APPENDIX L Water Master Plan Report

Moffett Park Specific Plan Sunnyvale, CA

Water Master Plan Report

October 2022

Prepared for:City of Sunnyvale

Prepared by:

255 Shoreline Drive, Suite 200 Redwood City, CA 94065

1.0 INTRODUCTION

The Moffett Park Specific Plan (MPSP) provides guidance on the development of the Moffett Park area with corporate headquarters, offices, and research and development facilities. The MPSP was adopted by City of Sunnyvale (City) in 2004, and last revised in 2013. The MPSP documents goals and objectives for future development, community and design guidelines, infrastructure improvements, and development standards. The MPSP is being updated because of recent changes to proposed land uses and anticipated development intensities.

The 2013 MPSP revision examined the existing water system and determined the minimum water system improvements that are required to support buildout conditions. Changes to the anticipated land use and development intensities may affect the proposed water system improvements. BKF Engineers (BKF) performed an analysis of the existing and proposed domestic water distribution system to evaluate impacts and determine required improvements to support the updated buildout conditions. The BKF effort included review of updated land uses and development intensity assumptions, estimation of domestic water demands, and evaluation of existing water system under peak demand scenarios. This Water Master Plan (WMP) has been prepared to document the analysis and provide recommended improvements to support the latest buildout condition.

2.0 LAND USE AND DEVELOPMENT INTENSITY

The MPSP provides a comprehensive, long-term plan that supports the development of the Moffett Park area. The plan includes a mix of land uses consistent with the City's goals and objectives for future development. The Moffett Park Specific Plan area is shown in **Figure 1** below.

Figure 1 - Moffett Park Specific Plan Area

The total MPSP area is approximately 1,157 acres. The majority of this area is expected to be redeveloped as part of the buildout of Moffett Park, with some exceptions. Public land parcels that include

right-of-way and public roads, the Lockheed Martin campus parcel, and institutional parcels including public schools and emergency services were all assumed to be fully developed in the existing condition. These parcels are not expected to be re-developed as part of buildout conditions. With these exceptions, the total Moffett Park area to be re-developed is approximately 783 acres.

The revised land use types include residential, office, research & development, and mixed-use land use. Each proposed land use has a corresponding minimum and maximum land use development intensity (**Appendix A**). These assumptions were expressed in terms of percent floor area ratio (FAR), which describes the allowable measurement of a building's floor area in relation to the size of the parcel that the building is on. These density assumptions were used as the basis for the water demand estimates described in the next section.

3.0 WATER DEMANDS

Domestic water system demands are estimated for the MPSP area under the latest full buildout condition. Existing domestic demands from the Moffett Park area are included, with the full buildout condition, as part of the model calibration process. This assumption is further explained in the calibration discussion in the model development section.

The buildout domestic demands are estimated using a water demand factor of 132 gallons per day per dwelling unit (gpd/du) for residential land use and 0.13 gallons per day per square foot (gpd/SF) for office and research & development land use¹. These domestic demand factors include outdoor water use factors; however, there is an extensive recycled water system throughout the Moffett Park area. It is assumed that the already installed recycled water network will provide the entirety of outdoor water use once operational so the outdoor water factors are not included in this analysis. The existing recycled water system will also be used for toilet flushing which will further alleviate domestic demand. For the purposes of this analysis, this additional demand reduction is not included which is a conservative assumption. The indoor demand factors were applied to the maximum development intensity for each parcel based on the revised land use to calculate domestic demand.

Peaking factors are applied to an estimated average day demand (ADD) to estimate maximum day demand (MDD) and peak hour demand (PHD). MDD is typically used to evaluate water infrastructure in conjunction with the required fire flows. As noted above, the full buildout domestic demands are based on the maximum allowable development intensity. Therefore, the estimated ADD represents the most conservative development scenario for every redevelopment parcel within the Moffett Park area. Further, the estimated buildout demands are added to the existing domestic demands, captured through the calibration process. **Table 1** shows the domestic demands estimated using the minimum, average, and maximum development intensities. The maximum allowable development intensity ADD is 1.6 times greater than the average development intensity ADD. In other words, by using the maximum allowable redevelopment, there is already a peaking factor of 1.6 included. In comparison, the City's 2010 Water Utility Master Plan (WUMP) recommended an MDD peaking factor of 1.84, but noted that

¹ Demand factors consistent with City of Redwood City water demand factors (Appendix B)

East Palo Alto and CalWater used an MDD peaking factor of 1.4. Therefore, the assumption to use the maximum allowable development intensity already addresses the MDD peaking factor and so no additional peaking factor is included for the MDD water analysis. The buildout domestic demands estimated using this methodology are 12.5 million-gallons per day (MGD) for the 783 acres of redevelopment.

For PHD, the 2010 WUMP recommended a peaking factor of 3.04. The 3.04 peaking factor is applied to the domestic demands estimated from the average development intensity assumptions to assess the performance of the existing system under a peak hour demand scenario. The total peak hour demand is 23.2 MGD.

Per 2019 California Fire Code (CFC), the maximum fire flow demand for any building is 8,000 gallons per minute (gpm), while fire sprinklers can provide allowances for fire flow demand reductions of up to 75%. For this analysis, a reduction of 50% is applied to the maximum fire flow demand, and a fire flow demand of 4,000 gpm is established as the benchmark for evaluating the existing system. This is consistent with the maximum fire flow demand evaluated in the 2010 WUMP.

4.0 **DESIGN CRITERIA**

The following assumptions and design criteria are utilized in evaluating the City's water distribution system. The criteria is adapted from those used in the 2010 WUMP, and is established to ensure that the proposed distribution system will provide adequate water pressure and can accommodate peak demands without excessive wear or energy usage. The results of the existing system evaluation are evaluated against the recommended design criteria to identify system deficiencies and recommend improvements. The water system design criteria recommended for this hydraulic analysis are as follows:

Table 2 – Domestic Water System Design Criteria

Minimum Service Pressure during Non-Emergency Operations	40 psi
Minimum Residual Pressure during Maximum Day Demands + Fire Flow	20 psi
Maximum Service Pressure	150 psi
Minimum Pipe Size for New Construction with Fire Hydrant	6 inch
Maximum Pipeline Velocity during Non-Emergency Operations	7 fps
Maximum Pipeline Velocity during Maximum Day Demands + Fire Flow	15 fps
Maximum Headloss Gradient	0.015 ft/ft
Existing Pipeline Roughness Coefficient	Determined through model calibration
Proposed Pipeline Roughness Coefficient	C = 130

5.0 MODEL DEVELOPMENT

The domestic water system hydraulic model was developed for this study as a steady state model using Bentley WaterCAD modeling software. The modeled facilities were imported from the City's GIS records for the existing system, and include pipelines, junctions, and hydrants up to the point of connection of the Moffett Park area to the existing City of Sunnyvale system. BKF used information from GIS records, as-builts, and block maps to input the physical model parameters such as pipe size and materials. The extent of the modeled Moffett Park system and connection points to the existing system are shown in **Figure 2**.

BKF used 26 hydrant tests taken throughout the Moffett Park area to establish boundary conditions and calibrate the steady state hydraulic model. As hydrant tests are conducted in the field between the hours of 8AM to 5PM, test results reflect existing demand conditions within the focus area at the time of the test. The hydraulic grade line (HGL) at each hydrant was estimated based on measured test pressures and hydrant elevations, and the average HGL was used to establish model static pressures. Hydrant flows measured at each location were applied at the corresponding hydrant node in the model, as shown in **Figure 2**. The model was executed, and the calculated residual pressure was compared to the field measured residual pressure. The boundary conditions and the existing pipe roughness coefficients were adjusted iteratively until a best fit of residual pressures was achieved, while maintaining acceptable roughness coefficients based on the existing pipe material and pipe age.

Losses due to pipe friction were calculated by the modeling software using the Hazen-Williams Equation. Because the model does not individually account for minor losses associated with hydraulic singularities (such as bends, valves, and other appurtenances), modeled C-factors were conservatively reduced during calibration to account for these losses. The Hazen-Williams coefficients utilized in the calibrated model fell within the acceptable ranges per industry standards, and are summarized below:

Table 3 – Calibrated Hazen-Williams Coefficients

Pipe Material	Calibrated Hazen Williams Coefficient
Asbestos Cement	100
Concrete Cylindrical	100
Cast Iron	60
Ductile Iron	100
PVC	120
Steel	100

The calibrated model yielded a net zero difference when evaluating the modeled losses against the hydrant test losses. **Table 4** documents a comparison between hydrant test values and the calibrated model.

6.0 **EXISTING SYSTEM EVALUATION**

The existing water system was evaluated using the calibrated hydraulic model. Typically, water distribution systems are sensitive to fire flows. As a result, the most conservative demand conditions for evaluating the existing system are during either MDD plus fire flows, or during PHD. Steady-state scenarios modeling MDD, MDD plus fire flow, and PHD were developed to model the City's existing water system under buildout conditions.

The model indicates that the existing water system serving the Moffett Park area experiences residual pressures ranging from 56 psi to 65 psi under MDD conditions. In addition, no pipelines were determined to exceed a pipeline velocity of 7 fps or a headloss gradient of 0.015 ft/ft. Based on the established design criteria, the system performed adequately and all service junctions are expected to maintain service pressures within the allowable range under non-emergency conditions.

Under MDD plus fire flow, the model indicates that there are over 160 hydrants that are unable to achieve the required fire flow of 4,000 gpm at a minimum residual pressure of 20 psi, as shown in **Figure 3**. The pipelines in the Moffett Park area were likely not sized to meet demands resulting from the maximum development intensity assumption, and deficient pipes have been identified as capacity deficient and recommended for improvement in the next section. The model indicates that several pipelines have excessive velocities at the required fire flow. These pipelines are undersized and generate significant head loss at hydrants connected to these pipelines and were identified as capacity deficient. Improvements recommended to mitigate identified deficiencies will be discussed in the next section.

A summary of the pressure and velocity results from the existing system evaluation under MDD and MDD plus fire flow can be found in the **Table 5** below, while tables documenting the full output from the WaterCAD model can be found in **Appendix C**.

Table 5 – Existing System Evaluation Summary

Parameter	Requirement	Minimum	Maximum
Service Pressures during Non-Emergency Operations (psi)	40 min	56	65
Pipeline Velocities during Non-Emergency Operations (fps)	7 max	-	4.3
Residual Pressures during MDD plus Fire Flow (psi)	20 min	0	-
Pipeline Velocities during MDD plus Fire Flow (fps)	15 max	-	17.9
Available Fire Flow at Residual Pressure Criteria (gpm)	4,000 min	1,965	-

Under peak hour demands, the model indicates that the existing system is unable to maintain adequate service pressures. The entirety of the existing system serving the Moffett Park area experiences service pressures of 0 psi during peak hour demands. However, the majority of the pipelines were determined to be within a pipeline velocity of 7 fps or a headloss gradient of 0.015 ft/ft.

7.0 **PROPOSED IMPROVEMENTS**

As described in the previous section, the existing system is currently deficient under buildout conditions and is unable to meet the required fire flow during MDD conditions. In order to mitigate these deficiencies, several portions of the existing system are recommended for improvement. Key improvements are summarized below:

- The pipelines along Mathilda Avenue, Caribbean Drive, and Moffett Park Drive should be upsized to 18-inch domestic water main in order to provide a primary transmission loop through the Moffett Park area. This improvement will increase service pressures throughout the study area and provide reliability and redundancy under maximum day demands and emergency conditions.
- The pipelines along Bordeaux Drive and Java Drive should be upsized to 16-inch domestic water main in order to provide a secondary transmission loop through the Moffett Park area. In conjunction with the primary transmission loop, this improvement will mitigate the majority of the deficiencies in the system, allowing all but a few hydrants to achieve the required fire flow at a residual pressure of 20 psi under maximum day demand conditions.

