tested: 9/20/2019

Tested By: SRN Average Water

Drilling Method: Hollow Stem Auger

USA PROPOERTIES FUND

Temperature: 72 F

DATA SHEET

Reading Number	Time Interval (min.)	Cumulative Time (min.)	Initial Depth to Water (ft.)	Final Depth to Water (ft.)	Avg. He Water Grave (ir	eight of above I Base 1.)	Measured Drop in Water Level (in.)	Corrected Drop in Water Level ¹ (in.)	Corrected Percolation Rate ¹ (in./hour)	Unfactored Infiltration Rate* (in./hour)
	Δt	т	[from grou	nd surface]	H _{avg}	X radius	ΔΗ	ΔH _c	ΔH _c /Δt	I _t
Pre-soak	(1,320)	(1,320)								
1	30	30	2.47	2.48	26.30	6.6*r	0.12	0.05	0.09	0.01
2	30	60	2.48	2.50	26.12	6.5*r	0.24	0.09	0.18	0.01
3	30	90	2.50	2.52	25.91	6.5*r	0.18	0.07	0.14	0.01
4	30	120	2.52	2.54	25.64	6.4*r	0.24	0.09	0.18	0.01
5	30	150	2.54	2.55	25.46	6.4*r	0.12	0.04	0.09	0.01
6	30	180	2.55	2.56	25.34	6.3*r	0.12	0.05	0.09	0.01
7	30	210	2.35	2.37	27.68	6.9*r	0.24	0.09	0.18	0.01
8	30	240	2.37	2.38	27.50	6.9*r	0.12	0.04	0.09	0.01
9	30	270	2.38	2.39	27.36	6.8*r	0.17	0.06	0.13	0.01
10	30	300	2.39	2.40	27.25	6.8*r	0.14	0.05	0.11	0.01
1: Porosity of *Porchet met	gravel assume thod used to co	ed to be 0.4 to onvert percola	o correct drop in wate ation rate to infiltratio	er. See text of Append on rate. See text of A	dix C for de ppendix C.	tails.	Stabilized, Infiltr	Unfactored ation Rate*:	0.01 inch/	'nour
LA MES ALLISO	LA MESA APARTMENT DEVELOPMENT ALLISON AVENUE AND DATE AVENUE USA DEODOSETTICS SUMP						DELTA FIGURE NUMBER			

Project Name: La Mesa Apartments

Date Drilled: 9/19/2019

Borehole Radius (*r): 4 in. Casing Diameter: 4 in.

Depth of Hole: 5.0 ft

Gravel Base Thickness: 2 in.

Project Number: SD634

Г

Test Hole Number: I-2 (Near B-2)

Date Tested: 9/20/2019

Tested By: SRN Average Water

Drilling Method: Hollow Stem Auger

USA PROPOERTIES FUND

Temperature: 72 F

DATA SHEET

Reading Number	Time Interval (min.)	Cumulative Time (min.)	Initial Depth to Water (ft.)	Final Depth to Water (ft.)	Avg. He Water Grave (ir	eight of above I Base 1.)	Measured Drop in Water Level (in.)	Corrected Drop in Water Level ¹ (in.)	Corrected Percolation Rate ¹ (in./hour)	Unfactored Infiltration Rate* (in./hour)
	Δt	Т	[from grou	nd surface]	H _{avg}	X radius	ΔΗ	ΔH _c	ΔH _c /Δt	l _t
Pre-soak	(1,230)	(1,230)								
1	30	30	2.33	2.34	29.98	7.5*r	0.12	0.04	0.09	0.01
2	30	60	2.33	2.33	30.03	7.5*r	0.01	0.00	0.01	0.00
3	30	90	2.33	2.34	29.98	7.5*r	0.12	0.04	0.09	0.01
4	30	120	2.34	2.34	29.90	7.5*r	0.05	0.02	0.04	0.00
5	30	150	2.34	2.35	29.86	7.5*r	0.12	0.05	0.09	0.01
6	30	180	2.35	2.36	29.77	7.4*r	0.06	0.02	0.04	0.00
7	30	210	2.36	2.38	29.59	7.4*r	0.18	0.07	0.14	0.01
8	30	240	2.38	2.38	29.42	7.4*r	0.05	0.02	0.04	0.00
9	30	270	2.38	2.38	29.42	7.4*r	0.05	0.02	0.04	0.00
1: Porosity of *Porchet met	gravel assume thod used to co	ed to be 0.4 to onvert percola	correct drop in wate	er. See text of Append on rate. See text of Ap	dix C for de ppendix C.	tails.	Stabilized, Infiltr	Unfactored ation Rate*:	0.00 inch/	hour
LA MES ALLISO	LA MESA APARTMENT DEVELOPMENT ALLISON AVENUE AND DATE AVENUE BOREHOLE PERCOLATION TEST I-2									

