

Thienes Engineering, Inc.

CIVIL ENGINEERING LAND SURVEYING

PRELIMINARY HYDROLOGY CALCULATIONS

FOR

SLOVER AVENUE INDUSTRIAL BUILDINGS

13592 SLOVER AVENUE FONTANA, CALIFORNIA

PREPARED FOR **ALERE PROPERTY GROUP LLC** 100 BAYVIEW CIRCLE, SUITE 310 NEWPORT, CA 92660 PHONE: (949) 509-5000 FAX: (949) 509-5001

> MARCH 15, 2021 REVISED JUNE 9,2021

> > **JOB NO. 3950**

PREPARED BY

THIENES ENGINEERING 14349 FIRESTONE BLVD. LA MIRADA, CALIFORNIA 90638 (714) 521-4811

PRELIMINARY HYDROLOGY CALCULATIONS

FOR

SLOVER AVENUE INDUSTRIAL BUILDINGS

PREPARED UNDER THE SUPERVISION OF

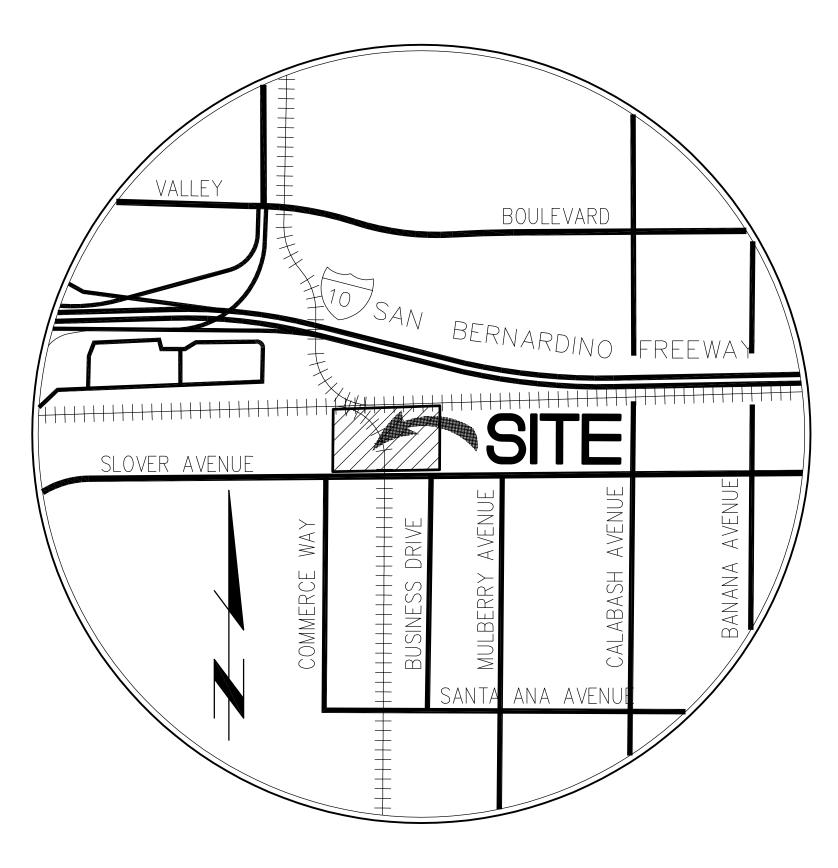
REINHARD STENZEL, PE

R.C.E. 5615 EXP. 12/31/22

INTRODUCTION

A: PROJECT LOCATION

The project site is located on the north side of Slover Avenue east of Commerce Way in Fontana, CA.


B: STUDY PURPOSE

The purpose of this study is to determine the 100-year, existing and proposed condition peak flow rates from the project site that discharges to the existing storm drain in Slover Avenue.

C: PROJECT STAFF:

Thienes Engineering staff involved in this study include:

Reinhard Stenzel Kristie Ferronato Eduardo Toledanes

VICINITY MAP

N.T.S.

DISCUSSION

The project is approximately 18.55 acres. Proposed improvements for the site include a two warehouse buildings of about 144,270 and 210,840 square feet. The site will have two truck yards in between the buildings separated by the railroad spur which will remain. Vehicle parking will be located along the west, south, and east of the site. There will be landscaping fronting Slover Avenue, along with additional landscaping throughout the project site.

Existing Condition

The project site is currently fully paved with a construction supply business. There appears to be material storage scatter throughout the site. The site drains southerly towards Slover. The site is divided east and west by an existing rail road spur.

The eastern portion of the site drains southwesterly towards the east side of the rail road spur. The 100-year peak flow rate is approximately 31.2 cfs. There are 2 existing 21' wide public catch basins here which collects this runoff.

The western portion of the site also drains southeasterly towards the Slover Avenue. The 100-year peak flow rate is approximately 26.9 cfs. There is an existing 21' wide catch basin just west of the project site, which collects the projects runoff. The total 100-year peak flow rate at existing condition is approximately 58.1 cfs.

See Appendix A" for the existing storm drains plans, Appendix "B" for existing condition hydrology calculations and Appendix "C" for existing condition hydrology map.

Off Site Storm Drain

The land north of the project site is Southern Pacific Railroad. There is an existing grated catch basin near the northwest corner of the property. This inlet appears to capture runoff from the rail road right of way. There is a storm drain conveying runoff from north of the rail road to this catch basin. Then an existing 36" storm drains appears to continue southerly connecting to the public storm drain in Slover. The alignment of this storm drain through the project site is not clear at this time. There is an existing storm drain manhole near the southwest property corner. This existing storm drain may need to be relocated to avoid the proposed building and proposed utilities. The drainage pattern will not be altered and the connection point to the Slover storm drain will remain.

Proposed Condition

The runoff from the east building will drain generally to the southwest. The northern drive aisle and west portion of the building (Nodes 100-113) will drain towards the truck yard. A series of catch basins will collect the runoff. A private storm drain will drain southerly towards the driveway. The eastern portion of the building, the east drive aisle (Nodes 110-113) will drain southerly towards an inlet. A private storm drain will convey the runoff westerly towards the drive way. The runoff from the south vehicle parking will collected and confluenced with the runoff from the east. Then the storm drain will connected with the storm drain from the truck yard and continue southerly to the existing storm drain in Slover Avenue. The 100-year peak flow rate (Node 114) is approximately 31.5 cfs.

The runoff from the western portion of the west building and the west drive aisle (Nodes 210-213) drains southerly to a proposed catch basin. The private storm drain will continue easterly to the east side of the building collecting the runoff from the southern drive aisle. The eastern portion of the building and the truck yard (Nodes 200-213) will drain to a series of grated inlets in the truck yard. A private storm drain will convey the runoff southerly and confluence with the runoff from the west. The storm drain will discharge to the existing storm drain in Slover Avenue. The 100-year peak flow rate (Node 214) is approximately 21.6 cfs.

The remaining southerly landscaped areas and portions of the southerly driveways along the frontage of Slover will sheet flow into Slover. The 100-year peak flow rate is approximately 2.1 cfs. (0.7 cfs + 1.0 cfs + 0.4 cfs)

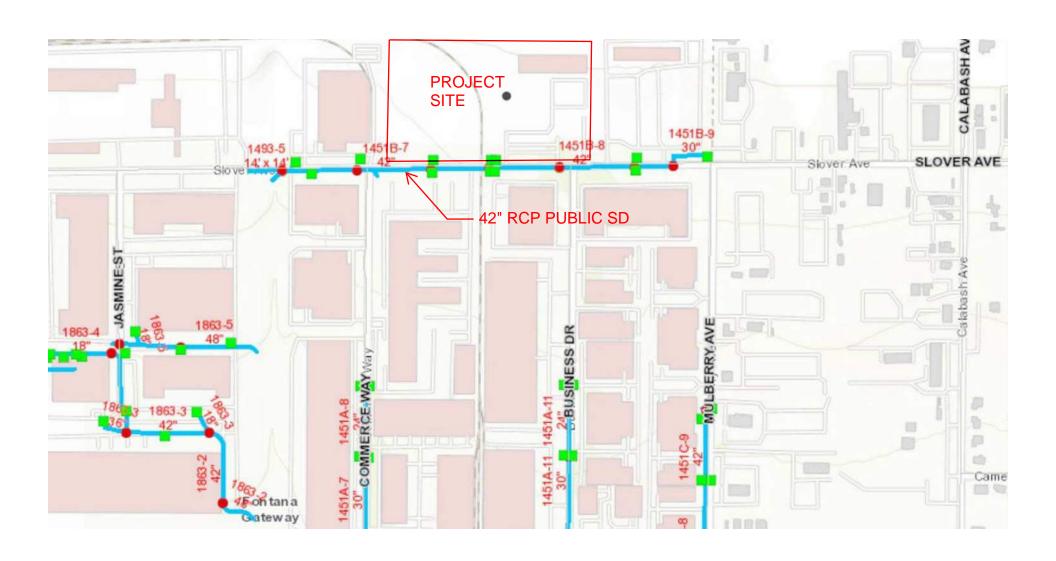
The existing rail road spur which will remain will sheet flow southerly towards Slover along with some landscaping areas for the west building. The 100-year peak flow rate (Node 232) is approximately 2.4 cfs.