While the above improvements address the majority of deficiencies, there are several additional targeted improvements that are recommended to allow any remaining hydrants to meet fire flow requirements. These improvements are primarily upsizing non-looped pipelines, where flow is constrained in a single unidirectional pipe. All of the recommended improvements are documented in **Figure 4**.

A summary of the pressure and velocity results with the proposed improvements can be found in the **Table 6** below, while tables documenting the full output from the WaterCAD model can be found in **Appendix C**.

Table 6 – Proposed Improvements Evaluation Summary

Parameter	Requirement	Minimum	Maximum
Service Pressures during Non-Emergency Operations (psi)	40 min	57	66
Pipeline Velocities during Non-Emergency Operations (fps)	7 max	-	3.7
Residual Pressures during MDD plus Fire Flow (psi)	20 min	20	-
Pipeline Velocities during MDD plus Fire Flow (fps)	15 max	-	15.0
Available Fire Flow at Residual Pressure Criteria (gpm)	4,000 min	4,015	-

Even with improvements made to the transmission lines within the Moffett Park area, the model indicated that the system was unable to support peak hour demands while maintaining adequate service pressures. With these improvements in place and under peak hour demand, the modeled system experiences an 8 psi drop across the distribution network. An additional 5 psi of losses are attributed to the existing piping across Highway 237 during peak hour demand. This suggests that these deficiencies cannot be mitigated

by localized improvements, and would require that deficiencies caused by peak hour demands be addressed by improvements to supply provided by the City's water distribution system. However, evaluating the expansion of the City's water supply to serve buildout demands from the Moffett Park area is not within the scope of this plan, and it is recommended that the City initiate a planning effort to evaluate supply capacity for the Moffett Park area against the larger city-wide distribution system.

8.0 **COST ESTIMATES**

Preliminary cost estimates for the improvements described in the previous section are presented in **Table 8**. As shown, mitigating all existing deficiencies has an estimated total cost of \$18.4 Million. These costs were estimated using pipeline unit costs as shown in **Table 7**. These costs were extracted from the 2010 WUMP, which were then escalated to reflect the most recent Engineering News Record Construction Cost Index (ENR CCI). The ENR CCI is an inflation index used to adjust prices from one time period to another. The cost estimates used in this report are based on the ENR CCI of 13,004 for May 2022. In addition, a factor of 30 percent has been factored into all unit costs for contingencies, such as engineering, legal, administration, and other construction contingencies. Estimates of improvement costs provided represent Class 4 Order of Magnitude level costs as established by the American Association of Cost Engineers and represent an accuracy of +50% to -30%, and new cost estimates should be obtained during pre-design for proposed improvements to confirm budget amounts.

9.0 **CONCLUSIONS**

Based on the evaluation described in the previous sections, the existing domestic water system serving the Moffett Park area is currently undersized for the maximum development assumptions designated by the updated MPSP. In order to mitigate deficiencies observed under maximum day demands plus fire flow, it is recommended that the following approximate lengths of new domestic water main be constructed:

- 0.4 miles of new 14-inch main
- 1.6 miles of new 16-inch main
- 4.5 miles of new 18-inch main

These improvements are estimated to have a total cost of \$18.4 Million.

ATTACHMENTS

FIGURES

Figure 2: Existing Modeled System

Figure 3: Existing System Evaluation (MDD plus Fire Flow)

Figure 4: Proposed Improvements

TABLES

Table 1: Domestic Water Demands

Table 4: Hydrant Calibration
Table 7: Pipeline Unit Costs

Table 8: Proposed Improvement Costs

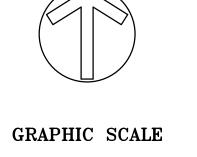
APPENDICES

Appendix A: Intensity and Density Standards by Land Use District

Appendix B: City of Redwood City Demand Factors

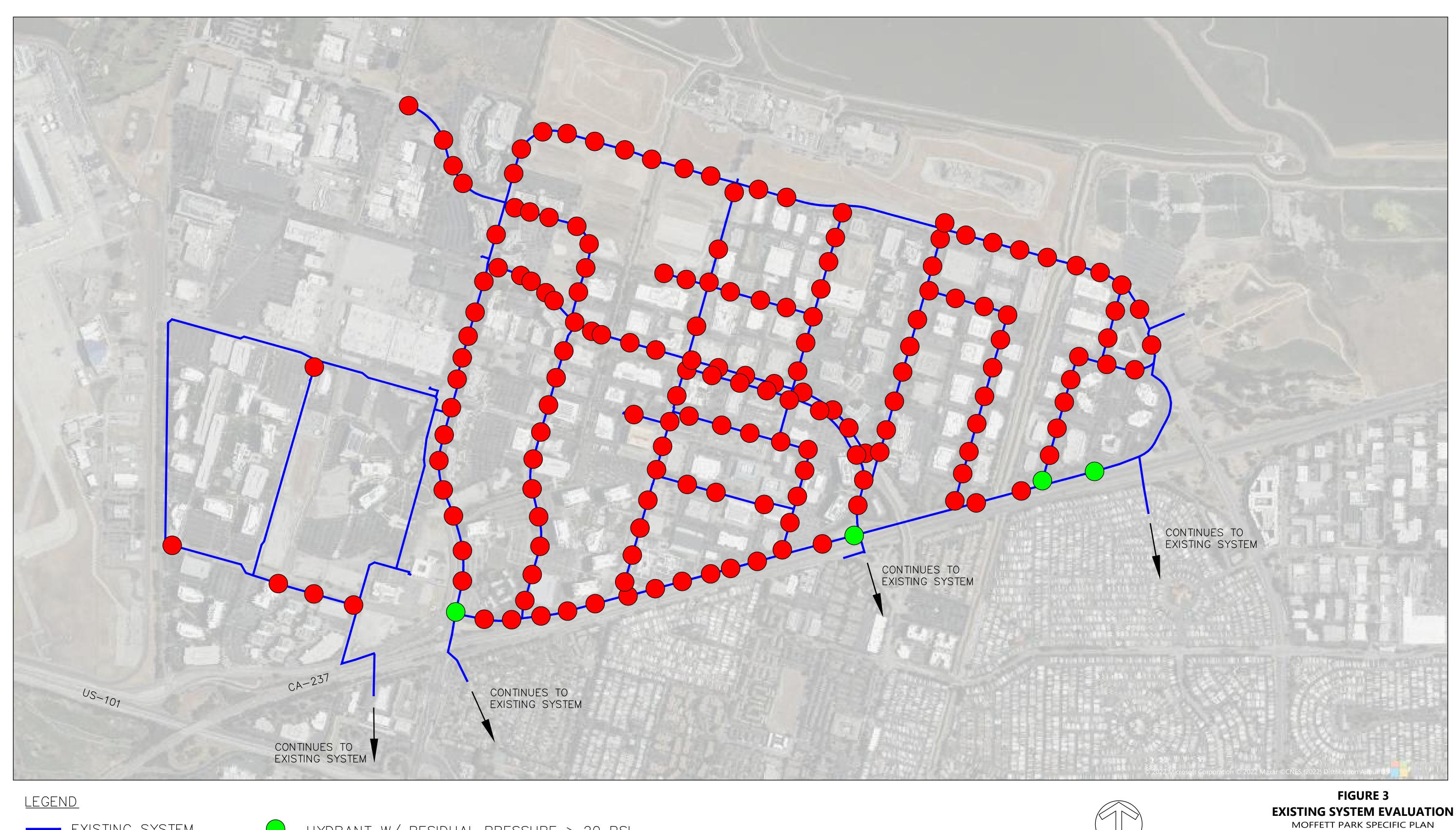
Appendix C: WaterCAD Model Output

FIGURES


BKF Engineers October 2022

--- EXISTING SYSTEM

EXISTING DIAMETER



(IN FEET) 1 inch = 500 ft.

