

# DRAINAGE STUDY FOR 8181 Allison Avenue PROJECT

# LA MESA, CALIFORNIA

Intersection of Allison Avenue & Date Avenue KPFF Job # 1900264

April 2021

Prepared By:

#### **KPFF CONSULTING ENGINEERS**

700 South Flower Street, Suite 2100 Los Angeles, CA 90017 Contact: (213) 418-0201

# Table of Contents

| 1. | Proj | roject Location and Scope3   |  |  |
|----|------|------------------------------|--|--|
|    | 1.1  | Project Location             |  |  |
|    | 1.2  | Scope of Report              |  |  |
| 2. | Stuc | ly Objectives4               |  |  |
| 3. | Proj | ect Description4             |  |  |
|    | 3.1  | Pre-Development Conditions4  |  |  |
|    | 3.2  | Post Development Conditions4 |  |  |
| 4. | Met  | hodology4                    |  |  |
|    | 4.1  | Hydrology4                   |  |  |
|    | 4.2  | Hydraulics5                  |  |  |
| 5. | Res  | ults and Conclusions         |  |  |
|    | 5.1  | Hydrology Results            |  |  |
|    | 5.2  | Hydraulic Results            |  |  |
|    | 5.3  | Conclusions                  |  |  |

### List of Figures

|            | •                                                                       |
|------------|-------------------------------------------------------------------------|
| Figure 1-1 | Site Vicinity Map                                                       |
|            | List of Tables                                                          |
| Table 5-1  | Hydrology Results for Pre-Development (10-Year, 50-Year, and 100-Year)  |
| Table 5-2  | Hydrology Results for Post-Development (10-Year, 50-Year, and 100-Year) |
|            | List of Exhibits                                                        |
| Exhibit 1  | Existing Site Topography                                                |
| Exhibit 2  | Existing Site Drainage                                                  |
| Exhibit 3  | Proposed Site Drainage                                                  |
| Exhibit 4  | Rainfall Isopluvials                                                    |
|            |                                                                         |

Exhibit 5 Hydrology Calculations

### 1. Project Location and Scope

#### **1.1 Project Location**

The proposed development is located in the City of La Mesa, bound by Allison Avenue to the north, Date Avenue to the west and southwest, and a commercial parking lot to the southeast. See Figure 1 for the Site Vicinity Map. See Exhibit 1 for existing site topography.

The total lot development area is 1.27 acres. The development will involve the construction of approximately 147 one- and two-bedroom units and is assumed to be a four-story podium with surface and underground parking.



Figure 1-1: Site Vicinity Map

#### **1.2 Scope of Report**

This report will focus on identifying the hydrologic and hydraulic effects of the proposed development, by studying the 10-year, 50-year, and 100-year flow rates for the pre and post development conditions.

This report will not discuss water quality measures or best management practices for stormwater mitigation. For information regarding best management practice requirements and implementation, refer to the project Storm Water Quality Management Plan (SWQMP).

#### 2. Study Objectives

The specific objectives of this drainage study are:

- Calculate the pre and post development peak flow rates for the 10-year, 50-year, and 100-year storm events.
- Calculate the effects of the post development conditions on the existing hydrology and hydraulics.
- Identify pre and post development areas of concern.

### 3. **Project Description**

#### **3.1 Pre-Development Conditions**

The existing site consists of an asphalt parking lot to the west and a vacant site to the east. In the predeveloped condition, the site consists of approximately 55% impervious surface. The pre-development condition is considered 1 drainage management area (DMA) per Exhibit 2.

The overall site area drains from northeast to southwest with an elevation difference of approximately 11.85 feet over a span of 291.62 feet. The underlying soil is type D per the NRCS Hydrologic Soil Group classifications. The existing drainage conveyance is urban. Based on the current topographic survey, the site sheet flow is either routed to a v-ditch gutter that routes the flow to an onsite catch basin located at the southwest corner of the site or directly to the aforementioned catch basin. All flow entering this catch basin is then routed to another catch basin located on Date Avenue. There appears no offsite runoff is conveyed through the site.

#### **3.2 Post Development Conditions**

The proposed site consists of impervious features including a 4-story housing complex, a central courtyard open to the sky, and an underground parking structure. The pervious features will involve biofiltration landscape planters surrounding the outside perimeter of the housing structure and in the podium deck of the courtyard. In the post-development condition, the site consists of approximately 91% impervious surface. The post-development condition is divided into 10 drainage management areas (DMAs) per proposed grading and site features: DMA #1 through DMA #10 per Exhibit 3.

DMA #1 through DMA #10 consists of roof and podium drains which will be captured and conveyed to the proposed cistern. The captured runoff will then be discharged via sump pump to the proposed proprietary biofiltration system and discharged to the public storm drain system via curb drains. The proposed site will see a change of site topography due to the excavation of soil for the underground parking structure. The overall site development will join to the existing top of the curb.

#### 4. Methodology

#### 4.1 Hydrology

The hydrology calculations are based on the San Diego County Hydrology Manual (June 2003). The project site is less than one square mile, and therefore the Rational Method was used to calculate the peak flow rate for the 10-year, 50-year, and 100-year storm events. The Rational Method calculates peak flow rate (Q) as a function of runoff coefficient (C), rainfall intensity (I), and drainage area (A):

Q = C \* I \* A

#### Runoff Coefficients (C):

Runoff Coefficients for Rational Method in the Hydrology Manual is used to compute the runoff coefficients for the development conditions given the site's imperviousness, soil type, and land use:

 $C = 0.9 * (\% Impervious) + C_P * (1 - \% Impervious)$ 

The site's imperviousness was determined by calculating the impervious area in the pre- and postdevelopment conditions. Per the Hydrology Manual, all sites are assumed to be made up of Type D soil. The project's land use could be considered Commercial; however Industrial land use was assumed as a conservative approach to calculating the site's peak flow rate.

#### Rainfall Intensity (I):

Rainfall intensities were determined from the Intensity-Duration-Frequency Design Chart in the Hydrology Manual. The design chart takes into consideration the time of concentration ( $T_c$ ) and adjusted 6-hour storm rainfall amount ( $P_6$ ), see Exhibit 4, to calculate the rainfall intensity:

$$I = 7.44 * P_6 * D^{-0.645}$$

#### Area (A):

Drainage area was determined by inspecting the existing and proposed conditions and delineating areas according to grading and site features. The Pre-Development Drainage Condition and Post-Development Drainage Condition maps can be found in Exhibit 2 and Exhibit 3.

#### 4.2 Hydraulics

The site is a property line to property line structure, all drainage will be designed per the Plumbing Code by plumbing engineer. Further information will be provided.

#### 5. Results and Conclusions

#### **5.1 Hydrology Results**

Table 5-1 and Table 5-2 summarize the hydrology results of the pre- and post- development conditions given the 10-year storm event frequency. The proposed development will decrease the amount of pervious area and thus increase the project site peak flow runoff. As seen in Table 5-1 and Table 5-2, the peak flow runoff rate for the 10-year storm event increased from 3.86 cfs to 5.29 cfs in the pre- and post- development conditions. This represents a roughly 37.05% increase in the peak runoff flow rate. A similar increase in the peak flow runoff rate is experienced in the 50-year and 100-year storm event, which can be seen in Table 5-1 and Table 5-2. In the pre and post development conditions, the peak runoff rate increased from 4.93 cfs and 5.57 cfs to 6.76 cfs and 7.64 cfs, respectively. This represents an overall 37.11% and 37.16% increase in the peak runoff flow rate.