INFILTRATION RATE

PROJECT NUMBER FIGURE NUMBER

SD634

C-2.2

STANDARD TEST METHOD FOR MEASUREMENT OF HYDRAULIC CONDUCTIVITY OF SATURATED MATERIALS (ASTM D5084)

PROJECT: Alberhill Clay and Aggregate Quarry CLIENT: Pacific Aggregates DESCRIPTION: Remolded dark yellowish brown sa		TESTED BY: CHECKED BY: clay (CL) with per		RHC SAMPLE: Olive #17 MAF DATE: 06/21/10 ermeability of 2*(10 ⁻⁷) cm/s				Docum Pr		ment No. 19-0141 Project No. SD634 FIGURE C-3.1	
MOISTURE AND DENSITY	INITIAL		FINAL			TEST	PARAMI	ETERS			
A) WET WEIGHT OF SAMPLE	373.20		405.60	[G]	F)	STAND	PIPE ARE	AS	0.08	[CM ²]	
B) DRY WEIGHT OF SAMPLE	329.80		329.80	[G]	G)	SAMPLE	E DIAMET	ER	4.93	[CM]	
C) MOISTURE CONTENT [(A - B) / B]	13.2		23.0		H)	SAMPLE	Ξ AREA (π	* G ² /4)	19.09	[CM ²]	
D) WET DENSITY (A / J * 62.4)	119.0		129.4	[PCF]	I)	INITIAL	SAMPLE	HEIGHT	10.25	[CM]	
E) DRY DENSITY [D / (1 + C)]	105.2		105.2	[PCF]	J)	SAMPLE		E (I * H)	195.66	[CM ³]	
HYDRAULIC CONDUCTIVITY	1	2	3	4	5	6	7	8	9	10	
K) CELL PRESSURE	1.500	1.500	1.500	1.500							[KG/CM ²]
L) DRIVING PRESSURE (LEFT)	1.300	1.300	1.300	1.300							[KG/CM ²]
M) BACK PRESSURE (RIGHT)	1.150	1.150	1.150	1.150							[KG/CM ²]
N) INITIAL WATER LEVEL (LEFT)	44.40	44.10	43.90	44.30							
O) INITIAL WATER LEVEL (RIGHT)	36.30	36.30	36.40	36.40							[CM]
P) FINAL WATER LEVEL (LEFT)	34.50	38.40	38.60	39.40							[CM]
Q) FINAL WATER LEVEL (RIGHT)	44.50	41.60	41.30	41.00							[CM]
R) FINAL SAMPLE HEIGHT	10.26	10.26	10.26	10.26							[CM]
S) TEST DURATION	11400	6660	6300	5700							[S]
T) PRESSURE HEAD [(L - M) * 1000 / 1.0]	150.00	150.00	150.00	150.00							[CM]
U) WATER DROP ON LEFT (N - P)	9.90	5.70	5.30	4.90							[CM]
V) WATER RISE ON RIGHT (O - Q)	-8.20	-5.30	-4.90	-4.60							[CM]
W) INITIAL WATER HEAD (N - O)	8.10	7.80	7.50	7.90							[CM]
X) FINAL WATER HEAD (P - Q)	-10.00	-3.20	-2.70	-1.60							[CM]
Y) INITIAL TOTAL HEAD (T + W)	158.10	157.80	157.50	157.90							[CM]
Z) FINAL TOTAL HEAD (T + X)	140.00	146.80	147.30	148.40							[CM]
α) OUTFLOW TO INFLOW RATIO (U / V)	1.21	1.08	1.08	1.07							
PERMEABILITY (F * R) / (2 * H *S) * LN (Y / Z)	2.3E-07	2.3E-07	2.3E-07	2.3E-07							[CM/S]

STANDARD TEST METHOD FOR MEASUREMENT OF HYDRAULIC CONDUCTIVITY OF SATURATED MATERIALS (ASTM D5084)