EXISTING MODELED SYSTEM

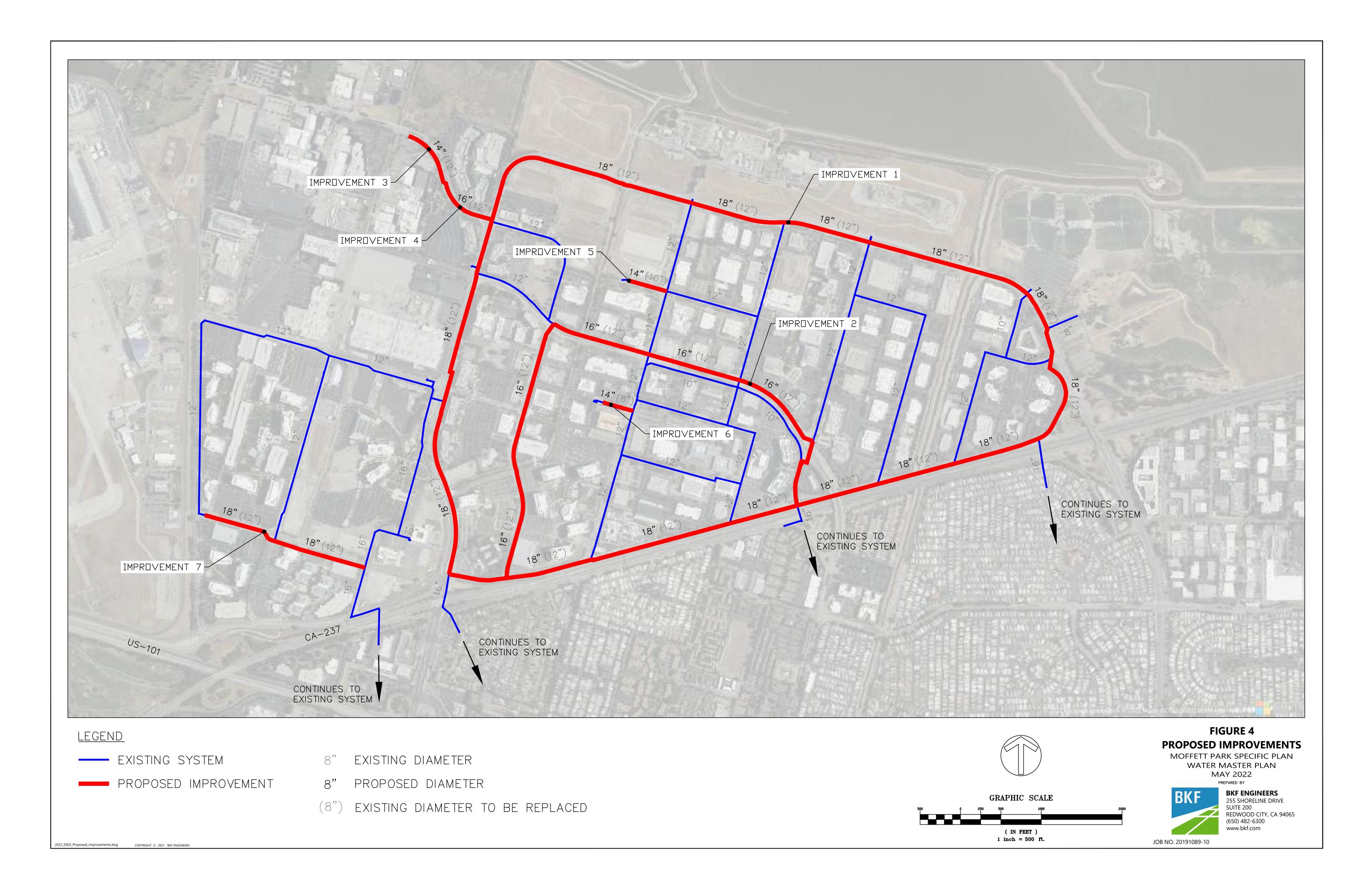
MOFFETT PARK SPECIFIC PLAN WATER MASTER PLAN MAY 2022 PREPARED BY

--- EXISTING SYSTEM

EXISTING DIAMETER

HYDRANT W/ RESIDUAL PRESSURE > 20 PSI

HYDRANT W/ RESIDUAL PRESSURE < 20 PSI


GRAPHIC SCALE

(IN FEET) 1 inch = 500 ft. WATER MASTER PLAN MAY 2022 PREPARED BY

JOB NO. 20191089-10

BKF ENGINEERS255 SHORELINE DRIVE SUITE 200 REDWOOD CITY, CA 94065 (650) 482-6300 www.bkf.com

2022_0518_Existing-Evaluation.dwg

TABLES

BKF Engineers October 2022

Moffett Park Specific Plan - Water Master Plan Table 1 - Domestic Water Demands

Land Use	Area	Office+R&E	Floor Area	Residen	tial Units	Water Demands											
Туре		Minimum	Maximum	Minimum	Maximum	Minimur	n Development	Intensity	Average	Development I	ntensity	Maximu	m Development	Intensity	Pe	eak Hour Deman	ds
	(ac)	(SF)	(SF)	(units)	(units)	(MGD)	(gpd)	(gpm)	(MGD)	(gpd)	(gpm)	(MGD)	(gpd)	(gpm)	(MGD)	(gpd)	(gpm)
MP-AC	82	1,251,332	3,575,235	3,112	14,056	0.6	573,457	398	1.4	1,446,815	1,005	2.3	2,320,173	1,611	4.4	4,398,317	3,054
MP-R	133	0	0	8,571	21,028	1.1	1,131,372	786	2.0	1,953,534	1,357	2.8	2,775,696	1,928	5.9	5,938,743	4,124
MP-MU	147	2,239,977	3,199,967	0	21,552	0.3	291,197	202	1.8	1,776,028	1,233	3.3	3,260,860	2,264	5.4	5,399,126	3,749
MP-O1	231	3,517,933	15,076,856	0	0	0.5	457,331	318	1.2	1,208,661	839	2.0	1,959,991	1,361	3.7	3,674,330	2,552
MP-O2	187	2,848,371	16,276,404	0	0	0.4	370,288	257	1.2	1,243,110	863	2.1	2,115,933	1,469	3.8	3,779,055	2,624
MP-E4	5	77,246	220,703	0	0	0.0	10,042	7	0.0	19,367	13	0.03	28,691	20	0.06	58,875	41
MP-P	27																
MP-I	16																
TOTAL	1,157	9,934,859	38,349,164	11,683	56,636	2.8	2,833,688	1,968	7.6	7,647,515	5,311	12.5	12,461,343	8,654	23.2	23,248,447	16,145

Moffett Park Specific Plan - Water Master Plan Table 4 - Hydrant Calibration

		Hydrant Tests	5		Calibrated Mod	el	Hydrant	ı	Percent Change	e
Hydrant ID	Static Pressure	Residual Pressure @ 1,500 gpm ¹	Pressure Loss	Static Pressure	Residual Pressure @ 1,500 gpm ¹	Pressure Loss	Tests vs. Calibrated Model	Static Pressure	Residual Pressure	Pressure Loss
	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(psi)	(%)	(%)	(%)
554-106-75	95	92	3	90	84	6	-3	-5%	-9%	107%
593-A-75	100	97	3	93	89	4	-1	-7%	-9%	54%
W551H750101	86	83	3	90	88	2	1	5%	6%	-31%
W552H750101	95	90	6	89	87	2	4	-6%	-3%	-64%
W552H751024	95	93	2	87	84	3	-1	-8%	-10%	50%
W573H750101	94	90	4	93	91	2	2	-1%	1%	-52%
W573H750105	94	90	4	93	91	2	2	-1%	1%	-52%
W575H750103	94	88	6	96	93	3	3	2%	6%	-49%
W589H750102	102	100	2	95	92	3	-1	-7%	-8%	50%
W589H750103	98	96	2	95	92	3	-1	-3%	-4%	50%
W589H750108	100	98	2	95	92	3	-1	-5%	-6%	50%
W589H750109	100	98	2	95	92	3	-1	-5%	-6%	50%
W589H750110	88	86	2	96	93	3	-1	9%	8%	50%
W589H750111	100	98	2	95	92	3	-1	-5%	-6%	50%
W590H750101	90	88	2	95	92	3	-1	6%	5%	50%
W610H750108	86	84	2	95	92	3	-1	10%	10%	50%
W610H750109	98	94	4	94	91	3	1	-4%	-3%	-23%
W610H750110	84	82	2	95	92	3	-1	13%	12%	50%
W611H750105	92	88	4	96	94	2	2	4%	7%	-50%
W613H750101	92	88	4	97	95	2	2	5%	8%	-49%
W613H750103	98	95	3	97	94	3	0	-1%	-1%	3%
W615H750101	90	88	2	96	93	3	-1	7%	6%	50%
W629H750101	92	90	2	97	94	3	-1	5%	4%	50%
W629H750103	92	90	2	97	95	2	0	5%	6%	0%
W629H750104	100	98	2	96	93	3	-1	-4%	-5%	30%
W631H750104	94	90	4	95	92	3	1	1%	2%	-23%
Average	94	91	3	94	91	3	0	0%	0%	0%

Notes:

^{1.} Hydrant test flows ranged from 1,210 gpm to 1,590 gpm. Hazen-Williams equation was used to determine headloss in relation to measured test flow. This relation was applied to a fire flow of 1,500 gpm to provide equivalent residual pressures across the modeled system in order to allow for a direct comparsion of test results. These adjusted residual pressures are reported in this table.

Moffett Park Specific Plan - Water Master Plan Table 7 - Pipeline Unit Costs

Pipe Diameter	Unit Cost
(in)	(\$/LF)
6	\$191
8	\$250
10	\$316
12	\$382
14	\$441
16	\$507
18	\$565
20	\$631
24	\$756
27	\$844
30	\$939
36	\$1,130

Notes:

- 1. Unit Costs include a 30% cost contingency factor to account for Engineering, Legal, Administration, and other Construction Cost Contingencies.
- 2. Unit Costs shown are based on ENR-CCI cost index of 13,004 for May 2022.

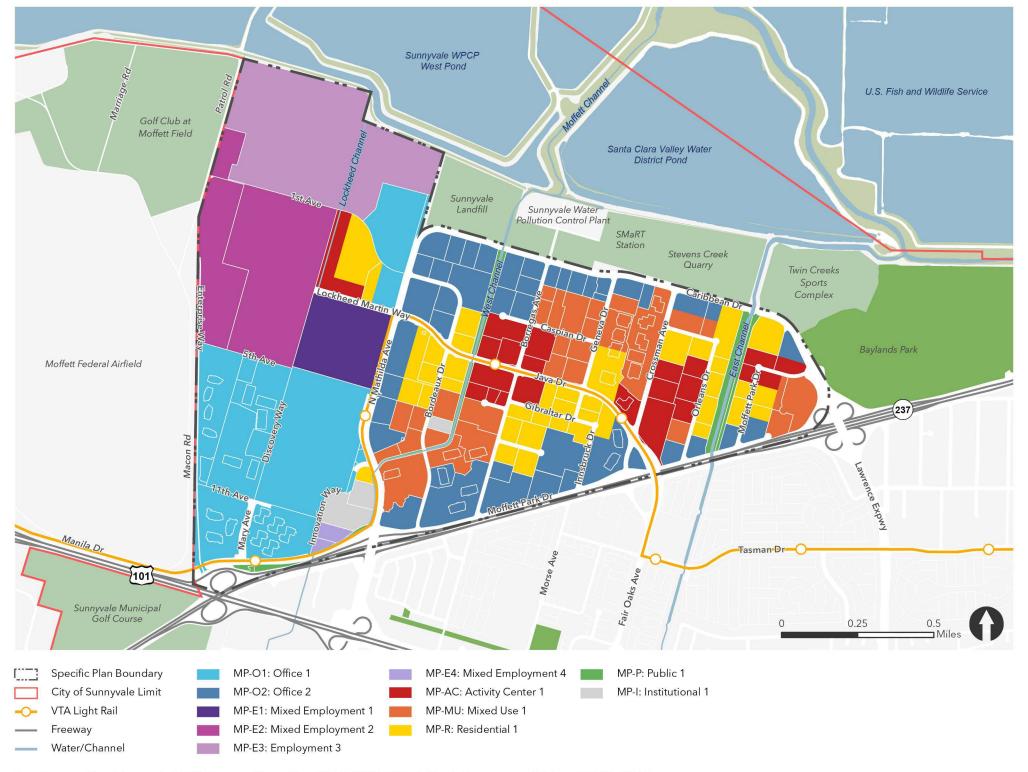
Moffett Park Specific Plan - Water Master Plan Table 8 - Proposed Improvement Costs

Project Number	Description	Length	Existing Diameter	Proposed Diameter	Unit Cost	Total Cost
Number		(LF)	(in)	(in)	(\$/LF)	(\$)
1	Primary Transmission Loop	21,550	12	18	565	\$12,176,000
2	Secondary Transmission Loop	7,749	12	16	507	\$3,929,000
3	Targetted Fire Flow Improvement	1,061	12	14	441	\$468,000
4	Targetted Fire Flow Improvement	506	12	16	507	\$257,000
5	Targetted Fire Flow Improvement	488	10	14	441	\$216,000
6	Targetted Fire Flow Improvement	388	8	14	441	\$172,000
7	Targetted Fire Flow Improvement	2,113	12	18	565	\$1,194,000
	Sub-total - New 14-inch Main	1,937				\$856,000
	Sub-total - New 16-inch Main	8,255				\$4,186,000
	Sub-total - New 18-inch Main					\$13,370,000
	Total	33,855				\$18,412,000

Notes:

- 1. Recommended improvement lengths shown above represent improvements required to meet criteria assuming full flow at each hydrant, where flows are applied to the hydrant connection to the distribution main. Splitting fire flow would allow for less length of recommended improvements, as described below:
 - Project Number 5 Instead of 488 LF of 14-inch, only 241 LF would be required to meet criteria. This would result in a total project cost of \$107,000.