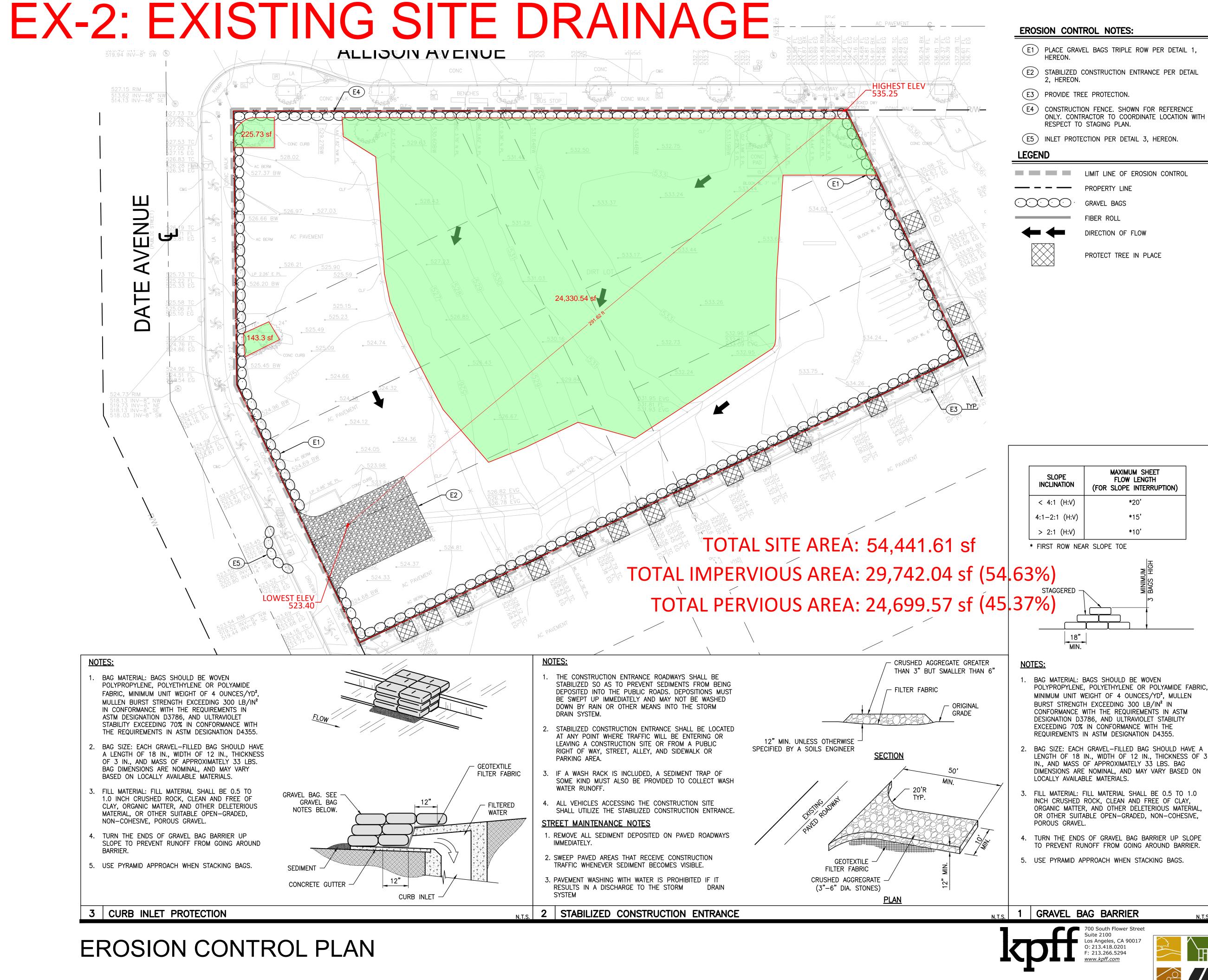
| Pre-Development Condition |              |              |           |           |            |
|---------------------------|--------------|--------------|-----------|-----------|------------|
| Drainage Area No.         | Area (acres) | % Impervious | Q10 (cfs) | Q50 (cfs) | Q100 (cfs) |
| DMA                       | 1.2          | 55%          | 3.29      | 4.20      | 4.75       |
| Total                     | 1.2          | 55%          | 3.86      | 4.93      | 5.57       |

| Post-Development Condition |              |             |           |           |            |
|----------------------------|--------------|-------------|-----------|-----------|------------|
| Drainage Area No.          | Area (acres) | %Impervious | Q10 (cfs) | Q50 (cfs) | Q100 (cfs) |
| DMA #1                     | 0.3          | 87%         | 1.22      | 1.56      | 1.76       |
| DMA #2                     | 0.1          | 89%         | 0.48      | 0.62      | 0.70       |
| DMA #3                     | 0.1          | 97%         | 0.49      | 0.63      | 0.71       |
| DMA #4                     | 0.0          | 98%         | 0.18      | 0.23      | 0.26       |
| DMA #5                     | 0.1          | 95%         | 0.50      | 0.64      | 0.73       |
| DMA #6                     | 0.1          | 98%         | 0.30      | 0.38      | 0.43       |
| DMA #7                     | 0.1          | 97%         | 0.45      | 0.58      | 0.65       |
| DMA #8                     | 0.2          | 89%         | 0.79      | 1.02      | 1.15       |
| DMA #9                     | 0.2          | 92%         | 0.69      | 0.88      | 1.00       |
| DMA #10                    | 0.0          | 84%         | 0.18      | 0.22      | 0.25       |
| Total                      | 1.3          | 92%         | 5.29      | 6.76      | 7.64       |

Table 5-2: Hydrology Results for Post-Development (10-Year, 50-Year, and 100-Year)

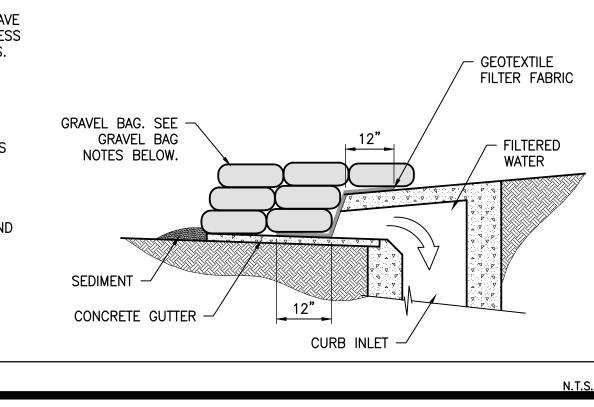

#### **5.2 Hydraulic Results**

The site is a property line to property line structure, all drainage will be designed per the Plumbing Code by plumbing engineer. Further information will be provided.


#### **5.3 Conclusions**

Proposed landscape area and various post construction BMPs identified in the project SWQMP will further alleviate the effects of additional hydrological or hydraulic demands which is typically expected from development.

# EX-1: EXISTING SITE TOPOGRAPHY




# 519.94 INV-8" SW



**ALLISON AVENUE TOD** 

# EROSION CONTROL PLAN



**USA PROPERTIES** 

(E1) PLACE GRAVEL BAGS TRIPLE ROW PER DETAIL 1,

(E2) STABILIZED CONSTRUCTION ENTRANCE PER DETAIL

ONLY. CONTRACTOR TO COORDINATE LOCATION WITH

LIMIT LINE OF EROSION CONTROL

DIRECTION OF FLOW

PROTECT TREE IN PLACE

MAXIMUM SHEET

FLOW LENGTH

\*20'

\*15'

\*10'

MINIM BAGS

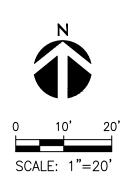
# **BMP NOTES:**

| THE FOLLOWING BMPS AS OUTLINED IN, BUT NOT LIMITED<br>PRACTICE HANDBOOK, CALIFORNIA STORMWATER QUALITY<br>CALIFORNIA, JULY 2012, MAY APPLY DURING THE CONSTR<br>(ADDITIONAL MEASURES MAY BE REQUIRED IF DEEMED A                                                                                                                                                                 | TASK FORCE, SACRAMENTO,<br>RUCTION OF THIS PROJECT         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| EROSION CONTROL                                                                                                                                                                                                                                                                                                                                                                  | WIND EROSION CONTROL                                       |
| EC1-SCHEDULING                                                                                                                                                                                                                                                                                                                                                                   | WE1-WIND EROSION CONTROL                                   |
| EC2-PRESERVATION OF EXISTING VEGETATION<br>EC3-HYDRAULIC MULCH<br>EC4-HYDROSEEDING                                                                                                                                                                                                                                                                                               | NON-STORMWATER MANAGEMENT                                  |
| EC3-HYDROSEEDING<br>EC4-HYDROSEEDING<br>EC5-SOIL BINDERS<br>EC6-STRAW MULCH<br>EC7-GEOTEXTILES AND MATS<br>EC8-WOOD MULCHING<br>EC9-EARTH DIKES AND DRAINAGE SWALES<br>EC10-VELOCITY DISSIPATION DEVICES<br>EC11-SLOPE DRAINS<br>EC12-STREAMBANK STABILIZATION<br>EC13-RESERVED<br>EC14-COMPOST BLANKET<br>EC15-SOIL PREPARATION/ROUGHENING<br>EC16-NON-VEGETATIVE STABILIZATION | NS1-WATER CONSERVATION PRACTIC                             |
| EC6-STRAW MULCH                                                                                                                                                                                                                                                                                                                                                                  | NS2-DEWATERING OPERATIONS                                  |
| EC7-GEOTEXTILES AND MATS                                                                                                                                                                                                                                                                                                                                                         | NS3-PAVING AND GRINDING OPERAT                             |
| ECO-EADTH DIKES AND DRAINAGE SWALES                                                                                                                                                                                                                                                                                                                                              | NS4-TEMPORARY STREAM CROSSING<br>NS5-CLEAR WATER DIVERSION |
| EC10-VELOCITY DISSIPATION DEVICES                                                                                                                                                                                                                                                                                                                                                | NS6-ILLICIT CONNECTION/DISCHARG                            |
| EC11-SLOPE DRAINS                                                                                                                                                                                                                                                                                                                                                                | NS7-POTABLE WATER/IRRIGATION                               |
| EC12-STREAMBANK STABILIZATION                                                                                                                                                                                                                                                                                                                                                    | NS8-VEHICLE AND EQUIPMENT CLEA                             |
| EC13-RESERVED                                                                                                                                                                                                                                                                                                                                                                    | NS9-VEHICLE AND EQUIPMENT FUEL                             |
| EC14-COMPOST BLANKET                                                                                                                                                                                                                                                                                                                                                             | NS10-VEHICLE AND EQUIPMENT MA                              |
| EC15-SOIL PREPARATION/ROUGHENING                                                                                                                                                                                                                                                                                                                                                 | NS11-PILE DRIVING OPERATIONS                               |
| EC16-NON-VEGETATIVE STABILIZATION                                                                                                                                                                                                                                                                                                                                                | NS12-CONCRETE CURING                                       |
|                                                                                                                                                                                                                                                                                                                                                                                  | NS13-CONCRETE FINISHING                                    |