C:\ANALYSIS\LABPEARM2

PROJECT: Vinje & Middleton CLIENT: 1382-001-00 DESCRIPTION: Remolded reddish brown sandy clay (CL) w		TESTED CHECK	D BY: ED BY: ability of :	RHC MAF 2 * (10 ⁻⁸)	S cm/s.	SAMPLE: DATE:	TP-4 @ 4 05/01/09	1'		Docu	ment No. 19-0141 Project No. SD634 FIGURE C-3.2
MOISTURE AND DENSITY	INITIAL		FINAL			TEST I	PARAM	ETERS			
 A) WET WEIGHT OF SAMPLE B) DRY WEIGHT OF SAMPLE C) MOISTURE CONTENT [(A - B) / B] D) WET DENSITY (A / J * 62.4) E) DRY DENSITY [D / (1 + C)] 	403.56 358.80 12.5 128.8 114.5		406.54 358.80 13.3 129.8 114.5	[G] [G] [PCF] [PCF]	F) G) H) J)	STANDE SAMPLE SAMPLE INITIAL SAMPLE	PIPE ARE E DIAMET E AREA (7 SAMPLE E VOLUM	AS ΈR τ * G ² / 4) HEIGHT Ε (I * H)	0.08 4.93 19.09 10.24 195.47	[CM ²] [CM] [CM ²] [CM] [CM ³]	
HYDRAULIC CONDUCTIVITY	1	2	3	4	5	6	7	8	9	10	
 K) CELL PRESSURE L) DRIVING PRESSURE (LEFT) M) BACK PRESSURE (RIGHT) N) INITIAL WATER LEVEL (LEFT) O) INITIAL WATER LEVEL (RIGHT) P) FINAL WATER LEVEL (RIGHT) Q) FINAL WATER LEVEL (RIGHT) R) FINAL SAMPLE HEIGHT S) TEST DURATION T) PRESSURE HEAD [(L - M) * 1000 / 1.0] U) WATER DROP ON LEFT (N - P) V) WATER RISE ON RIGHT (O - Q) W) INITIAL WATER HEAD (P - Q) Y) INITIAL TOTAL HEAD (T + W) Z) FINAL TOTAL HEAD (T + X) (a) OUTEL OW TO INEL OW RATIO (U / V) 	3.000 2.800 2.500 36.70 34.50 32.40 35.70 10.22 12780 300.00 4.30 -1.20 2.20 -3.30 302.20 296.70 3.58	3.500 3.300 3.000 36.20 34.80 34.50 36.20 10.22 11880 300.00 1.70 -1.40 1.40 -1.70 301.40 298.30 1.21	3.500 3.300 3.000 36.20 34.90 26.70 43.80 10.22 61980 300.00 9.50 -8.90 1.30 -17.10 301.30 282.90 1.07	3.500 3.300 3.000 36.60 34.90 32.60 38.90 10.22 20760 300.00 4.00 -4.00 1.70 -6.30 301.70 293.70 1.00							[KG/CM ²] [KG/CM ²] [KG/CM ²] [CM] [CM] [CM] [CM] [CM] [CM] [CM] [CM
PERMEABILITY (F * R) / (2 * H *S) * LN (Y / Z)	3.0E-08	1.8E-08	2.2E-08	2.7E-08							[CM/S]

STANDARD TEST METHOD FOR MEASUREMENT OF HYDRAULIC **CONDUCTIVITY OF SATURATED MATERIALS (ASTM D5084)**

C:\ANALYSIS\LABPEARM2

PROJECT: Vinje & Middleton CLIENT: 1382-001-00 DESCRIPTION: Remolded dark gray sandy clay (CL) with personal sectors of the sector of the sectors o		TESTED BY:RHCCHECKED BY:MAFrmeability of 4 * (10^{-7}) cm/s.				DATE:	TP-8 @ 3 05/07/09	3'		Docu	ument No. 19-0141 Project No. SD634 FIGURE C-3.3	
MOISTURE AND DENSITY	INITIAL		FINAL			TEST I	PARAMI	ETERS				
 A) WET WEIGHT OF SAMPLE B) DRY WEIGHT OF SAMPLE C) MOISTURE CONTENT [(A - B) / B] D) WET DENSITY (A / J * 62.4) E) DRY DENSITY [D / (1 + C)] 	347.89 280.33 24.1 111.5 89.8		374.10 280.33 33.4 119.9 89.8	[G] [G] [PCF] [PCF]	F) G) H) J)	STANDF SAMPLE SAMPLE INITIAL SAMPLE	PIPE ARE E DIAMET E AREA (π SAMPLE E VOLUMI	AS ER : * G² / 4) HEIGHT E (I * H)	0.08 4.93 19.09 10.20 194.71	[CM ²] [CM] [CM ²] [CM] [CM ³]		
HYDRAULIC CONDUCTIVITY	1	2	3	4	5	6	7	8	9	10		
 K) CELL PRESSURE L) DRIVING PRESSURE (LEFT) M) BACK PRESSURE (RIGHT) N) INITIAL WATER LEVEL (LEFT) O) INITIAL WATER LEVEL (RIGHT) P) FINAL WATER LEVEL (LEFT) Q) FINAL WATER LEVEL (RIGHT) R) FINAL SAMPLE HEIGHT S) TEST DURATION T) PRESSURE HEAD [(L - M) * 1000 / 1.0] U) WATER DROP ON LEFT (N - P) V) WATER RISE ON RIGHT (O - Q) W) INITIAL WATER HEAD (P - Q) Y) INITIAL TOTAL HEAD (T + W) Z) FINAL TOTAL HEAD (T + X) 	3.000 2.805 2.607 61.50 49.80 52.70 57.80 10.39 3720 198.00 8.80 -8.00 11.70 -5.10 209.70 192.90	3.000 2.810 2.612 61.30 49.90 52.00 59.30 10.43 4473 198.00 9.30 -9.40 11.40 -7.30 209.40 190.70	3.000 2.808 2.608 61.30 50.30 53.30 58.60 10.43 4320 200.00 8.00 -8.30 11.00 -5.30 211.00 194.70	3.000 2.808 2.608 61.40 50.40 46.80 64.30 10.43 7920 200.00 14.60 -13.90 11.00 -17.50 211.00 182.50							[KG/CM ²] [KG/CM ²] [KG/CM ²] [CM] [CM] [CM] [CM] [CM] [CM] [CM] [CM	
PERMEABILITY (F * R) / (2 * H *S) * LN (Y / Z)	4.8E-07	4.5E-07	4.0E-07	4.0E-07							[CM/S]	