APPENDIX A


Intensity and Density Standards by Land Use District

BKF Engineers October 2022

Table XX: Intensity and Density Standards by Land Use District

District	Office/R+D Base FAR	Office/R+D Bonus FAR Maximum	Residential Density Minimum	Residential Density Maximum	Total FAR Maximum**
MP-AC	35%	75%	40 du/a (100%)	180 du/a (350%)	450%* 150% Office
MP-R	ē.	i, m .s	70 du/a (175%)	150 du/a (350%)	400%*
MP-MU	35%	100%	2	150 du/a (350%)	400% 200% Office
MP-01	35%	100%		/ (=)	150%
MP-O2	35%	135%	2	727	200%
MP-E1(Navy)	35%	75%	(Maker : Minimum: (150%
MP-E2 (LHM Core)	35%	50%	-1		100%
MP-E3 (North LHM)	35%	i, a ut	(Maker) Minimum: 5%		35%
MP-E4	35%	50%	5	-	100%
MP-P	+	:40	¥	(4)	4
MP-I			7	2 5	-

- Note: Maximum residential densities not inclusive of Assembly Bill 2345 density bonus.
- *East Orleans may exceed the Residential FAR Maximum and Maximum FAR by up to 1.0 FAR because of the
 increased height limits in the East Orleans neighborhood, MP-AC and MP-R projects only.
- **Maximum FAR. Maximum FAR is allowed non-res FAR, residential FAR, and Transfer of Development Rights

APPENDIX B

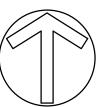
City of Redwood City Demand Factors

BKF Engineers October 2022

ATTACHMENT Q (1 of 3)


WATER DEMAND PROJECTION WORKSHEET

JOB TITLE CAL. BY JOB NUMBER CHKD. BY						
JOB LOCATION DATE						
INDOOR WATER DEMAND PROJECTION						
A. RESIDENTIAL						
1. Multi - FamilyUnits X 2.2 Persons =Persons						
2. Single FamilyUnits X 3.4 Persons =Persons						
Persons X 60*GPD =GPD Project	ed					
B. OFFICE/COMMERCIALsqft X 0.13 gpd/sqft =GPD Projected						
C. HOTELrooms X 195 gpd/room =GPD Projected						
D. RESTAURANTSseats X 30 gpd/seat =GPD Projected						
E. ALL OTHERS SEE PAGE 3: =GPD Projected						
LANDSCAPING WATER DEMAND PROJECTION						
A. RESIDENTIAL						
17 gpd X persons = GPD Projected						
B. COMMERCIAL sqft X 3.5 cuft of water/sqft of =CUFT/YR landscape per year						
To convert to GPD: cuft/yr X 7.48 gal/ X 1 yr/ =GPD Projected cuft 365 days						
TOTAL DOMESTIC WATER DEMAND PROJECTION						
INDOOR + LANDSCAPING PROJECTION =GPD Projected						
★ From SFPUC Demand Study by URS, " Projected Water Usage for BAWSCA Agencies ", Tech Memo of August 2006.						


APPENDIX C

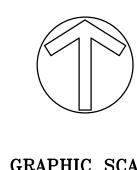
WaterCAD Model Output

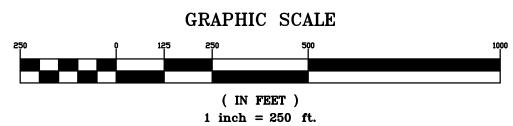
BKF Engineers October 2022

MODELED JUNCTION NODES

GRAPHIC SCALE

(IN FEET) 1 inch = 250 ft. MOFFETT PARK SPECIFIC PLAN WATER MASTER PLAN OCTOBER 2022
PREPARED BY

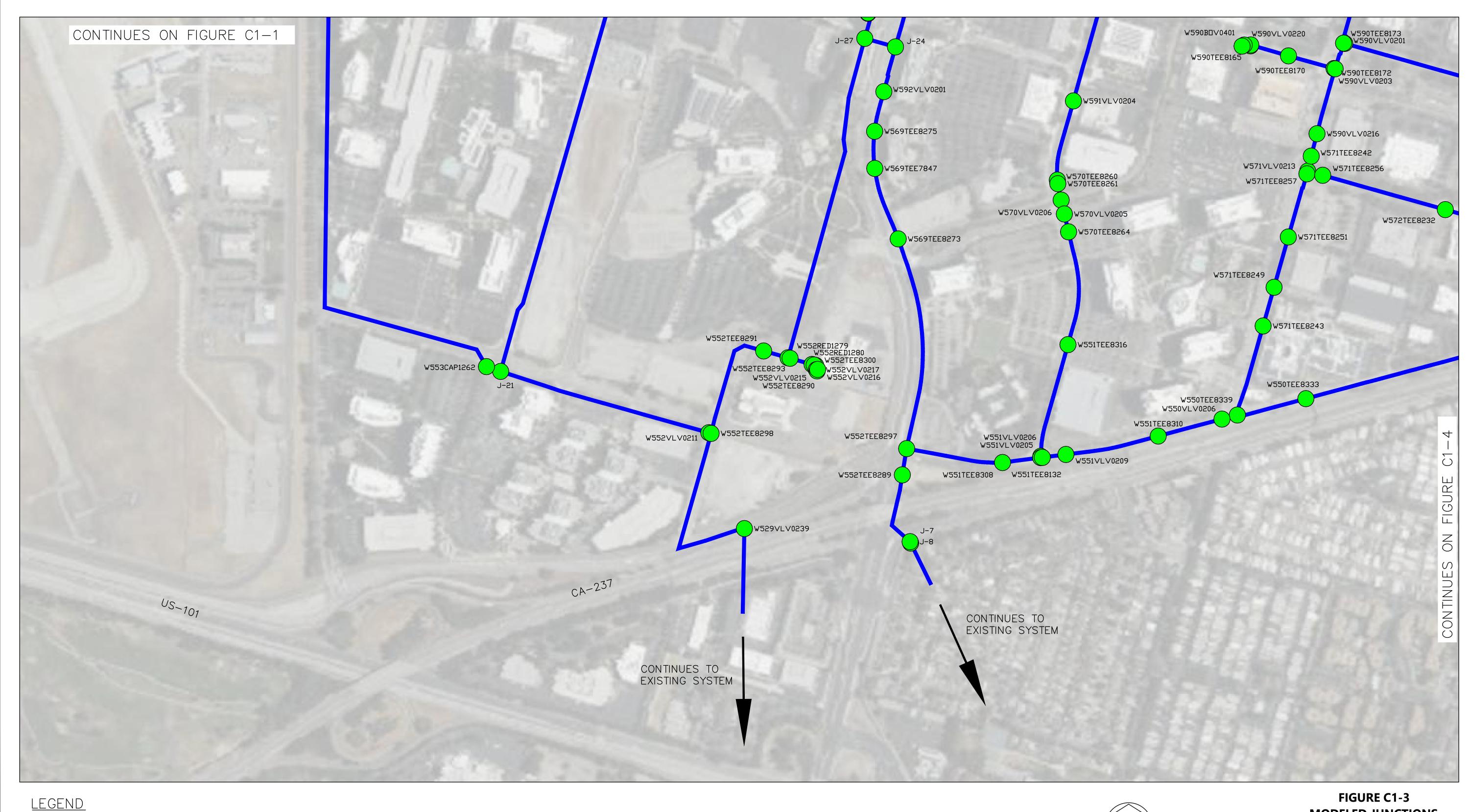


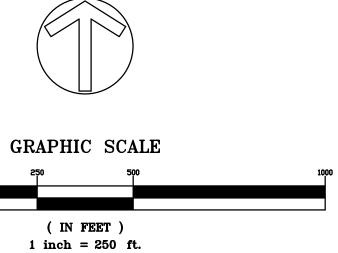


<u>LEGEND</u>

--- MODELED PIPELINES

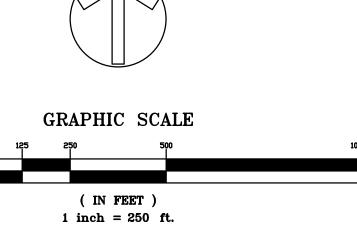
MODELED JUNCTION NODES




FIGURE C1-2 MODELED JUNCTIONS

MOFFETT PARK SPECIFIC PLAN
WATER MASTER PLAN
OCTOBER 2022
PREPARED BY

MODELED JUNCTION NODES


MODELED JUNCTIONS

MOFFETT PARK SPECIFIC PLAN WATER MASTER PLAN OCTOBER 2022 PREPARED BY

MODELED JUNCTION NODES

MOFFETT PARK SPECIFIC PLAN
WATER MASTER PLAN
OCTOBER 2022
PREPARED BY

Moffett Park Specific Plan - Water Master Plan Table C1 - Allocated Demands under Maximum Development Intensity Assumptions

Madal Nada ID	Demand
Model Node ID	
	(gpm)
W529VLV0239	6.8
W550TEE8333	39.5
W550TEE8339	75.0
W550VLV0206	0.0
W551TEE8132	0.0
W551TEE8308	51.6
W551TEE8310	140.1
W551TEE8316	26.7
W551VLV0205	0.0
W551VLV0206	0.0
W551VLV0209	0.0
W552RED1279	0.0
W552RED1280	0.0
W552TEE8289	0.0
W552TEE8290	0.0
W552TEE8291	0.0
W552TEE8293	30.8
W552TEE8297	0.0
W552TEE8298	13.1
W552TEE8300	0.0
W552VLV0211	0.0
W552VLV0215	0.0
W552VLV0216	0.0
W552VLV0217	0.0
W553CAP1262	155.5
W569TEE7847	39.6
W569TEE8273	243.4
W569TEE8275	0.0
W570TEE8260	85.8
W570TEE8261	0.0
W570TEE8264	99.6
W570VLV0205	0.0
W570VLV0206	0.0
W571TEE8242	0.0
W571TEE8243	0.0
W571TEE8249	19.7
W571TEE8251	42.4

Moffett Park Specific Plan - Water Master Plan Table C1 - Allocated Demands under Maximum Development Intensity Assumptions

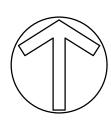
<u></u>	
Model Node ID	Demand
	(gpm)
W571TEE8256	0.0
W571TEE8257	172.1
W571VLV0213	0.0
W572TEE8223	45.3
W572TEE8224	0.0
W572TEE8227	17.6
W572TEE8232	213.7
W572TEE8238	0.0
W572VLV0210	0.0
W573ARV0601	15.2
W573RED1296	0.0
W573TEE8644	0.0
W573TEE8645	298.5
W573TEE8649	145.8
W573VLV0208	0.0
W573VLV0209	0.0
W573VLV0222	23.7
W574TEE8632	67.4
W574TEE8633	0.0
W574VLV0202	0.0
W574VLV0203	19.2
W586RED1287	0.0
W586TEE8516	56.6
W586VLV0201	150.7
W586VLV0202	0.0
W586VLV0204	0.0
W587VLV0217	191.6
W588TEE8485	172.5
W588TEE8495	168.2
W589TEE8187	101.6
W589TEE8206	115.1
W589TEE8208	18.6
W589TEE8218	0.0
W589TEE8219	0.0
W589VLV0210	102.6
W589VLV0217	0.0
W589VLV0218	0.0

Moffett Park Specific Plan - Water Master Plan Table C1 - Allocated Demands under Maximum Development Intensity Assumptions

Model Node ID	Demand
	(gpm)
W589VLV0221	0.0
W590BOV0401	0.0
W590TEE8165	156.7
W590TEE8170	42.5
W590TEE8172	36.5
W590TEE8173	0.0
W590TEE8178	228.6
W590TEE8181	0.0
W590VLV0201	0.0
W590VLV0203	0.0
W590VLV0206	0.0
W590VLV0208	0.0
W590VLV0209	0.0
W590VLV0216	0.0
W590VLV0220	0.0
W591VLV0204	142.0
W592TEE8141	0.0
W592VLV0201	0.0
W592VLV0211	0.0
W592VLV0212	0.0
W610TEE7955	146.9
W610TEE7961	174.3
W610TEE7977	38.3
W610TEE7980	188.5
W610TEE7981	0.0
W611BOV0402	150.1
W611TEE7920	0.0
W611TEE7928	28.7
W611TEE7929	198.2
W611TEE7933	0.0
W611TEE7935	46.7
W611TEE7944	75.4
W611TEE7946	62.1
W611TEE7947	0.0
W611TEE7948	0.0
W611VLV0203	0.0
W611VLV0208	0.0