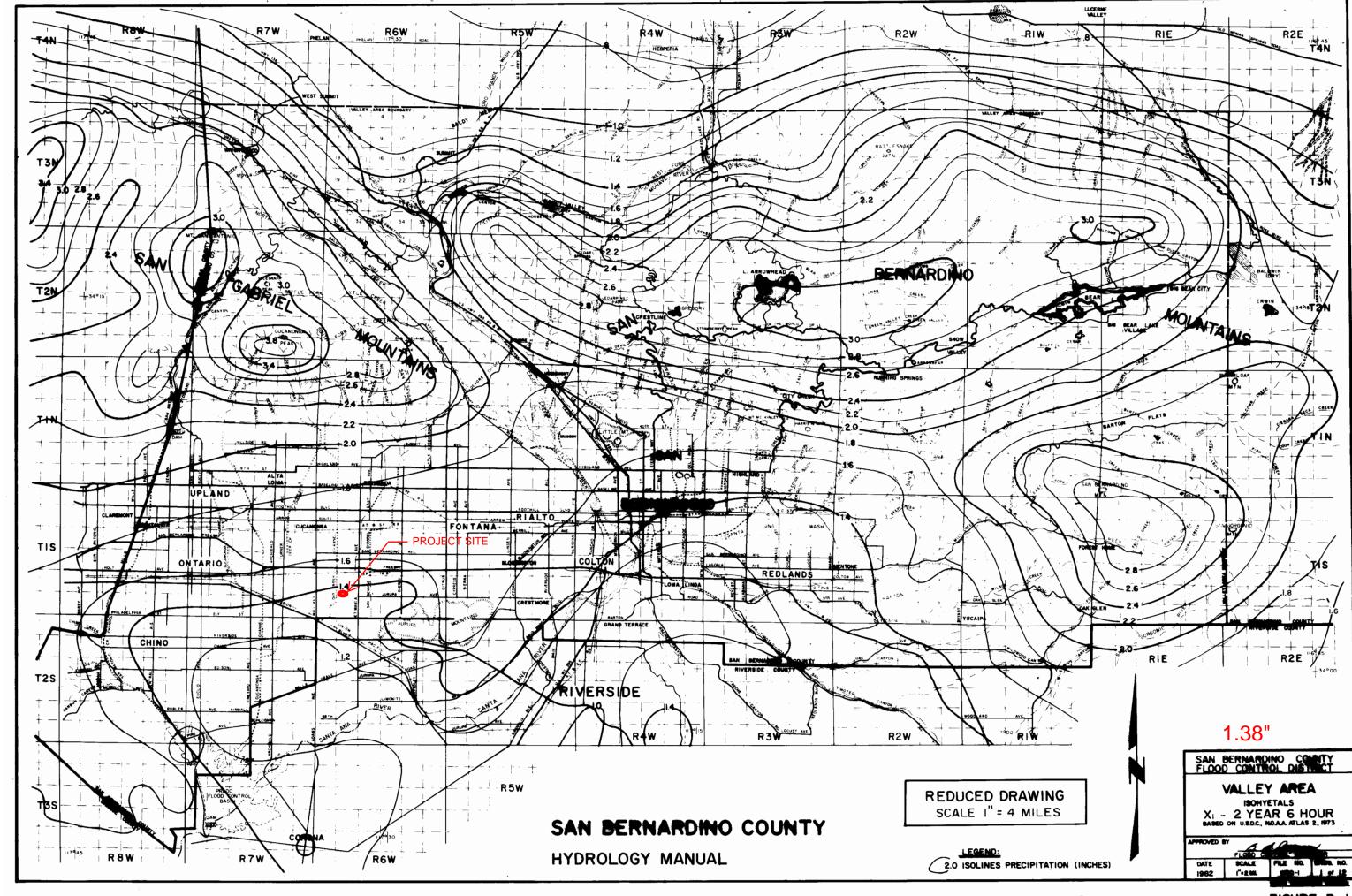
The total 100-year peak flow rate at proposed condition is approximately 57.6 cfs.

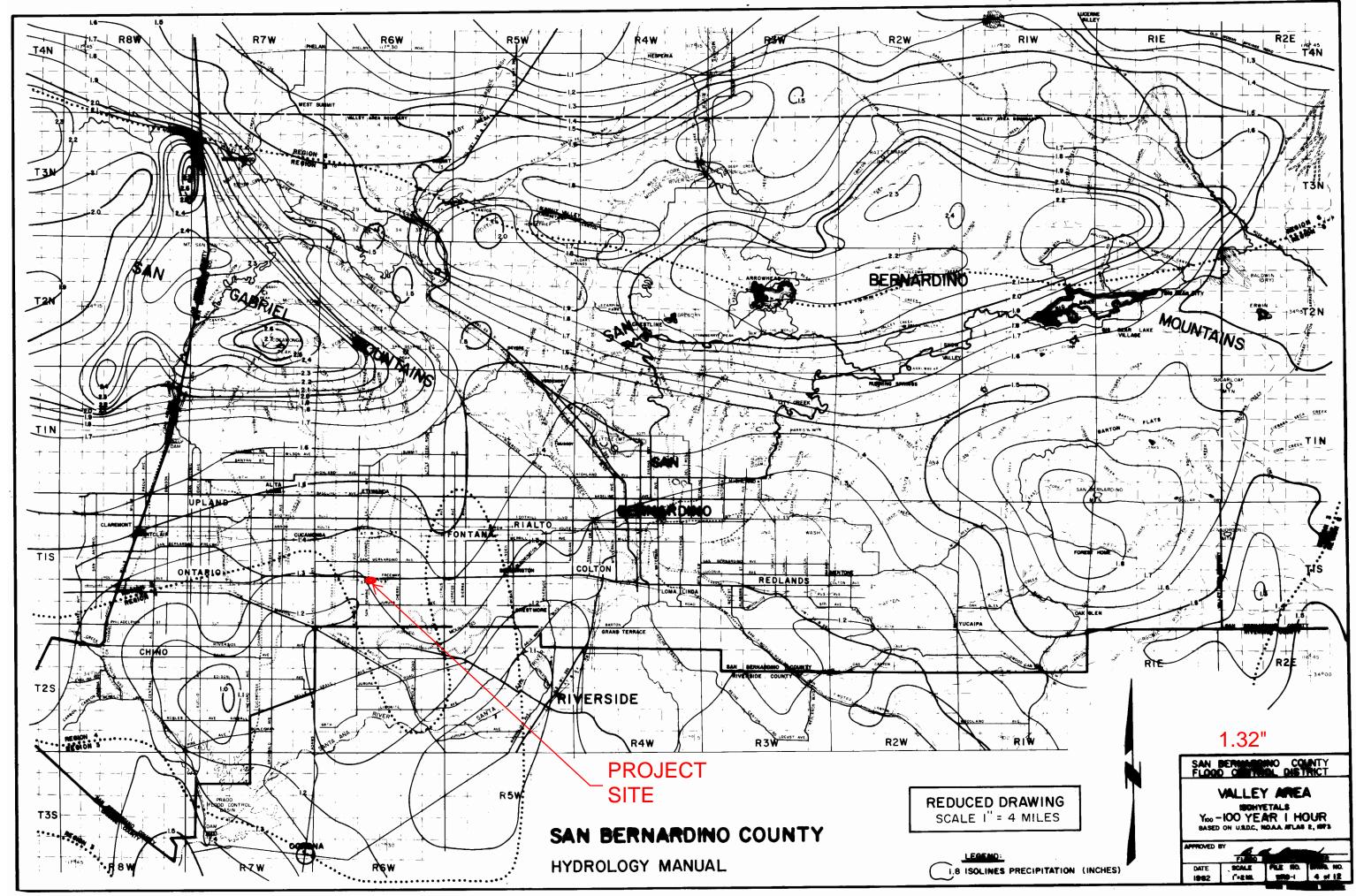
See Appendix "B" for proposed onsite condition hydrology calculations and Appendix "C" for proposed condition hydrology map.