TEMPORARY SEDIMENT CONTROL

- SE1-SILT FENCE SE2-SEDIMENT BASIN
- SE3-SEDIMENT TRAP
- SE4-CHECK DAM SE5-FIBER ROLLS
- SE6-GRAVEL BAG BERM SE7-STREET SWEEPING AND VACUUMING
- SE8-SANDBAG BARRIER SE9-STRAW BALE BARRIER
- SE10-STORM DRAIN INLET PROTECTION
- SE11-ACTIVE TREATMENT SYSTEMS SE12-MANUFACTURED LINEAR SEDIMENT CONTROLS
- SE13-COMPOST SOCKS AND BERMS SE14-BIOFILTER BAGS

EQUIPMENT TRACKING CONTROL


TC1-STABILIZED CONSTRUCTION ENTRANCE/EXIT TC2-STABILIZED CONSTRUCTION ROADWAY TC3-ENTRANCE/OUTLET TIRE WASH

# **EROSION CONTROL NOTES:**

- TEMPORARY EROSION CONTROL DEVICES SHOWN ON THE GRADING PLAN WHICH INTERFERE WITH THE WORK SHALL BE RELOCATED OR MODIFIED AS AND WHEN THE INSPECTOR SO DIRECTS AS THE WORK PROGRESSES TO MEET "AS GRADED" CONDITIONS.
- 2. ALL LOOSE SOIL AND DEBRIS SHALL BE REMOVED FROM THE STREET AREAS UPON STARTING OPERATIONS AND PERIODICALLY THEREAFTER AS DIRECTED BY THE INSPECTOR
- 3. WHEN THE INSPECTOR SO DIRECTS, A 12-INCH BERM SHALL BE MAINTAINED ALONG THE TOP OF THE SLOPE OF THOSE FILLS ON WHICH GRADING IS NOT IN PROGRESS.
- 4. STORM AND SEWER DRAIN TRENCHES THAT ARE CUT THROUGH BASIN DIKES OR BASIN INLET DIKES SHALL BE PLUGGED WITH SANDBAGS.
- 5. EXCEPT WHEN THE INSPECTOR DIRECTS OTHERWISE, ALL DEVICES SHOWN SHALL BE IN PLACE AT THE END OF EACH WORKING DAY WHEN RAIN IS FORECAST, AND SHALL BE MAINTAINED DURING THE RAINY SEASON (OCTOBER 15 TO APRIL 15).
- 6. SANDBAGS SHALL BE STOCKPILED ON SITE, READY TO BE PLACED IN POSITION WHEN RAIN IS FORECAST, OR WHEN THE INSPECTOR SO DIRECTS.
- 7. A "STANDBY EMERGENCY CREW" SHALL BE ALERTED BY THE PERMITTEE OR THE CONTRACTOR TO PERFORM EMERGENCY WORK DURING RAINSTORMS. THE PARTY TO BE CONTACTED IS: \_\_\_\_ (TO BE FILLED IN BY CONTRACTOR) NAME: PHONE NUMBER:

## DUST CONTROL NOTES:

- 1. DUST SHALL BE CONTROLLED BY WATERING AND/OR APPLYING A DUST PALLIATIVE. THE DUST PALLIATIVE SHALL BE APPLIED IN THE AMOUNT AT THE LOCATIONS AS DIRECTED BY THE ENGINEER.
- 2. WATER FOR DUST CONTROL SHALL BE APPLIED BY MEANS OF PRESSURE TYPE DISTRIBUTORS OR PIPE LINES EQUIPPED WITH A SPRAY SYSTEM OR HOSES WITH NOZZLES THAT WILL ENSURE A UNIFORM APPLICATION OF WATER.
- 3. UNLESS WATER IS APPLIED BY MEANS OF PIPE LINES, AT LEAST ONE MOBILE UNIT WITH A MINIMUM CAPACITY OF 100 GALLONS SHALL BE AVAILABLE FOR APPLYING WATER.
- 4. ALL SOIL MATERIALS OR DEBRIS TRUCKED FROM THE SITE SHALL BE COVERED AND SPRINKLED PRIOR TO ENTERING PUBLIC STREETS.
- 5. PROVIDE FOR WET SUPPRESSION OR CHEMICAL STABILIZING OF EXPOSED SOILS.
- 6. PROVIDE FOR RAPID CLEAN-UP OF SEDIMENTS DEPOSITED ON THE PAVED ROADS.
- 7. LIMIT THE AMOUNT OF AREAS DISTURBED BY CLEARING & EARTH MOVING OPERATIONS BY SCHEDULING THESE ACTIVITIES IN PHASES.

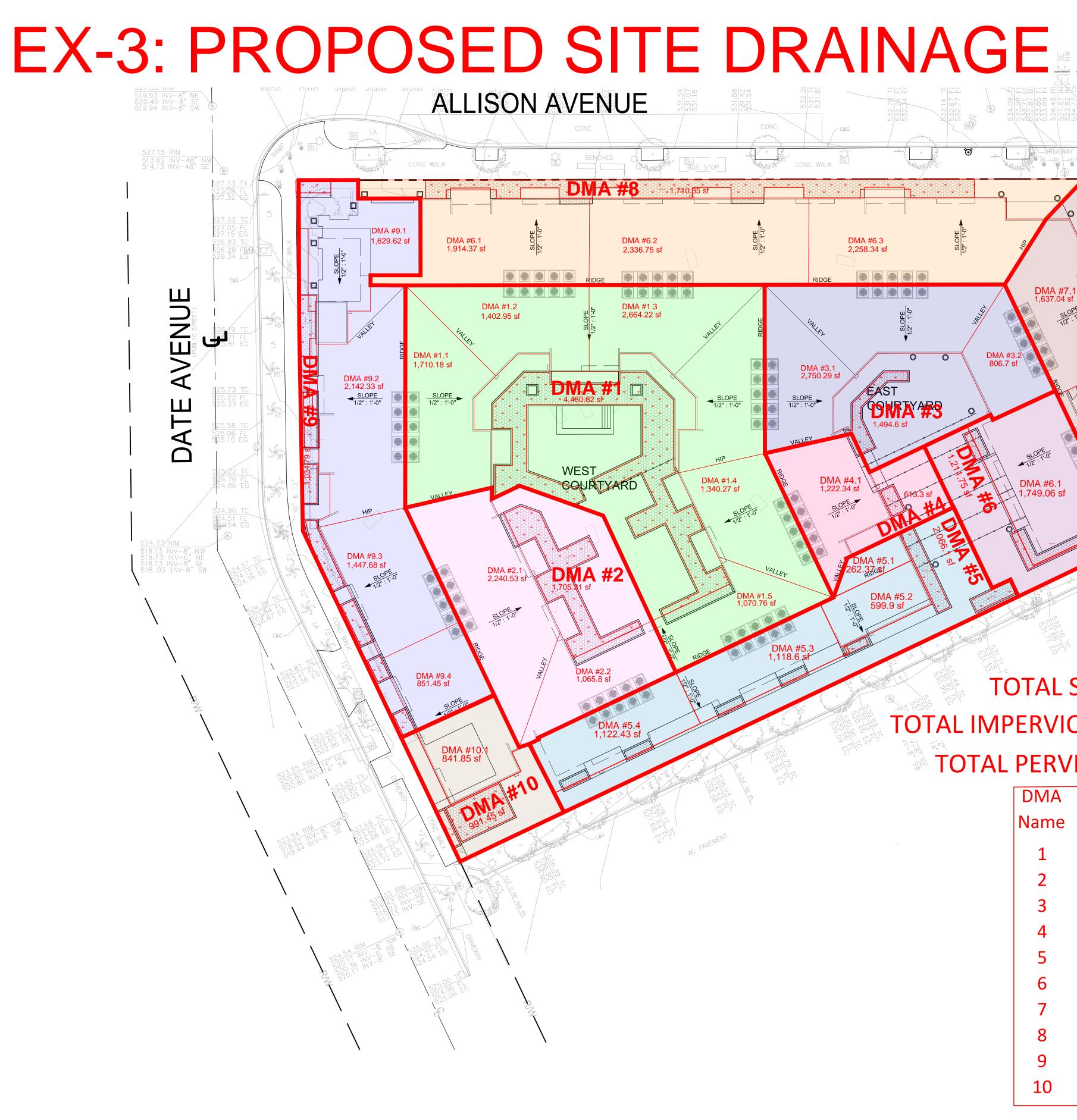


700 South Flower Street Los Angeles, CA 90017 0:213.418.0201



N.T.S.




| DATE                        | 02-15-2021 |
|-----------------------------|------------|
| JOB NO.                     | 1236.010   |
| 501 West Broa<br>Suite 1080 | dway       |
| San Diego, CA               | 92101      |
| 858-350-0544                |            |