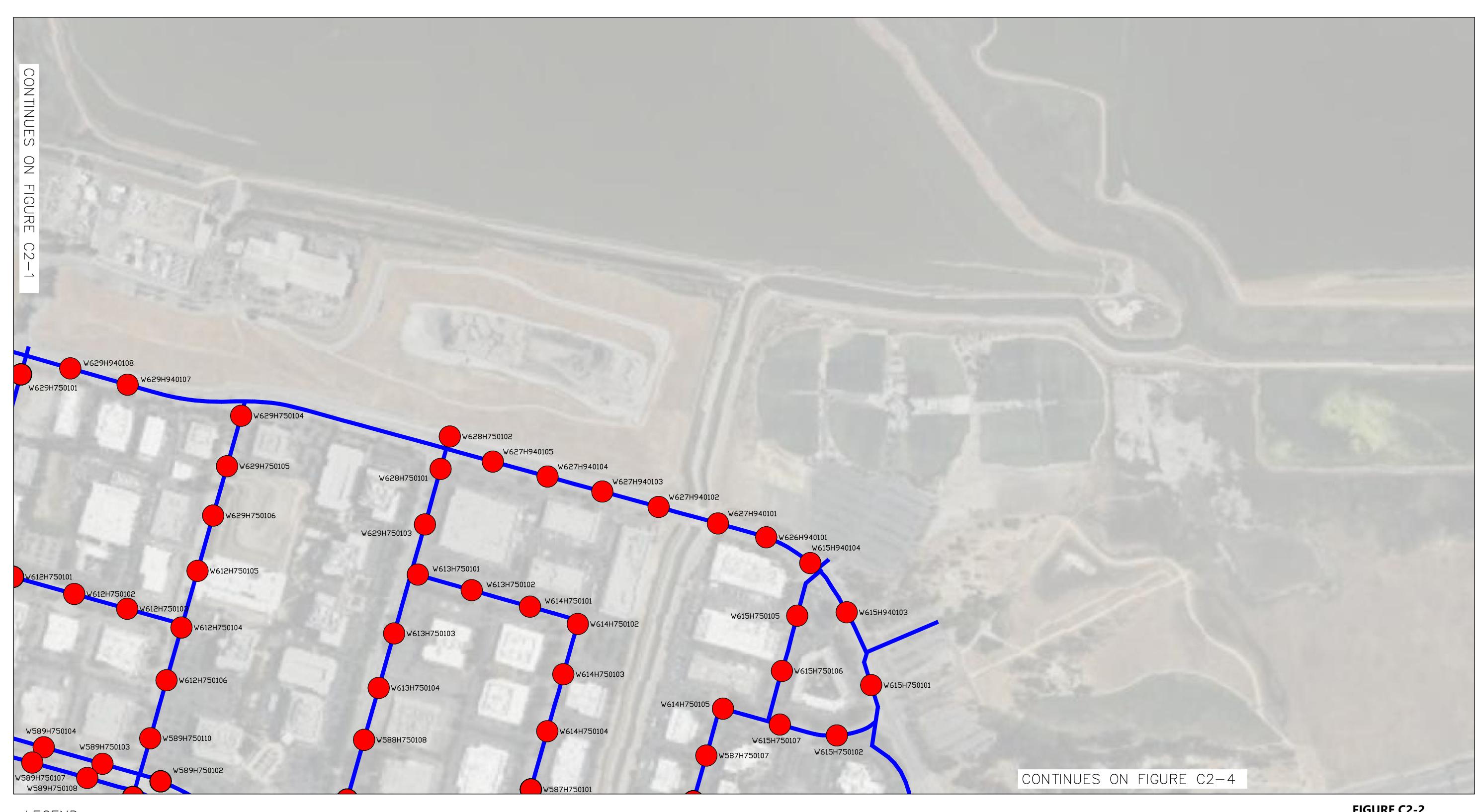
Moffett Park Specific Plan - Water Master Plan Table C1 - Allocated Demands under Maximum Development Intensity Assumptions

Model Node ID	Demand
	(gpm)
W611VLV0214	0.0
W612TEE7842	52.6
W612TEE8114	372.6
W613TEE8098	240.9
W613TEE8101	97.4
W613VLV0206	126.2
W615CAP1255	0.0
W615TEE8057	0.0
W615TEE8060	0.0
W615TEE8062	0.0
W615TEE8063	0.0
W615TEE8065	111.0
W615TEE8077	104.0
W615VLV0201	0.0
W615VLV0204	0.0
W615VLV0207	0.0
W615VLV0215	0.0
W615VLV0220	80.4
W615VLV0226	0.0
W615VLV0227	0.0
W615VLV0228	0.0
W626TEE8049	0.0
W627ARV0601	0.0
W627TEE8039	0.0
W627TEE8047	0.0
W627VLV0202	0.0
W628ARV0601	0.0
W628TEE8030	15.0
W628TEE8035	220.8
W628VLV0202	0.0
W628VLV0205	0.0
W628VLV0211	0.0
W629TEE8013	52.2
W629TEE8016	101.8
W629TEE8019	41.9
W629TEE8020	0.0
W629TEE8021	0.0


Moffett Park Specific Plan - Water Master Plan Table C1 - Allocated Demands under Maximum Development Intensity Assumptions

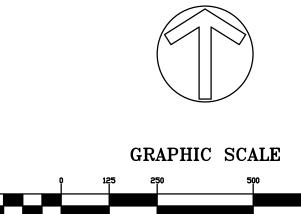
Model Node ID	Demand
	(gpm)
W629TEE8023	14.8
W629TEE8026	32.6
W629TEE8038	15.3
W629VLV0201	0.0
W629VLV0202	22.0
W629VLV0204	0.0
W631TEE7891	0.0
W631TEE7896	549.4
W631TEE7911	0.0
W631TEE7912	0.0
W631TEE7916	83.8
W631TEE7917	20.1
W631VLV0204	0.0
W631VLV0207	36.2
W631VLV0225	0.0
W631VLV1091	89.7
W651TEE7864	27.3
W651TEE7869	44.4
W651VLV0204	0.0
W651VLV0205	36.4
J-2	0.0
J-3	0.0
J-4	0.0
J-7	0.0
J-8	0.0
J-9	0.0
J-10	0.0
J-11	0.0
J-16	0.0
J-20	277.6
J-21	284.7
J-24	458.8
J-25	0.0
J-27	162.4
Total	7,470

MODELED HYDRANT NODES


GRAPHIC SCALE

(IN FEET) 1 inch = 250 ft. WATER MASTER PLAN OCTOBER 2022
PREPARED BY

BKF ENGINEERS
255 SHORELINE DRIVE
SUITE 200
REDWOOD CITY, CA 94065 (650) 482-6300 www.bkf.com


2022_1017_Hydrant_IDs.dwg

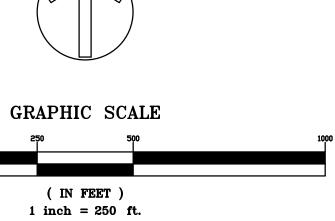
<u>LEGEND</u>

--- MODELED PIPELINES

MODELED HYDRANT NODES

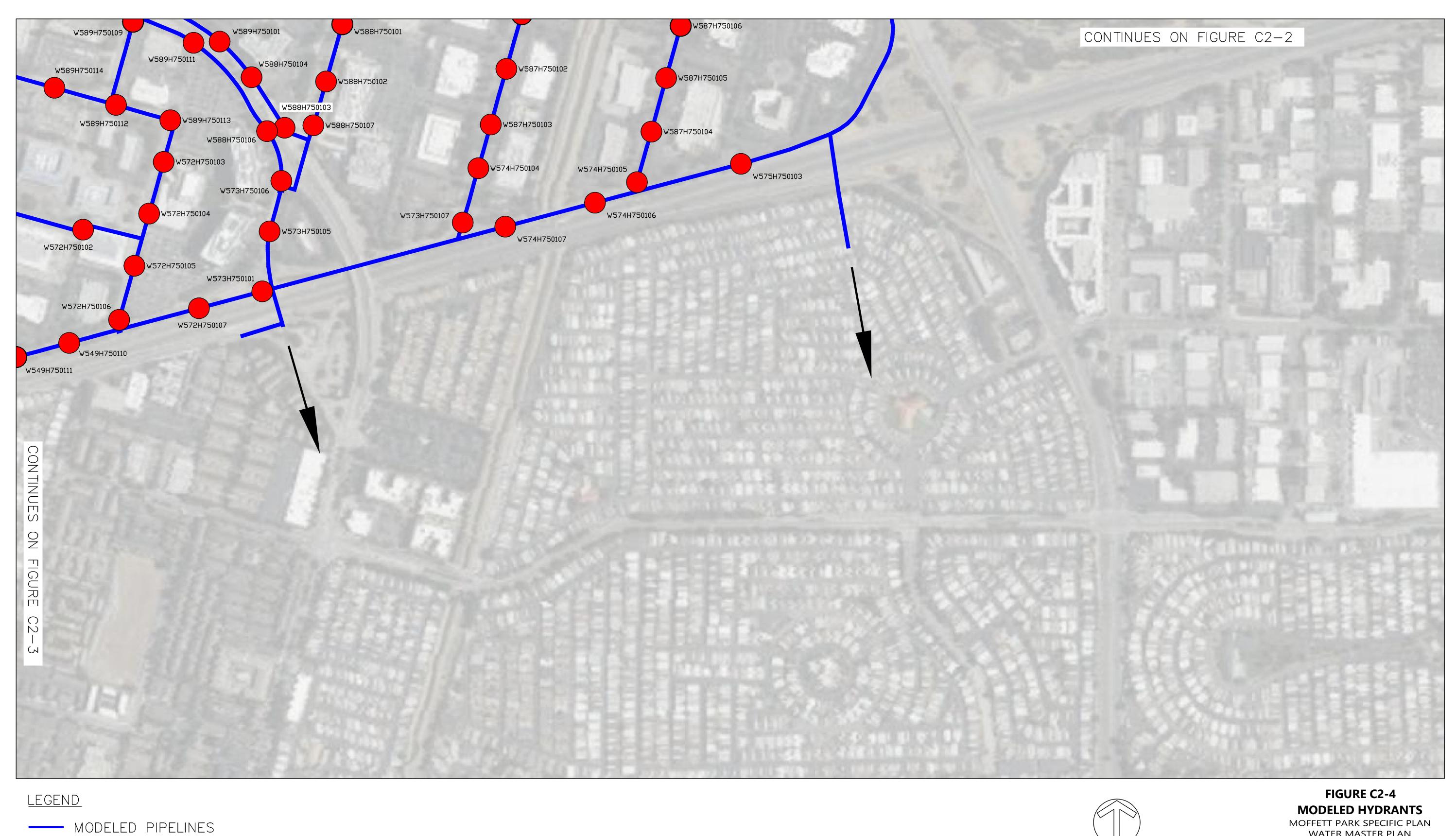
(IN FEET) 1 inch = 250 ft.