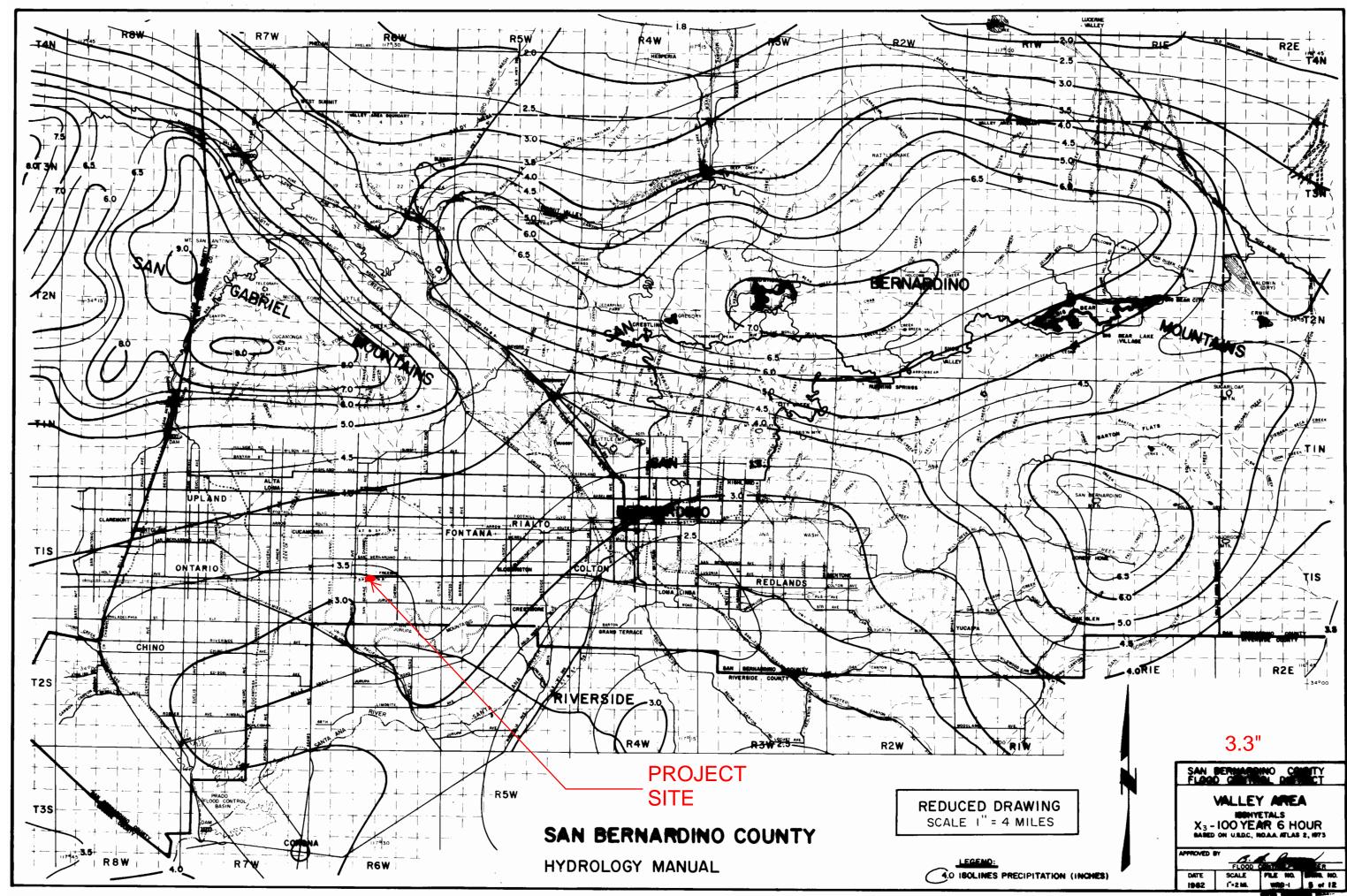
Summary

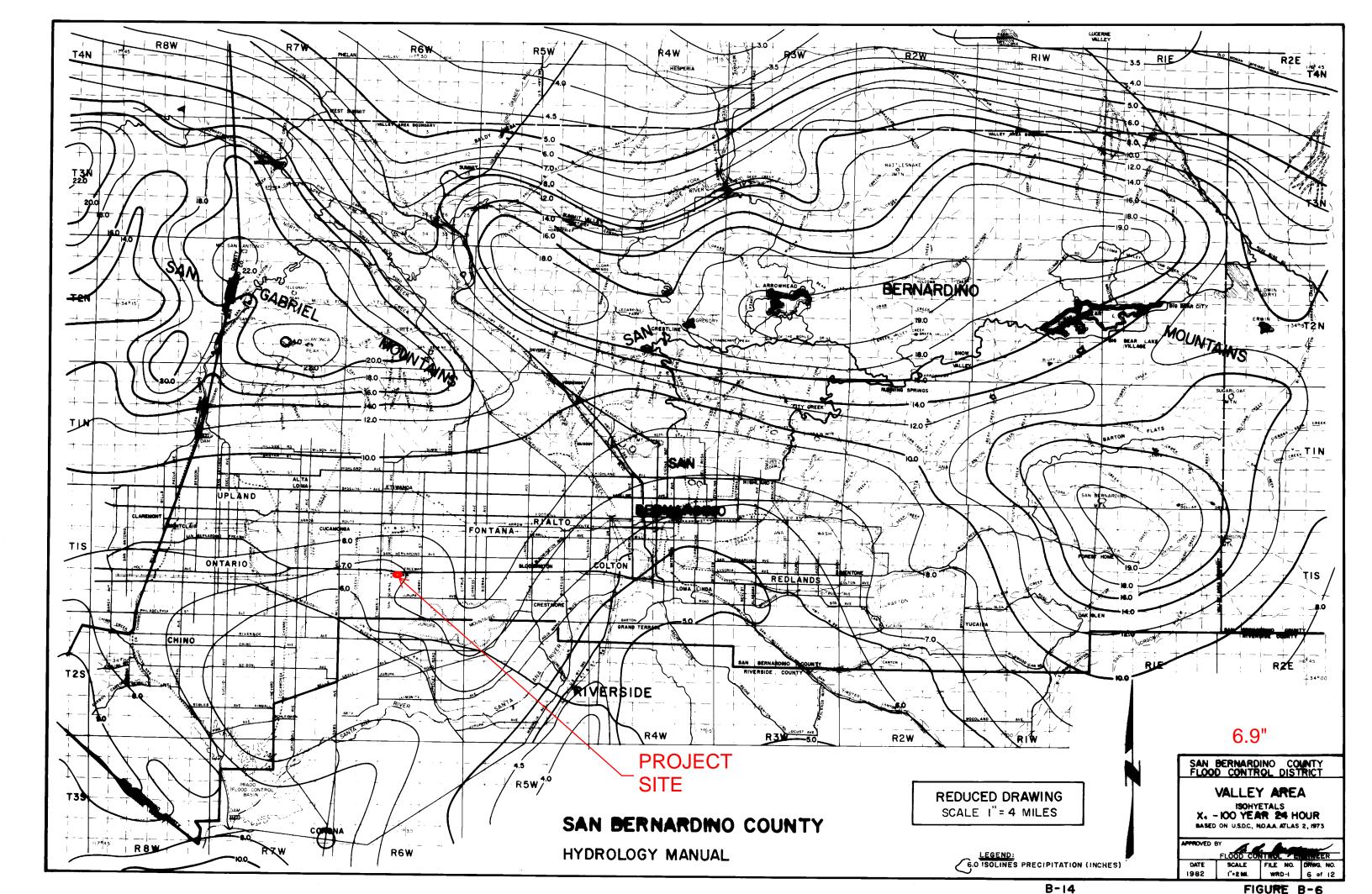
The sites drainage patterns are designed to mimic the existing condition drainage patterns. The sites 100-year total discharge in the existing condition is approximately 58.1 cfs. The sites 100-year total discharge in the proposed condition is approximately 57.6 cfs. which is less than the existing condition detention is not required. Therefore, the development of this project is not expected to have an adverse effect on downstream facilities.