C1.10

WE1-WIND EROSION CONTROL NON-STORMWATER MANAGEMENT NS1-WATER CONSERVATION PRACTICES NS2-DEWATERING OPERATIONS NS3-PAVING AND GRINDING OPERATIONS NS4-TEMPORARY STREAM CROSSING NS5-CLEAR WATER DIVERSION NS6-ILLICIT CONNECTION/DISCHARGE NS7-POTABLE WATER/IRRIGATION NS8-VEHICLE AND EQUIPMENT CLEANING NS9-VEHICLE AND EQUIPMENT FUELING NS10-VEHICLE AND EQUIPMENT MAINTENANCE NS11-PILE DRIVING OPERATIONS NS12-CONCRETE CURING NS13-CONCRETE FINISHING NS14-MATERIAL OVER WATER NS15-DEMOLITION ADJACENT TO WATER NS16-TEMPORARY BATCH PLANTS WASTE MANAGEMENT & MATERIALS POLLUTION CONTROL WM1-MATERIAL DELIVERY AND STORAGE WM2-MATERIAL USE WM3-STOCKPILE MANAGEMENT

WM4-SPILL PREVENTION AND CONTROL WM5-SOLID WASTE MANAGEMENT WM6-HAZARDOUS WASTE MANAGEMENT WM7-CONTAMINATED SOIL MANAGEMENT WM8-CONCRETE WASTE MANAGEMENT WM9-SANITARY/SEPTIC WASTE MANAGEMENT WM10-LIQUID WASTE MANAGEMENT

# **GRADING PLAN - PODIUM LEVEL**



# TOTAL SITE AREA: 54,536 sf TOTAL IMPERVIOUS AREA: 49,944 sf (91\58%) TOTAL PERVIOUS AREA: 4,592 sf (8.42%)

DMA #7.2 1,393,74 st

 33.87.09
 4.00
 4.00

 33.87.09
 4.00
 4.00

 33.87.00
 5.00
 5.00

 33.87.00
 5.00
 5.00

 33.87.00
 5.00
 5.00

 33.87.00
 5.00
 5.00

 33.4.25
 6.00
 5.00

 34.42
 6.00
 5.00

 34.42
 6.00
 5.00

 34.42
 6.00
 5.00

 34.43
 7.1
 7.00

 34.43
 7.1
 7.00

 35.62
 6.0
 7.00

 35.62
 7.0
 7.00

 35.62
 7.0
 7.00

 35.62
 7.0
 7.00

 35.62
 7.0
 7.00

 35.61
 7.0
 7.00

 35.62
 7.0
 7.00

 35.61
 7.0
 7.00

 35.62
 7.0
 7.00

 35.61
 7.0
 7.00

 35.61
 7.0
 7.00

DMA #7.1 1,637.04 sf

DMA #3.2 806.7 sf

0

0

**DWA**#3

DMA #5.2 599.9 sf

SLOPE

| DMA<br>Name | Total Area<br>(sf) | Impervious<br>Area (sf) | Pervious<br>Area (sf) |
|-------------|--------------------|-------------------------|-----------------------|
| 1           | 12669              | 11,015                  | 1,654                 |
| 2           | 5011               | 4,457                   | 554                   |
| 3           | 5052               | 4,914                   | 138                   |
| 4           | 1836               | 1,791                   | 45                    |
| 5           | 5169               | 4,916                   | 253                   |
| 6           | 3026               | 2,961                   | 65                    |
| 7           | 4614               | 4,494                   | 120                   |
| 8           | 8220               | 7,297                   | 923                   |
| 9           | 7106               | 6,563                   | 543                   |
| 10          | 1833               | 1,536                   | 297                   |

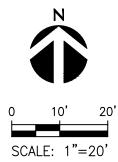
Boen

DMA #6.3 2,258.34 sf

DMA #3.1 2,750.29 sf

DMA #4.1 1,222.34 sf

SLOPE 1/2" : 1'-0"


EAST

# CONSTRUCTION NOTES:

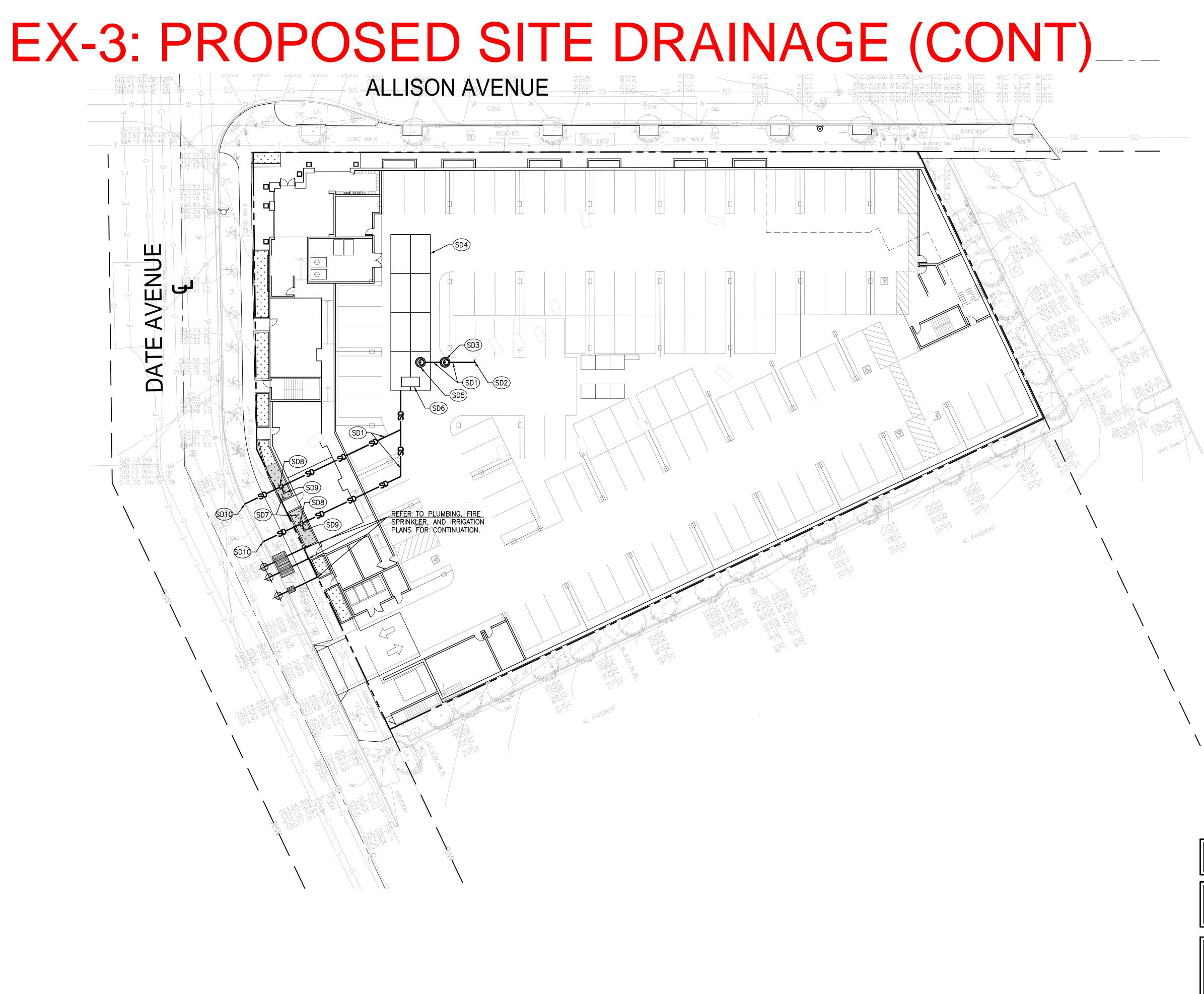
| (G01)      | AREA DRAIN PER DETAIL <b>[SD01]</b> , SHEET <b>[]</b> .            |
|------------|--------------------------------------------------------------------|
| (G02)      | PCC PAVING PER DETAIL <b>[P07]</b> , SHEET <b>[]</b> .             |
| (G03)      | CONTROL JOINT PER DETAIL [P14], SHEET [].                          |
| (G04)      | ASPHALT PAVING PER DETAIL <b>[P06]</b> , SHEET <b>[]</b> .         |
| (G05)      | PCC CURB AND GUTTER PER DETAIL <b>[P02]</b> , SHEET <b>[]</b> .    |
| <b>G06</b> | PAINT PARKING STRIPING PER DETAIL <b>[STO1],</b> SHEET <b>[]</b> . |
| (G07)      | SITE FEATURE WALL PER [] PLANS.                                    |
| (G08)      | ADA CURB RAMP PER APWA STANDARD PLAN 111-2, CASE TYPE 1            |
| (G09)      | 6" CURB PER DETAIL <b>[P01]</b> , SHEET <b>[]</b> .                |
| (G10)      | VALLEY GUTTER PER DETAIL <b>[P04]</b> , SHEET <b>[]</b> .          |
| (G11)      | DRIVE APPROACH PER APWA STANDARD PLAN 110-1, TYPE C.               |