FIGURE C2-2 MODELED HYDRANTS


MOFFETT PARK SPECIFIC PLAN
WATER MASTER PLAN
OCTOBER 2022
PREPARED BY

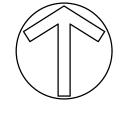
--- MODELED PIPELINES

MODELED HYDRANT NODES



MOFFETT PARK SPECIFIC PLAN

WATER MASTER PLAN OCTOBER 2022
PREPARED BY



BKF ENGINEERS
255 SHORELINE DRIVE
SUITE 200
REDWOOD CITY, CA 94065 (650) 482-6300 www.bkf.com

MODELED HYDRANT NODES

WATER MASTER PLAN OCTOBER 2022 PREPARED BY

BKF ENGINEERS
255 SHORELINE DRIVE
SUITE 200
REDWOOD CITY, CA 94065 (650) 482-6300 www.bkf.com JOB NO. 20191089-10

GRAPHIC SCALE (IN FEET) 1 inch = 250 ft.

Committee Comm	6.9	3,662	91	09	000'1	15.8	L01027H95W
muminyam Make the control of the control							
Marintamin							
Marith School Marith Schoo							
минимем ониварительный выпользам ониварительный выпольза							
muminam дия запарам продуктивной до д							
минитами онемайнаминаминаминаминаминаминаминаминаминами							
mumixem Molf and a state of the control o							
munimized Molf and all additions Classification Clas							
Hydraphicolog							
Hydrant Hydr							
mulydenniam Milydenniam							
Make							
MycloHygolog							
Marianth							
Marianth							
Hydrant ID Flevation Flow Flow of the Control of Cont							
Hydrant Hydr							
Mydranti Momenta Mashimum Mash			6				
Musimum							
Mydrant Madranth Madranth Madranth Madranth Madranth Madranth Makinum Maring Maximum Maring Maximum Madranth Molth Mo							
Mydrant Mydrant Mushing Makinum Makinum Makinum Makinum							
Hydrant Hydr						18.5	
Hydrant ID Hydrant Mestliff Required Fig. (9pm) Hydrant ID Hydr			LL			8.91	
Mysory Tolor Tolor Apole of the control			ħ١			20.0	W251H750105
Hydrant ID Elevation Flow Pressure Pressure Flow (psi)	9.6	3,752	L١	L S		20.3	W261H750102
Hydrant ID Elevation W53H751026 25.9 4,000 67 9 3,262 8.9 My53H751026 26.3 4,000 67 6 13 3,016 8.8 W631H750104 7.5 4,000 60 11 3,409 9.4 W631H750104 7.5 4,000 60 11 3,429 9.4 W631H750105 8.6 4,000 60 11 3,429 9.4 W631H750106 8.6 4,000 60 11 3,429 9.4 W631H750107 7.9 4,000 60 11 3,429 9.4 W631H750108 8.6 4,000 60 11 3,416 9.4 W631H750108 8.5 4,000 60 11 3,429 9.4 W631H750108 8.5 4,000 60 11 3,424 9.4 W631H750108 8.5 4,000 60 11 3,424 9.4 W631H750108 8	9.6	3,890	6L		000,4	9.12	M261H760101
Mydrant ID Elevation Flow Flow (gpm) (psi) (ps	7.01	₽29′8	91	28		8.92	W552H751024
Hydrant ID Elevation W610H750109 Flow Pressure Plan (gpm) (ft) (gpm) (gpm) (psi) (psi) (gpm) (psi) (gpm	6.8	3,262	6	L S	000′₺	25.9	W253H751026
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (high hydrant Maximum Pipe Maximum Pipe Maximum Pipe Maximum (gpm) (high Maximum Maximoro Ma	8.8	9/0'8	9	L S	000′₺	26.3	W253H751025
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (high hydrant Maximum W631H750104 7.5 4,000 60 11 3,400 9.4 W631H750106 8.5 4,000 60 11 3,403 9.4 W631H750106 8.5 4,000 60 10 3,368 9.4 W631H750106 8.5 4,000 60 10 3,403 9.4 9.4 W631H750106 8.5 4,000 60 10 3,403 9.4 9.4 W631H750107 7.9 4,000 60 10 3,403 9.4 9.4 9.4 W631H750107 7.9 4,000 60 10 3,403 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	9.6	3,484	13	69	000′₺	L.9	601037H013W
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (psi) (psi) (gpm)	4.6	3,429	ll	09	000′₺	<i>T.</i> 8	We31H750103
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (high hydrant Maximum (gpm) (high (gpm) (4.9	3,403	ll	09	000′₺	6. <i>T</i>	W631H750107
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (psi) (gpm)	4.9	898'8	OL	09	000′₺	9.8	M931H750106
Hydrant ID Elevation Flow Pressure Pressure Flow Gpm) Hydrant ID Elevation (gpm) (psi) (gpm) (gpm) (ft) (gpm) (psi) (gpm)	4.9	9۲4,8	ll	09	000′₺	8.5	801097H1E3W
Hydrant ID Elevation Flow Pressure Pressure Flow Pipe Pipe		3,490	13	09	000′₺	<u> 3.</u> 7	W631H750104
MumixeM Avalidation Flow Pressure Pressure Moximum Maximum Pressure	(mdg)	(wdb)	(isq)	(isq)	(wd6)	(11)	
Maximum Flevation Flow Pressure Pressure Flow Maximum Maximum Pressure	Pipe		0.110.00.00.00	0.110			
I HADIIANA IAUUREN JUAIC EITE STATE ALALIA MAGIIANA ILIAUNEN I							Ol triant ID
, J 1, 1, 1, 1	Velocity of	Available Fire	Residual	Static	Reauired Fire	Hydrant	

Manuminy Manument Manument Manument Manument Manuminy Manument	8.6	3,707	9١	09	000'1	2.8	M289H750104
muminame minimam <							
mumixem							
Magahiton Maga							
muniyam дитамам продуста том датамам							
MMSBHTS0109 (Mod)							
Мизарнуботов 10.5 4,000 69 10.8 3,880 9,9 Мизарнуботов 10.5 4,000 69 16 3,703 9,8 Мизарнуботов 10.7 4,000 69 16 3,703 9,8 Мизарнуботов 10.7 4,000 69 16 3,703 9,8 Мизарнуботов 10.7 4,000 69 16 3,703 9,8 Мизарнуботов 12.5 4,000 69 16 3,703 9,8 Мизарнуботов 12.5 4,000 69 16 3,703 9,8 Мизарнуботов 12.5 4,000 69 16 3,703 9,9 Мизарнуботов 12.5 4,000							
Magantage Maga							
мизарнуботть (тумарнуботть (тумарну							
Magahlyoll Magamman Magamm							
Megaphyfolis 10.7 4'000 90 12 3'188 9'8 Megaphyfolis 12.1 4'000 60 16 3'18 9'8 Megaphyfolis 12.1 4'000 60 16 3'18 9'8 Megaphyfolis 12.1 4'000 60 16 3'18 3'88 9'8 Megaphyfolis 12.1 4'000 60 16 3'12 9'1 9'1 Megaphyfolis 12.8 4'000 60 18 3'80 9'8							
Меданцоц 15.1 4'000 60 16 3'458 9.8 Меданцоц 15.2 4'000 69 16 3'458 9.8 Мартинуротор 12.4 4'000 69 16 3'457 9.7 Мартинуротор 12.8 4'000 69 16 3'457 9.8 Мартинуротор 12.8 4'000 69 16 3'457 9.8 Мартинуротор 12.8 4'000 69 18 3'200 9.9 Мартинуротор 12.8 4'000 69 18 3'000 9.9 Мартинуротор 12.8 4'000 69 18 3'400 9.9 Мартинуротор 12.7 4'000 69 18 3'434 9.6 Мартинуротор 12.7 4'000 69 14 3'434 9.6 Мартинуротор 12.7 4'000 69 14 3'434 9.6 Мартинуротор 12.9 4'000 <							
Metantheolog 12.5 4,000 69 16 3,655 9.7 Metantheolog 12.4 4,000 69 16 3,657 9.7 Metantheolog 12.4 4,000 69 16 3,652 9.8 Metantheolog 12.6 4,000 69 16 3,652 9.8 Metantheolog 12.6 4,000 69 18 3,60 9.9 Metantheolog 12.6 4,000 69 18 3,60 9.9 Metantheolog 12.7 4,000 69 18 3,60 9.7 Metantheolog 12.7 4,000 68 18 3,60 9.7 Metantheolog 12.7 4,000 68 12 3,474 9.6 Metantheolog 12.7 4,000 68 13 3,474 9.6 Metantheolog 12.7 4,000 69 14 3,484 9.6 Metantheolog 12.7 4,000							
Meschapolos 16.4 4,000 69 16 3,677 9,77 Musyamum Elevation Flow 69 16 3,677 9,77 Musyamum Flevation 12,8 4,000 69 16 3,775 9,8 Musyamum 12,8 4,000 69 18 3,809 9,9 Musyamum 12,8 4,000 69 18 3,809 9,0 Musyamum 12,8 4,000 69 18 3,809 9,0 Musyamum 12,8 4,000 69 14 3,600 9,7 Musyamum 12,1 4,000 69 14 3,433 9,6 Musyamum 12,1 4,000 69 14 3,434 9,6 Musyamum 13,2 4,000 69 14 3,434 9,6 Musyamum 13,4 4,000 69 14 3,434 9,6 Musyamum 13,4 4,000 69							
Make							
Multiple Marian Maximum Multiple Maximum Max							
MAYOLSULIO 12.9 4'000 28 12 3'800 9.1 MAYOLSULIO 14.2 4'000 29 14 3'800 9.1 MAPOHLYDOLIO 16.2 4'000 28 13 3'433 9.2 MAPOHLYDOLO 17.5 4'000 28 13 3'451 9.6 MAPOHLYDOLO 10.2 4'000 28 13 3'451 9.6 MAPOHLYDOLO 10.2 4'000 28 13 3'451 9.6 MAPOHLYDOLO 10.2 4'000 28 14 3'284 9.6 MAPOHLYDOLO 11.4 4'000 28 14 3'284 9.6 MAPOHLYDOLO 11.4 3'000 28 14 3'288 9.7 MAPOHLYDOLO 11.4 4'000 28 14 3'484 9.6 MAPOHLYDOLO 12.3 4'000 29 14 3'484 9.6 MAPOHLYDOLO 12.3 4'000 29<							
Mydrant Hydrant Make Mak							
Hydrant Indent							
Mydrant Indicated Mediant Media							
Mydranth Mydranth Masher							
Hydrant Avaliant Musikem Tribulant Avaliant Makinum Makinum Makinum Makinum Makinum Makinum							
Hydrant ID Elevation Flow W522H750102 (psi)			13			10.5	
Hydrant ID Elevation House Hou			ħ١				
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (high (gpm) (high (gpm)			ħ١			13.5	W572H750102
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm)	9.6	Zħħ,£	15	89		4.11	W572H750101
Hydrant ID Elevation Flow Pressure Pipe W571H750103 16.7 4,000 59 18 3,484 9.6 W551H750105 17.8 4,000 59 18 3,484 9.5 W551H750105 18.5 4,000 50 18 3,484	9.6	3'422	15	28	000,4	0.41	M571H750104
Hydrant ID Elevation Flow Pressure Pressure Flow Pipe Maximum Pipe Musch Holom (psi)	<i>L</i> .6	3'286	۲L	69		6.4r	W571H750102
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (psi) (psi) (gpm)	9.6	3,484	13	28	000′₺	4.71	W571H750103
Hydrant ID Elevation Flow Pressure Pressure Flow Pipe How W550H750103 18.5 4,000 57 14 3,506 9.5 W550H750102 20.9 4,000 57 14 3,506 9.5 W550H750102 20.9 4,000 57 14 3,506 9.5 W550H750103 18.5 4,000 57 16.7 4,000 58 18 3,506 9.5 W550H750103 18.5 4,000 59 18 3,506 9.5 W550H750103 18.5 4,000 59 18 3,506 9.5 W550H750103 18.5 4,000 59 18 3,506 9.5 W550H750103 18.5 4,000 50 18.5 4,00		784,£			000,4	18.3	M571H750105
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (high Available High W552H750103 (gpm) (gpm) (high High Hydrant House Pressure Flow (gpm) (high Hydrant	9.6	3,484	13	L S	000′₺	8.91	901097H083W
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm)	9.6	3'206	ħ١	L S	000′₺	6.02	W250H750102
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (high (high (gpm) (high	9.6	3,488	13	99	000′₺	2.02	M261H750104
Hydrant ID Elevation Flow Pressure Pressure Flow (gpm) (psi) (gpm)	9.6	3'222	12	99	000′₺	18.5	W261H750103
Hydrant ID Elevation Flow Pressure Pressure Flow Pipe Hydrant ID Elevation (gpm) (psi) (gpm) (gpm) (gpm)	4.6	3,813	18	69	000′₺	8.71	W552H750102
Hydrant ID Elevation Flow Pressure Pressure Flow Pipe Pipe			9١	69	000′₺	L.61	W552H750103
MumixeM Avaitable 1 II Elevation Flow Pressure Pressure Flow	(mdb)	(wdb)	(izq)	(izq)	(wd6)	(11)	
MumixeM Avaitable 1 II Elevation Flow Pressure Pressure Flow	Pqiq		0.110.000	0.10			
THE STREET BROKEN TO STREET THE STREET THE PART OF THE STREET THE							Ol triant ID
30 vtiooloV	Velocity of	Available Fire	Residual	Static	Reauired Fire	Hydrant	