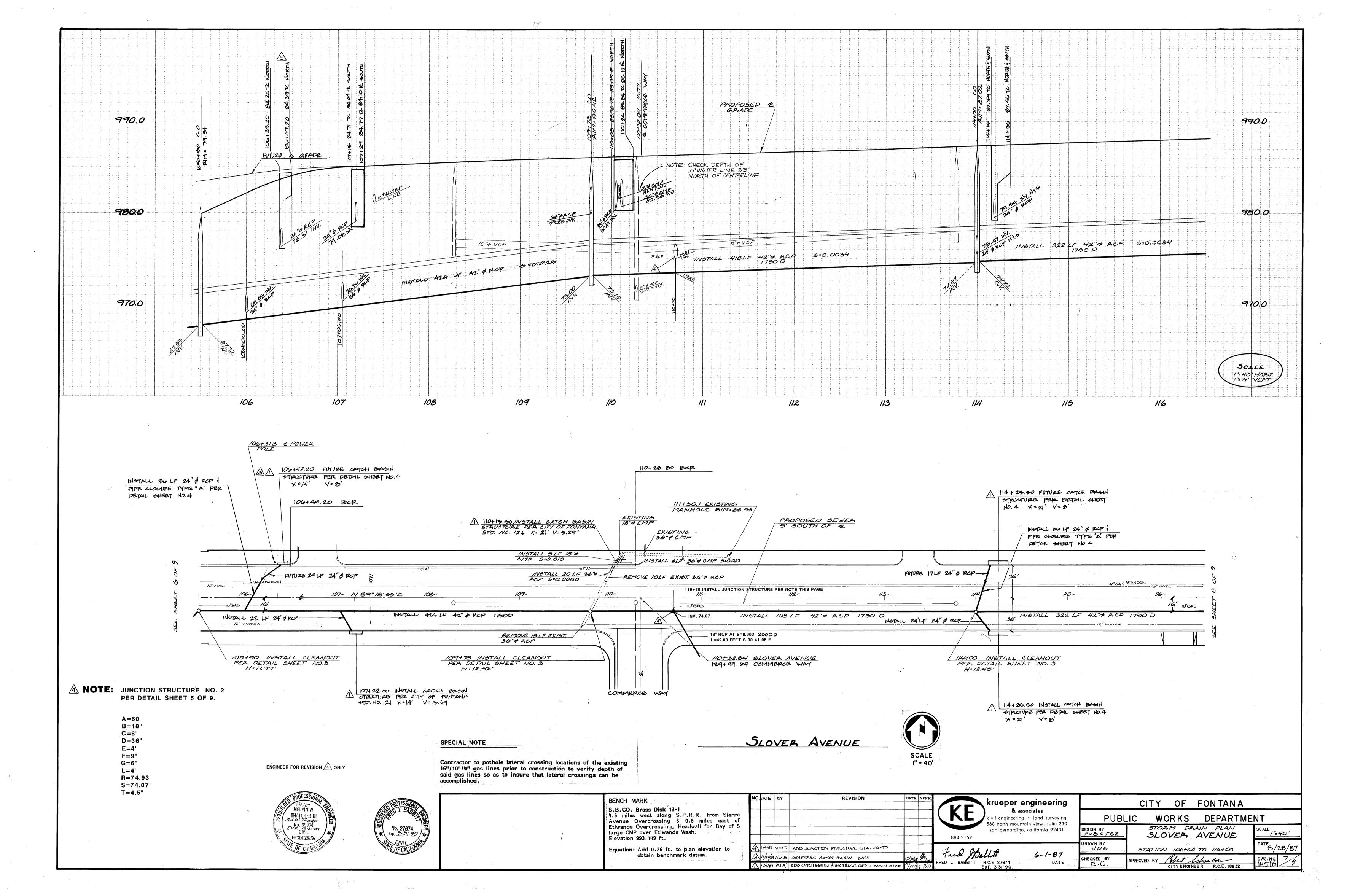

Methodology

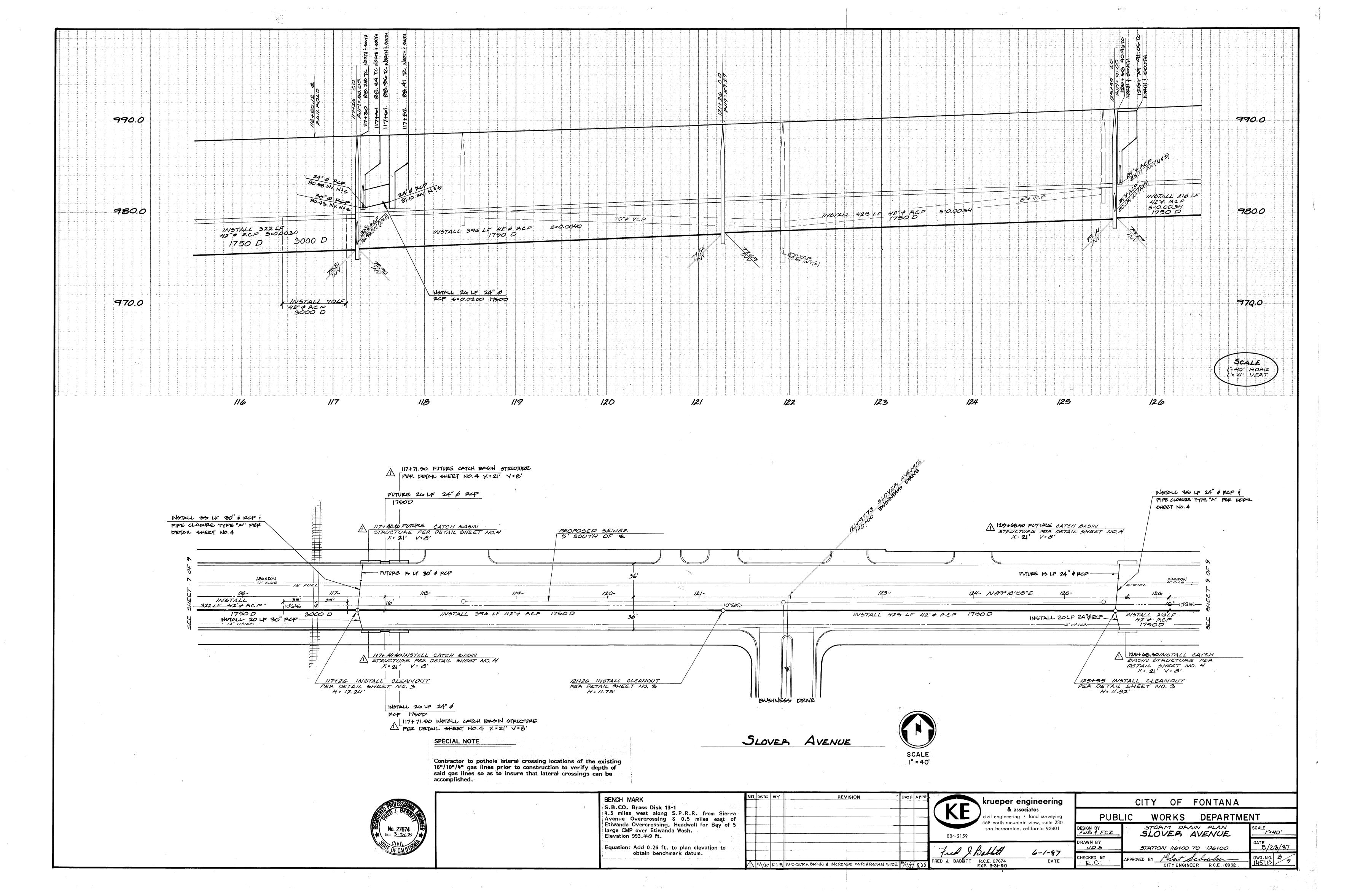

Hydrology calculations were computed using San Bernardino County's Rational Method Hydrology AES software. Truck yard detention was modeled via AES software's Small Unit Hydrograph Model. The soil classification was type "A" per the San Bernardino County Hydrology Manual. Please refer to Appendix "A" for reference materials.