# LEGEND

|                                                                                                         | LIMIT OF WORK                                                      |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                         | PROPERTY LINE                                                      |
| $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$                                       | FLOW LINE                                                          |
| GB                                                                                                      | GRADE BREAK                                                        |
| — R — R — R —                                                                                           | RIDGE LINE                                                         |
| $ \longrightarrow  \longrightarrow  \longrightarrow  \longrightarrow  \longrightarrow  \longrightarrow$ | EARTHEN SWALE                                                      |
|                                                                                                         | SAWCUT AND JOIN                                                    |
|                                                                                                         | GRADE SLOPE (HORIZONTAL:VERTICAL)                                  |
| oo                                                                                                      | LIMITS OF GRADING                                                  |
| · ·                                                                                                     | GRADING BENCH                                                      |
| <u> </u>                                                                                                | PROPOSED MAJOR CONTOUR                                             |
| 102                                                                                                     | PROPOSED MINOR CONTOUR                                             |
|                                                                                                         | CONCRETE PAVING<br>(REFER TO SHEET <b>[CX.XX]</b> FOR DETAILS)     |
|                                                                                                         | ASPHALT<br>(REFER TO SHEET <b>[CX.XX]</b> FOR DETAILS)             |
|                                                                                                         | GRAVEL<br>(REFER TO ARCHITECTURAL PLANS FOR DETAILS)               |
|                                                                                                         | PLANTER AREA/LANDSCAPE<br>(REFER TO LANDSCAPING PLANS FOR DETAILS) |
|                                                                                                         | SAND<br>(REFER TO ARCHITECTURAL PLANS FOR DETAILS)                 |
|                                                                                                         | PROPOSED BUILDING<br>(REFER TO ARCHITECTURAL PLANS FOR DETAILS)    |



C1.33






02-15-2021 1236.010 DATE JOB NO. 501 West Broadway Suite 1080 San Diego, CA 92101 858-350-0544

# 8181 ALLISON AVENUE TOD

# UTILITY PLAN





Viol South Flower Street Suite 2100
 Los Angeles, CA 90017
 O: 213.418.0201
 F: 213.266.5294
 www.kpff.com

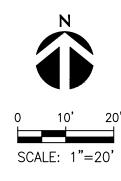
**USA PROPERTIES** 

# UTILITY CONSTRUCTION NOTES:

| STORM | DRAIN                                                                                                              |
|-------|--------------------------------------------------------------------------------------------------------------------|
| (SD1) | PVC, SCHEDULE 40 STORM DRAIN PIPE.                                                                                 |
| (SD2) | POINT OF CONNECTION TO PLUMBING.                                                                                   |
| (SD3) | CDS PRETREATMENT UNIT.                                                                                             |
| (SD4) | PRECAST CONCRETE MODULE FOR STORM WATER STORAGE. MINIMUM VOLUME = $5,500$ CUBIC FEET.                              |
| (SD5) | STORM WATER STORAGE TANK RISER PER MANUFACTURER.                                                                   |
| SD6   | PUMP.                                                                                                              |
| (SD7) | PREFABRICATED BIOFILTRATION PLANTER WITH LINEAR FLOW PER<br>MANUFACTURER. MINUMUM TREATMENT FLOW RATE = 0.312 CFS. |
| SD8   | 12" X 12" PRECAST CONCRETE CATCH BASIN.                                                                            |
| (SD9) | OVERFLOW DRAIN.                                                                                                    |
| SD10  | CURB DRAIN.                                                                                                        |

|                                                                                                                     | FROFLITT LINE                      |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------|
| SS                                                                                                                  | SANITARY SEWER                     |
| —W                                                                                                                  | WATER                              |
| D₩                                                                                                                  | DOMESTIC WATER                     |
| FW                                                                                                                  | FIRE WATER                         |
| SD                                                                                                                  | STORM DRAIN                        |
| G                                                                                                                   | GAS                                |
| ——Е——                                                                                                               | ELECTRIC                           |
| T                                                                                                                   | TELEPHONE                          |
|                                                                                                                     | PERFORATED PIPE                    |
| $\Phi$                                                                                                              | POINT OF CONNECTION                |
| <b>s</b>                                                                                                            | COORDINATION POINT                 |
| <b>]</b>                                                                                                            | CAP OR PLUG                        |
| $\odot$                                                                                                             | UTILITY MANHOLE                    |
| (Ô)                                                                                                                 | UTILITY CLEANOUT                   |
|                                                                                                                     | STORM DRAIN INLET                  |
| <b>⊕</b>                                                                                                            | AREA DRAIN/PLANTER DRAIN           |
|                                                                                                                     | TRENCH DRAIN                       |
| $\mathbf{\hat{o}}$                                                                                                  | FIRE HYDRANT                       |
|                                                                                                                     | THRUST BLOCK                       |
| $\mathcal{O}^{\mathcal{O}}$                                                                                         | FIRE DEPARTMENT CONNECTIO<br>(FDC) |
|                                                                                                                     | POST INDICATOR VALVE (PIV)         |
| $\otimes$                                                                                                           | WATER VALVE                        |
|                                                                                                                     | BACKFLOW ASSEMBLY                  |
|                                                                                                                     | UTILITY METER VAULT                |
| <ul> <li>* * * * * *</li> </ul> | BIOFILTRATION PLANTER              |

LIMIT OF WORK


PROPERTY LINE

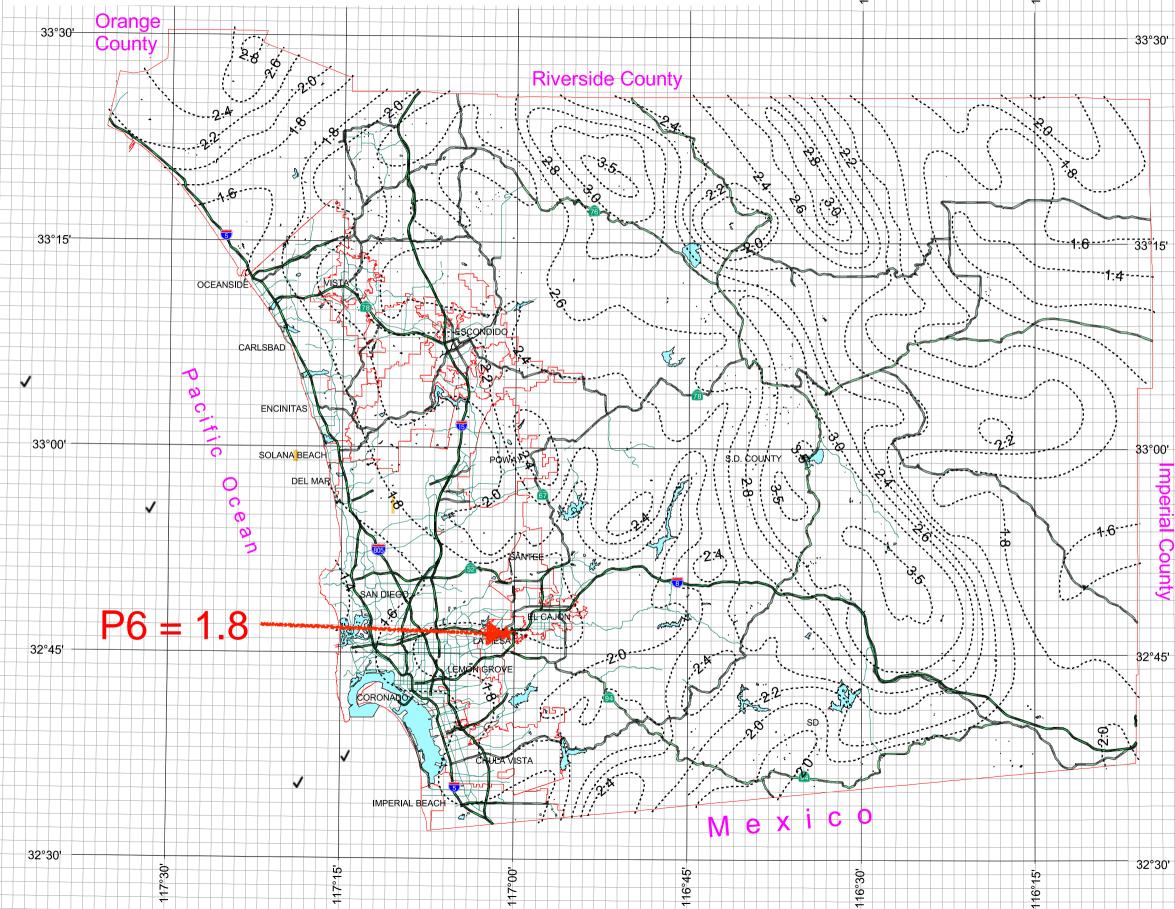
LEGEND:

NOTE: IRRIGATION WATER METER, LINES AND APPURTENANCES BY OTHERS

NOTE: ALL BMP'S PROPOSED AS A PART OF THIS PROJECT ARE TO BE INSPECTED BY THE ENGINEER OF RECORD AFTER INSTALLATION AND PRIOR TO OBTAINING A CERTIFICATE OF OCCUPANCY.

NOTE: PRIOR TO THE INSTALLATION OF ALL STORM DRAIN AND SEWER MAIN LINE CONNECTIONS, THE CONTRACTOR SHALL POTHOLE AND VERIFY THE HORIZONTAL AND VERTICAL LOCATION OF THE MAIN LINE. IF CONDITIONS DIFFER FROM THOSE ON THE PLAN, THE CONTRACTOR SHALL NOTIFY THE ENGINEER AND SHALL NOT BEGIN CONSTRUCTION UNTIL THE CHANGED CONDITION HAS BEEN EVALUATED.