<u> </u>						
4.6	3,349	01	L9	000,4	۲.4	W650H940102
4.6	3,281	8	09	000'₺	8.8	W650H940103
4.6	3,285	8	L9	000′₺	<i>L</i> .9	M920H640104
4.6	3,313	8	L9	000′₺	2.9	L01049H139W
4.6	3,332	6	79	000′₺	6.4	W651H940102
8.9	3,204	L	69	000′₺	۲.4	M921H640103
9.6	775,5	٥L	09	000′₺	5.2	701076H199M
9.6	3,516	13	۱9	000′₺	6.8	901049H139W
<i>L</i> .6	3,662	12	۱9	000′₺	₽ .8	W629H750101
<i>L</i> .6	6L9'E	12	L9	000′₺	0.8	W629H750102
8.6	9۱۲,٤	9٤	L9	000′₺	3.3	M911H750105
13.2	3,052	7	۱9	000′₺	12.1	901097H116W
٤.۱۱	7,580	0	09	000′₺	0.01	701037H115W
8.9	3,795	L١	19	000′₺	9.6	W611H750102
8.9	689'E	9٤	69	000′₺	9.01	W571H750101
<i>L</i> .6	L89'E	9٤	69	000′₺	8.8	W590H750103
8.81	996′L	0	69	000′₺	8.7	W590H750102
8.9	3 ['] 746	L١	09	000′₺	4.6	M260H750101
8.9	118'8	18	09	000′₺	13.0	₩690H750104
9.6	٤99'٤	12	69	000′₺	١.٥٢	1097H016W
9.6	3'252	Þ١	28	000′₺	3.2	801046H119W
9.6	609′€	91	69	000′₺	5.3	701097H116W
6.6	3'121	9٤	79	000′₺	9.3	W613H750103
8.9	3'920	91	79	000′₺	G. 9	₩613H750104
8.9	089'8	12	L9	000′₺	8.8	W588H750108
8.9	₹9°E	12	L9	000′₺	6.8	W588H750101
8.6	Z99'E	12	09	000′₺	6.6	W588H750102
6.6	167,8	L١	09	000′₺	£.01	W588H750107
6.6	197,5	L١	09	000'7	12.2	W588H750103
15.5	9 <i>LL</i> 'E	L١	09	000′₺	1.11	M273H750106
١.٥٢	۲۱6٬٤	6١	09	000′₺	9.01	W573H750105
١.٥١	396'8	50	09	000'7	0.01	W572H750107
4.6	785,5	ll	26	000′₺	2.9	₩261H750104
9.6	3,457	15	09	000′₺	<i>T.</i> 8	901097H88BW
8.9	71 <i>1</i>	9١	09	000′₺	9.6	W588H750104
9.6	3,489	15	09	000′₺	2.9	W589H750111
8.9	117,5	9١	69	000′₺	4.3	M289H750101
6.6	148,5	18	09	000′₺	6.5	W589H750102
8.9	89 <i>L</i> ′E	L١	19	000′₺	6.8	W612H750106
6.6	748,£	18	19	000′₺	2.8	011037H983W
8.9	177,5	L١	09	000′₺	6.8	W589H750103
(mdb)	(wd6)	(isq)	(isq)	(wdb)	(JT)	
ЭqiЧ		0.110.000.00				
mumixeM	WOIT	Pressure	Pressure	Flow	Elevation	Ol triant ID
Velocity of	Available Fire	Residual	Static	Reduired Fire	Hydrant	

						1
6.6	3'828	81	99	000,4	4.8	M614H750105
8.6	098'8	18	79	000′₺	4.3	W615H750107
6.6	178,5	18	7 9	000′₺	9.5	W615H750102
8.6	3,803	L١	٤9	000′₺	3.0	M615H750101
8.6	3,807	L١	7 9	000,4	5.2	W615H940103
L [.] 6	3,624	۲L	79	000′₺	₽ .8	901097H216W
L [.] 6	3,632	۲L	7 9	000′₺	5.11	M615H750105
8.6	3′188	L١	٤9	000′₺	8.8	701049H319W
8.6	61 <i>L</i> ′E	9١	٤9	000′₺	9.8	M626H940101
9.6	3'207	15	09	000′₺	8.4	101049H723W
9.6	3'293	13	L9	000′₺	9. <i>þ</i>	701049H723W
8.6	21 <i>1</i> ′2	9١	٤9	000′₺	3.0	101049H723W
8.6	3'151	9١	79	000′₺	8.2	401049H723W
6.6	3,803	۲l	79	000′₺	0.4	W627H940105
0.01	3,917	6l	89	000′₺	1.8	101087H829W
6.6	3,883	8L	89	000′₺	4.3	W629H750103
8.6	3,701	9L	79	000′₺	0.4	201037H819W
6.6	£98'£	81	89	000′₺	ſ.∂	L01037H219W
<i>L</i> .6	۲۱9'٤	۲L	79	000′₺	g·9	L0L097H419W
L.9	3,587	13	89	000′₺	2.2	701037H416W
L.9	3,543	13	79	000′₺	3. <i>T</i>	W614H750103
L.9	3,512	12	79	000′₺	ħ.8 ⊒ =	701037H416W
L.9	3,578	13	89	000′₺	L.9	L01037H783W
L'6	999'8	13	79	000′₺	8.3	W587H750102
8.6	689'8	91	Z9	000,4	9 [.] ħ	W687H750103
6.6	3,782	<u> </u>	79	000′₺	9 [.] ħ	101037H476W
0.01	916'8	6l	79	000′₺	8.4	701037H273W
L'6	£69'E	9l	ι9	000′₺	9 [.] ħ	101037H219W
L'6	3'923	91	19	000′₺	£.4	Z01037H219W
L.9	3,675	91	19	000′₺	9.8	W612H756163
8.6	187,8	<u>L</u> l	19	000′₽	<i>Γ</i> .μ	M612H756169
L.6	689'E	9L	19	000′₺	7.8	M612H750105
L'6	<i>LL</i> 9′ε	91	79	000′₽	ſ.ð	W629H750106
L'6	1 <i>L</i> 9'E	91	l9	000′₽	3.6	W629H750105
8.6	127,8	9L	19	000′₺	0.01	M629H750104
L'6	609'8	7 L	19	000′₺	2.01	701049H929W
L.9	3,658	91	79	000′₺	3.7	8010494029W
L'6	399'8	9L	69	000′₺	0.8	E01097H119W
⊅ [.] 6	3,333	٥l	69	000′₺	0.9	901037H163W
9 [.] 6	3,592	7 L	09	000′₺	ħ.∂	201049H163W
5.6	3,455	71	l9	000′₺	g. <u></u>	1010494039W
(mqg)	(mdg)	(isq)	(isq)	(wd6)	(JT)	7070.01103/111
9di9	` ,		\· /	` ,	(.5)	
	Flow	Pressure	Pressure	Flow	Elevation	Hydrant ID
mumixsM	Available Fire	Residual	Static	Required Fire	Hydrant	
Yelocity of						

6.6	4,005	12	† 9	000'₺	20.6	W575H750103
0.01	4,005	17	† 9	000,4	12.8	M574H750105
2.01	900'₺	77	09	000′₺	8.2	W573H750101
9.6	900'₺	17	79	000′₺	9.6	W592H910102
9 [.] 6	900′₺	50	89	000′₺	8.01	W552H750101
9.8	2,835	0	69	000′₺	0.8	9 <i>L</i> -901- 1 99
0.6	3'354	8	79	000′₺	0.7	27-A-£92
6.0r	8,843	81	89	000,4	9.41	W628H750102
9.6	2,831	0	69	000,4	13.2	800100H1E9W
١.9	7'99	0	89	000,4	<i>L</i> .8	600100H649W
8.8	7,566	0	69	000,4	5.2	900100H649W
9.8	7,355	0	09	000′₺	3.3	700100H944
8.6	££7,£	9٤	69	000'7	5.9	W574H750107
8.6	3,795	۷L	09	000'7	9.5	9010974475W
6.6	3,898	6L	† 9	000′₺	5.2	W587H750104
8.6	3,772	۷L	٤9	000'7	3.0	W587H750105
8.9	108,5	L١	† 9	000′₺	9.4	M287H750106
8.9	3,765	9٤	† 9	000′₺	8.4	W587H750107
(wd6)	(wd6)	(isq)	(isq)	(wd6)	(ナᠯ)	
Yelocity of Maximum Pipe	Available Fire wol7	Residual Pressure	Static Pressure	Required Fire Flow	Hydrant Elevation	Hydrant ID