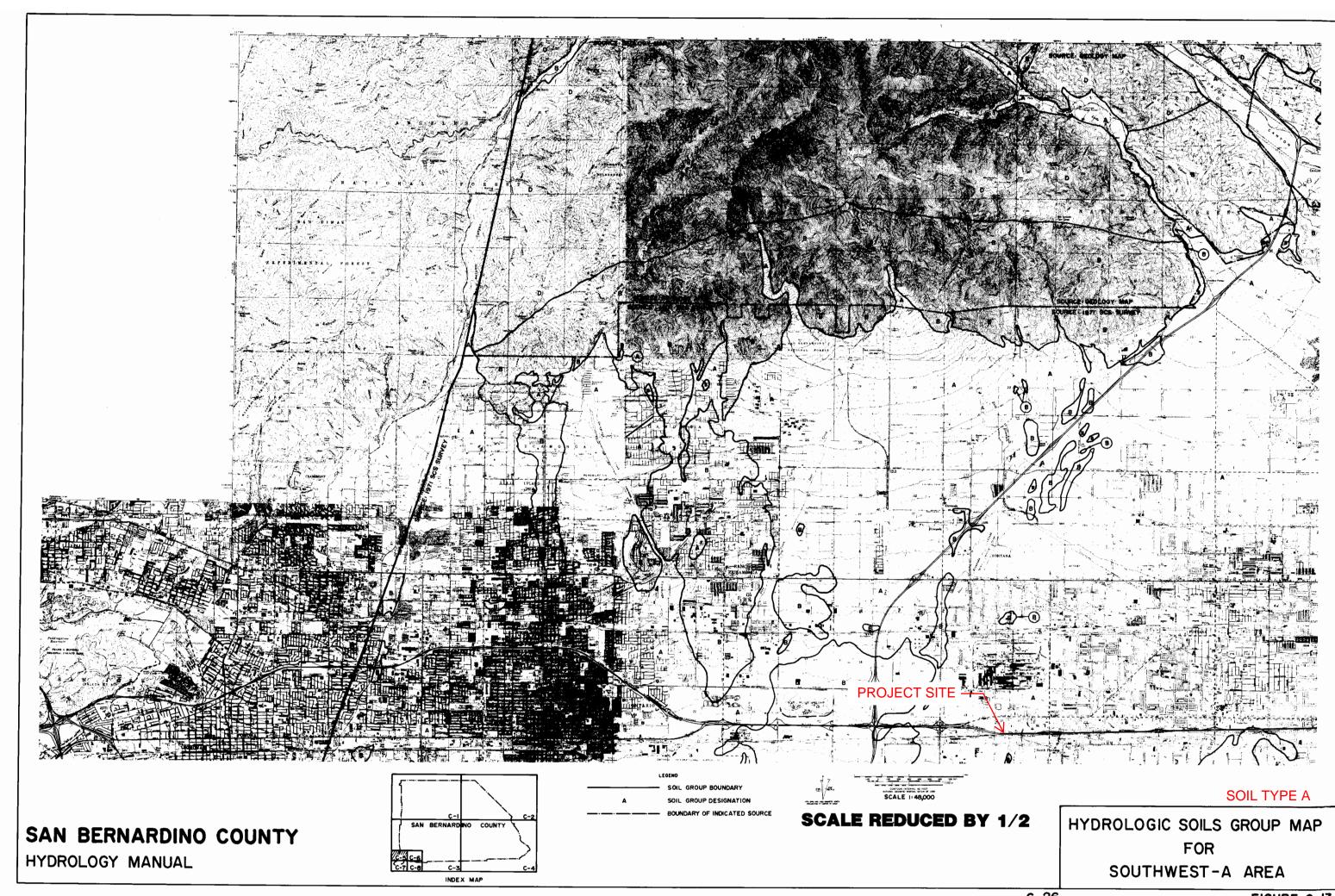

APPENDIX DESCRIPTION A REFERENCE MATERIALS B HYDROLOGY CALCULATIONS C HYDROLOGY MAP

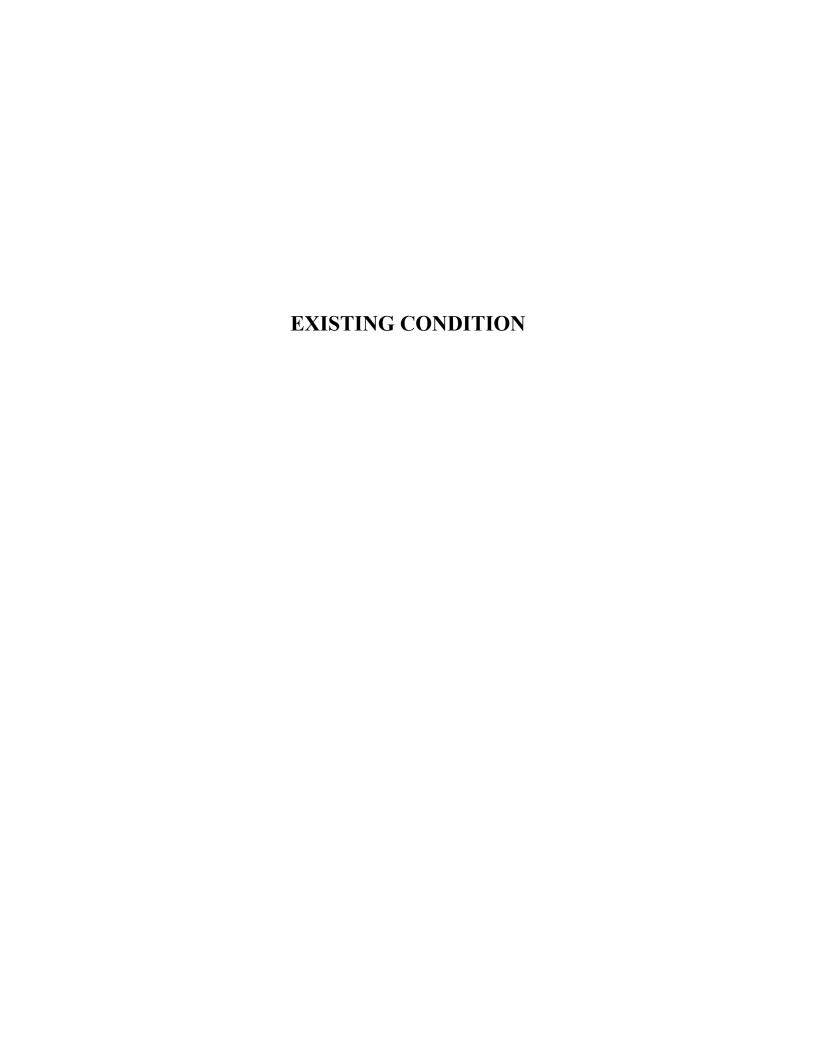

APPENDIX A


REFERENCE MATERIALS









APPENDIX B

HYDROLOGY CALCULATIONS

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435

Analysis prepared by:

```
PH: (714) 521-4811 FAX: (714) 521-4173
******************* DESCRIPTION OF STUDY ****************
* JOB #3950 SLOVER AVE INDUSTRIAL BLDG
* EXISTING CONDITION 100-YEAR
* NODES 110-111 110xP.DAT
****************************
 FILE NAME: C:\XDRIVE\3950\110X.DAT
 TIME/DATE OF STUDY: 22:31 03/14/2021
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
******************************
 FLOW PROCESS FROM NODE 110.00 TO NODE
                                   111.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 735.00
                            995.92 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.148
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.834
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                  SCS
                                    Fp
                                             Aр
                                                      Tc
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
                             7.95
 COMMERCIAL
                      Α
                                     0.80
                                             0.10
                                                   52 10.15
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 26.86
TOTAL AREA(ACRES) = 7.95 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 7.95 TC(MIN.) = 10.15

EFFECTIVE AREA(ACRES) = 7.95 AREA-AVERAGED Fm(INCH/HR) = 0.08

AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 PEAK FLOW RATE(CFS) = 26.86
______
______
```

1

```
RATTONAL METHOD HYDROLOGY COMPLITER PROGRAM PACKAGE
        (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
       (c) Copyright 1983-2016 Advanced Engineering Software (aes)
          Ver. 23.0 Release Date: 07/01/2016 License ID 1435
                      Analysis prepared by:
                    THIENES ENGINEERING, INC.
                      14349 FIRESTONE BLVD
                      LA MIRADA, CA 90638
                          714-521-4811
* TEI JOB NO 3950
* EXISTING CONDITION
* 100 YEAR STORM EVENT
 FILE NAME: W:\3950\X100.DAT
 TIME/DATE OF STUDY: 15:02 03/12/2021
     ______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
--*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
 *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
   HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
    WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
           (FT) SIDE / SIDE/ WAY
    (FT)
                                  (FT)
                                         (FT) (FT) (FT)
 1 30.0
           20.0
                  0.018/0.018/0.020 0.67
                                        2.00 0.0312 0.167 0.0150
 GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
   1. Relative Flow-Depth = 0.00 FEET
     as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
   2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
 *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
  OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
 *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED
FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
        INITIAL SUBAREA FLOW-LENGTH(FEET) = 680.00
ELEVATION DATA: UPSTREAM(FEET) = 999.12 DOWNSTREAM(FEET) = 991.63
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.174
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.828
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Fp
                                                     SCS Tc
                                               Aр
 LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.) COMMERCIAL A 3.80 0.74 0.100 52 10.17 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.74
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) =
                      12.84
 TOTAL AREA(ACRES) =
                      3.80 PEAK FLOW RATE(CFS) =
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 91
 >>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA
______
 UPSTREAM NODE ELEVATION(FEET) = 991.63
 DOWNSTREAM NODE ELEVATION(FEET) = 990.29
CHANNEL LENGTH THRU SUBAREA(FEET) = 260.00
 "V" GUTTER WIDTH(FEET) = $.00 GUTTER HIKE(FEET) = 0.050
 PAVEMENT LIP(FEET) = 0.010 MANNING'S N = .0150
 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
 MAXIMUM DEPTH(FEET) = 100.00
```

* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.485

```
SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                          SCS SOÍL AREA
                                                                   SCS
                                                Fρ
                                                           Αp
      LAND USE
                           GROUP (ACRES) (INCH/HR) (DECIMAL) CN
                                     3.35
 COMMERCIAL
                            Α
                                                 0.74
                                                          0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.74
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.51
AVERAGE FLOW DEPTH(FEET) = 0.39 FLOOD WIDTH(FEET) = 37.71
 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 1.73 Tc(MIN.) = 11.90

SUBAREA AREA(ACRES) = 3.35 SUBAREA RUNOFF(CFS) = 10.28

EFFECTIVE AREA(ACRES) = 7.15 AREA-AVERAGED Fm(INCH/HR) = 0.07
 AREA-AVERAGED Fp(INCH/HR) = 0.74 AREA-AVERAGED Ap = 0.10
                             7.1
 TOTAL AREA(ACRES) =
                                          PEAK FLOW RATE(CFS) =
                                                                      21.95
 END OF SUBAREA "V" GUTTER HYDRAULICS:
 DEPTH(FEET) = 0.42 FLOOD WIDTH(FEET) = 40.76
 FLOW VELOCITY(FEET/SEC.) = 2.63 DEPTH*VELOCITY(FT*FT/SEC) = 1.10
 LONGEST FLOWPATH FROM NODE
                               100.00 TO NODE
                                                  102.00 =
                                                                940.00 FEET.
************************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 91
 >>>>COMPUTE "V" GUTTER FLOW TRAVEL TIME THRU SUBAREA
 ______
 UPSTREAM NODE ELEVATION(FEET) = 990.29
 DOWNSTREAM NODE ELEVATION(FEET) = 988.66
CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00
  "V" GUTTER WIDTH(FEET) = 5.00 GUTTER HIKE(FEET) = 0.050
 PAVEMENT LIP(FEET) = 0.010 MANNING'S N = .0150
 PAVEMENT CROSSFALL(DECIMAL NOTATION) = 0.02000
 MAXIMUM DEPTH(FEET) = 100.00
  * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.344
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                                      AREA
                         SCS SOIL
                           GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 COMMERCIAL
                             Α
                                      3.45
                                               0.74
                                                          0.100
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.74
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.46
 AVERAGE FLOW DEPTH(FEET) = 0.40 FLOOD WIDTH(FEET) = 39.39
 "V" GUTTER FLOW TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) = 12.74
SUBAREA AREA(ACRES) = 3.45 SUBAREA RUNOFF(CFS) = 10.15
EFFECTIVE AREA(ACRES) = 10.60 AREA-AVERAGED FM(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.74 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) =
                                          PEAK FLOW RATE(CFS) =
                            10.6
                                                                      31.20
 END OF SUBAREA "V" GUTTER HYDRAULICS:
 DEPTH(FEET) = 0.43 FLOOD WIDTH(FEET) = 41.68
 FLOW VELOCITY(FEET/SEC.) = 3.57 DEPTH*VELOCITY(FT*FT/SEC) = 1.52 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 1115.00 FEET.
 ------
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 10.6 TC(MIN.) = 12.74

EFFECTIVE AREA(ACRES) = 10.60 AREA-AVERAGED Fm(INCH/HR) = 0.07

AREA-AVERAGED Fp(INCH/HR) = 0.74 AREA-AVERAGED Ap = 0.100
 PEAK FLOW RATE(CFS) = 31.20
------
```