C1.40





04-15-2021 1236.010 501 West Broadway San Diego, CA 92101

# EX-4: RAINFALL ISOPLUVIALS

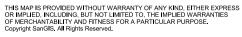


6°30'

6°15'

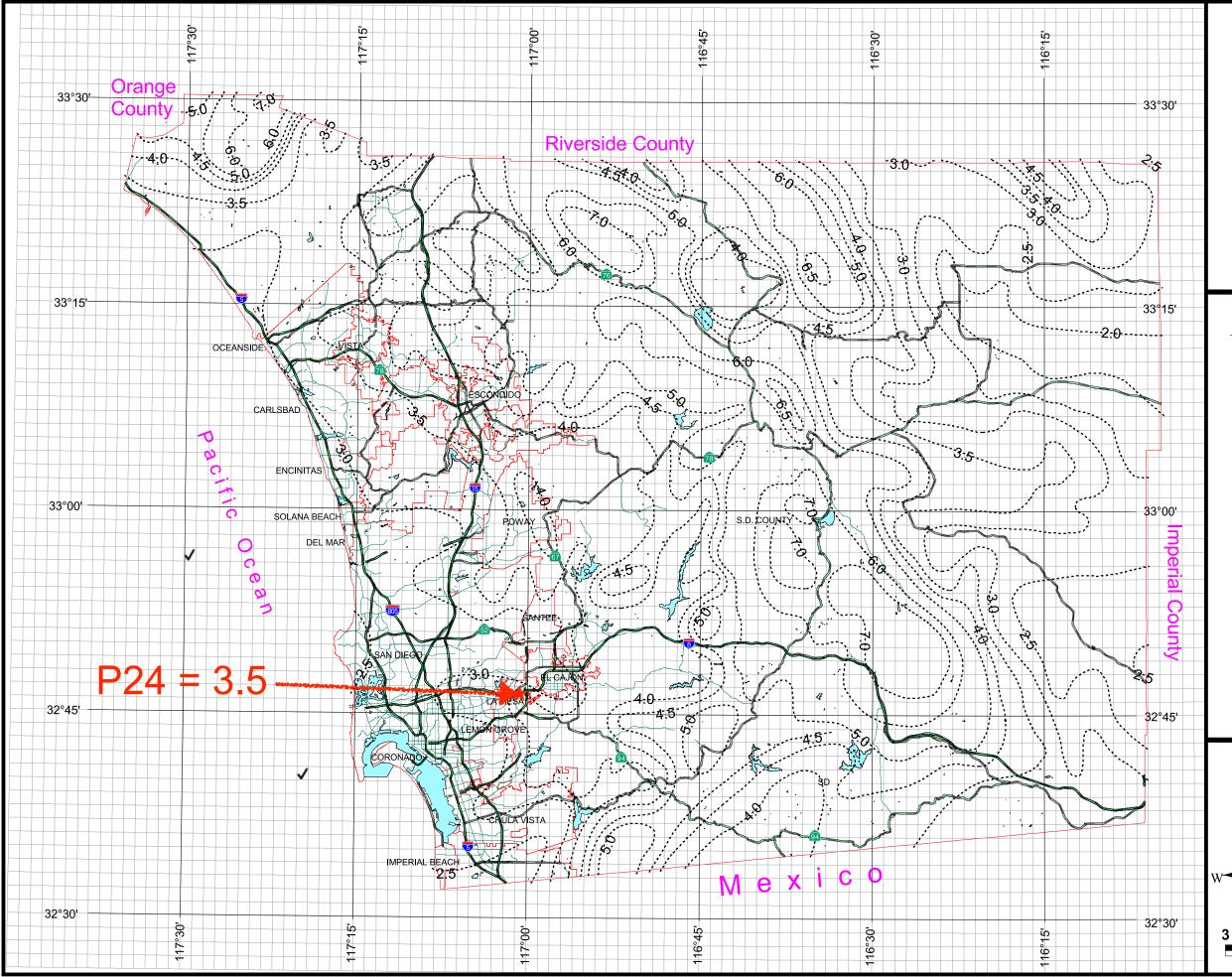
# County of San Diego Hydrology Manual




# Rainfall Isopluvials

#### **10 Year Rainfall Event - 6 Hours**

Isopluvial (inches)







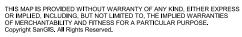

This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.



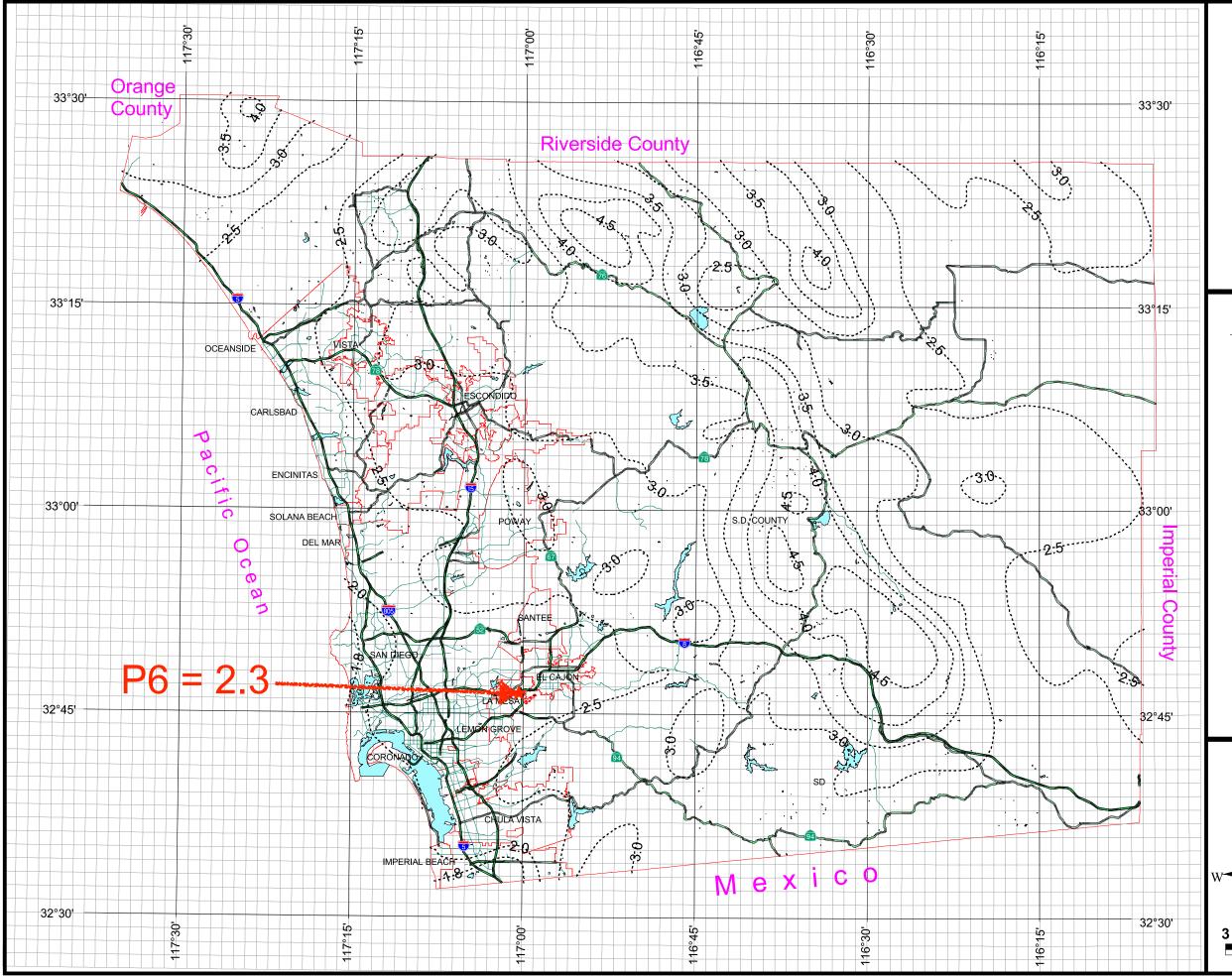


# Rainfall Isopluvials


#### **10 Year Rainfall Event - 24 Hours**

-----

Isopluvial (inches)








This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.