Worksheet C.4-1: Categorization of Infiltration Feasibility Condition

Categ	orization of Infiltration Feasibility Condition	Worksho	eet C.4-1							
<u>Part 1 - </u> Would i consequ	<u>Part 1 - Full Infiltration Feasibility Screening Criteria</u> Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated?									
Criteria	Screening Question	Yes	No							
1	Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.									
Provide	basis:									
Summari	The preliminary factored infiltration rate was measured at less than 0.05 inches per hour at the two borehole percolation test locations (see Figures C-1.1 through C-2.2). This rate corresponds to a "No Infiltration" condition, per the City of La Mesa 2016 BMP Design Manual. The on-site soils are essentially impermeable.									
discussio	n of study/data source applicability.									
2	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.	e	X							
Provide	basis:									
	See answer to Item 1 above.									
Summari discussio	Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability.									

	Worksheet C.4-1 Page 2 of 4		
Criteria	Screening Question	Yes	No
3	Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		Х
Provide l	pasis:		
	See answer to Item 1 above.		
Summari discussio	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	. Provide narrative
4	Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		Х
Provide l	pasis:	I	
	See answer to Item 1 above.		
Summari discussio	ze findings of studies; provide reference to studies, calculations, maps, n of study/data source applicability.	data sources, etc	. Provide narrative
Part 1 Result*	If all answers to rows 1 - 4 are " Yes " a full infiltration design is potent. The feasibility screening category is Full Infiltration If any answer from row 1-4 is " No ", infiltration may be possible to so would not generally be feasible or desirable to achieve a "full infiltration Proceed to Part 2	ially feasible. me extent but n" design.	NO INFILTRATION

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by [City Engineer] to substantiate findings.

	Worksheet C.4-1 Page 3 of 4								
Part 2 – P	artial Infiltration vs. No Infiltration Feasibility Screening Criteria								
Would in conseque	ifiltration of water in any appreciable amount be physically nces that cannot be reasonably mitigated?	feasible without	any negative						
Criteria	Screening Question	Yes	No						
5	Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D.		X						
Provide ba	isis:								
T a r E	The preliminary factored infiltration rate was measured at less than 0.05 inches per hour at the two borehole percolation test locations (see Figures C-1.1 through C-2.2). This rate corresponds to a "No Infiltration" condition, per the City of La Mesa 2016 BMP Design Manual. The on-site soils are essentially impermeable.								
Summariz discussion	Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.								
6	Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2.		X						
Provide basis:									
S	ee answer to Item 5 above.								
Summariz discussion	Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.								

	Worksheet C.4-1 Page 4 of 4							
Criteria	Screening Question	Yes	No					
7	Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.							
Provide b	isis:							
5	See answer to Item 5 above.							
Summariz	e findings of studies; provide reference to studies, calculations, maps, c of study/data source applicability and why it was not feasible to mitigate	lata sources, etc. P low infiltration rate	rovide narrative s.					
8	Can infiltration be allowed without violating downstream water rights ? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3.		X					
Provide b	isis:							
5	See answer to Item 5 above.							
Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability and why it was not feasible to mitigate low infiltration rates.								
Part 2	If all answers from row 5-8 are yes then partial infiltration design is p The feasibility screening category is Partial Infiltration .	otentially feasible.	NOT PARTY					
Result*	If any answer from row 5-8 is no, then infiltration of any volume is infeasible within the drainage area. The feasibility screening category is	considered to be No Infiltration.	NO MER					

*To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/or studies may be required by Agency/Jurisdictions to substantiate findings