Page 2

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435

Analysis prepared by:

```
PH: (714) 521-4811 FAX: (714) 521-4173
******************* DESCRIPTION OF STUDY ****************
* JOB #3950 SLOVER AVE INDUSTRIAL BLDG
* PROPOSED CONDITION 100-YEAR
* NODES 100-114 100P.DAT
****************************
 FILE NAME: C:\XDRIVE\3950\100P.DAT
 TIME/DATE OF STUDY: 19:48 06/09/2021
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
******************************
 FLOW PROCESS FROM NODE 100.00 TO NODE
                                   101.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 561.00
                            993.75 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.382
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.782
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                  SCS
                                    Fp
                                             Aр
                                                      Tc
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                      Α
                             1.70
                                     0.80
                                             0.10
                                                   52 10.38
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 5.66
 TOTAL AREA(ACRES) =
                  1.70 PEAK FLOW RATE(CFS) =
*****************************
 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 986.45 DOWNSTREAM(FEET) = 986.01
 FLOW LENGTH(FEET) = 145.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 3.93
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.66
 PIPE TRAVEL TIME(MIN.) = 0.62 Tc(MIN.) = 11.00
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 706.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 102.00 TO NODE
                                102.00 IS CODE = 81
------
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
 MAINLINE Tc(MIN) = 11.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.653
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Ap SCS
                                Fp
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                    Α
                           1.50
                                 0.80
                                         0.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 1.50
                          SUBAREA RUNOFF(CFS) = 4.82
 EFFECTIVE AREA(ACRES) = 3.20 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 3.20
                          PEAK FLOW RATE(CFS) =
*******************************
 FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 986.01 DOWNSTREAM(FEET) = 985.66
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.56
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.29
 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 11.44
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 826.00 FEET.
*****************************
 FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 81
-----
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN) = 11.44
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.569
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                   SCS SOIL
                            AREA
                                   Fp
                                                  SCS
     LAND USE
                    GROUP
                          (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                                            0.10
                     Α
                            1.35
                                    0.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 1.35 SUBAREA RUNOFF(CFS) = 4.24 EFFECTIVE AREA(ACRES) = 4.55 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 4.55
                            PEAK FLOW RATE(CFS) =
*****************************
                    103.00 TO NODE
 FLOW PROCESS FROM NODE
                                  104.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 985.66 DOWNSTREAM(FEET) = 985.29
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 27.0 INCH PIPE IS 18.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.06
 ESTIMATED PIPE DIAMETER(INCH) = 27.00
                                 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 14.29
 PIPE TRAVEL TIME(MIN.) = 0.40 Tc(MIN.) = 11.83
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 946.00 FEET.
****************************
 FLOW PROCESS FROM NODE 104.00 TO NODE
                                  104.00 IS CODE = 81
_____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>>>
______
 MAINLINE Tc(MIN) = 11.83
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.497
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                   SCS SOIL
                            AREA
                                   Fр
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                    Α
                             1.85
                                   0.80
                                           0.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 1.85
                            SUBAREA RUNOFF(CFS) =
 EFFECTIVE AREA(ACRES) = 6.40 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 6.40
                            PEAK FLOW RATE(CFS) =
                                                19.68
******************************
 FLOW PROCESS FROM NODE 104.00 TO NODE
                                  113.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 985.29 DOWNSTREAM(FEET) = 984.75
```

```
FLOW LENGTH(FEET) = 181.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 30.0 INCH PIPE IS 20.9 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.39
 ESTIMATED PIPE DIAMETER(INCH) = 30.00
                              NUMBER OF PIPES = 1
               19.68
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 12.39
 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 113.00 = 1127.00 FEET.
*******************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 10
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
______
********************************
 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 416.00
 ELEVATION DATA: UPSTREAM(FEET) = 993.75 DOWNSTREAM(FEET) = 990.63
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.113
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                        Ap SCS Tc
                                Fр
    LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                   Α
                          3.00
                                 0.80
                                        0.10
                                              52 9.03
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 10.89
                 3.00 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
*******************************
 FLOW PROCESS FROM NODE
                  111.00 TO NODE
                               112.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 987.13 DOWNSTREAM(FEET) = 985.17
 FLOW LENGTH(FEET) = 619.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.76
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                              NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.89
 PIPE TRAVEL TIME(MIN.) = 2.17 Tc(MIN.) = 11.19
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 112.00 = 1035.00 FEET.
****************************
 FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
```

```
MAINLINE Tc(MIN) = 11.19
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.615
 SUBAREA LOSS RATE DATA(AMC III):
                                    Fp
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                    SCS
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                      Α
                             0.90 0.80
                                            0.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 0.90 SUBAREA RUNOFF(CFS) = 2.86
 EFFECTIVE AREA(ACRES) = 3.90 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 3.90 PEAK FLOW RATE(CFS) =
*****************************
 FLOW PROCESS FROM NODE 112.00 TO NODE 113.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 985.17 DOWNSTREAM(FEET) = 984.75
 FLOW LENGTH(FEET) = 101.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 5.45
                                 NUMBER OF PIPES = 1
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
 PIPE-FLOW(CFS) = 12.41
 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 11.50
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 = 1136.00 FEET.
***********************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
 ** MAIN STREAM CONFLUENCE DATA **
  STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
         12.41 11.50 3.557 0.80(0.08) 0.10 3.9 110.00
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 113.00 = 1136.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
         19.68 12.39 3.401 0.80(0.08) 0.10 6.4
                                                  100.00
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 113.00 = 0.00 FEET.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
         (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
  NUMBER
         31.53 11.50 3.557 0.80(0.08) 0.10 9.8
31.54 12.39 3.401 0.80(0.08) 0.10 10.3
    1
                                                110.00
                                                  100.00
   TOTAL AREA(ACRES) = 10.30
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 31.54 Tc(MIN.) = 12.391
```

```
EFFECTIVE AREA(ACRES) = 10.30 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 10.30
 LONGEST FLOWPATH FROM NODE
                      110.00 TO NODE
                                  113.00 = 1136.00 FEET.
****************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 12
______
 >>>> CLEAR MEMORY BANK # 1 <<<<<
______
********************************
 FLOW PROCESS FROM NODE 113.00 TO NODE 114.00 IS CODE = 31
_____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 984.75 DOWNSTREAM(FEET) = 981.39
 FLOW LENGTH(FEET) = 45.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 20.50
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                              NUMBER OF PIPES = 1
               31.54
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 12.43
 LONGEST FLOWPATH FROM NODE 110.00 TO NODE 114.00 = 1181.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 10.30 TC(MIN.) = 12.43
EFFECTIVE AREA(ACRES) = 10.30 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 PEAK FLOW RATE(CFS) = 31.54
 ** PEAK FLOW RATE TABLE **
        Q Tc Intensity Fp(Fm) Ap Ae
        (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES)
  NUMBER
        31.53 11.54 3.550 0.80(0.08) 0.10 9.8
31.54 12.43 3.395 0.80(0.08) 0.10 10.3
    1
______
 END OF RATIONAL METHOD ANALYSIS
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435

Analysis prepared by:

```
PH: (714) 521-4811 FAX: (714) 521-4173
******************* DESCRIPTION OF STUDY ****************
* JOB #3950 SLOVER AVE INDUSTRIAL BLDG
* PROPOSED CONDITION 100-YEAR
* NODES 200-214 200P.DAT
****************************
 FILE NAME: C:\XDRIVE\3950\200P.DAT
 TIME/DATE OF STUDY: 19:57 06/09/2021
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
******************************
 FLOW PROCESS FROM NODE
                     200.00 TO NODE
                                   201.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 582.00
                            991.33 DOWNSTREAM(FEET) =
 ELEVATION DATA: UPSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.603
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.734
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                  SCS
                                    Fp
                                             Aр
                                                      Tc
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                      Α
                             2.00
                                     0.80
                                             0.10
                                                   52 10.60
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 6.58
                  2.00 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE
                   201.00 TO NODE 202.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 983.52 DOWNSTREAM(FEET) = 983.14
 FLOW LENGTH(FEET) = 126.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.15
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.58
 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 11.11
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 708.00 FEET.
****************************
 FLOW PROCESS FROM NODE
                   202.00 TO NODE
                                202.00 IS CODE = 81
------
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><>
______
 MAINLINE Tc(MIN) = 11.11
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.631
 SUBAREA LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Ap SCS
                                Fp
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                    Α
                           0.95
                                 0.80
                                         0.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 0.95
                          SUBAREA RUNOFF(CFS) = 3.04
 EFFECTIVE AREA(ACRES) = 2.95 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 2.95
                          PEAK FLOW RATE(CFS) =
*******************************
 FLOW PROCESS FROM NODE 202.00 TO NODE
                                 203.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 983.14 DOWNSTREAM(FEET) = 982.78
 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.53
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.43
 PIPE TRAVEL TIME(MIN.) = 0.44 Tc(MIN.) = 11.55
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 828.00 FEET.
****************************
 FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81
-----
```