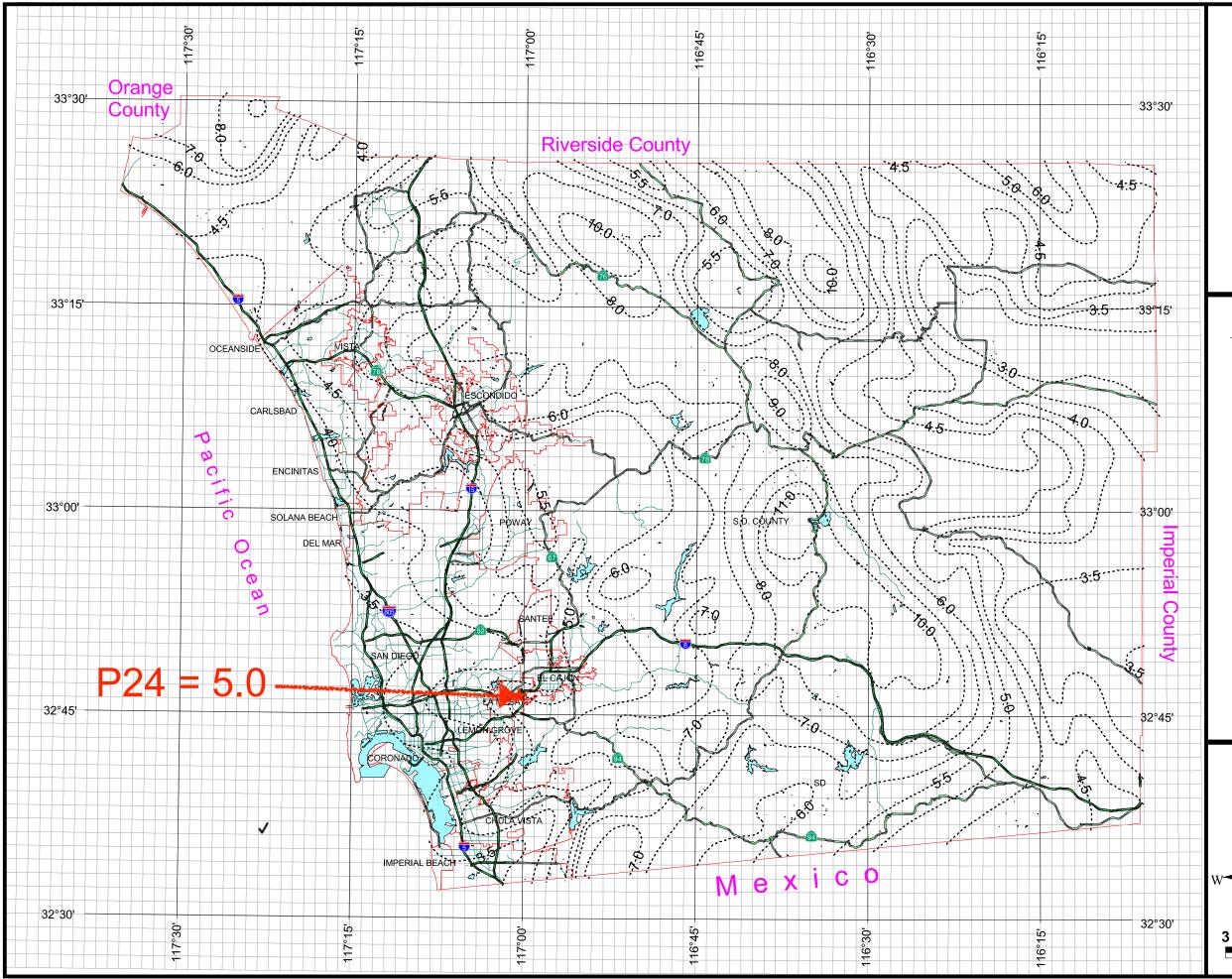


# Rainfall Isopluvials

#### 50 Year Rainfall Event - 6 Hours

----

Isopluvial (inches)








This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.

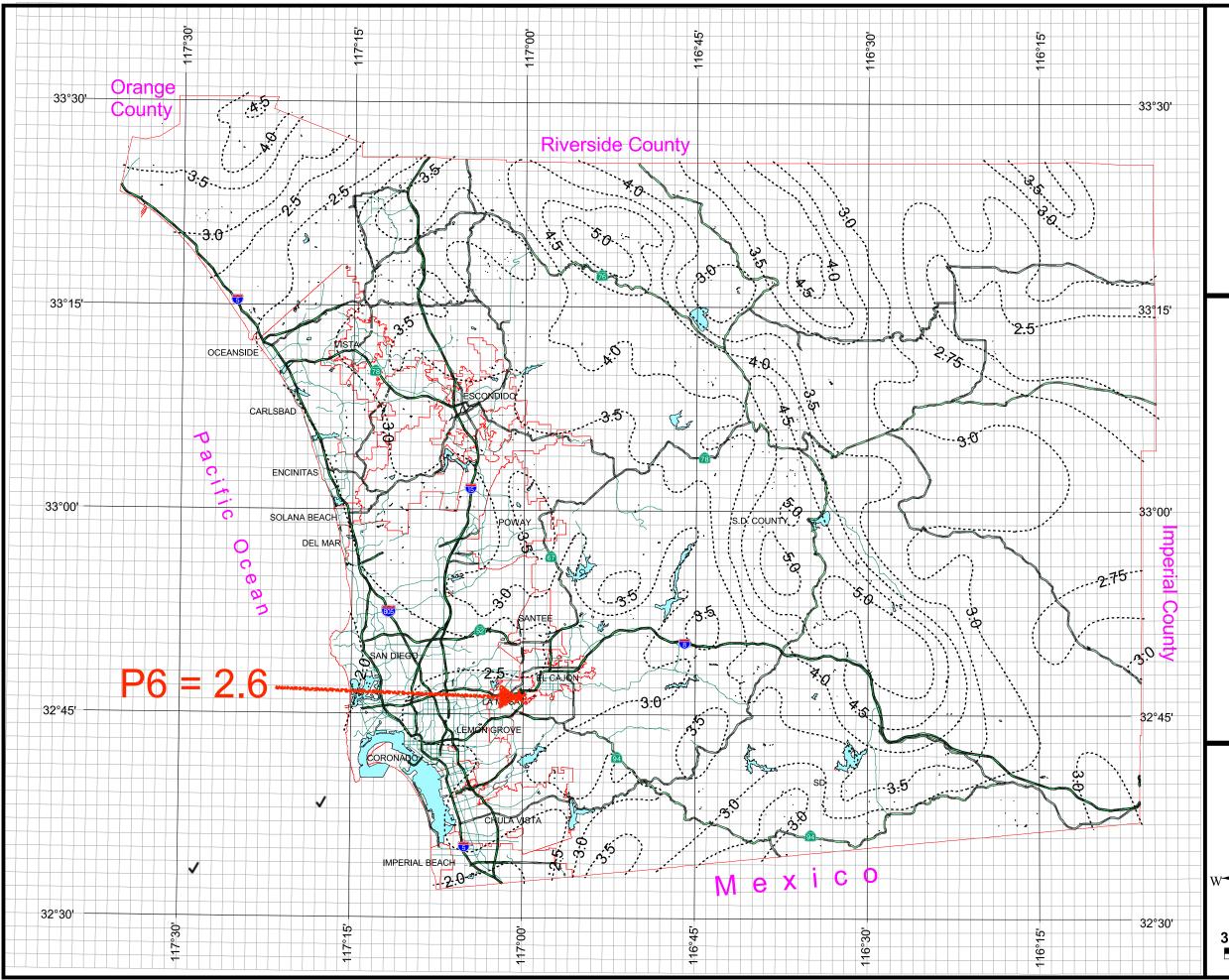




# Rainfall Isopluvials

#### 50 Year Rainfall Event - 24 Hours

----- Isopluvial (inches)








This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.



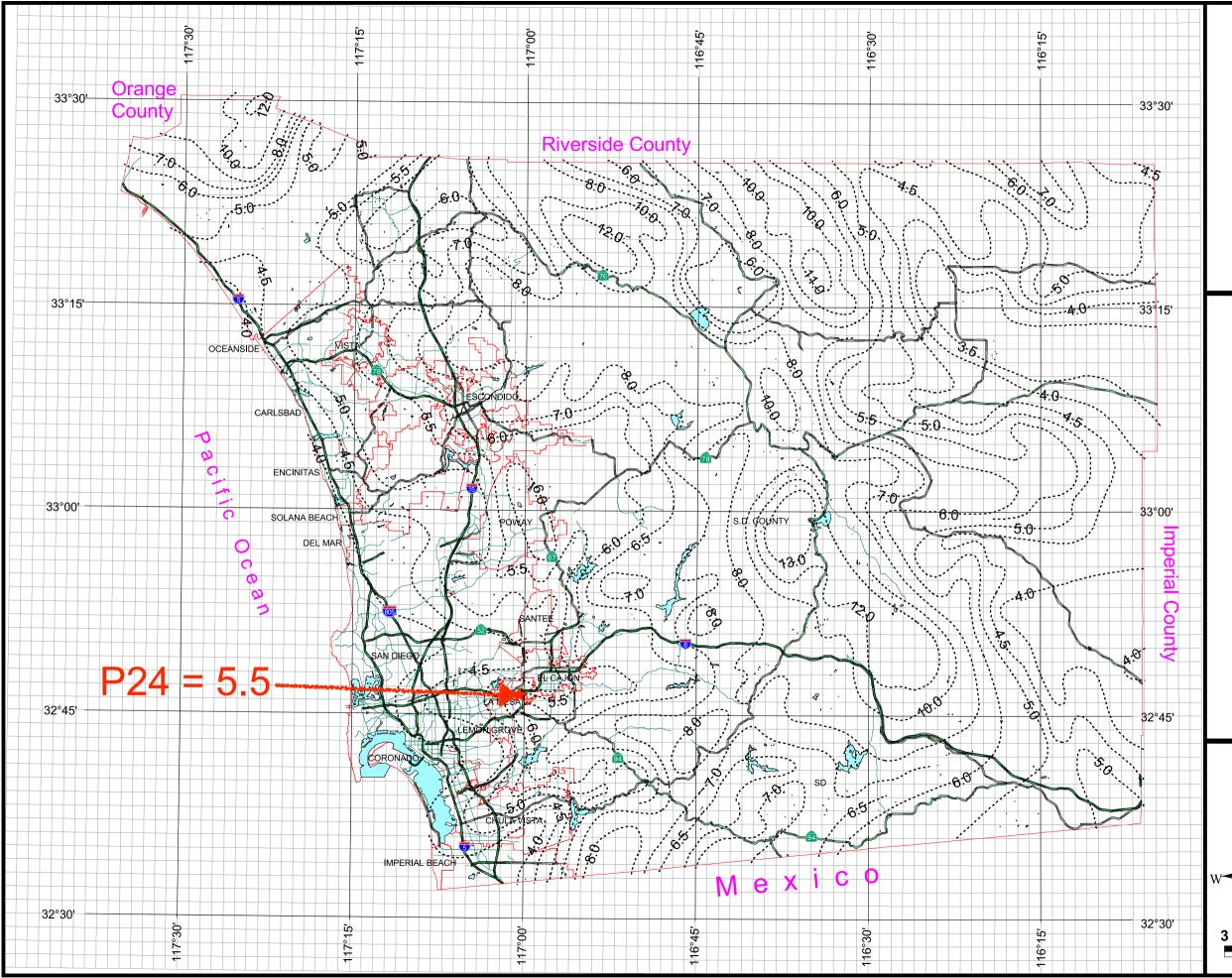


# Rainfall Isopluvials

#### **<u>100 Year Rainfall Event - 6 Hours</u>**

Isopluvial (inches)