Hydrant ID	Hydrant Elevation	Required Fire Flow	Static Pressure	Residual Pressure	Available Fire Flow	Velocity of Maximum Pipe
	(ft)	(gpm)	(psi)	(psi)	(gpm)	(gpm)
W631H750104	7.5	4,000	64	28	4,737	10.6
W631H760108	8.5	4,000	63	26	4,518	10.0
W631H750106	8.6	4,000	63	24	4,288	9.8
W631H750107	7.9	4,000	63	24	4,301	9.8
W631H750103	8.7	4,000	63	24	4,324	9.9
W610H750109	9.7	4,000	63	25	4,414	9.9
W553H751025	26.3	4,000	57	21	4,128	9.5
W553H751026	25.9	4,000	58	22	4,201	9.6
W552H751024	26.8	4,000	57	22	4,234	9.6
W551H750101	20.3	4,000	59	26	4,606	10.0
W551H750102	20.0	4,000	59	26	4,599	10.1
W551H750105	19.8	4,000	59	25	4,546	10.0
W551H750106	18.5	4,000	59	25	4,538	10.0
W570H750101	17.1	4,000	60	26	4,547	10.0
W570H750102	15.6	4,000	60	26	4,570	10.0
W570H750103	17.8	4,000	59	25	4,452	10.0
W591H750101	14.2	4,000	61	26	4,581	10.1
W591H750102	11.0	4,000	62	28	4,706	10.1
W591H750103	11.9	4,000	62	27	4,673	10.1
W610H750107	11.4	4,000	62	28	4,727	10.2
W610H750108	9.4	4,000	63	29	4,820	10.2
W610H750110	9.4	4,000	63	26	4,566	10.0
W610H750106	10.0	4,000	62	26	4,503	10.0
W610H750111	10.3	4,000	62	26	4,484	10.0
W610H750105	10.2	4,000	62	26	4,515	10.0
W631H750101	9.5	4,000	63	28	4,718	10.1
W610H910104	10.5	4,000	62	29	4,863	10.2
W610H910103	11.3	4,000	62	29	4,847	10.2
W610H910102	11.9	4,000	62	28	4,841	10.2
W610H910101	12.5	4,000	62	28	4,833	10.2
W592H910103	12.8	4,000	62	28	4,843	10.2
W592H750101	13.3	4,000	62	29	4,858	10.2
W569H750103	15.8	4,000	60	27	4,747	10.1
W569H750102	16.7	4,000	60	27	4,707	10.1
W569H750101	17.8	4,000	60	27	4,664	10.1

Hydrant ID	Hydrant Elevation	Required Fire Flow	Static Pressure	Residual Pressure	Available Fire Flow	Velocity of Maximum Pipe
	(ft)	(gpm)	(psi)	(psi)	(gpm)	(gpm)
W552H750103	18.5	4,000	59	26	4,647	10.1
W552H750102	20.2	4,000	59	26	4,598	10.0
W551H750103	20.9	4,000	58	25	4,536	10.0
W551H750104	19.8	4,000	59	26	4,565	10.0
W550H750102	18.3	4,000	59	26	4,618	10.1
W550H750106	17.4	4,000	60	24	4,383	9.9
W571H750105	14.9	4,000	61	23	4,248	9.8
W571H750103	14.0	4,000	61	22	4,186	9.8
W571H750102	11.4	4,000	62	23	4,279	9.8
W571H750104	13.5	4,000	61	21	4,102	9.7
W572H750101	12.4	4,000	61	21	4,076	9.7
W572H750102	10.5	4,000	62	23	4,268	9.8
W550H750103	17.2	4,000	60	27	4,656	10.1
W550H750104	15.5	4,000	60	27	4,717	10.2
W550H750105	14.5	4,000	61	28	4,758	10.2
W550H750109	15.9	4,000	60	27	4,703	10.2
W549H750111	12.8	4,000	62	28	4,839	10.3
W549H750110	14.6	4,000	61	28	4,777	10.2
W572H750106	12.4	4,000	62	28	4,738	10.8
W572H750105	12.5	4,000	62	26	4,505	10.0
W572H750104	12.1	4,000	62	25	4,397	9.9
W572H750103	10.7	4,000	62	24	4,355	9.9
W589H750113	8.6	4,000	63	25	4,442	10.0
W589H750112	9.2	4,000	63	26	4,561	10.1
W589H750114	10.5	4,000	62	24	4,341	9.9
W589H750115	10.5	4,000	62	24	4,296	9.9
W590H750106	9.2	4,000	63	25	4,439	10.0
W589H750109	9.4	4,000	63	28	4,769	10.2
W589H750108	8.7	4,000	63	23	4,191	11.4
W589H750107	8.5	4,000	63	20	4,015	9.6
W589H750106	9.6	4,000	63	21	4,088	10.4
W590H750105	7.3	4,000	64	28	4,448	15.0
W611H750101	8.2	4,000	63	29	4,912	10.3
W589H750105	8.9	4,000	63	29	4,860	10.3
W589H750104	8.2	4,000	63	29	4,887	10.3

Hydrant ID	Hydrant Elevation	Required Fire Flow	Static Pressure	Residual Pressure	Available Fire Flow	Velocity of Maximum Pipe
	(ft)	(gpm)	(psi)	(psi)	(gpm)	(gpm)
W589H750103	8.9	4,000	63	29	4,881	10.3
W589H750110	6.5	4,000	64	28	4,717	10.2
W612H750106	5.4	4,000	64	27	4,592	10.1
W589H750102	9.2	4,000	63	29	4,890	10.3
W589H750101	9.6	4,000	63	29	4,861	10.3
W589H750111	8.7	4,000	63	21	4,104	10.5
W588H750104	9.2	4,000	63	29	4,881	10.3
W588H750106	10.0	4,000	63	21	4,080	10.6
W591H750104	10.9	4,000	62	28	4,726	10.2
W572H750107	11.1	4,000	62	30	4,975	10.4
W573H750105	12.2	4,000	62	29	4,881	10.3
W573H750106	10.3	4,000	63	27	4,405	15.0
W588H750103	9.9	4,000	63	29	4,873	10.3
W588H750107	8.9	4,000	63	28	4,763	11.6
W588H750102	8.8	4,000	63	25	4,459	10.0
W588H750101	6.5	4,000	64	24	4,340	9.9
W588H750108	5.6	4,000	64	24	4,291	9.9
W613H750104	5.3	4,000	65	24	4,300	9.9
W613H750103	3.2	4,000	65	26	4,428	10.0
W611H750104	10.1	4,000	62	28	4,801	10.2
W611H940108	13.0	4,000	61	27	4,688	10.1
W610H750114	9.4	4,000	63	29	4,839	10.3
W590H750104	7.8	4,000	63	27	4,612	10.1
W590H750101	8.8	4,000	63	26	4,496	10.0
W590H750102	10.6	4,000	62	22	4,152	9.7
W590H750103	9.5	4,000	63	25	4,391	9.9
W571H750101	10.0	4,000	62	25	4,404	9.9
W611H750102	5.5	4,000	64	28	4,647	10.1
W611H750107 ¹	8.0	4,000	63	23	4,199	9.8
W611H750106	5.4	4,000	64	26	4,447	10.0
W611H750105	5.9	4,000	64	27	4,585	10.1
W629H750102	5.2	4,000	64	26	4,506	10.0
W629H750101	4.1	4,000	65	29	4,855	10.7
W651H940105	4.9	4,000	65	30	4,979	10.4
W651H940104	6.2	4,000	64	30	4,917	10.3
W651H940103	9.7	4,000	63	28	4,773	10.2
W651H940102	3.8	4,000	65	31	5,006	10.4
W651H940101	4.1	4,000	65	31	4,997	10.4
W650H940104	5.5	4,000	64	30	4,947	10.3
W650H940103	6.4	4,000	64	30	4,916	RKF

Hydrant ID	Hydrant Elevation	Required Fire Flow	Static Pressure	Residual Pressure	Available Fire Flow	Velocity of Maximum Pipe
	(ft)	(gpm)	(psi)	(psi)	(gpm)	(gpm)
W650H940102	6.0	4,000	64	30	4,945	10.3
W650H940101	5.0	4,000	65	31	5,004	10.4
W631H940102	7.5	4,000	64	30	4,950	10.3
W631H750105	10.2	4,000	62	24	4,323	9.9
W611H750103	10.0	4,000	62	28	4,815	10.2
W629H940108	3.6	4,000	65	31	5,040	10.4
W629H940107	5.1	4,000	65	30	4,986	10.4
W629H750104	5.7	4,000	64	29	4,839	11.1
W629H750105	4.7	4,000	65	27	4,606	10.1
W629H750106	3.6	4,000	65	27	4,539	10.0
W612H750105	4.3	4,000	65	26	4,523	10.0
W612H750104	4.6	4,000	65	27	4,634	10.1
W612H750103	4.8	4,000	65	26	4,472	10.0
W612H750102	4.6	4,000	65	25	4,436	10.0
W612H750101	4.6	4,000	65	26	4,505	10.0
W573H750107	8.3	4,000	64	29	4,837	12.0
W574H750104	6.7	4,000	64	26	4,490	10.0
W587H750103	6.4	4,000	64	24	4,311	9.9
W587H750102	7.5	4,000	64	22	4,123	9.7
W587H750101	5.2	4,000	65	22	4,107	9.7
W614H750104	6.5	4,000	64	20	4,023	9.7
W614H750103	5.1	4,000	65	21	4,058	9.7
W614H750102	4.0	4,000	65	22	4,117	9.7
W614H750101	4.3	4,000	65	22	4,174	9.8
W613H750101	3.1	4,000	65	27	4,586	10.1
W613H750102	4.0	4,000	65	24	4,316	9.9
W629H750103	2.8	4,000	66	28	4,700	10.2
W628H750101	3.0	4,000	66	30	4,930	10.6
W627H940105	4.6	4,000	65	31	5,036	10.4
W627H940104	4.8	4,000	65	31	5,028	10.4
W627H940103	3.9	4,000	65	31	5,062	10.4
W627H940102	8.8	4,000	63	29	4,873	10.3
W627H940101	11.3	4,000	62	28	4,777	10.2
W626H940101	5.4	4,000	65	31	5,026	10.4
W615H940104	5.2	4,000	65	31	5,043	10.4
W615H750105	3.0	4,000	66	26	4,418	11.5
W615H750106	3.9	4,000	65	25	4,337	10.2
W615H940103	4.3	4,000	65	31	5,092	10.5
W615H750101	6.4	4,000	64	31	5,030	10.4
W615H750102	4.8	4,000	65	29	4,809	BKF
W615H750107	4.6	4,000	65	28	4,693	DIVL

Hydrant ID	Hydrant Elevation	Required Fire Flow	Static Pressure	Residual Pressure	Available Fire Flow	Velocity of Maximum Pipe
	(ft)	(gpm)	(psi)	(psi)	(gpm)	(gpm)
W614H750105	3.0	4,000	66	27	4,583	10.1
W587H750107	5.2	4,000	65	25	4,423	9.9
W587H750106	3.9	4,000	65	26	4,447	10.0
W587H750105	6.3	4,000	64	25	4,428	10.0
W587H750104	5.5	4,000	65	28	4,639	10.1
W574H750106	13.2	4,000	62	28	4,834	10.3
W574H750107	14.6	4,000	61	28	4,783	10.2
W649H001007	7.0	4,000	64	20	4,031	9.6
W649H001006	8.0	4,000	63	24	4,289	9.8
W649H001009	10.8	4,000	62	25	4,382	9.9
W631H001008	9.6	4,000	63	26	4,577	10.0
W628H750102	2.8	4,000	66	30	4,892	13.9
593-A-75	12.8	4,000	62	20	4,025	9.5
554-106-75	20.6	4,000	60	22	4,176	9.6
W552H750101	21.9	4,000	58	25	4,562	10.0
W592H910102	12.3	4,000	62	29	4,901	10.2
W573H750101	12.1	4,000	62	29	4,966	10.4
W574H750105	5.2	4,000	65	31	5,032	12.5
W575H750103	6.7	4,000	64	31	5,112	10.5

Notes:

^{1.} Recommended improvements represent improvements required to meet criteria assuming full fire flow at each hydrant, where flows are applied to the hydrant connection to the distribution main. Splitting fire flow would allow for less length of recommended improvement to pipelines serving hydrant W611H750107. The decrease in improvement length would result in a residual pressure at 2,000 gpm of 22 psi and an available fire flow of 2,114 gpm.