```
>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN) = 11.55
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.548
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL
                             AREA
                                    Fp
                                                   SCS
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN
                                             0.10
 COMMERCIAL
                      Α
                             1.15
                                     0.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 1.15
EFFECTIVE AREA(ACRES) = 4.10
                            SUBAREA RUNOFF(CFS) = 3.59
                            AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 4.10
                            PEAK FLOW RATE(CFS) =
*****************************
                     203.00 TO NODE
 FLOW PROCESS FROM NODE
                                   213.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 982.78 DOWNSTREAM(FEET) = 982.37
 FLOW LENGTH(FEET) = 138.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.72
 ESTIMATED PIPE DIAMETER(INCH) = 24.00
                                  NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.80
 PIPE TRAVEL TIME(MIN.) = 0.49 Tc(MIN.) = 12.04
 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 213.00 = 966.00 FEET.
****************************
                                   213.00 IS CODE = 10
 FLOW PROCESS FROM NODE
                     213.00 TO NODE
______
 >>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<<
_____
********************************
 FLOW PROCESS FROM NODE 210.00 TO NODE 211.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 577.00
 ELEVATION DATA: UPSTREAM(FEET) = 991.11 DOWNSTREAM(FEET) = 986.94
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.365
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.786
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                   SCS
                                    Fp
     LAND USE
                     GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                             2.05
                                             0.10
                                                   52 10.36
                      Α
                                     0.80
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) =
                      6.84
```

```
TOTAL AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) =
*****************************
 FLOW PROCESS FROM NODE 211.00 TO NODE 212.00 IS CODE = 31
.....
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<
______
 ELEVATION DATA: UPSTREAM(FEET) = 983.71 DOWNSTREAM(FEET) = 983.48
 FLOW LENGTH(FEET) = 76.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.19
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                6.84
 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 10.67
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE
                                   212.00 = 653.00 FEET.
****************************
 FLOW PROCESS FROM NODE 212.00 TO NODE
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<>><
______
 MAINLINE Tc(MIN) = 10.67
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.721
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                SCS SOIL
                                               SCS
                          AREA
                                  Fр
                         (ACRES) (INCH/HR) (DECIMAL) CN
                   GROUP
     LAND USE
 COMMERCIAL
                                  0.80
                                          0.10
                    Α
                           0.65
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 0.65 SUBAREA RUNOFF(CFS) = 2.13 EFFECTIVE AREA(ACRES) = 2.70 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 2.70
                          PEAK FLOW RATE(CFS) =
                                               8.85
******************************
 FLOW PROCESS FROM NODE 212.00 TO NODE
                                 213.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 983.48 DOWNSTREAM(FEET) = 982.37
 FLOW LENGTH(FEET) = 361.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 21.0 INCH PIPE IS 16.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.39
 ESTIMATED PIPE DIAMETER(INCH) = 21.00
                               NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.85
 PIPE TRAVEL TIME(MIN.) = 1.37
                          Tc(MIN.) = 12.04
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 213.00 = 1014.00 FEET.
****************************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 11
______
 >>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<
______
```

```
** MAIN STREAM CONFLUENCE DATA **
         Q Tc Intensity Fp(Fm) Ap Ae HEADWATER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
  STREAM
  NUMBER
          8.85 12.04 3.461 0.80(0.08)0.10 2.7
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 213.00 = 1014.00 FEET.
 ** MEMORY BANK # 1 CONFLUENCE DATA **
  STREAM Q To Intensity Fp(Fm) Ap Ae
                                               HEADWATER
         (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
  NUMBER
         12.80 12.04 3.461 0.80(0.08) 0.10 4.1
    1
                                                  200.00
 LONGEST FLOWPATH FROM NODE 0.00 TO NODE 213.00 =
                                                   0.00 FEET.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
         21.64 12.04 3.461 0.80(0.08)0.10 6.8
    1
                                                  210.00
         21.64 12.04 3.461 0.80(0.08) 0.10 6.8
    2
                                                   200.00
   TOTAL AREA(ACRES) = 6.80
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 21.64 Tc(MIN.) = 12.036
EFFECTIVE AREA(ACRES) = 6.80 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 6.80
 LONGEST FLOWPATH FROM NODE
                          210.00 TO NODE
                                         213.00 = 1014.00 FEET.
*************************
 FLOW PROCESS FROM NODE 213.00 TO NODE 213.00 IS CODE = 12
 >>>>CLEAR MEMORY BANK # 1 <<<<<
______
*****************************
 FLOW PROCESS FROM NODE 213.00 TO NODE 214.00 IS CODE = 31
-----
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 982.37 DOWNSTREAM(FEET) = 979.69
 FLOW LENGTH(FEET) = 43.00 MANNING'S N = 0.012
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 17.33
 ESTIMATED PIPE DIAMETER(INCH) = 18.00
                                   NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 21.64
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 12.08
 LONGEST FLOWPATH FROM NODE 210.00 TO NODE 214.00 = 1057.00 FEET.
_____
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 6.80 TC(MIN.) = 12.08
EFFECTIVE AREA(ACRES) = 6.80 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 PEAK FLOW RATE(CFS) = 21.64
 ** PEAK FLOW RATE TABLE **
```

STREAM	Q	Tc	Intensity	Fp(Fm)	Ар	Ae	HEADWATER	
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)	(ACRES)	NODE	
1	21.64	12.08	3.454	0.80(0.08)	0.10	6.8	200.00	
2	21.64	12.08	3.454	0.80(0.08)	0.10	6.8	210.00	
========	======	-=====		========	=====	======		=
=========	======	======			=====	======		=

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435

Analysis prepared by:

THIENES ENGINEERING 16800 VALLEY VIEW AVENUE LA MIRADA CA 90638 PH: (714) 521-4811 FAX: (714) 521-4173

******************* DESCRIPTION OF STUDY **************** * JOB #3950 SLOVER AVE INDUSTRIAL BLDG * PROPOSED CONDITION 100-YEAR * NODES 230-232 230P.DAT **************************** FILE NAME: C:\XDRIVE\3950\230P.DAT TIME/DATE OF STUDY: 14:08 06/09/2021 ______ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ______ --*TIME-OF-CONCENTRATION MODEL*--USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL* SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD* ****************************** FLOW PROCESS FROM NODE 230.00 TO NODE 231.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS< >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<< ______ INITIAL SUBAREA FLOW-LENGTH(FEET) = 478.00 995.22 DOWNSTREAM(FEET) = ELEVATION DATA: UPSTREAM(FEET) = Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.707 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.937 SUBAREA To AND LOSS RATE DATA(AMC III):

SCS SOIL AREA

0.40

GROUP

Α

SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80

Fp

0.80

SCS

52

Ар

0.10

(ACRES) (INCH/HR) (DECIMAL) CN (MIN.)

DEVELOPMENT TYPE/

LAND USE

COMMERCIAL

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 1.39
                  0.40 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
****************************
 FLOW PROCESS FROM NODE 231.00 TO NODE 232.00 IS CODE = 51
-----
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <<<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 991.93 DOWNSTREAM(FEET) = 988.80
 CHANNEL LENGTH THRU SUBAREA(FEET) = 377.00 CHANNEL SLOPE = 0.0083
 CHANNEL BASE(FEET) = 2.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 1.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 1.39
 FLOW VELOCITY(FEET/SEC) = 1.72 FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 3.65 Tc(MIN.) = 13.35
 LONGEST FLOWPATH FROM NODE 230.00 TO NODE 232.00 = 855.00 FEET.
****************************
 FLOW PROCESS FROM NODE 231.00 TO NODE
                                232.00 IS CODE = 81
-----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN) = 13.35
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.252
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                                         Ap SCS
                          AREA
                                Fp
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 COMMERCIAL
                    Α
                           0.45
                                  0.80
                                         0.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA AREA(ACRES) = 0.45
                          SUBAREA RUNOFF(CFS) = 1.28
 EFFECTIVE AREA(ACRES) = 0.85 AREA-AVERAGED Fm(INCH/HR) = 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 TOTAL AREA(ACRES) = 0.85 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.85 TC(MIN.) = 13.35
EFFECTIVE AREA(ACRES) = 0.85 AREA-AVERAGED Fm(INCH/HR)= 0.08
 AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 PEAK FLOW RATE(CFS) = 2.43
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435

Analysis prepared by:

```
PH: (714) 521-4811 FAX: (714) 521-4173
******************* DESCRIPTION OF STUDY ****************
* JOB #3950 SLOVER AVE INDUSTRIAL BLDG
* PROPOSED CONDITION 100-YEAR
* NODES 300-301 300P.DAT
****************************
 FILE NAME: C:\XDRIVE\3950\300P.DAT
 TIME/DATE OF STUDY: 14:11 06/09/2021
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
******************************
 FLOW PROCESS FROM NODE 300.00 TO NODE
                                   301.00 \text{ IS CODE} = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 422.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            988.92 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.366
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 3.785
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                  SCS
                                    Fp
                                             Aр
                                                      Tc
     LAND USE
                     GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                      Α
                             0.20
                                     0.80
                                             0.10
                                                   52 10.37
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 0.67
TOTAL AREA(ACRES) = 0.20 PEAK FLOW RATE(CFS) =
                                           0.67
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.20 TC(MIN.) = 10.37
EFFECTIVE AREA(ACRES) = 0.20 AREA-AVERAGED Fm(INCH/HR) = 0.08
AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 PEAK FLOW RATE(CFS) = 0.67
______
______
```

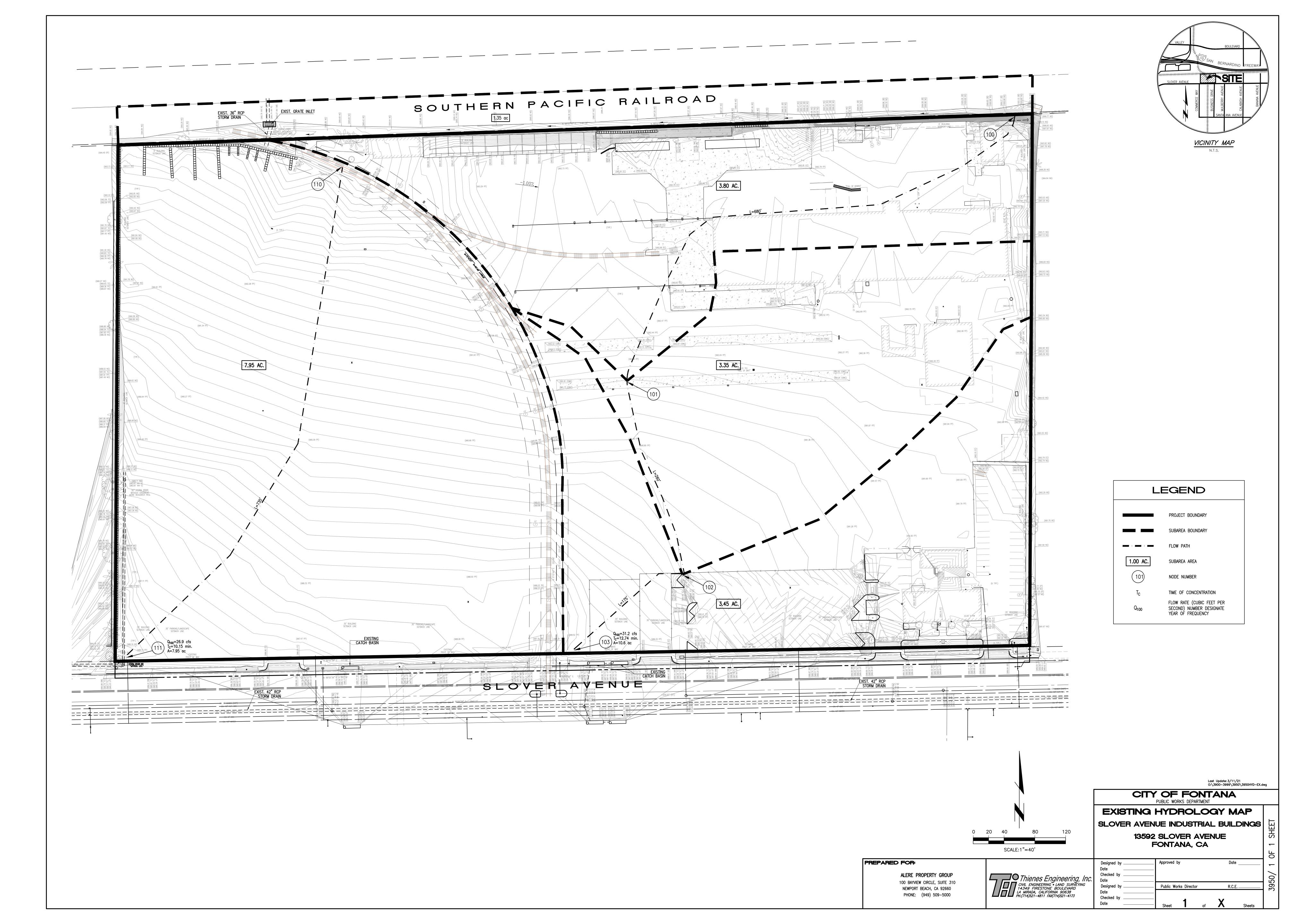
1

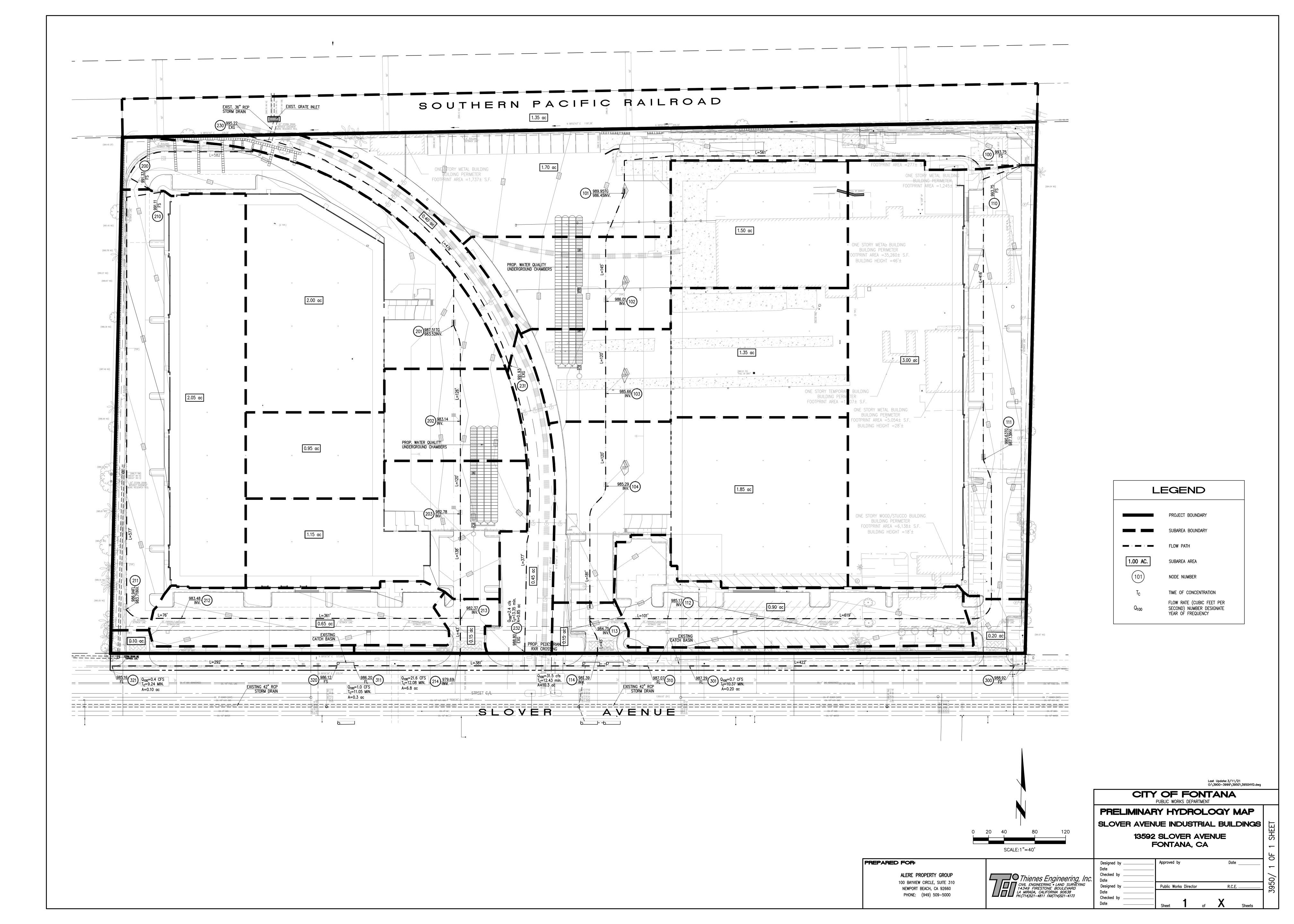
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION) (c) Copyright 1983-99 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/99 License ID 1435

Analysis prepared by:

```
PH: (714) 521-4811 FAX: (714) 521-4173
******************* DESCRIPTION OF STUDY ****************
* JOB #3950 SLOVER AVE INDUSTRIAL BLDG
* PROPOSED CONDITION 100-YEAR
* NODES 320-321 320P.DAT
****************************
 FILE NAME: C:\XDRIVE\3950\320P.DAT
 TIME/DATE OF STUDY: 14:39 06/09/2021
______
 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
______
               --*TIME-OF-CONCENTRATION MODEL*--
 USER SPECIFIED STORM EVENT(YEAR) = 100.00
 SPECIFIED MINIMUM PIPE SIZE(INCH) = 12.00
 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95
 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*
 SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.6000
 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.3200
 *ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD*
******************************
 FLOW PROCESS FROM NODE 320.00 TO NODE
                                   321.00 IS CODE = 21
>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 292.00
 ELEVATION DATA: UPSTREAM(FEET) =
                            986.12 DOWNSTREAM(FEET) =
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) =
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.056
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                    SCS SOIL AREA
                                                  SCS
                                    Fp
                                             Ар
     LAND USE
                    GROUP
                           (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                      Α
                             0.10
                                     0.80
                                             0.10
                                                   52
                                                       9.24
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.80
```

```
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.10
 SUBAREA RUNOFF(CFS) = 0.36
TOTAL AREA(ACRES) = 0.10 PEAK FLOW RATE(CFS) =
                                           0.36
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.10 TC(MIN.) = 9.24


EFFECTIVE AREA(ACRES) = 0.10 AREA-AVERAGED Fm(INCH/HR) = 0.08


AREA-AVERAGED Fp(INCH/HR) = 0.80 AREA-AVERAGED Ap = 0.10
 PEAK FLOW RATE(CFS) = 0.36
______
______
```

1

APPENDIX C

HYDROLOGY MAP