THIS MAP IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Copyright SanGIS, All Rights Reserved.

This products may contain information from the SANDAG Regional Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.





# Rainfall Isopluvials

#### **100 Year Rainfall Event - 24 Hours**

Isopluvial (inches)







This products may contain information from the SANDAG Regiona Information System which cannot be reproduced without the written permission of SANDAG.

This product may contain information which has been reproduced with permission granted by Thomas Brothers Maps.

# **EX-5: HYDROLOGY CALCULATIONS**

### Table 1: Equations Used in Hydrology Study

| Equations Used |                                                               |  |  |  |  |
|----------------|---------------------------------------------------------------|--|--|--|--|
| 1.             | $C = 0.90 * (\% Impervious) + C_p * (1 - \% Impervious)$      |  |  |  |  |
| 2.             | $T_{c} = \frac{1.8 * (1.1 - C) * sqrt(D)}{(s)^{\frac{1}{3}}}$ |  |  |  |  |
| 3.             | $I = 7.44 * P_6 * D^{-0.645}$                                 |  |  |  |  |
| 4.             | Q = C * I * A                                                 |  |  |  |  |

# Table 2: Definition of Variables in Hydrology Study Equations

| Definition of Variables |                                                                                                                                      |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| С                       | Area- Weighted Runoff Coefficient, proportion of rainfall that runs off the surface                                                  |  |  |  |  |  |
| % Impervious            | The percentage of project site area that is hardscape                                                                                |  |  |  |  |  |
| Cp                      | Pervious Runoff Coefficient; Value of 0.35 used                                                                                      |  |  |  |  |  |
| P <sub>6</sub> (in)     | The adjusted 6-hour storm rainfall amount                                                                                            |  |  |  |  |  |
| D                       | In Equation 2 of Table 4, D is the watercourse distance in feet In Equation 3 of Table 4, D is the duration in minutes (use $t_c$ ); |  |  |  |  |  |
| s (%)                   | Slope along watercourse distance                                                                                                     |  |  |  |  |  |
| T <sub>c</sub> (min)    | Time of concentration (minimum 5 minutes)                                                                                            |  |  |  |  |  |
| I (in/hr)               | Average rainfall Intensity for a selected storm frequency                                                                            |  |  |  |  |  |
| A (acres)               | Drainage Area                                                                                                                        |  |  |  |  |  |
| Q (cfs)                 | Peak discharge in cubic feet per second                                                                                              |  |  |  |  |  |

### **Table 3: Hydrology Calculations for Pre-Development Condition**

| Pre-Development Condition |           |              |              |      |      |      |      |           |           |            |
|---------------------------|-----------|--------------|--------------|------|------|------|------|-----------|-----------|------------|
| Drainage Area No.         | Area (SF) | Area (acres) | % Impervious | С    | Тс   | l10  | l100 | Q10 (cfs) | Q50 (cfs) | Q100 (cfs) |
| DMA                       | 54,441    | 1.25         | 55%          | 0.65 | 5.00 | 4.74 | 6.85 | 3.86      | 4.93      | 5.57       |
| Total                     | 54,441    | 1.25         | 55%          | -    | -    | -    | -    | 3.86      | 4.93      | 5.57       |

# **Table 4: Hydrology Calculations for Post-Development Condition**

| Post-Development Condition |           |              |             |      |      |      |      |           |           |            |
|----------------------------|-----------|--------------|-------------|------|------|------|------|-----------|-----------|------------|
| Drainage Area No.          | Area (SF) | Area (acres) | %Impervious | С    | Тс   | 110  | I100 | Q10 (cfs) | Q50 (cfs) | Q100 (cfs) |
| DMA #1                     | 12,669    | 0.29         | 87%         | 0.89 | 5.00 | 4.74 | 6.85 | 1.22      | 1.56      | 1.76       |
| DMA #2                     | 5,011     | 0.12         | 89%         | 0.89 | 5.00 | 4.74 | 6.85 | 0.48      | 0.62      | 0.70       |
| DMA #3                     | 5,052     | 0.12         | 97%         | 0.90 | 5.00 | 4.74 | 6.85 | 0.49      | 0.63      | 0.71       |
| DMA #4                     | 1,836     | 0.04         | 98%         | 0.90 | 5.00 | 4.74 | 6.85 | 0.18      | 0.23      | 0.26       |
| DMA #5                     | 5,169     | 0.12         | 95%         | 0.89 | 5.00 | 4.74 | 6.85 | 0.50      | 0.64      | 0.73       |
| DMA #6                     | 3,026     | 0.07         | 98%         | 0.90 | 5.00 | 4.74 | 6.85 | 0.30      | 0.38      | 0.43       |
| DMA #7                     | 4,614     | 0.11         | 97%         | 0.90 | 5.00 | 4.74 | 6.85 | 0.45      | 0.58      | 0.65       |
| DMA #8                     | 8,220     | 0.19         | 89%         | 0.89 | 5.00 | 4.74 | 6.85 | 0.79      | 1.02      | 1.15       |
| DMA #9                     | 7,106     | 0.16         | 92%         | 0.89 | 5.00 | 4.74 | 6.85 | 0.69      | 0.88      | 1.00       |
| DMA #10                    | 1,833     | 0.04         | 84%         | 0.88 | 5.00 | 4.74 | 6.85 | 0.18      | 0.22      | 0.25       |
| Total                      | 54,536    | 1.25         | 92%         | -    | -    | -    | -    | 5.29      | 6.76      | 7.64       |

# **Table 5: Area-Weighted Runoff Coefficient Calculations**

|               | Area-Weighted Runoff Coefficient Calculations |                                      |  |  |  |  |
|---------------|-----------------------------------------------|--------------------------------------|--|--|--|--|
| Drainage Area | % Imp                                         | Equation for C                       |  |  |  |  |
| DMA #1        | 0.87                                          | 0.90 * (0.87) + (0.79 * 0.13) = 0.89 |  |  |  |  |
| DMA #2        | 0.89                                          | 0.90 * (0.89) + (0.79 * 0.11) = 0.89 |  |  |  |  |
| DMA #3        | 0.97                                          | 0.90 * (0.97) + (0.79 * 0.03) = 0.90 |  |  |  |  |
| DMA #4        | 0.98                                          | 0.90 * (0.98) + (0.79 * 0.02) = 0.90 |  |  |  |  |
| DMA #5        | 0.95                                          | 0.90 * (0.95) + (0.79 * 0.05) = 0.89 |  |  |  |  |
| DMA #6        | 0.98                                          | 0.90 * (0.98) + (0.79 * 0.02) = 0.90 |  |  |  |  |
| DMA #7        | 0.97                                          | 0.90 * (0.97) + (0.79 * 0.03) = 0.90 |  |  |  |  |
| DMA #8        | 0.89                                          | 0.90 * (0.89) + (0.79 * 0.11) = 0.89 |  |  |  |  |
| DMA #9        | 0.92                                          | 0.90 * (0.92) + (0.79 * 0.08) = 0.89 |  |  |  |  |
| DMA #10       | 0.84                                          | 0.90 * (0.84) + (0.79 * 0.16) = 0.88 |  |  |  |  |

Note: C = 0.90 \* (%Impervious) + Cp \* (1 - %Impervious)

| Table el Majaetea e mear i ereipitation |                               |     |      |             |  |  |  |  |  |
|-----------------------------------------|-------------------------------|-----|------|-------------|--|--|--|--|--|
|                                         | Adjusted 6-Hour Percipitation |     |      |             |  |  |  |  |  |
| Years                                   | P6                            | P24 | %    | Adjusted P6 |  |  |  |  |  |
| 10                                      | 1.8                           | 3.5 | 0.51 | 1.8         |  |  |  |  |  |
| 50                                      | 2.3                           | 5   | 0.46 | 2.3         |  |  |  |  |  |
| 100                                     | 2.6                           | 5.5 | 0.47 | 2.6         |  |  |  |  |  |

# Table 5: Adjusted 6-Hour Percipitation